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CHAPTER I : INTRODUCTION

In the 1last twenty years Quantum Field Theory (QFT) has
witnessed a spectacular progress.

First introduced to describe quantum electrodynamics (QED), QFT
has become the framework for the discussion of all the fundamental
interactions except gravity.

The concept of renormalisable field theory first emerged
empirically in QED, where it led to predictions of extraordinary
accuracy, and now forms the basis of a complete theory of strong,
weak and electromagnetic interactions. Very early it was realized
that in massless renormalisable field theories a renormalisation
group could be associated with transformation properties under space
dilations but only later was this property used to discuss the short
distance structure of physical processes.

Quantum electrodynamics, as well as all more complete field
theories in particle physics, is afflicted by a strange disease.In a
straightforward calculation all physical quantities are infinite,
due to the short distance singularities of the theory. A strange
remedy to this disease has been found: one artificially modifies the
theory at short distance, at a scale characterized by a short
distance cut-off, and one then re-expresses all physical quantities
in terms of a small number of physical constants, such as the

physical charge.



After this change of parametrisation the cut-off is removed and ,
somewhat miraculously, when the theory is so-called renormalisable,
all other physical quantities have a finite limit. Moreover this
limit is independent of the precise form of the short distance
modification. We can summarize this property by saying that
renormalisable field theories are short distance insensitive, in the
sense that they can be described in terms of a finite number of
effective parameters relevant to the scale of observation without a
detailed knowledge of the microscopic structure. The infinities ,
or divergences , that we meet when calculating physical processes
show that the field theories we want to construct cannot be
defined by a straightforward perturbative expansion without some
modification. We shall modify the field theory at large momentum in
such a way that the new Feynman diagrams become well-defined finite
quantities, and such that when one control parameter approaches some
limit (for example the cut-off is sent to infinity), we recover the
original perturbation theory[1] . This procedure 1is called
regularisation. It will allow us to isolate well-defined divergent
parts of diagrams and deal with them with renormalisation. There
are many reqgularisation methods but in any particular application
there are some criteria which guide our choice of a regularisation
method: in some theories, symmetries play a crucial role and it is
helpful to find a regularisation which preserve the symmetry (for

example in gauge theories).



Another criterion is that if we wish explicitly to calculate Feynman
diagrams, we shall look for the regularisation which leads to the
simplest practical calculation. In some theories some essential
property apart from the symmetry is violated by the regularisation

method, e.g. the antisymmetric tensor and 75 are

eul,t.....“d
specific to integer dimensions which causes problem with dimensional

regularisation (2],

There are also non-perturbative regularisations the best known
being lattice regularization for which the regularised functional
integral can be calculated by non-perturbative methods, for example
Monte Carlo calculations. It also preserves most global and local
symmetries.

Despite the development of the machinery of
renormalisation, there remained a widespread feeling that the
divergences, although trained, were indicative of something
unsatisfactory in our approach to QFT, if not in QFT itself. This
attitude has changed over the last twenty years, and the modern
consensus is that the divergent nature of the radiative corrections
to the particle masses and coupling constants is a reflection of the
existence of an energy scale at which new degrees of freedom become
excited. From this viewpoint, the quadratic divergences in

renormalisable field theories in four dimensions become important.



We can see this clearly in the standard model, which is a very
successful theory which accurately describes weak and
electromagnetic phenomena and quantum chromodynamics (QCD). The
standard model is a gauge theory based on SU(3) x SU(2) x U(1). One
of the main pieces of the puzzle is missing, namely the spin zero
elementary Higgs boson needed by the Standard Model for spontaneous
symmetry breaking (which is responsible for the masses of the wh ' 2
and fermions). Although one could argue that it is only a matter of
time until the Higgs boson will be discovered (depending on its mass
which is not fixed by the theory), it is widely thought that deeper
problems exist, connected with the Higgs boson, which suggest that
it is necessary to look beyond the Standard Model to understand the
Higgs sector of the theory. For this reason a great deal of
interest has developed in super-symmetric extensions of the standard
model (for reviews see e.g. ref. [2]).

There are three kinds of reasons why the standard model is
incomplete.

First, it contains many arbitrary assumptions and parameters,
e.g. Why are there three colours? Why are left-handed fermions in

SU(2) doublets and right-handed ones in SU(2) singlets? etc.



Secondly, the Standard Model, like QED, is not asymptotically
free, so ultimately, at some energy scale, its interactions must
become strong. Even though this could be at very high energy, it
suggests that in principle the Standard Model is the low energy
effective theory of a more fundamental one.

The above two reasons do not necessary suggest that supersymmetry

is a particularly good approach to going beyond the Standard
Model, although it could be relevant to them. However, the third
reason does .

If one calculates the radiative corrections to the mass of

the Higgs boson of the Standard Model, e.g. from a fermion loop in

the propagator, one has a loop integral of the form:

J atx (I.1)
¥ - mg) ((FHO - my)

for a Higgs of momentum p. This integral diverges quadratically for
large k, so it gives a correction to the mass 8m2~ A2, where A is a
cut-off, a scale beyond which the low energy theory no long applies.
Could the Higgs particle mass in fact be superheavy? For some
Higgs’ mass of the Order of a few Tev, the Higgs self-coupling gets
too strong, and we should not be observing the apparently successful

perturbation theory at low energies.



Since corrections larger than this mass scale would seem equally
unphysical, we expect the new physics to give an effective cut-off
scale below a few Tev. In fact, the Higgs vacuum expectation value,
which determines mw’s and in principle, the fermion masses, is about
250 Gev. So far, there are three kinds of attempts which have

emerged to try to deal with this problem[zl.

One approach is to have quarks, leptons and gauge bosons as
composite objects [3]. A second approach is to eliminate
fundamental scalars from the theory by making them composites of new
fermions - the Technicolor approach [4]. We are not in the
position to justify either of the above approaches - each has its

own problems.

The third approach is to use a higher symmetry to eliminate the
quadratic divergences in the Higgs mass , which can be arranged in
supersymmetric theories. In supersymmetric theories there is always
a loop of superpartners accompanying the loop of normal particles:;
the extra minus sign that goes with any fermion loop, plus the
supersymmetric relations between masses and couplings, guarantee
that the coefficient of the divergence in zero. We give an example

of one of the calculations.



We can demonstrate this at one-loop level in the supersymmetric

model of Wess-Zumino [5].

L=1(8A)2+ 1(aB)%2+ 1i¥4¥%- 1n% (a%+ 8%
2 " 2 H 2 2

- 1mTv-gmnA @%+8%) -1g222+8%H%2-g7F (a - iB T5) ¥
2 2
(I.2)

where A and B are real scalar field and V¥ is a four-component
Majorana spinor.

At one-loop, the only potential quadratic divergence can occur
in the self-energy of the scalar. We will illustrate the
cancellation of quadratic divergences in the one-loop graphs of the
A field self-energy. All possible one-loop quadratically divergent
graphs are given in Fig. (1). The necessary Feynman rules are given
in Fig. (2). Now the sum of the two boson-loop graphs (a) and (b)

is the quadratically divergent integral:

8 g2 J atx (I.3)

(k% - n?)

The fermion-loop graph (c) is given by:



-2g% Tr J a‘x (K +m) (¥-§ + m) (I.4)
(x2 - n%) [ (k-p)? - n?]

The trace is

Tr (K + m ) ( ﬁ-p + m) = 4 ( k2 - k.p + m2 )

=2 (k2 - n%) + ((x-p)2 - n?%) - P? + 4an? ;
(I.5)
Inserting (I.5) into (I.4) we obtain
-4 g2 I a*x -4 g° J a‘x + I(p,m) (I.6)
2
(k2 - n?) (k-p)% - m

where the integral I (p, m) is only logarithmically divergent. 1If
we shift variable Kk —» k + p in the second term of (I.6) it then
becomes clear that the first two terms of (I.6) exactly cancel the
result given in (I.3). Thus the quadratic divergence has indeed
cancelled.

As in the above example, the standard model’s gquadratic
divergence problem can be resolved elegantly if the 1low energy
theory is rendered supersymmetric. However , the 1lack of
experimental evidence for the super-partners of the known particle

is an embarrassment .



Because of that a conjecture that it might be the case that there
exist non-supersymmtric theories free of quadratic divergences has
been made. To ensure that a given theory is free from quadratic
divergences we need to impose a cancellation condition at each loop
level of the theory .

So, the question we set out to answer is as follows :whether we can
understand the quadratic divergences cancellation conditions to all
orders in terms of the scale dependence of the one loop condition
We will give a simple example to illustrate :

We consider the 04 theory in 4@ = 4 with the Lagrangian :

L=1 ( a“«aa‘)2 + U(®) (I.7)
2

where a=12,.....,N and U(®) is a polynomial in 32 of degree four.
In dimensional regularisation , quadratic divergences manifest
themselves at d = 2 (see chapter one ). Denoting the coefficient of

the quadratic divergences at L-loop by AL' the one loop result is[6]:
A, = U (I.8)

where U,= au etc. The normalisation of Al is arbitrary ,
a
8%

we have suppressed overall numerical cofficients, these being

irrelevant to our purpose here.



Therefore the condition for the absence of the quadratic divergnces

at the one loop level is

At the two loop level the quadratic divergences manifest themselves

as a pole at d = 3 , and the two loop result is given by[G]

A, =U U (I.10)

where the normalisation of A2 is arbitrary .we have suppressed

overall numerical cofficients, these being irrelevant to our
purpose here.

We now show how in fact the information in (I.10) is already present
(in a sense) in (I.9) . To do that we recall that the renormalised
couplings of a theory are functions of the renormalisation scale u (
running couplings ) .

Then by differentiating (I.9) with respect to u we obtain

B a_ A1 = u 8U 8 _ A1
ET du au
= Bt(Jl) 2 A (I.11)
au
where BU =pau .
ou

10



At the lowest order , the right-hand side of (I.11) can be written

as

- eél) 8 A, - A, 8 3é1) (I.12)

provided the condition (I.9) holds .

Now substituting for Bél)in (I.12) then it is straightforward to
verify

11 (I.13)
So we have obtained Azin term of the scale invariance of Al.
This is also true for a general gauge theory at one loop ( ref [7]).

In the light of this result we set up four chapters in this work

to test this conjecture for different renormalisable field theories

motivated by the hope of finding a non-supersymmetric theory free of

quadratic divergences .

As it has been mentioned before, the standard model suffers from

quadratic divergences,the one loop cancellation condition ,in fact,
leads to a relationship between the top quark and the Higgs masses .
The one loop cancellation condition is

A+3g2+1g" -2n%=0 (I.14)

4 4

11



where A 1s the Higgs self coupling , g and g" are the gauge
couplings and h is the Yukawa coupling .
This relationship can be translated to a relationship between the

masses using the Higgs vacuum expectation value[8] :

H+ 3 + tanzew - 4T =0 (I.15)

where

2
H = mﬁ / mi , T = my / m
and ew is the weak mixing angle

The quadratic divergences of a given theory depend in a non
trivial way on the regulator employed . This happens even at one
loop level as demonstrated in the pioneering work of Veltman [8]
in the case of the standard model .

Although the Veltman’s formula in (I.15) originally derived in the
context of regularisation by dimensional reduction it can be
reproduced by any straightforward regularisation methods that does
not involve continuation in dimension [9] , for example non-local
regularisation (see Chapter 5) or point-splitting regularisation [10]
In this work we demonstrate an unexpected relationship between the

B-function and the quadratic divergences in a renormalisation field

theories at d = 4, d = 2, d = 6 and d = 3.

12



In Chapter 1 we investigate the structure of the quadratic

4

divergences in 4 = 4 $° theory and ask whether the relationship

which we call the cancellation condition conjecture persists at the four
loop level.
In Chapters 2 and 3, we examine the renormalisable theories of

3 ind=¢ and #® in 4 = 3 and calculate the quadratic divergences

3

]
up to 2-loop level in the case of ¢~ in d = 6 and up to 6-loop level
in the case of % in d = 3. We also test the cancellation condition
conjecture for these theories.

In Chapter 4 we turn to d = 2 and examine non-linear sigma models.
In the string context, the quadratic divergences in this case have a
definite interpretation as a renormalisation of the tachyon
background field; the fact that the tachyon can be decoupled from
the spectrum in the superstring case relates to the fact that the
corresponding sigma model is free of quadratic divergences. We
analyse up to the four-loop level, and find interesting similarities
with the d = 4 calculation of Chapter 1. In Section 2 of Chapter 4
we generalise the sigma model case with the inclusion of a torsion
(antisymmetric tensor) term.

In Chapter 5 we considered the gauge theories and calculate the
quadratic divergences using dimensional regularization and a new
regularisation called non-local regularisation. We rederive Veltman
formula and give a prediction (if the strong interaction term oy is
ignored ) that for m and my -

We end with a Conclusion in which we discuss the results we

found.

13
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CHAPTER 1 : QUADRATIC DIVERGENCES IN 04 THEORY IN d = 4 .

