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ABSTRACT 

Homological theory of bocs representations. 

William L. Burt 

~ 
Let A be an artin algebra and V an A-coa1gebra. The pair 

(A, V) is denoted 9X. and called a . '-bocs' . The category mod~ of 

finitely generated bocs representations of.2I is equivalent to the 

category of V-comodu1es induced from finitely generated A-modules. 

Such categories have been fundamental to the proof of Drozd's 'Tame 

and Wild' theorem, and Craw1ey-Boevey's theorem on almost split 

sequences for tame algebras (see Proc. London Math. Soc. (3) 56 

(1988), no; 3, 451-483). 

The study of almost split sequences in mod:a is the subject of 

our j oint paper with Butler, a copy of which is appended to this 

thesis. This work is summarised as chapter I of this thesis. 

Chapter II gives a functorial approach to this which also reproves the 

existence of almost split maps for artin algebras. The category 

modlr is studied further in chapters III and V. 

Relatively free modules arise naturally in the study of modl( and 

such modules are considered in chapter IV. Let X be the category of 

(left) modules over a ring r which are relatively free over a subring 

A which is assumed to satisfy A Tor1 (r, -) - O. A criterion is 

given such that every extension of modules in I is induced from an 

extension of A-modules. If this holds then I is closed under 

extensions; if I is closed under extensions then its additive closure 

is closed under kernels of epimorphisms. 
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Preface 

The work presented here originates from work of M.C.R. Butler on 

almost split sequences for bocses. This formed the basis for our 

joint paper [BB] with Butler. This paper has been accepted for 

publication and a copy of its final form is appended to this thesis 

with a covering note as to the extent of the present writer's 

contribution. This paper is summarised in chapter I arid §l of 

chapter III. 

The content of chapters II, III (§§2, 3), IV, V, is new. 

Appropriate credit is given whenever other work is referred to or used. 

We except from .this the constant use of standard techniques from 

homological algebra and elsewhere. In particular some results 

similar (but not identical) to those in chapter IV have been obtained 

independently by Prof. Mark Kleiner (Syracuse University, New York) -

an addendum (§3) to chapter IV discusses this and other matters in 

detail. 
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Introduction 

As our title implies we are concerned here with the development 

of homological algebra in the category of representations of a bocs. 

This category can be realised as a category of induced (or dually 

coinduced) modules - and some of the theory can, and will, be developed 

in terms of such categories without any reference to bocses and their 

representations. We now discuss the motivation for this work. 

The concept of a bocs and its representations was introduced by 

Roiter (see e.g. [Ro]) to formalize the theory of 'reductions' of 

, matrix problems', which had been developed by Roiter and others, 

principally at ~iev. Two of the most striking applications of this 

methodology are to the representation theory of finite-dimensional 

algebras (over algebraically closed fields); they are Drozd's 'Tame 

and Wild' theorem [DJ, and Crawley-Boevey's theorem [C-Bl: Theorem DJ 

concerning the Auslander-Reiten theory of tame algebras. Despite the 

huge volume of new work in representation theory of finite-dimensional 

algebras over the past two decades, no proofs of these important 

results are known, excepting their original proofs using bocses. 

The Crawley-Boevey theorem is particularly tantalising, as it is 

a statement about Auslander-Reiten theory of a class of algebras for 

which no proof within tha,t theory is known. This has led various 

researchers to investigate Auslander-Reiten theory for bocses. 

The earliest reference for such work that we know is the work of 

de la Pefia and Simson [PS] which covers (implicitly) certain bocses, 

including Drozd's construction [C-Bl: §6] of a bocs corresponding to a 

given finite-dimensional algebra. 

A more general account is that of Bautista and Kleiner [BK] - and 

a theory along similar lines was developed independently by 

M.C.R. Butler, which formed the nucleus of the paper [BB) written 
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jointly with the present writer. This paper which was prepared with 

the benefit of a preprint version of [BKl and discussions with one of 

its authors, Raymundo Bautista, provides a smoother treatment with 

additional results not in [BKl, and is phrased explicitly in terms of 

bocs representations throughout. We do not propose to repeat proofs 

which are already present in the paper [BBl. For the reader's 

convenience, a copy of this paper is appended to this thesis. 

We now discuss the content of this thesis in more detail. The 

term 'bocs' is de'rived as an abbreviation for ':Qimodule Qver £ategory 

with £oalgebra ~tructure' . In the papers [BB, BKl, and also in this 

thesis, this is replaced by the usual notion of a coalgebra over a 

ring, but will continue to be called a bocs. . The categories of 

'representations' which arise are equivalent to those which occur for 

the coalgebras over categories the formal necessity of using 

coalgebras over categories occurs only in connection with certain 

types of 'reductions', but these are not our concern here. 

After a short section devoted to notation, conventions, and the 

definition of a bocs and its representations, chapter I consists of a 

review of the general ' left and right algebra theory', developed in 

[BBl· Chapter II gives a new approach, in the manner of [A2: §7l, to 

the' existence of almost ,split maps (the basic ingredients of any 

Auslander-Reiten theory), by studying finitely generated and finitely 

presented functors on the category of representations of a bocs. It 

is worth noting that this reproves the existence of almost split maps 

and hence almost split sequences for artin algebras, first established 

by Auslander and Reiten in [AR2]. 

Chapter III is devoted to the further development of the left and 

right algebra theory in [BB] which we summarised in Chapter I; most of 

the results are new and not to be found in [BB]. 
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In chapter IV we initiate an ' abstract' study of categories of 

relatively projective modules (and dually relatively injective) 

modules. The main concern is to develop a criterion for the category 

of relatively projective modules to be closed under extensions - a 

similar question has also been raised by Auslander and Reiten in a 

recent paper [AR4] and we discuss (briefly) the relationship between 

our work, the paper [AR4] , and some results of Kleiner quoted in 

[AR4] . The relation of 'relative' almost split sequences of 

relatively proj ective modules to ' absolute' one is discussed in §2, 

and a result of Kleiner concerning group algebras [K] is shown to have 

a very short proof. 

Finally chapter V returns the to the study of bocses, 

investigating various notions of monomorphism/epimorphism for 

morphisms of bocs representations, particularly in the case that the 

bocs satisfies suitable 'triangularity' conditions (often present in 

applications - e.g. [D, C-Bl]). 
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Conventions, bocses and their representations 

Throughout this thesis A denotes a fixed ring, (associative, 

with identity) subject to further qualification for specific results. 

The symbol ® always means ®A' For rings B, C, the notations BX, 

YC' BZC indicate that X, Y, Z are respectively, a left B-module, a 

right C-module, and a left B, right C-bimodule (more briefly, a 

B-C-biniodule). 

Since a right module over a ring C can be identified'as a left 

op , 
C -module we adopt the following notations: 

Given BX, BX', HomB (X, X') denotes the group of left B-module 

morphisms X ~ X', likewise the group of right C-module morphisms 

is denoted Groups of B-C-bimodule Hom (Y, Y'). 
Cop 

morphisms are denoted Hom (-, _). 
BxCoP 

The category of all left modules over a ring B is denoted Mod B, 

and the full subcategory of fintely generated modules mod B. 

The corresponding notations for categories of right B-modules will be 

Mod BOP, mod BOP. 

Given AZ, WA we often abuse notation by writing A ® Z - Z, 

W ® A = W. As an application of this ' abuse' we now give the 

definition of a 'bocs', 

Definition By a bocs Jl we mean a quadruple ~ ... (A, V, p., e), 

often denoted just xr - (A, V), in which V is an A-A-bimodule; 

the comultiplication p. : V ~ V ® V is an A-A-bimodule morphism and 

is coassociative, that is, (p. ® l)p. - (1 ® p.)p.; the counit 

e : V ~ A is an A-A-bimodule morphism satisfying 

(1 ® e)p. = lV = (e ® l)p.; we shall always assume that e is 

surjective. 
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If A is an algebra over a central subring k, we also assume 

that k acts centrally on V. 

Definition Let .2! - (A, V) be a bocs. The category Mod ~ of 

representations of ~ is the category whose objects are the left 

A-modules X, Y, ... , and whose morphism groups 1X(X, Y) are given 

by 

~(X, Y) - HomA(V ® X, Y). 

Given f' in 2(X, Y), g in ~(Y, Z), their composite 

g 0 f in Z(X, Z) is given by 

V ® X J.'®l) V ® V ® X l®f) V ® Y ~ Z 

The identity morphism of an object X is E ® 1 V ® X ~ X. 

Mod 2l is an additive category (direct sums being given by the 

usual direc t sum in Mod A), but not necessarily fully additive -

sufficient conditions are given in [BK §5, BB §6] for this to hold, and 

these conditions are certainly satisfied by important classes of 

bocses used in applications; for example, all 'additive Roiter bocses' 

[CB1: 3.5]. 

We are usually interested only in the full subcategory mod2l of 

Mod~ defined by the class of finitely generated left A-modules. 

Example A trivial, r but important, example of a bocs is the 

principal bocs ~ - (A, A) which is given by setting the counit to 

be 1: A ~ A, and thecomultiplication to be the natural map 

A ~ A ® A. Since for this bocs mod:2( (Mod~) is just (isomorphic 

to) mod A (Mod A), representations of bocses can be viewed as a sort 

of generalization of modules over rings. 

Some category theory 

Let ~ be a category, X ~ Y a morphism in ~, and Z 

another object of ~. Then there are mappings 
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~(Z, f): ~(Z, X) ~ ~(Z, Y), 

~(f, Z): ~(Y, Z) ~ ~(X, Z), 

for which we shall often employ the shorthand notations f* for 

~(Z, f) and f* for ~(f, Z). Likewise the natural transformations 

~(-, f): ~(-, X) ~ ~(-, Y) , 

~(f, -) : ~(Y, -) ~ ~(X, -) , 

* may be denoted f*, f respectively. 

Let us fix here the convention that all mappings will be written, 

and composed, on the left. 

Recall that idempotents split in a category if every 

idempotent endomorphism 2 
e - e of every ~. - object X admits a 

factorisation X ~ Y ~ X such that In particular if 

~ is a full subcategory of a module category then idempotents split 

in add(~), the full subcategory defined by the modules isomorphic to 

direct summands of finite direct sums of objects in ~. 

If ~ is an abelian category there is the usual sequence 

i 
Ext (-, -), i = 1, 2, .. , of Ext - functors, defined in terms of sets 

of equivalence classes of (i-fold) extensions in ~. 
o Ext (-, -) is 

(identified with) the hom - functor ~(-, -). 

Throughout this thes!s we shall use the terminologies 'map' and 

'morphism' interchangeably. 

Our final remark concerns our convention for endomorphism 

rings. If ~ is an additive category and X an object of ~ then 

~(X, X) has a natural ring structure where for f, g in ~(X, X) 

their product f.g in ~(X, X) is fog, i.e. X ~ X ~ X. 

Thus if ~ is Mod A (A any ring) then X has a natural structure 

as a left EndA(X) - module. 
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Chapter I: Almost split sequences for bocses - a summary 

This chapter summarises, without proofs, the main theory of the 
. 

paper [BB]. The only change is a slight difference in notation - we 

use JJ1. instead of a to denote our fixed bocs, and the category of 

finitely generated (left) modules over a given ring (B say) is 

denoted mod B rather than B-mod. The four sections of this 

chapter correspond to the first four chapters of [BB]. 
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§l The left and right algebra of a bocs 

Let ~- (A, V, ~, e) be a bocs. We define its left algebra L 

to be the A-A-bimodule Hom (V, A) with multiplication given by the 
. AOP 

following rule: 

for e, f in L, e.f is the compo~~te 

V ~ V ® V f®l) A ® V - V ~ A. 

Proposition 1.1 [BB: 1.1] The bimodule ALA' equipped with the 

above multiplication L ® L -+ L and the map a ~ ae of A into 

L, is an A-algebra with identity e (the counit of JJ. ), and the 

bimodule structure on L obtained by restriction along the map 

a ~ ae conine ides with its natural A-A-bimodule structure. 

Similarly, the right algebra R of ~ is the A-A-bimodule 

HomA(V, A), with mUltiplication given as follows: 

for s, t in R, s.t is the composite 

V ~ V ® V ~ V ® A - V ~ A. 

Proposition 1.1' [BB: 1.1'] The bimodule ARA' equipped with the 

above mUltiplication R ® R -+ R and the map a ~ ae of A into 

R, is an A-algebra with identity e, and the bimodule structure on 

R obtained by restriction along a ~ ae coincides with the natural 

A-A-bimodule structure on R. 

The terminology , lefE' and ' right' algebra is justified by the 

existence of natural left L-module, and right R-module structures on 

V. They are obtained as follows: first note that there are 

evaluation maps 

E
L

: L ® V -+ A 

E
R

: V ® R -+ A 

e ® v ~ e(v), 

v ® s ~ s(v). 

Hence there is a left L-action on V, given by 

. L ® V l®~) L ® V ® V EL ®l ) A ® V _ V, 
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• 
and a right R-action on V, given by 

1 l®ER 
V ® R ~ V ® V ® R ~ V ® A = V. 

Proposition 1.2 [BB: l.2] The actions of L and R on V just 

defined induce an L-R-bimodule structure LVR on V, compatible 

with the original A-A-bimodule structure on V after restriction 

along the maps a ~ ae of A to L and A to R. 

Corollarl l.3 [BB: l.3] ~ V~V®V is an L-R-bimodule morphism. 
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§2 Functorially finite embeddings of mod ~ 

Throughout §2, 11 - (A, V) is a bocs such that AV and VA 

are finitely generated projective modules. 

In view of applications this creates an immediate problem since 

for the bocses used in, e.g., [C-Bl] A is an algebra over a field k 

but not necessarily a finite-dimensional one. If A is not 

finite-dimensional it is usually the case that are not 

finitely generated modules so our theory will not apply. Thus we 

restrict our attention to the case that A is a finite-dimensional 

algebra - or an artin algebra, since the theory still goes through in 

that case. Out formal assumption is that 

A is an artin algebra over a "central artinian subring k. 

This is a rather more special assumption than that made in the 

corresponding section of [BB], but it avoids the necessity of 

including the rather artificial extra conditions in [BB: 2.6]. 

Our assumptions imply that RA and AL are finitely generated 

projective modules, and the duality maps 

LVA ~ LHomA(L, A)A are bimodule isomorphisms. 

A-module X, there are natural maps 

Also, given any left 

fJ R ® X ~ HomA(V, X) 

V ® X ~ HO~A(L, X) 

s ® x I---? (v I---? S (v)x) , 

v ® x I---? (e I---? e(v)x), 

which are isomorphisms of R-modules and L-modules respectively. 

Notation Let I denote the full subcategory of mod R with objects 

the induced modules - that is, modules RM isomorphic to R ® X for 

some finitely generated AX. Let ~ denote the full subcategory of 

mod L with objects the coinduced modules - that is, modules LN 

isomorphic to HomA(L, X) for some finitely generated AX. 
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Under the assumptions made at the start of this section these 

subcategories are equivalent to mod!U The precise results are as 

follows: 

Theorem 2.1 [BB: 2.4] The functors V ®R -: mod R ~ mod Land 

Ho~(V, -): mod L ~ mod R restrict to mutually inverse equivalences 

between 1 and ~. 

