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ABSTRACI 

This is a study of the singularities of the evolutes and 

involutes of curves and hypersurfaces in an, suggested by the 

work of Arnold on Lagrangian and Legendrian singularities. A 

family of parallel surfaces is constructed, which, considered as 

a hypersurface in space-time, appears to be locally diffeomorphic 

to the discriminant A(H 4) of the Coxeter group H4. This is the 

only Coxe t er group, not so far li nke d wi th Ii ngulari ty theory. 

By considering the family of distance squared functions for 

these surfaces, one would be able to find a function 'of type H4 ' 

and so complete the correspondence between Coxeter groups and 

singularities of functions, which was noted by Arnold. 

Chapter One of this work contains algebraic material. A 

method is given for con.tructing a rational parametrisation of 

the discriminant of any Coxeter group. This is used to describe 

A(H 4). A set of generators for the ring of invariants of H4 i. 

calculated explicitly. The re.ults of this lengthy calculation 

(performed by computer) are included as an appendix. 

The second chapter concern. the focal set. of curves. The 

idea of a family of parallel hypersurfacOl, all having the same 

focal set, i. generalised to apply also to families of curves. 



The focal let of a curve is always developable, and 10 its 

properties are encapsulated in thole of its cuspidal edge, which 

we call the apace eyolute of the curve. Results are obtained 

relating the singularities of a curve to the singularities of its 

space evolute. A number of examples are calculated for curves in 

R S and R'. A new and .imple proof i. given of Shcherbak'. 

result, that the big involute of a plane curve with an inflexion 

is the discriminant of H,. 

The third chapter concerns hypersurfaces in Rn. The curves 

obtained by lifting the lines of curvature of a hypersurface M to 

the focal set of M (the raised linea of cunature, or RLCs) play 

an important role. It is proved that the RLCs are geodesics on 

the focal set, and the singularities of the RLCs at singular 

points of the focal set are described. It is suggested that H .. 

points will be obtained by combining A. points (ribs) and H. 

points in a natural way. Therefore, the behaviour of the focal 

sets of surfaces with cuspidal edges is investigated, using 

elementary methods. Surface. M and F are identified, such that 

the big involute of F, and the big wave front formed by the 

parallel. to M, appear to give the di.criminant A(H .. ) (though 

this is not proved rigorously). In a final brief section, it is 

shown that if M i. a .ubmanifold of Itn which is neither a curve, 

nor a hyper.urface, then a family of parallels to M does not 

exi st in general. 
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HISTORICAL lNIJtODUC1"I(If 

In this thesrs we investigate the relationship between a 

k-dimensional submanifold Mk of Rn, its parallels, and its 

f09.1 sot F. This study also involves ideas from two other areas 

of mathematics, namely Co:uter groups and singularity theory. 

Some use i. made of ideas from singularity theory, to help study 

these geometric objects. Conversely, by looking at the geometric 

examples, a function is described we believe ought to be called 

'of type R.', and so from a geometric example, we derive a 

function which it is believed will be of interest to singularity 

theorist s. 

The focal set of a nonsingular submanifold Mk c: Rn can be 

defined in three equivalent ways: 

(1) the envelope of the normal s to M or 

(2)the locus of centres of hyperspheres having at least 3 point 

(o~tact with M or 

(3) the locus of cusps of parallels to M 

If k - n-l, the terms foo.l sot and oyolRto are used 

interchangeably and M is said to be an inyo1.to of F. 

Unfortunately, the term s 'evol ute' and 'involute' cannot be used 

for space curves, since the phrase 'evolute of a .pace curve' has 

been used classically in a way which is not synonymous with the 
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term 'focal .et'. 

The focal set is one of the earliest objects to be studied 

in differential geometry. The evolute of, a plane curve was first 

delcribed by Huyghens in 1659 [17]. Huyghenl allo dilcovered the 

unwinding construction for the involute of a plane curve, and 

noted that this gave rise to a family of parallel curves, all 

having the same evolute. He allo noted that, starting off with a 

smooth curve, cusps may start to appear on the parallels. The 

motivations for this work were the study of light caustics and 

the practical problem of constructing accurate pendulum clocks. 

Further work on curves was done by Bernoulli and 

Tschirnhausen. In 1696 L'Hospital became the first person to 

distinguish between ordinary and rhamphoid cusps on a plane 

curve. He realised the possibility of unwinding any plane curve, 

including those curves which do not occur as evolutes of a 

nonsingular curve, and in [16] he described the family of 

involutes of a plane curve having an inflexion. This family of 

curves, shown in figure (0.2) recently became the focus of 

considerable attention. as will be described below. 

The idea of the evolute in the case n=3 was introduced by 

the French mathematicians of the 18th and 19th centuries. The 

properties of the focal let of a curve and of a surface in R' 

were described by Monge, Darboux and Dupin. The cla.sical theory 

included the procedure for reconstructing a surface in R' from 
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Figure 0.2 The family of Involutes of a Curve With an Inflexion 
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one of the two sheets of its focal set and an associated geodesic 

foliation, which is described in chapter 3 of this thesis. 

Subsequently, the definition of the focal set was extended so as 

to apply to k-manifolds in an for any pair (k,n) [19]. 

Another concept which is equally old aa the focal aet ia the 

idea of parallels to a hypersurface. A hyperaurface Mn- 1 in 

an has a one-parameter family of parallels. Since they describe 

the propagation of light or other wave phenomena, these parallels 

are also calle d wave front a. As remarked by Huyghens, a wave 

front which ia initially smooth can, after a certain time, develop 

singularities. Further historical references concerning the 

development of these differential geometric ideas are given in 

[S] and [26]. 

The second sOOj ect area involved in this thesi s is Couter 

groups. A detailed history of Coxeter groups can be found in 

[6]. A Coxeter group is a subgroup of O(n) generated by 

reflections. They are named after Coxeter, since he was the 

first to enumerate all possible such t~l'oll(Js.l.ij tll·f. In this study, 

we sh all 0 n I y be in t ere s ted in fin i t e Co ute r g r 0 ups. For 

brevity, the word 'finite' will henceforth be omitted, but will 

always be implied when the term 'Couter group' is used. Coxeter 

groups were firat defined as the sets of symmetries of certain 

regular and semi-regular polytopes in an. Thus initially they 

were discrete objects which arose in a purely algebraic context. 

But they then started to reappear in various different contexts. 
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For example, Shephard and Todd showed [30] that Coxeter groups 

can also be characterised as groups whose ring of invariants is 

particularly simple. It was also discovered that most of the 

Coxoter groups (tho se which are crystallolraphic) occurred as the 

Weyl groups of semi-simple Lie algebras. 

The third subject we will be considering is singularity 

theory. An excellent reference for thi s subj ect is [4]. When 

singularity theory was developed in the 1950. and 1960s, one of 

the first results was the classification of simple functions. 

This list brought to light a remarkable and unexpected 

relationship with Coxeter groups, for each simple singularity 

was found to correspond to a Coxeter group. 

But singularity theory also proved to be a powerful tool in 

differential geometry, enabling one to describe what parallels 

and focal sets really look like. The connection with the 

differential geometric problems mentioned above is as follows. 

Given a smooth mani fol d M, one can st udy th e par all el s to M and 

the focal set of M by looking at the singularities of the family 

of distance-squared function on M. This idea is due to Thom. 

Conversely, given any family V of functions, one can construct a 

hypersurface in RN (for some N) having V as its family of 

distance squared functions [4]. 

For n < 10, a list of normal forms for the germ of the 

distance squared function can be found in [4]. From this list, we 

can get a set of standard models for the behaviour of focal sets 
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and wave fronts in )tn. For almost all nonsingular hypersurfaces M 

[33], the big wave front generated by M and the focal set of M 

are locally diffeomorphic at each point to one of the resulting 

standard models. The first few normal forms for the distance 

squared functions are associated with the Coxeter groups At, Dt, 
and Et [4]. These are the groups whose Coxeter Dyntin diagram 

consists entirely of unmarted branches, and are associated with 

function germs on a smooth manifold. In each case the standard 

model for the big wave front is the di.criain.nt of the Coxeter 

group. 

A few years later, it was discovered that the groups Bt and 

F 4 are a 1 so ass 0 cia ted wit h Ii m pie fun c t ion g e r m s. Th e 

difference is that these are function germs defined on a smooth 

manifold with boundary (see [2] and [4]). In the wavefront 

interpretation, one is tating the parallels to (or the focal set 

of) a smooth hypersurface with boundary in Itn. The half-space 

H = {x e Rnl X1 ~ O} is the quotient space Rn/Za for the group Za 

acting on Rn by reflection, so a function on H can equally well 

be regarded as a function on the whole of )tn, which is invariant 

under ref1eotion in some hyperplane. Thus it is pos.ib1e to 

think of these functions as describing the behaviour of the 

parallels to (or fooa1 set of) a manifold M with a line of 

symmetry [28]. The groups Bt and F. are di sti nguished from At. ~ 

and Et by the presence in their Coxeter-Dyntin diagram of 

branches labelled with the integer 4. 
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The remaining Coxeter groups are B. B. and la(k) (k > 5). 

They are (apart from la(6)=Oa) noncrystaUographic, since their 

Coxeter-Dynkin diagrams include branches labelled with the 

integers 5 (in the case of B. and B.) and k (in the case of 

la(k». 

For ten years, it was thought that these groups did not 

correspond to singulari ties of functions. It was then observed 

that the family of parallel curves in figure (0.2), first 

considered by L'Bospital in the 1690s, gave rise to a big wave 

front diffeomorphic to the discriminant of H., which is the group 

of symmetries of the regular icosahedron. This led to the works 

[18] and [29], in which singularities of functions are described 

which are linked to the groups B. and I a (k). The di stingui shing 

feature of these functions is that they are defined on a manifold 

with a singular boundary, e.g. the region of the plane bounded by 

the curve xS=y'. The wave front interpretation is that the groups 

H. and Is(n) should be associated to a family of parallel curves, 

each of which is singular. The distance squared function for 

such a curve is a function on the (cuspidal) curve which is 

obtained as the restriction of a function defined on the whole 

plane. 

Consider the family of curves shown in figure (0.2), which, 

as mentioned above, are associated to the group B •• Each of these 

curves is singular, but their common focal set is a smooth curve 

with an inflexion. Thus the B. family of curves can be 
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constructed by taking the involutes of a smooth curve with an 

ordinary point of inflexion. As well as starting with a 

nonsingular hypersurface and looking at the possible 

singularities of its focal set~ it is thus also profitable to 

investigate what kinds of singularities can arise on the 

iuvoilutes of a nonsingular hypersurface. 

When the singularities of types H. and I.(k) were 

di scovered. Arnold conj ectured that a singularity would soon be 

discovered. which bore a similar relation to the one remaining 

Coxeter group 8 4 • This was one of the aims of the present work. 

The arguments used are mainly geometric. The idea is first to 

describe a type of wave-front. and then by looking at the 

distance squared function to find a function of type H4 • This is 

the opposite to the usual squence of argument. which is first to 

classify certain functions by analytic methods. and then to 

deduce geometric information as a corollary. The present 

arrangement approximates more closely to the order in which the 

ideas are usually developed. and so it is hoped that this will 

make it easier for the reader to follow. 

Another aim of this work is to take a fresh look at the 

differential geometric problems raised above. Let Nk be a 

k-dimensional submanifold of Rn. We may ask the following 

. questions. 
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for a hypersurface in an to be the focal set of some curve (the 

hypersurface must be developable). The essential properties of a 

developable hypersurface are encapsulated in its cuspidal edge. 

which we call the .pace evolpte of M. We compute a number of 

examples in the cases n-2 and n-3. and we provide a new and 

simple proof of Shcherbak's result that the bi g invol ute of a 

curve with an inflexion is A(H.). 

Chapter 3 is about families of parallel hypersurfaces in an. 

The fami 11' of Ii ne s of cuna t ure of M pi ay an import ant part in 

the rei ationship between M and its focal set. and we prove some 

results describing the behaviour of raised lines of cur.ature. 

We explain why the group H. should arise in connection with a 

singular surface having a singular focal set. and then we look at 

the focal sets of some cuspidal surfaces. We describe a family 

• of parallel surfaces in a which we believe give rise to a big 

involute of type H •• and we describe the associated distance-

squared function. which should have a singularity of type H •• 

This chapter concludes with a brief look at focal sets and 

parallels for submanifolds of an with dimension and codimension 

both greater than 1. In this case. the differential geometric 

problems (3) to (5) are still open. even for the case when k-2 

and n=4. 

Before commencing reading the main text of the theai s. the 

realer's attention is drawn to appendix two. which explains most 

of the notation used. 
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mAPrBa 1 

This chapter contains some results of an algebraic nature which 

arose from a study of the discriminant variety A(H 4 ). One of the aim 

of this project was to find a family of wave fronts diffeomorphic to 

A(H 4). Since no published description of A(H4) was available, the 

first step was to describe A(H 4 ), so that when it was found, it would 

be recognized. 

In this chapter, we define the discriminant of a Coxeter 

group and ~rove lome results which provide a description not only 

of the discriminant of H4 , but also of the discriminants of other 

Couter groups. 

1,1 Royle. of Standard Faots About Coxeler Group. 

A refleotion is a linear transformation in O(n) with one 

eigenvalue equal to -1 and all the other eigenvalues equal to +1. 

The set of points fixed by a particular reflection is called its 

alrror. A Cox!ter croup is a finite subgroup of O(n) which is 

generated by reflections. Any such group is a direct product of 

irreducible Coxeter croups. The irreducible Coxeter groups form 

four infinite series and six exceptional groups [6]. We will use 

the notation of Bourbaki, in which the infinite series are 

denoted by An (n~1), Bn (n~2), Dn (n~3), la(k) (k~3), and the 

other six groups are E, E, E. F4 H. and H4. In each case, the 

subscript indicates the dimension of the Euclidean space on which 

17 



the group act s, which will be called the n.!!! of the sroup. Note 

that there is some duplication in this list for small values of 

the rank: Is (3)=As Is (4)"Bs and A .... D •• 

Every Conter group has a fJln4aaoptai rOlion. This is a 

subset of an containins precisely one point from each orbit of 

the action of G on an. We can, and will, assume that a 

fundamental region D has the following additional properties: 

(1) D is a closed convex subset of an consisting of a cone on an 

(n-l) simplex, i.e. the union of the lines joining the points of 

an (n-l) simplex a to a fixed point P not lying in the hyperplane 

of a. 

(2) The n hyperplanes which form the boundary of D are mirrors 

of G and the group G is generated by these n reflections. 

(3) The interior of D does not meet any of the mirrors of G. 

The group G act s not only on an. but a1 so on Cn and on the 

polynomial ring R ... C[x1, ••••• xnl. The action on the ring R is 

given by a.f(.!) III f(a(.!.». 

Those polynomials which are invariant under the action of G 

form a subrins R(G) of R, and for any Couter group G the rins 

R(G) is itself isomorphic to R (see [30]). In other words, the 

ring R(G) is generated by n invariant polynomials f 1 , ...... f n 

which are algebraically independent. These n polynomials may be 

chosen to be homoseneous, and if this is done, the degrees of the 

fi must be as shown in Table 1.1 (see r30». A set of n 
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algebraically independent homogeneous generators for R(G) will be 

called a set of ba.ic in~ariaat polyaoaial, for G. While the 

degrees of the polynomials in such a .et are uniquely determined 

(see £30] or £32]). the polynomials themselves are not unique. 

For example, if fa and f. are basic invariant. for Ba. where fi 

has degree i, then for any)., e C, the polynomials f a and 

a f 4 + ).,f a will form another set of basic invariant s. 

The reflections of any Couter group G form ei ther one or 

two conj ugacy clas Ie sin G. The number of refl ection. in each 

conjugacy class [12] is shown in Table IJ. 

Consider the quotient mapping 7fG:cL->cn/G in the category 

of algebraic varieties and regular mappings. The quotient no can 

be constructed by letting its components be a set of basic 

invariant polynomials for G. Since the polynomials in a basic 

set are algebraically independent, it follows that the image of 

7fG' which is the quotient space CD/G, is the whole of en. 

Furthermore, by the Malgrange Preparation Theorem, ~ is a 

quotient not only in the algebraic category but also in the 

category of smooth manifolds and smooth mappings between them 

(the araument in chapter 6 of r7] for Ak can be adapted for all 

groups). 
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Table 1.1 The List of Irreducible Coxeter Gropps 

Group Order Degrees of Basic No.of Refleotions 
Invariant s in each Conj ugacy 

Cia .. 

An (n+l)1 2,3,4, •••• , (n+l) n(n-1)/2. 
(n~l) 

B 
(:}2.) 

2n.nl 2,4, ..... ,2.n n,n(n-l) 

Dn 2 n- 1 .nl 2,4, .... ,2n-2,n n(n-l) 
(n~3) 

E, 72.61- 2.,S,6,8,9,12. 36 
S1840 

E, 8.91- 2,6,8,10,12.,14,18 63 
2903400 

E. 192.101- 2,8,12,14,18,20,24,30 120 
69672.9600 

F. 1152 2,6,8,12 12.,12 

H. 120 2,6,10 IS 

H. 14400 2,12,20,30 60 

la(k) 2k 2,k k (k odd) 
(k)3) k/2,k/2 (k even) 

A.!!U. is the real part of the image 

of the mirrors under a quotient mapping ~: CD--) CU/G-cn whose 

component s are homogeneous polynomials. As it stands, there is 

some ambiguity in this definition. Two quotient mappings nand 

1(/ for the same group G give rise to two fSf.uJoJ"lct';#1i" • .rts A and A'. 

By the general uniqueness properties of quotient mappings, there 

is an algebraic automorphism of Cn which maps the 

complexification of A 
, 

onto tho complodficaUon of A • But this 

automorphi sm may not preserve the real part of Cn, and as real 
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algebraic subvarieties of an, the fSeudcJi\U':~i ..... is A 
~ 

and A may be 

very different. To remove this ambiauity, we will make the 

following clefittC.tion. 

j>efit\L.Uon 1.2 

The c;li\t.t"",i".,T of ~ 'S ~e.. "st~l~rl~~"lt- c.&'\Jwc1ecl ~ ~ lue'\t .. -t "'-.p 
c.,..,.t\~~t"J 

whOSt-L are homogeneous polynomials with real coefficients. 

This assumption distinguishes one particular real form of 

A(G) for each group G. In £(1.5), we diacuss wh~b'" ~ 

Th e p~JI·scr;I'\'''lClIU,.t A (G) iss 0 met i me s call edt he 

y,riety of non-relular orbita of G. since it consists precisely 

of those orbits containing strictly fewer than IGI points. Yet 

another characterization of A(G) is as the set of critical values 

Proposition 1.3 

Let G be a Co%eter group acting on an. Then for any % e an, 

the set of linear transformationa in G leaving % fixed, denoted 

by Fi %G(%)' i a a Co%eter group. It i a genera ted by refl ecti ona 

in all those mirrors of G which pass through %. 

Proof See [6].Y 3.3. 

Each Co%eter group has an associated graph r (G) called 

its Cox.t.r-Dxntlp dl'lr... The vertices of this graph 

correspond to generators and the edges to relations in a 
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se.e. 
particular presentation of G (for detanst Vol \11·:\). The 

Coxoter-Dynkin diagram of Fix6(x) is obtained from that of 6 by 

removing any vertex corresponding to a mirror not passing through 

x. Thus the list of possible stabiliser subgroups within 6 can 

-easily be wrl t ten down, by looking at all the po lSi ble aubgraphs 

of r (6). 

Proposition (1.3) can be used to describe the local 

structure of 4(G), as follows. 

Proposition 1.4 

Let x e en with Fi~(x) - H where H is a Coxeter group 

of rank k. Then 

(i) There is a linear space L of dimension n-k passing through x 

such that for all y e L sufficiently close to x, Fix6(y) - H. 

(U) In some Dei ghbourhood N' of 1f(j(x), the di scriminant 4(6) 

is diffeomorphic to 4(H) x Rn- k• 

Proof 

N 
Let L 0: n Ni (x) where N1(X), •• .,~(x) is the set 

1 
of mirrors of 6 passing throulh x. Now (1) follows from (1.3) 

and (ii) follows from the uniqueness of quotients and the fact -that the restriction of 71"6 to 7I"G"1(J{) .. J(' must be a -quotient in the smooth catelory for the action of H on JV. 
~roll'ry 1 .5 

4(6) is smooth at ""G(x) if and only if FixG(x) - A1. 
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1.2 Paraaotrl,atlop. of Alil 

Let G be a Coxeter group in which all the reflection. are 

conjugate. This covers the ca.e. An Dn E, E, E. H. H. and 

I s (2k+l). Select arbitrarily one mirror M1 and let the other 

mirror. beMs ••••• ~. Then there will be unit vector • 

• uch that Mi - ( x I x,vi - 0 I. Let H be the Itabillser 

By (1.3). the group H is a Coxeter group. and lince each 

element of H pre.erve. M1. we can consider H as a group generated 

by reflections acting on M1• 

Let TeH: M1 --) M1/H be th e quo ti ent map and let MI denote 

M1 1'\ Mi for i).2. Note that the MI will not all be distinct. 

There will u.ually be 1)air. (l.j) wi th Mi 1= Mj but Mi - Mj- Since 

all the mirrors are conjugate, the discriminant A(G) will be 

equal to the real part of TeG(M1), where 7fG:Cn --) Cn/G is the 

quotient map. Since the map TCG i. invariant under the action of 

H, TeG factors through 7tH' 

Let q be the map defined in commutative diagram (1.6) (see 

next ,age). We shall inve.tigate the properties of the map q, 

which provide s useful information about the di scriminant A(G). 

. 
11\ 

6<~k.s 1 ~ Mry 1- fr p:J'1\'~/cr ,r-ovps L.<\U be. ~i\lV\ 
SM'fIf'I ((.;) . 
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BlaIr .. 1,6 

en-I .. M1/H (- M1 c en --) f!'1/G - en 
no nG 

q 

We observe that the mirrors of the group H cona! st of some 

but not all of the MI. The situation is explained in the 

following easy lemma. 

Le •• a 1,7 The following conditions are equivalent. 

(1) Reflections in M1 and Mi commute. 

(ii) The hyperplanea M1 and Mi are perpendicular. 

(iii) Mt ia a mirror for the action of H on M1• 

Now let x be a point of M1 and let y .. "'G(x). By (1.3), 

the stabiliaer group FixG(x) ia a group generated by reflections. 

If FixG(x) .. A1, this meana by (1.3) that x does not lie on 

any of the Ni for i ~ 1. In particular, no mirror of H passes 

through x, 10 the orbit Hx is regular and 

.. IGI .. .1Q1 
1 ('Y1' ••• ''YN'-'Y1, •••• -'YN} 1 2N 

Also IGxl - IGI sa M - .1§l 
lFi~(x)1 IA11 2 
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The IGI/2 points of Gx lie on the N mirrors of G, so there 

are IGI/2N on each mirror. In particular, there are IGI/2N -

Inxl on M1• This means that a single orbit of n is mapped onto y 

by q. 

Suppose now that FixG{x) .. 1,{21:+1) for some 1:~1 (recall 

that 1,(3) - A,). By (1.3), the point x lies on precisely 21:+1 

mirrors of G, one of which is M1• Without loss of generality, 

x e Mi for i .. 1, •••• 21:+1. Since no two mirrors of 1,(21:+1) 

are perpendicular, none of the Mi is perpendicular to M1 for 

i - 2,3, •••• ,21:+1 and so no mirror of n passes through x. 

Thus Inxl ... In I ... J.Q1 
2N 

Also IGxl... IGI = 
IFixG(x)1 

IG I ... 
I I, (21:+1) I 

IGI 
2(21:+1) 

The Inl points of Gx lie on the N mirrors of G, with each 
2(21:+1) 

point lying on (21:+1) mirrors, so each mirror contains G/2N .. 

Inxl points of Gx. Once again, a single orbit of n is mapped 

onto y by q. 

Suppo se now that FiXa(x) .. Is (21:) for some k~l (where Is (2) 

denotes the direct product A1 x A1). By (1.3), the pOint x 

lies on 2k mirrors of G, one of which is M1 • Precisely one of 

these 21: mirrors will be perpendicular to M1, so that one mirror 

of n pas ses through x. Thus 

Inxl - l.!!L - IHI - IHI - IGI 
lFixn(x) f IA11 2 -iN 
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Also IGxl - __ -121- _ - IGI - IGI 
IFixG(x) I I I, (2k) I 4k 

The IGI/4k points of Gx lie on the N mirrors of G, with each 

point lying on 2k mirrors, so each mirror contains IGI/2N • 21Hxl 

points. This means that two orbits of H, each with IGI/4N 

points, are mapped onto y by q. The above results can be 

summarized as follows: 

Proposition 1.8 

(1) The real part of the image of q is A(G) and the components 

of q are qua sihomogeneous polynomials. 

(U) Let x e N1 and let y - 7tG(x). Then 

the set q_1(y) is 

a single point if FixG(x) = A1 or A, or 1,(2k+l) 

a pair of points if Fixa(x) - A1 x A1 or 1,(2k) 

Reaarks 1.' 

(i) For almost all x e M1, the group Fixa(x) will be A1. This 

is because the point x will not Ii e in any of the Ni for i ~2. So 

for almost all y e A(G), we have Iq-1(y)1 .. 1. This means that 

q is a parametrization of A(G) as an irreducible rational 

algebraic hypersurface in an. 

(ii) Unless G is actually a dihedral group I,(k), it follows from 

enumerating the sub graphs of the Ooxeter-Dynkin diagram of G that 

the only possible stabilisers of rank two or less are 

The case when G is a dihedral group is not of great interest 
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since the discriminant varieties of the dihedral groups are well 

known. 

(iii) The same counting argument used above can be used to find 

the number of pre-images of y for any point y € A(G). 

(iv) Every Coxeter group consists entirely of orthogonal 

transformations in O(n). Therefore they all preserve the 

invariant quadratic form, which is given, if we take an 

orthonormal co-ordinate system, by 

fa(x) - x: + •••••• 

It follows that if rcG and rcu are suitably chosen, the map q 

will preserve the first co-ordinate. 

Proposition 1.10 

(i) If x e Rn-1 then q(x) eRn. 

( U ) S up po seq ( x) e A (G) • Th e n e it her x eRn 0 r q ( x) i s a 

singular point of A(G). 

Proof 

U) Since the component s of 7I'G and 7I'H are a.lumed to be real 

polynomial., the components of q will also be real. 