In this chapter we consider renormalisable theories of
scalar fields in four space-time dimensions. The quadratic
divergences manifest themselves in the context of dimensional
regularisation (DREG)as a poles at unphysical values of d. This can
be seen from elementary power counting. We consider a diagram of
order V ,i.e. with V vertices, E external lines, I internal lines
and L loops and with a space-time dimensions d . So the degree of

divergences D is given by

D = dL -2I (1.1)
We want to express D in terms of E and V, so we want to eliminate I
and L. There exists an identity which is true for any interaction in

any dimension,
L=I-V+1 (1.2)
In ¢4 theory, each vertex gives 4 legs, so there are 4V legs,some

external and some internal, however; the internal ones count twice

because they are connected to two vertices, so
4V = E + 21 (1.3)

Now using (1.2) and (1.3) we have

D= (d-4)L + 4 - E (1.4)

15



For d = 4

D=4 - E (1.5)
and so when E = 2 we have a quadratically divergent graph. In
dimensional regularisation the corresponding poles in the Green

functions first occur when D = 0 i.e. when[G]
d=4 - 2/L (1.6)

by analogy to the usual ¢ =4 - (2/L) - 4 (1.7)
where d = 4 - 2/L is the leading divergences .In this chapter we
will calculate the divergences to the four-loop level.

Quadratic divergences are of particular interest due to the
naturalness problem. A theory is deemed unnatural if the radiative
corrections to a physical observable have an intrinsic magnitude
much greater than the observed value.[B] The discovery of
supersymmetry had solved the problem of quadratic divergences,
since generally supersymmetric theories are free of quadratic
divergences. But because of the lack of the experimental evidence
for supersymmetry any example of a non-supersymmetric natural theory
would be most interesting. Our aims in this chapter are to study
the structure of the quadratic divergences at four-loop level for
04 theory and test a conjecture[7] that the quadratic divergence
cancellation conditions can be understood to all orders in terms of

the scale dependence of the one loop condition.

16



In ¢4 theory this conjecture has been successfully tested up to
the 3-loop level in ref. [6]. But, as we shall see, at the 4-loop
level some features occur that were not present in the lower order
corrections in ref. [6].

We begin with the basic Lagrangian in Minkowski space

L= 14829
3 u

)S = U(%) (1.8)
where a = 1, ..., N and U(%) is polynomial in & of degree four.

It is straightforward to show from (1.4) that gquadratic
divergences occur in graph with E = 0, 1, 2 where E is the external

line.

We apply the Background field method, i.e. we let
 — & + ¢ (1.9)

where Qq is the internal (quantum) field and ¢ 1is the external
(classical) field Since we are only interested in the leading
divergences (i.e. the pole in e’V at 1L loop) graphs with
non-overlapping divergences or counterterm insertions can be

ignored.

17



Now (1.4) becomes

a 2 a 2
L = 1 8 & - U(e) + 1 a ¢
1088 (@) 1 (8,8
a a ;b a ;b c
® q Ua - %! ¢ qQ q Uab %! ® q@ q ¢ q Uabe
a ;b c d

- 1 & 9 ¢ ¢ U 1.10

1, %" a%¢%q Yabca (1.10)
where Ua = 8u / 292 etc.

Now we want to calculate the vacuum graphs which contribute to the
quadratic divergences in the effective action up to the 4-loop
level, displayed in figs.(1, 2, 3 and 4). The 2-point function
graphs can be obtained by differentiating twice with respect to ¢°.

If we denote the coefficient of the leading quadratic divergences at

L loops as AL then for L = 1, 2, 3 the results are[6]

A =U, (1.11)

A2 = Uabc Uabc (1.12)

83 = Uap Yacde Ybede % Uabcd Yabe Ycge (1:13)
where U, =4a8u/ 892 etc. The normalisation of A is arbitrary

for each value of L; that is , we have suppressed overall numerical
cofficients , these being irrelevant to our purpose here.

1.1 Four Loop Calculations:

Essential details concerning our regularisation procedure
(dimensional regqularisation), signs, factors of i and other facets

of our calculation are contained in Appendix One.

18



In this calculations, we have arranged matters in such a way as
to ensure that the answers obtained are directly proportional to the
quadratic divergences.

Now we proceed with the calculations:

From (1.6) the quadratic divergences at 4-loop level occur at

d=7-¢€ .
2

In our calculation we are looking at the simple pole only which is
an ultra-violet divergences.
The treatment of infra-red divergences is straightforward
via the insertion of a regulator mass or routing of an external
momentum p as appropriate.

For the first graph fig. (4a) we have :

A J a% a9q a9 a9 (1.14)

(k-p) % @ (k-q)? r?(k-r)? s?(k-s)?

where A = Uabc chde Udefg Uafq
but
J a8 -1 r(e-g/2) rgz)-n? ) (V21
(k-p) 2 K2 (am) Y2 r(da-2)
-1 (pz)(d/Z)-l (1.15)

19



where

I = i r(2-d/2) r((d/2)-1)2 (1.16)
(am) V2 r(d-2)

Therefore (1.14) can be written as

A1l I a9k (1.17)
2,537 (xp)?

Substituting d = 7 - € ,then
2

fig(4a) = (2/3) A Y T(2€) + «vnns (1.18)
where Yy = 1 r(i/4)3 rye)° (1.19)
(am)’ r(/ 2)°

Now the graph in fig(4b) gives

d; g9 % (1.20)

2)2 (r-5)? (p-r)?

B [ a%k a
k2 (q-k)2 (s-@)? (s

where B = (1.21)

Uabc chd Uaefg Udefg

20



Performing the k integral gives

a

fig(4b) = B I J a9 a9 a%r

(qz)z'(d/z) (s-q)2 (sz)2 (r-S)2 (p-r)2

where I is given in (1.16).

(1.22)

Now it is straightforward to do the integrals over q, s and r

respectively.
Then (1.22) become
fig(4b) = B.I.J,.J,.7,

where

3, = (%370 I a9

(q2)2-d/2

(s-q) 2

=i r'(3-d) I(d-2) C((d/2)-1)
(am)Y2  r(2-d/2) I'((3d/2)-3)

3. = (£2)6-34/2 I ads
59 (on)2

= i r(6-3d/2) I'((3d/2)-5) L ((d/2)~-1)

(4m)¥2  r(e-3d/2) I'(2d-6)

and J., = J ddr

(r2)5-34/2

(p-1) 2

21

(1.23)

(1.24)

(1.25)



J, = i r'(7-2d) [(2d-6) I'((d/2)-1) (p2)24-7 (1.26)

(4mY2  r(e-3d/2) r((sd/2)-7)

by substituting d@ =7 - € . The result is
2
fig(4b) = -12_ X B F(ZC) + R (1.27)
45
4
where X= 1 rr(s/4) (1.28)
(4m)’

The third graph contributing to the quadratic divergences at 4-loop
level is graph fig(4c. This graph can be redrawn as in fig. (4ci).

Thus we have

2, 5-d

cz J a9x a9 (1.29)
(x%) %" (k-q)? (p-q)°

where Z is the graph in fig. (4cii)

and C=10U

abc v

ade Ybdrg Ycefg (1.30)
Once again p is an arbitrary momentum routed to control the
infra-red divergences.

Now doing the q integral:

czI [ a%k (1.31)
(k%)™ ((p-k)2)279/2

22



where I is given in (1.16).

For Z given in graph fig. (4cii) we have

z = I a9 a9q (1.32)

q® k% (x+p)? (a+p)? (k-q)2

To evaluate this integral we use an identity derived in ref. [11)

Z = 2 [ (3-d).I% + (3d-10).I.M ] (1.33)
(d-4)

where I is given in (1.16)

and
M = J a9k
PN VR
= i r'(4-d) I'(d-3 ) I'((d/2)-1) 039 (1.31)

(4m)Y2  r(3-d/2) r((3d/2)-4)

After substituting d=7-¢ . Then
2

Z= -3 r(3/4)3[ r(s/4) r(i/4)2 - 8 r(y2) ] (1.35)
(am) /2 r(1/2)2 r'(1/4)

Now the result for graph fig. (4c) is

fig(4c) = ¢ [ 8 TI(3/4)° r(1/4)°

(am)”’ 3 r(i/z )3

- 64 T'(3/4)% ]
3

23



fig(4c) = C [ % Y - §§ X ] I'(2¢)

The graph in fig. (4d) gives:

d d

(1.36)

(1.37)

2

D J a% a% a% a
2 3

r
X% (q-k)2 s? ¢? r? (s-r)? (p-s-q)
where

D= Uabc chde Uadfg Uefg

performing first the k and v integrals:

fig(4d) = D 12 J a9q as

(1.38)

()32 (52)3-972

= 2
= DQI 3 wlowz

where I is given in (1.16) and

2,4-d d

(p-s-q) 2

(1.39)

W, = ((p~2) ") [ d's
(s2)3°9/2  (p-s-q)

= i r(a-d) r(d-3 ) r(ds/2)-1)

2

(1.40)

am)Y2  r(3-da/2) r((3d/2)-4)

=
]

2 J ddg 2, 4-d
(a®)*" Y2 ((p-0)?)
= i r(7-24) I'(a-3 ) r((3ds/2)-4)
(4n)d/2 r(3 -ds2) r(a-d) r((sas/2)-7)

24

®%)%%7  (1.41)



Now substituting d=7-¢ into (1.40) and (1.41),
2

The result for graph fig. (44d) is

fig(4d) = 32 X DT(2€) + «eee. (1.42)
3

where

X = 1 r(sa)* (1.43)
(am)”’

Finally we have the graph in fig(4e) which gives :

E J a9 a9q a9s a9r (1.44)
(k% n%)? ¢ % (s-q-0)% r? (r-g-k)?

where E = (1.45)

Uab Uacde Udefg chfg
Here we insert a mass m to control the infra-red divergences .

Now doing the s and r integrals we have

d

fig(4e) = E 12 J d'k ddq (1.46)
@ [(a-k)?147? (x%+ n?)?

N

_ 2
- EaI .Nl.NZ

where I is given by (1.16)

and

N, = (x2)5-39/2 [ a%q
a® [(a-x) %149

25



No= i r(s-3d/2) r'((3d/2)=3 ) I'((d/2)-1) (1.47)
(4m) /2 r(4-d) I'(2d-5)

and

N, = j a%k
2 538/7 (12, 2,2
= i r'(7-2d) I'(2d-5) (m2) 24-7 (1.48)
(am) &/ 2 r(z) r(d/2)
Now substituting d =7 - ¢
2
Then the result for graph fig. (4e) is
fig(4e) = -2 Y ET(2€) + ceeeens (1.49)
3
where
v = 1 rqz4)3rEze’ (1.50)

(am)’ r(y 2)°

IF we denote the coefficient of the leading quadratic divergences at
L loops as AL then from (1.19), (1.27), (1.36), (1.42) and (1.49)

we have the quadratic divergences at 4-loop level

A, =2Y.A-32X.B+ (8Y+64X)C+32XD=-2Y.E (1.51)
3 45 3 3 3 3

The essential new feature of the L = 4 calculation is the presence

in the result of X and Y .
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Note that
s=y =/ 2 r(1/4)>2 (1.52)
X 114

This ratio cannot be expressed as a rational number, nor have we
been able to find any relationship between it and {(3), which would
have been interesting since ((3) occurs in B,, as we shall see

below[lzl.

1.2 The Cancellation Condition Conjecture:

Now we would like to test the Conjecture in ref. [6] that the
quadratic divergences cancellation conditions can be understood to
all orders in terms of the scale dependence of the one 1loop
condition. In the case of &° theory the relationship up to the

3-loop 1level is

A2 =a,, (1.53)
A, =-23 a + 1 a (1.54)
3 36 12 3 21
where
aim = BL 8 AM - AM a_ BL (1.55)
au au

and g; is the L-loop contribution to g-functions where g(U)= u 38U
ou
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To verify equs. (1.53) and (1.54) we need B, B, which are given
py [131114]

By = 1 Uy Uy, (1.56)
_ e
B, = % Uab Yacd Ybea * %2 Ua Yabca Yebca ? (1.57)

Here we have suppressed a factor of (161:2)-L .
We will verify (1.54) as an example:
from (1.55) we have

32 =R 8 4, -4, &8 (1-98)

au 8u

Using (1.56) and (1.12)

812 © % Uet Uer & UYapc Yanc

au
- % Uabc Yabe & Vet Vet
au
= [ Uap Uap labc Yabc ~ [ Vabc Yabcler Yer (1:59)
where [ Uabc Uabc]d = a I Uabc Uabc] etc.
d
ad
Then
312 = 6 Uabc Uefab Uetc ~ 2 Uef Uabce Uabcf (1.60)
Now for the second term in (1.54)
a,, =B,8 A -A, 8 B, (1.61)
au au
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Using (1.11) and (1.57) then

a21 =1 Uab Uacd chd L Ukk

2 au
e
+ 1 Ua Uabchebcd LA Ukk

-1 Uy 8 U, Uypcalebea ?

