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This is a study of the singularities of the evolutes and

involutes of curves and hypersurfaces in R®, suggested by the
work of Arnold on Lagrangian and Legendrian singularities., A
family of parallel surfaces is constructed, which, considered as
a hypersurface in space—-time, appears to be locally diffeomorphic
to the discriminant A(H,) of the Coxeter group Hy. This is the
only Coxeter group, not so far linked with singularity theory.
By considering the family of distance squared functions for
these surfaces, one would be able to find a function 'of type H,'
and so complete the correspondence between Coxeter groups and

singularities of functions, which was noted by Arnold.

Chapter One of this work contains algebraic material, A
method is given for constructing a rational parametrisation of
the discriminant of any Coxeter group. This is used to describe
A(H ), A set of generators for the ring of invariants of Hy is
calculated explicitly. The results of this lengthy calculation

(performed by computer) are included as an appendix.

The second chapter concerns the focal sets of curves, The
idea of a family of parallel hypersurfaces, all having the same

focal set, is goneralised to apply also to families of curves.,



The focal set of a curve is always developable, and so its
properties are enc;psulated in those of its cuspidal edge, which
‘we call the space evolute of the curve, Results are obtained
relating the singularities of a curve to the singularities of its
space evolute, A number of examples are calculated for curves in
R? and R’. A new and simple proof is given of Shcherbak’s
result, that the big involute of a plane curve with an inflexion

is the discriminant of H,,

The third chapter concerns hypersurfaces in RE, The curves
obtained by 1ifting the lines of curvature of & hypersurface M to
the focal set of M (the raised lines of curvature, or RLCs) play
an important role, It is proved that the RLCs are geodesics on
the focal set, and the singularities of the RLCs at singular
points of the focal set are described. It is suggested that H,
points will be obtained by combining A, points (ribs) and H,
points in a natural way., Therefore, the behaviour of the focal
sets of surfaces with cuspidal edges is investigated, using
elementary methods. Surfaces M and F are identified, such that
the big involute of F, and the big wave front formed by the
parallels to M, appear to give the discriminant A(H,) (though
this is not proved rigorously). In a final brief section, it is
shown that if M is & submanifold of R® which is neither a curve,
nor a hypersurface, then a family of parallels to M does not

exist in general.
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Figure 0.1 A Projection of The Polytope (3,3,5) in r*

¥Whose Symmetry Group is Hy (Drawn by van Oss)




HISTORICAL _INTRODUCTION

In this thesis we investigate the relationship between a
k-dimensional submanifold MK of R, its parallels, and its
focal set F. This study also involves ideas from two other areas
of mathematics, namely Coxeter groups and singularity theory.
Some use is made of ideas from singularity theory, to help study
these geometric objects. Conversely, by looking at the geometric
examples, a function is described we believe ought to be called
‘of type H,’, and so from a geometric example, we derive a
function which it is believed will be of interest to singularity

t

theorists.

The focal set of a nonsingular submanifold MEX < RE can be

defined in three equivalent ways:

(1) the envelope of the normals to M or
(2)the locus of centres of hyperspheres having at least 3 point
contact with M or

(3) the locus of cusps of parallels to M

If X = n-1, the terms focal set and evolute are used
interchangeably and M is said to be an involute of F,.
Unfortunately, the terms ‘evolute’ and ’‘involute’ cannot be used
for space curves, since the phrase ‘evolute of a space curve'’ has

been used classically in a way which is not synonymous with the



term ‘focal set’,

The focal set is one of the earliest objects to be studied
in differential geometry., The evolute of' a plane curve was first
described by Huyghens in 1659 [17]. Huyghens also discovered the
unwinding construction for the involute of a plane curve, and
noted that this gave rise to a family of parallel curves, all
having the same evolute., He also noted that, starting off with a
smooth curve, cusps may start to appear on the parallels, The
motivations for this work were the study of light caustics and

the practical problem of constructing accurate pendulum clocks.