Theorem 2.2 [BB: 2.5] There are equivalences of categories 

Full details of this will be found in [BB], but for later 

use we recall the definitions of FC' Fl' FC is defined explicitly 

and then we set' FI to be HomL(V, -) 0 FC' 

Given an object X of mod~ we let FC(X) - V ® X, which is 

isomorphic under the map Q : V ® X ~ HomA(L, X) to an object in ~, 

and hence is itself in~. Given f in ~(X, Y) set FC(f) to 

be the composite 

V ® X J.'®l) V ® V ® X ~ V ® Y. 

This is an L-module morphism by 1.3. 

The equivalences in 2.2 above exhibit mod~ as a full 

subcategory of each of mod R, mod L. Rand L are clearly both 

artin algebras (over k) and so mod R, mod L, have almost split 

sequences. In §4 we ap~ly a result of Auslander and Smale [AS2] to 

deduce that 1 and ~ sometimes also have almost split sequences _ 

we show here that one of the criteria required is satisfied, namely 

that 1 and ~ are ' functorially finite' in mod R 

respectively. This notion was introduced in [AS1] 

convenience of the reader we recall the definition. 

and mod L 

and for the 

Definition 2.3 Let A be an artin algebra and let Ab denote 

the category of all abelian groups. Let Q be a full subcategory of 

mod A. A covariant functor F from to is called 
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finitely generated if there is an object X in Q and a surjection 

HomA(X, -)I
Q 
~ F 

of functors - thus F is a quotient of a covariant representable 

functor on Q. The definition of a finitely generated contravariant 

functor Q ~ Ab is dual to this. 

Q is called covariantly finite if, for each M in mod A the 

functor Hom
A 

(M, -) I Q : Q ~ Ab is finitely generated; Q is called 

contravariantly finite if, for each M in mod A the functor 

HomA(-, M)I Q : Q ~ Ab is finitely generated. 

Q is called functorially finite if Q. is both covariantly and 

contravariantly ·finite. 

Theorem 2.4 [BB: 2.6] .Q is functorially finite in mod Land 1. 

is functorially finite in mod R. 

As a final remark it can be shown that, under the .assumptions 

made in this section LVR is a 'balanced' bimodule: 

Proposition 2.5 [BB: 2.7] The natural ring homomorphisms 

L ~ End (V) 
ROP 

ROP ~ EndL(V) 

are isomorphisms. 

s ~ (v ~ sv), 

e ~ (v ~ ve), 
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§3 Extension properties 

We keep the same assumptions as in §2, thus ~ - (A, V) is a 

bocs over an artin algebra, the counit is surjective, and AV, VA are 

finitely generated projective modules. Thus are 

finitely generated projective and so there are exact functors 

R ® - : mod A ~ !, 

HomA(L, -) : mod A ~ ~. 

R® - thus carries exact sequences of left A-modules to exact 

sequences of (induced) left R-modules and so induces, for all X, Z 

in mod A and n - 0, 1, 2, ... maps 

r(n) Ext~(Z, X) ~ Ext~(R ® Z, R ® X). 

Likewise HomA(L, -) induces maps 

~(n) : Ext~(Z, X) ~ Ext~(HomA(L, Z), HomA(L, X». 

In order to state the main results of this section we make the 

following definitions: 

Definition 3.1 The kernel V - AVA of a bocs IJ. - (A, V) is the 

kernel of the counit f of ~ 

Definition 3.2 Let be a bimodule. It is called 

projectivising if for all AX, ZA the A-modules U ® X and Z ® U 

are projective. 

Theorem 3.3 [BB 3.8] Let ~ - (A, V) be a bocs (with surjective 

counit) such that AV and VA are finitely generated projective and 

AVA is projectivising. Then for all AX, AZ the maps 

r(n) : Ext~(Z, X) ~ Ext~(R ® Z, R ® X) 

~(n) : Ext~(Z, X) ~ Ext~(HomA(L, Z), HomA(L, X» 

exist and are surjective for n - 1 and bijective for n ~ 2. 

Moreover ! and ~ are extension-closed subcategories of mod R 

and mod L respectively. 
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§4 Almost split sequences 

In [AS2: l.l] Auslander and Sma10 established a criterion 

sufficient for a subcategory Q of mod A (A an artin algebra) to 

have almost split sequences. Thus for each indecomposable object X 

of Q there is a right almost split morphi9m in Q terminating at X 

and a left almost split morphism in Q starting at X' , moreover if 

there is a non-split exact sequence 0 ~ X ~ Y ~ Z ~ 0 with Y, Z E ~ 

(i.e. X is non - Ext - inj ective in ~) then there is also one 

which is almost split in Q, and dually there is an almost split 

sequence in Q termi~~ting at any indecomposable non - Ext - projective 

object in Q. 

If Q - add Q .and is functorially finite in mod A and closed 

under extensions then they also showed [AS2: 2.4] that the criterion 

held, and so we can apply this to the subcategories I and 

arising in connection with mod.zr to obtain the following: 

Theorem 4.1 [BB: 4.1] Let -U - (A, V) be a bocs over an artin 

algebra with kernel V a projectivising bimodule and V· being of 

finite length over the centre of A, then add I C mod Rand 

add ~ C mod L have almost split sequences. If idempotents split in 

mod:U then I, ~ have almost split sequences, and hence mod~ 

(viewed as a full subcategory of mod R or mod L) has almost split 

sequences. 
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Chapter II: A functorial approach to Auslander-Reiten theory for bocs 

representations 

In this chapter we develop a new approach to existence of almost 

split morphisms for mod~. This is a direct generalization of the 

proof for finite-dimensional algebras given by Auslander in [A2: §7] 

and uses a study of functors on mod2( 

The first section recalls some facts about functors and in §§4, 5 

Auslander's approach in [A2: §7] is followed to obtain our desired 

result; §§2, 3 contain some extra technical preliminaries to make the 

proof carryover to ?ur case. The only missing link is the existence 

of 'finite presentations' for two particular functors on mod Q! 

which is not so obvious as in the special case of [A2]. This gap is 

plugged using the theory of §§l, 2 of Chapter I. 

Our assumptions throughout this chapter are that ~ - (A, V) 

is a bocs such that 

(i) A is an artin algebra over its (artinian) centre k, 

(ii) AV, VA are finitely generated projectives, 

(iii) idempotents split in modal 

All functors (categories) in this chapter are 

(k-categories). 

k-functors 

It will be convenient, as in [A2], to use the notation (-, -) for 
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§1 Functors on k-categories 

Let be a skeletally small k-category; we consider the 

category (e; , mod k) of covariant k-functors from e: to mod k. 

The category of contravariant k-functors from t to mod k is 

identified wi th ( e; op, mod k) so 'resu1ts about contravariant 

functors can be inferred from the corresponding ones about covariant 

functors. We shall feel free to use the 'contravariant' version of 

the theory outlined here, which follows [A2: §2, §3]. 

We recall that (e;, mod k) is an abelian category. 

Definition 1.1 A functor F in ( e: mod k) is called 

finite1~ ~enerated if there is an X in t and an exact sequence 

(!(X, -) ~ F ~ O. 

Definition 1.2 A functor F in ( mod k) is called 

finitely presented if there are X, Y in and an exact sequence 

e; (Y, -) ~ F ~ O. 

Remarks We shall abbreviate these concepts by f.g. and f.p. 

respectively. The representable functors t(X, -) in (!, mod k) 

are projective objects in this category so the notions of f.g., f.p., 

functors are precise analogues of the corresponding concepts for 

modules. Hence certain basic results for modules carryover directly 

for functors. 

note that if 

To check that ~ (X, -) really is always projective 

F ~ G ~ 0 is exact in (~ , mod k) then 

Hom ( f[ (X, -), -) preserves exactness since, by Yoneda' s lemma, the 

resulting sequence of maps is isomorphic to F(X) ~ G(X) ~ O. The 

following results are now proved exactly as for modules. 

Lemma 1.3 

.( ~ , mod k). 

Let 0 ~ F1 ~ F2 ~ F3 ~ 0 be a short exact sequence in 

Then 

(i) if F2 is f.g. so is F3 , 

( ii) if F1 , F3 are f.g. so is 
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(iii) if F1 , F3 are f.p. so is F2 . 

Lemma 1.4 Let F be in ( e: , mod k). The following are 

equivalent 

(i) F is f . p. , 

(ii) There is an exact sequence a ~ ·F1 ~ Fa ~ F ~ a with Fa 

representable and F1 f.g., 

(iii) F is f.g. and whenever a ~ F1 ~ Fa ~ F ~ a is exact with 

Fa f.g., F1 is also f.g. 

If ~ is an abelian category then given an exact sequence 

also F1 , F4 are f.p. see e.g. [A2: 3.l(b)]. We now prove this 

under the weaker hypothesis that ~ has 'pseudocokernels', a notion 

introduced in [AS2] which we now recall: 

Definition 1.5 [AS2: §2] We say the category (! has 

pseudokernels if given a morphism f: X ~ Y in ~ there exists 

a morphism g : Z ~ X in e 
g* 

e;(-, Z) ~ 

such that the sequence of functors 

f* . e: (-, X) ~ e; ( -, Y) 

is exact; g is called a pseudokernel of f. 

Dually we say ~ has pseudocokernels if given a morphism 

g : Z ~ X in e; there is a morphism f: X ~ Y in e; such that 

the sequence of functors 

* 
t(y, -) ~ * 

t(X, -) ~ t(Z, -) 

is exact; f is called a pseudocokernel of g. 

We will now assume, for the rest of this section that 

~ has pseudocokerne1s. 

Lemma 1.6 Given f in e; (Y, X) the kernel of 

* f : e-(X, -) ~ t(y, -) is f.g. 
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Choose g a pseudocokernel of f. Then the sequence 
* * 

t(Z, -) ~ t(X, -) ~ (!(Y, -) 

* * is exact, from which it is clear that ker f - im g is f.g. 

Lemma 1.7 Let 0 ~ Fl ~ F2 ~ F3 ~ 0 be exact in (t, mod k) 

with Fl f.g. and F2 f.p. Then F3 ·and Fl are f.p. 

Since F2 is f.p. we can choose an exact sequence 

o ~ K ~ ~(X, -) ~ F2 ~ 0, with K f.g. and form a commutative exact 

diagram o 
l 

o ~ K ~ (!(X,-) ~ F2 ~ 0 

II 1 
o ~ K' ~ e (X, -) ~ F3 ~ 0 

1 
0 

By the snake lemma we obtain an exact sequence 

K and Fl are f.g. so K' is f.g. The second row of the above 

diagram thus shows (by 1.4) that F3 is f.p. 

To show Fl is f.p. we first consider the case where 

F2 = ~(Y, -) is a representable functor. 

Since Fl is f.g. choose an epimorphism e;(Z, -) ~ Fl and 

consider the commutative exact di~gram: 

o ~ 

t(Z, -) 

l 
---az, -) 

l 

----+) e;:(Y, -) ~ F3 ~ 0 

o 
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By Yoneda' s lemma the morphism e;( z, -) ~ e:(y, -) is f* for 

some f in ~ (Y, Z). Thus, by 1.6, it has f.g. kernel L say. 
, 
Applying the snake lemma yields a commutative exact diagram: 

0 0 

1 1 

L L 

1 1 

e; (Z, -) (!(Z, -) 

1 1 
o ~ Fl ) t(Y', -)~F3~O 

1 

o 

Since L is f.g. the first column of this diagram shows, by 

1.4, that Fl is f.p. 

Now consider the general case where 

o ~ Fl ~ F2 ~ F3 ~ 0 

is exact with F2 f.p., Fl f.g. We know that F2 is f.p., so by 

1.4 there is an exact sequence 0 ~ J ~ t (W, -) ~ F2 ~ 0 with J 

f.g. Consider the following commutative exact diagram: 

0 0 

1 1 
J J 

1 1 

0 ~ U ) e-(W, -) ~ F3 ~ 0 

1 1 
II 

o ~ Fl ) F2 --) F3 ~ 0 

1 1 

0 0 

obtained from an application of the snake lemma. 
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The first column has J, Fl f.g. so by 1.3(ii) U is f.g. 

Now the special case of what we want to prove, which has already been 

demonstrated, can be applied to the first row of this diagram to 

deduce that U is f.p. Now we have an exact sequence 
i 

o -7 J -7 U -7 Fl -7 0 with U f.p. , J f.g. so by part of this lemma 

already proved above Fl is f.p. This completes the proof. 

It is now easy to deduce the main result of this section: 

Proposition 1.8 Let 0 -7 Fl -7 F2 -7 F3 -7 F4 -7 0 be an exact 

sequence in (e, mod k), and assume e; has pseudocokernels. If 

Letting G = ker (F
3 

-7 F
4

) 

= coker (F
l 

-7 F
2

) 

consider the two exact sequences: 

o -7 Fl -7 F2 -7 G -7 0 

o -7 G -7 F3 -7 F4 -7 0 

(1.8.1) 

(1.8.2) 

Applying 1.3(i) to (1.8.1) shows G is f.g. Thus, 1.7 applied to 

(1.8.2) shows G and F4 are f.p. Since G is f.p. and F2 is 

f.p. and thus f.g., 1.4 applied to (1.8.1) shows that Fl is f.g. 

Now 1.7 applies to (1.8.1) and we deduce that Fl is also f.p. as 

required. 
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§2 Exact sequence lemmas 

Notation 2.1 Given f in (X, Y) there is a corresponding ,morphism 

f in 1t(X, Y) given by 

V ® X f®l) A ® X = X ~ Y. 
,.. 

Remarks 2.2 The operation f ~ f is functorial, i.e. given 

g E (Y, Z) ~ - ~ 0 f . lx - lX ' the identity morphism in mod~ of 

the object X. 
,.. 

Given h in ~(X', X) f 0 h is in ,U(X',Y) and it is easy to 

check that 
,.. 

(2.2.1) f 0 h - fh (i.e. the composite 

h f V ® X' ~ X ~ Y) 

Likewise given 1 in lL(Y, yI) it is easy to check (2.2.2) 
1\ 

1 0 f - 1(1 ® f). 

Lemma 2.3 Let 0 ~ X S Y ~ Z ~ 0 be exact in mod A. 

sequence of functors 

g* 

Then the 

o ~ ~ ( -, Y) ---7 ~ ( -, Z) is exact. 

For any X' in mod A there is an exact sequence: 

f* g* 
o ~ (V ® X', X) ---7 (V ® X', Y) ---7 (V ® X', Z) 

which is 

o ~ Z (X', X) ~ il (X', Y) ~ .u (X', Z). 

The maps in this sequence are f*, g* by (2.2.1). 