12 8u

= LU0k 8 Usp VYacd Ypea
2 au

= =2 Uupk Yacdk Ypea ~ % Uap Yacdk Ybecax (1-62)
Now we would like to find o and o, such that
A3 =, a,, + ®, Ay, (1.63)

substituting (1.13),(1.61),(1.62) and solving for a,,a, we have

«. = -23 . a, =1 (1.64)
1 36 2 3

It follows that the relationship in (1.55) holds at 3~ loop level.
Now the crucial question with regard to the relationship in (1.55),

for the 4-loop level, is whether we can find ®yss+00+,0, such that

a + o, a

22 3 231 (1.65)

A4 = al a13 + a2

To discuss this we need 33 .
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Bscan be expressed as[14]

33 = % Uabcd Uefcd v

+ 2

Uabcd Uae chf

U U

abc “dbc Uaef

U

U
6 a

P ok

Using the results for AL

ae Ypf

Uger ~
Uper

abcd Uebfg Ucdfg

U U

Uebcd af “ef

3

U
16 abcd

Uabcd Uef Uabe Ucdf

+ €(3) Uabc Uade Udbf

O N b

e . (1.66)

(1.57) and (1.66)] it is straightforward to show that

a13 ==-27A+B-9C~-18D + 15 E
2
a,5 = 3 B -6C-60D
2
a3y = - 3A-727B+ (9 +6¢C(3) ) C+ 1D+ 27E
2 8 2 2 8

Ucef

[egns (1.11)-(1.13)] and BL eqns (1.56),

(1.67)
(1.68)

(1.69)

Unfortunately it is also straightforward to show that there exists

no values of (al,..

thus appear that the previous conjecture,

--s0,) such that eqn.(1.65) is true.

It

would

namely that absence of

quadratic divergences at L-loop is equivalent to demanding scale

invariance of the naturalness conditions for all L"< L is not true.

Thus the precise relationship between scale invariance and quadratic

divergences remains unclear.
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CHAPTER 2 : QUADRATIC DIVERGENCES IN Qa THEORY IN d = 6 .

As we shall see in this chapter and the next two chapters we
are going to inquire whether the intriguing features which we have
discovered for quadratic divergences in four space-time dimensional
theories are also displayed by theories in other space-time
dimensions. In this chapter we choose to consider 8> theory in six
space-time dimensions. Our purpose will be once again to calculate
the quadratic divergences and test the cancellation condition
conjecture ,this time at the leading order . The first question to
be asked is at what dimension the quadratic divergences manifest
themselves in this theory ?

Using (1.1) , (1.2) and (1.3) we have
D= (d-6 )L -2E+ 6 (2.1)

where D is the degree of divergence , L is the number of loops , E
is the external lines , and d is the space - time dimension.

For d = 6

D=6 - 2E (2.2)

and so when E = 2 we have a quadratically divergent graph.
In dimensional reqularization the corresponding poles in the Green

functions occur when D = 0 i.e when
d=6-2/1L (2.3)

So at L-loop level the gquadratic divergences occur at d = 6 - 2/L .
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We begin with the basic Lagrangian in Minkowski space
L=1 (38%2 - u(e) (2.4)
2 u
where a = 1,......,N and U(®) is a polynomial in 2 of degree three.
It is straightforward in d = 6 to show from (2.1) that the
quadratic divergences occur in graphs with E= 2 where E is the
external lines.

Now we apply the background field method , i.e. we let

 — o + Qq (2.5)

where Qq is the internal ( quantum ) lines and & is the external

(classical) lines .
Since we are only interested in the leading divergences, graphs with

nhon-overlapping divergences can be ignored. So (2.4) becomes

2
L= 1(06 82 -u(s) -1 (8,82)
2 M 2 H g

(2.6)

Where Ua = au / 832 etc.

We would like to calculate the vacuum graphs which contribute to
the quadratic divergences effective action up to the 2-loop level which
displayed in figs.(1) ,(2), and (3). The two point function graphs

can be obtained by differentiating twice with respect to the field

® . According to (2.1) we are interested in the graphs with two

external lines which are quadratically divergent.
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2.1 One and Two loop calculations :

Essential details concerning our regularization procedure
(dimensional regularization) , signs , and factors are contained in
appendix one .In this calculations , we have arranged matters in such
a way as to ensure that the answers obtained below contribute
directly to the quadratic divergences.

We now proceed with the calculations:

From (2.3) the dimension where the quadratic divergences occur at
the one-loop level is

d=6-2/L =4 .

For the graph in fig(1) which gives

1 A J a9k (2.7)
2
2
x2 (p-k)
where A = Uab Uab (2.8)

and p is an arbitrary momentum .

fig(1) = i A ['(2-d/2) I'(d/2-1)° (2.9)
(am) /2 r(d-2)

substituting d = 4 - ¢ we have

fig(1) = i AT(E/2) + vunn (2.10)
4 (1612)

where A is given in (2.8)
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Since we are looking for graphs with two external lines , the graph

in fig(1) is the only graph which contributes to the quadratic
divergences at the one-loop level . The other graph which can be drawn
at the one loop level has three external lines . Both graphs contribute
to the logarithmic divergences and hence to the one-loop level
B-function as we shall see later in this chapter .

Now the graphs which contribute to the quadratic divergences at two
loop level are displayed in fig(2) , and fig(3)

The graph in fig(2)gives

1 B J a’k aY% (2.11)
2

@ (x-a9)% k32 (p-x)?

Where B = Uab Uadc Udce Ueb (2.12)
After doing the q integral we have
fig(2) = i B I'(2-d/2) I'(d/2-1)% U (2.13)
(am)9/2 r(d-2)
Where
U= J a9x
(k%) 442 (p - x)?
= i r(s-d) r(d-4) r(d/2-1) (p2)%> (2.14)
(4mY2  r(a-a/2) r(szdsz - s)
substituting 4 = 5 - ¢ we have
Fig(2) = 1 r(1/2)2 re) (2.15)

6(4m)>
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For the graph in fig(3) we have

d d

c | a% a%q (2.16)
¥ (q-p?’d -0 @-10?
vhere ¢ = Uab Yaca Yge Ubce (2.17)
and p is an arbitrary momentum
Now
fig(3) = 1 ¢ J a% a9q
2
(k%)% (q - 0? (¢%)?
=i C I'(3-d/2) T'(d/2-1) I(d/2-2) M (2.18)
(am) /2 r(d-3)
where
M = J a9q (2.19)
(@342 (p - o2
Then
M= i r(s-d) r(d-4) r(d/2-1) ( p>)%> (2.20)
(4my%2  r(a-a/2) r(3d/2 - 5)
Now d=5 -¢ we have
fig(3) = - 1 r(1/2)2 re) (2.21)
3(4n)°>
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If we denote the coefficient of the leading quadratic divergences at

L loops as A, then for 83 theory in d = 6 we have

A, = i A (2.22)
4 (161%)

2

A = ( B + C ) T'(1/2) (2.23)

2 .
6(4m)°  3(4m)°

Where

rqa/2) =vVn

A = Uab Uab
B = Uab Uadc Udce Ueb
¢ = Uab Ucad che Ude

As in (2.22) and (2.23) we have calculated the quadratic divergences

for the one and two loop level in g3

theory in d = 6 using dimensional
regularization . In the next section we will produce the result in

(2.23) from (2.22) and the B-function .

2.2 The cancellation condition conjecture :

In this section we will be testing the conjecture in ref.[7] for
#3theory in d = 6 . According to this conjecture we will be able to
Produce the two-loop quadratic divergences in (2.23) given the
one-loop B-function and the one-loop quadratic divergences . We have
calculated the one-loop quadratic divergences in the previous section.

Now we want to calculate the g-function at one-loop level for the

theory.
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One-loop B~function

We start with the renormalisable Lagrangian

ren

= 2.24
L =L+ L, ( )
. 3
where L is the original lagrangian for & theory
L=1 (5,82 -2 8 (2.25)
2 H 3!
and Lc £ is the counterterm Lagrangian
2 e/2 3
= -2 B & (2.26)
Lc.t. % A (6UQ) o

As we can see from (2.25) and (2.26) that L, . is exactly of the

same form as L , but with A and B so that the Green functions
generated by L¥®" are finite as ¢ — 0 .

we can rewrite rren as

2 3
Lren _ 1 (9,857 - 25 ¥ (2.27)

Where

2 =(1+a) /2 8 = 2,172 ¢ (2.28)

A= A u€/2 (1+B)/(1+A)2 = u€/2

Z, A (2.29)
B

and Z is the wave function renormalisation constant, and ¢B ' AB

are called the bare field and coupling constant respectively. we

ren

can see that Lren looks the same as L except L leads to a finite

theory but L does not.
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For the 1PI Green functions

r‘B(n)(pl,...,pl_l;hB,mB,e ) = ZQ'n/2 F(n)(pl,...,pn:h,m,u,e ).
(2.30)

In this equation we can see that 1PI function F(n)depends on u

through the dependence of ZQ on u but FB(n)does not . Therefore by

differentiating the above equation with respect to u we obtain a

differential equation that summarizes the magic of renormalisation.

La + wer 8 + pom 8 - n welnzy 1™ =0
ou [TRE:}Y oL Om 2 au
(2.31)
We define
v(9) = 1/2 u @ 1n 2, (2.32)
ou
v, =1/2 p 8 1ln (2.33)
ou
B(A) = ua8a (2.34)
ou

each one of these coefficients is of particular interest but our
interest is in the g-function in (2.34) . We need to calculate the

B-function for &3 theory in d = 6

Now

= 2 - 3 3/2 . e/2
L= % (au@) zQ AQ ZA zo u
- 2 - 3 €/2
= % (auﬁ) ZQ A d z1 u (2.35)
=g 3/2
where z1 = z¢ zA . (2.36)
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The graphs which contribute to the one-loop g-function in 83 theory
in @ = 6 are in fig(4) and fig(5)
For the graph in fig(4) we have

J a%k = i r(2-d/2) r(d/2-1)2 ( p2)Y272 (2.37)
x? (p-k)? (am)9/2 r(d-2)
where p is an arbitrary momentum .
Ind =6 - ¢
fig(4) = i (-1/2) (1/6) T(e/2) p
(am)>
= - 1/12 (2/¢e) p>
(4m)>
= -4 (1/6) P2/ + vvuun. (2.38)
(4m)>

where 1/2 is the symmetry factor for the graph in fig(4).

The other contribution comes from the graph in fig(5) which gives :

J a9 = i r(2-d/2) '(a/2-2) r(d/2-1) ( p?)d/273

(x%) 2 (p-k) 2 4m)Y2  r(2) r(a-3s)

(2.39)
Ind=6 -¢

fig(s) = i 1 4 eenn. (2.40)
(am)’

Now from (2.28) and (2.29) we can calculate Zg and Z, hence z, which

will determine the g-function for the one-loop level.
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Z, =1+ 1 (1/6c)a2 (2.41)

(4m)>
2, =1+ _1 __ (1/¢)a (2.42)
—3
(4m)
So
2, =1+ _1 (3/4e)a2 (2.43)
(4m)>

From (2.29 ) and the definition of g-function in (2.34) we have the

B-function for the one loop level in 83 theory[lsl :
3
B, =-_1 _(3/4) A (2.44)
(am)*
In the general case we have
By =a (Ug, Ugp Ugg) +b (8, Uger Upy Up) (2.45)

where a and b are calculable constants.
The question now is whether we can produce the two -loop result for
the quadratic divergences in (2.23) using the information of the

one-loop quadratic divergences in (2.22) and the B-function in

(2.40). Now
A, = a,,
(2.46)
where
a,. =B, ( 84, ) + A (88,)
11 1 70 1l 1 30 1l
= a Ude Uef de) gﬁ(uabUab)

+ -
P (% Ugtg Usgn Un) & (UppUap ) ~ @0 UypUap) 8 (Ug, Ugp Ugg)

efg 30 30

= b( UapUap) gﬁ (%q Uefg Ufgh Up)
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11 = 2@ (Uge Uge Ueyq dap Yap

+ 2b ( Qe Uefg Ufgh Uh )ab Uab

=32 ( UypUap dae Yer Vsa

-bo® (U

e ( YapVap 'nh Yerg Yegh

finally

a,, =a[ 12 U

11 dea Yefb Yfa VYap

= 6 U,pa Yave Yer Ygq !

+ bl 4 Ugee Upy Upy Ugp) (2.47)

Unfortunately it is straightforward to see that (2.23) does not agree
with (2.47) so the proposed conjecture , that the absence of
quadratic divergences at L-loop is equivalent to demanding scale
invariance is not true in this theory also .Thus the relationship

between g-function and the quadratic divergences remains unclear in

this theory .
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6 4 .
CHAPTER 3 : QUADRATIC DIVERGENCES IN ¢ INd = 3 :

In this chapter we examine another renormalisable ot type
theory . We will follow the same procedure as in the previous two
Chapters . First we have to determine the dimension where the
quadratic divergences manifest themselves . Using (1.1)and (1.2) we

have :

rV=2T1I+E (3.1)

where V is the number of vertices , I is the number of the internal
lines ( propagators) , E is the number of the external lines and r
in this case is equal to 6 . Now

D=(d-3 )L-1E+ 3 (3.2)

2

Where D is the degree of divergence , L is the number of loops and d
is the space-time dimension .
For d = 3 we have

E . (3.3)

It is clear from (3.3) that when E = 2 we have quadratically
divergent graphs . In dimensional regularization the corresponding
poles in the Green function occur when D = 0 i.e. when

d=3-2 (3.4)
L

where d is the space time dimensions where the quadratic divergences

occur in this theory.
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We begin with the basic Lagrangian for this theory in Minkowski

space :

L= 1(a88%)2%-u () (3.5)
3 o

Where a = 1,.....,N and U(®) is a polynomial in 2 of degree six.
The effective action for the 1PI vacuum graphs can be calculated
by applying the background field method i.e. we let :

 — ¢ + Qq (3.6)

where ¢ is the internal (quantum ) lines and ¢ is the external
(classical) lines .

