THE STRATIGRAPHY, PALAEONTOLOGY, AND PALAEOECOLOGY

 OF IHE CAMPANIAN CHALK OF NORFOLKThesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy by

Andrew John Pitchford, July 1989.

To my father
 John Douglas Pitchford

ABSTRACT

THE STRATIGRAPHY, PALAEONTOLOGY, AND PALAEOECOLOGY

OF THE CAMPANIAN CHALK OF NORFOLK

Andrew John Pitchford (Liverpool University)
Logging of extant sections within the Campanian Chalk of Norfolk, noting, especially, the position, nature, strength, and spacing of flint bands and the occurrences of layers of harder chalk has enabled correlations between exposures. In particular, those between the cliff section on the north Norfolk coast at Weybourne and inland quarries at Eaton and Keswick about 50 km to the south. Equivalent faunal variations at similar levels strengthened the correlation. Samples from boreholes drilled through currently unexposed beds containing fossils with narrow and well defined stratigraphic ranges enabled further tie-ups with existing exposures.

A varied macrofauna, of about 2700 individuals, dominated by belemnites, brachiopods, bivalves, echinoids, and sponges was identified, whilst the "mesofauna", from borehole and bulk samples, comprised, in addition to common fragments of larger taxa, numerous brachiopods, serpulids, sponges, echinoderms, and bryozoans. Many belemnites and echinoids supported epifauna, usually of small brachiopods, bivalves, serpulids, and bryozoans, and were bored by sponges.

The Norfolk Campanian Chalk was deposited on a tectonically stable shelf, mostly at depths between 150 and 200 m at temperatures around twenty degrees Celcius at a rate of up to 1 mm per year during periods of deposition. Current activity was rare and then only weak, of insufficient strength to reorientate fauna.

At most levels the macrofauna occurred in fairly low numbers. Remains that lay exposed for any length of time were often colonised by epifauna and bored. The sediment whilst firm enough to support belemnite guards, ammonite shells etc., was too soft for the many smaller taxa which existed only as epifauna, and were restricted to the relatively rare hard substrates provided by belemnites, echinoids, and ammonites etc. Rarely, when the sea-floor was firmer, certain taxa, particularly oysters, were able to spread out over the sediment in considerable numbers.

ACKNOWLEDGEMENTS

I thank Mr. C.J. Wood (London), Mr. N.B. Peake (Norwich), and Dr. A.S. Gale (Thames Polytechnic) for their help with faunal identifications. Mr. P.S. Whittlesea (Norwich) aided greatly in locating, measuring, and logging several sections, and with the taxonomy of many fossils, especially the bryozoans. I am grateful to Mr. J. Fery (Anglian Water Authority, Norwich) for the information regarding, and the chalk samples from, the boreholes drilled by the Water Authority at Norwich and Whitlingham, and likewise to the Department of Transport for the material from the boreholes drilled along the line of the Wymondham bypass.

I am appreciative of the access granted to me by numerous farmers and landowners to quarries on their property, in particular Mr. W.M. Howes and the employees of the Frettenham Lime Company, also to Miss A. Griffiths (Liverpool University) and Mr. C.J. Veltkamp (Liverpool University) for their help in producing the plates for this thesis. I am indebted to my supervisor, Dr. C.R.C. Paul (Liverpool University), for his valuable and helpful advice as to lines of research that might be explored, constructive criticisms regarding the content, composition, and layout of this thesis, and support throughout the duration of the project.

Finally, I wish to thank my parents for putting up with all my chalky clothes and allowing me to fill the garage with bags of borehole chalk, and most of all my father, Mr. J.D. Pitchford, for the use of the facilities of the Highways Laboratory of Norfolk County Council in Norwich, his wise counsel, and his unwavering interest, enthusiasm, and guidance throughout the last three years.

This research project was funded by grant number GT4/86/GS/120 from the Natural Environment Research Council.

CONTENTS

CHAPTER ONE - STRATIGRAPHY

1.1 INTRODUCTION 1
1.2 GONIOTEUTHIS ZONE STRATIGRAPHY 4
1.2.1 Introduction 4
1.2.2 Wells Quarry 6
1.2.3 Guist 9
1.2.4 Sparham (1) 9
1.2.5 Sparham (2) 10
1.2.6 Stiffkey 11
1.2.7 Marlingford 13
1.2.8 Gonioteuthis Zone Summary 14
1.3 BELEMNITELLA MUCRONATA ZONE STRATIGRAPHY 16
1.3.1 Introduction 16
1.3.2 Pre-Weybourne Chalk Division 18
1.3.2.1 Spring Farm (Attlebridge) 19
1.3.2.2 Cley-next-the-sea 20
1.3.2.3 Tharston (Furze Hill) 21
1.3.2.4 University of East Anglia (UEA 1) 22
1.3.2.5 Newfound Farm (Cringleford) 23
1.3.2.6 Pre-Weybourne Chalk Summary 25
1.3.3 Weybourne Chalk Division. 27
1.3.3.1 Introduction 27
1.3.3.2 Correlations between the chalk exposed at Weybourne Hope, Keswick, and Eaton 28
1.3.3.3 Weybourne Hope-Old Butts Gap 30
1.3.3.3.1 Weybourne palaeontology 32
1.3.3.4 Keswick Quarry 37
1.3.3.4.1 Keswick palaeontology 38
1.3.3.5 Eaton Tunnels Section. 41
1.3.3.5.1 Eaton palaeontology 42
1.3.3.6 Whiffler Road. 43
1.3.3.7 Harford Bridges 44
1.3.3.7.1 HBR 1 45
1.3.3.7.2 HBR 2 46
1.3.3.8 Weybourne Hope East 46
1.3.3.9 Weybourne Chalk Summary 48
1.3.4 Catton Sponge Beds 49
1.3.5 Beeston Chalk Division 50
1.3.5.1 Introduction 50
1.3.5.2 Caistor St. Edmund Quarry 50
1.3.5.2.1 Caistor palaeontology 52
1.3.5.3 Bracondale (Norwich) 58
1.3.5.4 Frettenham (J.S.S. Aggregates Ltd.) 60
1.3.5.5 Frettenham (W.M. Howes Ltd.) 62
1.3.5.6 St. James Hollow 63
1.3.5.7 Beeston Chalk Summary 64
1.3.6 Paramoudra Chalk Division. 65
1.3.6.1 Introduction 65
1.3.6.2 Whitlingham (Colmans Pit) 66
1.4 SECTION AND BOREHOLE CORRELATIONS 67
1.4.1 Gonioteuthis Zone 67
1.4.2 Belemnitella mucronata Zone 68
1.4.2.1 Pre-Weybourne Chalk Division 68
1.4.2.2 Weybourne Chalk Division 68
1.4.2.3 Catton Sponge Beds Division 68
1.4.2.4 Beeston Chalk Division 69
1.4.2.5 Paramoudra Chalk Division 69
CHAPTER TWO - BOREHOLE MATERIAL
2.1 INTRODUCTION 70
2.2 WYMONDHAM BOREHOLES 71
2.2.1 Wymondham Boreholes Faunal Summary 75
2.3 NORWICH BOREHOLES 76
2.3.1 Norwich Boreholes Faunal Summary 81
2.4 MAYTON WOOD BOREHOLES 82
2.4.1 Mayton Wood Boreholes Faunal Summary 85
2.5 WHITLINGHAM BOREHOLES 85
2.5.1 Whitlingham Boreholes Faunal Summary 88
CHAPTER THREE - FOSSIL BORINGS AND EPIFAUNA
3.1 INTRODUCTION 90
3.2 GONIOTEUTHIS ZONE 91
3.3 BELEMNITELLA MUCRONATA ZONE 91
3.3.1 Pre-Weybourne Chalk Division 91
3.3.1.1 UEA (1) 92
3.3.1.2 Newfound Farm (Cringleford) 92
3.3.2 Weybourne Chalk Division 93
3.3.2.1 Weybourne Hope 93
3.3.2.2 Keswick 95
3.3.2.3 Eaton Tunnels 96
3.3.2.4 Whiffler Road 97
3.3.2.5 HBR (1) 98
3.3.2.6 Weybourne Hope East 98
3.3.2.7 Weybourne Chalk Summary 98
3.3.3 Beeston Chalk Division 100
3.3.3.1 Caistor St. Edmund 100
3.3.3.2 Frettenham (J.S.S. Aggregates Ltd.) 102
3.3.3.3 Frettenham (W.M. Howes Ltd.) 102
3.3.3.4 Beeston Chalk Summary 103
3.3.4 Paramoudra Chalk Division 104
3.3.4.1 Whitlingham 104
4.1 INTRODUCTION 105
4.2 BELEMNITES 105
4.3 BRACHIOPODS 106
4.4 BIVALVES 108
4.5 SERPULIDS 109
4.6 SPONGES 111
4.7 ECHINODERMS 111
4.8 CIRRIPEDES 113
4.9 MISCELLANEOUS NON-BRYOZOANS 113
4.10 BRYOZOANS 114
4.11 BORINGS 119
4.12 SUMMARY 119
CHAPTER FIVE - CAMPANIAN CHALK AND FOSSIL GROUP ECOLOGY
5.1 INTRODUCTION 122
5.2 DEPOSITIONAL ENVIRONMENT 122
5.2.1 Salinity 122
5.2.2 Water Depth 123
5.2.3 Water Temperature 124
5.2.4 Sedimentation Rates 125
5.3 BELEMNITE DATA 128
5.3.1 Introduction 128
5.3.1.1 Records per Quadrant. 129
5.3.1.2 Overall Distribution Patterns 130
5.3.2 Weybourne Hope Belemnite Data. 132
5.3.2.1 Borings 132
5.3.2.1 1 Records per Quadrant 132
5.3.2.1.2 Overall Distribution Patterns. 133
5.3.2.2 Epifauna 134
5.3.2.2.1 Records per Quadrant. 134
5.3.2.2.2 Overall Distribution Patterns. 135
5.3.2.3 Orientations 137
5.3.2.4 Plunge Angles 137
5.3.3 Keswick Quarry Belemnite Data. 138
5.3.3.1 Borings 138
5.3.3.1.1 Records per Quadrant 138
5.3.3.1.2 Overall Distribution Patterns 139
5.3.3.2 Epifauna. 141
5.3.3.2.1 Records per Quadrant 141
5.3.3.2.2 Overall Distribution Patterns 141
5.3.3.4 Orientations 143
5.3.3.5 Plunge Angles. 143
5.3.4 Eaton Tunnels Belemnite Data 144
5.3.4.1 Orientations 144
5.3.4.2 Plunge Angles 144
5.3.5 Caistor St. Edmund Quarry Belemnite Data 145
5.3.5.1 Borings. 145
5.3.5.1.1 Records per Quadrant 145
5.3.5.1.2 Overall Distribution Patterns 146
5.3.5.2 Epifauna 147
5.3.5.2.1 Records per Quadrant 147
5.3.5.2.2 Overall Distribution Patterns. 148
5.3.5.3 Orientations 149
5.3.5.4 Plunge Angles 149
5.3.6 Borings Summary 150
5.3.7 Epifauna Summary 154
5.3.8 Orientations and Plunge Angles Summary 155
5.3.9 Population Summary 156
5.3.9.1 Borings 156
5.3.9.1.1 Records per Quadrant 156
5.3.9.1.2 Overall Distribution Patterns 156
5.3.9.2 Epifauna 157
5.3.9.2.1 Records per Quadrant 157
5.3.9.2.2 Overall Distribution Patterns 157
5.3.9.3 Plunge Angles 157
5.3.10 Belemnite Borings Identifications 158
5.3.10.1 Summary 161
5.3.11 Belemnite Epifaunal Remains Identifications 162
5.3.11.1 Summary 165
5.4 OTHER FOSSIL GROUPS 166
5.4.1 Weybourne Hope 167
5.4.2 Keswick 170
5.4.3 Eaton Tunnels. 171
5.4.4 Harford Bridges 172
5.4.5 Caistor St. Edmund 172
5.4.6 Frettenham (J.S.S. Aggregates Ltd.) 175
5.4.7 Frettenham (W.M. Howes Ltd.) 176
5.4.8 Miscellaneous Localities. 176
5.4.9 Summary 177
5.5 NORFOLK CAMPANIAN CHALK ECOLOGY 181
5.5.1 Ecological Information about, and Life Habits of fossil Groups 181
5.5.1.1 Belemnites 181
5.5.1.2 Brachiopods 185
5.5.1.3 Bivalves 187
5.5.1.4 Echinoderms 188
5.5.1.5 Bryozoa. 190
5.5.1.6 Miscellaneous Fossil groups 192
5.5.2 Sea-floor Ecology 193
5.5.2.1 Gonioteuthis Zone 193
5.5.2.2 Belemnitella mucronata Zone 193
5.5.3 Faunal Turnovers 195
CHAPTER SIX - CONCLUSIONS AND REFERENCES
6.1 CONCLUSIONS 197
6.2 REFERENCES 199
APPENDICES
APPENDIX ONE
a) Current chalk exposures of Campanian Chalk in Norfolk 205
b) Unexposed/obliterated sections of Campanian chalk in Norfolk 206
APPENDIX TWO
Bulk samples from sections and boreholes 208
APPENDIX THREE
a) Epifaunal and boring abbreviations used in appendices $3 \mathrm{~b}-7$, inclusive 213
b) Fossils found in the quarry at Caistor St. Edmund 215
c) Fossils found in the former quarry at Frettenham (W.M. Howes) 224
APPENDIX FOUR
a) Fossils found in the Weybourne Hope-Old Butts Gap cliff section 225
b) Fossils found in miscellaneous sections 230
APPENDIX FIVE
Fossils found in the quarry at Keswick 231
APPENDIX SIX
Fossils found in the former quarry at Eaton. 235
APPENDIX SEVEN
a) Fossils found in the former quarry at Harford Bridges 236
b) Fossils found in the former quarry at Frettenham (J.S.S. Aggregates Ltd.) 236
APPENDIX EIGHT
a) Occurrences of non-bryozoan faunal elements in the borehole samples from Wymondham 237
b) Occurrences of bryozoan remains in the borehole samples from Wymondham 239
APPENDIX NINE
Occurrences of non-bryozoan faunal elements and bryozoan remains in the bulk samples from miscellaneous localities. 240
APPENDIX TENOccurrences of non-bryozoan faunal elements andbryozoan remains in the borehole samples from Norwich.243
APPENDIX ELEVENOccurrences of non-bryozoan faunal elements andbryozoan remains in the borehole samples fromMayton Wood.248
APPENDIX TWELVE
Occurrences of non-bryozoan faunal elements and bryozoan remains in the borehole samples from Whitlingham. 249

TABLES

1.1 Zones of the Upper Chalk in England. 5
1.2 Divisions of the Belemnitella mucronata Zone. 17
5.1 Weybourne belemnites borings in groups $1-10$ 133
5.2 Weybourne belemnites borings in categories A, B, or C. 134
5.3 Weybourne belemnites epifauna in groups $1-10$ 136
5.4 Weybourne belemnites epifauna in categories A, B, or C. 137
5.5 Weybourne belemnites plunge angles 138
5.6 Keswick belemnites borings in groups $1-10$ 140
5.7 Keswick belemnites borings in categories A, B, or C. 140
5.8 Keswick belemnites epifauna in groups $1-10$ 142
5.9 Keswick belemnites epifauna in categories A, B, or C 143
5.10 Keswick belemnites plunge angles 144
5.11 Eaton belemnites plunge angles 145
5.12 Caistor belemnites borings in groups $1-10$ 146
5.13 Caistor belemnites borings in categories A, B, or C. 147
5.14 Caistor belemnites epifauna in groups 1-10 148
5.15 Caistor belemnites epifauna in categories A, B, or C 149
5.16 Caistor belemnites plunge angles 150
5.17 Belemnite borings (Weybourne, Keswick, and Caistor) 160
5.18 Weybourne fossil orientations 167
5.19 Keswick fossil orientations 170
5.20 Caistor fossil orientations 173
5.21 Fossil orientations from all localities 178
5.22 Fossils with borings from all localities 179
5.23 Fossils with epifauna from all localities 181
1.1 Locality map. 1
1.2 Wells Section 6
1.3 Sparham (2), Stiffkey, and Marlingford Sections 10
1.4 UEA 1 and Newfound Farm, Cringleford Sections 22
1.5 Weybourne, Eaton, and Keswick Section correlations 28
1.6 Weybourne Hope-01d Butts Gap Section. 30
1.7 Volumetric abundances of belemnites and micrasters from Weybourne 33
1.8 Volumetric abundances of Cretirhynchia and Echinocorys from Weybourne 33
1.9 Volumetric abundances of pycnodontids and oysters from Weybourne 33
1.10 Keswick Quarry Section 37
1.11 Volumetric abundances of belemnites and echinoids from Keswick 38
1.12 Volumetric abundances of Cretirhynchia and oysters from Keswick 38
1.13 Eaton Tunnels Section. 41
1.14 Whiffler Road, Harford Bridges, and Weybourne Hope East Sections 44
1.15 Caistor St. Edmund Quarry section. 50
1.16 Volumetric abundances of Belemnitella and Cretirhynchia from Caistor 52
1.17 Volumetric abundances of Carneithyris carnea and large inoceramids from Caistor. 52
1.18 Volumetric abundances of Echinocorys and oysters from Caistor. 52
1.19 Bracondale (Norwich), Frettenham (JSS. Agg.), Frettenham (W.M. Howes), and Whitlingham Sections. 58
1.20 Stratigraphic positions of sections and boreholes in the Gonioteuthis Zone and Pre-Weybourne Chalk 67
1.21 Stratigraphic positions of sections and boreholes in the Weybourne Chalk, Catton Sponge Beds, Beeston Chalk, and Paramoudra Chalk 68
2.1 Occurrences of brachiopod, bivalve, serpulid, and sponge remains in the Wymondham boreholes samples 73
2.2 Occurrences of echinoderm, cirripede, and miscellaneous non-bryozoan taxa in the Wymondham boreholes samples... 73
2.3 Occurrences of bryozoan remains in the Wymondham boreholes samples 74
2.4 Occurrences of belemnite, brachiopod, and bivalve remains in the Norwich boreholes samples 77
2.5 Occurrences of serpulid, sponge, crinoid, and asteroid remains in the Norwich boreholes samples 78
2.6 Occurrences of echinotd, ophiuroid, cirripede, and miscellaneous non-bryozoan taxa in the Norwich boreholes samples 79
2.7 Occurrences of anascan, ascophoran, and cancellatan bryozoan remains in the Norwich boreholes samples 80
2.8 Occurrences of dactylethratan, rectangulatan, salpinginan, and tubuloporinan bryozoan remains in the Norwich boreholes samples 80
2.9 Occurrences of fossil remains in the Mayton Wood boreholes samples. 83
2.10 Occurrences of belemnite, brachiopod, bivalve, and serpulid remains in the Whitlingham boreholes samples 86
2.11 Occurrences of sponge, echinoderm, and cirripede remains in the Whitifngham boreholes samples 87
2.12 Occurrences of miscellaneous non-bryozoan taxa and anascan bryozoan remains in the Whitlingham boreholes samples 87
2.13 Occurrences of ascophoran, cancellatan, salpinginan, and tubuloporinan bryozoan remains in the Whitlingham boreholes samples 87
4.1 Stratigraphic ranges of Belemnitella and brachiopods 105
4.2 Stratigraphic ranges of bivalves 108
4.3 Stratigraphic ranges of serpulids 109
4.4 Stratigraphic ranges of sponges, crinoids, and asteroids 111
4.5 Stratigraphic ranges of echinoids, ophturoids, and cirripedes 112
4.6 Stratigraphic ranges of corals and miscellaneous non-bryozoan taxa 113
4.7 Stratigraphic ranges of anascan bryozoans 114
4.8 Stratigraphic ranges of anascan bryozoans. 114
4.9 Stratigraphic ranges of articulatan, ascophoran, and cancellatan bryozoans 116
4.10 Stratigraphic ranges of dactylethratan, rectangulatan, salpinginan, tubuloporinan, and miscellaneous bryozoans 117
4.11 Stratigraphic ranges of borings 119
5.1 Correlation between the sections at Weybourne, Keswick, and Eaton 131
5.2 Weybourne belemnites borings: distribution patterns per quadrant 132
5.3 Weybourne belemnites borings: distribution patterns per quadrant 132
5.4 Weybourne belemnites epifaunal remains: distribution patterns per quadrant 134
5.5 Weybourne belemnites epifaunal remains: distribution patterns per quadrant 134
5.6 Weybourne belemnites: orientations 137
5.7 Weybourne belemnites: orientations 137
5.8 Weybourne belemnites: orientations 137
5.9 Weybourne belemnites: plunge angles 137
5.10 Weybourne belemnites: plunge angles 137
5.11 Weybourne belemnites: plunge angles 137
5.12 Keswick belemnites borings: distribution patterns per quadrant 138
5.13 Keswick belemnites epifaunal remains: distribution patterns per quadrant 141
5.14 Keswick belemnites: orientations 143
5.15 Keswick belemnites: orientations 143
5.16 Keswick belemnites: orientations 143
5.17 Keswick belemnites: plunge angles 143
5.18 Keswick belemnites: plunge angles 143
5.19 Eaton belemnites: orientations 144
5.20 Eaton belemnites: plunge angles 144
5.21 Caistor belemnites borings: distribution patterns per quadrant 145
5.22 Caistor belemnites borings: distribution patterns per quadrant 145
5.23 Caistor belemnites epifaunal remains: distribution patterns per quadrant 147
5.24 Caistor belemnites epifaunal remains: distribution patterns per quadrant 147
5.25 Caistor belemnites: orientations 149
5.26 Caistor belemnites: orientations 149
5.27 Caistor belemnites: orientations 149
5.28 Caistor belemnites: orientations 149
5.29 Caistor belemnites: plunge angles 149
5.30 Caistor belemnites: plunge angles 149
5.31 Caistor belemnites: plunge angles 149
5.32 Caistor belemnites: plunge angles 149
5.33 Belemnitella mucronata Zone sea-floor assemblage 194
PLATES
1 Common macrofossils collected from sections 204
2 Common non-bryozoan mesofaunal elements found in bulk samples 204
3 Common and stratigraphically significant bryozoans found in bulk samples 204

CHAPTER ONE

STRATIGRAPHY

1.1
 INTRODUCTION

All known working chalk pits and former workings in the Campanian Zones of Gonioteuthis and Belemnitella mucronata in Norfolk (some 110 in all) were visited between September 1986 and the autumn of 1988. The 24 existing, accessible, sections (Figure 1.1 and Appendix 1) were logged and fossils collected accurately (their positions measured to the nearest 5 cm vertically with respect to marker flint bands in the chalk).

The log for each extant section was produced by measuring the vertical spacing between recognisable bands of flint, which occur in all but a few of the smallest exposures. The shape, size, form, colour, and spacing of flints and the presence/absence, colour, and thickness of cortices (skins on the surfaces of flints) were all carefully noted. Characteristic flints in each band were sketched and redrawn at a 1:50 scale when sections were drafted.

A five-metre wide section of chalk was drawn for each locality. Each drawn flint band was, as far as possible, an accurate representation of the equivalent band visible in the chalk face and hence, an idealised "typical" section of chalk exposed at each locality was

FIGURE 1.1 Approximate geographical locations of the existing, accessible, sections described in chapter one, and of the boreholes described in chapter two. Grid iines represent 100 kilometre National Grid Lines. Abbreviations: CBR=Colmans, Bracondale; CL=Cley-next-the-sea; CS=Caistor St. Edmund: ET=Eaton; FR1=Frettenham (J.S.S. Aggregates): FR2=Frettenham (W. M. Howes): GU=Guist; HBR=Harford Bridges; $K S=K e s w i c k: M F=M a r l i n g f o r d ; ~ N F F=N e w f o u n d ~ F a r m, ~ C r i n g l e f o r d ; ~$ SJH=St. James's Hollow; SPF=Spring Farm, Attlebridge; SP2, SP1=Sparham: STF=Stiffkey; TH=Tharston; UEA1=University of East Anglia; WH=Weybourne Hope-Old Butts Gap; WHE=Weybourne Hope East; WHR=Whiffler Road, Hellesdon; WIT=Whitlingham: WLS=Wells; MW BHS=Mayton Wood boreholes; NCH BHS=Norwich boreholes: WIT BHS=Whitlingham boreholes; WYM BHS=Wymondham boreholes.
produced. The colour and nature of the chalk and the presence of hard/soft bands was noted.

Several terms were used to describe the shapes of individual flints. Most fall into one of four shape categories, which grade into each-other. The two end-member forms are "nodular" (irregularly shaped flints with numerous protuberances) and "tabular" (regular flints with smooth faces). Two intermediate shape forms, "semi-nodular" and "semi-tabular" are recognisable, these having some characteristics of both end member forms. Two other terms were used to describe specifically shaped flints; "sheet" for laterally continuous (up to 5 m) tabular flints, and "spindle" for small "rod-like" flints. In places, particularly in the Paramoudra Chalk division of the Belemnitella mucronata Zone (q.v.) very large barrel shaped flints (paramoudras) are very common.

Bulk samples of chalk (usually about 2 Kg in weight) were taken at regular intervals from all accessible sections and sieved to obtain the "mesofauna". This is composed of fragments of larger fossils (particularly spines of cidarid echinoids, fragments of Echinocorys, brachiopods, and bivalves) and smaller faunal elements which were dominated by bryozoans (>50 genera), serpulids (>10 genera), asteroids (identified from disassociated ossicles), ophiuroid plates, and some of the larger foraminifera.

Some of this chalk was sufficiently hard to necessitate the use of a supersaturated solution of Glaubers salt ($\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{HOH}_{2} \mathrm{O}$) to break it down so that it could be passed through sieves. This is achieved by repeated freezing and thawing (16-18 times) of a chalk sample which has been covered with the salt solution in a plastic container. The solution is made up by dissolving the sodium sulphate in water at $40^{\circ} \mathrm{C}$ until supersaturation occurs (the temperature is important as the salt is most soluble at that value). The chalk is broken up by the large crystals that form every time that the salt solution is frozen.

Several monographs were used to identify most of the collected fossils, including those by Davidson (1854, 1874) and Woods (1903, 1913) for the brachiopods and bivalves, respectively, Jäger (1983) for the serpulids, and Withers (1935) for the cirripede plates found in the bulk sample residues.

The daunting task of identifying the large bryozoan fauna was aided by the four catalogues of the bryozoa in the department of Geology of the British Museum (volumes 1 and 2 by Gregory (1899, 1909), volumes 3 and 4 by Lang (1921, 1922)), the bryozoan section of the treatise on invertebrate palaeontology (part G, Bassler (1953)), and Larwood's 1962 account of the morphology and systematics of some of the Cretaceous cribimorphs.

Some of the borings, especially those observed in belemnite guards, were recognised from the descriptions and figures in the paper by Mägdefrau (1937), others from the treatise, part W (Moore, 1962).

From sections where a sufficiently large number of fossils were collected (at Caistor St. Edmund, Keswick, and between Weybourne Hope and Old Butts Gap on the north Norfolk coast) calculations of volumetric abundance per cubic metre of chalk were performed for common fossils and important groups collected over measured horizontal distances. The formula of McKinney (1986, p. 80) was used to produce faunal distribution patterns throughout the sections.

Localities within both zones will be described (in stratigraphic order) along with a brief summary of the fauna obtained from bulk samples (in which the bryozoan content will be described separately from the remainder of the identified fauna) and from macro-fossils collected in the field.

1.2 GONIOTEUTHIS ZONE

1.2.1 INTRODUCTION

This zone contains all the chalk between the top of the Marsupites Zone and the base of the Belemnitella mucronata Zone (Table 1.1) and is characterised in Norfolk by the regular occurrence of forms of the
belemnite Gonioteuthis (belonging to the granulata quadrata evolutionary sequence). Due to the paucity of exposure which has limited precise biostratigraphical work, it is convenient to refer all beds within the zone to an " Undivided Gonioteuthis Zone" (introduced as a local zone in Norfolk by Peake and Hancock, 1961, p. 313). However, it is possible (Peake and Hancock 1970, p. 339C) to recognise sections in Norfolk that lie in both the Offaster pilula and Gonioteuthis quadrata Zones of southern England which together are equivalent to the undivided zone in Norfolk.
stage
MAASTRICHTIAN CAMPANIAN

SANTONIAN

ZONE

> | Belemnella lanceolata |
| :--- |
| Belemnitella mucronata |
| Gonioteuthis $\frac{\text { quadrata }}{}$ |
| Offaster pilula |
| Marsupites $\frac{\text { testudinaris }}{}$ |
| Uintacrinus $\frac{\text { socialis }}{\text { Micraster coranguinum (pars) }}$ |

Table 1.1 Zonation of the Upper Chalk (Santonian - Maastrichtian) stages in England (after Rawson ot al., 1978, p. 27-29).

The chalk of this zone is generally soft, and with a tendency to break along bedding-planes. The lower part is very white, with flint occurring fairly freely - generally in bands. Higher up the chalk is often yellowish, and the fiints more scattered. Fossils are usually rare, and correlation between exposures is difficult.

The only extant sections found in the
"Gonioteuthis" Chalk were at Wells, Guist, Sparham, Stiffkey, and Marlingford and have been placed in ascending stratigraphic order (Figure 1.20). This was determined by comparing the geographic positions of the localities with reference to the approximate
north-south strike of the chalk and then by considering differences in topographic level between the sections i.e. for strike sections (unless large scale faulting or distinct faunal correlation is apparent) those at higher topographic levels are assumed to expose higher levels of chalk.

The palaeontology and lithology of each locality will be described in turn.

```
1.2.2 WELLS (TF 9280 4290)
```

This large quarry beside the A149 east of Wells lies in the lower part of the Gonioteuthis Zone (Figure 1.20). It was worked for many years by the Leicester Lime Company. More than 15 m of very white chalk with common flint bands is exposed, with a 10 cm thick marl band occurring in the middle of the section (Figure 1.2). The bottom part of the face (below the marl seam) contains several bands of black nodular flints (3, 4, 5, and 6). The lowest two flints (1 and 2) are of different form with laterally continuous, very thin (<2 cm thick) sheets of black flint. The white chalk in

FIGURE 1.2 Diagrammatic five-metre wide section of the chalk at Wells (TF 9280 4290). Scale bars on left side in metres. Numbers on left-hand side indicate flint band notation used in the text. Fiints are solid black (except where carious). SWC=soft white chalk; HNC=hard nodular chalk; $B / W / O / Y C=b r o w n / w h i t e / o r a n g e / y e l l o w ~ c h a l k ; ~ B N F=b l a c k ~$ nodular flints; GNF=grey nodular filints: BSNF=black semi-nodular fiints: BSTF=black semi-tabular flints; BTF=black tabular flints; BSLF=black spindle-like filnts; BSF=black sheet flints.
this part of the section is quite firm and blocky and breaks along bedding surfaces. The marl band is a prominent marker within the quarry face and is much softer than the surrounding chalk. Above it a succession of flint bands (7-14) is present within the chalk. Most of these bands contain black nodular flints although band 12 has common spindle-like forms within it. As lower down in the section, the chalk is very white and somewhat blocky.

The only fossils collected from the section were fragments of an inoceramid bivalve from beneath flint band 12 and a well preserved Echinocorys sp. in band 9. However, 6 bulk samples of chalk taken from Wells yielded a varied (albeit largely fragmentary and somewhat abraded) fauna.

This fauna comprised common fragments of the brachiopods Kingena pentangulata S. Woodward and Ierebratulina spp., the bivalves Inoceramus spp. (numerous), Ostrea spp., and Neithea cf. sexcostata (S. Woodward). The serpulids Filogranula cincta (Goldfuss), Neomicrorbis crenatostriatus (Münster), and N. subrugosus (Münster), and the sponges Porosphaera globularis (Phillips), R. sessilis Brydone, and R. sp. (fusiform), a possibly undescribed form of Porosphaera with fusiform (adnate) shape, were recognised. Echinoderms included columnals of the crinoid Bourgueticrinus sp., spines of cidarid echinoids,
ossicles of the starfish Pycinaster sp., ?Astropecten sp., and ?Chomataster sp., as well as plates of the ophiuroids ophiomusium granulosum (Roemer), Ophiura hagenowi Rasmussen, and Ophiura sp. The cirripedes Brachylepas fallax (Darwin) and ?Scalpellum sp., fragments of aseptate corals, and a solitary coral (Coelosmilia granulata (Duncan)) were also identified.

The remainder of the non-bryozoan fauna comprised several indeterminate ostracod carapaces, and foraminifera referable to Dentalina sp., Vaginulina sp., Frondicularia sp., ?Tentifrons sp., Gavelinella sp., and globigerinelloidinae.

The bryozoan fauna included examples of the anascans "Biflustra" argus d'Orbigny and woodipora disparilis d'Orbigny (both common), Coscinopleura lamourouxi (Von Hagenow), Onychocella inelegans Lonsdale, Q. cf. rowei Brydone, o. sp., Quadricellaria grania (Brydone), and "Membranipora" sp. An ascophoran ?Porina sp., an articulatan (Berenicea sp., the only specimen collected), the cancellatans Crisina sp. and Sparsicavea sp., the rectangulatan Disporella irregularis (d'Orbigny), the salpinginans Meliceritites spp. and Meliceritella sp., and the tubuloporinans Clinopora lineata Beissel, c. sp., Siphoniotyphlus tenuis (Von Hagenow), and Spiropora sp. were also identified within the sieved residues.

Guist lies almost along strike from Wells but about 30 m higher topographically, and therefore probably exposes higher levels in the chalk (Figure 1.20). A small exposure (2 m high) of very soft, weathered, orange/brown/white chalk is visible (beneath tree roots) at the top of the old quarry just north of the A1067. No fossils were found, but a bulk sample yielded fragments of a rhynchonellid (Cretirhynchia spp.) and a single valve of the long ranging craniacean brachiopod Isocrania costata (Sowerby) as well as pieces of Inoceramus sp. and Ostrea sp. The sponges Porosphaera globularis, P. sessilis, and R. sp. (fusiform), and fragments of Echinocorys sp. were identified, along with cidarid spines and a plate of ?Ophiura sp . The only bryozoans recognised were the common salpinginans Meliceritella sp. and Meliceritites spp.

1.2.4 SPARHAM (1) (TG 0580 1890)

This small section lies somewhere in the middle of the Gonioteuthis Zone (Figure 1.20) although its exact position is not clear. In 1988 a small patch of soft, orange/brown, iron-stained chalk was visible at the base of the old pit and contained a single band of scattered generally small, black/grey nodular flints with very thin white cortices.

Fauna (entirely collected from a bulk sample) included fragments of Terebratulina sp., Ostrea sp., Inoceramus spp. (numerous), the sponges Porosphaera globularis and P. sessilis, and Echinocorys sp., ossicles of ?Chomataster sp., and plates of the ophiuroids Ophiomusium granulosum and Ophiura cf. hagenowi. The remaining identified faunal elements were aseptate corals, ostracod carapaces, and the bryozoan Meliceritites sp.
1.2.5 SPARHAM (2) (TG 0650 1900)

This old quarry is about 500 m east of Sparham (1) and stratigraphically siightly above it (Figure 1.20). It lies just south of a sharp bend on the road to Sparham from the A1067. Two and a half metres of soft, orange brown, iron-stained chalk with a scattered band of mostly small, black nodular flints with white cortices $<3 \mathrm{~mm}$ thick are exposed in the long low face (Figure 1.3).

A single ossicle of ? Ieichaster sp. was collected from the section and a bulk sample yielded fragments of the bivalves Inoceramus sp., Ostrea sp., and Spondylus ?dutempleanus d'Orbigny, and the sponges Porosphaera globularis and P. sp. (fusiform). The echinoderm content included spines of cidarid echinoids, fragments of Echinocorys sp., a marginal ossicle of the starfish Metopaster sp., and plates of the ophiuroids

TOP OF SECTION.
Very soft Y/OC Iron-stained.

Open double
band of BNF.
BASE OF SECTION.

TOP OF SECTION.
w/o/y chaik.

Small BNF.
BNF with thin
Poseible
white cortices.
hardground.
"Platy" BSF with
very thin (<1mm.)
white cortices.
Some BNF in band.

Scatterad BNF.

Prominent band of
large BT-BSNF.
Small thin
BSF-BTF.
Strong band of
irregular BNF.

BST/BSNF.
Iron-ätained swC.

BASE OF SECTION.

TOP OF SECTION.
Scattered band
Scattered band
of irregular gnf.
$s 0 / B / w C$.
I O/B/WC.
I
base of visible section. Talus

FIGURE 1.3 Diagrammatic five-metre wide sections of the Chalk at Sparham (2) (TG 0650 1900) (bottom figure), Stiffkey (TF 9780 4310) (middle figure), and Marlingford (TG 1370 0930) (top figure). Symbols and abbreviations as in Figure 1.2.

Ophiomusium granulosum and Ophiura hagenowi. Remaining non-bryozoan faunal elements included ostracod carapaces, and foraminifera of Gavelinella sp. and globigerinelloidinae. The bryozoan fauna consisted of the common and long ranging anascan Onychocella inelegans and fragments of Clinopora lineata and Crisina sp.

1.2.6 STIFFKEY (TF 9780 4310)

This section (Figure 1.3) in the upper part of the Gonioteuthis Zone (Figure 1.20) contains 9.5 m of white chalk with several bands of (mostly) black nodular flints and forms a cliff in the farm-yard 200 m south of the church. The cliff probably represents a former (?pre-Pleistocene) coast-line. The lowest two flint bands (1 and 2) are formed by, mostly small, black nodular - semi-tabular flints with thin white cortices. Between these and fint 3 (a laterally impersistent band of small "platy" black forms) is a thin (20 cm) zone of harder white chalk. Flint band 4 , the best developed in the section, is characterised by large, black tabular - semi-nodular flints with thin cortices. Above this level are 3 bands of small, black nodular flints (5, 7 and 8) and another "platy" flint (6). Above 7 there may be a hardground (the upper part of the face is inaccessible), the rest of the chalk is mostly soft and white, although somewhat iron-stained.

As at Wells, no macrofossils were found in the field but two bulk samples gave a large and varied "mesofauna" including fragments of the brachiopods Isocrania egnabergensis (Retzius) and Ierebratulina spp., the bivalve Lyropecten sp., the serpulids Glomerula gordialis var. ilium (Goldfuss) and Orthoconorca tubinella (Sowerby), and the sponges Porosphaera globularis, R. sessilis, and P. sp. (fusiform). Columnals of the crinoid Bourgueticrinus spp., cidarid spines, an ossicle of the starfish ?Pycinaster sp., plates of Ophiomusium ?granulosum and the cirripede Cretiscalpellum sp. were also identified. Fragments of aseptate corals, the coral Stephanophyllia clathrata (Von Hagenow), ostracod carapaces, and foraminifera including examples of Dentalina sp., Tentifrons sp., Gavelinella sp., and globigerinelloidinae were collected from the sample residues.

[^0]and the tubuloporinans Clinopora lineata, Entalophora sp., Siphoniotyphlus tenuis, and Spiropora sp. were identified, along with forms of Coscinoploura lamourouxi, Disporella irregularis, Meliceritites spp., ?Porina sp., and Pustulopora sp.
1.2.7 MARLINGFORD (TG 1370 0930)

This pit lies very close to the top of the zone (Figure 1.20) and was originally placed in the overlying zone of Belemnitella mucronata by Rowe, but later by Brydone into the Gonioteuthis Zone. The section (Figure 1.3) exposes about 2 m of very soft yellow/orange iron-stained chalk above talus. No fossils were found but a bulk sample contained valves of Terebratulina spp., examples of the serpulids Glomerula gordialis (Schlotheim), G. g. var. ilium, and Pentaditrupa subtorquata (Münster), and the common sponges Porosphaera globularis and R. sessilis. Also identified were Bourgueticrinus sp. columnals, cidarid spines, fragments of Echinocorys sp., ossicles of the starfish Teichaster sp. and ?Nymphaster sp., a plate of the cirripede Scalpellum fossula (Darwin), indeterminate ostracod carapaces, a specimen of the coral Moltkia sp., and globigerinelloidinae.

