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CHAPTER I INTRODUCTION

In the last twenty years Quantum Field Theory (QFT) has
witnessed a spectacular progress.

First introduced to describe quantum electrodynamics (QED), QFT
has become the framework for the discussion of all the fundamental
interactions except gravity.

The concept of renormalisable field theory first emerged
empirically in QED, where it led to predictions of extraordinary
accuracy, and now forms the basis of a complete theory of strong,
weak and electromagnetic interactions. Very early it was realized
that in massless renormalisable field theories a renormalisation
group could be associated with transformation properties under space
dilations but only later was this property used to discuss the short
distance structure of physical processes.

Quantum electrodynamics, as well as all more complete field
theories in particle physics, is afflicted by a strange disease.In a
straightforward calculation all physical quantities are infinite,
due to the short distance singularities of the theory. A strange
remedy to this disease has been found: one artificially modifies the
theory at short distance, at a scale characterized by a short
distance cut-off, and one then re-expresses all physical quantities
in terms of a small number of physical constants, such as the
physical charge.
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After this change of parametrisation the cut-off is removed and ,
somewhat miraculously, when the theory is so-called renormalisable,
all other physical quantities have a finite limit. Moreover this
Iimit is independent of the precise form of the short distance
modification. We can summarize this property by saying that
renormalisable field theories are short distance insensitive, in the
sense that they can be described in terms of a finite number of
effective parameters relevant to the scale of observation without a
detailed knowledge of the microscopic structure. The infinities ,
or divergences, that we meet when calculating physical processes
show that the field theories we want to construct cannot be
defined by a straightforward perturbative expansion without some
modification. We shall modify the field theory at large momentum in
such a way that the new Feynman diagrams become well-defined finite
quantities, and such that when one control parameter approaches some
limit (for example the cut-off is sent to infinity), we recover the
original perturbation theory[l] This procedure is called
regularisation. It will allow us to isolate well-defined divergent
parts of diagrams and deal with them with renormalisation. There
are many regularisation methods but in any particular application
there are some criteria which guide our choice of a regularisation
method: in some theories, symmetries play a crucial role and it is
helpful to find a regularisation which preserve the symmetry (for
example in gauge theories).
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Another criterion is that if we wish explicitly to calculate Feynman
diagrams, we shall look for the regularisation which leads to the
simplest practical calculation. In some theories some essential
property apart from the symmetry is violated by the regularisation
method, e.g. the antisymmetric tensor cIJ1,••••••lJd and 1'5 are
specific to integer dimensions which causes problem with dimensional
regularisation [2]

There are also non-perturbative regularisations the best known
being lattice regularization for which the regularised functional
integral can be calculated by non-perturbative methods, for example
Monte Carlo calculations. It also preserves most global and local
symmetries.

Despite the development of the machinery of
renormalisation, there remained a widespread feeling that the
divergences, although trained, were indicative of something
unsatisfactory in our approach to QFT, if not in QFT itself. This
attitude has changed over the last twenty years, and the modern
consensus is that the divergent nature of the radiative corrections
to the particle masses and coupling constants is a reflection of the
existence of an energy scale at which new degrees of freedom become
excited. From this viewpoint, the quadratic divergences in
renormalisable field theories in four dimensions become important.
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We can see this clearly in the standard model, which is a very
successful theory which accurately describes weak and
electromagnetic phenomena and quantum chromodynamics (QeD). The
standard model is a gauge theory based on SU(3) x SU(2) x U(l). One
of the main pieces of the puzzle is missing, namely the spin zero
elementary Higgs boson needed by the Standard Model for spontaneous
symmetry breaking (which is responsible for the masses of the w± ,Z
and fermions). Although one could argue that it is only a matter of
time until the Higgs boson will be discovered (depending on its mass
which is not fixed by the theory), it is widely thought that deeper
problems exist, connected with the Higgs boson, which suggest that
it is necessary to look beyond the Standard Model to understand the
Higgs sector of the theory. For this reason a great deal of
interest has developed in super-symmetric extensions of the standard
model (for reviews see e.g. ref. [2]).

There are three kinds of reasons why the standard model is
incomplete.

First, it contains many arbitrary assumptions and parameters,
e.g. Why are there three colours? Why are left-handed fermions in
SU(2) doublets and right-handed ones in SU(2) singlets? etc.
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Secondly, the Standard Model, like QED, is not asymptotically
free, so ultimately, at some energy scale, its interactions must
become strong. Even though this could be at very high energy, it
suggests that in principle the Standard Model is the low energy
effective theory of a more fundamental one.

The above two reasons do not necessary suggest that supersymmetry
is a particularly good approach to going beyond the Standard

Model, although it could be relevant to them. However, the third
reason does •
If one calculates the radiative corrections to the mass of
the Higgs boson of the Standard Model, e.g. from a fermion loop in
the propagator, one has a loop integral of the form:

J d4k (1.1)

(}C - m ) ( (1+jl) - mf>f

for a Higgs of momentum p. This integral diverges quadratically for
large k, so it gives a correction to the mass ~m2_ A2, where A is a
cut-off, a scale beyond which the low energy theory no long applies.
Could the Higgs particle mass in fact be superheavy? For some
Higgs' mass of the Order of a few Tev, the Higgs self-coupling gets
too strong, and we should not be observing the apparently successful
perturbation theory at low energies.
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since corrections larger than this mass scale would seem equally
unphysical, we expect the new physics to give an effective cut-off
scale below a few Tev. In fact, the Higgs vacuum expectation value,
which determines mw's and in principle, the fermion masses, is about
250 Gev. So far, there are three kinds of attempts which have
emerged to try to deal with this problem[2].

One approach is to have quarks, leptons and gauge bosons as
composite Objects [3]. A second approach is to eliminate
fundamental scalars from the theory by making them composites of new
fermions - the Technicolor approach [4] • We are not in the
position to justify either of the above approaches - each has its
own problems.

The third approach is to use a higher symmetry to eliminate the
quadratic divergences in the Higgs mass , which can be arranged in
supersymmetric theories. In supersymmetric theories there is always
a loop of superpartners accompanying the loop of normal particles;
the extra minus sign that goes with any fermion loop, plus the
supersymmetric relations between masses and couplings, guarantee
that the coefficient of the divergence in zero. We give an example
of one of the calculations.
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We can demonstrate this at one-loop level in the supersymmetric
model of Wess-Zumino [5].

L = .1 ( 81lA)2 + .1 ( 8 B )2 + .li'il·- .1 m2 (A2 + B2)
2 2 Il 2 2
.1 m 'i • - g m A (A2 + B2) - .1 g2(A2 + B2)2 _ g J (A - iB '15)1/1
2 2

(I.2)

where A and B are real scalar field and • is a four-component
Majorana spinor.

At one-loop, the only potential quadratic divergence can occur
in the self-energy of the scalar. We will illustrate the
cancellation of quadratic divergences in the one-loop graphs of the
A field self-energy. All possible one-loop quadratically divergent
graphs are given in Fig. (1). The necessary Feynman rules are given
in Fig. (2). Now the sum of the two boson-loop graphs (a) and (b)
is the quadratically divergent integral:

(I.3)

The fermion-loop graph (c) is given by:
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J d4k C~ + m) CK-p + m )
(k2 _ m2) [ (k_p)2 _ m2]

(I.4)

The trace is
Tr (~ + m ) (t-~+ m) = 4 ( k2 - k.p + m2 )

= 2 [ (k2 _ m2) + CCk-p)2 _ m2) _ p2 + 4m2 ]
(I. 5)

Inserting (I.5) into (I.4) we obtain

d4k + I(p,m)
(k_p)2 _ m2

(I.6)

where the integral I (p, m) is only logarithmically divergent. If
we shift variable k ~ k + p in the second term of (I.6) it then
becomes clear that the first two terms of (I.6) exactly cancel the
result given in (I.3)• Thus the quadratic divergence has indeed
cancelled.

As in the above example, the standard model's quadratic
divergence problem can be resolved elegantly if the low energy
theory is rendered supersymmetric. However the lack of
experimental evidence for the super-partners of the known particle
is an embarrassment •
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Because of that a conjecture that it might be the case that there

exist non-supersymmtric theories free of quadratic divergences has
been made. To ensure that a given theory is free from quadratic

divergences we need to impose a cancellation condition at each loop

level of the theory •
So, the question we set out to answer is as follows :whether we can

understand the quadratic divergences cancellation conditions to all

orders in terms of the scale dependence of the one loop condition .

We will give a simple example to illustrate

We consider the t4 theory in d = 4 with the Lagrangian

(I.7)

where a = 1, ••••• ,N and U(t) is a polynomial in ta of degree four.

In dimensional regularisation quadratic divergences manifest

themselves at d = 2 (see chapter one ). Denoting the coefficient of
the quadratic divergences at L-Ioop by AL, the one loop result is[6]:

A =1 r r ,8)

where The normalisation of Al is arbitrary ,Ua= 8U etc.
ata

we have suppressed overall numerical cofficients, these being

irrelevant to our purpose here.
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Therefore the condition for the absence of the quadratic divergnces
at the one loop level is

~l == 0 (1.9)

At the two loop level the quadratic divergences manifest themselves
as a pole at d == 3 , and the two loop result is given by[6]

(1.10)

where the normalisation of ~2 is arbitrary .we have suppressed

overall numerical cofficients, these being irrelevant to our
purpose here.
We now show how in fact the information in (I.10) is already present
(in a sense) in (1.9) • To do that we recall that the renormalised
couplings of a theory are functions of the renormalisation scale ~ (
running couplings ) •
Then by differentiating (1.9) with respect to ~ we obtain

== /3(1) a ~l
u au (I.ll)

where
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At the lowest order, the right-hand side of (I.11) can be written
as

(I.12)

provided the condition (I.9) holds.

Now substituting for ~(l)in (I.12) then it is straightforward to
U

verify

(I.13)

So we have obtained ~2in term of the scale invariance of ~l.
This is also true for a general gauge theory at one loop ( ref [7]).

In the light of this result we set up four chapters in this work

to test this conjecture for different renormalisable field theories

motivated by the hope of finding a non-supersymmetric theory free of

quadratic divergences •

As it has been mentioned before, the standard model suffers from

quadratic divergences,the one loop cancellation condition ,in fact,

leads to a relationship between the top quark and the Higgs masses •

The one loop cancellation condition is

A + 1q2 + ~ q"2 - 2 h2 = 0
4 4

(I.14 )
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where A IS the Higgs self coupling g and gil are the gauge
couplings and h is the Yukawa coupling •
This relationship can be translated to a relationship between the
masses using the Higgs vacuum expectation value[8] :

(I.15)
where

and Sw is the weak mixing angle

The quadratic divergences of a given theory depend in a non
trivial way on the regulator employed • This happens even at one
loop level as demonstrated in the pioneering work of Veltman [8]
in the case of the standard model •
Although the Veltman's formula in (I.15) originally derived in the
context of regularisation by dimensional reduction it can be
reproduced by any straightforward regularisation methods that does
not involve continuation in dimension [9] , for example non-local
regularisation (see Chapter 5) or point-splitting regularisation [10]
In this work we demonstrate an unexpected relationship between the
~-function and the quadratic divergences in a renormalisation field
theories at d = 4, d = 2, d = 6 and d = 3.
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In Chapter 1 we investigate the structure of the quadratic
divergences in d == 4 14 theory and ask whether the relationship
which we call the cancellation condition conjecture persists at the four
loop level.