Applying the transformation (3.6) to the Lagrangian (3.5) we

have :
= a, 2 _ - a2
L= 1 (auo ) U(®) 1 (auﬁvq )
2 2
a a, b
- - [ U
Qq Ua % Qq q ab
a, b, ¢ a, b, c dU
- - ®
%!qsq %q °q Vabc %!oq q ¥q ¥q Vabed
a, b, c, d, e
- ® "® U
%!Qq Qq <I’q q q abcde
a, b, c, d, e £
1% % % %q %q %q Vabcdet (3.7)
Where U = 2‘[—] etc.

Since we are only interested in the leading divergences , graphs with

non-overlapping divergences can be ignored.
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The linear term in (3.7) does not contribute to the calculation
since we are looking for 1PI graphs only .

From (3.3) the graphs which contribute to the quadratic divergences
are the graphs with two external lines These graphs are displayed in
fig(1) , fig(2) and fig(3) .

In the next section we will be calculating the vacuum graphs

which contribute to the quadratic divergences in the effective

action up to the six-loop level .

3.1 The loop calculations

In this theory the leading order quadratic divergences occur
at the four-loop level . In this section we will calculate the quadratic
divergences at four and six loop level . Essential detail concerning
the regularization procedure (dimensional regularization ) , signs ,
and factors are contained in appendix one . In this calculations , we
have arranged matters in such a way as to ensure that the answers
obtained below contribute directly to the quadratic divergences.
Now we start with the four loop calculation :
The only graph which contributes at this loop level is the graph in
fig(1) which gives

(1/5!) a | a% a%q a9r g% (3.8)
2

x> (q-k)2 (r-q)? (sr)? (p-s)?

Where A=1U (3.9)

abcde Uabcde
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and we have routed the arbitrary momentum p to control the infrared

divergences. By doing the k,q,and r integrals then

fig (1) = (1/5!) A ¢, G, G, J a9s (3.10)
(82)4739/2 ()2
where
Gl =( qz)z-d/z ddk (3.11)
(x3) ( a-k )?
= i r(2-d/2) T((d/2)-1)2
(4m)9/2 ' (a-2)
G, =« r? )3-d J a%g (3.12)
(@272 (r-q)?
= i r(3-d) r(d-2) r((d/2)-1)
(411)‘1/2 r(2-d/2) r((3ds/2)-3)
G, = ( g2 )4739/2 J a9y (3.13)
2378 ( sor )2
= i ' (4-3d/2) T((3d/2)-3) TI'((d/2)-1)
(am)9/2 r(3-d) I'(2d-4)
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Now we do the s integral in (3.10) which gives

J dds
(52)4-3d/2 ( p-s )2

= i r'(5-2d) I'(2d-4) T((d/2)-1) (p2)297> (3.14)
(4m)%/2  r(4-3a/2) r((sd/2) - 5)

Substituting d =(5/2) - ¢ in (3.11) ,(3.12) ,(3.13) and (3.14)
we have

fig(l) = 1 (1/30) A T(1/4)* r(2e) + vvrvnn... (3.15)
(4m) >

The next order in the perturbation series where the quadratic
divergences occur is at six-loop level and the graph which
contribute to it are in fig(2) and fig(3).

For the graph in fig(2) we have :

5 B H? J a9x a9 (3.16)
72
2 2. 6-2d
k2 ( ak)? (( p-9)%)
where B = U U

Uabcde cdefgh "abfgh

and H comes from the sub graph in fig(2a) :

H= (( p-q)2)3-di4w-a%«uk
' IR
: n? ¢ n-m )2 ( p-n-q )2
= i I (3-d) r((a/z)—1)3 &i (3.17)
(4my¥2  r((3as2) +3)
5

‘ ‘:»4 9

- B}
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Now it is straightforward by doing the k and g integral in (3.16)and

substituting 4 = (8/3) - ¢ we have

fig(2) = - 15 B r(1/3)?r@e) + ccoeeee  (3.18)
72 (am)®

For the other graph at six loop level which is in fig(3) :

d

fig(3) = 5¢ H J a% ¢%q a9 a% (3.19)

72
2 2,3~-d r2 ( 2

X% (( @k )?) q-r )2 8% ( g-8 )?

Where C = and H is given in (3.17)

Uabcdef Ufehg Uabcdhg

Then by doing the k , s and r integrals we have :

5c_Hz, 2,2, |_aq (3.20)
72 2.7-5d/2 2
( 97) )

As we can see from (3.19) that the s integral is equal to the r integral

( q¢®-n

then
Z, =2, = (q9)27Y? J a%
s? ( g-s )?
= i r(2-d/2) I'((d/2)-1)> (3.21)
(am)V/2 I (d-2)
and
2, = ( g?)*-32 I 4%
X2 (( q-k )33
= i r'(4-3d/2) r((3ds/2)=3) r((as2)-1) (3.22)

(4n)d/2 r(-d) r(2a-4)
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Now performing the integration in (3.20) and substituting for

d= 8/3 - ¢ we have

£ig(3) - 45 ¢ r(1/3)% r(3es2) r(3e) + ..... (3.23)
72 (4m) 8

As we can see from the above equation an interesting feature has been
displayed ; the double pole . This double pole is due to a divergent
Sub graph in the original six-loop graph ,which can be isolated , and
it is displayed in fig(3a) .The graph in fig(3a) has four external
lines this feature makes it linearly divergent according to equation
in (3.3) and this linear divergence at three loop level occurs at the
same dimension where the quadratic divergences occur at six loop
level .

It is obvious that the quadratic divergences in fig(3) are different
to the quadratic divergences in fig(2) because of the double pole

in fig(3) , we denote the coefficient of the quadratic divergences

with a simple pole by A; and the coefficient of quadratic

divergences with double pole by A then from (3.15) , (3.18) and

L 1
(3.23) we have
by =__1 (1/30) A I'(1/4)% (3.24)
(am)°>

Ag = - 15 B Ir'(1/3)° (3.25)
72 (4m) 8

Ag = - 45 c ry3)® (3.26)
72 (4m) 8
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A= Uabcde Uabcde
B = Uabcde Ucdefgh Uabfgh
and C =

Uabcder Ytehg Yabcdng

The next stage of our calculations is to test the cancellation

condition conjecture for ' theory ind = 3 .

3.2 The cancellation condition conjecture

The question to ask now is can we produce the coefficient of the
Quadratic divergences at six loop level as in (3.25) and (3.26) from
the coefficient of the quadratic divergences at four loop level ,
and the g~-function ?

From the conjecture we have :

A6 = alals + a2a24 + a3a33 + a4a42 + a5a51 (3.27)
where = -
v, = By 9 4y Ay, 8 By
au éu

but the first order of the quadratic divergences in this theory

Occur at four-loop level and the next order occur at six-loop level
as there is no contribution from one , two , three , and five-loop

S = = _ - $
o a15 a33 = a42 = a51— 0 this reduces (3.27) to

ol

«a,, (3.28)
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where
a = B, 8 A, - A, d B (3.29)
24 2 70 4 4 30 2

To calculate A6 in (3.28) we need to know the two-loop B-function .

The only contribution to the two-loop B-function comes from the

vertex graph in fig(4) and in general we have (1571,
B, =cU_ . U . (3.30)
where ¢ is a constant .
Using (3.24 ) and (3.30) then (3.29) gives:
a24 =c Umnk Umnk) 5%—( Uabcd Uabcd )
= ¢( Uspca VYabed! 5%— ( Yunk Ymnk )
=16 ¢ Umnkabc Umnkd Uabcd
tl2c Umnkab Umnkcd Uabcd

-12c Uabcdmn Uabcdk Umnk

From this result it is clear that the proposed conjecture failed

A
to produce A, and A, .Thus once again the relationship between
scale invariance and the quadratic divergences remains unclear.
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CHAPTER 4: QUADRATIC DIVERGENCES IN 2-DIMENSIONAL SIGMA MODELS

Two dimensional sigma models are currently being extensively
investigated, primarily because of their close relationship to
string theory. They are also interesting field theories in their
own right. 1In this chapter , we shall investigate the structure of
the quadratic divergences in this theory and inquire whether the
intriguing features which we have discovered for quadratic
divergences in theories in other dimensions in the previous chapters
are also displayed here. This chapter will be in two sections; the
first section will be devoted to examining the quadratic divergences
for torsion-free two-dimensional non-linear sigma models up to
four-loop order, and the other section will be devoted to the models
with torsion.

4.1 The torsion free two dimensional sigma-model.

We start with the action:
i gugd
s = J a%x 19y (0) g0t M (4.1)
2

where the scalar field @i(x), i=1..., D, may be regarded as a map
from the d-dimensional world-sheet to a D-dimensional target space,
and, gij(ﬁ) represents a metric on the target space.

Quantization of Eg. (4.1) is most conveniently discussed using the

background field method.
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However, the usual background/quantum field split gives a quantum
field which does not transform covariantly on the target space,
making calculations cumbersome. We can obtain a quantum field which
does transform as a contravariant target space vector as follows.

We first split the field Gi(x) into a background piece ¢’00
and quantum piece ni(¢,C) [16]

i.e. we let

i

ot — 5 ot + nie,0) (4.2)

i

Now we can think of ¢i,¢i+ - as the beginning and end points

of a geodesic ¢i(S) in the target space. S e [0, 1]:
g ¢ -F
¢L= é(O\

and we define our quantum field, cl to be the tangent vector to the

geodesic, i.e.

(4.3)

giving

nd =l rijk e (4
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So the scalar Lagrangian can be expanded as a Taylor series.

Then the action in (4.1) under (4.2) gives[17]

o = &% d i u,j
5" (¢,¢) = S(¢)+de[gij8“0 a¢

i .u,.3 k .1
+ 1 Ryng 8,8 ) g

i .u,j
+ gij auc 8¢
8 Qi aqu Ck Cl cm

Riklj;m i

+ 4

+
N WD O B N

'S

P
( Rix1y;mn Rx1i Rpmnj !
x auéi a“oj Ck Cl &g

i _u,3 k .1 .m
% Riklj;m au¢ 8¢ ¢
+ 1 Rypy a“ci s

+ 1 (R, + 14 RY

120 iklj:mnp
x auoi Mol Kl B P

kli;m anpj )

p
+2R kli Rpmnj )

+ %5 ( Riklj;mn
x auﬁi Ml Kt
auci el Kl (4.5

+ 1R, ...
12 iklj:m

Now, by simple dimensional analysis, we can determine at what

dimension the poles corresponding to quadratic divergences occur in

this model.
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Every vertex has two powers of momentum, so the degree of divergence
of an arbitrary graph is given by

D=2v-2P +4d0L (4.6)

where V is the number of vertexes, P is the number of propagators

and L is the number of loops. Using

L=P-V+1 (4.7)
we find

D=2+ (d - 2) L. (4.8)

We can see why d = 2 is special for sigma models. Ind = 4, for

example, the degree of divergence D increases with the number of

Loops L.
Returning to d = 2, in dimensional regularisation the

corresponding poles in the Green function occur when D = 0

i.e. when

d =2 - 2/L (4.9)

(4.9) gives wus the space-~time dimension where the quadratic

divergences appear as a poles in sigma model.
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Now the field &l

is it self dimensionless; hence graph with two
external au¢ lines are 1logarithmically divergent, and provide
correction to the metric term in equ. (4.1). While graphs with no
external au¢ lines are quadratically divergent, and generate
corrections to the tachyon term in the action. (Such graphs may
also have logarithmic divergences contributing to the metric

corrections) so the action in (4.1) can be written as

s¥ = J ad% [ 195 (®) 8 ol o) + 7(8) 1 (4.10)
5 Jij M

where T(¢) will be necessary to absorb quadratic divergences; from
the point of view of string theory it represents a background
tachyon field.

For our purposes (calculating the quadratic divergences), as
explained above, we may omit the parts of the normal coordinate

expansion involving background au¢ terms, and so we can reduce (4.5)

to

87 (4,8) = s%(¢) + J ax [ gy4 8¢t 8
* 1 Ry st e
auci e Kl om,

+ l R. e
12 lklj M

(4.11)
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4.1.1 The Loop Calculation :

In this section we will be calculating the quadratic
divergences in sigma models without torsion up to 4-loop level.
Essential details concerning the regularisation procedure
(dimensional regularisation), signs, and factors are contained in
appendix one. 1In this calculation we have arranged matters in such a
way as to ensure that the answers obtained below contribute directly
to the quadratic divergences. The potentially quadratically
divergent graphs up to 4-loop level are depicted in fig. (1), fig.
(2), fig. (3) and fig. (4). The background-dependent vertices are
given by the gquartic and quintic terms in (4.11), while the
propagator is derived from the quadratic term.