(U) Suppo 10 q(x) e an with x e a n- 1 and q(x) - 7I'G(P), 

Then q(x) = q(x) yi th x :I x where the bar denotes complex 

conjugation. So by U.8), FixG(p) is either Ia(2k) or a group 

of rank at lea.t 3. Thus by Corollary U.5) q(x) is a sinaular 

poi nt of A(G). 

The set of singular points of A(G) has codimension 1 in A(G) 

and codimension 2 in Cn/G. The above ~roposition therefore tell. 
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us that by looking at q(Rn) we get almost all of A(G). 

Table 1.11 Table of the Groups B 

G H 

D .. 

E, 

1 

The constructions described above can also be carried out 

for the groups Bk F .. and Ia(2m) containing two conjugacy classes 

of reflections. Let M1 and Ma be mirrors in different conjugacy 

classes, let Mi .. { x I x.vi .. 0 }, and let Hi .. FixG(vi)' Let qi 

be the map defined in the commutative diagram below. 

Then the image of each of the maps qi is an irreducible 
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algebraic hyperlurface in en. The real partl of these two 

hypersurfaces together make up MG). 

The following theorem is the result analogous to (1.8) for 

thele groups. The proof will not be given here lince it il 

similar to that for U.8). 

Proposition 1,12 

Let x e en with nG(x) - y 

(1) If FixG(%) .. AI. then x liel on a single mirror of G, 

I qil.(y) I - 1 and I q:t(y) I ... 0 where H,J} .. {l,2} 

(ii) If FiXa(x) .. Ia(2k+l) then x lies on (2k+l) mirrorl of 

G, all from the same conjugacy class, 

Iqil.(y)I .. 1 and I q:t(y) I = 0 where H,J} = {I,2} 

(iii) If FiXa(x) c: I a (2k) then there are two possibilities. 

Either x lie. on 2k mirrors, all from the same conjugacy clals, 

where H,j} .. {l,Z} 

or x lies on 2k mirrors, k from each conjugacy class and 

I qi'1(y) I II: I q;l.(y) I ... 1. 

Tab1. 1,13 Tabl. of til. Gronp. It and B2 

G HI. Ha 

B. Ba AI. x As. 

Bn (n~4) Bn-l Bn-2 x As. 

F .. B. B. 

I a (2m) (m4~J As. As. 
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1.3 11..,1., of Pi.odIllUp.t. 

In this section we give eIampl.e. of the map q introduced 

above. In particular. we describe A(H 4 ). 

II !lip 1 0 1,14 Do Pi .edaln.nt of H3 

This discriminant is alao described in [3] and [18]. 

Let G .. H. acting as the symmetry group of the ico sahedron 

whose 12 vertices are 

(0 + _'t :!:1) o 0) 

where we take all possible combinations of signs and 

't = (1 + [S)/2. 

Then the IS mirror. of H. are [IOJ fl2" 

X, ... 0 X ... 0 I + + 't Xl _ II _ 'tI ... 0 

+ I + 'tXl _ 't X, _ X. = 0 + + I Il - 'tIl _ 't I .... 0 

Let Hl be the plano I ... O. Thon tho fourteen line s 

M{ , ••••• • MI. are: 

Il :!: 'tXI ... 0 each counted four times 

I + 't Il _ X, - 0 each counted twice 

Il .. 0 and II .. 0 each counted once 

Thus, of the fourteen line a M& ••••••• M!., only six are 

distinct. The group H is Al I Al generated by reflections in 

Il .. 0 and II - 0 and we can take 
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The plane M1 and the six lines MC •••••• M!. are shown 

in fillure (LIS). 

Figure LIS The plane M1 and the Sh Lines Mi ••••••• Ml. 

X,'O 

The plane 1tn(M1) is shown in figure (1.16). The six lines 

M~ ••••••• Ml. are mapped by na to four lines. The real part of N1 

is mapped to the first quadrant of the plane 1t
H

(M1). 

31 



Filuro 1.16 The plane 7(U(Ml) for the Group U. 

By [18], 7(0 can be liven by 

whero 

i •• 1 
... XI +x. +x. 

i ( 3) ( • _1 .)(. _1 .)(. _1.) 
, .. 21: - 1::1:1 - 1: :1:. 1::1:, - 1: :1:. 1::1:1 - 1: :1:1 

I~e.. foc.+Ol'J (2't: -3) Me#. (z. 't - f) ctJ'( i(lc ~J.ed.. 
Co.l~{G(,kCr1 s . 32 

(1.17) 



q h liven by 

Y1 + YI 

.: (::) ~ (2"t"-1) y,y. ('Y' _ ,-'y,) 

(71'-1.)Y1YI(Y1 - YI)I('tIYI - 't-' Y1) 

--
x 

y (1.18) 

z 

The discriminant A(H.) • q(a ' ) h shown in Ulure (1.19). 

Figure 1.19 The discriminant variety A(H.) 
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Eliminating the variables Y1,yS from (1.18) gives the algebraic 

equation of the discriminant 

o - F(X,Y,Z) • -8640Y' + 344OY'X' + 3600XY'Z - 455X'y' 

- 795X'ySZ + 20X'y' - 325X'YZ' +40X'YZ - 2SZ' + 41'Z' 

where Z - '[S. Composing F with the map 

x 

-3 2Y '4 5 + 1', S (1.20) 

105Z"1 - 32YX"45 + X"25 

gives 0 • F(~(X,y,Z» = AG(X,Y,Z) where A is a non-zero number and 

o = G(X,Y,Z) = 71761' - 2000Z' - 16200XY'Z + 9000X'YZ I 

- 2025X'y' + 4050X'y'Z - 2025X'Z' 
<1.21) 

is the algebraic equation of the tangent developable to the space 

curve y given by 

• --)(I(s),Y(s).Z(s» -(s,s"3,s',S) 

We have thus shown that there is a real algebraic automorphism 

(given by <1.20» mapping MR,) onto this tangent developable, as 

stated in [3]. 

8xaapJe 1.22 ne Di.cdaiynt of B4 

We shall describe this variety by looking at hyperplane 

sections, for two reasons. Firstly. because it is easier to 

visualise a family of surfacea in a· than a lingle hyperaurface 

in a', and secondly because this i, what is needed for the 
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application we have in mind (one-parameter families of surfaces 

• in It). The next four paragraphs actually apply to any Co:uter 

group G. 

Let Se denote the invariant quadrio in Cn with equation 

a a I 
'"' Z1 + ••••• +zn and et qa denote tho map 

defined in the following commutative diagram. in which all the 

vertical arrows are inclusions. 

q 

en-1 - M1/H <-- M1 c::: .,r" en en ---) en/G -
i 

"H 

I i 1 7TH "'G 
Hyperplane (-- Se t'\ M1 C Se --) Hyperplane 

fa'"' e fa - 8 
in en-1 in f!1 

Let A(e) denote the intersection of A(G) with the hyperplane 

fa c e in Cn• Then A(a) is the real part of the image of qa. 

Furthermore the sections A(e) (a e R) are a generic set of 

sections of A(G). A family of sections of G can be characterized 

as the level sets of a real-valued function defined on A(G). 

Almost all smooth functions on A(G) can be expressod as the 

composition fa e of fa with a lolf-diffeomorphilm 9 of Itn which 

preserves the di Icriminant A(G) (see [1]), and. if a function can 

be expressed in this way. its level loti will be essentially the 

same as the lectionl A(e). Therefore. by describing the surfaces 
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A(s), we are describing almost all families of sections of A(G). 

The map x-».,x (A € C, A FO) commutes with every element 

of G and so induces an algebraic automorphism ~A of en/G. Then if 

A e a, this automorphism maps A(e) to A(A'S). The same is 

true for A ". i provided that all the invariants of G have even 

degree. This condition is necessary to ensure that "A maps real 

points of CD/G to real points, and is satisfied by the groups F. 

and 8 •• So if s 1= 0, there is an algebraic automorphism of a n- l 

which maps A(a) onto A(l). 

Let Ai (a) "" ACs) () 7I'GCan ) and 

Let A 2 (s) "" A( e) () q (an) 

Th e n A 1 C s) c:: A 2 ( It) <= A( It ) 

The group 8. is the symmetry group of the regular polytope 

{3,3,5} in a· which has 120 vertices and 600 tetrahedral cells 

([to) {I·S). The dual polytope U,3,3} with 600 vertices and 120 

dodecahedral cells also has H. as symmetry group. 

A fundamental region for the group H. meets the hypersphere 

8 1 in a curvilinear tetrahedron T. This solid tetrahedron is 

mapped homeomorphically onto its image by 7I'G' and the real parts 

of the mirrors are mapped on to the boundary of the tetrahedron 

7I'G(T). Thus A1 (1) is homeomorphic to the boundary of a 

tetrahedron. 

The tetrahedron T is shown (after projection and application 

of a suitable homeomorphism) in figure U.23). The stabili sera 
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• • '·· ... 0 

Fi lure 1.23 

•• D 

• • o 
• -

swallowtail 

Fi gure 1.24 

transverse solf-i t D ersectioD 
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of vertices and points on the edges of T are shown in this 

drawing (by (1.3) the stabiliser of any other point i, Ai). The 

differentiable structure of Al(l) can now be deduced by applying 

C1.4): see filure (1.24). 

The next sta8e in this discussion is to describe As(1). We 
.... Iet. 

can /...(Ooj ~g·1) a co-ordinate system in which the 120 vertices of 

the polytope (3.3.5) are 

(!1 0 0 0) (O!1 0 0) (0 0 !1 0) (0 0 0 !1) 

(1.25) 

(take all combina tiona of si gns and 

all even permutations of the co-ordinates) 

and the mirrors of H4 are the sixty hyperplanes of the form 

(x I x.v .. O} 

where vi. one of the vectors Ii sted in <1.25). 

Pa(x) 

Let 7fo(x) - pia (x) where Pi is homogeneous of degree i 

Pa.(x) and pa(x) 
a a 

-Xl+ ••• +X4. 

P .. (x) 

Illustrations on Page 37 

Fi gure 1.23 

Figure 1.24 

The tetrahedron T with the atabili sera of 
vertices and of point. on the edge •• 

The differentiable structure of Ai (1) • 1fG(T) 
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Let M1 be the hyperplane X4 = O. The polytope {3.3.5} 

intersects M1 in an icoddodecahedron: a semiregular polytope 

with symmetry group H. formed by the intersection of a regular 

icosahedron and a regular dodecahedron (~~ ). The group H 

has order 120 and preserves this icosidodocahedron. so must be 

Let 0 be an icosahedron lying in M1 with symmetry ,roup H 

and let f be a dodecahedron lying in M1 with symmetry group H. 

By direct calculation. the 59 planes M' ...... M'" are: 

(A) The 15 planes { x e M1 I x.v=O } where v is the position 

vector of the midpoint of an edge of the icosahedron 0 ( or 

equivalently where v is the position vector of the midpoint of an 

edge of the dodecahedron ~ ). These are the IS mirrors of H. 

(B) The 10 planes ( x e M1 I x.v ... 0 } where v is the 

po si tion vector of a vertex of the dodecahedron ~. 

(C) The 6 planes (x e M1 I x.v III 0 } where v is the position 

vector of a vertex of the icosahedron O. 

This list seems to consist of 31 planes rather than 59. 

But in the enumeration of planes MI ••••• Mlo. each plane in the 

set (A) occurs once, each plane in (B) twice and each plane in 

(C) four times. So taking multiplicities into account, the total 

number of planes becomes 59. 

The quotient map nH can be given [18] by equations 

(1.17). Tho images of the planes MI, •••••• wo under nu are: 
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(A) The di scriminant surface A (H.) of 

the sroup H .. H. shown in fisure (1.19) 
(1.26) 

(B) The pi ane i 10-=0 

(C) The plane i,=o 

The plane ia-.l in )11/H is mapped by q to A(1) and the 

pod tions of the points (A) (B) and (C) of Cl.26) are shown in 

figure (1.27). The map q can be thousht of a. a set of 

instructions on how to fold up an (elastic) sheet of 'Paper to 

form the surface As(I). 

The behaviour of the surface As (l) alons the sinsular 

curves (A) (B) and (C) can be deduced by numerous applications of 

(1.4) (see fisure 1.28). For example, As (l) has a curve of 

transverse self-intersections along q(A), an ordinary cuspidal 

edse along q(B) and a rhamphoid cuspidal edge along q(C). 

Here an ordi nary cuspi dal edse is one whi ch is loc ally 

s • diffeomorphic to the surface x -y and a rhamphoid cuspidal edge 

is one which is locally diffeomorphic to xS-y' (see (3.3')~ 11·",,)). 

This completes the description of As (l) and we now describe 

Illustrations on Page 41 

Figure 1.27 The plane i s-1 in M1/H. 
This plane is mapped by q1 to the surface A.(1). 
The tetrahedron A1 (1) is the image of the shaded 
area and the portions of the curve (A) mUlt be 
identified as shown. 

Fisure 1.28 Critical points of tho map q1, 
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Fi gure 1.27 

Fi lure 1.28 

A 

swallowtail 

J 
transverse 

Belt . intersection 

transverse 
se1£-i ntersecti Olli 

41 
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rhamphoid 

cUlpidal ed ge 

cu.pida1 . I .d,. 

Q 

ordinary 

cUlpidal edle 



A(l)-A s (1). Suppo se 7fG(x) e A(1)-As (1). then by (1.4) and (1.10), 

FixG(x) is either A1 x A1 or Is(2m) (m ~ 2) or a group of rank at 

least 3. The second possibility is ruled out because -tf..e. ~~ 
:D)ftk,-" ~i"",'41\'" ~,. -r'L (2.,.,.) is not' fA $ub,{'Q," .tf 
-ti'lllt ~V" HIf. ' and the third because if FixG(x) has rank 3, 

then x lies on the complexificaUon of one of the 4 edges of a 

fundamental region D for the action of H. on C·. But each of 

these edges meet S1 in 2 real antipodal points, which must be x 

and -x and so 7fO(x) e A1(l). This is a contradiction. 

Thul FiXa(x) - A1 x A1 and 10 x lies on one of the 15 

mirrors of H. of type (A). Thus rru(x) lies on the rational curve 

'1I(A) formed by the section is" 1 of A(Ha). Hence 7fG(A) -

q(nu(A» is allo rational. 

Fi gure (1.29) The lurface A}l) 
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The image under q of the real part of nB(A) is a portion 

of the curve coming from infinity. passing through CUlpS at q(Q) 

and q(R) (see figure (1.27» and terminating at the Iwallowtail 

q(S). Consequently in 4(1)-4 a (1) this curve must continue 

smoothly away to infinity. as the real line of intersection of 2 

complex conjugate sheets of the discriminant. Thil curve 

completes our picture of the scction 4(1) of 4(H 4 ) 

(see fi lure 1.29). 

Finally we describe 4(0). By considering the degrees of 

the polynomials i,. i10. pia. pao. P.o. the restriction qo of the 

map q to the plane i a "" 0 must be of the form 

. (i a a • I 1.- ,.i10)-)(ai,.bi1O,ci1O+di,) 

Sin c e (b y ( 1.7» t his map m u I t be i nj e c t i v e aim 0 s t 

everywhere, the constants a. b. c. and d are all non-zero. By 

makin.linear changes of co-ordinates in source and target. we 
..... d .c,.! 

may arrange that a D b-ca 1L. Thus 4(0) has the parametriaation 

(1.30) 

Thil surface is shown in figure (l.31). In filure (t.32) 

the plane il-o is shown with the critical points of qo indicated. 

Thi I figure clearly Ihows how 4(0) can be obtained from 4(8) for 

8 f= 0 by letting the tetrahedron 4 1(8) shrink to zero size. 
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Figure 1.31 The Section A(O) 

real C UrY e 0 f 

self-intersection of two 

cOllplOJ: sheet s of surface 

I 
rhamphoid 

cuspidal edge 

ordinary cuspidal edge 

ordinary cuspidal edge 

rh amphoi d 

cuspidal edge 

I 
Figure 1.32 The plane ia - 0 with the Critical Points of qo 
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The re.ult. of the above work can be summarized a. 

follow. : 

Propo.ition 1.33 

U) A(H 4 ) i. an irreducible rational algebraic hyper.urface in 

1t4 , 

(ii) The .ection A(O) i. given by equation (1.30) and 

illustrated in figure (l.31). 

(iii) Any section A(e) for e I- 0 i. diffeomorphic to AU). The 

surface AU) is .hown in figure (1.29). It has a parametrization 

q for which the critical points are as shown in figure (1.28). 
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1.4 Calculation of Invariant Polyno.ials 

Explicit formulae for a basic set of invariant polynomials 

are given in [15] for the four infinite series, in [18] for the 

group H., and in [11] for E,. 

The purpose of this section is to obtain explicit formulae 

for a basic set of invariants for H •• During this calculation, 

we discover some facts about the structure of the group 8., which 

we believe are of interest in their own right. 

The invariants of 8. are polynomials in four variables of 

degrees 2,12,20 and 30. Because of the large number of terms 

involved, a computer had to be used. To minimize any pOllibility 

of error in the computer programs, the calculation was performed 

by two different methods. The same answer was obtained by both 

methods. In order to find the basic invariants of 8., we first 

need to find those of F.. This is done using the lame two 

methods. 

These two methods can be summarized as 

1) averaging over all elements of the group and 

2) using two subgroups that generate G 

Let <.> denote the usual inner ~roduct on Rn, and let 

pYi(x) ~ Z ( · · ,,(y»i ~ 2: (,,(x). y )i 

6"~H~ trEH4 
As polynomials in x, the pI are clearly invariant. Let 

d(1), .... d(n) be the degrees of the basic invariants of G. 

ftopo,itloD 1.34 

(i) For almost all y eRn, the polynomials py d(1), ••• ,py den) 

are algebraically indooendent, and hence form a set of basic 
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invariants for G. 

(H) The group F. with order 1152 _ 2'.3' i. the .ymmetry group 

of the self-dual regular polytope £3.4.3) in It· (lee (10)). 

For G - F., Y may be cholen to be any of the following pointl: 

1) a vertex of {3.4,3} 

2) the mid-point of {3.4,3} 

3) the centroid of a triangular face of (3,4.3) 

4) the centroid of an octahedral cell of (3,4.3) 

(Ui) For G - H., y may be chosen to be either 

1) a vertex of (3,3,S1 

or 2) a vertex of (S,3,3) 

Proof 

The result (1) is due to Flatto and Weiner. In [131, they 

show that pyd(1) ••••• pyd(n) are algebraically independent 

provided that y does not lie on a certain algebraic .ubvariety of 

Rn. To verify the suitability of tho particular chOices of y 

given in (ii) and (iii), we calculate the Jacobian 

a (Py d (1) , ••••• py d (n» 

a (X1, ••••••• %n) 

This il a lengthy calculation which will not be reproduced 

here. Q€"D. 

The second method of finding the invariant. il to choose 

subgroups [1 and [a such that G - Gp <[1,l:a >. Then a polynomial 

will be i nvari ant under G if and only if it iii nvari ant under 

tho action of both [1 and [a. ThereforeR(G) -R(1:1) n R([a). 

If the invariants of [1 and [, are known. we can calculate those 

of G by finding the intersection of the two known rinSI. The aim 

i. to choose [1 and [a a. large.s possible, 10 that the ring' 
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R(K1) and R(Ks) "ill be fairly small. 

We can choose (see [10]) a rectangular Cartesian co­

ordinate system for 2· in "hich the 24 vertices of {3.4.3} are: 

(il 0 0 0) (O;tl 0 0) COO:!:1 0) 

(0 0 0 ':1) (:t1/2 '!:.1/2 '!:.1/2 .!1/2) (1.3 S) 

(take any combinations of signs) 

We can partition the 24 vertices of {3.4.3} into three aets 

of eight in such a way that each set of eight form. the vertices 

of a croas-polytope {3.3.4} .. fl. (DD] ~J>.2.). The symmetry ,roup 

of each fl. "ill be a copy of B. which forms a .ubgroup of index 3 

in F.. Thus F. contains three copies of B.. Let [1 be the 

symme try group of th e fl. "ith verti ce s 

(:!:l 0 0 0) (0:!:1 0 0) (0 0 :!:1 0) (0 0 0 ! 1) (t.3 6) 

and let Ks be the symmetry ,roup of the~. "hose vertices have 

co-ordinates 

(.!1/2 Z1/2 Zl/2 Zl/2) (1.37) 

(take an even number of + signs and an even number of - signs) 

1 I) Then R([1) = C[dl.d •• d,.d.l. "here d1i" O'i(:l:1, ••• :I:. 

and O'i are the elementary symmetric polynomials. 

The ring R(K 1 ) is C[el.e •• e6.e'l. "here 

el ... dl - xl + •• + :1:1 

e ... d. + 6s. (1.38) 

e, cd, + diS. 

1 
e ... 8d. + 4d.84 - dl S, 

8i nee IG:[11 .. 3 and K1 '1= KI. "e have G - Gp <K1.KI). 

To find a basic invariant f, of degree 6 for F,. it is 
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sufficient to find Ai such that 

This is done by substituting suitable values for (Xl, ••• ,:14) 

to give simuitaneoul linear equations for the Ai. A similar 

procedure will give basic invariant. f, and flS havin, de,reel 8 

and 12. 

Proposition 1.32 

Tho followin, polynomial. form a let of basic invariants for F •• 

fs .. ea ., da 

f, .. d: + 48d, - 8d.ds .. 48e, - 80.ea + 0: 

8 s I • ., -4 Oe, - 240e,es + 1600. - 400.es + 3ea 

f ' • Sl~' • is .. ds - 28d.dl + 240d.dl -v40d. - 192d,dl + 1440d,d.dl 

- 4320d: - 7200d,d: + 23040d,d. 

- 640e: + 240o~e~ - 28e.e~ + e1. 

Proof 

By solving tho simultaneous linear equations described above 

UsiD, a computer. QGp. 

Now we repeat this procedure for B., which we recall from 

§(1.3) is the symmetry group of the regular polytope 

{3,3,S} or of its reciprocal {S,3,3}. 

We can c h 00 s e ( [i oJ ~ g. 5 ) 24 0 f the I 20 ve r ti c e s 0 f (3,3, S ) 

in ,uch a way th at th ey form the verti co I of an i nscd bed 
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polytope {3,4,3}. The intersection of the symmetry sroups of 

these two polytopes is a subsroup of index 25 in H. and index 2 

in F. which will be denoted by hF •• This stands for half of F •• 

AlthouSh it is of no significance for the remainder of the 

argument, we note here that there are 25 different subsets of the, 

vertices of a given {3,3,5} which form an inscribed {3,4,3}. 

For computational purposes let F. be the symmetry group of 

the polytope {3,4,3} whose 24 vertices are given by (1.35). 

(!1 0 0 0) (0 ~1 0 0) (0 0 ~1 0) 

(0 0 0 ,fl) (,f1/2 ,f1/2 i1/2 ,f1/2) 

(take any combinations of ligna) 

Let the remainins 96 vertices of {3,3,5} be 

(take all combinations of signs and 

all even permutations of the co-ordinatea) 

(1.35) 

(1.40) 

Let K1 e hF. and let Ka be the atabiliser of the vertex 

( 0,0,0 ,1) • By (1.3 ) , ( s =H •• 

By proposition 4.7 of [32], the rinS of invariants of hF. is 

R(K1 ) - (1+ju)C[fs,f"fl,fu] 

where ju is the product of 12 linear factora vanishins on those 

mirrors of F. which are not in hF., and the fi are the invariants 

of F. Siven in (1.39). 
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(1.41) 

i10:(1Y-l)(-xt-%~-%1i2xtx~12xtx~~~)('t2xi~~x~>('t2x~~~x~>('t2x~~~ x~) 

ju ... (2't-1) n. (xi - xj> 
t~-J 

j~2 e C[f s ,f6,fl,flS] 

't ... (1 +[5)/2 

Provided that I1 and Is generate H~, the procedure used for 

F~ will give the invariants of H~. 

Proposition l 1.42 

Be.. of. t'e.. 'f' ('0",'1\9 

-fo"o&J"-'~ f"esult; . 

that 

The polynomial s ps ,pu ,pu,pu given in Appendix 1 form a basic 

set of invariants for H~. 

Proof Similar to the Droof of (1.39). 

We now give the proof that I1 and K2 generate H .. 

Propo.ition 1.43 

Proof 

LCM(IK11,IKsl) - LCM(S76,120) - 2880 so either H""H~ or IH~:HI-5. 

So it is suffioient to prove that H~ has no subgroup of index 5. 

Let G' denote the set of linear transformations of 

determinant +1 in G. Then G' 4 G with IG:G'I - 2. 

Lot nn : Spin(n)--> SO(n) be the standard double coverins map and 
~ 

let G' - n;l(G'). 

,J ~ 
We will now identify all normal subsroups of H: H: H: H: and 
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The group H~ is the well known simple group of order 60. If 

N 
,..10 0 4 H. then re.(N) <1. H. so it follows that N is either 1 or 

"'0 1 
H. or the group n' (1) of order 2. 

We now need the following result. 

Propotltion 1 ..... 

proof 

~o ~o "'0 
H" "" H. X H. 

If q is a quaternion then the rOfl part of q is Re q - 1/2(q+q) 

and the puro part of q is Pu q - 1/2(q-q). We identify." with 

• the space of quaternions B - • e. where the summand. is the 

• reals and the summand. is the set of pure quaternlons. The 

• group Spin(3) - S is the set of quaternions of modulus 1, and 

the double covering re.: Spin(3) -> SO(3) is given by 

q---> p(q) I.' 

where p(q)(x) == qxq _ qxq_1 

In fact the map p(q) is an element of SO(4) fixing the plane 

of 1 and pu q and rotating the perpendicular plane through an 

angle of 2 cos- 1 (Re q).,yi:;Jf(' 

Let I c: S· c: It" beth e Ie t 0 f 120 v e r ti c e s 0 f {3, 3 ,5} in 

the position given by (1.35) and (1.40). We claim that I is a 

group under quaternion multiplication. By identifying R" with B 

we may consider re,(I). For each vertex z of (3,3,S), we can i 
f 

----------------------------------------------------------------------------------- J 

~ This can be seen by expressing q as the product of two pure 
quaternions q "" P1pa in such a way that IPi' - 1 and Pi is 
perpendicular to pu q for each i (this is possible by l2S] 
proposition 10.17). Now p(q) - P(P1)p(pa) and for a pure 
quaterion P the map (-p(p» acts on the space of pure quaternions 
R' as a reflection (see [2S] proposition 10.21). Thus p(q) I.' 
has been expres sed as the product of two reflections. 
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check that p(z) permutes the vertices of {3,3,S}. Thus p(z) e H: 

and, since p(z)(I)-1 for all z e S·, p(z) e Fix n4 1 ). 