In Chapters 2 and 3, we examine the renormalisable theories of
13 in d == 6 and 16 in d = 3 and calculate the quadratic divergences
up to 2-loop level in the case of t3 in d == 6 and up to 6-loop level
in the case of 16 in d == 3. We also test the cancellation condition
conjecture for these theories.
In Chapter 4 we turn to d == 2 and examine non-linear sigma models.
In the string context, the quadratic divergences in this case have a
definite interpretation as a renormalisation of the tachyon
background field; the fact that the tachyon can be decoupled from
the spectrum in the superstring case relates to the fact that the
corresponding sigma model is free of quadratic divergences. We
analyse up to the four-loop level, and find interesting similarities
with the d == 4 calculation of Chapter 1. In section 2 of Chapter 4
we generalise the sigma model case with the inclusion of a torsion
(antisymmetric tensor) term.
In Chapter 5 we considered the gauge theories and calculate the
quadratic divergences using dimensional regularization and a new
regularisation called non-local regularisation. We rederive Veltman
formula and give a prediction (if the strong interaction term a3 is
ignored ) that for mt and ~ •

We end with a Conclusion in which we discuss the results we
found.
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CHAPTER 1: QUADRATIC DIVERGENCES IN t4 THEORY IN d = 4 •

In this chapter we consider renormalisable theories of

scalar fields in four space-time dimensions. The quadratic
divergences manifest themselves in the context of dimensional

regularisation (DREG)as a poles at unphysical values of d. This can

be seen from elementary power counting. We consider a diagram of

order V ,i.e. with V vertices, E external lines, I internal lines

and L loops and with a space-time dimensions d • So the degree of

divergences 0 is given by

o = dL -2I (1.1)
We want to express 0 in terms of E and V, so we want to eliminate I

and L. There exists an identity which is true for any interaction in
any dimension,

L = I - V + 1 (1.2)

4In, theory, each vertex gives 4 legs, so there are 4V legs,some

external and some internal, however; the internal ones count twice

because they are connected to two vertices, so

4V = E + 2I (1.3)
Now using (1.2) and (1.3) we have

o = (d-4)L + 4 - E (1.4)
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For d = 4
D = 4 - E (1.5)

and so when E = 2 we have a quadratically divergent graph. In
dimensional regularisation the corresponding poles in the Green
functions first occur when D = 0 i.e. when[6]

d = 4 - 2/L (1.6)

by analogy to the usual elL) = 4 - (2/L) - d (1.7)
where d = 4 - 2/L is the leading divergences .In this chapter we
will calculate the divergences to the four-loop level.
Quadratic divergences are of particular interest due to the
naturalness problem. A theory is deemed unnatural if the radiative
corrections to a physical observable have an intrinsic magnitude
much greater than the observed value.[8] The discovery of
supersymmetry had solved the problem of quadratic divergences,
since generally supersymmetric theories are free of quadratic
divergences. But because of the lack of the experimental evidence
for supersymmetry any example of a non-supersymmetric natural theory
would be most interesting. Our aims in this chapter are to study
the structure of the quadratic divergences at four-loop level for
~4 theory and test a conjecture[7] that the quadratic divergence
cancellation conditions can be understood to all orders in terms of
the scale dependence of the one loop condition.
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In q,4 theory this conjecture has been successfully tested up to
the 3-loop level in ref. [6]. But, as we shall see, at the 4-loop
level some features occur that were not present in the lower order
corrections in ref. [6].
We begin with the basic Lagrangian in Minkowski space

(1.8)

where a = 1, •••, Nand U(t) is polynomial in t of degree four.
It is straightforward to show from (1.4) that quadratic

divergences occur in graph with E = 0, 1, 2 where E is the external
line.

We apply the Background field method, i.e. we let

(1.9)

where t is the internal (quantum) field and q, is the externalq
(classical) field since we are only interested in the leading
divergences (i.e. the pole in ell) at L loop) graphs with
non-overlapping divergences or counterterm insertions can be
ignored.

17



Now (1.4) becomes
L = 1 ( B ta )2 - U(t) + ! ( B ta )2

2 IJ. 2 IJ. q
_ ta U - 1 ta tb Uab 1 ta tb tC Uabcq a 21 q q 31 q q q

1 ta tb tC td Uabcd (1.10)
41 q q q q

where Ua = au / ata etc.

Now we want to calculate the vacuum graphs which contribute to the
quadratic divergences in the effective action up to the 4-loop
level, displayed in figs. (1, 2, 3 and 4). The 2-point function
graphs can be obtained by differentiating twice with respect to ,a.
If we denote the coefficient of the leading quadratic divergences at
L loops as ~L then for L = 1, 2, 3 the results are[6]

~1 = Uaa
~2 = Uabc Uabc
~3 = Uab Uacde Ubcde -

(1.11)
(1.12)

where etc. The normalisation of ~L is arbitrary
for each value of L; that is , we have suppressed overall numerical
cofficients , these being irrelevant to our purpose here.
1.1 Four Loop Calculations:
Essential details concerning our regularisation procedure
(dimensional regularisation), signs, factors of i and other facets
of our calculation are contained in Appendix One.
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In this calculations, we have arranged matters in such a way as

to ensure that the answers obtained are directly proportional to the

quadratic divergences.

Now we proceed with the calculations:

From (1.6) the quadratic divergences at 4-loop level occur at
d = 7 - c •

2"
In our calculation we are looking at the simple pole only which is

an ultra-violet divergences.
The treatment of infra-red divergences is straightforward

via the insertion of a regulator mass or routing of an external

momentum p as appropriate.

For the first graph fig. (4a) we have

(1.14 )

where A =
but

= i
(41l) d/2

r(2-d/2) r«d/2)-1)2
r(d-2)

= I (1.15 )
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where
I = i

__;;;.___,~

(41l)d/2
r(2-d/2) r«d/2)-1)2

r(d-2)

Therefore (1.14) can be written as

(1.17)

substituting d = 7 - c ,then
'2

fig(4a) = (2/3) A Y r(2C) + •••••

where r (1/4 )3 r (3/4 )5
r(l/ 2)3

Y = 1____;~,--

(41l)7

Now the graph in fig(4b) gives

where

20
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(1.20)
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Performing the k integral gives

fig(4b) = B I (1. 22)

where I is given in (1.16).
Now it is straightforward to do the integrals over q, sand r
respectively.
Then (1.22) become

(1. 23)
where

= i r(3-d) r(d-2) r«d/2)-1)
r(2-d/2) r«3d/2)-3)

(1. 24)

= i
(471)d/2

r(6-3d/2) r«3d/2)-5) r«d/2)-1)
r(6-3d/2) r(2d-6)

(1.25)

and J = J ddr3 -(-r~2)~6~-~3~d~/=2--(p-_-r-)~2-
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= i
(4n)d/2

r(7-2d) r(2d-6) r«d/2)-1) (1.26)
r(6-3d/2) r«5d/2)-7)

by substituting d = 7 - e. The result is
2"

fig(4b) = -~ X B r(2e) + •••••••
45

(1. 27)

where X = 1 r(3/4)4
(4n) 7

(1.28)

The third graph contributing to the quadratic divergences at 4-loop

level is graph fig(4C. This graph can be redrawn as in fig. (4ci).
Thus we have

(1.29)

where Z is the graph in fig. (4cii)

and (1.30)

Once again p is an arbitrary momentum routed to control the
infra-red divergences.

Now doing the q integral:

C Z I J ddk-(k~2~)~5:---"""I"d-«-p-_-k-:)2...)-;;;2:---.....d/.....2~ (1.31)
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where I is given in (1.16).
For Z given in graph fig. (4cii) we have

(1.32)

To evaluate this integral we use an identity derived in ref. [11]

Z = 2---
(d-4)

[ (3-d).r2 + (3d-10).r.M ] (1.33)

where I is given in (1.16)
and

M - I ddk
(k2)3-d/2 ( k+p)2

= i
(4n)d/2

r(4-d) r(d-3 ) r«d/2)-1) (1.34)
r(3-d/2) r«3d/2)-4)

After substituting d = 2 - c. Then
2

Z = - 8 r(3/4)3[ r(3/4) r(1/4)2 - 8 r(1/2) ] (1.35)
(4n)7/2 r(1/2)2 r(1/4)

Now the result for graph fig. (4c) is

fig(4c) = c [ ~
r (3/4)5 r (1/4)3
r (1/2 )3

- ~ r(3/4) 4 ]
(4n)7
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fig(4c) = C [ ~ y - ~ X] r(2c) (1.36)

The graph in fig. (4d) gives:

(1.37)

where
(1.38)

performing first the k and v integrals:

(1.39)

where I is given in (1.16) and

= i
(41l)d/2

r(4-d) r(d-3 ) r«d/2)-1) (1.40)
r(3-d/2) r«3d/2)-4)

r(7-2d) r(d-3 ) r«3d/2)-4) (p2)2d-7 (1.41)
r(3 -d/2) r(4-d) r«5d/2)-7)
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Now substituting d = 2 - c into (1.40) and (1.41),
2

The result for graph fig. (4d) is

fig(4d) = ~ X 0 r(2c) + .•••.
3

(1.42)

where
X = 1 r(3/4)4

(4n)7

Finally we have the graph in fig(4e) which gives :

(1.43)

(1.44)

(1.45)
Here we insert a mass m to control the infra-red divergences •
Now doing the sand r integrals we have

fig(4e) = (1.46)

2= E.! .N1.N2

where! is given by (1.16)
and

25



r(s-3d/2) r«3d/2)-3 ) r«d/2)-1) (1.47)
r(4-d) r(2d-s)

and

r(7-2d) r(2d-s) cm2)2d-7
r(2) r(d/2)

(1.48)

Now substituting d = 2 - c
2

Then the result for graph fig. (4e) is

fig(4e) = - ~ Y E r(2c) + •••••••
3

(1. 49)

where

Y = ___;_1---=~ r (1/4 )3 r (3/4)5
(4n)7 r(1/2)3

(1.50)

IF we denote the coefficient of the leading quadratic divergences at

L loops as I1L then from (1.19), (1.27), (1.36), (1.42) and (1.49)

we have the quadratic divergences at 4-loop level

114= A Y.A - ~ X.B + ( ~ Y + ~ X ) C + lA X.D - ~ Y.E (1.51)
3 45 3 3 3 3

The essential new feature of the L = 4 calculation is the presence

in the result of X and Y .
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Note that

= I : (1.52)

This ratio cannot be expressed as a rational number, nor have we
been able to find any relationship between it and «3), which would
have been interesting since C(3) occurs in (33' as we shall see
below[12].

1.2 The Cancellation Condition Conjecture:

Now we would like to test the Conjecture in ref. [6] that the
quadratic divergences cancellation conditions can be understood to
all orders in terms of the scale dependence of the one loop
condition. In the case of ~' theory the relationship up to the
3-loop level is

(1. 53)

-2.1
36

+ 1
3

(1.54)

where

- IlM a (3L
au

(1. 55)

and (3Lis the L-Ioop contribution to (3-functionswhere (3(U)=~ au
a~
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To verify equs. (1.53) and (1.54) we need ~1' ~2' which are given
by[13][14]

(1. 56)

e~2 = - ~ Uab Uacd Ubcd + ~ Ua Uabcd Uebcd t (1.57)
2 12

Here we have suppressed a factor of (16n2)-L .
We will verify (1.54) as an example:
from (1.55) we have

- A 2 (1. 58)

Using (1.56) and (1.12)
~ Uabc UabC
8U

where etc.

Then

a12 = 6 Uabc Uefab Uefc - 2 Uef Uabce Uabcf (1. 60)

Now for the second term in (1. 54)
a21 = ~2 8 A1 - A ~ ~2 (1.61)- 1

8U 8U
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Using (1.11) and (1.57) then

~
12

= - 2 (1.62)

Now we would like to find a and a such that1 2

(1.63)

substituting (1.13),(1.61),(1.62) and solving for a1,a2 we have

a =1 -il
36

=1
3

(1.64)

It follows that the relationship in (1.55) holds at 3- loop level.