For the first graph in fig. (1) it is straightforward to see
that this two loop diagram ,in fact, have no pole at d = 1 and hence
does not produce a leading quadratic divergence according to the
dimensional regularisation scheme.

Now for the graph in fig. (2), which is the first non-zero
quadratic divergences to occur in sigma model without torsion, we

have:

18 J a% a9 a9 q9s S(s+ktqtr) [ 6 Ajyipy Ayyp (k.q) 2

4
k2 q2 r2 s2

+ 6 Aij:kl Akl:ij (k.q) (r.s)

¥24 Aggp Bgyagy (K@) (kes)]

(4.12)
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where the tensor A is defined by

Bigeoxa = 4 U Reign * Reyqn (4-13)

2
The three integrals arising from this we call Il(~ (k.q)°) ,
I,= (~ (k.q)(r.s) ) and I, (~ (k.q)(k.s)) . What we shall now show
is that they can all be equated with I, thereby simplifying

matters. We shall suppress integral signs. Using [k + g + r + 8 = 0]

we have
I1 = k.q k.q
= k.q k.[ -k-r-s]
= = 4.14
= -2I, ( )
Next
I2 = k.q r.s
= K.q r.[ =-k-gq-r]
- - 4.15
= -2I, ( )
So
= = w- 4.16
I, =1, 21, ( )

We have chosen to evaluate I, (we could equally well have

chosen either of I1 3)
[
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Now I2 gives

= J QSB ddq a% k.(g-k) (r-q).r (4.17)
k2 (q-k)% (r-q)% r°

Performing the k and r integral, we find

2
I, = [_ i r(1-d/2) TI(d/2) ]
(4m%Y2 r(a-1)
< adq B (4.18)
(a%) 172 [(p-q)2)1"Y?2

Carrying out the q integral and substituting d = 4- ¢ according to
3

(4.9) we have

I, = - i r(2/3)3 r((3/2)e) + «eou.. (4.19)
(4m)?

For the final result of the graph in fig. (2) we have to evaluate

Biy:x1 Ajj:xy and Ajj:x1 Pik;q1 iR (4.12). From (4.13) we have
2
Rijeixa Ayl = 102 (Reyyn)” + 2 Ryyyy Rejyn

= % ( Reymn ) (4.20)

62



and

Ay Pikegn T [ Reija * Brijad [ Rygxa * Rykial

2

_% ( Rklmn ) (4.21)

combining this with the result from I, integral and simplifying

gives us our result:

fig(2) =1 i r(z2/3)3 r(3/2)e)
12 2

Rklmn Rklmn + . o 0O (4.22)

from which we find a correction to the tachyons

R

ar(3) - 4 u? 1"(2/3)3 K1lmn

e(a) 12 (4n)

4.23
Rklmn ( )

The first four-loop graph in fig. (3) gives

1

o Vk lenp dk dgd'r d’s

k% (q-k)% (s-)? (r-8)% (p-1)?

gk glmnp I d, .d_ .d_ .d

x[ (k.q) (k.q) + (k.q)(s.r) -2(k.q)(q.s)](4.24)

2
The three integrals arising from this graph we call B, (~ (k.q)"),

By( ~ (k.q)(s.r)) and B,= (~ (k.q)(9-8)) .
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Now what we shall show is that they can all be equated with B,
thereby simplifying matters. We shall suppress integral signs.
Then we have
B1 = k.q k.q
= k.q k. (-k-r-s-n)

= - 4,25
3B, ( )
and B3 = k.q s.q
= k.q s.(-s-r-n-k)
= - 4.26
B, ( )

Now we shall calculate B, which gives

B, = J a% a%q a9 a9 [k.(k-q) (s-@).(r-s)] (4.27)
k? (q-x)2 (s-q)? (r-s)% (p-r)?

By making shift of the origin s =s - g we have

B, = J d% adq a9 a9 (k. (k-q) s.(r-s)] (4.28)

k? (q-k)2 (s)2 (r-s)2 (p-r)2

Performing the k, and s integrals, we find

2
B,= [ i r(1-d/2) r(d/2)2 ] J a9q a9

(4m)9/2  r(g-1) (g%)179/2 2

r? [(r-q)2)17%/?2
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B,= [ -i r(i-d/2) r(ds2)2 r(z-q4) rq(d/2)-1 ] J a%q

(amy 3972 T ((33/2)2) (233972
(4.29)
Doing the q integral and substituting for d = 3 - € we have
2
B, =- 1 4 T(3/4)% r(2¢) (4.30)

(4am)3

substituting the result of B, into (4.24) using (4.25) and (4.26)

and simplifying gives us our result for the graph in fig. (3):

£ig(3) = -1 ( v, R v RI™PP ) r(3/4)% r(2e) + ... (4.31)
2;;;75— k "1lmnp

There is another graph which is potentially gquadratically divergent

at 4-loop level, depicted in fig. (4):

1 J a% adq a% %

6
x? (q-x)2 u? 2

(q-u)? s? (g-s)2

[ Rklmn Rkpmq Rlpnq ( k.(g-k) u.(g-u) s.(qg-s) )

X

+ Ryypn RVPIR KD ((kes) (kow) (wes) ) ) (4.32)

So we have two kinds of integral arising from the graph in fig. (4).
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Writing fig(4) = F + M, we have

F= 1 I ddk ddq ddgggdu ) __k.(g-k) u.(g-u) s.(g-s) R,

x? (q-k) 2 u? (q-u)? &2 (g-s)?

(4.33)
where R, = Ry - Rkpmq r1PNA (4.34)
but
J a%x k. (gq-k) = -i r(i-d/2) F(d/2)2 (qz)(d/z)'1 (4.35)
K (q-x)2  (am¥/2 r(d-1)
therefore
| L e
F=1R -i r(i-d/2) TIr(d/2) q
1 =
6 (4mY2  r(a-1) (q%)373d/2

3
=1 _1 Rl[— r'(1-d/2) I(d/2)2 ] [— (3-2d4) I"'(2d-2) r((dasz2)-1) ]
d

6 (47!)2 r(d-1) r(2-3d/2) r((sd4/2)-3)
(4.36)
SUbStituting d = 3 -¢ , we have
2
F=1 _1 R, rye3re/a)® ree o+ ... (4.37)
6 (am)3 r(i/2)>
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We also have

M=1R Jddk a9q a%s a%u ( k.s k.u u.s ) (4.38)
2 3 3
6 k% (g-k)2 u? (q-u)? s? (q-s)
- mnpq kl (4.39)
where R2 Rklmn R qu
but we have
d d -g,.9 ] (4.40)
a% k, k, = _I [daq 49, o
X% (g-k)2 4(d-1)
where
2 2, (d/2)-1
I= I a% = i r(2-d/2) I(d/2)-1) (p )( (4.41)
x2 (k-p)2 (41:)&/2 r(da-2)
therefore we have
M=1R, _1° [ da,q, -9, ][ da,d -~ 95 11 899 -9,
6 43 (a-1)3
d
d (4.42)
* uo Yop Jag J (:2)3-3d/2

Performing the g integral and substituting for d = % - € we have:

M= 1 1 R, r(1/4)3 r3/4)>  r@e) + ..... (4.43)
16 (am3 r(i/2)°>
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Therefore our result for the graph in fig. (4) is

1l

fig(4) =1 1 R, YI'(2e) +1 1 R, Y T'(2€) + ..... (4.44)
6 (4n;3‘ 15?;;73‘

where R1 and R2 are in (4.34) and (4.39) respectively and

Y = rqya)3 reye)’ (4.45)
r(i/2)3

So, at 4-loop level, the quadratic divergences give a correction to

the tachyon,

vk lmnp

AT(4)= u2 [ -1 R

XV, R
k "lmnp
(41:)3 8(4) 4

rRPPPY g kl

+1 YR Pq

32

knm lpng
+ 1 ¥ Ry BTG R ] (4.46)

where Y is in (4.45) and

x = ra/at (4.47)

It is remarkable that the same I'-function combinations arise at four

loops in both four dimensions (see Chapter One) and two dimensions.
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4.1.2 Cancellation Condition Conjecture :

We now wish to enquire whether there is any relation between
the quadratic divergences at different loop order in this model.
The natural analogue of the relationship described in chapters one,

two and three is

ag aT

cip = g3 5 4 g L 4 g0) 5 gT(D) (4.48)
J —_—

. a T(i)
where Bg(l)is the ith order g-function for the metric g and B

is the ith order g-function for the tachyon.

T
The lowest order result for B and B are in ref [18)

9(1) _ , (4.49)
813 Rij
gT(1) - _ 1 ¢2 1 (4.50)

Now substituting (4.23), (4.49) and (4.50) in (4.48) we have as the

lowest order Cij ’
k
C13 = const.

v lenp_ R

ol qukl

[ x lenp klmn pq

+ 4 gk B glPng ] (4.51)

Rklmn p g
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where we used the identity

for any tensor Hij
As we can see from (4.51), the potential terms involving the
Ricci tensor cancel leaving only terms which also appear in at(®) in
equ. (4.46). However, as in chapter one, the fact that Y/X is
transcendental clearly rules out any relation between C,,and
ar(4),
Of course the lack of any relationship between the four 1loop
leading quadratic divergences in four dimensions and the lower-order

result are a disappointing result which should probably have led us

to be pessimistic in this case also.
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4.2. Quadratic divergences in 2-dimensional sigma model with torsion

In the previous case, i.e. a 2-dimensional sigma model without
torsion, the problem was the lack of any non-trivial one- and
two-loop result which would enable us to test for relationships at
lower orders than L = 4. We can partially remedy this by adding a
torsion term to the sigma model action, which generates non-trivial
two-loop quadratic divergences. We add a term containing an
antisymmetric tensor field to the sigma model action. This may be

regarded as representing torsion on the target manifold. The action

now becomes:

i avoj + T(®) ]

H

o _ ] 44 T T
§ = d 'x . 8 e + b,.(®) € 8 &

(4.53)

where bij is antisymmetric and where e*V is the 2-dimensional
alternating symbol, appropriately extended to d-dimensions. It is
well known that the definition of ¢M” away from two-dimensional is
difficult, and some care is needed[19-22] to obtain correct results
for the renormalisation group @-functions when dimensional
regularisation is used in the presence of torsion. The most
satisfactory Prescription ([21-23 ] seems to be to define e"Vas an
almost complex structure on the d-dimensional world-sheet, so that

it is required to satisfy
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e =-¢ (4.54)

Nevertheless consistent results for the B-function can also be

obtained by taking in general [24]

eup epv = - (1+ceg ) Suv (4.55)
where € = 2 - 4, and c is arbitrary. The g-functions for different
values of c are then related by field redefinitions ([23]). Thus the
treatment of ¢4V is reasonably well understood. In the context

of quadratic divergences, we have the additional complication that
the relevant expansion parameter becomes e(L) . Therefore ¢ as
defined above is not "small". We will present our result in the
form which avoids any assumption concerning properties of P ald (other
than antisymmetry), and afterwards consider the effect of employing
a specific natural generalisation of equ. (4.55).

As we have done with the torsion free model, the background

field expansion of the action in equ. (4.53) is given by [17]
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s? (¢,0) = s%(¢) + J a%x [ 1 9y auci gt
+ % Rik1j auci e ok ¢l

i % Hi3x e 8uci avcj <
+ % vlﬂijk etV Buci avcj Ck Cl + ..
(4.56)

where Hijk = 3 v[i bjk] .
Again we omit terms involving 8uQ which do not contribute to quadratic
divergence. We shall try, in this section, to find a relationship
between the three-loop and the two-loop quadratic divergences for
this case. The two and three-loop graphs contributing leading

quadratic divergences constructed from the action in equ. (4.46) are

displayed in figs. (5), (6), (7), (8) and (9) and (10).
4.2.1 The Loop Calculations :

As explained before, in this case the gquadratic divergence
start at two-loop level due to the torsion term in the action.
Essential detail concerning the regularisation procedure
(dimensional regularisation), signs, and factors are contained in
appendix one. In this calculations, we have arranged matters in such
a way as to ensure that the answers obtained below contribute

directly to the quadratic divergences.
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We start with the two-loop calculation. At this loop level
there is only one graph contributing to the quadratic divergences

which is in fig. (5):

1e, B, HID J a% % % s (k+qir) [ X.q k.q = 2 k.g K.T ]

9
k2 q2 r2

(4.57)

where €, = euve“v and the two integrals arising from this graph are
¢, ~ (kg k.q ) and C,~ ( k.q k.r) which could be related to

each other as follows

c, = k.q k.q

k.q k.( -k - r )

= - 4.58
C2+c-o ( )

So, equ. (4.57) can be written as

£ig(5) = - 1 ¢, H gkim J a% a9q a% & (k+gtr) [ k.q k.r ]
3 2 o 22
(4.59)

= - klm d d d
% € Hklm H guvgop J dkd g dzr g(k+q+r) kuqv kUrP
kK" q" r

(4.60)
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klm d, L4 - -
kim B GupTgp | Ak 49 K, (a7K), Ky (Pmd)p

x% (a=k)% (p-q)°

£fig(5) = - 1 €. H
3

(4.61)

X1lm d

= - d - -
% € Hg, H 9,9 J a’k d'q [ k k,q, - kK KK,] (P-2),

2 (¢-x)? (p-q)°

uv-op

k
(4.62)

But we have

J a9% Xt k¥ kP =1 [ d+2 a‘qqP
k2 (q-k)2 Sia'l)

( guvqp + gquu + gMPqV ) ]
8 (d-1)

(4.63)
where I as in (4.41)

Now using (4.63) and (4.40) in (4.62), and simplifying, the

algebra gives us: (where p = 0 is understood )

_ 3
£ig(5) = Ir'(1/2) 9 9ep J a%q [ 1 949,949, +149,, 949

4 2] 2 -
@ AT

"1 % B%Y Yov W%t Gy 9! ]
3239/

(4.64)
Now evaluating the q integrals in (4.62) (where the formula for

the integrals are given in appendix one) then we have:
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£fig(5) = -1 1 e e H . #® r1/2)2re) + ... (4.65)

6 ——— MV Klm
(4m)

So, the two-loop quadratic divergences can be cancelled by the

following correction to the tachyon field

(2) _ 2 2 k1lm
AT = - u° I (1/2) le Hg, H (4.66)
an 8(2) 6
where €. = ¢ e“v (4.67)

The fact that there is a quadratic divergence proportional to
Hz, but no corresponding term proportional to the Ricci Scalar is
reminiscent of the dilaton B-function, where the same thing happens.