But IFixH·(1)1-60-ln.(I)I-IH~1 

" Thus 
'0 ~o n,([) .. H, and I - H, is indeed a subgroup of Spin(3). 

Now Spin(4)- S' X S' where (q,r) e Spin(4) acts on the 

quaternion x e a" by quaternion multiplication according to the 

formula 
n .. (q,r)(x) - qxr 

Conal der the subgroup I x I of Spin(4). Since it permutes 

"'0 
the 120 vertices of (3,3,5), it must be a subgroup of H ... 

But I I x I I - 14400 .. IH~ I. Thus II: = I X I .. H~ X H~. 

Thi s completes the proof of (1.44). We now continue with the 

enumeration of normal subgroups. Suppo se that N 
"'0 
H .. , then N 

must beN1 xN. for someNi ~<l In other word. each Ni is 

1 "'0 either 1 or n. (1) or H •• 

Now suppose thatN <J H:. "'0 
H .. so there 

are three non-trivial cases 

(1) N=Z(H .. ) the centre of H .. which lias order 2. 

(2) N-IL a copy of I acting by mul tipli ca tion on the left. 

(3) NaIR a copy of I acting by multiplication on the right. 

Finally suppose N<l H... Then either N 4 H: or N has a 

subgroup NO of index 2 with NO <l H: and NO c:j H ... 

We rule out any involvement of the groups IL and IR by 

noUns that they are conjugate in H ... If c is the map q --)11, 

then cILc- 1- I R• Thus neither IL nor IR is a normal subgroup of 

H .. , and so the only nontrivial normal subgroups of H .. are as 
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follows 

Z(H.) (with ordor 2) and H: (with order 7200 and index two). 

We are now ready to complete the proof of (1.43). Let N < H. 

with k - IH.:N I ~ 3. Let S be the set of right COlets of N in H •• 

Then H. act. transitively on S by (Ng)g' II; Ngg'. This action 

gives a homomorphism a from H. into the Iymmetric group Sym(k). 

The kernel of a must be a normal lubgroup of H., and (since the 

action is transitive) the kernel ia either 1 or Z(H.). But 

14400 - IB.I - 11m allIer al ~ 211m al ~ 2ISym(k)1 - 2(kl) 

So k ~ 8. 

We have thus proved the following propOsition. 

Proposition 1.45 

• H. has no subgroups of index less than eight apart from H •• 

The only non-trivial normal subgroups of H. are B! and 

Thi s of course completes the proof of (1.43). We might hope 

that an invariant polynomial f contains some geometric 

information. For example, the algebraic variety f=O might have 

some geometric significance. The group theoretic information 

above gives the following rOlul t. 

Proposition 1.46 

Let PI p1a pa. p •• be any set of basic invariants for H. and let 

fa f. f. f1l be any basic set of invariants for F •• Then each of 

the polynomials fi and Pi is irreducible over ~ 

Proof 

This is a case-by-case argument. Since the discussion is similar 

in each case, we only give details for Pu. Suppose that PI. is 
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reducible. It must then factorise into k irreducible factors. 

each having degree J. such that jk-30 and such that B. permutes 

these k factors. 

The k factors are th e equa ti ons of d di sti net i rreduci bl e 

surfaces in Cpl. where d is a factor of k and B. permutes these d 

surfaces. We thus have homomorphisms 

0'1:B. --> Sym(k) and 0'1 :H. --> Sym(d). 

As in the nroof of U.43).we must have k,2 or k~8 and d~2or d~8 

The only po.si bill tie s are therefore 

j .. IS k .. 2 d .. 1 or 2 

j .. 

j -= 

j .. 

PIG 

3 k .. 10 d .. 1 2 or 10 

2 k -= IS d .. 1 or 15 

1 k .. 30 d .. 1 2 10 IS or 30 

Suppose j-1S and k=2. Then the two irreducible factors of 

• are each invariant under B •• But by propo Ii tion (4.7) of 

[32] the ring R(B:) is 

(1+P60)C[PI P11 PIO PI.] 

where P60 i. the product of 60 linear factors vani shinR on the 

mirrors of B.. Thus R(B:) contain. no polynomials of odd degree. 

which contradict. our assumption. 

Suppo.e j-l and k-30. Then PI. is the equation of the union 

of d planes in Cpl. Let S1 be the invariant quadric PI -1 and 

let P be the sot 

p .. ex e cp l I x is the polar with respect to the quadric S1 of 

one of the d plane. given by P,. - OJ. 

Then the set P contain. d points and must be the union of 
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.,-~ f!SL4tt (I. 't6) *\e.c.AS +It tit +C..e. ',,,ta/)'-ds "r "'"I, 
a...f\.;t ke. \1I.'iuprWJ. ~."tQjf~ .'~ 0.. ~~ ~ ~ 
~~ of t..t J. A ~"( stt' ~ if\VOJ'l~ e.x.ilil ~r 
t4) (~\-J~ ~~ l.\'?-) s~ ~ i-wo {- ~ i'TVAI"i....,is~ 
;, ~ ~'O, fac4r,"se i~ t;~~ ~rt. Tl.ese ~cJr.>cs 
a.re,. ~ ~I\$ cf ptc-~ w~c.i. cJe (>tff4U'cU~lar f.c 
~ ~s J'c>;IV"j ~~ 'I'eJ'~CR..S ~ A JoJtOAkJr,..,. 
fSf' reo $Q,"-e.kC'1'\ • 

~'1 ~ic ~~ Of 'l\\IQA'l~ ~ ~'f wi" kc."bt.. 
~vr ",.r~;JcAc..c·"l.e. ~~fffl~e..s '"" (C"'. One. (~}v-er. 
~ ~ ') ,.,. o.-.~ <ON!.- I"ecJ. fP'...k-. T~ ~v,.c. 
c,p,,~ l?e:hJCIfA ~ ~ ~~\I"~c.t.$.~.t. ~ 
~~io~S ~l. 3, 5l ~ (5, 3, 3 ~ '"""~ W~ ~ 
~j~'j ':JfNp '.r ~ od- -J.( d.t~ . 



orbi t I of th e action of H. on Cp·. (Thi s acti on can be obt ai ned 

from the action of H. on C· by considering cpt al the set of 

lines passing through the origin in C .. ) But the smallest orbit 

of this action il the orbit of the vertices of {3,3,s} which 

contains 60 point s. We thus have a contradiction. 

Suppose d-l and k-lO or 15. The k factor. of P.o must be of 

the form P.P" ••••• p"k-l where" is a primitive kth root of unity. 

Any element of H. must act on these factors by multiplying all of 

them by "i for some i. Thus the image of CJs:H. --> Sym(k) i. 

cyolic of order k and so H. has a normal subgroup of index k. 

This contradicts Cl.4s). 

1t ('f.""~'·tll -10 COI\sJet fie. ~-s~ ,.... wW 
To eliminate the remaining cases let Ps ••••• Pd be the d 

surfaces given by PIO=O and let Qij - Pi n Pj n So where So 

is the invariant quadric cone P2 K O. The group H. permutes the 

point. Qij in cp •• But each set Qij has 2j2 points and there are 

d(d-1)/2 such set •• Thus the total number of points i. d(d-l)j2. 

But the orbit. of the action of H. on Cpa have sizes 720,1200. 

1800, 3600 and 7200 and there is no way of combining these 

numbers to got d(d-1)j 2. Qt:.P. 

,,5 Do Val_Mil of til. J)112rilliuat '.ri.tx 

In this section. we investigate the extent to which the 

variety A(H.) described in detail above is in fact unique. More 

generally, we look at the uniqueness of 4(G) for all group. G. 

In order to make lure that our object of study was well defined. 

we a.lumed that the components of nG were real homogeneous 
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polynomials. One can weaken these assumptions by looking at 

\,~clcJ..iscriminants formed from quotient maps 7TO whose components are 

complex homogeneous polynomials. non-homogeneous polynomials 

(real or complex) or analytic invariant maps. In this section we 

shall only look at constructed from quotient maps 

whose components are complex homogeneous polynomials. 

Definition 1.47 

A hypersurface in an is real if it is mapped into itself by the 

complex conjusa tion invol ution of en. 

It can happen that thero i. a quotient map 7TI with complex 

components such that the image of the mirrors is a real 

hypersurface Al which is clCDIII1(- ~discriminant for O. Let 71'1 

be a real quotient map for 0 and let AI be the associated 

discriminant. discussed in ~ 1.2 to § 1.4. Each of the two 

quotient maps 7Tl and 7T1 factors through the other. and so there 

is always a complex algebraic automorphism ~ of the quotient 

space mapping Al to AI. We are considering Al and AI as real 

subvarieties of an. and so we want to know whether there is an 

algebraic automorphism of an mapping Al to AI (or equivalently. 

whether the map; preserves the real part of Cn). 

ExaapJe 1.48 Dihedral Gro¥p. 

Any plane curve which is diffeomorphic over C to MIIU.:» 

must be the set of zeros of a function.A.. equivalent to Xl - yk. 

Therefore if k is even there are two forms of ~di scrimi nant. 

givon by 
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If k is odd. the p~J~,'scI'.A:~ is unique and is given by 

Xl _ yk = O. 

Example 1.49 The Dl,eriminapt A(D2k1 

The mirrors are Xi =!:Xj for i F j. 

Lot O'i be the i th elementary symmetric polynomial in 2k variables 

and let 

s s 
A2i .. O'i(x1 •••••• x 2k.) 

112k. .. x 1X s ••• x2k. 

pfi .. ()·2k. :!: i J12k.) 

Then the maps 

for 1 ,( i , 2k.-l 

\ 

(A. s ••••• A.4k.-2. J.l2k.) 

ns:X --> /' 
(A I ••••• A2k. ..... A4k-2.p1k. 

(1.S0) 

(1.S1) 

are both quotients for D2k' and the hat denotes that a term has 

been omitted. 

If k.~. consi der the two line s I .. A 

These lines have the following properties. 

!1 
1 
1 
1 

(1.S2) 

(i) Each line is an edge of a fundamental region for D2k.. 

(H) A point x e en liol on one of those linel if and only if 

Under n1. these two linos are mapped to two real curves. and 

under ns they are mapped into two complex conjugate curves. 

S8 



Since these curves form the sot of singular points 

must be preserved by any automorphism of the quotient space which 

maps Al to Aa. Honce any such automorphism cannot be real. 

If k=2,consider the images in the quotient spaces of the 

three 

These curves are tho locus of singularities of type Ai x Ai X Ai. 

Under 1fl all three line s are mapped to real curves, while under 

na they are mapped to one real and two complex conjugate curves. 

Proposition 1,54 

Let JIj, be a quotient map for H .. with complex homogeneous 

polynomials as components, such that the image of the mirrors 

constructed from 1fl. and 1 et Aa be the di scriminant 

of H .. do scribed in (1.33). Then there is a real algebraic 

.. automorphism of R mapping Aa into Al. 

Prool. 

Let 1fa be the quotient map described in g 1.3. Lot Gc denote 

the set of algebraic automorphism. of Cn of the form 

Pa aps 

Pla bP12 
, 

~ 
+ CPa 

dpao 
.. + f 10 Pao + eplaps Pa 

(1'5~) 

a • • , 1. 
P .. gpu + hpups + ipsops + jP12Ps + kps 

where a •••••• t. are complex numbers. and let Gr denote the 

subgroup of Gc consisting of those automorphisms for which 

a ••••• k are all real. Then 
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(1.56 ) 

for some & e Gc• The aim is to prove that U.56) holds for 

Some e e Gr , using the fact that A1 is a real hypersurface. 

For any complex number ~ of modulus 1, the map 

ps ~ps 

P1S 
, 

~ Pll 
fSll : 

10 
Pso ~ Pao 

PIO 
1. 

~ PIO 

is a member of Gc which preserves As. 'We may therefore .llume 

that &(As) - A1, where & is an element of Gc given by U.SS) 

with a e R. 

We may replace As by d(A s ) for any map d e Gr , without 

affecting the truth of the result we are trying to prove. We 

shall now do this. The discriminant of H. includes four 

distinguished curves: the curve of H. points, the curve of points 

of type Is (ShA1, the curve of .wallowtail s, and the curve of 

point s of type As xA1. There is a map ; e Gr such that on ;(As) 

these four curves take the particularly simple forms 

t t t t 

o t' at' 

o o 

o o o 

The images of these four curves under a map e e Gc are 
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at 

ct' 

at 

(b+c)t' 

(e+f)t lO 

(h+j+lt)t 11 

at 

(ab+c)t' 

(d+ae+f) t 10 

~l.~ +i+aj+lt)t1l 

at 

(f3b+c)t , 

(yd+~e+f)t 10 

(g+f3 l h+yi+f3j+lt)t l • 

By assumption, a is real. If &(A I ) = A1, the four curves (1.S7) 

'Will all be real and so b, c, d, e, f, It, (h+j), (aah+i+aj), and 

(g+f3 ah+yi+Pj) are all real. To complete the proof of (1.S4), it 

only remains to prove that I, h, i, and j are real. 

This follo'Ws from considering the surface of I,(S) 

points. This is the set of points at 'Which the ~«r,'''''''''~ is 

locally diffeomorphic to A(I,(S»xR I • This set is a t'Wo-

dimensional a1 gebraic subvariety of the f~SCl','Itt,'<ta.tt, and it must 

be real in both AI and Aa. since other'Wise a second surface of 

II(S) points could be obtained by complex conjulation. 

Let:! be the set of la(S) points in Aa. The surface-:S 

is the image under q of the plane i,=O. Since -S contains the 

t t 

o t' 
curves and , it must be the image of a map 

o o 

o o 

ia 

C:.) (Asi1O + Aaillil 
0': --> 

(A1i1O + Aaia)(A.i1O + Ad a) 

(Ali1O + Aaia) (A.ilO + A4ia)(A.i1O + Ada) 

It follo'Ws by computing first the values of the constants a. 13. 

y, AI ••••• A, and then the composite map &00' ('Whose image must be 

a real surface) that g. h, i, and j are all real. ((I;D. 
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mA.PI'BR 2 JMJ(LU'J'BS OF AU"' .. 

2.1 s ... a 

In this chapter we investi ga te the following questions. 

(I) Does a curve have parallels? 

(2) Given a hypersurface F in an, is there. curve M having F as 

it s focal set? 

We find that a curve always has an (n-l) parameter family of 

parallels. For the hypersurface F to be a focal aet, it must be a 

developable hypersurface. All the clallical developable 

hypersurfaces are focal sets. We show how to construct an (n-l) 

parameter family of parallel curves, all having F .s focal set. 

If F has certain s"ecial "roperties, all curvel in thil (n-l) 

parameter family will be singular. We look at examples of such 

families in the cases n=2 and n=3. 

2.2 loa, P!Fi"itl'o~ 
Tlte.. iert"'l ,. r,tt";{o(,t 1 I.)ill bt 

io ~~ wl.crt- Ls US-'QU" ColleJ 
DtfiDition 1,1 

I4se;-i ;" ~ r\OW\S,",,".v-.t. WQ~I 
Q Ma,,;foIJ ~;tI. ti .. ~'tl ..... ,t;tt. 

A \-.'1l1fold or k-dliYlf.l\.Ioll.l •• p.If21d 

luch that the following condition. hold: 

(2.1.1) For each poi nt meN, there ed at s a nei ghborhood N (m) 

of m and a smooth map a k --) an whose image i I N(m) n M and 

which is injective at almolt all points of its image. Such a 

map will be called a 100.1 p.ra •• tlil.ttoll of M. 

(2.1.2) For aImolt all points m of M, there il • neighbourhood 

N'(m) of m and a diffeomorphilm 
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d:(N'(m),N'(m) " M) -->-(Rn.Rk-xO). 

Points where (2.1.2) faUs are called dnl.l.r points of M 

and the set of such points is denoted by 1:M. 

Throughout chapters 2 and 3, M will denote a k-dimensional 

manifold with local parametrisaUon r:(Rk,O) --> (Rn,m). The 

dimension of a manifold will be denoted, if necessary, by a 

superscript. We will only be looking at the local properties of 

manifolds, in other words at germs of manifolds and germs of maps 

between them. We will not al ways di sU ngui sh between a germ, 

which is an equivalence class of manifolds (or maps), and a 

representative of such an equivalence class. 

We define two equivalence relations on the set of all 

manifolds germs. Let gi :(Rk,O) --) (Rn,mi) for i-l,2 be local 

parametrisations of two manifolds M1 and Ms. Then the manifold 

germs (M1,m1) and (Ms,ms) are loc.lly diffeo.o~19 or egui~.lent 

if g1 and gs are A-equivalent, that is if g1 • ~n 0 g s 0 ~k where 

~j is a germ of a self-diffeomorphism of Rj. 

If it is po ssi bl e to take d n to be an affine i"o~~!::t 

of Rn, "e will say that M1 and Ms are 100.11y oOpll,ent. In 

this case the focal sets of M1 and Ms will be locally 

diffeomorphic. (f;.ecd Stt'ts ~re. Jefi~tol below ill\. (2. .1,..2-).) 

Definition 2.2 

Let M1 and Ma be two submanifolds of Rn. Then M1 is pprallel to Ms if 

there exists a continuous bijection ~:M1 --) Hs (which will be called 

a p.r.l1el .ap) with the following nroperties. 

(2.2.1) The affine tangent spaces to M1 and Ms at corresponding 
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point s aro parallel (i.o. TmM1 is parallel to T1:(m)Ms. 

(2.2.2) Tho affine normal spaoos to M1 and Ma at corresponding 

points coincide (i.e. NmM1 - N1:(m)M,). 

(2.2.3) If M1 is smooth at m and Ms is smooth at 1:(m) then 1: is a 

diffeomorphism in some neighbourhood of m. 

R,..rka 

(1) This definition agrees with the usual definition of parallels 

to a hyper surface. 

(2) For two manifolds to be parallel, it is a necessary condition 

that they should be of the same dimension. 

(3) Parallelism is an equivalence relation. 

The three condi tions in th e above defi ni tion can be 

summarised in a single phrase by saying that M1 and Ma are 

parallel if the bundlesNM1 andNMs consist of the same sot of 

linear subspaces of Rn. 

Definition 2.3 

The contact between two manifolds M1 and Ma at a point m € M1"M t 

. at which both M1 and Ma are nonsingular is measured by the 

r-equivalence class of an appropriate map-germ (see [23] and 

[34J for the definition of ~-equiVa1ence and other relevant 

singularity theory). If &:(Ri,O) --> (M 1 ,m) il a local 

parametrisaUon of M1, immersive at 0, and Ma is locally the zero 

set of a submersive map germ F: (Rn,m) --> (RJ,O), the map germ 

concerned is the compo Ii te F 0 s. 

We now recall the various definitions of the focal set of a 

smooth manifold )It c: Rn. The aOI' •• 1 bu41, N)I is naturally 

embedded in M x Rn as 
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(m,y) e II % Rn I (y-m) is perpendicular to TmM } 

The projection maps onto the first and second factors will be 

denoted by Wi and WI respectively. 

,,(initlon 2,4.1 

The fooa1 "t F i. th e set of cri ti cal poi nt s of the proj ecti on 

W, :NM -) Rn. The map W, is someti mea called the end-point .ap, 

because it maps each vector in Nil to its endpoint. 

The di,tanoe-squared fpllOtion VY:ltk -) It is defined by 

2VY(%) - Ily - r(%)II'. 

Definition 2.4,2 

The fooa1 let F is 

(r(%),y) e AI % Itn I vy has a degenerate critical point 
(a singularity of at least type As) at %} • 

.. (m,y) e M % Itn I there is a hypersphere with centre y 
making at least A, contact (3 point contact) with II at m } 

The equivalence of thele two definitions of tho focal let is 

proved in [19] and [26]. 

It .. arks 

(1) The focal set of Mk hal dimension (n-l) and is the 

sipllltari ty set of the family of distance squared functions. It 

is usually identified with it I image under ws,· the hyperaurface 

WI(F) in Itn, which is the blf,ro.tiop "t of the family of 

di stance-squared func tions •• 

(ii) As well as the projection. Wi and nl a third projection W can 

be defined locally by the commutative diagram 
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M (-- 7f1(F) 
7f 

(iii) For a hypersurface, the terms foe.l se! and eyolpto are used 

interchangeably, and if F is the evolute of M, then M i •• aid to ' 

be an iMolpte of F. 

(iv) Suppose that M1 and MI are parallel. Then since the bundles 

NM1 and NMI compri se the same set of affine subspaces of an, the 

corresponding maps 7fs have the same critical values, and so the 

focal sets of M1 and MI, map under 7fs to the same hypersurface in 

an. If we identify the focal set with its image under 7fI, we can 

say that parallel manifolds have the same focal set. 

There is a natural way [33J to include points at infinity 

in the focal set of M. Let [c,s] be homogeneous co-ordinates in 

apn with ceRn and s e R, where the hyperplane at infinity 

is given by s=O. 

Defi1lition 2.5 

The extendec1 foe.1 ,et F of a smooth manifold Mis 

((r(J:),[c,sJ) I V[c,sJ has a degenerate critical point at xl 

where 2V[c, s] (x) - .11 rex) II S - 2(c,r(x» 

- 2sIIVc/s (x)II' - (1/.)llcl" 

If s-o, the function V[c,sJ measures contact between M and a 

hypersphere centred at cis. For points [c,OJ on the hyperplane 

at infini ty, V[c,O] measures contact between M and a hyperplane 

which can be thought of as a hypersphere of infinite radius. 
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Until now, it has been allumed in dileulsins focal letl that 

Mis non-sinaular. Thi s restri etion will now be removed. 

Rofinino! 2.6 

The (.xt.nded) foo.l ,et of a manifold M with ainsularities il 

the clolure of the focal set of M -2M. 

We shall mainly be interested in the focal setl of manifoldl 

whi ch are in lome len Ie typi cal, and we sh all mo st of the time 

want to isnore pathological examplel. To make thele ideas 

orecile, we need some definitions. 

Definition 2.7 

A curve JIG Rn is of type (1.1., ... ,l n , at ret) if the 

derivatives ri (t), •••• ,q (t) are linearly indeoendent, and each 
a " 

of the integerl i1 < ••• < in is least possible aatiafyins this 

condi tion. 

hflnitlon 2.8 

A manifold Mk in Rn is di,tance-I.n.rio if it satisfiel certain 

conditionl given in [33]. Let V:Rk x Rpn --) R be defined by 

V(X,[C,I])-V[C,I](x). Roughly speakins, a diltance-seneric 

manifold is one for which, for a luitable integer N, the N-jet 

extenlion jNV of the map V il tranlverlal to a finite set of 

lubm.nifoldl of the jet so.ce jN(Rn x Rpn,R) and for which 

similar tranlVeraaU ty condi tionl .lao hold for the restriction 

of V to the .ubsoace .=0. AI a con.equence of the transverlality 

condi tionl, any singulari tiel of the functionl V[c, I] for a 

diltance-generic manifold mUlt have ~ .-codimenlion at mOlt n+l 

(i f 1;0) and n (if s-O). 
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Ez. .. ple 2.2 

For a distance-generic curve in )tn, given by t --) dt), V[c,sJ 

is a function of one variable, and so only has singularities of 

types A1 , ••••••• ,An +l. In particular, the curve is of type 

(l,2, ••• ,n) everywhere except at isolated points, and at these 

points it is of type (l, ••• ,(n-l),(n+l)). 

It is a result of Looijensa (see [33]) that in the set 

Imm(Jtk,Rn) of smooth immerdons of a k in an, those whose image is 

diltance-generic form a dense subset. 

2.3 n, fellY of Par.ll.l. to • CHy. 

Any parallel to M must be an integral manifold of a 

distribution P{M) on NM that will be defined below. 

Let Z be the zero-section of NM. which is naturally 

isomorphic to M since Z· {(m,m) 1m eM}. To each pOint z of 

Z will be associated the k-dimensional space TzZ <: Tz{NM). 

This k-dimensional distribution defined on Z can be extended to a 

k-dimensio nal di Itri bution on the whol e of N M by I)arall e1 

translation of the k-dimensional spaces along the fibres of the 

proj ecHon 7f1:NM -) M. 

A submanifold Nk of an is parallel to M if and only if it is 

the projection under 7fs:NM -> an of an integral manifold of the 

k-dimensional distribution P{M) defined above. It foilowl that 

for any m € M there is at most one k-manifold germ parallel to 

M passinll through each point of NmM. 
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If k-l, anyone-dimensional distribution is integrable. 

This means that there is a k-manlfold germ parallel to M 

passing through any point of NmM. If however k ~ 2, a general 

k-dimensional distribution is not integrable. 

Deor_ 2.10 

Let m be an arbitrary point of Mk. 

(i) If k-l, there is an (n-l) parameter family of germs of curves 

parallel to M, one passing through each point of NmM. 

(it) If k-(n-I), there is a I-paramotor family of germs of 

hyperiurfacol parallol to M, one passing through each pOint of 

NmM. 

R •• ark Tho global form of th i s propo Ii ti on is fal see To 

ill ustra te the compl exi ti e s that can ad 10 in the alobal ca 10, 

consider the oardioid M1 with polar equation r - 1 + cos & in a l
• 

Since a continuous globally defined choico of unit normal is not 

polSible on M1, tho natural definition of a parallel to )(1 is a 

curvo P which double-oovers M1 (see fiaure (2.11». 

In the oa 10 k - (n-I), thi. theorem pi cks out a part! cuI ar 

property of the distribution POI) which il not .hared by 

arbi trary di std butions of di men sion (n-l) on N M: thi lis the 

property of being integrable. 

Proof of D,.or_ 2.10 

(1) The parallel curves can be obtained from the integral curves 

of the line field P(M) by projeotion from NM to Rn by means of 

the map nl. 
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Figure 2.11 A parallel to a cardioid 
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(H) Recall that r:(llk ,O) --) (M,m) il a local parametriaaUon of 

M. Let n:llk --) NM be a smoothly varying local choice of unit 

normal, defined by n - a 0 r, where a is a suitable section of 

the bundle NN. Then if c is a constant, the equation 

't'{r(x» - x + cn(x) 

gives a mapping ~ which (near the point m) satisfies the 

condi tions of deB ni tion (2.2). QED. 
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Thus if M has dimension 1 or codimension 1, the part of an 

lying close to M is foliated by narallels to M. For higher 

dimensions and codimensions, this is not tho case: parallels can 

only rarely bo found. In chapter 3. we shall construct a 

a 4 . 
manifold M in a such that tho only 2-manifold germ parallol to 

M is M itsolf. In fact. wo shall soo that for purely local 

reasons, almost all two-dimensional submanifolds of a 4 have 

thi 5 nroperty. 