Now the crucial question with regard to the relationship in (1.55),

for the 4-loop level, is whether we can find al, .•••• ,a3 such that

~4 = al a13 + a2 a22 + a3 a3l
To discuss this we need ~3 •

(1.65)

29



~3can be expressed as[14]

~3 - .1 Uabcd Uefcd Uae Ubf - a Uabcd Uebcd Uaf Uef4 16

+ 2 Uabcd Uae Ubcf Udef - .1 Uabcd Uef Uabe UCdf4

l. Uabc UdbC Uaef Ubef + .1 <(3) Uabc Uade Udbf Ucef8 2

.1 Ua Uabcd Uebfg Ucdfg le • (1. 66)
16

Using the results for AL [eqns (1.11)-(1.13)] and ~L eqns (1.56),

(1.57) and (1.66)] it is straightforward to show that

a13 = - 2.1 A + B - 9 C - 18 0 + 15 E (1.67)
2

a22 - .l B - 6 C - 6 D (1. 68)
2

a31 = - .l A - 2 B + ( ~ + 6 1:(3) ) C + 2 D + II E (1.69)
2 8 2 2 8

Unfortunately it is also straightforward to show that there exists

no values of (cx1"" .,cx3) such that eqn. (1.65) is true. It would
thus appear that the previous conjecture, namely that absence of

quadratic divergences at L-loop is equivalent to demanding scale

invariance of the naturalness conditions for all L"< L is not true.

Thus the precise relationship between scale invariance and quadratic
divergences remains unclear.
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CHAPTER 2 QUADRATIC DIVERGENCES IN t3 THEORY IN d = 6 •

As we shall see in this chapter and the next two chapters we
are going to inquire whether the intriguing features which we have
discovered for quadratic divergences in four space-time dimensional
theories are also displayed by theories in other space-time
dimensions. In this chapter we choose to consider t3 theory in six
space-time dimensions. Our purpose will be once again to calculate
the quadratic divergences and test the cancellation condition
conjecture ,this time at the leading order. The first question to
be asked is at what dimension the quadratic divergences manifest
themselves in this theory ?

Using (1.1) , (1.2) and (1.3) we have

o = ( d - 6 )L - 2E + 6 (2.1)

where D is the degree of divergence , L is the number of loops E
is the external lines , and d is the space - time dimension.
For d = 6

D = 6 - 2E (2.2)

and so when E = 2 we have a quadratically divergent graph.
In dimensional regularization the corresponding poles in the Green
functions occur when D = 0 i.e when

d = 6 - 2 / L (2.3)

So at L-loop level the quadratic divergences occur at d = 6 - 2/L
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We begin with the basic Lagrangian in Minkowski space

L = ~ (8 ta)2 - U(t)
2 Il

where a = 1, •••••• ,N and U(t) is a polynomial in ta of degree three.

(2.4)

It is straightforward in d - 6 to show from (2.1) that the
quadratic divergences occur in graphs with E - 2 where E is the
external lines.
Now we apply the background field method, i.e. we let

(2.5)

where t is the internal ( quantum ) lines and t is the externalq

(classical) lines •
Since we are only interested in the leading divergences, graphs with
non-overlapping divergences can be ignored. So (2.4) becomes

L= - U(t) - ~ ( 8
1l
tq)2

2

.1 tat b U
2! q q ab

~
3 !

(2.6)

Where Ua = au / ata etc.

We would like to calculate the vacuum graphs which contribute to
the quadratic divergences effective action up to the 2-loop level which
displayed in figs.(l) ,(2), and (3). The two point function graphs
can be obtained by differentiating twice with respect to the field
t • According to (2.1) we are interested in the graphs with two
external lines which are quadratically divergent.
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2.1 One and Two loop calculations

Essential details concerning our regularization procedure
(dimensional regularization) , signs , and factors are contained in
appendix one .In this calculations, we have arranged matters in such
a way as to ensure that the answers obtained below contribute
directly to the quadratic divergences.
We now proceed with the calculations:
From (2.3) the dimension where the quadratic divergences occur at
the one-loop level is

d = 6 - 2/L = 4

For the graph in fig(l) which gives

l. A I ddk
2

k2 ( 2P - k )
where A = Uab Uab

(2.7)

(2.8)

and p is an arbitrary momentum •

fig(l) = i A r(2-d/2) r(d/2-1)2
(4n)d/2 r(d-2)

(2.9)

substituting d = 4 - e we have

fig(l) = i__;;;-=--
4(16712)

where A is given in (2.8) .

A r(e/2) + .... (2.10)
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Since we are looking for graphs with two external lines , the graph
in fig(1) is the only graph which contributes to the quadratic
divergences at the one-loop level • The other graph which can be drawn
at the one loop level has three external lines • Both graphs contributE
to the logarithmic divergences and hence to the one-loop level
~-function as we shall see later in this chapter •
Now the graphs which contribute to the quadratic divergences at two
loop level are displayed in fig(2) , and fig(3)

The graph in fig(2)gives

~
2 B J (2.11)

Where (2.12)

After doing the q integral we have

fig(2) = i
-(~4n-)~d~/=2

B r(2-d/2) r{d/2-1)2 u
r(d-2)

(2.13)

Where

= i r{5-d) r{d-4) r{d/2-1)
(4n)d/2 r(4-d/2) r{3d/2 - 5)

(2.l4)

substituting d = 5 - c we have

Fig(2) = 1 r(1/2)2 r(c)----=--
6(4n)5

(2.15)
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For the graph in fig(3) we have

c J ddk dd!J

k2 (q _ p)2 q2 (p _ q)2 (p _ k)2

where

and p is an arbitrary momentum
Now

= i
(4n)d/2

c r(3-d/2) r(d/2-1) r(d/2-2)
r(d-3)

where

Then
M . d ) (p2) a-s= 1 r(5-d) r(d-4) r( /2-1

(4n)d/2 r(4-d/2) r(3d/2 - 5)

Now d = 5 - c we have

fig(3) = - 1 r(1/2)2 r(c)
3(4n)5
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(2.19)
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If we denote the coefficient of the leading quadratic divergences at
L loops as ~L then for ,3 theory in d = 6 we have

~ = i A (2.22)1
4(16712)

~2 = ( B + C ) r(1/2)2 (2.23)
6(471)5 3(471)5

Where

r(1/2) = r::
A = Uab Uab
B = Uab Uadc Udce Ueb
C = Uab Ucad Ubce Ude

As in (2.22) and (2.23) we have calculated the quadratic divergences
for the one and two loop level in ,3 theory in d = 6 using dimensional
regularization • In the next section we will produce the result in
(2.23) from (2.22) and the ~-function •

2.2 The cancellation condition conjecture

In this section we will be testing the conjecture in ref.[7] for
3
t theory in d = 6 • According to this conjecture we will be able to
produce the two-loop quadratic divergences in (2.23) given the
one-loop ~-function and the one-loop quadratic divergences • We have
calculated the one-loop quadratic divergences in the previous section.
Now we want to calculate the ~-function at one-loop level for the
theory.
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One-loop ~-function

We start with the renormalisable Lagrangian

Lren = L + Lc.t
where L is the original lagrangian for ,3 theory

(2.24)

(2.25)

and L t is the counterterm Lagrangianc.
L =c.t. (2.26)

As we can see from (2.25) and (2.26) that Lc.t.is exactly of the

same form as L , but with A and B so that the Green functions
generated by Lren are finite as c ~ 0 •
we can rewrite Lren as

(2.27)

Where
(2.28)

(2.29)

and Z is the wave function renormalisation constant, and 'B ' ~B

are called the bare field and coupling constant respectively. we
can see that Lren looks the same as L except Lren leads to a finite
theory but L does not.
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For the 1PI Green functions

-n/2 r(n) .ZI (P1,···,Pn,A,m,~,e ).
(2.30)

In this equation we can see that 1PI function r(n)depends on ~
through the dependence of ZI on ~ but rB(n)does not. Therefore by
differentiating the above equation with respect to ~ we obtain a

=

differential equation that summarizes the magic of renormalisation.

n ~ 8 ln ZI ] r(n) = 0
2 8~

(2.31)
We define

'l (9) = 1/2 ~ B ln ZI
B~

'lm = 1/2 u B 1n m2
B~

~(A) = ~ BA
8~

(2.32)

(2.33)

(2.34)

each one of these coefficients is of particular interest but our
interest is in the ~-function in (2.34) • We need to calculate the
~-function for 13 theory in d = 6 .

NoW Z 3/2 ~e/2L = 1 (8~1)2 ZI - A 13 ZA2 1

= 1 (8~1)2 Z - A 13 Zl ~e/2 (2.35)
2 1

where (2.36)
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3The graphs which contribute to the one-loop p-function in t theory
in d = 6 are in fig(4) and fig(5)

For the graph in fig(4) we have

= i r(2-d/2) r(d/2-1)2
(4n)d/2 r(d-2)

(2.37)

where p is an arbitrary momentum •
In d = 6 - c

fig(4) = i (-1/2) (1/6) r(c/2) p2
(4n)3. 1/12 (2/C) p2= - ~
(4n)3

= - i (1/6) p2/c + •••••• (2.38)
(4n)3

where 1/2 is the symmetry factor for the graph in fig(4).
The other contribution comes from the graph in fig(5) which gives

= i r(2-d/2) r(d/2-2) r(d/2-1)
(4n)d/2 r(2) r(d-3)

(2.39)

In d = 6 - c

fig(5) = i---=~
(4n)3

1. + ••••• (2.40)

Now from (2.28) and (2.29) we can calculate Zt and Zl hence ZA which

will determine the p-function for the one-loop level.
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ZI = 1 + 1 (1/6Cp.2
(471)3

Zl = 1 + 1 (1/C)A2
(471)3

So
Z = 1 + 1 (3/4C)A2A

(471)3

(2.41)

(2.42)

(2.43)

From (2.29 ) and the definition of p-function in (2.34) we have the

P-function for the one loop level in 13 theory[15]

= 1 (3/4) A3
(471)3

(2.44)

In the general case we have

(2.45)

where a and b are calculable constants.
The question now is whether we can produce the two -loop result for
the quadratic divergences in (2.23) using the information of the
one-loop quadratic divergences in (2.22) and the p-function in
(2.40). Now

112 =

where (2.46)
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finally

all = 2a ( Ude Uef Ufd )ab Uab
+ 2b ( le Uefg Ufgh Uh )ab Uab
- 3a ( UabUab )de Uef Ufd
- b I ( UabUab )h Uefg Ufghe

all = a[ 12 Udea Uefb Ufd Uab
- 6 Uabd Uabe Uef Ufd ]

+ b[ 4 Uefg Ufgh Uhb Uab] (2.47)

Unfortunately it is straightforward to see that (2.23) does not agree
with (2.47) so the proposed conjecture, that the absence of
quadratic divergences at L-100p is equivalent to demanding scale
invariance is not true in this theory also .Thus the relationship
between ~-function and the quadratic divergences remains unclear in
this theory •
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CHAPTER 3 QUADRATIC DIVERGENCES IN t6 IN d = 3

In this chapter we examine another renormalisable tr type
theory • We will follow the same procedure as in the previous two
chapters • First we have to determine the dimension where the
quadratic divergences manifest themselves. Using (l.l)and (1.2) we
have :

rV = 2 I + E (3.1)

where V is the number of vertices , I is the number of the internal
lines ( propagators) , E is the number of the external lines and r
in this case is equal to 6 . Now

D = ( d-3 )L - 1 E + 3
2

(3.2)

where D is the degree of divergence , L is the number of loops and d
is the space-time dimension •
For d = 3 we have

D = 3 - 1 E2
It is clear from (3.3) that when E = 2 we have quadratically

(3.3)

divergent graphs • In dimensional regularization the corresponding
poles in the Green function occur when D = 0 i.e. when

d = 3 - 1
L

(3.4)

where d is the space time dimensions where the quadratic divergences
occur in this theory.
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We begin with the basic Lagrangian for this theory in Minkowski
space :

1 ( a la)2 - U (I)
2' '"

Where a = l, ••••• ,N and U(I) is a polynomial in la of degree six.