The bryozoan fauna comprised the anascans Coscinopleura lamourouxi, Lunulites sp., Onychocella matrona, and Woodipora disparilis, a rectangulatan
(Disporella irregularis), the tubuloporinan Pustulpora sp., and the salpinginan ?Meliceritella sp.

1.2.8 SUMMARY

Due to the paucity of exposures within the Gonioteuthis Zone it is difficult to draw detailed conclusions from the faunal data, but some general statements can be made.

The chalk is largely devoid of macro-fossils and the zonal fossil was not recorded from bulk or borehole samples (the latter from Wymondham, see chapter two, section 2.2) or collected in the field. In contrast to the rarity of large fossils bulk samples contained a large and varied mesofauna. A good example of this occurred at Stiffkey where two and a half hours of careful collecting yielded no fossils, but two bulk samples contained 22 different identified genera. Most of the taxa within the samples occur commonly throughout the zone and up into the overlying mucronata chalk.

These include sponges of the genus Porosphaera, the serpulid Glomerula gordialis var. ilium, spines of cidarid echinoids, plates of the ophiuroids Ophiomusium spp. and Ophiura spp., and columnals of the crinoid Bourgueticrinus spp. Ossicles of the starfish Pycinaster spp. were commonly recorded (especially
towards the top of the zone) but are very rare above, only a single specimen being recorded in the very bottom of the overlying Belemnitella mucronata Zone.

Amongst the bryozoans, the anascans Onychocella matrona, $\underline{0}$. inelegans, and Woodipora disparilis are very common, as are the salpinginans Meliceritites spp. and Meliceritella spp. The anascan Vincularia supercilium was only recorded in the upper part of the zone (at Stiffkey and in chalk of a similar age from boreholes at Wymondham) and appears to be a good indicator of upper Gonioteuthis age.

The chalk in the lower part of the zone is blocky and firm (Glauber's salt was needed to break down the bulk samples from Wells prior to their being sieved) with common flint bands. The localities higher in the zone (Sparham, Stiffkey, and Marlingford) expose mostly soft, yellow/white chalk with flints.

In conclusion, the lack of exposure and the rarity of stratigraphically restricted fauna means that it is not possible, at present, to sub-divide the zone and will remain so, until and, unless further sections become available.

1.3
 BELEMNITELLA MUCRONATA ZONE

1.3.1 INTRODUCTION

Chalk of this zone, the highest Campanian stage (see Table 1.1, p. 5), has long been famed for the abundance, and often exceptional preservation quality, of the fauna, and is the classical "Norwich Chalk" of early authors, collectors having been active since the first part of the nineteenth century.

The boundaries at the top and bottom of the zone are uncertain as neither is exposed, although the lower may have been present in old sections (where chalk was not visible in 1987) at Bawburgh (TG 1610 0906) and between Ringland (TG 1300 1460) and Taverham Park (TG 1474 1386). The upper boundary is nowhere exposed (the easterly dip of the chalk having taken its surface below ordnance datum level east of Cromer). Chalk of definite Maastrichtian age has only been found in glacially transported erratics on the north Norfolk coast and elsewhere inland (Peake and Hancock, 1961, p. 324-330). However Maastrichtian chalk has been recognised on faunal grounds in borehole samples collected from Wroxham (Whittlesea in preparation).

The chalk of the mucronata Zone has been divided into different units by workers using various criteria (see Wood, 1988 for a resume of research history). Dr.
A.W. Rowe was active in the early part of the twentieth century and although he did not attempt to divide the lower part of the mucronata Zone, he did recognise two "lines" (which he could trace between localities), the "Tharston Line" and the "Cley Line", based on the occurrence of particular faunas. Higher up he noted the bed of hard chalk near the top of Attoe's pit (TG 2310 1110) now recognised as the Catton Sponge Beds.
R.M. Brydone $(1930,1932,1938)$ worked in the Norfolk Chalk for more than forty years and referred to five horizons in the zone based upon broad faunal divisions. More recently, Peake and Hancock (1961, p. 314-318) introduced a six-fold division (based mainly upon Brydones horizons). Wood (1988, p. 31-39) has suggested a modified version of this, replacing the lowest two divisions with a "Pre-Weybourne" unit which has been split into five sections on faunal grounds (see Table 1.2).

Peake and Hancock (1961)

Wood (1988)
Paramoudra Chalk Beeston Chalk Catton Sponge Beds Weybourne Chalk Pre-Weybourne Chalk

Table 1,2 Sub-divisions of the Belemnitella mucronata Zone after Peake and Hancock (1961) and Wood (1988).

The base of the Weybourne Chalk division has been placed at the top of the local range of Echinocorys ex
gr. conica by Wood (1988, D. 33), which he considers to be at the level of flint band X of Peake and Hancock's (1961, p. 315) section at Weybourne, whereas they put the base at the level of flint band Z of the section several metres below band X.

It is proposed herein to use Wood's scheme to divide the mucronata chalk, but to place the base of the Weybourne Chalk at the level suggested by Peake and Hancock (1961, p. 317).

1.3.2 PRE-WEYBOURNE CHALK

This unit (poorly exposed in Norfolk) is characterised by the occurrence of bands of chalk containing the anascan bryozoan Volviflustrellaria taverensis (Brydone) and by particular shape variants of Echinocorys spp. (Peake and Hancock, 1961, p. 314). The chalk is, mostly, soft and white or yellow (due to iron-staining) in colour and contains common flint bands. Wood (1988, p. 31-32) has sub-divided this chalk into five units ("Pre-Weybourne 1-5" respectively). However, at the representative localities for at least three of these, chalk is no longer visible, or was only exposed in temporary sections during building work. Hence, it is not possible to recognise some, if not all, of Woods units and all described exposures will be referred to an undivided Pre-Weybourne Chalk division.

Sections in this chalk were visited (in ascending order (Figure 1.20)) at Spring Farm (Attlebridge), Cley-next-the-sea, Tharston, University of East Anglia (groundsman's huts on the university playing fields), and Newfound Farm (Cringleford). Each will be described in turn.

1.3.2.1 SPRING FARM (ATTLEBRIDGE) (TG 1550 1600)

This pit (Figure 1.20) was considered by Brydone to lie very close to the base of the zone but may be cut in a "raft" of glacially transported chalk (Wood, 1988, p. 14). About 1 m of very soft white chalk is exposed at the bottom of an old pit in a field 200 m south-east of the farm buildings. No fossils were found but a bulk sample of chalk contained a single valve of the craniacean brachiopod Isocrania costata, a partial specimen of Magas sp., fragments of the bivalves Ostrea sp., Inoceramus spp. (numerous), Spondylus dutempleanus, and S. spinosus (J. Sowerby), and the serpulids Glomerula gordialis var. ilium and Neomicrorbis crenatostriatus. A fusiform Porosphaera was also recognised. Echinoderms included fragments of Echinocorys sp., spines of cidarid echinoids, and columnals of Bourgueticrinus sp., together with ossicles of the asteroids Astropecten sp. and Pycinaster sp., and ophiuroid plates of Ophiomusium granulosum and Ophiura hagenowi. Examples of the
foraminifera Dentalina sp., Gavelinella sp., and globigerinelloidinae were collected from the sample residues.

The bryozoan fauna comprised a single specimen of Vincularia aff. hecamede Brydone (the only one recognised), the lowest recorded specimen of "Membranipora" flabelliformis (d'Orbigny), and examples of common and long ranging forms such as the anascans Woodipora disparilis, "Biflustra" argus, Coscinopleura lamourouxi, Onychocella inelegans, O. matrona, and Quadricellaria grania, and the tubuloporinans Clinopora lineata, Pustulopora sp., and Spiropora verticillata (Marsson). Specimens of Sulcocava sp., Meliceritites spp., and Porina sp. were also noted.

```
1.3.2.2 CLEY-NEXT-THE-SEA (TG 0540 4400)
```

This small exposure of soft, yellow/brown chalk in the old quarry (now a carpark) just east of the village lies little above the level of Rowe's "Cley Line" (characterised by the presence of the anascan bryozoan "Volvolunulites" [Volviflustrellaria] taverensis) which he identified in the pit at Cley Green (TG 0480 4330) (Wood, 1988, p. 21), inaccessible in 1988, about 500 m west of the car park.

A bulk sample yielded a fauna consisting of a valve of Isocrania costata and fragmentary remains of the
rhynchonellid Cretirhynchia spp., the bivalve Inoceramus spp., the serpulid Pentaditrupa subtorquata, the sponges Porosphaer globularis and P. sessilis, and echinoderms including Bourgueticrinus sp. columnals, cidarid spines, fragments of Echinocorys sp., and an ossicle of the starfish Recurvaster sp. Foraminifera referable to Gavelinella sp. and globigerinelloidinae, and the common anascan bryozoans onychocella matrona and Woodipora disparilis also occurred.

1.3.2.3 THARSTON (FURZE HILL) (TM 1940 9560)

The exact stratigraphic position of this pit is uncertain. Rowe placed it at the base of the mucronata Zone, but Wood (1988, p. 78) considers, on faunal grounds, that it lies at a higher stratigraphic level within the Pre-Weybourne Chalk, below the level of the chalk exposed behind the groundsmans huts at the University of East Anglia (Figure 1.20). A 60 cm high exposure of weathered soft yellow chalk in the otherwise completely overgrown pit yielded no fossils and a bulk sample gave an undiagnostic fauna comprising Belemnitella (the lowest record), Isocrania costata, fragments of the serpulids filogranula cf. cincta and Pentaditrupa subtorquata, the sponge Porosphaera globularis, cidarid spines, and the foraminifera Gavelinella sp. The only bryozoans recognised were common "Biflustra" argus, Lunulites sp., and Disporella
irregularis, a Sparsicavea sp., and the lowest recorded occurrence of Onychocella nysti (Von Hagenow).

```
1.3.2.4 UNIVERSITY OF EAST ANGLIA (UEA 1)
    (TG 1870 0840)
```

This small chalk exposure behind the groundsman's huts on the University playing fields lies just west of Newfound Farm. This locality is important because of the common occurrence of Volviflustrellaria taverensis (which characterises parts of the Pre-Weybourne Chalk (Figure 1.20)). About 2.5 m of soft, yellow chalk is present in two small faces with a band of large, black/grey nodular flints at the top and another at the base of the section (Figure 1.4). Two large cidarid spines were collected, each with an attached juvenile of the oyster Pycnodonte vesiculare (Lamarck).

From two bulk samples a valve of the craniacean brachiopod Isocrania costata and a specimen of the terebratulid ?Argyrotheca sp., fragments of the bivalves Inoceramus spp., Ostrea spp., and Neithea sexcostata, and the serpulids Glomerula gordialis, G. g. var. ilium, Hamulus sexangularis (Münster), and Pentaditrupa subtorquata were recognised. The common and long ranging sponges Porosphaera globularis and R. sessilis, and echinoderms including spines of cidarid echinoids and ossicles of the asteroids Metopaster sp., Astropecten sp., and ?Recurvaster sp. were also

TOP OF SECTION.

TOP OF SECTION.
Large B/GNF with
white cortices
-1mm. thick.

BNF with white
cortices 1 imm. thick.
BASE OF SECTION.
SWC.

GAP (${ }^{-40 \mathrm{~cm} .)}$

SWC.

FIGURE 1.4 Diagrammatic five-metre wide sections of the chalk at University of East Anglia (UEA1) (TG 1870 0840) (lower figure) and Newfound Farm, Cringleford (TG 1892 0692) (upper figure). Symbols and abbreviations as in Figure 1.2.
collected together with a plate of the cirripede Scalpellum sp., and the foraminifera Dentalina, Vaginulina, Gavelinella, and globigerinelloidinae.

The diverse bryozoan fauna included (in addition to Volviflustrellaria) common anascans such as onychocella inelegans, 0 . matrona, Quadricellaria grania, Lunulites sp., Woodipora disparilis, and the lowest recorded occurrence of Latereschara galeata Von Hagenow. The tubuloporinan Clypeina rosula (Von Hagenow), the ascophoran ?Beisselina sp:, the cancellatans Bicavea sp., Homoeosolen sp., and Sparsicavea sp., the dactylethratan Clausa globulosa d'Orbigny, the salpinginans Meliceritites gothica Levinsen and M. sp., and the rectangulatan Disporella irregularis were also identified.

1.3.2.5 NEWFOUND FARM CRINGLEFORD (TG 1892 0692)

This pit lies west of the track leading to the University Broad and is largely overgrown, but a section of 4.35 m was cleared in the south-east corner of the old workings. The section exposed lies stratigraphically at about the same level as UEA 1 (Figure 1.20) and probably overlaps with it, although correlation between the two sections was not obvious.

Three bands of black nodular and spindle-like flints are visible in the soft chalk (Figure 1.4).

Above the top flint there is intense cryoturbation with rounded flint pebbles incorporated into the disturbed chalk. Fossils are scattered through the section and several Belemnitella, fragments of the brachiopods Isocrania costata, I. paucicostata (Bosquet), and Cretirhynchia spp., an unidentified terebratulid, pieces of Ostrea sp., the serpulids Glomerula gordialis and Proliserpula ampullacea (Sowerby), a partial specimen of Echinocorys sp., and cidarid spines were collected.

A diverse fauna was obtained from four bulk samples taken at $\sim_{1} \mathrm{~m}$ intervals. This included the brachiopod Magas sp., the bivalves Mimachlamys cretosa (Defrance) and Pseudolimea granulata, and numerous serpulids comprising Glomerula gordialis, G. g. var. ilium, Hamulus sexangularis, Neomicrorbis crenatostriatus, N. subrugosus, Pentaditrupa subtorquata, Proliserpula ampullacea, Sclerostyla sepentaria Regenhardt, and Vermiliopsis fluctuata (Sowerby). The sponges Porosphaera globularis and P. sessilis, ossicles of the asteroids Astropecten sp., Metopaster sp., ?Nymphaster sp., ?Ophryaster sp., and ?Recurvaster sp., plates of the ophiuroid Ophiura hagenowi, a partial specimen of the coral Molkia sp., and one of Stephanophyllia clathrata were also identified, as were ostracod carapaces, and foraminifera including Dentalina sp., Gavelinella sp., and globigerinelloidinae.

The varied bryozoan fauna included several examples each of the common anascans "Membranipora" flabelliformis, Onychocella inelegans, o. matrona, o. nysti, o. rowei, and Woodipora disparilis, and specimens of other anascans including "Biflustra" argus, Latereschara galeata, and a member of the "Membranipora" sevingtonensis Brydone group. Other forms recognised were the ascophoran Porina goldfussi Brydone, the tubuloporinans Clypeina rosula, Pustulpora benediana (Von Hagenow), Clinopora lineata, and Spiropora verticillata, the cancellatans Eohornera langethali (Von Hagenow), Petalopora spp., Sparsicavea spp., and Sulcocava spp., and the salpinginan Meliceritites gothica.

1.3.2.6 SUMMARY

The only fossil species recorded that is restricted to the Pre-Weybourne Chalk was the anascan bryozoan Volviflustrellaria taverensis (which occurs at certain stratigraphically restricted, but geographically widespread horizons) found only at UEA 1 and near the base of two 50 m deep boreholes drilled in Norwich for the Anglian Water Authority (see chapter two, section 2.3), but also known from a pit at Cley Green (see section 1.3.2.2).

Other faunal elements common throughout the division are Belemnitella, the brachiopods Isocrania
costata and Cretirhynchia spp., the bivalves Inoceramus spp. and Ostrea spp., serpulids including Glomerula gordialis, G. g. var. ilium, and Pentaditrupa subtorquata, and the sponges Porosphaera globularis and P. sessilis. Echinoderms often found include spines of cidarid echinoids, test fragments of Echinocorys spp., ossicles of the asteroids Astropecten sp., Metopaster sp., and Recurvaster sp., and plates of the ophiuroid Ophiura hagenowi.

Bryozoans are numerous throughout the Pre-Weybourne Chalk, in particular, the long ranging anascans "Biflustra" argus, "Membranipora" flabelliformis, Onychocella inelegans; O. matrona, and Woodipora disparilis, the tubuloporinans clypeina rosula and Pustulpora spp., and the salpinginan Meliceritites are common.

The chalk in this division is usually very soft, yellow/white in colour, frequently iron-stained, and contains common flint bands.

1.3.3.1 INTRODUCTION

This division of the Belemnitella mucronata Zone is characterised by the common occurrence, particularly in the lower parts of the zone of the small rhynchonellid Cretirhynchia ?norvicensis (juv.) Pettitt (which has many characters of adult forms of \mathbf{C}. norvicensis Pettitt). Belemnitella is common throughout, as are the echinoids Micraster ?glyphus Schlëuter and M. gibba (Lamarck) which both apparently disappear at the top of the Weybourne Chalk. The central part of the division is marked by an abundant assemblage of oysters including numerous Pycnodonte vesiculare and Hyotissa semiplana (J. de C. Sowerby).

The chalk of this zone is mostly soft and yellow/brown in colour (due to iron-staining), but numerous hardgrounds occur, especially in the oyster-rich belt in the middle of the division. The type section is formed by the chalk exposed in the cliffs and along the foreshore on the north Norfolk coast between the western end of the cliffs at Weybourne Hope (TG 1115 4369) and Sheringham life-boat station (TG 1520 4355) (where the Catton Sponge Beds crop out). The base of the division has been placed at different levels by Peake and Hancock (1961, p. 317)
and by Wood (1988, p. 33). (See the note accompanying Table 1.2., p. 17)

Apart from the type section, its upward continuation (Weybourne Hope East), and the inland localities at Keswick and Eaton which expose almost identical sections and correlate with the lower part of the coastal stratotype, small outcrops of chalk at Whiffler Road (in the lower part of the Weybourne Chalk) and Harford Bridges (in the oyster-rich belt) were visited.

During the course of research it became apparent that correlation could be made between inland localities at Keswick and Eaton Tunnels, just south of Norwich, and the lower part of the type section at Weybourne. Flint bands with similar morphologies occur in the same relative stratigraphic positions in all three exposures and faunal distributions could also be matched. The correlation is considered below.

1.3.3.2 CORRELATIONS BETWEEN THE CHALK EXPOSED AT WEYBOURNE HOPE, KESWICK, AND EATON TUNNELS

Two of the sections, those at Keswick and Eaton lie within a kilometre of each other almost along strike and appear to correlate well (Figure 1.5). All major flint bands occur at both localities and have identical spacings and similar morphologies. The harder chalk at

FIGURE 1.5 Correlation between the chalk sections visible at Eaton Tunnels, Keswick, and Weybourne Hope-01d Butts Gap. Numbers on left side of each section indicate the fiint band notation used in the text.

Eaton (25 cm below flint 5) is in the same relative position at Keswick (25 cm below band 5). Matching these loclities with the coastal section at Weybourne Hope is less easy, but, although some of the laterally impersistent and smaller flint bands do not appear at both coastal and inland localities, all the major fint bands are present and have similar morphologies.

Flint band 9 (Eaton) which is equivalent to flint 9 (Keswick) matches with band 8 (Weybourne Hope) this being characterised by large, black tabular flints and black sheet-like forms. The best tie-up is probably that between bands 6 and 7 at Eaton (6 and 7 at Keswick) with flints 4 and 5 at Weybourne, the bands containing black tabular flints / black semi-tabular flints. The strong flint band below these (5 at Eaton and Keswick) also matches well (3 at Weybourne Hope) with its characteristic large, carious, black nodular flints and, locally hard, nodular chalk (with sponges) beneath it.

Faunal distribution patterns throughout the sections are very important in correlating the chalk between the localities, in particular, that of the oyster Pycnodonte vesiculare. This is rare at Keswick and Eaton as it is also at Weybourne up to a horizon just below flint 11 where it becomes very numerous. This level (stratigraphically above the top of Eaton and Keswick) has been recognised in a small section of
nodular chalk at Harford Bridges (TG 2188 0576) (section 1.3.3.7), about 500 m north-east of Keswick, which is full of oysters including common Pycnodonte.

1.3.3.3 WEYBOURNE HOPE (TG 1115 4369) OLD BUTTS GAP (TG 1236 4362)

The continuous section of chalk visible at the base of the Pleistocene cliffs between Weybourne Hope and Old Butts Gap, near Cromer on the north Norfolk coast, was taken as the type section of the Weybourne Chalk division of the Belemnitella mucronata Zone of the Upper Campanian chalk of Norfolk by Peake and Hancock (1961). Their section (1961, Figure 5, p. 315) has been remeasured (Figure 1.6) by determining the spacings between individual flint bands as they enter and leave the section due to the low angle easterly dip of the chalk. The chalk is dominated by several prominent, laterally continuous bands of large, black tabular black nodular flints interspersed by impersistent bands of mostly small, black nodular flints. The chalk is often stained yellow in colour due to iron-staining from overlying Pleistocene sands and gravels.

The western end of the section at Weybourne Hope is very disturbed and disrupted due to major collapse and slumping within the chalk probably caused by pre-Pleistocene karstic erosion (N.B. Peake personal communication 1988). Some of the caves present in this

BNFwitn white cortices
Riare Sf and targe enf.
BNF/BSLF with white
cortices ecimm. inick.
oftenfultiple.

BNF with grey/brown cortlces ? Localim. thick. Locally absent and Rare BNF.

BNF-BTF (some carlous) with White/brown cortices with Intermittent small BNF.

BNF (some carious) with grey Strong 日SNF/BSTF with
grey cortices 1 mm . thick .

Large 日TF-8SF with grey cortices simm. thickrey
cort
inc ludes nuge paramougra
fints.especiafiy towards Inc ludes huge paramouidra
flintsiesegiap iycowards
western end of section.

Intermittent BNF with white
cortices almm. thick. Rarely strong BNF wi
groylwhite Silmom thick
Stices
Strong band of BTF/BSNF Strong band of BTF/BSNF
(rarty car ous) with thic
white cortices \&ilmmithich
Strong oand of BTF-BSNF
 Small BNF.

Highly irregular enf
(often carious) Copten carlousf enf Rare small BNF.

swoment.

Hard NC with
excnodonte.

swaremen

Some NC writh
swerating
NC common.
swerewith
swc.

NC often
sponge rich.
swc mith
rare
Nc.
NC common.
swe miven
Common NC.

FIGURE 1.6 Diagrammatic five-metre wide section of the Chalk exposed on the North Norfolk coast between Weybourne Hope (TG 1115 4369) and Old Butts Gap (TG 1236 4362). Symbols and abbreviations as in Figure 1.2.
area contain pockets of black carbonaceous material. As a result of this disturbance the lowest few metres of the section are very difficult to \log and therefore are not as well understood as the rest of the section. For this reason it is generally easier to follow the section from Old Butts Gap (where flint bands 12 and 13 are both present within the cliff) westwards towards Weybourne Hope.

At the eastern end of the section near Old Butts Gap a pair of flint bands (12 and 13) occupy the section. The lower (12), in particular, has characteristic form with black nodular filints and numerous black spindle-like forms. The chalk around flint 11 is often quite hard and for about 75 cm below the band it is blocky and rich in the oyster Pycnodonte vesiculare.

To the west, the central portion of the section is dominated by two strong flint bands which are well exposed below and immediately to the east of the old coastguard cottages (TG 1167 4365). The lower of these (8) is very continuous with many large, black
sheet-like flints. Generally the white chalk around these flint bands is very soft with only rare harder nodules although somewhat harder chalk occurs above band 9 and immediately below 8. Below band 8 is some 2.5 m of mostly soft white chalk with only rare flints, beneath which is a series of closely spaced fint
bands. Of these, 5 and 4 are the strongest containing sometimes carious, black tabular / semi-tabular fints and together forming a useful marker for correlation.

The next major band (3) is very characteristic containing large, irregular, black nodular fiints. Locally hard nodular chalk crops out below it. The basal part of the section (below 3) is very disturbed and flint bands are difficult to follow laterally. However, two bands (2 and 1) have been recognised although the lower (1) is often obscured by shingle as it crops out only at the base of the extreme western end of the cliff at Weybourne Hope. Flints in band 2 are variable, ranging from carious, black nodular forms (increasingly common towards Weybourne) to carious, black tabulates. Band 1 contains (rarely carious) large, black/grey nodular flints.

1.3.3.3.1 Palaeontology

(For ease of description palaeontology is described for the section from bottom to top).

No fossils were recorded below flint band 1 but a chalk bulk sample. (weighing 2 Kg) from this level yielded a valve of the craniacean brachiopod Isocrania paucicostata and fragments of Magas sp. The bivalves Mimachlamys cretosa and Spondylus dutempleanus, and the sponges Porosphaera globularis, R. sessilis, and P.
sp.(fusiform) were recognised. An asteroid ossicle (Recurvaster sp.), spines of cidarid echinoids, and an arm plate of the ophiuroid Ophiura hagenowi were also noted. The bryozoan fauna included the anascans Coscinopleura lamourouxi, Latereschara galeata, Quadricellaria grania, and common Woodipora disparilis. Also found were a specimen of Beisselina sp., fragments of Petalopora sp., Porina goldfussi, Spiropora sp., and Disporella irregularis.

Between flints 1 and 3 Belemnitella is quite common (Figure 1.7) but the rhynchonellid Cretirhynchia spp. is rare (Figure 1.8), represented only by a single specimen of \underline{C}. woodwardi (Davidson), one of \mathcal{C}. ?norvicensis (juv.) (a small Cretirhynchia with many features of adult C. norvicensis), and four C. spp. A single specimen of the brachiopod Kingena pentangulata was collected. Bivalves, including the oyster Pycnodonte vesiculare are sporadically present (Figure 1.9) (usually in small groups of 3-4 individuals) particularly below band 2. Fragmentary remains of Mimachlamys cretosa and Echinocorys sp. were identified, and a specimen of Micraster ?glyphus was found 110 cm below band 2 and fragments of another 85 cm above.

A bulk sample taken between flints 2 and 3 furnished an unidentified terebratulid, fragments of the bivalves Pseudolimea granulata and Inoceramus sp.,

FIGURE 1.7 Volumetric abundances (per. cubic metre of chalk) for belemnites and micrasters collected from the cliff section at Weybourne. Numbers on right-hand side represent flint bands in the cliff.

FIGURE 1.8 Volumetric abundances (per. cubic metre of Chalk) for cretirhynchia spp. and Echinocorys collected from the cliff section at Weybourne. Numbers on right-hand side represent fiint bands in the cliff.

PYCNOOONTIDS \& OYSTERS

FIGURE 1.9 Volumetric abundances (per. cubic metre of chalk) for pycnodontids and oysters collected from the cliff section at Weybourne. Numbers on right-hand side represent flint bands in the cliff.
the serpulid Glomerula gordialis, and echinoderm remains including cidarid spines, and ossicles of the asteroids Astropecten sp. and ?Metopaster sp. Bryozoans included the anascans "Membranipora" flabelliformis, members of the " M ". seafordensis Brydone and " M ". sevingtonensis groups, common Onychocella matrona, $\underline{0}$. inelegans, "Biflustra" argus, and Woodipora disparilis. The remainder of the fauna comprised specimens of Meliceritites ?gothica, Porina goldfussi, Pustulopora benediana, a ?Sulcocava sp., and Eohornera langethali.

Between bands 3 and 7 Belemnitella is common (Figure 1.7) (especially around flint 7) and Cretirhynchia spp. (mostly \mathbf{C}. ?norvicensis (juv.) becomes increasingly common above flint 5 (Figure 1.8) and remains so until the top of band 7 above which it disappears. Echinocorys spp. (usually fragmentary) is scattered throughout this "zone" but not in great numbers, Micraster (?glyphus and sp.) is similarly distributed but was not found above flint 6. Oysters are extremely rare with only a fragment of Pycnodonte vesiculare recorded. Inoceramus sp. is occasionally present (usually as tiny pieces) and fragments of Pseudolimea granulata, Mimachlamys cretosa, and M. mantelliana (d'Orbigny) were found in addition to a crushed terebratulid (Neolithyrina obesa Sahni). Magas sp. nov. (see Wood 1988; p. 23) and a valve of Isocrania costata were collected, and a clump of 9
columnals (some associated) of Bourgueticrinus brydonei Rasmussen were found 25 cm below flint 6. A single specimen of the brachiopod Kingenella kongieli Popeil-Barczyk was discovered 80 cm below band 7, another just above the flint.

A bulk sample taken between flints 4 and 5 contained fragments of Neolithyrina obesa, cidarid spines, Porosphaera globularis, P. sessilis, and P. sp. (fusiform), and the serpulids Glomerula gordialis, Hamulus sexangularis, Pentaditrupa subtorquata, and Vermiliopsis fluctuata. The tubuloporinan bryozoan Clypeina rosula, the anascans "Membranipora" flabelliformis, Onychocella inelegans, and Woodipora disparilis, the ascophoran Porina goldfussi, Disporella irregularis, and a Sparsicavea sp. were also recognised.

The chalk between flints 8 and 9 is very barren with only a few belemnites, a single Pycnodonte vesiculare, and inoceramid and echinoid fragments collected.

Above fint band 9 Belemnitella is present at all levels and is particularly numerous between bands 11 and 12. Cretirhynchia spp. is common (Figure 1.8) with adult forms of Cretirhynchia norvicensis appearing more often although ?juveniles are still dominant. Echinoids (both Echinocorys spp. and Micraster spp.) (Figures 1.7
and 1.8) including a specimen of M. gibba occur throughout although not in great numbers. Pycnodonte vesiculare is common and is extremely numerous just below flint 11 (Figure 1.9). Fragments of the brachiopods Magas sp. and Isocrania costata, the bivalves Mimachlamys cretosa, Pseudolimea granulata, and Spondylus dutempleanus, the serpulids Proliserpula ampullacea, Pentaditrupa subtorquata, and Sclerostyla cf. macropus (J. Sowerby) cidarid spines, columnals of the crinoid Bourgueticrinus sp., and ossicles of the asteroid Recurvaster sp. were also collected.

A bulk sample (from 9-10) yielded fragments of Cretirhynchia spp. and Isocrania paucicostata, the serpulids Glomerula gordialis and G. g. var. ilium, an ossicle of Astropecten sp., and the bryozoans "Biflustra" argus and Onychocella nysti. Another sample taken between bands 11 and 12 contained fragments of Terebratulina sp., Inoceramus sp., and Spondylus sp., and arm plates of the ophiuroids Ophiura sp. and Ophiomusium cf. granulosum. Bryozoans included the common Weybourne form "Membranipora" flabelliformis, "Biflustra" argus, Onychocella matrona, Woodipora disparilis, and Porina goldfussi, also Spiropora verticillata and Sparsicavea sp.

Impressions of sponges are common throughout the section and are numerous below flint band 3 , and between bands 8-9 and 10-11.

1.3.3.4 KESWICK QUARRY (TG 2120 0485)

This is a working quarry some three kilometres south of Norwich. The section (Figure 1.10) is a composite built up by measuring the faces in different parts of the quarry and matching them using flint bands to produce a "typical" five metre wide section of the chalk. The section is characterised by bands of black nodular - black semi-nodular flints interspersed with bands of laterally impersistent, small, black nodular flints. The chalk, particularly towards the top of the faces, is often stained yellow/orange/brown in colour by the downward percolation of iron-rich waters from the overlying sands and gravels.

The top of the chalk has been affected by cryoturbation with frost-wedging, frost-festooning, and solution pipes, filled with the overlying Pleistocene sands and gravels, well developed. The chalk is usually very soft containing only rare harder nodules. Two strong flint bands are visible in this portion of the section, the lower (9) being especially characteristic with many large, black nodular - black semi-tabular flints and some sheet-like forms.

Strong flint bands are absent in the middle of the section, the white chalk being mostly very soft and iron-stained on fractured surfaces. Below this is a double band of flints (7 and 6). The upper (7) is much

TOP OF QUARRY SECTION.

weaker and is locally absent for $>10 \mathrm{~m}$. Both contain many large, black semi-tabular flints and relatively common, sometimes carious, black sheet-like flints.

The base of the section is only exposed in one face of the quarry and is partially obscured by talus. It contains only one strong band (5) which is highly characteristic with very large, sometimes carious, black nodular - black semi-tabular flints. Below this band the chalk is often nodular, especially about 25 cm below the band. The lowest three metres of chalk contain diffuse bands of mostly small, black nodular flints in soft white chalk, although some parts of the face have a considerable nodular chalk content.

1.3.3.4.1 Palaeontology

The basal part of the section (below flint 6) contains relatively common Belemnitella (Figure 1.11), abundant Cretirhynchia ?norvicensis (juv.), and C. sp. (Figure 1.12). Collected brachiopods included a single specimen of Kingenella kongieli collected 5 cm below flint 5, two of Magas ?sp. nov., and a Ierebratulina sp. Fragments of the bivalves Inoceramus sp.,

Mimachlamys cretosa, Spondylus dutempleanus, s. hystrix d'Orbigny (represented by a mould recovered from directly below band 4), and Pycnodonte vesiculare were found. The serpulids Hamulus sexangularis, Proliserpula ampullacea, and Pentaditrupa subtorquata, and a few

FIGURE 1.11 Volumetric abundances (per. cubic metre of Chalk) for belemnites and echinoids collected from Keswick. Numbers on right-hand side represent filint bands in the section. (Above flint 10 and between filints 6 and 7 collecting was not possible).

FIGURE 1.12 Volumetric abundances (per. cubic metre of chalk) for cretirhynchis SDP. and oysters collected from Keswick. Numbers on right-hand side represent flint bands in the section. (Above fiint 10 and between flints 6 and 7 collecting was not possible).
fragmented Echinocorys sp. and Micraster spp. including M. aff. glyphus were noted in the face. Sponge impressions are occasionally present in this lower part of the section, particularly directly below flint 5. A bulk sample from the basal metre of the section produced fragments of the bivalve Pseudolimea granulata, the serpulids Glomerula gordialis and G. g. var. ilium, cidarid spines, and a worn tubuloporinan bryozoan (Pustulopora sp.).

Between flint 6 and an intermittent band of small black nodular flints 60 cm above 7 the faces were inaccessible and no fossils were collected. From here until about band 9 the chalk is relatively fossiliferous although the fauna is less diverse than at lower levels. Belemnitella is quite common as is Cretirhynchia ?norvicensis (juv.) (Figure 1.12). Rare Pycnodonte vesiculare occur scattered through this part of the chalk (Figure 1.12) especially, around and below band 8 and Echinocorys sp. is present (Figure 1.11), but not abundant apart from just below flint 9. The only other fossils collected were a single specimen of Kingenella kongieli (from 110 cm below 8), two of Magas sp. and Isocrania costata, very rare Inoceramus spp. fragments, a specimen of the serpulid Glomerula plexus (Sowerby), and ossicles of Metopaster sp. and Recurvaster sp.

A bulk sample collected between flints 8 and 9 yielded fragments of Terebratulina sp., the bivalves Gyropleura inequirostrata (S. Woodward) and Mimachlamys mantelliana, the serpulids Glomerula gordialis, G. g. var. ilium, and Vermiliopsis fluctuata, and the sponge Porosphaera sessilis. Echinoderms included cidarid spines, ossicles of Astropecten sp., plates of Ophiomusium granulosum and Ophiura, and columnals of Bourgueticrinus sp. A plate of the cirripede Brachylepas fallax was also recorded. The common bryozoan Woodipora dispartlis was found, as were Clinopora lineata, Clypeina rosula, Meliceritites gothica, and specimens of Petalopora sp., Sparsicavea sp., and Sulcocava sp.

The only fossils collected from the largely inaccessible beds above band 9 were five isolated belemnites, a group of 20 Belemnitella and a partial Echinocorys sp. all from a volume of 30 by 20 by 10 cm 65-75 cm below flint 10 , a single crushed Cretirhynchia ?norvicensis (juv.), and a fragmented C. sp.

At Eaton, three kilometres south-west of Norwich, about twelve metres of chalk is exposed within and directly above the entrances to two tunnels of the old Eaton Limeworks which was active during the nineteenth and early twentieth centuries. Most of the chalk was quarried in a way that led to the formation of several large caves of which only two are now accessible, the other entrances having been blocked during the second World War.

The section was measured by Leeder and included in a paper by Hornby et al. (1973, Fig. 1, p. 6). A remeasured section (Figure 1.13) is given here.

The chalk above the tunnel entrances is highly fractured and although mostly white in colour it is often stained brown or yellow, especially on fracture surfaces, due to the percolation of iron-rich waters from the overlying Pleistocene sands and gravels. A prominent band of black nodular - black semi-tabular flints is visible some 3 m above the tunnel entrances as are much weaker, laterally impersistent, bands of mostly small, black nodular flints.

Within the tunnels the section is dominated by two very strong flint bands (5 and 6) which both have characteristic forms. The higher (6) is composed of black nodular - black semi-tabular flints (some

FIGURE 1.13 Diagrammatic five-metre wide section of the chalk at Eaton Tunnels (TG 2090 0640). Symbols and abbreviations as in Figure 1.2.
carious) and rarer, black sheet-like forms. Band 5 is very strongly developed with many very large, black semi-tabular / semi-nodular flints and black sheet-like forms. The chalk below 5 is locally hard with a parting often visible 25 cm below the flint band. Except for this level, the chalk is mostly soft and white on freshly exposed surfaces.

In places near the base of the visible section which contains several bands of mostly small, black nodular fiints there is an increase in the amount of nodular chalk present in the tunnel walls, but nowhere does it's hardness approach that of the chalk below flint 5.

1.3.3.5.1 Palaeontology

Relatively few fossils were collected from this section, most of which suffers little (if any) weathering. Most of the fossils from the tunnels have been removed in the past by workers such as Leeder (see Wood (1988, p. 46-52) for detalled palaeontological description of this locality). The following were collected: common Belemnitella, and Cretirhynchia ?norvicensis (juv.), a juvenile Magas ?sp. nov., a single specimen of ?Hyotissa semiplana, two of Pycnodonte vesiculare, and fragments of Inoceramus sp., Mimachlamys cretosa, M. mantelliana, and Echinocorys
sp. Several sponge impressions were noted, particularly just below flint band 5 .

Bulk samples additionally gave the brachiopods Terebratulina sp., Isocrania costata, and a single juvenile Kingena pentangulata, bivalves including Pseudolimea granulata and Spondylus spinosus, the serpulids Glomerula gordialis, G. g. var. ilium, Hamulus sexangularis, Pentaditrupa subtorquata, and Vermiliopsis fluctuata, and the sponge Porosphaera globularis. Spines of cidarid echinoids, columnals of the crinoid Bourgueticrinus spp. (including B. brydonei), ossicles of Metopaster sp. and Astropecten sp., and plates of the ophiuroid Ophiura substriata Rasmussen were also recognised, along with the coral Stephanophyllia clathrata. The anascan bryozoans "Biflustra" argus, "Membranipora" spp., Onychocella inelegans, 0 . matrona, O. sp., and Woodipora disparilis, the tubuloporinans clypeina rosula, Clinopora lineata, Pustulopora benediana, and Siphoniotyphlus tenuis, and forms of Meliceritites sp., Petalopora sp., and Crisina sp. were collected.

```
1.3.3.6 WHIFFLER ROAD (TG 2120 1070)
```

From its geographical position, this section seems to lie in the lower part of the Weybourne Chalk (Figure 1.21). About 4.5 m of white (occasionally nodular) chalk is exposed behind a factory on the industrial
estate. Four flint bands are visible in the section (Figure 1.14), the lowest is a strong, open, double band of black nodular flints with white cortices <2 mm thick. Three closely spaced bands occur towards the top of the chalk, the bottom one in particular is prominent, containing large, black nodular/semi-nodular flints.

A typical "Weybourne" fauna was collected from the face comprising: Belemnitella, several specimens of Cretirhynchia ?norvicensis (juv.), and one of Magas sp., fragments of Echinocorys sp., and cidarid spines. Bulk samples additionally gave fragments of the bivalves Inoceramus spp. and Ostrea spp., the serpulids Glomerula gordialis and G. g. var. ilium, the sponges Porosphaera sessilis and R. sp. (fusiform), an ossicle of ?Recurvaster sp., Bourgueticrinus sp. columnals, a plate of Ophiura sp., and foraminifera including Gavelinella spp. and globigerinelloidinae. The common anascan bryozoans Onychocella matrona and Woodipora disparilis were identified, as were fragments of Clypeina rosula, Pustulpora sp., Sparsicavea sp., Spiropora verticillata, and S . sp.