This chapter is about curves, so we shall now concentrate on 

the ca5e k=l. Let the curve 

r:t --) ret) + c(t)n(t) (2.12) 

be parallel to M. Then the vectors r,. and r,. + c,.n + cn,. are 

parallel. Therefore 0 = n.(r,. + c,.n + cn,.) = c,. 50 that c must 

be constant. Therefore the curve r lies on the tubular surface 

of radius c with core X, which is defined below. 

pefinitlon l.13 

Lot Mk c an. Then the tpbular hDorsurfaoo TU\!c(K) of radius c 

with core X is the union . U 8m of a set of (n-k-l) dimensional 

sphores in an, one for each point m of M, where the sphere 8 m has 

centre m and radius c and lies in NmM. The hypersurface Tubc(M) 

can also be defined as tho sot of points lying at distance c 

from M and i 5 sometimes called a oanal .prfaoe. For eIampl e, if 

M is a circlo of radius r in 11' and c < r, thon Tubc(M) is a 

torus. 

The parallels to a curvo M in Iln have tho following 

geometric interpretation. 
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Theore. 2.14 

Each of the parallels to the curve M1 in I.n is a line of 

curvature on Tubc(M). 

To prove this result, we investigate the focal set of 

Tubc(M). We temporarily remove the restriction on the dimension 

of M. 

Proposition 2.15 

Let Mk C I.n where 1" 1: ~ (n-2). 

Then the focal set of Tubc(M) consists of M itself (with each 

point of M counted (n-1:-1) times) and the focal set of M (with 

each poi nt count ed once). 

Proof of proposition 2.1S 

The projection p:Tubc(M) -) M induces a projection mapping 

PN: NTubc(M) --> NM which is a diffeomorphism almost everywhere. 

The fibre of PN above a point (m,m) e Ze NMis a sphere of 

dimension (n-k-l), while the fibre above any other point is a 

single point. The result now follows from (2.4.1). QED. 

An analytic proof appears in [9]. 

Proof of tleorea 2.14 

1 Let M C I.n. Of the (n-l) principal curvature functions on 

Tube (M), (n-2) of them take the constant val ne lIe everywhere on 

Tubc(M). These are the principal curvatures which correspond to 

the (n-2) sheets of focal set that collapse, by 2.lS, to the 

curve M. At each point y e 8 m c:: Tubc(M)' the (n-l) 

dimensional space Ly of prinCipal directions corresponding to 

these principal curvatures is simply TySm' which is the tangent 

space to 8m at y. Then the principal direction at y corresponding 

72 



to the one remaining principal curvature must be perpendicular to 

TySm and so must lie in the direction of TmM. We have therefore 

shown that the lines of curvature of Tubc(M) corresponding to the 

non-constant principal curvature function are oar all e1 to M. QED. 

This theorem provides another proof of the existence of the 

oarallels to a curve. 

If M is a hypersurface, it is usual to regard the 

parallels to M as forming part of a single hypersurface in SP'9'-

tl.e called the bil "aye front ,enerated by X or simply a 

bie front. The factor Itn is to be thought of as spaee -and the 

factor It as!!.!u.. This definition can be extended to the case 

where Mis a curve as follows. 

Definition 2.16 
N 

The fa.Uy of parallels to II is the subset II of NmM x Itn given by 

N 
II = U (x) x Mx 

lE'N,.."I 

where Mx is the parallel to M passing through the poi nt x. 

2.4 1), Focal S.t of • Curr' 

Until now, we have been looking at the parallels to curves. 

We now mOve on to study their focal sets. Given a hypersurface F 

in Rn, what conditions must be imposed on F for it to be the 

focal set of some curve M. If one such curve exists, then by 

(2.10), there is an (n-I) parameter family of such curves. In 

order to answer the se questions, we shall need some defini tions. 
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Dolini tion 2.17 

A hypersurface M C Rn is deyelopable if it is foliated by a 

I-parameter family of affine subspaces of Rn of codimension 2, 

and if, in addition, the normal to M is constant along each leaf 

of this foliation. 

It follows from this definition that (n-2) of the principal 

curvature functions of M are identically zero for a developable 

hypersurface. 

Theore. 2.18 

The focal set F of a curve M in Rn is a developable hypersurface 

First Proof 

The focal set is foliated by the fibres of the projection n1. We 

claim that this foliation satisfies the conditions of definition 

(2.16). The fibre n1-1 (m) is the set of y such that 

':I o ... Vl. ... (y - rCO».r1(O) and 

o ... vi ... (y - r(O».rl(O) - r1(O).r1(O) 
(2.19) 

If r1(O) and rl(O) are linearly independent, the set of y 

satisfying equations (2.19) is an affine (n-2) dimensional 

subspace of RD. If, on the other hand, r1(O) and rl(O) are 

linearly dependent, the fibre n1-1 (m) is empty. (In this case, 

the fibre n1-1 (m) in the extended focal set is a projective 

(n-2) dimensio nal subspa ce of RpD "hi ch lie s entirely at 

infinity. ) 

Let t --) (rCc (t» ,e(t» (2.20) 

be a curve lying OD the focal let of M such that 
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yeo) = (m,y). Thus c(t) e Rand e(t) eRn. Then 

o = vr(t)(c(t» = (e - f).f1 (2.21) 

where l ... rOc. so differentiating (2.21) with respect to the 

variable t. and, for the sake of clarity. omitting the argument t 

of the functions e and f. gives 

... (e - !').r a 

since the first two terms on the right hand side vanish by 

(2.19). 

Letting y vary over all possible curves on the focal set 

passing through (m,y) we find that for any curve (2.20) e1(0) 

lies in the hyperplane NmM so T(m,y)F -= NmM depends only on m. 

QED. 

Second Proof 

The focal set F is the envelope of a one-parameter family of 

hyperplanes in Rn (the normal hyperplanes to M). Any envelope of 

a one-parameter family of hyperplanes is a developable 

hypersurface. QED. 

We now recall briefly the classical examples of developable 

hypersurfaces in Rn. These are reamers (see definition 2.26 

below) cones. and cylinders. A cley,lop.blo 90pe Mis defined as 

the envelope of a one-parameter family of hyperplanes all pas ling 

through the same point v. the yort,,; of M. The intersection of M 

with a hypersphere Sn-1 centred at v is an (n-2) dimensional 

developable submanifold of sn-l (the defini tion of such an obj ect 

is very similar to (2.17) and should be clear to the reader). 
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A 4oy,lopablo crlln40r M in Rn is the envelope of a one-

parameter family of hyperplanes all perpendicular to a fixed 

vector veRn. Thus a cylinder is a cone whose vertex is at 

infinity. Its intersection with any hyperplane H containing the 

vector v is a developable (n-2) dimensional submanifold of H. 

We are mainly going to be interested in those curves whose 

focal sets are reamers. However, we first prove a result which 

describes those curves whose focal sets are cones and cylinders. 

Proposition 2.22 

(i) The following conditions are equivalent. 

(A) The curve M lies on a hypersphere wi th centro v. 

(B) The normal hyperplanes all pass through the point v. 

(C) The focal set of Mis a cone wi th vertex v. 

(ii) The following conditions are equivalent. 

(A) The curve M lies on a hyperplane normal to the vector v. 

(B) The normal hyperplanes all contain the vector v. 

(C) The focal set of M is a cylinder with vertex [v,O] in Un. 

Proof 

In each case the implications (A)-)(B)-)(C)-)(B) are obvious. To 

show that (B)->(A). suppose that the point [co,ao] e Rpn lies 

in all the normal hyperplanes to M. The normal hyperplane at 

r( t ) i a {y I V; (t ):0 ). 

Thus o .. V (c. ,So] (t) 
1 

for all t 

and integrating (2.23) with respect to t, we find that 

V[c. ,s.] (t) ia constant, independent of t 
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But if So .; 0 (2.24) is the equation of a hypersphere and if 

so 0:: 0 it is the equation of a hyperpl ane. QED. 

We now start looking at curves whose focal sets are reamers. 

Propo!ition 2,2S 

Let M be a curve which is of type (il ....... i n ) at dO). Then. 

for each j<n. there is a unique affine space of codimension j, 

and a unique hypersphere (which may possibly be a hypersphere of 

infinite radius, i.e. a hyperplane) having best possible contact 

with the curve at reO). These are called the 9!e1l1atin. (n-j)-

space and oscuIatins hyperspher,. 

If M is singular at dO), that is if il .; 1, this statement 

may have to be interpreted to mean that there is an osculating 

hypersphere of zero radius. i.e.the function VrCO ) has a higher 

codimension singularity than any vY for y f:: reO). 

Proof 

Let (r(x).[c,s]) lie on the extended focal set. The contact at 

rex) between M and a hypersphere of sui table radius "i th centre 

[c,s] is measured by theX equivalence class of the map germ 

V[c,s]:R --)L This germ is of type Ak if and only if the first 

k derivatives v[c,S\(O), •••••• ,v[c.sl(o) vanish and 

V[c,sl+1(0)f::0. 

Each of these derivatives gives a linear condition on [c.s). 

The set of simultaneous solutions [c.s) of the M equations 

v[c.sl(o) - ........ V[c.s~(O) I: 0 

is therefore a projective subspace of apn. We claim that for 

sufficiently large M, this subspace is just a single point 

But this follows from the fact that ri (O) •••••• ,ri (0) 
;i. 1\ 
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span Rn. The point [cO.sO] will be the centre of the osculating 

hypersphere. 

Let L be the affine subspace of Rn given by 

L = {y I Y.Vt = Ct for t = 1, ••• ,j} 

where v t e Rn and Ct e R. (Here the subscripts t do not 

denote differentiation.) The contact between M and L is measured 

by the I(,-equivalence class of the map germ 

(

V1.r<t) - C1) 
t --) •••••••••••• 

•• • • • • • • • • • • 
Vj.r(t) - Cj 

This germ is of type As if its first s derivatives vanish 

(but not the (s+l)st). To make as many of these derivatives 

vanish as possible, R{c 1 , ••• ,Cj} must be an orthogonal complement 

to the space spanned by ri (O). ••• ,q . (0). So the osculating 
L fI.-J 

(n-j) space at dO) is the space spanned by ri (O), ••• ,ri . (0), 
j. ft-J 

the first (n-j) linearly independent derivatives of r. QED. 

The restriction that M should be of type (i1, ••• ,i n> for 

some i 1, ••• ,i n is not a great restriction on the curve M Ii nce it 

holds for all distance-generic curves. 

An example of a curve for which this result 

does not hold is a straiSht line in RI, for which the osculating 

planes and osculating spheres are not well defined. 

pefhution 2.26 

The r, •• er of a curve M in Rn is the union of the osculating 

(n-2) spa ce s. 

For example, the reamer of a curve in RI is its tangent 

developable. 
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The locus of centres of osculating hyperspheres of a curve in Rn 

is called its space eyolpte. If E is the space evolute of M, 

then M will be called a 'pace inyolute of E. The map e:R --> E 

will be defined by letting e(t) be the centre of the osculating 

hypersphere at r(t). 

For plane curves (n=2), the space evolute is the same as the 

usual evolute, and the space involute is the same as the usual 

involute or eyolyont. However for space curves (n-3) the space 

evolute defined here is what is classically called the 

locus of centres of spherical cpry.tpro. The term ovolute is 

used classically to mean something slightly different, and the 

classical involutes of a space curve are also not the same as the 

space involutes defined above. For some space curves, the space 

evolute is very badly behaved. 

Bxaaple 2.28 

• Let Sand S' be t"o spheres in R , with centres ]I: and y 

respectively, i nt erae cti ng t r an sv ersa 11y in a ci reI e y. Then 

there exi st s a smooth curve M given by t --) r(t) luch tha t, for 

t(O, r(t) lies on S, and for t)O, r(t) lies on S'. The point 

r(0) lies on y, and all the derivatives riCO) are tangent to y. 

For thi s curve, 

"hen t(O 

"hen t)O 

and 10 the function t -) e (t) is not even continuous. 

For the curve of example (2.28), the functionl V]I: and VY 
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have singularities of infinite codimension at O. The next result 

shows that there is a very large class of curves, whose space 

evolutes are genuine curves. 

Theore. 2.29 

If )f1c: )tn is of type (i1, ...... i n ) at ret), the map 

e:t -) e(t) is smooth. Thus the space evolute il a curve (with 

Ii ngul ari ti es) • 

h!llJ)lel 

The hypothesis of this theorem holdl whenever)f is a curve for 

which the germ of the map V (see (2.8» is of finite ~ 

codimension at every point. It also holds if )f is any algebraic 

curve in )tn, other than a circle, lying on a hypersphere. So 

those curves )f not covered by this theorem (such as (2.28» are 

certainly exceptional cases. 

Proof of theor,. 2,29 

The proof consistl of three stages. 

(1) Show that for all sufficiently small non-zero t, the curve )f 

is of type (l,2, •••• ,n) at ret). 

(H) Construct a smooth map t --) 1\(t) luch that 1\(t)-e(t) for 

all sufficiently small non-zero t. 

(iii) Show that e(O)~(O) 

. . 
) 1 f 1 i () ( 4, tIl 

(i Without OIl 0 genera ty, r t - a1t + •• , ••• ,ant + •• ) 

Let Jk - ik-k and consider the determinant of the matrix D whose 

rowl are r1, rs, ••• ,rn• The terms of lowest order in t in this 

determinant are 
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............. - .. .. .. 

1 f • , • • 1 

lit ••• ~ • • • • • • • • • 

1 t , I , 1 

i1 ' , • r in 

after • , 
a1 •••• ani1 •• i nt1+.··J" • • • = performing 

row opera tions 

Thus the coefficient of tJ,+···+J"in Inl is non-zero and so Inl 

ha s an isolated zero at t-O. But where Inlio r ,... 1 ••••• rn are 

linearly independent. 

(ii) It follows from (i) that for all sufficiently small non-zero 

t. the point e(t) is given by 

Therefore 

o 

n(e-r) -= 

Ve(t)(t) .., ••• - Ve(t)(t) - 0 
i ~ 

= 

vr( t) (t) 

- Vi(t)(t) 
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where D is the matrix defined in section (i) of this proof. Thus 

for all sufficiently small non-zero t. e(t) i. given by 

e(t) = ret) + D- 1 

Now define ~(t) by 

~(t) - ret) + D-1 

- VIet) (t) 

- V{ (t) (t ) 

- V{(t) (t) 

- Vt(t) (t) 

- V r(t)(t) 
n 

The map ~ is well defined. provided that it is allowed to take 

val ues in JtPn• Thi s follows from the fact proved above, tha t the 

determinant of the matrix Dis tJ.+···+j"F(t) for some function F 

with F ( 0) 1'0 • 

(iii) It was shown during the proof of (2.25) that e(O) is given 

by the equations 

0"" Vie(O)(o) - ••• - Vie(O)(O) 
, n 

(2.30) 

To complete the proof of (2.28) it willtherefore .uffi ce to show 

th a t 0 - Vi 1\ ( 0) (0) - ••• - V i ~ ( 0) ( 0) 
I " 

But o .. V:,p·) (t) -... - (t) (2.31) 

for all non-zero t, and hence by continuity for all t. 

In parti cular 

(2.32) 

So differentiating (2.32) (n-1) times with respect to t, 
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(
n-l) 

O-Vn + 1 

Similarly by differentiating 0= Vll(t)(r(t» (n-2) times 

with respect to t. we get 

o = V. + 2e1.ra + 'ls.rs 

etc. 

Assembling derivatives of all the equalities in (2.31) gives 

lab!. %.33 

tn-I) 
- V + 

n 1 ( 
n-l) 

'l1.r n-l + ••• + I 

It follows that each summand of each expression in table 

(2.33) is equal to zero. This information can also be expressed 

graphically by placing a zero at the point (i.j) of the integer 

lattice to indicate the equality ri.'lj - 0 and a crall to 

indicate ri."j :I O. Furthermore the point (1.0) will be marked 

with a zero if Vi - 0 and a crols if Vi :I O. This relults in 

figure (2.34) 
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Figure 2.34 A Graphical Representation of Table 2.33: 

A Triangular Region Filled With Zeroes 

n 
n-1 
n--1 

o 
'0 0 
'000 
I 0 ., 
I • , 
.. r~910"· , 
I -f;11e.3 .'. ' , 
I . . ·LI 0 
I ~ ~ . 
o 0 1J.foeS 0 C 
00 000 

Propp.ilion 2.3S 

Figure (2.34) is completed a. follows. Either the entire first 

quadrant i I fill ed wi th zero. or the re gion of zero a i. bounded 

by a .taircase with (n-1) stepa as mown in figure 2.36. 

floof 

Lot Lk donote the diagonal i+j - k in the plane of figure 2.36. 

Suppose that riCO).l1JCO) .,. 0 for some pair (i,j). Let LN be 

the first diagonal containing a cross. Let rCt) be a point of 

type (1a, ••• ,i n ). 

So the triansular region of zero sin fi gure 2.34 should be 

u:tonded a. in figure (2.36). 
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Figure 2.36 Graphical Representation of some Equalities That 

Follow From Table 2.33: a Staircase Region Filled With Zeroes 

j,-i 
ja.-i 

jl-1 

I 1 
t 

I ~ ,e I 

f les i~~ 
-, - - 1£ '­_ l.:fi !!et.;. -' . - - -<!e:ieE:~ 

I wi~ • • zen:es • I' 

• 
., .... - --

N 

Now all but n+l of the positions on the dialonal LN have 

been filled with zeros. But by hypothesis the dialon.l LN 

contains at least one non-zero term, and honce must contain at 

loast n+1 non-zero term •• For if there were n or fower non zero 

terms, these would bo related by n equalities obtained by 

differentiaUnl the bottom lino of <2.33) N-n timos. It would 

thon follow that thoso terms were in fact all zero. Since we 

assumed that some were non zero, thi s would be a contradiction. 

Therefore the (n+l) remaininl place. on the dialonal ~ Inust 

be filled with crosses, and wo have obtained the information 

shown in fi,ure (2.36). This completes the proof of (2.35). 
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Furthermore, the first (N-I) positions on the x axis of 

figure (2.36) are filled with zeros. This means 

(2.37) 

and since N = in + j1 > in we certainly have as a special case of 

(2.37) 

o = Vi'\(O)(O) = ••• = Vi 11 (O)(O) , ~ 

and so 11(0) = e(O) which also completes the proof of (2.28). 

Since it has now been shown that 11(t)., e(t). it is now possible 

to replace 11 by e in all the above equations. 

Proposition 2.38 

Suppose M is of type (i1 .... i n ) at dO) and E is its space 

evol ute. Then 

either ej (0)=0 for all j and the function Ve(O) is flat at 0 

or E is of type (h ..... jn) where i t +jn+l-t=N 

and the function Ve(O) has an AN-I singUlar! ty at O. 

a_arks 

(1) A flat function is one all of whose derivatives vanish. 

(2) If r1(0) of: O. there is AN-l contact between M and its 

osculating hypersphere at r(O). 

Proof 

These result s can be read off from figure 2.36. QED. 

Proposition 2.'9 

Suppose M is of type (i1 .... i n ) at dO) and E is of type 

( h .... j n) ate ( 0) for so m e i 1 < ... (i nan d j 1 <. •• < j n' Th e n 

(i) The focal set of M is the reamer of E 

(ii) The bundle of osculating hyperplanes to E is the bundle of 

normal planes to M. 
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Proof 

(i) The osculating (n-2) space to E at e(O) is spanned by 

By figure (2.36) this space is perpendicular to r1(0) and 

rs(O) and hence is parallel to the intersection of the focal set 

with Nr(O)M. Since e(O) lies in both of these parallel affine 

subspaces of an they coincide. 

(H) The osculating hyperplane to E at e(O) is spanned by 

(0) e ( 0) By figure 2.36 each of these vector" is ei ••• i • -¥ 

, "-I 
perpendicular to rJ, (0) and hence lies in Nr(O)M. QED. 

Theore. 2.49 

Let E be a curve of type (h, ... J n ). There is an (n-l) parameter 

family of germs of curves M (with singularities) which are space 

involutes of E. Any two space involutes of E are parallel. 

Proof 

Suppose a space involute M exists. Then by (2.39) the normal 

bundle of M is the bundle OE of osculating hyperplanes of Eo So 

any two space involutes of E have the same normal bundle, and 

hence are parallel. 

Furthermore, this construction produces a smooth line field 

on 0 E <::: E J: an. Th e in t e g r al c u rv e S 0 f t hi. 1 i n e fie 1 d, pro j e c t 

under the map E J: an --) an onto the space involutes. QED. 
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Proposition 2.il 

Suppose E is of type (h ••.•• jn) at e(O). Then either ri(O)=O for 

all i and the function Ve(O) is flat at 0 or M is of type 

(il ••••• i n ) where it + I n+l-t'=N and the function Ve(O) has an 

~_1 singularity at reO). 

Proof 

These results can be read off from figure 2.36. QED. 

We have thus solved the problem of finding curves M whose 

focal set is an arbitrary hypersurface F in an in virtually all 

cases. By (2.12). such curves can only exi st if F is developable. 

If F is a developable cone or cylinder. then by (2.18) any such 

curve M lies on a hypersphere or hyperplane of an. Let H be this 

hyper sphere or hyperplane. The focal set of M regarded as a curve 

in His F n H. so we shoul d now apply the can struc tion of 

(2.40) in H. We have thus reduced the dimension of the ambient 

space by one. Repeating this last step as many times as 

necessary. we may assume without loss of generality that F is not 

a cone or cylinder. In 4.l""ojr all Cct.Ces o-t proc.T,cQf 

the reamer of a 

curve E lying in some sphere or Euc 11 dean spac e. Provi ded thi s 

c u rv e i s oft Y p e ( i 1 < ••• <i n) for so me i 1 < ••• < in' an (n -1 ) 

parameter family of curves M with the desired property is given 

by (2.40) or an analogous result for curves On spheres. 
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In this section Ee an is a curve with parametrilation 

e:(R,O)---)(Rn,O) for lome n > 1, and M is a Ipace involute of E 

where e(t) is the centre of the olculating hypersphere of M at 

ret). Let 0 be tb.e osculating b.yperplane of E at e(O). Tb.en by 

(2.40), the family of Ipace involutes of E can be parametri sed by 

the po i n t I 0 f n. Th e follow i n g de fi n i ti 0 naIl 0 w I U ItO t rea t 

tb.e wb.ole family as a single entity. 

Definition 1.42 

'" The bi, inyolute of E is tb.e subset. of 0 x an given by 

tV 
• = V 

x e 0 

wb.ere Mx is tb.e space involute of Epassing tb.rougb. the point 

%£..Q... Tb.il is an extension of Arnold's definition of tb.e big 

involute of a b.ypersurface. If M is one particular space involute 

N 
of E, tb.en • is the family of parallels to M. 

If x,x' e 0 with x '/: x' local co-ordinates (r'&1' •• &n-l) 

can be cb.osen for 0 near x' in sucb. a way that reP) mealures the 

distance of the point P from x. For example if n· 4, (r'&1,&a) 

could be spherical polar co-ordinates on Q • 

. 
Proposition 1.43 

IV 
Let (x',y) e • witb. x' '/: x. In the nei gb.bourb.ood of tb.e point 

(x',y), tb.e projection p:(r,&1'.'&n-2.'z) --) (r,z) maps the big 

i nvol ute into 

u (2.44) 
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This is a one-parameter family of parallel tubular 

hypersurfaces whose core is the curve Mx' the space involute of E 

passing through the point x e Q. 

If for some x e 0, Mx is di stance-generic, then the 

hypersurface (2.44) is the image of a generic Legendrian mapping. 

Using classification theorems for luch mappings, it follows that 

the hypersurface (2.44) is locally diffeomorphic at any point to 

one of the standard models described in [4]. The first few 
• 

standard models turn out to be of the form ~(G) x R~ where G is 

one of the Coxeter groups Ak, Dt, or E1: [4]. 

Next we define two terms which will be used later. 

Let r:(R.O) -> (Rn,m) be a parametrisation of M. 

Definition 2.4S 

The curve M has an ordinary opsp at m if the germ of the map r at 

zero i sA.- equivalent to the map germ 

t ---) (2.46) 

o 

o 

The curve M has a rh,.phoid cp'p at m if the germ of r at zero i. 

A equivalent to the germ 

t ---> 

o .. .. 
• 
o 

(2.47) 
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Proposition 2,48 

(i)Let n = 2 or 3. 

Then the curve M c:: Rn has an ordinary cusp at m <-> 

r1(0) = 0 and rl(O),r.(O),are linearly UJrendent. 

(ii) The curve MeR I has a rhamphoi d cusp at m (=) 

r1(0)=O, rl(O)~O, rl(O) and r.(O) are linearly dependent and 

r 1(0) 

o 

r, (0) 

o 

3rl (.o).r s (0) 

lOr s (O).r.(O) 

• (iii) The curve MeR has a rhamphoid cusp at m < ... > 

r1(0)=O, rl (o)~O, rl (0) and r. (0) are line ady dependent and 

proof 

There are three stages. 

(i) Verify that the normal forms (2.46) and (2.47) satisfy the 

conditions of (2.48). 

(ii) Check that if the map r sati sfies the conditions of (2.48), 

then so do rOd and eo r where 

d:(R,O) --) (R,O) and e:(Rn,O) --} (Rn,O) 

are diffeomorphisms. 

(iii) Check that if r satisfies the conditions listed above, it 

is A-equivalent to (2.46) or (2.47). Let k-=3 for an ordinary 

cusp and let k-S for a rhamphoid cusp. There is clearly an 

J\-equivalence that will put r into the form 
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t ---) + 0(1:+1) 

° 
• 

° 
But the maps (2.46) and (2.47) are k.A.- determined (by [34] 

corollary (4.2.1» and the result followi. QED. 

Let E1 C RI be a plane curve given by e:R -) R' .Then the 

individual involutes of E will be curvel of the form 

CA, - s(t» 
t --) ret) - e(t) t - e 1 (t) (2.49) 

S1(t) 

where s:(R,O) --) (R,O) is the arc length function on E. The big 

iavolute of E il the surface given by 

--) 

(

A 

e(t) + 

(2.50) 

The map germ (2.50) i I an unfolding of the map germ 

,(t) 

t --) e(t) - - e1(t) (2.51) 
S1 (t) 

which is a parametrisation of tho iavolute passing through e(O). 

