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In the Prince, which was written four centuries ago, Machiavelli 

observed: 

"There is nothing more difficult to take in hand, more 

perilous to conduct, or more uncertain in its success than 

to take the lead in the introduction of a new order of 

things" . 

A-Sultan, the author, replies: 

"Entropy, as a measure of uncertainty, can help! !?" 



ABSTRACT 

This thesis explores the use of Shannon's (informational) entropy 

measure and Jaynes' maximum entropy criterion in the solution of multi­

criteria optimization problems, for Pareto set generation, and for 

seeking the global minimum of single-criteria optimization problems. 

At present, traditional methods contain no information-theoretic basis. 

They all view optimization problems in terms of a topological domain 

defined deterministically by function hypersurfaces. Part of this 

thesis is a continuation of research aimed at developing a non­

deterministic approach to optimization problems through the use of the 

Maximum Entropy Principle (MEP) and the Minimax Entropy Principle 

(MMEP). We treat the multi-criteria optimization problem as a 

statistical system which can be interpreted as transformations of the 

system to a sequence of equilibrium states which are characterized by 

certain entropy maxima depending upon a feasible entropy parameter. 

This thesis also introduces, for the first time, simulated 

entropy for obtaining the global minima of single-criteria minimization 

problems. Several ways of using entropy in the optimization context 

are investigated. Two simulated entropy algorithms are developed. A 

class of structural optimization problems is chosen to provide example 

problems. Computational results demonstrate that the algorithms 

proposed in this work are efficient and reliable. The following parts 

of the present work are original: 

1) An entropy-based method for generating Pareto set is presented. 

This new method yields adc:itional insight into the nature of 
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entropy as an information- theoretic basis and clarifies some 

ambiguities in the literature about its use in optimization. 

2) A new stochastic technique for reaching the global minimum of 

constrained single-criteria minimization problems is developed. 

The system may be interpreted as a statistical thermodynamic one 

which approaches spontaneously an equilibrium state which is 

characterized by lowering the temperature of the system to its 

limit along the entropy process transitions. However, in each 

transition, equilibrium is characterized by maximizing the 

entropy at that certain temperature. 

Simulated Entropy. 

This is known as the 

3) Two simulated entropy techniques are developed which seek the 

global minimum of some deterministic objective function. The two 

techniques can be applied to constrained minimization problems 

only. 

4) A practical structural design program of reinforced concrete 

frames is developed. It considers two criteria to be minimized, 

chooses the most optimal solution, applies an enumeration 

technique to round off some of the design variables, perf0rms 

system reliability analysis to calculate the system reliability, 

and then applies the PNET method to choose an appropriate value 

for the system probability of failure. Computer programs are 

developed to apply these methods to multi-s~orey frames. 

5) A new way for investigating the sensitivity of an optimized 

design of a multi-storey frame to parameter and criteria changes 

is developed. 
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a 

NOTATIONS 

depth of equivalent rectangular stress block in. 

area of rectangular core of column, sq. in. 

gross area of cross section, sq. in. 

area of tension reinforcement, sq. in. 

area of tension reinforcement in ith column, sq. in. 

area of compression reinforcement, sq. in. 

area of compression reinforcement in ith column, sq. 

in. 

area of transverse hoop bar (one leg), sq. in. 

area of shear reinforcement, within one sixth of the 

height from bottom of a column, within a distance s; 

where s is taken to be d/4, sq. in. 

area of shear reinforcement within one-sixth of the 

height from bottom of ith column, within a dist&nce 

s, sq. in. 

area of shear reinforcement, within a height from 

one-sixth to two-thirds of the height of a column, 

within a distance s; where s is taken to be d/2, sq. 

in. 

area of shear reinforcement within a height from one­

sixth to two-thirds of the height of ith column, 

within a distance s, sq. in. 
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(A..",) i 

area of shear reinforcement, within one-third of the 

height from top of a column, within a distance s; 

where s is taken to be d/4, sq. in. 

area of shear reinforcement, within one-third of the 

height from top of ith column, within a distance s, 

sq. in. 

area of main reinforcement at the top left of ith 

beam, sq. in. 

area of main reinforcement at the bottom near the 

midspan of ith beam, sq. in. 

are of main reinforcement at the top right of ith 

beam, sq. in. 

area of shear reinforcement within a distance s which 

is in a quarter span from left end of a beam; where 

s is taken to be d/4, sq. in. 

area of shear reinforcement within a distance sq. in. 

area of shear reinforcement within a distance s which 

is in a quarter span from left end of ith beam, sq. 

in. 

area of shear reinforcement within a distance s which 

is in a center half span of a beam; where s is taken 

to be d/2, sq. in. 

area of shear reinforcement within a distance s which 

is in a center half span of ith beam, sq. in. 

area of shear reinforcement within a distance s which 

is in a quarter span from right end of a beam; where 

s is taken to be d/4, sq. in. 
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b 

c 

c 

d 

d" 

area of shear reinforcement within a distance s which 

is in a quarter span from right end of ith beam, sq. 

in. 

width of beam, in. 

width of ith beam, in. 

total number of objective functions. 

cost of concrete per sq. in. per linear ft. 

cost of steel per sq. in. per linear ft. 

constant, in. 

constant, in. 

concrete cover; measured to the centroid of main 

reinforcement of beam, in. 

concrete cover; measured to the centroid of main 

reinforcement of column, in. 

total cost of a structure. 

effective depth of beam, in. 

distance from centroid of compression reinforcement 

to extreme compression fibre, in. 

distance from the plastic centroid to the centroid 

of tension reinforcement, in. 

specified nominal diameter of bars, ft. 

nominal diameter of reinforCing bars, in. 
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D 

fl 
C 

fl 
S 

F(X) 

g(X) 

h(X) 

h 

k 

K 

nominal diameter of longitudinal bar, in. 

nominal diameter of web steel bar, in. 

overall depth of column, in. 

overall depth of ith column, in. 

concrete modules of elasticity. 

steel modules of elasticity. 

cylinder strength of concrete, psi. 

compression stress of compression reinforcement of 

column, psi. 

specified yield strength of reinforcement, psi. 

objective function. 

inequality constraint function. 

equality constraint function. 

overall depth of beam, in. 

overall depth of ith beam, in. 

height of ith column, ft. 

total number of equality constraints; or Boltzmann's 

Constant. 

stiffness ratio. 
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L 

~r 

m 

M 

~r 

height of storey. ft. 

development length. ft. 

span length of beam. in. 

length of ith beam. ft. 

length of main reinforcement. ft. 

length of main reinforcement. ft. 

length of main reinforcement. ft. 

total number of inequality constraints. 

moment at the base of each storey. 

mean value of elastic safety margin. 

nominal flexural strength of a beam section. in-lbs. 

nominal moment strength of a 

location i on interaction 

(i-l.2.3.4.). 

column section at 

diagram. ft-kips. 

nominal negative moment strength at left end of a 

beam. ft-kips. 

nominal moment strength at maximum positive moment 

section of a beam. ft-kips. 

nominal negative moment strength at right end of a 

beam. ft-kips. 

factored moment of a column section. ft-kips. 

ix 



n 

positive factored moment at section where parts of 

reinforcing bars from sections of maximum positive 

moment are theoretically to be cut, ft-kips. 

negative factored moment at section where parts of 

reinforcing bars from sections of maximt~ negative 

moment are theoretically to be cut, ft-kips. 

factored moment at left end of a beam, ft-kips. 

factored moment at maximum positive moment section 

of a beam, ft-kips. 

negative factored moment at sections of maximum 

negative moment, ft-kips. 

positive factored moment at sections of maximum 

positive moment, ft-kips. 

factored moment at right end of a beam, ft-kips. 

total number of design variables or correlation 

matrix dimension. 

number of beams in a structure. 

number of columns in a structure. 

number of ties or hoops within one-sixth of the 

height from bottom of ith column. 

number of ties or hoops within a height from one­

sixth to two-thirds of the height of ith column. 

number of ties or hoops within one-third of the 

height from top of ith column. 
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p 

number of layers of longitudinal reinforcement placed 

in beam. 

total number of tension bars in beam, based on 

specifiedly based bars. 

total number of tension or compression bars in 

column, based on specifiedly based bars. 

total number of stirrups within a distance s, based 

on specifiedly based bars (beam). 

total number of ties within a distance s, based on 

specifiedly based bars (column). 

number of stirrups within a quarter span from left 

end of ith beam. 

maximum number of bars placed in a layer in beam. 

number of stirrups within a center half span of ith 

beam. 

number of stirrups within a quarter span from right 

end of ith beam. 

probability of an outcome i; or a parameter. 

entropy parameter, temperature. 

nominal axial laod strength of a column section, lbs. 

nominal axial load strength of a column at location 

i on interaction diagram, kips. (i-1,2,3,4.). 

factored axial load of a column section, kips. 
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r 

s 

S 

t 

top storey number. 

feasible direction vector, or search direction. 

entropy. 

spacing of stirrups; Sl - d/4, Sz - d/2, (beam) in. 

spacing of ties or hoops; S3 - d/4, S4 - d/2, 

(column) in. 

center to center spacing of hoops, in. 

width of column, in. 

width of ith column, in. 

total volume of steel of ith beam, sq. in. per linear 

ft. 

total volume of steel of ith column, sq. in per 

linear ft. 

nominal shear strength provided by concrete, lbs. 

nominal shear strength at a section, Kips. 

nominal shear strength at the bottom section of a 

column, lbs. 

nominal shear strength at left end of a beam, lbs. 

nominal shear strength at one-third height from the 

top or one-sixth height from the bottom section of a 

column, lbs. 
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V. 

Vuqr 

nominal shear strength at quarter span section of a 

beam, lbs. 

nominal shear strength at quarter span section from 

left end of a beam, kips. 

nominal shear strength at quarter span section from 

right end of a beam, kips. 

nominal shear strength at right end of a beam, lbs. 

nominal shear strength at the top section of a 

column, lbs. 

nominal shear strength provided by shear 

reinforcement, lbs. 

factored shear force at a section, kips. 

factored shear force at the bottom section of a 

column, kips. 

factored shear force at left end of a beam, kips. 

factored shear force at one-third height from the top 

or one-sixth height from the bottom section of a 

column, kips. 

factored shear force at quarter span section of a 

beam, kips. 

factored shear force at quarter span section from 

left end of a beam, kips. 

factored shear force at quarter span section from 

right end of a beam, kips. 

factored shear force at right end of a beam, kips. 
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x 

x· 

Q 

f3 

"(2 

"(5 

"(6 

factored shear force at the top section of a column, 

kips. 

preassigned weighting coefficient. 

vector of design variables. 

optimum point. 

mean value of plastic safety margin. 

moment coefficient or a scalar multiplier or a given 

step size. 

a scalar or reliability index. 

factor which according to ACI Code is given as 

either 0.75 or 0.50. 

factor which according to ACI Code is given as either 

0.08 or 0.06. 

factor which accordincg to ACI Code is given as 0.01. 

constant which according to ACI Code is 2/5 for 

continuous beams and 4/5 for simple beams .. 

constant which according to ACI Code is 1/16 for 

simply supported beams; or 1/18.5 for one end 

continuous beams; or 1/21 for both ends continuous 

beams. 

specified ratio of width to overall depth of beam. 

factor to specify the relation of the width of beam 

and column. 
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'Ya 

'Ya 

'Yc 

[pl 

p 

p 

factor to specify the relation of the overall depth 

of beam and column. 

specified ratio of width to overall depth of column 

rat"io of the reinforcement to be continued at section 

of cut-off point of bars to the reinforcement 

required at sections of maximum positive moment. 

ratio of the reinforcement to be continued at section 

of cut-off point of bars to the reinforcement 

required at sections of maximum negative moment. 

coefficient to limit the design axial load strength 

of a section in pure compression to 'Yc times its 

nominal strength, i.e. coefficient to achieve the 

purpose of the minimum eccentricity. According to 

ACI Code, it is given as 0.80 or 0.85. 

weighted coefficient. 

mean value of a discrete random variable X. 

correlation matrix. 

average correlation coefficient. 

ratio of compression reinforcement. 

ratio of tension reinforcement. 

reinforcement ratio producing balanced strain 

conditions. 
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tPsh 

CPei 

reinforcement ratio producing balanced strain 

condition for section with tension reinforcement 

only. 

standard deviation of X. 

strength reduction factor for flexure which according 

to ACI Code is given as 0.90. 

strength reduction factor for compression members 

which according to ACI Code is given as 0.70 or 0.75. 

strength reduction factor for shear which according 

to ACI Code is given as 0.85. 

column curvature at the bottom of the ith storey. 

feasible design space. 
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INTRODUCTION 



1.1 INTRODUCTION 

CHAPTER ONE 

INTRODUCTION 

This thesis has two seemingly very different themes. The first 

is an essentially theoretical topic of developing new mathematical 

optimization methods, while the second theme is the very practical 

topic of optimal design of reinforced concrete frames. Since the most 

time-consuming and expensive operation in a design office is the 

preparation of specifications and schedules, comprising the final 

documents, more efficient optimization formulation is considered and 

coupled with a practical design program to meet these requirements. 

The link between the two themes is that the developed methods should be 

helpful in the design. 

The theoretical part of the thesis deals with developing two sets 

of new methods of mathematical optimization: the first set includes a 

new method for generating Pareto sets for multi-criteria optimization 

problems using the Maximum Entropy Principle (MEP) and the second set 

includes two new methods for seeking the global minimum of a single­

criteria minimization problem using the Minimax Entropy Principle 

(MMEP) by simulated entropy. This is considered in detail in chapter 

three. 

Design is one of the primary functions of engineering. The 

objective of the designer is to proportion a structure in such a way 

that the requirements of safety and serviceability are met as 

economically as possible. In practice, ensuring safety and 
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serviceability is controlled by various specifications and codes; 

however, the economy of the structural design has largely depended on 

the engineer's experience and intuition. The design problem is often 

handled by means of repeated analysis. The most important use of 

structural analysis is as a tool in structural design. As such, it 

will usually be a part of a trial-and-error procedure, in which an 

assumed configuration is analysed, and the members designed in 

accordance with the results of the analysis. This phase is called the 

preliminary design; since this design is still subj ect to change, 

usually a crude, fast analysis method is adequate. At this stage, the 

cost of the structure is estimated, loads and member properties are 

revised, and the design is checked for possible improvements. The 

changes are now incorporated in the structure, a more refined analysis 

is performed, and the member design is revised. This process is 

repeated until a final design, which satisfies the designer in all 

aspects, is achieved. This iterative process of analysis and 

modifications leading to a 'best' design may be characterized as an 

informal optimization process. Since the number of possible designs 

satisfying the applicable criteria may be theoretically infinite, the 

iterative design-proportion process may be directed and controlled by 

mathematical means so as to minimize some important aspects, such as 

cost and drift. This is the motivation for the use of techniques of 

formal optimization. 

Formal structural optimization, which is considered in this 

thesis, is a mathematical decision-making process aimed at producing a 

best possible design with the available resources. 
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Most of the available literature on the optimization of 

structural concrete frames has been concerned with highly idealised 

mathematical formulations of the problem in which many practical 

aspects of real concrete frame design are omitted. In considering a 

practical design program, especially in the optimization of reinforced 

concrete frames, both the member sizing and the practical details have 

to be taken into consideration. This can be done by considering all 

the applicable requirements of the given specifications or codes as 

design constraints. The formulation should be made in such a way as to 

easily accommodate any later modifications made in the specifications 

and the codes. 

In practice, the design of a reinforced concrete structure is 

often a trial and adjustment procedure. It is evident that many 

trials, even with the availability of computers, are not always 

possible, and consequently the structure is generally conservatively 

designed. Recent developments in probabilistic analysis combined with 

simultaneous rapid growth of computing power provide the necessary 

conditions for the application of reliability concepts in the optimum 

design of complete structures. In the light of this design philosophy, 

which extends reliability and optimization concepts from structural 

elements to complete structures, part of the objective of this thesis 

is to develop a practical design program for large reinforced concrete 

frames incorporating optimization and reliability. Through the use of 

mathematical programming techniques and on the basis of modern codes 

such as ACI, (American Concrete Institute), Code (318-83), programs for 

the optimal design of reinforced concrete frames for use in 

professional practice are now possible, resulting in considerable cost 
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savings and improved safety. 

ACI Code (318-83) emphasises design based on both strength and 

serviceability. The strength design is the predominant approach for 

proportioning the structural elements, with elastic theory used to 

analyse the structure, and obtain the design forces. The elastic 

theory is also used to ensure serviceability. In order to design an 

optimal reinforced concrete structure as closely to the professional 

practice as possible, the design constraints should include the code 

requirements of flexural strength, shear strength, axial strength, 

ductility, serviceability, limits of web reinforcement, concrete cover, 

development length, cut-off points, spacing limits and requirements, 

i. e. everything of importance to a practising designer. Also, the 

discreteness of design variables must be taken into account. For 

example, in the optimization of reinforced concrete structure the 

dimensions of the member cross-sections are conventionally measured in 

multiples of ten millimeters; also, the reinforcement can only be 

selected from a range of discrete available sizes which vary non­

uniformly. Any practical design programme must accommodate these 

practical conventions. 

1.2 REVIEW OF PREVIOUS WORK IN DESIGN OPTIMIZATION 

Optimal design problems have been of increasing interest to many 

engineers and researchers for the past two decades. Recent 

developments in mathematical programming techniques have made it 

possible to solve a wide spectrum of structural optimization problems. 

A concrete structure can be designed by the working stress method 
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or by the strength method. Some investigators have optimized concrete 

frames based on the working stress method for minimum cost (Munro, 

et. al., 1972). Shunmugave1 (1974), used the method of feasible 

directions to obtain the solution for minimum cost in which the design 

variables are continuous variables. The primary objective of the work 

was to obtain the optimal relative stiffness of· the members of the 

large frames studied. The cross-sectional dimensions and the amount 

of main reinforcement of the members were the design variables. The 

constraints were developed in accordance with the ACI Code (318-71) 

requirements. The arrangement of main reinforcement followed a 

specified pattern. No consideration was given to constraints due to 

shear, concrete cover, contribution of compression reinforcement to 

bending strength, clear spacing and possible unsymmetric arrangement of 

reinforcement in column sections. 

Twisdale and Khachaturian (1975), used the dynamic programming 

method for the optimization of steel planar structural systems. 

Redundant forces of the structures were taken to be the state 

variables. 

Ba1aguru (1980) used the Lagrange multiplier method for the cost 

optimum design of doubly reinforced concrete beams. Costs of concrete, 

steel and formwork were considered. Dimensions of the beam and the 

amount of reinforcement were formulated as continuous variables. 

Flexural strength constraints, based on ACI Code (318-77), were taken 

into consideration. 

Gerlein and Beaufait (1980), used a storey-by-storey linear 
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programming optimization approach for an optimum preliminary strength 

design of reinforced concrete frames. The total volume of reinforcing 

steel required by the members of the structure was minimised. The 

objective function was expressed in terms of moment capacities which 

were treated as functions of the amount of reinforcing steel at 

sections. The recommended bar details of the Concrete Reinforcing 

Steel Institute (CRSI) were used to obtain the moment capacity at 

sections. Collapse mechanisms were used to develop the constraints. 

A minimum amount of reinforcement required at any cross-section was 

based on ACI Code (318-77). 

Liebman, Khachaturian and Chanaratna (1981), developed a discrete 

optimization method based on the integer gradient direction by using 

the interior penalty function for concrete structures. The method was 

used for optimal design of reinforced concrete beams. The amount of 

reinforcement and the dimensions of the concrete were formulated as 

discrete variables, and the cost of the structure was taken as the 

objective function. 

requirements only. 

The constraints were based on the strength 

Yang (1981), developed a practical minimum cost design of 

reinforced concrete structures in which the design variables vary 

discretely. From a practical point of view, the variables can only 

assume certain discrete values and the optimization process can be 

based only on these discrete values. The design variables include 

cross-section dimensions, amount of reinforcements, amount of web 

reinforcement and the cut-off points of longitudinal reinforcement. 
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Zheng and Huanchun (1985), treated the highly nonlinear optimum 

design problem of reinforced concrete frames in two levels 

corresponding to global constraints and local constraints respectively, 

with iterations in each level. In the first level, the most flexible 

structure among those satisfying the global constraints, such as 

displacement constraints, size constraints, etc., is sought under the 

most unfavourable horizontal loads. The optimum solution from the 

first level is applied to construct bounds upon design variables. In 

the second level, using these values from the first level, the most 

economical structure satisfying all local constraints, such as those of 

strength, size and percentage of reinforcement is obtained. 

Frangopol (1985), presented a reliability-based optimization 

technique to design reinforced concrete frames. The objective function 

to be minimized was the total cost of concrete and longitudinal steel 

subject to overall probability against plastic collapse specified as a 

reliability constraint. The optimum design vector represents the mean 

values of the positive and negative plastic moments associated with the 

frame critical sections. 

From the above survey, it can be seen that relatively little 

research effort has been dedicated to the optimization of reinforced 

concrete frames in general, and to the multi-criteria reliability-based 

optimization of reinforced concrete frames in particular. Very little 

or nothing has been done in the area of developing the type of 

practical optimum design program which is required in professional 

practice. 
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1.3 REVIEW OF PREVIOUS WORK IN MATHEMATICAL OPTIMIZATION 

There are many techniques available for multi-criteria 

optimization. Without loss of generality the multi-criteria problem 

can be stated in terms of minimization. Single-criteria optimization 

techniques, such as the method of feasible directions and sequential 

linear programming, have been combined with the Pareto set generating 

techniques described in chapter two to solve multi-criteria 

optimization problems. Because of the large volume of existing 

literature on mathematical optimization a more detailed survey of 

methods related to the work of this thesis is given in chapter 2. 

1.4 PURPOSE AND SCOPE 

The purpose of this thesis is to accomplish two things. The 

first is mathematical and can be divided into two main areas. 

1) The development of new methods for generating Pareto solutions of 

multi-criteria optimization problems. 

2) The development of new methods for seeking the global minimum of 

single-criteria minimization problems. 

The second purpose is to consider the application of the above 

new methods in practical structural engineering and consists of a study 

of the multi-criteria optimization of discrete non-linearly 

constrained problems in the design of reinforced concrete frames. 

Specifically, it is intended to carry out the following: 

1) To identify all the articles of the code that should be 

considered in the design of reinforced concrete frames, including 

the details. 

2) To solve the above design problem by the new methods developed 
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in the first part. However, a practical formulation is going to 

be considered and it will be discussed later in chapter 7. 

3) To develop a practical design program for one-storey and multi­

storey frames incorporating optimization and reliability. 

In this study, the geometric configuration and loading conditions 

of a frame are given. Design constraints are developed according to 

the ACI Code (318-83). The related Articles of the above chapters are 

listed in Table (1.1). The relevant chapters of the Code are chapters 

7, 9, 10, 12 and Appendix A. The objective functions are the total 

cost of the frame and the drift (top storey lateral displacement). 

The cost of the formwork of the structure can be included, but, is 

omitted herein. The design variables are the cross-section dimensions 

of the members, the effective depth, the amount of longitudinal 

reinforcement, the cut-off points of longitudinal reinforcements, the 

area of web reinforcement and others. All the design variables are 

treated as discrete variables. The optimization of reinforced concrete 

frames for practical purposes involves a large number of design 

variables and highly non-linear constraint functions. 

1.5 MOTIVATIONS AND SPECIFICATIONS OF THE PRESENT MATHEMATICAL WORK 

In almost all previous work of mathematical optimization the 

geometric and deterministic viewpoint has played a large part in the 

development of methods. Methods for single- and multi-criteria 

optimization have been devised from considering the obj ective function 

as a hypersurface and using geometric arguments to devise a search 

strategy. In this geometric interpretation, the constraints are viewed 

as deterministic boundaries which must not be crossed. Terms such as 
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Table 1.1 

Chapters and Articles of ACI Code (318-83) Concerned 

Chapters 

3 

7 

9 

10 

11 

12 

Appendix A 

Articles 

3.3.3. 

7.1, 7.6.1, 7.6.2, 7.6.3, 7.7.1, 
7.10.4.3, 7.10.5.1, 7.10.5.2, 
7.10.5.3, 7.10.5.4. 

9.1.1, 9.2.1, 9.2.2, 9.2.3, 9.3.1, 
9.3.2, 9.5.1, 9.5.2,1. 

10.2, 10.3.3, 10.3.5, 10.5.1, 10.7.1, 
10.9.1, 10.9.2, 10.9.3, 10.11.3, 
10.11.4. 

11.1.1, 11.1.3.1, 11.3.1.1, 11.5.1.1, 
11.5.2, 11.5.3, 11.5.4.1, 11.5.4.3, 
11.5.5.3, 11.5.6.2, 11.5.6.8. 

12.2.1, 12.2.2, 12.2.3, 12.2.5, 12.3.2, 
12.4, 12.11.2, 12.11.3, 12.11.4, 
12.12.1, 12.12.3, 12.13.3, 12.14.1. 

A.5.1, A.5.2, A.S.3, A.5.4, 
A.5.S, A.S.I0, A.S.11, A.5.12, 
A.6.1, A.6.5.1, A.6.5.2, 
A.6.S.3. 
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"gradients". "steepest descent" and "barriers" all have topological 

associations. They use calculated "information" (function values, 

gradients. etc.) in a geometrical way to search a deterministic 

topological domain for an optimum point. Information theory appears 

to be incompatible with this as it is essentially concerned with 

probabilities. In contra'st with conventional methods. a different 

viewpoint is adopted in the present work. 

set multi-criteria and single-criteria 

One of its objectives is to 

optimization in a non-

deterministic context where calculated "information" are used also in 

a gemoetrical way to search a non-deterministic topological domain to 

generate Pareto solution sets for multi-criteria optimization problems 

and to locate the global minimum points of single-criteria minimization 

problems. The idea behind this approach is based upon the speculation 

that generating Pareto sets or locating global minima could be thought 

of as a communication system in which "messages" are received and 

transmitted alternatively. Design of the system requires that the 

messages be correctly translated and subsequently used effectively. 

Thus, methods in information theory can then be used in the generation 

of Pareto sets and in location of global minima. It is hoped that 

this approach will yield new insights into multi-criteria and single­

criteria optimization processes and develop new and radically different 

algorithms. 

From a statistical point of view. a communication system has 

mathematical similarities to a statistical thermodynamic system. A 

multi-criteria or single-criteria optimization problem is consequently 

simulated in the present work as a statistical thermodynamic system for 

convenience of the later presentations. 
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Several questions are then raised about how to do this detection 

and simulation. They are: 

1) What are micro-states of this statistical thermodynamic system in 

an optimization context? 

2) What are the probabilities of the micro-states? 

3) What common characteristic is there in these two processes? 

4) What common law governs them? 

These questions will be answered in detail in chapter 8. 

1.6 OBJECTIVE AND SCOPE 

For multi-objective optimization problems, most, if not all, of 

the available Pareto set techniques have several difficulties. 

Firstly, they are computer-time consuming since in order to generate a 

representative or entire Pareto set the preassigned vector of weighting 

coefficients, bounds, etc. must be varied over a large number of 

combinations. Secondly, Pareto solutions are obtained randomly since 

the distribution characteristics of these solutions are unknown. 

Thirdly, where there are many criteria the amount of computation 

required may, itself, become a difficulty which dramatically affects 

the total number of Pareto solutions obtained and the selection of a 

better preferred solution. 

For single-objective optimization problems, most, if not all, of 

the available deterministic techniques terminate in a local minimum 

which depends on an initial configuration given by the user and do not 

provide any information as to the amount by which this local minimum 

deviates from a global minimum. 
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The main purpose of this thesis is to study the possibility of 

eliminating or, greatly reducing, the above mentioned difficulties. 

Specifically, it is intended to carry out the following: 

1) To view vector optimization problems in terms of a topological 

domain defined non-deterministically through the use of the 

Shannon's entropy and maximumum entropy principle. 

2) To develop new methods based on the terminology described in 1 to 

eliminate the three difficulties involved with Pareto solution 

generation. 

3) To view single-objective constrained minimization problems in 

terms of a topoligical domain defined non-deterministically 

through the use of the Shannon's entropy and minimax entropy 

principle. The whole problem will be treated as a 

thermodynamical system. 

4) To develop new methods based on the terminology described in 3 

which seek to reach the global minimum of such problems. 

However, there is always a strong link between engineering and 

optimization in general. It is a further objective of this 

thesis to develop a practical design program which incorporates 

vector optimization, design variables standardization, and system 

reliability analysis together. In this work the program is 

applied to reinforced concrete frames. 
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CHAPTER TWO 

MATHEMATICAL OPTIMIZATION 

SYNOPSIS 

This chapter introduces the concepts of single-criteria 

optimization and multi-criteria optimization, their mathematical 

formulations and gives a brief survey of us"ble methods. For single­

criteria constrained optimization, Sequential Linear Programming (SLP) , 

the method of centres, and the method of feasible directions are 

reviewed. For single-criteria unconstrained optimization, the 

conjugate directions methods, the conjugate gradient method, and the 

variable metric methods are reviewed also. Finally, the traditional 

methods used for solving multi-criteria optimization are reviewed. 

These include the weighting method, the Non-Inferior Set Estimation 

(NISE), and the constraint method. 

2.1 INTRODUCTION 

The concept of optimization is basic to much of what we do in our 

daily lives. The desire to run a faster race, win a debate, or 

increase corporate profit implies a desire to do or be the best in some 

sense. In engineering, we wish to produce the best possible design 

with the resources available. Thus, in designing new products, we must 

use design tools which provide the desired results in a timely and 

economical fashion (Vanderplaats, 1984). 

The numerical quantities for which values are to be chosen in 

producing a design will be called design variables. The design 

restrictions that must be satisfied in order to produce an acceptable 

14 



design are collectively called constraints. These constraints are 

formulated in terms of the design variables and may be either 

equalities or inequalities. 

A feasible design is defined as a set of design variables which 

satisfies all constraint restrictions. Of all feasible designs some 

are better than others. If this is true, then there must be some 

quality that the better designs have more of than the less desirable 

ones do. If this quality can be expressed as a computable function of 

the design variables, we can consider optimizing to obtain a best 

design. The function with respect to which the design is optimized is 

called the objective function. We conventionally assume that the 

obj ective function is to be minimized, which entails no loss of 

generality since the minimum of any function of [F) occurs where the 

maximum of [-F) occurs (Fox, 1971). 

Numerous algorithms are available for single-criteria 

optimization and each maj or technique has its own desirable and 

undesirable characteristics. The most general approach to mathematical 

optimization is that of using mathematical programming techniques. 

Mathematical programming is a term coined by Robert Dorfman about 1950, 

and now is a generic term encompassing linear programming, integer 

programming, convex programming, non-linear programming, network flow 

theory, dynamic programming, and programming under uncertainty. 

Most real-world problems have several solutions, and some may 

have an infinite number of solutions. The purpose of optimization is 

to find the best possible solution among the many potential solutions 
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for a given problem in terms of some effectiveness or performance 

criteria. A problem which admits only one solution does not have to be 

optimized. For large, highly non-linear problems, numerical methods 

are used. Numerical methods use past information to generate better 

solutions to the optimization problem by means of iterative procedures. 

The optimization process for a practical, real-world problem has 

two distinct phases. One consists of formulating a mathematical model 

which represents accurately the real-world problem; the other is 

concerned with the numerical methods which can be used to solve the 

mathematical model. This chapter is particularly concerned with the 

later phase. 

The general single-criteria optimization problem with n design 

variables, m inequality constraints, k equality constraints can be 

written as follows: 

Minimize: F(X) (2.1) 

S. t.: g1 (X) ~ 0 i -1,2, ... ,m (2.2) 

hj(X) - 0 j -1,2, ... ,k (2.3) 

XL q ::!: Xq ::!: XUq q - 1,2, ... ,n (2.4) 

Any vector X that satisfies all the constraints (2.2), (2.3) and 

(2.4) is called a feasible point. The set of all the feasible points 

constitutes the feasible region. 
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* A point X , which satisfies all the constraints and at which F(X) 

* attains its minimum, is called the optimum point and the pair X and 

F(X*) constitutes an optimum solution where F(X*) represents the 

optimum value of the objective F(X). If F(X*) S F(X) holds for all X 

in the feasible region, then X* is called global optimum point, 

otherwise it is a local optimum point. 

* An inequality constraint gi(X) is said to be active if gi(X ) -

* o at the optimum point X . For a real-world problem, there almost 

always exist several constraints, so that the corresponding problem is 

constrained, linearly or non-linearly. Throughout this thesis mainly 

constrained and non-linear problems are considered. 

An optimization problem is said to be a linear programming 

problem (LP) if all the problem functions are linear in the variables 

Xi' otherwise it is a non-linear programming problem (NLP). 

The area of linear programming in the last three decades has 

achieved great success. The most significant development being the 

simplex method by which the solutions of most linear programming 

problems can be systematically obtained in a finite number of 

iterations. On the other hand, there has been no single algorithm 

devised that can handle all non-linear problems. The major 

difficulties presented in solving non-linear optimization problems 

arise from the presence of non-linear cons traints. Keeping them 

satisfied involves considerable complexity. When inequali ty 

constraints are present, it is impossible for one to know in advance 

whether an inequality constraint will be active or not at the optimum. 

17 



However, solution methods depend upon the nature of the variables 

(discrete/continuous), the objective function F and constraints gi 

(linear/non-linear), and the constraint type (equality/inequality). 

In many engineering situations, the design variables are 

available only in discrete sizes. This fact can pose some formidable 

problems for the optimiser, because most of the well-known methods 

apply only to continuous valued variables. The fundamental difficulty 

of course, is that it is usually impractical, for reasons of 

computational cost, to check all possible designs for suitability (Fox, 

1971) . 

Over the last three decades, there has been a massive body of 

published work on the solution of constrained optimization problems. 

A comprehensive review of all these methods is beyond the scope of this 

thesis and the reader is referred to Duffin (1967), Lasdon (1970), Gill 

(1976), Bazaraa (1971), Fletcher (1981), Bertsekas (1982) and 

Vanderplaats (1984) for surveys. 

An extremum (maximum or minimum point) can be either global 

(truly the highest or lowest function value) or local (the highest or 

lowest in a finite neighbourhood and not on the boundary of that 

neighbourhood) as shown in Fig. (2.1). Virtually nothing is known 

about finding global extrema in general. There are two standard 

heuristics that everyone uses: (i) find local extrema starting from 

widely varying starting values of the independent variables and then 

pick the most extreme of these (if they are not all the same), or (ii) 

perturb a local extremum by taking a finite amplitude step away from 
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it, and then see if your routine returns you to a better point, or 

always to the same one. 

2.2 NON-LINEAR PROGRAMMING 

Non-linear programming deals with the problem of optimizing an 

objective function in the presence of equality and inequality 

constraints. If all the functions are linear, we obviously have a 

linear program. Otherwise, the problem is called a non-linear program. 

The development of the simplex method for linear programming and the 

advent of high-speed computers have made linear programming an 

important tool for solving problems in diverse fields. However, many 

realistic problems cannot be adequately represented as a linear program 

owing to the non-linearity of the objective function and/or the non-

linearity of any of the constraints. Efforts to solve non-linear 

problems efficiently have made rapid progress during the past three 

decades. 

(, 

Fig. (2.1) 

Extrema of a function in an interval. Points A, C, and E are local 
but not global maxima. Points Band F are local, but not globai 
minima. The global maximum occurs at G, which is on the boundary of 
the interval so that the derivative of the function need not vanish 
there. The global minimum is at D. At point E, derivatives higher 
than the first vanish, a situation which can cause difficulty for some 
algorithms. The points, X, Y, and Z are said to bracket the minimum 
F, since Y is less than both X and Z (Press et a1., 1986). 
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Different algorithms are designed for solving various classes of 

non-linear programming problems, such as unconstrained optimization 

problems, problems with inequality constraints, problems with equality 

constraints, and problems with both types of constraints. Within each 

of these classes different algorithms make specific assumptions about 

the problem structure. For example, for unconstrained optimization 

problems, some procedures assume that the objective function is 

differentiable, whereas other algorithms do not make this assumption 

and rely primarily on functional evaluations only. For problems with 

equality constraints some algorithms can only handle linear 

constraints, while others can handle non-linear constraints as well. 

Thus generality of an algorithm refers to the variety of problems that 

the algorithm can handle and also to the restrictions of the 

assumptions required by the algorithm. Another important factor is the 

reliability or robustness of the algorithm which is very important in 

engineering design, since the program must produce a result. Given any 

algorithm, it is usually not difficult to construct a test problem that 

it cannot solve effectively. Reliability means the ability of the 

procedure to solve, with reasonable accuracy, most of the problems in 

the class for which it is designed. The relationship between the 

reliability of a certain procedure and the problem size and structure 

cannot be overlooked. Some algorithms are reliable if the number of 

variables is small, or if the constraints are not highly non-linear, 

but not otherwise reliable. 

The convergence of non-linear programming algorithms usually 

occurs in a limiting sense, if at all. Thus, we are interested in 

measuring the quality of the points produced by the algorithm after a 
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reasonable nwnber of iterations. Convergence of an algorithm is 

important in a mathematical sense, but is of less importance to an 

engineer. 'In engineering design it is sometimes very valuable to be 

able to find a feasible design, and to then be able to generate an 

improved feasible design. The idea of exact convergence to an accurate 

optimwn is largely irrelevant to an engineer. 

2.3 NON-LINEAR PROGRAMMING METHODS FOR CONSTRAINED PROBLEMS 

2.3.1 Sequential Linear Programming [Vanderplaats, 1984] 

Even though most engineering analysis and design is non-linear in 

the design variables, it is often possible to linearize a particular 

problem and then obtain the solution to this linear approximation using 

linear programming methods like the simplex method. Having this 

approximate solution we can now linearize about this point and solve 

the new linear programming problem, repeating the process until a 

precise solution is achieved. This approach, whereby we repeatedly 

linearize and solve the resulting problem, is referred to as Sequential 

Linear Programming (SLP). 

Consider the general non-linear programming problem of Eqs (2.1) 

to (2.4). Now linearize this problem via a first-order Taylor series 

expansion so we have: 

Minimize: (2.5) 

S. t.: gi (X) = gi (XO) + Vg i (XO) . cSX ~ 0; i 1,2, ... ,m (2.6) 

hj(X) = h j (XO) + Vhj (XO) • cSX O· , j 1,2"., ,k (2,7) 

XL 
q :S XO q + 6Xq :S XU

q ; q - 1,2, ... ,n (2.8) 
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where 

c5X - X - Xo 

VF(XO) - the gradient of F(XO) -

The zero superscript identifies the point about which this Taylor 

series expansion is performed. 

It is clear that Eqs (2.5) to (2 B) represent a linear 

programming problem where the design variables are contained in the 

vector c5X, and the functions and gradients at XO are constants and 

coefficients, respectively. 

Figure (2.2) provides a geometric interpretation of the SLP 

method. At the initial design Xo, the objective and constraints are 

linearized to give the straight-line representations of the functions. 

The optimum of this linear problem is found and is seen to be near the 

non-linear optimum, but it is infeasible. However, if we relinearize 

at this point and repeat the process, we would expect to approach the 

precise optimum in a few iterations. 

In Fig. (2.2), the true optimum lies at a vertex in the design 

space. For fully constrained problems such as this, SLP often 

converges rapidly to the solution. However, for other problems in 
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Linear appro~imation 
toF(Xo) 

optimum 
O~~~~---------------------------------'Xt 

Fig. (2.2) 

The Linearized Problem (Vanderplaats, 1984) 

x~ 

\ 
Linear \ 
approximation to gl(XO)~\ 

\ 

O,L------------------------------------XI 

Fig. (2.3) Under Constrained Problem and Move Limits 

(Vanderplaats, 1984) 
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which there are fewer active constraints at the optimum than there are 

design variables, the method often performs poorly. The reason for 

this is seen from Fig. (2.3), which shows a two-variable problem with 

only one non-linear constraint. Here the linear approximation to the 

problem is unbounded. The difficulty of dealing with such problems is 

reduced by imposing more limits on the linear approximation as shown in 

the figure. This will ensure that the optimum will eventually be 

reached within a tolerance of the move limits. The critical difficulty 

in using the method is in choosing the move limits and the reduction 

factor on these limits so that the optimum is efficiently achieved. 

2.3.2 The Method of Centers 

The SLP method discussed in the previous section produces a 

sequence of improving but infeasible design, in the usual case of a 

convex des ign space. From an engineering viewpoint, it is often 

desirable to approach the optimum from inside the feasible region. 

Also, it is desirable to produce a sequence of improving designs which 

follow a path down the center of the design space. In this way, if 

the optimization must be prematurely terminated, or if for some reason 

the final design is found to be unacceptable, several other good 

designs are available from which to choose. The method of centers, 

also known as the method of inscribed hyperspheres, is an SLP technique 

which has these features. 