1.3.3.7 HARFORD BRIDGES (TQ 2188 0576)

This is a complex of largely overgrown pits (in the middle of the Weybourne Chalk (Figure 1.21)) situated to the north of the Norwich to Ely railway line and to

TOP OF MEASURABLE SECTION.

Large BN-STF.

TOP OF QUARRY.
BNF, rarely doubled.
Rare BSLF in band.
Scattered band
of BNF.
, rare 8SLF.
BASE OF VISIBLE SECTION. Obecurrad by talue.

TOP OF SECTION.
Intermittent band of irreguiar enf.

Comenon blocky Y/WNC.

Common blocky Y/WNC.

Discontinuous band
of emall BNF.
strong band of
large BN/SNF.
Rare WNC.

Rare WNC.

Strong open double
serong op BNF.

Small enf.

BASE OF SECTION.

FIGURE 1.14 Diagrammatic five-metre wide sections of the Chalk at Whiffler Road (TG 2120 1070) (bottom figure), Harford Bridges (HBR1) (TG 2188 0576) (middle figure), and Weybourne Hope East (TG $12904360-13904350$) (top figure). Symbols and abbreviations as in figure 1.2.

```
the west of the A140. Two separate chalk faces were found, the more westerly (HBR 1) the Eaton Golf Course Pit and HBR 2. (For a discussion of the identities of pits within the complex see Wood, 1988, p. 57.)
```


1.3.3.7.1 HBR 1.

A section of 2.25 m (Figure 1.14) (above a large heap of debris) is all that remains of a once deep pit. This contains scattered bands of black nodular flints. The chalk is commonly firm and blocky. Oysters (Ostrea spp., Pycnodonte vesiculare, and Hyotissa semiplana) are very common and are an important indicator of the correlation with oyster-rich chalk on the north Norfolk coast at an equivalent stratigraphic level. Belemnites of "Keswick" type are also abundant. Three specimens of Magas sp., a crushed specimen of Kingena pentangulata, fragments of Inoceramus spp., the serpulid Pentaditrupa subtorquata, Echinocorys spp., and ?Micraster sp. were collected.

From a bulk sample fragments of Crotirhynchia sp. and the bivalve ?Lyropecten sp., cidarid spines, and Bourqueticrinus spp. columnals were collected. The anascan bryozoans "Biflustra" argus, Onychocella nysti, and Woodipora disparilis were recognised, along with Porina socia Brydone, Pustulpora benediana, P. sp., and fragments of Meliceritites spp.
1.3.3.7.2. HBR 2.

A small tufa-encrusted face with an adit yielded a lump of nodular chalk which contained several small Carneithyris carnea (J. Sowerby). This is the lowest record of this terebratulid, which is characteristic of the mucronata chalk above the Catton Sponge Beds.
1.3.3.8 WEYBOURNE HOPE EAST (TG $12904360-$

$13904350)$

The section of about 7 m (Figure 1.14) was produced by measuring the vertical spacing between flint bands as they enter and leave the discontinuous chalk outcrop (with its low angle easterly dip) at the base of the Pleistocene cliffs between the second gap in the chalk east of Weybourne (TG 12904360) and a point 500 m west of Old Hithe (TG 1390 4350) where the chalk becomes so disrupted that it is not possible to measure any further section. This chalk lies immediately above that of the section between Weybourne Hope - Old Butts Gap (Figure 1.21).

The lowest two flint bands (1 and 2) are both intermittently developed and are formed by mostly small, black nodular flints (rarely spindle-like in 2) with white cortices. Chalk below flint 2 is soft and iron-stained. Band 3 is composed of variable, black nodular flints (some carious) with white cortices <1 mm
thick. Between flints 2 and 3 the chalk is often nodular and heavily iron-stained as it is below flint band 2. About 1.5 m above fint 3 is a zone of scattered flints in irregular bands with two dominant central courses (4 and 5). Band 4 is characterised by large, black nodular - semi-tabular flints with thin, white/grey cortices, whilst 5 contains somewhat carious, black nodular/semi-nodular forms with similar cortices. The chalk between bands 3 and 5 is mostly soft. Above flint 5 there is about 2 m of chalk with occasional large, black nodular flints topped by two strong flints (bands 6 and 7) which lie at the top of the measurable section. Flints in band 6 are mostly black nodular/semi-nodular types with thin, grey/white cortices $<1 \mathrm{~mm}$ thick, whilst those in band 7 are large and variable, ranging from black nodular - semi-tabular forms. The disturbed chalk in the upper part of the section consists of hard nodules set in a soft, iron-stained, orange/yellow/brown matrix.

A few fossils were collected from the section including several Belemnitella, a complete Terebratulina sp., fragments of Pycnodonte vesiculare, four Micraster spp., including M. gibba, a Bourgueticrinus sp. columnal, and a fragment of Echinocorys sp. Additional to these were (from 2 bulk samples) fragments of Cretirhynchia spp., the bivalves Inoceramus spp., Pseudolimea granulata, and Spondylus
spinosus, the serpulids Glomerula gordialis and Neomicrorbis crenatostriatus, spines of cidarid echinoids, and plates of the ophiuroids Ophiomusium granulosum and \mathbf{O}. sp. Identified foraminifera were Dentalina spp., Vaginulina sp., Gavelinella spp., and globigerinelloidinae. The bryozoan fauna included Latereschara galeata, "Membranipora" vertebralis Brydone, Onychocella matrona, O. sp., Woodipora disparilis, clinopora lineata, and fragments of Meliceritites spp.
1.3.3.9 SUMMARY

The Weybourne Chalk is characterised by the complex of oyster-rich hardgrounds that crop out in the coastal stratotype and in equivalent inland localities at Harford Bridges. It is possible to split the chalk into units, since the chalk below and above the hardground complex rarely contains oysters. However other fossils which are common throughout the Weybourne division include the rhynchonellid Cretirhynchia spp. (mostly C . ?norvicensis (juv.), Belemnitella, Echinocorys spp., Micraster gibba, and M. ?glyphus (both of which apparently die out at the top of the division). The oysters Pycnodonte vesiculare and Hyotissa semiplana are abundant in the oyster-rich beds.

The mesofauna from this chalk is largely undiagnostic. Common elements include fragments of the
long ranging brachiopods Magas sp. and Terebratulina spp., and the bivalve Inoceramus spp. The serpulid Glomerula gordialis, ossicles of the asteroid Astropecten sp., spines of cidarid echinoids, and plates of the ophiuroids Ophiomusium granulosum and Ophiura sp. are regularly collected. Amongst the bryozoans, long ranging forms of the anascans "Biffustra" argus, "Membranipora" spp., Onychocella inelegans, o. matrona, and Woodipora disparilis are very common, as is the cancellatan Sparsicavea spp.

The chalk is mostly soft, apart from the hardground complex in the oyster-rich belt and, locally hard, nodular chalk at other levels.

1.3.4 CATTON SPONGE BEDS

These hardgrounds (Figure 1.21) are preserved in the site of special scientific interest (SSSI) at Catton Grove (TG 2289 1094) in Norwich. No chalk is visible at present, the small extant face of the original workings being completely degraded. The same beds are very rarely visible beneath the shingle cover at Sheringham life-boat station (TG 1520 4355) on the north Norfolk coast, but were not evident during fieldwork. See Wood (1988, p. 61-66) for a description of the sponge beds and their distinctive fauna.

1.3.5.1
 INTRODUCTION

This chalk lies above the Catton Sponge Beds and below the Paramoudra Chalk (Table 1.2; p. 17). The division is characterised by the development of "ring flints" and by belts of chalk rich in large fragments of Inoceramus spp. shell. The fauna is characterised by common and distinctive brachiopods including the rhynchonellids Cretirhynchia norvicensis and C. arcuata Pettitt and the terebratulid Carneithyris carnea. Belemnites are numerous throughout, as is the echinoid Echinocorys spp., which often occurs in groups of up to 15-20 individuals.

Exposures within this subdivision of the zone are visible (in ascending stratigraphic order) at Caistor St. Edmund, Bracondale (Norwich), Frettenham (two localities), and St. James's Hollow (Norwich).

```
1.3.5.2 CAISTOR ST. EDMUND (TG 2390 0466)
```

This quarry lies in wooded ground east of the Lakenham-Caistor road, 750 m north of Caistor Hall, and is one of the best exposures of mucronata chalk in the Norwich area. This chalk must lie not far above the Catton Sponge Beds (Figure 1.21) as they were formerly exposed in a now obliterated section at Stoke Holy

TOP OF SECTION
Strong band of very
large BT/8STF.
common BSF.

Strong band of huge ENF with common "potstones". Some paramoudras.

Rere paramoudras.

Imperaistent small BST-BNF.	swc.
Strong band of BN-BSTF. Rarely doubled.	
Rare mall BNF.	
BNF in open double band.	
Small BNF.	swc.
Variable band of BN-BTF. Rare 8SLF.	
Strong band of B/GNF.	SWC.
Very etrong band of B/GNF.	$\begin{aligned} & \text { NC commor } \\ & \text { below } 83 . \end{aligned}$
Drecontinuous band of BNF.	
	Rare NC.
BNF, rarely doubled.	
Medium band of BNF.	
Large BNF with small 8NF below.	Rare NG.

Discontinuous
band of BNF.
below 83.
NC common below 88

Cross (TG 25360140$) 1.5 \mathrm{~km}$ south-east of, and almost along strike from, Caistor. However, there was no. evidence of them even at the deepest extent of working at Caistor in the late 1960s (Wood, 1988, D. 68). A section 15.10 m high was logged in 1987 (Figure 1.15) and more than 1300 fossils were collected or noted, their positions measured to the nearest 5 cm vertically with respect to flint bands within the face.

The lowest flint band visible (1) is composed of black nodular flints (doubled in places) with very thin white cortices. Flint band 2 contains large, black nodular/semi-nodular forms with very thin white cortices. (A single paramoudra was visible in September 1986 between bands 1 and 2.) The next strong band (3) is 3.45 m above 2 and marked the base of the pit in 1960 (Peake and Hancock, 1961, Figure 3, p. 316). This is very continuous, containing characteristic, black/dark grey tabular flints (with flat upper surfaces) with white cortices $\sim 1 \mathrm{~mm}$ thick.

Fint band 4 (1.65 m above 3) is formed by large, grey/black nodular flints with thin white cortices <1 mm thick. Between bands 4 and $7(3.10 \mathrm{~m})$ is a zone of chalk with scattered flints (usually small, black nodular types). Band 7 itself is a moderately strong, open, double band of irregular, nodular - semi-tabular dark grey/black fiints with white cortices commonly 2-3 mm thick. Above this is 3.25 m of chalk with occasional
paramoudras capped by band 8 which is a very prominent line of huge, black nodular flints ("potstones") with thick, often >3 mm, white iron-stained cortices. The top filint band, just contained within the section, is formed by very large, black tabular/semi-tabular fints with thin white cortices. In places the flints coalesce to produce "sheet-like" forms.

The chalk is mostly soft and white on freshly exposed faces (with iron-staining on joint surfaces) and is broken up into small cubes of a few cm across due to periglacial effects. Hence, most of the macrofossils of any size are shattered. Blocky chalk is sometimes present between flint bands 1 and 2A (see Figure 1.15) and below band 3, although it is not usually particularly hard. However, a band of locally hard chalk occurs intermittently for about 75 cm below flint 8.

1.3.5.2.1 Palaeontology

In the basal part of the section (below flint band 1) Belemnitella is common (Figure 1.16) as are relatively small Carneithyris carnea (Figure 1.17). A single specimen of Cretirhynchia norvicensis and an Orbirhynchia sp. (? undescribed) were collected, as were fragments of the bivalve Spondylus dutempleanus, Echinocorys spp., and a Bourgueticrinus sp. columnal. (This level includes the "Orbirhynchia Bed" of Wood

FIGURE 1.16 Volumetric abundances (per. cubic metre of chalk) for Belemnitella and Cretirhynchis spp. collected from Caistor st. Edmund. Numbers on right-hand side represent flint bands in the section.

FIGURE 1.17 Volumetric abundances (per. cubic metre of chalk) for carneithyris carnes and large Inoceramids collected from Caistor St. Edmund. Numbers on right-hand side represent flint bands in the section.

FIGURE 1.18 Volumetric abundances (per. cubic metre of chalk) for Echinocorys spp. and oysters collected from Caistor St. Edmund. Numbers on right-hand side represent flint bands in the section.
(1988, p. 68).) Several glauconite-coated chalk pebbles were found below flint 1.

Between fiint bands 1 and 2 Belemnitella is very abundant (Figure 1.16), as is Carneithyris carnea (Figure 1.17). Several specimens of Cretirhynchia arcuata (which first appears just below the Catton Sponge Beds and commonly in the basement beds of the Beeston Chalk), \mathbb{C}. norvicensis and C. sp. were collected, along with two examples of the large and distinctive terebratulid Neolithyrina obesa and fragments of the common bivalves Neithea sexcostata and Spondylus dutempleanus. Echinocorys sp. is well represented by fragments including a group of five individuals collected 20 cm below flint 2. Impressions of several sponges were noted at this level.

A bulk sample from this level yielded (in addition to fauna already listed) a complete terebratulid (Terebratulina $s p),$. fragments of the bivalves Inoceramus spp., byropecten sp., and Mimachlamys cretosa, and the serpulid Eoplacostegus pusillus (Sowerby). Echinoderms included spines of cidarid echinoids, columnals of the crinoid Bourgueticrinus sp., ossicles of the starfish ?Ophryaster sp. and Metopaster sp., and plates of the common ophiuroid Ophiomusium granulosum. A plate of the cirripede Proverruca laurae Withers was also found, as were the foraminifera Dentalina sp., Gavelinella spp., and
globigerinelloidinae. The anascan bryozoans "Biflustra" argus, Coscinopleura lamourouxi, Lunulites sp., Onychocella inelegans, and Woodipora disparilis, and the tubuloporinans Clinopora lineata, crisisina carinata (Roemer), and Pustulopora sp. were identified, as were Meliceritites gothica and Porina goldfussi.

Ostreids first appear just above band 2, are then relatively common up to band 3 (especially just below it), and decrease in number above it (Figure 1.18). Recognised forms included Acutostrea cf. incurva Nilsson, Gryphaeostrea canaliculata (J. Sowerby), ?Hyotissa semiplana, Margostrea alaeformis (S. Woodward), and Pycnodonte vesiculare. As the ostreids increase in abundance, Carneithyris becomes less common and was not recorded between flint bands 3 and 4.

Echinocorys (usually crushed and fragmented but possibly referable to the undescribed, flat-based, conical form, E. aff. conoidea Goldfuss: Peake and Hancock, 1961, p. 318) is common throughout this part of the section often occurring in "nests" of up to 15 individuals of varying sizes. The echinoids appear to be most common between flint band 2 and a level 1 m below band 3 and less so between 3 and 4 (the so-called "Echinocorys Band" of Wood, 1988, p. 68).

Belemnitella is common throughout this part of the section (especially mid-way between flint bands 2 and
3) (Figure 1.16) and Cretirhynchia arcuata, ©. norvicensis, and \mathbb{C}. spp. are locally abundant. The brachiopods Magas chitoniformis (Schlotheim), Kingena pentangulata, Neolithyrina obesa, and Terebratulina spp., and fragments of indeterminate forms were collected . Bivalves represented were Spondylus dutempleanus, S. sp., Plicatula sp., Neithea sexcostata, and Gyropleura inequirostrata, fragments of Inoceramus spp. (first recorded 205 cm below flint 3 but common only from 50 cm above that level), and a well preserved partial specimen of the large pectinid Plagiostoma hoperi Mantell. The serpulid Pentaditrupa subtorquata, spines of cidarid echinoids, an ossicle of Metopaster sp., a solitary coral (Coelosmilia sp.), and the cirripede Scalpellum maximum var. sulcatum (J. de C. Sowerby) were also noted.

Additional fauna recognised from a bulk sample ~1 m below band 3 included fragments of the bivalve Lyropecten sp., ossicles of Astropecten sp. and Nymphaster studlandensis Schultz, plates of Ophiura hagenowi, a cirripede (Brachylepas naissanti (Hebert)), the coral Moltkia sp., and the foraminffera Gavelinella spp. and globigerinelloidinae. The anascan bryozoans "Biflustra" argus, Onychocella inelegans, o. nysti, and Woodipora disparilis were also collected from the sieved residue.

Between flint bands 4 and 7 oysters are extremely rare (Figure 1.18) with only a single specimen of Gryphaeostrea canaliculata and a second indeterminate Ostrea sp. collected. Carneithyris carnea occurs, but is relatively uncommon compared with the bottom part of the section, as are tests of Echinocorys spp. which decrease in frequency upwards (except for a minor concentration just below flint 6) (Figure 1.18). Large inoceramids, up to 50 cm in diameter are visible in the quarry faces and smaller fragments are very numerous in this part of the sequence. Cretirhynchia arcuata, \mathbb{C}. norvicensis, and C. sp. become more numerous particularly below band 7. Belemnitella is well represented throughout (Figure 1.16).

Other fossils collected or noted from the face between flint bands 4 and 7 included the brachiopods Terebratulina striata d'Orbigny, Neolithyrina obesa, Magas chitoniformis, Kingena pentangulata, and an Orbirhynchia sp. Fragments of the bivalves bima sp., Spondylus dutempleanus, Mimachlamys cretosa, and Neithea sexcostata, the serpulid Pentaditrupa subtorquata, and the sponge Porosphaera globularis were also recognised. Two bulk samples (from between bands 5 and 6) additionally gave fragments of the bivalves Acutostrea"cf. incurva; Spondylus spinosus, and Pseudolimea granulata, the serpulid Vermiliopsis fluctuata; spines of cidarid echinoids, ossicles of the
asteroid Chomataster sp., and the foraminifera Gavelinella spp. and globigerinelloidinae.

The bryozoan fauna included the anascans "Biflustra" argus and Onychocella nysti, and species of the salpinginan Meliceritites, the tubuloporinans Idmidronea and Pustulpora, and the cancellatan Sparsicavea.

Belemnitella is common above flint 7 (Figure 1.16) as are, often small, Carneithyris which are particularly numerous below bands 8 and 9 (Figure 1.17). Cretirhynchia norvicensis and $\underline{\text { C. arcuata }}$ are also very numerous particularly below band 8 (Figure 1.18), whereas Echinocorys spp. is rare, not recorded higher than 90 cm below fiint 8. Large inoceramids are abundant in a zone 1.2 m thick $(200 \mathrm{~cm}$ to 80 cm below 8), above which no further fragments were found. Other collected fossils were brachiopods including an example of Magas chitoniformis, three of Kingena pentangulata, and several indeterminate forms, fragments of Neithea sexcostata, and a single specimen of the serpulid Glomerula gordialis.

A bulk sample taken between flints 7 and 8 furnished fragments of the bivalves Lyropecten campaniensis (d'Orbigny), Mimachlamys cretosa, Ostrea spp., and Plagiostoma crotacoum Woods, spines of cidarid echinoids, and columnals of the crinoids

Bourqueticrinus sp. and Austinocrinus bicoronatus (Hagenow), and Dentalina sp., together with fragments of the common and long ranging anascan bryozoans Onychocella matrona and Woodipora disparilis, and the tubuloporinan Pustulopora sp.

The outlines of sponges, picked out by iron-staining, are common just above flint band 1, below flint 3, between bands 4 and 5 , just below 6, and intermittently between bands 7 and 9.

1.3.5.3 BRACONDALE, NORWICH (TG 2390 0740)

This pit is cut in low Beeston Chalk (Figure 1.21) and probably lies at about the same level as Caistor, although correlation between the localities is not apparent. A small degraded section of soft white chalk 2.8 m high in the south-east corner of the pit is all that remains of the original faces (Figure 1.19). Two flint courses were visible, the lower by well spaced, small, black nodular flints, the upper formed by black nodular fints (rarely carious) with very thin white cortices <1 mm thick.

The only fossils collected were fragments of Inoceramus sp. and the ostreid Acutostrea cf. incurva. From bulk samples fragments of Belemnitella, the brachiopods Carneithyris carnea, Cretirhynchia spp., Isocrania costata, Kingena pentangulata, Magas

TOP OF CHALK.
Band of
BT/STF.
Lerge BSN-ASF
Paramoudra
in situ.
.
BASE OF sECTION
sw/ve.
Iron-stained.

Talus cover below this level

TOP OF SECTION.

Double Dand of BNF (Bome carious).

B/CN/SNF.
Rare bnf.
overlan by cras deposite.
(roncined.

Iron-atained SWC

Som harder WNC.

SWC.
swC.

Iron-stained NC. of BN-BSTF.

BASE OF SECTION.

TOP OF SECTION.
BNF (raraly carious)
with white cortices
<1mm.thick.

Small BNF with
thin white cortices.
base of cleared section.

FIGURE 1.19 Diagrammatic five-metre wide sections of the chaik at Bracondale, Norwich (TG 2390 0740) (bottom figure), Frettenham (JSS. Aggregates Lid.) (TG 2370 1670) (second figure), Frettenham (W.M. Howes Ltd.) (TG 2460 1730) (third figure), and Whitlingham (TG 2681 0770) (top figure). symbols and abbreviations as in Figure 1.2.
chitoniformis, and Ierebratulina spp., and the bivalves Inoceramus spp., Mimachlamys cretosa, Neithea sexcostata, the rare N. striatocostatus Goldfuss, Ostrea sp., and Spondylus dutempleanus were identified. The serpulid Vermiliopsis fluctuata, the sponges Porosphaera sessilis and P. sp. (fusiform), echinoderms including fragments of Echinocorys sp., columnals of Bourgueticrinus sp., spines and test fragments of cidarid echinoids, an ossicle of the starfish ?Chomataster sp., and plates of the ophiuroids Ophiomusium granulosum and Ophiura hagenowi were obtained, as was a plate of the cirripede Cretiscalpellum paucistriatum (H. Woodward). The coral Stephanophyllia clathrata, ostracod carapaces, and the foraminifera Dentalina, Frondicularia, Vaginulina, Gavelinella, and globigerinelloidinae were also collected.

The anascan bryozoans "Biflustra" argus, Onychocella inelegans, O . sp., and Woodipora disparilis, the ascophoran Porina goldfussi, the cancellatan Crisina sp., the salpinginans Meliceritites gothica and M. sp., and the tubuloporinans Clypeina rosula, Crisisina carinata, clinopora sp., and Pustulpora spp. were recognised.

```
1.3.5.4 FRETTENHAM (JSS. Aggregates Ltd.)
(TG 2370 1670)
```

This pit (now used to store sand and gravel) lies to the west of the Norwich to Frettenham road some 500 m south-west of the village and is cut in the middle of the Beeston Chalk above the level of Caistor St. Edmund (Figure 1.21). Two small chalk faces were found, a 1.6 m section in the south-east corner of the pit and 4.5 m on the north edge of the workings in a recently excavated hole. The smaller section contains a prominent double band of black nodular flints near its top. This correlates with a well developed, double band of black nodular'- semi-tabular flints with thin white cortices <1 mm thick in the other section (band 1) (Figure 1.19). A band of mostly small, black nodular flints with thin white cortices is present 1.7 m above the double flint. Apart from a poorly developed zone of somewhat harder, iron-stained chalk below the double band, the white chalk in both sections is soft.

Collected fauna included several specimens of Belemnitella, Carneithyris carnea, and Cretirhynchia arcuata. A single juvenile cretirhynchia norvicensis was found, as were fragments of the bivalves Mimachlamys cretosa, Inoceramus sp., and Ostrea sp. Echinoderms included fragments of Echinocorys sp., ossicles of Chomataster sp. and Recurvaster sp., and an
unidentified crinoid columnal. The moulds of several sponges were also noted.

Three bulk samples from this locality yielded a large fauna. This comprised fragments of the brachiopods Kingena pentangulata, Cretirhynchia spp., and valves of Terebratulina spp., fragments of the bivalves Mimachlamys cretosa, Spondylus dutempleanus, Pycnodonte vesiculare, Ostrea sp., and Inoceramus spp., and the serpulids Glomerula gordialis var. ilium, Hamulus sexangularis, Neomicrorbis crenatostriatus, and Pentaditrupa subtorquata. The common sponges Porosphaera globularis and P. sessilis, and echinoderms including columnals of the crinoid Bourgueticrinus brydonei, ossicles of the asteroids Astropecten sp. and Nymphaster sp., and plates of the ophiuroids Ophiomusium granulosum and Ophiura hagenowi were also collected, as were plates of the cirripede Brachylepas fallax, fragments of indeterminate aseptate corals, and one of Stephanophyllia clathrata. Several foraminifera were present including Dentalina sp., Vaginulina spp., Frondicularia sp., Gavelinella spp., and globigerinelloidinae.

A varied bryozoan fauna was identified including the anascans "Biflustra" argus, Coscinopleura lamourouxi, Escharifora sp., Lunulites spp., "Membranipora" flabelliformis, Onychocella inelegans, O. matrona, Q. nysti, Quadricellaria grania, and

Woodipora disparilis. The ascophorans Porina socia, P. sp., and Beisselina sp. were found, as was the dactylethratan clausa globulosa, the tubuloporinans Clypeina rosula, Siphoniotyphlus tenuis, and Spiropora sp., the rectangulatan Disporella irregularis, the salpinginans Meliceritites gothica and M. sp., the cancellatan Sparsicavea sp., and forms referable to "Ceriopora" sp.

```
1.3.5.5 FRETTENHAM (W.M. HOWES Ltd.) (TG 2460 1730)
```

This section (Figure 1.19 (a SSSI)) about 500 m north-east of the JSS. Aggregates pit, is all that remains of the old workings and lies at the southern edge of the original pit. Two days of tree felling and removal of debris revealed a low face of chalk some 10 m long and 2.7 m high.

Three flint bands are visible in the section, the bottom band is only sporadically visible at the extreme base of the cleared section and is composed of black nodular flints with thin white rinds. The central, (open double) band contains nodular/semi-nodular dark grey flints with white rinds. The top flint band is characterised by black nodular flints with thin white cortices. A few smaller flints occur just above the main band. The blocky white chalk (with some iron-staining on surfaces) is generally soft, although harder chalk is present above the central fint course.

Belemnitella is common throughout, as are the brachiopods Carneithyris carnea and Cretirhynchia norvicensis, and fragments of Inoceramus spp. A piece of Pycnodonte vesiculare was found, as was a partial pectinid bivalve (Plagiostoma marrotiana d'Orbigny) and a fragment of Echinocorys sp. A bulk sample additionally yielded fragments of Magas chitoniformis, Cretirhynchia spp., and Ostrea sp., the serpulids Glomerula gordialis, G. g. var. ilium, and Vermiliopsis fluctuata, the sponge Porosphaera sessilis and plates of the ophiuroids Ophiomusium sp. and Ophiura substriata, together with those of a cirripede (Cretiscalpellum sp.), Dentalina sp., Frondicularia sp., Gavelinella spp., globigerinelloidinae, and a single specimen of Onychocella inelegans.

```
1.3.5.6 ST. JAMES HOLLOW (TG 2420 0950)
```

This was originally a huge pit but only about 1 m of chalk is currently visible at the bottom of a wooded slope on the eastern side of a playground. The soft yellow chalk contains a single large black fint and from its geographical position appears to lie high in the Beeston Chalk (Figure 1.21).

No fossils were found in the small section, but a bulk sample yielded a specimen of Belemnitella, numerous inoceramid fragments, cidarid spines and
fragments of Echinocorys sp. test. The bryozoans Onychocella matrona and Woodipora disparilis were also obtained.
1.3.5.7 SUMMARY

The Beeston Chalk is characterised by common Belemnitella, numerous bands of fragments and larger individuals (up to 50 cm in diameter) of the bivalve Inoceramus spp. and, especially, by the rich and diverse brachiopod fauna. The terebratulid Carneithyris carnea is numerous throughout as are the rhynchonellids Cretirhynchia norvicensis and C . arcuata. Other brachiopods including Magas spp., Kingena pentangulata, and Terebratulina spp. are scattered through the chalk. A large suite of oysters is represented, including Acutostrea cf. incurva, Gryphaeostrea canaliculata, Hyotissa semiplana, and Pycnodonte vesiculare. Fragmentary remains of the bivalves Neithea sexcostata, Mimachlamys cretosa, and Spondylus spp. are also relatively common.

The sponge Porosphaera sessilis and columnals of the crinoids Bourgueticrinus spp. and Austinocrinus bicoronatus are present, along with spines of cidarid echinoids, and ophiuroid plates referable to Ophiomusium granulosum and Ophiura substriata.

Bryozoans are common throughout the Beeston Chalk. Of the anascans, long ranging forms such as "Biflustra" argus, Onychocella inelegans, o. matrona, o. nysti, and Woodipora disparilis are well represented, as is Lunulites spp. which becomes increasingly common higher in the division. Other common forms are the tubuloporinans Clypeina rosula and Pustulopora spp., and the salpinginan Meliceritites gothica.

The chalk of the Beeston division is mostly soft and white containing many strong flint bands.
1.3.6 PARAMOUDRA CHALK

1.3.6.1 INTRODUCTION

This subdivision, the highest in the Belemnitella mucronata Zone, is characterised by chalk with large columns of huge, vertical, cylindrical flints (paramoudras) up to several metres in height formed round the burrow Bathichnus paramoudrae Bromley, Schulz and Peake (Bromley ot al. 1975). The fauna is dominated by small-sized Carneithyris and Cretirhynchia
transitional between C. arcuata and C. limbata (Schlotheim). Echinoids including Echinocorys spp. and Micraster spp. are relatively common as are ostreids. The only extant section in the zone visited was at Whitlingham. The intermittent coastal (foreshore) exposures between East Runton and Cromer, on the north

Norfolk coast, were never revealed during the course of research.
1.3.6.2 WHITLINGHAM (Colman's pit) (TG 2681 0770)

About 4 m of chalk is visible in a small exposure beneath a tree on the eastern side of the old quarry (Figure 1.19). The weathered chalk is very soft and stained yellow/orange/brown in colour due to percolation of iron-rich waters from the overlying Pleistocene sands and gravels. Two flint bands occur at the top of the section, the upper is composed of black tabular/semi-tabular flints with irön-stained cortices up to 3 mm thick. The lower is formed by large, black semi-nodular - sheet-like flints with thin, iron-stained cortices. A single paramoudra is visible in situ near the base of the section. Several others lie in the talus at the bottom of the pit.

The only fossils collected were a single valve of Carneithyris carnea, a fragment of Inoceramus sp., and a partially complete Echinocorys sp. embedded in a flint. Two bulk samples yielded an undiagnostic fauna of long ranging forms including fragments of Belemnitella, Cretirhynchia spp., and Isocrania costata, and numerous pieces of Inoceramus spp. The serpulid Glomerula gordialis var. ilium, sponges referable to Porosphaera globularis and P. sessilis, and columnals of Bourgueticrinus spp. were also
recognised, as were the foraminifera Vaginulina sp. and globigerinelloidinae. Identified bryozoans included Coscinopleura lamourouxi, Clinopora lineata, Crisisina carinata, Disporella irregularis, Onychocella inelegans, Spiropora verticillata, Woodipora disparilis, a form of Diastopora sp., and a Sparsicavea sp.
1.4 CORRELATION OF SECTIONS
1.4.1 GONIOTEUTHIS ZONE (GZ) (Figure 1.20)

The thickness of this zone (85 m) is an estimate based on the 260 feet shown by Peake and Hancock (1961, p. 297, Figure 3) and the sections and boreholes measured during this research. No overlap between any of the chalk exposures was recognised and they have been placed in assumed stratigraphical order based, largely, on their geographical positions. The occurrence of the restricted anascan bryozoan Vincularia supercilium in the cliff-section at Stiffkey (STF) and in the upper part of the Wymondham Boreholes (WYM BHS, see chapter two)) indicates chalk of an equivalent horizon.

FIGURE 1.20 Relative stratigraphic positions of all sections and boreholes in the Gonioteuthis Zone (GZ) and the Pre-Weybourne Chalk (PWC) division of the Belemnttella mucronata zone. Ticks on left side every ten metres. WLS=Wells; GU=Guist; SP2, SP1=Sparham; WYM=Wymondham boreholes; STF=Stiffkey, MF=Marlingford; SPF=Spring Farm, Attlebridge; $\quad C L=C l e y-n e x t-t h e-s e a ; \quad T H=T h a r s t o n ; \quad N C H$ BHS=Norwich boreholes; NFF=Newfound Farm, Cringleford: UEA1=University of East Anglia.
1.4.2.1 PRE-WEYBOURNE CHALK (PWC) (Figure 1.20)

This division of the mucronata zone is about 30 m thick. Of this, the lower half is poorly exposed. The top 15 m was sampled by the Norwich Boreholes (NCH BHS) see chapter two)). Correlation between these and the chalk exposed at the University of East Anglia (UEA1) and Newfound Farm, Cringleford (NFF) is possible due to the presence of the stratigraphically restricted anascan bryozoan Volviflustrellaria taverensis in the boreholes and UEA 1.

1.4.2.2 WEYBOURNE CHALK (WC) (Figure 1.21)

About 28 m thick, this chalk is well exposed on the north Norfolk coast at Weybourne Hope ((WH) the type section) and Weybourne Hope East (WHE), and in the correlative inland localities at Keswick (KS), Eaton (ET), and Harford Bridges (HBR). The Norwich Boreholes ((NCH BHS) see chapter two) passed throughout.

```
1.4.2.3 CATTON SPONGE BEDS (CSB) (Figure 1.21)
```

These are presumed to have been sampled in the top few metres of the Norwich Boreholes (NCH BHS).

FIGURE 1.21 Relative stratigraphic positions of all sections and boreholes in the Weybourne Chalk (WC), Catton Sponge Beds (CSB), Beeston Chalk (BC), and Paramoudra Chaik (PC) divisions of the Belemnitella mucronata Zone. Ticks on left side every ten metres. NCH BHS=Norwich boreholes; WH=Weybourne Hope-Old Butts Gap; KS=Keswick: ET=Eaton: WHR=Whiffler Road, Hellesdon; WHE=Weybourne Hope East: HBR=Harford Bridges; CBR=Colmans, Bracondale; CS=Caistor St. Edmund; FR1=Frettenham (J.S.S. Aggregates); FR2=Frettenham (W. M. Howes): MW=Mayton Wood boreholes; SJH=St. James's Hollow; WIT=Whitlingham; WIT BHS=Whitlingham boreholes.
1.4.2.4 BEESTON CHALK (BC) (Figure 1.21)

This division, totalling about 40 m , is best exposed at Caistor (CS) which lies close to its base. Two localities at Frettenham (FR1 and FR2) reveal higher levels. The boreholes at Mayton Wood ((MW BHS) see chapter two) are assumed to have passed through the upper and midlle parts of the Beeston Chalk.
1.4.2.5 PARAMOUDRA CHALK (PC) (Figure 1.21)

This chalk was represented by a single exposure (Whitlingham (WIT)) which lies somewhere in the middle of the division, and by the Whitlingham Boreholes ((WIT BHS) see chapter two) which sampled the central and lower parts of the Paramoudra Chalk.

CHAPTER TWO

BOREHOLE MATERIAL

2.1 INTRODUCTION

A total of 229 bulk samples of chalk were obtained from the Campanian zones of Gonioteuthis and Belemnitella mucronata (Table 1.1, p. 5) in Norfolk. Of these, 56 were collected from the chalk sections described in chapter one. The other 173 came from boreholes drilled by the Anglian Water Authority (AWA) at Norwich and Whitlingham, the Department of Transport (DOT) at Wymondham, and the Highways Laboratory of Norfolk County Council at Mayton Wood.

Most of the chalk was soft enough to be washed directly through sieves of 500 and 150 micron apertures, the residues being oven dried, and the larger fraction picked over to remove fauna. However, harder samples, particularly from Wells, needed treatment with a supersaturated solution of Glauber's salt (Surlyk, 1972, p. 6). The samples were repeatedly frozen and thawed until the chalk was sufficiently broken down to enable it to be sieved.

The majority of the samples (about 180) were processed at the Highways Laboratory of Norfolk County County in Norwich, where drying facilities enabled numerous samples to be dealt with simultaneously. The
borehole chalk came in various forms. Solid core 100 mm in diameter (U100) was obtained from Whitlingham in 50 cm lengths, the middle 20 cm portion of each was sieved (the tops of the cores had not been marked). A uniform weight of ${ }^{\sim} 1.5 \mathrm{Kg}$ was taken from the bagged sample residues of the Norwich Boreholes. The Wymondham samples came in small plastic tubs and averaged $\langle 0.5 \mathrm{Kg}$ in weight. The few remaining samples (from Mayton Wood) were of larger size, and about 2 Kg of each was processed.

The borehole chalk was mostly pervasively weathered for at least $10-15 \mathrm{~m}$ below its upper surface with samples containing much soft chalk, surrounding small blocks (1 to 10 cm across) of intact rock. Some samples contained a considerable proportion (up to 30\%) of harder, nodular chalk and flints.

All identifiable fossils, in each of the 229 samples, were listed on, computer produced, spreadsheets (Appendices 8-12). This allowed faunal distribution patterns to be studied from boreholes, and miscellaneous samples, collected from extant localities in the Campanian Chalk in Norfolk.

2.2 WYMONDHAM

Fifty seven samples of mostly, very soft, white chalk were obtained from 11 boreholes drilled for the

DOT along the line of the Wymondham bypass (A11) in south Norfolk. The boreholes lay along a 3.5 km long north-east trending line between borehole number 33 (TM 09380 98260), and borehole 85 (TG 1276600906). The samples had undergone a series of tests prior to being released by the DOT, and the average weight of the residue received was $\langle 0.5 \mathrm{~kg}$ (compared to ~2 kg from samples collected elsewhere in the field). Hence, the relative paucity of fauna in the Wymondham samples may well be directly related to the small sample size, rather than a scarsity of mesofauna. Many of the faunal elements were worn, but this is probably a result of DOT testing procedures and the sieving process.

Accurate datum levels for the tops of the boreholes (supplied by the DOT) enabled the depth of every sample to be calculated relative to ordnance datum. These were then arranged to give a stratigraphic order assuming an eastwards dip for the chalk of ~5 mper km, a figure obtained both from literature e.g. Peake and Hancock (1961, p. 296) and field observations. All identified fossils from each borehole were plotted up onto a spreadsheet (Appendix 8) to enable faunal distribution patterns to be assessed.

From their geographical positions relative to known exposures, the boreholes are assumed to have been drilled in chalk of the upper Gonioteuthis Zone (Figure 1.20). All identifiable fauna was plotted (Figures
2.1-2.3), and for taxa with more than one record, the range is shown with intermediate occurrences marked.

The non-bryozoan fauna (Figures 2.1 and 2.2) was divided into several groups, each of which will be described in turn. Brachiopods (Figure 2.1) were rare, with only four Cretirhynchia spp., two fragmentary Kingena pentangulata, and several valves of the terebratulid Terebratulina sp. found. Bivalves (Figure 2.1) were more common. Remains of long ranging forms, including Inoceramus sp., Mimachlamys cretosa, Neithea sexcostata, Ostrea spp., Spondylus sp., and a partial specimen of \underline{S}. spinosus were recognised. Serpulids (Figure 2.1) comprised, in addition to common Glomerula gordialis and G. g. var. ilium, single records of Filogranula cincta, Hamulus sexangularis, Neomicrorbis crenatostriatus, and Vermiliopsis fluctuata, together with several of Neomicrorbis subrugosus, and unidentifiable fragments. The sponges Porosphaera globularis, P. sessilis, and P. sp. (fusiform) (Figure 2.1) ranged throughout.

A varied echinoderm fauna was collected (Figure 2.2). Spines, and their test attachment bosses, of cidarid echinoids were numerous, as were columnals, and arm plates, of the crinoid Bourqueticrinus sp. Ossicles of the asteroids Astropecten sp., Nymphaster sp., Ophryaster sp., Recurvaster sp., and Teichaster sp., a single rostrum of the echinoid Hagenowia sp., and many

FIGURE 2.1 Occurrence of brachiopod, bivalve, serpulid, and sponge remains in the borehole samples from Wymondham. sample numbers on left, side (Appendix 2) in assumed stratigraphic order.

fragments of Echinocorys spp. were discovered in addition to a few plates of the ophiuroids Ophiomusium granulosum, Ophiura hagenowi, and Ophiura sp. The plates of two cirripede genera, Cretiscalpellum and Scalpellum, were found in two and three samples respectively.