"eple 2 .52 

If e1(0) 'I- 0 and 01(0),e2(0) aro linoarly independent, then thoro 

will be some neighbourhood of e(O) in which every point of E is 

of type (1,2). Let t --) ret) be an involute of E, where e(t) is 
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the centre of a sphere which osculates at r(t). By (2.41), the 

involute is of type (N,N+1) at ret) and the distance squared 

function Ve(t) has an ~+1 singularity at t. The integer N is of 

course a function of t. But now the equations 

o=ve(t~(t) = (e(t)-r(t».~(t) + ••• 

O=ve(t~+l(t) "" (e(t)-r(t».~+l(t) + •••• 

o + ve(t~+2(t) "" (e(t)-r(t».eN+2(t) + ••• 

show that N(t) "" 1 when ret) fe(t) 

N(t) "" 2 when r(t) "" e(t) 

and N(t) ~ 3 leads to a contradiction. 

By (2.41) an involute M is of type (2,3) precisely when 

s(t)"" A. (since this is the condition for r(t) and e(t) to be 

equal). At these points, the singulari ties of the involutes are 

ordinary cusps (by (2.48». Let Me(O) be the involute passing 

through e(O). Then Me(O) is locally di ffeomorphic to the curve 

t ---> c:) (2.53) 

An Aversal deforma tion of (2.53) is 

( at) 
---) (2.54) 

Therefore (2.50) is A-equivalent to 
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rt) --) for some function aO'). 

But for sufficiently small 1. there i. a value of t 

satisfying s(t)-l (the germ of the function s at zero is 

invertible). and so for sufficiently small 1. the involute (2.40) 

has an ordinary cusp. 

Since the curve (2.54) i. nonaingular for a '" O. the 

function a(l) must be identically zero. Thus the biS involute i. 

locally diffeomorphic to the surface given by 

---) 

In other words the big involute has an ordinary cuspidal edge 

(see (3.38) below). 

Ex!llJ)le 2.SS 

It is well known that the evolute of a nonsingular plane curve 

cannot have a point of inflexion. This can be deduced from (2.34) 

a s follow s. Let M be a pi ane curve. Then ei th er e i (0) .. 0 for all 

i. or r1(0) and rs(O) are linearly dependent. in which case e(O) 

is at infinity. or M is of type (1.2) at reO) and it, evolute E 

is of type (N.N+l) at e(O). In 41(-i(l\eeeases E ia never of type 

C1 • k ) ( k ~3) ate ( 0) • 

There is nothing to stop ua from considering the family 

94 



of involutes of a plane curve with an inflexion. 

1 I I Let E C It be a plane curve given by e:R --) It with an 

ordinary inflexion at e(O). By (2.41). the involute Me(O) passing 

through e(O) is of type (3.5). Since the map germ 

t ---) (2.56) 

is 5-A-determined. the curve Me(O) is locally diffeomorphic to 

the curve (2.56). 

An Aversal deformation of (2.56) is 

m---> ( 

t '+at ) 

t • +bt 4 +ct I +dt 

Thus the map (2.50) which parametrise s the bi g i nvol ut 0 is 

A-equivalent to 

----) t I+a() . .)t 

t'+b(),,)t 4 +c(),,)t'+d(),,)t 

for some functions a(),,) •••••• d(),,). For small non-zero values of 

)". tho individual involute given by (2.49) must have an ordinary 

cusp at the point with parameter t such that s(t)-)". and a 

rhamphoid cusp at the point with parameter O. Furthermore the 

difference between tho values of tho parameter at the two 

cuspidal points is 
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No~ ~~ ~~ (;II.tl s~ff.c'·t'\+fl s""o~ vaL.t.~ crf-- ~, 
S-I(~) ,~ do 1\.1lS'·"~CAtllW" ~~c.t~ o-f A. 



Here 1_1 il the inverse of the function s, 80 that 

For the curve 

(
t'+at ) 

t ---) 
t ' +bt 4 +ct S +dt 

to have one rhamphoid CUIP and one ordinary cusp, the following 

equations must be satisfied 

a = -12b s /2S c .. -8b ' /2S d = -16b4/12S 

The ordinary cusp occurs at t .. 2b/S and the rhamphoid cusp 

at t .. -2b/S. It follows that the big involute of E is locally 

diffeomorphic to 

x 

t' - 12A S t /2 S -- Y (2.57) 

t' + At4 - 8A't s /2S - 16A4 t/12S Z 

We now claim that this is the surface A(H.). Eliminating 

the variables A,t from (2.57) gives 

o = H(X,Y,Z) .. 11264X1Iy - 42240X
lO

Z + 368000X'yS - 3600000X'IyZ 

+ 750000X'Y' + 7500000X'Zs - 28125000X
4
y

S
Z - 21484375X'y 4 

+ 117187500XsyZs + 14648437SXY·Z + 48828125Y' - 48828125Z' 

Composing H with the map 

x x 

y -) -96Y/125 + 16X'/125 

Z -If'Z/'1.S+ 48X'/3125 
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gives 0'" R(d(X.Y.Z»'" AG(I.Y,Z) where A is a non-zero number 

and G(I.Y,Z) is the equation of A(R.) as given by (l.21). We 

have thus provided a new proof of the result of Shcherbak' [29), 

that the big involute of a curve with an infledon is A(R.). 

Exeple 2.58 

Let E be a curve in R' which is of type (1,2,3) at e(O). 

Then by (2.41) any space involute M is of type (N.N+l,N+2) and 

the distance squared function Ve(O) for M has an AN+2 

singularity at O. But now the equations 

O ... ve(O~(O) = (e(O)-r(O».~(O) 

O=ve(~+I(O) = (e(O)-r(O».rN+l(O)+ •••••••• 

O=ve(0~+2(O) = (e(O)-r(O».rN+2(O)+ •••••••• 

0=Ve(O~+3(O) = (e(O)-r(0».rN+3(0)+ ••••••••• 

show that N=1 when r(O)!s not on the tangent line to E at e(O) 

N=2 when reO) lies on the tangent line Te(O)E 
but r ( 0) ". e ( 0) 

N=3 when r(O) = e(O) 

and N ~4 leads to a contradiction. 

It follows that Mis locally congruent near t .,. 0 to one of 

the following standard forms near t = O. 

(A) 

(B) 

( '" ') t ,at + ••• bt + ••• 

(t S ,at ·+ •••• bt "+ct '+ •• ) 

S' • f" ) (C) (t,at +bt + •• ,et + t + •• 

a b 1= 0 

abc :/ 0 (2.S 9) 

where in case (C) a
S

e+2bf 1= ce and ae 1= O. 
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Let T denote the tan,ent developable to B, whioh by (2.39) is the 

fooal .et' of M. Then hee fi,ure (2.60» 

Ca.e (A) ocour. at point. where the ourve J( aeet. E 

Ca.e (B) occur. at point. where M meets T-E 

an4 Ca.e (C) occur. everywhere else. ,: 

\ C C \ 
C , 

-re.(~)£ " e.,{o} -
s" ~A "13 

C 
Figure 2.60 Normal Forml for Involutes of a Curve 

With a Point of Type (1,2,3) 

The con4i U onl c ~ 0 in ca Ie (B) an4 a a e+2bf ~ 0 in cau (C) 

ari.e from the inequalities Ve(O) ~ 0 and Ve(O)(O) rI 0 s ,. 
relpectively. The reparametri saUon ulOd to obtain equationa 

(2.59) me an. th at for t + 0, poi nt I on M and E with the .. m e 

value of the parameter will no longer corre.pond. 

1\1 
The big involute • is a 3-dimensional .ubmanifold of the 

5-dimen.ional apace Q x Jt' where Q - Te(O)~ 

For any individual .pace involute 1(, there ii, by 

(~.43), a projection 

Q :J: Jt'-) It :J: It' 

N 
which mapa. onto the hyperlurface 
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D - U {c} lr: Tub (M) 
( 

in R lr: R·. Since the curve (2.S9C) is di .tance lonoric noar zero. 

D will be locally diffeomorphic at any point to one of the 

followinl threo .t andard model. 

At point. (2.59A) A(A,) lr: a 

At poi nt. (2.S9B) A(A.) lr: a· 

At poi nt. (2.59C) A(A 1 ) lr: a' - It' (a ,1D00th hypor.urfaco). 

!;oN ,etH' 2,61 
#oJ • 

The bil iuvolute • C It is locally diffeolDorphic at any point to 

one of the followinl throe .tandard model.: 

At point s (2.S9A) S lr: It where Sis an open .wallowtail in 1t4. 

At points (2.59B) A(A.) lr: a l 

At points (2.S9C) A(A 1 ) lr: a' - RI 

Fi luro 2.62 An Open Swallowtail 
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The open swallowtail is the set of monic quintic 

polynom i at s who se root s add up to zero and whi ch h ave a root of 

multiplicity at least three [14]. A sketch of an open 

• swallowtail in R is given in figure (2.62). 

8x!!!J)le 2.63 

Let E be a space curve of type (2.3.4) at e(O). Then by 

(2.41) M is of type (N.N+l.N+2) at rcO) for some N and the 

distance squared function Ve(O) for M has an ~+3 singularity at 

O. From the equations 

ve(O~(O) EO •••• = Ve(0~+3(0) = 0 and v e (OJ+4 :/ O. 

it follows that N=l when e(O) is not on Te(O)E 

N=2 when rcO) lies onTe(O)E but dO)'; e(O) 

N=4 when rcO) = e(O) 

and other values of N lead to a contradiction. 

The curve M is therefore locally congruent to one of the 

norm at form s 

4' , 
(A) (t .at + •••• bt + ••• ) a b /: 0 

S. 4') (B) (t .at + •••• bt +ct + ••• (2.64) 

:& • 4' • 4') (e) (t. at +bt +ct +dt + ••• et +ft +gt + ••• 

In case (C) the constants a.b ••••• g "'",s+S.t.:tf.,:JuIO .. VI(O) ... 0 and 

vr(O) /: 0 
Let T denote the tangent developable to E. which by (2.39) is the 

focal set of M. Then (see figure (2.65» 

Case (A) occurs at points where the curve M meets E 

Case (B) occurs at points where M meet. T-E 

and Case (C) occurs everywhere else. 
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Figure 2.65 Normal Forms for Involutes of a Curve 

With a Point of Type (2,3,4) 

E 

c 
E ~~ c 

~~ r--a~~'---~~~~------,~-c~ 
C A " 

N 
The big involute. is a 3-manifold in a' which can be projected 

to a hypersurface that is locally diffeomorphic 

at the point (2.64A) to A(A .. > 

at points (2.64B) to A (As) x as 

and at points (2.64C) to A(A 1 ) x a' - a' 

COnjecture 2.66 
N 

The big involute. is locally diffeomorphic 

at the point (2.64A) to an open butterfly in a' 

at points (2.64B) to A (AI) X a l 

and at point, (2.64C) to A(A 1 ) x a' .. a' 

Note The open butterfly i, the set of monic polynomials of 

degree 7 having a root of multiplicity at least 4 such that the 

awn of the roots is zero [14]. 
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Bxaaple 2.67 

Let E be of type (1,2,4) at e(O) and let M be a apace involute of 

E. Then by (2.41) M is of type (N,N+2,N+3) where Ve(O) has an 

~+3 singularity at O. As in the previous examples, 

(A) N=4 when rCO)=e(O). 

(B) N=3 when rC 0) li e a on T e (O)E and rC 0) :I e (0). 

(C) N=2 when rcO) does not lie on Te(O)E. 

The curve M is thus locally congruent to one of the following normal 

forms. The letters (A), (B) and (e) correspond to the three 

cases listed above. 

(A) 

(B) 

(C) 

4' , (t ,at + •• ,bt +) .. , , ) 
(t ,at + •• ,bt +ct + .•. 

a 4 ') (t ,at + •• ,bt + •• 

ab 1= 0 

abc I- 0 

vg(O) :I 0 

The focal set of M is the tangent developable to E. By 

(22], this is a surface with a cuspidal cross cap (this term is 

defined in (3.41» as illustrated in figure (2.69). 

Exaap1e 2.'1 

Let E be of type (1,3,4) at e(O) and let M be a space 

iuvol ute of Eo 

By (2.41) M is of type (N,N+l,N+3) where 

(A) N=4 when r(O)-e(O) 

(B) Na:3 when rcO) lies on Te(O)E but dO) :I e(O) 

(C) N=1 "hen reO) does not lies on Te(O)E 

102 



" 
\. ... .. 



Figure 2.69 The Tangent Developable to a".1 Curve '£ 
With a Point of Type (1,2,4) IIcts 0. 

c.-sp • .lQ( Crot.$ c., (Se2. (3.~') ~.( rtzJ) . 

---
-----

By smooth changes of co-ordinates inR and an q,-PfirtCL 

in a', the following normal forms for r are obtained 

( 4' ') (A) t ,at + •• ,bt + ••• ab f. 0 

,4 ,') (B) (t , at + ••• ,bt +ct + ••• abc'" 0 (2.70) 

S 4. 4') (C) (t ,at +bt +ct + •• ,dt +et + .... 3cd+a' e-3be f. 0 NlJ. Q~ f 0 

Equation (2.70C) is a parametri sa tion of a non singular apace 

curve with a point of zero torsion at reO). A point of zero 

torsion at space curve is one at which the osculating plane has 

A. contact with the curve (rather than As contact, as is usua!). 

In general a point of zero torsion occurs when the unique sphere 

making A. contact with the curve (the osculating sphere) is in 
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fact a plane. 

Thil il not the case for the curve ,iven by (2.70C). The 

parametrillUon (2.70C) ,ivel a curve )( for which there il a 

whole pencil of Iphoroa (wholo oontrol lio on a line C) .akins A. 

contact with )( at the ori,in. Thero will be ono Iphere in thil 

pencil which has infini to radi UI (and 10 is a plane). 

Fi Iuro 2.71 Tho Tan,ent Developable to ~~ Curve 

With a Point of Type (1,3,4) 's 
Lot·" l D;ffe.".,pl\lt '10 "Kit )ia ... .t..rJ MDd!I liz] 



There will be precisely one sphere in the pencil (the 

osculating sphere) making A. contact with the curve: its centre 

will bet h e poi n t C () E. 

The focal set of M, which is the tangent developable to E 

will be the surface with two ordinary cuspidal edges illustrated 

in figure (2.71). The points on the two edges are the centres of 

A. spheres: one edge is the curve E and the other is the line C 

which is inflexional tangent to E. This surface is discussed in 

the survey [22] of possible singularities on the tangent 

developable of a curve in R·. 

. .. ------
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0IAP1'BIl 3 lNVCLVl'RS Of BrtERSfJRFACBS 

3,1 Introduction 

The focal set F of a surface Mea' consi sts of two 

sheets F1 and Fs, which will be regarded as separate surfaces. 

Th e sur f ace M w ill be call e dan I ny 91 ute 0 f F 1 or of Fl. We 

exam i ne some prope rti e s of the foe al se t and de scri be the 

classical procedure for reconstructing a surface M from either of 

the Fi' We then discuss certain configurations which cannot 

occur on the focal set of a smooth surface. By performing the 

classical construction on such a surface S, we can construct ono-

parameter families of surface germs which are all involutes of S, 

and all have singularities. This has already been done by 

Shcherbak [291 to obtain the Coxeter group H •• In this chapter we 

will describe how to obtain the group H. in a similar way. 

Recall from (2.10) that a hypersurface M always has a one-

parameter family of parallels, and that it is usual to regard all 

these parallels as forming constant time-sections of a single 

~ N 
hyper surface • in space-time a x Rn. The hypersurface • is also 

called the ble "a.e front eenerated by., or simply a bte ",." 

Iront. Individual parallels are called .aye front, and are to be 

thought of as describing the propagation of a di sturbance, such 

as 1i gh t, through an i sotropi c space Itn. 

~.2 "'ayiopE of lin" of cpzy.tpl, 

In this section, we examine some of the properties of the 

focal set of a hypersurface in an. Throughout this chapter, 

r:(ltn-\O)--)(M,m) will be a local parametrlsation of the 

106 



The map n: an-
1 

--) N AI will be a smooth choi ce of uni t normal 

obtained by composing r with a suitable section of NM. 

The fibre of n:F --) M above a non-singular point m e M 

consists of the (n-I) pOints 

m + Cl/k)n(O) (3.1) 

for which k is a solution of the equations. 

e ... m + (l/k)n(O) 

e 
0= Vz (O)(u) = (e-r(O».ra(O)(u) - r1(0)(u).r1(0) (3.2) 

.. (l/k)n(O).r, (O)(u) - r1(0)(u).r1(0) 

for some u P. O. 

These conditions can be expressed in the form 

(3.3 ) 

where det is a function on the space S 'an- 1 of quadratic forms in 

(n-I) variables for which det-
1

(0) is the space of degenerate 

quadratic forms. If M is smooth. there are (n-I) solutions 

k 1 ••••• kn- s to (3.3) which are all real. but not necessarily 

distinct. If ki ... 0 then (3.1) is to be interpreted as giving a 

point at infinity in nn. The function x --> ki(x) is the ith 

principal cury.ture fuaction on AI and its reciprocal is called 

the itA prinoipal radiu. of opEf.tpr,. 

We shall only consider the oa.e when the principal 

curvature. k i are all distinct. If the curvature ki has 

multiplioity A at m. then VI has a singularity of corank A at O. 

Thus if m is a distance generic hypersurface (see 2.8). the set 

of pointl of M at which two or more of the principal curvatures 

coincide is of codimension 2 in M. Thul our dilcussion covers the 
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behaviour of almost all hypersurfaces at almost all points. 

A vector u sat! dying (3.2) is called a prlDclpal dlreotloD, 

and an integral curve of one of the (n-l) fields of principal 

directions on M is called a IIDe of cur.ature. There are (n-l) 

systems of lines of curvature on M and each system is associated 

via (3.2) wi th a defi ni te sheet of the foe a1 set. Given any point 

m e M, there is exactly one curve of each system passing 

through M. 

Propod tiOD 3 .4 

A curve y on Mis a line of curvature if and only if the normals 

at points of y form a deyelopable surface, i.e. a ruled surface 

whose tangent plane is constant along the straight lines of the 

ruling. (Equivalently a developable surface is a ruled surface 

with Gaussian curvature everywhere identically zero). 

Proof 

This is a consequence of Rodri~"~l'S formula (see [31] vol.3 

chap.4). For properties of developable surfaces see [31] 

vol.3,chap.S. QED. 

Let Fi be the ith sheet of the focal set. Then considered 

as a submanifold of M x an, Fi is given by 

x --) (r(x),e(x» = (r(x),r(x) + n(x)/ki(~» (3.S) 

Considered as a subset of M x an, the focal set Fi is 

singular only at places where two of the principal curvatures are 

equal (since anywhere el se ki is a smooth function of ~ and 10 

equation (3.S) gives a smooth parametrisation). However, when Fi 

i s pro j e c ted toR n by n 2, it can a c qui r e e ~ t r a si n g u I a ri ti e s , 
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such as cuspidal edges. 

l11eorea 3.6 

The inverse image of a line of curvature of the i!h system under 

n n:Fi --) M is a geodesic on the hypersurface Fi C It 

Definition 3.7 

Such a curve will be called a r,iled line of cllry'lllr" 

abbrevia ted to RLC. 

Let t --) d(t) and t --) &(t) be germs of curves such that 

rod and ro& are lines of curvature of the ith and jth Iystems 

respectively. Assume that ki :f. 0, and let e:lln-
1 

--) It be given 

by (3.S). Then eod is an RLC and we shall prove that eod is a 

geodesic on Fi· 

Let p :0: llki and let til de denote compo si tion with /J, so 

that, for example e = eod, r = rod. 

Similarly, let bar denote composition with &, so that for 

example ~ = e06. 

A curve on a hypersurface is a geodesic if and only if each 

osculating plane of the curve contains the normal to the 

hypersurface. We shall prove that ~ has this property. In fact, 

ye shall prove the folloYing more general result about the 

behaviour of the RLC. on the surface Fi • 
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Deoretl 3.' 
Let M be a nonsingular hypersurface with ki(O) rf. ki.'(O) for all 

i I> ,,"and ki (0) I> O. Use the notation introduced in the previous 

two paragraphs. Then the vector f"1(0) is normal to Fi at e(O) 

and ei ther there is an integer j } 1 such that the condi tions (1) 

to (vii) below are satisfied. or the conditions (1)' to (v)' 

below are sati sfied. 

(1) Ve(O) has an Aj +1 singularity. in other words the tangent 

hypersphere with centre e(O) tangent to M at reO) has Aj +1 

contact "i th M. 

(ii) (ve(O)o~) has an Aj +1 singularity at the origin. 

(ui) At the origin. the first (j+l) derivatives of (Vr(O)od) 

vanish. but its (j+2)nd derivative is non-zero. 

(iv) fJ has an Aj _ 1 singularity at O. 

(v) !" 1 ( 0) == •••••• = e j _ 1 ( 0) = 0 

(vi) e'j (0) and 0j+1(0) are linearly independent 

(vii) 6'j(O).r1(O) = 0 and ej+1(0) lies in the plane spanned by 

8'j (0) and r1(O). 

(i)' Ve(O) has a singularity of corank 1 and infinite 

codimension at O. 

(H)' (Ve(O)od) is a flat function at 0 (all its derivatives 

vani sh there). 

(Hi)' (Vl'(O>Od) is a flat map at 0 (all its 

derivatives vam sh there). 

(i v) , P' i s a f 1 a t fun c t ion a to. 

(v)' e' is a flat map at O. 

The hypothesi s that k{ rf. 0 ensures that the sheet of the 

focal set under consideration is not at infinity. 
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Rf!!rk. about Notation 

In this proof V with no superscript will mean Ve(o) and the til de 

operation will be performed before differentiation, so that, for 

example, t'j denotes (r) j. The equations (3.9) to (3.11) and 

(3.14) to (3.23) describe the behaviour of points on the line of 

curvature given by ~, but to make the formulae more concise, the 

arguments ~(t) and t have been omitted. Thus, for example, 

Pj denotes Pj(~(t» 

8'j denotes 0j(t) 

and Ve denotes Ve cHt)(cl(t» _ Ve(t)«(/(t». 

Proof of thoor~ 3.8 

On the line of curvature given by ~, 

o .. Vi .. (e-r).r1 

o .. V\ d 1 .. (e-r).r a'1 - r1~1.r1 

[Reminder: In unsimplified notation, (3.9) would read 

(3.9) 

(3.10) 

Differentiating (3.9) with respect to t and evaluating at 

t .. O, we get 

As well as (3.9), we also have 

Differentiating this equation with respect to t gives 

o • (!' - r).(rs· &)fh + (01 - r1).(r1 0 9) -

VI(t) &1 + (e • &)&1.(r. &) . , 

(3.11) 

(3.12) 

So substituting t=O in (3.12) and applying the operator (3.12) to 

fS 1(0) we get 

o .. e1(0)&1(0).r1(0) • e1(O).r1(O) (3.13 ) 
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Equations (3.11) and (3.13) now tell us that 

e1(O).r1(O) == 0 (3.14) 

so that the vector r 1 (O) is perpendicular to the hypersurface 

Fi G Rn. 

We note that pfrl + rl = 0 (RodriglAt.!'s formula: see [31] 

vol.3, chap.4) so diffe~entiating e - r + pn in the ;1 direction 

gives 

(3.15) 

Consider now the following set of conditions: 

o .. (V1- e) j+l 

o - ~j.rJ;l 

o .. 'j+l.rl 

o = 11j 

o .. 'j 

o = (Voe) j+J 

o = e'j.rJ 

o = e'j+l.rl 

The proof of (3.8) will follow ,easily once the following 

technical result has been proved. 

'.SfrtioD 3.11 

Suppose that the conditions (3.16)1 ••••••• ,(3.16)j_l all hold at 

the point t=O of the line of curvature;. (This hypotheSis is 

vacuous if j-l.) Then the conditions (3.16) j are all equivalent: 

ei ther they all hold or they all fail. 

We now justify this assertion. A special case of (3.9) is 
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Differentiating (3.18) (j+l) times and (3.10) j times with 

respect to t and evaluating at taO gives 
• 

o .. (Voe) j+s + (j+1)ej.?s + ej+1.r1 at tEO (3.19) 

and 0 = (V, 0 e) j+1 + ej.ra~l at twO (3.20) 

(since by hypothesis 8'1(0) - ••••• '" ej_1(0) - 0) 

Differentiating (3.11) j times with respect to t and eval uating 

at tEO gives 
o .. e'j+1.r1 + jij.rS~l at tEO (3.21) 

(since by hypothesis 01(0) - ••••• - ej_1(0) - 0) 

Differentiating (3.1S) (j-l) times with respect to t and 

evaluating at teO gives 

8'j = Pjn at taO (3.22) 

(since by hypothesis ~1(0) - ••••• - Pj_1(0) - 0) 

We now assemble all these equations. 

(Vue) j+1 == (by (3.20» - ej.rsd1 - (by (3.21» 

U/j)ej+l.u" (by (3.22» - Pjn.radl. (by (3.10» 

at taO (3.23) 

Equation (3.23) gives a cotangent vector L j to an- i at the 

origin. For Lj to be identically zero. it is necessary and 

sufficient that it be zero when applied to the vector ~1(0), 

since it is of the form Ar'1(0).r1(0). Thus Lj - 0 iff 

o - L jill - - i j • r S .. (by (3.1 9) and ( 3 .21» (V 0 e) j + a • 

This proves as sertion (3.17). We now concl ude the proof of 

(3.8). It follows from (3.17) that either there is an J such 

that (3.16)1, •••• ,(3.16)J_ 1 hold and (3.16)j falls, and 10 

(3.8.ll) to (3.8.vi) hold, or el Ie (3.16)k is true for all k and 

sO (3.S.H)' to (3.8.v)' are satisfied. 
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In the first case, the operator Lj of (3.23) gives zero when 

applied to &1(0), and so 0 = 0j+1.r(0). This proves (3.S.vii). 

It remains to prove that conditions (3.8.i)and (3.8.i)' 

hold. This is done using a result from singularity theory. Let 

F:(Rn-' ,0) --) (R,O) be a function gorm with a corank 1 

singularity at the origin. Then F has an Ak singularity if and 

only if there is a curve germ ~:(R,O) -) (Rn-I,O) such that the 

composi tes 

and 

Fo.4:(R,O) -) (R,O) 

F. 0 d:(R,O) --) «Rn-I)- ,0) 

both have Ak singularities at the origin (soo [27J) 

Thi s completes tho proof of (3.8) 

In the rem ai n de r 0 f th iss 0 c t ion, so m eel a s Ii c a Ire sui t s 

about the evolutes of surfaces in R' are generaUsed to the case 

of hypersurfaces in Rn. Two of these results concern tho 

fun c t ion p w hie h as soc i ate s too a c h po i n txt hoi t h p ri Dei p a I 

radi us of enrva t nre a t x. Thi s fUnction can be con Ii dored a I 

having eithor Fi or M as its domain. 