Lemma 2.4 Let 0 ~ X ~ Y ~ Z ~ 0 be exact in mod A. Then the 

sequence of functors ,.. 

g* f* o ~ 2(Z, -) ---7 i(Y, -) ---7 ~(X, -) 

is exact. 
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V ® - is a right exact functor and, for any X' in mod A, 

(-, X') is a left exact functor. Thus there is an exact sequence 

* * o ~ (V ® z, X') (l®g) )(V ® Y, X') (l®f) )(V ® X, X'). 

This is 

o ~ .u (Z, X') ~ ,tt (Y, X') ~ ~ (X, X'), 

and by (2.2.2) "* "* the maps in this sequence are g and f. 
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§3 Existence of pseudokernels and pseudocokernels in mod~ 
,....., 

Definitions 3.1 We define a new category mod2( as follows: its 

objects are those of mod A, and given two objects X, Y the space 

of morphisms X~Y (denoted 4(X, Y» is given by 

j(X, Y) - (X, (V, Y». 

Given f in i{(X, Y) , g in j(Y, Z) we define g 0 f in 

)OC(X, Z) as the composite 

f ~ - ~ X ~ (V, Y) ~ (V, (V, Z» ~ (V ® V, Z) ~ (V, Z). 

In order to check this is a category observe that there is a 

natural isomorphism i.t(X, Y) "" !tt(X, Y) and that this iso~orphism 

respects composition; to summarise ... 

Proposition 3.2 (i) mod~ is a k-category, 
~ 

(ii) there is an isomorphism modU ~ mod2{ 

given by X ~ X for all AX, and on morphisms by the canonical 

isomorphism 

.-U(X, Y) - (V ® X, Y) ~ (X, (V, Y» - jl(X, Y). 

Theorem 3.3 mod ~ has pseudokernels. 

By 3.2 it is sufficient to show that 

pseudokernels. Let f be in ~(X, Y), then define 

f : (V, X) ~ (V, Y) by the composite 

~ 

modt[ 

f* * 
(V, X) ~ (V, (V, Y» ~ (V ® V, Y) ~ (V, Y). 

Let K - ker f. Then there is g K ~ (V, X) , the 

inclusion morphism. Note that g is in .ii(K, X) . 

has 

natural 

We claim that g is a pseudokernel of f, i.e. the sequence 
f* _ 
~ i(-, Y) is exact. Since 

- g*-
~ ( -, K) ~ -U( -, X) 

h in ~(X', X) is in ker f* then fh - O. Thus there is 

l : X' ~ K such that gl - h. Let 1 be the morphism in 4(X', K) 
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corresponding to i in ;t(X', K). Then h gi g 0 :2 

Theorem 3.4 mod2r has pseudocokernels. 

Given f in ~(X, Y) let I be the composite 

V ® X J.'®l) V ® V ® X ~ V ® Y 

and g: V ® Y ~ C :- coker I the natural projection map. 

is in jJ(y, C) and we claim that 

U(C, -) L V:(Y, -) L ~(X, -) 

is exact, and hence that g is a pseudocokernel of f. 

* * * - * * * * f g (g 0 f) ... (gf) - 0 - 0 so im g !:; ker f 

~(Y, * * hI ... 0 Y' ) is in ker f then f (h) ... o. So 

choose i C ~ Y' such that h ... ig. Thus h - ig = 

(2.2.1), so h * is in im g 
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i 0 g by 



§4 Bocses with D21(A, -) and D.2l(-, DA) f.p. 

Remarks 4.1 Given that the functors D 9J (A, -) and D iJ. (-, DA) 

are f.p. it is possible to show, and we do so in this section, that 
c. e.,../;Cl..i.n. 

Ainjective functors on mod~ are f.p. Granted this we can follow 

the strategy of Auslander [A2: §7] to 'obtain existence of almost 

split maps in mod;JL 

Theorem 4.2 (i) if D ZJ. (A, -) is f.p. D 11 (X, -) is f.p. 

for all X in mod 1! , 

(ii) if D ~ (-, DA) is f. p. D ~ (-, X) is f. p. 

for all X in mod ~ . 

(i) Let Am S An ~ X ~ 0 be a finite presentation of X. 

Then by 2.4 
A* A* 

o ~ )J. (X, -) ~ 21. (An, -) ~ 2I (Am, -) 

is exact. Hence there is an exact sequence 

D :.U (Am, -) ~ D n (An, -) ~ D Ql (X, -) ~ O. 

D.Ql (Ar , -) "" D.2! (A, -) @ ••• @ D it (A, -) (r times) 

so it is f.p. Thus by 1.8 D ~ (X, -) is f.p. 

(ii) Let 0 ~ X ~ (DA)r~ (DA)s be a finite copresentation 

of X. Then by 2.3 

is exact. Hence there is an exact sequence 

Thus, by 1. 8 , D Xl (-, X) is f . p . 

Notation 4.3 Let us fix an F in «mod ~ ) oP, mod k) and choose 

X an object of mod!JJ . 

Define Q : F ~ Ho~( ~ (X, -), F(X» by 

Qy : F(Y) ~ Ho~( Ql (X, Y), F(X» 

where Qy(y)(f) - F(f)(y), for all y in F(Y), f in Ql (X, Y). 
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Then 0 is a natural transformation of functors. 

Let H be a k-submodule of F(X). Then the projection 

F(X) ~ F(X)/H induces a natural transformation 

Ho~(.lt(X, -), F(X» ~ Ho~( 2l (X, -), F(X)/H). The composite of 

this with 0 F ~ Ho~( a (X, -), F(X»' will be denoted 
H 

o . 

Theorem 4.4 Suppose D a1(A, -) is f.p. and F is f.g. with 

F(X)/H a semisimple k-module. Then H ker 0 

H 1m 0 is a f.g. subfunctor of 

Ho~( ~ (X, -), F(X)/H). 

is f.g. 

Let I be the injective envelope of k/rad k. Since F(X)/H 

is semisimple there is an embedding 

F(X)/H ~ In (for some n). 

Ho~( ~ (X, -) , In) - Gl D Qt(X, -) (n copies). By 4.2 

D ;U (X, -) is Lp. By 1.7 it follows that im 0 
H is f.p. The 

sequence 

o ~ ker 0 
H 

~ F ~ im 0 
H 
~ 0 

is exact with F f.g. and . H f Thus ker H is Lg. 1m 0 .p. 0 

Notation 4.5 Dually to 4. 3 take G in (mod ~ mod k) and X 

in mod:.U: and define 

f3 G ~ Ho~ ( 2. (-, X), G (X) ) 

by f3y (y)(f) = G(f)(y) for y in G(Y), f in ~(Y, X). 

If J is a k-submodule of G(X) we define 

i : G ~ Ho~( ~ (-, X), G(X)/J) 

by following f3 with the morphism induced by projection 

G(X) ~ G(X)/J. 

have: 

Theorem 4.6 

is f.p. then 

Then, with an identical line of proof to 4.4 we 

If G is f.g., G(X)/J semisimple, and D ~ (-, DA) 

J 
ker f3 is f.g. 
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§5 Almost split maps in mod~ 

Theorem 5.1 Let X in mod~ be an object with local 

endomorphism ring; suppose D.2t (A, -) is f.p. , then there is a 

right almost split morphism Z ~ X in mod~ 

Since J.1. (X, X) is local, raG ;U (X, X) - the set of all 

non-automorphisms of X - is a k-submodule of U (X,X) . In the 

notation of 4.3 put F - Ql ( -, X), H - rad .2r(X, X). Then 4.4 

shows H ker a is f.g. 
H 

Let jJ, (-, Z) ~ ker a be an epimorphism to 

H 
ker a, and q : Z ~ X the image of lz in 2[(Z, Z) under this 

epimorphism. We claim q is a right almost split map in mod ~ . 

Let s Y ~ X be a morphism in mod ~ Then s factors 

through q 

iff there is h in ~(Y, Z) with q 0 h - s 

iff H 
a (s) - 0 

iff for all t in .2{ (X, Y) a(s)(t) is in H = rad 2l(X, X) 

iff for all t in 2r(X, Y) sot is not an automorphism 

iff s is not a split epimorphism. 

Since q factors through q, q is not a split epimorphism, and 

every s Y ~ X which is not a split epimorphism factors through q. 

Hence q is a right almost split map in m~d~ 

Theorem 5.2 Let X be an object of mod !JJ. with local 

endomorphism ring; suppose D ar (-, A) is f. p., then there is a left 

almost split morphism X ~ Z in mod 2l 

Proof In the notation of 4.5 put G - ~ (X, -), 

J - rad .tr (X, X). Then ker ,l is f.g. Let 

0 ~(Z, -) ~ ker rl 
be an epimorphism. Then o(lZ) is in ')J. (X, Z) and, as in 5.1, it 

can be shown that o(lZ) is left almost split in mod 'U 
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§6 Finite presentations of D 2t (A, -), D Z (-, DA). 

In order to apply the criteria 5.1, 5.2, for existence of almost 

split morphisms in mod~ , it remains to prove that D ~ (A, -), 

D £t ( -, DA) are f. p . The easiest approach is to use the embedding 

theory of chapter I, §2; for D ~ (A, -) consider the embedding 

mod ax ... 1 ~ mod R. If we regard D::U: (A, -) as a functor on 1 it 

becomes 

D Ho~(R, -) I 1 ... Ho~(-, DR) 11· 

This is the restriction to 1, which is contravariantly finite, of a 

contravariant representable functor on mod R. This means it is f. p. 

- let us sketch this argument in general: 

Let A be an artin algebra and Q a contravariantly finite 

subcategory of mod A. If X is in mod A consider HomA(-, X)I
Q

. 

Since Q is contravariantly finite this functor is f. g. so there 

exists D in Q and an exact sequence 

HomA (-, D) I Q ~ Hom
A 

(-, X), I Q ~ o. 

By Yoneda's lemma this is realised by a map D ~ X. 

kernel. Then there is an exact sequence: 

o ~ Hom
A
(-. K) I Q ~ Hom

A
(-, D) I Q ~ Hom

A
(-, X) 

The same argument as abov~ applied to Hom
A
(-, K) 

this functor is also f.g. Thus by 1.4 the functor 

is f.p. 

Let K be its 

I Q ~ o. 

I Q 
shows that 

Hom
A 
(-, X) IQ 

Likewise, if we consider D ~ (-, DA) as a functor on ~ ~ 

mod L, by way of mod ~ ... ~, D 2r (-, DA) becomes 

D Ho~(-, HomA(L, DA» I ~ 

... D HomL(-, DL)I~ ... HO~(L, -)I~ 

which is the restriction to the covariantly finite subcategory ~ of 

a covariant representable functor on mod L. A dual argument to that 

sketched above shows that Ho~(L, -)I~ is f.p. 
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Notice that, in the above, we have not used the facts that 1 is 

covariantly finite in mod R and ~ is contravariantly finite in 

mod L. These were, in [BB: §2), the harder properties of 1 and ~ 

to verify. The facts we have used are standard and easy to verify: 

1 is contravariantly finite in mo~R since for any X in 

mod R, the natural map 

R®X~X 

induces a surjective map of functors 

Ho~(-, R ® x)1
1 
~ Ho~(-, x)1 1 

from a representabl~ contravariant functor on 1. 

~ is covariantly finite in mod L since, for any M in mod L, 

the natural map 

M ~ HomA(L, M) 

induces a surjective map of functors 

HomL(HomA(L, M), -)I~ ~ Ho~(M, -)I~ 

from a representable covariant functor on ~. 

Hence we may conclude that: 

Theorem 6.1 Under the hypotheses of this chapter mod~ has almost 

split morphisms. 

An alternative approach 

We may dispense with using the embeddings of mod~ , but the 

proof in this case becomes very technical - however it is not too hard 

to give the explicit form of the finite presentations for 

D ~ (-, DA), D ~ (A, -) and we sketch this below for D ~ (-, DA). 

Definition 6.2 Define a functor H in (mod ~ 

follows: 

H(X) - V ® X, and if f is in ~(X, Y) then 

H(f) H(X) ~ H(Y) is given by the composite 
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v @ X ~@l) V @ V @)( ~ v @ Y. 

Lemma 6.3 H is indeed a functor, and is isomorphic to the 

functor D ~ (-, DA). 

It is convenient to define the 'natural isomorphism' of H 

with D ~ (-, DA) before checking H is a functor. Let 

vX: H(X) ~ D ~ (X, DA) be given by 

H(X) - V @ X ~ A @ V @ X 

"" D2(A @ V @ X) 

.,. D (V @ X, DA) - D 11. (X, DA). 

It is not hard to check that, for f in ~ (X, Y) 

vyll(f) - D 2. (f, DA)vX' 

It follows easily that H(g 0 f) - H(g)H(f) for any g in 2C(Y, Z), 

and it is routine to check that The maps X in 

mod~ then define a natural isomorphism as required. 

Notation 6.4 There is a natural map L ~ (L, L) given by 

e ~ (f ~ fe), which is L-linear. Consider the L-morphism 

L ~ V ® L obtained by composing this with the natural isomorphism 

(L, L) ~ V ® L. Then the image of lL is a 'canonical element' in 

V @ L, which we shall denote by O. Let M be the cokernel of the 

map L ~ V ® Land g : V @ L ~ M the natural projection onto M. 

Define maps 

.1I"X: 2[ (L, X) ~ H(X) - V @ X 

by 1I"X(f) - H(f)(O). Then this defines a natural morphism 

11" : ~ (L, - ) ~ H, and it can be proved that 

* 
Proposition 6.5 ~(M, -) ~ ~ (L, -) ~ H ~ 0 is exact. 

Remarks 6.6 This gives a f. p. for H.,. D !1X. (-, DA). Notice that 

L ~ (L, L) is just the map yielding the surjection 

Ho~«L, L), -)I~ ~ Ho~(L, -)I~ 

in the proof that ~ is contravariantly finite. 
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(L, L) ~ v ® L ~ M is the cokernel of L ~ (L, L). Thus the 

sequence 

is exact. f. g. since .Q is covariantly finite. 
l, 

The sequence given in 6.5 is just this orte regarded as a sequence of 

func tors on mod!U ....Q. The proof is therefore the one given above, 

but 'pulled back' along mod~ ~.Q so as to make no mention of this 

realisation of mod ~ The only version of this that we have been 

able to find is technically complex, and we have chosen to omit it 

from this account. 

There is a 'dual' procedure for dealing with D~(A, -), which 
~ 

makes use of the category mod~ 
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§7 Relationship with other existence theorems. 

We finish this chapter with a brief discussion of how the 

existence theorem proved in this chapter relates to similar theorems 

found in [BB], [BK]. Our theorem is weaker in the sense that it 

only asserts existence of almost split maps, not almost split 

sequences. 

The main difference between our proof here and those found in 

[BB], [BK] , is that it does not assume existence of almost split 

sequences in mod A, where A is an artin algebra. Indeed it is 

possible to reprov~. this fact by taking (A, V) (A, A) the 

principal bocs. The work in this chapter then collapses back to that 

of [A2 : §7] and we obtain the existence of almost split maps. The 

existence of almost split sequences can be made to follow from this, 

although the relationship between the end terms by the operators DTr, 

TrD of [AR 2] is not exhibited. 