Various foraminifera genera (Figure 2.2), including, Dentalina, relatively abundant Frondicularia, and globigerinelloidinae, and numerous Gavelinella were recognised, as were several ostracod carapaces.

Bryozoan remains occurred in many of the sieved residues (Figure 2.3), although in many cases they were too worn to identify. Recognisable forms were dominated by examples of the common, long ranging anascans Onychocella inelegans, Q. matrona, and Woodipora disparilis, and by the seemingly stratigraphically restricted Vincularia supercilium, only recorded in the upper two-thirds of the borehole sequence, and in a presumed stratigraphically equivalent exposure at Stiffkey (see section 1.2.6). Other anascans included "Biflustra"argus, Coscinopleura lamourouxi, "Membranipora" spp., two each of onychocella rowei and o. sp., and three of Quadricellaria grania.

The ascophoran Porina sp. was rarely found, as were the cancellatans Crisina sp., Sulcocava sp., Osculipora

EIGURE 2.3 Occurrence of bryozoan remains in the borehole samples from Wymondham. Sample numbers on left side (Appendix 2) in assumed stratigraphic order.
repens (Von Hagenow), and Petalopora sp. Common fragments of the dactylethratan clausa globulosa were distinguished, as were two records of the rectangulatan Disporella irregularis. The remainder of the bryozoan fauna included the salpinginans Meliceritella sp. and Meliceritites spp., and the tubuloporinans (none commonly) Clypeina rosula, Pustulopora sp., Siphoniotyphlus tenuis, Spiropora verticillata, and S. sp., and a single "Ceriopora" sp.

2.2.1 Summary

The recorded fauna was largely undiagnostic, but importantly, eleven samples contained the stratigraphically restricted Vincularia supercilium, only found in the upper part of the Gonioteuthis Zone.

Long ranging taxa, commonly identified, were the brachiopods Cretirhynchia spp. and Ierebratulina spp., the bivalves Inoceramus spp. and Ostrea spp., serpulids, including Glomerula gordialis, and its smaller variant ilium, and the sponges Porosphaera globularis, P. sessilis, and P. sp. (fusiform). Numerous spines of cidarid echinoids, fragments of Echinocorys spp., and plates of the ophiuroid Ophiura sp. were recovered. The foraminifera Gavelinella spp. was also often present.

The bryozoan fauna included many specimens of the long ranging anascans Onychocella inelegans, \mathbf{Q}. matrona, and Woodipora disparilis.

2.3 NORWICH BOREHOLES

Chalk samples were obtained, in July 1988, from two 50 m deep boreholes (AWA numbers 5 and 6). Borehole 6 [BH6] (TG 2459 0804) lay 350 m east of borehole 5 [BH5] (TG 2425 0792). The samples (Appendix 10), were delivered in bags after testing at the Water Research Council Laboratories. In most cases, the chalk consisted, predominantly, of soft, water impregnated material with some bags containing a considerable proportion (up to 30%) of nodular chalk and flints. The boreholes were correlated, assuming that the chalk in BH6 lay stratigraphically 2 m above that in BH5. This value was calculated from the separation of the boreholes relative to the north-south strike of the chalk.

The correlated samples, together, gave a section of about 50 m depth. This was, however, not continuous, as the chalk represented half-metre portions of the boreholes per metre. In places, larger gaps up to 2-3 m occurred, because the samples from these positions had been subjected to destructive testing. The boreholes yielded samples from the whole of the Weybourne Chalk
and part of the Pre-Weybourne Chalk divisions of the Belemnitella mucronata Zone (Figure 1.20 and 1.21).

The Catton Sponge Beds, which cap the Weybourne Chalk, may have been present at the top of BH6, from where several samples containing hard chalk were obtained. The presence of the anascan bryozoan Volviflustrellaria taverensis near the base of both holes indicates a level within the Pre-Weybourne Chalk. This species is only known from stratigraphically restricted bands in that division.

The distribution of the non-bryozoan assemblage from the boreholes is shown in Appendix 10, and in Figures 2.4-2.6. The faunal content of the chalk is described below.

Belemnitella (Figure 2.4) was commonly collected from the sieved residues; along with several brachiopods (Figure 2.4). Of these, fragmentary remains of long ranging forms including the craniaceans Ancistocrania parisiens (Defrance) and Isocrania costata, the rhynchonellid Cretirhynchia spp., Kingena pentangulata, Magas sp., and Ierebratulina spp. were often encountered. The terebratulid Carneithyris carnea was discovered in three samples (numbers 143, 146, and 193) at the top of the section. This species characterises the overlying Beeston Chalk and first appears just below the Catton Sponge Beds, in a small

EIGURE 2.4 Occurrence of belemnite, brachiopod, and bivalve remains in the borehole samples from Norwich. Sample numbers on left side (Appendix 2) in assumed stratigraphic order.
section at Harford Bridges (section 1.3.3.7) at a level equivalent to that at which it was present in the boreholes.

A considerable suite of bivalves was recognised (Figure 2.4). Numerous smail.fragments of Inoceramus spp., Neithea sexcostata, Ostrea spp., and Pseudolimea granulata were collected, along with a partial specimen of Lyropecten sarumensis (Woods). A single instance of the ostreid Hyotissa semiplana, one of Mimachlamys cretosa, and two each of the large pectinids Plagiostoma cretosa and P. marrotiana were noted. The remaining bivalve elements consisted of several portions of the spondylids Spondylus dutempleanus, $\underline{\text { S }}$. spinosus, and \underline{S}. sp., together with a single valve of Atreta nilssoni (Hagenow).

The serpulid fauna (Figure 2.5) was dominated by the common species Glomerula gordialis, G. G. var. ilium, Hamulus sexangularis, and Pentaditrupa subtorquata. A few fragments of Neomicrorbis crenatostriatus, N. subrugosus, Proliserpula ampullacea, and Vermiliopsis fluctuata were collected, as was a single piece of Eoplacostegus pusillus. The typical sponges Porosphaera globularis, R. sessilis, and P. sp. (fusiform) were abundantly encountered.

A large fauna of echinoderms was identified (Figures 2.5 and 2.6). This consisted of extremely

FIGURE 2.5 Occurrence of serpulid, sponge, crinotd, and asteroid remains in the borehole samples from Norwich. Sample numbers on left side (Appendix 2) in assumed stratigraphic order.
common spines of cidarid echinoids, columnals of Bourgueticrinus spp., and fragments of Echinocorys spp. A few ossicles of the common asteroids Astropecten sp., Metopaster sp., Nymphaster sp., and Recurvaster sp. were collected throughout the samples, as was one of Chomataster sp., and three of Ophryaster sp. A single columnal of the crinoid Neilsenocrinus agassizi (Hagenow) was noted at the top of BH6, possibly in the basal beds of the Beeston Chalk. Ophiuroid plates of Ophiomusium granulosum, Ophiura hagenowi, and Q . sp. also occurred relatively often.

Eight different forms of cirripede plates were found (Figure 2.6). They were referable to Brachylepas naissanti, Cretiscalpellum paucistriatum, C. sp., C. striatum (Darwin), Proverruca laurae, Scalpellum fossula, s. maximum var. sulcatum, and s. sp.

The remainder of the non-bryozoan faunal elements included a few fragments each of aseptate corals, Molkia sp., and Stephanophyllia clathrata, a single example of the coral Coelosmilia granulata, occasional worn C. sp., and several ostracod carapaces. Foraminifera collected included Dentalina sp., Erondicularia sp., and Vaginulina sp., together with numerous Gavelinella spp. and globigerinelloidinae.

The stratigraphically restricted anascan bryozoan Volviflustrellaria taverensis was found in four

FIGURE 2.6 Occurrence of echinoid, ophiuroid, cirripede, and miscellaneous non-bryozoan taxon remains (including foraminifera) in the borehole samples from Norwich. Sample numbers on left side (Appendix 2) in assumed stratigraphic order.
samples, close to the bottom of the boreholes (Figure 2.7). This species indicates a level within the Pre-Weybourne Chalk, possibly equivalent to the section exposed at UEA 1 (see section 1.3.2.4). The ubiquitous anascans "Biflustra" argus, Onychocella inelegans, ㅇ. matrona, and Woodipora disparilis were all very abundant (Figure 2.7). The other anascans recognised were Coscinopleura lamourouxi, Latereschara galeata, Lunulites sp., "Membranipora" flabelliformis, "M" spp., Onychocella nysti, Q. rowei, o. sp., Quadricellaria grania, and rare examples of Tricephalopora sp. and Vincularia allas Brydone.

Ascophorans were not very common (Figure 2.7), only three occurrences of Beisselina spp., seven of Porina golfussi, and three of R. sp. being recorded. Several cancellatans were identified (Figure 2.7), often of the long ranging forms Petalopora spp., Sparsicavea spp., and Sulcocava sp. Examples of Bicavea sp., relatively numerous Crisina spp., Eohornera langethali, rare Homoeosolen sp., Hornera sp., and Osculipora sp., and a single individual of \underline{O}. truncata (Goldfuss), recovered from the top of BH6, and therefore assumed to come from the basal beds of the Beeston Chalk, were also found.

A few examples of the long ranging dactylethratan Clausa globulosa were discovered (Figure 2.8), along with many of the salpinginans Meliceritites gothica, M. sp., and a solitary ?Meliceritella sp. The only

FIGURE 2.7 Occurrence of anascan, ascophoran, and cancellatan bryozoan remains in the borehole samples from Norwich. Sample numbers on left side (Appendix 2) in assumed stratigraphic order.

FIGURE 2.8 Occurrence of dactylethratan, rectangulatan, salpinginan, and tubuloporinan bryozoan remains in the borehole samples from Norwich. Sample numbers on left side (Appendix 2) in assumed stratigraphic order.
rectangulatans encountered (Figure 2.8) were Disporella irregularis, \underline{D}. sp., and a single piece (the sole record) of Trochiliopora sp. from the top of BH6.

The large tubuloporinan group was well represented (Figure 2.8), especially by forms of the long ranging Clinopora lineata, clypeina rosula, Pustulopora benediana, and P. sp. Other forms recognised were rare Crisisina carinata, Diastopora sp., Entalophora madreporacea (Goldfuss), E. sp., Retecava sp., Siphoniotyphlus tenuis, Spiropora verticillata, and S. sp.

2.3.1 Summary

The two boreholes (BH5 and BH6) yielded a diverse, but largely undiagnostic, fauna. However, the occurrence of Volviflustrellaria taverensis in the bottom of the boreholes is important as it provided correlation with the section at UEA 1 (section 1.3.2.4), where this stratigraphically restricted anascan bryozoan was collected.

Many common long ranging forms such as Belemnitella, the rhynchonellid Cretirhynchia spp., the terebratulid Ierebratulina spp., fragments of the bivalves Inoceramus spp., Neithea sexcostata, and Ostrea spp., the serpulids Glomerula gordialis, G. g. var. ilium, and Pentaditrupa subtorquata, and various
sponges referable to Porosphaera spp. Were regularly identified. Echinoderms often encountered included columnals of Bourgueticrinus spp., spines of cidarid echinoids, Echinocorys spp. test fragments, and various asteroid ossicles and ophiuroid plates.

Common bryozoans, such as, "Biflustra" argus, Latereschara galeata, Onychocella inelegans, \mathbf{O}. matrona, Woodipora disparilis, Petalopora spp., Sparsicavea spp., Meliceritites spp., Clinopora lineata, Clypeina rosula, and Pustulopora spp. all have much greater stratigraphic ranges.

2.4 MAYTON WOOD

Nine bagged samples of, mostly, soft white chalk were received from several boreholes drilled by the Highways Laboratory of Norfolk County Council at Mayton Wood (TG 2465 2098) in the north-east of the county in 1987. The holes were put down to monitor water conditions in the bottom of an old pit to test its suitability for usage as a long term rubbish dump. From its geographical position and topographic level (17 m above ordnance datum) the samples were assumed to contain chalk from the middle and upper parts of the Beeston Chalk division of the mucronata chalk (Figure 1.21).

The fauna (Figure 2.9 and Appendix 11) was characterised by the common occurrence of Belemnitella and a typical Beeston Chalk brachiopod assemblage comprising abundant Carneithyris carnea, Cretirhynchia spp., and Terebratulina spp., with subordinate Kingena pentangulata, Magas chitoniformis, and Argyrotheca sp. Of the bivalves, fragments of Inoceramus spp. and Ostrea spp. were most abundant, with rarer Lyropecten sp., Mimachlamys cretosa, M. mantelliana, the uncommon Neithea striatocostatus, Pseudolimea granulata, and the spondylids Spondylus dutempleanus, and s. sp. Glomerula gordialis was often, collected along with fewer examples of Eoplacostegus pusillus, Eilogranula cincta, Neomicrorbis crenatostriatus, N. subrugosus, Pentaditrupa subtorquata, Proliserpula ampullacea, Vepreculina tuberculifera, and Vermiliopsis fluctuata.

A few specimens of the sponges Porosphaera sessilis and R. sp. (fusiform) were noted. The echinoderm fauna included crinoid columnals of Bourgueticrinus brydonei, B. spp., and Neilsenocrinus agassizi, common spines of cidarid echinoids, fragments of Echinocorys spp. and a rostrum of Hagenowia sp. Ossicles of the asteroids Astropecten spp., Chomataster spp., Metopaster spp. (including M. undulatus), and Recurvaster sp. Remaining elements of the echinoderm fauna included a few plates of the ophiuroids Ophiomusium granulosum, Ophiura hagenowi, Q. aff substriata, and Q. sp.

Cirripede plates referable to Brachylepas fallax and Cretiscalpellum paucistriatum were found, as were the corals Moltkia sp. and Stephanophyllia clathrata, and foraminifera including common Dentalina sp., Vaginulina spp., Erondicularia sp., Gavelinella spp., Tentifrons sp., and globigerinelloidinae.

Anascan bryozoans were often identified. In particular the common long ranging forms "Biflustra" argus, Onychocella inelegans, o. matrona, o. nysti, o. rowei, o. sp., and Woodipora disparilis were present together with less abundant Coscinopleura lamourouxi and Lunulites spp., and one record each of Latereschara galeata, "Membranipora" flabelliformis, a member of the "M." sevingtonensis group, and Quadricellaria grania. The ascophoran Porina goldfussi, was rarely encountered, as were the cancellatans Crisina sp., Eohornera langethali, Petalopora spp., Sparsicavea spp., and ?Sulcocava sp., and a single dactylethratan (clausa globulosa).

The salpinginans Meliceritites gothica and M. spp. were commonly collected. Identified tubuloporinans included Clinopora lineata, \mathbf{c}. sp., Clypeina rosula, Crisisina carinata, Pustulopora benediana, E. sp., and Spiropora verticillata.

The fauna from the Mayton Wood boreholes was undiagnostic except for the occurrence of a typical Beeston Chalk brachiopod assemblage dominated by Carneithyris carnea, Cretirhynchia spp, and Terebratulina spp. Various serpulid and echinoderm remains were commonly collected, as were long ranging anascan genera including "Biflustra", Onychocella, and Woodipora, and the salpinginan Meliceritites gothica.

2.5 WHITLINGHAM

Thirty 100 mm diameter (U100) core samples (mostly 50 cm long) were obtained during the early summer of 1988 from two boreholes (Whitlingham 1 (WHIT.1) and 2 (WHIT.2)) drilled by the AWA at Whitlingham, about 5 km east of Norwich. Eighteen of the samples came from WHIT. 1 (TG 2770 0707), the remainder from WHIT. 2 (TG 2757 0771). As the two sites lay along strike, direct correlation was made between samples at equivalent topographic levels. From their geographical positions both boreholes probably lay within the Paramoudra Chalk, and also through the upper part of the underlying Beeston Chalk (Figure 1.21) division of the Belemnitella mucronata Zone.

Where 50 cm core lengths were available (a few samples from WHIT. 2 were much smaller), the middle 20
cm portion was processed as it was not apparent which was the top of the core as originally retrieved from the ground. The chalk was very soft, usually iron-stained, and yellow/orange/brown in colour, and sometimes contained sizable flints. All identified fossils were plotted on spreadsheets (Appendix 12).

The non-bryozoan fauna (Figures 2.10-2.12) contained several examples of Belemnitella and a typical Beeston Chalk brachiopod assemblage (Figure 2.10) consisting of abundant Carneithyris carnea, Cretirhynchia spp., and Terebratulina spp., with subordinate Isocrania costata, Kingena pentangulata, and Magas chitoniformis. Bivalves (Figure 2.10) included extremely numerous fragments of Inoceramus spp. (characteristic of the Beeston Chalk), common pieces of Neithea sexcostata, and rarer remains of Hyotissa semiplana, Lyropecten spp., Mimachlamys cretosa, Ostrea spp., Pseudolimea granulata, and the spondylids Spondylus dutempleanus, s. spinosus, and $\underline{\text { S. }}$ sp.

Serpulids were relatively plentiful (Figure 2.10), with the long ranging forms Glomerula gordialis, g. g. var. ilium, Neomicrorbis crenatostriatus, N. subrugosus, Pentaditrupa subtorquata, and Vermiliopsis fluctuata were all recorded several times. Hamulus sexangularis, Proliserpula ampullacea, and Vepreculina tuberculifera (Nielsen) were also present, but less

FIGURE 2.10 Occurrence of belemnite, brachiopod, bivalve,
and serpuitd remains in the borehole samples from
Whitlingham. Sample numbers on left side (Appendix 2) in
assumed stratigraphic order assumed stratigraphic order.
common. The three stratigraphically long lived sponges Porosphaera globularis, R. sessilis, and P. sp. (fusiform) were abundantly encountered.

Echinoderms recovered from the sieved residues (Figure 2.11) included many spines of cidarid echinoids, columnals of Bourgueticrinus spp. (with one of B. brydonei), and fragments of Echinocorys spp. A varied selection of asteroid ossicles were identified, including a few of Astropecten spp. and Nymphaster spp., and isolated examples of Metopaster undulatus Spencer, M. sp., Ophryaster sp., ?Recurvaster sp., and ?Teichaster sp. A single columnal of the crinoid Neilsenocrinus agassizi, a rostrum of Hagenowia sp., and plates of the ophiuroids Ophiomusium granulosum, O. sp., and Ophiura sp. also occurred.

Cirripede plates were never common (Figure 2.11), but forms referable to Brachylepas fallax, B. naissanti, Cretiscalpellum sp., Proverruca laurae, and Scalpellum sp. were collected. The remaining elements of the non-bryozoan fauna (Figure 2.12) comprised, rare fragments of aseptate corals and the coral Moltkia sp., ostracod carapaces, and foraminifera including Dentalina sp., Vaginulina spp., Frondicularia sp., Gavelinella spp., and globigerinelloidinae.

The bryozoan fauna (Figures 2.12 and 2.13)
contained many individuals of the long ranging anascans

FIGURE 2.11 Occurrence of sponge, echinoderm, and cirripede remains in the borehole samples from Whitilngham. Sample numbers on left side (ADpendix 2) in assumed stratigraphic order.

FIGURE 2.12 Occurrence of miscellaneous non-bryozoan

porima So $^{\text {sotiporima }}$ Spo

 cimopora limeata cirpeima rosula pustulopoon ?eenediana pustuicpopa Sos
SIPHCMIOTYM spipspora yericicilata
spirocora/spiroerteliopcara so
 ceriopora- nucifoemis undentified friguents
beisselima sp
pachithecella Sbo parima golofusst
 T
"Biflustra" argus, Lunulites sp., Onychocella inelegans, Q. matrona, O. nysti, O. rowei, and Woodipora disparilis (Figure 2.12), and occasional specimens of "Membranipora" flabelliformis, " M " spp. Puncturiella sp., Quadricellaria grania, and Tricephalopora sp. Identified ascophorans (Figure 2.13) were Beisselina sp., Pachythecella sp., several examples, each, of Porina goldfussi, R. socia, and P. sp., and Rotiporina sp.

Of the cancellatans (Figure 2.13), only Petalopora spp. was regularly noted, although examples of Crisina sp., Hornera sp., Osculipora sp., Sparsicavea spp., and Sulcocava sp. also occurred.Only one specimen of Meliceritites gothica was recorded, although M. spp. were numerous. Tubuloporinans formed the remainder of the identifiable fauna (Figure 2.13). Of these, Clinopora lineata and Pustulopora spp. were most abundant, with specimens of Clypeina rosula, Diastopora sp., Pustulopora benediana, siphoniotyphlus tenuis, Spiropora verticillata, S. sp., and Tervia sp. collected less often. "Ceriopora" nuciformis Hagenow was represented by a single fragment (the only one found),
2.5.1 Summary

The collected fauna was largely indistinctive, except for the abundant occurrence of a typical Beeston

Chalk brachiopod assemblage dominated by Carneithyris carnea and Cretirhynchia spp., and copious fragments of the bivalve Inoceramus spp. The serpulids Glomerula gordialis, G. g. var. ilium, Pentaditrupa subtorquata, and Vermiliopsis fluctuata, and echinoderms including spines of cidarid echinoids, columnals of Bourgueticrinus spp., Echinocorys spp. test fragments, and various asteroid ossicles were well represented.

The anascan bryozoans "Biflustra" argus, Lunulites spp., Onychocella inelegans, O. matrona, $\underline{0}$. nysti, . rowei, and Woodipora disparilis were very plentiful, as was the cancellatan Petalopora spp., the salpinginan Meliceritites spp., and the tubuloporinans Clinopora lineata and Pustulopora spp. All these bryozoans have long stratigraphic ranges and, therefore, gave little indication as to the horizon represented by the samples.

CHAPTER IHREE

FOSSIL BORINGS AND EPIFAUNA

3.1 INTRODUCTION

Many of the fossils collected from the sections described in chapter one were encrusted with epifauna and/or bored. The epifauna was usually external, but occasionally internal, and typically post-mortem. The encrusters appear to have shown no preference towards any particular fossil group as a substrate. Common forms were regularly noted on belemnites, bivalves, brachiopods, and echinoids. The epifauna (listed in Appendices 3-7) was dominated by encrusting bryozoans, with subordinate serpulid worms, brachiopods, bivalves, foraminifera, and sponges. Most of these were forms only recognised as epifauna and not found in the bulk sample residues.

The borings (listed in Appendices 3-7) often had characteristic shapes and were almost exclusively post-mortem, host fossils showing no evidence of repairing the damage caused by the boring agents. All collected macro-fossil groups were attacked but specific forms of borings occurred on certain fossil taxa. Belemnites, in particular, carried a distinctive suite of traces, that were very rare on other taxa. These included the ramified Calcideletrix sp., the stellate Dendrina belemniticola Mägdefrau, the
unbranched "tunnel-like" ?Nygmites sp., and Ialpina sp. (branched tunnels, each branch having numerous small circular apertures). Other forms including Entobia sp., believed to result from clionid sponge boring activity, and Rogerella sp., a slit-like form produced by barnacles, were identified on several fossil groups. Most of the borings are thought to have been made by sponges, although rare brachiopod pedicle attachment scars (Podichnus sp.) were recognised.

For ease of description the epifauna will be considered before the borings. The localities are listed in the same stratigraphic order as in chapter one.

3.2 GONIOTEUTHIS ZONE

None of the few macrofossils collected from the rare sections in this zone contained epifauna on their surfaces, or showed any evidence of boring.

3.3 BELEMNITELLA MUCRONATA ZONE

3.3.1 PRE-WEYBOURNE CHALK

Two large cidarid spines collected from this locality each bore a single juvenile of the oyster Pycnodonte vesiculare.
3.3.1.2 NEWFOUND FARM, CRINGLEFORD (section 1.3.2.5)

The craniacean brachiopod Ancistocrania parisiens was found on two fossils, the bivalve Atreta nilssoni on three, with Gyropleura inequirostrata and Pycnodonte vesiculare occurring on one fossil each, and the long ranging sponge Porosphaera sessilis (commonly encountered in the bulk samples) on two. Two corals (Coelosmilia sp.) and a single Moltkia sp. were noted, as were four examples of hemi-spherical foraminifera remains (Bullopora sp.). The bryozoan fauna included one record each of the anascans Aechmella anglica (Brydone), Castanopora magnifica (d'Orbigny), and Leptocheilopora magna Lang, three of "Membranipora" spp., and single occurrences of the rectangulatan Disporella irregularis, the tubuloporinans Diastopora sp. and Stomatopora sp., and unidentified bryozoan remains.

The borings recorded on the collected fauna consisted of five records each of Calcideletrix sp. and Dendrina belemniticola, and two of Entobia sp.
3.3.2.1 WEYBOURNE HOPE (section 1.3.3.3)

A varied suite of epifauna was recorded on the numerous fossils collected from this cliff section on the north Norfolk coast. This included the brachiopod Ancistocrania parisiens and the bivalves Atreta nilssoni (very commonly), Gyropleura inequirostrata, and Pycnodonte vesiculare, the latter usually on fossils collected in the harder chalk between fint bands 10 and 12 of the section (Figure 1.6). The most numerous serpulid identified was "Serpula" accumulata S. Woodward which was recognised on twenty nine different fossils. Other rarer forms were Sclerostyla spp., Vepreculina tuberculifera, and V. sp., each noted on three occasions, and individual records of Cementula spiraserpula (Regenhardt), Neomicrorbis crenatostriatus, and Vepreculina fimbriata.

The sponge Porosphaera sessilis (often present in bulk sample residues) was found on seven specimens, along with single examples of Porosphaera sp., and a mould of a hexactinellid sponge. The corals Coelosmilia spp. and Moltkia spp. were commonly encountered, the former, in particular, being regularly present, as were remains of the hemi-spherical foraminifera Bullopora sp. and indeterminate calcareous foraminifera.

Many different anascan bryozoans were identified as epifauna from Weybourne, although in most cases only rarely. Amongst more numerous forms were Aechmella anglica, Aplousina fulgora (Brydone), Dionella trigonopora, and "Membranipora" spp. Other species collected (from less than six specimens) were "Biflustra" sp., Dionella trifaria (Von Hagenow), Ellisina ringens (Von Hagenow), Herpetopora laxata (d'Orbigny), H. sp., Leptocheilopora masna, several membraniporids including the sole record of a member of the "Membranipora" langei Brydone group, "M". palpebra var. nuntians Brydone, a member of the " M ". tenebrosa Brydone group, " M ". withersi (Brydone) represented by a single record, and "Membraniporella" monastica Brydone. Two specimens of the ubiquitous, but rarely epifaunal, Onychocella inelegans and Q. sp. were noted, as were single individuals of the rare Pliophloea of. subvitrea (Brydone) and Iricephalopora sp.

The ascophoran cryptostomella compacta (Brydone) and the cancellatans Crisina sp. and Sulcocava sp. were found on a single occasion. The rectangulatan Disporella sp. was sometimes present, as were tubuloporinans, including Dfastopora spp., Stomatopora spp., scarce Idmonea sp., Proboscina sp., and Stomatopora pedicellata (Marsson).

Borings were dominated by forms of the very common Calcideletrix sp., Dendrina belemniticola, and
?Nygmites sp., with subordinate Ialpina sp. and Entobia sp. Also identified were two attachment scars left by brachiopod pedicles (Podichnus sp.), two Dictyoporous sp., a member of the Ramosulcichnus bifrons group, and seven records of Rogerella sp., attributed to barnacles.
3.3.2.2 KESWICK (section 1.3.3.4)

This section is laterally equivalent to the lower part of the coastal section at Weybourne (Figure 1.5). The only brachiopod identified was Ancistocrania parisiens, found on nine occasions. Bivalves found were rare Gyropleura inequirostrata and more common Atreta nilssoni and Pycnodonte vesiculare. A varied group of serpulids was recognised. Of these the most numerous were "Serpula" accumulata and unidentified remains. Less common were Neomicrorbis subrugosus, Sclerostyla spp., and Vepreculina sp. Remains referable to Cementula spiraserpula, Glomerula gordialis (unusually found attached to a belemnite), Neomicrorbis sp., Pentaditrupa subtorquata, and Sclerostyla macropus were noted on one or two fossils only.

The sponge Porosphaer sessilis was rarely present, in contrast to the common records of the corals Coelosmilia spp. and Moltkia spp., and foraminiferal remains, mostly of Bullopora sp., or indeterminate calcareous forms.

Twenty different anascan bryozoans were identified. Of these; only "Membranipora" spp., recorded twenty times was common. Aechmella anglica, Aplousina fulgora, Dionella sp., D. trifaria, Herpetopora sp., Leptocheilopora magna, " M ". palpebra var. nuntians, and Onychocella sp. occurred on more than one occasion. Andriopora major Larwood, Castanopora castanea Lang, C. dibleyi (Brydone), C. sp., Dionella trigonopora, Ellisina ringens, Herpetopora laxata, Micropora bedensis (Brydone), "Membraniporella" monastica, Onychocella gibbosum (Marsson) (rarely found as an epifaunal coloniser), Q. nysti, and Iricephalopora sp. were noted once only.

A single example of the cancellatan Bicavea sp., the rectangulatans Disporella irregularis and D. sp., and the tubuloporinans Diastopora spp., Proboscina sp., Stomatopora pedicellata, and S. sp. were also identified. Borings in fossils collected from Keswick were mostly of Calcideletrix sp., Dendrina belemniticola, ?Nygmites sp., Rogerella sp., and Ialpina sp. Rare Entobia sp. and two examples of the barnacle borings simonizapfes sp. were also identified.
3.3.2.3 EATON TUNNELS (section 1.3.3.5)

This section is largely stratigraphically equivalent to Keswick. Epifauna recognised included occasional specimens of Ancistocrania parisiens, Atreta
nilssoni, Gyropleura inequirostrata, Pyenodonte vesiculare, and the serpulids glomerula gordialis, "Serpula" accumulata, Vepreculina sp., and unidentified remains. The sponge Porosphaer sessilis, the corals Coelosmilia spp. and Moltkia spp., and hemi-spherical (Bullopora sp.) and indeterminate calcareous foraminiferal remains were identified.

The anascan bryozoans Aplousina fulgora, Herpetopora sp., and "Membranipora" sp., the rectangulatan Disporella irregularis, the tubuloporinans Proboscina sp., and Stomatopora sp., and bryozoan attachments were rarely found. Recognised borings were Calcideletrix sp., Dendrina belemniticola, Entobia sp, ?Nygmites sp., Rogerella sp., and Talpina sp.

3.3.2.4 WHIFFLER ROAD (section 1.3.3.6)

The epifauna identified on the few fossils collected from this section consisted of a single example of the common, long ranging, bivalve Atreta nilssoni, two of the foraminifera Bullopora sp., and one of the anascan bryozoan Herpetopora sp. Recognised borings were Calcideletrix sp., Dendrina belemniticola, and ? Nygmites sp.

Rare examples of the craniacean brachiopod Ancistocrania parisiens, the bivalve Pycnodonte vesiculare, the long ranging serpulids Neomicrorbis crenatostriatus and Vepreculina tuberculifera, the sponge Porosphaera sessilis, and the coral Moltkia sp. were recognised on the few fossils collected from this old quarry.

The anascan bryozoans Dionella trifaria, Herpetopora sp., and Onychocella sp., and the tubuloporinans Diastopora sp., Idmonea sp., and Stomatopora sp. each occurred on one or two specimens. The only borings noted were single records of Calcideletrix sp. and Dendrina belemniticola.

3.3.2.6 WEYBOURNE HOPE EAST (section 1.3.3.8)

The only epifauna recorded on the fossils collected from this section, on the north Norfolk coast just west of Sheringham, comprised a single specimen of the common serpulid "Serpula" accumulata and Bullopora sp. Identified borings were Calcideletrix sp. and Dendrina belemniticola.

3.3.2.7 WEYBOURNE CHALK SUMMARY

Epifaunal remains on fossils collected from the extant sections in the Weybourne Chalk were dominated
by the brachiopod Ancistocrania parisiens and the bivalve Atreta nilssonf (the latter noted on more than 130 occasions). Juvenile forms of the oyster Pycnodonte vesiculare were often found, as were the serpulids "Serpula" accumulata, Sclerostyla spp., and unidentified worm tubes. The sponge Porosphaera sessilis occurred on more than a dozen occasions, but was relatively less common than in the bulk samples. The corals Coelosmilia spp. and Moltkia spp. were both very plentiful, noted on at least 125 fossils, as were remains of foraminifera, including Bullopora sp. and various indeterminate forms.

Several bryozoans were quite common. These were the anascans Aechmella anglica, Aplousina fulgora, Dionella trifaria, and "Membranipora" spp., the rectangulatan Disporella irregularis, and the tubuloporinans Diastopora spp. and Stomatopora spp.

Borings (chiefly in belemnite guards) were dominated by forms of Calcideletrix sp., Dendrina belemniticola, ?Nygmites sp., and Ialpina sp., with less numerous Rogerella sp.
3.3.3.1 CAISTOR ST. EDMUND (section 1.3.5.2)

A large and varied epifauna was identified on some of the 1300 fossils collected from Caistor. Brachiopods included very common Ancistocrania parisiens and occasional ?Diomyodon sp., a form recorded only from this locality. Bivalves were less numerous excepting Atreta nilssoni, although juvenile gyropleura inequirostrata and Pycnodonte vesiculare occurred intermittently along with two specimens of Spondylus dutempleanus (one of which lived inside a partial Echinocorys sp. test). A large serpulid fauna was recognised, although of these only "Serpula" accumulata and Vermiliopsis fluctuata (confined as epifauna to Caistor) were common. Rarer forms were Cementula spiraserpula, \underline{C}. sp., a single specimen of Conorca trochiformis (Hagenow), Filogranula cincta, Glomerula gordialis (unusually occurring as epifauna), Neomicrorbis spp., N. subrugosus, Sclerostyla spp., Vepreculina fimbriata, v. spp., and v. tuberculifera.

A few examples of the sponge Porosphaera sessilis, the corals Coelosmilia spp. and Moltkia spp., noted on 40 and 75 occasions respectively, and fairly common Bullopora sp. and indeterminate foraminiferal remains were also noted.

Twenty five different anascan bryozoans were identified as epifauna. Of these only Aechmella anglica, Dionella trifaria, and "Membranipora" spp. occurred with any regularity. Several forms were confined to Caistor. These were Aechmella nitescens (Brydone), A. sp., Homalostega clathrata Beissel, H. sp., Leptocheilopora sp., "Membranipora" furina (Brydone), Onychocella norfolcia Brydone, Ubaghsia crassa (Lang), and U. sp. Other anascans collected were Aplousina fulgora, Dionella sp., Ellisina ringens, Herpetopora laxata, H. sp., Leptocheilopora magna, "M". palpebra var. nuntians, " M ". exhaurensis, "Membraniporella" monastica, Onychocella inelegans, o. nysti, and Tricephalopora sp.

The cancellatans Bicavea sp., Crisina sp., and Homoeosolen sp. were rarely present, whereas the rectangulatan Disporella irregularis was relatively plentiful. The tubuloporinans Diastopora spp., Proboscina sp., and Stomatopora spp. were fairly abundant, in contrast to the two records of Actinopora sp. and Idmonea sp., and a single one of Stomatopora gracilis (Edwards). A few miscellaneous bryozoan fragments were also present.

Borings were very numerous on fossils collected from Caistor. In particular, Calcideletrix sp. and Dendrina belemniticola, which were each found on more than 350 of the collected faunal elements. ?Nygmites
sp. and Talpina sp. were common (recorded on 146 and 131 occasions, respectively), as were traces of borings made by clionid sponges (Entobia sp.). Also identified were five attachment scars left by brachiopod pedicies (Podichnus sp.) with their characteristic cluster of small circular holes, a single net-like form referable to Dictyoporus nodosus Mägdefrau, five D. sp., twenty seven examples of barnacle borings (Rogerella sp.), and five of unknown affinity.

3.3.3.2 FRETTENHAM (JSS Agg. Ltd) (section 1.3.5.4)

A few epifaunal remains were recognised on the fossils collected from this locality. These included the brachiopod Ancistocrania parisiens and the bivalve Atreta nilssoni, the sponge Porosphaera sessilis, the corals Coelosmilia sp. and Moltkia sp., hemi-spherical foraminiferal remains (Bullopora sp.), and indeterminate worm tube remains. A single specimen of the tubuloporinan Proboscina sp. and an unidentified attachment were the only bryozoans found.

Borings included Calcideletrix sp., Dendrina belemniticola, ?Nygmites sp., and Rogerella sp.
3.3.3.3 FRETTENHAM (WM HOWES Ltd) (section 1.3.5.5)

The epifauna identified from this old pit contained rare examples of the brachiopod Ancistocrania parisiens
and the bivalves Atreta nilssoni and Pycnodonte vesiculare, the serpulids "Serpula" accumulata and indeterminate remains of worm tubes. The ubiquitous corals Coelosmilia sp. and Moltkia sp., and examples of Bullopora sp. and indeterminate calcareous foraminifera were occasionally encountered. Bryozoans found were single specimens of the anascans Herpetopora sp. and Onychocella nysti, and three of "Membranipora" spp.

Borings referable to Calcideletrix sp., Dendrina belemniticola, ?Nygmites sp., and Ialpina sp. were distinguished.

3.3.3.4 BEESTON CHALK SUMMARY

The brachiopod Ancistocrania parisiens was very commonly recognised and several specimens of ?Diomyodon sp: were also identified (only from Caistor). The bivalves Atreta nilssoni, Pyenodonte vesiculare, and Gyropleura inequirostrata, the serpulids "Serpula" accumulata and Vermiliopsis fluctuata, the sponge Porosphaera sessilis, the corals Coelosmilia spp. and Moltkia spp., and hemi-spherical foraminiferal remains (Bullopora spp.) were also very common. A varied suite of anascan bryozoans was identified, although of these only Aechmella anglica, Dionella trifaria, and "Membranipora" spp. occurred with any regularity, along with the rectangulatan Disporella irregularis, and the
tubuloporinans Diastopora spp., Proboscina sp., and Stomatopora spp.

The borings Calcideletrix spp., Dendrina belemniticola, ?Nygmites spp., Rogerella sp., and Ialpina sp. were identified most often on fossils collected in the Beeston Chalk.
3.3.4 PARAMOUDRA CHALK
3.3.4.1 WHITLINGHAM (section 1.3.6.2)

A single specimen of the common serpulid "Serpula" accumulata, one of the coral Moltkia sp., an example of the tubuloporinan bryozoan Diastopora sp., and single occurrences of the borings Calcideletrix sp., and ?Nygmites sp. comprised the total epifaunal and boring records from this section, the only one known in the Paramoudra Chalk.

CHAPTER EQUR

STRATIGRAPHIC RANGES OE COLLECTED EOSSILS

4.1 INTRODUCTION

Stratigraphic data for all the macrofossils collected from sections, mesofauna recovered from borehole sample residues, and the epifauna found on the surfaces of fossils have been combined to produce overall range charts for all taxa. These have been plotted against the section described in chapter one (see section 1.4 , Figures 1.20 and 1.21). The non-bryozoan faunal elements will be considered before the bryozoans are described.
(The most commonly encountered macrofaunal and mesofaunal taxa, and stratigraphically important species are illustrated in Plates 1-3)

4.2 BELEMNITES

All belemnites (Figure 4.1) were referred to Belemnitella mucronata, the index fossil of the mucronata zone. It was commonly present in all sections from low in the Pre-Weybourne Chalk (PWC) to the upper part of the Paramoudra Chalk (PC).

[^1]
4.3

A varied brachiopod fauna was collected (Figure 4.1). This included relatively common Ancistocrania parisiens, found almost always as epifauna, which ranged from the middle of the Pre-Weybourne Chalk to the upper Beeston Chalk (BC). The carneithyrid terebratulid Carneithyris carnea was
characteristically, and abundantly, collected from all sections and many of the bulk samples (in fragmentary form) from the Beeston Chalk and the Paramoudra Chalk, first appearing below the Catton Sponge Beds (CSB) in the middle of the Weybourne Chalk (WC).