PfOpolition 3.24 

Using the notation above, wherever Fi is smooth, the vectors 01~' 

and e,&l are conjugate on Fi (i.e. 8(e'411,el&1) - 0 where S i. 

the second fundament al form of the surface Fi)' 

PEod 

We must show that N.e • .41Eh • 0 where N is a vect or normal to the 

surface Fi • We may takeN· rl since by (3.14), el.r, -0. 
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By (3.11). 8'1.r1 - O. We want to differentiate (3.11) in 

the &1 direction. In order to be able to do this, the domain of 

~ mUlt be extended. Let O(I,t) - dl(t) where t --) r(ds(t» is 

the line of curvature of the same system as ddo(t» palling 

through r(&(s», in particular (J0 "" iJ. Now 

(3.25) 

So applying (3.25) to iJ 1 gives 

(3.26) 

(by (3.10» 

Proposition 3,27 

Take a region in which Fi is smooth and consider p as a function 

on Fi • Then p: Fi --)R is a lubmersion and the RLCs are 

orthogonal to the level sets of the function p. 

Proof 

If Fi il nonaingular at a point y, then any geodealc onFi must 

be nonsingular, so conditions (3.16)1 do not hold at y, and 10 

trl 'f 0 at y. It followl that the function p is lubmerslve. 

We want to show that if " e T ORn-
1 

is such that e1" il 

perpendicular to tl then the derivative of p in the direction of 

" is zero, i.e.Pl" - O. 

But pI .. (e-r).(e-r) 10 

(3.28) 
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As was mentioned in the previous paragraph. the hypothelil that 

Fi is smooth enlures that P1 i: O. The desired relult follows 

from (3.28). QeIJ. 

Suppose that M is a non-singular hyperlurface. The ned 

result characterises those pointl of M which are critical pointl 

for the function p. A necessary condition for a point to be 

critical was found during the proof of (3.27): any critical point 

of p must be a point at which (in the notation of (3.8» /f1 • O. 

and so must be the point of contact of an Ak, Iphere for some. k >--3. 

Propolition 3.22 

Ule the notation of (3.8). Suppose that M is non-singular. and 

that conditions (i) to (vii) of (3.8) hold for lome j ~2. Let y 

a point on Fi • with n(y) = m. Then the function p:M --) R hll I 

critical point at m € M if and only if the RLC pal sing throuah y 

is perpendicular to 1m 0 1 at y. 

Proof 

AI in (3.8). the RLC passing through y is parametrised by the map 

t --) e'(t). "here "(0)· y. By hypothesi I "j(O) ~ 0 and 

8'1(0) - .... - 8'j_1(0) - O. We "ish to prove that el(Oh\.oj(O) • 0 

for all vectorl " e Rn-J if and only if P1(0)" - 0 for all 

vectors" e an- t • 

But e'j (0) • Pjn (by (3.22». So 

el(o)".ej(O) • Pjn.ol(O)" • (Pj/p)(o(O)-r(O».Ol(O)" -

(trj / p) (e (O)-r(O) ).e1(0)" -

(trj/p){e(O)-r(O».(el(O)" - u(O),,) .. 

(P'j/2P)[(e(0)-r(0»1]1" - (Pj/2p)(pl~" • Pj(Ps.") 

The relult now follows. QEO . 
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Proposition (3.27) is seometrically obvious, because as f1 

is normal to M, p must change fastest if one travel. in the 8'1 

direction and p will vary least if one travel. in a direction 

perpendicular to 8'1. 

However, (3.27) has significant implications in the case of 

hypersurfaces in an for n ~ 4. For (3.27) means that the 

geodesiC foliation on Fi formed by the RLCs is everywhere 

perpendicular to a one-parameter family of aurfaces. An 

arbitrary geodesic foliation on a k-manlfold (k ~ 3) does not 

have this property (see [35) ~ 100). 

pefinition 3.30 

Let RN be a Riemannian manifold with a geodesic foliation. A 

distribution can be constructed on R by associat~ to each pOint 

the eN-I)-dimensional space perpendicular to the geodesic passina 

through that point. If this distribution is inte,rable, the 

foliation will be called ol"tholon.llx i,t"I".I)I!. 

To say that the distribution is inte,rable, means that 

the geodesiCS are everywhere perpendicular to a family of 

hypersurfaces in R. If one inte,ral manifold edsts, then there 

is a one-parameter family of integral manifolds. It cannot 

happen that intesral manilol ds ed st pas aing through lome point s 

but not through others. Note that any geodesic foliation On a 

surface is orthogonally integrable. 

The results (3.6) and (3.27) can be combined as follows: 

D!O(- 3.31 

The RLC. on Fi form a orthogonally intearable geodesic foUation. 
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We now demonstrate how the results discussed so far in this 

• chapter apply to surfaces in R. If M is a non-singular distance 

generiC surface, then the only possible singularities of the 

di stance squared functions for Mare A1 , As, A., A., and D •• The 

focal set F is the set of points y for which the function VY has 

singularities of types As A. A. and D •• 

The classification of Lagrangian and Legendrian 

singularities [4] provides normal forms for the focal set of M 

and the big wave front generated by M. If the function vy for 

the surface M has an Ak(or D.) singularity thon the big wave 

front is locally diffeomorphic at ('t,y) to A(Ak.) x .4-k. (or one 

of the two forms of A(D.». When the big involute is locally 

diffeomorphic to A. or D., the individual involutes are locally 

diffeomorphic to the standard family of seotions of the 

discriminant, given by fs = constant, described in chapter one. 

The As points on F are those at which F is non-singular. By 

(3.6) the RLCs passing through such point. are geodesics. 

Furthermore, by (3.8) an RLC can never have an inflexion (, 

point of zero curvature) at a nonsingular (A.) point of F. 

The A. points form curves on F called ~, which are 

ordinary cuspidal edges (see (3.38) below). The ribs project 

under 'II':F -> M to nonsingular curves called rlcll ••• 

By (3.8) and (2.48) an RLC passing through' rib-pOint h .. 

an ordi nary cusp there (ordinary cusps are defined in (2.46». 
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Although there is a sinsu1ar normal form A(A.) J: R for the 

biS wave front, there may be many ways of taking sections to 

obtain the individual parallel s. There turn oed; to be e lIenti ally 

two different ways in which the parallels can evolve (ace [8]). 

Either each parallel is locally diffeomorphic to A(A.) and the 

biS involute has a product structure, or a pair of swallowtails 

is born as the wave front passes through tho rib point on F. 

The so two di fferent confi sura tion s can be r e1a t cd to the RLCs 

crossing the cuspidal edge as follows. 

Proposition 3,32 

(i) The cuspida1 tangent to an RLC at an A. point il not tangent 

to the ri b. 

(li) The following conditions dt' Q. .. i~ poi",t- ~ .. ('~ t,."'i{""~t. 

(A) The cuspidal tangent to the RLC at ~e. point y is 

perpendicular to the rib. 

(B) n(y) is a critical point of the principal curvature 

function on M 

(C) Birth of a pal r of swallowtail s occurs in tho family 

of parallel s to Mat y. 

fr0o{ o{ proposition 3.3l 

Use tho notation of (l.S). 

(1) By (3.11) and (3.12) 01.r1 - -VI ft. 0 

but by (3.8 vii) e's.u .. 0 

Since the plane 1m r1 is perpendicular to is but not to 
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R{lr1} I: 1m e1, it follo"s that ea (the cuspidal tangent to the 

RLC) and if1 (the tangent to the rib) are not tangent to each 

other. 

(1i) This is a restatement of (3.29). The equivalence of 

conditions (B) and (C) is alao discussed in [8] and [23]. Q~J). 

The A. and D. point. are isolated point. On F which for. 

distance-generic surface alway. lie on ribs. At an A. point y. F 

h •• a s"al10"tail and there is one rib passing throush y "hich 

has an ordinary cusp. By (3.8) the RLC passing through y is 

congruent to a curve of the form (t' ,.t·+ •••• bt '+ •• ) "ith • .,. 

O. By an argument similar to (3.33) the singular tangent to the 

RLC and the cuspidal tangent to the rib are never tangent to each 

other. They are perpendicular if and only if the A. point 

projects under n to a critical point of the principal curvature 

p. (This means. in the notation of (3.8) that P1 • PI .0 and 

P1aO. This is something that does not occur at the A. point. of a 

generic surface.) 

,,3 ]h, CoA.trpotloA for IR!olvt.. of • Rype, • .,taci 

It "as sho"n in the previous section that if M is • 

hyper.urf.ce, the RLe. on each .heet of its foo.l let form a 

orthogonally intesrable geode.ic foliation. 
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The ori ginal hyper surface can be recovered from anyone of 

the Fi if we are also given the associated geodesic follation. 

This classical procedure (see [35] \ 81) is briefly described 

below. We need to introduce the idea of un"hullnl a curve M In 

an. Thi sis done (physi cally) by taki ng a pi ece of string 

stretched tightly along the curve. We choose In arbitrary point 

P of the curve (the startin. poipt). cut the string at the point 

P. and attach two pieces of chalk to the two free ends. Now 

unwind the string from the curve. keeping it taut it taut at all 

times. The curve traced out by the chalk will be called an 

un"inetinl of M. If y:t --) y(t) is an arc-length parametriaaHon 

of M. the unwinding of M with starting point y(c) is given by 

t --) y(t) + (C-t)Y1(t) (3.33) 

Let F1 be any hypersurface equipped with a orthogonally 

integrable geodesic foliation. Let a be an orthoaonal trajectory 

to these geodesics. Let M be the hyperaurface formed by taking 

the union of the curves obtained by unwinding each Beodesio. 

starting from the point at which it meets a. The hyperaurface Fi 

forma one of the (n-I) sheets of the focal set of M and the RLel 

on F1 are the geodesics we started with. The hyper.urface II is 

therefore called an jlyol.t. of Fs and a i. called the 

".,ti 8' "t (if n-3. the .t.{tip' 111'). Any hyperlurface 

parallel to M is also called an involute of M: lome.but not 

necessarily all of these parallel hyperlurfacel oan be 

constructed directly from M by changing the starting set. 
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The hypersurface M and its all itl parallell are the 

constant-time sections of a bi I wave-front in Ipace-time, Thi I 

big front will be called the biB lnyol.t. of the foliated 

hyper surface F 1 , 

We have constructed a one-parameter family of hyperlurfacel 

whose (n-l) sheets of focal set are FJ, and lome other 

hyperlurfaces F s , •••• ,Fn_1. The (n-2) hyperlurfacel Fs, •••• ,Fn_. 

are called the coapleaentarx hYpt,.prf.c •• to the foliated 

hypersurface F 1 • A different choice of geodelic foliation on F1 

would give a different one-parameter family of parallel lurfacel, 

whose focal set consists of F1 and (n-2) other sheetl 

Gs, •••• Gn-.' Thus two hypersurfaces M and M' can have the lame 

focal set (in the sense that one sheet of the focal let of N 

coincides with one sheet of the focal set of N') without Nand M' 

being parallel. This is in contrast to the behaviour of curves, 

If two curves have the same focal let, they are necel .. rlly 

parallel. 

The problem of delcribing the singularitiel of the bi, 

involute of a hypersurface F has been called by Arnold the 

problem of avoiding an obstacle. Thil name arisel from 

considering F as forminl the boundary of an obltacle in In. and 

looking for paths in Rn which minimize 1enlth, lubject to the 

constraint of not palsing through the obltacle. Such paths 

clearly consist of partially unwound geodesicl, i.o. once 
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differentiable piecewise smooth curves conai sting of portionl of 

geodesies on F and portions of straight lines. 

There are a number of well known resultl delcribing the 

behaviour'of involutes. Let Fe:: R' be an arbitrary nonsin,ular 

lurface. equipped with a geodesic foliation. Let G be the 

complementary surface. let M be an involute with starting line a. 

and let n:F --) M be the natural projection. If none of the 

geodesics have inflexionl. then M is nonsinlular. except for 

ordinary cuspidal edges (these are defined in (3.38) below) alonl 

the starting line (where M meets F) and alonl the locul where M 

meets G. Take an arbitrary point x e F. and let 1 be the tangent 

line to the geodesic passing through x. Then each involute. will 

contain one point of 1. Preci sely two of the invol utes of F have 

singularities along the line 1. These are the involutes M and x 

M containing the points x and y respectively. where y il the 
y 

point of intersection of 1 with the complementary lurface G. If 

M is a third involute of F. then M. Mx and My are all parallel 

and so by (2.2) there are parallel maps 't: Mx-+ M ClI\c! "t~ ~""M S4J.c.h 
that the imagel of the singular pointl x and yare nonsin,ular. 

So these singularities (the ordinary cUlpidal edsel) can be 

eliminated by applyinl a parallel map. 

Let the surface F have an ordinary cuspidal edle yand 

SUpPoie that the geodesics of the foliation crOIS the ed,e with 

ordinary cusps. in such a way that the cUlpidal tan,entl are 

neither tangent nor perpendicular to the ed,e. The presence of 
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the cuspidal edge does not alter the fact that the involute. of 

this foliation are only singular where they meet F and G. As in 

the previous example, each individual involute M has an ordinary 

cuspidal edge along the starting line a - n(a). The new feature 

is that the starting line a may meet the cuspidal edge at a point 

P. If this occurs, the starting line will have an ordinary cusp 

at the point P, where it crosses over from one side of the edge y 

to the other. The involute will then have a swallowtail at P. 

The curve n(y) will be non-Ii ngul ar and will be a ridge on th e 

involute, passing through the swa1lowtail point P. This curve can 

only be located by examining the metric properties of the 

M. Up to diffeomorphism, none of the point. of nCr), except for 

P itself, can be distinguished from the other non-singular points 

of the involute. 

If one of the geodesics on F has an inflexion, then by (3.8) 

this particular foliation cannot be the system of RLes arising 

a non-singular surface M. It is still po ssi ble to use the 

classical construction to produce a one-parameter family of 

involute. of the foliated surface F. Each of these involutes 

will have a singularity at the point where it intersects the 

inflexional tangent 1. These singularitie I will persi It under th e 

application of a para1lel map, since any luch map preserves the 

line 1. Involutes of such foliations were first considered in 

[2] [24] and [29]. In [29] the following results were obtained. 

If one geodesic has a ,o.-d ••• ,.,at. polpl of ,.,0 cPIY.tp,. 
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(a point of type (1,3,4» then each nearby geodesic h .. allO a 

point of type {1,3,4}, and these pointl form a Imooth curve 'Y 

on the surface F. 

Let M be any involute and let 71 :F-)M be the projection. 

Then M has a rhamphoid cuspidal edge (see (3.39» alonl the curve 

n(y). There will allO be an ordinary cuspidal edge (see (3.38» 

along the starting line. Suppose the starting line a of the 

involute crOlsel the curve y at a point Pin luch a way that the 

curvel a and yare neither perpendicular nor tangent. Then the 

point P = ,,(P) on the involute M will be the point of 

intersection of an ordinary cuspidal edge and a rhamphoid 

cuspidal edge. It was shown by Shcherbak [29] that Mi. locally 

diffeomorphic at P to A(H.). 

Any involute sufficiently close to M will also have a A(H.} 

singularity and the big involute will be locally diffeomorphic to 

A(H.) x R. 

AI explained above, the behaviour of the invol utes depend. 

on whether the geodesici have zero curvature. The following 

lemma ahoWI when this occurs. 

if"" 3.3! 

Let y be a geodesic on a non-singular surface F. Then y has an 

inflexion at % E F if and only if the tan,ent direction to 'Y at J: 

is an asymptotic direction for the surface F. Thus leodesics 

with inflexions can occur only in the hyperbolic relion. of F 
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(where the two asymptotic directions are real: in the notation of 

Arnold (3), in TT J 1 regions), and not in the elliptic regions , 
(where the two asymptotic directions are complex: in the 

notation of Arnold, in TIs regions). 

It was anticipated by Arnold that the group H. would occur 

in a similar way to the other Coxeter groupl, with the bil 

involute of a suitable foliated surface F beinl locally 

diffeomorphic to A(H.), and individual involutes being locally 

diffeomorphic to the sections A(e) described in chapter one. To 

lay that there is a surface whose involute is A(O) is not a 

statement of any significance, lince the involute of the evolute 

of A(O) is bound to be A(O). We are looking for more than that: 

we expect each involute of F to be locally diffeomorphic to one 

of the sections A(e) of A(H.). We now make some informal remarka 

to suggest what such a surface F might be like. The purpose of 

these comments is to provide aome motivation for atudying the 

surfaces with cuspidal edges which will be examined later. 

The H, poi nt s de sed bed above ad Ie when a rhamphoi d 

cuspidal edge meets an ordinary cuspidal edge in the moat natural 

way. By analogy with the way in which H, wal obtained, we 

look for the most natural way to combine big involutea of types A. 

and H,. The groups A, and H, are chosen because, in the 

discriminant A(H.) deacribed in chapter 1, there is a curve 

conal sU ng of ,wallowtail s (A, poi nt a) and a curve of A(H , ) 

singularities, intersecting at the H. point. 
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To get AI points, one takes involutes of a cuspidal surface 

F with a family of geodesics, each of which has an ordinary cusp. 

To ge t HI poi nt s, one take s a fam ily of Ii ngul ar invol ut e I of a 

singular surface F with a family of inflexional geodesics. These 

features can be combined by taking a family "F of curves in R' 

each having an ordinary cusp and an inflexion, such that the 

inflexions lie on one nonsingular curve 'Yi and tho CUlpl on other 

nonsingular curve Yc. The curves Yc and 'Yi should meet at a point 

p (this will be the H. point) and the family F Ihould form a 

,eodesic foliation on a surface F. Such a family of curvel il 

shown in figure (3.35). To form this illustration, the curvel 

have been projected from RI to as and this projection has 

introduced self-intersections that were not present in RI. 

The surface F must necessarily have 'Yc as a cuspidal edge, 

since otherwise the geodesics on F could not have cusps. 

Therefore in the next section we study surfaces wUh cUlpidal 

edges. 

To prove that surfaces exist with luch a geodesic 

foliation, we give an example. This example is admittedly 

rather special since the lurface F il developable. Let F be the 

tangent developable to a curve having a point P of type (1,2,4) 

(a point of zero torsion) and let 1 be the tangent at the point 

P. For such a surface, I is a line of flat umbilicI. Therefore 

by (3.34) any geodesic has an inflexion where it crolsel 1. In 
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addition any geodelic which is not tangent to the curve T hal a 

CUIP where it cro.ses T. and this CUIP is rhamphoid (if it occur. 

at P) or ordinary (if it occurl at any other point of y). 

Therefore almolt all geode.ic foliationl on F will be of the 

desired form. The lurface F i. depicted in figure (3.36). 

Figure 3.35 A Family of Geodealc. Davin, 

Both CuIP. and Inflexion. 
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Fi ,ure 3.36 A Surface F on Whi ch Can Bo Found a Fa .. 117 of 

Geodedc. Like Th.t Illu.trated in Fi,ure 3.35 
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3,4 Sarfaoo, 'lth Culpid.l Ed'o, 

In this section we investigate the properties of certain 

types of surface having a cuspi dal edge. We calculate the 

evolutes of some of these surfaces. • Let Melt be a surface with 

parametri sa tion 

• 

Donni lion 3.37 

The surface M has an cuspid,l od.e at m (and the map germ r has a 

cuspldal ,dc, at 0) if there is a non-singular curve 'Y passing 

through (0,0) such that r1 has rank one at points of 'Y and rank 

two el sewhere. 

Such map germs have been investigated in [20]. Here we will only 

consider three of the simplest types of point that can occur on a 

cuspidal edge. 

pefinition 3.38 

The surface M has an ordin.ry on,p14al ,4c' (or op,p14.1 ,d., of 

1 TP e 3/2) at m if the germ of rat z era i S A e q ui vale n t tot he 

germ at zero of the map (u,v) --) (u,v:a ,v'). 

D,finition 3.32 

The surface M has a (ha.pho!d on,p14.1 ed.e (or op.pldal 

,dc' of type S/2) at m if the germ of rat zero i • .A equivalent 

( ) ( :a. 
to the germ at zero of the map u,v --) u,v ,v). 
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Figure 3.40 

...... 

Surfaces With Cuspidal Edges 

I 
J 

An Ordinary Cuspidal Edge 

A Rhamphoid Cuspid.l Edge 

• 

Cuspidal Cross Cap 
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Delin! tion 3.41 

The surface M has a cuspidal cross cap (or ouspidal pinoh 

point) at m if the germ r iS~eqUiValent to the germ at zero of 

a I the map (u.v) --) (u.v .uv ). 

Bx!!!ples 

The surface A(A 1 ) % Rand A(Is(5» % R have cuspidal edges of 

types 3/2 and 5/2 respectively. The cuspidal cross-cap has 

already been mentioned in (2.69) and (3.36). 

Surfaces having ordinary and rhamphoid cuspidal edges and 

cuspidal cross caps are illustrated in figure (3.40). 

Proposition 3,42 

Let r be any map germ with a cuspidal edge. such that the 

restri ction of r to the edge is an immer sion. Then by affi ne 

i.so,..e.tr"e~ in the target and smooth co-ordinate changes 

in the source. the map-germ r can be reduced to the form 

u 

(:) --) 
a a u f(u)+v . 

a I • 
u g(u)+uv h(u)+v S(U.V) 

(3.43 ) 

where S(O.O) ~ 0 for the ordinary cuspidal edge. 

s= uk(u)+vT(u.v) with k(O) ~ 0 for the cuspidal croas cap 

aH 
s== vH(u.v) with ~ 0 for the rhamphoid edge. 

av 
Co,o) 
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Notos 

(0 The letters f,g,h,k,H, and S denote arbitrary functions. 

Lower oa se let t ers wi 11 be use d for func tions of one variabl e 

and oapitals for funotions of two variables. In future we shall 

try to adhere to this convention. 

(ii) We shall want to study the focal sets of these singular 

surfaces and the type of co-ordinate changes described above do 

not affect the behaviour of the focal set. 

Proof of proposition ',42 

J Let r be the smooth ourve in a at which r1 has rank 1. Define 

two funct ions u and v on som e nei ghbourhood of the ori gi n in R. J 

as follows. Let v:R. J 
__ > a be a submersion such that ray_leO) 

J • and let u:R. --> R be given by the composite nOr where n:R. ->a 

is orthogonal projection onto the tangent line to the cuspidal 

edge at m. This can be done in such a way that u(O,O) • v(O,O) • 

0. Then (u,v) form a local co-ordinate system on a J and after 

rotations and translations in the target, r becomes 

u 

J J ( • u g(u) + uv h u) + v S(u,v) 

(:) --) 

where and N(O,O) > 0. 

Wit h 0 uti 0 ss 0 f g e n era 1i t y, we may ass um e t hat N ( u, v) ... 1 

(since this can be achieved by a co-ordinate change in the 

source which replaces v by vIN(u,;». The map r is now in the 
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form (:) --) (3.44) 

where and N(O,O) ) O. 

So far in this proof the only properties of the map r that 

have been used are that there is a smooth curve r of points where 

r1 has rant 1 and that rlr is an immersion at o. 

a Now let R(u,v ) = 

From (3.44) 

But by hypothesis 

r 

1 

, a 
V 

u 

r 

for an ordinary cuspidal edge 

for a rhamphoid edge 

for a cuspidal cross cap 

u 

• a v P(u,v ) 

u 

-A. • a v R(u,v ) 

Hence by a result of Mond [20] P(u,v a) a - R(u,v) 

This gives the conditions 

S(O,O) F 0 

S - uk+vT 

S - vB with 
aB 

I- 0 
av 

(°, 0 ) 

for the ordinary edge. cuspidal cross cap and rhamphoid edge 

respectively. QED. 
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We now present some criteria, which can be used to identify 

different types of cuspidal edges. 

Proposition 3.4S 

Let r be a map gorm with a cuspidal edge at m, such that the 

restriction of r to the edge r is an immersion at m. Let M be 

the image of r. 

(i) If the 3-jet of r at the origin is (:) --) 

then M has an ordinary cuspidal edge at m. 

(ii) If the 4-jet Qf r at the origin is 
( 

V

u) --) 

then M has a cuspidal cross cap at m. 

(to:t) If the S-jet of r at the origin is (: ) -) 

and if there is some nei ghbourhood of m con t ai ni ng no ordi nary 

cuspidal edge points of M, then M has a rhamphoid cuspidal edge 

atm. 

(iv) Let k e ToRa be a non-zero vector such that r1(O)k-O (k 

stands for kernel). 

a 
If the image of r1(O) and the two vectors ra(O)k and 

• • r.(O)k span It • then M has an ordinary cuspidal edge at m. 
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Proof 

(1) and (li) See [2.2.) co,.olltA.lj 1.6 . 

(iii) The map. is given by .(:) = 

As in the proof of (3.42). 

U + 0(6) 

v' + 0(6) 

v' + 0(6) 

, 
where Y eM, and N(O.O) F O. 

Since r has rank one along the curve veO. there must be fUnctions 

z. A. and B such that 

z(u) + v 2 A(u,v 2
) + v·B(u,v 2

):::. V{u,v) 

As in the proof of (3.42) we may assume without loss of 

generality that N(u,v) = 1 (since otherwise we can make a change 

of co-ordinates in the source which replaces v by v N(u,v»). Now, 

by an obvious co-ordinate transformation, 

r • Secause of the particular form of the 

5-jet of the original map r, we must have 
, 

B eM • If B(u,O) '" 0 
I 

then by (1) the map r has an ordinary cuspidal edge at (u,O). 

But by hypothesis, there are no points near the origin for which 

this occurs. So B(u,O) - ° for all suffiiciently small u, which 

means that B(u,v') .. v'C(u,v 2
) for some function C. Now by [20], 

two map germs with cuspida! edges given by 
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u 

• J 
v S(u,v ) 

u 

2 
V 

, 2 
v S'(u,v ) 

are AeqUiValent if and only if the function germs Sand S' are 

~ A 2 • I\:.equivalent. pplying this result to the germs S(u,v ) - v and 

S'(u,v·) = v 2 (1 + C(u,v·» we find that 

(iv) By (0, it is sufficient to show that r iskequivalent to 

a map germ g with 3-jet 

--> 

But this was shown in the proof of (l.4~). 