Consider Fig. (2.4a), which depicts a two-variable non-linear 

programming problem with three constraints. The straight lines are the 

linearized approximation to the problem at Xo. The basic coricept here 

is to find the largest circle (hypersphere in n dimensions) which will 
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fit in this linearized space and then to move t~ the center of that 

circle. This is shown in Fig. (2.4a), where the circle touches the 

line of constant objective and the constraint boundaries on gl(X) and 

gz(X). The circle does not touch the g3(X) boundary. We now move to 

design point Xl at the center of this circle. The problem is linearized 

again and the linearized objective at Xl is treated as a bound as shown 

in Fig. (2.4b). The center of the new circle inside the linearized 

design space is the new design X2. The process is repeated until the 

solution has converged to a specific tolerance. 

The method of centers is attractive for its feature of 

progressing down the middle of the design space. For more details 

about this method, the reader is referred to Vanderplaats (1984). 

g~X)=O 

L-------------------~ __ ~ ______ __.Xl 

(a) First Linearization 
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OL-----------~------Xl 

(b) Second Linearization 

Fig. (2.4) Geometric Interpretation of the Methods of Centers 

(Vanderplaats, 1984) 

(a) First Iteration, (b) Second Iteration 

2.3.3 The Method of Feasible Directions 

We now turn from SLP methods to methods which attempt to deal 

directly with the non-linearity of the problem. This method consist of 

an iteration or step-by-step design evolution of the familiar form: 

(2.9) 

• 
where the direction Sq and the distance of travel Q are always chosen 

so that Xq+1 is in the feasible domain. They are called feasible 

direction methods because of certain properties of Sq which will now be 

described. First, we consider two definitions: 
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1. A vector S is a feasible direction from the point X if at least 

a small step can be taken along it that does not immediately 

leave the feasible domain. 

2. A vector S is a usable feasible direction from the point X if in 

addition to definition 1, 

ST. 'VF < 0 (2.10) 

For problems with sufficiently smooth constraint surfaces, 

definition 1 is satisfied if: 

(2.11) 

or if a constraint is linear or outward curving: 

(2.12) 

where 'VF and 'Vg are the gradients of F and g respectively. 

The significance of interpreting definition 1 in this way is that 

the vector S must make an obtuse angle with all constraint normals 

except that, for the linear or outward curving ones, the angle may 

approach 90°. Any vector satisfying the strict inequality lies at 

least partly in the feasible region of the space. In other words, 

there is some a > 0 for which X~l is in the feasible domain as shown in 

Fig. (2.5). 
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s 

Fig. (2.5) 

Feasible Direction Definition (Fox, 1971) 

A vector satisfying the strict inequality of definition 2 is 

guaranteed to produce, for some a > 0, an Xq+1 that reduces the value of 

F as shown in Fig. (2.6). 

Fig. (2.6) 

Usable Feasible Directivn Definition (Fox, 1971) 
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Methods of feasible directions are those that produce an 

improving succession of feasible Xq vectors by moving in a succession 

of usable feasible directions. There are two general parts to those 

algorithms. First, a usable feasible vector must be determined for 

each step of the iteration, and second, the step size must be 

determined. 

However, assuming the constraint is non-linear and convex, a 

small move in this direction would violate the constraint. This is not 

desirable, so we need a way to push away from the constraint boundary. 

We can do this by adding a positive push-off factor to Eq. (2.12) to 

give: 

(2.13) 

where 8 is a non-negative constant. In practice, we would like the 

push-off factor to be affected by the direction of VF. Thus, 

remembering that ST.VF is negative for usability, we can modify Eq. 

(2 . 13) to be: 

(2.14) 

Now minimizing the quantity in Eq. (2.10) is equivalent to 

maximizing a scalar ~ in the following inequality: 

and Eq. (2.15) becomes the usability condition. Clearly for ~ to be 
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maximum, Eq. (2.15) will be satisfied with equality so f3 = -STI7F. 

Therefore, the feasibility requirement of Eq. (2.14) becomes: 

(2.16) 

Figure (2.7) shows the effect that the push-off factor () has 011 

determining the possible ST vectors. 
x2 

,F(X)~,omt 

/ g(X)=O 

O~----------------------------------------__ XI 

Fig. (2.7) Effect of 8 on the Search Direction (Vanderplaat~, 1984) 

The general direction-finding problem can be written as: 

Maximize: (2.17) 

S. t.: ST. V'F + f3 :'5 0 (2.18) 

jd (2.19) 

ST bounded (2.20) 
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where J is the set of currently active constraints gj(X) O. 

This method will be used later. However, for more details about 

this method and other methods, the reader is referred to Fox (1971) and 

Vanderplaats (1984). 

2.4 NON-LINEAR PROGRAMMING METHODS FOR UNCONSTRAINED PROBLEMS 

In this section we will examine methods of solving the following 

problem. Find X such that F(X) is minimum where there are no 

restrictions on the choice of X. Although there are relatively few 

practical applications in which a design problem is unconstrained many 

constrained problems employ unconstrained methods as part of their 

solution strategies. See Fox (1971) and Himmelblau (1972). 

2.4.1 Powell's Method: Conjugate Directions 

This method will minimize a quadratic function in a finite number 

of steps; hence it can be said to converge quadratically. 

Powell's method can be understood intuitively as follows: Given 

that the function has been minimized once in each of the coordinate 

directions and then in the associated pattern direction, discard one of 

the coordinate directions in favour of the pattern direction for 

inclusion in the next m minimizations, since this is likely to be a 

better direction than the discarded coordinate direction. After the 

next cycle of minimizations, generate a new pattern direction and again 

replace one of the coordinate directions. The process is illustrated 

in Fig. (2.8). 
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Fig. (2.8) Powell's Method (Fox, 1971) 

In practice, a little careful programming is required to make the 

method truly efficient, but the idea is contained in the above 

description. The flow diagram shown in Fig. (2.9) is a codification 

of the simplest version of the method. Note that a pattern direction 

is constructed (block A), then used for a minimization step (blocks B 

and C), and then stored in Sn (block D) as all of the directions are up­

numbered and Sl is discarded. The direction Sn will then be used for 

a minimizing step just before the construction of the next pattern 
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direction. Consequently, in the second cycle both X and Y in block A 

are points that are minima along Sn, the last pattern direction. This 

sequence will impart special properties Sn+1 - X - Y that are the source 

of the rapid convergence of the method. 

Initialile 5" 
to he I..'l)onhnatc 

unit \'ectl)r .... 

,/ = I. ~. . .. \1 

Select" to 
minimile 

FrX r uS,,! 

SC'le~t 0 to 

mimmil.e 
nx~ uS", 

X~X+(} S 

,/-1 

Select" to 
mlOimilc H 

FrX + as", 

Fig. (2.9) 

Computer Flow Diagram of Powell's Method (Fox, 1971) 

2.4.2 Fletcher and Reeves Method: Conjugate Gradient 

The Fletcher-Reeves conjugate gradient method generates a 

sequence of search directions S that are linear combinations of the 

current steepest descent direction, -9F(X(k»), and the previous search 

directions and S(o), ... ,S(k-l). 
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aF(x(k) 

a~ r 
The weighting factors are chosen to make the search directions 

conjugate. The weights turn out to be such that at X(k) only the 

current gradient and the most recent gradient are used to compute the 

new search direction. 

To illustrate the idea. let the initial direction of search be 

s(O) = -VF(X(O»). then let X(l) - X(o) = ),*(0). S(O) and make: 

where wI is a scalar weight that will be chosen so as to make S(l) and 

s(o) conjugate with respect to H: 

so that 

and so on for ~: 

All the weighting factors prior to ~. namely ~-1' ~-2' ... ' prove 

to be zero - a very neat arrangement. The major steps in the algorithm 

are: 

1. At X(o) compute S(o) - -'i7F(X(o»). 
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2. In the kth stage determine the minimum of F(X) by a unidimensional 

search in the SCk) direction. This locates XCk+l). 

3. Evaluate F(XCk+l» and V'F(XCk+l» . 

4. The direction SCk+l) is determined frome: 

SCk+l) _V'F(X(k+l» + SCk) _________ _ 

V'TF(X Ck » . V'F(X(k» 

After (n+1) iterations (k=n) , the procedure cycles again, XCn+1 ) 

becomes X CO ). 

5. Terminate the algorithm when IlsCk)II<€, where € is an arbitrary 

constant. Note that the superscript k, denotes the point in En 

as shown in Fig. (2.10). 

2.4.3 Variable Metric Methods 

Variable metric methods gather information about previous 

iterations. This information is stored in an n dimensional array. 

Because more information can be stored in this way, one would expect 

these methods to be somewhat more efficient and reliable. 

The basic concept here is to create an array which approximates 

the inverse of the Hessian matrix as the optimization progresses. In 

these methods, the search direction at iteration q is defined as: 

(2.21) 
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Fig. (2.10) 

Trajectory of the search to m~n~m~ze Rosenbrock function by the 
Fletcher-Reeves method (numbers indicate stages, i.e., different search 
directions) (Himmelblau, 1972). 

Here H approaches the inverse of the Hessian matrix during the 

optimization process for quadratic functions. Because we are creating 

an approximation to H- 1
, these methods have convergence characteristics 

similar to second-order methods such as Newton's Method,. Thus, 

variable metric methods are often called quasi-Newton methods. 
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Given the search direction Sk, a one-dimensional search is 

performed according to the following equation: 

(2.22) 

Here q is the iteration number, X is the vector of design variables, a"q 

is a scalar multiplier determining the amount of change in X for this 

iteration. At the initial design point, the H matrix is taken as the 

identity matrix H = I, so that the initial search direction is simply 

the direction of the steepest descent. At the end of iteration q, a 

new H matrix is defined as: 

(2.23) 

where D is a symmetric update matrix 

(2.24) 

The change vectors p and yare defined as: 

(2.2Sa) 

y (2.2Sb) 

and the scalars a and T are defined as: 

a = p y (2.26a) 

(2.26b) 
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Equation (2.24) is actually part of a family of variable metric 

methods. Probably the most popular of the variable metric methods are 

the Davidson-Fletcher-Powell (DFP) and the Broydon-Fletcher-Goldfarb­

Shanno (BFGS) methods. The choice of e determines the update formula 

to be used: 

1) 

2) 

e 

e 

0, DFP method 

1, BFGS method 

2.5 MULTI-CRITERIA MATHEMATICAL OPTIMIZATION 

2.5.1 Introduction 

Multi-criteria optimization problems arise in different 

engineering fields and scientists are devoting considerable attention 

to developing methods for solving them. The aim of these methods is to 

help the engineer to make the right decision in conflicting situations, 

i.e., in situations in which several objectives must be satisfied. 

As in many fields of operational research, the theory of multi­

criteria optimization is more developed and better represented in the 

mathematical literature than in practical use for engineering 

applications. 

In complex engineering optimization problems, there often exist 

several non-commensurable criteria which must be considered. This 

situation is formulated as a multi-criteria optimization problem (also 

called multi-performance, multiple objective or vector optimization) in 

which the engineer goal is to optimize not a single objective function 

but several functions simultaneously. 
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Formulation of an optimization problem consists in constructing 

a mathematical model that describes the behaviour of a physical system 

encompassing the problem area. This model must closely approximate the 

actual behaviour of the system for the solution obtained to be adequate 

and useful. 

The general multi-criteria optimization problem with n design 

variables, m inequality constraints, k equality constraints and c 

criteria can be written as: 

Minimize: F(X) 

S. t. : &i (X) ~ 0 

h j eX) 0 

XL 
q ~ Xq ~ 

i 

j 

XU 
q q 

1,2, ... ,m 

1,2, ... ,k 

1,2, ... ,n 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

In other words, we wish to determine from among the set of all 

values which satisfy Eqs (2.28) to (2.30) that particular set X'\, 

X"'2' ... ,X*n which yields the optimum values of all the objective 

functions. 

Usually the solution point X* will not minimize all objective 

functions simultaneously. As X alters, some objectives will increase 

while others decrease. Consequently it is necessary to establish some 

criteria for determining what constitutes a solution to the problem 

stated above. Clearly, such solutions must involve compromises or 

trade-offs among the separate objective functions. 
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The concept of Pareto optimization was introduced by V. Pareto in 

1896 and it still plays a most important role in multi-criteria 

optimization. Pareto set optimization can produce both qualitative and 

quantitative information for designs where there are multiple design 

goals. It explores the relationships between the design decisions and 

solution performances which are fundamental to design. 

* A point X f 0, the set of feasible solutions, is Pareto optimal 

if for every X f 0 either, 

* \lifc, [Fi (X) F i (X ) 1 

or, there is at least one if I such that: 

* Fi (X) > Fi (X ) 

This definition is based upon the intuitive conviction that the point 

* X is chosen as the optimal if no criterion can be improved without 

worsening at least one other criterion. 

There are two basic problems in multi-criteria optimization, 

namely: 

1. The generation of the Pareto set; and 

2. The selection of a preferred solution. 

There are many techniques for multi-criteria optimization. Many 

of these techniques are confined to the generation of the complete or 

approximate Pareto optimal solution set for a problem, and do not 

require an articulation of preferences among objectives by the 
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searcher. The remaining techniques require a prior, or a sequential, 

articulation of preferences, with the result being a single Pareto 

optimal solution rather than a set of Pareto solutions. 

Commonly used generative techniques include weighting approaches, 

the NISE methodology, and the constraint-based methods. Some of these 

are now examined and discussed. 

2.5.2 The Weighting Method 

Perhaps one of the simplest approaches to problems with multiple-

criteria is to combine them into one scalar objective function as the 

weighted sum of the criteria. The above multi-criteria problem is 

replaced with the following: 

c 
Maximize: F(X) [ Wi Fi(X) 
X€O i=l (2.31 ) 

S. t. : gi (X) ?: 0 i 1,2, ... ,m (2.32) 

h j (X) 0 j 1,2, ... ,k (2.33) 

XL 
q ~ Xq ~ XU 

q q l, 2, ... ,n (2.34) 

c 
with [ Wi 1; Wi ?: 0 

i=l 

In order to generate the entire Pareto set, the vector W must be 

varied over a large number of combinations. However, since the shape 

and the distribution characteristics of the Pareto set are unknown, it 

is impossible to determine beforehand the nature of the variations 

required in W so as to produce a new solution at each pass. The second 

important disadvantage of the method is that it will not identify 
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Pareto solutions in a non-convex part of the set. This can be seen by 

a geometrical interpretation of the weighting method in the criteria!l 

space. 

F, 
Perfomance spa~'? 

Fig. (2.11) (Balachandran, 1989) 

Geometrical Interpretation of the Weighting Method in Two-Criteria Case 

Figure (2.11) shows the geometrical interpretation of the 

weighting method in the case of two objectives. The Pareto optimal 

point B is missed no matter what weights are used, see Balachandran 

(1989). 

2.5.3 The Non-Inferior Set Estimation (NISE) Method 

The NISE method is a technique for systematically calculating the 

weighting vector W so as to guarantee the identification of a new 

Pareto solution, if one exists, on the convex hull of the feasible 

performance space. In addition, the accuracy of any approximation to 

the Pareto set can be controlled by the use of an error criterion. The 
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NISE method is thus an extension of the weighting method with a 

mechanism for quickly converging onto the Pareto set. 

Cohan (1978) provides a detailed account of the NISE method for 

bicriterion problems. This technique operates by finding a number of 

Pareto optimal points in the criteria space and evaluating the 

properties of the line segments between them. The method begins by 

optimizing each objective individually, yielding the points A and B in 

Fig. (2.12). The next solution should be that feasible solution 

furthest out along the indicated direction. This point is found by 

solving the weighted problem with weights W1 and Wz that satisfy: 

slope of AB. 

The new solution obtained by solving the weighted problem is then 

located in the criteria space. If the new solution lies above AB, two 

new line segments are generated as shown in Fig. (2.12). The case in 

which the new solution lies on AB indicates that there is no other 

solution above the line segment AB. The above procedure is repeated 

with each line segment until a satisfactory approximation of the 

Pareto optimal set has been found, Balachandran (1989). 

2.5.4 The Constraint Method 

The constraint method is another technique which transforms a 

multi-criteria objective function into a single criterion one by 

retaining one selected criterion as the primary criterion to be 

optimized and treating the remaining p-l criteria as constraints. The 

multi-criteria problem is thus replaced with the following: 
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F, 

Fig. (2.12) 

Concept of the NISE Method (Ba1achandran, 1989) 

Maximize: F 1 (X) (2.35) 
Xd1 

S. t. : Fr(X) - b r ~ 0 r = 2,3, ... ,c (2.36) 

gi (X) ~ 0 i 1,2, ... ,m (2.37) 

h j (X) = 0 j 1,2, ... ,k (2.38) 

XL < X < XU q - 1,2, ... ,n (2.39) q - q - q 

where b r are the lower bounds on the remaining c-1 objectives. The 
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Pareto optimal set is then generated by solving the above single 

objective problem with a parametric variation of br' 

Feasible Region 

m, 

maxlml ze 

New Feasible 
Region 

F, 

Fig. (2.13) Concept of the Constraint Method (Balac~andran, 1989) 

Figure (2.13) shows the concept of the constraint method. A 

bound is specified on Fl and F2 is maximized to find a Pareto optimal 

solution. The two objective functions were chosen for maximization. 

As in the weighting method, many different combinations of values 

for each be must be examined in turn to generate the entire Pareto set. 

The constraint method will generate non-convex Pareto sets and can thus 

be used to investigate gaps in the Pareto set generated by the NISE 

method. The constraint method thus provides direct control of the 

generation of members of the Pareto set and generally provide an 

efficient method for defining the shape of the Pareto set. However, 

each constraint set, (b r ; r 2,3, ... ,c) ,does not guarantee the 

feasibility of the resulting solution so that for problems of three or 

more dimensions many iterations may not be useful, Gero (1983). 
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SYNOPSIS 

CHAPTER THREE 

ENTROPIC VECTOR OPTIMIZATION 

AND SIMULATED ENTROPY 

This chapter introduces the concept of entropy and tlw 

relationships between informational entropy and the much better know!l 

classical thermodynamic entropy. Entropy is used as a measure of 

uncertainty. 

described and 

The development of Shannon's informational entropy is 

its further development into entropy-based minimax 

methods for solving multi-criteria minimization problems is presented. 

The relationships among entropy, simulated annealing and free energy in 

optimization are investigated theoretically and are used [or 

development of a new subject for solving global minimization problems. 

In summary, two families of entropy-based methods are described 

in detail. The first set of methods is used for generating Pareto 

solutions of multi-criteria optimization problem while the second is 

used for seeking the global minimum of single criteria optimization 

problems. 

3.1 ENTROPY AND MAXIMUM ENTROPY THEORY 

3.1.1 Introduction 

The entropy concept has played a central role in a number of 

areas such as chermodynamics, sCaCisCical mechanics and informacion 

Cheory. It springs from two roots. On the one hand, in classical 

thermodynamics, entropy is defined as a macroscopic thermodynamic 

variable of the system under consideration; on the other hand, in 

statistical mechanics and information theory, it is defined as a 

measure of the number of ways in which components of a system may be 

arranged under given circumstances. 
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In classical thermodynamics, this concept has significance no 

less fundamental than that of energy. According to the second law of 

thermodynamics, the entropy is an isolated system tends to a maximum so 

that this provides a criterion for the direction in which processes 

can take place. On the relationship between energy and entropy, Emden 

wrote (Fast, 1968): 

In the huge manufactory of natural processes, the principle 

of entropy occupies the position of manager, for it 

dictates the manner and method of the whole business, 

whilst the principle of energy merely does the book­

keeping, balancing credits and debits. 

Classical thermodynamics in which the entropy concept originated 

is concerned only with the macroscopic states of matter, i.e., with the 

experimentally observable properties. Thus, it does not enquire into 

the mechanisms of phenomena and is, therefore, unconcerned with what 

happens on a microscopic scale. The microscopic picture, however, can 

help to give deeper meanings to the thermodynamic laws and concepts. 

The branch of science concerned with this aspect is statistical 

mechanics. 

When a small number of macroscopic variables such as, pressure, 

temperature, volume, chemical composition, etc. of a system are known, 

the thermodynamic state of this system is known. It is clear that a 

description of this kind still leaves open many possibilities as 

regards the detailed state on a microscopic scale. One and the same 

state, in a thermodynamic sense, thus comprises very many states on the 

microscopic scale; that is, a thermodynamic state can be realised in 

many ways or micro-states. If the number of these micro-states is 

denoted by m, then entropy of the system is defined as: 
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S = k. in m (3.1) 

where k is Boltzmann's constant. The quantity S in Eq. (3.1) may be 

considered as the statistical interpretation of entropy. 

That entropy tends to a maximum means, according to Eq. (3.1), a 

tendency towards the macro-state with a maximum number of possibilities 

of realization, i.e. a tendency towards the most probable state. In 

order to be able to apply Eq. (3.1) directly, all the micro-states must 

have the same probability of occurring. A definition of the entropy 

with more general validity than Eq. (3.1) will be introduced in the 

next section. 

Entropy of a system was first defined by Clausius as a function 

of some macroscopic variables that can be directly measured. The 

Clausius' entropy is a non-probabilistic concept, and is usually 

referred to as the classical entropy. Boltzmann was the first to 

emphasize the probabilistic meaning of the entropy. He noticed that 

the entropy of a physical system can be considered as a measure of 

disorder in the system and that in a system having many degrees of 

freedom, the number measuring the disorder of the system also measures 

the uncertainty about individual micro-states. However, he made no 

explicit reference to information and his entropy is, therefore, 

referred to as statistical entropy. It was Shannon (1948) who first 

introduced the entropy concept as a measure of uncertainty or 

information in an information theory context. Thus Shannon's entropy 

is referred to as informational entropy which has wider applicability 

than statistical entropy (Li, 1987). 

3.1.2 Definitions and Properties of Informational Entropy 

One of the fundamental building blocks of modern information 

theory is the paper by Shannon (1948) in which a new mathematical model 
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of communication systems was proposed and investigated. The most 

important innovation of this model was that it considered the 

components of a communication system as probabilistic entities. In his 

paper, Shannon proposed a quantitative measure of the amount of 

uncertainty about the possible outcome of a probabilistic experiment. 

Consider a probabilistic experiment having n discrete possible 

outcomes a 1 , ... ,Ciy, with associated discrete probabilities Pl"" 'Pn' 

satisfying the following axiomatic conditions. 

Pi ~ 0 (i 1,2, ... , n) and 
n 
L Pi 
i=l 

1 

Such an experiment, of course, contains an amount of uncertainty about 

the particular outcome which will occur if we perform the experiment. 

It can be seen that this amount of uncertainty, contained a priori by 

the probabilistic experiment, essentially depends on the probabilities 

of the possible outcomes of the experiment. For instance, if we have 

a probabilistic experiment having only two possible outcomes a l , az with 

two different sets of probability distributions (Pi = 0.5, pz = 0.5) and 

(Pl = 0.96, pz = 0.04), it is obvious that the first case contains more 

uncertainty than the second. In the second case, the result of the 

corresponding experiment is almost surely ai' while in the first case 

we cannot make any prediction on the particular outcome which will 

occur. This shows that uniform probability distribution has a larger 

amount of uncertainty associated with it than a non-uniform 

distribution. 

Shannon was able to postulate a measure of such uncertainty on a 

quantitative basis in the following way. He proposed that a measure 

for uncertainty should satisfy the following requirements: 

l. It should be continuous in the Pi (i = 1,2, ... ,n) . 
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2. If all the Pi are equal, it should be a monotonically increasing 

function of the number of outcomes n. 

3. The uncertainty about two independent events A and B should be 

the sum of the uncertainties about A and B taken separately. 

Shannon demonstrated that these criteria were sufficient to 

define uniquely the function: 

S -k 
n 

L Pi' in Pi 
i=l (3.2) 

where k is merely a positive constant depending on a suitable choice 

for the units of measure, and it is defined that Ol'nO = O. The 

function S in Eq. (3.2) is referred to as the informational entropy. 

3.1.3 The Maximum Entropy Principle (MEP) 

Shannon's entropy measure was an important step forward in that 

it allowed the amount of uncertainty in a probabilistic experiment to 

be quantified provided that the probabilities of all outcomes are 

known. The next important advance was made by Jaynes (1957, 1968, and 

1983), who realized that in many probabilistic experiments the 

probabilities of discrete outcomes are often not known (unknown prior 

probabilities). Jaynes extended the use of the Shannon entro~y measure 

to calculate the unknown prior probabilities from observable data on 

the probabilistic experiment, and hence extended the role of Shannon's 

function from a simple measure to a crucial role in an inference 

process; i.e. given a probabilistic process and observed aggregated 

data from that process, what does the Shannon measure of uncertainty 

allow us to logically infer about the p.d's underlying the process? 

Suppose there exists an observable probabilistic process in which 

a discrete random variable can take on anyone of n outcomes of value 
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Also, suppose that as a result of observations on the 

process it can be deduced that the outcomes satisfy certain aggregated 

functional relationships Yl(X) , yz(X), ... , such as mean values, 

variance, etc. Let there be m such functions where m ~ n. What can be 

deduced about the probabilities P1,"" Pn of the random variable 

attaining values Xl""'~? Clearly an infinite number of p.d's can 

satisfy the m observed functions Yl' ... ,Ym' Which one should be chosen? 

Some selection criterion is then needed. 

Jaynes, in a brilliant paper (1957), wrote: 

In making inference on the basis of partial 

information we must use that probability distribution which 

has maximum entropy subject to whatever is known. This is 

the only unbiased assignment we can make; to use any other 

would amount to arbitrary assumption of information which 

by hypothesis we do not have. 

Jaynes, therefore, recognized that the infinite number of p.d's 

which satisfy the m observable behaviour functions all contain 

different amounts of uncertainty. The one with the highest entropy 

value should be chosen as this introduces minimum artificial bias into 

the choice. 

Jaynes referred to the above statements as the principle of 

maximum entropy, implying that all else is consequent upon its 

fundamental nature. Mathematically, to maximize the entropy S of Eq. 

(3.2) subject to the given information, leads to a mathematical 

optimization problem: 

(MEP) Maximize: 
n 

S - - k 1: Pi' in Pi 
i-1 
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n 
S. t. : L Pi 1 

i=l (3.3) 

n 

L Pi·Yj(XJ E [Yj 1; j 1, ... ,m 
i=l (3.4) 

where E[.J is the expectation operator and it is axiomatic that Pi ~ 

O. The constant k is arbitrarily set to unity below, which has no 

effect on the solution but simplifies the algebra. 

3.1.4 Some Applications of the Kaximum Entropy Principle 

Shannon's entropy measure and Jaynes' maximum entropy criterion 

have found applications in a variety of areas of science and 

engineering such as thermodynamics, statistical mechanics, civil 

engineering, queuing theory, transportation planning, etc. 

Recently, civil engineering has also become an active area in 

which there have appeared many applications of informational entropy, 

Siddall and Diab (1974), and Basu and Templeman (1984) have used the 

(KEP) in structural reliability analysis and probabilistic design. In 

traditional approaches to reliability analysis an analytical p.d. must 

be chosen by the analyst/designer to represent random loads or 

strengths. Any bias or lack of fit between the chosen distribution and 

the available data will be magnified in the extrapolation of the 

distribution to the tail regions which are important in reliability 

analysis, as the probability of failure is heavily related to the 

overlapping tails of load and strength distributions. The Maximum 

Entropy Distribution (HED) , as the least biased p. d., is a more 

appropriate substitute for the analytical distributions. Basu and 

Templeman (1984) argue that by fitting a MED to available data itself 

52 



by means of the MEP, a more logical and rigorous approach to structural 

reliability analysis results. 

Munro and Jowitt (1978) used the MEP in decision analysis in the 

ready-mixed concrete industry. The principal problem is that of making 

optimal decisions in the face of the uncertainty associated with the 

unknown state of future orders. They argued that the evaluation of 

prior probabilities for the order states should be made objectively and 

should not be affected by any personal bias. Thus in their approach 

the MEP was used to produce the least biased p. d. associated with 

orders for each mix. 

Guiasu (1977) has also used the MEP in queuing theory. For some 

single-server queuing systems, when the expected number of customers is 

given, the MEP gives the same p. d. of the poss ible states of the 

systems as the birth-and-death process applied to an MIMll system in a 

steady-state condition. For other queueing systems, such as MIGll for 

instance, the MEP gives a simple p.d. of possible states, while no 

closed-form expression for such a p.d. is known in the general 

framework of a birth-and-death process. In this work, Guiasu argues 

that use of the MEP strengthens belief that fundamental assumptions in 

the birth-and-death process which is axiomatic to such queuing systems 

are correct and justifiable. Furthermore, it strengthens some of the 

initial axioms and improves insight into the problems 

Many researchers have used Shannon's entropy in the 

transportation problem, which is generally formulated as an LP problem 

[Wilson, (1974), Dinkel, (1977 and 1979) and Erlander, (1981) 1 . A 

typical transportation problem is to predict values of a set of 

variables Xij which represent volumetric traffic flow between Zones i 

and j (trip distribution). Suppose we are given the totals of flows 
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leaving each zone i, 0i' and entering each zone j, Dj , and the cost of 

travel between each zone, c ij ' then an LP model to minimize the total 

travelling cost takes the form: 

(ST) Minimize: c 

S. t. : L Xij 

j 

L Xij 

i 

and Xij ~ 0 

L L c ij X ij 

i j 

°i 

Dj 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

which is referred to below as the Standard Transportation (ST) problem. 

The solution of this linear programming problem (ST) will have several 

non-zero variables, but also several variables with values of zero. 

This means that some possible links between zones will have been 

eliminated. Whilst this corresponds to a least cost solution it is 

also a solution which has low flexibility. Erlander (1977 and 1981), 

among others, adds an entropy constraint: 

L E Xij . in (Xij ) ~ H 
i j (3.9) 

to the problem ST in order to prevent variables becoming zero and to 

ensure a more uniform distribution of variable values. This modified 

problem with an entropy constraint is referred to as the Entropy 

Constrained Transportation (EeT) problem. 

The entropy constraint may be looked upon as a measure of the 

spread of the distribution of journeys over the cells of the trip 

matrix. The higher value of the entropy H the more even the 
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distribution. Thus, it seems natural to investigate the possibilities 

of using the entropy as a broad measure of accessibility. 

The procedure for solving problems ST and ECT are not repeated 

here but can be found in the aforementioned papers. It is interesting 

that by adding the entropy constraint Eq. (3.9), an analytical 

solution to problem ECT, expressed in terms of the Lagrange multipliers 

associated with the constraints Eqs. (3.6-3.9), is obtained. It turns 

out that the analytical solution is of the well-known gravity model 

type. Evans (1973) has formally proved that the solution to problem ST 

is the limit of the gravity model solution as the Lagrange multiplier 

associated with the entropy constraint Eq. (3.9) approaches infinity. 

Erlander (1981) has stressed some advantages of this modified 

model over problem ST. First of all, the sol~tion of problem ST is 

replaced by the smoother solution of problem ECT. This character may 

be advantageous in some planning problem where the uncertainty of the 

real world has been replaced in the models by deterministic 

relationships. The entropy constraint may, in such cases, be viewed as 

a substitute for lost complexity. Also, the solution obtained has high 

accessibility since all variables in the solution of problem ST that 

may be zero, become strictly positive in problem ECT. Thus adding the 

entropy constraint has made the mathematical modelling more sensible. 

Erlander (1981) has extended the entropy constraint approach to 

solve the following LP problem. 

(LP) Minimize: (3.10) 
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s. t. : [A] X b (3.11) 

1 and x ~ 0 
i=l (3.12) 

where C is a given n-Vector, X is an n-Vector of variables, [A] is an 

m x n coefficient matrix and has full rank (= m), and b is an m-Vector 

of resources. By adding an entropy constraint: 

n 

[ Xi. in Xi ~ H 
i=l (3.13) 

to problem LP, he examines the solution to this modified problem. It 

is obvious that the solution depends upon values of H. When H is less 

than a certain value ~in' the entropy constraint is slack and 

therefore, has no effect on the solution. For H > ~in' the entropy 

constraint becomes active and the objective function increases as H 

increases until some maximum value ~ax is reached. A further increase 

of H makes the problem infeasible. Hence, the values of H which are of 

interest lie in a certain interval [~in' ~ax]' where the entropy 

constraint is active and there are feasible solutions. 

Ben-Tal (1985) has used entropy in NLP problems with stochastic 

constraints. The stochastic program is replaced by a deterministic 

program by penalizing solutions which are not feasible in the mean. 

The penalty term is given in terms of a relative entropy functional and 

is accordingly called an entropic penalty. 

Templeman and Li (1987) have shown that there are links between 

entropy and optimization by investigating several ways of using them 

and studying their relations to some well-established results of 

optimization theory. 
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The present chapter aims to explore the use of Shannon entropy 

and Jaynes' maximum entropy criterion in a multi-criteria optimization 

context and single-criteria optimization context. 

3.2 ENTROPY-BASED MINIMAX METHODS AND VECTOR OPTIMIZATION 

3.2.1 Definitions 

Research into optimum engineering design now has a thirty-year 

history and continues to flourish. Over the past twelve years or so it 

has been recognized that real-world design is rarely adequately 

represented by a single criterion scalar optimization problem. Most 

design optimization problems require a multi-criteria formulation in 

order to represent the many conflicting goals which the designer is 

attempting to optimize simultaneously in the design process. 

Consequently, over the last decade considerable attention has been 

given to multi-criteria optimization methods. 

A single criterion (or scalar) optimization problem may be stated 

as: 

Minimize: F(X) (3.14 ) 
X € 0 

in which F is a single objective function of independent variables Xi' 

i = 1,2, ... ,n, forming a variable vector X. 0 represents a constrained 

feasbible region of X so problem (3.14) represents a standard 

constrained scalar optimization problem. A multi-criteria (or vector) 

optimization problem may be stated as: 

Minimize: F - ( F1(X), F2 (X), ... , Fc(X) } (3.15 ) 
X € 0 

in which F is now a vector of p different and independent objective 
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functions, each a function of variable vector X and for each of which 

a reduction in value represents improvement. The constrained feasible 

region of X is again represented by O. 

The single greatest difference between scalar and vector 

optimization problems lies in the fact that scalar problem (3.14) 

usually has a unique solution, * X , at least locally, wheras vector 

problem (3.15) usually has very many solutions; i.e. there is no unique 

vector X* which simultaneously minimizes all the functions F l , Fz ,.'" 

Fe which compr ise F. It is, therefore, necessary to define very 

carefully what is meant by an optimum solution of vector problem 

(3.15). One such definition is that of a Pareto solution. 

A Pareto solution of problem (3.15) consists of any vector X such 

that when X is locally perturbed by a small amount ~ none of the 

individual objectives Fj , j = 1,2, ... ,c in F decreases in value without 

at least one of the other objectives F j increasing in value. Clearly, 

from this definition, if each of the individual objectives Fj in F is 

minimized independently of the others as a scalar optimization problem 

(3.14) then the resulting optimum variable vector X* will be a Pareto 

solution of problem (3.15). Also, the scalar minimization of any 

linear combination of any of the Fj in F will also yield a Pareto 

solution. Figure (3.1) explains the idea of Pareto solutions 

graphically for the case in which problem (3.15) has two objective 

functions Fl and F2 which form the axes of the graph. Any feasible 

vector of variables X will yield particular values of the two 

objectives and will correspond to a unique point on the graph. The 

shaded region represents all possible feasible points. The curved 

boundary AB represents all Pareto solutions of the problem. 
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Mathematically, Pareto optimality is identical to noninferiority. 

Kuhn and Tucker (1951) stated conditions for noninferiority in vector 

optimization problems. * If a solution X is noninferior, then there 

exist multipliers u i ~ 0, i 

A 

Pareto 
solution set 

/ 

1 , 2 , ... , c and: 

X* € 0 

c 

, 

* L u i · V'F i (X ) 
i=l 

(3.16) 

o 
(3.17) 

~_-1--t-- Feasible 

B 

Fig. (3.1) 

Pareto Solutions 

solutions 

Boundary of 
feasible region 

The first condition, (3.16), requires feasibility. The conditions in 

(3.16-3.17) are necessary for noninferiority. They are also sufficient 

if the Fi(X) are concave for i = 1,2, ... ,c, 0 is convex, and u i > 0 for 

all i (Cohon, 1978). 
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Engineering design may often be formulated as a vec tor 

optimization problem (3.15) in instances where the designer wishes to 

find some design in which several conflicting criteria must all be made 

as small as possible in value. In general, minimum cost and minimum 

failure probability are examples of conflicting criteria for 

structures; minimum cost and minimum surface roughness are similarly 

in conflict in machining operations. The set of Pareto solutions for 

such problems represents many possible solutions each of which is best 

for a particular combination of weights or preferences which may be 

assigned to the individual objectives. Problem (3.15) must, therefore, 

be solved to generate the complete set of Pareto solutions. This is a 

difficult task and one which has been the subject of much research over 

the last decade. Having generated the Pareto set the designer may then 

select from among them that particular solution which best represents 

his own desired balance of preferences. 

An alternative strategy to that of the last paragraph is for the 

designer first to articulate his own set of preferences of weights for 

each of the individual objectives in F. A sum of all the objectives, 

each weighted according to the desired preferences, may then be formed 

as a single objective function and the design problem solved as a 

scalar optimization problem (3.14). This will result in a unique 

solution which corresponds to one particular point in the Pareto set. 

This approach is much simpler to solve than the first, but it requires 

the prior articulation of preferences which may not be known in the 

absence of any information about alternative good solutions such as is 

provided by the Pareto set. 

This section is concerned with the first approach above and 

presents new methods for the generation of Pareto solution sets. 

Several methods already exist for generating Pareto solutions and a 
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good survey is provided in chapter 2. The methods described here are 

particularly useful in ins tances where c is large, i. e. the vec tor 

objective function has very many different conflicting objectives. 

3.2.2 Preliminaries 

In order to develop the Pareto set generation methods it is first 

necessary to introduce several established ideas, without further 

proof. The first of these is a definition of minimax optimization. 

Minimax optimization is closely related to vector optimization as will 

be demonstrated later and can be stated as follows: 

Minimize 
X € 0 

Maximum: 
i=l, .. ,c 

< Fi (X) > 
(3.18) 

Minimax optimization problem (3.18) requires that of the c 

individual obj ectives in vector optimization problem (3.15) the one 

with the currently largest value should be minimized over variables X. 

In any solution algorithm for problem (3.18) it is apparent that as X 

changes, the values of all the individual objectives will change. 

Consequently, the one with the largest current value will also change 

during the course of the solution process and this presents 

difficulties to any solution algorithm. A good example of a minimax 

optimization problem is that of the shape optimization of an 

engineering component which has been analyzed by the finite element 

method. This will have calculated values of some stress resultant at 

c points in the component. The designer may then wish to alter the 

values of some design variables X of the component (such as thickness 

and boundary shape parameters in such a way that the value of the 

maximum stress occurring at any of the c designated points in the 

component is made as small as possible. Problem (3.18) represents this 

design problem precisely. 
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The second idea is the Shannon entropy function Eq. (3.2). It is 

a measure of the uncertainty in a discrete random process in which P, 

is the probability associated with discrete event i. Jaynes used the 

Shannon entropy function in his Maximum Entropy Principle which has 

been examined in section (3.1.3). Eqs. (3.2-3.4) represent the 

mathematical form of Jaynes' Maximum Entropy Principle. The maximum 

entropy problem has an explicit solution: 

{ ~.~l exp } exp [~'Yj(X) /kJ/ ~ [~·Yi(X) /kJ j E C 

(3.19) 

in which ~ is the Lagrange multiplier associated with the expected 

value constraint. 

3.2.3 The Entropy-Based Weighted Method And Its Aggregated Form 

This section examines the developments of the above mentioned 

method for the solution of vector optimization problems. It is 

specifically concerned with problems of minimax optimization and with 

the close relationships which exist between minimax optimization and 

Pareto solution set generation for problems of general vector 

optimization. 

The two vector optimization problems investigated here are first 

defined. The most general problem of multicriteria optimization may be 

stated as: 

Fi (X) i 1,2, ... ,c 

(3.20) 

in which X is a vector of variables Xq ; q = 1,2, ... ,n and n represents 

some feasible region within which 0 must lie. F(X) is a vector of 

goals or obj ectives Fi (X) i = 1,2, ... , c which are assumed to be 

formulated such that a reduction in value of each objective function is 
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desirable. It is also assumed that all objective functions Fare 

expressed in dimensionless form. Problem (3.20) is the standard multi 

objective optimization problem which has many Pareto solutions. 
,'( 

X is 

defined as a Pareto solution of problem (3.20) if, within a local 

b . f''c h· bf d hh pertur ation reglon 0 X no ot er pOlnt X £ 0 can e oun suc tat: 

Vi 1,2, ... ,c 

A Pareto solution of problem (3.20) may be found by solving the 

scalar optimization problem: 

Min 
XcO 

c 
L Wi Fi(X) 
i=l 

in which W is a vector of specified multipliers Wi 

satisfying normality and non-negativity conditions. 