At three loops we have the graphs displayed in fig. (6) - (11).
The first graph is the graph which comes from torsion free part of
the model. so, the graph in fig. (6) is the same as in equ. (4.17).
For the graph in fig. (7) we have
vk glmn g 4 J a%k a% a% da% s (k+q+s+r)

uviop
2 o2 82 £2

1 €, Vk H

24 lmn

x[-4( kuqv qasp) + 2 (kuqv koqp) ] (4.68)

where €, is given in (4.67)
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We call the integrals

Q - kuqv 9%Sp Q -~ kuqv qup

and Q3 ~ kuqv sorp

It is easy to show that

= - - (4.69)
Q, =-20Q Q,

therefore (4.68) can be written as

X ..1mn dy g9 a9 a9s s (k+q+s+r) (4Q,)
£fig(7)= 1 €. v. H VY H g.9 I d’k d q 3
24 1 k "lmn nvZop 2 o 82 12

(4.70)

- k ..lmn
fig(7)= %4 81 Vk Hlmn v©t H guvgop

e | - -
x J a%k ddq_gdrgs Ju (47K, 85 (a-8),
x% (q-k)° s®(q-s)
(4.71)
Using (4.40) and
d = (4.72)
J 2d k 5 k“ % I qu
k™ (qa-k)

where I is given in (4.41) we find
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£ig(7) = 1 e. v. H k ..lmn
24 1 k "lmn V' H guvgop

d 2 -
XI Yo I 0129 49,0 9,0 3072) 49 9,971 (@7

l6(d-1)
(4.73)
carrying out the q integrals and substituting for d = 4 - ¢
3
we have
£ig(7) = - 3 kK . 1lmn
) % i Ir(2/3)° r(3e/2) €y Y Hypn ¥ H S (4.74)

(4m) 2

The third graph at three loop is the graph in fig. (8) which

gives:
-4¢. R kl . pmn
3 ! klmn Hp  H 9090p%p
J a% a%q a9s X s. s_q k. dq, (4.75)
2 3 3 53 KV o P @B
k™ (q-k)“ s%(g-s)° q
:—ic R kl pmn
3 1 “klmn Hp H guvgopgaﬁ
d d d
J d’k d°q d" s . ku ka S, 5, qp qB (4.76)

k% (q-k)2 s2(q-s)? g
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Now using the formulas in equ. (4.40) we have

= = kl .. pmn d 2
tig(8) § € Rpamn Hp 0 B 94,95p%g J dq _I ,
16 (d-1)
2 2
x [ 49,9, 9,,97) [ 49,9 9,,9) 9 9 (4.77)
2,3-d

(a7)

carrying out the q integrals in (4.66) and substituting for

d = g - &€ we have

fig(8) = - k1l .. pmn 3 . .
g(8) 72175 21 &) Ryyp, B O T(2/3) r'(3g/2) + (4.78)
n

The other two graphs are 4 vertex graphs. The first in fig. (9)

gives:
lmn .n
€, H H Pq
2 “kmn H Hlpq Yy Yop Jug 75
J % a% a% X % 9% % 5« I8 K K5 (4.79)
2
k% (a-k)? s?(q-s ) q
= 2 HYy [eo)
vhere €, ey + 2 € euo € epv (4.80)

Now the integral is straightforward to evaluate, being very similar

to those we have already considered.
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fig(9) = ¢ lmn . npq d d d
g(9) 2 Hepn H H H)ba Yuv9epTapTys J dk dqd's

X kuka 5,8, qvqquq7 (4.81)
2

x2(q-k)2  s%(q-s)% (q?)

lmn .. npq a, .d_ .d 2
kmn B H H g,.9 gaBg76 J d°k d°q d’s I

£ig(9) = ¢, H
g 2 1pq “uvop

16 (d-1)

[ dq,95- quaqzlt d a,9," gpaqzl 9,9,959, (4.82)
(@27 (a%)?

where we used equ. (4.60) and the formulae from appendix one. The last
step is to perform the g integrals using the functions in appendix

one and substitute d =4- ¢ . So, the graph in fig(9) gives
3

fig(9) = 81 -i Hlmn gPd

3
r(2/3)° r(3e/2) + ..(4.83)
160 (4n)2 9

°2 Hkmn

1p

The final quadratically divergent graph is in fig. (10).
This is

d
2 ¢ 9950948955 J %k a% a% KXo Xy T % I Tp Tw  (4.84)

k2 (k-q)2 (r+k)% @ (g-r)? r?

Hkpq H1 H nm

where G =
e Hklm pn q
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Now we can write

J a% adq a9r K, kp K, 9, 95 95 T, T, (4.84)
2 2
k% (k-q)% (r+k)? o°

(q-r)° r

=AF +BF, +C F, +DF, + EF; + KF, (4.85)
wvhere Fl""""Fs are combinations of g-functions e.gq.
F =
* gwo guv gsa gpa + guo ng s gpa

* gua gra ng gpa + gu7 gaB s gpa

pa ¥ 990 ug Ivs Ypa
) (4.86)

T 9y 955 9gy

g
+
970 gus ng gpa

F. =
2 = [ Yoo ( v Y98 Jys T Iug Jov Tos
gua goB v + v 9os ng
guB o5 v + 9us ov Y48 ) ]
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F_ =
5 = [ (95095 *+ 9559 ) ( IupIva * Ipadvp !

+

+

+

Yup9ac ( 9985 + 9,5% + 9,895 )

Yuadop

IupTey

Fua9py

Y0970

( 9985 * T45%0 * y8%s )

( Yov9ps * gaSng+ 9op9ps )

( Y0985 * qung+ o895 )

( 9,985 + 9,895 + 9,590 )

gucng (
guogBS (

guogva (
You9vg
Y9298s
gavgva
Yur9vp

P T e T . T T )

Iur98s
IuyIvs ¢

( govgwa

( govgwa +

(

( Y50%a * oa%8p !} ( IIys *
( gGPgSa + gaagap ) guvg73 +

Yopva

g?pgSa

yp%va

940980
YupIsa
upIva
up9Ba
gopgaa
YopIva
gopra

9y09sp )
ra%vp
gwagBP )
9u09sp )
Yuavp
Iuapp !
9509sp )
Joa9vp
95a98p )

* 9559y ) ( 9up%8a

* 9509

vp

Iop9yv ) ¢ FupJsa

) (9,895
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* 9.098p
* 9ua9sp
+ 9,598

guBg1v

)
)
)



+ ( Y9o%va * Iyadvp ) ( 9u8%s * Ius90p !
+ ( Y9098 * Iya98p ) ( 9,,9%s * IusTop !

+ ( 909 a * Iya9sp ) (9% ¥ 9ug%y !

F =
6 = [ ( Yo% ¥ Ivadgp ) (9,5%y * 906%uy * Fys9u0 )
( o950 * Ivadsp ) ( 9.8% 7 * 9989y * 93890 !
+ 9950 * 9pa95p ) Y99y ¥ YovIur ¥ 590 )

Contracting both side with one of the combination from each F’s

e.g for
g9 F, we contract with Yo Iy J8s Jpa then we have on the
left hand side a momentum integral and in the right hand side a

functions of 4 , then we solve for A,B,C,D,E and find the result

for fig(lO) is

pkPd gl g Mo o

81 =i T(2/3)° r((2/3)e) Hy_ pn Bq €2t .-

1l
1120 (4n)2

(4.87)

where £, is given in (4.80).

Now from (4.17), (4.74), (4.78) (4.83) and (4.87) we have the three

loop correction to the tachyon field:
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3
ar(3) = - 2 n2 r(2/3)2 1R gkimn 3e. V. H gk glmn
Klmn 1 'k "1lmn
3 (am) 2 e (3) 8 8
kl ..pmn
- -21% €1 Ryimn Hp H

Hlmn gPd

+ 81 €y Hkmn 1pq

160

+ 81 g, Hyyp

y*Pd Hlpn anm ] (4.88 )
1120

where eland €, are given in (4.67) and (4.80) respectively

4.2.2 Cancellation Condition Conjecture:

We wish to investigate whether aT3) can be derived from at(2),
The dquantity c, which we defined in equ. (4.48) for the torsion

free model now become in the presence of torsion:

c5 =[ g9 5 Bb(i)_?_] a T3 - ap(d) 5 gTH) (4.89)
g 8b aT

where g°" is the ith order g-function for the metric g, g°" in
the ith order B-function for the antisymmetric tensor bu(¢)' and

T(d), . .
B "~ '1s the ith order g-function for the tachyon.
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The lowest order results for Bg ‘ Bb and BT are:

g9(1) _ | Ry -y ) (4.90)
16 m
Bb(l) = - 1 vk Hkij (4.91)
16 nz
gT(1) - _ 5 92 ¢ (4.92)
2

Substituting (4.90), (4.91) and (4.92) in (4.89) we find the lowest

order Y.
of ClJ

c = lpg . krs - klm jole
const. [ 3 Hkpq H H les 2 qukl H Hm

k ..1mn
+ VY Hj V' H ] (4.93)

where we used the identity:

k -— -
B8 Riypp=1 [ B mn * ®Fniin ™ Hims n l;nm
dg 2

for an
Y tensor Hij .

As in Section (4.1), it is intriguing that terms involving Rij
k
and Vv
Hriy
in equ. (4.88). However it is immediately apparent that C12 bears no

cancel out, leaving only a subset of the terms present

relation to AT(3), for any value of A(3), since C. does not contain

klmn
Rklmn R .
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In the last 3 chapters and this chapter we have calculated the
leading quadratic divergences as manifested in dimensional
regularisation. Our main purpose was to explore the apparent
connection between quadratic divergences and logarithmic divergences
which has been discovered in ref. [7). The original goal in this
investigation was to demonstrate that there might exist
non-supersymmetric thenries free of quadratic divergences. While
this question remains cren with regard to the class of theories
proposed in ref. [7], i+ appears that vanishing of the gquadratic
divergence at L 1lonr~= is not guaranteed by requiring scale
invariance (to L lorr=) ~¢ the quadratic divergences condition for

L"< L .,
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CHAPTER 5; QUADRATIC DIVERGENCES AND GAUGE THEORIES

In this chapter we will explore the structure of quadratic
divergences in the standard model and rederive Veltman’s formula
using the recently proposed non-local regularisation. We will also
conjecture that with this regulator the mismatch between the
two-loop constraint and scale invariance of the one loop constraint

would disappear.

5.1. Gauge Theories:

In this section we review the calculation of the quadratic
divergences in general renormalisable Gauge Theories and
demonstrate the mismatch referred to above .We consider a general

renormalisable gauge theory, with the Lagrangian:

= - A 2 3 X a 2 -
L %(Guv) +1\111.D\If+%(0“¢ ) U(e)
- [¥YMV¥ +cC.C] (5.1)
where
A _ _ _ BC B ..C
Gy, = auwﬁ avwﬁ g £2 We oW, (5.2)
a _ a . A, ab b
D42 = 5,0% + ig (8% wﬁ ¢ (5.3)
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i_ i . A ij 3
D, ¥ 8,¥" + ig () wﬁ v (5.4)
and ¢ ,¥ transform according to gauge group representations eA, tA
respectively:-
[ e®, By = i £ABC € (5.5)
[ th, By = i £BBC € (5.6)

U(¢) is a gauge invariant polynomial, which for renormalisablity we
restrict to be quartic . M(¢) is given by
_ a
Now within dimensional regularisation and using the simple
dimensional analysis of Chapter One, the pole in d-dimension that
characterises quadratic divergences in renormalisable theories in
four dimensions occurs at[B] d =4 - 2/L where L is the number

of loops.

The one loop result for the quadratic divergences in ref.[7] is

%*
A, =(a1) g2 ¢l ety +u -21r (MH) (5.8)
where U, = 8u ,etc.
8¢

and g is the gauge coupling.
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In (5.8), d stands for the trace of the metric tensor and
arises from the contribution to the scalar self-energy and
consequently is the dimensionality of the u -index of the vector
field Wu.