L = (3.5)

The effective action for the lPI vacuum graphs can be calculated
by applying the background field method i.e. we let :

I ----+ (3.6)

where I is the internal (quantum ) lines and I is the externalq
(classical) lines •
Applying the transformation (3.6) to the Lagrangian (3.5) we
have

(3.7)

where etc.

Since we are only interested in the leading divergences , graphs with
non-overlapping divergences can be ignored.
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The linear term in (3.7) does not contribute to the calculation
since we are looking for lPI graphs only •
From (3.3) the graphs which contribute to the quadratic divergences
are the graphs with two external lines These graphs are displayed in
fig(l) , fig(2) and fig(3) •
In the next section we will be calculating the vacuum graphs
which contribute to the quadratic divergences in the effective
action up to the six-loop level •

3.1 The loop calculations

In this theory the leading order quadratic divergences occur
at the four-loop level • In this section we will calculate the quadratic
divergences at four and six loop level • Essential detail concerning
the regularization procedure (dimensional regularization ) , signs ,
and factors are contained in appendix one • In this calculations , we
have arranged matters in such a way as to ensure that the answers
obtained below contribute directly to the quadratic divergences.
Now we start with the four loop calculation :
The only graph which contributes at this loop level is the graph in
fig(l) which gives

(1/5!) A I ddk ddq ddr dd.

k2 ( q-k )2 ( r-q )2 ( s-r)2 (p_S)2
(3.8)

Where A= (3.9)
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and we have routed the arbitrary momentum p to control the infrared

divergences. By doing the k,q,and r integrals then

fig (1) = (1/51) A G1 G2 G3 I dds (3.10)
(S2)4-3d/2 ( p-s )2

where

= i
(41l)d/2

I
ddk~-
(k2) ( q-k )2

r(2-d/2) r«d/2)-1)2
r(d-2)

(3.11 )

(3.12)

= i
(41l)d/2

r(3-d) r(d-2) r«d/2)-1)
r(2-d/2) r«3d/2)-3)

(3.13)

i r(4-3d/2) r«3d/2)-3) r«d/2)-1)
r(3-d) r(2d-4)

=
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Now we do the s integral in (3.10) which gives

= i
(471) d/2

r(5-2d) r(2d-4) r«d/2)-1)
r(4-3d/2) r«5d/2) - 5)

(p2)2d-5 (3.14)

substituting d =(5/2) - c in (3.11) ,(3.12) ,(3.13) and (3.14)
we have

fig(l) = 1---:---
(41l)5

4(1/30) A r(1/4) r(2e) + •••.••.. (3.15)

The next order in the perturbation series where the quadratic
divergences occur is at six-loop level and the graph which
contribute to it are in fig(2) and fig(3).
For the graph in fig(2) we have :

5

72
B 82 I ddk ddq

k2 ( q-k )2 « p_q )2)6-2d

(3.16)

where B = U U Uabcde cdefgh abfgh
and H comes from the sub graph in fig(2a)

i

« p_q)2)3-dt!y,_-d_q._- _:.!!1t.:;..o.-.._,_. _

[- . '1 2~)m 1 n-m )2 ( p-n-q )2
'I '.

r (3-d) r t fa/2) -1) 3 ~, (3 •17)

r( (3d/2) "3)

H =

=

4.~
il!.4f' .'
.." ~



Now it is straightforward by doing the k and q integral in (3.16)and
substituting d - (8/3) - c we have

fig(2) - - lS B r(1/3)9 r(3c) + •••••••
72 (4n)8

(3.18 )

For the other graph at six loop level which is in fig(3) :

fig(3) = SC H
72

J ddk ddg ddr dds
k2 « q-k )2)3-d r2 ( q-r )2 82 ( q-s )2

(3.19 )

Where C = Uabcdef Ufehg Uabcdhg and H is given in (3.17)

Then by doing the k , sand r integrals we have :

SC H Z1 Z2 Z3 J___;;;;.dd_q;&._ _

72 ( q2)7-Sd/2 ( q2_m2 )

As we can see from (3.19) that the s integral is equal to the r integral

(3.20)

then

- i
(41l)d/2

r(2-d/2) r«d/2)-1)2
r(d-2)

(3.21)

and

i r(4-3d/2) r«3d/2)-3) r«d/2)-1)
r(3-d) r(2d-4)

(3.22 )-

50



Now performing the integration in (3.20) and substituting for
d= 8/3 - e we have

fig(3) - 45 C r(1/3)6 r(3c/2) r(3e) + ••••• (3.23)
72(4n)8

As we can see from the above equation an interesting feature has been
displayed ; the double pole • This double pole is due to a divergent
sub graph in the original six-loop graph ,which can be isolated, and
it is displayed in fig(3a) .The graph in fig(3a) has four external
lines this feature makes it linearly divergent according to equation
in (3.3) and this linear divergence at three loop level occurs at the
same dimension where the quadratic divergences occur at six loop
level .

It is obvious that the quadratic divergences in fig(3) are different
to the quadratic divergences in fig(2) because of the double pole
in fig(3) , we denote the coefficient of the quadratic divergences
with a simple pole by ~L and the coefficient of quadratic

divergences with double pole by AL ' then from (3.15) , (3.18) and

(3.23) we have

~4 = 1 (1/30) A r(1/4)4
(4n)5

A6 = - 15 B r(1/3)9
72(4n)8

(3.24)

(3.25)

A
~6 = - 45

72(4n)8
(3.26)
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Where
A - Uabcde Uabcde
B - Uabcde UCdefgh Uabfgh

and C - Uabcdef Ufehg Uabcdhg

The next stage of our calculations is to test the cancellation
condition conjecture for 16 theory in d - 3 •

3.2 The cancellation condition conjecture

The question to ask now is can we produce the coefficient of the
quadratic divergences at six loop level as in (3.25) and (3.26) from
the coefficient of the quadratic divergences at four loop level ,
and the ~-function ?
From the conjecture we have

(3.27)

Where

but the first order of the quadratic divergences in this theory

occur at four-loop level and the next order occur at six-loop level
as there is no contribution from one , two , three , and five-loop
so a15 - a33 = a42 = a51= 0 this reduces (3.27) to

(3.28)
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where
(3.29)

To calculate ~6 in (3.28) we need to know the two-loop ~-function •

The only contribution to the two-loop ~-function comes from the
vertex graph in fig(4) and in general we have [15]:

(3.30)

where c is a constant •
Using (3.24 ) and (3.30) then (3.29) gives:

a24 = c ( Umnk Umnk) ~( Uabcd Uabcd )
8U

- c( Uabcd Uabcd) _8__ ( Umnk Umnk )
8U

= 16 c U Umnkabc mnkd Uabcd

+ 12 c Umnkab Umnkcd Uabcd

- 12 c Uabcdmn Uabcdk Umnk

From this result it is clear that the proposed conjecture failed
A-to produce ~6 and ~6 .Thus once again the relationship between

scale invariance and the quadratic divergences remains unclear.
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CHAPTER 4: QUADRATIC DIVERGENCES IN 2-DIMENSIONAL SIGMA MODELS

Two dimensional sigma models are currently being extensively
investigated, primarily because of their close relationship to
string theory. They are also interesting field theories in their
own right. In this chapter , we shall investigate the structure of

the quadratic divergences in this theory and inquire whether the

intriguing features which we have discovered for quadratic

divergences in theories in other dimensions in the previous chapters

are also displayed here. This chapter will be in two sections; the

first section will be devoted to examining the quadratic divergences

for torsion-free two-dimensional non-linear sigma models up to
four-loop order, and the other section will be devoted to the models
with torsion.

4.1 The torsion free two dimensional sigma-model.

We start with the action:

(4.1)

where the scalar field liex), i = 1 •••, 0, may be regarded as a map

from the d-dimensional world-sheet to a O-dimensional target space,

and, gij(l) represents a metric on the target space.
Quantization of Eq. (4.1) is most conveniently discussed using the
background field method.
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However, the usual background/quantum field split gives a quantum
field which does not transform covariantly on the target space,
making calculations cumbersome. We can obtain a quantum field which
does transform as a contravariant target space vector as follows.

We first split the field ti (x) into a background piece ~l (x)
and quantum piece ni(~,~) [16]
Le. we let

(4.2)

Now we can think of ~i,~i+ ni as the beginning and end points
of a geodesic ~i(S) in the target space. S E [0, 1]:

and we define our quantum field, ~i to be the tangent vector to the
geodesic, Le.

~i _ [ dcf>i]-as S= 0
(4.3)

giving
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So the scalar Lagrangian can be expanded as a Taylor series.
Then the action in (4.1) under (4.2) gives[17]

dimension the poles corresponding to quadratic divergences occur in
this model.
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Every vertex has two powers of momentum, so the degree of divergence
of an arbitrary graph is given by

o = 2V - 2P + d L (4.6)

where V is the number of vertexes, P is the number of propagators
and L is the number of loops. Using

L = P - V + 1 (4.7)

we find
o = 2 + (d - 2) L. (4.8)

We can see why d = 2 is special for sigma models. In d = 4, for
example, the degree of divergence 0 increases with the number of
Loops L.

Returning to d = 2, in dimensional regularisation the
corresponding poles in the Green function occur when 0 = 0
i.e. when

d = 2 - 2/L (4.9)

(4.9) gives us the space-time dimension where the quadratic
divergences appear as a poles in sigma model.
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Now the field Ii is it self dimensionless; hence graph with two
external lines are logarithmically divergent, and provide
correction to the metric term in equ. (4.1). While graphs with no
external lines are quadratically divergent, and generate

corrections to the tachyon term in the action. (Such graphs may

also have logarithmic divergences contributing to the metric

corrections) so the action in (4.1) can be written as

+ T(I) ] (4.10)

where T(~) will be necessary to absorb quadratic divergences; from

the point of view of string theory it represents a background
tachyon field.

For our purposes (calculating the quadratic divergences), as
explained above, we may omit the parts of the normal coordinate

expansion involving background 8 ~ terms, and so we can reduce (4.5)
/.L

to

SU (~.<)= SU(~)+ J ddx [ qij a~<i a~<j
i /.L j k 1+ ~ Riklj 8/.L~ 8 ~ ~ ~

6

+ 1~ Riklj;m 8/.L~i8/.L~j ~k ~l ~m + ••

(4.11)
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4.1.1 The Loop Calculation:
In this section we will be calculating the quadratic

divergences in sigma models without torsion up to 4-loop level.
Essential details concerning the regularisation procedure
(dimensional regularisation), signs, and factors are contained in
appendix one. In this calculation we have arranged matters in such a
way as to ensure that the answers obtained below contribute directly
to the quadratic divergences. The potentially quadratically
divergent graphs up to 4-loop level are depicted in fig. (1), fig.
(2), fig. (3) and fig. (4). The background-dependent vertices are
given by the quartic and quintic terms in (4.11), while the
propagator is derived from the quadratic term.