(2.31) 

i=1,2, ... ,c 

Problem (3.20) 

generally has many Pareto solutions, each corresponding to a particular 

choice of values of W. 

The second problem which is closely related to problem (3.20) is 

the minimax optimization problem: 

Max 
icc (3.21) 

The solution of the minimax problem (3.21) consists of one 

particular Pareto solution of problem (3.20) and is that solution in 

which the value of the largest objective or objectives among F is made 

as small as possible. 

The first three theorems to be proved in this section are listed 

below. 
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Theorem 1: 

The vector X* which solves the vector minimax problem (3.21), 

where F is a vector of dimensionless objective functions, is generated 

by solving the scalar optimization problem, aggregated objective 

functions problem: (AOF) 

Min 
Xdl 

1 
. fn 

p 

c 
E 
i=l 

exp [p. Fi (X) J 

(3.22 ) 

where p is a positive parameter of increasing value towards infinity. 

Proof: 

This requires the use of Jensen's inequality (p-th norm 

inequality) (Hardy, 1934), which states that for any set of positive 

numbers Vi' i=1,2, ... ,c and p ~ q ~ 1, 

{ c 
E 
i=l r r (3.23) 

Inequality (3.23) shows that the p-th norm of the set U decreases 

monotonically as its order, p, increases. An important property of the 

p-th norm is its limit as p tends towards infinity: 

Let 

lim 
p"'''' 

{ c 
E 
i=l 

lip 

} Max 
i€c 

i=l ... ,c 

(3.24) 

(3.25) 

Since the objectives F are dimensionless, the U defined by equation 

(3.25) are all positive numbers and their substitution into result 

(3.24), gives: 
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lim 
p-->oo [ ~'~l jl/P ~ exp [p.Fi(X)] Max 

i€c 
<exp [Fi(X)] > 

(3.26) 

Taking natural logarithms of both sides and noting that: 

Cn lim ( . ) lim Cn ( . ) 
in Max ( . ) - Max en ( . ) 

equation (3.26) becomes: 

c 
lim (lip) . en L exp [p.Fi(X)] Max <Fi (X» 
p-->oo i~l i€c (3.27) 

Equation (3.27) holds for any set of objectives F(X) including that set 

which results from minimizing both sides of equation (3.27) over X E O. 

Thus, equation (3.27) may be extended to: 

Min 
Xd) 

Max 
i€c 

<Fi(X» ~Min (lip) . en 
XEO 

c 
L exp [p.Fi(X)] 
i~l (3.28) 

as p in the range 1 S P S 00 increases towards 00. This completes the 

proof. Theorem 1 does not directly involve entropy in any way but has 

proved the first main result of this section. The next theorem shows 

how the scalar function (3.22), and hence, by virtue of theorem 1, the 

minimax optimization problem (3.21), is related to the general vector 

optimization problem (3.20). It is at this point that entropy is seen 

to be the link between the two problems (3.20) and (3.21). 

Theorem 2: 

For any value of P, a parameter with any non-zero positive or 

negative value: 

(liP) . Cn 
c 
L 
i-I 

exp [P.Fi(X)] ;?: 
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with equality when the RHS is maximized over variables >. such 

maximizing values of >. are: 

C 

Ai exp [P.Fi(X)]/ r: exp [P.Fi(X)] i 1,2, ... ,c 
i=l (3.30) 

Proof: 

Let Ui exp [P.Fi(X)] i 1,2, ... ,c (3.31) 

with dimensionless objectives F, as before. Thus the U defined by 

equation (3.31) will be positive numbers for any value of P. First, 

Cauchy's inequality (the arithmetic-geometric mean inequality) (Hardy, 

1934) states that for Ui and Ai i=1,2, ... ,c satisfying, 

then: 

c C Ai 
r: Ui ~ n (UjA, ) 
i=l i=l (3.32) 

Taking natural logarithms of inequality (3.32) gives: 

(3.33) 

substituting (3.31) into (3.33) yields: 

1 c c 1 c 
in E exp 

P i=l 
[P.Fi(X)] ~ E Ai Fi(X) -

i-I 
E Ai in Ai 

Pi-I 
(3.29) 

Inequality (3.33) becomes an equality for any value of P when the RHS 

is maximized over variables>. subject to non-negativity and normality 

of the weights. The Lagrangean of (3.33) is: 
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c 
L(~, a) = 1: Ai En Vi -

i=l 

c 

1: 
i=l 

Ai - 1 ] 

(3.34 ) 

There is no need to include the non-negativity conditions explicitly as 

the middle term of equation (3.34) imposes this indirectly. 

Stationarity of equation (3.34) with respect to )., 

a gives: 

C 

Ai = Vi / E Vi 
i=l 

i l, 2, ... ,c 

i = 1,2, ... ,c and 

(3.35) 

Result (3.30) can be shown to correspond to a maximizing point of the 

RHS of inequality (3.33) by examining the second derivative matrix of 

the Lagrangean (3.34) which is negative definite. 

Substi tuting result (3.35) into the RHS of inequali ty (3.33) 

gives, after some algebraic simplification: 

[ 

c 
Max 1: Ai . En Vi -
~ i=l ] = en [ '[ Vi] 

i=l 

Inequality (3.29), also, becomes an equality for any value of P 

when the RHS is maximized over variables ~, i.e. when the variables ~ 

take values given by equation (3.35) on substitution of equation 

(3.31): 

C 

Ai = exp [P.Fi (X)]/1: exp [P.Fi(X)] 
i=l 

and Theorem 2 is proved. 
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The RHS of inequality (3.29) consists of the vector optimization 

problem (3.20) in its scalar weighting form (2.31) but with an 

additional entropy term which is a function only of the mulipliers 

(weights) ~ and the parameter P. In its equality form with multipliers 

given by equation (3.30), relationship (3.29) shows that the entropy of 

the multipliers measures the difference between the scalar function 

(3.22) and the weighting objective function in problem (2.31). 

It is clear that if both sides of relationship (3.29) in its 

equality form with multipliers given by equation (3.30) are minimized 

over variables X ~ 0 and P becoming increasingly large and positive, 

the entropy term in (3.29) will tend towards zero. The LHS will 

generate a Pareto solution of the general vector optimization problem. 

This is expected, but it shows that the values of the multipliers W in 

problem (2.31) which correspond to a minimax solution rather than just 

to any Pareto solution must be given by equation (3.30). Thus far we 

have shown that the scalar function (3.22) can be used to generate a 

vector minimax solution of problem (3.21) and that this solution is 

related through entropy to all Pareto solutions of the general vector 

optimization problem (3.20). The second main result of this section 

still remains to be proved and Theorem 3 formally states this. 

Theorem 3: 

* The vector X which solves the scalar optimization problem (3.29) 

either in its aggregated form, the LHS, or its entropy-based weighted 

form, the RHS, for any non-zero value of P is a Pareto solution of the 

general vector optimization problew (3.20). 

Proof: 

From Theorem 2, relationship (3.29) is an equality for any P when 

~ is given by equation (3.30). This result holds for any set of 
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objectives F including those evaluated at X* which minimizes the RHS of 

equality (3.29). 

Thus: 

1 
- en 
P 

c 
L 
i=l 

* exp [P.Fi(X ») = 

when >.* is given by: 

c 

c 
* * L >. Fi (X ) L >. 

1 c 

i=l P i=l 

* A i exp [P.Fi(X~(») IL exp [P.Fi(X*)] 
i=l 

i ~ 1,2, ... ,c 

* Pn >.'\ 

(3.36) 

(3.30 ) 

X* will be a Pareto solution of problem (3.20) if it is a solution of 

problem (2.31) with W defined by (3.30), i. e. X* must satisfy the 

necessary stationarity condition for problem (2.31) which is of the 

form (Kuhn - Tucker conditions for non-inferiority): 

c 
L u i [8F i (X·)/8Xj ] 

i=l 
o Vj t n 

(3.37) 

Name the LHS function and the RHS function in the equation (3.36) V
1 

and Vz respectively. The theorem will be proved if it can be shown 

* * that (8Vl/8X j) and (8Vz18X j) are equal to (3.37). 

Examining the first derivative of V1 yields: 

c 
(8Vl/8X~) = (liP) (818Xj) [en L exp (P. Fi (X*»] 

i-l 
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Examining the first derivative of Vz which yields the same result in 

equation (3.37) is summarized in Appendix (A). 

Discussion: 

An important feature of Theorems 2 and 3 is that they impose no 

restrictions upon permissable values of P. Pareto solutions of the 

general vector optimization problem (3.20) may be generated by solving 

the scalar optimization problem (3.36) either in its aggregated form. 

the lJ-IS, or its entropy-based weighted form, the RHS, for a range of 

different positive or negative values of P. This means that the scalar 

optimization problem, either side of (3.36), forms a very useful and 

efficient means of generating Pareto solutions. However. it is clear 

from Theorem 3 that values of P close to zero should not be used; both 

sides of (3.36) tend towards infinity as P tends towards zero. 

In Theorem 1 a restriction is imposed upon P by the use of 

Jensen's inequality which is valid only in the range of 1 ~ P ~ 00 

However, this theorem is used only to prove the vector minimax property 

of the solutions of either side of the problem (3.36) as P tends 

towards infinity. Consequently the results of this section may be 

summarised in the following statement: 

Pareto solution of the vector optimization problem (3.20) may be 

generated by solving the scalar optimization problem (3.36), on 

either side, for any values of P in the range - 00 ~ P ~ 00 except 
(=>,,\, t\ '/ ( 

those close to zero. For increasingly values 

of P, the Pareto solutions generated will approach the solution of 

the vector minimax optimization problem (3.21). 

It is clear that P plays an important role in generating 
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individual solutions within the Pareto set. Any chosen value of P will 

generate a Pareto solution. Varying P will generate different Pareto 

solutions. 

The Pareto solution generation properties of the scalar 

optimization problem (3.36), on either side, for any P have only 

recently become apparent. One big advantage that the method appears to 

have is that Pareto solution sets may be generated by specifying values 

for only one parameter, P. The currently popular weighting method 

(2.31) also involves scalar optimization but requires the specification 

of values for each of the objective weights Wi; i = l,2, ... ,c. 

Investigating the many different combinations of these weight values 

can be time-consuming, particularly for problems with many objectives. 

However, the scalar optimization problem (3.36) can be interpreted 

geometrically. Consider the two criteria optimization problem 

presented in Fig. (3.2). In the space of objectives we can draw a line 

The set L which 

represents this line is such that: 

Fig. (3.2) 

Geometrical Interpretation of the EWOF Method 

Based on (Osyczka, 1984) 
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1 
en 

P 

2 
E exp [P.Fi(X)] 
i=l 

1 
Al [F1- - en Al ] + A2 [F2 

P 

1 
c 

P 

where C is a constant. The minimization of (3.36), using either side, 

can be interpreted as moving the line L with variable (AI and A2) or 

[exp (PF1) and exp (PF2)] in a positive direction as close as possible 

to the origin, but keeping the intersection of the sets Land F. The 

point A for which L is tangent to F will be the minimum of (3.36). 

Note that for a non-convex problem, a great part of the set of non-

inferior solutions may not be available, i.e., no values of Ai or exp 

(PFi ) can locate the points in a certain region of the set FPareto 

Consider the problem presented in Fig. (3.3). The line L1 which is 

tangent at A with slope (- A1/A2) or [-exp (P(F1-F2»] ca', be moved 

further in a positive direction until it is tangent at point B. Thus, 

the scalar optimization problem (3.37) with the values of Ai(X) or 

exp[PFi(X)] will find point B but not A. Other values of Ai(X) or exp 

[PFi(X)] will find point c. It is easy to see for this problem that 

the set of non-inferior solutions between D and E is not available. 

L, I 
~-----------I. F,(XI-p In A, 

Fig. (3.3) 

The EWOF Method for a Non-Convex Problem 

Based on (Osyczka, 1984) 
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In conclusion, the scalar optimization problem (3.36), which its 

illS represents the aggregated objectives form and its RHS represents 

the entropy-based weighted objectives form, alone are inadequate since 

non-convex Pareto solutions can't be generated. Other entropy-bas~d 

techniques which can generate non-convex Pareto solutions are needed so 

the two sets of methods can be used simultaneously to investigate gaps 

in the Pareto solution obtained by any of the sets alone and the next 

section deals with this. 

3.2.4 The Entropy-Based Constrained Method And Its Compartmentalized 

This section examines the development of the above mentioned 

method for the solution of vector optimization problems. Optimizing 

one objective while all of the others are constrained to some value is 

perhaps the most intuitively appealing generating technique. Marglin 

(1967) appears to be the first to have suggested such an approach to 

vector optimization problems. The method follows directly, like the 

weighting method (2.31), from the necessary conditions of non­

inferiority, (3.16-3.17). If X satisifies these conditions, then it is 

also an optimal solution to: 

since 

Min 
X€O 

F(X,L) = { 

S. t.: F i (X) 5 Li 

c 
V'F(X,L) = uh . V'Fh(X) + L ui.V'Fi(X) 

i=l 
i~h 

'v'i~h } (3.39) 

(3.40) 

where the hth objective was arbitrarily chosen for minimization and Li 

is preassigned upper bound on objective i. The RHS's in (3.39) seem 

to have appeared magically which, of course, they did. They are not at 
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issue in the Kuhn - Tucker condition (3.40), for which any RHS would 

do. They are, of course, important for feasibility. 

Theorem 4: 

The vector X*j which solves the vector minimax problem (3.21) is 

generated by solving the compartmentalized objective function problem 

(COF) 

1 c 
Min Ah(X) . en L exp [p.Fi(X)] 
Xc:: 0 p i=l 

(3.41) 
1 c 

S.t. Ai (X) . in L exp [p.Fi(X) ] ~ 0 'Vi ... h€c 
p i=l 

with positive values of the parameter p increasing towards infinity. 

Proof: 

This requires recalling the entropy-based weighted problem: 

c 1 c 
Min L Ai F i (X) - L Ai Cn Ai 
Xc:: 0 1=1 p i=l (3.42a) 

with 
c c 

Ai (X) exp [pFi(X)]/ L exp [pFi(X)]; L Ai (X) 1 
i=l i=l. 

which after substitution leads to the aggregated problem (3.22): 

1 c 
. en L exp [pF i (X)] 

i=l 

Note that (3.42b) is nothing else but the LHS of (3.29) since: 

r Ai (X) . in [ E (.) 
i=l i=l 1 - in [E (.) 

i-l 

en 
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[ 

c 
L (.) 
i=l 

1 
c 
L Ai (X) 
i=l 

1 

(3.42b) 



Assuming that: 

c 
[ exp [p.Fi(X)] 
i=l 

Then, (3.41) can be rewritten as: 

y(X,p) 

1 
Min - exp [po Fh(X)]. [[en y(X, p) l/y(X, p)] 
XeO p 

1 
S.t.: exp [p.Fi(X)]. [en y(X),p)/y(X,p)] ~ 0 

p 

Increasing p towards 00 yields: 

Min Max <Fh(X» 

o } 

XeO hec 

S. t. : Max <Fi (X» ~ 

i;oo<hec (3.43) 

Equation (3.43) holds for any set of objectives F(X). Thus equation 

(3.43) may be extended to: 

1 c 
[PFi(X)]] Min Max <Fh(X» Min Ah (X) fn [ exp 

XeO hec X€O p i=l 

1 c I S. t. : Max <Fi (X» A i (X) en [ exp [p.Fi(X)] ~ 0 
i;oo<hec p i=l (3.44) 

as p in the range 1 ~ P ~ 00 increases towards 00. This completes the 

proof. Theorem 4 does not directly involve entropy in any way. The 

next theorem shows how the compartmentalized problem (3.41), and hence, 

by virtue of theorem 4, the minimax optimization problem (3.43), is 

related to the general vector optimization problem (3.20). It is at 

this point that entropy is seen to be the link between the two problems 

(3.20) and (3.43). 
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Theorem 5: 

For any value of P, a parameter with any non-zero positive or 

negative value: 

C 1 
(liP). Ah(X) . Cn[ exp [PFi(X)] ~ Ah(X).Fh(X) Ah(X). Cn Ah(X) hec 

i-l P 

with equality when the RHS is maximized over variables >.. Such 

maximizing values of >. are: 

Proof: 

c 
exp [P.Fh(X)]/ L exp [P.Fi(X)] 

i=l 
h€c 

(3.46 ) 

Inequality (3.45) becomes an equality for any value of P when the 

RHS is maximized over variables >. subject to non-negativity and 

normality of the weights. The Lagrangean of (3.44) is: 

L (>.,a) 

c 
[ 
i-l 
i .. h 

1 

P 

1 C 

Ai Cn AJ + a [ L Ai - 1] 
P i=l 

(3.47) 

There is no need to include the non-negativity conditions explicitly as 

the middle term of equation (3.47) imposes this indirectly. 

Stationarity of equation (3.47) with respect to Ai 

gives: 

C 

Ah - exp [P.Fh(X)]1 L exp [P.Fi(X)] 
i=l 

h€c 

i = 1, ... ,c and Ct 

(3.46) 

substituting result (3.46) into the RHS of inequality (3.45) gives, 

after some algebraic simplification: 
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c 
(liP) Ah·fn L exp [P.F,(X)] 

i=l 

and Theorem 5 is proved. 

Theorem 6: 

The vector X* which solves the compartmentalized problem (3.41) or 

its entropy-based constrained form for any value of P is a Pareto 

solution of the general vector optimization problem (3.20). 

Proof: 

From Theorem 5, relationship (3.45) is an equality for any P when 

~ is given by equation (3.30). This result holds for any set of 

* objectives F including those evaluated at X which minimizes (3.45), 

both sides. Thus: 

1 
* 

c 

I 
* 1 

* * 

I' ;,"" 
Min - ). " in E exp [PF,l Min A 10 Flo - A in A h 10 
Xdl P i=l X,(1 P 

* 
c * * * S. t. : - !. , in E exp [PF,l ~ 0 s. t !. I f, - !. I· in !. I '" 0 

P i=l P 

when ~ is given by (3.30). 

* X will be a Pareto solution of problem (3.20) if it is a solution 

of problem (2.35-2.36) with ~ defined by (3.30), i.e., X* must satisfy 

the necessary stationarity condition for problem (3.38). 

Examining the first derivative of Eq. (3.48) which yields the same 

result in equation (3.38) is summarized in Appendix (B). 

3.2.5 A Method for Dealing with Alternative Optima 

Alternative Optima for both the aggregated and compartmentalized 
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problems and their entropy-based forms can cause difficulties in that 

some of the optimal solutions may be inferior. All alternative optima 

are non-inferior in the aggregated problem or its entropy-based form if 

all weights are strictly positive, and in the compartmentalized problem 

or its entropy-based form if all constraints on objectives are binding. 

It is only in the case of some zero weights or some non-binding 

objective constraints that some alternate optima may be inferior. 

A method for checking the non-inferiority of alternative optima in 

the appropriate situations is presented below which can be used when 

the number of objectives is more than two. 

When some alternative optima may be inferior we want to search 

among all of them for the non- inferior solutions and discard the 

inferior ones. In the case of the entropy-based weighted method 

(3.42a) or its aggregated form (3.42b), suppose that ).i > 0 for i ~ 

1,2, ... ,b and ).i = 0 for i = b + 1, b + 2, ... ,c and that in the solution 

to problem (3.42a) or (3.42b) we found alternative optima which gave 

1,2, ... ,b. Then we can solve a new problem to 

find the alternative optima: 

c c 1 
Min E Ai Fi (X) - !: ).i en ).i 
Xdl i=b+l i=b+l P (3.49) 

* 1,2, ... ,b S. t. : Fi (X) = F i (X ); i = (3.50) 

or: 

c 

en !: [PFi(X)] 
i-b+l (3.51) 

S. t. : i-l,2, ... ,b (3.50) 
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where Ai; i b+l, b+2, ... ,c is given by equation (3.30). In (3.49) or 

(3.50), Ai > 0 for i = b+l, b+2, ... ,c. The values of the ent.ropy 

parameter P varies automatically to find an approximation of that 

portion of the non-inferior set which lies among the alternative 

optima. 

To understand the procedure, a problem with three objectives will 

be considered. Suppose we began by minimizing Fl (X) individually, i. e. , 

Al = I and A2 = A3 = 0 (single-objective optimization problem). 

Alternative optima were found to exist since the feasible region in 

objective space is as shown in Fig. (3.4a). All of the solutions on 

the crosshatched face 0 0 yield the minimum of objective Fl(X), called 

* Fl (X). We proceed then by solving: 

3 
Min L [Ai Fi (X) - (liP) Ai en Ai] 
Xtf10 i=2 (3.52) 

S. t. : Fl (X) * = Fl (X ) (3.53) 

or: 

I 3 3 
Min L Ai Rn L [p Fi(X)] 
Xdlo P i=2 i=2 (3.54 ) 

* S. t. : F 1 (X) Fl (X ) (3.53) 

By adding the constraint in (3.53) to the original feasible region 

0o, we have created a new feasible region 00 , which is just the face of 

* 00 that gives Fl(X ). This face is redrawn in Fig. (3.4b). All of the 

feasible solutions of 00 yield F1(X*); those that are also non-inferior 

are shown as the crosshatched portion of 00 in Fig. (3.4b). These are 
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found by generating different values of P which givc combinations of 

strictly positive values of A2 and A3 in (3.52) or (3.54). The reader 

will note that the procedure is equivalent to the entropy-based 

weighted method or its aggregated form as applied to a subset of the 

original feasible region. 

For alternative optima in the entropy-based constrained method or 

its compartmentalized form, we proceed in a similar fashion, but 

instead of defining the set of objectives Fl , F2 , ... ,Fh as these with 

strictly positive weights, we define them as those objectives that had 

binding, active, constraints and that objective selected for 

optimization. Furthermore, the set of objectives Fh+1 , Fh+ 2 ,··. ,Fe are 

those that had non-binding constraints. The procedure is then pursued 

in an identical manner. 

3.2.6 Discussion 

Section (3.2) has surveyed the new developments and use of 

informational entropy in the context of mathematical optimization 

processes. There are currently three areas in which entropy and the 

MEP appear to have considerable potential for methodological 

development. The first of these is as a means of measuring 

uncertainty, the second is as a means of making inferences in the 

presence of uncertain or incomplete information, and the third is as a 

means of solving a variety of optimization problems. The third of 

these has been studied here in some detail but the first two are 

certainly of equal importance and worthy of much more research. 
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0) 

b) 

r------------. F, 

Non inferior alternative 
optima F, = F, IX·, 

Fig. (3.4): Dealing with alternative optima when some of them may be 
inferior: (a) 3-D non-inferior set. (b) face that minimize 
Fl. Based on (Cohon, 1978) 
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The use of entropic inference in mathematical optimization 

processes is relatively new. The entropy-based weighted method or its 

aggregated form developed by Templeman (1988) and the entropy-based 

constrained method or its compartmentalized form developed by the 

author for multi-criteria optimization have so far been the most 

successful. Computational work is concerned with assessing the 

efficiency of generating Pareto solution sets using the scalar 

minimization problem, either side of (3.36), and the constrained 

minimization problem, either side of (3.48), for varying P values in 

comparison with other conventional methods such as the weighting 

objective method (2.31), the constraint method (3.39), or the bound 

formulation. The objectives of developing new techniques to eliminate 

the difficulties described in section (1.6) are successfully achieved 

here. Because of that, the new methods are expected to replace the 

traditional methods for generating Pareto set since considerable 

amounts of computational work and computer time can be saved. 

3.3 BOUND FORMULATION AND VECTOR OPTIMIZATION 

In mathematical programming, a vector optimization problem can be 

formulated as follows: 

Find X* such that: * . F(X ) = Mw F(X) (3.55) 

where X = [Xl' X2 '.· .XqJT is a vector of design variables defined in q_ 

dimensional Euclidean space of variables Eq. F(X) 

F2 (X) , ... ,Fc(X)]T is a vector function defined in c-dimensional 

Euclidean space of objectives EC
• It is important to point out that all 

goals or objectives are nondimensionalized. 
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The objective of bound formulation is to determine X such that: 

(3.56 ) 

where ~ is an unrestricted scalar variable. For any fixed value of X, 

we have: 

i 1,2, ... , c (3.57) 

Therefore, the smallest possible ~ satisfying Eq. (3.57) is given 

as a function of the design variables X by: 

f3(X) Max 
iec 

Fi (X) 
(3.58) 

Hence, the determination of the minimum value of f3 leads to the 

unconstrained minimization problem: 

Min 
Xen 

f3(X) Min 
Xen 

Max 
iec (3.59) 

which is equivalent to the constrained minimization problem, bound 

formulation: 

(BF) Min f3 (3.60) 

S.t: F(X) ::s f3 (3.61) 

It has been proved in this thesis, Eq. (3.27), that minimization 

of the RHS of Eq. (3.58) is equivalent to: 

Min 
Xen 

Max <Fi (X) > -
iec 

Min 
Xen 

1 

p 
.En 
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c 
1: exp 
i-l 

P.F,(X)] } 

(3.62) 



with varying P in the range 00 ~ P ~ - 00 and P ~ o. 

Now, the LHS of Eq. (3.62) is the minimum of the RHS of Eq. (3.58), 

thus: 

Min {3(X) 
Xd1 

1 
. en 

P 
{ ~ /.., exp 

i=l 
[P. F, (X)) } 

0.63) 

That is, mathematically, the solution of the constrained 

minimization problem, BF, is equivalent to the solution of the 

unconstrained minimization problem (3.62). However, the minimization 

problem BF is not practical because {3(X) is not continuously 

differentiable everywhere with respect to F, which may caLse numerical 

problems when minimizing {3. 

3.4 MINIMAX ENTROPY PRINCIPLE AND GLOBAL MINIMIZATION 

3.4.1 Definitions 

Given some function F(X) and some constraint functions, the 

process of locating a minimum value of F(X) commences with no numerical 

information whatsoever. An initial point is then chosen and 

information is calculated about the objective and constraint functions, 

typically their numerical values and gradients at the design pOint. 

This numerical information is then used in some deterministic 

mathematical programming algorithm to infer where the next trial point 

should be placed, so as to get closer to the constrained optimum of the 

problem. The new trial generates more information from which another 

point is inferred and eventually the solution is reached by this 

process of gathering better and better information and using it in an 

inference-based algorithm. Almost all such optimization algorithms use 

some form of geometrical inference to generate a sequence of improving 
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trial points. The functions in the problem are interpreted as 

geometrical hypersurfaces with contours, slopes and gradients. 

Actually, we never have sufficient information to be able to plot the 

geometry, except for the simplest of problems, but it is convenient to 

imagine that these hypergeometrical shapes exist because it helps us to 

visualize what a numerical search algorithm is doing. Our general 

knowledge of geometry can be used to develop solution strategies which 

can use in a geometrical way any numerical information which is 

generated about the problem. We pretend, for convenience, that 

everything in the problem before us has a totally deterministic 

geometric representation. However, it is equally valid to argue that 

the problem should be interpreted non-deterministically: if we have 

made evaluations of the objective and contraint functions at some point 

this represents concrete information, but the introduction of some 

geometrical prediction strategy to estimate where to place the next 

trial represents, according to Jaynes', "an arbitrary assumption of 

information which by hypothesis we do not have". Actually, we have no 

grounds for assuming that the particular problem we are solving will 

conform precisely to the geometrical strategy we have introduced. The 

use of any particular geometrical strategy in this situation is 

analogous to the use of a particular probability distribution to 

represent data from some random process. According to the MEP both 

assumptions are wrong and introduce bias. The only correct strategy is 

to employ the MEP to infer where the next trial should be placed, using 

only the concrete data available. 

It is important to realize that the geometrical interpretations 

placed upon optimization processes are only interpretations. There is 
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nothing sacrosanct about them. It is perfectly reasonable to discard 

this deterministic, geometric interpretation of optimization and to 

attempt to develop new optimization algorithms based upon totally non-

geometrical, non-deterministic concepts or geometrical, non-

deterministic concepts. To do so, one must understand the basics of 

statistical mechanics. 

Statistical mechanics is the study of the behaviour of very large 

systems of interacting components, such as atoms in a fluid, in thermal 

equilibrium at a finite temperature. Suppose that the configuration of 

the system is identified with the set of spatial positions of the 

components. If the system is in thermal equilibrium at a given 

temperature T, then the probability rrT(s) that the system is in a given 

configuration s depends upon the energy E(s) of the configuration and 

follows the Boltzmann distribution: 

e 

.::£..W 
kT 

e 

=lli!l 
kT 

where k is Boltzmann's constant and S is the set of all possible 

configurations. 

In studying systems of particles, one often seeks to determine 

the nature of the low energy states, for example, whether freezing 

produces crystalline or glassy solids. Very low energy configuration 

is not common, when considering the set of all configurations. 
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However, at low temperatures they predominate, because of the nature of 

the Boltzmann distribution. To achieve low-energy configurations, it 

is not sufficient to simply lower the temperature. One can use an 

annealing process, where the temperature of the system is elevated, and 

then gradually lowered, spending enough time at each temperature to 

reach thermal equilibrium. If insufficient time is spent at each 

temperature, especially near the freezing point, then the probability 

of attaining a very low energy configuration is greatly reduced. This 

is known as the annealing process. 

Simulated Annealing is a stochastic computational technique 

derived from statistical mechanics for finding near globally-minimum­

cost solutions to large optimization problems. In general, finding the 

global minimum value of an obj ective function with many degrees of 

freedom subj ect to conflicting constraints is an NP-Complete (non­

deterministic polynomial) problem, since the objective function will 

tend to have many local minima. A procedure for solving hard 

optimization problems should sample values of the objective function 

in such a way as to have a high probability of finding a near-optimal 

solution and should also lend itself to efficient implementation. 

Consider a discrete minimization problem with N feasible solutions 

numbered in ascending order of their objective function values (F
i

; i 

1,2, ... ,N). Iterative search methods specify a neighbourhood Ni f 

(1,2, ... ,N) for each solution, and proceed to its lowest valued 

neighbour, provided this switch results in a strict improvement. The 

methods repeat this step until no improving neighbour can be found, 

i.e., until they reach a local optimum. 

methods encounter two major problems: 
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(i) the solution obtained is heavily dependent on the starting 

solution; and 

(ii) the methods often converge to inferior local optima. 

Simulated annealing methods randomize the procedure to overcome 

these problems, allowing for occasional switches that worsen the 

solution. This is equivalent to annealing in condensed matter physics 

where a solid in a heat bath is heated up by increasing the temperature 

of the heat bath to a maximum value at which all particles of the solid 

randomly arrange themselves in the liquid phase, followed by cooling 

through slowly lowering the temperature of the heat bath. In this way, 

all particles arrange themselves in the low energy ground state of a 

corresponding lattice, provided the maximum temperature is sufficiently 

high and the cooling is carried out sufficiently slowly. At each 

temperature, the solid is allowed to reach thermal equilibrium, 

characterized by a probability of being in a state with energy E given 

by the Boltzmann distribution. To simulate the evolution to thermal 

equilibrium of a solid for a fixed value of the temperature, Metropolis 

et al. (1953) proposed a Monte Carlo Method, which generates sequences 

of states of the solid (Laarhoven, 1987). The Metropolis algorithm can 

also be used to generate sequences of configurations of a combinatorial 

optimization problem. In that case, the configurations assume the role 

of the states of a solid while the objective function and the control 

parameter take the roles of energy and temperature, respectively. The 

simulated annealing algorithm can now be viewed as a sequence of 

Metropolis algorithms evaluated at a sequence of decreasing values of 

the control parameter. It is based on randomization techniques. It 

also incorporates a number of aspects related to iterative improvement 
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algorithms. Since these aspects play a major role in the 

understanding of the simulated annealing algorithm (Laarhoven, 1987), 

and - later on in this thesis the development of the simulated 

entropy algorithms, we first elaborate on the iterative improvement 

technnique. 

3.4.2 Iterative Improvement Algorithms 

The application of an iterative improvement algorithm presupposes 

the definition of configurations, a cost function and a generation 

mechanism, i.e. a simple prescription to generate a transition from a 

configuration to another one by a small perturbation. The generation 

mechanism defines a neighbourhood Ri for each configuration i. 

Iterative improvement is, therefore, also known as neighbourhood search 

or local search. The algorithm can now be formulated as follows. 

Starting off at a given configuration, a sequence of iterations is 

generated, each iteration consisting of a possible transition from the 

current configuration to a configuration selected from the 

neighbourhood of the current configuration. If this neighbouring 

configuration has a lower cost, the current configuration is replaced 

by this neighbour, otherwise another neighbour is selected and compared 

for its cost value. The algorithm terminates when a configuration is 

obtained whose cost is no worse than any of its neighbours. The 

disadvantages of iterative improvement algorithms can be formulated as 

follows: 

a) By definition, iterative improvement algorithms terminate in a 

local minimum and there is generally no information as to the 

amount by which this local minimum deviates from a global 

minimum; 
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b) The obtained local minimum depends on the initial configuration, 

for the choice of which generally no guidelines are available. 

To avoid some of the aforementioned disadvantages, one might 

think of a number of alternative approaches: 

1) Execution of the algorithm for a large number of initial 

configurations, say N (e.g., uniformly distributed over the set 

of configurations R) at the cost of an increase in computation 

time; for N ~ 00, such an algorithm finds a global minimum with 

probability 1, if only for the fact that a global minimum is 

encountered as an initial configuration with probability 1 as N 

....,. 00; 

2) (Refinement of 1) use of information gained from previous runs of 

the algorithm to improve the choice of an initial configuration 

for the next run (this information relates to the structure of 

the set of configurations); 

3) Introduction of a more complex generation mechanism (or, 

equivalently, enlargement of the neighbourhoods), in order to be 

able to jump out of the local minima corresponding to the simple 

generation mechanism; 

4) Acceptance of transitions which correspond to an increase in the 

cost function in a limited way (in an iterative improvement 

algorithm only transitions corresponding to a decrease in cost 

are accepted). 

The first approach is a traditional way to solve combinatorial 

optimization problems approximately. The second and the third 
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approaches being usually strongly problem-dependent. An algorithm that 

follows the fourth approach was independently introduced by Kirkpatrick 

et al. (1982) and Cerny (1985). It is generally known as simulated 

annealing, Monte Carlo annealing, statistical cooling, probabilistic 

hill climbing, stochastic relaxation, or probabilistic exchange 

algorithm. 

In this section, informational entropy is used to develop 

simulated entropy techniques for solving combinatorial constrained 

minimization problems. Since the first technique is based on using 

surrogate constraint approach, we first elaborate on it. 

3.4.3 Surrogate Approach to Constrained Optimization 

A surrogate problem is one in which the original constraints are 

replaced by only one constraint, termed the surrogate constraint. For 

the inequality constrained problem, primal problem: 

(P) Min 
Xd'l 

S. t. : 

F(X) 

j 

the corresponding surrogate problem has the form: 

(S) Min F(X) 
Xd1 

m 
S. t. : ~ Wi·gi(X) ~ 

i-I 
0 

1, ... ,m 

where Wi (i - 1, ... ,m) are non-negative weights, termed surrogate 

multipliers, which may be normalized without loss of generality by 

requiring: 
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m 
L 1-\ 
i=l 

Some of the relationships between the primal problem (P) and the 

surrogate problem (S) are (Glover, 1965): 

1) The feasible region of problem (P) is always included by the 

feasible region of problem (S). 

2) If XS solves problem (S) and X* solves problem (P), then F(XS
) 5 

F(X*) for all W ~ O. 

3) If XS solves problems (S) and is also feasible in problem (P), 

then XS also solves problem (P). 

4) If at least one of original constraints is active at the optimum, 

then the surrogate constraint must be active at the optimum. 

A comparison of the primal feasible region with the surrogate one 

is illustrated in Fig. (3.5) which shows that the primal feasible 

region is always a part of the surrogate feasible regions for any value 

~. Problem (S) can, therefore, be viewed as a relaxation of problem 

(P). 

3.4.4 Simulated Entropy 

While annealing define a process of heating a solid and cooling 

it slowly, entropy in an isolated system tends to a maximum so that 

this variable is a criterion for the direction in which processes can 

take place. In simulated entropy (SE), a process which tends to a 

maximum entropy must be defined first. The two main resul ts to be 

proved in this section are as follows: 
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S2 '2 surrogilte 

Fig. (3.5) 

Primal and Surrogate Feasible Regions (Li. 1987) 
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a) For positive and decreasing values of P, minimizing the objective 

function F(X) over variables Xdl subject to the entropy-based 

surrogate constraint function: 

m 
[ Ai' gi (X) - P o 
i=l 

converges, hopefully, to the global minimum of the primal prob lem 

(P) . 

b) For positive and decreasing values of P, minimizing the objective 

function F(X) over variables X € 0 subject to the entropy-based 

constraints functions: 

i 1,2, ... ,Ill 

converges, hopefully, to the global minimum of the problem (P). 

Theorem 7 formally states the first of these results. 

Theorem 7: 

The vector X* which seeks the global minimum of the single-

criteria optimization problem: 

(P) Min 
XeO 

F(X) 

S . t.: gi (X) :S 0; i = 1, ... ,m 

is generated by solving the entropy-based surrogate constraint problem, 

simulated entropy problem: 
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(SE) Min 
X€(l 

S. t. : 

F(X) 

m 
L Ai gi (X) - P 
i=l 

m 

L Ai in A, 
i=l 

o 

(3.64) 

where g is a vector of dimensionless constraint functions, with 

positive values of the parameter P decreasing towards zero and: 

exp [ : g,(X) 1 / Lexp [ : g, (X) 1 
(3.65) 

Proof: 

This requires the use of Cauchy's inequality (the arithmetic-

geometric mean inequality), equation (3.32): 

m m Ai 
L Ui ~ n (Ut/A i ) 

i=l i=l 

or 

{ ~ i=l 

P 

f',) } 

(3.32) 

P > 0 

0.66) 

Inequality (3.66) shows that the (l/P-th) norm of the set U increases 

monotonically as its order, (liP), increases. It tends to its limit as 

P tends towards zero: 

lim 
p-+O 

{ Max 
i€m 
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Let exp [gi (X) 1 (3.68) 

Since the constraints g are dimensionless, the U defined by equation 

(3.68) are all positive numbers and their substitution into result 

(3.67), gives: 

lim 
p-+O [L 

p 

exp [(l/p). g, (X) I] = Max 
i~m 

<exp [gi (X) 1 > 

Taking natural logarithms of both sides and noting that: 

fn lim (0) - lim en (0) 

en Max (0) = Max in (0) 

equation (3.69) becomes: 

lin 
p-+O 

P . in { f_l exp [(l/P) .g,(X) I } - Max <gi (X» 
i~m 

(3.69) 

(3.70) 

Result (3.70) shows that the constrained minimization problem, (P), 

can be solved by minimizing F(X) subject to the aggregated constraints 

function; AC: 

(SE) Min 
Xdl 

S. t. : 

F(X) 

P . en { ~ exp [(liP) gi(X)] } - 0 
i-l L711 

as P in the range 0 < P ~ ~ decreasing towards zero. Taking natural 

logarithms of both sides of inequality (3.66) with U defined by: 
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gives: 

exp [(I/P).gi(X)] 

P . tn { E-l exp [(l/P). g, (X) I 
m 
1: >"i gi (X) - P 
i=l 

(.3.72) 

III 

1: >"i Cn >", 
i=l 

(3.73) 

which becomes an equality when the variables ~ takes the values given 

by equation (3.35) on substitution of equation (3.72): 

[ I 1 ! 
m [ I g, (X) 1 >"i exp -gi (X) 1: exp i 1 ..... m 

P i=l P 
(3.65) 

and theorem (7) is proved. 

The RHS consists of the vector constraint function in its 

surrogate form (S) but with an additional entropy term which is a 

function only of the multipliers .\ and the parameter P. In its 

equality form with mUltipliers given by equation (3.65). relationship 

(3.73) shows that the entropy of the multipliers measures the 

difference between the aggregated constraint function (3.62) and the 

surrogate constraint function (S). 

It is clear that if we minimize F(X) over variables X E 0 subject 

to either side of inequality (3.73) with mUltipliers given by equation 

(3.65) and P becoming decreasingly small and positive. the entropy term 

in (3.73) will tend towards zero. 
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The second main result of this section still remains to be proved 

and Theorem 8 formally states this. 