The approach in [BB] is to use the Auslander-Sma10 criterion 

[AS2 : 2.4] for existence of almost split sequences in subcategories. 

The proof of this criterion constructs the whole almost split sequence 

at once, in terms of a projective resolution of a simple functor on 

the subcategory in question - this uses results on functors to be 

found in [AR1, Al]. 

The existence of right almost split morphisms in the [BK] version 

is proved as follows. Let X be indecomposable in mod fl1. Then 

R ® X is indecomposable in 1 and if E ~ R ® X is a right almost 

split morphism in mod R, let R ® E ~ E be the natural map; the 

composite R ® E ~ E ~ R ® X is then shown to be right almost split in 

1. The point of view in [BK] is the study of almost split 

sequences for relatively projective modules, and the connection with 

mod~ is not made very explicit. This means that the situation for left 
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almost split morphisms is not so clear as the realisation of mod~ 

as a category of coinduced modules is not available. The authors use 

instead an elaborate 'duality' theory (using triples and cotriples) to 

obtain the desired result. Also no attempt is made to prove 

extension closure for 1 - so the Auslander - Sma10 criterion is not 

available to them. Instead a new criterion for existence of almost 

split sequences in subcategories is developed in the first section of 

their paper. 

It is perhaps worth commenting that a paper of de la Peiia and 

Simson [PS), predatin~ both [BB) and [BK) , also establishes existence 

of almost split sequences for the category of 'prinjective modules 

over a triangular matrix ring'. A quick proof of this using the 

Auslander Sma10 criterion has also been provided by Sma10 [S). 

Some of these categories are equ.ivalent to mod U. for certain bocses 

2l , including the construction, due to Drozd, of a bocs At 

corresponding to a given finite-dimensional algebra [C-Bl: §6). 
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Chapter III Further results in left and right algebra theory 

In this chapter we give further results in the left and right 

algebra theory of bocses developed in [BB: §1-4] and summarised in 

Chapter I of this thesis. These include the results of [BB: §5) on 

cotilting theory, and the Ext-projective and Ext-injective modules in 

I and ,Q. We then give further results not to be found in [BB). 

The final section is devoted to a result on how Land R behave 

under 'induced bocs' constructions. 
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§1 Coti1ting theory and Ext-projectives / Ext-injectives 

We assume that 1J.. - (A, V) is a bocs in which A is an artin 

algebra and AV, VA are finitely generated projectives. Land R 

are also artin algebras. We shall denote the usual duality 

associated with any of these artin algebras A, L, R by D. 

Notation 1.1 Set d - max (Ld. AA, Ld. AA) where Ld. denotes 

injective dimension. When d < ~ it is well-known that 

Ld. AA - d - Ld. AA' 

[AR3: 6. 9 ( a) ] . 

a proof of this can be found sketched in 

For the readers convenience we recall the definition of a 

'cotilting module of finite injective dimension'. This is the dual 

of the concept of a ' tilting module of finite projective dimension' 

introduced by Miyashita in [Miy]. 

Defini tion 1.2 If A is an artin algebra a module T in mod A 

is called a cotilting module of finite injective dimension if 

Ld. T < i 
~, ExtA(T, T) - 0 for i > 0, and there is an exact sequence 

o ~ Td ~ 

with the T. in add T. 
~ 

~ TO ~ DA ~ 0 

Theorem 1.3 [BB: 5.1] If d < ~ then LV, V
R 

(i.e. 

cotilting modules of finite injective dimension. 

This injective dimension is at most d for both modules. 

are 

Remarks 1.4 In the proof of 1.3 it is not necessary to assume V 

is projectivising, only that are projective (and 

finitely generated since V has finite length over k) . A remark 

after this theorem in [BB] shows that if d ~ 2 the injective 

dimensions of the coti1ting modules are exactly d. If d 1, e.g. 

if A is hereditary - this holds for the 'layered bocses' of 

[C-B1: 3.6] are either classical coti1ting modules or 
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injective modules, since their injective dimensions are at most 1. 

A basic property of cotilting modules is that they are balanced 

a property already observed for LVR in I 2.5. Indeed once we 

have shown that LV is a cotilting module it follows that V is a 

cotilting module over EndL(V) (c.f. fMiy 1.5]). Since the 

canonical homomorphism ROP~ EndL(V) is an isomorphism it follows 

that V is a cotil ting ROP-module, i.e. V
R 

is cotilting. 

We now describe the Ext-projective and Ext-injective modules in 

I and .Q.. 

Theorem 1.5 ( c . f. [ BB: 5. 2 ] ) Suppose idempotents split in 

mod~ then the Ext-projectives in I are the finitely generated 

projectives and the Ext-injectives in I are the objects of add DV. 

In [BB] it was assumed that V was projectivising, this 

being used to show that all the objects of add DV were 

Ext-injective. This is not necessary. There is a natural 

isomorphism 1 
ExtA(Z, DV) 

1 
"" ExtR(R ® Z, 

A(DV) is injective, hence 1 ExtR( -, 

DV) ; as VA is projective 

DV) Ii is zero, i. e. DV is 

Ext-injective in I - note that DV ~ R ® DA is in I. The rest of 

the proof now follows [BB]. 

Theorem 1.5/ (c,f. [BB: 5.3]) Suppose idempotents split in 

mod~ then the Ext-injectives in .Q. are the finitely generated 

injective L-modules and the Ext-projectives in .Q. are the objects of 

add V. 

Dual to that for 1.5. 

Remark 1.6 If d is finite then Land Rare cotilted from 

each other (by V) and so by the analogue of [Miy: 1.19] for 

'coti1ting modules the number of simple left L-modules and the number 

of simple left R-modules (up to isomorphism) are equal. This number 
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is finite, equal to s say; it follows that the number of isomorphism 

classes of indecomposable Ext-projective or Ext-injective modules in 

either I or ~ is s. 

45 



§2 Further properties of the categories I and ~ 

We shall assume here that ~ - (A, V) is a bocs over an artin 

algebra and that A V , VA are finitely generated proj ectives. We 

also assume V is projectivising and (as usual) E : V ~ A is 

surjective. Thus, by I: 3.3, every extension of modules in I (~) 

is induced (coinduced) from one in mod A. 

Proposition 2.1 Suppose idempotents split in mod ~ Let 

o ~ X ~ Y ~ Z ~ 0 be an almost split sequence in mod A such that 

X and Z are indecomposable in mod~ Then the induced sequence 

o ~ R ® X ~ R ® Y ~ R ® Z ~ 0 is either split or almost split in I. 

If the induced sequence is not split then, since R ® Z is 

indecomposable and non - Ext-injective in I, there is (by I: 4.1) an 

almost split sequence in I ending at R ® Z: 

o ~ R ® X' ~ R ® Y' ~ R ® Z ~ o. 

This sequence may be chosen so that it is induced from a sequence 

o ~ X' ~ Y' ~ Z ~ 0 in mod A, which clearly cannot be split . 
. 

Since R ® Y' ~ R ® Z is right almost split in I R ® Y ~ R ® Z 

factors through it and we obtain a commuatative exact diagram 

o~ R®X~ R®Y~ R®Z---7)0 

II 

o ----~) R ® X'----~) R ® Y'----~ R ® Z ---7) o. 

Since Y ~ Z is right almost split in mod A Y' ~ Z factors 

through it and we obtain a commutative diagram with exact rows 

o ----~) X' -----~) Y' Z ------~) 0 

II 
o ----~ X ------~) Y ------~) Z ------~) O. 

Applying the exact functor R ® - yields a commuative exact diagram 
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o~ R ® X' ~ R ® y' ~ R ® Z ) 0 

1 1 

0 )R®X R®Y R® Z ) O. 

Thus there is a commutative diagram with exact rows 

0 ~ R ® X' ~ R ® Y' ~ R® Z ) 0 

1 1 

o ----~) R ® X ----~ R ® Y ----~) R®Z---»0 

II 
o ~ R ® x' ~ R ® Y' ----) R ® Z ---» O. 

Since R ® Y' ~ R ® Z is right minimal the composite 

R ® Y' ~ R ® Y ~ R ® Y' is an isomorphism. Hence the composite 

R ® X' ~ R ® X ~ R ® X' is an isomorphism. Since R ® X is 

indecomposable R ® X' ~ R ® X is an isomorphism. 

Hence the two induced sequences are isomorphic and the result 

follows. 

Proposition 2.1' Suppose idempotents split in mod~ Let 

o ~ X ~ Y ~ Z ~ 0 be an almost split sequence in mod A such that X 

and Z are indecomposable in mod ~ Then the coinduced sequence: 

is either split or almost split in ~. ' 

Lemma 2.2 add 1 is closed under kernels of epimorphisms. 

Proof This is similar to the argument for a result in Chapter IV 

(1.8); we omit the proof but give its dual below ... 

Lemma 2.2' add ~ is closed under cokernels of monomorphisms. 

Let 0 ~ M ~ N ~ C ~ 0 be exact with M, N in add ~ and 

choose K in add ~ and X in mod A such that HomA(L, X) '" M ® K. 

Then 0 ~ M® K ~ N ® K ~ C ~ 0 is exact. Let 
-1 

0 O~X~Q~O X ~ 

be exact in mod A with Q injective. Then, as HomA(L, X) "" M ® K 
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is exact, and HomA(L, Q) is injective in mod L. 

Consider the pushout diagram: 

0 o 

1 

0 ----+ M G> K ------------------~) N G> K ---~) C ----~) 0 

1 
0 ----+ HomA(L, Q) ----------------~) W -----~) C ---~) 0 

1 1 
HomA(L, 0-lX) ------ Hom

A 
(L, 0-lX) 

1 
0 o 

The module W is in add !I. since add !I. is closed under 

extensions. The sequence 

splits since Hom
A 

(L, Q) is injective. 

completing the proof. 

Thus C is in add !I., 

Recall from Chapter I: 2.1 that there' are equivalences 

V ®R -: 1 ~!I. and HomL(V, -): !I. ~ 1 which are mutually inverse. 

Lemma 2.3 V ® -
R 

and Ho~ (V, -) I ~ preserve exact 

sequences. 

If 0 ~ R ® X ~ R ® Y ~ R ® Z ~ 0 is exact so is 

R 
Tor1 (V, R ® Z) ~ HomA(L, X) ~ HomA(L, Y) ~ HomA(L, Z) ~ o. Let P* 

R be a projective resolution of Z. Then Tor
1

(V, R ® Z) = H1(V ®RR ® P*) 

- H1(V ® P*) 

A - Tor1 (V, Z) 

- 0 as VA 

is projective. Likewise if 

o ~ HomA(L, X) ~ HomA(L, Y) ~ HomA(L, Z) ~ 0 is exact so is 

1 o ~ R ® X ~ R ® Y ~ R ® Z ~ ExtL(V, HomA(L, X». 
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Let Q* be an injective resolution of X. Then 

Proposition 2.4 

1 
- H (HomL(V, 

1 
-= H (HomA(V, 

1 
- ExtA(V, X) 

HomA(L, Q*») 

Q*» 

o as AV is projec~ive. 

Suppose idempotents split in mod ~ 

If 0 ~ R ® X ~ R ® Y ~ C ~ 0 is an exact sequence in mod Rand 

R 
Torl(V, C) = 0, then there is a Z such that C ~ R ® Z. 

The condition R 
on Torl(V, C) means that applying V ®R - to 

this sequence preserves exactness. Since ~ is closed under 

cokernels of monomorphisms (2.2') it follows that 

V ®R C ~ HomA(L, Z) for some Z. 

preserves exactness (Hom
L 

(V, -) is exact on ~ by 2.3) and 

thus there is a commutative exact diagram 

o ~ HomL(V, V ® X) ~ HO~(V, V ® Y) ~ Ho~(V, V ®R C) ~ 0 

1 1 
o ---7 R ® X --------~) R ® Y ----------~) C --------~) 0 

in which the vertical maps are isomorphisms. Thus the cokernels are 

isomorphic, that is 

C := HomL(V, V ®R C) := Ho~(V, HomA(L, Z» 

:= HomA(V, Z) 

~ R ® Z as required. 

Proposition 2.4' Suppose idempotents split in mod.n . 

If 0 ~ K ~ HomA(L, Y) ~ HomA(L, Z) ~ 0 is exact in mod Land 

1 ExtL(V, K) - 0, then there is X such that K = HomA(L, X). 

Proposition 2.5 Suppose idempotents split in mod ~ 

Let C be of finite projective dimension in mod R. Then C is 

induced if and only if i 
ExtR(C, DV) - 0 for all i > O. 

If C ~ R ® Z then for i > 0 
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i 
ExtR(R @ Z, R @ DA) 

which is a homomorphic image of 
i 

ExtA(Z, DA) = 0 by I: 3.3. 

Conversely let 

be a projective resolution of C (which has finite projective 

dimension). Then 

i 1 i-l 
o - ExtR(C DV) = ExtR(O C, DV) 

R i-l 
- DTorl(V, 0 C).· 

Thus C, OC, ... all vanish on application of 

Since P
r

, P
r

-
l

, ... , Po are all in I repeated application of 2.4 

shows that 

r-l r-2 o C, 0 C, ... , C are all in I, in pa~ticular C is in I as 

required. 

Proposition 2.5' Suppose idempotents split in mod ~ Let K 

be of finite injective dimension in mod L. Then K is coinduced 

if and only if for all i > O. 

Notation 2.6 [AR3 : §3] Let A be an artin algebra and I2 a 

subcategory of mod A. Then set to be the subcategory 

-
consisting of modules M for which for all i > 0; 

1. 
set Q to be the subcategory consisting of modules M for which 

i 
Ext

A
(-, M)\D = 0 for all i > O. . . 

- S#Je ~,k~'J;, ~/; "'" ""'"'.2t'. 1. 
Corollary 2.7 ~If R has finite global dimension then 1 - (add DV); 

1. 
if L has finite global dimension then ~ - (add V) 

Remarks 2.8 If i. d. AA, i. d.AA are finite then Land Rare 

cotilted from each other (by V) so L has finite global dimension if 

and only if R has finite global dimension. 
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§3 Induced bocses 

In much of this section we do not need to assume that ~ - (A, V) 

has any special properties. However, to obtain the main result of 

this section we need to assume that the embeddings of Chapter I §2 

are available. Thus we suppose that !1l a;. (A, V) is a bocs with A 

an artin algebra over a commutative artin ring k; k acts centrally 

on V and V has finite length over k. and VA are 

projective modules . 

. We let t: A ~ B be a homomorphism of artin algebras over k 

and recall the notion of the ' induced' bocs It has right 

algebra Rt say, which we relate to R. The assumption that B is 

an artin algebra is not very essential as we point out later. 

Given a bimodule AMA denote B ® M ® B by BMB and use a 

similar notation for maps. 