For the first graph in fig. (1) it is straightforward to see
that this two loop diagram ,in fact, have no pole at d z 1 and hence
does not produce a leading quadratic divergence according to the
dimensional regularisation scheme.

Now for the graph in fig. (2), which is the first non-zero
quadratic divergences to occur in sigma model without torsion, we
have:

1 J ddk ddg;ddr dds a (s+k+q+r) [ 6 Aij:kl Aij:kl (k.q)2
48 k2 q2 r2 s2

+ 6 Aij:kl Akl:ij (k.q)(r.s)

+24 Aij:kl Aik:jl (k.q)(k.s)]

(4.12)
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where the tensor A is defined by

= ~ [ Rkijl + Rkjil ]
3

(4.13)

2The three integrals arising from this we call I1(- (k.q) ) ,
I2= (- (k.q) (r.s» and I3 (- (k.q)(k.s» • What we shall now show
is that they can all be equated with I

2
, thereby simplifying

matters. We shall suppress integral signs. Using [k + q + r + s - 0]

we have

I1 = k.q k.q
= k.q k.[ -k-r-s]
= -2I3 (4.14)

Next

I2 = k.q r.s
= k.q r.[ -k-q-r]
= -2I 3 (4.15)

So

(4.16)

We have chosen to evaluate I (we could equally well have
2

chosen either of I )
1,3
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Now I2 gives

(4.17)

Performing the k and r integral, we find

[(p_q)2]1-d/2
(4.18 )

Carrying out the q integral and substituting d - ~- c according to
3

(4.9) we have

I2 - _-_i---,,=--_r(2/3)3 r«3/2)c) + ••••••
(41l)2

(4.19)

For the final result of the graph in fig. (2) we have to evaluate
Aij:kl Aij:kl and Aij:kl Aik:jl in (4.12). From (4.13) we have

2- 1 ( Rklmn )
3

(4.20)
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and

2= - ~ ( Rklmn ) (4.21)
6

combining this with the result from I integral and simplifying
2

gives us our result:

fig(2) = .l i
12 (4n)2

r(2/3)3 r«3/2)£) Rklmn Rklmn + •••• (4.22)

from which we find a correction to the tachyons

(4.23)

The first four-loop graph in fig. (3) gives

.l V R vk Rlmnp48 k lmnp

x[ (k.q) (k.q) + (k.q) (s.r) -2(k.q)(q.S)](4.24)

2The three integrals arising from this graph we call B1<- (k.q) ),
B2< - (k.q)(s.r» and B3= (- (k.q)(q.s» •
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Now what we shall show is that they can all be equated with B2,
thereby simplifying matters. We shall suppress integral signs.
Then we have

B1 - k.q k.q
= k.q k.(-k-r-s-n)

- -3B 3 (4.25)

and B3 = k.q s.q
= k.q s. (-s-r-n-k)
= - B2 (4.26)

Now we shall calculate B2 which gives

B2 = J ddk ddq ddr dds [k.(k-q) (s-q).(r-s)] (4.27)
k2 (q_k)2 (s_q)2 (r-s)2 (p_r)2

By making shift of the origin s = s - q we have

82 ~ J ddk ddq ddr dds [k.(k-q) B.(r-s)]
k2 (q_k)2 (S)2 (r-s)2 (p_r)2

(4.28)

Performing the k, and s integrals, we find
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Doing the q integral and substituting for d = ~ - £ we have
2

B2 = - __1-::::-_
(411) 3

4 r(3/4) 4 r(2£) (4.30)

substituting the result of Ba into (4.24) using (4.25) and (4.26)
and simplifying gives us our result for the graph in fig. (3):

fig(3) = -1

2(411)3

There is another graph which is potentially quadratically divergent
at 4-loop level, depicted in fig. (4):

+ Rklmn Rmnpq Rpqkl ( (k.s) (k.u) (u.s» ] (4.32)

So we have two kinds of integral arising from the graph in fig. (4).
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Writing fig(4) = F + M, we have

F - ~ J ddk ddq dds ddu k.(q-k) u.(q-u) s.(q-s) Rl
6 k2 (q_k)2 u2 (q_U)2 s2 (q_s)2

(4.33)

where Rl = R Rk m R1pnqkImn p q (4.34)

but

J dd k k. (q-k)
k2 (q-k) 2

r(1-d/2) (q2) (d/2)-l (4.35)
rra-r)

therefore

-i r(l-d/2)
(4n)d/2 r(d-l)

Rl [_-.....;r.....;(~l;._-~d/'-2;:..J)r___...;;..,r....)..(..;.;Jd/~2~).....;2_]3 [- r (3-2d) r(2d-2 ) r«dL21-1) ]

r(d-l) r(2-3d/2) r«5d/2)-3)
(4.36)

substituting d = 1- e , we have
2

F = .1
6

_l---:~ Rl r(l/4) 3 r(3/4) 5
(4n)3 r(l/2)3

r(2e) + •.••• (4.37)
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We also have

M = !R2 Jddk ddq dds ddU 2 (k.s k.u u.s) (4.38)
k2 (q_k)2 U2 (q_U)2 62 (q-S)

where R2 = R Rmnpq R klklmn pq (4.39)
but we have

kll kcr = _I;;;..__
4 (d-1)

(4.40)

where

I = I _d=-d_k__ .",..= _i----.;~
k2 (k_p)2 (4n)d/2

r(2-d/2) r«d/ 2) -1) 2 (4.41)
r(d-2)

therefore we have

M = 1R
6 2

x (4.42)

Performing the q integral and substituting for d = .J. - c we have:
2

M = 1 1 R2 r {1L4)3 r PL4)5 r(2c) + ..... (4.43)
16 (4n)3 r(1/2)3
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Therefore our result for the graph in fig. (4) is

fig(4) =.1 1-~....-
6 (4n)3

(4.44)

where R1 and Ra are in (4.34) and (4.39) respectively and

y = r(1/4) 3 r{3/4) 5

r(1/2)3
(4.45)

So, at 4-loop level, the quadratic divergences give a correction to
the tachyon,

b. T(4) = f.L2 [ - .1 X Vk Rlmnp vk Rlmnp
(4n)3 c(4) 4

+ .1 y Rklmn Rmnpq Rpq kl
32

+ .l y Rklmn Rk m Rlpnq ] (4.46)
12

p q

where Y is in (4.45) and
X = r(3/4)4 (4.47)

It is remarkable that the same r-function combinations arise at four
loops in both four dimensions (see Chapter One) and two dimensions.
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4.1.2 Cancellation Condition Conjecture

We now wish to enquire whether there is any relation between
the quadratic divergences at different loop order in this model.
The natural analogue of the relationship described in chapters one,
two and three is

Cij = ~g(i)~ ~ T(j) -
8g

~T(i) (4.48)

where ~g(i)is the ith order ~-function for the metric 9 and ~T(i)

is the ith order ~-function for the tachyon.
The lowest order result for ~ and ~T are in ref [18]

~g(l) =ij (4.49)

(4.50)

Now substituting (4.23), (4.49) and (4.50) in (4.48) we have as the
lowest order Cij ,

C13 = const. [v R vk Rlmnp_ R Rmn RPqklk lmnp kImn pq

+ 4 R Rk m RIpnq ] (4.51)kImn p q
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where we used the identity

H B

8g
k k k kH l;mn + H m;ln - HIm; n - H l;nm

Hk + H k+ n;lm In; m ] (4.52)

for any tensor Hij .
As we can see from (4.51), the potential terms involving the

Ricci tensor cancel leaving only terms which also appear in AT(4) in
equ• (4 • 46) • However, as in chapter one, the fact that Y/X is
transcendental clearly rules out any relation between c13and
AT(4).

Of course the lack of any relationship between the four loop
leading quadratic divergences in four dimensions and the lower-order
result are a disappointing result which should probably have led us
to be pessimistic in this case also.
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4.2. Quadratic divergences in 2-dimensional sigma model with torsion

In the previous case, i.e. a 2-dimensional sigma model without
torsion, the problem was the lack of any non-trivial one- and
two-loop result which would enable us to test for relationships at
lower orders than L - 4. We can partially remedy this by adding a
torsion term to the sigma model action, which generates non-trivial
two-loop quadratic divergences. We add a term containing an
antisymmetric tensor field to the sigma model action. This may be
regarded as representing torsion on the target manifold. The action
now becomes:

.1 g (~) 8 ~i 8~~j
2 ij 'If ~'If 'If

(4.53)

where bij is antisymmetric and where e~v is the 2-dimensional
alternating symbol, appropriately extended to d-dimensions. It is
well known that the definition of e~v away from two-dimensional is
difficult, and some care is needed[l9-22] to obtain correct results
for the renormalisation group ~-functions when dimensional
regularisation is used in the presence of torsion. The most
satisfactory prescription [21-23 ] seems to be to define e~vas an
almost complex structure on the d-dimensional world-sheet, so that
it is required to satisfy
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c p c v
Il P == -

== - (4.54)

Nevertheless consistent results for the ~-function can also be
obtained by taking in general [24]

c P c v == - (1+ cc) ~ v
Il P Il

(4.55)

where e == 2 - d, and c is arbitrary. The ~-functions for different
values of c are then related by field redefinitions [23]. Thus the
treatment of cllV is reasonably well understood. In the context
of quadratic divergences, we have the additional complication that
the relevant expansion parameter becomes e (L) Therefore c as
defined above is not "small". We will present our result in the
form which avoids any assumption concerning properties of ellV (other
than antisymmetry), and afterwards consider the effect of employing
a specific natural generalisation of equ. (4.55).

As we have done with the torsion free model, the background
field expansion of the action in equ. (4.53) is given by [17]
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(4.56)

where

Again we omit terms involving 8 t which do not contribute to quadratic
Il

divergence. Weshall try, in this section, to find a relationship

between the three-loop and the two-loop quadratic divergences for

this case. The two and three-loop graphs contributing leading

quadratic divergences constructed from the action in equ. (4.46) are

displayed in figs. (5), (6), (7), (8) and (9) and (10).

4.2.1 The Loop Calculations

As explained before, in this case the quadratic divergence

start at two-loop level due to the torsion term in the action.

Essential detail concerning the regularisation procedure

(dimensional regularisation), signs, and factors are contained in

appendix one. In this calculations, we have arranged matters in such

a way as to ensure that the answers obtained below contribute

directly to the quadratic divergences.
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We start with the two-loop calculation. At this loop level
there is only one graph contributing to the quadratic divergences
which is in fig. (5):

[ k.q k.q - 2 k.q k.r ]

(4.57)

where el = e e~v and the two integrals arising from this graph are~v
Cl - ( k.q k.q) and C2- ( k.q k.r ) which could be related to
each other as follows

Cl = k.q k.q
= k.q k.( -k - r )

= - C2 + ••• (4.58 )

So, equ. (4.57) can be written as

[ k.q k.r ]

(4.59)
= - 1el H Hklm g g3 kIm ~v up

(4.60)
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fig(S)

(4.61)

(4.62)

But we have

(4.63)
where I as in (4.41) .

Now using (4.63) and (4.40) in (4.62)I and simplifying, the
algebra gives us: (where p = 0 is understood)

fig (5) = r(1/2) 3 g g I ddq [.1 q q q q +.1 g q q
~v up 4 ~ u v 7 2 ~u v p

(q2)3-a 2 (q2)2-d/2

(4.64)
Now evaluating the q integrals in (4.62) (where the formula for

the integrals are given in appendix one) then we have:
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fig(5) = -.1 1
6 (471)

c C~V H Hklm r(1/2)2 r(c) + •••~v kIm (4.65)

So, the two-loop quadratic divergences can be cancelled by the
following correction to the tachyon field

2- ~ r(1/2)2
471 c(2)

(4.66)

where cl = c c~v.
IJ.V (4.67)

The fact that there is a quadratic divergence proportional to
but no corresponding term proportional to the Ricci Scalar is

reminiscent of the dilaton B-function, where the same thing happens.
At three loops we have the graphs displayed in fig. (6) - (11).