Theorem 8: 

The vector X* which seeks the global minimum of the single-

optimization problem, (P), is generated by solving the entropy-based 

constrained problem: 

(SE) Min 
XeO 

S. t. : 

F(X) 

1, ,,' ,m } 

(3.74) 

with positive values of the parameter P decreasing towards zero and: 

Ai = exp 
[ 

lp gi (X) 1 / ~ exp 
i=l (3.65) 

Proof: 

This requires recalling the entropy-based surrogate constrained 

problem: 

Min F(X) 
XeO 

m m 
S . t. : E Ai gi (X) - P L Ai ln Ai - 0 

i=l i-l (3.64 ) 

with Ai(X) is given by (3.65). Without loss of generality, (3.64) may 

be rewritten as follows: 
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Min F(X) 
Xd"l 

S. t. : Ai gi (X) - P Ai en Ai ~ 

substituting (3.65) into (3.75) and assuming that: 

yields to: 

m 
l: exp 
i-l 

[ ~ .,(X) ]- y(X, P) 

0; ViJ (3.75) 

Min 
XEf"l 

S. t.: 

F(X) } 

P.exp[(l/P).g,(X)], [in y(X,P)/y(X,P)]~O; ViEm 

decreasing P towards zero yields to: 

Min F(X) 

} 
XeO 

S. t. : Max <gi (X» ~O; \fiem (3.76) 

Result (3.76) shows that the primal constrained minimization problem, 

(P), can be solved by minimizing F(X) subject to the sub-aggregated 

constraints; SAC: 

(SE) Min 
XfO 

S. t. : 

F(X) 

m 
P. Ai (X) in E 

i=l 
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1 
exp gi (X) ) ~ 0 \fiEm 

P 
(3.77) 



as P in the rane 0 S P s 00 decreasing towards zero. This is also true 

when (3.75) is used with Ai(X) given by (3.65). 

proof. 

3.4.5 Discus ion: 

This completes the 

There are several problems in statistics which can be formulated 

so that the desired solution is the global minimum of some explicitly 

defined objective function. In many cases the number of candidate 

solutions increases exponentially with the size of the problem making 

exhaustive search impossible, but descent procedures, devised to reduce 

the number of solutions examined, can terminate with local minima. In 

section (3.5.4) we have described two simulated entropy algorithms 

which can escape local minima. The simulated entropy algorithms (SE) 

are stochastic search procedures which seek the minimum of some 

deterministic objective function. It applies small perturbations to 

the current solution. A deterministic descent method will always go to 

the minimum in whose basin it finds itself, whereas the simulated 

entropy techniques can climb out of one basin into the next. Because 

of its ability to make small uphill steps, the simulated entropy 

techniques avoid being trapped in local minima. However, it is far 

from apparent at first, that one could not always do at least as well 

by running a deterministic algorithm many times, with randomly chosen 

starting points. 

Although simulated entropy algorithm details vary when applied to 

different problems, we always use the same basic simulated entropy 

idea: 

At each temperature, the process must tends to a maximum entropy. 
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We define a descent algorithm to generate a solution like the method of 

feasible directions; a perturbation scheme to perturb the current 

solution using the informational entropy defined before; and, analogous 

to the decreasing temperature regime of the physical cooling process, 

a sequence of control parameters P which starts at some initially high 

value Po, decreases by dP to a final near zero value Pf' Indeed, it is 

not apparent so far, why we should vary P at all: why not just choose' 

P = Pf in the first place? Two temperature (control parameter, or 

entropy parameter) scheduling mechanisms can be used, either one, in 

the prototype entroper. Temperature is exponentially reduced us ing 

the formula (Kirkpatrick, 1983): 

i=1,2,00.,1 

Temperature scheduling is completely defined by specifying the 

temperature at which simulated entropy to begin, Po, and the ratio of 

subsequent to initial temperature, P1/Po . The second schedulinB 

mechanism, where the temperature is reduced at intervals it uses the 

formula: 

Pi = Po - bP; i = 1,2, ... ,I 

where bP is the step size to be defined in addition to the temperature 

at which simulated entropy to begin, Po. The simulated entropy 

techniques developed in this thesis repeat the following steps until at 

least one of the original constraints is active, assuming we are given 

value Po, bP or P1/Po of the central parameter and a starting point: 
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1) Using an iterative technique, generate a neighbour FieX) of Lhe 

current solution F (X). This is a potential candidate for F (X). 
1+1 

2) Set Pi to (Po - ttP) or [P1/PO]i Po and replace i with i + l. 

Finally, the simulated entropy techniques developed before can [JP 

interpreted geometrically as discussed before in the previous section. 

Theorem 7 which implies two forms of the first simulated entropy 

technique seeks the global minimum if it is in a convex region, while 

Theorem 8 which implies two forms of the second simulated entropy 

technique seeks the global minimum if it is in a concave or convex 

region. 
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CHAPTER FOUR 

ENTROPIC OPTIMIZATION APPLICATIONS 

SYNOPSIS 

In this chapter, the set of entropy-based methods developed in 

the previous chapter is tested, discussed and compared. 

4.1 INTRODUCTION 

Several points emerge from the present work. First, dealing with 

the entropy-based methods requires that all objective functions in the 

goal vector F or all constraints in the surrogate constraint g must be 

dimensionally homogenous. It is therefore, essential in such 

applications that they should all be non-dimensionalized before use in 

the developed methods. In multi-criteria optimization applications 

this suggests the specification for each goal of cost C(X) or 

displacement SeX) of a desirable value C or 8 in which case the goals 

Fi(X) then have the form: 

Fi (X) 
C(X) 

C 

5 (X) 

6 

or 
(4.1) 

(4.2) 

Similarly, in single-criteria minimization applications this 

suggests the specification for each constraint in the surrogate 

constraint vector of a desirable value d in which case each constraint 

has the form: 

-- - 1 
(4.3) 

103 



More important property of this nondimensionalizing 

may be added. Exponentiation within the entropy-based methods may 

cause computational underflow if P becomes too small or 

computational overflow if P becomes too large. Nondimensionalizing 

reduces such problems considerably for different applications. 

The maximum entropy problem has an explicit solution: 

n 
L 
i=l 

{ exp (P Y,) } 

A technique which materially improves the convergence of nearly 

all minimization problems is the scaling of Yi . It is ordinarily 

considered good practice in engineering to choose balanced units of 

measure or intelligently nondimensionalize the Yi of a problem in order 

to improve the numerical behavior of the solution. In minimization the 

eccentricity, and hence the difficulty, can be greatly influenced by 

the scales chosen. For example, consider the functions: 

Yz(X) Y1 [(Xd12 ), (Xz/2) 1 

Function contours of both Y1 and Yz are shown in Fig. (4.1). 

Clearly, Y1 is much more eccentric than Yz and would be harder to 

minimize. 

104 



t, 

Fig. (4.1) Eccentricity (Fox, 1971) 

The objective of scaling is to accomplish a coordinate expansion 

or contraction which will minimize the eccentricity. As the latter 

example illustrates, the coordinate transformation of simple scaling 
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may still leave considerable eccentricity. Furthermore, the techniques 

of making the coefficients of the squared terms equal is not, in 

general, optimal scaling even in quadratic problems, beyond the two-

variable case. The theory of optimal scaling is difficult and beyond 

the scope of this thesis (Fox, 1971). The value of the obj ective 

function is the same in both the scaled and the unsealed space. 

As we have seen that one explicit solution of Jaynes MEP is: 

PYi 
e 1 

Ai 
n PYi n PCY j - Yi ) 

E e 1 + E e 
i=l j=l C4.4) 

Scaling the term CY j - Yi ) to different values with fixed P, gives 

different distribution to the values of Ai which always satisfy the 

normality condition: 

n 
E Ai = 1; Ai ~ 0 
i-I 

This property is very helpful in discovering more solutions. 

Three philosophies are available for rescaling the obj eetive 

functions (Steuer, 1986): 

(a) normalization, 

(b) use of 10 raised to an appropri&te power, and 

(c) the application of range equalization factors 
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(a) Normalization 

Normalization may be applied as described before or by using 

norms. Norms measure the lengths of vectors. The ip-norms of a vector 

when p equals 1,2, and 00 are: 

n 
1: IVi I 
i=l 

IIVIl., 

[ 

max 
ifn 

n 

E IV i 12 
i=l r 

Dividing each component of a vector by the norm of the vector 

normalizes a vector. The resultant length of the normalized vector is 

one. 

(b) Use of 10 Raised to an Appropriate Power 

Assume that our purpose is numerical (i.e., to bring all 

obj ective function coefficients into the same order of magnitude). 

Besides normalization, another option is to rescale each objective 

function by 10 raised to an appropriate power. Whereas normalization 

is likely to change the coefficients to unrecognizable numbers, the 

recognition of each coefficient is retained with 10 raised to an 

appropriate power because only the decimal point moves. 

Example 1: 

Consider the MOLP problem: 
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have: 

Max 
XcO 

Max 
XcO 

63400.0 Xl + 189600.0 Xz - 50400.0 X3 

9.61 Xl - 2.35 Xz + 6.78 X3 

If we normalize each objective function using the Ll-norm, we 

Max 
XcO 

Max 
XcO 

0.209 Xl + 0.625 Xz - 0.166 X3 

0.513 Xl - 0.125 Xz + 0.362 X3 

However, if we rescale the first objective by 10- 5 and the second 

objective by 10-1 , we have: 

Max FI(X) ~ 0.634 Xl + 1.896 Xz - 0.504 X3 
XcO 

Max 
XcO 

0.961 Xl - 0.235 X2 + 0.678 X3 

In this way, we have brought all objective function coefficients 

into the same order of magnitude, yet we have retained the 

recognizability of the objective function coefficients. 

(c) Use of Range Equalization Factors 

Suppose our purpose is to equalize the ranges of the criterion 

values over the efficient set. One way to do this is to multiply each 

objective by its representative range equalization factor: 
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1 

where Ri is the range width of the i th cri terion value over the 

efficient set. 

Example 2: 

Suppose the range of Fl(X) over the efficient set E (set of all 

efficient points) is [600,800] and the range of Fz(X) is [-24,12]. 

Thus, Rl = 200 and Rz = 36. Hence, ~1 - 0.1525 and ~z - 0.8475. After 

we scale the objectives by the ~i in Example 2, the range of Fl(X) over 

E is [91.5,122.0] and the range of Fz(X) is [-20.3,10.2]. Suppose it 

is also desired to equalize the midpoints of the scaled range at a 

given value. This can be accomplished by adding Ki constant terms to 

the scaled obj ective functions. If the given value is 50, the range 

midpoints would be equalized with Kl -56.75 and Kz 55.05. 

Therefore, if: 

Max Fl (X) 
Xdl 

Max Fz(X) 
XeO 

were the starting HOLP problem of example 2, the ending HOLP would be: 

Max ~l [Fl(X)] + Kl 

XeO 

Max ~2 [F2 (X)] + Kz 
XeO 
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where ~l' ~z, K1 , and Kz are as given above. 

4.2 A GENERAL-PURPOSE ENTROPY-BASED OPTIMIZATION COMPUTER PROGRAM 

A new general-purpose entropy-based optimization computer program 

is described. All the entropy-based methods developed in this thesis 

are coupled with ADS (Automated Design Synthesis) computer program to 

perform the optimization task. The optimization process is segmented 

into three levels, Strategy ISTRAT, Optimizer lOPT, and One-dimensional 

search IONED. At each level, several options are available so that a 

total of nearly 100 possible combinations can be created. The program 

has been developed by the author and coupled with ADS which has been 

developed by Vanderplaats (1986). 

The ADS computer program solves the general optimization problem in 

the standard form: find the set of n design variables contained in the 

vector X that will minimize: 

F(X) (4.5) 

S. t. : gi (X) ~ 0 i = 1, ... ,m (4.6) 

h j (X) 0 j 1, ... , k (4.7) 

XL < Xq ~ XU q - 1, ... ,n (4.8) q - q 

where F(X) is the objective function, gi(X) are the inequality 

constraints, and hj(X) are the equality constraints. The bounds XL and q 

XU on the design variables are referred to as side constraints q , and 

could be included in the general inequality constraint set of Eq. 

(4.6) . It is usually preferable to deal with side constraints 

separately because they directly limit the region of search for the 
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optimum. For more information about ADS capabilities see the above, 

mentioned reference. 

The Entropy-ADS computer program solves the general vector and 

single optimization problems in different standard forms as follows: 

(1) Multi-Criterion Minimization 

Find Pareto set solutions for which each one has n design variables 

contained in the vector X that will minimize any of the functions shown 

in Table (4.1). The below objective functions, for constrained 

problems, are subject to Eqs. (4.6-4.7). 

(2) Sin~le-Criterion Minimization 

Find the set of n design variables constrained in the vector X that 

will globablly seek the minimum of F(X) subject to one of the 

constraints sets listed in Table (4.2). 

Finally, it is important to point out that two aspects have to be 

considered in computer programming: 

1) In each of the minimax vector optimization methods, each feasible 

value of the entropy parameter P generates a Pareto point. A 

standard way of generating different values of P is by using the 

following formula: 

+ a 
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NO. 

1. 

2. 

3. 

4. 

Minimax Vector Optimization Methods 

Name 

The Entropy-Based Weighted Objective 
Function Methods, EWOF 

The Aggregated Objective Functions 
Method, AOF 

The Entropy-Based Constrained 
Objective Function Method, ECOF 

The Compartmentalized Objective 
Function Method, COF 

1: 
i=l 

1 ; 
P F,(X) 

>.,= e I 
{ 

e 

L 
i=l 

Form 

L ",.F,OO - (liP). 
i=l 

(lIP). 1: exp [P.F,(X») 
i=l 

.\,.Fh·(X)- (lIP). ",.in ", 

~>./n >., 
i=l 

S.t.: \.F,(X) - (lIP) ",./n >., :£ 0; i,.h<e 

c 
(l/P).AhL exp [P.F,(X») 

i=l 

S.t.: (lIP) .>.,. L exp[P F,(Xl] :s 0 dh,e 
i=l 

P.F,(X) 
e 

Table (4.1) 
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NO. 

1. 

2. 

3. 

4. 

Simulated Entropy Methods 

Nama 

The Entropy-Based Surrogate 
Constraint Method, ESC 

The Aggregated Constraint 
Method, AC 

The Entropy-Based Constrained 
Method, EC 

The Sub-Aggregated Constrained 
Met.hod, SAC 

m (lIP) .g,(X) 

[ \, 1; >., = a 
i=l 

Form 

m m 
[ A,.g,(X) - P [.\.In >., = a 
1=1 i=l 

m 

P. l: axp [(l/P).g,(X)] 
i=l 

A,.g,(X)- P.\,.ln \, :SO; i = 1,2, ... ,m 

m 
P.>., [ exp [(l/P).g,(X)] SO; 1=1,2, ... ,m 

i=l 

(liP) .g,(X) 

a }; Q)~ P > a 

Table (4.2) 

where Q is a given step size between two consecutive values of P" 

Remember that the smaller step size we choose, the better the chance 

of having more Pareto solutions if there are any, Q = 0.025 has been 

used very often in this thesis. 

2) The entropy multipliers Ai can be written in FORTRAN as follows: 

DO 10 I=l,N 
A - 0.0 
DO 20 J-N,l,-l 
AMBDA(I) - A+EXP(C*(Y(J) - Y(I») 
A - AMBDA(I) 

20 CONTINUE 
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where: 

N,Y ~ 

10 
AMBDA(I) 
CONTINUE 

1.0/AMBDA(I) 

Number of objective functions and the objective function 

value if the minimax methods are used, C ~ P. 

Number of constraints and the constraints values if the 

simulated entropy techniques are used, C ~ liP. 

4.3 PARETO SET GENERATION OF MULTI-CRITERIA OPTIMIZATION 

Six numerical examples are presented. The Pareto set for each 

example is generated by different methods. The first two examples are 

purely mathematical with no physical or engineering interpretation is 

given. The third example represents an optimal-shape design problem 

where the Pareto set performances and the associated designs, are 

represented as diagrams of the two parts of the beam. The form of 

these solutions goes through several distinct stages in progressing 

along the Pareto boundary of the feasible performance space. The form 

of these solutions and the trends they follow provide valuable design 

information for the designer or manufacturer. Even if none of them are 

chosen as the final design, the prescriptive advice that they offer on 

the likely form of good solutions in relation to different strategies 

performance can be used in the synthesis of that final design and is 

very difficult to obtain in any other way. The fifth example, which is 

a linear programming one, is a production planning problem to determine 

how many units to produce of each of two products, denoted as A and B. 

The last example is a three criterion optimization problem. 
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4.3.A. Numerical Examples 

Example 4.3.A.l (Osyczka, 1984) 

This first example is purely numerical without any physical or 

engineering interpretation. 

Optimize: 

XZ
l + X2

2 + 12 (Xl + Xz).... Min 

Xl Xz .... Max 

S. t.: gl (X) 

gz(X) s -

o . 5 XZ l + 5 Xl - Xz - 6 ;::: 0 

X21 + 6 Xl - X2 + 14 X2 - 42 ;::: 0 

g3 eX) s - x2
1 + 16 Xl - X2z + 6 Xz - 48 ;::: 0 

Xl' Xz ;::: 0 

We transform the second objective function to a minimization 

form, i.e., we mUltiply it by (-1). Hence, we have: 

Fz (X) -
The graphical illustration of the above problem is shown in Fig. 

(4.2) and the results are summarised in Table (4.3) and Fig. (4.3). 

Note that only two solutions can be obtained by the first method since 

the re~t of Pareto solutions are concave 
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No. 

2 

2 

5 

6 

8 

9 

10 

The Entropy-Based Weighted Objective Functions Method 

[5.9874,6.0134] 

[3.0,3.0] 

F(X) 

[216.019,-36.0045] 

[89.9983,-8.9997] 

The Entropy-Based Constrained Objective Function Method 

[3.0,3.0] [90. ,-9.0] 

[3.3703,3.4035] [104.2291,-11.47095] 

[3.3162,36426] [107.7719,-12.07969] 

[4.0083,4.0205] [128.5761,-16.1153] 

[4.3031, 4.5412] [145.2714,-19.54137] 

[4.7752,4.9711] [164.4717,-23.73837] 

[5.0072,5.0205] [170.6086,-25.13837] 

[5.6178,5.6180] [197.9528,-31.56117] 

[5.6103,5.7799] [201.5647,-32.42685] 

[5.9791,6.0216] [216.0159,-36.0033] 

Table (4.3) 

Results of Calculations for Example (4.3.A.l) 
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Fig. (4.2) 

Graphical Illustration of Example ~4.3.A.l) Based on (Osyczka, 1984) 
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Pareto Optimal Sets by the Entropy-Based Minimax Methods of Example (4.3.A.l) 



Example 4.3.A.2 (Osyczka, 1984) 

This is another well known numerical example. 

Optimize: 

Fl (X) Min 

Fz (X) 

S. t. : 

gz (X) 

The graphical illustration of the above problem is shown in Fig. 

(4.4) and the results are summarized in Table (4.4) and Fig. (4.5). To 

make the right decision about the satisfactory solution, we would like 

h . b f XPareto d 1 to ave some representat1ve su set 0 an et us assume that it 

would be convenient for us if this subset were such that the values of 

the objective functions would more or less uniformly cover the set 

FPareto Note that such a subset is obtained by the second method rather 

than the first method. 

Example 4.3.A.3 (Osyczka, 1984) 

Consider the third example in which the exterior diameters of the 

beam, Fig. (4.6), are assumed to be 100 mm and 80 mm. If these 

diameters are not predetermined, i.e., can be chosen in the process of 

design, then they can be treated as the third and fourth design 

variables. A similar question arises when we consider the beam 

material. If the designer is free to choose the material of the beam 
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g, (X) = 0 

Graphical Illustration of Example (4.3.A.2). 

Based on (Osyczka, 1984) 
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No. 

2 

5 

6 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

2 
3 
4 

5 
6 
7 
8 

The Entropy-Based Yeighted Objective Functions Method 

[4.6840,5.0167] [29.8512,26.9561) 

[4.6389,5 0219) [29.8578,26.5409) 

[4.6315,5 0227) [29.8592,26.4735) 

[4.6232,5.0239) [29.8627,26.3978) 

[4.6140,5.0250) [29.8649,26.3139) 

[4.6042,5.0263) [29.8676,26 2251) 

[4.5948,5.0275) [29.8704,26.1395) 

[4.5722,5.0307) [29.8807,25.9362] 

[4.5594,5.0326) [29 8862,25. 8204) 

[4.5338,5.0366) [29 9008,25. 5918) 

[4. 50l3, 5. 0418] [29. 9206,25 3035) 

[4.4605,5.0488) [29.9513,24 .9448] 

[4.4184,5.0568) [29 9895,24 .5789) 

[4.3342,5.0747) [30. 0869,23 8603) 

[4.2043,5.1075) [30.2913,22 7834) 

[3.9583,5.1866) [30.8587,20.8547) 

[2.1179,7.1673] [53.4885,11.6528] 

[2.0849,7.2913) [55.2486,11.6382) 

The Entropy-Based Constrained Objective Function Method 

[4.4757,5.0463) 
[4.1126,5. 1344) 
[3,5874,5.3533) 
[3.2135,5.5898) 
[2.9425,5.8167) 
[2.7789,5.98331 
[2.2052,6.9096) 
[2.0917,7.2641) 

Table (4.4) 

[29.94075,25.07806) 
[30.47424,22.047421 
[32.24579,18.22313) 
[34.45959,15.916541 
[36.77594,14.47511) 
[38.57903,13.70582) 
[49.94713,11. 77235) 
[54.85886,11.63919) 

Results of Calculations for Example (4.3.A.2) 
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Pareto Optimal Sets by the Entropy-Based Minimax Methods of Example (4.3.A.2) 



from the given set of materials then we shall have a new design 

variable. The beam should satisfy two objectives: 

~----~----
\ 6-
'- - - - - - - -1- - - - - - - - --

--------------L.~----------

Fig. (4.6) 

Drawing of the Beam (Osyczka, 1984) 

(1) the minimization of the Volume of the beam, and 

(2) the minimization of the static compliance of the beam. 

The function describing the volume of the beam is: 

The static compliance of the beam for the displacement under the 

force F is: 

1 

} 
where E is Young's modulus. We assumed that f - 1000 mm, D1 _ 100 mm, 
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Also, it is assumed that the beam should resist the maximum force 

Fmax = 12000 N and the permissible bending stress of the beam material 

is a g = 180 N/mm. Thus, the bending strength constraints are: 

for part 1: 

and for part 2: 

Assuming also that the interior diameter of the beam is to be no 

less than 40 mm. After substitution, the optimal-shape design problem 

may be formulated as follows: 

Optimize: 

{[ 4096 

1 1 

jx" Fz(X) 3.298 x 10-5 

x 107 
- X

4
Z 108 X4 - z 

10' } 
+ mm/N 

lOB -X\ 

S. t. : 
gl(X) '" 180 - 9.78 X 106 Xli (4.096 x 107 - X4

Z) ?: 0 

gz(X) ... 75.2 - Xz ?: 0 

124 

--. Min 



The results are summarized in Table (4.5) and Figs (4.7-4.9). 

Referring to Table (4.5), the designer chooses one solution. This 

choice is based on his intuition and experience. 

The Entropy-Based Wei9hted Objectiv6 Method 

No. 

[165.29.75.2) [0.2943695e+07,0.49924662e-03] 

2 [183.58,74.609] [0.2961524e+07,0 495371176e-03] 

[192.75,74.307] [02970895e+07.0.493597705e-03] 

[202.39,73.986] [0.2981043e+07,0.491856365C-03) 

[212.51,73.644) [0.2992045e+07,0.49015739ge-03) 

6 . [219.88,73.392] [0.3000292e+07,O.489001861e-03) 

[223.67,73.262) [0.3004618e+07,0.488433288e-03) 

[152.71,40.0) [0.6162431e+07,0.340317842e-03) 

[145.21,40.0] [0.6183632e+07,0.340058003e-03] 

10 [137.95,40.0] [0.6204248e+07,0.33983076e-03) 

11 [132.72,40.0] [0.6218924e+07,0.33968105e-03] 

12 [131.05,40.0) [0.6223628e+07,0.33963611e-03] 

13 [124.50,40.0) [0.624214e+07,0.339468941e-03] 

14 [110.72,40.0) [0.6281057e+07.0 339171384e-03] 

15 [101.02,40.0) [0.6308531e+07,0.339000951e-03] 

16 [96.227,40.0] [O.6321995e+07,0.338929007e-03) 

17 [74.569,40.0] [0.6385737e+07,0.33867266e-03) 

18 [1.0,40.0] [0.6591174e+07,0.33846451e-03) 

The Entropy Based Constraint Objectives Method 

[165.30,75.199) A [O.2943734e+07,0.4992401e-03] 

2 [182.30,74.651) [0.2960245e+07,0.4956268e-03] 

3 [194.01,74.265) [0.2972194e+07,0.4933646e-03] 

[206.16,73.859] [0.298509ge+07,0.491207ge-03] 

5 [217.11,73.487] [0.2997181e+07,0.4894268e-03] 

6 [221.51,73.336] [0.3002174e+07,0.48B7516e-03] 

7 [221.43,71.549] [0.3205612e+07,0.4663430e-03] 

8 [232.23,71.191] [0.32151B8e+07,0.4652811e-03] 

9 [225.57,67.174] (0.3670394e+07,0.4277397e-03) 

10 [236.85,66.252] [0.3735082e+07,0.4232714e-03] 

11 [219.06,66.058] [0.3B05428e+07,0.4189061e-03] 

12 [225.08,65.402] [0.3B56105e+07,0.4156467e-03] 

13 [208.21,64.240] C [0.402213ge+07,0. 4063430e-03] 
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14 [231. 21, 52.351) [0.4144831e+D7.0. 3994876e-D3) 

15 [234.36,62. D7D) [D.416331ge+D7,D. 3985558e-D3) 

16 [242.77,61.416) [0.4203013e+D7,0. 3966531e-03) 

17 [234.36,58.9671 [D.4458198e+D7,0. 3850318e-03) 

18 [231. 06, 58.955) [0.4468507e+07,0.3845755e-03) 

19 [228.60,58.361) [D.4530231e+07,0.3820444e-03) 

2D [213.70,57.D52) [0.4691012e+07,0.3758790e-03) 

21 [232.50,55.351) [D. 4787910e+07,0.3725172e-03) 

22 [226.02,54.971) [0 .4839180e+07,0 .3707132e-03] 

23 [216.04,54.552) [0. 4903343e+07,0 3685560e-03) 

24 [228.51,53.746) [0 4936624e+07,0 .3675970e-03) 

25 [228.51,52.481) [0. 5042167e+07,0. 364403ge-03) 

26 [228.51,51.345) [0. 5134723e+07,0. 35177 5De-03) 

27 [228.51,50.906) [0.5169965e+07,0. 3608146e-03] 

28 [228.51,50.241) [0.5222748e+07,0.359416ge-03) 

29 [228.51,49.383) [0.5289871e+07,0.3577087e-03) 

30 [193.97,48.748) [0.5436395e+07,0.3538036e-03) 

31 [202.94,47.265) [0.5522785e+07,0.3518865e-03) 

32 [192.28,46.483) [0.5610471e+07,0.3499517e-03) 

33 [175.45,46.399) [0. 5664181e+07,0 .348863ge-03) 

34 [175.45,44 . 620) [0. 5791270e+07,0 .3463724e-03) 

35 [175.45,42.870) [0. 5911458e+07,O. 3442250e-03) 

36 [192.55,40.0) [0. 604985ge+07,0 . 3421793e-03] 

37 [175.45,40.0) [0. 6098175e+07,0. 3412750e-03) 

38 [154.20,40.0) [0. 6158251e+07,0.3403721e-03) 

39 [147.19,40.0) [0. 6178043e+07.0.340123ge-03) 

40 [134.01,40.0] [0.6215292e+07,O.3397167e-03] 

41 [132.52,40.0) [0.6219488e+07,0.3396757e-03) 

42 [126.21,40.0) [0.6237336e+07,0.3395106e-03) 

43 [115.18,40.0) [0.6268511e+07,0.3392596e-03) 

44 (l09. 69,40.0) [0.6284024e+07,0.3391511e-03] 

45 [103.31,40.0) [0.630204ge+07,0.3390382e-03) 

46 [92.308,40.0) [0 6333136e+07,O.3388738e-03) 

47 [85.273,40.0) [0.6353017e+07,D.3387872e-03) 

48 [77 .439,40.0) [0.6375157e+07.0.3387062e-03) 

49 [51. 448,40.0) [0.6448607e+07,0.3385353e-03) 

50 [48.834,40.0] [0.6455994e+07,0.3385250e-03) 

51 [44.642,40.0) [0.6467846e+07,0.3385106e-03) 

52 [42.974,40. 0) [0.6472553e+07,0.3385057e-03) 

53 [0.0,40.0) B [0.6593964e+07,0.3384645e-03) 

Table (4.5) 

Results of Calculations for Example (4.3.A.3) 
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Example 4.3.A.4 (Singh, 1987) 

The dressing depth of cut and the dressing lead are t:he two 

important dressing variables which significantly affect the surface 

roughness and specific grinding energy. Normally, to ensure good 

grinding performance, it is desirable to have, among other things, low 

surface roughness and, at the same time, low specific grinding energy. 

A finely dressed wheel gives low surface roughness but at the same 

time, a higher specific griding energy, and vice versa. Therefore, 

both criteria of good grinding performance are in conflict and cannot 

be achieved simultaneously. Experiments were conducted to establish 

functional relationships between the dressing variables and the surface 

roughness as well as specific griding energy under reciprocating plunge 

surface grinding conditions which may be cast as follows: 

Optimize: 

S. t. : 

F 1 (X) 

F2 (X) 

gl(X) 

gz(X) 

g3(X) 

g4 (X) 

== 

== 

... 

== 

Xl' Xz ~ 

- 2.4798 + 0.55 Xl + 0.22 X2 ~ Min 

3.7366 - 0.56 Xl - 0.27 Xz ~ Min 

3.18 - Xl ~ 0 

Xl - 2.40 ~ 0 

2.70 - Xz ~ 0 

Xz - 2.17 ~ 0 

0 

The results are summarized in Table (4.6). 
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No. 

2 
3 
4 

5 
6 

7 

1 
2 

4 
5 
6 
7 
8 
9 

The Entropy-Based Weighted Objective Functions Method 

[3.18,2.71 
[2.4,2.7] 
[2.4,2.5987] 
[2.40,2.5159] 
[2.40,2.4594] 
[2.40,2.426] 
[2.40,2.373] 

[-0.1368,1.2268) 
[-0.5658,1.6636] 
[-0.5881,1.691] 
[-0.6063,1.7133] 
[-0.61873,1.7286] 
[-0.6261,1.7376] 
[-0.6377,1.7519] 

The Entropy-Based Constrained Objective Function Method 

[3.18,2.70] 
[3.0560,2.70] 
[2.9648,2.70] 
[2.8292,2.70] 
[2.7395,2.70] 
[2.6024,2.70] 
[2.4794,2.70] 
[2.40,2.2886] 
[2.4,2.17] 

[-0.1368,1.2268] 
[-0.2050,1.2962] 
[-0.2552,1.3473] 
[-0.3297,1.4233] 
[-0.3791,1.4735] 
[-0.4545,1.5503] 
[-0.5221,1.6191] 
[-0.6563,1.77471 
[-0.6824,1.8067] 

Table (4.6) 

Results of Calculations for Example (4.3.A.4) 

Example 4.3.A.S (Osyczka, 1984) 

This is a production planning problem to determine how many units 

to produce of each of two products, denoted as A and B. We could then 

define: 

Xl number of units of product A to produce, 

Xz number of units of product B to produce. 

Both products A and B require time in two departments. Product A 

requires 1 hour in the first department and 1.25 hours in the second 

department. Product B requires 1 hour in the first department and 0.75 

hours in the second department. The available hours in each department 
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are 200 monthly. Furthermore, there is a maximum market potential of 

150 units for product B. Assume that product A is of high quality and 

product B is of lower quality. The profits are $4 and $5 per product 

respectively. The best customer of the company wishes to have as lIlany 

as possible of type A product. We realise that two objectives: 

(1) the maximization of profit, 

(2) the maximum production of product A, 

should be considered in this problem. The graphical illustration of 

the above problems is shown in Fig. (4.10). Hence, the objectiv<., 

functions and constraints can be written as follows: 

Optimize: 

S. t. : 

F 1 (X) 

F2 (X) 

gl (X) 

gz (X) 

g3 (X) 

Xi ~ 

= 

'" 

'" 

0; 

Xl + 

l. 25 

X2 -

i = 

Max 

-> Max 

X2 200 ~ 0 

Xl 0.75 Xz - 200 ~ 0 

150 ~ 0 

1,2 

The results are summarized in Table (4.7) and Fig. (4.11). This 

example is a linear programming problem. The decision maker decides a 

priority that in this problem the profit is more important than the 

number of units of product A which reflects the wishes of the best 

customer. He must now express his preferences in a formalized way. He 

assumes that he can afford to satisfy the wishes of the customer 

providing that it will cost him less than 5.26% of the profit he would 

make if he disregarded these wishes. The solution which gives the 
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maximum profit is F(X) = [950.0,50.0]. The compromise solution which 

gives 5.26% of the profit decrement is F(X) = [900.0,100.0] However, 

the manager may be unable to determine his preferences by giving the 

strict values of the function decrement and then he may want to compare 

solutions for which the values of the profit decrements change in some, 

range, for example between 4% and 12%. In this case, the resuls from 

Table (4.7) can help him to make the right decision. 

No. 

2 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

2 
3 

5 
6 

8 
9 
10 
11 
12 
13 
14 
15 

The Entropy-Based Yeighted Objective Functions Method 

(50.0,150.0] 
[100.0,100.0J 
(104.43,92.619] 
(107.755,87.418] 
(116.45,72.584] 
(117.72,70.475] 
(122.90,61. 042] 
(125.90,56.831] 
(131. 35 , 47 . 742] 
(132.00,46.659] 
(133.40,44.338] 
(135.93,40.117] 
(140.15,33.077] 
(143.07,28.217] 
(145.90,23.506] 
(146.44,22.593] 
(150.75,15.418] 
(151.47,14.224] 
(152.62,12.308] 
(155.45,7.5848] 
(156.53,5.7849] 
(159.99,0. 0] 

F(X) 

(950.0,50.0] 
(900.0,100.0] 
(880.8125,104.428864] 
(867.286377,107.549561] 
(828.718994,116.450287) 
(823.234131,117.715149) 
(800.793213,122.895233) 
(787.761719,125.901764) 
(764.128906,131.354828) 
(761.312012,132.004852J 
(755.281494,133.397659) 
(744.303467,135.929932J 
(725.999023,140.153976) 
(713.364258,143.069763) 
(701.118408,145.896698) 
(698.740479,146.444427] 
(680.087891,150.750015) 
(676.981934,151.465668) 
[672.0,152.615234] 
(659.720703,155.449219) 
(655.041748,156.529419] 
(640.0,160.0) 

The Entropy Based Constrained Objective Function Method 

(50.0,150.0) 
(57.404,142.60] 
(58.193,141.811 
[60.399,139.60] 
[75.527,124.47) 
[84.416,115.58] 
[89.620, llO , 38) 
[97.794,102.21) 
[100.0,100.0] 
[101. 71,97.148] 
[107.15,88.091] 
[107.82,86.962) 
[120.96,65.076) 
[136.69,38.845] 
[160.0,0.0] 

Table (4.7) 

(950.0,50.0] 
[942.5955,57.40358] 
[941. 8069,58.19331] 
[939.6001,60.39946] 
[924.4707,75.52701] 
[915.5845,84.41553] 
[910,3801,89,61966) 
[902.2051,97.79425] 
[900.0,100.0] 
[892.585,101.7117] 
[869.0393,107.1455) 
[866,1006,107,8228) 
[809.1987,120.9553) 
[740.9973,136.6929] 
(640.0281,160.0] 

Results of Calculations for Example (4.3.A.5) 
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Pareto Sets Generated by the Entropy-Based Minimax Methods 

Example 4.3.A.6 

This example is also purely numerical and has no physical or 

engineering interpretation except that it is three-criteria 

optimization problem. 
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Optimize: 

s. t.: 

... Min 

... Min 

gl (X) '" - XZ
l + 10 Xl - XZz + 16 Xz - 80 ~ 0 

Xl' Xz ~ 0 

The results are summarized in Table (4.8) and Fig. (4.12). 

4.3.B Discussion 

Quadratic programming, dynamic programming or convex programming 

were developed originally for the solution of single criteria problems. 

However, they have been combined with the Pareto set generating 

techniques to solve multi-criteria optimization problems. In this 

thesis, mathematical programming has been combined with the developed 

entropy-based techniques to solve multi-criteria optimization problems 

by generating its Pareto sets. 

In the preceding section several examples were solved and their 

solutions were presented. Although it is difficult to select a 

preferred solution when the problem is purely numerical and has no 

physical or engineering interpretation, which is the case with the 

first two examples, the only remaining purpose is showing the Pareto 

solutions. In such cases the shape of the Pareto optimal curve is the 

main significance to the decision maker and this can be reached by 

generating as many solutions as possible. As shown in Figs. (4.3 and 

4.5), the Pareto optimal set defines a straight line or a very flat 
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curve which means the tradeoff between F1 (X) and F2 (X) will remain 

constant over the span of the Pareto optimal set. 

No. 

2 

6 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

2 

6 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

The Entropy-Based ~eighted Objective Functions Method 

[4.3393,5.0737] 

[4.2636,5.0919] 

[4.2434,5.0971) 

[4.2063,5.1069] 

[4.1555,5.1212] 

[4.1090,5.1354) 

[4.0439,5.1564] 

[3.9656,5. 1840) 

[3.8685,5.2216) 

[3.7422,5.2755] 

[3.5971,5.3482] 

[3.2552,5.5597] 

(3.0471,5.7226] 

[2.5939,6.2082) 

[2.2189,6.875] 

[2.0771,7.3243] 

[30.0813,23.9031,34.0] 

[30.1909,23.2699,34.0] 

(30.2233,23.1033,34.0) 

[30.287,22.7996,34.0] 

[30.3819,22.3892,34.0) 

(30.4811,22.0189,34.0] 

[30.6328,21.5096,34.0] 

[30.8392,20.9102,34.0) 

[31.1336,20.1869,34.0] 

[31.5754,19 2947,34.0] 

[32.2006,18.2874,34.0) 

[34.1654,16.1561,34.0) 

[35.7958,15.0077,34.0) 

[41.1352,12.9363,34.0] 

[49.4843,11.7984,34.0] 

[55.7229,11.6387,34.0) 

The Entropy-Based Constrained Objective Function Method 

[3.0341,8.3716] 

[3.3923,7.98871 

[2.3873,7.8146) 

[2.0814,7.3168) 

[2.3800,7.232] 

[3.13,6.8473] 

[2.7875,6.7001] 
[3.0143,6.59571 

[3.5143,6 3821] 

[2.5181,6.3147] 

[3.5876,6.0952) 

[3.6693,6.066) 

[3.8961,5.9873) 

(4.3961,5.8283) 

[3.4574,5.4269] 

[3.5035,5.3999) 

[3.852,5.2283] 

[3.9074,5.20601 

[4.0132,5.1670] 

[4.1499,5.12311 

[4.4244,5.05571 

[73.11850,17.57733,29.00291) 

[67.21158,19.49637,27.58484) 

[63.45506,13.51391,31.86044) 

[55,61745,11.64924,33.98468] 

[54.68159,12.89636,32.45427) 

[50.01587,16.64418,29.82558] 

(47. 67912, 14. 47050, 31. 58466) 

[46.51712,15 68193,30.91498) 

[44.24493,18.73265,29.82492] 
[42.39381,12 65540,34.0) 

[40.73869,1896632,30.62314) 

[40.46576,19,52956,30.51114) 

[39.74387,21.16669,30.26959) 

[38.36531,25.15375,30.08095) 
[32.90865,17.38052,34.0) 

[32.66278,17.67416,34.0) 

[31.18718,20.06621,34.0) 

[31.01013,20.47374,34.0) 

[30.71066,21.27275,34.0) 

[30.3960,22.34462,34.0) 

[29.98438,24.63060,34.0) 

Table (4.8) 

Results of Calculations for Example (4.3.A.6) 
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Pareto Optimal Set by the EWOF Method 
of Example (4.3.A.6) 
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The third example is about design. The exploration of the 

relationships between the design variables (Xl and Xz) and solution 

performances (F1 and Fz) is possible only through multi-criteria 

optimization by generating the Pareto solutions. Three types of 

relationships can be recognised: 

1) The performance-performance relationships, Fig. (4.7). 

2) The design-design relationships, Fig. (4.8). 

3) The design-performance relationships, Fig. (4.9). 

The performance space and the design space relationships can 

directly be investigated by generating the Pareto set efficiently. 

Pareto solution A gives us the least volume while Pareto solution B 

gives us the least static compliance. These two solutions are extremes 

and the rest of the Pareto set solutions are in between, such as 

solution C. 