Further work on curves was done by Bernoulli and
Tschirnhausen. In 1696 L'Hospital became the first person to
distinguish between ordinary and rhamphoid cusps on a plane
curve, He realised the possibility of unwinding any plane curve,
including those curves which do not occur as evolutes of a
nonsingular curve, and in [16] he described the family of
involutes of a plane curve having an inflexion. This family of

curves, shown in figure (0.2) recently became the focus of

considerable attention, as will be described below.

The idea of the evolute in the case n=3 was introduced by
the French mathematicians of the 18th and 19th centuries. The
properties of the focal set of a curve and of a surface in R’
were described by Monge, Darboux and Dupin. The classical theory

included the procedure for reconstructing a surface in R’ from



Figure 0.2 The family of Involutes

of a Corve With an Inflexion




one of the two sheets of its focal set and an associated geodesic
foliation, which is described in chapter 3 of this thesis.

Subsequently, the definition of the focal set was extended so as

to apply to k-manifolds in R for any pair (k,n) [19].

Another concept which is equally old as the focal set is the
idea of parallels to a hypersurface. A hypersurface M2t 4q
R® has a one-parameter family of parallels. Since they describe
the propagation of light or other wave phenomena, these parallels
are also called wave fronts. As remarked by Huyghens, a wave
front which is initially smooth can, after a certain time, develop
singularities, Further historical references concerning the
development of these differential geometric ideas are given in

(5] and [261].

The second subject area involved in this thesis is Coxeter
groups. A detailed history of Coxeter groups can be found in
[6]. A Coxeter group is a subgroup of O(n) generated by
reflections, They are named after Coxeter, since he was the
first to enumerate all possible such qups [1]] §11'S, In this study,
we shall only be interested in finite Coxeter groups. For
brevity, the word ‘finite’ will henceforth be omitted, but will
always be implied when the term ‘Coxeter group’ is used. Coxeter
groups were first defined as the sets of symmetries of certain
regular and semi-regular polytopes in RY%, Thus initially they
were discrete objects which arose in a purely algebraic context,

But they then started to reappear in various different contexts.
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For example, Shephard and Todd showed [30] that Coxeter groups
can also be characterised as groups whose ring of invariants is
particularly simple, It was also discovered that most of the
Coxeter groups (those which are crystallographic) occurred as the

Weyl groups of semi-simple Lie algebras,

The third subject we will be considering is singularity
theory. An excellent reference for this subject is [4], When
singularity theory was developed in the 1950s and 1960s, one of
the first results was the classification of simple functions,
This list brought to light a remarkable and unexpected
relationship with Coxeter groups, far each simple singularity

was found to correspond to a Coxeter group.

But singularity theory also proved to be a powerful tool in
differential geometry, enabling one to describe what parallels
and focal sets really look like, The connection with the
differential geometric problems mentioned above is as follows.
Given a smooth manifold M, one can study the parallels to M and
the focal set of M by looking at the singularities of the family
of distance—squared function on M, This idea is due to Thonm.
Conversely, given any family V of functions, one can construct a
hypersurface in RN (for some N) having V as its family of

distance squared functions [4].

For n ¢ 10, a 1list of normal forms for the germ of the
distance squared function can be found in [4]. From this list, we

can get a set of standard models for the behaviour of focal sets

11



and wave fronts in RP, For almost all nonsingular hypersurfaces M

[33], the big wave front generated by M and the focal set of M
are locally diffeomorphic at each point to one of the resulting
standard models, The first few normal forms for the distance
squared functions are associated with the Coxeter groups A, D,
and Ey [4]. These are the groups whose Coxeter Dynkin diagram
consists entirely of unmarked branches, and are associated with
function germs on a smooth manifold. In each case the standard
model for the big wave front is the discriminmant of the Coxeter

group.