Definition 3.1 [C-Bl: §3] Given Z t A ~ B as 

define the induced bocs ~t _ 
(B, BVB) by the following data: 

BvB B B 
'B B the counit is € » B, ) A 

the comultiplication is 

BvB B~B ) Bv ® vB __ -+) Bv ® A ® vB B1®t®lB) Bv ® B ® vB 

BVB BVB 
®B . 

Lemma 3.2 [C-Bl: 3.1] There is an additive functor 

F : mod .tIt ~ mod U which is full and faithful. 

[C-Bl: 3.1] Set F(X) - AX and given f 

~t(X, Y) define F(f) by the composite 

above 

t®l®t®l BVB BVB X f Y ) ® X ~ ®B ~ . 

This is a functor and it is easily checked that the map 

f ~ F(f) has an inverse which sends g in ~(AX, AY) to 

BVB ® X ~ B ® V ® X ~ B ® Y ~ Y 
B 
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Proposition 3.3 Rt is isomorphic to En~(R ® B)oP. 

Note that for any bocs ~ its right algebra is isomorphic 

to the endomorphism ring Thus 

Rt "", 2,(t(B, B)oP "'" ')J.(AB, AB)oP 

"'" En~(R ® B)oP, 

since mod 2l "'" 1 ~ mod R. 

Remarks 3.4 We indicate that this result can be proved in a 

slightly more general context. Suppose t: A ~ B is a k-algebra 

homomorphism but we no longer assume that B is finitely generated 

over k. 

It is clear that the full, faithful functor of 3.2 can be defined 

on Mod ~t thus giving a functor Mod 2! t ~ Mod 2[ which is full and 

faithful. Thus Rt "'" ~(AB, AB)oP and using the full embedding of 

ModQL in Mod R, which is proved in exactly the same way as the 

corresponding result in §2 of Chapter I, we obtain 

Rt "'" En~ (R ® B)oP as before. 

Remarks 3.5 The result of 3.3 was first observed in the following 

form. Suppose is projective, then there is a chain of 

isomorphisms 

Rt B B HomB( V , B) 

"'" HomA(V ® B, B) 

"'" HomA(B, HomA(V, B» 

"" HomA(B, R ® B) 

"'" HomA(B, A) ® R ® B - R' say. 

The algebra structure was then transported to R' and described 

in terms of that for R. 

It was then observed by my supervisor Michael Butler that 

R' "'" HomA(B, R ® B) 

"" En~(R ® B). 
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This suggested the more direct approach given here, which does 

not need AB projective. If however AB is projective then 

Rt 
"" En~(R ® B)oP "" R' and the ring structure on R' may be 

described. The addition is the usual addition (of course) and given 

P ® r ® b, q ® s ® c in R' their product is given by 

q ® sp(c) r ® b, 

as is readily checked by transporting the ring structure from 

EndR(R ® B)oP across the isomorphism of this with R'. 

The procedure used in this section may be carried out to 

calculate t 
L , the l_eft algebra of ,ut in terms of L· , we need, 

however, an analogue of our theory for ' right representations' of 

bocses. We sketch the line of argument: 

Let Mod ~ op denote the category obtained as for Mod 2( but 

using right A-modules as objects. Then Lt is the endomorphism ring 

By the analogue 

of 3.2 above, this is then the endomorphism 'ring of BA in Mod QloP. 

There is an embedding of this category as the subcategory of Mod LOP 

on the induced LOP-modules. 

Lt "" End (B ® L). 
t.°P 

This gives the result that 
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Chapter IV Homological theory of relatively projective modules 

In this section we do not deal explicitly with bocses but 

consider induced modules abstractly. In the first section we also 

give (without proof) the dual results for coinduced modules, but in 

the remainder of the chapter we suppress these for the sake of brevity 

- the interested reader may formulate these dual results without undue 

difficulty. 

In the first section extensions of induced and relatively 

projective modules are considered, the context being for arbitrary 

modules over arbi tr~ry rings. In the second section we consider 

almost split sequences so we restrict attention to finitely generated 

modules over artin algebras. 

The theory for bocses in chapter I gives a class of examples 

satisfying the kind of hypotheses needed in this chapter thus 

results here carryover to give results in the left and right algebra 

theory of bocses. 

Our final section in this chapter discusses the relation of our work 

to recent work of Auslander and Reiten [AR4), and some results of 

Kleiner which they refer to in their paper. 
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§1 Extensions of relatively projective modules 

Definition 1.1 Let A be a ring and X, Y in Mod A. 
, 

Let n be an integer greater than zero. An n-fo1d extension of X 

~ is an exact sequence in Mod A 

A morphism of two n-fo1d extensions is a commutative diagram 

e o ~ X ~ E1 ~ ... ~ E ~ Y ~ 0 
n 

1 1 1 1 
e' : 0 ~ X'~ E' ~ ... ~ E' ~ Y' ~ 0 

1 n 

This is thus a morph~sm e ~ e'. 

Remarks 1.2 1-fo1d extensions are just short exact sequences. 

It is well known that the set of 'equivalence classes' 

n ExtA(Y, X) of n-fo1d extensions of X by Y is a group under the 

'Baer sum'. A reference for the general theory of the Ext-functor 

viewed in this way (i.e. as equivalence classes of extensions) is 

chapter VII of Mitchell's classic text on category theory [Mit] - in 

particular we borrow the following termino1~gy from that book: 

Definition 1.3 [Mit: chapter VII §3] A morphism with fixed 

ends is a morphism e ~ e' of extensions as in 1.1 such that: 

X = X', Y - Y' and the mappings X ~ X' (-X) and Y ~ Y' (-Y) are 

just lX' 1y respectively. Thus the morphism looks like 

e : o ~ X ~ El ~ ... ~ E ~ Y~ 0 
n 

1 1 II 
e' : o ~ X ~ Ei ~ ... ~ E~ ~ Y ~ O. 

Recall that the equivalence relation on the class of n-fold 

extensions of X by Y is defined in terms of morphisms with fixed 

ends, e and e' are equivalent extensions of X by Y if there is a 

finite sequence e - eO' e1 , ... , em - e' of extensions and for each 

i = 1, ... , m there is either a morphism with fixed ends e
1
_

1 
~ e

i
, 
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or a morphism with fixed ends e i ~ e i _1 . 

Notation 1.4 We fix now two ring homomorphisms A ~ B, A ~ C and 

let r denote the category of' all induced B-modu1es (L e. B-modu1es 

isomorphic to B ® X for some X in Mod A); let e denote the 

category of all coinduced C-modu1es (Le: C-modu1es isomorphic to 

HomA(C, X) for some X in Mod A). 

Then add r is the category of relatively A-projective modules 

in Mod B, and add e is the category of relatively A- injective 

modules in Mod·C. 

As usual ® denotes ®A' and we will also write (-, -) instead 

of Hom
A 

( -, -). 

Assumptions 1.5 There are two fundamental assumptions we make on 

the ring morphisms A ~ B, A ~ C: 

(i) B ® Mod A ~ Mod B is exact, 

( ii) (C, -): Mod A ~ Mod C is exact. 

Thus if 

e : 0 ~ X ~ El ~ ... ~ £n ~ Y ~ 0 

is an n-fold extension of left A-modules there are induced and 

coinduced extensions 

B ® e 

-
(C, e): 0 ~ (C, X) ~ (C, El ) ~ 

~ B ® E ~ B ® Y ~. 0, 
n 

~ (C, E ) ~ (C, Y) ~ 0, 
n 

obtained by applying the exact functors above to the extension e. 

Proposition 1.6 Let X be a left A-module. If there is an exact 

sequence 0 ~ X ~ B ® X ~ Q ~ 0 wi th X ~ B ® X the canonical 

morphism x ~ 1 ® x, and Q an injective left A-module then every 

n-fold extension of B ® X by an induced module is equivalent to an 

induced n-fold extension. 

Let e : 0 ~ B ® X ~ E1 ~ '" ~ En ~ B ® Z ~ 0 be an n-fo1d 

extension of B ® X by an induced module. Regard e as an 
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extension in Mod A and consider the pullback e' of e along the 

canonical morphism Z~B®Z : 

e' o ~ B ® X ~ E' ~ ... ~ E' ~ Z ~ 0 
1 n 

II 1 1 1 
e o ~ B ®X~ El ~ .. ~ ~ E ~ B ® Z ~ 0 

n 

Since Q is injective the morphism B ® X ~ Q extends through the 

monomorphism B ® X ~ Ei. Let E'~ Q be this extending and E" 
1 1 its 

kernel. Then there is a commutative exact diagram 

0 0 

1 1 
" X El 

1 1 
e' o ~ B ® X ) E' ~ ... ~ E' ~ Z ~ 0 

1 n 

1 1 
Q Q 

1 1 
0 0 

If n ~ 2 set E': E~ for 2 S i s n. We obtain a 
... i. 

commutative exact diagram: 

0 0 

1 1 
0 X ) E" ~ ... ~ E" ~ Z ~ 0 

1 n 

1 1 1 II 
e' O~B®X ) E' ~ ... ~ E' ~ Z ~ 0 

1 n 

1 1 
Q Q 

1 1 
0 0 
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Call the first row of this diagram e". Then this diagram gives 

a morphism e" ~ e' . There is a morphism e' ~ e (e regarded as an 

extension of A-modules) since e' is a pullback of e. Applying the 

exact functor B ® - gives morphisms 

B ® e" ~ B ® e' ~B ® e. 

Let B ® e ~ e be the morphism induced by the natural ~amily of maps 

B ® M ~ M, b ® m ~ bm (for any left B-module M). Then composing 

this with the morphism B ® e" ~ B ® e above gives a morphism 

B ® e" ~ e which may be checked to have fixed ends. Thus e is 

equivalent to the induced extension B ® e". 

Proposition 1.6' Let Z. be a left A-module. If there is an exact 

sequence 0 ~ P ~ (C, Z) ~ Z ~ 0 where (C, Z) ~ Z is the natural map 

h ~ h(l) and P is a projective left A-module, then every 

extension of a coinduced module by (C, Z) is equivalent to a 

coinduced extension. 

Corollary 1.7 Suppose that, for every X in Mod A, there is 

an exact sequence in Mod A 

o ~ X ~ B ® X ~ Q
X 
~ 0 

in which X ~ B ® X is x ~ 1 ® x and Q
X 

is injective. 

1 and add I are closed under extensions. 

Then 

It is clearly sufficient to show that I 
extensions. Let 

o ~ B ® X ~ E ~ B ® Z ~ 0 

be a I-fold extension of a pair of modules in I 

this is equivalent to an induced extension. 

is closed under 

Then, by 1.6 

By the 5-lemma it 

follows that the middle terms of these extensions are isomorphic, so 

E is in I as required. 

Corollary 1.7' Suppose that, for every Z in Mod A, there is an 

exact sequence in Mod A 
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o ~ Pz ~ (C, z) ~ z ~ 0 

in which (C, Z) ~ Z is h ~ h(l) and Pz is projective. Then t. 
and add e are closed under extensions. 

Proposition 1.8 If add:r is closed under extensions it is also 

closed under kernels of epimorphisms. 

Let 0 ~ K ~ M ~ M' ~ 0 be exact, with M, M' in add Z ; 

we wish to show K is in add Z Choose BN and AX such that 

M' @ N "'" B ® X. 

Then there is also an exact sequence 

with M @ N in add! Le t 0 ~ y ~ P ~ X ~ 0 in Mod A be. 

exact with P projective. This remains exact on applying the 

functor B ® - (1.5(i». 

Form the commutative exact pullback diagram 

0 0 

1 1 

B ® Y B ® Y 

1 1 

o ~ K ~ U ) B ® P ~ 0 

1 1 

o ~ K ~ M @ N )B®X~O 

1 1 
0 0 

Since B ® P is projective the first row of this diagram splits. 

Hence K is a direct summand of U. But U is in add X as it is 

an extension of modules in add I (look at first column of diagram). 

Thus, as required, K is in add! 

Proposition 1.8' If add ~ is closed under extensions it is also 

closed under cokernels of monomorphisms. 
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Remark The reader will observe that the proof of 1.8, 1.8' is 

essentially the same as that for 2.2, 2.2' of chapter III; for variety 

we gave the proof for the 'coinduced' case there. 
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§2 Almost split sequences for relatively projective modules 

In this section we keep the notation A ~ B, A ~ C but assume 

that these are homomorphisms of artin algebras over a commutative 

artinian ring k. 

Similarly to 1.5 we assume that 

B ® - mod A ~ mod B, 

(C, -) : mod A ~ mod C, 

are exact functors. 

Let 10 denote the category X n mod B, and let ~o denote the 

category t. n mod C. As in §l we have criteria for IO( <eo) to 

have the property that every extension in IO( ~) is (co)induced 

from one in mod A. These criteria can be deduced directly from 1.6, 

1.6'. Rather than work explicitly with sufficient conditions on A ~ B 

(A ~ C) for the property to hold we simply insert it as a hypothesis 

in our theorems. We actually only need it to hold for I-fold 

extensions but an easy , dimension shifting' argument shows that it 

must then hold for arbitrary length extensions. If 

e: 0 ~ B ® X ~ El ~ ... ~ En ~ B ® Y ~ 0 is an extension of induced 

modules it is not hard to show that E2 ~ ... ~ En ~ B ® Y ~ 0 can 

be taken to be the start of a projective resolution of B ® Y. If 

is the start of a projective 

resolution of Y then applying B ® - yields such a resolution of 

B ® Y. Hence our original extension is equivalent to the splice of 

n-l o ~ B ® X ~ El ~ B ® 0 Y ~ 0 with an induced extension. Thus, 

since all I-fold extensions were assumed to be equivalent to induced 

extensions, it follows that e is equivalent to an induced extension. 

A similar argument with injective resolutions establishes the 

corresponding result for eo. 
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Minimal morphisms 

Let A be an artin algebra, we recall some general results about 

'right minimal' morphisms in mod A. These will be used to study 

almost split sequences in IO we suppress the dual results for eO 
which use the dual notion of 'left minimal' morphism. 

Definition 2.1 A morphism f: X ~ Y in mod A is called right 

minimal if whenever there is a commutative diagram 

X~Y 

the morphism u is an automorphism. 

Lemma 2.2 [ASl : §l] Let f: X ~ Y be a morphism in mod A; 

then there is a decomposition X - M ® N such that flM is right 

minimal and fiN - O. 

(Sketch of proof from [AS1]) We call a morphism g: M ~ Y 

'lifting equivalent' to f if 'f factors through g' and 'g factors 

through f' - that is, there is a commutati~e diagram 

M ----"g"--~) Y 

1 \I 
f 

X ---~) Y (*) 

l' \I 
M ----"g"--~) Y 

The collection of such maps form a 'lifting equivalence class' -

which is non-empty since f is in it - in which we choose g: M ~ Y 

such that M has minimal length. Then g is right minimal (if u 

is in EndA(M) and satisfies gu - g then g restricted to the image 

'of u is also lifting equivalent to f, thus, by the choice of M, 

im(u) - M and u has to be an automorphism). 
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Using the fact that g is right minimal it follows that in the 

diagram (*) M ~ X ~ M is an automorphism. Thus X has a 

decomposition M ® N where N is the kernel of X ~ M. This is the 

desired decomposition. 