The first graph is the graph which comes from torsion free part of
the model. So, the graph in fig. (6) is the same as in equ. (4.17).
For the graph in fig. (7) we have

cS (k+q+s+r)

X[-4C k~qv ~Spl + 2 Ck~qv kuqpl ]

where cl is given in (4.67)

(4.68)
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We call the integrals
Q - kf.Lqyqo-sp Q2 - kf.Lqy ko-qp1

and Q - kJ..Lqyscrrp3

It is easy to show that
Q2 == - 2 Q1 ==Q3 (4.69)

therefore (4.68) can be written as

(4.70)

fig(7)== ~ cl Vk H vk Hlmn g g24 Imn J..Ly crp

(4.71)
using (4.40) and

J k2 (q-k) 2
==~ I qf.L

2
(4.72)

where I is given in (4.41) we find

77



(4.73)

carrying out the q integrals and substituting for d - ~ - e
3

we have

(4.74)

The third graph at three loop is the graph in fig. (8) which
gives:

- -
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Now using the formulas in equ. (4.40) we have

fig(S) -

(4.77)

carrying out the q integrals in (4.66) and substituting for

d - ~ - e we have3

The other two graphs are 4 vertex graphs. The first in fig. (9)
gives:

e2 Hkmn Hlmn Hnpq H g glpq g~v guP a~ 1~

J ddk ddq dds k~ qv ~ sp sa q~ q1 k~ (4.79)
k2 (q_k)2 S2(q_s)2 q 2

where (4.80)

Now the integral is straightforward to evaluate, being very similar
to those we have already considered.
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s2(q_S)2
(4.81)

(4.82)

where we used equ. (4.60)and the formulae from appendix one. The last
step is to perform the q integrals using the functions in appendix
one and substitute d =!- c • So, the graph in fig(9) gives

3

fig(9) = ~ -i c2 H Hlmn Hnpq H r(2/3)3 r(3c/2) + •• (4.83)160 2 kmn lpq
( 4n)

The final quadratically divergent graph is in fig. (10).
This is

(4.84)

where G = H Hkpq HI H nmkIm pn q
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Now we can write

I ddk ddq ddr kU ku k7 qv q~ q6 re ra (4.84)
k2 (k_q)2 (r+k)2 q2 (q_r)2 r2

where combinations of g-functions e.g.

F1 = [ 9~u 97V 9~~ gpa + g~7 g(1'V 9~~ gpa
+ 97(1' 9~v g~~ 9pa + 9~(1'g7f3 gv~ gpa

+ 9~(1'97~ 9~v gpa + 91J.7 9(1'f39v~ 9pa

+ 9~7 9u~ 9~v 9pa + 97(1' 9~~ 9v~ 9pa
+ 97u 91J.~9Vf3 9pa ] (4.86)

F2 = [ gpa ( g~v 9(1'~97~ + g~f3 g(1'V 97~
glJ.~g(1'f3 g7V + 9IJ.V g(1'~g7f3
91J.f39(1'~9rv + 91J.~9(1'V 9rf3 ) ]
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F3 = [9~p9au ( 97V9~a + g7a9~v + 97~9,a )
+ 9~a9up ( 97v9~a + 97a9~v + 97~9,a )
+ 9~p9a7 ( 9uv9~a + 9ua9~v+ 9u~9,a )
+ 9~a9pl ( 9uv9~a + 9uag~v+ 9u~9,a )
+ 9up91a ( 9~v9~a + 9~~9v6 + 9~a9~v )

+ 9ua91P ( 9~v9~a + 9~~9va + 9~69~V)

F4 = [ 9~u9v~ ( 91p9aa + g7a9ap )
+ 9~u9~a ( 91p9va + 91a9vp )

+ 9~u9v6 ( 91p9~a + 91a9~p )
+ 9ua9v~ ( g~pg6a + g~agap )
+ gUlg~6 ( g~pgva + 9~agvp )
+ 9U19V6 ( 9~p9~a + g~a9~p )
+ 9~79v~ ( gupgaa + 9ua9ap )

+ 9~19~6 ( 9up9va + 9u«9vp )

+ 9~19v6 ( 9up9~a + guag~p )

FS = [ ( 9u~gla + gU6g1~ ) ( 9~pgva + g~a9vp )
+ ( 9uVg16 + 9ua91v ) ( 9~p9~a + g~a9~p )
+ ( 9uv916 + 9u~glV ) ( 9~p96a + 9~agap )
+ ( gup9va + gu«9vp ) ( g~pg16 + 9~a91~ )
+ ( 9up9~a + 9ua9~p ) ( 9~V916 + 9~691V )

+ ( gup96« + 9u«9ap ) ( 9~v91~ + 9~~91v )

82



+ ( 97p9va + 97a9vp ) ( 9~~9u~ + 9~~9u~ )

+ ( 97p9~a + 97a9~p ) ( 9~vgu~ + g~~guv )
+ ( g7pg~a + g7ag~p ) ( 9~vgu~ + g~~guv )

F6 = [ ( 9vpg~a + gvag~p ) ( g~~gUl + gU~g~7 + 97~g~u
+ ( gvpg~a + gvaq~p ) ( g~~gul + gU~g~7 + g7~g~U
+ ( 9~p9~a + 9~a9~p ) ( g~VgUl + guv9~1 + g7Vg~U

contractin9 both side with one of the combination from each F's
e.g for F1 we contract with g~u 91V 9~~ gpa I then we have on the
left hand side a momentum inte9ral and in the ri9ht hand side a
functions of d I then we solve for A/B/C/D/E and find the result
for fig(10) is
~ -i r(2/3)3 r«2/3)c) Hklm Hkpq HI H nm C2 + ...
1120 (4n)2 pn q

(4.87)

where c2 is given in (4.80).
Now from (4.17)I (4.74)I (4.78) (4.83) and (4.87) we have the three
loop correction to the tachyon field:
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AT(3) = - i ~
3 [ ~ R RkImn + ~ C V H vk Hlmn8 kImn 8 1 k Imn

- 12 Cl RkImn H kl Hpmn
16 p

+ 0' H Hlmn Hnpq H~ c2 kmn Ipq160

+ 81 C 2 H Hkpq Hlpn H nm ] (4 •88 )1120 kIm q

where cland c2 are given in (4.67) and (4.80) respectively

4.2.2 Cancellation Condition Conjecture:

We wish to investigate whether AT(3) can be derived from AT(2) •
The quantity C which we defined in equ , (4.48) for the torsionlJ
free model now become in the presence of torsion:

Cij =[ /3g(i)a + /3b(i)~] A T(j) - A T(j)~ (3T(i)
ag ab aT

(4.89)

where /3'1(1)is the ith order (3-function for the metric g, (3bCl)in
the ith order /3-function for the antisymmetric tensor b

1J
(,), and

aTci). th . .~ 1S e 1th order /3-funct10nfor the tachyon.
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The lowest order results for f3g , f3b and f3T are:
f3g(1) = 1 ( Rij - Hik1 H k1 ) (4.90)

112
j

16

(Jb(1) 1 k (4.91)= 'iJHkij
16 112

(JT(l) = - 1'iJ2T (4.92)
2

substituting (4.90), (4.91) and (4.92) in (4.89) we find the lowest
order of Cij

(4.93)
where we used the identity:

H 8 Rk - 1 [Hk +1mn - 2 l:mn
8g

Hk _ H k _ Hk
m;ln 1m; n l;nm

+ Hk + H k ]n;lm 1n; m
for any tensor H ...

1.J
As in Section (4.1), it is intriguing that terms involving Rij

and nk H t f th t tv kij cancel out, leaving only a subse 0 e erms presen
in equ. (4.88). However it is immediately apparent that C12 bears no
relation to ~T(3), for any value of A(3), since C does not contain

12

R Rk1mnk1mn •
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In the last 3 chapters and this chapter we have calculated the
leading quadratic divergences as manifested in dimensional
regularisation. Our rnain purpose was to explore the apparent
connection between quadratic divergences and logarithmic divergences
which has been discovered in ref. [7]. The original goal in this
investigation was to demonstrate that there might exist
non-supersymmetric thenrips free of quadratic divergences. While
this question remains C':-'0n with regard to the class of theories
proposed in ref. [7], j ...._ appears that vanishing of the quadratic
divergence at L lO'ln,"; is not guaranteed by requiring scale
invariance (to L lor~r\ r~ the quadratic divergences condition for
L"< L •
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CHAPTER 5: QUADRATIC DIVERGENCES AND GAUGE THEORIES

In this chapter we will explore the structure of quadratic
divergences in the standard model and rederive Veltman's formula
using the recently proposed non-local regularisation. We will also
conjecture that with this regulator the mismatch between the
two-loop constraint and scale invariance of the one loop constraint
would disappear.

5.1. Gauge Theories:

In this section we review the calculation of the quadratic
divergences in general renormalisable Gauge Theories and
demonstrate the mismatch referred to above •We consider a general
renormalisable gauge theory, with the Lagrangian:

[ ~ M " + c.c ] (5.1)

where

(5.2)

(5.3)
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D ~i =
IJ.

a ~i +
IJ.

(5.4)

and ~,~ transform according to gauge group representations eA, tA

respectively:-

[ eA eB] = i ~BC eC,
[ tA, tB] = i ~BC tC

(5.5)
(5.6)

U(~) is a gauge invariant polynomial, which for renormalisablity we
restrict to be quartic • M(~) is given by

(5.7)

Now within dimensional regularisation and using the simple
dimensional analysis of Chapter One, the pole in d-dimension that
characterises quadratic divergences in renormalisable theories in

four dimensions occurs at[8] d = 4 - 2/L where L is the number
of loops.

The one loop result for the quadratic divergences in ref.[7] is

(5.8)

where u = aua --a~a
and g is the gauge coupling.

,etc.
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In (5.8), d stands for the trace of the metric tensor and
arises from the contribution to the scalar self-energy and
consequently is the dimensionality of the IJ. -index of the vector
field W •

IJ.

The question arises now as whether it should be set equal to 4
or to 2. This problem was addressed by Veltman [8] in his original
discussion of quadratic divergences in the context of the standard
model. He concluded that although conventional dimensional
regularisation [26] leads to d = 2, the appropriate choice was d = 4.
This preserves the number of gauge degrees of freedom and hence
respects supersymmetry. Supersymmetric theories (which are quite
free from quadratic divergences) indeed satisfy the equation ~l = 0,
with d = 4 (not d = 2). The following issue arises: imagine that
supersymmetry were yet to be discovered. Could one have chanced on
it by seeking solutions to the equation ~l= O? Evidently only with
the choice of d = 4: that is, by use of a regularisation that
preserves the undiscovered symmetry! The use of dimensional
reduction in a non-supersymmetric context leads to a problem [27].
Consider the infinitesimal gauge transformation on the vector field:

(5.9)
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with dimensional reduction we can separate W into d dimensional
",.

Then equ. (5.9) becomescomponents W'"
",. and e = 4-d components Wu

a WA = 8A~ + ~ X WA
",.",. ",.

a Wu = ~ x WO'

(5.10)
(5.11)

The Wu transform as scalars (and are sometimes called
e-scalars) [28]. This has the effect that the "gauge" coupling

constant of W to matter fields renormalises differently from thea

true gauge coupling constant g, and the tree W! interaction is not
form-invariant under renormalisation. In the present context, it

means that the components of the w",. self-energy corresponding to the
e-scalars are not protected by gauge invariance from quadratic
divergences.