A few years later, it was discovered that the groups Bk and
F, are also associated with simple function germs, The
difference is that these are function germs defined on a smooth
manifold with boundary (see [2] and [4]). In the wavefront
interpretation, one is taking the parallels to (or the focal set
of) a smooth hypersurface with boundary in RBZ, The half-space
H={x €Rt| z, ) 0} is the quotient space R%/Z, for the group Za
acting on RP® by reflection, so a function on H can equally well
be regarded as a function on the whole of R®, which is invariant
under reflection in some hyperplane. Thus it is possible to
think of these functions as describing the behaviour of the
parallels to (or focal set of) a manifold M with a line of
symmotry [28]. The groups B, and F4 are distinguished from A, Dy
and Ey by the presence in their Coxeter—Dynkin diagram of

branches labelled with the integer 4.

12



The remaining Coxeter groups are H; H, and I5(k) (k ) 5).
They are (apart from I,(6)=Gs) noncrystallographic, since their
Coxeter-Dynkin diagrams include branches labelled with the

integers 5 (in the case of H, and H,) and k (in the case of

La(x)).

For ten years, it was thought that these groups did not
correspond to singularities of functions. It was then observed
that the family of parallel curves in figure (0.2), first
considered by L'Hospital in the 1690s, gave rise to a big wave
front diffeomorphic to the discriminant of H,, which is the group
of symmetries of the regular icosahedron, This led to the works
(18] and [29], in which singularities of functions are described
which are linked to the groups H; and Ia(k). The distinguishing
feature of these functions is that they are defined on a manifold
with a singular boundary, e.g. the region of the plane bounded by
the curve x*=y’, The wave front interpretation is that the groups
Hy and Ia(n) should be associated to a family of parallel curves,
each of which is singular, The distance squared function for
such a curve is a function on the (cuspidal) curve which is
obtained as the restriction of a function defined on the whole

plane,.

Consider the family of curves shown in figure (0.2), which,
as mentioned above, are associated to the group H,, Each of these
curves is singular, but their common focal set is a smooth curve

with an inflexion. Thus the H, family of curves can be

13



constructed by taking the involutes of a smooth curve with an
ordinary point of inflexion. As well as starting with a
nonsingular hypersurface and looking at the pdssible
singularities of its focal set, it is thus also profitable to
investigate what kinds of singularities can arise on the

invoilutes of a nonsingular hypersurface.

When the singularities of types H; and Iis(k) were
discovered, Arnold conjectured that a singularity would soon be
discovered, which bore a similar relation to the one remaining
Coxeter group H,, This was one of the aims of the present work,
The arguments used are mainly geometric, The idea is first to
describe a type of wave-—-front, and themn by looking at the
distance squared function to find a function of type H,, This is
the opposite to the usual squence of argument, which is first to
classify certain functions by analytic methods, and then to
deduce geometric information as a corollary, The present
arrangement approximates more closely to the order in which the
ideas are usually developed, and so it is hoped that this will

make it easier for the reader to follow.

Another aim of this work is to take a fresh look at the
differential geometric problems raised above, Let MK be a
k—-dimensional submanifold of RE, We may ask the following

.questions,

14



for a hypersurface in R™ to be the focal set of some curve (the
hypersurface must be developable). The essential properties of a
developable hypersurface are encapsulated in its cuspidal edge,
which we call the space _evolute of M. We compute a number of
examples in the cases n=2 and n=3, and we provide a new and
simple proof of Shcherbak's result that the big involute of a

curve with an inflexion is A(H;),

Chapter 3 is about families of parallel hypersurfaces in RD,
The family of lines of curvature of M play an important part in
the relationship between M and its focal set, and we prove some

results describing the behaviour of raised lines of curvature.