Definition 2.3 A morphism f x .~ y in mod A is called 

minimal right almost split if it is right almost split and right 

minimal. Notice that if f is not necessarily minimal and we 

construct a decomposition X - M ® N as in 2.2 then the 'minimal 

version of f' - that is g - fl M- is still right almost split. 

Ringel in [Ri) calls such morphisms ' sink' morphisms,. the dual 

concept of minimal left almost split morphism is called a 

'source' morphism. The following lemma is proven in [RiJ. 

Lemma 2.4 [Ri: 2.3, Lemma 2) If 0 ~ X ~ Y ~ Z ~ 0 is an exact 

sequence in a full, extension-closed subcategory Q of mod A such 

that Q = add Q and Y ~ Z is minimal right almost split in 

Q, X ~ Y is minimal left almost split in Q. 

See [Ri). A more ' sophisticated' approach is that of 

Auslander, where this result follows from [AI: II 4.4). 

We are now in a position to study the relationship between almost 

split sequences in the categories mod A, mod B, 1:0 (and dually in 
., 

mod C, eO - but we suppress these results). Almost split sequences 

always exist in mod A (A any artin algebra) as was established by 

Auslander and Reiten in [AR2). We notice that there is a good supply 

of such sequences in add Zo - the method by which we obtain a right 

almost split map is the same as that used by Bautista and Kleiner in 

[BK: §2). 

Given an indecomposable non-projective module N in add 1:. 0 

let M ~ N be a minimal right almost split map in mod B. Then 

B ® M ~ M ~ N, with B ® M ~ M the canonical morphism b ® m ~ bm, 
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is a right almost split in add ~O - to see this let us check the 

factorisation property for maps B ® X ~ N which are not split 

epimorphisms. This is then sufficient to deduce the property for 

maps N' ~ N from relatively projective modules N' (i.e. summands of 

B ® X). 

Given the non-split epimorphism B ® X ~ N we can factorise this 

through the right almost split morphism 

f : B ® X ~ M such that B ® X ~ M ~ N 

M ~ N. Thus there is 

is B ® X ~ N. 

We can then lift f through B ® M ~ M by defining 

B ® X ~ B ® M by b ® x ~ b ® f(l ® x). Thus B ® M ~ N is right 

almost split in I. O. Consider a right minimal version M' ~ N. 

Since a projective cover of N will factor through this map, M' ~ N 

is surjective. Thus, if L' is its kernel, there is a short exact 

sequence 

o ~ L' ~ M' ~ N ~ O. 

If add LOis closed under extensions then, using the same 

argument as in 1.8 we deduce that it is closed under kernels of 

epimorphisms. Thus L' is in add I O. Now 2.4 shows that this 

is an almost split sequence in add X 0 ending at N. 

Our first result relates such 'relative' almost split sequences 

in add :x 0 to almost split sequences in mod B. 

Theorem 2.5 Suppose that every extension in ;r 0 is equivalent to 

an induced extension. Let N be a non-projective indecomposable 

module in add ;r O. Then there is an almost split sequence in 

add Z 0 

e : 0 ~ L ~ M ~ N ~ 0 

and if x : 0 ~ DTrN ~ E ~ N ~ 0 

is the almost split sequence in mod B ending at N then e is a 

direct summand of the sequence B ® x. 
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The existence of e is guaranteed by the argument given 

above. We make e into an induced extension as follows: 

Choose modules L', N' in add X 0 so that for some X, Z in 

mod A 

L ® L' = B ® X, S ® N' = B ® Z 

Let e' o ~ L' ~ L' ® N' ~ ., ~ 0 be the split extension of 

L' by N' . Then 

e ® e' : 0 ~ B ® X ~ M ® L' ® N' ~ B ® Z ~ 0 

is an extension in X O. Thus, by hypothesis there is an extension 

z 0 ~ X ~ Y ~ Z ~ 0 

in mod A such that e ® e' = B ® z. 

We claim there is a morphism e ~ x as follows: 

e :0 ~ L M ~ N ~ 0 

1 1 
x : 0 ~ DTrN ------~) E ~ N ~ 0 

This is obtained by factorising the non-split map M ~ N of e 

through the right almost split map E ~ N 'of x. Thus there is a 

morphism 

B ® z = e ® e' ~> e ~ x. 

There is a canonical morphism B ® x ~ x given by the natural 

family of maps B ® W ~ W, b ® w ~ bw, where W is any left 

B-module. 

Thus we have maps of extensions 

B ® x 

1 
B ® z ~ x. 

There is a map B ® z ~ B ® x of extensions which makes 

B ® x 

/1 
B ® z x 
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commute - to see this notice that if W is any B-modu1e the natural 

map B ® W ~ W is 'universal' for maps from induced B-modu1es 

B ® U to W, for if e : B ® U ~ W is such a map then 

"8 B ® U ~ B ® W defined by e (b ® u) - b ® e (1 ® u) makes the 

diagram 

commute. The morphism B ® x ~ x is given by morphisms B ® W ~ W 

for W - DTrN, E, N and the morphism B ® z ~ x is given by 

morphisms e : B ® U ~ W for U - X, W - DTrN; U - Y, W - E; U - Z, 

W - N. The liftings B ® U ~ B ® W given above provide 

morphisms B ® X ~ B ® DTrN, B ® Y ~ B ® E, and B ® Z ~ B ® N, and 

it is not hard to check that these give rise to a morphism: 

B ® z : 0 ~ B ® X ----~) B ® Y ~ B ® Z ~ 0 

1 1 1 
B ® x : 0 ~ B ® DTrN ~ B ® E ~ B ® N ~ 0 

which makes the diagram 

B ® x 

.~1 
B ® z x 

commute, as claimed. 

Hence we have a morphism of extensions a: e ~ B ® x given by 

the composite e ~ e (1) e' ... B ® z ~ B ® x. 

Consider the diagram 

B ® x : 0 ~ B ® DTrN ~ B ® E ~ B ® N ~ 0 

1 
e : 0 ----+ 

in which B ® N ~ N is the canonical map. 

The composite B ® E ~ B ® N ~ N is not a split epimorphism 
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since it is equal to B ® E ~ E ~ N where E ~ N is not a split 

epimorphism. Thus it factors through . M ~ N (recall e is almost 

split in add .! 0) and we obtain a commutative exact diagram: 

B ® x : 0 ~ B ® DTrN ~ B®E~B®N~ 0 

1 ~ I 
',I, 1 

e: 0 ~ L~ 

This gives a morphism f3: B ® x ~ e and hence we have an 

endomorphism f3o: e ~ e. The reader is invited to check that this 

endomorphism has the form: 

e : 0 ~ L ~ M ~ N ~ 0 

1 1 II 
e : 0 ~ L ~ M ~ N ~ 0 

i.e. the map N ~ N at the right hand end is just the identity. 

S inc~ M ~ N is right minimal the endomorphism M ~ M is an 

automorphism. Hence L ~ L is an automorphism. Thus f3o: is an 

automorphism of e, and so it follows that 0:: e ~ B ® x is a split 

monomorphism. Thus e is a direct swmnand of B ® x, which was 

what we wanted to prove. 

Our second result relates almost split sequences in add X 0 

to almost split sequences in mod A. 

Theorem 2.6 Suppose that every extension in 1;0 is equivalent to 

an induced extension. Let 

e : 0 ~ X ~ Y ~ Z ~ 0 

be an almost split sequence in mod A (so X - DTrZ) and assume that 

there is an indecomposable summand of B ® Z such that B ® Y ~ B ® Z 

followed by projection onto this summand is not a split epimorphism. 

Then B ® e is the direct sum of two extensions, one of which is 

almost split in add :to. 
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Let Z' be an indecomposable summand of B @ Z with the 

property described above. Since Z' is not projective there is an 

almost split sequence 

x : 0 ~ X' ~ Y' ~ Z' ~ 0 

in add Z O· B Z 
proj action 

Factorising B @ Y ~ .@ ) Z' through the 

right almost split map Y' ~ Z' gives rise to a commutative exact 

diagram 

B @ e o ~ B @ X ~ B @ Y ~ B @ Z ~ 0 

1 1 1 
x 0 ~ X'~ Y'~ Z' ---?O 

and thus a morphism B @ e ~ x. 

We now construct a morphism x ~ B @ e. 

Choose Z" such that Z' ® Z" B @ Z and X" such that 

X' ® X" is isomorphic to an induced module (B @ T say) . 

Define z to be the split extension 

z 0 ~ X" ~ X" €e Z" ~ Z" ~ O. 

Then x ® z is isomorphic to an extensio'h of B @ T by B @ Z. By 

our hypothesis this extension can be chosen to be an induced one, so 

that x @ z ~ B @ t for some extension 

t : 0 ~ T ~ U ~ Z ~ 0 

in mod A. Since x is not split, B @ t and hence t are not 

split. 

The extension 

is almost split in mod A so by factorising the map u ~ Z of t 

through the right almost split map Y ~ Z of e we obtain a 

commutative exact diagram 

.. 
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t 0 ~ T ~ U ~ Z ~ 0 

1 1 
e : 0 ~ x ~ y ~ z ~ o. 

This is a morphism t ~ e, so there is a morphism B ® t ~ B ® e and 

thus a composite 

x ~ x ® z "" B ® t ~ B ® e. 

This is a morphism x ~ B ® e which we show is a spli t 

monomorphism. The composite of this with the morphism B ® e ~ x 

constructed above is an endomorphism of x of the form: 

x : 0 ~ X' ~ y' ~ z' ~ 0 

1 1 
x : 0 ~ x' ~ y' ~ zr ~ o. 

As in 2.S the right minimality of the map y' ~ Z' shows that 

this endomorphism is an automorphism. Thus x ~ B ® e is a split 

monomorphism and B ® e has a summand which is almost split in 

add ! 0 as required. 

Remarks 2.7 The result 2.6 above is similar in both statement and 

proof to the result III: 2.1 on bocses. With a little care this 

earlier result can be deduced from 2.6; the essential point is that 

the automorphism x ~ B ® e ~ x we constructed has to be the 

composite of two isomorphisms - this is because the end terms of B ® e 

are assumed indecomposable in III: 2.1. 

Of course, by putting A ~ B to be A ~ R a result on bocses 

can be deduced from 2.S as well. 

Proposition 2.8 Suppose idempotents split in mod ~ -where,u 

satisfies the basic assumptions of chapter III and Z is 

indecomposable in mod ~ such that R ® Z is not projective in 

mod R. Then there is an almost split sequence in ! 

e O~R®X~R®Y~R®Z ~ 0, .. 
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and if x : 0 ~ DTr(R ® Z) ~ E ~ R ® Z ~ 0 is the almost split 

sequence in mod R ending at R ® Z then e is a direct summand of 

R ® x. 
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§3 Addendum: recent results of Auslander, Reiten, and Kleiner 

While this thesis was in preparation the preprint [AR4] came to 

our attention. It contains the following result: 

Proposition 3.1 [AR4: 4.11] Let i A ~ r be a ring 

homomorphism between artin algebras A. and r, and assume that r 

is a finitely generated projective right A-module. If the 

subcategory X of mod r of relatively projective modules is closed 

under extensions, then it is resolving. 

The term 'resolving' means that X is closed under extensions, 

contains the projectives in mod r, 

epimorphisms. 

and is closed under kernels of 

This proposition is just a version (for finitely generated 

modules over artin algebras) of the result 1.8 of this chapter, and 

the same line of proof will clearly suffice to establish it. The 

proof given by Auslander and Reiten in [AR4] uses the methodology of 

their earlier paper [AR3]. 

In [AR4] the result is attributed to Kleiner and the reader is 

referred to the remarks made in [AR4] immediately after [AR4: 4.11] 

for further details. 

The category X above is contravariantly finite in mod r (for. 

any M in mod r it is easy' to check that the morphism of functors 

Ho~(-, r ®AM) IX ~ Ho~(-, M)I X 
induced by the natural map r ®A M ~ M is surjective). The paper 

[AR3] studies such 'contravariantly finite resolving' subcategories 

extensively, and so Auslander and Reiten raise in [AR4] the question 

'When is X closed under extensions?' - if X is extension closed 

then it is an example of a contravariantly finite resolving 

subcategory. 

Theorem 3.2 

They give the following criterion due to Kleiner: 

(Kleiner, [AR4:4.14]) Let r, A, X be as above (so 
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rA is projective). If, for each C in X, the kernel KC of the 

natural map r ®A C ~ C is injective as a A-module, then X 

is closed under extensions. 

Details of Kleiner's proof are not given, and there is also no 

reference. We have failed to find our. own proof for this result so 

we are unable to say much about its relation to our result (1.7) along 

these lines. However, as pointed out in [AR4] , it does generalise 

the criterion obtained for representations of bocses in [BB: §3]. 

This is not substantiated in [AR4] so we give a demonstration here. 

In [BB: §3] the criterion for ! to be extension - closed in 

mod R is that in the exact sequences [BB: 3.3(a)] 

* o ~ X ~ HomA(V, X) ~ HomA(V, X) ~ 0 

the cokernel term HomA(V, X) is injective; this must hold for any 

AX. We now show that Kleiner's criterion holds if we only know this 

for X of the form AR ® Y ~ HomA(V, Y). There is a commutative 

diagram 

* 
HomA(V, Y) 

z 

f IZ 
R ® Y ------------------~) R ® R ® Y 

in which the map f is given by f(r ® y) - E ® r ® y (recall that 

E is the identity element in R) . 

Thus there is an exact sequence 

o ~ R ®yS R®R®Y ~ HomA(V, X) ~ 0 

where X - AR ® Y. This is split, since the canonical map 

R ® R ® Y ~ R ® Y, r ® s ® Y ~ rs ® y is a left inverse for f. 

Thus, as an A-module, the kernel of this natural map is 

HomA(V, AR ® Y) which is injective. This verifies the criterion in 
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Kleiner's result. 

It may be asked which pairs of rings satisfy the criteria (either 

Kleiner's or our's) for the category of relatively projectives to be 

extension - closed. Our result (1.7) is a 'generalisation' of the 

criterion for bocses in [BB], and -was originally obtained by 

liberating the work of [BB: §3] from its bocs - theoretic context. 

If in 1.7 we take A ~ B to be A ~ R (R the right algebra of a bocs 

X - (A, V» then the sequence 

in the statement of 1.7 is isomorphic to the sequence 

* o ~ X ~ HomA(V, X) ~ HomA(V, X) ~ 0 

of [BB: 3.3(a)] where we assume that ~ ·satisfies the same 

hypotheses as the bocses used in [BB: §3]. Thus we require that, for 

HomA (V, X) is injective, and as shown in [BB: 3.6], this 

holds if V is a projectivising bimodule. 