By the performance-performance relationships we mean the 

implications of choosing a certain level of performance in one 

criterion on the performances that are then attainable in other 

criteria. In terms of our beam design problem, the designer has to 

decide how much worsening of the beam volume, F l , we are prepared to 

accept in order to lower static compliance. In this case, the Pareto 

set of performances follows the classic convex shape where improvement 

in volume has a steadily increasing rate of effect on static 

compliance. In the central portion, where C exists, the balance is 

even and even performances here likely to represent good compromise 

solutions. 
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By the design-design relationships we mean the implications of 

choosing or restricting values for one deign variable on the values 

that need to be given to other design variables if acceptable 

performances are to be maintained. By studying these three types of 

relationships, the designer can easily select his preferred solution. 

The information we can get from the design-design space is that the 

interior diameter of the inner beam, Xz, stays constant for values of 

Xl ~ 154.2. However, the relationship between Xl and Xz is not stable 

since design variables do not need to follow a stable relationship 

necessarily, because they are not objectives, but decisions vary ill one 

way or another to satisfy optimality. 

By the design-performance relationships, we mean the implications 

of choosing a certain level of one design on the performances that are 

then attainable in other criteria. The design-performance spaces, (Fl' 

XJ and (Fz , Xz), follow stable shape while the design-performance 

spaces, (F l , Xl) and (Fz . Xl)' follow an unstable one for the same 

reasons mentioned before. 

In the fourth example, we were able to obtain more Pareto solutions 

using the entropy-based methods than the ones obtained by non-entropy 

based methods. The shape of the Pareto optimal set defines a straight 

line which means the tradeoff between Fl (X) and Fz (X) will remain 

constant over the span of the Pareto optimal set. In addition, the 

same thing about the exploration of the relationships between the 

design variables (Xl and Xz) and solution performances (F1 and Fz) can 

be mentioned here. 
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The last example is also purely mathematically numerical which 

has no physical or engineering interpretation. By investigating t_he 

relative merits of the entropy-based weighted method and the entropy­

based constrained method through solving several numerical examples, we 

have shown clearly that the entropy-based weighted method alone is 

inadequate to produce representative Pareto set because of a large gap 

between two groups of solutions. There is no indication of whether 

these gaps are by reason of the set being concave in that region or 

there being no solutions in that region. The entropy-based constrained 

method provides more evenly distributed information and should be used 

in addition to the first method to investigate large gaps. 

The numerical results obtained by the developed minimax methods 

make these methods very efficient computer-aided design tools. They 

are not only computationally efficient and easy to use, but they also 

generate very good representations of a complete Pareto set. 

It is very important to note that, no matter how many criteria 

we consider, we always need to play with one parameter to generate the 

Pareto set. This property of the developed methods is very unique. 

In addition, it is notable that the size of the Pareto set generated by 

the developed methods is, in general, larger than the one generated by 

one of the known methods since generating Pareto set can be done 

quicker than before and more solutions are outained. 

In the preceding section, s x examples were presented concisely 
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on two-dimensionally plots of the approximated Pareto optimal set in 

the performance space as shown before. 

The results of the new entropic vector optimization techniques 

developed in this thesis provide for the first time a quantity of 

information (objective values, design values, trade-offs) upon which 

designers can base their decisions at relatively low computational 

costs. This is a unique and important property, particularly when 

applying these techniques for problems with more than two objectives. 

The accuracy of the obtained results may be noted by comparing them 

with the corresponding graphical illustration figure or the reference 

taken from it. In all cases, previoulsy published results obtained by 

other researchers were generated by the present methods to very high 

accuracy. 

4.4 SIMULATED ENTROPY. MINIMAX ENTROPY AND GLOBAL MINIMIZATION 

Five numerical examples are solved using the new entropy-ba.:;ed 

simulated entropy techniques developed in chapter three. General 

discussion showing the characteristics of these techniques is included 

also. 

4.4.A Numerical Examples 

Example (4.4.A.l) (Li, 1987) 

Minimize: 
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The results are summarized in Table (4.9) and Fig. (4.13). 

P F XI x:, gl g2 

1.4 3.7791 .0563 .9656 -.96245 -.97808 
1.3 3.3557 .1685 .9654 -.937 -.8662 
1.2 3.0168 .2634 .9698 -.9004 -.7669 
1.1 2.7322 .3472 .9762 - . 8556 -.6766 
1.0 2.4862 .4233 .9838 -.8046 -.5928 
0.9 2.2387 .5084 .8824 -.6239 -.6092 
0.8 2.0592 .5697 .8836 -.5590 -.5467 
C 7 1. 8872 .6311 .8848 -.4866 -.4841 
0.6 1. 7286 .6902 .8857 -.4093 -.4241 
0.5 1.5835 .7468 .8859 -.3282 -.3673 
0.4 1.4256 .8062 .9798 -.3299 -.2140 
0.3 1.3076 .8580 .9418 -.2057 -.2003 
0.2 1.2018 .9052 .9432 -.1237 -.1516 
0.1 1.0826 .9596 .9848 -.064 -.0555 
0.05 1. 0345 .9829 1.0009 -.0349 -.0162 
0.025 1. 0104 .9948 .9962 -.0066 -.0089 

Table (4.9) 

The Global Minimum by the ESC Method of Example (4.4.A.l) 

As noted, we started the simulated entropy process at a maximum 

temperature of 1.4 which is correspondent to a maximum energy of 3.7791 

and minimum values of constraints gl (X) and g2 (X) . Lowering the 

temperature continuously towards zero along the process, the energy of 

the system F(X) decreases continuously along the process to its minimum 

and the corresponding constraints values increase continuously towards 

zero. The simulated entropy process stops when at least one original 

constraint approaches zero. 
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Example (4.4.A.2) CLi, 1987) 

Minimize: F(X) 

S. t.: gl (X) '" 2X1 + X 2 + 3X3 1 ~ 0 

g2(X) Xl + X 2 + X3 - 1 ~ 0 

g3(X) '" Xl + 3x2 + 2X3 - 1 ~ 0 

Xl' X2 , X3 ~ 0 

The results are summarized in Table (4.10) and Fig. (4.14). 

p XJ 
X, X.l 9J 9: 9, 

.9 84749000.0 .002998 .002233 .00176 -.9865 -.993 -.9868 

.8 78000.0 .02002 .02351 .02724 -.8547 -.9292 -.855 

.7 11564.0 .03744 .04452 .05189 -.7249 -.8662 -.7252 

.6 3708.8 .05444 .06508 .07611 -.5977 -.8044 -.5981 

.5 1434.5 .1150 .08881 .06825 -.4764 -.7279 -.4821 

.4 778.05 .1299 .1079 .09172 -.3572 -.6705 -.3631 

.3 487.20 .1438 .1256 .1136 -.2459 -.617 -.2521 

.2 331.83 .1844 .1484 .1101 -.1524 -.5571 -.1502 

.1 252.37 .1942 .1614 .1264 -.07096 -.518 -.0687 

.075 238.63 .1963 .1643 .1299 -.0533 -.5095 -.051 

.05 226.14 .1984 .1671 .1334 -.0359 -.5011 0336 

.025 214.62 .2005 .1699 .1368 -.0188 -.4928 - 0162 
.0175 211.27 .2011 .1708 .1378 -.0136 -.4903 -.0109 

.015 210.17 .2013 .1711 .1382 -.01185 -.4895 -.00912 

.0125 208.49 .2065 .1689 .1376 -.00547 -.4871 - . 0118 

.01 207.41 .2063 .1742 .1341 -.0108 -.4853 .0027 

.0075 205.72 .2097 .1709 .1356 -.00279 -.4838 0063 

.004 204.13 .2098 .1731 .1349 -.0026 -.4822 -.00113 

.003 203.95 .2112 .1713 .1355 -.00031 -.482 -.0000388 

Table (4.10) 

The Global Minimum by the ESCM of Example (4.4.A.2) 
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Example (4.4.A.3) (Hock, et. al. 1981) 

Minimize: 

S. t. : Xl X2 - 1 ~ 0 

- 10 S Xl S 10 

1.0 S X2 S 10 

- 10 S X3 S 1.0 

Xl ,X2 ,X3 ~ 0 

The results are summarized in Table (4.11) and Fig. (4.15). 

Note that during the simulated entropy process, the third design 

variable and the last two constraints were constant. The lowest free 

energy, F(X) = 6.0448, was obtained at temperature P = 0.2 in which 

the first constraint was active. So far, each of the minimum energy 

obtained by simulated entropy is very close to the one given in its 

corresponding reference. 

Example (4.4.A.4) (Hock, et. al. 1981) 

Minimize: 

F(X) = X2
1 + X22 + Xl X2 - 14Xl - 16X2 + (X3 - 10)2 

+ 4(X4 - 5)2 + (Xs - 3)2 + 2(X6 - 1)2 + 5X2
7 

+ 7(Xs - 11)2 + 2(Xg - 10)2 + (X IO - 7)2 + 45 
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-

p 

2.3 

2.2 

2.1 

2.0 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

~ 1.3 

1.2 

1.1 

1.0 

.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

F(X) 

55.553 

42.368 

35.739 

31. 245 

27.814 

24.967 

22.45 

20.3 

18.437 

16.669 

15.073 

13.684 

12.433 

11. 249 

10.147 

9.243 

8.3427 

7.6045 

7.0363 

6.5037 

6 2028 

6.0448 

Xl 

1.7058 

1. 2837 

1.1883 

1.1604 

1.0146 

0.9246 

.8775 

.8392 

.7975 

.7647 

.7487 

.7193 

.6684 

.6419 

.6262 

.588 

.574 

.5573 

. 5349 

. 5402 

. 6070 

.939 

Xl 

5.4189 

5.2476 

4.7991 

4.3733 

4.3069 

4.1561 

3.9396 

3.7366 

3.5656 

3.3774 

3.1667 

3.0045 

2.9005 

2.7462 

2.5724 

2.4724 

2.3157 

2.1931 

2.1121 

1. 9691 

1.699 

1. 6941 

X3 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

.0001 

gl gl 

-8.2438 -8.2942 

-5.7363 -8.7163 

-4.7026 -8.8117 

-4.075 -8.8396 

-3.3698 -8.9854 

-2.8427 -9.0754 

-2.4568 -9.1225 

-2.1358 -9.1608 

-1.8434 -9.2025 

-1.5825 -9 2354 

-1.3709 -9.2513 

-1.1612 -9 2807 

-.9386 -9.3316 

-.7627 -9.3581 

-.6109 -9.3738 

-.4537 -9.412 

-.3326 -9.4246 

-.2221 -9.4427 

-.1298 -9.4651 

-.0367 -9.4598 

-.0313 -9.393 

-.00618 -9.4061 

Table (4.11) 

g3 g4 

-11. 7058 -4.5811 

-11.2837 -4.7524 

-11.1883 -5.2009 

-11.1604 -5.6267 

-11.0146 -5.6931 

-10.9246 -5.8439 

-10.8775 -6.0604 

-10.8392 -6.2634 

-10.7974 -6.434 

-10.7646 -6.6226 

-10.7487 -6.8333 

-10.7193 -6.9955 

-10.6684 -7.0995 

-10.6419 -7.2538 

-10.6262 -7.4276 

-10.588 -7.5276 

-10.5754 -7.6843 

-10.5573 -7.8069 

-10.5349 -7.8879 

-10.5402 -8.0309 

-10.607 -8.301 

-10.5939 -8.3059 

The Global Minimum by the ESC Method of Example (4.4.A.3) 

gj g6 g7 

-4.4189 -.9999 -10.0 

-4.2476 -.9999 -10.0 

-3.7991 -.9999 -10.0 

-3.3733 -.9999 -10.0 

-3.3069 -.9999 -10.0 

-3.1561 -.9999 -10.0 

-2.9396 -.9999 -10.0 

-2.7366 -.9999 -10.0 

-2.5656 -.9999 -10.0 

-2.3774 -.9999 -10.0 

-2.1667 -.9999 -10.0 

-2.0045 -.9999 -10.0 

-1.9005 -.9999 -10.0 

-1. 7462 -.9999 -10.0 

-1. 5724 -.9999 -10.0 

-1.4724 -.9999 -10 

-1. 3157 -.9999 -10. 

-1.1931 -.9999 -10 . 

-1 1121 -.9999 -10 . 

-.9691 -.9999 -10 . 

-.699 -.9999 -10.0 

-.6941 .9999 -10. 
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S. t. : gl (X) == 105 - 4XI - 5X2 + 3X7 - 9Xs 2: 0 

g2(X) - 10 Xl + 8X2 + l7X7 - 2Xe 2: 

g3 (X) == 8XI - 2X2 - 5Xg + 2XIO + 12 2: 0 

g4 (X) 3(XI 
2)2 4(X2 - 3)2 - 2X2

3 + 7X4 + 120 2: 0 

gS(X) == 5X\ 8X2 (X3 - 6)2 + 2X4 + 40 2: 0 

g6(X) == .5 (Xl - 8)2 - 2 (X2 - 4)2 - 3X2
s + X6 + 30 2: 0 

g7(X) == X2 2 (X2 - 2) 2 + 2 Xl X2 - 14 Xs + 6X6 2: 0 I 

i = 1, ... ,10 

The results are summarized in Table (4.12) and Fig. (4.16). The 

minimum energy obtained by the simulated entropy, F(X) = 0.8834, is 

much less than the value given by Hock et al (1981), F(X) = 24.306. 

That means by using a descent algorithm alone we might escapp the 

global minimum of the system. 

Example C4.4.A.S) (Hock, et. al. 1981) 

Minimize: 

S . t.: 5 - Xl - 2X2 - X3 - X4 2: 0 

4 - 3X I - X2 - 2X3 + X4 2: 0 

X2 + 4X3 - 1.5 2: 0 

Xi 2: 0; i-I, ... ,4 
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P F XI 

2.2 804.51 5.7983 

2.1 716.97 5.6702 

2.0 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

1.0 

VI .9 
o 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

636.1 

559.72 

491. 08 

427.96 

369.53 

317.38 

273.26 

226.25 

187.59 

153.11 

122.7 

96.185 

74.556 

55.195 

39.926 

28.851 

17.447 

5.5323 

5.397 

5.257 

5.124 

4.9899 

4.8636 

4.7317 

4.5209 

4.2899 

4.1783 

3.9431 

3.7858 

3.595 

3.4637 

3.2985 

3.0879 

2.79 

10.166 2.6574 

5.262 2.5846 

Xz 

3.1609 

3.1021 

3.0365 

3.0204 

2.980 

2.9464 

2.9177 

2.8639 

2.8108 

2.7678 

2.6808 

2.6174 

2.5607 

2.4868 

2.3804 

2.3823 

2.2822 

2.121 

2.2357 

2.158 

2.1306 

X) X4 Xl 

2.5926 6.3209 .0001 

2.7512 6.2058 .0001 

.00011 

.00012 

.00011 

. 00011 

.00011 

X6 

11.406 

11.025 

10.38 

9.581 

8.9196 

8.2503 

7.5636 

3.0473 

3.4602 

3.8037 

4.1661 

4.5546 

4.8761 

5.0365 

5.5788 

5.9453 

6.2268 

6.5706 

6.8592 

7.0814 

7.3272 

7.5236 

7.7585 

7.9968 

8.1931 

8 3349 

6.0157 

5.7937 

5.6463 

5.5211 

5.4207 

5.3472 .0001 7.0167 

5.3089 .0001 6.6978 

5.2341 

5.1956 

5.1716 

5.142 

5.127 

5.1016 

5.0886 

5.0665 

5.0358 

5.0538 

.000125 5.8276 

.00011 

.00012 

.0001 

.0001 

.0001 

.00011 

.0001 

.13811 

.08846 

5.0304 .3267 

5.0148 .509 

5.2836 

4.789 

4.2743 

3.789 

3.4435 

2.9955 

2.6872 

2.3754 

1. 9241 

7179 

. 1 

.05 

1.8131 2.5278 2.0773 8.4856 5.0008 .7123 

1. 6071 

1.5044 

1. 4788 .8834 2.5038 2.053 8.4652 4.9941 .7471 

X7 

4.033 

3.7643 

3.5219 

3.3005 

3.0889 

2.889 

2.7045 

2.5133 

2.3153 

2.1558 

1.978 

1.8184 

1.6484 

1. 4956 

1.3403 

1.1958 

1.0602 

.9444 

.08846 

.7281 

.6775 

X8 

3.9635 

4.528 

4.9062 

5.1629 

5.4704 

5.7487 

5.9961 

6.3059 

6.7232 

6.2373 

7.0805 

7.3752 

7.6168 

7.878 

8.1862 

8.4593 

8.747 

8.964 

9.1851 

9.3699 

9.4936 

.6373 9.579 

.6015 9.6111. 

X9 

6.7673 

6.7206 

6.6732 

6.6548 

6.6312 

6.6174 

6.6152 

6.5970 

6.5476 

6.5600 

6.5349 

6.527 

6.5058 

6.4927 

6.4337 

6.5071 

6.338 

6.1715 

6.2537 

6.1984 

6.0828 

X/O 

18.2670 

18.061 

17.696 

17.144 

16.612 

16.018 

15.323 

14.756 

14.477 

13.486 

12.737 

12.154 

11.433 

10.865 

10.359 

9.8941 

9.5801 

9.2954 

8.6542 

8.3974 

8.2579 

5.9912 8.1477 

5.946 8.0866 

Table (4.12) 

gI gz g3 g4 gs 

-2.83 -9.59 -3.65 -7.16 -12.26 

-2.49 -9.10 -3.58 -7.19 -11.85 

-2.27 -8.65 -3.48 -7.07 -11.47 

-2.12 -8.26 -3.34 -6.8 -11.11 

-1. 94 -7.87 -3.21 -6.58 -10.72 

-1. 78 -7.5 -3.07 -6.31 -10.36 

-1.64 -7.15 -2.91 -5.97 -9.99 

-1. 47 -6.78 -2.78 -5.68 -9.65 

-1.23 -6.38 -2.7 -5.59 -9.28 

-1. 20 -6.02 -2.45 -5.01 -8.69 

-1. 11 -5.59 -2.25 -4.64 -8.06 

-.95 -5.26 -2.12 -4.26 -7.78 

-.85 -4.85 -1. 92 -3.84 -7.15 

-.73 -4.49 -1.76 -3.41 -6.75 

-.60 -4.09 -1.64 -3.08 -6.31 

-.45 -3.81 -1. 48 -2.69 -5.96 

-.32 -3.45 -1. 42 -2.34 -5.6 

-.28 -3.06 -1. 35 -1 88 -5.18 

-.16 -2.74 -1. 06 -1.55 -4.48 

-.096 -2.5 -.98 -1.12 -4.22 

-.04 -2.36 -.97 -.81 -4.06 

-.014 -2.24 -.96 -.45 -3.94 

-.014 -2.16 -.96 -.49 -3.92 

The Global Minimum by the ESCM of Example (4.4.A.4) 

g6 g7 

-2.50 -4.58 

-2.45 -4.45 

-2.37 -9.21 

-2.28 -3.93 

-2.21 -3.69 

-2.13 -3.44 

-2 05 -3.19 

-1 97 -2.99 

-1.90 -2.87 

-1. 78 -2.56 

-1. 66 -2.36 

-1.58 -2.16 

-1. 96 -1. 98 

-1. 36 -1. 78 

-1 23 -1.63 

-1.16 -1. 48 

-1. 05 -1. 34 

-.88 -1. 06 

-.81 -.99 

-.69 -.67 

-.61 -.45 

-.51 -.21 

-.47 16 

g8 

-7.20 

-7.01 

-6.74 

-6.42 

-6.11 

-5.79 

-5.45 

- 5.14 

-4.89 

-4.43 

-4.01 

-3.72 

-3.31 

-2.97 

-2.64 

-2.57 

-2.01 

-1. 43 

-1. 26 

-.99 

.58 

.25 

-.08 
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The results are summarized in Table (4.13) and Fig. (4.17). Also 

here, the minimum energy obtained by the SE methods, F(X) = 5.8971 , 

is less than the value given by Hock et al, (1981), F(X) -/~.G82. 

This assures the necessity of using the simulated entropy techniques to 

secure our search for the global minimum. 

P Xl X2 X3 X4 9, 92 9 .. 

1.5 -2.8795 0.00011 l.4091 0.3661 0.29904 -1.5165 -2. 1574 -1 3735 
l.4 -3.162 0.0001 1.5283 0.31264 0.28463 -1.3461 -2. 1308 -1 .2788 
1.3 -3.4176 0.041 l. 5785 0.273 0.29587 -1. 2331 -2 0483 -1 1705 
1.2 -3.6759 0.10919 l. 6194 0.2575 0.30198 -1.0924 -1 84 -1 1495 
1.1 -3.9249 0.14549 l. 6635 0.20588 0.31367 -1. 0079 -l. 8019 -0. 9871 
1.0 -4.1706 0.2857 l. 7041 0.18542 0.32017 -0.8776 -1 .6195 -0. 9458 
0.9 -4.4028 0.26179 l. 74 0.15398 0.3313 -0.7729 -1. 4979 -0 8559 
0.8 -4.6366 0.31235 l. 77 87 0.11222 0.32702 -0.691 -1. 3868 -0 7276 
0.7 -4.8679 0.37211 1.8238 0.091488 0.33322 -0.5556 -1 2102 -0 .6897 
0.6 -5.0853 0.4255 l. 8601 0.05629 0.33269 -0.4654 -1. 036 -0. 585L 
0.5 -5.2948 0.48263 1.8925 0.024625 0.33426 -0.3734 -0 9446 -0 491 
0.4 -5.5005 0.5483 1. 9251 0.0001 0.3293 -0.272 -0. 7591 -0 4255 
0.3 -5.6671 0.61991 1.9468 0.0001 0.33583 -0.1506 -0. 5291 -0 4472 
0.2 -5.7836 0.6751 1. 9639 0.000863 0.33104 -0.0651 -0.3401 -0. 4674 
0.1 -5.8623 0.7306 1.9620 0.0001 0.3229 -0.0223 -0.1688 -0. 1,624 
0.075 -5.8662 0.72921 1.9635 0.0001 0.3279 -0.0157 -0. 1765 -0 4639 
0.05 -5.8867 0.73933 1.9814 0.0001 0.29016 -0.007702 -0. 0906 -0. 4818 
0.025 -5.8971 0.74389 1. 9911 0.0001 0.27119 -0.00258 -0. 0482 -0 4915 

Table (4.13) 
The Global Minimum by the ESCM of Example (4.4.A.5) 

4.4.B Discussion 

We have described a stochastic minimization procedure in chapter 3 

and tested its applicability in this section by solving different 

minimization problems. The methods, which the author chose to call 

simulated entropy incorporates a scheme for simulating the eqUilibrium 

behaviour of atoms at constant temperature, in a procedure analogous to 

chemical entropy. It has the attraction that it is 1 genera yet 

extremely easy to apply. The two simulated entropy methods use a 

descent method but it can accept small objective function increases. 

The procedure can be made to behave as simulated annealing by defining 

randomly a topology via a perturbation scheme, so that neighbours may 

be generated from any given solution. 
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Two of the most important factors which influence the convergellcP 

are the descent method and the way the sequence of control paramets P, 

is chosen. The justification for using the simulated entropy algori thm 

with P > 0 is that we may not be able to tell a priority whether a 

given descent method will produce potential local optima or not. III 

other words, using the simulated entropy algorithm with P > 0 provides 

extra security against bad or uncertain descent method. 

We have given examples which show that it is not possible to 

ensure convergence in less than exponential time for a general problem. 

However, we have not developed any rigorous theory concerning the class 

of problems for which the typical behaviour is goed. Nevertheless, 

many applications of the simulated entropy algorithm including the 

first three examined in this chapter, have displayed good performance 

of the method in terms of a comparison with the results obtained by 

using a descent method alone, when applied to the same problem. 

We have applied the method to different mathematical examples and 

demonstrated how the algorithm may be applied. While these 

applications do indicate that the simulated entropy idea is likely to 

be a useful one, a good deal of further work, possibly in the form of 

a large scale simulation, is required to study the effect of 

alternative perturbation schemes and a satisfactory method of using 

feedback to determine the control. 

For each example, the temperature versus energy relationship is 

plotted. It shows that simulated entropy takes place at ini tial 
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maximum temperature Po at which energy is maximum too. Temperature 

reduction continues slowly towards Pi at which energy is minimum. Also, 

the temperature versus the weighted constraints, the upper vertical 

axis, and entropy, the lower vertical axis, is plotted. It shows that 

the two are symmetric with respect to the temperature axis alonE,side 

the simulated entropy process. At the minimum and final temperature 

Pf , very close to zero, the weighted constraints and entropy coincidp 

at a value very close to zero also, i.e. the equilibrium configuration 

is reached and the simulated entropy process is terminated. 

In summary, we see that, for most applications, given a particular 

starting solution and a sufficient number of transitions, the simulated 

entropy algorithm, with P > 0, is more likely to obtain a good solution 

as opposed to a local optimum, than the descent method when it is used 

by itself (P 0) . At first glance these results suggest that the 

simulated entropy algorithm with P > 0 is to be preferred to the 

descent method by itself (P - 0). However, one question which must be 

answered is whether the number of iterations, Ip~o, required by the 

descent method by itself, to first observe the corresponding global or 

new local optima is significantly less than those, say Ip > 0, required 

by the simulated entropy algorithm, with P > 0. For, if this is true, 

it may well be possible to carry out several applications of the 

descent method (P = 0), each from a different starting point and for I 
p 

= a iterations, so that the total number of i~erations required is less 

than the Ip> a iterations required in one application of the algorithm 

with P > o. 
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We have found that for some applications Ip = 0 is comparable to 

Ip > 0, Ip = 0 is considerably less than Ip> o' This means that it may be 

preferable to make several applications of the descent method (P ~ 0), 

each for a small number of iterations and from a different random 

start. However, note that, in this second case, there is still a 

chance that the global optimum may not be among the set of ] ocal 

optima. 

Finally, the two simulated entropy techniques developed and 
v.l ~ I),.rs.-\tit 

employed here provide a secure designers and 

mathematicians can detect their minima. However, as with all global 

optimization-seeking methods, computational costs and time requirements 

are high. 
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CHAPTER FIVE 
RELIABILITY CONCEPTS 



SYNOPSIS 

CHAPTER FIVE 

RELIABILITY CONCEPTS 

This chapter introduces the concepts of uncertainties in 

reinforced concrete structures, and structural reliability. The 

research of the late 1960' s to the early 1980' s, which led to the 

development of structural optimization in the probabilistic sense, is 

surveyed. 

Also, the concept of limit states is introduced and its relation 

with failure is discussed. A brief discuss ion of human errors is 

included since many structural failures are related to human errors. 

5.1 INTRODUCTION 

Many problems in engineering involve natural processes and 

phenomena that are inherently random; the states of such phenomena are 

naturally indeterminate and thus cannot be described with definiteness. 

For these reasons, decisions required in the process of engineering 

planning and design must usually be made, and are made, under 

conditions of uncertainty. The effects of such unceltainty on design 

and planning are important, to be sure; however, the quantification of 

such uncertainty, and the evaluation of its effects on the performance 

and design of an engineering system, properly, should include concepts 

and methods of probability. Furthermore, under conditions of 

uncertainty, the design and planning of engineering systems involve 

risks, and the formulation of related decisions requires risk-benefit 

trade-offs, all of which are properly within the province of applied 
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probability (Ang, 1975). 

Given a random experiment with a sample space S, a function X 

that assigns each element in S one and only one real number Xes) = x is 

called a random variable (rv). The space of X is the real numbers (x:x 

= X(s), S€S} where S€S means element s belongs to the set S. If the 

sample space contains a finite countable number of elements, then the 

rv is known as discrete rv, while continuous rv can take any valuf> 

within its domain. 

There are three conceptual interpretations of probability: 

i) The Equally Likely Interpretation (ELI): If an event can occur j 11 

N equally likely and different ways, and if n of these ways has 

an attribute A, then the probability of Occurrence of A is 

defined as: P,(A) = niNo 

ii) The Frequency Interpretation (FI): If an experiment is conducted 

N times and a particular attribute A occurs n times, then the 

probability of occurrence of A is defined as ~(A) = (ll/N) as N 

-+ 00 

iii) The Sub jective Interpretation (S1): The probabili ty is a measure 

of degree of belief one holds in a specified proposition. 

A probability density function (pdf) is a special type of 

mathematical expression which governs the assigned probability that a 

random variable, x, takes: i) a particular value of X in the case of 

a continuous rv or, ii) less than and equal to a particular value X 
1 , 

or, iii) greater than and equal to a particular value X
2

, or, iv) 

values within a range from Xl to Xz · The functional value of the pdf 
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should always be positive where X, Xl and Xz ~S and real numbers. The 

cumulative distribution function (edf) gives the probability that the 

value of a rv will be less than or equal to some real number X (Basu, 

1981) . 

The most important probabilistic characteristics of a random 

variable may be classified as follows: 

1) Central Values: 

(a) Mean: Mean value or average value or expected value of a 

discrete random variable with a Probability Mass Function 

PMF, Px (Xi)' is: 

J.i. x E(X) = L Xi' Px (Xi) 

all Xi 

(b) Median: For a discrete random variable, it is the value at 

which values above and below it are equally probable, that 

is, if Xm is the median of X, then: 

(c) Mode: is the value of rv which gives the maximum 

probability density value of pdf. 

Mean, median and mode of a symmetrical distribution are the same. 

2) Measures of dispersion: or variabilities; i.e., the quantities 

that give a measure of how closely the values of the variate are 

clustered around the central value. 
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(a) Variance: If the deviations are taken with respect to the 

mean value, then a suitable average measure of dispersion 

is the variance. For a discrete random variable X wi til 

PMF, Px (xi)' the variance of X is: 

Var (X) - [ (xi - I-lX)2 . Px (xi) 
all Xi 

(b) Standard Deviation: a more convenient measure of dispersion 

ax = [ Var(X) ]05 

(c) Coefficient of Variation: A nondimensional measure of 

dispersion, small or large, 

COV(X) = Ox = 

3) Measures of Skewness: or the symmetry or lack of symmetry of a rv 

probability distribution: 

(a) Third central moment: For a discrete random variable X 

with PMF, Px (Xi)' the third central moment of X is: 

E(X - J.lX)3 - L (Xi - J.lX)3 • Px (Xi) 
all Xi 

(b) Skewness Coefficient: A nondimensional measure of skewness 

e -

160 



5.2 UNCERTAINTIES IN REINFORCED CONCRETE STRUCTURES 

An accurate assessment of the probable strength of an element of 

a reinforced concrete structure is complex, as a result of the many 

factors which can contribute to the variability. The major sources of 

variability are: 

1) Yield strength of reinforcement. 

2) Compressive strength of concrete in the cross-section 

3) Area of reinforcement 

4) Gross area of section 

5) Location of reinforcement 

6) Stress distribution in section at failure 

Deviations of any of the above from their design values have 

differing effects on the strength of reinforced concrete members, 

depending on the magnitude of the deviation and the structural form 

of the element, column or beam. However, for factors such as the 

position of the reinforcement, there is never likely to be any really 

reliable data, and in these circumstances the only solution is to adopt 

an idealized distribution for the variable (Baker, 1970). 

5.2.1 Yield Strength of Reinforcement Uncertainties 

The strength of a reinforced concrete section is frequently 

governed by the strength of the reinforcement, and it is fortunate that 

information is more readily available for this property than for the 

other sources of variability mentioned above (Baker, 1970). 

Uncertainties in the yield strength, fy, of the reinforcement may 

be evaluated from mill or laboratory test data. Julian (1957) reported 
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data from 171 tests on No. 3 to No. 10 bars with a nominal yield 

strength of 40 ksi (280 MN/m2); values ranged from 38.95 ksi (268 MN/m2) 

to 64.9 ksi (447 MN/mz) , with a mean of 47.7 ksi (329 MN/m2) , and a COV 

of .12. The COV is high because the test data for different bar sizes 

are lumped together. Test by Chow and Gardner (1971) of 20 No.5 bars 

of intermediate grade 40 ksi (280 MN/m2) steel show a mean 1~9. 9 ks i 

(344 MN/m2) and COV of 0.073. Baker (1970) gives data for nominal LIO 

ksi (280 MN/mz) reinforcement which indicates a decrease in mean value 

from 50.4 ksi (347 MN/m2) for No.3 bars to 44.1 ksi (304 MN/m2) for No. 

8 bars; the associated COV range is approximately 0.07-0.11. T1w 

me<isured mean value is clearly affected by the bar size. Othet" 

factors also contribute to the uncertainty in i y . Commercial testing 

procedures, on which fy is based, tend to increase the apparent fy due 

to high applied strain rates (Ellingwood, 1974). 

5.2.2 Compressive Strength of Concrete Uncertainties 

The variability in tc is evaluated from tests on standard 

cylinders (Ellingwood, 1974). For concrete mixes designed for a 

nominal compressive strength tc = 3000 Psi (21 MN/mz), fc = 3456 Psi 

(23.8 MN/mz) , with ofc = 0.12. Additional data, defining the mean ( 

delivered by a ready-mix company during separate monthly periods, 

indicates an error for the measured tc = 0.07. This estimate must be 

augumented by other factors affecting the mean strength in the actual 

structure; such factors would include the strain rate and duration of 

loading, casting direction, curing of the member, and the effects of 

creep, shrinkage, and confinement. A comparison of the strength of in­

situ concrete with that determined from standard cylinders indicates 

that under field conditions, the strength is 10% - 21% lower than the 
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strength observed under laboratory conditions. Assuming these factors 

contribute a combined uncertainty of 0.16, we obtain: 

0.18 

The total uncertainty in fc is then (Ellingwood, 1974): 

)(0.18)2+ (0.12)2 0.21 

5.2.3 Gross Area of Section Uncertainties 

Uncertainties in member geometry are functions of the care and 

quality control exercised in construction. Uncertainties in the beam 

width, b, are assumed to be the same as those in the total member 

thickness, h; analysis of data indicate ob = 0h = 0.04; and ~b ~ 6
h 

~ 

0.02 (Ellingwood, 1974). For other uncertainties of other sources. the 

reader is referred to Refs. (Baker, 1970) and (Ellingwood, 1974). 

5.2.4 Area of Reinforcement Uncertainties 

Variability in steel area may be found from the variabilities in 

the individual bar areas, assuming that the individual areas are 

perfectly correlated within a member. Al though current American 

Society for Testing and Materials (ASTM) specifications for bars 

smaller than No. 10 require tests on full size bars and strength 

calculations based on nominal areas, thus effectively yielding A f 
s y 

rather than fy, the variability of As is considered separately herein 

because the variability of fy might be considered using test data based 

on actual rather nominal areas. Even with the present specifications, 

this separation would still be required for bars larger than No. 10 if 

the tension tests are made on reduced-section specimens rather than 
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full-size bars. In addition, if As or fy appear separately in certain 

design equations, the individual uncertainties must be known. Baker's 

results (1970), indicate the COV of the bar diameter is approximately 

0.015 for small bars, with a tendency to decrease for large bars; thus 

0A. = 0.03. Other data (Ellingwood, 1972), suggested that 0A5 = 0.02 and 

f1A• = 0.03. The latter uncertainty arises from fabrication errors, 

carelessness in placement at the site, and the great unpredictability 

of mean areas for smaller diameter bars. 

5.2.5 Limiting Concrete Strain Uncertainties 

Statistics of the limiting concrete strain, feu. are necessary for 

evaluating the uncertainties in Pb' reinforcement ratio producin!', 

balanced strain conditions. Test results in the form of plots of ~eu 

versus f~ indicate that feu is approximately 0.004. From these plots, 

the basic variability in feu is found to be afproximately 0.12. The 

mean concrete strain will be affected by the degree of confinement of 

the concrete and the gauge length used to determine the strain; the 

prediction error is assumed to be 0.10. 

5.2.6 Stress Distribution in Section at Failure Uncertainties 

The concrete stress block parameter, ~. and the equivalent 

stress factor, ~l' are related to the concrete stress distribution in 

the compression zone at ultimate load. ~l decreases with f
e

• The ACI 

Code specifies the average concrete stress to be 0.72 for te $ 4000 psi 

(28 MN/m2). Analysis of data suggests that 0Pl - 0.12; the prediction 

error is assumed to be approximately 0.05. A study of beams failing in 

tension indicates that ij = 0.59 and Oij - 0.05; the prediction error is 

assumed to be negligible. Some of the uncertainty in 1/ may be 
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attributed to uncertainty in the steel stress at failure in the beams 

tested. 

A summary of the basic variability and prediction error of each 

variable, along with the resulting total uncertainty, is presented in 

Table (5.1), see (Ellingwood, 1974). 

Basic 
Predicted variab;!ity, 

Parameter mean 8 

I' ) 12) 13) 

t, (nominal 40 ksi) 47.7 ksi 0.09 
t, (nominal 3.000 psi) 3.5 ksi 0.12 
A, 0.02 
b 0.04 
d 0.07 
h 0.04 

13,13, 0.72 0.12 
T) 0.59 0.05 

'" 0.004 0.12 

Not~: I ksi = 6.89 MN 1m '. 

Table (5.1) 

Prediction 
error, 
~ 

14) 
-~-. 

0.12 
0.18 
0.03 
0.02 
0.05 
0.Q2 
005 
0.0 
010 

. -- ---- - -

Total 
uncertainty. 

n, 
----

15) 

0.15 
0.21 
0.036 
0.045 
0.086 
0.045 
0.13 
0.05 
0.156 

Uncertainties in Design Parameters (Ellingwood, 1974) 

5.3 STRUCTURAL RELIABILITY 

In view of numerous uncertainties underlying the design and 

construction of a structure, or other engineering systems, there is 

some risk (of structural inadequacies including failure) that is 

unavoidable. This risk should be recognized, and structures ought to 

be designed on the basis of an acceptably small measure of risk. 

Within this premise, the consideration of safety in the design of 

structures, therefore, requires probabilistic analyses. In practice, 

such analyses, however, must recognise the following: 

1) Available data and information are generally insufficient to 

determine the correct probability distributions; indeed, quite 
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often, only the means and variances may be obtainable. 

2) There are, inevitably, various factors (tangible as well as 

intangible) in design for which information and knowledge are 

lacking or imperfect; the uncertainties arising there from must 

be included in the design process. 

The calculated risk, or probability of failure, is meaningful 

only as a comparative measure of safety; an absolute meaning, 

therefore, cannot be attributed to a calculated risk, especially when 

this involves extremely small probabilities. Design on the basis of an 

acceptable risk, therefore, should be interpreted in this light; for 

this purpose, the calculated measure of risk would be a proper measure 

of safety and a viable basis for design if it is self-consistent under 

the conditions prevailing in practice. 

In the classical formulation, failure of an engineering system 

(e.g., a structure or one of its components) is realized when the 

calculated system capacity R is exceeded by a load (or load effect) S; 

i. e. , 

Failure - R < S (5.1) 

The risk of failure then is the probability of failure: 

P(Failure) P (R < S) (5.2) 

Presumably, in practice, an acceptable risk Pf can be specified, and a 

design would be obtained on the basis of: 
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P (R < S) (5.3) 

Theoretically, the above basis for design is sound; however, in 

actual design situations, wherein the prevailing conditions are those 

described above, serious shortcomings have been recognised 

(Freudenthal, 1968), including the following: 

1) Within the range of acceptable risks, the probability peR < S) 

and the designs derived therefrom, are extremely sensitive to 

the distribution functions of Rand S. On the other hand, the 

scarcity of data makes the precise determination of these 

distributions impossible. 

2) All uncertainties are necessarily described through the 

distributions of Rand S and thus are tacitly assumed to be of 

the objective type, objective in the sense that the uncertainties 

are associated with measured statistical or probabilistic 

information. 

In spite of these shortcomings, however, the reliability concept 

described above constitutes the basic foundation of structural safety 

analysis (Ang, 1972). 

The safety of a structure, in the probabilistic sense is 

described by the chance of withstanding the effect of loads or, in 

another way, the inverse risk of failure subject to load. 

Mathematically, this can be measured as the probability of failure (P
f

) 

or probability of survival (Ps )' Probability of survival is also known 

as reliability. The relationship between Pf and p. is: 
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(').4) 

The method of safety analysis using the concept of probabil i ty 

theory is known as reliability analysis. The points given be low an. 

very important and should be clarified in the context of reliability 

analysis: 

1) All the recognized methods for structural analysis remain valid 

when carrying out a probabilistic design of a structure. 

2) Reliability analysis is performed with derived or assumed 

statistical properties like moments or distribution functions of 

the design variables. 

3) The safety analysis used should be consistent with the state of 

the art of structural mechanics used to analyze a specified 

failure mode. 

4) A probabilistic approach to design can only take care of the 

random behavior of those design parameters which can be 

quantified, e. g. load and strength. Characteristics such as 

construction, fabrication and computational inadequacy may only 

be considered indirectly. Strict quality control during 

construction and fabrication may reduce the magnitude 

danger of failure. Another possible way to consider these 

factors is to develop statistical models of load and strength 

considering operational limitations (Basu, 1981). 