QED. 

There is an important difference between, on the one hand, 

the ordinary cuspidal edge, and, on the other hand, the 

singularities (3.39) and (3.41). The ordinary cuspidal edge 

(3.38) can occur on the parallels to a nonaingular surface, while 

tho rhamphoid edge and cuspida1 pinch point cannot. Consider the 

Legendrian Submanifold M· of PT·a· determined by the surface M, 

which is defined by 
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M*= {(t',m) e Pf*R'1 m e M 

and t' is the tangent plane to M at m }. 

If M is a surface, possibly singular, which has a 

* nonsingular parallel, then M is necessarily nonsingular. 

Proposition 3.46 

The surface M* 

(1) is nonsingular at (t',m) if M has an ordinary cuspidal edge 

atm. 

(ii) is locally diffeomorphic at (t',m) to the surface 

(:) --) 

u 
uv 

s 
V 

v' 
o 

if M has a cuspidal cross-cap at m. 

(iii) is locally diffeomorphic at (t',m) to the surface 

(:) --> if m has a rhamphoid cuspidal edge at m. 

Proof 

By (3.42) M can be parametrised by the map 

u 

r: (:) --> 
S J • 

U g+uv h+v S 
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Then the direction normal to the surface M is given by the 

vector product (ltv) ru(O) x rv(O) = 

= 

I 0 

2 

2 
2uh+3vS+v Sv 

s s s s where A = -4ug+4u fh+6uvfS-2u g1-2v h+2uv fSv+ 

So a local parametrisation of M* near (~,m) il given by 

.. (:) --) 

(3.47) 

(3.48) 

For an ordinary cuspidal edge, S(O,O)';'O and so by 

inspection the map r* of (3.48) is an immersion at (0,0). 

-

In the other two cases the result follows by applying a 

sequence of co-ordinate changes to (3.48), after having made one 

of the substitutions 
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lit ~eo~l~.'t') k ~ f'1 ~ fR ,; ~~ ~t>(.~·M v~jJ. aU;IfS 

-to ~c." "',,'f- K """'e.. CW'~re.. of ~ ~e..lestc: 
~Sl''lj ~~j'" '(. . 11«.. fU~~ k c,JQt e;~J'\~'ocl~ ~ .. r~ 
if\ 13r]. T/.L s~J ~~.J.( ~t\.'\ I)f ~ .rurfi<'f. 
il ~ MoI:MII' - v"''''to\. ~ (~~) "") <f ... 

S"'~1t.- c •• ..rJ,,"ifi. S1f~ IS tA..feJ t:JtH' {~i'~ Ie Go.~rWu 
&Ji~ LJCA'fkU\~wI'''' '.t f;~M L (["S~] r~l ~ [3;] f.r4). 



S = ut+vT with teO) ~ 0 (for a cusp.Ldal cross cap) 

S = vB with (for a rhamphoid edge). 

In the case of the cuspidal cross cap, it is only necessary to 

work with the 3-jet of (3.48). This is because 

(:) --) ~) 
is a 3~ determined map germ whose image is a surface with an 

isolated singular point [34]. QED. 

We shall now see how surfaces with cusp.Ldal edges arise on 

the involutes of non-singular surfaces. 

Thoorea 3,49 

Let F be a non-Singular surface with a geodesic foliation, and 

let M be an involute with starting line CI. Let rr:M --> F be the 

projection map and let x be an arbitrary point of F. 

(1) Suppose that k(x):lO and that the starting line CI passes 

through x. Then M has an ordinary cuspidal edge along CI. The 

lines of curvature of M of one system (obtained by unwinding the 

geodesics on F) have ordinary cusps where they cross the edge, 

while the lines of curvature of the other system are non-singular 

where they meet CI. 
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(U) Suppose that k(x)=O, and that the geodesic passing through x 

has a point of type U,3,N) there. Then the set of points of F at 

which k-=O is a nonsingular curve" passing through x. Suppose 

that the starting line a does not pass through x. Then in 

general, M has a rhamphoid cuspidal edge along n(,,), and the 

lines of curvature of M of both systems have cusps where they 

cross the edge. 

Proof 

/W.a.U tl..at the function k:M -)R asai gns to each point x, the 

curvature of the geodesic passing through x. Usually, it is not 

possible to give a sign to the curvature of a space curve in a 

meaningful way. However, if the curve is a geodesic on a 

sur f ace, it i s po 5 si b let 0 use a 10 calor i en t a ti 0 n 0 f F t 0 

determine a sign for k in a locally consistent manner, and k is 

then a smooth function on the surface which can take both 

positive and negative values. If the geodesic 'Y passing through 

x is of type U,3,N) there, for any N ~ 4, then k(x) - 0, and the 

derivative of k along y is nonzero at x. Therefore k: M -> R is 

a submersion at x and so the set of points at which k = 0 is a 

smooth curve 1'\ c: M passing through x. At each point point of 1'\ 

sufficiently close to x, the geodesic there will be of type 

(I,3.N') for some N' ~ N. 

The function ~:M --) R. which assigns to each point x the 

torsion of the geodesic passing through x. is also smooth. 
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(1) Let (u.v) --) e(u.v) be a parametrisation of F such that u 

measures arc length along the geodesics (which are given by 

v=constant), the curves u = constant are orthogonal trajectories 

to the geodesics. and e(O.O) = x. Let i:M ->a l be the inclusion 

map and let y be the geodesic passing through x. By (3.33). M is 

given by 

(3.50) 

By direct calculation from (3.50). the derivatives ruu(O.O) and 

ruuu(O,O) are linearly independent. i.e. the unwinding of 'Y with 

starting point x has an ordinary cusp. This calculation also 

shows that the tangent to the starting line at x does not lie in 

the osculating plane to the unwound curve at the cusp point x. 

So, by (3.41.iv), the composite lOr isA equivalent to the map 

( V
U) ---) (3.S1) 

Let n(y') be the line of curvature of M of the other system 

passing through x 0= n(x). By (3.24) the tangent directions to y 

and y' a t x are co nj u gat eon F. Since y does not have an 

inflexion at x, its tangent direction is not asymptotic. so is 

not self-conjugate, and sO the curves 'Y and y' on F intersect 

transversely at x. From the standard form (3.51) it now follows 

that n(y') is nonsingular at x. Some of the geodesics on Fare 

shown in figure (3.52). 
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Figure 3.52 A Family of Geodesics Without Inflexions 

Ready for Unwinding 

curv 0 I 

c:orrOlpond in8 

to line$' 

of curvature 

of M of tho 

other lyUel! 

(ii) Let (u,v) --) e(u,v) be a parametrisation of F luch that u 

mealures arc length along the geodesics (which are 8iven by 

v-constant), the c:urve 1'1 his equation u· 0, and e(O,O)· 1:. Let 

i:M -->R' be the inclusion map and let y be the geodelic passing 

through x. Let y, 0 and r be as in the proof of (i). Direct 

calculation shows that an unwinding of y whole starting point is 

not x has an ordinary cusp at x. In contralt to the situation in 

case (0, the tangent to the .tarting line at x does lie in the 

osculating plane to the unwound curve at the cusp point x, and so 

(3.41.1v) does not apply. 
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By (3.33), M is given by 

r: (u,v) -> e(u,v)+{c(v)-u)eu(u,v) (3.54) 

for some -Pl.(ncti ..... c. Define three smooth fields of unit vectors 

~, A, and h on M such that ~=eu is tangent to the geodesic 

passing through x, A(x) is normal to F, and It(x)z1.(x)X!l.(x). Then 

the SerretFrenet formulae hold: 

Au - "rob. - k1. and 

Differentiating (3.54) and evaluating at (0,0), 

ru(O'O) = (c-u)e uu - c~ - 0 

rv(O,O) = ev(O,O) + ceuv(O,O) -I- CJ.(o)~ 

euv(O'O) = CIA + Ph for some constants CI and p. In addition, the 

co-ordinate system was chosen so that ev - 6£ + Eo t ~l" so""~ J: ( .. 

We now assume that the involute Mis such that c I- -6/~. 

This is the meaning of the proviso 'in general' in the statement 

of the theorem. The particular involute with c • -6/P meets the 

com pIe men t a ry sur f ace Gat r ( ° , 0) and h a I a m 0 r e com pi i cat e d 

singularity there which we will not analyse now (~fIJl. ("e~f'k~ ,~ (]. '3») . 

Under the assumption that c I: -6/P. the vectors rv(O.O) and 

ruu(O,O) are linearly independent. Take • co-ordinatel in R 

with the 0 ri gin at r (0, 0) and the ve c tor s r v (0 , 0). A (x) and 1. (x) 

pointing along the X. Y. and Z axes respectively. 

eN.8.. Tk.e-~e.. ~S ~ r'\o-t a.lt~r."L) 
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'1et'l 

v + 0(2) 

rC) a = u N(u,v) + f (v) for so m e fun c t ion s f.N wit h N ( 0 , 0) oj. 0 

0(2) 

Let r denote r followed by -t~e. ,rDj~c.'t,O~ (X,'r',~)""('r,t:). 

A straightforward calculation using the Serre~ 

Frenet formulae shows that 

?'t (0) 

r. (0) 

o 

3ra (O).ra (0) 

10ra(O).r.(O) 

.. ~ = 24c k1 ,. 0 

After a few more co-ordinate changes, we can apply (3.YS'.iii) to 

conclude that M does indeed have a rhamphoid cuspidal edge. QED. 

In the case of a geodesic foliation with inflexions, (3.49) 

provides a clue as to the behaviour of the complementary surface 

to F. Since both families of lines of curvature on M behave 

similarly (they are cuspidal), we predict that the two sheets of 

the focal set of M will also behave similarly. Therefore we 

expect the complementary surface G also to be nonsingular, and 

the RLCs on G also to have inflexions. We shall return to this 

question later, in (3.b'ij. 

We now want to try to establish a converse to (3.49). Let M 

be a surface with a cuspidal edge (ordinary or rhamphoid). 

Consider the focal set of M. By (3.49), it ia possible that one 

sheet of the focal set could be non-singular, with the geodesic 

foliation of RLCs consi sting of curves without inflexions (if the 
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edge is ordinary) and with inflexions (if the edge is rhamphoid). 

Is this necessarily the case, or are there other possibilities 

for the focal set? 

We mention explicitly two phenomena that might occur at a 

point m on a cuspidal edge. There might be more than one line of 

curvature of each system passing through the point m (this is the 
Qt c::t 'fj,MeY',c 

case L.. Llttfbi.liclU1)· In this case we shall say that m is lO]1l'ce 

or sink for lines of cury.tpre. Also the limiting position of 

the pair of points rr-
1

(m), as one approaches m along some curve 

in M, many depend on the direction in which one approches. If 

this occurs, then the focal set F will include the whole of the 

line N M, rather than just two points of it. and we shall say m 

that the focal set klows up at m. ""T1tit CQM. },«~r\ at 0. no",~tric. 
~M~i'ic. • 
Proposition 3,SS 

Let M be a surface with an ordinary cuspidal edge y, given as 

the image of the map r of (3.43) and let m - reO) e y. Then, 

in the neighbourhood of M, the focal set behaves as follows. 

(i) The focal set of M does not blow up at m and m is not a 

source or sink for lines of curvature (these terms are defined in 

the previous paragraph). The lines of curvature of M are the 

images under r of two systems of non-singular curves in RJ. which 

intersect transversally. 
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(ii) One sheet of the focal set is nonsingular. The associated 

principal radius of curvature is identically zero along r and the 

associated lines of curvature cross the edge with ordinary cusps. 

Lifting these lines of curvature to the focal set gives a family 

of nonsingular RLes without inflexions. 

(iii) The lines of curvature of the other system are non-singular 

where they meet the edge • 

Proof 

The surface M is given as the image of the map (3.43) 

r --) 

In this parametrisation, the curve r is given by v = O. Then by 

(3.47) a vector normal to M (not necessarily of unit length) is 

given by 

A 

2 
-2uh-3vS-v S v 

2 

+4 2 2 2 2 where A - -4ug u fh+6uvfS-2u 11-2v h+2uv fSv+ 
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By (3.2) and (3.3) the focal set of M 

(3.S6 ) 

(: :) --
(3.S7) 

where the functions E.F.G.L.N.P.<tR can be expressed in terms of 

u,v,f,g,h and S. 

Explici tly. 

E = 1 + 4us f s + 4uSg S + 4u·ff1 + 4u·gh + 4uv
S
gh + 0(4) 

F = 2uvf + uSv(4gh + 2f1 ) + 6uv
S
gSv + v0(3) 

(3.S 8) 
S S S S • 4SS 40 (1) G = 4v + 4u v h + 12uv hSv + 9v v + v 

S S S S 0 L = 4g + 4Uh-4ufh-6vfS + 2u g1+4V h 1 -2v fSv-4 f 1 h-6uvf1S+ (3) 

S • 
N = 6vS + 10v Sv + 2v Svv 

Consider the behaviour of the two functions 

A1,AI:R I -{v=0} --) R defined by (3.S7) as one approaches the 

point (0,0). 

The equation (3.S7) may be divided by v without affecting 

the values of its roots A1 and AI. It now becomes 

AS(6SL+vP) - A(6SE+vQ) + vR - 0 (3.59) 

149 



Substituting (u,v)=(O,O) in (3.59) gives 

which is a quadratic equation for A with two distinct roots in 

I.p1 (if g(O)=O one of the roots for A is infinity). 

Consequently (3.59) defines two smooth function germs 

A1:(l.a ,0)--)(RP1,0) 

AS: (l.s ,0)---)(RP1 ,1/4g(0» 

which are extensions of the functions A1,AS defincd at the 

a immersive points of I. by (3.57). It follows that the focal set 

of M docs not blow up at m, but contains two well-defined points 

of the normal line NmM. 

We now identify the lines of curvature of M. Let ~ denote 

the set of 2 x 2 matrices of rank 1. Then the map ~ --) I.p1 

given by A -> ker A is smooth. Consider the two line fields ~1 

S and ~s on It given by 

° 0:: ( E F )] ~i (u,v) 
Flv G/v 

Since the matrix in square brackets has rank 1 throughout 

some neighbourhood of the origin, and is a smooth function of u 

and v, these line fields will integrate to gi,ve two non-singular 

systems of curves in I. s • Whenever v -I: 0, these line fields agree 

with the principal directions for M, in the sense that 

r1(~i(u,v» is a principal direction at r(u,v). We have thus 

identified the lines of curvature. 
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By direct calculation, 

(
0) lO) (0) (-3S(0,0») ~1 = and ~a = ° ° ° 2h(O) 

(3.60) 

Hence the integral curves of these two line fields cross 

transversally at (0.0). 

(il) and(Hi) It follows from (3.60) that the images under r of 

the integral curves of ~1 will have ordinary cusps and the images 

of the integral curves of ~a will be non-singular where they meet 

the edge y. From (3.59), the function )..1 is clearly identi cally 

zero along the line v == 0. It only remains to prove that the 

sheet of the focal set corresponding to )..1 and ~1 is nonsingular 

near r(O,O). This is done by showing that the map e given by 

(3.61) 

is an immersion at (0,0). Calculating those terms in E, L, p. Q, 

and R which are linear in u and v, and solving the quadratic 

equation (3.59), it can be shown that 

)..1 == 2v/3S(O,O) + 0(2) 
It follows that 

o + 0(2) which is an immersion. QED. .(:)- ( u 

4v/3S(0,0) 
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Coroll,ry 3.62 

If M ha I an ordi nary cUlpi dal ed,e at II, then all except one of 

the parallell to Mare nonsingular where they meet NmM. 

hoof 

By (3.55), one Iheet of the focal lOt of M il a .nonlinlular 

lurface on which the RLCI do not have inflexionl. Any parallel 

to M must be an involute of this foUated lurface. Look at the 

invol utes of this lurface~ The rOlu,1t followi. QED. 

This corollary meanl that any lurface with an ordinary 

cuspidal edge arisel both al a parallel to sOlie nonlingular 

lurface, and al an involute of some nonsinsular lurface equipped 

with a foliation without inflexions. 

Having investigated the focal sets of lurfacel with ordinary 

cuspidal edges, we now consider the more interesting question of 

describing the focal sots of lurfacel with rhamphoid cUlpidal 

edges. 

neorea 3 .63 

Lot M bo a lurface given by (3.42) with a rhamphoid cu.pidal edge 

at m-r(O). The behaviour of tho focal set in the neighbourhood of 

m is II followi. 

(I) The focal set doel not blow up at m. There are two pointl 

of the focal let on tho line NmM, neither of which i. m. 

Thoy aro distinct <-> ,(0) - H(O,O) and h(O) aro not both zoro. 

If these two point. are diltinct, and if in addition h(O) ~ 0, 
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then m is not a source or link of linel of curvature. Both sheet. 

of the focal .et are non.ingular near m, and the two line. of 

curvature passing through m do so cuspidally. The corresponding 

RLCs on both sheet. are nonsingular curves with inflexions. 

(ll) If h(O) - ° and g(O) + H(O,O), then one .heet of the focal 

set is singular and the other sheet is nonsingular, and the lines 
t\OIlS';"~,,,tQ.(' 

of curvature corresponding to the~ sheet form a foliation of M. 

Proof 

Proceed al in the proof of (3.SS) to derive the equation (3.S9). 

Since S = vH, it is possible to divide (3.59) by v giving 

A'(6HL + P) - A(6HE + Q) + R - 0 

Substituting (u,v)=(O,O) in (3.64) givel 

° = A'(6H(0,0)4g(0)+P(O,0» - A(6H(0,0)+Q(0,0» + 4 

= AS (64g(0)H(0,0)-16h(0)') - A(16H(O,O)+16g(0» + 4 

(3.64) 

(3.65) 

The discriminant of the quadratic (3.65) is 256A, where 

A • (H(O,O)-g(O»s + h(O)' (3.66) 

So if H(O,O)-g(O) and h(O) are not both zero, equation (3.64) 

defines two smooth function germs 

", 1 ~1:(R ,0) --> (RP ,11) 
and (3.67) 

A,:(RS,o) --> (RP1 ,a,) 

where a 1 and as are the two (non-zero) values of A sati sf yin, 

(3.65). By direct calculation, 11ai • 2(g(0)+H(0,0)±(A). The 

functions (3.67) are eztensions of the function. A1 and A' 
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defined by (3.57). and hence there are two well defined points of 

F on the line NmM. given by r(O.O) + aiN(O.O) for i =1.2. This 

proves that the focal set of M does not blow up at m. 

We now investigate the lines of curvature of M. For 

convenience. instead of working directly with ).i' we will work 

with the functions Jii .. 1/).i' Consider the smooth vector fields 

~i on a2• defined by 

~i - (
JiiF - M) 

L - l1i E 

Thoy have tho property that at each point rl(~i(z» must be 

either zero or a principal direction on M. But 

L - l1i E = 4g(0) - l1i(O) +0(1) and for this to vanish at the 

origin, we must have 4g(0) - l1i(O) - 2(g(0) + H(O.O) ±.fA ) 
and so g(O) - H(O.O) .. ±/A . 
Squaring gives (g(O) - H(0,0»2 - (g(O) - H(0,0»2 + h(0)2 and so 

h(O) - O. Therefore if h(O) + 0, ei does not vanish at the 

ori,in. In this case, some neighbourhood of the origin is 

foliated by nonsingular inte,ral curves of ~i. We have shown 

that, providod h(O) ~ 0, the point m is not a source or sink for 

lines of curvature. Furthermore, by direot calculation. 

ei(O.O) _ ( 0 ) 
4g (O)-l1i (0,0 

and since this equality holds for both i-I and i-2, the integral 

curves of both ~1 and ~I are tangont to the v azis at the orisin. 

From (3.43) it follows that the lines of ourvature of both 
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systems passing through m have cusps there. 

Now suppose that h(O)-O. Let h(u)-ut(u). The two roots of 

(3.65) are 1/4g(0) and 1/4H(O,O). To avoid confusing 111 with l1a, 

wo choose to distinguish the roots by defining 

a1 - 1/4g(0) and as .. 1/4H(O,O). 

We are assuming that a1 P aa, so as in the caso above when 

h(O)pO, we find that ea does not vanish at the origin, and so 

the lines of curvature of the second system form a foliation on 

M, just as in tho caso when h(O) is non-zero. 

We now consider whether m is a ridge point for the surface 

M. A ridge point on a nonsingular surface is one at which the 

equivalent condi tions (3.8.t) to (3.8.vii) all hold with j-2. We 

shall investigate whether condition U.S.iv) is satisfied. By 

composing with r, we can consider the two principal curvature 

functions as being definod on the plane R a with co-ordinates 

(u,v), and similarly one can consider the linea of curvature of M 

as curves in R a • Then m is a ridge point for the ith sheet if 

and only if the derivativo of loi in tho ith principal direction 

vani 'hes at the origin. 

Let J1i - 1/Ai. Wo shall oxamine the I-jet at the origin of 

the functions l1i (this is where it really pays to look at l1i 

instead of ).i). Substituting for E, L, P, Q, and R in (3.64) 

givea 

ISS 



o - 4J12- [16sCO)+16HCO.0)+16CgICO)-2hCO)f(0»+14HvCO.0)v]J1 + 

16[gCO)H(0.0)-h(0)2+(4g1CO)H(0.0)-4f(0)hCO)H(0.0)-2hCO)hl(O)]u 

+ 56g~V + 0(2) 

where 0(2) denotes terms involvinS u 1 • uv. v 2 , etc. 

Solving tho quadratic (3.68) sives 

fli - 2 (g CO) +&(O,O);t IS) (3.69) 

+ uZ(O,O) + 15vHv (0.0) [1;t(H(O.O)-S (O»//E] /4 + 0 (2) 

If h(O) ; 0, then m is a ridge point if and only if the 

derivative of fli in the direction of ~i vani shes cd: 

( 0
1

) • or! sin. But since ~i is a mul tiple of \ • this derivative is 

ai I: 15Hv (O.0)U.:t(H(0.O)-s(O»/J,[ ]/4 

This is definitely non-zero. 

The ith sheet of the focal set is the imase of tho map 

(:) __ ) .(:) c r (:) + li (:) N (: ) • 

\:) + 

.. 
-4a i s(0)U 

-2aihCO>U + 0(2) (3.70)' 

By inspection this i. an immersion near the orisin. Hence both 

sheets of the focal set are nonsinsular. and so the RLC., being 
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seodesics on a nonlingular lurface, mUlt themselves be 

nonsinsular. The presence of inflexions can be deduced by 

working backwards. If inflexions were not present, then by 

(3.49) M could not possibly have a rhamphoid cuspidal edge. QED. 

Those points with h(O) - 0 appear to have interesting 

properties, and merit further study. From equation (3.70), it is 

clear that one sheet of the focal sot (corresponding to J.ls) with 

as - 1/4H(0,0) is nonsingular and the other (correspondinS to J.l1 

with a 1 .. 1/4S(0» is singular. It appears that these are point s 

where ribs cross the cuspidal edge. 

Theore. 3.71 

Under the same hypotheses al in (3.63), suppose that h(O) - O. 

Let h(u) .. ut(u). Then if g(O) .,. 0 and Hu(O,O) .,. 0, there is a 

ridge y passing through m. The curve y is the image under r of a 

nonsingular curve in the (u,v) plane. 

t!21!. 

If ,eO) .. 0, then the ridge is still present, but is at infinity. 

This case has been excluded so as to simplify notation. If 

Hu(O,O), then the ridge is the image of a curve in the (u,v) 

plane which is singular at the origin. 
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Proof 

By [26], the ridse points are those for which there is a number ~ 

simultaneously satisfying the three equations 

o - N.r2' - ~rl,.rl and 

o - N.r3,3 - 3~rl'.r2 2 

for some unit veotor~ e a2 • We want to substitute for the 

derivatives of r and eliminate two of the variables, namoly ~ and 

~ leaving a lingle equation in u and v. We do this in t"o 

stages, as follo"s. First, eliminato,\, leaving t"o equations, 

one of which is (3.57), and the other of "hich is the resultant 

0" 

N.ruuu-3~ru·rvv ••••••••• N. rvvv-3~rv. rvv 

L - I1E M- J.lF ° ° 
0 L - J.lE M - pF ° 
0 0 L - ~E M- ~F 

The first equation is quadratic in ~ and the second il cubic in 

J1. Taking the resultant of these t"o ne" equations "ith respect 

to ~ gives a single equation in u and v for the ridges, given by 

a 5 by 5 determinant. 

Explicitly, (3.57) gives 

° - 4~2 - (16H(0,0) + 16g(O»J.l + 64g(0)H(0,0) + 0(1). 

Consider no" the determinant (3.72). The extreme right hand 

column il divilible by v, since 

N. rvvv - 48vH + 72 v2Hv + 24v3 Hvv + 2v41Ivvv and 

rv.rvv • 4v + vO(2) 
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Removing this factor, we find after considerable calculation that 

(3.72) becomes 

o - p4 - (12g(0)+4H(0,0»p3 + (48g(0)2+48g(0)H(0,0»p2 

- (64g(0)3+192g(0)2H(0,0»p + 256g(0)3H(0,0) + 0(1) 

When (u,v)·(O,O), both (3.57) and (3.72) have p - 4g(0) as a 

root. Therefore we can say without calculating it explicitly 

that the p-resultant of (3.57) and (3.72) vanishes at the origin, 

and so m il a ridge point. We Itill havo to verify that the 

ridge is a liven by a nonsingular curve through the origin in tho 

(u,v) plane. We wish to rule out such possibilities al the 

re sultant of (3.57) and (3.72) bei ng a curv 0 wi th a doubl e poi nt 

at the Origin (which would correspond to there being two ribs 

crossing at m), or that the relultant could be idontically zero, 

in which case every point of M is a ridge point. 

These possibilities were originally oliminated by explicitly 

calculating the resultant. However, there is an alternative 

method which consi derably reduce s th e nece I sa ry amount of 

calculation. Tho required result can be deduced from (3.70). 