At the time of writing this provides the only (non-trivial) class 

of examples we know satisfying 1.7, but we also mention the following 

class of examples: 

Let k be a field of characteristic p (a prime) which divides 

IGI, where G is a finite group. Let H be a subgroup of G; one 

may ask when the category X of relatively H-projective modules in 

mod kG is closed under extensions. It is possible to verify the 

criterion 1. 7 provided that for each g in G\H the order of the 

subgroup 
-1 

H () gHg is not divisible by p. This condi tion is, 

however, strong enough to ensure that either p ~ G : HI and thus 

x - mod kG, or p ~ IHI and thus X - add(kG). In fact Auslander and 

Reiten have proved: 

Proposition 3.3 [AR4: 2.16] Let i: h ~ r be a homomorphism of 

artin algebras, where r is a symmetric algebra, h is a 
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self-injective algebra, and r
A 

is projective. If K, the category 

of relatively A-projective modules in mod r is closed under 

extensions then K - add(r) or mod r. 

The proof is based on the fact that, for a symmetric artin 

2 
algebra A and any module M in mod A· DTrM - 0 M. This fact can 

also be used to provide a quick demonstration of the following recent 

result of Kleiner's. 

Theorem 3.4 (Kleiner [K]) Let k be a field of characteristic a 

prime p dividing' I G I, where G is a fini te group. Let H be a 

subgroup of G and the category of relatively H-projective 

modules in mod kG. 

A short exact sequence 

e : 0 ~ L ~ M ~ N ~ 0 

of modules in X is almost split in X if and only if it is an 

almost split sequence in mod kG. 

(W.L. Burt 1991) It is clear that if e is an almost split 

sequence whose terms lie in K then e is almost split in K, so 

we prove the converse. 

Let 0 ~ n2N ~ E ~ N ~ 0 . be the almost split sequence in mod kG 

ending at the non-projective module N (N is non-projective since e 

does not split). 

Since M ~ N factors through the right almost split map E ~ N 

there is a commutative exact diagram 

e: O~L~ M~ N~O 

1 1 i 
2 o ~ 0 N ~ E ~ N ~ O. 
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is not a split monomorphism then, as n2
N is 

in X and the sequence e is almost split in X the map L ~ n2N 

lifts to a map M ~ n2N such that L ~ M commutes. 

11 
But this would mean that the pushout along L ~ r N of e would 

split. Since this pushout has already been seen to be the almost 

split sequence 

2 x 0 ~ n N ~ E ~ N ~ 0, 

this cannot happen. 

Thus L ~ n2
N is a split monomorphism and hence, since n2

N is 

indecomposable, it is an isomorphism. Thus e is isomorphic to the 

almost split sequence x ending at N. Hence, as claimed, e is 

almost split in mod kG. 
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Chapter V Morphisms in mod !U and triangular bocses 

§ 1 Morphisms in mod 2l 

This chapter is concerned with properties of mod 2l which are 

usually present in applications [0, C-B1]. We restrict attention 

therefore, to bocses .u - (A, V) over k-a1gebras (with k a field) 

and consider only the finite dimensional representations of ~ 

As was commented in Chapter I §2 the embeddings proven there are 

not available for all the bocses considered in [C-Bl]. The bocses 

used in the applications in [C-BI] satisfy the property that V is 

finitely generated as an A-A-bimodu1e (and also AV, VA are 

projective A-modules). The A-modules AV, VA are finitely generated 

if A is finite-dimensional over k, but are usually not so if A 

is not finite-dimensional over k. The embeddings of I§2 are not 

available in this latter case. Also the category 'R( QI ) I of 

representations of.2l considered in [C-BI] is the category of finite 

dimensional representations of ~ thus if A is finite 

dimensional R( 2X ) is just mod %. and if A is not finite 

dimensional then R(~) is the subcategory f.d. (mod~) defined by 

those X in modQL for which dim X (i.e. di~X) is finite. 

Hence we structur~ this section as follows - we start by studying 

f.d. (mod!1l) for A an arbitrary k-algebra and then consider the 

case that A is finite dimensional, AV and VA are projective, and 

dim V is finite~ noting that in this case f .d. (mod2() is mod!U 

Definition 1.1 A morphism f in ~(X, Y) is called regular if 

there exist isomorphisms h in 2[(X', X) and 1 in z. (Y, Y') 

such that 1 0 f 0 h in 2l (X', Y') is given by 

f®l £. , 
V ® X' ~ A ® X' - X' ~ Y 

for some g in HomA(X', Y'). 

If g is a monomorphism (epimorphism) f will be called a 
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regular mono (epi). 

Notation 1.2 If t: X ~ Y is a morphism in mod A the morphism 

t in ~(X, Y) is defined by 

V @ X' f@l) A @ X - X ~ Y. 

This is the same notation as was i~troduced in II 2.1. 

Proposition 1. 3 Regular maps in f.d. (mod!ll ) have kernels and 

cokernels in f. d. (mod ~ ). The kernel is a regular mono and the 

cokernel is a regular epi. 

It is clearly sufficient to prove this for maps of the form 

f in 2( (X, Y) where f is in HomA(X, Y). Let K - ker f, 

C - coker f and 

o ~ K ~ X ~ Y E c ~ 0 

the canonical exact sequence. Then i is a regular mono, p a 
"-

regular epi and we claim that i is a kernel of f and p a 

cokernel of f. 
"- /\. 

To see that i is a kernel of f note that f 0 i - fi o. 

Now suppose g is in 1( (W, X) and f It g - O. Then it is easy to 

check that fog is V @ W ~ X ~ Y. Thus fg - O. Hence 3 

factors through K ker f, i.e. there is a map h : V @ W ~ k such 

that ih - g. Note that h E ~(W, /() and that it is easy to check 

that i 0 h = g. Thus g factors through i. 

The only thing that remains to be checked is that the 

factorisation of g through i is unique. Suppose g - i 0 h' for 

some h' E :u: (W, K ) . Then as i 0 h' - ih' we have that 

g - ih - ih'. Since i is a kernel of f it follows that h - h', 

thus i is a kernel of f in f.d. (mod~ ) . 
" " " " 

1\ 

We now check that p is a cokerne1 of f. p 0 f pf - 0, so 

now suppose q is in ~ (Y, Z' ) and q 0 f - O. Then it is easy 
"- l@f q to check that q 0 f is V @ X ----? V @ Y ~ Z' . Notice that 
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V ® X ~ V ® Y ~ V ® Z ~ 0 is exact so 1 ® P is the 

cokernel of 1 ® f. Since q(l ® f) - 0 there is r V ® Z ~ Z' 

such that r(l ® p) - q. Notice that r(l ® p) - r 0 p so q 

factors through p. 

It now remains to check that ~his factorisation is unique. 

Suppose r' : V ® Z ~ Z' also satisfies r'o p - q. Then as 

r' 0 p - r'(l ® p) we have r'(l ® p) - r(l ® p), hence r' - rand 

the proof is complete. 

The class of bocses used in [C-Bl] all have what are called 

there 'grouplikes' [C-Bl: §3]. Thus we make the following 

definition. 

Definition 1.4 An element w in V, where 1[- (A, V) is a bocs, 

is called a group1ike element if 

~(w) - 1, ~(w) - w ® w. 

Note that this guarantees that ~ is surjective. 

* There is a functor w: f.d. (modQt) ~ mod k associated with a 

grouplike element w defined as follows:, 

* w (X) = X regarded as a k-vector space, and if f is in 2t (X, Y) 

* w (f) (x):= few ® x). Since k acts centrally on V (by 

assumption) * w (f) is k-linear and ~t is easy to check * w is a 

functor. 

~ 
Definition 1.5 [C-B1: 3.2] w is called a relector 

Ie 
if 

* whenever the map w (f) is an isomorphism in mod k f is 

an isomorphism in f. d. (mod tt ) . The bocses used in [e-Bl] 

always have this property. 

We now identify an analogue of the notion of 'short exact 

sequence' for f. d. (mod ~ ) . 

Defini tion 1. 6 Let f be a morphism in f. d. (mod21). If 

* w (f) is a monomorphism (epimorphism) we call f a 
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proper mono (epi). A sequence 

in f. d. (mod ~ ) is called a proper sequence if 

* * o ~ w*X ~ w*Y ~ w*Z ~ 0 

is an exact sequence in mod k, and g • f o in ~ (X, Z). 

Proposition 1.7 Suppose there exists a reflector w for the boes 

It - (A, V) and X ~ Y ~ Z is a proper sequence with either f or 

g regular. Then both f and g are regular, f is a kernel of g 

and g is a cokernel of f. 

We suppose that f is regular, the proof for the case that 

g is regular being similar. f has a cokernel Y ~ C. which is 

regular by 1.3. Since g 0 f - 0 g factors through c. Thus there 

is some g' in QX.(C, Z) such that g' 0 c = g. Thus 

* w (g) * * w (g')w (c). * w (g) is surjective so * w (g') is 

* surjective. But dim C - dim Y - dim X - dim Z so w (g') is an 

isomorphism. Since w is a reflector g' is an isomorphism. 

Hence g is also a cokernel of f and'is regular. Now apply the 

dual argument to show that f is a kernel of g. 

Remark 1.8 If all proper epis in f. d. (mod 1t ) are regular epis 

then w is a reflector. If all proper monos in f.d. (mod ~ ) are 

regular monos then w is a reflector. 

Let f be in il (X, Y) and * w f an isomorphism. Then f 

is a proper epi and so by hypothesis is a regular epi (if we suppose 

all proper epis are regular epis). Thus there are isomorphisms h 

in .tl (X' ,X) and I. in 1X(Y, Y') such that I. 0 f 0 h - t for 

some t in HomA(X', Y'). Thus t- * ,.. * * * w (t) - w (I.)w (f)w (h) is an 

* * * 
,.. 

isomorphism, since w (1), w (f), w (h) are all isomorphisms. Thus t 

is an isomorphism (its inverse is just '" t-l ). Thus f - 1-1 0 ~ 0 h-l 

is also an isomorphism. The remaining part of the remark is 
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r 

established similarly. 

We now restrict attention to bocses ~ - (A, V) in which the 

k-algebra A is finite dimensional. Our assumptions for the rest of 

this section are laid out below: 

Assumptions 1.9 A is finite-dimeftsional over k' , V is 

finite-dimensional over k' , are projective A-modules; there 

is a grouplike element w in V. 

Thus f. d. (mod!1J. ) - mod 2l and there are embeddings of this 

catego"ry Fr : mod it "" 1 ~ mod R and Fe : mod21 "" ~ ~ mod L. It 

will be useful to have specific descriptions of these embeddings. 

Recall that [BB: 2.5] Fe is given by sending objects X in 

mod~ to V ® X in ~. If "f is in .2t (X, Y) FC(f) is the 

composite 

V ® X ~®l) V ® V ® X ~ V ® Y. 
Fe HomL(V,-) 

is defined as mod Qt ----+ ~ ) 1. Thus 

Fr(X) - HomL(V,V ® X) which may be identified as HomA(V, X) by the 

series of natural isomorphisms 

HomL(V, V ® X) "" Ho~(V, HomA(L, X» "" HomA(V, X). 

from HomA(V, X) to HomA(V, Y) Fr(f) is given by 

f* 
HomA(V, X) ----+ HomA(V, HomA(V, Y» 

* 

Regarded as a map 

~HomA(V, Y) where f(x) (v) - f(v ® x) , as may be 

checked. 

Notice that if f - t for some t in HomA(X, Y) then 

Fe(f) - 1 ® t : V ® X ~ V ® Y and 

FI(f) - t*: HomA(V, X) ~ HomA(V, Y). 

With these preliminary remarks in mind we now make the following 

definitions: 
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Definition 1.10 Let f be in 21 (X, Y). We say f is 

I-injective (surjective) if the map of left R-modu1es is 

injective (surjective). Likewise we say is injective 

(surjective) if the map 

(surjective) . 

of left L-modules is injective 

There are now five notions of monomorphism' (dually 

'epimorphism') for mod~ , namely 'regular mono', '1 - injective', 

'~-injective', 'proper mono' and the usual notion of monomorphism in 

the sense of abstract category theory ('categorical 

monomorphism'). These concepts may be related as follows: 

Proposition 1.11 If f in '2! (X, Y) is a regular mono then it is 

~ - injective; if f is ~ - injective then it is I - injective; f 

is I - injective if and only if f is a categorical monomorphism. 

Suppose f is a regular mono. Then there is a 

monomorphism g in HomA (X' , y' ) and a commutative diagram in mod.2l 

X' g ) y' 

11 . 11 

X 
f ) y 

Applying F C to this and noting that F C(g) is 1 8 g and 

that this is a monomorphism 'the fact that f is ~-injective follows. 

If f is ~-injective then FC(f) is injective so 

FI(f) - HomL(V, FC(f» is injective, thus f is I-injective. 

If f is I-injective then it is clearly a categorical 

monomorph .. sm. Conversely if f is a categorical monomorphism 

consider the following commutative exact diagram of left R-modules in 

which K - ker FI(f) and HomA(V, K) ~ K is given by 

HomA(V, K) = R 8 K ~ K, where the latter map is the natural one. 

81 



HomA(V, K) - HomA(V, K) 

1 11 
o 

FI (f) 
--~) K --~) HomA (V, X) ) Hom

A 
(V, Y) 

1 
o 

Thus K - 0 and f is I-injective. 

Proposition 1.11' If f in :8. (X, Y) is a regular epi then it is 

I-surjective, if f is I-surjective it is ~-surjective, and it is 

~-surjective if and only if it is a categorical epimorphism. 

Dual to 1.11 - note that if f is I-surjective 

HomL(V, FC(f» is surjective so V ®R HomL(V, FC(f» is surjective. 

Now use fact that V ®R HomL(V, -)I~ is naturally isomorphic to 

the identity functor on ~ (1:2.1). Thus FC(f) is surjective, so 

f is ~-surjective. 

Propostion 1.12 If f is ~-injective then f is a proper mono. 

Proof Let f in ~(X, Y) be ~-injective, so FC(f) is 

injective. Define, for any AZ a k-1in~ar map i Z Z ~ V ® Z by 

iZ(z) = w ®Z. Then i Z followed by V ® Z~A® Z - Z is the 

identity on Z, so i Z 
is injective. 

It is not hard to check that 

and so, as iX' i y ' * are all injective so is w (f). 

Thus f is a proper mono. 

Proposition 1.12' If f is I-surjective then f is a proper epi. 

Let f in 2l (X, Y) be I-surjective, so FI(f) is 

surjective. Define, for any AZ a k-1inear map PZ: HomA(V, Z) ~ Z 

by h ~ h(w). Then the composite of 

with Pz is the identity on Z, so 

Pz is surjective. 
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It is not hard to check that 

* w (f)pX - pyFr(f) , 

and Fr (f) all surjective * so, as PX' PY' and are so is w (f). 

Thus f is a proper epi. 
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§2 Triangular bocses 

This section develops further the theory of 'triangular' bocses 

initiated in [BB: §6]. For the notations, conventions, and 

terminology used here we refer the reader to pp. 24-28 of the appended 

copy of [BB] noting the following slight differencf~ in notation: 

in [BB] (l is used instead of 21. , 
the category denoted (f- k -mod in [BB] 

is the category we denote in this chapter by f.d. (mod ~ ). 