Structures can be represented as series, parallel, or combined 

systems. A series system, Fig. (5.1), is one in which any component 

failure is system failure. In structural engineering, in general, 

statically determinate trusses are series systems. With reinforced 
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concrete structures, the failure of a floor beam in shear or bending 

can be equivalent to the failure of a series owing to the fact that tlw 

entire design becomes suspect and the loss from failure involves tlw 

entire system. In any event, statically determinate systems tend to bc' 

series systems insofar as the major design elements are concerned. 

A parallel system is one in which two or more paths of resistance 

must fail for the system to fail, Fig. (5.2). A combined syst:em, Fig. 

(5.3), includes both series and parallel elements. 

5.4 MODELLING OF STRUCTURAL SYSTEMS 

A real structural system is so complex that exact calculation of 

the probability of failure is completely impossible. The number of 

possible different failure modes is so large that they cannot all be 

taken into account, and even if they could all be included in tll(' 

analysis exact probabilities of failure cannot be calculated. It is, 

therefore, necessary to idealize the structure so that the estimate 

of the reliability becomes manageable. The main obj ective of a 

structural reliability analysis is to be able to design a structure so 

that the probability of failure is minimized in some sense. Therpfore, 

the model must be chosen carefully so that the most important failure 

modes for real structures are reflected in the model. The system 

reliability is based on the assumption that the total reliability of 

the structural system can be sufficiently accurately estimated by 

considering a finite number of failure modes as dominating and then 

combining them in complex reliability systems. 
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Failure in a single structural element will for a stal i call y 

indeterminate (redundant) structure as shown in Fig. (5.4) not always 

results in failure of the total system. The reason for this is thal 

remaining structural elements may, by redistribution of the load 

effects, be able to sustain the external loading. For statically 

indeterminate structures, total failure will usually require that 

failure takes place in more than one structural element. Total failure 

of a structural system means for~ation of a mechanism which requires 

simultaneous failure in a number, say n, of failure elements. This is 

syn!bolized by the parallel system shown in Fig. (5.5). 

Fig. (5.4) 

Indeterminate Structure 
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Parallel System 



Clearly for a real redundant structure, the number of potPIltia1 

failure modes will usually be very high. Each failure mode will then 

be modelled as an element of a parallel system. Failure of such a 

structure will take place when the weakest failure mode (parallel 

syst:em) fails. Therefore, the parallel systems (failure modes) are 

combined in a series system as shown in Fig. (5.6). 

failure mudl' 1 

Fig. (5.6) Combined (Parallel and Series) System 

5.5 REVIEW OF PROBABILITY BASED DESIGN 

The probability based design philosophy differs from the 

deterministic philosophy in evaluating safety. Unlike the 

deterministic approach, the probability based formulation assumes that 

the preassigned design values of load and strength are not constants; 

rather they are random variables. Safety is measured in terms of 

probability of failure (P f ) and evaluated by using the theory of 

probability from the random variations of load and strength. 

The fundamental case as illustrated in Fig. (5.7) is the basic 

conceptual problem in the field of structural reliability. It is an 
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idealized component, (a single member subject to a single load) of a 

complex structure with many members and many load conditions. However, 

any structure can be approximated by a combination of several 

fundamental cases. Any mathematical modelling of such a combination 

depends on the type of structure, the nature of the loadings, material 

properties etc. By virtue of this combination, the safety of an entire 

structure is expressed in terms of Pt , i. e., Pt , allowable' 

There are several approaches in estimating Pf for the fundamental 

case and for entire structure. Most of them assume that the 

probability density functions (pdf) of load (S) and strength (R) are 

predefined. In general, a suitable analytical model of infinite range 

is selected from the statistical properties of available limited data 

of Rand S, using standard statistical procedures. The reason for 

picking up an analytical distribution of infinite range is that it 

makes provisions to take account of the values of Rand S in the 

extremum regions of their respective spectra which from the data may 

not be available. However, once the Pf's for fundamental cases are 

determined, the next problem is to find the Pt of the entire structure 

from these discretized fundamental cases by suitable combination. Two 

models of such combination are commonly used and they are Weakest-Link 

Structures and Fail-Safe Structures. Fig. (5.8) illustrates the 

reliability modellings of a three bar truss with two statistically 

independent loadings. 
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Weakest-Link Structures: This model asswnes that a structure 

will fail if any single critical member fails. Freudenthal (1966), 

introduced this model. It is useful for prismatic structures in which 

many elements or members are subjected to a loading of single or multi-

origins. The assumption behind the Weakest-Link model suggests that 

this is true for a statically determinate structure. However, it can 

still be applied if this criterion of first member failing is taken as 

overall failure. This determines a conservative estimation of Pf of the 

entire system. 

criterion. 

The true estimation can be done by the Fail-Safe 

Fail Safe Structures: Unlike Weakest-Link modelling, the Fail­

Safe criterion assumes a structure would fail ~hen several components 

exceed their capacity simultaneously. The number of such components 

depends on the type of structures. Computationally, this approach is 

complicated because of the numerous alternate load paths and yielding 

of combinations of members to produce failure. This model is suitable 

for structures when limit or ultimate analysis of structures are 

carried out. 

One of the first publications in the field of probability based 

optimization was made by Hilton and Feigen (1960). They used a 

Lagrange multiplier formulation to minimize weight subj ect to the 

constraints on Pf for one load condition assuming that failures of 

individual components of a structural system are statistically 

independent. Based on Hilton and Feigen' s approach. Swi tsky (1964) 

derived a simple scheme to proportion the member sizes using the 

relationship: 

175 



P, 

0) A Three Bar Truss with 

Two Load Condition 

c) Fail Safe Model 

Survival Region for 
entire structure 

e) Venn Diagram of Survival 

for Weakest Link Model 

CD R 

r< :: ::>trengtn OT Memoers 

S 

:: A,. qy 

Effet of External Load 
= C 12 ,P 2 

A, = Area of Member 

C'2 = Structural Coefficient 
of Member 1 for P2 

b) An examp Ie of I dea Ii sed 

Fundamenta I Case Mode Illng 

Member 1. Effect of Load P2 

P, 

d) Weakest Link Model 

Fig. (5.8) (Basu, 1981) 

Reliability Modelling of a 3-Bar Truss for Multi-Load Condition 

176 



W1 

P fi P f, allowable 

[Wl (5.5) 

where Wi and P fi are the weight and probability of failure of the ith 

member. Moses and Kinser (1967), developed an ordering technique for 

statically intermediate structures to take account of correlations 

between the probability of failure of individual members. Moses and 

Stevenson (1970) report the reliability based optimization of a framed 

structure using the collapse mechanism and the Fail-Safe criterion. 

Nevertheless, by 1970 it had become apparent that the concepts 

and methods of probability are the proper bases for the development of 

optimum criteria for structural design. As a result, during the past 

15 years many investigators focuses their efforts on developing: 

1) Strategies for identifying failure modes for large structural 

systems which incorporate brittle or ductile behavior, or both 

(Moses, 1977). 

2) More sophisticated methods, taking failure mode correlation into 

account, for determining overall system reliability of both 

brittle and ductile structures (Vanmarcke, 1971), (Dit1evsen, 

1979), (Ang, 1981) and (Chau, 1983). 

3) Automated reliability-based optimization procedures for minimum 

material cost with failure probability constraint, for maximum 

safety based on fixed weight or total expected cost, and for a 

minimum total expected cost (Mau, 1971), (Vanmarcke, 1971, 

1972), (Moses, 1973) and (Basu, 1981). 
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4) Multi-criteria reliability-based optimization procedures for 

structural systems subject to probability constraints imposed at 

both serviceability and ultimate limit states (Parimi, 1978). 

5.6 PRINCIPAL STEPS IN THE PROBABILISTIC APPROACH 

There are three principal steps in the probabilistic approach to 

structural deign: 

1) Selection of Failure-Modes: 

This depends on the purpose of the type of structures to be 

built, the loading, and the service life. A rigid frame member, 

under the effect of external load may be susceptible to several 

modes of failure, e.g., axial, bending and shear modes. The 

complexity of failure modes increases with the involvement of 

phenomena like creep, fatigue, expansion, vibration, etc. 

2) Structural Analysis: 

Once the failure modes are selected, the next step is the 

analysis of structures, or in other words the estimation of the 

effect of external load. There are both linear and non-linear 

methods of analysis. A rigid frame may be analyzed by a linear 

method such as the stiffness method or the finite element method, 

or a non-linear analysis can be carried out using some collapse 

mechanism technique. This structural analysis is carried out at 

the mean values of load and strength. 

3) Reliability Analysis: 

Reliability analysis is carried out from the quantified effect of 

loads and material properties on the structures, determined by 

analysis. This measures the level of safety. There are several 

methods available to evaluate the probability of failure. Each 
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one has its own merits and demerits and their suitability depends 

on the type of problem. Load and strength are considered to be 

the only random variables in reliability analysis. 

5.7 FUNDAMENTAL CASE 

The situation of one member - one load, Fig. (5. 7a), is the basic 

conceptual problem in the field of structural reliability and is called 

the fundamental case. There are several existing methods to evaluate 

probability of failure of the fundamental case. 

discussed here: 

1) Integral Equation Technique: 

Some of them are 

This technique assumes that the distributions of load and 

strengths are defined and there is no statistical correlation 

between them. The structural capacity of different failure modes 

may vary over two distinct ranges of strength. For example, 

tension and compression of a member in an axial failure mode. 

These two distinct ranges are denoted as positive and negative 

strength. Distribution functions of strength may be different 

from these two ranges. There are two approaches to evaluate P
f 

by the integral equation technique. The first approach assumes 

the strength has a single distribution, Fig. (5.7b). Freudenthal 

and others (1966) developed an integral equation to evaluate P 
f 

using this approach. Different distributions of strength are 

considered in the second approach. Ang, et. al. (1968) developed 

~ model to evaluate P f in this approach. 

Integral equations for Pf can be derived in three ways; A) 

directly from load and strength, B) from the concept of residual 
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stress, and C) from the concept of a factor of safety. Expressions of 

P f for these three cases are given below; 

(A) Directly from Load (S) and Strength (R): 

1) Single Distribution of R for a given S: Failure occurs whenever 

the magnitude of the load is greater than that of the strength. 

This is illustrated in Fig. CS.8b). Pf is expressed as: 

bs 

Pf f FRCs). fsCs)ds a R :$ R < s; as :$ s :$ b s 

as (S.6a) 

or 

b R 
Pf f [1 - Fs(r)] fR (r) dr R < s :$ b s ; a R :$ R :$ bR 

a R (S.6b) 

2) Different Distribution of R for Positive and Negative Ranges: 

Failure occurs whenever the positive load is greater than the 

positive strength or the negative load is less than the negative 

strength. 

o 

Pf =f f FRpCs). fs(5)ds + [1 - FRn (5)]. fsCs) ds 

o as 

bRp 

Pf - f [1. FRp (s)]. fRp(rp) . drp + 

o 

o 
f FsCrn) .drn 

a Rn 
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o :$ Rp < S; 0 :$ s :$ bs 
as :$ s < Rn; as :$ s :$ 0 

(S.7a) 

Rp < s :$ 0; 0:$ Rp :$ b
Rp 

as :$ 5 < Rn; a Rn :$ Rn :$ 0 

(S.7b) 



These equations are illustrated in Fig. (S.7c) 

(B) From Residual Strength 

Residual Strength is given by: M R - S (5.8a) 

Failure occurs whenever residual strength is less than zero for a 

positive load and greater than zero for negative loads. Fig. (S.7d) 

illustrates this concept. Pf is expressed as: 

0 bRP bM 0 

Pf =I I fs (rp-M).fRp (rp).drp).dM + I I fs(rn-M). fRIl(rn) 

aM 0 0 aRn 

.drn) dM (S.8b) 

(C) From Factor of Safety: 

Factor of Safety is given by: II = (R/S) (S.9a) 

Failure occurs whenever F attains the value in the range 0 to 1. 

Fig. (S.7e) shows this concept. 

1 b. 1 0 

Pf =I I f RP (II s) . fs (s). ds ) S dll + I f fRn(lIs).fs(s).ds). 

0 0 0 as 

s.dll (S.9b) 

Detailed derivations of these equations are given in Basu (1981). 

Pf can be calculated for some distributions of Rand S directly from 

the Error function. For example, if both Rand S have normal 

distributions, then: 
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[ -
1 (5.10) 

j 2 + a R 

where, the Error Function, ¢[u], is given by: 

u 

f r,~ 
-00 (5.11) 

The expression of P f for log normal distributed Rand S, is: 

(5.12) 

where VR and Vs are coefficients of variation of Rand S, VC is known as 

central factor of safety. Equations (5.10) and (5.12) are derived 

assuming strength has a single distribution and the derivations are 

given in Basu (1981). 

5.8 FAILURE AND LIMIT STATES 

The design of any structure by any method entails the selection 

of one or several limit states. A limit state value strictly is a 

quantity, generally numerical, which divides acceptable and 

unacceptable performance as governed by some possible failure mode. 

Thus a limit state, for reinforced concrete frame, could be a strength 

requirement in a load and resistance design format. Some limit states 

are quite obvious because the associated failure modes, such as the 
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fracture of a tension member, are quite obvious and well defined. 

Others, including serviceability limit states, are often difficult to 

quantify since the relevant failure is less dramatic and its definition 

is of a more subjective nature. 

The true acceptability of the performance of a designed structure 

of given nominal materials is influenced by three interrelated items: 

1) The load intensity and pattern assumed. 

2) The refinement of the resistance evaluation or analysis, and 

3) The value selected for the relevant limit state. 

If either the load or the resistance analysis is changed, the 

numerical value of the limit state should also be reexamined (Criswell, 

1979) . 

As pointed out by Ang and Cornell (1974), 

Failure should be interpreted with respect to some 

predefined limit state; it may be an excessive defleccion, 

major cracking in a concrete beam, or the total collapse of 

a structure. Therefore, depending on the limit state under 

consideration, 

applicable to 

structures. 

the concept of a failure probabilicy is 

both the safety and performance of 

In this thesis, several limit states are considered which might 

be classified to two groups as follows: 
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1) Element limit states. 

2) Structure limit states. 

For optimal design of reinforced concrete frames, the element 

limit states are represented as constraints which are as follows: 

For a beam element: 

(1) Flexural and shear strength limit states 

(2) Ductility and serviceability limit states 

(3) Concrete cover for reinforcement limit states 

(4) Web Reinforcement limit states 

(5) Development length for Longitudinal Reinforcement limit states 

(6) Cut-off points of Longitudinal Reinforcement limit states 

(7) Spacing limits 

For a column element: 

(1) Axial, shear and flexural strength limit states 

(2) Ductility and serviceability limit states 

(3) Concrete cover for Reinforcement limit states 

(4) Limits of Lateral Reinforcement 

(5) Spacing limits. 

While the structure limit states correspond to the collapse of that 

structure at which the structure becomes unfit for use. 

In practical situations, the structure is composed of several 

components. The main concern in such a system is not the failure of a 

component, but the overall system failure. In such practical cases the 
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description of the structural model by an explicit expression is 

extremely difficult. However, an overall system reliability analysis 

is considered explicitly in chapter 7. 

Finally, it should be stated that the probabilities of failure 

calculated by different methods' are based on failures caused by random 

fluctuations in the basic variables such as extremely low strength 

capacities or extremely high loads. 
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CHAPTER SIX 

REINFORCED CONCRETE FRAME STRUCTURES 

SYNOPSIS 

This chapter is a general discussion of the multi-criteria 

optimization problems as applied to structural design. Specifically, 

the presentation includes formulation of the objective functions and 

the design constraints. The design constraints, which are based on 

the ACI (318-83), are developed separately for a beam and a column. 

Finally, the bounds of di.]crete design space which conform with 

practice for each of the design variables are discussed. 

6.1 INTRODUCTION 

Design is one of the primary functions of engineering. The 

objective of the designer is to proportion the structures in such a way 

that the requirements of safety and serviceability are met as 

economically as possible. In practice, the provisions of safety and 

serviceability are provided by various specifications and codes. In 

practice, the design of a reinforced concrete structure is a trial 

and adjustment procedure. It is evident that many trials, even with 

availability of computers, are not always possible, and consequently 

the structure is generally over-designed. However, the optimal design 

of reinforced concrete structures for professional practice can be 

achieved, resulting in considerable savings. 

However, structural optimization within a deterministic design 

philosophy is characterized essentially by a well defined 

(deterministic) structural code for checking constraints, and usually 

an element optimization technique for finding the best values of design 

variables, such as element dimensions and reinforcement ratios, which 
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result in the minimization of material weight. However, methods 01 

optimization based on deterministic safety concepts, while minimizing 

the weight or cost of an element may be changing its level of safety. 

This is a major limitation of deterministic optimization formulations, 

in which the inherent random nature of both structural loading and 

strength is not included and, consequently, the safety criteria are not 

specified in terms of a risk value. 

It is now generally recognized that structural problems are non­

deterministic and, consequently, that engineering optimum design must 

cope with uncertainties. Clearly, the proper tool for the assessment 

and analysis of such uncertainties requires methods and concepts of 

reliability. Therefore, it is not an over-statement to affirm that the 

combination of reliability-based design procedures and optimization 

techniques is the only means of providing a powerful tool to obtain a 

practical optimum design solution (Frangopol, 1985). 

In order to design an optimal reinforced concrete frame as 

closely to professional practice as possible, the discreteness of the 

design variables has to be taken into consideration. Furthermore, the 

design constraints should cover the code requirements of flexural 

strength, axial load strength, shear strength, ductility (plasticity), 

serviceability, limits of web reinforcement, concrete cover, 

development length, cut-off points, spacing limits and other 

requirements. In this thesis, the American Code ACI (318-83) will be 

considered as a code of design. 
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6.2 REVIEW OF PREVIOUS WORK 

Optimal design problems have been of increasing interest to many 

engineers and researchers. Shunmugavel (1974) used the method of 

feasible directions to obtain the minimum cost design solution for 

reinforced concrete structures in which the design variables are 

continuous variables. The primary objective of the work was to obtain 

the optimal relative stiffness of the members of the large frames 

studied. The cross-sectional dimensions and the amount of main 

reinforcement of the members were the design variables. The 

constraints were developed in accordance with the ACI Code (318-71) 

requirements. The arrangement of main reinforcement followed a 

specified pattern. No consideration was given to constraints due to 

shear. concrete cover. contribution of compression reinforcement to 

bending strength, clear spacing and possible unsymmetric arrangement of 

reinforcement in column sections. 

Gerlein and Beaufait (1980), used a story-by-story linear 

programming optimization approach for an optimum preliminary strength 

design of reinforced concrete frames. The total volume of reinforcing 

steel required by the members of the structure was minimized. The 

objective function was expressed in terms of moment capacities which 

were treated as functions of the amount of reinforcing steel at 

sections. The recommended bar details of the Concrete Reinforcing 

Steel Institute (CRSI) was used to obtain the moment capacity at 

sections. Collapse mechanisms were used to develop the constraints. 

The minimum amount of reinforcement required at any cross-section was 

based on the ACI Code (318-77). 
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Yang (1981), used discrete mathematical programming methods for 

obtaining an optimum design of a reinforced concrete frame for a 

specified geometry. The design variables were the overall depth, 

effective depth, width of members and area of longitudinal 

reinforcement. In addition, the details such as the amount of web 

reinforcement and cut-off points of longitudinal reinforcement were 

also considered as variables. Total cost has been used as the 

objective function, and has been optimized taking into account the 

constraints developed according to the ACI Building Code (318 -77) 

requirements. The objective function was the cost of the structure 

which is based on the costs per unit volume of the steel and concrete. 

The constraints included requirements such as flexural strength, shear 

strength, ductility (plasticity), serviceability, concrete cover, 

spacing, web reinforcement, development length and cut-off points of 

longitudinal reinforcement. The Generalized Reduced Gradient, Rounding 

and with Neighbourhood Search was used. 

Zheng and Huanchun (1985), studied the optimum design of 

engineering reinforced concrete frames by a two-level optimization 

technique. They divided their constraints into local and global ones 

and their optimum design problem into two sub-problems. The global 

constraints were the displacement constraints and the local constraints 

were the flexural, shear and axial constraints and constructional 

requirements constraints. In the first level, the top horizontal 

displacement (drift) of the frame was taken as the objective function, 

and was maximized to satisfy all global constraints. Because the top 

displacement of the frame in the summation of the relative 

displacements between two adjacent storeys, so that, if the top 

displacement of the frame is maximum and none of the displacement 
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constraints is violated, this frame will correspond to the most 

flexible one. This is why the top horizontal displacement is maximized 

in the first level. The first sub-problem was converted to a 

Sequential Linear Programming (SLP) problem. The optimum solution of 

the first level was used to obtain the bounds of the design variables. 

In the second level, the cost of total frame material was taken as the 

objective function, and was minimized to satisfy all members 

constraints. This problem was solved by a two-dimensional search 

method. 

From the above discussion, it can be seen that only a small part 

of the research effort has been dedicated to multi-criteria 

optimization, in general, and multi-criteria reliability-based 

optimization of reinforced concrete frames in particular. 

6.3 DEVELOPMENT OF OBJECTIVE FUNCTIONS 

6.3.1 The Material Cost Objective Functions 

Objective functions based on cost are generally the most often 

used in structural engineering. Reinforced concrete structures are 

made of two different materials, namely steel and concrete, having 

different relative strengths and costs. Cost is taken as one criterion 

for optimization in this study. 

For a reinforced concrete frame with prismatic members and a 

specified geometric configuration, the total cost of the frame is a 

non-linear function of the design variables and can be expressed as 

follows: 
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Nb Nc Nb Nc 
C Cs r (Vb)i + Cs r (Vc)i + Cc r (bh~)i + Cc r (tDH)i 

where: 

C 

Cs 

i=l i=l i=l i=l 
(6.1) 

total material cost of a frame. 

cost of concrete per square inch per linear foot. 

cost of steel per square inch per linear foot. 

number of beams in a frame. 

number of columns in a frame. 

total volume of steel of ith beam in square inches 
per linear foot. 

total volume of steel of ith column in square inches 
per linear foot. 

width of ith beam in inches. 

overall depth of ith beam in inches. 

length of ith beam in feet. 

width of ith column in inches. 

overall depth of ith column in inches. 

height of ith column in feet. 

The volume of the total reinforcement in beam i, (Vb) i' can be 

expressed as follows: 

where: 

(6.2a) 

area of main reinforcement at the top left of 
ith beam in square inches. 

area of main reinforcement at the top right of 
ith beam :n square inches. 
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(~)i 

Similarly for column i, 

area of main reinforcement at the bottom near 
the mid-span of ith beam in square inches. 

length of main reinforcement in feet. 

length of main reinforcement in feet. 

length of main reinforcement in feet. 

constant in inches. 

area of share reinforcement within a distance 
s which is in a quarter span from left end of 
ith beam in square inches. 

area of shear reinforcement within a distance 
s which is in a quarter span from right end of 
ith beam in square inches. 

area of shear reinforcement within a distance 
s which is in a center half span of ith beam in 
square inches. 

number of stirrups within a quarter span from 
left end of ith beam. 

number of stirrups within a quarter span from 
right end of ith beam. 

number of stirrups within a center half span of 
ith beam. 

. [2 (t + D - Cz) i 1 (6.2b) 

where: 

area of tension reinforcement in ith column. 

area of compression reinforcement in ith 
column. 

constant in inches. 

area of shear reinforcement within one-third of 
the height from top of ith column, within a 
distance s in square inches. 

area of shear reinforcement with one-sixth of 
the height from bottom of ith column, within a 
distance s in square inches. 
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area of shear reinforcement within a heiE,ht 
from one-sixth to two-thirds of the height of 
ith column, within a distance s in square 
inches. 

number of ties or hoops within one-third of the 
height from top of ith column. 

number of ties or hoops within one-sixth of the 
height from bottom of ith column. 

number of ties or hoops within a height from 
one-sixth to two-thirds of the height of ith 
column. 

cylinder strength of concrete in psi. 

specified yield strength of reinforcement in 
psi. 

Figures (6.1), (6.2) and (6.3) show the above variables in 

typical beams and columns. 

6.3.2 The Drift (Top Lateral Deflection) Objective Function 

In a frame-type structure, the drift may be thought of as 

consisting of two parts: one due to bending in the columns and beams, 

and the other due to axial deformation of the columns. As the height-

to-width ratio of the structure increases, the effect of column axial 

deformation assumes greater significance (Fintel, 1974). 

Figure (6.4) shows the curvature distribution in a typical 

column, when the lateral loading has increased to the extent of just 

causing yield in the frame. The lateral deflection at the top of the 

rth story at first yield relative to the bottom of the structure, 

assuming that the points of contraflexure occur at 0.6 of the column 

height from the bottom of the columns of the bottom story, and at mid-

height in the columns of all other storeys, is: 
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Arrangement of Main Reinforcement in a Beam 
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Arrangement of Web Reinforcement in a Beam 
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Arrangement of Reinforcement in a Column 
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Eccentrically Loaded Column 
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Curvature Distribution (Park et aI, 1975) 

(6. J) 

where PI - 0.6 and P2 - P3 - .•.. - Pr - 0.5. 

The curvature distribution in the column follows the shape of the 

bending moment diagram because the moments are still in the initial 

linear region of the moment-curvature relationships: 

where: 

fPci - i - l,2, ... r (6.4) 

modulus of elasticity of the concrete. 

moment of inertia of the cracked section transformed 
to concrete at storey i. 

bending moment at storey i. 

The curvature in the columns will differ from story to story 
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because of different section properties and axial load levels. (Park, 

et.al. 1975). 

6.4 DEVELOPMENT OF CONSTRAINTS 

A constraint is a restriction imposed by the code in order to 

satisfy safety and serviceability requirements. In a reinforced 

concrete structural design problem, the constraints are used to 

describe the provisions of the code. Based on the ACI Code (318-83), 

the provisions to be considered in this study are strength, 

serviceability, ductility (plasticity), and other provisions such as 

spacing limits, concrete cover, cut-off points and development lengths 

of the reinforcement. The design constraints corresponding to the 

provisions of due tility, serviceabili ty and architectural 

considerations can be indirectly considered by limiting the S('ctiOll 

dimensions and reinforcement of each member (Yang, 1981). 

The design constraints considered in this study are discussed in 

the following paragraphs. 

6.4.1 Constraints for a Beam 

6.4.1.1 Flexural Stren&th 

The nominal flexural strength of a beam section with constant 

width is given by: 

(6.5a) 

The nominal flexural strength of a beam section with compression 

reinforcement and with a constant width can be written as: 

0.85 fc a b ( d - a/2 ) + A. fy (d - d') (6.5b) 
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For equilibrium, 0.85 ( ab (As - As) fy hellce, till' abov,' 

equation can be expressed as: 

(As - As) fy (d - aj2 ) + As fy (d - d') «(, . )c) 

Therefore, in terms of the design variables, the nominal flexural 

strength of a beam section with constant width is given by: 

b 
(6.Sd) 

where h overall depth of beam in inches. 

In order to represent the practical situation as closely as 

possible, part of the reinforcement is carried through, and the 

remainder is cut off based on moment resistance or on development 

length requirements. Each part may consist of several bars of the same 

size. In Eq. (6.5d), the contribution of compression reinforcement to 

flexural strength is 

reinforcement yields 

taken into account by assuming the compression 

at ultimate capacity. In practice, this 

assumption is reasonable, since the compression reinforcement in beams 

at ultimate capacity generally reaches the yield stress except when 

the beam is shallow or when high strength steel is used or when the 

beam is very ductile. For example, if tc is .003 and d' is 2.5 in., the 

compression reinforcement of grade 60 will reach yield strength under 

balanced conditions when the depth d is greater than 14 in. The 

distance from the centroid of the compression reinforcement to the 

extreme tension fibre of a beam can be considered as a design variable 

together with the effective depth d. However, in this case, one 

effective depth is used for both tension and compression reinforcement. 
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The compression reinforcement can be placed in the beam ei ther at il 

distance d from the extreme tension fibre or as closely as the extreme 

compression fibre as possible. 

In accordance with Articles (9.1.1), (9.2.1), (9.3.1) and (9.3.2) 

of the Code, design strength provided by a member or cross-section in 

terms of load, moment, shear, or stress shall be taken as the nominal 

strength multiplied by a reduction factor <p, and the design strength 

shall be at least equal to the required strength. Hence, the flexural 

strength constraints at the critical or controlling sections in any 

beam can be expressed as follows: 

where: 

,ph 

M"t 

M".,. 

M"r 

~t 

M..m 

M"r 

,ph M"t - M"I ~ 0 

<Ph ~ - M"." ~ 0 

(6.6a) 

(6.6b) 

(6.6c) 

strength reduction factor for flexure which according 
to ACI Code is given as 0.90. 

nominal negative moment strength at left end of a 
beam in feet - kips. 

nominal moment strength at maximum positive moment 
section of a beam in feet - I.ips. 

nominal negative moment strength at right end of a 
beam in feet - kips. 

factored moment at left end of a beam in feet - kips. 

factored moment at maximum positive moment section of 
a beam in feet -kips. 

factored moment at right end of a beam in feet 
kips. 

6.4.1.2 Shear Strength 

The nominal shear strength of a beam section is given by: 
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(6. /) 

where: 

nominal shear strength provided by concrete in 
pounds. 

nominal shear strength 
reinforcement in pounds. 

provided by shear 

In accordance with Articles (11.3.1.1) and (1l.5.6.2) of the Code, 

unless a more detailed computation is made based on Article (11.3.2), 

the shear strength Vc for members subject to shear and flexure ollly is 

computed by: 

2 jf~ b d (6.8a) 

The shear strength Vs of shear reinforcement, perpendicular to the axis 

of a member, is computed by: 

(6.8b) 

where Av is the area of shear reinforcement within a distance s. 

Articles (11.5.4.1) and (11.5.4.3) of the Code state that the 

spacing of shear reinforcement placed perpendicular to the axis of the 

member shall not exceed d/2 in non-prestressed members and when Vs 

exceeds 4 /f~ bd, maximum spacing is reduced to d/4. It is good 

practice to assume that the spacing, s, of shear reinforcement within 

a quarter span from the ends of a beam is equal to d/4 and that of the 

rest of the span is equal to d/2. Therefore, the nominal shear 

strength of sections at ends and at quarter span of a beam, as shown in 

Fig. (6.2), can be expressed as follows: 
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where: 

2 !f~ bd + 4fy ~r 

2 !f~ bd + 2fy A..ro, 

(6.Ys) 

(6.%) 

(6.9c) 

area of shear reinforcement within a distance s which 
is in a quarter span from left end of a beam; where 
s is taken to be d/4, in square inches. 

area of shear reinforcement within a distance 5 which 
is in a quarter span from right end of a beam; where 
s is taken to be d/4, in square inches. 

area of shear reinforcement within a distance s which 
is in a center half span of a beam; where s is taken 
to be d/2, in squre inches. 

nominal shear strength at left end of a beam in 
pounds. 

nominal shear strength at right end of a beam in 
pounds. 

nominal shear strength at quarter span section of a 
beam in pounds. 

Since the design shear strength shall be at least equal to the 

required shear strength, according to Articles (9.1.1), (9.1.2), 

(9.3.1) and (9.3.2) of the Code, the shear strength constraints at the 

critical or controlling sections in any beam can be expressed as 

follows: 

where: 

¢sh 

¢Ish Vn! - Vut ~ 0 (6.10a) 

¢sh Vnr - Vur ~ 0 (6.10b) 

¢Ish Vnqt - Vuq! ~ 0 (6.10c) 

¢sh Vnqr - Vuqr ~ 0 (6.10d) 

strength reduction factor for shear which according 
to ACI Code is given as 0.85. 

nominal shear strength at quarter span section from 
left end of a beam in kips. 

203 



Vuqr 

nominal shear strength at quarter span section trom 
right end of a beam in kips. 

factored shear force at left end of a beam in kips. 

factored shear force at right end of a beam in kips. 

factored shear force at quarter span section frolll 
left end of a beam in kips. 

factored shear force at quarter span section from 
right end of a beam in kips. 

In the above expressions the units of Vnl and Vnr are in kips. 

6.4.1.3 Ductility (Plasticity) 

In designing a beam, the amount of tension reinforcement ill 

flexural members must be limited to ensure a level of ductile behavior. 

Articles (10.3.3) and (10.5.1) of the Code state that for flexural 

members, the ratio of reinforcements p provided shall not exceed 0.75 

of the ratio Ph that would produce balanced strain conditions for the 

section under flexure without axial load. For member with compression 

reinforcement need not be reduced by the 0.75 factor. At any section 

of a flexural member, where positive reinforcement is required by 

analysis, the ratio p provided shall not be less than that given by 

follows: 

where: 

Therefore, the ductility constraints can be expressed as 

+ ~ 0 (6.11a) 
bd bd 

~ 0 (6.l1b) 

factor which according to ACI Code is given as either 
0.75 or 0.5 (in seismic zone). 
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reinforcement 
condi tion for 
only. 

ratio producing balanced strai 11 

section with tension reinforcenwnt 

6.4.1.4 Serviceability 

The assessment of the performance of the structure at the service 

load is an important consideration when members are proportioned on the 

basis of the strength method. Article (9.5.1) of the Code indicates 

that reinforced concrete members subject to flexure shall be designed 

to have adequate stiffness to limit deflections that may adversely 

affect serviceability of a structure at service loads. Article 

(9.5.2.1) of the Code states that minimum depth stipulated in Tahle 

(9.Sa) of the Code shall apply for one-way construction not supporting 

or attached to partitions or other construction likely to be damaged by 

large deflections. Article (10.7.1) of the Code states that for 

flexural members the ratio of overall depth to clear span shall be less 

than 2/5 for the continuous spans or 4/5 for simple spans. For larger 

ratios, the beam will become a deep beam. In addition, some other 

provisions due to architectural requirements may also be necessary. 

The serviceability constraints can be expressed as follows: 

where: 

or "(4 L ~ h ~ "(5 L (6.12a) 

or h ~ b ~ "(6 h (6.120) 

specified overall depth of beam in inches. 

specified width of beam in inches. 

constant which according to ACI Code is 2/5 for 
continuous beams and 4/5 for simple beams. 

constant which according to ACI Code is 
1/16 for simply supported beams; or 
1/18.5 for one end continuous beams; or 
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1/21 for both ends continuous beams. 

~6 specified ratio of width to overall depth of beam. 

L span length of beam in inches. 

h overall depth of beam in inches. 

6.4.1.5 Concrete Cover far Reinforcement 

In the design of reinforced concrete structures, minimum concrete 

Cover is always provided for the protection of the reinforcement. This 

cover is measured to the outer edge of stirrups, ties, or spiral if 

transverse reinforcement encloses main bars; to the outermost layer of 

bars if more than one layer is used without stirrups or ties. Article 

(7.7.1) of the Code states that for cast-in-place concrete not exposed 

to weather or in contact with the ground, the minimum concrete cover of 

1.5 inches shall be provided for primary reinforcement, ties, stirrups, 

spirals of members. Since the concrete cover and effective depth are 

components of overall depth of a member, the concrete cover constraint 

of a beam can be expressed as follows: 

where: 

(6.13) 

number of layers of longitudinal reinforcement placed 
in beam. 

nominal diameter of reinforcing bars in inches. 

concrete cover measured to the centroid of main 
reinforcement of beam in inches. 

6.4.1.6 Limits of Web Reinforcement 

From consideration of diagonal compression struts in beams, 

higher shear reinforcement content implies larger concrete compression 

stresses. This indicates that shear reinforcement content can not be 
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increased indefinitely. Also, irrespective of the shear intensity, a 

minimum shear reinforcement should be provided in every beam even 

though analysis shows that shear reinforcement is not required. As is 

pointed out in Articles (11.5.5.3) and (11.5.6.8) of the Code, minimum 

area of shear reinforcement for members shall be computed by Av ~ )0 

bs/fy and shear strength Vs shall be taken less than 8jf~bd. Therefore, 

the shear reinforcement content constraints can be expressed as 

follows: 

6.4.l.7 

2 jf~ 

fy 

2 jf~ 

fy 

2 jf~ 

Avt 

bd 

fy 

Avt 

bd 

Avr 

bd 

~ 

2bd 

50 

~ 50 

bd 

~ 0 

~ 0 

~ 0 

~ 0 

~ 0 

<!: 0 

Development Len~th for Lon~itudinal Reinforcements 

(6.14a) 

(6.14c) 

(6.14d) 

(6.14e) 

(6.14f) 

Development length is a consideration at sections of maximum 

moment along a beam and where a neighbouring bar is cut. Articles 
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(12.11.3) and (12.11.4) of the Code state that: reinforcement shall 

extend beyond the point at which it is no longer required to resisl 

flexure for a distance equal to the effective depth of the member or 12 

db' whichever is greater, and, continuing reinforcement is no longer 

required to resist flexure. Hence, for a beam, as shown in Fig. 

(6.lb), the development length constraints can be expressed as follows: 

where: 

i 2, 4, 5 (6.1)a) 

i - 2, 4, 5 (6.l5b) 

i 2, 4 (6.lSc) 

i 2, 4 (6.1Jd) 

development length in feet. 

length of reinforcement from sections of maximum 
moment in feet, j-l,2, ... ,5. 

d effective depth of beam in feet. 

db specified nominal diameter of bars in feet. 

6.4.1.8 Cut-Off Points of Longitudinal Reinforcement 

It is evident that after the formation of diagonal cracks in 

beams, the tension force in the flexural reinforcement becomes larger 

than that required to resist the external moment at that section. This 

and other causes may shift the location of maximum moments of the 

moment diagrams which are customarily used in design. To provide for 

shifts in the location of maximum moments, Article (12.11.3) of the 
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Code requires that flexural reinforcement be extended beyond the point 

at which it is no longer required to resist flexure for a distance 

equal to the effective depth of the member or 12db whichever is greater. 

Therefore, the constraints of cut-off points of main reinforcement of 

a beam can be expressed as follows: 

where: 

"'fa ~p - ~a ~ 0 (6.16a) 

(6.16b) 

"'fa ratio of the reinforcement to be continued at sectioll 
of cut off point of bars to the reinforcement 
required at sections of maximum positive moment. 

"'fb ratio of the reinforcement to be continued at section 
of cut off point of bars to the reinforcement 
required at sections of maximum negative moment. 

Mua positive factored moment at section where parts of 
reinforcing bars from sections of maximum positive 
moment are theoretically to be cut, in feet - kips. 

~b negative factored moment at section where parts of 
reinforcing bars from sections of maximum negative 
moment are theoretically to be cut, in feet - kips. 

Mup positive factored moment at sections of maximum 
positive moment, in feet - kips. 

~n negative factored moment at sections of maximum 
negative moment in feet - kips. 

6.4.1.9 Spacing Limits 

In order 'to ensure no honeycomb between bars and between bars and 

forms, and no shear or shrinkage cracking due to concentration of bars 

on a line, the spacing limits for reinforcement are required. 

According to Articles (7.6.1) and (7.6.2) of the Code which state that 

clear distance between parallel bars in a layer shall not be less than 

db or 1.0 inch; where parallel reinforcement is placed in two or more 

layers, bars in the upper layer shall be placed directly above bars in 
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the bottom layer with clear distance between layers not less than 1.0 

inch. Therefore, in a beam, the spacing limits constraints can be 

expressed as follows: 

b 

where: 

(db) 1 

6.4.2 

6.4.2.1 

Sl -

S2 -

(6.l7d) 

(6.17b) 

Nv (db) 2 
~ 1.0 

Nv (6. lila) 

Nv (db) 2 

Nv 

~ 1.0 
(6.1Sb) 

nominal diameter of longitudinal bar in 
inches. 

nominal diameter of web steel in inches. 

total number of tension bars in beam, based 
on specifically based bars. 

maximum number of bars placed in a layer in 
beam. 

total number of stirrups within a distance 
s, based on specifically based bars. 

spacing of stirrups; Sl - d/4, S2 = d/2 in 
inches. 

Constraints for a Column 

Axial and Flexural Strength 

The column is a structural member used primarily to carry 

compressive loads. For a short column, the ultimate capacity at a 

given eccentricity is governed only by the strength of materials and 
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the dimensions of the cross section. It is evident that the ultimat0 

load of an axially loaded, reinforced concrete column is the sum of t Iw 

yield strength of the steel plus the strength of the concrete. 

Therefore, the axial strength of either a tied or a spiral columll call 

be expressed as: 

where: 

As 

(6.19) 

gross area of the cross section in square inches. 

area of longitudinal reinforcement at the left face 
of the column in square inches. 

area of longitudinal reinforcement at the right face 
of the column in square inches. 

Figures (6.3a) and (6.3b) show the arrangement of the reinforcemellt. 

In accordance with Figure (6.3b), As corresponds to the tensile steel 

and As corresponds to the compressive steel. For small eccentricities 

both As and As will be in compression. 