We explain why the group H, should arise in connection with a
singular surface having a singular focal set, and then we look at
the focal sets of some cuspidal surfaces, We describe a family
of parallel surfaces in R’ which we believe give rise to a big
involute of type H,, and we describe the associated distance-
squared function, which should have a singularity of type H,,
This chapter concludes with a brief look at focal sets and
parallels for submanifolds of R® with dimension and codimension
both greater than 1, In this case, the differential geometric
problems (3) to (5) are still open, even for the case when k=2

and n=4,

Before commencing reading the main text of the thesis, the
reaict's attention is drawn to appendix two, which explains most

of the notation used.
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This chapter contains some results of an algebraic nature which
arose from a study of the discriminant variety A(H,), One of the aim
of this project was to find a family of wave f?onts diffeomorphic to
A(Hy), Since no published description of A(H,) was available, the

first step was to describe A(H,), so that when it was found, it would

be recognized.

In this chapter, we define the discriminant of a Coxeter
group and prove some results which provide a description mnot only
of the discriminant of H,, but also of the discriminants of other

Coxeter groups.

1,1 Review of Standard Facts About _Coxeter Groups

A reflection is a linear transformation in O(n) with one
eigenvalue equal to —1 and all the other eigenvalues equal to +1,
The set of points fixed byva particular reflection is called its
mirror. A Coxeter group is a finite subgroup of O(n) which is
generated by reflections, Any such group is a direct product of

irreducible Coxeter groups. The irreducible Coxeter groups form

four infinite series and six exceptional groups [6]. We will use

the notation of Bourbaki, in which the infinite series are
denoted by A, (n)l1), B, (n)2), D, (n)3), Ia(k) (k)3), and the

other six groups are E¢ Ey Es F¢ Hs and Hy, In each case, the

subscript indicates the dimension of the Euclidean space on which

17



the group acts, which will be called the ramk of the group. Note

that there is some duplication in this list for small values of

the rank: I,(3)=A2 12(4)=Bs and A;=Dy,,

Every Coxeter group has a fundamental region, This is a

subset of RD containing precisely one point from each orbit of
the action of G on R®, VWe can, and will, assume that a
fundamental region D has the following additional properties:
(1) Dis a closed convex subset of RD consisting of a cone on an
(n-1) simplex, i.,e. the union of the lines joining the points of
an (n-1) simplex o to a fixed point P not lying in the hyperplane
of o.

(2) The n hyperplanes which form the boundary of D are mirrors
of G and the group G is generated by these n reflections.

(3) The interior of D does not meet any of the mirrors of G,
t

The group G acts not only on R®, but also on C® and on the
polynomial ring R = Clxi,.c...xy]. The action on the ring R is

given by o.f(x) = f(o(x)).

Those polynomials which are invariant under the action of G
form a subring R(G) of R, and for any Coxeter group G the ring
R(G) is itself isomorphic to R (see [30]). In other words, the
ring R(G) is generated by n invariant polynomials fi,cceeesfy
which are algebraically independent., These n polynomials may be
chosen to be homogeneous, and if this is done, the degrees of the

f; must be as shown in Table 1.1 (see [30]). A set of n

18



algebraically independent homogeneous gemerators for R(G) will be

called a set of basic invariant polynomials for G. While the

degroes of the polynomials in such a set are uniguely determined
(see [30] or [32]), the polynomials themselves are not unique,
For example, if f1 and f4 are basic invariants for Bs, where f
has degree i, then for any A € C, the polynomials £, and

fo + Af: will form another set of basic invariants,

The reflections of any Coxeter group G form either one or
two conjugacy classes in G, The number of reflections in each

conjugacy class [12] is shown in Table 1.1,

Consider the quotient mapping n5:C:--)C%/G in the category

of algebraic varieties and regular mappings. The quotient ng can

be constructed by letting its components be a set of basic
invariant polynomials for G. Since the polynomials in a basic
set are algebraically independent, it follows that the image of

ng» which is the quotient space C%/G, is the whole of C".

Furthermore, by the Malgrange Preparation Theorem, g is a
quotient not only in the algebraic category but also in the
category of smooth manifolds and smooth mappings between them

(the argument in chapter 6 of [7] for Ay can be adapted for all

groups).