Several species of the rhynchonellid Cretirhynchia were identified. Of these, C . arcuata was found only in the Beeston Chalk, in considerable numbers, whilst $\mathrm{C}_{\text {. }}$ norvicensis occurred in both the Weybourne and Beeston Chalks. C. ?norvicensis (juv), a small form with many characteristics of adult $\underline{\text { C. norvicensis, was found }}$ throughout the Weybourne Chalk, wherein it was very common. A single specimen of \mathcal{C}. woodwardi was collected from the lower part of the Weybourne Chalk, whilst indeterminate fragments of C . spp. were often found at all levels above the middle of the Goniotouthis Zone (GZ).

Three species of the craniacean Isocrania were found. The most common form was I. costata, collected
between the middle of the Gonioteuthis Zone and the middle of the Paramoudra Chalk. I. egnabergensis (upper Gonioteuthis Zone (UGZ)-basal Weybourne Chalk (BWC)) and I. paucicostata (middle Pre-Weybourne Chalk (MPWC)-middle Weybourne Chalk (MWC)) were rarely identified. Small terebratulids included a few examples of Argyrotheca spp., which were collected between the middle of the Pre-Weybourne Chalk and the middle Beeston Chalk. Most small terebratulids were referable to Terebratulina spp., common at all horizons, although a few individuals of I. striata were collected in the Weybourne and Beeston Chalks, and a single, complete, I. gracilis from the middle of the Beeston Chalk.

Kingena pentangulata was relatively numerous throughout, and a few specimens of Kingenella kongieli were recorded in the basal part of the Weybourne Chalk. Magas chitoniformis was often noted above the lower part of the Pre-Weybourne Chalk, although it is likely that forms from below the Beeston Chalk are related to Magas sp. nov. (Wood, 1988, p. 23).

The remainder of the identifiable brachiopod fauna comprised a few examples of the epifaunal ?Diomyodon sp. from Caistor (basal Beeston Chalk), several examples of the distinctive, large, terebratulid Neolithyrina obesa, with its large pedicle foramen, found between the topmost beds of the Pre-Weybourne Chalk and the middle of the Beeston Chalk, and rare
?undescribed Orbirhynchia sp. from the lower Beeston Chalk.

4.4 BIVALYES

The most commonly encountered bivalves (Figure 4.2) were, the almost exclusively epifaunal, Atreta nilssoni which ranged from the middle of the Pre-Weybourne Chalk to the upper Beeston Chalk and ostreids. Of these, fragments of Ostrea spp. ranged throughout, whilst Pycnodonte vesiculare was locally very abundant in the middle of the Weybourne Chalk and present from the middle of the Pre-Weybourne Chalk to the upper part of the Beeston Chalk. Other forms were Acutostrea cf. incurva (MWC)-middle Beeston Chalk (MBC)), Hyotissa semiplana (lower Weybourne Chalk (LWC)-upper Beeston Chalk (UBC)), rare Gryphaeostrea canaliculata, and a single specimen of Margostrea alaeformis (both lower Beeston Chalk (LBC)).

Several Gyropleura inequirostrata were collected, mostly as epifauna, on fossils collected between the middle of the Pre-Weybourne Chalk and a similar level in the Beeston Chalk. Also found were isolated specimens of Lima sp. (LBC), Lyropocten campaniensis (MBC), L. sarumensis (basal Beeston Chalk (BBC)), and several L. spp. (middle Gonioteuthis Zone (MGZ)-UBC). Inoceramus spp., mostly represented by small pieces, were found at all levels (but were very abundant in,

and characteristic of, the Beeston Chalk) as was Neithea sexcostata. In contrast, N. striatocostatus was very rare, recorded only in the middle of the Beeston Chalk.

Mimachlamys cretosa was found fairly frequently above the middle of the Gonioteuthis Zone, with rarer M. mantelliana (upper Pre-Weybourne Chalk (UPWC)-LBC). Three different species of Plagiostoma were collected, although none was common. They were R. cretaceum (MWC-MBC), P. marrotiana (MWC-UBC), and a single specimen of P . hoperi from the lower Beeston Chalk. A few fragments of indeterminate pectinids were recovered from the Weybourne Chalk and the basal part of the Beeston Chalk. One Plicatula sp. (LBC) and scattered, fragmentary, Pseudolimea granulata (MPWC)-middle Paramoudra Chalk (MPC)) were also recognised.

The remainder of the bivalve fauna was made up by fairly common Spondylus dutempleanus, S. spp. (both MGZ-MPC), S. spinosus (MGZ-basal Paramoudra Chalk (BPC)), a single s. hystrix from Keswick (LWC), and unidentified bivalve fragments (MGZ-upper Paramoudra Chalk (UPC)).

4.5 SERPULIDS

A varied serpulid fauna was collected (Figure 4.3). This included epifaunal remains of cementula

spiraserpula (BWC)-LBC), \&. spp. (LBC), and a single specimen of conorca trochiformis (LBC). A few fragments of EOplacostegus pusillus (UPWC-UBC) and rare Eilogranula cincta (lower Gonioteuthis Zone (LGZ)-UPC) were recognised. Both Glomerula gordialis and G. g. var. iljum were very numerous above the middle of the Gonioteuthis Zone, along with a single example of G. plexus (LWC) and rare G. spp. (LWC-LBC). Common fragments of Hamulus sexangularis (MGZ-UPC) were collected, and Neomicrorbis crenatostriatus and N. subrugosus were found at all levels, predominantly as epifauna, with N. spp. noted throughout the Weybourne Chalk and the lower part of the Beeston Chalk.

A single fragment referable to Orthoconorca tubinella was obtained from the middle of the Gonioteuthis Zone. Pentaditrupa subtorguata was commonly present above the top of the Gonioteuthis Zone, as was Proliserpula ampullacea from the middle of the Pre-Weybourne Chalk. Other serpulids included Sclerostyla sepentaria (UPWC-LWC), S. spp. (LWC-LBC), and relatively plentiful "Seroula" accumulata, (BWC-UPC), exclusively as epifauna.

The remainder of the serpulid fauna comprised a few examples of Vepreculina fimbriata (MWC-LBC), \boldsymbol{y}. tuberculifera (BWC-LBC), an epifaunal form (v. sp.) (LWC-BBC), Vermiliopsis fluctuata (upper Goniotouthis

Zone (UGZ)-UPC), and unidentified worm tube remains (UGZ-UPC).

4.6 SPONGES

The sponges Porosphaera globularis and R. sessilis were both very common throughout the studied chalk (Figure 4.4), as was R. sp. (fusiform) up to the basal beds of the Paramoudra Chalk. A few indeterminate P. sp. were noted (UPWC-LWC), together with numerous iron-stained outlines of various sponges seen in chalk sections in the Weybourne and Beeston Chalks. A single hexactinellid sponge mould from the middle of the Weybourne Chalk and a fragment of a lithistid sponge from the middle of the Beeston Chalk comprised the remainder of the sponge fauna.

4.7 ECHINODERMS

Four different types of crinoid columnals were identified (Figure 4.4). Most common were Bourgueticrinus spp., collected in large numbers at all levels, with less numerous B. brydonel (MWC-MPC), a single Austinocrinus bicoronatus (MBC), Nielsenocrinus agassizi (BBC-lower Paramoudra Chalk (LPC)), and a single indeterminate columnal from the middle of the Beeston Chalk.

Asteroid ossicles were an important constituent of the collected echinoderm fauna (Figure 4.4). Several genera ranged from the lower Gonioteuthis Zone to the Paramoudra Chalk (as did unidentifiable, worn, ossicles) including Astropecten, Chomataster, Metopaster, and Pycinaster. Other forms with smaller ranges were miscellaneous astropectenids (UGZ-MPC), Metopaster undulatus (MBC-MPC), Nymphaster studlandensis (UPWC-LBC), N. spp. (UGZ-UPC), Ophryaster spp. (MGZ-LBC), a single ?Stauranderaster sp. (BWC), and Teichaster spp. (MGZ-BPC).

Echinoids (Figure 4.5) were often collected from sections and identified from fragments in sieved residues. Dominant forms were Echinocorys spp. and copious spines of cidarid echinoids (both LGZ-UPC), with subordinate cidarid spine bosses (MGZ-UBC), cidarid test fragments (MPWC-MBC), and pieces of indeterminate echinoids (UGZ-MPC). Other forms noted were rare rostra of Hagenowia spp. (MGZ-UPC), and forms of Micraster including M. gibba (M-UWC), M. ?glyphus (B-MWC), and M. spp. (BWC-upper Weybourne Chalk (UWC)).

Ossicles of several ophiurolds were identified (Figure 4.5), of which Ophiomusium granulosum and Ophiura spp. (both LGZ-MPC) were most common, with less numerous forms referable to Ophiomusium spp. (MWC-MPC), Ophiura hagenowi (LGZ-UBC), and 0 . substriata (MWC-UBC) recognised.

4.8 CIRRIPEDES

Nine different cirripedes were found (Figure 4.5), although none was very common, the longest ranging of which was Brachylepas fallax (LGZ-UBC). Other forms included B. naissanti (UPWC-UPC), Cretiscalpellum paucistriatum (MWC-UBC), a solitary c. cf. paucistriatum (UPWC), ع. spp. (MGZ-LPC), Proverruca laurae (LWC-UPC), Scalpellum fossula (UGZ-UWC), S. maximum var. sulcatum (UWC-LBC), and S. spp. (LGZ-UBC).

4.9 MISCELLANEOUS NON-BRYOZOANS

Several forms of coral were found (Figure 4.6). The most common of these were the basal attachment remains of Coelosmilia spp. (MPWC-UBC) and Moltkia spp. (UGZ-BPC), both usually found as epifauna, with less common aseptate corals (LGZ-BPC) and Stephanophyllia clathrata (basal Pre-Weybourne Chalk (BPWC)-MBC), and a single example of Coelosmilia granulata (LGZ).

The remaining elements of the non-bryozoan fauna comprised various foraminifera (Figure 4.6) including numerous remains of the exclusively epifaunal Bullopora sp. (MPWC-UBC), intermittent records of Dentalina spp., Frondicularia spp., and indeterminate dentalinoides (all LGZ-UPC). Forms referable to Gavelinella spp. and the globigerinelloidinae were abundantly encountered at all levels. Other foraminifera identified were Nodosaria spp.(LWC-MBC), Ientifrons spp.(LGZ-UBC), and Vaginulina spp. (LGZ-MPC). Indeterminate epifaunal foraminiferal remains were fairly common between the base of the Weybourne Chalk and the upper Beeston Chalk, as were ostracod carapaces at all horizons.

4.10 BRYQZOANS

A large and varied fauna of epifaunal anascan bryozoans was identified (Figures 4.7 and 4.8), although many were found on only a single "host" fossil. Several specimens of Aechmella anglica were recognised on macrofossils collected between the upper Pre-Weybourne Chalk and the lower Beeston Chalk, whereas A. nitescens was recorded only once, from the lower Beeston Chalk. Aplousina fulgora was noted on a few occasions throughout the Weybourne Chalk and lowest levels of the Beeston Chalk, with a solitary occurrence of A. sp. in the lower Beeston Chalk.

Castanopora was represented by single specimens of c. castanea, C. dibleyi (both LWC), c. sp. (BWC), and a few well preserved examples of \underline{C}. magnifica on fossils collected between the upper Pre-Weybourne Chalk and the lower Beeston Chalk. Two forms of Dionella (D. trifaria and D. sp.) were rarely found (both BWC-LBC), along with a solitary example of D. trigonopora (BWC). Ellisina ringens, Herpetopora laxata (both BWC-LBC), and common H. spp. (BWC-UBC) were noted, especially on tests of Echinocorys spp. Five specimens of Leptocheilopora magna (BWC-BBC) and one of L. sp. (LBC) were also noted.

Membraniporids were common elements of the epifaunal anascan fauna. Of them, "Membranipora" exhaurensis (MWC-LBC), "M". palpebra var. nuntians (BWC-LBC), members of the " $M^{\prime \prime}$. tenebrosa group (B-MWC), and "Membraniporella" monastica (BWC-LBC) were noted on more than one occasion. Single specimens of "Membranipora" furina (LBC), " M ". langei, and " M ". withersi (both LWC) were also found.

Isolated instances of Micropora bedensis and Onychocella gibbosum (both BWC) were noted, along with single examples of Pliophloea cf. subvitrea (LWC), Ubaghsia sp. (LBC), and a few U. crassa and onychocella norfolcia (both LBC). Other epifaunal anascans, found on one occasion only were Andriopora major, "Biflustra"
sp. (both LWC), Homalostega clathrata (BBC), and H. sp. (MBC).

Anascans not found as epifauna, or rarely so, included several very common species that ranged throughout the studied chalk. Of these, "Biflustra" argus, the ubiquitous Onychocella inelegans, 0 . rowel, and Woodipora disparilis were found most often, with rarer Coscinopleura lamourouxi and Quadricellaria grania. Other forms with shorter ranges included fairly common Latereschara galeata (LGZ-MBC), Lunulites spp. (UGZ-UPC), rare members of the "Membranipora" sevingtonensis group (UPWC-UBC), "M". flabelliformis (BPWC-LPC), "M". spp. (LGZ-MPC), numerous examples of Onychocella matrona (MGZ-UPC), Q. nysti (lower Pre-Weybourne Chalk (LPWC-UPC), Q. spp. (LGZ-UBC), and occasional Iricephalopora spp. (UPWC-MPC).

Two species with stratigraphic significance were identified. These were Vincularia supercilium from the upper Gonioteuthis Zone and Volviflustrellaria taverensis, collected from the central beds of the Pre-Weybourne Chalk. The remainder of the anascan fauna comprised single records of a member of the "Membranipora" seafordensis group, Vincularia allas, Y. hecamede (all MWC), "Membranipora" vertebralis (UWC), Escharifora sp. (UBC), and Puncturiella sp. (UPC).

The only articulatan identified was a single fragment of Berenicea sp. (Figure 4.9) from the lower Gonioteuthis Zone. The most common ascophorans (Figure 4.9) noted were Porina goldfussi (MPWC-UPC), R. socia (MPWC-UPC), and P. spp. (LGZ-MPC). Other forms collected were rare examples of Beisselina spp. (MPWC-MPC), Pachythecella spp. (UBC-MPC), Rotiporina spp. (M-UPC), and a single occurrence of the epifaunal Cryptostomella compacta (MWC).

Cancellatans were fairly numerous (Figure 4.9), in particular, forms referable to Eohornera langethali (UPWC-MBC), Petalopora spp. (MGZ-MPC), Sparsicavea spp. (LGZ-MPC), and Sulcocava spp. (MGZ-MPC). Less common were records of Bicavea spp. (MPWC-BBC), Crisina spp. (LGZ-UPC), Homoeosolen spp. (MPWC-BBC), and Hornera spp. (MWC-MPC). A single example of Osculipora truncata (BBC), several O. spp. (LWC-UBC), and a solitary specimen of 0 . repens (UGZ) comprised the remainder of the identified cancellatan fauna.

The dactylethratan clausa globulosa (Figure 4.9) was found intermittently between the middle of the Gonioteuthis Zone and the middle of the Beeston Chalk. Of the rectangulatans identified (Figure 4.9), Disporella irregularis (LGZ-UPC) was most numerous, with rare D. sp. (MWC), and a single Irochiliopora sp. (LBC) also collected. The salpinginan Meliceritites

gothica was very common at levels above the middle of the Pre-Weybourne Chalk (Figure 4.9), with M. spp. well represented throughout, and Meliceritella spp. found below the upper Weybourne Chalk.

Tubuloporinans (Figure 4.10) were well represented, both by epifaunal forms, and specimens obtained from bulk sample residues. Epifaunal forms included a single Actinopora sp. from the basal Beeston Chalk, rare Idmonea spp. (MWC-BBC), Proboscina spp. (LWC-UBC), one specimen of Stomatopora gracilis (MBC), s. pedicellata (BWC), and S. spp. (UPWC-MBC). Non-epifaunal forms included relatively common clinopora lineata (LGZ-UPC), C. spp. (LGZ-UBC), Clypeina rosula (MGZ-UBC), Diastopora spp. (UPWC-UPC), Pustulopora benediana (UPWC-MPC), R. spp. (MGZ-UPC), Siphoniotyphlus tenuis (LGZ-UBC), Spiropora spp. (LGZ-MBC), and s. verticillata (MGZ-UPC).

Rarer forms were Crisisina carinata (B-UBC), Entalophora spp. (UGZ-BBC), Retecava spp. (UBC-LBC), and Spiroenteilopora spp. (MPWC-MPC). Single examples of Entalophora cf. madreporacea (BWC), Idmidronea sp. (LBC), and Tervia sp. (UPC) were also recognised.

Miscellaneous bryozoans (Figure 4.10) included a single "Ceriopora" nuciformis from the middle of the Paramoudra Chalk, rare "C". spp. (MGZ-UBC), unidentified
fragments (LGZ-UPC), indeterminate epifaunal bryozoan attachment remains (BWC-UBC), and cheilostome bryozoan remains (BWC-LBC).

4.11 BORINGS

Borings, almost exclusively in belemnite guards and echinoid test remains, (Figure 4.11) were dominated by forms of Dendrina belemniticola (UPWC-MBC), Calcideletrix sp. (UPWC-MPC), Entobia sp. (UPWC-LBC), ?Nygmites sp . ($B W C-M P C$), and Talpina sp . ($B W C-M B C$). Subordinate to these were Rogerella sp. (BWC-MBC) and rare Dictyoporus nodosus (MBC), D. sp.(BWC-LBC), Podichnus sp. (BWC-MBC), a member of the Ramosulchichnus bifrons group (MWC), Simonizapfes sp. (LWC), and unidentified borings (B-MBC).

4.12 SUMMARY

Common non-bryozoan faunal elements collected throughout the Campanian Chalk included forms of the brachiopod Terebratulina spp., the bivalves Inoceramus spp., Neithea sexcostata, and Ostrea spp., the serpulids Neomicrorbis crenatostriatus and N. subrugosus, and the ubiquitous sponges Porosphaera globularis and E. sessilis. Columnals of Bourgueticrinus spp., ossicles of the asteroids Astropecten spp. and Metopaster spp., spines of cidarid echinoids, test fragments of Echinocorys spp., and

FIGURE 4.11 Stratigraphic ranges of borings noted in fossils collected from the Gonioteuthis and Belemnitella mucronata Zones. (Abbreviations as in Figure 4.1.)
plates of the ophiuroids Ophiomusfum granulosum and Ophiura spp. also occurred regularly at all levels.

Several foraminiferal genera including Dentalina, Frondicularia, and Gavelinella, miscellaneous globigerinelloidinae, and indeterminate ostracod carapaces were found in bulk samples at every horizon.

Abundant fossils with lesser stratigraphic ranges included Belemnitella (LPWC-UPC), the brachiopods Ancistocrania parisiens, Atreta nilssoni, (both MPWC-UBC), Carneithyris carnea (UWC-MPC), Cretirhynchia arcuata (L-UBC), and \underline{C}. ?norvicensis (juv) (B-UWC). The bivalves Pycnodonte vesiculare (UPWC-UBC) and Spondylus dutempleanus (MGZ-MPC), and the serpulids Glomerula gordialis, G. g. var. ilium (both MGZ-UPC), and "Serpula" accumulata, (BWC-UPC) were often found, along with the coral Moltkia spp. (UGZ-BPC).

Bryozoans well represented, throughout, were the anascans "Biflustra" argus, Coscinopleura lamourouxi, various "Membranipora" spp., Onychocella inelegans, Q. rowel, Quadricellaria grania, and Woodipora disparilis, the cancellatan Sparsicavea spp., the salpinginan Meliceritites spp., and the tubuloporinan clinopora lineata.

Common, less diverse forms included the anascans Latereschara galeata (LGZ-MBC), Lunulites spp., Onychocella matrona (MGZ-UPC), Q. nysti (LPWC-UPC), and
Q. spp. (LGZ-UBC), and the ascophorans Porina goldfussi (MPWC-UPC) and R. spp. (LGZ-MPC).

The cancellatans Eohornera langethali (UPWC-MBC), Petalopora spp. (MGZ-MPC), and Sulcocava spp. (MGZ-MPC), and the tubuloporinans Clypeina rosula (MGZ-UBC) and Pustulopora spp. (MGZ-UPC) were also found on many occasions. Two stratigraphically significant anascans were collected, Vincularia supercilium from the upper Gonioteuthis Zone and Volviflustrellaria taverensis from the central beds of the Pre-Weybourne Chalk.

The most common borings (almost always in belemnite guards or echinoid tests) identified were Dendrina belemniticola (UPWC-MBC), Calcideletrix sp. (UPWC-MPC), Entobia sp. (UPWC-LBC), ?Nygmites sp. (BWC-MPC), and Talpina sp. (BWC-MBC).

CHAPTER EIVE

CAMPANIAN CHALK AND EOSSIL GROUP ECOLOGY

5.1 INTRODUCTION

In this chapter the factors (e.g. temperature, salinity, sedimentation rate) that controlled sea-floor environmental conditions during the Campanian in Norfolk will be discussed. Ecological information from common fossil groups (belemnites, echinoids, brachiopods, bivalves etc.), including that furnished by the relative abundance, form, and nature of borings and epifauna in/on them, will be described, along with palaeocurrent information obtained from belemnites. Finally, an attempt will be made to distinguish between any different palaeocommunities that occurred and to assess the conditions that led to their formation.

5.2

DEPOSITIONAL ENVIRONMENI

5.2.1 SALINITY

The abundance and diversity of stenohaline organisms such as echinoderms, brachiopods, bryozoans, and planktonic foraminifera in the chalk indicate that deposition occurred under normal marine salinities.

The Norfolk Chalk accumulated on a shelf in a tectonically stable region. Water depths are unlikely to have exceeded 300 m . Actual estimates of the depth of the Chalk sea have been based on lithological, faunal, and floral criteria (see Hałkansson et al., 1974 and Kennedy and Garrison, 1975 for reviews).

The maximum water depth is difficult to assess. Perhaps the best estimate is that of 200-300 m obtained from hexactinellid sponge assemblages (Reid in Kennedy and Garrison). A figure of similar magnitude was also produced by Hayes and Pitman (1973) as the estimated maximum Upper Cretaceous rise in sea level. Hakansson et al.(1974) concluded that the Masstrichtian Chalk of northwestern Europe was deposited at depths probably below the photic zone, but no deeper than 250 m .

The minimum water depth for chalk deposition was probably less than 50 m for some of the obvious shallow water horizons e.g. Glauconitic Marl, Chalk Marl, and Chalk Rock (Kennedy and Garrison, 1975, p. 321). An even lesser depth (30-50 m) has been suggested for Campanian Chalks in the Hampshire Basin. However it is known that algal bored grains are rare in most chalks which suggests deposition below the euphotic zone, possibly at depths of 180 m or so (Kennedy and Garrison, 1975, p. 322).

Hence, it appears that the depth of the Chalk sea during the Campanian in Norfolk was in the range 150-250 m, but was somewhat less at certain times, for example, when the hardground complex in the middle of the Weybourne Chalk was forming.

5.2.3 WATER TEMPERATURE

On palaeomagnetic evidence southern Britain lay at a latitude of approximately 32-35 degrees North during the Upper Cretaceous. During this non-glacial epoch, with globally high sea levels, annual and diurnal temperature ranges were relatively low. A generally sub-tropical regime is indicated (Kennedy and Garrison, 1975, p. 322).

Oxygen isotope-based palaeotemperatures have been obtained from a variety of chalk fossils including belemnites, oysters, and inoceramids. Lowenstam and Epstein (1954) collected fossils from five quarries, in the Belemnitella mucronata Zone, in the Norwich area. They were, in ascending stratigraphic order, the sections at Eaton, Harford Bridges (two localities), Catton Grove (Attoes Pit), and Caistor St. Edmund, although Lowenstam and Epstein seem to have been uncertain as to their relative stratigraphic levels.

Different fossils gave the following palaeotemperature ranges $\left(\mathrm{in}^{\circ} \mathrm{C}\right)$:

Belemnitella mucronata $16.5-20.8$ (from 40 specimens), Inoceramus sp. 18.3-21.7 (from 9 specimens), Ostrea sp. 20.5-24.5 (from 7 specimens).

Belemnitella appears to show a somewhat lower mean temperature, possibly related to its shell synthests having occurred at lower temperatures than other fossils (Lowenstam and Epstein, 1954, Figure 19, p. 237).

The calculated values must be treated with caution for several reasons. These include the possibility of isotopic fractionation by the organisms themselves, doubts about the original mineralogy, many belemnites show evidence of recrystallisation under cathodoluminescence, and the small sample sizes. Allowing for such uncertainties a figure between 16 and $25^{\circ} \mathrm{C}$ may be a reasonable estimate of the average sea water temperature.

5.2.4 SEDIMENTATION RATES

The actual sedimentation rate is very difficult to assess. A net sedimentation rate of about $2 \mathrm{~cm} / 1000$ years for the complete chalk succession was quoted by Kennedy and Garrison (1975, p. 324). This is similar to the $1.9 \mathrm{~cm} / 1000$ years obtained by dividing the
estimated thickness of the Norfolk Campanian (210 m) section 1.4) by the stage length of eleven million years (Rawson et al., 1978, p. 7, Table 1). A higher figure ($15 \mathrm{~cm} / 1000$ years) was given by Hakansson (1974, p. 215) as the average original sedimentation rate for the 700 m thick Maastrichtian Chalk of the central part of the Danish trough, with the assumptions of 5 Ma duration and 10x post-depositional compaction.

It is difficult to assess the appropriate corrections that must be applied to obtain original deposition rates. Hakansson's assumption of 10% compaction (based on the amount of compaction shown by skeletal and body fossils) is too small. The minimum compaction needed to reduce an original 00ze with ?70x porosity to the 60-45\% porosity of the Maastrichtian was 25-45x (B.M. Funnell personal communication, April 1989).

White chalks often have a porosity of around 40x, equal to that attributed to limestones by Schlanger and Douglas (1974, p. 130). The porosity of oozes immediately below the bioturbated zone (i.e. equivalent to those on which Quaternary rates of deposition are commonly measured) are probably close to the 70\% which characterises the top 100 m of calcareous ooze sequences (Schlanger and Douglas 1974, pp. 119, 132). Hence, a porosity reduction of about 30x for the chalk appears to be a reasonable estimate.

Some idea of the gross sedimentation rate can be obtained from study of fossil remains (mostly echinoid tests and belemnite guards) that lay on the sea-floor and were post-mortally colonised by epifauna and/or attacked by boring organisms. If they had lain exposed for prolonged periods (10s to 100s of years), as would be suggested by the very low sedimentation rates, forming very rare "islands of hard substrate" in a soft matrix the following might be expected to have occurred:
a) large, mature epifaunal individuals and colonies on host fossils,
b) high diversity of epifaunal species,
c) very high percentage coverage of exposed remains and widespread evidence of multiple generations of colonisers etc., and
d) partial or complete destruction of test/guard by boring organisms.

Of these, a and b occurred on only a few of the 2700 macrofossils studied, and then only on large belemnites and echinoids, whilst no supporting evidence for c was found. If d had occurred, small, disassociated, bored and worn pieces of fossils should have been found in the bulk sample residues. They were not, even in the smallest (63 micron) fractions. These results imply that fossil remains that lay on the sea-floor were buried fairly quickly.

Of all the factors that make sedimentation rates difficult to gauge, the most problematical is the amount of time represented by omission and hardground surfaces. The former occur ubiquitously throughout the Campanian at spacings ranging from $5-50 \mathrm{~cm}$ (averaging 15-30 cm), the latter more sporadically, although commonly in the complex in the middle of the Weybourne Chalk. It is likely that breaks in sedimentation accounted for a high proportion of the time during chalk deposition.

All the different factors, together, suggest that the average chalk sedimentation rate in Norfolk during the Campanian may have been much higher than previously suggested. Allowing for the periods of non-deposition represented by the omission and hardground surfaces, post-depositional compaction, and the relatively rapid post-mortem burial of macrofauna that lay exposed on, or partially buried in, the sediment suggests that the sedimentation rate (at times of deposition) may have been as high as 1 mm per year.

5.3 BELEMNITE DATA

5.3.1 INTRODUCTION

Specimens of Belemnitella mucronata were common at all localities in the mucronata chalk. The upper surface of every collected individual was marked with
permanent ink prior to its removal from the face so that the occurrence, identity, nature, and position of boring traces and epifaunal remains could be recorded in one of four quadrants (north-east (NE), south-east (SE), south-west (SW), north-west (NW)) taken about the longitudinal axis of the guard in order to assess differences and any palaeoecological implications indicated by them.

Two different approaches were attempted in order to study the boring/epifaunal distribution:
a) counting the number of records per quadrant for each specimen,
b) grouping belemnites with the same overall distribution patterns.

The method utilised for each is outlined, briefly, below.
5.3.1.1 Records per Quadrant

The number of borings and epifaunal remains counted per quadrant was assigned to one of four categories:
numerous (N) = ten or more,
few (F) = between two and nine,
one (1) = single occurrence,
zero (0) = none found.

The percentage of records falling into each category per quadrant was plotted for all belemnites collected between particular flint bands.

5.3.1.2 Overall Distribution Patterns

The epifauna and boring distributions of all collected belemnites were split into ten groups, each characterised by a specific combination of remains in each quadrant. They were (NE, SE, SW, NW quadrants respectively):

1. $X X X X$
2. $X X X O / 0 X X X$
3. $X x 0 x / X 0 \times X$
4. $\mathrm{XX00} / 00 \mathrm{XX}$
5. X00X
6. $0 \times X 0$
7. XOXO/OXOX
8. X000/000X
9. 0X00/00X0
10. 0000
(X indicates the presence of records (i.e. "N, F or $1^{\prime \prime}$) in that quadrant.

Three general categories (A, B, C) were created by combining the data from groups 1-10, above, for forms that showed particular boring/epifaunal distributions. Group A comprised all belemnites with records in the SE/SW quadrants, group B included all forms with records in the NE/NW quadrants only, and group C those with no borings/epifauna.

The plunge angles and orientation of each belemnite were also measured. The results were incorporated into histograms and rose diagrams for all localities from which sufficient data were obtained. Average plunge angles were calculated using the mid-point values from the five degree wide columns of the histograms.

Information was obtained from all belemnites collected from the sections at Weybourne Hope, Keswick, and Eaton (except for epifaunal and boring distribution data from the latter due to the few fossils collected) in the Weybourne Chalk, and Caistor St. Edmund in the lower Beeston Chalk. (The data from the few belemnites collected from other localities have been included in the overall population summary at the end of the belemnite data section.) Because of variation in the flint band occurrences and consequent differences in flint band notation in the weybourne Chalk sections, the results from each will be presented separately. The notation used for each locality and the correlation between them are shown in Figure 5.1.

The ecological significance of all the results will be discussed in section 5.5 .

FIGURE 5.1 Correlation between the chalk sections visible at Eaton Tunnels, Keswick, and Weybourne Hope-Old Butts Gap. Numbers on left side of each section indicate the filnt band notation used in this chapter.
5.3.2.1 Borings

5.3.2.1.1 Records per Quadrant (Figures 5.2 and 5.3)

With the exception of the results derived from the few belemnites collected between filint bands 4 and 6 (Figure 5.3) and 8 and 9 (Figure 5.2) which had most borings in their $N E$ and $S E(4-6)$ and $S E(8-9)$ quadrants respectively, a consistent distribution pattern was found at all levels of the section. A higher proportion of specimens had numerous borings in their NE and NW quadrants (20-50\%) than the SE and SW (10-25\%). The percentage of belemnites without borings in the NE and NW quadrants was, correspondingly, lower (10-30x) than in the SE and SW (40-70\%).

The complete plot of all 215 belemnites (Figure 5.3) gave the following percentages of specimens with at least a single boring per quadrant: NE 74, SE 47, SW 43, NW 68, average 58.

The overall percentage distributions were:

FIGURE 5.2 Percentages of belemnites collected between flint band 7 and the top of the section at Weybourne Hope with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) borings in their NE, $S E, S W$, and $N W$ quadrants, respectively. Numbers on left aide are percentages, letters at base of figures indicate specific quadrants.

FIGURE 5.3 Percentages of belemnites collected between flint bands 1 and 7 and of the complete population of 215 belemnites from Weybourne Hope with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) borings in their $N E, S E$, SW, and NW quadrants, respectively. Numbers on left eide are percentages, letters at base of figures indicate specific quadrants.

5.3.2.1.2 Overall Distribution Patterns

Considerable variation was found in the percentage of belemnites with boring distributions in each of the ten groups (Table 5.1). Most common were forms bored in all quadrants (group 1) (16.7-50.0\%), those with traces in the NE and NW sectors only (group 5) (0.0-35.7\%), and forms without borings (group 10) (0.0-29.4\%). Of the total population of 215 belemnites, 60 (28.0\%) had borings in all four quadrants, 46 (21.4\%) in NE and NW quadrants only, 33 (15.4\%) were devoid of borings, and the remaining 76 (35.2\%) were assigned to the other seven groups.

PERCENTAGE OF BELEMUITES IM EACH GROUP

FB	1	2	3	4	5	1	1	8	,	10	N
11+1.5n-10p	30.0	3.3	13.3	10.0	13.3	3.3	3.3	10.0	3.3	10.0	30
11-11+1.51	16.1	0	20.8	4.2	29.2	4.2	-	6.2	6.2	12.5	48
10-11	50.0	0	1.1	0	28.8	0	0	0	0	14.3	14
9-10	45.8	0	12.5	0	25.0	0	4.2	4.2	0	8.3	24
8-9	50.0	0	0	0	0	0	0	0	50.0	0	4
7-8	35.3	0	5.9	0	17.6	0	0	11.8	0	29.4	11
6-1	14.3	0	21.4	14.3	21.4	0	0	14.3	0	14.3	14
4-6	33.3	8.3	8.3	8.3	8.3	0	-	16.1	0	16.7	12
3-4	17.9	10.7	17.9	3.6	14.3	3.6	7.1	1.1	0	17.9	28
2-3	21.4	11.3	0	0	35.1	0	0	-	1.1	21.4	14
1-2	30.0	0	10.0	0	20.0	1	0	0	10.0	30.0	10
averace	28.0	3.2	13.5	4.2	21.4	1.8	1.8	1.0	3.1	15.4	215

IABLE 5.1 Percentages of belemnites collected between specific flint bands at Weybourne Hope with boring traces falling into groups 1-10. AVERAGE is for all 215 belemnites, $N=$ number of specimens collected between flint bands. Filint bands as in Figure 5.1.

Recalculating the data for the general distribution categories (Table 5.2) gave population averages of 56.2, 28.4 , and 15.4% respectively. Most belemnites (41.2-66.7\%) collected at specific levels lay within category A (the 100% value from 8-9 was calculated from just four specimens), with less in B (0.0-35.7\%), and C (0.0-30.0\%) .
percentage of belemiltes in each category

F8	1	B	c	N
11+1.51-TOP	66.7	23.3	10.0	30
11-11+1.51	52.1	35.4	12.5	48
10-11	57.1	28.6	14.3	14
9-10	62.5	29.2	8.3	24
8-9	100.0	0	0	4
1-8	41.2	29.4	29.4	17
8-7	50.0	35.1	14.3	14
1-6	58.3	25.0	18.1	12
3-4	60.1	21.4	17.9	28
2-8	42.9	33.1	21.4	14
1-2	50.0	20.0	30.0	10
average	56.2	28.4	13.4	215

IABLE 5.2 Percentages of belemnites collected between individual flint bands at Weybourne Hope with borings in categories A, B, or C (section 5.3.1.2). (Abbreviations as in Table 5.1.)
5.3.2.2 Epifauna
5.3.2.2.1 Records per Quadrant (Figures 5.4 and 5.5)

The epifaunal distribution was generally similar to that shown by the borings. The main difference was the much lower density of remains. No collected specimens had numerous remains (N) on any quadrant, and only a

FIGURE 5.4 Percentages of belemnites collected between flint band 7 and the top of the section at Weybourne Hope with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) epifaunal remains in their NE, SE, SW, and NW quadrants, respectively. Numbers on left side are percentages, letters at base of figures indicate specific quadrants.

FIGURE 5.5 Percentages of belemnites collected between flint bands 1 and 7 and of the complete population of 215 belemnites from Weybourne Hope with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) epifaunal remains in their $N E, S E, S W$, and $N W$ quadrants, respectively. Numbers on left side are percentages, letters at base of figures indicate specific quadrants.
small proportion, usually <10\%, had more than a single example per quadrant. In every plot (except that of the very small group collected between flint bands 8 and 9) the majority of specimens had no remains at all, about 70\% of quadrants per plot being devoid of epifauna.

The complete plot (Figure 5.5) gave the following percentage distributions:

NE (F. 13.0, 1. 22.0, 0. 65.0)
SE (F. 7.0, 1. 12.0, 0. 81.0)
SW (F. $5.0,1.19 .0,0.76 .0$)
NW (F. 7.0, 1. 16.0, 0. 77.0).

5.3.2.2.2 Overall Distribution Patterns

A low density of epifaunal colonisation was noted (Table 5.3), both for subgroups and the complete population. Of the latter, 83 (38.6x) guards had no epifauna, 47 (21.9\%) epifauna solely on NE/NW quadrants, and 26 (12.1\%) on the SE/SW quadrants alone. The other 59 (27.4\%) lay in the other seven groups.
r PERCENTAGE OF BELEmuItes IN EACH gROUP

FB	1	2	3	4	5	6	1	8	1	10	N
11+1.5n-TOP	0	0	0	3.3	8.7	0	3.3	33.3	8.1	40.7	30
$11-11+1.50$	2.1	4.2	6.2	4.2	8.2	2.1	4.2	27.1	10.4	33.1	48
10-11	0	0	0	1.1	1.1	1.1	1.1	28.6	2.1	35.1	14
J-10	4.2	0	8.3	4.2	12.5	0	0	16.1	16.1	37.5	24
8-9	0	25.0	0	25.0	0	0	0	25.0	0	25.0	4
7-8	0	5.9	0	5.9	0	6.9	0	17.6	5.9	58.8	17
6-1	14.3	0	1.1	0	14.3	0	0	1.1	35.1	21.4	14
4-6	0	16.1	8.3	25.0	0	0	0	25.0	8.3	16.1	12
3-4	1.1	0	3.6	14.3	0	1.1	0	17.9	10.1	39.3	28
2-3	1.1	1.1	0	0	0	0	1.1	1.1	21.4	50.0	14
1-2	0	0	0	0	0	20.0	0	20.0	10.0	50.0	10
average	3.3	3.3	3.7	6.5	5.1	3.3	2.2	21.9	12.1	38.6	215

IABLE 5,3 Percentages of belemnites collected between specific flint bands at Weybourne Hope with epifaunal remains falling into groups 1-10. (Abbreviations as in Table 5.1.)

The population averages for the general distribution categories were 34.4, 27.0, and 38.6x respectively (Table 5.4). In subgroups belemnites occurred most commonly in A (13.3-58.3x) and C (16.7-58.8\%) with fewer in B (7.1-40.0\%).

FB	1	8	C	N
11+1.5n-TOP	13.3	40.0	18.1	30
11-11+1.5!	33.3	33.3	33.3	48
10-11	28.6	35.1	35.1	14
9-10	33.3	29.2	37.5	24
8-9	50.0	25.0	25.0	4
7-8	23.5	17.1	58.8	17
8-7	57.2	21.4	21.4	14
4-1	58.3	25.0	16.7	12
3-4	42.9	17.9	39.3	28
2-3	42.9	1.1	50.0	14
1-2	30.0	20.0	50.0	10
AVERAGE	34.4	27.0	38.6	215

IABLE 5.4 Percentages of belemnites collected between individual flint bands at Weybourne Hope with epifauna in categories A, B, or C (section 5.3.1.2). (Abbreviations as in Table 5.1.)

5.3.2.3 Belemnite Orientations (Figures 5.6-5.8)

The 230 guards measured from the east-west cliff section showed no evidence of preferential orientations. The intermediate plots between particular flint bands often gave polymodal distributions. The overall plot (Figure 5.8) shows slight bias in favour of specimens with north/south orientations. This reflecting the enhanced probability of finding specimens at large angles to the cliff compared to those aligned nearly parallel to it.