In practical situations columns are usually subjected to a 

certain amount of bending, which is conveniently r'tre't ....... t.d.by assuming 

that the axial load is applied eccentrically. The eccentrici ty is 

usually measured from the plastic centroid of the column section. 

In columns, since the axial loads may be larger than that at 

balanced conditions, a compression failure cannot be avoided by 

limiting the area of reinforcement. The compression reinforcement in 

an eccentrically loaded column at ultimate capacity generally reaches 

the yield strength except when the load level is low, when high 

strength steel is used or when the column is small so that the Cover is 

relatively large. For an eccentrically loaded column with bars at two 
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faces, when tension failure occurs the axial load strength oi the 

section as in Fig. (6.3b) is given by: 

(6.20a) 

if the stress in the compression reinforcement reaches the yield POillt 

fs = fy, otherwise, fs should be determined in such a way that the 

strain in steel corresponding to fs is equal to the strain in concrpte 

at the level of the steel. By assuming that the compression 

reinforcement yields at ultimate capacity, the axial strength of tfH' 

section can be expressed as: 

(6.20b) 

and the flexural strength measured from the plastic centroid of the 

section as in Fig. (6.3b) is given by: 

where: 

a 

d 

t 

(6.20c) 

nominal axial load strength of a column section in 
pounds. 

nominal moment strength of a column section in pounds 
inches. 

depth of equivalent rectangular stress block in 
inches. 

effective depth of column in inches. 

distance from centroid of compression reinforcement 
to extreme compression fibre in inches. 

distance from the plastic centroid to the centroid of 
tension reinforcement in inches. 

width of column in inches. 

The distance d W can be calculated from the following expression: 
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where: 

D 

0.85 ( t D (d - 0.5 D) + As fy (d - d) 

0.85 tc t D + (As + As) fy 

overall depth of column in inches. 

(6.21) 

On the basis of the above equations, it is possible to obtai II 

points on the interaction diagram so long as the column fa i Is ill 

tension. Table (6.2) shows the expression for Pn and Mn for four 

different locations. 

In accordance with Articles (9.3.2) and (10.3.5) of the Code, the 

strength reduction factor ~, for reinforced concrete members, may b~ 

increased from 0.7 or 0.75 for compression members to 0.90 for pure 

flexural members as the design axial load strength ~Pn decreases from 

the specified value of 0.10 tc Ag to zero. The ~Pn value shall not b~ 

taken greater than that given in Eqs. (10.1) and (10.2) of the Code. 

It is evident that, in practice, for most compression members, the 

axial loads are normally greater than that value specified in the Code 

at which an increase in the ~ factor is permitted. However, there may 

be cases in which the axial loads in columns are relatively small. In 

this study, for convenience, the strength reduction factor for columns 

with large axial loads will be assumed to be ~ - 0.70 and that for 

columns of small axial loads in the tension failure range to be ~ 

0.80. 

Based on the Code and a linearised interaction diagram, as shown 

in Fig. (6.4), which is convenient and on the safe side, the axial and 
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flexural strength constraints of a colwnn can be expressed as follows: 

(6.22a) 

~ 0 (6.22b) 

Pu [(M,,)2 - M,,)J Mu [(Pn)2 - (Pn )3] 
¢c + ~ 0 

(Pn)2 (M,,)3 - (Pn)3 (M,,)2 (Pn)2 (M,,)3 - (Pn)3 (M,,)z 

(6.ne) 

For tension failure when ¢ (Pn )3 ~ Pu ~ 0: 

where: 

~ 0 (6.22d) 

strength reduction factor for compression members 
which according to ACI Code is given as 0.7 or 0.7) 

coefficient to limit the design axial load strength 
of a section in pure compress ion to -Yc times its 
nominal strength, i. e. coefficient to achieve the 
purpose of the minimum eccentric i ty. According to 
ACI Code, it is given as 0.8 or 0.85. 

In the above expressions the moments and forces have units of 

feet - kips and kips, respectively. 

6.4.2.2 Shear Strength 

The nominal shear strength of sections at top, middle height and 

bottom of a column, as shown in Fig. (6.3a), respectively, will have 

the same forms as that described in a beam, that is, 
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Table (6.2) 
Nominal Axial and Flexural Strength of Columns 
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The expressions of the constants introduced above are as follows: 

a/ ~ f,O 85(, a] ~ 0.85(, a3 ~ f
" 

a, ~ 1. 18f/I(, a.< = O.59f/lf( 

A2 , 
t 

b l ~ O.8S( /3/ Cbld, bz 0.85 fc ~/ Cbld, where C, is neutral axis depth 

F s 
-a5 

t 

for balanced conditIon. 



where: 

Vnt 

Vnb 

Vnm 

2 jf~ t d + 4 fy Asht" «(, . ) Old) 

2 jf~ t d + 4 fy AShb (6.2.lb) 

2 jf~ t d + 2 fy AShm (6 . 23 c) 

area of shear reinforcement, within one third of til(' 
height from top of a column, within a distance s; 
where s is taken to be d/4; in square inches. 

area of shear reinforcement, within one sixth of thp 
height from the bottom of a column, within a distance 
s; where s is taken to be d/4; in square inchC's. 

area of shear reinforcement, within a height fl-Olll Oil" 

sixth to two thirds of the height of a column, withill 
a distance s; where s is taken to be d/2; in sqU<ll-(> 
inches. 

nominal shear strength at the top section of a C01UllIIl 

in pounds. 

nominal shear strength at one-third hpieht fnlln the 
top or one-sixth height from the bottom section of a 

column in pounds. 

nominal shear strength at the bottom section of d 

column in pounds. 

As in beams, the shear strength constraints at the critical or 

controlling sections in any column can be expressed as follows: 

where: 

(6.2/~a) 

(6.24b) 

factored shear force at the top section of a column 
in kips. 

factored shear force at one-third height from the top 
or one-sixth height from the bottom section of a 
column in kips. 

fac tored shear 
column in kips. 

force 
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6.4.2.3 Ductility (Plasticity) 

As described in Articles (l0.9.l), (l0.3.3) and (A.fl.l) oj the: 

Code, area of longitudinal reinforcement for non-composite compressiOll 

members shall not be less than 0.01 nor more than 0.08 or 0.06 times 

the gross area of the section. For members subj ect to combined flexure 

and compressive axial load when the design axial load strength CPP
Il 

is 

less than the smaller of O.lOf~Ag or CPPb' the ratio of reinfc)l'ceInf'nt {l 

provided shall not exceed 0.75 of the ration Pb that would producl' 

balanced strain conditions for the section under flexure without axial 

load. For members with compression reinforcement the portion of Ph 

equalised by compression reinforcement and not be reduced by the O.}~ 

factor. 

follows: 

where: 

Therefore, the ductility constraints can be expl'('sspd ;IS 

~ 0 
tD 

As + As 
13 ~ a (6.2Sb) 

tD 

As fs As 
'11 Pb ~ 0 (6.2Sc) 

td fy td 

factor which according to ACI Code is given as ai ttwr 
0.08 or 0.06. 

factor which according to ACI Code is given as 0.01. 

compression stress of ,compression reinforcement of 
column, in this study fs is taken to be equal to f

y
. 
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6.4.2.4 Serviceability 

Based on architectural and other requirements, the serviceability 

constraints can be expressed as follows: 

where: 

t 

'(7 

'(9 

6.4.2.5 

t ?: '(7 b (6.:>6a) 

D ?: '18 h (G.26b) 

D ?: t ?: '19 D (6.26c) 

specified width of column in inches. 

specified overall depth of column in inches. 

factor to specify the relation of the width of bealll 
and column. 

factor to specify the relation of the overall depth 
of beam and column. 

specified ratio of width to overall depth of colullIll 

Concrete Cover for Reinforcement 

As mentioned before, the concrete cover and effective depth are 

components of overall depth of a member. Unlike beams, the' 

longitudinal reinforcement in columns is placed in one layer in most 

cases. Therefore, in accordance with Article (7.7.1) of the Code, lhe 

concrete cover constraint of a column can be expressed as follows: 

where: 

6.4.2.6 

(6.27) 

concrete cover measured to the centroid of main 
reinforcement of column in inches. 

Limits of Lateral Reinforcement 

The purpose of lateral reinforcement in columns in threefold. 

First, column bars carrying compression loads are liable to buckle. 
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Lateral ties must provide adequate lateral support to each colwnn bar, 

to prevent instability due to outward buckling. Second, for colulllns of 

bUildings subjected to lateral loading which often carry large flexural 

shear loads, shear reinforcement must be required. Third, lateral ries 

are to provide confinement to the concrete core. Based on Articles 

(11.5.5.3) and (11.5.6.8) of the Code. the shear reinforcement content 

constraints can be expressed as the same forms as that of Eqs. (6.19). 

that is: 

2jf~ Asht 
~ 0 (6.:->8a) 

fy td 

2jf~ AShb 
~ 0 (6.281J) 

fy td 

2jf~ Ashm 
~ 0 (6.28c) 

fy 2td 

Asht 50 
~ 0 (6.28d) 

td 4 fy 

AShb 50 
~ 0 (6.28e) 

td 4 fy 

Ashm 50 
~ 0 (6.28f) 

2td 4 fy 

For special ductile frame columns subject to flexure and axial 

loads, confinement reinforcement shall be provided above and below beam 

-column connections for a certain distance. As is prescribed in 

Articles (10.9.3), (A.6.S.2) and (A.6.S.3) of the Code, for a column, 

where rectangular loop reinforcement is used, the required area of 
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transverse loop bar (one leg) shall be computed by: 

f' c 
-1) (6,29) 

or by: 

f' c 

(6 . 30) 

whichever is greater. 

where: 

area of rectangular core of column in square inches. 

area of transverse bar (one leg) in square inches. 

maximum unsupported length of rectangular hoop ill 
inches. 

center to center spacing of hoops in inches. 

Therefore, for a column, as shown in Fig. (6.3a), the lateral 

reinforcement content constraints to take account of providing 

confinement to the concrete core can be expressed as follows: 

(t + D - 3.0) d f~ 

Asht - O. 3375 ~ 0 (6.310) 
(D - 3.0) fy 

(t + D - 3.0) d f~ 

AShb - O. 3375 ~ 0 (6.3lb) 
(D - 3.0) fy 

f' c 
ASht - o. 03 (t - 3. 0) d ~ 0 (6.32a) 
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f' c 
AShb - O. 03 (t - 3. 0) d ~ 0 «(J.32b) 

where: 

Asht and AShb are the area of transverse hoop bar (two legs) in 

square inches. 

Article (7.10.5.2) of the Code states that vertical spacing of 

ties shall not exceed 16 longitudinal bar diameters, 48 tie bar 

diameters, or least dimension of the compression member. This 

requirement is normally met when the dimension of the compress i Oil 

member and the size of the reinforcing bars are specified. It is [lOt 

the strength but rather the stiffness of the ties that matters. 

Therefore, no constraints are needed to be given for this case. 

6.4.2.7 Spacing Limits 

Articles (7.6.3) and (7.10.4.3) of the Code state that in 

spirally reinforced or tie reinforced compression members, clear 

distance between longitudinal bars shall not be less than 1.5 db nor 

1.5 inch; clear spacing of lateral reinforcement shall not be less thall 

1.0 inch. Therefore, the spacing limits constraints can be expressed 

as follows: 

(6.33a) 

(6.33b) 

~ 1.0 (6.34a) 

~ l.0 (6.34b) 

where: 

total number of tension or compression bars in 
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column, based on specifically based bars. 

total number of ties wi thin a dis tance s, based Oil 

specifically based bars. 

spacing of ties or hoops; S3 - d/ l., S4 d/2 in 
inches. 

Other than flexure, shear and axial forces, torsion may arise as 

a result of primary or secondary actions. Even though desigll for 

torsion can be included in the multi-criteria optimisation procedure, 

it is not considered at present in order not to increase the complexity 

of the problem. 

6.5 BOUNDS OF DESIGN SPACE 

6.5.1 Bound Values of Design Space of Overall Depth of Members 

The bound values of overall depth of members depend on loacli Illj 

conditions, on span lengths of members and on types of structures. 

According to Articles (9.5.2) and (10.7.1) of the Code which state that 

the deflection of beams and one-way slabs need not be computed if the 

minimum overall thickness of members satisfy these values specified ill 

Table (9. Sa) of the Code and provided that the members are not 

supporting or not attached to partitions or other construction likely 

to be damaged by large deflection; in order not to be a deep flexural 

member, the overall depth to clear span ratio of members should be less 

than 2/5 for continuous span, or 4/5 for simple span. Therefore, by 

using limiting span-thickness ratios, the upper and lower bound values 

of the design space of overall depth of members can be defined. 

However, it should be pointed out that, in practice, for members with 

a span length less than 40 ft, it is not necessary to set the upper 

bound value of the design space of the overall depth of members to be 

greater than say 50 inches. 
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6.5.2 Bound Values of Design Space of Effective Depth of Members 

As mentioned before, the effective depth and t.he concrete 

protection are components of overall depth of a member. Therefore, the 

bound values of both overall thickness and effective depth of members 

can be defined at the same time. Also, reinforcing bars at suitable 

sizes are used as typical bars to check the spacing requirements and 

the number of layers of main reinforcement in a member. Thus, with H 

concrete clear cover of 1.5 in., and assuming that, in practice, the 

maximum number of four layers of reinforcing is allowed in a member, 

the upper and lower bound values of the design space of the effective 

depth could be set to be 2.5 inches and 6 inches less than that of the 

overall depth of members, respectively. In this study, it is assumed 

that both overall depth and effective depth of members have the samc 

design space. 

6.5.3 Bound Values of Design Space of Width of Members 

Considering the cross section of a member, it is not common to 

design it as very shalloW or very narrow. The range of the width­

depth ratio of the cross-sections of members can be very large, 

theoretically. However, in practice, the above range could lie between 

0.4 and 1.0. Having defined the bound values for the overall depth of 

the member, the width to depth ratio may be used to obtain the upper 

and lower bound values for the width of the section. Practically, ill 

most cases, it is not desirable to have the lower bound value of the 

width of a member to be less than 8 inches. 

6,5,4 Bound Values of Design Space of Cut-Off Points of Main 

Reinforcement 

It is evident that the curtailment of the flexural reinforcement 
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in beams can be determined from the bending moment diagram. We aSSllrn0 

that it is practical to divide the moment reinforcement, required at 

sections of maximum moment under given loads, into equal or unequal 

parts and curtail each divided part at a suitable position. In order 

to meet the Code requirement, it is also assumed that at least one 

divided part of the flexural reinforcement goes through the whole span 

length of a member. Hence, the cut-off points of flexural 

reinforcement, based on moment diagram, from the sections of maximum 

moment will be somewhere between the midspan and the end sections of 

the member. That is, the upper and lower bound values of the design 

space of the cut-off points could be set to be the half span length of 

the member and the development length Ed' respectively. 

6.5.5 Bound Values of Design Space of Web Reinforcement 

In design, the spacing of web reinforcement could usually be 

assumed to be O. 2Sd wi thin a quarter span from member end and O. SOd 

within the middle half span. Since, in practice, reinforcing bars from 

number 2 through number 4 are used as web reinforcement, it is 

reasonable to assume that only bars of the same size are allowed in 

each design and to use number 4 bars as a typical one to chpck the 

clear spacing of the web reinforcement in members. Under certain 

conditions, more than one number 4 closed stirrup may be needed within 

O.2Sd or O.SOd in order that the shear reinforcement requirements are 

met. Those stirrups should be uniformly distributed such that the 

clear spacing limitations are also satisfied. As mentioned before, the 

area of web reinforcement is between SObd/(4fy ) and 2jf' c bd/f
y

. 

Therefore, through the use of selected bars and the bound values of the 

dimensions of members, the upper and lower values of the design space 

of the web reinforcement could be well defined. 
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6.5.6 Bound Values of Design Space of Main Reinforcement 

Considering the ASTM standard reinforcing bars, it is evident 

that the available bar sizes are from number 3 through number 18. 

However, in practice, it is not common to use all the allowabl e bar 

sizes for the main reinforcement of a given structure. This indicates 

that only certain suitable bar sizes can be selected to be the ilia i fl 

reinforcement in most structural design. It is good practice to assulIlP 

that the longitudinal reinforcement of beams in a structurp is made up 

of number 4 through number 9 bars and that of compression members is 

number 5 through number 9 or even larger. The bound valuf's of 

longitudinal reinforcement may vary from one structure to another. 

However, it is evident from the ACI Code (318-83), that the allowable 

limits of longitudinal reinforcement is between 0.75 Pb + ~ f./f y and 

200/fy for flexural members and is between 0.01 As and 0.06 Ag - 0.08 Ae 

for compression members. Therefore, once the bound values of the 

dimensions of the member are defined, the upper and lower bound values 

of the design space of longitudinal reinforcement can be set 

accordingly. 

In general, the upper and lower bound values of a discrPte desiEll 

space can be established by the engineer's experience and juugement. 

6.6 DESIGN VARIABLES 

For each one-bay one storey frame, a total of 18 design variables 

are considered in this study as shown in Table (6.3). In terms of the 

considered design variables, derivations of the total cost, and drift, 

objective functions are summarised in Table (6.4). 
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Design Variables 
Notes 

Beam Column =] 
Cross X1=h X4=D 
Section Xz=b Xs~t 

Dimensions X3=d X6-dc 

Reinforcement X7=f 1 
Lengths Xe=fz 

Main Xg=Asm Xl1=As 
Reinforcement Xlo=Asl Xlz=As 
Amounts 

Shear X13=A.m, Xls=Asht 
Reinforcement X14=~r X16-Ashm 
Amounts X18=~f X17=Ashb 

~ '-----_.- -~---

Table (6.3) 
One-Bay One-Storey Design Variables 
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Name 

Total Cost C 

5.6 

16 

3 

Objective Functions ---------1 

12 

+ 2 I d2) + X" (L + X, + - ~- -~ --I 

f dl) + 2 L 

24 

8 
X1S + - X17 + 4X 16 )] + Cc [2 Xl X2 (L 

3 
)] + 

12 

I 
\ 

\ 

I 

Xl 
Cc [2 X4 Xs (H + - )] $ 

24 

where est 

Drift 6. 
(l2H)2 [12000 (.25) Ph H 

1.333] inch 

\ 

6 

Table (6.4) 
One-Bay One-Storey Objective Functions 

227 



CHAPTER SEVEN 
PRACTICAL ENGINEERING 

DESIGN PROGRAM 
FOR REINFORCED 

CONCRETE FRAMES 



CHAPTER SEVEN 

PRACTICAL ENGINEERING DESIGN PROGRAM FOR REINFORCED CONCRETE FRAMES 

SYNOPSIS 

In this chapter, a practical design program (PDP) of reinforced 

concrete frames is introduced. The PDP is reliability based and the 

structures considered have the following features: 

1) The frames are made up of prismatic members. 

2) Loads are fixed, static and include the weight of the members. 

3) The geometric configuration of the frames is given and is 

independent of the design variables. 

Several examples are included in detail. The Pareto set for each 

example is generated using the entropy-based minimax method derived in 

chapter three. 

7.1 INTRODUCTION 

The design of safe and functionally reliable structural framed 

systems within the constraints of economy is a subject of continuing 

concern to the profession of structural engineering. Because of the 

unpredictability of loads, strengths, and response of actual structures 

there generally exists a small probability of structural failure, 

locally, or structural collapse, globally. It has been established by 

Ang and Cornell (1974) that failure should be interpreted with respect 

to som~ predefined limit states; it may be an excessive deflection or 

the total collapse of a structure. In general, depending on the limit 

state under consideration, the concept of a failure probability is 

applicable to both the in-service conditions and the ultimate 
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performance of structural systems. In this sense, the failure 

probability serves as a common and logical basis for the evaluation ot 

performance of non-deterministic structural 

subject to random loads. 

components and systems 

The optimization of building structures involves usually a I1IIIJ1hc,r 

of requirements that should be met at the same time to obtain the fully 

useful design. In the case of single criterion optimization, aile of 

the requirements is selected accordingly to be the criterion, while the 

remaining ones are met by including them into the constraint set. But 

with such an approach, it is necessary to determine in advance the 

level of meeting these constraints. Multi-criteria optimization helps 

to take into account numerous criteria that are often mutually 

conflicting. It is then possible to find a compromise solution which, 

although none of the criteria involved attains its extreme, guarantees 

meeting all the requirements in the best possible way following on from 

the global criterion. It is a minimum cost criterion which is most 

frequently assumed in structural optimization problems. Anotlwr 

criterion most frequently appearing in the theory of structures is the 

minimum displacements at selected points of a structure (Cero, 1983). 

The total material cost and top lateral displacement of a frame are the 

criteria considered in this thesis. 

The concern for safety of structures must ultimately include the 

consideration of the reliability of a complete structural system. In 

probabilistic reliability analysis, the different potential ways in 

which a structure might become less than fully serviceable are referred 

to as failure modes. For a structural system of mUltiple components 
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and/or multiple failure modes, there are several levels of damage 

states. The most serious level of damage, of course, is the ultimate 

collapse. Prior to its ultimate collapse, however, a structural system 

may undergo one or more intermediate stages of damage. Statistical 

correlation among failure modes arises through common loading variables 

or correlated strengths. 

In this practical design program, we are optimizing reinforced 

concrete frame under vertical and horizontal loads for two differenl 

performance criteria, the total material cost and drift 

flexural strength, shear strength, axial strength, 

subject to 

ductility, 

serviceability, concrete cover, spacing limits, beam cut-off points of 

longitudinal reinforcement and development length of longitudinal 

reinforcement in column constraints. The considered design variables 

represent cross-section dimensions and amounts of reinforcements. The 

two criteria and all constraints must be expressed as functions of 

these design variables. 

Unlike beams, there are no design constraints corresponding to 

the development length and the cutoff points of longitudinal 

reinforcement in columns since, in practice, no part of the 

longitudinal reinforcement in columns is assumed to be cut. In this 

case, for a typical frame, the longitudinal tensile reinforcement of 

the beam is divided into two equal parts and it is assumed that one 

part carries throughout the span. The span length of the beam is taken 

to be the center span of the columns. Although the height of the 

columns can be measured from the surface of the beam, in this study, 

for convenience, the height of the columns is measured from the mid-
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depth of the beam. Both the span lengths of the beams and the hei~lts 

of the columns of the frame are considered as parameters ill this study. 

For the design of the web reinforcement of the beam, the 

governing sections are assumed to be at the end span and the quarter 

span measured from the center of the columns, and that for the design 

of ties or hoops in the columns are at the top, the one-third and the 

five-sixth height of the column measured from the mid-depth of the 

beam. 

The development length of the tension and the compressioll 

reinforcement, within an exterior beam-column joint, of the beam are 

computed from the center and the face of the column, respectively. 

Design spaces for the dimensions and the reinforcement of the 

columns can be different from that of the beam. However, for 

convenience, it is assumed that both beam and column have the same 

design space in this case. 

This practical design program goes through three phases: 

1) Optimization Phase: where Pareto set is generated using the new 

developed methods in chapter 3. 

2) Rounding-off and Standardization Phase: where cross-section 

dimensions are rounded off and amounts of reinforcement are 

standardized. 

3) Reliability Phase: where the multi-optimal design is analyzed 

probabilistically to determine its reliability. 
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To demonstrate how this practical design program is workillg, we 

shall turn first to a classical frame design problem in the literature 

of research in optimal frame design, one-storey one-bay frame. The 

next section clearly demonstrates that. 

7.2 THE PDP PHASES 

7.2.1 The Optimization Phase 

The first example considered is a one-bay one-storey reinforced 

concrete frame as shown in Fig. (7.1), (Yang, 1981). The frame is 

subjected to uniformly distributed line load of 1.8 K/ft. The wind 

force is assumed to be 5.5 Kips and the vertical concentrated load is 

15.0 Kips. 

The frame is 40 ft wide and 15 ft high. The yield strength of 

reinforcement is 60 Ksi. The compressive strength of concrete is 4 

Ksi. The overall depth of the column is assumed to be not less than 

one half of the overall depth of the beam, and both the column and the 

beam have the same width. The strength reduction factor is assumed to 

be 0.8 for columns with tension failures. The tension reinforcement at 

point 3 of the interaction diagram is assumed to have a strain of 0.007 

which is equivalent to assuming that the axial load at point 3 of the 

interaction diagram is one half of that at point 2 when the 

longitudinal reinforcement of the columns is assumed to be symmetrical. 

The cost of concrete is $0.08 per sq. in. per linear ft. The cost of 

steel is $2.00 per sq. in. per linear ft. The width - overall depth 

ratio of the beam is assumed to be greater than or equal to 0.40. The 

problem has 18 design variables and 53 constraints. The computer 

program inputs are summarized in Table (7.1). The optimal design 
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Name Variable Unit. 

Compressive Strength of Concrete fc pSl 

Tensile Strength of Steel f, pSl 

External Vertical Applied Load P,. kipS 

External Horizontal Applied Load Ph klPS 

Beam Span Lb ft 

Column Height H ft 

Cost of Steel C,. $/ln' 

Cost of Concrete Cc $/ in} 

Modules of Elasticity of Steel E, K51 

Uniform Live Load LL K/n 

No. of Tension Steel Layers in a Beam (nib) 

No. of Tension Steel Layers in a Column (nie) 

Total No. of Longitudinal Bars at Midspan of a Beam (n5i) 

Total No. of Bars at the Ends of a Beam (n52) 

Total No. of Bars at the Outer Side of a Column Cross Section (ns3) 

Total No. of Bars at the Inner Side of a Column Cross Section (n.4) 

Total No. of Shear Steel Within the Spacing's Based on #4 Bars 

of Both Beam and Column. (nv2, nv4) 

Shear Steel Bar No. of Both Beam and Columns (#4 i. OK) (nt) 

The "Bar No." of Longitudinal Steel (Tonsion) in a Beam and 

Colwnns (nb, no) 

Ratio of Width/Overall Depth of a Beam 

Ratio of Beam Cross Section/Colwnn Cross Section Width 

Ratio of Steel to be Continued at Section of Cut-off Point to 

the Steel Required at Sections of Max Positive Moment. 

Ratio of Steel to be Continued at Section of Cut-off POint to 

the Steel Required at Sections of Max Negative Moment. 10 

Table (7.1) 
ADS Input Data of R.C. Frames 
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# NOLes 

2 

3 

0pLimlzer: MMFDCM 

No. of criteria: ~ (cost, drIft) 

Dominant criteria: cost 

No. of Constralnts: 48 

Case: One Bay One Storoy R C 

Frame 

Table (7.2) PareLo SeL 

solutions considering two objective functions by the new developed 

entropy-based method are summarized in Table (7.2). 

If we consider our preferred criterion is the total material 

cost, then we choose solution #5 where C = $4208.5. Next, using the 

enumeration technique described below, the cross-section dimensions 

should be rounded off to its neighbourhood in the corresponding design 

space, Tables (7.3-7.4). Similarly the amounts of reinforcements 

should be standardized to its neighbourhood in the corresonding design 

space, Tables (7.5-7.7). 

7.2.2 The Rounding Off and Standardization Phase 

It is often required to round off some of the design variables 

and/or standardize others by assigning an upper and lower bound on each 

design variable for different combinations. If the number of design 
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Design 
Number 

Xl' X3 

X4 ' X6 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Table (7.3) 

Design Space for Overall Depths and Effective 
Depths of Members (Increments of 1/2 in.) 

Member Design Member 
Depth Number Depth 
(in. ) Xl' X3 (in. ) 

X4 ' X6 

16.50 25 28.50 
17.00 26 29.00 
17.50 27 29.50 

18.00 28 30.00 

18.50 29 30.50 

19.00 30 31.00 

19.50 31 31. 50 

20.00 32 32.00 

20.50 33 32.50 

21.00 34 33.00 

21. 50 35 33.50 

22.00 36 34.00 

22.50 37 31~. 50 

23.00 38 35.00 

23.50 39 35.50 

24.00 40 36.00 

24.50 41 36.50 

25.00 42 37.00 

25.50 43 37.50 

26.00 44 38.00 

26.50 45 38.50 

27.00 46 39.00 

27.50 47 39.50 

28.00 48 40.00 
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Table (7.4) 

Design Space for Widths of Members 
Increments of 1/2 in. ) 

Design Member Design Member 
Number Width Number Width 
X2 , Xs (in. ) Xz, Xs (in. ) 

1 9.50 12 15.00 
2 10.00 13 15.50 
3 10.50 14 16.00 
4 ll.OO 15 16.50 
5 ll.50 16 17.00 
6 12.00 17 17.50 
7 12.50 18 18.00 
8 13 .00 19 18.50 
9 13.50 20 19.00 

10 14.00 21 19.50 
II 14.50 22 20.00 

Table (7.5) 

Design Space for Web Reinforced Bars 

Design Bar Design Design Bar Design 
Number Type Area Number Type Area 
X13 , X14 , (sq. in. ) Xl3 , X14 (sq. in. ) 
X 1S ' X 16 X 1S ' X16 
X l7 , X1B X17 , X18 

1 1/13 0.11 15 10{f3 l. 10 
2 1/14 0.20 16 6{/4 l. 20 
3 2113 0.22 17 ll{13 l.21 
4 3113 0.33 18 12//3 l. 32 
5 2114 0.40 19 71/4 l.40 
6 41/3 0.44 20 13#3 l. 43 
7 5/13 0.55 21 14/13 l. 43 
8 3114 0.60 22 8114 l. 60 
9 6113 0.66 23 15/13 l. 65 

10 71/3 0.77 24 16113 l. 76 
11 4/14 0.80 25 9114 l. 80 
12 8113 0.88 26 17113 l. 87 
13 9113 0.99 27 18113 l. 98 
14 5/14 1. 00 28 10114 2.00 
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Design 
Number 
Xl' Xa 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Table (7.6) 

Design Space for Cutoff Points of 
Longitudinal Reinforcing Bars 

(Increments of 1/4 ft.) 

Bar Design Bar Design Bar 
Length Number Length Number Length 
(ft.) Xl' Xe (ft. ) Xl' Xa (ft. ) 

l.00 27 7.50 53 14.00 
l. 25 28 7.75 54 14.25 
l. 50 29 8.00 55 14.50 
l. 75 30 8.25 56 14.75 

2.00 31 8.50 57 15.00 

2.25 32 8.75 58 15.25 

2.50 33 9.00 59 15.50 

2.75 34 9.25 60 15.75 
3.00 35 9.50 61 16.00 

3.25 36 9.75 62 16.25 

3.50 37 10.00 63 16.50 

3.75 38 10.25 64 16.75 

4.00 39 10.50 65 17.00 

4.25 40 10.75 66 17.25 

4.50 41 11.00 67 17.50 

4.75 42 11.25 68 17.75 

5.00 43 11.50 69 18.00 

5.25 44 11.75 70 18.25 

5.50 45 12.00 71 18.50 

5.75 46 12.25 72 18.75 

6.00 47 12.50 73 19.00 

6.25 48 12.75 74 19.25 
6.50 49 13 .00 75 19.50 
6.75 50 13.25 76 19.75 

7.00 51 13.50 77 20.00 

7.25 52 13.75 
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Table (7.7) 

Design Space for Longitudinal Reinforcing Bars 

Design Bar Design Design Bar Design 
Number Type Area Number Type Area 

X, (sq. in. ) X, (sq. in. ) 

1 1#4 0.20 40 5/18 3.95 

2 1/15 0.31 41 9116 3.96 
3 2#4 0.40 42 4119 4.00 
4 1#6 0.44 43 13//5 4.03 
5 1/17 0.60 44 7117 4.20 

6 2115 0.62 45 14/15 4.34 

7 1118 0.79 46 10116 4.40 

8 4#4 0.80 47 15/15 4.65 

9 2116 0.88 48 6118 4.74 

10 3115 0.93 49 8117 4.80 

11 1/19 l. 00 50 11116 4 . 8L~ 

12 2117 l. 20 51 5119 5.00 

13 4115 l. 24 52 12//6 5.28 

14 3116 l. 32 53 9117 5.40 

15 71/4 l. 40 54 7118 5.53 

16 5#5 l. 55 55 13116 5.72 

17 2118 l. 58 56 6119 6.00 

18 8114 l. 60 57 14/16 6.16 

19 4116 l. 76 58 8118 6.32 

20 3117 l. 80 59 11117 6.60 

21 6115 l. 86 60 7119 7.00 

22 2119 2.00 61 9118 7.11 

23 7115 2.17 62 12117 7.20 

24 5/16 2.20 63 13/18 7.80 

25 3118 2.37 64 10118 7.90 

26 4/17 2.40 65 8119 8.00 

27 8115 2.48 66 14/17 8.40 

28 131/4 2.60 67 11/18 8.69 

29 6116 2.64 68 9119 9.00 

30 9115 2.79 69 12118 9.48 

31 141/4 2.80 70 13118 10.27 

32 3119 3.00 71 11/19 1l. 00 

33 7116 3.08 72 14/18 11.06 

34 10115 3.10 73 15118 11.85 

35 4/18 3.16 74 11119 12.00 

36 11/15 3.41 75 13119 13.00 

37 8116 3.52 76 14119 14.00 

38 6117 3.60 77 15119 15.00 

39 12115 3.72 

where i = 9, 10, 11 and 12 
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variables which has to be rounded off or standardized is n, th~n the 

total number of combinations will be N ~ 2n. For example, if n ~ 3 th~n 

N = 8 as shown in Fig. (7.2). 

x 1 

X2 Xl 

u u 

X3 X3 X3 

Fig. (7.2) 

An Enumeration Technique 

The basic idea of this technique is as follows: 

1) Obtain the real-valued most optimal solution and determine the nwnber 

of design variables to be rounded off or standardized. 

2) Assign upper and lower neighboring integer or standardized bounds to 

each of the determined design variables. 

3) Consider all possible combinations. For each combination, violation 

of any constraint must be checked. 

4) Pick up all feasible combinations. 
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5) Choose the most optimal solution. 

The results are clearly shown in Fig. (7.3) and Table (7.8). 

Design Variables OQtimal Value 
of Sol.#5 

Design Variable Real Mixed 

Xl = h 25.95 26.0 
X2 b 13.56 14.0 
X3 = d 22.20 22.0 
X4 D 29.79 30.0 
Xs t 13.56 l'~. 0 
X6 de 27.17 26.0 
X7 = e 1 5.30 5.25 
Xs £2 7.41 7.50 
Xg Asm 4.83 4.84 
X10 As £ 4.90 4.84 
Xll /l:s 4.63 4.65 
Xl2 As 2.11 2.17 
X13 ~ 0.33 0.33 
X14 A.-r 0.33 0.33 
X1S = Asht 0.41 0.40 
X16 = AShm 0.41 0.40 
X17 = AShb 0.41 0.40 
X1S A.-c 0.33 0.33 

Cost ($) 4208.5 4304.4 
Drift (in) 0.05196794 0.056958 

Table (7.8) 

Pareto Set by the entropy-based constraint method 

Comparing the total material cost obtained here, $4304.4, with the Olle 

obtained by Yang (1981), $3606.78, shows that there is an increase of 

around 16%. However, Yang's formulation was that of minimizing a 

single objective function, cost, and did not include a drift 

constraint. In optimal design of high rise frames the two criteria 

become important and a compromise solution becomes most desirable. The 

results of the same example in the above mentioned reference are as 

follows: 
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Xl 3l.0 X2 15.0 X3 26.5 

X4 15.5 Xs 15.0 X6 13.0 

X7 17.00 Xs 5.75 Xg 3.96 

X10 l. 86 Xll 4.00 X12 2.17 

X13 0.20 X14 = 0.33 XiS 0.11 

XiS 0.11 Xl7 0.11 XiS 0.33 

Comparing the two sets of results shows that the two-criu,riil 

formulation is consistent and compatable with other formulations and a 

reasonable level of accuracy is achieved. 

The final step is applying system reliability analysis to 

determine the system failure probability of our optimal design. 

7.2.3 The Reliability Phase 

The ,B-unzipping method is a method by which the reliabili ty of 

structures can be estimated at a number of different levels. The aim 

has been to develop a method which is at the same time simple to use 

and reasonably accurate. The method was first suggested by Thoft-

Christenson (1982) and is further developed by Thoft-Christensen amI 

Sorensen (1982) and (1983). The ,B-unzipping method is quite general in 

the sense that it can be used for two-dimensional and three-dimensional 

framed and trussed structures, for structures with ductile or brittle 

elements and also in relation to a number of different failure mode 

defini tions . 

~ structural system as well as a single structural component may 

have several parallel ways of carrying its load. Each of these defines 

a partial failure mode that may be defined by an equation, M(X) - 0, in 

the space physical variables. The failure event may be described in 

terms of linear safety margins [MJ - (M l ,··· ,~) such that the failure 
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event is [M] < [0]. The number of potential yield hinges m is usually 

chosen such that m exceeds the degree of redundancy n. The condition 

m > n is sufficient for the existence of at least one geometrically 

possible collapse mechanism. 

The reliability of a framed structure is estimated on the basis 

of a modelling by a series of systems where the elements in the series 

system are parallel systems. The single parallel systems are called 

failure modes and a failure mode is defined as a mechanism. For olle-

bay one-storey frame, this can be seen clearly in Fig. (7.4). 

The procedure summarized here explains, in detail, how to 

estimate structural system reliability with reasonable accuracy. 

Step (1): 

By applying Linear Elasto-Static Finite Element Analysis 

(LESFEA), determine the coefficients for all failure elements in terms 

of Pv and Ph' Fig. (7.5). These coefficients of influence might \J(' 

determined for axial forces or bending moments. For example: 

i-l,2, ... ,7 (!. I) 

i-l,2, ... ,7 ( 7 . 2 ) 

Margin of safety for failure element (i) can be determined as follows: 

M1 = min (Mil ' Mi2 ) Mil - R\ - Si (+ means tension 
failure) (7.3) 

Mi2 - R- i + 51 (- means compression 
failure) (7.4) 
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One-Bay One-Storey Frame (LESFEA) 

v:here: 

Ri = The (yield) strength capacity 

Si - The load-effect (force or moment) of the failure 

element i. (Si - Bi or S; - Ni ), 

Note that in the presentation above, a safety margin is linear in 

If the safety margin M is non-linear in Pv and Ph' then 

approximate values can be obtained using a linearized safety margin M, 
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The moment influence coefficients of applied loads are shown ill 

Table (7.9). In this design program, the random variables are the 

compressive strength of concrete, tensile strength of steel, cross-

section dimensions, amounts of tension and compression reinforcements 

and external applied loads. 

No. of Critical MIC of Ph MIC of Pv 

Section 

1 -5.2496 2.1429 

2 2.3324 -4.3921 

3 -2.3036 -4.3921 

4 5.1145 2.1429 

5 2.3324 -4.3921 

6 0.0144 5.6079 

7 -2.3036 4.3921 

Table (7.9) 

Moment Influence Coefficients of Applied Loads 

Step (2): 

In general, for a plastic framework, several plastic hinge 

mechanisms are conceivably possible; occurrence of anyone of them 

would lead to the collapse of the system. Following Stevenson and 

Moses (1970), the perform function for a mechanism, say mechanism i, 

may be defined as: 

(7.5) 
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where: resistance and load coefficients, 

respectively. 

the fully plastic moment capacity at the 

plastic hinge j . 

the loads that are active in the producing 

mechanism i. 

such that (2 i <0) means the occurrence of mechanism i. Therefore, i.f 

there are n possible mechanisms of the system, the probability of 

collapse of the system is: 

P(collapse) 

By applying Plastic Analysis (PA) , Fig. (7.6), we can determine 

the margin of safety for system failure mode (j) where j = 1, 2, ... ,10 

failure modes, Table (7.10). 

Mode No. 

0) 

(2) 

(3) 

(4 ) 

(5 ) 

(6) 

(7) 

(8) 

(9) 

(10) 

Plastic Margin of Safety 

Z(II : Mp.l + 2MP6 + Mn - So. 

Z(2) : MPJ + 2MP6 + Mp3 - So' 

Z(3) : Mp5 + 2MP6 + Mp3 - Sv 

Z(41 : Mp! + 2MP6 + Mn - Sv 

Z(5) = MPJ + MI'5 + Mp7 + Mp4 - Sh 

Z(6) = MI'J + Mi'2 + MPJ + MI'4 - S" 

Z(7) = MI'J + Mp2 + Mn + MI'4 - Sh 

Z(8) = MI'J + Mp5 + MPJ + MI'4 - S" 

Z(9) = MI'J + 2M1'6 + 2Mn + MP4 - Sv - Sh 

2(10) - MI'J + 2M1'6 + 2Mp3 + MN - So' - S" 

Table (7.10) 
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Symbol Notes 

Z(II/.I.6,7 SII = Po,· f hl2 

Z(2)/2.6.3 S" ;: Ph. i( 

Z(3)/.I.6,3 

Z(4)/2,6.7 

Z(5)/I,-'.7.4 

Z(6)/1.2,3.' 