For suppole that (u,v) is a ridge point of M which il close to 

the origin. Then the corresponding Iheet of the focal let must be 

singular there. This sheet of focal lot is parametriled by the 

map e given in (3.70), namely 

(

-4Ug (O) - 2u2g1(0) 

-2u2t(O) - 4v2H(0,0) 

2 
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where III • (1 - uZ(O.O) /4g (0» /4g (0) + 0(2) and 

Z(O,O) • 4Hu (O,O), 

Differentiating (3.73) sives 

( 

2u(Hu(O.0)/S(0)-Sl (0)/2g(0» + 0(2») 

eu • 2u(f(0)+t(0)/2g(0» +l>(2) 

-Hu (0.0)/2g(0)2 + 0(1) 

and 

ev -( ~:::-II(o.O)I'(O)) + 0(2) 

0(1) 

It follow., by considerins when the vector product e u 1: ev 

vanishes, that any ridge point must be the image under r of a 

point lying on the nonsinsular curve 

o • -2v(1-H(0,0)/s(0»Hu CO.O)'/2g(0)2 + 0(2). It is clear that 

the· image of this curve in M will have a ousp at m. QED. 

It has been shown in a number of exampies (using (3.45.iH» 

that the singular sheet of the focal set has a cuspidal oross cap 

at e(O,O). We believe that this is always (or almost always) the 

case for rhamphoid cuspidal edges with h(O)-o, and that it will 

be possible to prove this using the lame kind of al,ebraio 

manipulation used above. If thh result ia true, the evolute of M 

is none other than the foliated surface conal dered in (3.35) and 

(3.36), and we have in fact answered the question which was 

railed there about the behaviour of the ,eneral involutes of this 

surface. 
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We have now obtained the big wave front which we propo.e a. 

a candidate to be called H4. Let us summarise its properties. 

The family of parallel .urface. i. obtained by taking the 

involutes of a foliated surface F with a cuspidal cross cap at.a 

poi nt P. There are two nonai ngular curve s 1 c and r i on th e 

surface F, such that the geodesics have ordinary cusps along l c ' 

infledons along li' and the geodesic palsing through P has a 

rhamphoid cusp there. An involute M whose starting line a does 

not pass through P has a swallowtail where a crosses the curve 

l c , an H3 singularity where a crosses the curve li' and an 

ordinary cuspidal edge along a. There i. a rhamphoid cuspidal 

edge along n(li), and on that edge there is a ridge point n(P). 

Up to di ffeomorphi sm, the poi nt n(P) is i ndi sti ngui sha bl e from 

the other point. on the rhamphoid cuspidal edge. 

Thus the invol ute M has aU the di sUngui shing features one 

would possibly expect to find if it were one of the sections A(t) 

(where" F 0) of A(H4) described in chapter one. Similarly, the 

involute whose starting line passes through P has aU the groll 

differential geometric features one would expect to find on the 

.ection A(O) of A(H4). Although these surfaces certainly appear 

to be diffeomorphic to the .uggested standard models, we have not 

proved this here. The conclulion that should be drawn from the 

lengthy calculations appearing in ! 3.4 il that, although this 

is an area that has been extensively studied for many years, 

there are still problems worthy of further attention involving 

tho ovolutes and involutes of surfacos in a3• 
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The objection could be raised, that the group H3 arises from 

taking the involutes of a curve with an inflexion. Such a curve 

is nonsingular, and furthermore is a natural one to consider, 

since inflexions are present stably on generic nonsingular plane 

curves. The group H4 seems to arise from taking the involutes of 

a surface with a cuspidal cross cap, which is a singular surface. 

One might say that it is therefore much less natural to look at 

the involutes of such a surface, indeed how would it ever occur 

to anyone to take the involutes of such a surface. What is more, 

if one is to be allowed to unwind geodesics from one type of 

singular surface, then one must also consider involutes of all 

other singular surfaces. Then the possibilities are limitless. 

But this objection loses most of its validity, when one 

~ises that the cuspidal cross cap is a stable phenomenon in 

the class of map germs with a cuspidal edge [20]. Because of the 

possibility of ribs, one should consider the focal set not as an 

object in the class of nonsingular manifolds. but as a member of 

the class of manifolds-with-a-cuspidal-edge. It is shown in [20] 

that, on such manifolds, two types of singular pOint occur 

stably: the ordinary CI.l~p·~JcJ. edge pOint (3.38) and the cuspidal 

cross cap (3.40 

As a postscript to the study of involutes and evolutes of 

cuspida! surfaces, we now have a brief look at the evolute of a 

cuspidal cross cap. 

Proposition 3.74 

Let M be a surface Siven by (3.43) with a cuspidal croll cap 

at m=r(O). Then the focal set of M blows up atm. 
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Proof 

Proceed a. in the proof of (3.55) to derive equation (3.59). 

Sub.tituting S • uk + vT, equation (3.59) becomes 

1.2[6(uk+vT)l + \'pl- )..[6 (uk+vT)E+vQ] + vR ... 0 (3.75) 

Approaching (0,0) along the line u-av, the limiting 

po si tions of the two point. of F lyi ng on Nm M are given by the 

root. of 

o - 1.2[6(ak + T)L+ P] - 1.[6(ak + T)E + Q] + R -

... ak (6).2,.,- 6)"E) + 6).2r.T + ,~1p- 61.ET - )..Q + R (3.76) 

For any). e~, a value of a can be cho.en .uch that)" i. a root 

of (3.76). (In some cases, we will find a i. infinite. Thi. 

corresponds to approaching (0,0) along the line v=O.) Therefore, 

by approaching (0,0) in a suitable direction, we can arrive at 

any point on the norm al li ne Nm N, and '0 th e foe a1 .et blow s up 

at m. QED. 

Here we conclude our brief look at the involutes and 

evolutes of surfaces in a3• We have in fact only de.cribed only a 

very few of the configurations which can occur. We have not even 

exhausted the possibilities of the involutes of a generic 

nonsi ngular surface F, becau.e, for example, we would expect to 

find, in a typical geodesic foliation, isolated point. of 

undulation of the geodesics. 

Two methods have been used here to study the relationship 

between evolute and involute. the fir.t method is to start with a 

parametrisation r:R' --) R' of a surface M and to compute a 

parametrisation e:R' --) R' of the evolute usin8 the equations 
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e = r + Cl/k)n 

The second method is to start with the foliated surface F, 

and to build up an involute of F from its lines of curvature by 

unwinding individual geodesics. 

A third and more powerful method which has only been 

mentioned in passing is to apply a classification theorem about 

singularities of functions to the family of distance squared 

functions on M. This is the method that was used by Shcherbak 

[29] to describe the big involute of a curve with an inflexion, 

using Lyashko's classification of functions on cuspidal curves. 

A function that appears to be of particular interest is the 

distance squared function of the surface with parametrisation 

u 

u2 f(u) + v2 

U2g(u) + u2v2t(u) + v4H(u,v) 

This function "ill arise in the context of classifying functions 

on manifolds with a singular boundary Cas defined in [18]) "here 

the boundary has a rhamphoid cuspidal edge. This function is 

certainly adjacent to the A3 and 83 strata. The resulting big 

wave front appears to be very similar to 4(84), and so we propose 
, 

that this function should be called 'of type 8 •• This function 

can clearly be thought of as a one-parameter family of functions 

on the manifold consisting of as with a singular boundary 

consisting of the curve %2c y5. In [18], Lyashko classified all 

such functions which are simple or unimodal. The 8 4 function 

described above will presumably appear when the classification of 

[18] is extended to the bimodal case. 
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3.S Parallell in Richer Di.ep_ionl and Co41.,asioal, 

The purpose of this section is to demonstrate the rarity of 

parallel s in general. It )fkClln, there is at most one k-

dimeasional manifold parallel to )f passins through each point of 

Proposition (2.10) shows that if k-l or k-a-l, the words 'at 

most' can be replaced by the word 'precisely~ 

If 2 ,< k~ n-2, the situation is somewhat different. We 

shall now see that in these cases there are very few parallels. 

For alJllost all surfaces M in Rn (n~4). any surface )f. which is 

parallel to )f. must actually be equal to M. In this .ection 

r: (R a ,0) --> (Rn,m) is an i JIlmersiv e ge rm which give s a loca I 

parametri sation of )fa eRn. 

For each r(x) € M, let Ar(x) be the map NmM->S aRa given 

by Ar(x)(e) =: (e-r(x».ra(x)-u(x).r1(x). The map AJIl is affine 

and the portion 71'_1(JIl) of the focal set lying in NmM i. the 

inverse image under AJIl of the conic C of degenerah(parabolic) 

quadratic forms. Taking co-ordinates ia aa, 

Equation(3.77) showl that after projectivizins. det AmCe) is 

quadratic form in e of rank A where A ~ 3 and (if M il 

penninoD 3,78 

If A .. 1. m i s call e dan 11. bill 0 and i f A - 2, m w ill be c a 11 e d a 

.eaiuabilio. 
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B,Jaapl e 3.7 , 

If n-3 every point m is either a aem\UJII.biUc (if n- 1 (m) is two 

distinct points) or an umbiUc (if n-1(m) is a repeated point). 

If n=4. n-
1

(m) is a repeated line. a pair of lines or a 

conic in the plane NmM. according to whether A - 1. 2 or 3. 

For distance generic surface. those points on the focal set 

at which the distance squared function has a singularity of 

corank 2 or more (at least D4) form a subset of F of codimension 

2. It follows that not every point of M is semiumbUic. In fact. 

for almost all surfaces in Rn. the semiumbilics form smooth 

curves Cif n=4) are isolated points 

(i f n).6). 

Thear_ 3.80 

The following conditions (i) to (iv) are equivalent. 

(i) There are (n-3) surface germs Mi (io:::l, .... (n-3» parallel to 

M such that if Yi is the point in which Mi meets NmM, the points 

m,y1 .... yn-' do not lie in an (n-4) dimensional affine sub.pace 

of NmM. 

(U) There is an (n-2) parameter family of .urface germs 

parall el to M. 

(iU) Every point of Mi. either semi umbilical or umbilical. 

(iv) Let p: Tube (M)--)M be the na tural proj ection and 1 et y 1 

and rs be two lines of curvature of Tubc(M) of the same sy.tem. 

Then either the two curves POr1 and poys are di .joint. or they 

are the same curve. 
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If the following condition is satisfied then so are (1) to 

(iv) above. 

(v) For any c such that Tubc(M) is smooth. a local co-ordinate 

sy st em can be cho sen a t any point of Tub c (M) such tha t the co-

ordinate directions are principal directions. 

R.c.ark 

Condition (iv) describes what happens when the lines of curvature 

on Tubc (M) are proj ected to M. By ('2...,,,,) there are two 

nonconstant principal curvature functions on Tubc(M) and two 

corresponding systems of lines of curvature on M. 

The fibre p_1(m) is a sphere of di mensi on (n-3) and th ere 

are two lines of curvature. one of each system. passing through 

each point of the fibre p_1(m). If. however. condition (iv) 

holds. then these infinitely many curves on Tubc(M) project under 

P to two curves 11 and la. 

Since for c :/ d. Tubc(M) and Tubd(M) are parallel 

hypersurfaces. and since lines of curvature on parallel 

hypersurfaces correspond. condition (iv) holds for one value of 

c if and only if it holds for all values of c. 

Proof 

To simplify notation. it will be assumed that n· 4. The proof 

for n ). S is essentially the same. We shall prove the following 

chain of implications. 

(1).( if (ii) I )- (iii) ~ (iv) 

t~ ~ 
(v) 
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0) =>(ii) 

By hypothesis M has at least one parallel Ml passing through 

Yl e NmM. Let y be any point of NmM not lying on the line mYl. 

Then positive real numbers c and d can be chosen such that 

T=Tubc{M) and Tl~ubd{Ml) intersect transversally at y. Then they 

will intersect in one further point z of the plane NmM, as shown 

in figuro (3.8!). The intorsectionT n T 1 , consists of two surface 

gorms parallel M passing through y and z. 

Surfaco gorms passing through points on tho line my 1 can now 

bo constructed by repeating the above construotion, taking tho 

intersoction of tubes whose cores contain tho points y and z. 

Figure 3.81 CrolS-Section of the Tubes T and Ta. by tho plane NmM. 

uu->U) 

This is trivial • 

.1iO-HiUl 

Let C be the conic rr- 1 {m). 
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Let I be a straight line in NmM passing through m. Then I is 

a normal to Tubc(M) and so must intersect the focal set of 

Tubc(M) in Cn-l) points which must all be real. By (2.15) 

these (n-l) pOints are m (counted m-3 times) and the two points 

InC. 

Hence the two points 1" C are both real. 

If M has a two-parameter family of parallels then any line 1 

in NmM is a normal to TUbc(P) for some P parallel to M and by the 

above argument I meets C in two real points. But any conic which 

meets every line in the plane in two real pOints is a pair of 

lines and so m is a semiumbilic. 

(UU-)U~) 

As shown in figure (3.82), the plane NmM intersects Tubc(M) in a 

circle y and F in a conic which, because of condition (iii), 

consists of two lines 11 and 1a. 

Ellure 3,82 Cross-Section of F (If(l.J. Tubc(M) by the plane NmM 
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We wish to show that the projections to M of the principal 

directions of Tubc(M) at any point y € yare two vectors V1 and 

v s in TmM which depend only on M and not on y. 

It.t .y € Tube (M) and let 

r:(R S ,O)--)(M,m) and f':(R s 
J: 8 1,(0,a» --)(Tubc(M),y) 

~ 

be germs of parametri sations, where V and V are the associated 

distance squared functions for M and Tubc(M). A straightforward 

calculation now shows that if e € NmM, 

,.J 

VI(O,a)(u) == 0 (===) VI (O)(u)-=O (3.83 ) 

For a smooth surface M, the image of the map from S1 to NmM 

which associates to e the projection of rs (cos e) S 

sin e 

onto the plane NmM is called the curyature dUp" at m. The 

fibre p_1(m) of the focal set lying in NmM is the polar of the 

curvature ellipse with respect to the con i c 

(ulr1(0)(u).r1(0)(u)==1l in NmM (see [23] or [33]). 

Thus the curvature ellipse at m degenerates to a straight 

line segment if m is a semiumbilic and a single point if m is an 

mnbilic. 

If E is a true ellipse. each tangent direction to M at m 

contributes one point to E. and the pole-polar relationship gives 

a one-to-one correspondence between the points on the ellipse and 

the points on its polar. 

Combi ni ng thi s with th e one-to-one correspondence between 

'V 
solutions of Vs(u)=O and solutions of Vs(u)=O given by (3.83), 

it follows that there is a bijective correspondence between 

projections to M of principal directions of Tubc(M) at points of 
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r and tangent directions to M at m. 

If. however m is a semiumbilic. the polars of the point. on 

the lines segment E form part of a pencil of lines in the plane 

NmM all passing through same point P. The conic p_1(m) in the 

plane NmM will consist of two lines 11 and 11 which are the 

polar. of the two end pOints of the line segment E. and the only 

sol utions of 

v f (0) (u) a:: 0 with e e N m M • u '" 0 

will be 

V,(O) (U1) = 0 (=) e e 11 and 

V'(O) (UI) =0 (=) e e 11 

for some vectors U1 and UI e TmM depending only on m: not on e. 

Uv)=-)Uil 

We use the Dupin-Darboux theorem which is as follows (31). 

Let Rp. So'. T~ be three one-parameter families of 

hypersurfaces in R4 which are mutually orthogonal. Then for 

there to exists a fourth one parameter family P n orthogonal to 

each of the others. it is necessary (Darboux) and sufficient 

(Dupin) that for every triple (p.a.~) the curve Rp <" So' n T't 

is a line of curvature on Rp and on So' and on T't. 

Note -
The normal direction to Pn is uniquely determined. since it is 

perpendicular to the normals to Rp and So' and T~ • Therefore the 

tangent hyperplane to Pn is known at each point. The above 

theorem given a necessary and sufficient condition for the 

resulting distribution of hyperplanes to be integrable. 
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The above theorem is applied to the families Rp, Sa and T-r: 

where 

T-r: (-r: e R+) is the tubular hypersurface with core M and radius 

(R is the set of curves on M which are the projections of the 

lines of curvature of T1 of one system 

'$ is the sot of curves which are projections of lines of 

curvature of the other system 

Rp (p e&..) is the union of the normal planes to M at 

points of p, 

So' (0' e ~ ) is the union of the normal p1anel to M at points 

of p. 

The Dupin-Darboux theorem gives a fourth family of 

hypersurfaces Pn (n e 6? ) with the property that each 

surface of the form Pn n T-r: is a parallel to M. 

Suppose (x,y,a) are local co-ordinates on Tubc(M) such that 

the co-ordinate directions are principal directions and x and y 

are constant on each fibre of p:Tubc(M) --> M. 

Then the surfaces a = constant are parallels to M. QED. 

For Mk c: an, each fibre It-
1 (m) is an algebraic 

hypersurface in Nm M of de gree k. The proof given above for the 

case k - 2 shows that for 3 ~ k , (n-2), an (n-k) parameter 

family of parallels to M can exist only if w- 1
(m) is the union of 

k hyperplanes in NmM for each point m of M. For a fixed pair 

(k,n) with 2" k ~ n-2 this will not be the case for a general 

manifold M c: RD (see [33]). 
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Given a hypersurface F in R4 , one can ask whether it is the 

focal set of some surface. For thi s to be the ca se, F must be 

foliated by the conics in which would be fibres of the projection 

p. More generally, if F is the focal set of Mkc: ftn, the fibres 

of p are algebraic subvarieties of Rn of codimension k+1 and 

degree k. But if 1,k,n-2, there is some integer N(k,n) depending 

only on k and n and a dense subset i:5 of Immtan- 1 ,an ), luch 

that, if r e :f, the contact between the image of r and any 

algebraic subset of an of codimension k+1 and degree k i. liven 

by a map-germ of ~codimenSion at most N. The set ~ is 

obtained from the set of all algebraic varieties of degree k and 

codimension k+1 in a similar way to that in which the set of 

distance-generic immersions is obtained from the set of all 

hyperspheres inRn [23]. If r e J ' no algebraic subvariety of 

codimension k+l and degree k can lie on the hypersurface 1m r. 

It follows that 

ThoorC1l 3.84 

Almost all hypersurfaces in ~n have the property of not being the 

focal set of any k-manifold in Itn for any k " n-2. 
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APPINDIX (fiB 

A SKI OF BASIC JHyAllIANTS FOIl TUB G1lOUP B. 

(see proposition 1.42) 

The polynomials Pa. p1a. pao. and PIO. listed below form a 

basic set of invariants for the group H •• See chapter one for 

definitions of the polynomials fa, f" f., f 1a , and jaa and for a 

description of the methods used to calculate Pa, p1a, pao. and 

Pa == fa 

a a 
Pu = 72fu + 121f, - 22f.fa + 50688ha 

P:ao = 17qao/4608 + S329Sjur. 

Pao = qu/1l79648 + 435435jurll/256 

where 

10 
qao - 263670638fa + 12969fIf, - 12078737df. + 6631779Of1f: 

+ 39553776f:f1a - 198f:f,f. - 41Sf!f: - 40095f af: 

- 158840faf,fu + 99275f.f: + 7128fu f. 

r. _ 1926f: - 3 f af, - f, 
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q.o = 592837910885018f!' + 6624163727181f!2 f , 

- 118016981250168f!1f • + 592505399425940f:f: 

+ 397930270177440f:fu - 92598501996f:f.f, 

- 113658288744f:f: - 17267750570070f:f: 

, . , 
- 78697 932513200f,f, fu + 48348971110440f,f. f, 

+ 37 94115124800f:f, fu - 8603668153 08f:f! f, 

+ 57428186816f:f: - 208391933750f:f: 

I , I , 
+ 4309388123040fs f,f1l + 66408218240f,f1l 

s s , 
- 404083680f,f.f, - 467026560fsf.f 1S 

+ 372323952f:f, + 3606888285f: + 1683682000£:fu 

, , . . , 
ru = 133986522f, - 10076755f,f, - 3496188f s f. + 754410£,£, 

• , s • 
+ 449360f,f u + 210f,f,f. + 48f,f, - 1435f, - 600f,fu 
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APPlfiDIX DO NOfATIOf AND ABBIEVIATIOfS 

Mappings are written on the left. so that f. g denotes g 

followed by f. 

A numerical superscript denotes the dimension of • manifold. 

Numerical subscripts usually denote either differentiation 

(e.g. ei is the ith derivative of the map e) or the degree of a 

polynomial (e.g. Pa,P1a,Pao,PIO are polynomials of degrees 2, 

12, 20 and 30 respectively). However, in the notation ki for the 

ith principal curvature function, the subscript does not stand 

for ei ther of these. 

Alphabetic subscripts denote partial derivatives, 

ar 
e.g. ru = 

au 

e (3.7 ) A map R --) In- 1 such that 

t -) r(&(t» is a line of curvature on M 

(3.7) A map I --) In- 1 such that 

t -) rC4(t» is a line of curvature on M 

< ••• ) Usual scalar product on In 

1 ••• 1 The number of elements in a finite group or set 
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(3.7) 

(3.7) 

(1.43) 

p16S 

A(G) p20 

A(a) p3S 

p36 

A1(a) p36 

Disc 

d(1) ••• .,d(n) p46 

A bar denotes composition with 9 

A tilde denotes composition with ~ 

N 
G denotes the pre-image of Gunder 

7I'n: Spi n (n)--> SO(n) 

The map NmM -> (Salla). which associates to 

each point of NmM the second fundamental form 

of M at that point 

Homogeneous co-ordinates in ~ 

The ~t~:~~t of the group G 

The section of A(G) by the hyperplane fa~a 

A certain subset of A(a) 

A certain subset of A(a) 

The usual discriminant of a polynomial 

The degrees of a set of basic invariants for 

the group G 

da.d ... d,.d, (1.38) A set of basic invariants for B .. 

el.e ... e,.e, (1.38) Another set of basic invariants for B .. 

E (2.27) The space evolute of the curve M 
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e 

e 

F 

(2.27) a parametrisation of E such that nOe - r 

(3.S) a parametri sa tion of one sheet of F such that 

(2.4) 

(1.3) 

(1.9) 

the focal set of M 

The stabiliser of the point x under the action 

of the group G on en 

The polynomial 

f
"

f"f.,f1, (1.39) A set of basic invariants for F. 

G 

(1.43 ) 

kt pI 07 

.. 

... (3.46) 

An arbitrary Coxeter group 

The group G ,:.n SO(n) 

The set of immersive mapa from Rk to Rn. 

A set of basic invariants for H. 

The ith principal curvature function on M 

The maximal ideal in the ring of cc» map-germs 

from Ili to Rj for some pair (1,j) 

An arbi tr ary k-di m en Ii onal .ubmani fold of Rn, 

having F as focal set 

The Legendrian submanifold of PT·an 

determined by M 
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M1' ••• '~ p23 

Mi p23 

NM p6S 

O(n) 

The mirrors of the group G 

The intersection N1 n Ni of two mirror. of G 

The normal bundle of M. to be considered a •• 

subset of M % Itn 

The normal space to M at m: the fibre of Jrl:NM -) M 

above the point m € M 

'" An arbitrary element of f") 

P~,P1S,PSO,P'O (1.42) A set of basic invariants for H. 

pY(x) 
t 

p46 A G-invariant polynomial of degree i 

p19 A quotient map for the action of G on en 

p66 The projection map F --) M where F i. the focal 

p6S 

p6S 

set of M 

The proj ection map NM -> N 

The projection map NM --) Itn where NM i. 

considered as a subset of M x an 

Jrn (1.43) the proj ection map Spin(n) -) O(n) 

Pu q (1.44) The pure part of the quaternion q 

q (1.6) A parametriaa tion of A(G) defined in chapt er 1 
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p3S A parametrisation of a hyperplane section of A(G) 

(the restriction of q to the hyperplane fa • 8) 

r A local parametrisation of the manifold M 

The dual of the vector apace .k 

R(G) p18 The ring of G-invariant polynomials 

Re q (1.44) The real part of the quaternion q 

RLC (3.7) Raised line of curvature 

p (3.7) llki where ki is the ith principal curvature 

p(~) U.44) An element of 80(3) given byx--> ,.x.f where q,l[ 

are quaternions
J 

x. il ru"'!.1 QAJ. {'t('l . 

Tho symmetric product of two copies of the vector 

space Rn 

TM The tangent bundle to M 

The tangent space to M at m 

(2.13) The tubular hypersurface with core M ~ 'I'",livJ C. 

v (2.8) Tho family of di stance-squared functions for the 

manifold M 
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(2.S) 

vy p6S 

Z(G) 

A function from a family w.hie.h includes the 

di st ance square d func tion s on M and the 

hei ght functions on M 

The distance squared function on M given bythe 

point y e Rn 

The centre of the group G 
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APPltfDU TIIJlKH 

bi g i nv 01 ut e 

bi g (wave) front 

canal (hyper)surface 

complementary (hyper)surface 

(locally) congruent 

• . LIST OF DRfJNlTIOfS 

see (2.42) 

see page 73 

tubular (hyper)surface 

see page 122 

see (2.1) 

conjugate directions (on a surface) see (3.24) 

Coxeter group see page 17 

curvature ellipse see page 170 

cuspidal cross-cap see (3.41) 

cuspidal edge of type 3/2 ordinary cuspida! edge 

cuspidal edge of type 5/2 rhamphoi d cuspi dal edge 

cuspidal pinch point cuspi dal cross cap 

developable cone see page 75 

developable cylinder see page 76 

developable hypersurface see (2.17) 

developable surface see (3.4) 

di scrimi nant see (1.2.) 

distance-generic see (2.8) 

(locally) diffeomorphic see page 63 

distance-squared function see page 65 

evolute = focal set see page 65 

evolvent = involute involute 
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extended focal set 

focal set = evolute 

inflexion 

involute 

manifold 

see (2.5) 

see (2.4) 

Bee page 118 

see page 66 

see (2.1) 

nondegenerate point of zerQ curvature" point of type (1.3.4) 

open butterfly see (2.66) 

open swallowtail see (2.62) 

ordinary cusp see (2.46) 

ordinary cuspidal edge aee (3.38) 

orthogonally int egrable see (3.30) 

osculating (hyper)plane/(hyper)sphere see (2.25) 

osculating spaces 

parallel 

raised line of curvature (RLC) 

reamer 

rhamphoi d cusp 

rhamphoid cuspidal edge 

rib 

ridge 

s e m i um b iIi c 

singular point 

space evol ut e 

space evol ute 

starting line 

starting set 

aee (2.25) 

see (2.2) 

aee (3.7) 

see (2.26) 

see (2.47) 

see (3.39) 

see page 118 

aee page 118 

see (3.78) 

see (2.1) 

aee (2.27) 

see (2.27) 

see page 121 

see page 121 
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tubular hypersurface 

(point of) type (i11 •••••• i n) 

umbilic 

unwinding 

see (2.13) 

see (2.7) 

see (3.78) 

see page 121 
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