5.3.2.4 Plunge Angles (Figures 5.9-5.11)

The histograms produced for subsets of belemnites collected between flint bands and the total population (Figure 5.11) showed the same pattern. Most guards had low plunge angles, only eleven out of 230 (4.8\%) had

s

FIGURE 5.6 Orientations of belemnites measured between flint band 10 and the top of the section at Weybourne Hope. Ornamentation: striped $=$ point end of guard upwards, blank $=$ point end of guard downwards, solid = horizontal guard.

FIGURE 5.7 Orientations of belemnites measured between flint bands 3 and 10 and of all 230 specimens with data from Weybourne Hope. Ornamentation: striped = point end of guard upwards, blank $=$ point end of guard downwards, solid = horizontal guard.

FIGURE 5.8 Orientations of belemnites measured between flint bands 1 and 3 at Weybourne Hope. Ornamentation: striped = point end of guard upwards, blank $=$ point end of guard downwards, solid $=$ horizontal guard.

FIGURE 5.9 Plunge angles of belemnites measured between flint band 8 and the top of the section at Weybourne Hope. Ornamentation: vertical striping = point end of guard downwards, blank $=$ point end of guard upwards, horizontal striping $=$ horizontal guard.

FIGURE 5.10 Plunge angles of belemnites measured between flint bands 1 and 8 at Weybourne Hope. Ornamentation: vertical striping $=$ point end of guard downwards, blank = point end of guard upwards, horizontal striping = horizontal guard.

EIGURE 5.11 Plunge angles of all 230 belemnite guards measured from Weybourne Hope. Ornamentation: vertical striping $=$ point end of guard downwards, blank = point end of guard upwards, horizontal striping = horizontal guard.
angles in excess of 45 degrees, the average value being just over 16 degrees. Twelve guards (5.2x) had no plunge (H), 93 (40.4\%) were point end of guard upwards (PU), the other 125 (54.4\%) posterior of guard downwards (PD).

F8	nunber measured	AVERAGE PLUMGE (DEGREES)
11+1.5n-TOP	33	20.4
11-11+1.50	51	15.1
10-11	14	12.9
9-10	24	13.2
$8-9$	4	11.3
1-8	11	18.8
6-7	15	17.2
4-8	13	14.6
3-4	28	19.8
2-3	15	13.8
1-2	18	12.8
average	230	16.2

IABLE 5.5 Average plunge angles of belemnites measured from the section at Weybourne Hope. (Abbreviations as in Table 5.1.)

5.3.3 KESWICK QUARRY

5.3.3.1 Borings

5.3.3.1.1 Records per Quadrant (Figure 5.12)

With the exception of the statistically suspect data obtained from the twelve belemnites collected between flint bands H and $D(F i g u r e s ~ 5.12) ~ a l l ~$ subgroups exhibited a similar distribution pattern. A higher proportion of specimens had borings in their NE and NW quadrants than in the SE and SW. Of the complete

population of 160 guards with data, $42 x$ had at least a single boring, made up by the following percentages per quadrant: $N E$ 47.0, SE 35.0, SW 40.0, NW 45.5. The overall percentage distributions (Figure 5.12) were:

5.3.3.1.2 Overall Distribution Patterns

With the exception of the two small groups, of six belemnites each, collected between flint bands H and D, of which 66.7% occurred within group 1 for both subsets, a similar distribution was identified at all levels of the quarry (Table 5.6). In every case the highest percentage of specimens (34.8-50.0) were assigned to group 10, i.e. forms without borings. Between 10.0 and 31.6% of guards had borings in all quadrants (group 1), in contrast to the complete absence of forms with patterns fitting into group 7. The overall population contained 58 (36.2\%) individuals in group 10, 40 (25.0\%) in group 1 , and 16 (10.0\%) in group 8 (forms with borings in NE/NW quadrants only). The other 46 (28.8\%) specimens were contained in groups 2-6, or 9.

PERCENTAGE OF BELEWHITES IN EACH GROUP

FB	1	2	3	4	5	6	1	8	0	10	N
B-5OCR-C	17.4	0	8.7	8.7	4.3	0	0	13.0	13.0	34.8	23
D-C	15.8	5.3	1.9	0	18.4	5.3	0	13.2	5.3	28.9	38
$E-D$	66.1	0	0	0	0	0	0	0	0	33.3	6
H-E	66.7	0	16.7	0	0	0	0	0	0	16.7	6
I-H	10.0	5.0	5.0	5.0	10.0	0	0	10.0	5.0	50.0	20
J-I	29.2	2.1	2.1	4.2	4.2	2.1	0	10.4	8.3	37.5	48
BASE-J	31.8	0	5.3	10.5	0	0	0	5.3	5.3	42.1	19
AVERAGE	25.0	2.5	5.8	4.4	1.5	1.9	0.0	10.0	8.9	36.2	180

TABLE 5,6 Percentages of belemnites collected between specific flint bands at Keswick with boring traces falling into groups 1-10. AVERAGE is for all 160 belemnites. Flint bands as in Figure 5.1.

Of the complete population, 74 (46.3\%) were found
 B, and 58 (36.2%) in C. In the subgroups, with the exception of the suspect values between flints H and D, category A contained 30.0-56.2\%, category B 5.3-31.6\%, and category C 28.9-50.0\% of collected belemnites.

PERCEWTAGE OF BELEWITES IN EACH CATEGORY

F8	1	8	C	"
B-50ct-C	47.8	17.4	34.8	23
O-C	39.5	31.6	28.9	38
E-0	66.7	0	33.3	1
H-E	83.3	0	16.7	6
IH	30.0	20.0	50.0	20
J-1	47.9	14.8	37.5	48
MSE-J	52.6	5.3	42.1	19
average	46.3	17.5	36.2	160

IABLE 5.7 Percentages of belemnites collected between individual flint bands at Keswick with borings in categories A, B, or C (section 5.3.1.2). (Abbreviations as in Table 5.6.)

5.3.3.2.1 Records per Quadrant (Figure 5.13)

The distribution of the epifauna from Keswick was grossly analogous to that found at Weybourne. The percentages of quadrants with recorded epifauna were: NE 37, SE 39, SW 33, NW 45, average 38\%. The complete percentage distributions of all 160 belemnites (Figure 5.13) were:

```
NE (N. 1.0, F. 18.0, 1. 18.0, 0. 63.0)
SE (N. 1.0, F. 13.0, 1. 25.0, 0. 61.0)
SW (N 1.0, F. 13.0, 1. 19.0, 0. 67.0)
NW (N 1.0, F. 19.0, 1. 25.0, 0. 55.0).
```


5.3.3.2.2 Overall Distribution Patterns

The epifaunal distribution patterns on the guards of all 160 belemnites collected from Keswick were spread fairly evenly throughout all 10 groups (Table 5.8) with only two groups, 8 and 10 , containing more than 10% of the fauna (16.2 and 26.2%, respectively).

[^2]
PERCENTAGE OF BELENHITES IN EACH GROUP

FB	1	2	3	4	5	0	1	8	9	10	N
B-50cn-C	8.7	0	13.0	4.3	8.1	17.4	8.7	8.7	8.1	21.7	23
O-C	15.8	2.8	1.9	10.5	2.8	0	5.3	18.4	2.6	34.2	38
E-0	0	50.0	0	0	16.1	0	0	0	33.3	0	
H-E	0	333	0	0	0	0	0	18.7	16.1	33.3	
I-H	5.0	10.0	0	5.0	5.0	0	5.0	20.0	15.0	35.0	20
J-I	2.1	2.1	8.3	18.8	4.2	8.3	2.1	14.8	12.5	27.1	48
BASE-J	21.1	5.3	10.5	5.3	15.8	0	5.3	28.3	0	10.5	19
average	8.7	8.3	1.5	10.0	8.3	5.0	4.4	18.2	9.1	26.2	16

TABLE 5.8 Percentages of belemnites collected between specific flint bands at Keswick with epifauna falling into groups 1-10. (Abbreviations as in Table 5.6.)

At all levels of the quarry (excluding the chalk between flints D and H) most belemnites were found to fall in category A (40.0-60.9\%) (Table 5.9), with relatively equal percentages in $B(17.4-42.1)$ and C (10.5-35.0). The complete population gave the following percentages: category A 51.3, category B 22.5, category C 26.2.

FB	A	B	C	N
B-50CI-C	60.9	17.4	21.7	23
$D-C$	44.7	21.1	34.2	38
$E-D$	83.3	16.1	0	6
$H-E$	50.0	16.7	33.3	8
$I-H$	40.0	25.0	35.0	20
$J-I$	54.2	18.7	27.1	48
BSSE-J	41.4	42.1	10.5	19
AVERAEE	51.3	22.5	26.2	160

IABLE 5.9 Percentages of belemnites collected between individual flint bands at Keswick with epifauna in categories A, B, or C (section 5.3.1.2). (Abbreviations as in Table 5.6.)
5.3.3.4 Belemnite Orientations (Figures 5.14-5.16)

As at Weybourne, the 213 measured belemnites from this quarry showed no evidence of preferential orientation. The complete plot (Figure 5.16) has relatively uniform distribution. This is a good representation of the collecting which was about equally split between the north and south faces and the long east face of the quarry.

5.3.3.5 Plunge Angles (Figures 5.17-5.18)

A similar pattern was observed to that seen at Weybourne. Only 22 (10.3x) of guards had plunges in excess of 45 degrees, the population average being only 19.9 degrees (Table 5.10). Of the 213 guards measured, 122 (57.3\%) were orientated point end of guard downwards, 77 (36.2\%) were point end of guard upwards, the other 14 (6.5\%) were horizontal.

FIGURE 5.14 Orientations of belemnites measured between flint band H and the top of the section at Keswick. Ornamentation: striped = point end of guard upwards, blank = point end of guard downwards, solid $=$ horizontal guard.

FIGURE 5.15 Orientations of belemnites measured between the base of the section and flint band H at Keswick. Ornamentation: striped $=$ point end of guard upwards, blank = point end of guard downwards, solid = horizontal guard.

FIGURE 5.16 Orientations of all 213 measured belemnite guards coljected from Keswick. Ornamentation: striped = point end of guard upwards, blank $=$ point end of guard downwards, solid $=$ horizontal guard.

FIGURE 5.17 Plunge angles of belemnites measured between flint band I and the top of the section at Keswick. Ornamentation: vertical striping $=$ point end of guard downwards, blank = point end of guard upwards, horizontal striping $=$ horizontal guard.

FIGURE 5.18 Plunge angles of belemnites measured between the base of the section and flint band I and of all 213 measured guards from keswick. Ornamentation: vertical striping $=$ point end of guard downwards, blank $=$ point end of guard upwards, horizontal striping $=$ horizontal guard.

B-SOCA-TOP	4	23.8
B-50CM-C	23	16.3
$D-C$	42	15.9
$E-O$	9	21.9
$H-E$	9	21.1
$I-H$	30	23.0
J-I	62	20.9
BASE-S	34	21.4
AYERAGE		
A13		19.9

TABLE 5. 10 Average plunge angles of belemnites measured from the section at Keswick. (Abbreviations as in Table 5.6.)

5.3.4 EATON TUNNELS

Because only nine belemnites were collected from Eaton no worthwhile boring or epifaunal distribution data were obtained, and only the orientation information, from thirty seven measured guards, was considered.

5.3.4.1 Belemnite Orientations (Figure 5.19)

The population of 37 belemnites, mostly from the small faces above the tunnel mouths, showed no preferred orientations.

5.3.4.2 Plunge Angles (Figure 5.20)

Only two (5.4\%) of the measured specimens had plunge angles in excess of 45 degrees, the average value being 17.4 degrees (Tabie 5.11). Proportions with particular orientations were point downwards 17

FIGURE 5.19 Orientations of belemnites measured at Eaton Tunnels. Ornamentation: striped $=$ point end of guard upwards, blank = point end of guard downwards, solid= horizontal guard.

?

FIGURE 5.20 Plunge angles of belemnites measured at Eaton Tunnels. Ornamentation: vertical striping $=$ point end of guard downwards, blank $=$ point end of guard upwards, horizontal striping $=$ horizontal guard.

```
(46.0%), point upwards 16 (43.2%), horizontal 4
(10.8%).
```

FB	NUMEER MEASURED	AVERAGE PLUMGE (DEGREES)
$1-2$	11	21.1
$2-3$	10	13.8
$3-5$	3	16.7
$5-9-40$ ca	13	17.1
AYERGGE	37	17.4

TABLE 5.11 Average plunge angles of belemnites measured from the section at Eaton Tunnels. (See Figure 5.1 for flint band notation.)
5.3.5 CAISTOR ST. EDMUND QUARRY
5.3.5.1 Borings
5.3.5.1.1 Records per Quadrant (Figures 5.21 and 5.22)

The distribution of borings in guards from Caistor was found to be largely equivalent to that observed in the Weybourne Chalk, i.e. more borings in the NE and NW quadrants than the SE and SW. The complete plot of all 451 belemnites collected (Figure 5.22) gave the following percentages with at least a single boring: NE 81, SE 71, SW 71 NW 80, average 76\%. The overall percentage distributions (Figure 5.22) were:

```
NE (N. 51.0, F. 25.0, 1. 5.0, 0. 19.0)
SE (N. 39.0, F. 23.0, 1. 9.0, 0. 29.0)
SW (N. 41.0, F. 20.0, 1. 10.0, 0. 29.0)
NW (N. 52.0, F. 23.0, 1. 5.0, 0. 20.0).
```


FIGURE 5.21 Percentages of belemnites collected between flint band 3 and the top of the section at Caistor St. Edmund with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) borings in their $N E, S E, S W$, and $N W$ quadrants, respectively. Numbers on left side are percentages, letters at base of figures indicate specific quadrants.

FIGURE 5.22 Percentages of belemnites collected between the base of the section and flint band 3 and of the complete population of 451 belemnites from Caistor $s t$. Edmund with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) borings in their $N E, S E, S W$, and $N W$ quadrants, respectively. Numbers on left side are percentages, letters at base of figures indicate specific quadrants.

Without exception, the highest proportion of belemnites (40.0-85.7\%) collected from all levels of the quarry had group 1 characteristics (Table 5.12). The only other groups with considerable contents were 5 (0.0-30.0\%), and $10(0.0-26.9 \%)$. Of the whole population, 272 (60.3\%) had group 1 distribution characteristics, 49 (10.9\%) group 5, and 47 (10.1\%) group 10.

PERCENTAGE OF BELEMNITES IN EACH GROUP

FB	1	2	3	4	5	6	1	8	9	10	N
8-TOP	70.0	3.3	0	8.1	3.3	3.3	0	3.3	3.3	0.1	30
8-11-8	54.6	10.9	5.4	3.6	12.7	1.8	0	3.8	0	1.3	55
8-1n-8-2.15a	65.6	8.3	3.1	3.1	18.8	0	0	0	0	3.1	32
8-2.15-7	76.7	3.3	3.3	3.3	6.7	0	0	3.3	0	3.3	30
8-7	57.1	0	4.8	-	19.0	0	0	0	0	19.0	21
5-6	42.9	21.4	14.3	1.1	0	0	0		0	14.9	14
4-5	85.1	0	0	0	14.3	0	0	0	0	0	1
3-4	80.2	1.1	2.2	4.3	11.8	1.1	1.1	2.2	4.3	11.8	93
3-1.27-3	81.3	1.6	3.2	4.8	11.3	3.2	0	1.6	3.2	9.1	62
2A-3-1.2m	59.2	2.0	2.0	8.1	8.2	2.0	4.1	4.1	2.0	10.2	19
2-2A	68.2	4.5	4.5	0	9.1	0	0	0	0	13.7	22
1-2	42.3	3.8	0	15.4	0	0	0	1.7	3.9	26.9	26
BASE-1	40.0	0	0	10.0	30.0	10.0	0	0	0	10.0	10
average	60.3	3.3	3.3	5.1	10.9	1.6	0.1	2.4	2.0	10.4	451

TABLE 5.12 Percentages of belemnites collected between specific flint bands at Caistor St. Edmund with boring traces falling into groups 1-10. AVERAGE is for all 451 belemnites. Flint bands as in Figure 1.15.

The majority of belemnites (60.0-86.7x) from all levels of the quarry were assigned to category A (Table 5.13), with fairly equal percentages in B (6.7-30.0) and C (0.0-26.9). Of the complete population, 344

```
(76.3%), 60 (13.3%), and 47 (10.1%) belemnites
respectively, were found to fit into categories A, B,
and C.
```


percentage of belemittes in each category

FB	1	B	C	N
8-TOP	86.7	8.7	8.1	30
8-17-8	16.4	16.4	1.2	55
8-14-8-2.15	18.1	18.8	3.1	32
8-2.15n-1	88.7	10.0	3.3	30
6-7	81.9	19.0	19.0	21
$5-6$	78.6	1.1	14.3	14
4-5	85.7	14.3	0	1
3-4	14.2	14.0	11.8	93
3-1.2n-3	17.4	12.9	9.1	62
2n-3-1.2n	17.8	12.2	10.2	49
2-2A	17.3	9.1	13.8	22
1-2	65.4	1.1	28.9	28
BASE-1	80.0	30.0	10.0	10
AYERAGE	76.3	13.3	10.4	451

TABLE 5.13 Percentages of belemnites collected between specific flint bands at Caistor St. Edmund with boring traces in categories A, B, and C. Flint bands as in Figure 1.15.
5.3.5.2 Epifauna
5.3.5.2.1 Records per Quadrant (Figures 5.23 and 5.24)

The distribution of the epifaunal remains was very like that discovered at other localities. Again the percentage of quadrants with epifauna was much lower than those with borings. The average percentages with at least one epifaunal specimen in a quadrant for the complete population were NE 22.5, SE 19, SW 17, NW 26. The total plot of all 451 belemnites (Figure 5.24) gave the following overall percentage distributions:

[^3]

FIGURE 5.24 Percentages of belemnites collected between the base of the section and flint band 3 and of the complete population of 451 belemnites from Caistor St. Edmund with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) epifaunal remains in their $N E, S E, S W$, and $N W$ quadrants, respectively. Numbers on left side are percentages, letters at base of figures indicate specific quadrants.

```
NE (N. O.2, F. 10.0, 1. 18.0, 0. 71.8)
SE (N. 0.4, F. 8.0, 1. 11.0, 0. 80.6)
SW (N. 0.2, F. 6.0, 1. 11.0, 0. 82.8)
NW (N. 0.2, F. 9.0, 1. 17.0, 0. 73.8).
```


5.3.5.2.2 Overall Distribution Patterns

Of the belemnites, 192 (42.6\%) had no epifauna and were assigned to group 10 (Table 5.14), with 88 (19.5\%) in group 8, and 54 (12.0\%) in group 9. The subgroups (except that between flints 4 and 5 of which 21.5\% occurred in group 1) showed similar distributions with the largest proportions of belemnites recorded in groups $10(29.0-78.6 \%), 8(10.0-32.7 \%)$, and 9 (6.3-20.0\%) .

PERCENTAGE OF BELEMUITES IN EACH GROUP

F8	1	2	3	4	5	6	1	8	9	10	N
8-T0p	0	0	0	3.3	10.0	0	3.3	23.3	0.1	53.3	30
8-1n-8	1.8	1.8	3.6	1.8	5.5	0	1.8	14.8	12.7	56.4	55
8-1a-8-2.15a	3.1	0	3.1	3.1	3.1	0	3.1	28.1	8.3	50.0	32
8-2.15n-7	3.3	0	8.1	10.0	3.3	0	0	28.7	10.0	40.0	30
6-7	4.8	4.8	0	4.8	4.8	0	0	19.0	14.3	47.6	21
5-8	-	0	0	0	0	0	0	1.1	14.3	18.6	14
4-5	0	0	0	14.3	0	0	0	42.8	28.8	14.3	1
3-4	21.5	3.2	4.3	1.5	11.8	0	1.1	11.8	9.1	29.0	93
3-1.2n-3	8.1	1.6	4.8	4.8	3.2	4.8	1.8	24.2	12.9	33.9	62
2n-3-1.2a	2.0	0	.	2.0	2.0	0	0	32.1	14.3	47.0	49
2-2A	4.5	0	0	4.5	4.5	4.5	0	18.2	13.1	50.0	22
1-2	3.9	0	11.5	11.5	15.4	3.9	0	3.8	15.4	34.6	28
BASE-1	,	20.0	0	10.0	0	0	0	10.0	20.0	40.0	10
average	1.1	1.8	3.3	5.3	8.2	1.1	1.1	19.5	12.0	42.6	45

IABLE 5.14 Percentages of belemnites collected between specific flint bands at Caistor St. Edmund with epifauna falling into groups 1-10. Flint bands as in Figure 1.15.

The percentages of belemnites in the three general distribution categories varied throughout the section
(Table 5.15) and ranged between 13.3 and 50.0 in $A, 7.1$ and 42.9 in B, and 14.2 and 78.6 in C. The overall average values were A 31.7\%, B 25.7\%, C 42.6\%.

PERCENTAGE Of belemiltes in each category

$F 8$	1	8	c	N
8-T0p	13.3	33.3	53.3	30
8-1п-8	23.8	20.0	56.4	55
8-2.15n-8-14	18.8	31.2	50.0	32
8-2.151-7	30.0	30.0	40.0	30
8-1	28.8	23.8	47.8	21
5-8	14.3	1.1	78.6	14
4-5	42.9	12.9	14.2	1
3-4	47.3	23.1	29.0	93
3-1.2n-3	38.1	27.4	33.9	62
2n-3-1.2n	18.4	34.7	46.9	19
2-2A	21.3	22.7	50.0	22
1-2	46.2	19.2	34.6	26
BASE-1	50.0	10.0	40.0	10
AVERAGE	31.1	25.1	42.8	451

TABLE 5.15 Percentages of belemnites collected between specific flint bands at Caistor St. Edmund with epifauna in categories A, B, and C. Flint bands as in Figure 1.15.

5.3.5.3 Belemnite Orientations (Figures 5.25-5.28)

The subgroups from this quarry all showed polymodal orientations, as did the total plot (Figure 5.28) of all 465 measured belemnites, which included fourteen uncollected specimens.

5.3.5.4 Plunge Angles (Figures 5.29-5.32)

In general, the plunge angles showed a similar trend to those from other localities. However, the average angle was somewhat higher, at 24.9 degrees

FIGURE 5.25 Orientations of belemnites measured between flint band 8 and the top of the section at caistor St. Edmund. Ornamentation: striped = point end of guard upwards, blank = point end of guard downwards, solid = horizontal guard.

FIGURE 5.26 Orientations of belemnites measured between fiint bands 3 and 8 at Caistor St. Edmund. Ornamentation: striped $=$ point end of guard upwards, blank $=$ point end of guard downwards, solid = horizontal guard.

FIGURE 5.27 Orientations of belemnites measured between the base of the section and flint band 3 at Caistor St. Edmund. Ornamentation: striped = point end of guard upwards, blank = point end of guard downwards, solid = horizontal guard.

FIGURE 5.28 Orientations of all 465 measured belemnites from Caistor St. Edmund. Ornamentation: striped = point end of guard upwards, blank = point end of guard downwards, solid $=$ horizontal guard.

FIGURE 5.29 Plunge angles of belemnites measured between flint band 6 and the top of the section at Caistor St. Edmund. Ornamentation: vertical striping = point end of guard downwards, blank $=$ point end of guard upwards, horizontal striping $=$ horizontal guard.

[^4]

[^5]

[^6](Table 5.16) and 75 (16.1\%) of belemnites had plunges in excess of 45 degrees, a figure several percentage points above that of the other study groups. The proportions of guards with particular orientations were point downwards 258 (55.5\%), point upwards 187 (40.2\%), horizontal 20 (4.3\%).

FB	nuxber measured	average plunge (degrees)
8-TOP	30	25.0
8-1n-8	55	22.1
8-1п-8-2.15п	33	17.4
8-2.15n-7	31	24.0
8-7	21	31.9
5-6	15	22.8
4-5	9	16.9
3-4	95	25.9
3-1.2n-3	84	25.8
2n-3-1.2п	51	22.5
2-2A	23	33.8
1-2	28	22.7
8MSE-1	10	41.5
average	465	24.9

IABLE 5,16 Average plunge angles of belemnites measured from the quarry at Caistor St. Edmund. Flint bands as in Figure 1.15.
5.3.6 BORINGS SUMMARY

The per quadrant and overall distribution patterns of borings in belemnite guards from Weybourne Hope, Keswick, and Caistor St. Edmund were found to be similar. In all three cases, the $N E$ and $N W$ quadrants had been attacked on more occasions than the SE or SW. Average population percentages of specimens exhibiting boring damage were:

Weybourne (Figure 5.3) NE 74.0, SE 47.0, SW 43.0, NW 68.0, average 58.0\%,

Keswick (Figure 5.12) NE 47.0, SE 35.0, SW 40.0, NW 45.5, average 42.1\%, and

Caistor (Figure 5.22) NE 81.0, SE 71.0, SW 71.0, NW 80.0, average 76.0\%.

A higher proportion of belemnites (36.2\%) at Keswick were devoid of borings compared with 15.4x at Weybourne, and 10.4\% at Caistor. The percentage of belemnites with overall boring distribution falling into the general categories A (borings in SE or SW quadrants), B (borings in NE or NW quadrants only), or C (without borings) showed similar variation. The Weybourne population gave 56.2, 28.4, and 15.4\% respectively, Keswick 46.3, 17.5, and $36.2 x$ respectively, and Caistor 76.3, 13.3, and 10.4X respectively.

The average number of borings per specimen calculated by giving values of 10 to each quadrant with N recorded elements, 5 to each with F, and 1 to those with a single record were: Weybourne 16.0, Keswick 10.8, Caistor 23.3, with an overall average of 19.0.

The section at Keswick correlates with the lower part of that at Weybourne. Hence, the considerable difference in the average number of borings per belemnite between them (10.8 at Keswick, 16.0 at

Weybourne) is surprising. Several factors may have caused belemnites from Keswick to have been bored less often than those from Weybourne, including differences in belemnite abundances, sea-floor conditions, and water depths between the two localities.

Belemnites were collected at very similar frequencies from'both sections, as were all other major fossil groups (brachiopods, bivalves, echinoids, and bryozoans). That water depths and sea-floor conditions were much the same is indicated by the correlation of the oyster-rich hardgrounds that crop out at Harford Bridges (stratigraphically just above; and only a few hundred metres away from Keswick) with those that occur in the Weybourne section at a level only slightly above the Keswick chalk.

Hence, it appears that no significant differences were present between the conditions at either locality.

A considerable proportion of the belemnites collected from Keswick had suffered from diagenetic silicification which had destroyed any original evidence of shallow boring activity. Of the 160 collected guards, more than 35 had epifaunal remains but were devoid of visible borings. If they are removed from the population the average number of borings per specimen of the remainder rises to 14.0 , much closer to
the Weybourne figure of 17.1 borings per specimen calculated using the same condition.

This suggests that the lower population average value at Keswick (10.8 borings per guard) compared with that at Weybourne (16.0 borings per guard) is largely due to the relatively poorer preservation state of borings in the belemnites from Keswick compared to those from Weybourne. Some of the Weybourne forms have suffered considerable surface erosion by salt and water, whilst this has, in a few cases, probably destroyed a few of the shallowest borings it appears to have affected guards far less than the silicification of Keswick forms.

The belemnites from Caistor gave a much higher average value of 23.3 borings per specimen, with only 10 (2.2\%) having epifauna but no borings. Although partly due to the better preservation of borings in Caistor material compared with that from Weybourne and Keswick, the differences in the average number of borings per specimen are enough to suggest that belemnites in the lower Beeston Chalk (from Caistor) were attacked more often than those in the underlying Weybourne Chalk. Belemnites were, on average, twice as common at Caistor than at Weybourne and Keswick and it appears that the increase in the number of guards available for boring may have caused a proportionally greater increase in the number of organisms responsible
for the borings. Another reason may have been that the sedimentation rate at Caistor was lower than that at Weybourne or Keswick, with more belemnites exposed for longer periods.

5.3.7 EPIFAUNAL REMAINS SUMMARY

The records of epifauna per quadrant showed a distribution consistent with that for the borings, but at lower values. The percentages for belemnites with at least one coloniser were:

Weybourne (Figure 5.5) NE 35.0, SE 19.0, SW 24.0, NW 23.0, overall average 26.0\%, Keswick (Figure 5.3) NE 37.0, SE 39.0, SW 33.0, NW 45.0 , overall average 38.0%, and Caistor (Figure 5.24) NE 28.0, SE 19.0, SW 17.0, NW 26.0, overall average 22.5\%.

The overall distribution patterns indicated that a higher percentage of belemnites had epifaunal remains at Keswick (73.8) than at Weybourne (61.4) or Caistor (57.4), as did the population averages of epifaunal remains per guard (Keswick 4.2, Weybourne 2.3, Caistor 2.3).

The epifaunal remains gave the opposite distribution to that furnished by the boring data, with Keswick belemnites supporting more epifauna (average 4.2 specimens per guard) than Weybourne and Caistor
(both averaging 2.3 per guard). As conditions at Weybourne and Keswick were similar (see above) it might be expected that an equivalent number of epifaunal colonisers would be be found on belemnites from both. The discrepancy can be partly explained, at least, by the relatively greater erosion suffered by the coastally exposed Weybourne guards with consequent destruction of epifauna, compared with the silicified Keswick guards, with shallow borings destroyed but epifauna still remaining on their surfaces.

The average value of 2.3 epifaunal remains per guard from Caistor cannot be explained by the non-preservation of original epifauna because very little erosion, necessary to abrade away remains, was encountered on any fossil material from the faces. It appears that there were fewer colonisers in the lower Beeston Chalk compared to the Weybourne Chalk, possibly due, in part, to a higher number of guards, and other taxa, being available for colonisation, but may be also due to the increased activities of boring organisms at Caistor which may have deterred or prevented epifauna from attaching to the guards.

5.3.8 ORIENTATIONS AND PLUNGE ANGLES

The orientations of the four studied populations (Weybourne, Keswick, Eaton, and Caistor) all showed random (polymodal) distributions (Figures 5.8, 5.16,
5.19, and 5.28), whilst the plunge angles were low, averaging 16.2 degrees from specimens from Weybourne, 19.9 degrees from Keswick specimens, 17.4 degrees from Eaton specimens, and 24.9 degrees from Caistor specimens respectively.

The ecological significance of all the belemnite population data will be discussed in section 5.5.
5.3.9 POPULATION SUMMARY

The average values in this summary are those calculated from all the belemnites recorded from every locality in the Belemnitella mucronata Zone.

5.3.9.1 BORINGS

5.3.9.1.1 Records per Quadrant

The 859 belemnites collected from which boring information was obtained gave the following percentage distributions per quadrant:

NE (N. 40.8, F. 25.4, 1. 6.5, 0. 27.3)
SE (N. 29.9, F. 19.5, 1. 8.5, 0. 41.8)
SW (N. 30.1, F. 18.6.1. 9.2, 0. 42.1)
NW (N. 40.7, F. 24.5, 1. 5.5, 0. 29.3).

5.3.9.1.2 Overall Distribution Patterns

The percentages of specimens within each of the groups (1-10) were: 1. 45.5, 2. 3.0, 3. 6.4, 4. 4.5, 5. 12.9, 6. 1.9 7. 0.9, 8. 5.2, 9. 3.3, 10. 16.5, and in
the general distribution categories (A, B, C): A. 65.5, B. $18.0, \mathrm{C} .16 .5$.
5.3.9.2 EPIFAUNA

5.3.9.2.1 Records per Quadrant

The following percentage distributions, per quadrant, were found from the collected belemnites with epifaunal information:

NE (N.	0.3,	F.	12.6,	1.	19.1,	0.	$68.0)$
SE (N.	0.4,	F.	9.0,	1.	13.8,	0.	$76.8)$
SW (N.	0.3,	F.	7.5,	1.	15.1,	0.	$77.1)$
NW (N.	0.3,	F.	10.6,	1.	18.5,	$0.70 .6)$.	

5.3.9.2.2 Overall Distribution Patterns

The percentages of specimens within each of the groups (1-10) were: 1. 6.8, 2. 3.2, 3. 4.2, 4. 6.6, 5. $5.9,6.2 .5,7.1 .9,8.19 .3,9.11 .4,10.38 .1$, and in the general distribution categories (A, B, C): A. 36.7, B. 25.2, C. 38.1.

5.3.9.3 PLUNGE ANGLES

The average plunge angle calculated from the 995 belemnites with data was 21.3 degrees. Of these, 549 (55.2\%) were point downwards, 393 (39.5x) were point upwards, and 53 (5.3\%) were horizontal. Twelve of 65 (6.5\%) specimens with measured plunge in excess of 60 degrees were uncollected and so without epifaunal or
boring data. Of the remaining 53, 5 (9.5\%) had no remains, 4 (7.5\%) had borings and/or epifauna on the upper parts of the guards as orientated in the chalk face, whilst the other 44 (83.0\%) had epifauna and/or borings on all portions of the guard.

The ecological significance of all the belemnite population data will be discussed in section 5.5.
5.3.10 BELEMNITE BORING IDENTIFICATIONS

Borings were dominated by the stellate shaped Dendrina belemniticola and the ramified Calcideletrix sp. Both were often present together in considerable numbers on collected guards. Of the 185 bored belemnites collected from Weybourne, 151 (81.6\%) contained both Calcideletrix sp. and Dendrina belemniticola, as did 56 (43.8x) and 337 (83.0x) from Keswick and Caistor, respectively.

Other, less common borings included the simple, unbranched, tunnel-1ike ?Nygmites sp. found in 73 (39.5\%), 44 (34.4\%), and 141 (34.7\%) guards from Weybourne, Keswick, and Caistor, and branched forms with numerous circular apertures in each branch, Talpina sp., were identified in 15 (8.1\%), 21 (16.4\%), and 130 (32.0\%) specimens. Only two other types of borings were found in more than a handful of belemnites, Entobia sp. made by sponges (14 (7.6\%) of
the Weybourne, 10 (7.8\%) of the Keswick, and 41 (10.1\%) of the Caistor remains) and the slit-like holes produced by barnacles (Rogerella sp.) observed in 8 (4.3\%) of the Weybourne, 21 (16.4\%) of the Keswick, and 19 (4.7\%) of the Caistor guards, respectively. Seven examples (2 from Weybourne, 5 from Caistor) of the characteristic brachiopod pedicle attachment scar (Podichnus sp.) were also noted.

Although not recognised during the identification of borings, small scratches produced by grazing regular echinoids are often very plentiful on guards, particularly around the edges of borings such as ?Nygmites and Talpina (Paul Whittlesea personal communication, April 1989).

In almost all belemnites the initial boring activity seems to have been of a shallow nature with organisms forming small Calcideletrix and Dendrina. Both were usually discrete and apparently formed contemporaneously as it was unusual to find one without the other. Of the 655 belemnites from the study populations with Calcideletrix or Dendrina recorded, 544 (83.1\%) contained both. Guards with only Calcideletrix and Dendrina, together, accounted for 41.1\% (76) of bored forms at Weybourne, 19.5\% (25) at Keswick, and 26.8\% (109) at Caistor, respectively (Table 5.17).

BORIMG GROUP	H	kS	cs	*
CA	1.6	4.7	1.6	16
08	5.4	1.8	5.4	42
CA+DB	41.1	19.5	28.8	210
	23.8	13.3	18.2	135
Catobtia	2.1	3.9	18.3	16
CA+DB43N+7A	3.2	0.8	8.1	40
CA+DBthisc.	10.8	0.3	13.6	83
Cathisc.	2.2	8.6	2.5	25
Dbthisc.	3.3	0.2	3.4	28
MISC.	5.9	28.9	3.9	84
TOTAL	100.0	100.0	100.0	719

TABLE 5. 17 Percentages of bored belemnites with specific borings in their guards from the sections at Weybourne Hope (WH), Keswick (KS), and Caistor St. Edmund (CS). CA = Calcideletrix sp., DB = Dendrina belemniticola, ? $N=$?Nymites sp., $T A=$ Ialpina sp., MISC. $=$ Miscellaneous boring remains.

Later, deeper and larger borings of ?Nygmites, Rogerella, and Talpina mostly occurred in guards with early Calcideletrix and Dendrina, often cutting through the earlier forms. Combinations of Calcideletrix + Dendrina + ?Nygmites and Calcideletrix + Dendrina + Talpina were relatively common from Weybourne and Caistor, but less so from Keswick, recorded on 206 (28.7x) and $133(18.5 \%)$ of all collècted belemnites, respectively. The last, most destructive borings, Entobia, formed large connected chambers and holes, and on a few occasions destroyed up to half of a guard.

The relative position of barnacle borings, Rogerella, in the sequence is unclear.

The higher proportion of bored belemnites at Keswick (28.1\% [36]) with deeper borings only (Entobia, ?Nygmites, Rogerella, Ialpina) compared with Weybourne
(5.9x [11]) and Caistor (3.9\% [16]) reflects the relative preservation state of material from each locality. The shallow borings have been preferentially destroyed and obscured by silicification at Keswick compared with the larger, deeper forms. Weybourne specimens often had surficial erosion damage which did not affect the deeper borings, whilst the beautifully preserved, virtually unworn guards from Caistor had the most complete boring records.

The few belemnites from other localities showed similar boring distributions, with Calcideletrix and Dendrina, (recorded on 25 and 26 guards each), most common, and rarer Entobia, ?Nygmites, Rogerella, and Talpina.

5.3.10.1 SUMMARY

In summary, most belemnites that were bored were initially attacked by shallow boring organisms that produced Calcideletrix sp. and Dendrina belemniticola, and later, if still exposed, by more destructive, deeper borers that left traces including Entobia sp., ?Nygmites sp., and Talpina sp.

Far fewer belemnites (133 from Weybourne, 141 from Keswick, 254 from Caistor) had epifaunal remains than had borings, but those which did had a varied suite of forms. Two brachiopods were identified, of which the craniacean Ancistocrania parisiens, was most widespread, found on 37 (7.0\%) of the epifauna bearing population, whilst ?Diomyodon sp. was noted on five belemnites from Caistor. Bivalves included common Atreta nilssoni, which occurred on 43 (32.3x) specimens from Weybourne, 57 (40.4\%) specimens from Keswick, and 77 (30.3\%) specimens from Caistor, and juvenile Pycnodonte vesiculare and Gyropleura inequirostrata, which were recognised on 23 and 14 of all guards, respectively.

Serpulids were often present, although only
"Serpula" accumulata was regularly encountered, appearing on 17 (12.8\%) specimens from Weybourne, 21 (14.9\%) specimens from Keswick, and 12 (4.7\%) specimens from Caistor. Rarer forms included Sclerostyla spp. (all three localities), Cementula spiraserpula, Neomicrorbis crenatostriatus, N. spp. (all Keswick and Caistor), Vepreculina tuberculifera (Weybourne and Caistor), V. spp. (Weybourne and Keswick), Yermiliopsis fluctuata (Caistor), and two records, each, of Filogranula cincta (Caistor) and Sclerostyla macropus (Keswick). The remainder of the identified serpulid
fauna comprised single records of Neomicrorbis crenatostriatus (Weybourne), Glomerula gordialis (very common in bulk samples (chapter two) but, unusually found attached in this case), Pentaditrupa subtorquata (both Keswick), and Cementula sp. (Caistor).

Five guards with the sponge Porosphaera sessilis on them were collected, in contrast to the common occurrences of the basal attachments of the corals Coelosmilia spp. and Moltkia spp. found on 33 (24.8\%) and 11 (8.3%) epifauna bearing belemnites from Weybourne, 34 (24.18) and 26 (18.4\%) from Keswick, and 35 (13.8\%) and 56 (22.0\%) from Caistor. Remains of the hemi-spherical chambered foraminiferan Bullopora sp. were very abundant, particularly on guards collected from the upper levels of Caistor. Of the 254 epifauna-bearing belemnites from Caistor, 106 (41.7x) had Bullopora, as did 27 (20.3x) from Weybourne and 33 (23.4\%) from Keswick.