Z(7)/I,!,7.4 

Z(8)/1.5.3,4 

Z(9)/I,6.7.4 

Z( 101/1,6,3,4 



where Z(1)/5,6,7' for example, can be read as "system failure lIIode (1), 

given failure in failure element 5, 6 and 7". 

For practical purposes Fig. (7.5), we consider: 

Step (3): 

Determine mean and standard deviation of the elastic and plastic 

safety margins as follows: 

Elastic Safety 
Margin (ESM) 

and: 

10th Plastic 
Margin (PSM) 

Step (4): 

Safety [ 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

Determine the reliability index of the elastic and plastic safety 

margins as follows: 

Mi 
(3i = i = 1, 2, ... ,7 

°Mi (7.10) 

Z(j) 

f3 (j) = j 1, 2, ... ,10 

°Z(j) (7.11) 
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Step (5): 

For each failure mode, determine the correlation matrix [pJ which 

corresponds to the correlation between each series system alld l,ach of 

its parallel systems and vice versa, For example, the 10th fai LUI"" 

mode correlation matrix is given as follows: 

~ 
: I 

i 
,J.. 

~ , I 
, I 

I 
~ 1 

j 1 
/ 

I 
~ 

/ 

j 
t 

I 
; ......... 

/ / 
I 

i j 

Fig, (7,6) 

/!----f 
/?' ! 

...L J.. 

One-Bay One-Storey Frame (PA) 
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1 P l, 6 P l, 3 Pl,4 

1 

[pl (10)11,6,3,4 

P6,3 P6,4 

1 P3,4 

1 (7.l2) 

and its corresponding average correlation coefficient: 

1 n 

L Pij 
n(n-l) i,j=l (/.13) 

where: 

n the correlation matrix dimension 

Cov[M1 , Zjl = the covariance of Mi and Zj 

aMi standard deviation of elastic safety margin Mi 

a Zj standard deviation of plastic safety margin ZJ 

Step (6): 

Determine the probability of failure for each failure mode using 

Ditlevsen bounds, Table (7.11), where ~l"" '~lO are multi-dimension~l 

functions: 

oU, ).0 [ . i 1, 2, ... ,7 

1 (i) - 1,2, ... ,10 
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Mode No. Failure Mode Probability Lower Bond Upper Bond 

(1) P(Fl) = <PI [-/3j' -/36' -/37' -/3(1); p(l)l Max [Pj. P6' P7 p(I)l Pj + P6 + P7 + p(/) 

(2) P(F2) = <p} [-/3}. -136 , -/33' -/3(2); p(2)l Max [P2' P6' P3 p(})l p} + P6 + P 3 + Pm 

(3) P(F3) = <Pj [-f3 j • -136 , -f3 j • -/3(j); p(3)l Max [Pj. P6' P3 P(3) 1 Pj + P6 + P3 + Pm 

(4) P(F4) = <P4 [-f3}. -136 , -137 , -/3(4); P(4) 1 Max [p}. P6' P7 P(4) 1 p} + P6 + P7 + p(') 

(5) P(F5) = 4>j [-13 1 , -lij • -137 , -/3 •• -f3lj ); Prj)) Max [PI' Pj. P7' p •. Prj)) PI + Pj + P7 + P4 + Prj) 

(6) P(F6) = <P6 [-/31' -/3}. -/33' -13.> -13(6); P(6) 1 Max [PI' P2' P3' p •• P(6)) PI + p} + P3 + P4 + P(6) 

(7) P(F7) = <P7 [-13 1> -/32' -/37> -/3,. -13m; p(7)l Max [PI> P2' P7' p.> P(8)) PI + P2 + P7 + P4 + Pm 

(8) P(F8) = <P8 [-131' -/3j> -133 > -/3 •• -f3(S); P(8) 1 Max [PI' Pj. P3' P4 > p(~)l PI + Pj + P3 + p. + PIS) 

I'V 
= <Po [-iiI' -/36' -/37> -/34' -13(0); p(o)l U1 (9) P(F9) Max [PI> Po> P7' p.> PrO)) PI + P6 + P7 + p. + PrO) 

I'V 

(10) P(FlO) = <PlO [-131' -136 , -133 > -134 , -/3(10); P(10)) Max [PI' Po' P3> P4' P(lO)) PI + P6 + P3 + p. + P(IO) 

Table (7.11) 

Ditlevsen Bounds For Each Failure Mode 



where: 

fJ 5 + /3 6 + /3 7 ; i 1 

2 

n 

The lower bound, (M,a;1 P(Zi <0), represents the probabili ty of 

failure of the system if all mechanisms are perfectly correlated (i.e., 

Pij ~ 1. 0 for all i and j). The upper bound, 1- n [1- P (Z, <O)J, 

i~l, ... ,n, represents the probability of failure of the system if all 

mechanisms are statistically independent (i. e. P'j = 0 for all and 

j) . 

Now, if there is a dominant failure mechanism, the lower bound of 

the failure probability may be a good approximation; if there is more 

than one significant mechanism, this approximation may be seriously on 

the unsafe side, and thus more precise determination of the collapse 

probability would be necessary. In this regard, the correlation 

between mechanism i and mechanism j should be taken into account in the 

evaluation. 

A Probabilistic Network Evaluation Technique (PNET) has 

previously been developed for the analysis of activity networks (Ang, 

et aI, 1975). This technique is applicable also for the approximation 

analysis of framed structures. Applied to the collapse probability of 

redundant plastic frameworks, the PNET method is based on the premise 

that those plastic mechanisms that are highly correlated (e.g. with Pij 
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> po) may be assumed to be perfectly correlated whereas those with low 

correlations (i.e. with Pij 5 Po) may be assumed to be statistically 

independent. 

On this basis, the system failure mechanisms can be divided into 

several groups in accordance with their mutual correlations such that 

within each group the mechanisms are mutually hiE;hly correlated. Then, 

according to the lower bound the mechanism within each group can be 

represented by the single mechanism having the highest probability o[ 

failure in the group, i.e. Maxi P(Zi<O); whereas, the representativ(' 

mechanisms between the different groups may be assumed to be 

statistically independent. Central to the PNET approach is the valu(' 

of Po. Although a value of Po = 0.5 is appropriate for activity 

networks, the same value may not be suitable for the collapse 

probability analysis of structural frameworks. The system reliability 

analysis results are shown in Table (7.12). 

Table (7.12) illustrates the validity of the developed systelll 

reliability analysis in section (7.2.3). The first part of this table 

shows separately values of the elastic reliability indices at the 7 

critical sections and values of the plastic reliability indices 

correspond to the possible failure modes. Combining the two systems as 

described in steps (4, 5 and 6), the second part of table (7.12) shows 

the upper and lower bounds of failure probability for each mechanism. 

Finally, by assigning a value for the demarcating correlation Po, the 

mechanisms are classified as perfectly correlated or statistically 

independent with respect to the critical mechanism #1 as shown in the 

third part. Using the PNET as described before, the system failure 
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No. of Critical 
Section 

Elastic Reliability 
Index 

No. of Failure Piast1c Rel1abiilty 

2 

6 

Upper Bound 

1.89 x 10',j 

5.33 x 10.9 

2. 81 x 10.6 

2. 99 X 10.6 

3.97 x 10.6 

31 x 10.7 

.26 x 10.0 

4.04 x 10.6 

3.92 X 10.6 

9.93 X 10.9 

3.592 
3.526 
3.491 
3.514 
1.629 
3.346 
1.610 

Probabi li ty of 

1st Failure Mode 

2nd Failure Mode 

3rd Failuz:oe Mode 

4th Failure Mode 

5th Failure Mode 

6th Failure Mode 

7th Failure Mode 

8th Failure Mode 

9th Failure Mode 

10th Failure Mode 

Mode Index 

3.007 
2 3.5 

5 

6 

8 

9 

10 

.335 
335 

.623 
325 

.235 

.524 

.481 
3. 755 

Lower 

9. 71 x 

2. 76 X 

2 .80 

2. 98 x 

2.03 x 

3. 83 x 

4.24 x 

4.03 X 

3. 9 x 

2 X 

Bound 

10'" 

10" 

10" 

10'(' 

10'" 

10.8 

10'(' 

10.6 

10'" 

10.9 

So, the critical failure mode 1S # 1 and lets consider the value of Po 0.6 

Perfectly Correlated Failure Mode St.at.istically Independent Failure Modes 

with the Critical One from t.he Critical One 

pO, 1 ) - 1.0 pO, S) ~ D. 444 
p( 1, 2) 0.721 p(l, 6) 0 000 
pO, 3) 0.889 p (1, 7) ~ 0 206 
p(l, 4 ) 0.889 p(l, 8) a .206 

pO, 9) 0.807 pO, 10 ) O. 553 

So, the System Failure Probability using the PNET Method is: 2.86 x 10''\ 

Table (7,12) 

System Reliability Analysis of the One-Bay One-Storey Frame Example 
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probab il i ty is found to be 2.86 X 10- 5 . This value is very close to 

the value obtained by Frangopol (1985) who considered 10 failure modes 

and used Oi tlevsen' s bounds approach, and consequently confi rms tlla t 

the present approach gives sensible and practical results. It is 

important to point out that this algorithm is computer prograoonable and 

appears to be powerful in handling the uncertainties included in till' 

formulation, the statistical correlation structure between different 

collapse mechanisms and evaluating global failure probabilities of 

structural framed systems. 

7.: OPTIMIZATION FORM OF MULTI-STOREY RIGID FRAME END MOMENTS 

When multi-storey frames and loads are given, it is very 

important for designers to find design moments formulas wi th speed aile! 

reasonable accuracy. 

In practice, as the rigid frames are statically indeterminate ill 

nature, it is impossible to determine directly stresses when the member 

sections are unknown. After having assumed, therefore, the section to 

be designed, we are compelled to start the calculation of end moments 

and check the safety of results before completing the final designs. 

The external end moments for a rigid one bay - one storey frame 

subjected to different loads with different stiffness ratios, llf, can 

easily be derived or taken from many references. For example, the 

external end moments for a rigid frame under uniform load are shown in 

Fig. (7.7). 

Takabeya, (1965) in his book, "Multi-Storey Frames", put Moment­

Tables for different multi-storey frames under different loads with 
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constant stiffness ratios. He claimed that hi s moment va lll(~S f 01' a 

constant stiffness frame gave in most cases, a good coincidence with 

the exact calculation for the reinforced concrete frame of variablu 

stiffness. 

/w 
B ...--.---r--r~' --,--,--,r--:r---:l C 

t 

r, 

o 

L ·1 

WL2 12 h 

MA Mo K 
12N1 11 L 

WL2 

Ms Me -2MA ( I . I 'l ) 
6N 1 

WL 

VA Vo N1 K + 2 
2 

Fig. (7.7) Rigid Frame Under Uniform Load 

For the above example, the following values are given: 

WL2 

MA Mo 0.333 
12 

WL2 

Ms Me= -0.667- 2MA 
12 (7.16) 

Considering constant stiffness ra~io; k - 1 ~ N1 = 3, and substituting 
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into (7.15), we get, Eq. (7.16): 

Cons ider the formulas given in (7.15) and the va 1 ues g i V('11 i 1\ 

(7.16) as a reference, that should allow us to write the end moments 

as follows: 

Q 

0.333 l2Nl 

f3 f3 

0.667 6N 1 0.333 l2N j 

where Q, f3 are the moment coefficients at these sections, Q ~ O. :l3l dnd 

f3 0.667. 

Example 

For a two storey - one bay rigid frame Fig. (/.8), subjected tu 

uniform vertical loads, the following moment coefficients are given by 

Takabeya: 

T C 
·71L. -·71L. • (2 ) I 

L • ® .R ·571 
~ 8 

o 

E 

(2 ) 

B '286 -·857 

(1) ( 1 ) 
A F 

Fig. (7.8) 

One-Bay Two-Storey Frame 
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For (2): 

0.714 WL2 0.714 
- O. 0595WLz 

0.667 6N 1 12 

0.571 WL2 0.571 
0.0476WLz 

0.333 l2Nl 12 

For (12 : 
0.857 WL2 0.857 

MBR = ---- - MBB ; MER - --- WL2 - O.0714WL2 

0.667 6N 1 12 

0.743 WL2 0.743 
0.06l9WL2 

0.333 l2Nl 12 

Optimization Form Takabeya Form 

The two forms coincide for frames with constant stiffness ratios. 

However, the optimization form is still a good approximation for design 

purposes, even for frames with variable stiffness. This conclusion was 

b0~~ 
reachedAafter having made a thlough investigation on different types of 

multi-storey frames: 

( 1) For Constant Stiffness Ratios 

(a) for the top storey 

-0.714 WL2 

MeR - 0.0595WL2 - MeB 
0.667 6 (3) 

0.571 

0.333 12(3) 
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(b) for the bottom storey: 

-0.857 WL2 

0.667 

0.743 

0.333 

6(3) 

12 (3) 

- O. 0714WLz 

0.0620WL2 

(2) For Variable Stiffness Ratios: 

The stiffness ratio is given by: 

K = 

where 1 1 , 12 , hand L are as shown in Fig. (7.7). 

For constant stiffness ratios, K = 1, the end moments given by 

Takabeya or the optimization form must be the same. For variable 

stiffness ratios, K .. I, the end moments given by Takabeya or the 

optimization form gave in all cases a good coincidence with each other 

within a small range of error (! - 0.0 - 0.20) when (K = 0.5 - 1.6). 

Lack of coincidence rate is the ratio of difference between two values 

in relation to one of them. In optimization, to control this, 

additional constraints may be added as follows: 

where KU and KL are the lower and upper bounds given by the deSigner. 

The relationship between K and f is constant and summarized in Table 

(7.13). This procedure is considered in the next section where a four­

storey frame example is presenteG. 
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K 

< I 

<2 

I'V 
a­
...... 

0.5 

0.167 

0.2 

< I 

0.6 

0.133 

0.154 

MOF - MTF 

MOF 

0.7 

0.1 

0.111 

0.8 0.9 1.0 

0.067 0.033 0.0 

0.071 0.034 0.0 

f 1 = 

1.1 

0.033 

0.032 

MOF - MTf 

MTF 

1.2 

0.067 

0.063 

1.3 1.4 

0.1 0.133 

0.091 0.118 

Table (7.13) 

1.S 

0.167 

0.143 

1.6 1.7 1.8 1.9 

0.2 0.233 0.267 0.3 

0.167 0.189 0.211 0.231 

OF: Optimization Form Value 

TF: Takabeya Form Value 

M: End Moments Coefficient 

Stiffness Ratio Variation Versus Lack of Coincidence Rate 

2.0 

0.333 

0.25 



7.3.1 One-Bay Multi-Storey Frame 

The structure considered here is a one-bay four-storey frame as 

shown in Fig. (7.9). Each storey is subjected to a uniformly 

distributed line load of 1.8 (K/ft) and concentrated live load of 1) 

(Kips) The wind force is assumed to be 2.75 at the top and 5.5 at tlllo 

other 3 storeys. Each storey is 40 ft wide and 15 ft high. The yi('ld 

strength of reinforcement is 60 (Ksi). The compressive strength of 

concrete is 4 (Ksi). At each storey, the beam cross section width tIl 

overall depth is assumed to be not less than 0.4 and both the column 

and the beam have the same width. The cost of concrete is 0.08 

($/in2/ft). The cost of steel is 2.0 ($/in2/ft). The overall depth of 

the column is assumed to be not less than one half of the overall depth 

of the beam. Each storey has 18 design variables and 48 constrainls. 

The results are summarized in Fig. (7.10) and Table (7.14). 

7.3.2 Sensitivity Analysis 

As a final topic of this thesis, the concept of a trade-off, or 

sensitivity study, is common to engineering design, so, we now consider 

three different types of sensitivity analysis: 

1) DeSign Parameter Sensitivity (DPS): In engineering des ign, if 

materials or design requirements are changed after we have already 

found an optimum solution to the original problem. we wish to 

estimate the effect that this will have on the design. This type 

of sensitivity analysis is not included in this thesis since it 

has already been published (Frangopol, 1985). 
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Top Storey 

Bottom Storey 

20' • tim 

Fig. (7.9) 

One-Bay Four-Storey R.C. Frame 
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Fig. (7.10) 

The Multi-Optimal Path Tree 

Top Storey 

1st Storey 
-----~--

Bottom Storey 
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Design Varlable 3rd Storey 2nd Storey 1st Storey Ground 
(Top) ( Bottom) 

Xl h (in. ) 21. 51 22.66 23. 15 21, .01 

Xc b 13. 56 13.56 13. 56 13. 56 

X, d 17.76 18 .91 19 1,0 20. 32 

X4 D 14.19 13.56 17 .56 17. 58 

X3 13.56 13.56 13. 56 n. 56 

X6 de 11. 56 10.91, 11,.93 II, 95 

X7 = f / (ft) 3.14 3. 14 .32 .07 

X" /, 4.99 4. 97 5 28 9. 16 

Xo Asm ( in c) 1. 88 1. 9 18 07 

X/O A,f 1. 76 1. 87 5. 2 5. 'I, 

XII A, 1. 71 2. 01 2. 90 2. 32 

X" A.r 0.00 0.796 1 29 1 98 

Xn ~'m O. 154 O. 289 .299 957 

XN ~., a .262 o. 334 0 331, 0 957 

X/5 ASht a .224 .228 380 O. 572 

XI6 Ashm . 208 O . 288 380 O. 572 

X17 AShb 0.196 0.288 0 381 0 519 

X/8 = ~·f 0.154 0.262 a 334 0.957 

Total Material Cost ($) 1703.75 1790.23 1888.13 1898. 889 

._----

Relative Horizontal 

Displacement (in. ) 0.7662 0.7741 0.2923 0 31,83 

Drift (in. ) 2.1809 Total Cost ($) 7281 

Table (7.14) 

One-Bay Four-Storey Multi-Optimal Design 
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2) Criterion Preference Sensitivity (CPS): If a crit('l-iOll 

preference is changed after we have already found an optimum 

solution to the original problem, we wish to estimate the effect 

that this will have on the design. In building design, this call 

be simplified by creating a multi-optimal path tree (MOPT) along 

the whole building. In Fig. (7.10), for each storey, the Pareto 

set is represented by several branches arranged in descending or 

ascending order according to a preferred criterion. On each 

branch, values of all criteria are listed so different multi-

optimal paths could be seen clearly. In multi-criteria multi-

storey frame design optimization, the preference of one criteria 

or another might change from time to time or case to case or all 

of these together, as follow: 

a) Time to Time 

At the time of construction, suppose that the unit price per 

volume of concrete, or the unit price per volume per length of 

steel, or both of the prices are much higher than those used at 

the time of design. This will magnify the importance of the cost 

criteria and its preference and vice versa. The solution which 

minimizes cost to its lower value has to be the dominant 

solution. 

b) Case to Case 

In the case of the skyscraper building design, the drift criteria 

becomes very significant, which is not the case with a low-rise 

building design. The solution which minimizes drift to its 

lowest value has to be the dominant one. However, if the 

considered price of concrete, steel, or both is very high, then 
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for high-rise buildings, both cost and drift criterion should be 

considered on the same level of importance and, in this case, a 

different solution has to be adopted. 

A flowchart which shows the Pareto set of each storey and the 

interrelationships among all Pareto sets of all storeys in the 

building mapped will be called the Hult::i-Opt::imal Path Tree, Fig. 

(7.10). 

In Fig. (7.10), the Pareto set for each storey is generated using 

the methods developed in chapter 3. For multi-storey rigid frames with 

loads are given, we recognise two cases: 

1) Constant stiffness ratio, K = 1: The optimization process can be 

run for each storey with no need for feedback since the end 

moments given by Takabeya are independent of structural member 

cross sections. 

2) Variable stiffness ratio, K ~ 1: By constraining the stiffness 

ratio to lie between upper and lower bounds assigned by the 

designer as explained before in section (7.3), the optimization 

process can still be run for each storey with no need for 

feedback and reasonable level of accuracy can be achieved 

(Takabeya, 1965). 

Table (7.14) shows the design variables of the preferred Pareto 

solution at each storey. Since values of the design variables of the 

top two storeys are close to each other, one of the two designs or a 

compromise of one can be considered if no constraint is violated. 

Similar circumstances apply also to the bottom two storeys. 
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7.4 DISCUSSION 

The concern for safety of structures must ultimately include the 

consideration of the reliability of a complete structural system. A 

Practical Design Program (PDP) requires a more complete knowledge of 

the design or performance space. Multi-criteria optimization is Itot 

just a tool for finding the best answer but is, in addition, one for 

learning about the design - performance space. PDP ' .. : \ 1.. ~_.,,, \ .... u.. /"::, 

to deal with mixed design variables problems. It has 

been demonstrated that it is possible to determine the comp]cetc. 

detailed description of the structure by multi-criteria optimization. 

From a practical standpoint, the end moments optimization form 

developed can be a valuable tool for the optimal design of mul t i-

storey frames. For the design of reinforced concrete frames, t h(' 

design variables such as the member cross sections and the amount of 

reinforcement in each member can only be obtained from a set of 

discrete elements. From a practical point of view the variables call 

only assume certain discrete values and the optimization process Cdll iJl' 

based only on these discrete values. In addition, the design variables 

should include the details such as the amount of web reinforcement dnd 

the cut-off points of longitudinal steel. The design constraints whi ell 

are developed based on the ACI Code (318-83) should cover the 

requirements mentioned in chapter six. Discrete design space, varied 

either uniformly or non-uniformly, for each of the design variables Cilll 

be generated for practical purposes. 

The PDP has proved to be useful since it incorporates vector 

optimization and reliability together in a very systematic way. At 

various stages during execution of the examples it was possible to 

compare results obtained with those of other researchers using 

different formulations. These comparisons showed that the present 

results are realistic and sensible in a practical engineering context. 
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CHAPTER EIGHT 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

8.1 CONCLUSIONS 

This thesis has examined the use of Shannon's (informational) 

entropy measure and Jaynes' maximum entropy principle in connection 

with the solution of single-criteria and multi-criteria optimization 

problems. At first glance, the two concepts, entropy and optimizat iOll. 

seem to have no direct link as the Shannon entropy is essentially 

related to probabilities while optimization is usually viewed in terms 

of a deterministic topological domain. To explore possiblf~ links 

between them, an optimization problem has been simulated as a 

statistical thermodynamic system that spontaneously approaches its 

equilibrium state under a specified temperature, which is then 

characterized by the maximum entropy. An attacking line: 

Entropy Thermodynamic Equilibrium Optimization 

was then postulated. Several questions are then raised about how to do 

this simulation. They are: 

1) What are micro-states of this statistical thermodynamic system in 

an optimization context? 

2) What are the probabilities of the micro-states? 

3) What common characteristic is there in these two processes? 

4) What common law governs them? 

In multi-criteria optimization, these questions are briefly 
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answered as follows: 

1) Each micro-state corresponds to a criteria in which it is 

optimized by randomly taking or adding a finite amplitude step 

from or to it respectively so that a Pareto set can be generated. 

2) The multiplier associated with each criteria is interpreted as 

the probability of the system being in the corresponding micro­

state. 

3) The Pareto set generation process can be thought of as a sequence 

of feasible transitions of the system to its equilibrium states 

such that the equilibra become the common characteristics in the 

two processes. 

4) That the entropy of the system attains a maximum value ill 

equilibrium states represent the common law to govern the two 

processes. 

In single-criteria constrained minimization, these questions are 

briefly answered as follows: 

1) Each micro-state corresponds to a constraint in which the 

objective function is minimized, subject to all constraints 

randomly taking a finite amplitude step from it. 

2) The multiplier associated with each constraint is interpreted as 

the probability of the system being in the corresponding micro­

state. 

3) A minimizing process can be thought of as a sequence of 

transitions of the system to its equilibrium states such that the 

equilibrium becomes the common characteristic in the two 
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processes. 

4) That the entropy of the system attains a maximum value at all 

equilibrium state but has a monotonically decreasing value duril1!:, 

the minimization process represents the common law to govern the 

two processes. 

In the course of this study, the concept of entropy was further 

examined by presenting a new entropy-based minimax method for 

generating Pareto solutions sets for multi-criteria optimization 

problems. The subj ect of simulated entropy for seeking the global 

minimum of single-criteria constrained minimization problems was 

explored and proved by developing two simulated entropy techniques. 

Finally, a practical optimal structural design programs for reinforced 

concrete frames was developed. 

The main developments made in the present study are summarized as 

follows: 

1) An entropy-based method for generating Pareto solution sets was 

developed in terms of Jaynes' maximum entropy formalism. This 

new method has provided additional insight into entropic 

optimization as well as affording a simple means of calculating 

the least biased probabilities, see section (3.2.4). 

2) Two new entropy-based stochastic techniques were developed to 

reach the global minimum of constrained single-criteria 

minimization problems and belong to a new class of algorithms 

called simulated entropy, see section (3.4.4). 
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3) An optimal practical structural design program for reiniorcpd 

concrete frames was developed. The design program is 

reliability-based, see chapter 7. 

4) Numerical examples were presented, tested and compared using all 

the new entropy-based methods described in Chapter 3. 

5) A new way for investigating the sensitivity of an optimal design 

of a multi-storey frame due to changes in criterion preferellce 

was developed, see section (7.7.3). 

The present work has shown that there are links between entropy 

and optimization. There is no doubt that good entropy-based 

optimization algorithms can be devised based upon the present research. 

Several conclusions, drawn from the present research, are sununarized as 

follows: 

1) The development of the new entropy-based methods has provided not 

only an alternative convenient solution strategy but 31so 

additional insights into entropic processes. 

2) Uncertainty contained 

optimization problems 

in the solution of multi-criteria 

is similar to that contained in 

thermodynamic systems: thus it is reasonable to employ a 

statistical thermodynamic approach, i. e. , the entropy 

maximization approach, to estimate multi-criteria multipliers. 

3) Uncertainty contained in the solution of constrained minimization 

problems is also similar to that contained in thermodynamic 

systems, sO it is reasonable to employ a statistical 

thermodynamic approach, i. e. , the entropy minimaximization 

approach, to estimate the entropy multipliers. 
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4) The exploration of a new class of methods called silllulat:l'ci 

entropy methods has a significance far beyond that subject 

itself. A fact which must be emphasized is, that it is tlw 

informational entropy approach which has made this possible. 

During the simulated entropy process simulation of the entropy 

was a close parallel to minimization of the maximum entropy at: 

each configuration. 

S) Entropic optimization methods developed in this thesis have a 

very unique property which make it very easy to be programmed . 

this unique property may be formulated as follows: 

No matter how many goals or constraints we have, only Olle 

parameter controls the process: the entropy parameter, P. 

6) The development of the entropic optimization methods have enabled 

the mathematical optimization examples considered in Chapter 4 to 

be solved easily. The computer results have shown that the 

developed methods have fast and stable convergence. Through the 

developments made here, it can be seen that the entropic 

optimization methods deserve to be more widely recognized than 

hitherto. 

7) Exponentiation and the use of logarithms within the entropy 

function have very little influence on computer execution time if 

time is optimized and full efficiency of the computer system is 

used. 
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8) Also, the development of the entropic optimization methods have 

enabled the structural optimization problems considered ill 

Chapter 7 to be solved very easily and successfully. They are 

practical enough to be recognized as efficient tools [or solvine 

multi-optimal design problems in particular and Computer Aided 

Design (CAD) problems in general. 

8.2 RECOMMENDATIONS FOR FUTURE WORK 

The present work is exploratory. However, it has opened up new 

avenues in the study of some classes of minimization problems, sllch as 

general stochastic optimization problems. Some potential research 

topics, which become possible due to the present work, are summarized 

as follows: 

1) The present work is mainly oriented towards providing a practical 

basis for using Shannon entropy through the Maximum Entropy 

Principle (MEP) and the Minimax Entropy Principle (MMEP) in an 

optimization context. It has left many aspects of theoretical 

algorithmic development to be explored. For example, the Maximin 

Entropy Principle. 

2) Further practical refinements are also required for more deeply 

understanding the minimum entropy principle and the maximin 

entropy principal and extending its applications to more 

optimization areas. 

3) It is now clear that the explored relationship between simulated 

entropy and simulated annealing has a close relationship to 

global minimization. Thus, the Minimax Entropy Principle (MMEP) 

can be readily adapted to solving large simulation problems of a 
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stochastic nature. This has still to be explored. 

4) Because of the explored relationship between simulation, 

simulated entropy, entropy and the Minimax Entropy Principle, and 

since simulation is an experimental arm of operations research 

(Hillier, et.al., 1980), the author strongly believes that 

Entropy Research (ER), which involves research on entropy may be 

described as a scientific approach to decision-making that 

involves uncertainty and as a result its concept is so gC'f\{'l"aJ 

that it is equally applicable to many other fields as well. 

5) The roots of Operations Research (OR) can be traced back Illany 

this 

decades to the Second World War. Because of the war effort, 

there was an urgent need to allocate scarce resources to the 

various military operations and to the activities wi thin each 

operation in an effective manner. However, because of the strong 

waves of technological development, the world is shaken. 

America, itself, is facing a very difficult challenge for the 

rest of the century (Kennedy, 1987). A new strategic system of 

management is urgently needed. Entropy may be used efficiently 

for such development. In words, operations research deals with 

what is available today while entropy research deals with what is 

unpredictable tomorrow which is the case we are faCing. 

In conclusion, the main contribution to knowledge contained in 

thesis centres around the various demonstrations that 

informational entropy, stochastic simulations and optimization 

processes are closely linked. Through this work it is now possible to 

view the traditional deterministic, topological interpretation of 
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optimization processes as not the only interpretation, out as just Ol\t' 

possible interpretation. It is equally valid to treat optimization 

processes in a probabilistic, information-theoretic way and to develop 

solution methods from this interpretation. This new insight opens up 

new avenues for research into optimization methods. 
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Given: 

show that: 

APPENDIX A 

I 

P 

c 
exp ( PF i) / ( L exp (PF i) ) 

i=l 

c 
L Ai aFj(aX'j) 
i=I 

0; Vjd 

where X*J is an optimal solution to Vz 

Proof: 

ax". 
J 

c 

L 
i=l J -

c 

o 

(A.1 ) 

exp(PF, ) L p(aFjaX'j) .exp(PF
i

) 
1,-1 

or: 

c 
L exp(PF i ) 

i=l 
{ L exp (PF,) r 

c 
L p(aFjaX') exp(PF i ) 
i -1 

c 
r exp (PF i ) 

i-I 

which after substitution into (A.I) yields: 
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c 

c c c 1: PCBF,IBX"j) expCPF, ) 
1: Ai CBF,IBX"j) + 1: PFi (BF,IBX*) Ai - 1: Fi Ai "",i~::..Il~ _______ _ 

i=l i=l i=l 

c c 
- 1: Ai CBF,IBX"') (l + en Ai) +(l/P) 1: Ai (1 + in Ai) 

i=l i=l 

or: 

c c 
1: A (BFjBX"j) + 1: PFi CBFjBX*j) Ai -
i=l i=l 

c 

c 
1: exp C PF, ) 
i=l 

1: PCBF,IBX") exp (PF, ) 
i=l 

c 
1: exp C PF , ) 
i-I 

- ~ (1 + En Ai) Ai CBFJBX"j) + (liP) ~ (l + en A) Ai [~PCBFjBX") A1] ",,0 
i=l i=l 1=1 

or: 

or: 

~ Ai CBFi/BX*) [1 + PCFi - ~ A, FJ - 1 - in A, + 1 + ~ A, en A1)]= 0 
i=1 i=1 i=1 

or: 

c 
1: Ai (BFJBX*j) 
i=1 

+ ~ A i in Ai + P (F i - ~ Ai F i)] = 0 
i=1 i-1 
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C 

But, fnAi fn J exp(PFi ) 1 
l ~ exp(PF i ) 

i=1 

PF i - in [ exp(PF i ) 

i=l 

Substituting for en Ai in above we get: 

~ Ai (8F;l8X"j) [1 - PFi + in ~ exp(PFi ) + ~ AiPFi 
i=1 i=l i=l 

c c 

- L Ai in L exp(PFi ) + PFi -

or: 

i=l i=l 

c 

L A, (8F;l8X*) 
i=l 

c 
but L Ai 1 

i=l 

c 
L Ai (8F;l8X') = 0 
i=l 
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Given: 

with: 

APPENDIX B 

:~:. : [

Min 

C 

).i exp [P Fi (X»)I [exp [P Fi (X»); i - l, ... ,c 
i-l 

show that: 

c 
[ a i ( 8Fd 8X*) 
i=l 

o a , ~O II i 

where X'J is an optimal solution to V3 

Proof: 

c 

1, ... , C 

+ [ 'Y [(8).i/8X*J) Fi + >'i ( 8Fd 8X"j) - (liP) [(8)'d8X*j)(l + En ).,)] i=l 1 

i .. h 

or: 

c 

(aV3/ax*j) - t=I'Yi [(a).dax*j) Fi +).i (aFdaX"'j) - (lIP) [(aAdax*) (1 + fn ).hl] 

which we have already proved in Appendix (A) that is equal to: 
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c 

L 1i Ai (aF;lax*) o 
i=l 

c 
L Q i (aFjaX*j) 0 
i=l 
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APPENDIX C 

PLASTIC MOMENTS 

This appendix presents the derivations of the plastic moments, 

ultimate strength, of reinforced concrete cross-sections as function of 

the design variables. 

C.l THE PLASTIC MOMENTS FOR COLUMNS 

with (Xll - X1Z ) fy 

0.85 fc X5 

In practice, Rl 

C.2 THE PLASTIC MOMENTS FOR A BEAM 

(C.1) 

R3 (1/12) [ (2XlO - Xg) (X3 - abrd2 ) fy + Xg (X3 - (Xl - X3» ] - Rs 

wi th (2X10 - ~g) 

with 
(2Xg - X10 ) 

0.85 fc Xz 

(C. 2) 
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APPENDIX D 

THE CONSTRAINTS FUNCTIONS 

This appendix presents derivations of the Constraint Functions 

for one bay-one storey reinforced concrete frame in terms of the 

considered design variables. 

D.1 CONSTRAINTS FOR A BEAM 

D.1.1 Flexural Strength 

0.9 fy (Xg X3 + 2 X10 X3 - Xg Xl) 

0.9 fy (2 Xg X3 + X10 X3 - Xg Xl) 

0.9 f2 y 

1.7 tc 

0.9 fl y 

1.7 tc 

( 2X lO - Xg) 2 

- Mph ~ 0 
Xz 

(2Xg - X10 ) 2 

- MpM ~ 0 

Xl 

where MpR and MPM are the moments at the right and the middle s ide of the 

beam. 

D.1.2 Shear Strength 

1.7 /f~ Xl X3 + 3.4 fy X18 - 1000 (WL/2 + P v/2) - 2MB/(l2L) ~ 0 

1. 7 /f~ Xl X3 + 3.4 fy X14 - 1000 (WL/2 + Pv/2) 2MB/( l2L) ~ 0 

1. 7 /f~ Xl X3 + 1.7 fy X13 - 1000 (WL/2 + P v/2) - 2MB/( lZL) ~ 0 

where MB is the moment at the left side of the beam when the frame is 

under horizontal applied load at the left side of the beam. 
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D.l.3 Ductility (Plasticity) 

2X10 - Xg 
1'1 Pb2 ~ 0 

X2 X3 

2Xg 200 
-- ~ 0 

Xz X3 fy 

2XiO 200 
- - ~ 0 

where 

0.003(0.85)fil E. tc XiO 

Pbi +--
fy (0.003Es + fy) X2 X3 

0.003(0.85)fil Es tc Xg 
Pb2 +--

fy (0. 003) Es + fy X2 X3 

D.l.4 Serviceability 

12L 
~ 0 

18.5 
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2(12L) 
~ 0 

5 

D.l.S Concrete Cover for Reinforcement 

where db: specified nominal diameter of bars, inch. 

D.l. 6 Limits of Web Reinforcement 

2 ff.~ XIS XIS 50 
- -- ~ 0 ---~ 0 

fy X2 X3 X2 X3 4 fy 

2 ff.~ XI4 XI4 50 
- -- ~ 0 - -- '> 0 

fy X2 X3 X2 X3 4 fy 

2 ff.~ X13 XI3 50 
- -- ~ 0 ---~ 0 

fy 2X2 X3 2X2 X3 4 fy 

D.l. 7 Development Length for Longitudinal Reinforcement 

0.04 1fd2
b fy 

X7 - ~ 0 
12 4 ff.~ 

X4 0.04 1fd2
b fy 

Xs - - 1.4 ~ 0 
24 12 4 ff.~ 

where db: specified nominal diameter of bars, inch. 
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D.1.S Cut-off Points of Longitudinal Reinforcement 

'Ya ~ + 0.5(12) (1000) [- (Fv + WL) (0.5L - X7 + XlJ/12) + 

where ~ and Ms are shown as follows: 

Also: 

where: 

Xll 

MsOc'C;L~ 12 f'w ) 
~~tMS 

wL P" - .-
2 2 

(N s ) 1 + Nt - 1 
Xz - ( 4 - db ) - 2 db ~ 0 

Nt 

8 

specified nominal diameter 

total no. of longitudinal bars placed at the midsp:lll 
of beam 

Nt - no. of tension steel layers placed in beam 

Ns = no. of shear steel bar (ties) 

- total no. of stirrups within a distance, based on 
specified1y based bars. 
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0.1.9 Compression Steel Yield Condition 

0.85f~ 1 f~ 1.5 + db Nt 0.003 Es 

J 
- 0.85 ~l-- ? 0 

fy X3 0.003 Es-fy 

0.85f~ 1 f~ 
- 0.85 ~l 

fy fy 

0.003 Es 

0.1.10 Tension Steel Yield Condition 

0.003 (0.85) ~l Es f~ XlO 2Xg 
+-- ~ 0 

fy (0.003 Es + fy) X2 X3 X2 X3 

0.003 (0.85) ~l Es f~ Xg 2X10 
+ -- ~ 0 

D.2 CONSTRAINTS FOR A COLUMN 

D.2.1 Axial and Flexural Strength 

O.003E. 

fy + 0.003E. 

0. 003Es 
(Pn)3 - (0.85)2 + f~ X5 Xs + fy (X12 - Xll) 

2(fy + 0.003Es) 
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fy + O. 003Es 

0. 003Es 

0. 003Es 

0. 003Es 
2 f2y Xu X12 X4 + 4 t2y Xll X12 Xs + (0.85)2 tc fy Xli X~, XL

L 
_ 

fy+0. 003Es 

o .003Es 
(0.85)2 tc fy ----- - 0.3071 fc r 

0.003E5)2 1 
-- X)X': L 

l fy + 0. 003Es J 

1 0. 003Es 

[

'2 ------------ 0.307 fc ------
0.85 fc X4 Xs + fy (Xu + X12 ) 2(fy + 0.003I<:s) 

O. 003Es 

2(fy + O.003Es) 

0. 003Es 
2 f2y Xu X12 X4 + 4 f2y Xll X12 Xs + (0.85)2 fc fy-------

2(fy + 0.003Es) 

0.003E. 
(0.85)2 fc fy x" X, X', ]. 

[ 

0 . 003E
S ]2 

0.3071 tc ------- X X2 
S 6 

2(fy + 0.003E.) 2(fy + O. 003Es 
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So, the constraints are: 

0.7 - ~ 0 

(~)3 - (~)4 ~ 
~ 0 0.8 + 

(~)4 

0.8 + ~ 0 

D.2.2 Shear Strength 

1. 7 Jf; X5 Xs + 3.4 fy X1S - Me/12H ~ 0 

1. 7 Jf; Xs Xs + 1. 7 fy X1S - Me/12H ~ 0 

1 . 7 .If ~ Xs Xs + 3.4 fy Xl7 - Mo/12H ~ 0 

where Me and Mo are the moments at C and D. 

D.2.3 Ductility (Plasticity) 

0.08 - ~ 0 -0.01 +--------- ~ 0 
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~ 0 

where Pb3 + 

D.2.4 Serviceability 

D.2.S Concrete Cover for Reinforcement 

where Nfc = Number of tension steel layers placed in a colum. 

Nc - Bar No. of longitudinal steel placed in a column. 

D.2.6 Limits of Lateral Reinforcement 

50 
~ 0 ~ 0 

4fy 

2jf~ X17 X17 50 
~ 0 

~ 0 -- -

fy Xs X6 Xs X6 4fy 

2jf~ X16 X16 50 
0 ~ 

~ 0 
fy 2Xs X6 2Xs X6 4fy 
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D.2.7 Spacing Limits 

where: 

[X6/4 - (Ns/B) (NY )4J 

(Ny) 4 

-1 ~ 0 

Ns No. of shear steel bar (ties) 

db Specified nominal diameter 

(Ny) 4 = Total no. of ties wi thin a dis tance 5, based 011 

specifically based bars. 

(Ns )3= Total no. of bars placed in the outer-side column cross 

section. 
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