19



Table The List o Irreducible Coxeter Groups

Group Order Degrees of Basic No.of Reflections
Invariants in each Conjugacy
Class
Ay (n+1)! 2,3,4,0000,(n+1) n(n-1)/2
(n)1)
Bn znnn' 2.4.......2!1 n,n(n-l)
(n)2)
D, 20-1 4y 2,4,0000,20~-2,n n(n-1)
(n)3)
E¢ 72.61= 2,5,6,8,9,12 36
51840
Ef 8.9’- 2.6.8.10.12.14.18 63
2903400
E, 192.101= 2,8,12,14,18,20,24,30 120
696729600
Fgq 1152 2,6,8,12 12,12
H, 14400 2,12,20,30 60
I,(x) | 2k 2,k k (k 0dd)
(k33) k/2,k/2 (k even)

The Fgg&{gdg&ﬁg?nmt A(G) is the real part of the image

of the mirrors under a quotient mapping ng: C"—)> C%/G=C" whose
components are homogeneous polynomials., As it stands, there is

some ambiguity in this definition., Two quotient mappings x and

n/ for the same group G give rise to two ?nudoJc‘:m‘n}nqd:c A and A’.

By the general uniqueness properties of quotient mappings, there
is an algebraic automorphism of C0 which maps the
complexification of A onto the complexification of A”. But this

automorphi sm may not preserve the real part of C3, and as real

20




P d
algebraic subvarieties of R®, the psewld&u:m'aan'& A and A may be
very different. To remove this ambiguity, we will make the

following definition.

Defini tion 1,2
The Qucriminast o€ G i the pseucbdizcrininant™ consiveted from o 1001«!-'1‘ Map

conp.ﬁQﬁn
wl\ose,L are homogeneous polynomials with real coefficients.

This assumption distinguishes one particular real form of

A(G) for each group G, In g(l.S). we discuss whether there
is Omy S;Q'\;{iCM"— d‘fefme, Le,t.ncn MQ diyctiminant and other PS'.U&J{&(GM‘M.M"‘S_

The ?MJ.‘scr:m'-mnt A(G) is sometimes called the

yariety of non—regular orbits of €, since it consists precisely

of those orbits containing strictly fewer than |G| points, Yet

another characterization of A(G) is as the set of critical values

of nge

Proposition 1.3

Let G be a Coxeter group acting on R®, Then for any x € R,

the set of linear transformations in G leaving x fixed, denoted

by Fixg(x), is a Coxeter group., It is generated by reflections

in all those mirrors of G which pass through x,
Proof See [6] V 3.3,

Bach Coxeter group has an associated graph P(G) called

its Coxeter—Dynkin diagram, The vertices of this graph

correspond to generators and the edges to relations in a

21



' ee
particular presentation of G (for detailsLLlOJ 81:3). The

Coxeter-Dynkin diagram of Fix(;(!) is obtained from that of G by
Temoving any vertex corresponding to a mirror not passing through
X, Thus the 1ist of possible stabiliser subgroups withinG can

’easily be written down, by looking at all the possible subgraphs

of r'(G).'

Proposition (1.3) can be used to describe the local

structure of A(G), as follows.

Proposition 1.4
Let x € €0 with Fixg(x) = H where H is a Coxeter group

of rank k. Then

(i) There is a lincar space L of dimension n-k passing through x

such that for all y € L sufficiently close to x, Fixg(y) = H.
(ii) In some neighbourhood Nof ng(x), the discriminant A(G)

is diffeomorphic to A(H) x REK,

Proof

N
LetL = N M;(x) where Mi(x),...,My(x) is the set
1

of mirrors of G passing through x. Now (i) follows from (1.3)

and (ii) follows from the uniqueness of quotients and the fact

—

that the restriction of g to ﬂa‘(‘}() = N must be a

——

quotient in the smooth category for the action of H on N .