A large suite of epifaunal anascans was identified, although more than half only from single individuals. The most common were various "Membranipora" spp., found on 38 guards, and several Aechmella anglica and Aplousina fulgora. The only other anascans encountered on more than two specimens were Dionella trifaria (Weybourne and Keswick), Herpetopora laxata, H. spp., and various Onychocella spp. (from all three localities). Dionella sp., Leptocheilopora magna,
> "Membranipora" palpebra var. nuntians (all from Keswick), Tricephalopora spp. (Keswick and Caistor), and Ubaghsia crassa (Caistor) occurred twice. Single examples of "Biflustra" sp., Pliophloea cf. subvitrea (both Weybourne), Andriopora major, Castanopora castanea, C. sp., Dionella trigonopora, Ellisina ringens, "Membranipora" exhaurensis, a member of the "M". tenebrosa group, "Membraniporella" monastica, Onychocella gibbosum, o. nysti (all Keswick), and Homalostega clathrata (Caistor) were identified.

The rectangulatan Disporella irregularis (all three localities) was observed on eight guards, as was a single D. sp. (Keswick), whilst tubuloporinans were represented by 15 and 24 records of Diastopora spp. and Stomatopora spp. (from all three localities), respectively, dual occurrences of Idmonea sp. (Weybourne and Caistor) and Stomatopora pedicellata (Weybourne and Keswick), and a single specimen referred to Proboscina sp. (Caistor).

The epifauna on the few belemnites collected from miscellaneous localities included several Atreta nilssoni, Pycnodonte vesiculare, "Serpula" accumulata, Porosphaera sessilis, Bullopora sp. Coelosmilia spp., Moltkia spp., Herpetopora spp., "Membranipora" spp., and Stomatopora spp.

Although a wide variety of epifaunal colonisers were identified on the belemnites collected from all the sections in the Belemnitella mucronata Zone, only a few forms were commonly encountered. They included the bivalve Atreta nilssoni, various serpulids, of which only "Serpula" accumulata was common, the basal attachments of the corals Coelosmilia sp. and Moltkia spp., and the foraminiferan Bullopora sp. A large suite of anascan bryozoans was present, of which "Membranipora" was the most abundant genus, found on 46 occasions. Of the four tubuloporinan genera recognised, only Diastopora and Stomatopora were encountered on more than two belemnites.

In contrast to the borings, there seems to have been no regular sequence in the settlement and growth of epifauna. Overgrowth of early encrusters by later forms was very rarely observed, and on most guards the overall density of coverage was low. This was probably due, in many cases, to the host substrates remaining exposed for insufficient time to enable large epifaunal colonies to grow on them, whilst the low density of coverage meant that there was usually enough space for all epizoans without the need for overgrowth of pre-existing or contemporaneous forms.

Apart from belemnites, the most common macrofossils collected were various brachiopods, bivalves, and echinoids. Many specimens had their relative orientations noted prior to removal from the chalk face in order to see whether any particular orientations, with possible ecological significance, were present for particular species etc. Borings and epifauna were identified, but distribution patterns were not produced. It was impossible to produce information on relative abundance per quadrant as done for the belemnites.

The fossils were split into thirteen divisions, some containing single, common species, others with several taxa or groups. Thus, the abundant brachiopod Carneithyris carnea and the oyster Pycnodonte vesiculare were each considered separately, whilst less numerous brachiopods including Kingena pentangulata, Magas chitoniformis, and Neolithyrina obesa were all assigned to the "miscellaneous brachiopods" division. The data from the fossils obtained from the seven most productive localities: Weybourne Hope, Keswick, Eaton Tunnels, Harford Bridges, Caistor St. Edmund, Frettenham (JSS. Aggregates Ltd.), and Frettenham (W.M. Howes) will be described separately, those from all other loclities ("miscellaneous localities") together.

The ecological significance of all the results will be discussed in section 5.5 .

5.4.1 WEYBOURNE HOPE

No orientation information was recorded for 275 of the 391. non-belemnite faunal elements found at Weybourne (Table 5.18): Of the remainder, 21 of 45 (46.7\%) brachiopods Cretirhynchia ?norvicensis (juv.) and C. spp. were preserved with the pedicle valve above, 18 (40.0\%) with the pedicle valve below, and 6 (13.3\%) lying on their sides, whilst of 48 recorded orientations for Echinocorys spp. and Micraster spp., 29 (60.4\%) specimens were the right way up, i.e. in assumed original life position, 6 (12.5\%) were upside down, and 13 (27.1\%) lay on their sides.

	PVT	PY8	Ois	RUU	O	No
Cretirhynchia ? ${ }_{\text {norvicensis(}}$ jur)	14	12	4			4
Cretirhynchie spp.	1	6	2			33
Niscollaneous brachiopods	3	2	1			6
Inoceranys spp.						9
Pycnodonte vesicylare			8	4	2	81
Other oystors						3
Miscollaneous bivalves						21
Echinocorys spp.			13	23	5	63
Miersister spp.				6	1	8
Miscellaneous achinoderes			1	1		29
Miscollaneous fossils						1
Total	24	20	30	34	8	75

IABLE 5.18 Numbers of fossils with particular orientations from Weybourne. Abbreviations: PVT = pedicle valve above, $\mathrm{PVB}=$ pedicle valve below, OIS = on its side, RWU = right way up, USD = upside down, $N D=$ no orientation data.

Borings were rare in non-belemnites. The only forms recorded were Calcideletrix sp., Dendrina belemniticola (both five times), Entobia sp. eight times, ?Nygmites sp. twice, and Dictyoporus nodosus once. They occurred in a single Cretirhynchia ?norvicensis (juv), eight Pycnodonte vesiculare, three tests of Echinocorys sp., and a single serpulid (Proliserpula ampullacea).

Epifauna was more common, particularly on echinoids. Thirty two specimens of collected Echinocorys spp. and seven of Micraster spp. bore it. Epifaunal forms included the brachiopod Ancistocrania parisiens and the bivalves Atreta nilssoni, Gyropleura inequirostrata, and Pycnodonte vesiculare, each noted twice. Of the serpulids, only "Serpula" accumulata (seven records) was identified on more than two tests. Others included Cementula spiraserpula, Sclerostyla sp., Vepreculina fimbriata, \underline{V}. tuberculifera, and \underline{V}. sp. The epifaunal sponge Porosphaera sessilis was recognised on six occasions, P. sp. once, the hemispherical Bullopora sp. four times, and attachment remains of the corals Coelosmilia sp. and Moltkia spp. on six and five tests, respectively.

The bryozoan epifauna on echinoids was dominated by anascans, of which Aechmella anglica, Aplousina fulgora, Dionella trifaria, Leptocheilopora magna, "Membranipora" palpebra var. nuntians, " M ". spp., and "Membraniporella" monastica were found more than once,
along with single examples of Dionella sp., Ellisina ringens, Herpetopora sp., a member of the "Membranipora" langei group, "M". withersi, Onychocella inelegans, and o. sp.

Other bryozoans included isolated occurrences of the articulatan Cryptostomella compacta, the cancellatans Crisina sp. and Sulcocava sp., six of the rectangulatan Disporella irregularis, eight and nine, respectively of the tubuloporinans Diastopora spp. and Stomatopora spp., two of Proboscina sp., and a solitary Stomatopora pedicellata.

The other macrofossils with epifauna collected comprised a single Cretirhynchia ?norvicensis (juv), four c. spp., thirteen Pycnodonte vesiculare, and a large specimen of the serpulid Proliserpula ampullacea. Their identified epifauna comprised five Atreta nilssoni, seven juvenile Pycnodonte vesiculare, five "Serpula" accumulata, a single mould of a hexactinellid sponge, and an isolated Coelosmilia sp. Bryozoans included single records of the anascans Aechmella anglica, Aplousina fulgora, a member of the "Membranipora" tenebrosa group, Onychocella inelegans, and Tricephalopora sp., the rectangulatan Disporella irregularis, and two "Membranipora" sp.
5.4.2 KESWICK

```
    Of the 80 measurements of orientations from
non-belemnite faunal elements from Keswick (Table 5.19)
72 were of Cretirhynchia ?norvicensis (juv) and C.
spp., of which 28 (38.9%) were pedicle valve above, 21
(29.2%) pedicle valve below, and 23 (31.9%) on their
sides.
```

	PVT	PY8	015	NU	So	10
Cretirhynchis ?norvicensis(jur)	23	17	19			28
Cratirhynchie spp.	5	4	1			38
Niscellaneous brachiopods		1				12
Inoceraness 8 pp.						8
Pycnodonte vesiculare						8
Miscellaneous bivalres						8
Echinocerys 8pp.			1	5	1	19
Niscellaneous achinoderms						11
Miscellaneous fossils						8
total	28	22	24	5	1	42

TABLE 5.19 Numbers of fossils with particular orientations from Keswick. (Abbreviations as in Table 5.18.)

The only borings in non-belemnites from Keswick were two Entobia sp., a single 3Nygmites sp., two Rogerella sp., and one Talpina sp., in three echinotds, a solitary Cretirhynchia ?norvicensis (juv), and one Pycnodonte vesiculare.

Epifauna on eleven specimens of Echinocorys spp. included three Atreta nilssoni, five Pycnodonte vesiculare, two "Serpula" accumulata, one Sclerostyla sp., two Vepreculina sp., two Porosphaera sessilis, two

Bullopora sp., and one specimen each of Coelosmilia sp. and Moltkia sp. Anascans included four examples of "Membranipora" spp., and individual records of Aechmella anglica, Castanopora dibleyi, Herpetopora sp., and Leptocheilopora magna. Other bryozoans identified were single examples of the cancellatan Bicavea sp. and the dactylethratan clausa globulosa, two of the rectangulatan Disporella irregularis, together with five and two, respectively, of the tubuloporinans Diastopora spp. and Stomatopora spp.

The only other epifauna, isolated specimens of "Membranipora" sp. and Proboscina sp., occurred on a specimen of the serpulid Glomerula plexus.

5.4.3 EATON TUNNELS

Very few of the fossils found at Eaton had their orientations noted. Of the sixteen that did, twelve Cretirhynchia ?norvicensis (juv) and C. spp. had the following orientations: pedicle valve above 7 , pedicle valve below 3, on their sides 2. The only borings, in two tests of Echinocorys sp., were a single Entobia sp. and two Rogerella sp., whilst the four tests with epifaunal specimens had solitary remains of Ancistocrania parisiens, Pycnodonte vesiculare,

[^7] sessilis, Coelosmilia sp., Moltkia sp., Aplousina
fulgora, "Membranipora" sp., and Proboscina sp., and two of Stomatopora sp.

5.4.4 HARFORD BRIDGES

Of four miscellaneous brachiopods with orientation data, three were pedicle valve above, the other pedicle valve below. No non-belemnites were bored. Epifauna, on three Pycnodonte vesiculare, two other oysters (Hyotissa semiplana), and a test of Echinocorys sp., comprised two records of Atreta nilssoni, three of Pyenodonte vesiculare, one each of the serpulids Neomicrorbis crenatostriatus and Vepreculina tuberculifera, two Porosphaera sessilis, and one Moltkia sp. Several bryozoans including the anascans Dionella trifaria, Herpetopora sp., and Onychocella sp., and the tubuloporinans Diastopora sp., Idmonea sp., and Stomatopora sp. were also recognised, none on more than two specimens.
5.4.5 CAISTOR ST. EDMUND

Of the 276 fossils with noted orientations (Table 5.20), 82 were Carneithyris carnea, of which 48 (58.5\%) were pedicle valve above, 16 (19.5\%) pedicle valve below, and 18 (22.0\%) on their sides. Whilst for the 52 specimens of Cretirhynchia arcuata and C. spp., with information, the values were pedicle valve above. 21

```
(40.4%), pedicle valve below 29 (5.8%), on their sides
2(3:8%). The other numerically important group, the
122 specimens of Echinocorys spp. with data gave: 53
(43.4%) right way up, . }28\mathrm{ (23.0%) úpide down, 41
(33.6%) on their sides.
```

	PVT	PVB	015	RHO	uso	ND
Carneithyris carnes	48	16	18			83
Cretirhynchia arcuate	17	20	1			12
Cratirhynchin spp.	1	9	1			34
Niscellaneous brachiopods	10	2	3			38
Inoceranes 8 pp .			1			19
Pycnodonto vesiculare			2	1		51
Other oysters			1			21
Miscellancous bivalves						45
Echinocorys spp.			41	59	28	98
Miscellaneous echinoderes						11
Miscollaneous fossils						17
TOTAL	19	41	68	5	28	481

TABLE 5.20^{*} Numbers of fossils with particular orientations from Caistor. (Abbreviations as for Table 5.18.)

The 49 non-belemnites from Caistor with borings included eight Carneithyris carnea, a single Cretirhynchia sp., seven fragments of Inoceramus spp.,. and nineteen tests of Echinocorys spp. The borings themselves comprised four records of Calcideletrix sp., twenty one Entobia sp., three ?Nygmites sp., nine Rogerella sp., and one Talpina sp.

The most common epifaunal hosts, excepting belemnites, were tests of Echinocorys spp., 62 of which had been colonised. The suite of identified epifauna
included the brachiopods Ancistocrania parisiens and ?Diomyodon sp., both found on five tests, and the bivalves Atreta nilssoni (on thirteen), Gyropleura inequirostrata (on five), Pycnodonte vesiculare (on two), and Spondylus dutempleanus (on one). Thirteen different serpulids were recognised. Of them, Neomicrorbis sp., "Serpula" accumulata, Vepreculina fimbriata, \underline{v}. tuberculifera, \underline{v}. spp., and Vermiliopsis fluctuata were noted more than once, with single occurrences of Cementula spiraserpula, C. sp., Conorca trochiformis, Filogranula cincta, Glomerula gordialis, Neomicrorbis subrugosus, and Sclerostyla sp. Remaining non-bryozoan epifaunal elements included five records of Porosphaera sessilis, six of the hemispherical foraminiferan Bullopora sp., two of the coral Coelosmilia sp., and fourteen of Moltkia spp.

The only components of the large anascan fauna that occurred more than once were Aechmella anglica, Dionella trifaria, D. sp., "Membranipora" spp., Onychocella norfolcia, and 0 . spp. The other forms were Aechmella nitescens, Aplousina sp., Castanopora magnifica, Ellisina ringens, Herpetopora laxata, H. sp., Leptocheilopora magna, L. sp., "Membranipora" exhaurensis, " M ". furina, " M ". palpobra var. nuntians, "Membraniporella" monastica, Onychocella nysti, and Tricephalopora sp.

The cancellatans Bicavea sp., Crisina sp., and Homoeosolen sp. were rarely encountered, whilst the rectangulatan Disporella irregularis was identified seventeen times. Tubuloporinans were common, in particular Diastopora spp. (35 records), Proboscina spp. (thirteen), and Stomatopora spp. (eight). Rarer forms were Actinopora sp., Idmonea sp., and Stomatopora gracilis.

The non-bryozoan epifauna on other fossils was made up of six Atreta nilssoni, four Pycnodonte vesiculare, one each of Ancistocrania parisiens, ?Diomyodon sp., Gyropleura inequirostrata, Ostrea sp., Spondylus dutempleanus, "Serpula" accumulata, and Vermiliopsis fluctuata, three Moltkia sp., and four Bullopora sp. Six anascans were present, "Membranipora" sp. twice, the others (Aechmella anglica, Aplousina fulgora, Dionella sp., Homalostega sp., and Ubaghsia sp.) once. The rectangulatan Disporella irregularis, and the tubuloporinans Diastopora spp., Proboscina spp., and Stomatopora spp., recognised on a few occasions only, were the only other bryozoans found.

5.4.6 FRETTENHAM (JSS. Aggregates Ltd.)

Only twelve of the 42 fossils found at this old pit had their orientations measured and, hence, no worthwhile data were obtained. The only boring a single Calcideletrix sp. occurred in a valve of Carneithyris
carnea. Six fossils (two Ostrea sp., and single
Carneithyris carnea, Cretirhynchia arcuata, C. sp., and Inoceramus sp.) had epifauna on their surfaces. The only recognised forms of which were rare examples of Ancistocrania parisiens, Atreta nilssoni, Porosphaera sessilis, Bullopora sp., Coelosmilia sp., Moltkia sp., and Proboscina sp.

5.4.7 FRETTENHAM (W.M. Howes Ltd.)

As at the previous locality, very few fossils had their orientations recorded. Of the seven that did, six were Carneithyris carnea (3 pedicle valve above, 3 pedicle valve below). No borings were recorded in non-belemnite faunal elements, and only a single Pycnodonte vesiculare (PV) had epifauna consisting of juvenile PV, Ancistocrania parisiens, and Onychocella nysti.
5.4.8 MISCELLANEOUS LOCALITIES

Only fourteen of the forty nine fossils from miscellaneous localities had their orientations noted, with no worthwhile data resulting. Borings, in a single Carneithyris carnea and a fragment of Inoceramus sp., comprised one each of Calcideletrix sp. and ?Nygmites sp. Nine fossils supported epifauna, composed of two records of Atreta nilssoni, two Pycnodonte vesiculare, two "Serpula" accumulata, one Porosphaera sessilis, two

Bullopora sp., one Coelosmilia sp., and one Moltkia sp. Of the identified anascans, only "Membranipora" spp. (twice) was recorded more than once. The other forms were Aechmella anglica and Castanopora magnifica. Remaining bryozoans were the rectangulatan Disporella irregularis and the tubuloporinan Diastopora sp.
5.4.9 SUMMARY

Of the 1580 non-belemnite faunal elements recorded from all sections, 526 had their orientations noted (Table 5.21). Of these, 95 were the terebratulid Carneithyris carnea (Table 5.21), of which 55 (57.9\%) were pedicle valve above, 21 (22.1\%) pedicle valve below, and 19 (20.0\%) on their sides. The combined information from 175 rhynchonellids (Cretirhynchia arcuata, C. ?norvicensis (juv), and C. spp.) gave 79 (45.1\%) pedicie valve above, 59 (33.7\%) pedicle valve below, and 37 (21.2\%) on their sides. The other group with useful orientation data were echinoids (Echinocorys spp. and Micraster spp.), of which 93 (48.4\%) were right way up, 60 (31.3\%) upside down, and 39 (20.3\%) on their sides.

	PYT	PYB	015	RYU	USO	ND	total
Carneithyris carnea	55	21	19			98	193
Cretirhynchid arcuata	19	20	2			12	53
Cratirhynchie ?norvicensis(jur)	45	30	25			39	139
Cretirhynchie spp.	19	21	1			122	189
Miscellaneous brachiopods	15	8	5			62	90
Inociranus spp.			1			114	115
Pycnodonte vesiculare			10	5	2	161	178
Other oysters			2			31	33
niscellaneous bivalves						82	82
Echinocorys spp.			58	87	38	196	319
Miersster spp.			2	6	1	9	18
Miscellaneous achinoderus			1	1		11	13
niscellansous fossils			1			57	58
total	153	100	133	99	41	1054	1580

TABLE 5.21 Numbers of fossils with particular orientations noted from all localities. PVT = pedicle valve above, $\mathrm{PVB}=$ pedicle valve below, OIS = on their sides, RWU = right way up, USD $=$ upside down, $N D=$ no orientation data.

Compared with the 748 (84.0\%) collected
Belemnitella mucronata with borings, much lower proportions of bored specimens were found in all other groups. Indeed, of the 950 non-belemnites collected, only 63 (6.6%) were bored (Table 5.22). Actual values for specific groups ranged from the $23.5 \%(8 / 34)$ of collected Inoceramus spp., to just $2.8 x(6 / 212)$ of all forms of Cretirhynchia.

The most common borings were Entobia sp. and Rogerella sp., recorded on 33 and 13 occasions, with rarer Calcideletrix sp., Dendrina belemniticola, ?Nygmites sp., and Talpina sp.

	WH	KS	ET	88	CS	FRI	FR2	ISC	OTAL
Belennitella	185	128	8	1	406	3	8	9	148
Carneithyris carnes	0	0	0	0	8	1	0	1	10
Cretirhynchis ircuata	0	0	0	0	3	0	0	0	3
Cratirhynchie ?norvicensis(jur)	0	1	0	0	0	0	0	0	1
Cretirhynchis spp.	1	0	0	0	1	0	0	0	2
Miscellaneous brachiopods	0	0	0	0	1	0	0	0	1
Inoceranys spp.	0	0	0	0	1	0	0	1	8
Pycnodonte vesiculare	8	1	0	0	0	0	0	0	9
Other oysters	0	0	0	0	0	0	0	0	0
Miscollaneous bivalves	0	0	0	0	1	0	0	0	1
Echinocorys 8 pp .	3	2	2	0	19	0	0	0	26
Micraster spp.	0	0	0	0	0	0	0	0	0
Niscellaneous echinoderas	0	1	0	0	0	0	0	0	1
Miscellaneous fossils	1	0	0	0	0	0	0	0	1
total	198	133	10	1	446	4	8	11	811

TABLE 5,22 Numbers of fossils with boring remains collected by locality. Abbreviations: WH = Weybourne Hope, KS = Keswick, ET = Eaton Tunnels, HBR = Harford Bridges, CS = Caistor St. Edmund, FR1 = Frettenham (JSS. Aggregates Ltd.), FR2 = Frettenham (W.M. Howes), MISC = Miscellaneous localities.

As with borings, Belemnitella, of which 61.8x (551/891) had epifauna, were the most common host substrate. However, epifauna was relatively more plentiful on other components of the fauna, with a non-belemnite population average of 20.1\% (191/950) of specimens with preserved remains. Considerable variations were found in the proportions of particular taxa that had been colonised. Both Inoceramus spp. and echinoids (Echinocorys spp. and Micraster spp.) were readily utilised with $47.1 \%(16 / 34)$ and 46.9\% (120/256) of collected individuals bearing epifauna, respectively. A lower proportion (25.6x) [30/117] of Pycnodonte vesiculare were colonised, with Carneithyris carnea and rhynchonellids (Cretirhynchia arcuata, ©.
?norvicensis (juv), and C. spp.) very rarely used; only $6.8 \%(8 / 117)$ of the former, and $3.3 \%(7 / 212)$ of the latter having preserved epifauna.

A wide range of epifaunal species was identified. Most common were Atreta nilssoni, "Membranipora" spp., and Diastopora spp., recorded on forty seven, forty two, and fifty eight specimens. Other forms regularly present were the brachiopod Ancistocrania parisiens, the bivalve Pycnodonte vesiculare, several serpulids, although, only "Serpula" accumulata was found more than ten times, the sponge Porosphaera sessilis, the foraminiferan Bullopora sp., and the corals Coelosmilia spp. and Moltkia spp. Of the large anascan fauna collected, excepting "Membranipora" spp., only Aechmella anglica and Dionella sp. were noted more than fifteen times, whilst the tubuloporinans Proboscina spp. and Stomatopora spp. occurred on excess of twenty fossils.

	VH	KS	Et	HBR	cs	FRI	FR2	MISC	total
Belemitella	133	141	6	1	254	3	0	1	551
Carneithyris carnos	0	0	0	0	1	1	0	0	8
Crotirnynchid arcuata	0	0	0	0	0	1	0	0	1
Cretirhynchie ?norvicensis(jur)	1	0	0	0	0	0	0	0	1
Cretirhynchies spp.	4	0	0	0	0	1	0	0	5
Miscellaneous brachiopods	0	0	0	0	2	0	0	1	3
Inoceranus spp.	0	0	0	0	14	1	0	1	16
Pycnodonte vesiculare	13	0	0	3	2	0	1	,	21
Other oysters	1	0	0	2	3	2	0	1	9
Niscellaneous bivalvas	0	0	0	0	3	0	-	0	3
Echinocory 8 sp.	32	11	1	1	82	0	0	2	112
Mieraster spp.	1	0	0	0	0	0	0	1.	8
Hiscellaneous echinoderas	0	0	0	0	1	0	0	2	3
niscellancous fossils	1	1	0	0	0	0	0	0	2
rotal	192	153	10	1	348	9	1	16	142

TABLE 5.23 Numbers of fossils with epifaunal remains collected per locality (Abbreviations as in Table 5.22.)
5.5 ECOLOGY OF THE CAMPANIAN CHALK OF NOREOLK

5.5.1 ECOLOGICAL INFORMATION AND LIFE HABITS OF	
	FOSSIL GROUPS

5.5.1.1 Belemnites

These were a very important part of the macrofauna in the mucronata Zone with about 1020 specimens of Belemnitella mucronata found. The information obtained from them (orientations, plunge angles; boring and epifaunal distributions, etc.) has given considerable insight into the environment in which they were buried.

Orientation data from each of the studied populations (Weybourne, Keswick, Eaton, Caistor) showed
polymodal, i.e. random, patterns (section 5.3.8), as did many of the subgroups measured between individual filint bands. This suggests that bottom currents were not of sufficient strength to have re-orientated exposed guards into any preferred direction.

The only parts of the animal to survive were the solid calcite guards that acted as counterweights for the soft-parts during life, enabling a horizontal life orientation. Measured plunge angles of guards were usually low, averaging 21.3 degrees (16.2 Weybourne, 19.9 Keswick, 17.4 Eaton, 24.9 Caistor), with only 65 (6.5\%) having plunges in excess of sixty degrees. This suggests that most guards reached the sediment still attached to the rest of the animal after its death, since isolated guards dropping vertically into the sediment might be expected to stick and remain at high angles. Of the 53 guards with plunge angles >60 degrees and with boring and/or epifaunal data, 44 (83.0%) were affected on all parts of the guard. Hence, they must have been bored and exposed whilst lying on the sediment. This suggests that, in most cases, their observed high angles relative to bedding were caused by something other than their falling vertically, possibly by bioturbation, or by their rolling into burrows or crevices caused by earthquake shocks etc. on the sea-bed.

Borings were common, averaging 19 per guard, with 45.5\% of collected specimens having them in every quadrant, and only 16.5% without any. Epifaunal remains were less abundant, averaging 2.7 per guard, with only 6.8\% of specimens having epifauna on every quadrant, and 38.1\% devoid of them. However, only 77 (9.0x) of the population of 859 belemnites had neither.

The vast majority of guards cannot have been buried immediately after they reached the sea bed.

In most cases the initial activity was by the shallow boring organisms that produced Calcideletrix sp. and Dendrina belemniticola, both of which are very rare in other substrates. If the guard remained exposed, other, deeper borers (those that formed ?Nygmites sp. and Ialpina sp.) attacked them and a wide variety of epizoans including brachiopods, bivalves, serpulids, sponges, corals, encrusting, and erect (basally attached) bryozoans colonised it. In most cases the epifauna was small and sparsely developed on individual guards.

About three quarters (75.4\%) of guards had epifauna/borings in their SE and SW quadrants as collected. This indicates that they must have been rolled over at some time to enable other quadrants to be exploited, and with almost half of all specimens with records in all four quadrants, some must have been
moved several times, possibly involving reworking clear of sediment cover, by the action of bioturbators and current activity etc.

Factors which suggest that the relative abundance of collected belemnites was representative of the original population density include the absence of calcite fibres from disassociated guards in bulk sample residues (down to 63 microns) and the great rarity of guards with severe boring damage, the most afflicted example found having lost only about 50\% of the original guard. The relative abundances of belemnites per cubic metre of chalk were calculated for the sections at Weybourne, Keswick, and Caistor using the formula of McKinney (1986, p. 80). Average values of about 25 per cubic metre were calculated for the first two sections (Weybourne and Keswick), with Caistor some way above this at about 45 per unit volume. Even allowing for a sedimentation rate as high as $0.5-1 \mathrm{~mm}$ per year (section 5.2.4) these figures give an average of only a single guard for every 4-8 square metres of sea-bed every ten years at Weybourne and Keswick and one for every 2.5-5 square metres of sea-bed every decade at Caistor.

Hence, belemnites were rare nektonic forms in the Norfolk Campanian. When a guard did appear on the sea bed it was attacked by a specific suite of boring
organisms, and often used as a substrate by a wide variety of epizoans.

5.5.1.2 Brachiopods

based on their mode of life brachiopods were placed into three groups viz:- attached by a pedicle, free living, and cemented types. Forms that attached to the substrate using a pedicle included common, small Terebratulina spp. and rarer Argyrotheca spp., both able to utilise very small clasts with their root-like pedicles, and the much larger Neolithyrina obesa and Kingena pentangulata which were confined to larger substrates (Surlyk, 1972, p. 21).

Brachiopods that lived freely on the sediment as adults included the terebratulid Carneithyris carnea, which may have retained a thin, functional pedicle (Asgaard, 1975, p. 361) (an idea supported by the larger number preserved with the pedicle valve uppermost (Table 5.21)), rhynchonellids of the genus Cretirhynchia with their expanded lateral parts of the shell particularly well adapted to a free living adult life (Surlyk, 1972, p. 24), and Magas chitoniformis. Other forms, including Isocrania spp. were, initially, attached, as juveniles, to small substrates but became independent of them during growth (Surlyk, 1972, p. 27, 1973, p. 221). The remaining forms Ancistocrania parisiens and ?Diomyodon sp. were firmly cemented by
their ventral valves and were, thus, restricted to large, hard substrates, i.e. macrofossil remains.

Brachiopods were very rarely affected by borings (4.3\%) or had epifauna (4.5\%). In the case of small forms this can be explained by their short life and rapid burial after death, but larger forms such as Carneithyris and Cretirhynchia might be expected to have been ideal substrates for a rich epifauna. Why they were not is unclear, but it may be explained in part by the possession, in life, of a thick periostracum which disintegrated after death with consequent loss of any epifauna that managed to colonise it (Surlyk, 1972, p. 49), or to the existence of unfossilised encrusting sponges which prevented the attachment of other epifaunal organisms as reported on recent Terebratulina retusa and I. sepentrionalis (Surlyk, 1972, p. 49).

The scarsity of borings may be related to the lack of protection and depth of boring possible in brachiopod shells compared with frequently bored belemnite guards and echinoid tests, or to coverage by encrusting sponges etc., but is something of a mystery. However, the form of the shallow borings in belemnite guards, particularly those of Dendrina with their small chambers radiating in all directions from a central opening are reminiscent of feeding traces. It is possible that the organisms that produced them, almost
always in belemnite guards, were deriving nutrition from the guards which they did not find in other faunal remains, but quite how is uncertain.

Data on relative abundance for all Cretirhynchia (Figures 1.8, 1.12, and 1.16) and Carneithyris carnea (Figure 1.17) suggest that the former occurred at average concentrations of only one specimen per 5 square metres of sea-floor every ten years, although the latter gave values up to four times greater. Many brachiopod fragments were recognised in bulk samples, which suggests that the true populations were higher than those calculated by the volumetric data.

5.5.1.3 Bivalves

The most common bivalves were oysters (with Pycnodonte vesiculare well represented) that were almost always attached as juveniles, to belemnites, echinoids, baculitid ammonites etc., but often independent of them as adults. Pectinids that lay on the sediment, or were covered by only a thin veneer of sediment, were occasionally found, as were spondylids including the attached Spondylus dutempleanus and the free-living \underline{s}. spinosus. Both these species had long spines that curved around the commissure probably as a means of defence, but also helping to discourage any epifauna from settling on the shell. Large Inoceramus spp. were common at certain levels of the Beeston

Chalk. Although their exact mode of life remains a mystery, their size (up to 1 m in diameter) suggests that they were immobile and lay on the sea bed, possibly with a permanent gape. Other forms, including very numerous Atreta nilssoni and rarer Gyropleura inequirostrata, were almost always epifaunal and needed a hard substrate.

Borings were rare, except in oysters and Inoceramus spp. in which about 10 and 25% of collected specimens, respectively, had traces, usually of sponge-produced Entobia sp. Epifauna, particularly juvenile Pycnodonte vesiculare, was often present on oysters, as it was on Inoceramus spp. which supported a varied, if not particularly abundant, suite of forms.

Volumetric data showed that bivalves, except for oysters, were mostly very rare. Pycnodonte in particular, was locally very abundant in the hardground complex in the middle of the Weybourne Chalk (Figure 1.9) and relatively so in the lower Beeston Chalk at Caistor (Figure 1.18) where blocky chalk was present. The oysters were seemingly able to exploit the unusually firm substrates that had developed.

5.5.1.4 Echinoderms

[^8]but how many individuals there were is difficult to gauge due to the wide range in numbers of ossicles per individual in different genera or growth stages. Most bulk samples contained only a few (<20) ossicles which suggests that asteroids were not usually very abundant, although large concentrations have been reported from various localities (A.S. Gale personal communication, April 1988). Similarly, crinoid columnals and arm plates, mostly of Bourgueticrinus spp., occurred regularly throughout, although no calyx plates were found, a not uncommon phenomenon at other levels of the chalk.

Echinoids were present at all levels. The regular cidarids were represented by rare test fragments, relatively common spine bosses, and many loose spines. Irregular forms included the infaunal Micraster spp. and common Echinocorys spp. Echinocorys ploughed through the top layer of the sediment and after death many remained in life position, their tests becoming a very important epifaunal substrate. Borings, usually Entobia sp. and Rogerella sp. were less widespread. Interestingly, although none of the Micrasters was bored, eight out of the thirteen collected specimens had epifauna. This suggests that they were exposed at the time of death. The other echinoderm remains included sporadic ophiuroid plates.

Echinoderms were usually scattered through sections and bulk samples and were rarely abundant at any particular level, except at Caistor (Figure 1.18) where, especially near the base of the quarry, several "Echinocorys beds" were found. Many of the tests were in closely packed groups, usually of similar sized, adult, individuals. Of the 218 specimens of Echinocorys spp. from Caistor, approximately 100 occurred in "nests" of up to sixteen tests, with a variety of orientations. The lack of small forms at any level is significant because it implies that the population distribution had a very positive skew with a very high proportion of specimens reaching maturity. The "nests" themselves may represent storm accumulations in shallow hollows in the sea bed or up against obstructions on the sediment surface. This supported by the occurrence of other fossils within the "nest". Overall, echinoderms were regularly present throughout the Campanian, but rarely in abundance.

5.5.1.5 Bryozoa

Bryozoans were a very important part of the collected fauna, occurring commonly as epifauna and in bulk samples. Three different groups were identified based upon their supposed modes of life. These were encrusters, i.e. forms that were firmly cemented to their substrates, erect forms that were anchored at
their bases, but grew upwards, and rare species that were able to live completely free on the sediment. Encrusters, on belemnites, brachiopods, bivalves, serpulids, and echinoids included many anascans, of which, Herpetopora spp. and "Membranipora" spp. were most common, as were the rectangulatan Disporella irregularis, and the tubuloporinan Stomatopora spp.

Most bryozoans were forms that anchored either directly into the sediment using a club or root-like base, or to hard substrates. Included in this group were most of the very abundant anascans, notably, "Biflustra" argus, Latereschara galeata, Onychocella inelegans, O. matrona, O. nysti, O. rowei, Quadricellaria grania, and Woodipora disparilis, the ascophorans Porina goldfussi and P . spp., the cancellatans Petalopora spp., Sparsicavea spp., and Sulcocava spp., the salpinginans Meliceritites gothica and M. spp., and the tubuloporinan Pustulopora spp.

Only two free-living forms were recognised, the stratigraphically restricted Volviflustrellaria taverensis and the more widespread, disc-like Lunulites spp. which is particularly common above omission surfaces (P.S. Whittlesea personal communication, April 1989).

Although almost never found during field collecting, the abundance and diversity of bryozoans,
both epifaunally and in bulk samples shows that they were a very important constituent of the original fauna.

5.5.1.6 Miscellaneous Fossil Groups

Other fossil groups represented included serpulids, sponges, corals, cirripedes, and foraminifera. Of the serpulids most were epifaunal forms, although several were also found unattached in bulk samples presumably having been parted from their original substrates due to erosion, dissolution etc. Common free-living forms were Glomerula gordialis and G. g. var ilium. Collected sponges included the epifaunal Porosphaera sessilis, the independent, spherical, P. globularis, and P. sp. (fusiform) which apparently grew around the stems of sea grasses etc. Iron-stained outlines of siliceous sponges were common in many sections and may well have been important substrates for epifaunal species (Surlyk, 1972, Figure 12, p. 28). Basal attachments of the corals Coelosmilia spp. and Moltkia spp. were very widespread on exposed macrofauna. Other faunal elements included occasional cirripede plates, ostracod carapaces, and some of the larger foraminifera, in particular, the epifaunal Bullopora sp.

The other faunal elements, not preserved under normal circumstances, included the aragonitic gastropods and ammonites. The latter must have been
important sites for epifaunal colonisation as indicated by the frequent utilisation of baculitids as substrates by pycnodontids.
5.5.2 SEA-FLOOR ECOLOGY
5.5.2.1 Gonioteuthis Zone

The paucity of exposure makes it difficult to assess the ecological conditions in the Gonioteuthis Zone, and only general comments can be made. Macrofauna was very rare, although bulk samples and material from the Wymondham boreholes contained fragments of brachiopods, bivalves, echinoderms, bryozoans etc. Due to the absence of boring or epifaunal data no ideas of the relative abundance of firm substrate or the variety and amount of epifauna are available. The scant evidence suggests that the sea-bed was probably firm enough to support an independent fauna most of the time. All major fossil groups were represented although they were never abundant at any level. Presumably bioturbation was also important although no evidence of it was found.

5.5.2.2 Belemnitella mucronata Zone

In contrast to the underlying Gonioteuthis Zone, large parts of the Belemnitella mucronata Zone are well
exposed in and around Norwich and on the north Norfolk coast. The 2700 macrofossils from zonal sections and the mesofauna from bulk sample and borehole residues have yielded much ecological information.

For most of the time a well structured community existed on the sea-floor (Figure 5.33). Large organisms including brachiopods, bivalves, echinoids, siliceous sponges, and many bryozoans lay freely on the sediment, or were anchored to it by pedicles etc. Other mostly small forms, particularly serpulids and bryozoans, and juveniles of free living adults were confined to hard substrates provided by the remains of belemnites, echinoids, ammonites, and sponges.

The sediment surface was mostly soft, but probably not ooze at least for the top few cm , being of ?fine-medium sand grade and composed mainly of faecal pellets etc. of the myriad organisms that preyed on the coccoliths that floated in near surface waters. The remains of animals, especially nektonic belemnites and ammonites that fell on to the sea-bed were rarely buried immediately, and with other exposed remains were bored, chiefly by sponges, and colonised by the large epifaunal community. Overall densities of macrofauna were usually low with animals scattered over the sea-bed.

FIGURE 5.33 "Typical" Belemnitella mucronata Zone sea-floor assemblage. Belemnite: $1=$ Belemnitella mucronata; brachiopods: 2=Carneithyris carnea, 3=Terebratulina spp., 4= Isocrania costata, 5 Argyrotheca sp.; bivalves: $6=$ pycnodonte vesiculare, $7=$ Atreta nilssoni, $8=$ Inoceramus sp, serpulids: $9=$ Pentaditrupa subtorquata, $10=$ Neomicrorbis crenatostriatus: sponges: $11=$ siliceous sponge, $12=$ Porosphaera sessilis; echinoderm: 13=Echinocorys sp.; coral: 14=Coelosmilia sp. bryozoans: $15=0$ nychocella matrona, $16=$ "Membranipora" sp. 17=Dionella sp., 18=Herpetopora sp., 19=Pustulopora sp; borings: 20=Calcideletrix Sp., $21=$ Dendrina belemniticola.

Below the sediment surface intense bioturbation, by soft bodied worms etc., broke down the pelleted chalk to a clay grade ooze. Current activity was intermittent and weak, of insufficient strength to realign exposed biota and faunal remains, but strong enough to disturb the top 1-2 cm of sediment. Rare higher energy currents caused greater disturbance with nests of Echinocorys spp. tests, which were probably relatively buoyant for a time after death due to gas trapped within the tests, and other remains being collected and dumped in hollows on the sea-bed etc.

Rarely, as in the middle of the Weybourne Chalk, at Weybourne and Harford Bridges, and the lower Beeston Chalk, at Caistor, oysters, notably Pyenodonte vesiculare, became very abundant. The chalk at both horizons is blockier and firmer than that encountered at other levels and the oysters seem to have been able to exploit this and spread over the sediment, although they were still attached, as juveniles, to baculitid ammonites etc.