Now for the two loop leading pole residue we have[7]

A2 * * * *= -12 tr (Ya Ya MM ) 6 [ tr (Ya M Ya M )+ c.c ]
* _ 12 g2 U (e2)+ 6 Uab tr ( Ya Ya ) + Uabc Uabc ab ab

+ (12n - 18 ) g4 ,T e2 e2 , + 24 g2 tr ( t2 M M* )
g2 * ) ( eA , )a ( eA , )b+ 6 ( n - 1 ) tr ( Ya Yb

+ g4 [ 3T(e) + 6(n-2) T(t)- 3(n+7) C2(G) ] ,T e2 ,

(5.12)
and
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where n = 3 in dimensional regularisation and n = 4 in dimensional
reduction.
The relationship between the scale invariance and the quadratic
divergences in this case defined by:

= [ + + a
au

/31U (5.13)
au ag

where we have the one-loop /3- functions[29]

16 n2 (31= [ .1 T (9) + ~ T(t) - II C2(G) ] g3
9 6 3 3

16 n2 /31 = t Uab Uab + ~ g4( ,T 9A 8B , )2
U 2

* * ( 82 , )a g2- tr (M M MM ) - 3 Ua
*+ 1. [U tr ( Ya Yb ) ti'b+ C.C ]2 a

(5.14)

(5.15)

16 n2 /31 t2, M } g2 + 2 * *= - 3 { Ya M YaM
* * )+ 1 ( Y Y M + M Ya Ya2 a a

* *+ .1 Y 'b tr ( Ya Yb + Ya Yb )2 a (5.16)

substituting (5.8) and the above (3 -functions into equ. (5.13) we
have:
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All = Il + g4 [ 2(d-2) T(e) + 2(S-3d) T(t) + 2d C2(G)] tjJT02 tjJ2
- 2 (d-4) [ g2 2 g4 tjJTe2 e2 tjJUab(O )ab +

g2 tr (Ya * ( eAtjJ ) a( eA tjJ ) b ] (5.17)+ 2 Yb )

In non-gauge theories in 4-dimension as in Chapter One we have
1l2- All' The mismatch here in gauge theories, however,is a direct
consequence of the c-scalar problem discussed above.
Indeed if we set d = 4 then 1l2- Allwe find it proportional to the
c-scalar component of the vector boson self energy. So the absence
of the full 4-dimensional gauge invariance caused by regularisation
by dimensional reduction is responsible for the breakdown in the
relationship between quadratic divergences and scale invariance.

5.2. The Standard Model.

In this section we take the standard model as an example. We
believe that it is unlikely that the standard model could be
rendered free of quadratic divergences to all orders by imposing
constraints among a finite number of parameters. Nevertheless this
topic has generated a certain amount of interest. In the standard
model quadratic divergences arise only in the Higgs self-energy.
The resulting pole residues are functions of the
couplings :

dimensionless
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(5.18)

where 9 , gil , h , A are the 8U(2), U(l), top Yukawa and quartic
Higgs cOuplings respectively.
The normalisations are the conventional ones such that:

m; = .1 g2 v2
4

m2 = .1 ( g2 + g,,2) v2Z 4

~ = A v2
2 .1 h2 v2mt = 2

(5.19)

(5.20)

(5.21)
(5.22)

where v is the Higgs vacuum expectation value. Now using the above
equs., (5.18) can be written as relationships between particle
masses.

The result for A is[8]
1

(5.23)

where H=~/m;
T = m~ / m;

(5.24)
(5.25)

and Sw is the weak mixing angle, where we ignored the contribution
from other quarks and Leptons.
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Values of mt and 1Du can be obtained by setting A1= 0 , as
envisaged originally by Veltman.

As a special case from (5.12) we have the two-loop quadratic
divergences for the standard model A2 where we have used the equs.
(5.19)-(5.22). Thus,

A2 = ~ H2 + 27 H T - 54 T2 - 9H ( 3 + tan2 8W )
2

- T ( 27 - 7 tan2 8w - S ) + ~ + 45 tan2 Sw
2

+.lU tan4 8w
2

(5.26)

where S = 192 ex3sin
28w!CX , ex ,ex3 are the fine-structure and the

strong coupling respectivly.
where Hand T are given in equ. (5.24) and (5.25) respectively,

Now using the ~-functions given in equs. (5.14)-(5.16) and equ.
(5.13) we have

~ H2 + 27 H T - 54 T2 - 9H ( 3 + tan2 Sw )
4

- T ( 27 - 7 tan2 8W - S ) + ~ + 45 tan2 8w
2

+ l.Q2. tan4 Sw
2

Now if we substitute A1 = 0 we obtain
A2 = 126 T2_ T ( 324 - 92 tan2 8w - S ) + 216

(5.27)

(5.28)
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and

(5.29)

Neither A2= 0 nor A11= 0 can be achieved for any value of T.

If we permit ourselves to delete the contribution involving (X3

then one still cannot achieve A2= 0, but we can achieve A11= 0 for

mt III 115 GeV and correspondingly from equ. (5.23) llJIlII 180 GeV.

Thus requiring simply that the one-loop condition A1= 0 be scale

invariant leads (if the (X3 term is ignored) to unique predictions

for both top and Higgs masses! How seriously should we take this?

We hope to resolve the mismatch between A2 and All by the use of a
more suitable regulator. The opportunistic neglect of the (X3 terms
is harder to justify. It would be interesting, of course, if mt
and ~ (when known) happen to satisfy A1= 0 ; new physics might then
enter to ensure A = o.11

5.3. Non-local regularisation and quadratic divergences:

We have seen in the previous sections the problems which arise
when dimensional regularisation is used, whether in dimensional

regularisation or dimensional reduction form, and its unsatisfactory

treatment of the quadratic divergence in gauge theories.

95



So, we turn to a new regularisation procedure that has been
advocated and applied in a recent series of papers [30]. In this
section we will use this regularisation procedure to calculate the
quadratic divergences in the standard model then rederive the
Veltman formula for the top quark and Higgs masses, equ. (5.23).

We start first with a review of this method. The main idea
emerges when the fact that the finiteness of string theory would
follow trivially from the non-locality of its interactions [31].
This was central to the argument which the inventor of the non-local
regularisation relied upon. The method can be described, simply,
in two stages. Stage one involves the introduction of non-local
convergence factor into the interaction terms (but not the quadratic
term lin the Lagrangian, so that the loop integrals become infinite.
By introducing the convergence factor only in the interaction terms
the method overcomes the problems of the higher-derivative method
which fails to regulate the one-loop graphs. The factor which we
will Use to calculate the quadratic divergences is

~m ] (5.30)

where A is the cut-off.
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This factor is not unique, but we will use this because it
makes explicit loop calculations simple [31]. There is evidently a
price to pay here over gauge invariance. This will be recovered in
the second stage of this regularisation procedure by the addition of
suitable finite (but non-local) counter terms.

Now we would like to apply this method to regulate the
quadratic divergences in the standard model. As has been mentioned
before the quadratic divergence in the standard model arise only in
the Higgs self-energy.

The Higgs sector of the Lagrangian:

L = - , 8 .. f - ig 'r.W f - i Y", gil f B ,2~ 2 ~ 2 I-L

- A ( f+ f - V2 )2
'2

- h ( L f R + R f+ L ) (5.31)

where wI-L , BI-Lare the gauge field of SU(2) and U(1) respectively
g ,gil are the coupling constant of SU(2) and U(1) respectively, h
is the Yukawa coupling and f is the Higgs field.

This Lagrangian is invariant under the local gauge group SU(2)
x U(1):

~f = i ( g ~(x).'r - g" Sex) ) f
2 2

(5.32)
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a w~ = - 8~a(x) - q( a x W~)
a B~ = - 8~e(X)

(5.33)
(5.34)

Now using the method of non-local regularisation described
above we write

L -----_. Lnonlocal (5.35)

where Lnonlocal is L with the non local factor in equ. (5.30)
inserted into its interaction terms i.e. equ. (5.31) under (5.35)
transformation becomes:

Lnonlocal = - 8 ~ 81l~+ + A+ WIl A A+ All Aig [ 8 ~ T. ~ - ~ T.W 81l~ ]Il 2 Il

+ i Y g,,2 [ 8 ~+ A~ A ~+ B~ 8 ~B ~ - ]~ 2 Il Il

g2 [ ~+(T.W)2 A g,,2y2 ~+(B )2 A+ ~ ] [ ~ ]
4 4 ~ Il

- ). ( "'+'" 2 )2~ ~ - v
2" A A_ A A A+ A- h ( L ~ R + R ~ L ) (5.36)

where
A
~ = ~m ~ (5.37)
AW = ~o W (5.38)
A
B = ~o B (5.39)
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and

~m - exp [ 82 - m2 ] (5.40)
2A2

~o = exp [ 82 ] (5.41)
2A2

It is now clear that (5.36) is no longer gauge invariant under
the local gauge transformation in equs. (5.32)-(5.34)• But since
current conservation at orders 9, gil depend only upon the
(unchanged) free theory there must be an associated symmetry at this
order. One finds it by nonlocalising the transformation law to
become:

" " "s tP - i ( g ~m cx(x).-r - gil~m Sex) ) tP
2 2

" " "s W = - ~ 8J,Lex(X) - g ~ ( ex x WJ,L)
J,L m m

"cS BJ,L = - ~m 8J,LS(X)

(5.42)

(5.43)

(5.44)

where "ex = ~ ex ando
"S = ~ S.o

Now at order 92 , 9"2 the theory's invariance is violated in a
physically meaningful way by the breakdown of current conservation
and the loss of decoup1ing of longitudinal particle •
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Here the second stage of this regularisation scheme is needed to

postpone this violation to the next order, g3 , g,,3 , by adding a

new interaction term to the Lagrangian.

The loss of gauge invariance at g, g" order signals no

physical problem since the current conservation continues to hold

because the current conservation comes from the free unchanged part

of the Lagrangian. The physical problem is the loss of decoupling

which occurs at order g2, g1l2. This can be seen in the (Compton

like) tree amplitude:

p" PIJ. v
2s - m

]

+ pel Pv ,.,.
2u - m

- t ~,.,.V ) (5.45)

where sand u are the Mandelstam parameters. Suppose nowwe let the

first Wparticle be longitudinal, CV = kV. Then

1
2

pIt
IJ. ] + p,.,.exp ]

) (5.46)
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Hence longitudinal particles couple to physical particles.
To cancel this failure of decoupling we need a suitable interaction

and to find that we go backwards from the longitudinal particle
coupling we wish to cancel. From (5.46) and k",,-(pll_p)1-Lwe have
Now

FWt; = .1 g2 elll-L( p" [ exp [ s - m2 J 1 ]2 I-L A2

- P [exp [ u - m2 ] - 1 ] ) (5.47)
I-L 2A

= .1 g2 elll-L(2 k.p) p~ I [ exp [ 2 J - 1 1

1
s - m2 A2

2s - m

+ .1 92 elll-L(2 pll.k) PI-LI [ exp [ u - m2 ] - 1 1

1
(5.48)2 A2

u - m2
Now kV = eV

P~ [ [__e_x_p__[__s_A_;~m_2J __- __1__]_
s - m2 1

Pv 1 [__e_x_p__[__u_A_;-::::2_m_2J__-__1__1_
u - m

1
(5.49)
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!hi. last expression would come from the followinq (momentum space)
interaction:

q2 A aV.+ [ a2 _ 2 ] - 1 ]
A all.WIl [ [ exp m

1
WI.'

A2
a2_ m2

and similarly for Bf,l

q"2 A. aV.+ [ a2 _ 2 ] - 1 ]
A. all.BIl [ [ exp m

1
Bv

A2
a2_ m2

(5.50)

(5.51)

By addinq these two terms (5.50) and (5.51) to the Lagrangian
v. cancel the failure of decoupling at one loop level. Now we want
to calculate the one loop quadratic divergences in the standard
lIOdel. The method of non-local reqularisation only requlates the
Euclidean loop integrals so our calculations in this section will be
in Euclidean space. The graphs which contribute to the quadratic
diverqences at one loop level are displayed in fiq. (1) to (6):

For the graph in fig. (1) we have:

g.2 y2 I sl4k ( 2p+k)1l (2p+k)v [ cS + (ex-1)kllkv ]2
,

(2n) 4
Ill.'

k2 ( (P+k)2 + m2 ) k2

(5.52)
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Now we set the external momentum p = 0 and promote the
propagator to a Schwinger integral and then perform the momentum
integral.

fig(l) = ~,,2 y2 exp [ - m2 ]
2(21l)4

~ A2

x J d4k [ 2 m2exp -k -
k2+ m2 A2

exp [ - m2 ]
A2

Jm dT J d4k exp [T _k2 - m2
1 A2 A2

performing the k integrals we have

= ~,,2 y;
2(21l)4

fig(l) = ~,,2 y2 exp [ - m2 ] 11
2

A2 r dT exp ( -T m2 ),
2(21l)4 A2 (T+1)2 A21

(5.55)

ex2,,2y2 exp [ 2 ] A2= - m
2 , A264 1l

2 y2 m2 In 2m2 + •••• (5.56)+ ex2" f A264 1l 2
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It is interesting to note that this method gives the quadratic
divergences and the logarithmic divergences which would be expected
by power counting.