The question arises now as whether it should be set equal to 4
or to 2. This problem was addressed by Veltman [8]) in his original
discussion of quadratic divergences in the context of the standard
model. He concluded that although conventional dimensional
reqgularisation [26] leads to d = 2, the appropriate choice was d = 4.
This preserves the number of gauge degrees of freedom and hence
respects supersymmetry. Supersymmetric theories (which are quite
free from quadratic divergences) indeed satisfy the equation A1 = 0,
with @ = 4 (not d = 2). The following issue arises : imagine that
supersymmetry were yet to be discovered. Could one have chanced on
it by seeking solutions to the equation A,= 0 ? Evidently only with
the choice of 4 = 4; that is, by use of a reqularisation that
preserves the undiscovered symmetry! The use of dimensional
reduction in a non-supersymmetric context leads to a problem [27].

Consider the infinitesimal gauge transformation on the vector field:

8W=8ua+axw (5.9)
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With dimensional reduction we can separate W“ into 4 dimensional

components wa and € = 4-d components W, - Then equ. (5.9) becomes

H 7]
o X WG . (5.11)

] Wﬁ = 8*a + o x WA (5.10)

-0
X
i

The Wa transform as scalars (and are sometimes called
c—scalars)[zsl. This has the effect that the "gauge" coupling
constant of W, to matter fields renormalises differently from the
true gauge coupling constant g, and the tree W; interaction is not

form-invariant under renormalisation. In the present context, it

means that the components of the Wu self-energy corresponding to the

e-scalars are not protected by gauge invariance from quadratic

divergences.

Now for the two loop leading pole residue we navel7’]

A = - * * _ * *
12 tr (Y, Y, MM ) -6 [ tr (Y, M Y, M )+ C.C ]

* 2 2
+ 6 Uab tr ( Ya Ya )+ Uabc Uabc -1l2g9 Uab (6 )ab

+ (12n - 18 ) g* 9T 62 62 ¢ + 24 g2 tr ( t2 M M* )

+6(n-1)g°tr (v ) (6* ), (h o)y

+ g% [ 3T(6) + 6(n-2) T(t)- 3(n+7) C,(G) ] ¢° 6% ¢
(5.12)

AB_

where T(R) 5%P= rr(rRP) and  c,(c) sPB- gACDEBCD
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where n = 3 in dimensional regularisation and n = 4 in dimensional

reduction.
The relationship between the scale invariance and the quadratic

divergences in this case defined by:

T a2 1 1 _ 1
All—[BUa_ v Byd + Byl ]Al A, 8By (5.13)
au aM ag au

he . [29]
where we have the one-loop g- functions
2 L]
16 n° g2 = [ 1 T(6) + 2 T(t) - 11 C,(6) 1 g (5.14)
6 3 3
2 1 4, T A B, 2
16 -
" By %UabUab+%q(¢99¢)
-tr uu MM ) -30, (6%¢), d°
*
+_2:L[Uatr(yayb)¢b+c.c1 (5.15)
2 .1 _ 2 2 PR
len® g, =-3(t> M)g?+2Y MY
* Yy
+ % ( Ya Ya M+MY, Y, )
ey y 5.16
+%Ya¢btr(YaYb A (5.16)

Substituting (5.8) and the above B -functions into equ. (5.13) we

have:
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A, =4, + g4 [ 2(d-2) T(6) + 2(8-3d) T(t) + 2d C,(G)] ¢T 62 ¢

-2 (@-4) [ P Uy e, + ot et e? %y

29 tr (Y, ¥p) (6% ), (6% 9 )1 (5.17)

In non-gauge theories in 4-dimension as in Chapter One we have
A2= All + The mismatch here in gauge theories , however,is a direct
consequence of the e-scalar problem discussed above.

Indeed if we set d = 4 then A_- A,,we find it proportional to the

2
€-scalar component of the vector boson self energy. So the absence
of the full 4-dimensional gauge invariance caused by regularisation
by dimensional reduction is responsible for the breakdown in the

relationship between quadratic divergences and scale invariance.
5.2. The Standard Model .

In this section we take the standard model as an example. We
believe that it is unlikely that the standard model could be
rendered free of quadratic divergences to all orders by imposing
constraints among a finite number of parameters. Nevertheless this
topic has generated a certain amount of interest. In the standard
model quadratic divergences arise only in the Higgs self-energy.
The resulting pole residues are functions of the dimensionless

couplings :
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s

+ 1 g" -2 h° . (5.18)

where g , g" , h , A are the SuU(2), U(1l), top Yukawa and quartic
Higgs couplings respectively.

The normalisations are the conventional ones such that:

m% = % g2 v2 (5.19)

m2 =1 (g°+gn?) v (5.20)
4

m; =2 ve (5.21)

n = 1 n? v? (5.22)

where v is the Higgs vacuum expectation value. Now using the above

equs., (5.18) can be written as relationships between particle

masses,
The result for A1 is[8]
3 2 -—
Al = H+ 3 + tan Gw 4T (5.23)
where H = m; / m% (5.24)
_ .2 2
T =mg / mey (5.25)

and 6, is the weak mixing angle, where we ignored the contribution

from other quarks and Leptons.
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Values of m, and m, can be obtained by setting A1= 0 , as
envisaged originally by Veltman.

As a special case from (5.12) we have the two-loop quadratic
divergences for the standard model A2 where we have used the equs.

(5.19)-(5.22). Thus ,

b, =9H  +27HT-541%-09H (3+ tan? o, )
2

-T (27 -7 tan® 6, - S ) + 189 + 45 tan® 6
W 2 W

+ 261 tan? 6 - (5.26)

2

where s = 192 a3sin29w/a ) & ,0, are the fine-structure and the
strong coupling respectivly.
where H and T are given in equ. (5.24) and (5.25) respectively,

Now using the B-functions given in equs. (5.14)-(5.16) and equ.
(5.13) we have

A.. = 9H2 +27HT - 54 T2 - 9H ( 3 + tan® 6, )
1 = 3 W
-T (27-7¢tan’ 6, -5 ) + 21 + 45 tan® o,
2
+ 109 tan® e, . (5.27)
2
Now if we substitute Al = 0 we obtain
A, = 126 T~ T ( 324 - 92 tan” 6, - § ) + 216
2 4
+ 126 tan ew + 144 tan ew . (5.28)

94



and

2

A ,= 126 T®~ T ( 324 - 92 tan -S) + 132

O

+ 126 tan® o, + 68 tan* o, . (5.29)

Neither A2= 0 nor A,.= 0 can be achieved for any value of T.

11
If we permit ourselves to delete the contribution involving ay

then one still cannot achieve A2= 0, but we can achieve A11= 0 for

m. & 115 GeV and correspondingly from equ. (5.23) my 180 GeV.
Thus requiring simply that the one-loop condition A,= 0 be scale

invariant leads (if the « term is ignored) to unique predictions

3
for both top and Higgs masses! How seriously should we take this?
We hope to resolve the mismatch between A, and A,, by the use of a

more suitable regulator. The opportunistic neglect of the «. terms

3
is harder to justify. It would be interesting, of course, if m,
and m,  (when known) happen to satisfy A,= 0 ; new physics might then

enter to ensure All = 0.

5.3. Non-local regularisation and quadratic divergences:

We have seen in the previous sections the problems which arise
when dimensional regqularisation is used, whether in dimensional
regularisation or dimensional reduction form, and its unsatisfactory

treatment of the quadratic divergence in gauge theories.
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So, we turn to a new regularisation procedure that has been
advocated and applied in a recent series of papérs [30]. In this
section we will use this regularisation procedure to calculate the
quadratic divergences in the standard model then rederive the
Veltman formula for the top quark and Higgs masses , equ. (5.23).

We start first with a review of this method. The main idea
emerges when the fact that the finiteness of string theory would
follow trivially from the non-locality of its interactions (31].
This was central to the argument which the inventor of the non-local
regularisation relied upon . The method can be described, simply,
in two stages. Stage one involves the introduction of non-local
convergence factor into the interaction terms (but not the quadratic
term )in the Lagrangian, so that the loop integrals become infinite.
By introducing the convergence factor only in the interaction terms
the method overcomes the problems of the higher-derivative method
which fails to regulate the one-loop graphs. The factor which we

will use to calculate the quadratic divergences is

Em = exp [ 82 - n° ] (5.30)

where A is the cut-off.
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This factor is not unique, but we will use this because it
makes explicit loop calculations simple [31]. There is evidently a
price to pay here over gauge invariance. This will be recovered in
the second stage of this regularisation procedure by the addition of
suitable finite (but non-local) counter ternms.

Now we would 1like to apply this method to regulate the
quadratic divergences in the standard model. As has been mentioned
before the quadratic divergence in the standard model arise only in
the Higgs self-energy.

The Higgs sector of the Lagrangian:

. 2
L=-| au¢ - 1g T.W¢ - 1 Y¢ g" ¢ Bu |
“A (et e -vE)?
~-h(Te¢R+Rot L) (5.31)

where wH , B* are the gauge field of SU(2) and U(1l) respectively
g ,9" are the coupling constant of SU(2) and U(1l) respectively, h
is the yvukawa coupling and ¢ is the Higgs field.

This Lagrangian is invariant under the local gauge group SU(2)

x U(1):

¢ =1 (g a(x).t - %" e(x) ) ¢ (5.32)
2
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-8 X
u®(

- 8
ue(x

) =gl @ x W)

)

(5.33)

(5.34)

Now using the method of non-local regularisation described

above we write

nonlocal

L > L

where I_'nonlacal is L

inserted into its interaction terms i.e. equ.

transformation becomes:

with the non local

A+

phonlocal = -05¢ a“¢+ + ig [ 8.¢
u 2 H
. 2 A+A“A-
+ 1 Y¢ g" [ au¢ B" ¢
+a® [T xWmZ ey -
4
Ad A 2
-a (¢ 9 -v2)
2 A A
_ A A —_ A4 A
-h (L¢R+R¢ L)
where
¢ =&
W= Eo W
B=§¢ B
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factor in equ. (5.30)

(5.31) under (5.35)

W ¢ - otr.wH au$ ]

u
¢ B 0,9 )
"22 A+A 2/\
% Y¢[¢(Bu) ¢ ]
(5.36)
(5.37)
(5.38)
(5.39)



and

Em = exp [ 8:A; m2 ] (5.40)
eo = exp [_ngi ] (5.41)

It is now clear that (5.36) is no longer gauge invariant under
the local gauge transformation in equs. (5.32)-(5.34). But since
current conservation at orders g, g" depend only upon the

(unchanged) free theory there must be an associated symmetry at this

order. One finds it by nonlocalising the transformation law to
become:
R A A A
§¢=1(gg ax).t -g" g 6(x)) ¢ (5.42)
2 2
A A A 5
d Wu = - Em 3ua(x) -g £m( o X Wu) (5.43)
=-£ 3.6 5.44
§ B, =-¢& 806(x (5.44)
wher o = 8 =
e a Eo a and e Eo e .

2 the theory’s invariance is violated in a

Now at order g2 , g"
physically meaningful way by the breakdown of current conservation

and the loss of decoupling of longitudinal particle .
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Here the second stage of this regularisation scheme is needed to

3 ’ g"3 by adding a

postpone this violation to the next order, g
new interaction term to the Lagrangian.