5.5.3 FAUNAL TURNOVERS

The only major faunal turnover occurred at the top of the Weybourne Chalk of the during the formation of the, currently unexposed, Catton Sponge Beds, with many species appearing for the first time or becoming extinct (Wood, 1988, pp. 61-66). The Catton Sponge Beds
are known to exist from the north Norfolk coast near Sheringham to south of Norwich and appear to represent a widespread development of hardgrounds, with their specialised fauna, at this level.

Other, minor, turnovers were noted at the top of the Gonioteuthis Zone and at about the level of the base of the Weybourne Chalk, although in both cases, only a few species were involved.

CHAPTER SIX

CONCLUSIONS AND REFERENCES

6.1 CONCLUSIONS

The Norfolk Campanian Chalk was deposited on a tectonically stable shelf at depths between 150 and 200 m in water at a temperature of about twenty degrees Celcius. Occasionally, deposition occurred at lesser depths leading to the formation of hardgrounds, as in the middle of the Weybourne Chalk. Current activity at the sea-floor was very weak, of insufficient strength to reorientate living or dead fauna on the sea-bed and only rarely strong enough to redistribute relatively buoyant (gas filled) irregular echinoid tests.

The actions of bioturbating organisms were largely responsible for disturbing the many fossils, particularly belemnite guards, that were rolled about at, or close to, the sediment surface.

A varied macrofauna, dominated by belemnites, brachiopods, bivalves, echinoids, and siliceous sponges characterised the chalk. The mesofauna, in addition to fragments of larger taxa, contained many small brachiopods, serpulids, echinoderm remains (most commonly cidarid spines, crinoid columnals, asteroid ossicles, and ophiuroid plates), and bryozoans.

At most levels, however, the overall abundance of large fauna was low, averaging only a few specimens for every ten square metres of sea-bed per decade.

The sediment surface was firm enough to support large faunal remains, especially belemnite guards, ammonite shells, and echinoid tests, which were readily colonised by epifaunal brachiopods, bivalves, serpulids, corals, and bryozoans if they remained exposed for any length of time. Much of the epifauna, including juveniles of forms that lived freely on the sediment as adults, could exist only on the hard substrates provided by large faunal remains.

Rarely, as in the hardground complex in the middle of the Weybourne Chalk, the sea-floor was much firmer, and oysters, in particular, were able to spread out over the sea-bed in considerable numbers.

ASGAARD, A., 1975. A revision of Sahni's types of the brachiopod subfamily Carneithyridinae. Bulletin of the British Museum (Natural History) Geology, 25, pp. 319-365, 8 pls.

BASSLER, R.S., 1953. Treatise on invertebrate paleontology, part G, Bryozoa, G1-253. University of Kansas Press, Lawrence, Kansas.

BROMLEY, R.G., SCHULZ, M.G., and PEAKE, N.B., 1975. Paramoudras: giant flints, long burrows and the early diagenesis of chalks. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter, 20. 31pp.

BRYDONE, R.M., 1930. The "Norwich Chalk". Transactions of the Norfolk and Norwich Naturalists Society, 13, pp. 47-49.

BRYDONE, R.M., 1932. The course of Marsupites and Uintacrinus across Norfolk (with a note on the basal Norwich Chalk). Transactions of the Norfolk and Norwich Naturalists Society, 13, pp. 115-118.

BRYDONE, R.M., 1938. On Correlation of some of the Norfolk Exposures of Chalk with Belemnitella mucronata. Dulau, London.

DAVIDSON, T., 1854. A monograph of British Cretaceous Brachiopoda, 1. Palaeontographical Society (Monograph), London. pp. 1-117, 12 pls.

DAVIDSON, T., 1874. A monograph of British Cretaceous Brachiopoda, 4(1), supplement to the Recent; Tertiary and Cretaceous species. Palaeontographical Society (Monograph), London. pp. 1-72, 8 pls.

GREGORY, J.W., 1899. Catalogue of the fossil Bryozoa in the Department of Geology, British Museum (Natural History). The Cretaceous Bryozoa, 1. xiv + 457 pp., 17 pls. London.

GREGORY, J.W., 1909. Catalogue of the fossil Bryozoa in the Department of Geology, British Museum (Natural History). The Cretaceous Bryozoa, 2. xiviii + 346 pp., 9 pls. London.

HÅKANSSON, E., BROMLEY, R.G. and PERCH-NEILSEN, K., 1974. Maastrichtian chalk of north-west Europe - a pelagic shelf sediment. In: K.J. Hsü and H.C. Jenkyns eds.", Pelagic Sediments: on land and under the Sea. Special Publications of the international Association of Sedimentologists, 1, pp. 211-233.

HAYES, J.D. and PITMAN, W.C. III., 1973. Lithospheric plate motions, sea level changes and climatic and ecological consequences. Nature, 246, pp. 18-22.

HORNBY, R.J., GOLDSMITH, J.G. and GOFF, J.C., 1973. Eaton Chalk Pit - Site of Special Scientific Interest. Bulletin of the geological Society of Norfolk, 24, pp. 3-14.

JÄGER, M., 1983. Serpulidae (Polychaeta Sedentaria) aus der norddeutschen höhren Oberkreide-Systematik, Stratigraphie, 'Ókologie. Geologishes Jahrbuch Reihe A, Heft. 68, pp. 3-219, 16 pls.

KENNEDY, W.J. and GARRISON, R.E., 1975. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology, 22, pp. 311-386.

LANG, W.D., 1921. Catalogue of the fossil Bryozoa (Polyzoa) in the Department of Geology, British Museum (Natural History). The Cretaceous Bryozoa (Polyzoa), 3. cx + 269 pp., 8 pls. London.

LANG, W.D., 1922. Catalogue of the fossil Bryozoa (Polyzoa) in the Department of Geology, British Museum (Natural History). The Cretaceous Bryozoa (Polyzoa), 4. xii +404 pp., 8 pls. London.

LARWOOD, G.P., 1962. The morphology and systematics of some Cretaceous cribimorph Polyzoa (Pelmatoporinae). Bulletin of the British Museum (Natural History) Geology, 6, pp. 1-285, pls 1-23.

LOWENSTAM, H.A. and EPSTEIN, S., 1954.
Palaeotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method. Journal of Geology, 62, pp. 207-248.

MÄGDEFRAU, K., 1937. Lebensfurren fossiler
"Bohr"-organismen. Beiträge naturkundlichen Forshung Südwestdeutschland, 2, pp. 54-67, 3 pls.

McKINNEY, M.L., 1986. Estimating volumetric fossil abundance from cross - sections : A stereological approach. Palaios, 1, pp. 79-84.

MOORE, R.C., (ed.) 1962. Treatise on invertebrate paleontology, part W, Miscellanea, W1-259. University of Kansas Press, Lawrence, Kansas.

PEAKE, N.B. and HANCOCK, J.M., 1961. The Upper Cretaceous of Norfolk. Transactions of the Norfolk and Norwich Naturalists Society, 19, pp. 293-339.

PEAKE, N.B. and HANCOCK, J.M. 1970. The Upper Cretaceous of Norfolk. In: G.P Larwood and B.M. Funnell, eds. The Geology of Norfolk. Headly Bros., London.

RAWSON, P.F., CURRY, D., DILLEY, F.C., HANCOCK, J.M., KENNEDY, W.J., NEALE, J.W., WOOD, C.J. and WORSSAM, B.C., 1978. A correlation of the Cretaceous rocks in the British Isles. Geological Society of London, Special Report, 9, 70 pp.

SCHLANGER, S.O. and DOUGLAS, R.G., 1974. The pelagic ooze-chalk-1imestone transition and its implications for marine stratigraphy. In: K.J. Hsü and H.C. Jenkyns, eds. Pelagic Sediments: on land and under the Sea. Special Publications of the international Association of Sedimentologists, 1, pp. 211-233.

SURLYK, F., 1972. Morphological adaptations and population structures of the Danish Chalk brachiopods (Maastrichtian, Upper Cretaceous). Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter, 19, 2, pp. 1-57, 5 pls.

SURLYK, F., 1973. Autecology and taxonomy of two Upper Cretaceous brachiopods. Bulletin of the geological Society of Denmark, 22, pp. 219-243, 6 pls.

WITHERS, T.H., 1935. Catalogue of fossil Cirripedia in the Department of Geology, British Museum (Natural History). Volume II Cretaceous. 534 pp., 50 pls. London.

WOOD, C.J., 1988. The stratigraphy of the Chalk of Norwich. Bulletin of the geological Society of Norfolk, 38, pp. 3-120.

WOODS, H., 1903. A monograph of the Cretaceous
Lamellibranchia of England. Palaeontographical Society (Monograph), 1. xliii + 232pp., 42 pls.

WOODS, H., 1913. A monograph of the Cretaceous
Lamellibranchia of England. Palaeontographical Society (Monograph), 2. 473pp., 62 pls.

PLATES

PLATE 1

1. Belemnitella mucronata ($x 1$) [1425]. Caistor quarry.
2. Cretirhynchia arcuata ($\times 1$) [1441-2, 1463]. Caistor quarry.
3. Carneithyris carnea (x0.5) [195]. Caistor Quarry.
4. Cretirhynchia ?norvicensis (juv) (x 1) [1857,

1870-1]. Weybourne cliff section.
5. Pycnodonte vesiculare (x0.5) [1872]. Weybourne cliff section.
6. Acutostrea cf. incurva (x1) [827-9]. Caistor quarry. 7. Atreta nilssoni ($\times 1$) on belemnite guard. Keswick quarry. (P.S. Whittlesea collection.)
8. Micraster sp. (x0.5) [2479]. Weybourne cliff section.
9. Echinocorys sp. (x0.5) [2675]. Wells quarry.

PLATE 1

PLATE 2

(All fossils photographed using a scanning electron microscope.)

1, 2. Terebratulina sp. (x5) Frettenham (JSS. Aggregates). Bulk sample 39.
3, 4. Isocrania costata (x3) Whitingham. Bulk sample 238.
5. Neomicrorbis crenatostriatus (x8) Newfound Farm, Cringleford. Bulk sample 32.
6. Neomicrorbis subrugosus (x8) Newfound Farm, Cringleford. Bulk sample 33.
7. Hamulus sexangularis ($\times 5$) Newfound Farm, Cringleford. Bulk sample 33.
8. Glomerula gordialis ($x 5$) Newfound Farm, Cringleford.

Bulk sample 32.
9. "Serpula" accumulata ($\times 15$) on echinoid test. Weybourne cliff section.
10. Porosphaera globularis ($x 5$) Newfound Farm, Cringleford. Bulk sample 33.
11. Porosphaera sessilis ($\times 5$) Stiffkey. Bulk sample 248.

12, 13. Bourgueticrinus sp. (x6) [1694]. Weybourne cliff section.

PLATE 3

(All fossils photographed using a scanning electron microscope.)

1. Onychocella inelegans (x5) Caistor quarry. Bulk sample 2.
2. Onychocella matrona (x5) Frettenham (JSS.

Aggregates). Bulk sample 39.
3. Onychocella rowei (x5) Newfound Farm, Cringleford.

Bulk sample 32.
4. Onychocella nysti (x5) Newfound Farm, Cringleford.

Bulk sample 32.
5. "Biflustra" argus (x5) Weybourne cliff section. Bulk sample 14.
6. Woodipora disparilis ($x 9$) Weybourne cliff section. Bulk sample 14.
7. Vincularia supercilium (x6) Stiffkey. Bulk sample 249.
8. "Membranipora" flabelliformis (x15) Newfound Farm, Cringleford. Bulk sample 35.
9. Volviflustrellaria taverensis (x5) UEA 1. Bulk sample 36.
10. Lunulites sp. (x5) Frettenham (WM. Howes). Bulk sample 26.
11. Petalopora sp. (x7) Keswick quarry. Bulk sample 8. 12. Eohornera langethali (x6) Weybourne cliff section. Bulk sample 11.
13. Sulcocava sp. (x5) Keswick quarry. (P.S. Whittlesea collection.)
14. Disporella irregularis ($\times 5$) Weybourne cliff section. Bulk sample 12.
15. Meliceritites sp. (x5) Caistor quarry. Bulk sample 4.
16. Clypeina rosula ($\times 20$) Eaton quarry. Bulk sample 31. 17. Pustulopora sp. (x_{6}) Harford Bridges quarry. Bulk sample 24.

APPENDICES
a) ALPHABETICAL INDEX OF CURRENT CHALK EXPOSURES IN THE GONIOTEUTHIS AND BELEMNITELLA MUCRONATA ZONES IN NORFOLK.

Abbreviations: $G Z=$ Gonioteuthis Zone: $P W C=$ Pre-Weybourne Chalk; WC = Weybourne Chalk; CSB = Catton Sponge Beds; $B C=$ Beeston Chalk; PC = Paramoudra Chalk. (All grid references are in 100 km square TG except where otherwise indicated.)
ATTLEBRIDGE (Spring Farm) (1550 1600) [PWC]
BRACONDALE (Colmans) (2390 0740) [BC]
CAISTOR (Frettenham Lime Company Ltd.) (2390 0466) [BC]
CLEY-NEXT-THE-SEA
CRINGLEFORD (Newfound Farm) (1892 0692) [PWC]
CRINGLEFORD (UEA 1)
EATON TUNNELS
(2090 0640) [WC]
FRETTENHAM (JSS Aggregates Ltd.) (2370 1670) [BC]
FRETTENHAM (W.M. Howes Ltd.) (2460 1730) [BC]
GUIST (0000 2570) [GZ]
HARFORD BRIDGES (2188 0576) [WC]
HELLESDON (Whiffler Road) (2120 1070) [WC]
KESWICK (W. M. Howes Ltd.) (2120 0485) [WC]
MARLINGFORD
SPARHAM 1
(0580 1890) [GZ]
SPARHAM 2
STIFFKEY
ST. JAMES'S HOLLOW
THARSTON (Furze Hill)
WELLS
WEYBOURNE HOPE -
OLD BUTTS GAP
WEYBOURNE HOPE EAST
WHITLINGHAM
(0650 1900) [GZ]
(TF 9780 4310) [GZ]
(2420 0950) [BC]
(TM 1940 9560) [PWC]
(TF 9280 4290) [GZ]
(1115 4369) [WC] -
(1236 4362) [WC]
(1290 4360) [WC] -
(1390 4350) [WC]
(1681 0770) [PC]
b) ALPHABETICAL INDEX OF KNOWN, BUT UNEXPOSED /

OBLITERATED SECTIONS IN THE GONIOTEUTHIS AND
BELEMNITELLA MUCRONATA ZONES IN NORFOLK (AS AT 1.10. 1988). Abbreviations as in appendix 1 a.

MATLASK	(1500 3330) [PWC/WC]
MORSTON	(TF 9980 4390) [GZ]
MORSTON	(0040 4390) [GZ/PWC]
MORSTON DOWNS	(0170 4370) [GZ/PWC]
NEWTON FLOTMAN	(TM 2106 9830) [WC]
NORWICH	(2220 0870) [WC]
NORWICH ("Baculite" Pit)	(2280 0860) [WC]
NORWICH	(2230 0860) [WC]
NORWICH	(2380 0780) [WC]
NORWICH (Stonehills Pit)	(2100 0920) [PWC/WC]
NORWICH (Earlham Limeworks)	(2010 0930) [PWC/WC]
OLD CATTON (Attoes Pit)	(2390 1180) [WC/CSB/BC]
RACKHEATH	(2710 1550) [BC]
RINGLAND	(1250 1320) [GZ]
RINGLAND	(1360 1440) [GZ]
RINGLAND	(1300 1460) [GZ]
RINGLAND	(1380 1270) [GZ]
SHERINGHAM	(1690 4320) [BC]
STIFFKEY	(TF 9680 4330) [GZ]
STIFFKEY	(TF 9770 4320) [GZ]
STOKE HOLY CROSS	(2330 0260)[WC/CSB]
STOKE HOLY CROSS	(2536 0140) [WC/CSB/BC]
SWANTON MORLEY	(0190 1780) [GZ]
TASBURGH	(TM 2030 9550) [PWC]
TAVERHAM	(1474 1386) [PWC]
TAVERHAM	(1490 1350) [PWC]
TAVERHAM	(1620 1410) [PWC]
THORPE ST. ANDREW (Lollards Pit)	(2410 0890) [BC]
THORPE ST. ANDREW	(2866 0801) [PC]
THORPE ST. ANDREW	(2755 0900) [PC]
THURSFORD	(TF 9920 3420) [GZ]
TROWSE NEWTON (Crown Point Pft)	(2500 0690) [BC]
UPPER SHERINGHAM	(1410 4130) [WC]
UPPER SHERINGHAM	(1480 4170) [WC]
WELLS	(TF 9280 4270) [GZ]
WELLS	(TF 9080 4380) [GZ]
WEYBOURNE	(1120 4310) [WC]
WRAMPLINGHAM	(1150 0610) [GZ]

APPENDIX TWO

List of all bulk samples collected from sections and boreholes. Abbreviations: $P / D(M)=$ position or depth in metres; $B H N O=$ borehole number: $C D$ (M rel to $O D=$ absolute depth in metres relative to ordnance datum. Localities: CS = Caistor St. Edmund; KS = Keswick; WH = Weybourne Hope: MW = Mayton Wood boreholes; HBR = Harford Bridges; FR2 = Frettenham (W. M. Howes); FR1 = Frettenham (J.S.S. Aggregates); ET = Eaton; NFF = Newfound Farm, Cringleford; UEA1 $=$ University of East Anglia; CBR = Colmans, Bracondale; WYM = Wymondham boreholes; WIT = Whitlingham boreholes; NCH = Norwich boreholes; SP2, SP1 = Sparham; CL = Cley-next-the-sea; WHE = Weybourne Hope East; SPF = Spring Farm, Attlebridge; SJH = St. James's Hollow; GU $=$ Guist; MF = Marlingford; TH = Tharston; WHR = Whiffler Road, Hellesdon; WLS = Wells; STF = Stiffkey.

NO．	LOC	GRID REF	P／D（M）	㫙 NO	CO（M rel to 00）	NOTES
1	cs	TG2390004660	B1－82	－	2．00－3．00	not accurately positioned
	CS	TG2390004660	－80－－10083	－	5.50	
3	cs	TG2390004660	85－86	－	9.50	as 1
4	cs	TG2390004660	85－86	－	9.50	as 1
5	Cs	T62390004860	87－88		11.50	as 1
9	ks	TG612004850	－270日	$:$		pos．unknown
8	KS	TG2120004850	8C－BD	－	8.50	as 1
9	KS	T62120004850	BC－BD	－	8.50	as 1
10	VH	TG1105043690	BELOM 11	－	5.00	as 1
11	NH	TG1135043660	82－83		5.00	as 1
12	WH	TG1150043650	84－85	－	5.00	as 1
13	WH	TG1185043640	$89-810$		5.00	as ！
14	H	TG1220043630	811－812		5.00	as 1
15	HIN	TG2465020980	8.4	14	8.6	
16	\％	TG2265020980	14.6	14	2.4	－
17	Win	TG2465020980	8.4	14	8.6	
19	M	TG2465020980		，	16	－
20	H／	TG2465020980	0.65		16.35	－
21	MH	TG2465020980	1.45	4	15.55	－
22	M	TG2465020980	1.3		15.70	
23	MY	TG24650209880	2.85	3	14.15	
24	HAR	T62188005760	10－9081		14.00	
25	FR2	TG2460017300	－25－3582	－	－13．25	－
27	ET	TG2087006350	－30－4588	－	6.50	－
28	ET	TG2087006350	－20－4081	－	15.50	－
29	ET	T62087006350	－15－2586	－	7.75	－
30	ET	T62087006350	－55－－7584		10.50	－
31	ET	TG2087006350	－65－－7582	－	13.50	
33	NFF	T61892006920	日3－2083		8.75	
34	NFF	T61892006920	－25－3581	－	11.75	－
35	NFF．	TG1892006920	$-120-13082$		9.75	－
36	UEAI	161870008400	－20－－3081		11.25	
38	ER1	［G6870008400	－20－6092	－	13．25	SHITC
39	FR1	IG2370018700	－45－－5581	－	11.25	SHIVC
40	C88	［62390007400	65－7582	－	8.50	
41	CPR	［62390001400	－35－4582		1.00	－
$\begin{aligned} & 42 \\ & 55 \end{aligned}$	C8R	T62390007400	${ }^{81--1081}$		9.00	－
56	H1	TG2665020980	$1 i .7$	11	－0．7	－iosflint
84 65	ET	T62087006350	－25－3585	－	9.00	
65 86	HYM	TH1010098580	20.20	27	21.79	
86 87	WYM	TH10100985880	25， 80	27	18.39 14.4	：
68	Hy	TH1010098580	28.40	27	13.59	－
69	HYM	TM1010098580	29.55	27	12.44	－
71	YY	IM1015498758	25.70	29	15.00	－
11	HY	TH1015498758	29.00	29	11.10	
72 73	HYM	TH0938098260	28.50	33	14.00	－
73	HYM	THO938098260	29.90	33	12.80	
75	HYY	TH1107699432	18－18．50	48	29．30－28．80	－
75	HYM	Th107699432	19.00	${ }^{6}$	28.30	
78	HYM	TM1107699432	21－21．50	48	28．30－25．80	－
11	HY	Th1107699132	24－24．50	46	23．30－22．80	
78	HYY	TH1107699432	25．50－26	48	21．80－21．30	－
79	HYM	TM1107699432	27－27．50	46	20．30－19．80	
80	HY	TH1107699432	28．50－29	46	18．80－18．30	
81	HYM	TK1107699432	29．50－30	46	17．80－11．30	－
8	MY	TG1242500706	12.45	68	22.95	－
	HYM	TG1242500706	13.50	68	21.90	
8	WY	IG1242500708	15.45	68	19.95	－
	HYM	IG1253300320	13.00	11	25.40	－
88	HYM	IG1253300320	14.80	11	23.60	
	NYM	G61253300320	18.80	11	21.60	＋8H73 21.50
	NYM		17.70	11	20.10	
98	WY ${ }^{\text {H }}$	$\begin{array}{r}1612330320 \\ \hline 61253300320\end{array}$	19.20	11	19.20	－
	WY	161253300320	24.00	11	14.40	
91	YYM	TG1253300320	25.00	71	13.40	

NO.	100	GRID REF	P/D (M)	BH NO CD (Mrel to OO)	NOTES
163	NCH	T62459008040	32-32.50	$6-\cdots-25-25.50$	LFIS SHYNC
164	NCH	TG2459008040	33-33.50	$6 \quad-26--26.50$	LFIS
165	NCH	TG2459008040	34-34.50	6 -27-27.50	CHNYC
166	NCH	TG2459008040	36-36.50	$6 \quad-29-29.50$	LFIS SHNW/YC
167	NCH	TG2459008040	37-37.50	6 -30--30.50	SHNMC
168	NCH	TG2459008040	38-38.50	$6 \quad-31--31.50$	
169	NCH	TG2459008040	39-39.50	$6 \quad-32--32.50$	LFIS
170	NCH	T62459008040	40-40.50	$6 \quad-33--33.50$	LFIS
171	NCH	TG2459008040	41-41.50	6 -34--34.50	RHINC
172	NCH	TG2459008040	42-42.50	6 -35--35.50	RHINC
173	NCH	T62459008040	43-43.50	$6 \quad-36-36.50$	\bigcirc
174	NCH	162459008040	4-44.50	6 -37--37.50	
175	NCH	TG2459008040	46-46.50	$6 \quad-39-39.50$	LFIS
176	NCH	TG2459008040	47-47.50	$6 \quad-40-40.50$	
177	NCH	TG2459008040	48-48.50	$6 \quad-41-41.50$	LFIS
178	NCH	TG2459008040	49-49.50	6 -42--42.50	
179	WHIT	TG2757007710	2.50-3	2 3.10-3.20	-
180	WHIT	162757007710	3.50-4	2 2.70-2.20	
181	WHIT	TG2757007710	4.50-5	$21.10-1.20$	ILFIS
182	WHIT	TG2757007110	5.50-6	2 0.70-0.20	
183	WHIT	162757007710	6.50-7	$2-0.30--0.80$	small sample
184	WHIT	TG2757007710	8-8,50	$2-1.80--2.30$	
185	WHIT	TG2757007710	11.50-12	$2-5.30--5.80$	-
186	WHIT	TG2757007110	13.50-14	$2-7.30--7.80$	
187	WHIT	TG2757007710	14.50-15	$2 \quad-8.30--8.80$	smal\| sample
188	WHIT	TG2757007710	15.50-16	$?-9.30-9.80$	suall sample
189	Whit	TG2757007710	17.50-18	$2-11.30--11.80$	
190	WHIT	TG2757007710	19-19.50	? -12.80--13.30	-
191	NCH	TG2425007920	9-9.50	5 -7-9.50	LFsIS SFINC
192	NCH	TG2425007920	10-10.50	$5 \quad-8-8.50$	FIS SFINC
193	NCH	TG2425007920	11-11.50	5 -9--9.50	FIS SFWNC
194	NCH	TG2425007920	12-12.50	5 -10--10.50	RFWNC
195	NCH	TG2425007920	13-13.50	5 -11--11.50	LFIS
196	NCH	TG2425007920	14-14.50	$5 \quad-12--12.50$	IVLFIS CFINC
197	NCH	162425007920	15-15.50	$5 \quad-13-13.50$	LFSIS SFWNC
198	NCH	TG2425007920	16-16.50	$5 \quad-14-14.50$	LFsIS CHINC
199	NCH	TG2425007920	17-17.50	$5 \quad-15-15.50$	IVLFIS SFMNC
200	NCH	TG2425007920	18-18.50	5 -16--16.50	SFINC
201	NCH	IG2425007920	20-20.50	$5 \quad-18-18.50$	LFIS
202	NCH	T62425007920	21-21.50	$5 \quad-19-19.50$	RFMNC
203	NCH	TG2425007920	22-22.50	$5 \quad-20-20.50$	SHHKC
204	NCH	TG2425007920	23-23.50	5 -21--21.50	FSIS VCYHW/YNC
205	NCH	162425007920	24-24.50	5 -22--22.50	Fsis Sfunc
206	NCH	TG2425007920	25-25.50	5 -23--23.50	SFWNC
207	NCH	TG2425007920	26-26.50	5 -24-24.50	LFIS
208	NCH	TG2425007920	27-27.50	$5 \quad-25-25.50$	LFIS
209	NCH	TG2425007920	28-28.50	$5 \quad-26-26.50$,
210	NCH	TG2425007920	32-32.50	$5 \quad-30-30.50$	-
211	NCH	TG2425007920	33-33.50	$5 \quad-31-31.50$	-
212	NCH	IG2425007920	34-34.50	$5 \quad-32-32.50$	
213	NCH	TG2425007920	35-35.50	5 -33--33.50	FsIS
214	NCH	IG2425007920	36-38.50	$5 \quad-34--34.50$	
215	NCH	TG2425007920	37-31.50	$5 \quad-35-35.50$	ILFIS SHMNC
218	NCH	TG2425001920	38-38.50	$5 \quad-36--36.50$	SHWNC
211	NCH	162425007920	39-39.50	5 -37-37.50	
218 219	NCH	TG2425007920	40-40.50	$5 \quad-38--38.50$	FsIS
219	NCH	TG2425007920	41-41.50	$5 \quad-39-39.50$	FSIS RFWNC
220	NCH	TG2425007920	42-42.50	$5 \quad-40-40.50$	
221	NCH	162425007920	43-13.50	$5 \quad-41-41.50$	RFW/YNC
222	NCH	TG2425007920	44-44.50	$5 \quad-42-42.50$	
223 224	NCH	[62425007920	45-45.50	$5 \quad-43-43.50$	
224 225	NCH	T62425007920	46-46.50	$5 \quad-44-44.50$	RFINC
225 226	NCH	TG2425007920	47-17.50	$5 \quad-45-45.50$	SHW/YNC
	NCH	T62425007920	48-48,50	$5 \quad-46-48.50$	ESIS SFWNC
227	NCH	I62425007920	50-50.50	$5 \quad-48=-48.50$	RFYNC
229	SP2	TG0580018900	-20-4081	20.50	-
230	CL	160540044000	-	26.50	MHYNC car park
231	WHE	TG1370043520	-45--5584	5.25	MHYNC Car dark
232	WHE	TG1395042950	-5--1586	5.00	
233	SPF	161550016000	-	18.50	MHNC
234	SJH	TG2420009500	-50--70TOP	14.00	-


```
a) List of epifaunal and boring abbreviations used appendices \(3 b-7, i n c l u s i v e\).
\begin{tabular}{|c|c|}
\hline NAME & ABBREY \\
\hline ANCISTOCRANIA PARISIENS (Defrance) & AP \\
\hline DIOMYODON Spp & DY \\
\hline ATRETA NILSSONI (Von Hagenow) & AN \\
\hline GYROPLEURA INEQUIROSTRAtA (S.Moodward) & GI \\
\hline OSTREA Spd & 01 \\
\hline PYCNODONTE VESICULARE (L8marck) & PV \\
\hline SPONOYLUS DUTEMPLEANUS (d'Orbigny) & SD \\
\hline CEMENTULA SPIRASERPULA (Regenhardt) & CS \\
\hline CEMENTULA Spd & CE \\
\hline CONORCA TROCHIFORMIS (Hagenow) & CN \\
\hline filogranula cincta (goldfuss) & FC \\
\hline GLOMERULA GORDIALIS (Schlotheim) & \({ }^{6 G}\) \\
\hline NEOMICRORBIS CRENATOSTRIATUS (Münster) & NC \\
\hline NEOMICROREIS SpD & NE \\
\hline MEOMICRORBIS Subrugosus (hünster) & NS \\
\hline PENTADITRUPA SUBTORQUATA (Munster) & PS \\
\hline SCLEROSTYLA MACROPUS (Sowerby) & SM \\
\hline SCLEROSTYLA Spp & SS \\
\hline 'serpula accumulata S. Woodward & SA \\
\hline VEPRECULINA FIMBRIATA Regenhardt & VF \\
\hline VEPRECULINA Spp & VP \\
\hline vepreculina tuberculifera (Nielsen) & VI \\
\hline VERHILIOPSIS FLUCTUATA (Sowerby) & VL \\
\hline unidentified worn tube renajns & UK \\
\hline hexactinellid sponge (mould) & nx \\
\hline POROSPHAERA SESSILIS Brydone & PO \\
\hline POROSPHAERA SPD & PH \\
\hline gullopora Sp & 8 \\
\hline coeloshilia spp & co \\
\hline foraminiferal remains & fr \\
\hline nolikia spp & H0 \\
\hline AECHMELLA ANGLICA (Brydone) & \({ }_{\text {A }}\) \\
\hline AECHMELLA NITESCENS (Brydone) & AE \\
\hline ANDRIOPORA MAJOR Larwood & AM \\
\hline APLOUSINA fulgora (Brydone) & AF \\
\hline APLOUSINA SDP & \({ }^{\text {AL }}\) \\
\hline "biflustan spp & 8 \\
\hline CASTANOPORA CASTANEA Lang & \({ }^{C C}\) \\
\hline CASTANOPORA DIELEYI (BTydone) & \({ }^{\text {CO}}\) \\
\hline CASTANOPORA Magnifica (d'Orbigny) & CH \\
\hline castanopora spp & \({ }_{0}\) \\
\hline dIONELLA Spd & 0 \\
\hline dionella trifaria (Von Hagenow) & 01 \\
\hline OIONELLA TRIGONOPORA (Harsson) & DG \\
\hline ELLISINA RINGENS (Von Hagenow) & ER \\
\hline herpetopora laxata (d'orbigny) & H \\
\hline HERPETOPORA Spp & HE \\
\hline homalostega clathrata beissel & HC \\
\hline hohalostega spp & HO \\
\hline LEPTOCHEILOPORA MAGNA Lang & LH \\
\hline LEPTOCHEILOPORA SPD & LE \\
\hline "MEMERANIPORA* Exhaurensis brydone & HE \\
\hline "hembranipora' furina (brydone) & MF \\
\hline "MEMPRANIPORA" LANGEI 8rydone group & ML \\
\hline -hembranipora' palpebra yar. nontians brydone & MP \\
\hline "MEMBRANIPORA" Sop & HS \\
\hline "MEMBRANIPORA". TENEPROSA Brydone group & MT \\
\hline 'MEMERANIPORA" MITHERSI (Brydone) & M \\
\hline "membraniporella monastica Brydone & MH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NAME & ABPREV. \\
\hline MICROPORA BEDENENSIS (Brydone) & 48 \\
\hline ONYCHOCELLA GIBBOSUM (Marsson) & OG \\
\hline ONYCHOCELLA INELEGANS LOnsdale & 01 \\
\hline OMYCHOCELLA NORFOLCIA Brydone & ON \\
\hline ONYCHOCELLA NYSTI (Von Hagenow) & OY \\
\hline ONYCHOCELLA Spg & OS \\
\hline PLIOPHLOEA Cf SUBVITREA (Brydone) & PL \\
\hline TRICEPHALOPORA SPP & 15 \\
\hline UBAGHSIA CRASSA (Lang) & US \\
\hline UBAGHSIA SPP & S \\
\hline CRYPTOSTOMELLA COMPACTA (brydone) & ¢ \\
\hline bicayea Spp & 81 \\
\hline CRISIMA Spp & CR \\
\hline HOMOEOSOLEN Spp & HH \\
\hline SULCOCAYA Spp & SU \\
\hline CLAUSA glogulosa (d'Orbigny) & CG \\
\hline disporella IrRegularis (d'Opbigny) & OS \\
\hline disporella spp & OP \\
\hline ACIINOPORA SDP & AC \\
\hline DIASTOPORA SPD & DA \\
\hline IDMONEA SDD & 10 \\
\hline proboscink spp & PR \\
\hline STOMATOPORA GRACILIS (Edwards) & SG \\
\hline stomatopora peoicellata (harsson) & SP \\
\hline Stomatopora spp & ST \\
\hline bryozozn attachaent remains & by \\
\hline cheilostome bryozoan attachments & cb \\
\hline unidentified bryozoan ramains & uy \\
\hline CALCIDELETRIX Sǵp & CA \\
\hline DENDRINA BELEMVITICOLA Mägdefrau & 08 \\
\hline DICTYOPORUS NODOSUS Magdefrau & OH \\
\hline DICTYOPORUS Spp & 01 \\
\hline echinoid "bite marks & eb \\
\hline EKTOBIA Spp & EN \\
\hline ? NYGMITES Spp & ? N \\
\hline PODICHNUS Sp & PD \\
\hline RAMOSULCICHIUS BIFRONS group & R8 \\
\hline ROgERELLA SpD & RO \\
\hline SIMOMILAPFES SpD & SI \\
\hline TALPIMA Spp & 14 \\
\hline unidentified borings & ub \\
\hline
\end{tabular}
b) List of all fossils found in the quarry at Caistor St. Edmund (TG 23900 04660). Column heading abbreviations: \(T A X=\) taxonomic description; DES = description; POS = level below next numbered flint band above, in cm; FB = flint band; DIM = dimensions in cm; ORI = angular orientation; BOR/EPI = number of borings/epifaunal remains in each quadrant (NE/SE/SW/NW) for belemnites, per specimen for other taxa; \(B(D) / E(D)=\) identified borings/epifaunal remains (abbreviations as in appendix 3a). Within column abbreviations: \(G=\) belemnite guard; \(A=\) belemnite alveolus; \((X E)=\) tip end of belemnite guard absent; NC \(=\) not collected; \(M C=\) mostly complete; \((C R / C R U)=\) crushed; \(M C=\) mostly complete; \(P V=\) pedicle valve.










\section*{APPENDIX FOUR}
a) List of all fossils found in the Weybourne Hope Old Butts Gap cliff section (TG 1115043690 - 12360 43620). Abbreviations as in appendices 3 a and 3b.





b) List of all fossils found in miscellaneous sections. Abbreviations as in appendices 2, 3a, and 3b.

APPENDIX FIVE
List of all fossils found in the quarry at Keswick (TG
21200 04850). Abbreviations as in appendices 3a and 3b.




\section*{APPENDIX SIX}

List of all fossils found in the former quarry at Eaton
Tunnels (TG 20870 06350). Abbreviations as in appendices 3 a and 3b.


\section*{APPENDIX SEVEN}
a) List of all fossils found in the former quarry at Harford Bridges (TG 21880 05670). Abbreviations as in appendices 3 a and 3 b .

b) List of all fossils found in the former quarry at Frettenham (JSS Aggregates) (TG 23700 16700). Abbreviations as in appendices \(3 a\) and \(3 b\).

a) Occurrence of non-bryozoan faunal elements in the borehole samples obtained from Wymondham. Abbreviations: \(1=\) taxon present in that borehole sample; \(a / c=c r i n o i d\) arm ossicles \(/\) columnals; aff \(=\) affinity to; \(c f=\) comparable with; w/wn = worn specimen; nuf \(=\) numerous fragments; \(g=\) gerontic specimen.


b) Occurrence of bryozoan remains in the borehole samples obtained from Wymondham. Abbreviations as in appendix 8 a.


APPENDIX NINE

Occurrence of non-bryozoan faunal elements and bryozoan remains in the bulk samples collected from miscellaneous localities. Abbreviations as in appendices 2 and 8 a.



APPENDIX TEN

Occurrence of non-bryozoan faunal elements and bryozoan remains in the borehole chalk samples collected from Norwich. Abbreviations as in appendix 8a.





\section*{APPENDIX ELEVEN}

Occurrence of non-bryozoan faunal elements and bryozoan remains in the borehole samples collected from Mayton Wood. Abbreviations as in appendix 8 a.


\section*{APPENDIX TWELVE}

Occurrence of non-bryozoan faunal elements and bryozoan remains in the borehole samples collected from Whitlingham. Abbreviations as in appendix 8a.
```


[^0]: The bryozoan fauna included the stratigraphically restricted anascan Vincularia supercilium Brydone (only collected from the Upper Gonioteuthis Zone). This species was also recognised in several samples of equivalent age collected from boreholes in the Wymondham area (see chapter two, section 2.2). The common longer ranging anascans "Biflustra" argus, "Membranipora" spp., onychocella inelegans, O matrona (Von Hagenow), o. cf. rowei, and Woodipora disparilis,

[^1]: FIGURE 4.1 Stratigraphic ranges of Belemnitells rache 4.1 rachiopods collected from the Gonioteuthis and Belemnttella mucronata Zones. GZ=Gonioteuthis Zone: PWC=Pre-Weybourne Chalk; WC=Weybourne Chalki CSB=Catton Sponge Beds; $\mathrm{BC}=$ Beeston Chalk; $\mathrm{PC}=$ Paramoudra Chalk; $0=0$ ly recorded once; e=only found as epifauna.

[^2]: FIGURE 5.13 Percentages of belemnites collected between specific flint bands and of the complete population of 160 belemnites from Keswick with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) epifaunal remains in their $N E, S E, S W$, and $N W$ quadrants, respectively. Numbers on left side are percentages, letters at base of figures indicate specific quadrants.

[^3]: FIGURE 5.23 Percentages of belemnites collected between flint band 3 and the top of the section at Caistor St. Edmund with numerous (>10) (vertical striping), few (2-9) (horizontal striping), one (cross-hatching), and zero (blank) epifaunal remains in their $N E, S E, S W$, and $N W$ quadrants, respectively. Numbers on left side are percentages, letters at base of figures indicate specific quadrants.

[^4]: FIGURE 5.30 Plunge angles of belemnites measured between flint bands 2A and 6 at Caistor St. Edmund. Ornamentation: vertical striping = point end of guard downwards, blank = point end of guard upwards, horizontal striping = horizontal guard.

[^5]: FIGURE 5.31 Plunge angles of belemnites measured between the base of the section and flint band 2A at Caistor St. Edmund. Ornamentation: vertical striping $=$ point end of guard downwards, blank $=$ point end of guard upwards, horizontal striping = horizontal guard.

[^6]: FIGURE 5.32 Plunge angles of all 465 measured belemnites from Caistor St. Edmund. Ornamentation: vertical striping = point end of guard downwards, blank = point end of guard upwards, horizontal striping = horizontal guard.

[^7]: "Serpula" accumulata, Vepreculina sp., Porosphaera

[^8]: A varied suite of echinoderm remains was found. Disassociated asteroid ossicles occurred throughout,