Next the graph of fig. (2) gives:

J~
(21l)4

( p+k)J,L( p+k)v
k2( (p+k)2 + m2

As we have done before for the graph in fig.(2) we set p = 0
and promote the propagator to Schwinger integrals. Then

fig(2) =~2 ( a a exp [ - m2 ]'t: 't:) ij
2(21l)4 A2

J d
4
k [ _k2 2 k2 ] (5.58)x exp - m

k2+ m2 A2 A2

~2 ( 't:a a [ _ m2 ]= 't: ) ij exp
2(2n)4 A2

J: :~ J d4k exp ['t: 2 m2x -k -
A2
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Now we perform the k integral

fig(2) = r:__s.2( ,;a a exp [ 2 ] A2,; )ij - m
64 n2 A2r m2x d,; exp ( -,; )

1 (';+1)2 A2
(5.60)

= 3 ~2 exp [ m2 ] A2
64 n2 A2

+ 3 ~2 m2 In 2m2 + ••••
64 n2 A2

(5.61)

The third graph in fig. (3) gives:

_ 9,,2 y2
4 f/J [ &IJ,V + (<<-1) klJ,kv ]

k2

We promote the propagator to a Schwinger integral , obtaining

fig(3) = .::.__9:,,2y: (<<+3)
4(2n)4
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performing the k integral gives
fig(3) = =.._S .. 2 Y: (<<+3) exp [ - m2 ]

4(2n)4 A2

J
OCI

dor
1 A2

(5.64)

= =.._S .. 2 Y: (<<+3)exp [ - m2 ] A2 . (5.65)
2 ~ A264n

Similarly for the gauge field in the graph fig. (4) we have

- 9.2
4

a a
(or or) ij

fig(4) = _ ~2

64n2
(<<+3) (5.67)

For the one loop self interacting Higgs in graph fig. (5) gives

-u cSij
(2n)2

(5.68)
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- J
oo

d,;
1 A2

Performing the k integral we have

fig(5) - -3 A sij [ 2 ] A2exp - m
16 n2 A2

x r d,; exp ( -'C m2 ) (5.70)
,;2 A21

2A + ••••• (5.71)

Finally the contribution from the Yukawa coupling which is in the
graph in fig. (6) gives:

L (-1) h2 J
fermions

x 2-k -
A2

k2 ] (5.72)
A2

where h is Yukawa
fig(6) = ~ (-1)

fermions

coupling constant.
h2 __4_ exp [ - m2 ]

(21l)4 A2

Joo d,; J d4k
1 A2

exp [ - 2,; k -
A2

k2 ] (5.73)
A2
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Performing the k-integra1

fig(6) == L (-1) h2_4_ exp [- m2 lI- d'r n2 A2 (5.74)
(2n) 4 A2 ('r+1)2fermions 1

fig(6) = I 2 h2 exp [ - m2 ] A2 (5.75)
fermions 16n4 A2

As we can see the results are similar to that from using
dimensional regularization.

NoW we consider the terms in (5.50) and (5.51) which we add to

cancel the failure of decoup1ing. These terms will not contribute

to the quadratic divergence. This can be seen by calculating the
graphs arising from them, and find they are finite.

One can now write the result of the quadratic divergence

defined above in terms of masses using the relationships in (5.19) -
(5.22) So we have:

A1 = H + 3 + tan2 Sw - 4T (5.76)
where

H == ~/~ (5.77)

and T == m2 /~ (5.78)t
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As we can see we have been able to rederive Veltman's formula
for the Higgs and the top masses via non-local regularisation .as
we have seen in section 5.1 the mismatch between 112 and Allis
proportional to the c-scalar components of the vector boson
equ.(S.17) , which is the consequence of using dimensional reduction
regularisation • In this case since we remained in four dimension,
the c-scalar problem does not arise here. We conjecture that with
this method , the conditions 1l1= 0 will suffice to ensure absence of
quadratic divergence through two loops.
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CONCLUSION

In this work we have calculated the quadratic divergences in
renormalisable field theories in d - 4 , d - 2 , d = 3 and d - 6
theories ,namely 14 theory in d = 4 , 13 theory in d = 6 , 16 theory in
d = 3 , d - 2 sigma model and a gauge theory ( the standard model) •
Our main purpose in non-gauge theories was to explore the apparant
connection between quadratic divergences and the logarithmic
divergences • This connection , which succeeded at one,two ,and three
loop level in 14 theory in d = 4 , appears to fail at the four-loop

3level . A similar disappointment was reached in the case of 1 theory
in d = 6 and 16 theory in d = 3 at the leading order •
In d = 2 sigma model ,where the ambiguities with c~v lead to farther
problem , the connection was not successful also.
The original goal of this investigation was to demonstrate that
there might exist non-supersymmetric theories free of quadratic
divergences • While this question remains open with regard to the
class of theories proposed in ref[7] , it now appears that vanishing
of the quadratic divergences at L- loop is not guaranteed by
requiring scale invariance ( to L -loops) of the quadratic
divergences conditions for Lit< L. This would suggest that there is
in general more than one condition that must be satisfied to
ensure quadratic divergences cancellation at a given loop order.

Quadratic divergences are themselves sensitive to the choice of
regulator , as in the case of the gauge theories •

III



In chapter 5 we suggested that some other regulator apart from
dimensional regularisation might be more appropriate in the gauge
theories case and we tested the recently proposed non-local
regularisation .
As anticipated the one loop result is identical to that obtained by
dimensional regularisation but because we remain in four
dimensions , the c-scalar problem does not arise.

In conclusion , we feel that the most interesting aspect of
this work remains the relationship between the quadratic diverqences
and the scale dependence • Further study of the quadratic divergences
may lead to a better understanding of their structure and role in
determining the sensitivity of the theories to new physics.
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APPENDIX ONE: DIMENSIONAL REGULARISATION.

In this Appendix we will give a brief review of our
regularisation technique, dimensional regularisation [ ]. The
features of dimensional regularisation is available in the
literature, so we will give a short summary of some features, and a
listing of the integral formula used throughout this work.

It is well known that direct calculation of a typical Feynman
integral gives divergent quantities. It is important to distinguish
between two types of potential divergences: ultraviolet divergences
and infrared divergences. The first type arise from taking the
momenta in the integral to infinity, and relevant to our calculation
and the calculation of the ~-functions, whereas the second type
correspond to the zero momentum limits.

In quantum field theory calculation, the regularisation of the
divergences is necessary, that is, rendering them finite so as to
permit their mathematical manipulation in a meaningful manner. This
is USually done by cutting off the momentum integrations at some
value A , or by altering the dimension of the space-time. In the
first case the divergences manifest themselves as logarithms of the
cut-off parameter A or as powers of A , while in the second case
-dimensional regularisation - they appear as poles in the small
parameter measuring the difference between the real dimension and
that to which we have continued.
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So, in dimensional regularisation we shall regulate their
divergences by going to

d = 4 -e

for 4-dimensional theories, where e is the small parameter.
According to the above discussion, these divergences will appear as
poles in e.

Now, the renormalisation process consists of adding
counterterms to the couplings in such a way that the amplitudes
become finite. Within the theories which we considered in the first
four chapters these counterterms are simply the regulated
divergences arising in the perturbation theory but with a different
sign.

The e-series generally receives contributions from both
infrared and ultraviolet divergences. The quadratic divergences are
ultraviolet divergences, so we need to filter out the infrared
divergences. The standard way to do that is to add a mass of terms
to all propagators, which removes any zero-momentum infinities, in
our calculation this corresponds to adding an invariant mass term.

to the background field expansion.
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The problem with this approach is that not all propagators need to
be regulated. An alternative procedures is to add the mass terms
only to these propagators, that need them, this is what we use in
our calculation [32].

Now let us proceed with listing those integrals of use to us in
our calculation. We have worked throughout in momentum space, and
d-dimension. The integrals given here are evaluated in Minkowski
space-time [16].

= i nd/2 [r(a+~-d/2) B[(d/2)- a+2,(d/2)-~] p~pv
rea) r(~)

+t g~Vp2 r(a+~-1-d/2) B[(d/2)+1-a,(d/2)+1-~] ]

x(_l)a+B (p2)(d/2) -a-~
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J ddk k~ kVkA = i nd/2 [r(a+~-d/2) B[(d/2)-a+3,(d/2)-~] p~pVpA
(k2)a [(P_k)2]~ rea) r(~)

+i p2 r(a+~-d/2-1) B[(d/2)-a+2,(d/2)-~+1] { g~VpA + •.•} ]

x (_l)a+B (p2)(d/2) -a-~

J ddk ~ kVkAkP = i nd/2 rr(<<+~-d/2)B[(d/2)-«+4.(d/2)-~1 p~pVpApP
(k2)a [(P_k)2]~ r(a)r(~)

+~ r(a+~-d/2-1) B[(d/2)-a+3,(d/2)-~+1] ( gAPpVp~+ ...)
2

~V AP ]+~ r(a+~-d/2-2) B[(d/2)-a+2,(d/2)-~+2] {g g +....•.}
4

Certain integrals can be more simply dealt with by use of the
following formulas :

r((d/ 2) -1) 2 •

J ddk k~
(k2) (P_k)2

J ddk k~ kV
(k2) (p_k)2

= I

4(d-1)
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For diagrams with infrared divergence we have needed only one

integral:

The Gamma function rex) has the short distance expansion

r(x) = ~ - 7E + o(x) •
x

for small x where 7E is the Eulers constant •

Also F(x) obey the identity,

r(x) = (x-l) r(x-l)

For integer x, r(x) = (x-l)!
B(a, b) is the Beta function and is given by

B(X,y) = rex) r(y)
rex+y)

when calculating a Feynman integral we generally find not only poles

in E, but also finite parts whether or not we include these pieces

in the definition of our counterterms is a matter of preference,

properly, of renormalisation schemes. The simplest option is to

exclude them, and remove only the divergent parts of the
counterterms. This procedure is known as minimal subtraction.
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