Corollary 1,5

A(G) is smooth at ng(x) if and only if Fixg(x) = Aj,

22



1,2 Parametrizations of A(6)

Let G be a8 Coxeter group in which all the reflections are
conjugate., This covers the cases An D, E¢« E; E; H; Hy and
I,(2x+1), Select arbitrarily one mirror M; and let the other

mirrors be M3,000.My.  Then there will be unit vectors
'l.oooon'n e Sn-l < ln

such that My = { x | x.v; = 0 }. Let H be the stabiliser

subgroup Fixg(va),

By (1.3), the group H is a Coxeter group, and since each

element of H preserves M;, we can consider H as a group generated

by reflections acting on M;,

Let mp:Mi -=> Mi/H be the quotient map and let M{ denote
Mi N My for i)2. Note that the M{ will not all be distinct.
There will usually be pairs (i,j) with M; # Mj but M = M} Since
all the mirrors are conjugate, the discriminant A(G) will be
equal to the real part of mng(Mi), where ng:C® —-> C%/G is the
quotient map. Since the map ng is invariant under the action of

H, ng factors through ng.

Let q be the map defined in commutative diagram (1.6) (see
next page). We shall investigate the properties of the map q,
which provides useful information about the discriminant A(G),

Examples vg e Map 4, }Cr pr Newlos groups il e given
in e (1:3) .

23



Disgram 1.6

>l = My/B (— Mie € =) €?/6 = ("
ng "G

We observe that the mirrors of the group Hconsist of some

but not all of the Mj. The situation is explained in the

following easy lemma,

Lemme 1.7 The following conditions are equivalent,
(1) Reflections in M; and M; commute,
(11) The hyperplanes M; and M; are perpendicular,

(iii) M{ is a mirror for the action of Hon M,

Now let x be a point of My and let y = ng(x). By (1.3),

the stabiliser group Fixg(x) is a group generated by reflections.

If Fix,(x) = Az, this means by (1.3) that x does not lie on
G
any of the M for i # 1. In particular, no mirror of H passes
through x, so the orbit Hx is regular and

lHz] = la] = |FixG(vx)| = {G] =
Gvy |

= lel = ]a|

I {'I.oocng._'l.oocc-vN]l 2N

Also lexl = __J6l = ]6l = J6|
Fixg(x)] lAsl 2
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The 1Gl/2 points of Gx 1ie on the N mirrors of G, so there
are |GI/2N on each mirror. In particular, there are |G|/2N =

[Ex| on My, This means that a single orbit of His mapped onto y

by q.

Suppose now that Fixg(x) = I,(2k+1) for some k)1 (recall
that I,(3) = As). By (1.3), the point x 1ies on precisely 2k+1
mirrors of G, one of which is M;, Without loss of generality,
x € M, for 1 =1,..,2k+1. Since no two mirrors of I,(2k+1)
are perpendicular, none of the M; is perpendicular to Mi for
i =2,3,.00.02k+1 and so no mirror of H passes through =x,

Thus |Hx| = |HI =l%!‘_

Also lGx| = |G| = 6] = |G|
TFixg(x)|  IIa(2k+1)|  2(2k+1)

The |G| points of Gx lie on the N mirrors of G, with each
2(2k+1)

point lying on (2k+1) mirrors, so each mirror contains G/2N =
|Hx| points of Gx. Once again, a single orbit of H is mapped

onto y by q.