The loss of gauge invariance at g, g" order signals no
physical problem since the current conservation continues to hold
because the current conservation comes from the free unchanged part
of the Lagrangian. The physical problem is the loss of decoupling

which occurs at order gz, g"2 . This can be seen in the (Compton

like) tree amplitude:

F.. = o2 TR 2 _ 2
we ~ 9 €' € [ pﬂ P, exp [ s m

2
s - m2 A
" 2 2
+ P, P, exp | U ; m - % 3,y (5.45)
u - m2 A

where s and u are the Mandelstam parameters. Suppose now we let the

first W particle be longitudinal, e’ = xV. Then
Fyg = g2 enk [ 1 p) exp [ s - m? ] + p,exp [ u? - n? ]
2 A2 A2
- % k“ ] (5.46)

100



Hence longitudinal particles couple to physical particles.
To cancel this failure of decoupling we need a suitable interaction
and to find that we go backwards from the longitudinal particle

coupling we wish to cancel. From (5.46) and ku= (p"-p)u we have

Now

Fw¢=%gzeu“[pz[exp[s_mz]_ll
A2

- p, [ exp [ u - m2 ] - 1] ] (5.47)
[ -—XE————

A

s-m2

=l gze“u(Zk.p)p"[ [exp[s-mz]-l] ]
2 H 2

+ 1 g2 cnH (2 p".k) pu [ [ exp [ u - m2 ] - 1] ] (5.48)
2 2

Now kY = ¢V

Fug = 92‘:"“8”%"3[ P [——sZmz J - ]
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This last expression would come from the following (momentum space)

interaction:
g’ W &gt 2 _ 2 W Mg 5.50)
H [ exp [_2__:_EL_ ] -1] p 8¢ (5.
A2
8%- p°

and similarly for B,

2 2 ” A A
g"“ B, &'g" [ [ exp [ 82 - n? ] -1 ] B, o' (5.51)
A
82- m

N )Y

By adding these two terms (5.50) and (5.51) to the Lagrangian
we cancel the failure of decoupling at one loop level. Now we want
to calculate the one loop quadratic divergences in the standard
model. The method of non-local regularisation only regulates the
Buclidean loop integrals so our calculations in this section will be
in Buclidean space. The graphs which contribute to the quadratic
divergences at one loop level are displayed in fig. (1) to (6):

For the graph in fig. (1) we have:

"2 yz J 4k
g ¢ %;; A ( 2p+k)u (2p+k) , [ suv + (a=1) ku k, ]
)" k2 (p+k)Z + m2 ) k2
X exp [ -p2 - n® - (px)? -m® - k° ] (5.52)
A2 A2 A2
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Now we set the external momentum p = 0 and promote the

propagator to a Schwinger integral and then perform the momentum

integral.

fig(l) = g_g"i Y; exp [ - mz ]
2(2n) A
« | a%x exp [ x? - m? - K2 _ ] (5.53)

= g_g"z Yg exp [ - m2 ]

2(2m) Az
[}
J dt J a%x exp [r -x% - n? - ¥° ] (5.54)
1 A2 A? A2
performing the k integrals we have
. 2 .2 ®
fig(1l) = 2_3"4 Y¢ exp [ - m? ] 2 A2 J dt exp ( -t Ei )
2(2m) A2 1 (T+1)2 A?
(5.55)
2 2 ] A2
= L] - m
et o [
64 A
+ ag"?y¥? m?lnom® + .... (5.56)
2 ) =
2
64 T A

103



It is interesting to note that this method gives the quadratic
divergences and the logarithmic divergences which would be expected
by power counting.

Next the graph of fig. (2) gives:

gz ( =2 ta)ij [ giE ) ( p+k)u ( p+k)v [ auv + (a-1) ku :v ]
(2m) " 320 (p+k)2 + m? ) "

2 2 2
X exp [ -p2 - m2 - (pt+k) ; m - k 5 ] (5.57)
A% A A

As we have done before for the graph in fig.(2) we set p = 0

and promote the propagator to Schwinger integrals. Then

2 a

a 2
fig(2) = a g (T T )ij exp [ - m2 ]
2 (2m)? A
2
X d4k exp [ -k2 ; m2 -k . ] (5.58)
k2+ n? A A
2 a _a - m2
= ag (Tt T )ij exp
2(2m)? A®
® 2
X J dt [ d4k exp [t -k2 ; m2 - k 5 ] (5.59)
1 A2 A A
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Now we perform the k integral

fig(2) = « g% (< 'ca)ij exp [ - m? ] A2
64 n? A2

x Jw dt exp ( -T Ei ) (5.60)
1 (T+1)2 A%

+3 ag? n%ilno2m? +.... (5.61)

64 n2 A2

The third graph in fig. (3) gives:

- qnl 2
%u y¢ J g4k . auv [ suv + (x-1) ku kv ]
(2m) k2 k2
X exp [ -p? - m2 - k2 ] (5.62)
A2 A2

We promote the propagator to a Schwinger integral , obtaining

fig(3) = - 3"2 Y: (x+3) exp [ - m? ]
4 2
4(2m) A
J dt J d4k exp [t - k2 ] (5.63)
1 A% A®
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Performing the k integral gives

fig(3) = :_3"2 Y: (a+3) exp [ - m2 ]
a(2m? A%
at _n? A® (5.64)
1 A2 tz

= - gn? yz (a+3) exp [ - m? ] A% . (5.65)
64n A2

Similarly for the gauge field in the graph fig. (4) we have

- a2 a _a 4
g (o e?) J A [ s * (a-1) K, K, ]
(2m) k2 k2
X exp [ -22 - m2 - k2 ] (5.66)
A2 A2
fig(4) = - E_QZ (a+3) exp [ - m2 ] A2 . (5.67)
64n2 A2

For the one loop self interacting Higgs in graph fig. (5) gives

=3 A aij J d4k exp [ -p2 - mz - x%- nm? ] (5.68)
(2m)

106



[ <]
= =3 A sij J dt J a‘x exp [ - m? - T( K2+ mz) ] (5.69)
1 A2 A? A2

(2m) 2

Performing the k integral we have

fig(5) = -3 a aij exp [ - w? ] A?

16 2 A2
® 2
X J dt _exp ( -t m” ) (5.70)
1 t2 A2
= 2 2
= =3 A & exp =2m A + ..... (5.71)
2 13 2
lé n A

Finally the contribution from the Yukawa coupling which is in the

graph in fig. (6) gives:

}: (-1) h? J a‘k (17,xh2

fermions (211)4 k2
x exp [ - m2 -k2 - k2 ] (5.72)
A2 A° A2
where h is Yukawa coupling constant.
fig(e) = }: (-1) h2 4 exp [ - m? ]
fermions (2n)4 A2
-]
[ at [ a*k exp [ -t k% - k2 ](5.73)
1 A% A2 A2
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Performing the k-integral

fig(6) = E: (-1) h% 4 exp [ - m? J dt n? A2 (5.74)
fermions (2m)* A® 1 (t+1)°2

fig(e) = Ez 2 h? exp [ - m? ] A% . (5.75)
fermions 161t4 A2

As we can see the results are similar to that from using
dimensional reqgularization.

Now we consider the terms in (5.50) and (5.51) which we add to
cancel the failure of decoupling. These terms will not contribute
to the quadratic divergence. This can be seen by calculating the
graphs arising from them, and find they are finite.

One can now write the result of the quadratic divergence
defined above in terms of masses using the relationships in (5.19) -

(5.22) So we have:

— 2 -
A, =H + 3 + tan” g - 4T (5.76)
where
2 2
and T = mi / mé (5.78)
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As we can see we have been able to rederive Veltman’s formula
for the Higgs and the top masses via non-local regularisation .as
we have seen in section 5.1 the mismatch between A, and Allis
proportional to the e-scalar components of the vector boson ,
equ.(5.17) , which is the consequence of using dimensional reduction
reqularisation . In this case since we remained in four dimension,
the e-scalar problem does not arise here. We conjecture that with
this method , the conditions A1= 0 will suffice to ensure absence of

quadratic divergence through two loops.
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CONCLUSION :

In this work we have calculated the quadratic divergences in
renormalisable field theories in d = 4 , d = 2 , d = 3 and d = 6
theories ,namely o? theory in d = 4 , 03 theory in d = 6 , 86 theory in
d =3, d=2 sigma model and a gauge theory ( the standard model) .
Our main purpose in non-gauge theories was to explore the apparant
connection between quadratic divergences and the 1logarithmic
divergences . This connection , which succeeded at one,two ,and three
loop level in &% theory in d = 4 , appears to fail at the four-loop
level . A similar disappointment was reached in the case of 23 theory
in d = 6 and ¢° theory in d = 3 at the leading order .

In d = 2 sigma model ,where the ambiguities with e"” lead to farther
problem , the connection was not successful also.

The original goal of this investigation was to demonstrate that
there might exigt non-supersymmetric theories free of quadratic
divergences . While this question remains open with regard to the

class of theories proposed in ref[7] it now appears that vanishing

'
of the quadratic divergences at L- loop is not guaranteed by

requiring scale invariance ( to L -loops) of the quadratic
divergences conditions for L" < 1. This would suggest that there is
in general more than one condition that must be satisfied to

ensure quadratic divergences cancellation at a given loop order.

Quadratic divergences are themselves sensitive to the choice of

regulator , as in the case of the gauge theories .
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In chapter 5 we suggested that some other regulator apart from
dimensional regularisation might be more appropriate in the gauge
theories case and we tested the recently proposed non-local
regularisation .

As anticipated the one loop result is identical to that obtained by
dimensional regularisation , but because we remain in four
dimensions , the e-scalar problem does not arise.

In conclusion , we feel that the most interesting aspect of
this work remains the relationship between the quadratic divergences
and the scale dependence . Further study of the quadratic divergences
may lead to a better understanding of their structure and role in

determining the sensitivity of the theories to new physics.
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APPENDIX ONE: DIMENSIONAL REGULARISATION.

In this Appendix we will give a brief review of our
regularisation technique, dimensional regularisation [ ]. The
features of dimensional regularisation is available in the
literature, so we will give a short summary of some features, and a
listing of the integral formula used throughout this work.

It is well known that direct calculation of a typical Feynman
integral gives divergent quantities. It is important to distinguish
between two types of potential divergences: ultraviolet divergences
and infrared divergences. The first type arise from taking the
momenta in the integral to infinity, and relevant to our calculation
and the calculation of the B-functions, whereas the second type
correspond to the zero momentum limits.

In quantum field theory calculation, the regularisation of the
divergences is necessary, that is, rendering them finite so as to
permit their mathematical manipulation in a meaningful manner. This
is usually done by cutting off the momentum integrations at some
value A , or by altering the dimension of the space-time. In the
first case the divergences manifest themselves as logarithms of the
cut-off parameter A or as powers of A , while in the second case
-dimensional regularisation - they appear as poles in the small
Parameter measuring the difference between the real dimension and

that to which we have continued.
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So, in dimensional regularisation we shall regulate their

divergences by going to

for 4-dimensional theories, where € 1is the small parameter.
According to the above discussion, these divergences will appear as
poles in €.

Now, the renormalisation process consists of adding
counterterms to the couplings in such a way that the amplitudes
become finite. Within the theories which we considered in the first
four chapters these counterterms are simply the regulated
divergences arising in the perturbation theory but with a different
sign.

The e-series generally receives contributions from both
infrareq and ultraviolet divergences. The quadratic divergences are
ultraviolet divergences, so we need to filter out the infrared
divergences. The standard way to do that is to add a mass of terms
to all propagators, which removes any zero-momentum infinities, in

our calculation this corresponds to adding an invariant mass term.
2 i
+m CIC

to the background field expansion.
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The problem with this approach is that not all propagators need to
be regulated. An alternative procedures is to add the mass terms
only to these propagators, that need them, this is what we use in
our calculation ([32].

Now let us proceed with listing those integrals of use to us in
our calculation. We have worked throughout in momentum space, and
d-dimension. The integrals given here are evaluated in Minkowski

space-time [16].

[ ax =i a¥2 r(e+8 - d/2) B[(d/2)- «,(d/2)- 8]
(k%)% [(p-k)?]P T'(«) T(B)

x(-1) %P (p?) (4/2) -8

J d:k KM = inY2 r(e+g - a/2) B[(d/2)- a+l,(d/2)- B] pM
(%)% [ (p-x)21P r(a) T(8) 5 2 case
x(-1)**B (p?) (4/2) —aB
J a%k kM k¥ = in¥? [ T(a+B-d/2) BI(d/2)- a+2,(d/2)-) p'p”

k3% [(-k)21F (@) T'(B)
+1 guvpz I'(a+B-1-d/2) B[(d/2)+1-a, (d/2)+1-B] ]
2

x(-1)**B (p?) (9/2) B
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J %k kM k= i qY2 [ T(a+8-a/2) BL(d/2)-a+3, (d/2)-] pHpVp?
x*)* [(p-x)2)F  r(a) r(B) -
+1 p° I'(a+B-d/2-1) B[(d/2)-a+2,(d/2)-B+1] { g"Vp* + ...) ]
2

x (-1)%P (p?) (4/2) -8

J % kM kYkMkP = i n¥2 [T (a+6-d/2) BL(d/2)-a+4,(d/2)-A) pHpVprpP
)% [(p-k)218  r(a)r(8) .
+1 T (a+B-d/2-1) B[(d/2)-a+3,(d/2)-B+1] { g*PpVp"+ ...)
2
+1 T (a+B-d/2-2) B[(d/2)-a+2,(d/2)-g+2] { g*Vg™ +...... ) ]
4

x (-1) "B (p?) (/2) o=k

Certain integrals can be more simply dealt with by use of the

following formulas :

J;-Efk________ = 1(p?) = r(2-d/2) r((da/z)-1)2.
(k%) (p-x)?2 r(d-2 )

Jddk xH =11p".
(k%) (p-k)?2 2

J a%k x*x¥ = 1 a.p" p¥ - g p? ]
(k%) (p-k)?2 4(d-1)
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For diagrams with infrared divergence we have needed only one

integral:
[ a%k = 1 12 r(a+g - d/2) r((da/2)- a) (w?)(d/2) 2B
(k%)% [(k%+ m?) r(d/2) I'(8)

The Gamma function I'(x) has the short distance expansion

F(x) =1 - 75 + 0(x) .
X

for small x where 7E is the Eulers constant .

Also F(x) obey the identity,

T (x)

(x-1) I'(x-1)

For integer x, I'(x) = (x-1)!

B(a, b) is the Beta function and is given by

B(x,y) = I'(x) I'(y) .
I (x+y)

when calculating a Feynman integral we generally find not only poles
in £, but also finite parts whether or not we include these pieces
in the definition of our counterterms is a matter of preference,
properly, of renormalisation schemes. The simplest option is to
exclude them, and remove only the divergent parts of the

counterterms. This procedure is known as minimal subtraction.
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