Suppose now that Fixg(x) = Is(2k) for some k)1 (where I3(2)

denotes the direct ﬁroduct Ais x Ai). By (1.3), the point x
lies on 2k mirrors of G, one of which is My, Precisely one of
these 2k mirrors will be perpendicular to M,, so that one mirror

of H passes through x, Thus

lax| = ___ |8l _ = {8] = _J8] = _J¢]
Tﬁixﬂ(x)' lAs| 2 4N
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Also |Gx| = ___IGI _=_l6l_ = _]g]
IFixg(x)l IIs(20)] 4k

The |G|/4x points of Gx lie on the N mirrors of G, with each
point lying on 2k mirrors, so each mirror contains |G|/2N = 2[Hx]
points. This means that two orbits of H, each with lgl/4N
points, are mapped onto y by q. The above results can be

summarized as follows:

Proposition 1,8
(i) The real part of the image of q is A(G) and the components

of q are quasihomogeneous polynomials.
(1) Let x € M; and let y = ng(x). Then
the set q"l(y) is
a single point if Fixg(x) = A1 or As or I;(2k+1)

a pair of points if Fixg(x) = A x As or I, (2k)

Remarks 1.9
(i) For almost all x € My, the group Fixg(x) will be Ai, This

is because the point x will not lie in any of the Mj for i}2. So
for almost all y € A(G), we have |q'1(y)| = 1, This means that
q is a parametrization of A(G) as an irreducible rational
algebraic hypersurface in R™.
(i1) Unless G is actually a dihedral group I;(k), it follows from
enumerating the subgraphs of the Coxeter-Dynkin diagram of G that
the only possible stabilisers of rank two or less are

A1, AyxA; = I,(2), Az = I1(3), Bas = I3(4) and Is(5).

The case when G is a dihedral group is not of great interest
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since the discriminant varieties of the dihedral groups are well
known,
(iii) The same counting argument used above can be used to find
the number of pre-images of y for any point y € A(G),
(iv) Every Coxeter group consists entirely of orthogonal
trnnsforn;ations in O(n), Therefore they all preserve the
invariant quadratic form, which is given, if we take an
orthonormal co—ordinate system, by
£3(x) = X3 + eereee + X4
It follows that if ng and ny are suitably chosen, the map q

will preserve the first co—ordinmate.

Proposition 1,10

(1) If x € R2"1 then q(x) € RO,

(ii) Suppose q(x) € A(G). Then either x € R™ or q(x) is a
singular point of A(G).

Proof

(1) Since the components of n; and ng are assumed to be real
polynomials, the components of q will also be real.

(ii) Suppose q(x) € R® with x ¢ RB-1 apd q(x) = ng(P),

Then q(x) = q(X) with x # ¥ where the bar denmotes complex
conjugation. So by (1.8), Fixg(P) is either I;(2k) or a group

of rank at least 3, Thus by Corollary (1.5) q(x) is a singular

point of A(G),

The set of singular points of A(G) has codimension 1 in A(G)

and codimension 2 in C%/G., The above proposition therefore tells
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us that by looking at q(RT) we get almost all of A(G).

Tabl Table of the Groups H

G H

A, (n33) Ap-n

D, A1 x Ax x As

D, (n}5) Dpg x Aa

E, A

E, D¢

E, Eq

H, A1 x Aa

H, Hs

I,(2m+1) 1

(m}1)

The constructions described above can also be carried out

for the groups By F and Ia1(2m) containing two conjugacy classes
of reflections. Let M; and Mi be mirrors in different conjugacy

classes, let M; = { x | x.v; =0}, and let H; = Fixg(v;).Let qj

be the map defined in the commutative diagram below,

el o M /H; <— My < C2 - C/G= C

qi

Then the image of each of the maps q; is an irreducible
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algebraic hypersurface in C2, The real parts of these two

hypersurfaces together make up A(G).

The following theorem is the result analogous to (1.8) for
these groups. The proof will not be given here since it is

similar to that for (1.8).

Proposition 1,12
Let x € CR with ng(x) =y
(1) If Fixg(x) = Ay then x 1ies on a single mirror of G,
lag*(] =1 and g3 ()| = 0 where (1.5} = (1,2)
(ii1) If Fixg(x) = Ia(2k+1) then x lies on (2k+l1) mirrors of
G, all from the s