In [BB: §6] (-, - ) is used for Ho~ (-, - ), this should not be 

confused with the use of (-,-) elsewhere in this 

thesis - or indeed with ~ - (A, V), our fixed bocs. 

As in (BB: §6] we keep fixed a basefield k and a commutative 

k-algebra S. Each algebra considered in this section is an 

S-algebra on which k acts centrally. We do not assume that these 

k-algebras have finite k-dimension. As usual we only consider 

bimodules on which k acts centrally. Each bocs 7L - (A, V) will 

have grouplike element wand we assume~ that this is centralised by 

S, that is, for any s in s sw - ws. 

It will be convenient to make the following definitions: 

Definition 2.1 .2I is called a trian&ular bocs if there is a 

fini te sequence 21
0 , 2I 1 ' .. : ., 2I n - 21 of bocses such that 2l 0 

is a principal bocs, and for 0 sis n - 1 

kernel or algebra extension of 2(i' 

21. 1 is a triangular 1+ 

Definition 2.2 If, in 2.1, every triangular algebra extension 

2(i+l of .2!i is a triangular tensor algebra extension, then 

2[ is called a strictly triangular bocs. 

In terms of these definitions the main results of [BB: §6] are: 

Proposition 2.3 (BB: 6.3] If.u is a triangular bocs then the 

grouplike w is a reflector. 
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Theorem 2.4 [BB: 6.4] If 1l is a strictly triangular bocs 

then idempotents split in f.d. (mod 21 ). 

Notice that, as an easy inductive proof demonstrates, ifi[ is a 

triangular bocs and S is semisimple then the kernel is a 

projectivising bimodule. 

It is possible to deduce further information about the 

relationship between proper monos (epis) and the other concepts in §l 

in the case that 2( is a (strictly) triangular bocs. The first 

result is: 

Proposition 2.5 If 2! is a triangular bocs then proper epis 

(monos) are categorical epimorphisms (monomorphisms). 

The proof for proper monos is dual to that for proper epis 

and will be omitted. Since the statement of the proposition is 

clearly true for principal bocses it is sufficient, by induction, to 

show that if ~ - (A, V) is a triangular kernel or algebra extension 

of 2l' (A', V') then if proper epis in f.d. (mod 1.l') are 

categorical epimorphisms then the same holds for f. d. (mod H ). 

Suppose .u is a triangular kernel extension of 2(:. Thus 

A - A' and there is an S-S-subbimodule U of V such that 

V' ~ (A ®S U ®S A) ~ V is an isomorphism of A-A-bimodules and 

d(U) ~ V' ® V' . Let 8 'in 1t(y, Z) be a proper epi and let -y in 

,u(Z, X) satisfy -y 0 8 - O. Thus -y' 0 8' - 0 and so 

-y' - O. We must show that -y - O. It now suffices to prove 

l(U) - 0; let u be in U, we have 

-y(w) 8(u) + ~(u) 8 (w) + c(; ® "8) (d(u» - 0, 

since -y 0 8 - O. Since -y(w) - 0 and d(u) is in V' ® V' we 

deduce -y(u) 8 (w) - O. But 8 (w) is surjective so l(U) - 0 as 

required. 

Now suppose it is a triangular algebra extension of .n' . 
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Thus there is an S - S - subbimodule E of A such that A' U E 

generates A and d(E) ~ V'; the natural map A ®' V' ®' A ~ V is 

an isomorphism. Given 9, 1 as above with 1 0 9 - 0, then 

l' 0 9' - 0 so l' - O. Thus 10 - 10 - 0, and for v in V' 

l' (v) - 0, so =1(1 ®' V' ®' 1) - O. . Since 1 is an A-A-bimodule 

homomorphism =1(A ®' V ®' A) - 0, 1. e. =1 - O. Thus 1 - 0 as 

required: 

The proof that idempotents split in f. d. (mod.a ) (for suitable 

2{) (2 .4 above, 1. e . [ BB : 6 .4) ) is essentially a proof that all 

idempotents are regular this is also the method used for proving 

this result in [BK : §5). Likewise 2.3 above is a proof that maps f 

* with w (f) an isomorphism are regular. This is a similar idea to 

that used in the proof of the corresponding result in [BK: §5) and in 

[Ro). The next result is also along similar lines - the proof (which 

we include) comes from unpublished work of M.C.R. Butler. 

Theorem 2.6 Let ~ be a strictly triangular bocs and suppose S is 

a semisimple algebra. Then every prope"r epi (mono) in f. d. (mod ~ ) 

is regular. 

As in 2.5 we prove the result for proper epis - the case of 

proper monos being dual. 

We shall in fact prove the following: 

Let Z( be a strictly tiangular bocs and 9 in 2[(X, Y) a proper epi. 

Then there exists ~ in ~(X, Z) an isomorphism such that 

9 0 ~-l in ~(Z, Y) has the form (p, 0) for some p in 

HomA(Z, Y). 

Since this clearly holds for principal bocses it is sufficient, 

by induction, to show that if it holds for a strictly triangular bocs 

1[' and 2l is a triangular kernel or tensor algebra extension of ~ , 

then the property also holds for ~ 
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Consider first the case that is a triangular kernel 

extension of 2l'. Thus A' - A, and there is an S-S-subbimodule 

U of V such that 

(a) the natural map V' @ (A ®S U ®S A) -+ V induced by the 

inclusions V' ~ V and U ~ V is an.~somorphism; 

(b) d(U) ~ V' ® V' , 

Let 6 in ~(X, Y) be as above. Then 9 - (90 , 9) and its 

restriction 6' - (90' 9') in ll' (X, Y) is also a proper epi. 

Thus, by hypothesis, there is in 2l' (X, Z) an 

isomorphism such that 6' 0 (~,)-l is (p, 0) for some p in 

HomA(Z, Y) - note that A' - A. 

We shall now define ~ - (~O'~) in H. (X, Z) such that ~ is 

an isomorphism (since ~ is (strictly) triangular it is enough (by 

2.3) that ~O be an isomorphism). 

Set ~ -~' o 0 and choose s in HornS (Y, Z) such that 

(this can be done since S is semisimple). Now define ~ on 

V - V' @ A ®S U ®S A by ~, on V' and on u in U by 

~(u) - s6 (u) . U -+ (X, Y) has a canonical extension to an 

A-A-bimodule morphism A ®S U ®S A -+ (X, Y). This defines 

completely; and (~O'~) gives a morphism in ~X, Z) since 

a~O - ~Oa - a~b- ~ba - ~'(d(a»- ~(d(a» as d(a) is in V'. ~ is 

an isomorphism since ~O is an isomorphism, and it is easily checked 

that 6 - (p, 0) 0 ~ i.e. 
-1 

6 0 ~ - (p, 0) as required. 

Now suppose ~ is a triangular tensor algebra extension of 

Zl' Thus there is an S-S-subbimodule E of A such that the 

morphism 

®A' A' ®S E ®s A' -+ A 

of A'-algebra induced by E ~ A is an isomorphism. The natural map 

A ®' V' ®' A -+ V is an isomorphism and d(E) ~ V'. 
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Given 8 in (X, Y) a proper epi its restriction 8' in 

:Jj'(X, Y) 

A' -module 

8 0 (¢J,)-1 

First 

action. 

is a proper epi. Thus, by induction, there is a 

Z and an isomorphism ¢J' in .2l' (X, Z) such that 

(p, 0) for some p in Hom
A

, (Z, Y) . 

we extend the action of .A' on Z to a left 

To do this let e in E act by the endomorphism 

z t----+ ¢JO e«¢Jo)-l(Z» + ¢J'(d(e»(¢Jo)-l(Z) 

left 

A-module 

(note that d(E) ~ V'). This gives an S-S-bimodule map E ~ (Z, Z), 

which then gives a canonical extension of the A'-action on Z to an 

A - ®A,A' ®S E ®SA' - action. 

¢J' - (¢JO' ~') in X('(X, Z) is now extended to ¢J - (¢JO' ~) in 

U (X, Z) as follows: 

Let ¢JO - ¢JO' and ~: V ~ (X, Z) the canonical extension of 

~, V ~ (X, Z). It must now be verified that ¢J is indeed a 

morphism, i.e. for all a in A 

(2.6.1). 

If (2.6.1) holds for a, b in.A it is easily seen that it 

holds for ab, a + b. Since A' U E generates the ring A, and 

(2.6.1) holds for all a in A' it is sufficient to check that, for 

e in E, 

1. e. that e¢JO This follows by the choice made for 

the action of e on Z. 

Hence ¢J is morphism, and it is an isomorphism since ¢JO is an 

isomorphism. 

Notice that the map p in HomA,(Z, Y) is in fact in 

HomA(Z, Y) as given z in Z and e in E we have 
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p(ez) -1 - -1 
- p(~O(e~O (z») + p~(d(e»(~O (z» 

-1 -1 
- 90(e~0 (z» + 9(d(e»~0 (z) 

-1 
- e90~0 (z) 

- ep(z). 

Now we claim 9 -1 
(p, P) , 0 ~ i.e. (p 0) 0 ~ - 9. This 

follows provided 8(v) - p~(v) for all v in V. Sihce 

V '" A ®' V' ®A it is enough to check this on v - av'b (a, b in A, 

v' in V') which follows since 

8(av'b) - a8(v')b - a8' (v')b - ap~' (v')b 

- pa~'(v')b - pa~(v')b - p~(av'b). 

The results 2.5, 2.6 may now be combined with results in §1 to 

deduce further relations between the various concepts of epimorphism 

(monomorphism) introduced there, for suitably triangular bocses. 

A final example shows that it is not always the case that these 

concepts are all equivalent: 

Example 2.10 Let .u be the bocs given symbolically by the 

differential biquiver [C-B2: §3] 
• 

/~ 
• - - - - - - - - -t· 

~ 

deb) - a~, d(a) - 0, d(~) - O. 

.2t is a strictly, triangular bocs. Consider the morphism in 

f. d. (mod 21. ) written symbolically as 

- ----
=-:=--=----------~)" 0 

in which every morphism k ~ k is the identity. 

This morphism is neither a proper mono nor a proper epi, but it 

is both a categorical monomorphism and a categorical epimorphism. 
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Covering note on 

ALMOST SPLIT SEQUENCES FOR BOCSES 

by 

W.L. Burt and M.C.R. Butler. 
I, 

The appended copy of this article is in its final form as 

accepted for publication. 

The main results of §§1-4 were already present in a handwritten 

manuscript of work by M.C.R. Butler dated winter 1988 and hereinafter 

referred to as 'Butler's manuscript'. 

The entire theory in this article was in place by the end of 

September 1989. 

The precise attribution of the work is as follows: 

All the results in §§1-4 except 1.3, 2.4 are proved in Butler's 

manuscript; 1.3, 2.4 are due to the present writer who has also given 

the proofs of the results in §2 as presented in this paper - excepting 

the remarks on p.ll and the proof of Proposition 2.7. 

§§3, 4 essentially reproduce the th~ory in Butler's manuscript. 

§5 is due to the present writer although the identities 

i 
ExtL(V, V) - 0, 

i 
Ext (V, V) - 0 

ROP 
for i > 0 were proved in Butler's 

manuscript. 

§6 is Butler's simplified version of [BK: §5] - which has been 

further abridged by the present writer who also distinguished 

between k and S, a distinction not present in the initial version, but 

essential for applications. 

Excepting §6 the theory of this paper has been developed 

independently of work along these lines by Bautista and Kleiner [BK] 

and de 1a Pena and Simson [PS]. 
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Errata p.9, 2.4, line 1: 'R-mod' should be 'R-Mod' 

p.ll, 2.6, line 4: 'R-mod' and 'L-mod' should be interchanged; 

p.22, Remarks (iii) line 2: 'projective' should be 'injective' ; 

t~ 4- .. ,L ) ~L.J.cl ( d' ) 

P .,0 I IJe (~ 

r 32) L~' 
(~~~ -I ) ~d fie- ~~~-' ) 

- I 

~/5 J~ V·' J/.u.,.Je/ k- v. 
~1 r- J __ ) 
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Almost Split Sequences for Bocses 

W.L. BURT AND M.C.R. BUTLER 

This paper contains a different treatment, with some new 

results, of tne Auslander-Reiten theory for bocses given 

by Bautista and Kleiner in [BKJ. The basic idea in 

both papers is to realise the representations 0, a bocs 

within a larger category, then use criteria li~ those 

given by Auslander and Sma10 in [AS] for a subcategory 

to possess almost split sequences. In [BK] bocs 

representations are realised as induced R-modules for a 

suitable algebra inclusion A ~ R, and also as induced 

comodules over the underlying A-coalgebra V of the 

bocs (a point of view previously developed in [K]). We 

will also use the induced R-module realisation, but 

induced comodules will be replaced by coinduced 

L-modules for another algebra inclusion A ~ L 

associated with the bocs. We call L the left algebra 

and R the right algebra of the bocs. ,One new type of 

result we obtain concerns the relationship of Land 

R; Theorem 5.1 asserts that, for the most interesting 

bocses covered by our theory, V is a left Land 

right R cotilting bimodule in the sense of 
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Miyashita [M]. The other main new result is Theorem 

3.8, where - for a large and important class of bocses -

we show that the subcategories of._ R-mod and of L-mod 

which realise bocs representations are closed under 

extensions. 

Throughout the paper the term bocs will mean an 

A-coalgebra V over an algebra A (subject to axioms 

stated at the end of this introduction) so differing at 

a formal level from standard accounts such as those of 

[R, D, C-B] in which A is a category. The main 

results apply to all 'additive Roiter bocses' [C-B], in 

which A is a finite-dimensional algebra over a field, 

hence also to the 'Drozd bocs' of a finite dimensional 

algebra (see [D, C-B] for details), and to bocses of 

finite representation type arising from many natural 

matrix problems. We do not, however, discuss bocses 

over orders, as is done in [D, BK]. 

§l contains the formal definition of the left and 
/iJ right algebras, Land R, of a bocs. v- - (A, V), and 

exhibits a natural bimodule structure on V 

compatible with AVA. Through §§2-S, however, our 

main results require that A V and VA are finitely 

generated projective modules; this ensures that AV, RA 

and VA'AL are dual pairs of modules with respect to 

A. It then follows from Theorem 2.S that the 

representation category a-mod of a is equivalent to 

each of the subcategories 1 of induced modules in 

R-mod and ~ of coinduced modules in L-mod; and with 

some additional finiteness assumptions, Theorem 2.6 

states that 1 and ~ are functorially finite 

subcategories of R-mod and L-mod, respectively. (As is 
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well-known, functorial finiteness of, say, I in R-mod 

allows one to push down almost split morphisms from 

R-mod to I, and this property is also one of the 

criteria in [AS]). 

In §3 we study conditions under which I and Q are 

closed under extensions in R-mod and L-mod, 

respectively. The crucial condition for this, in 

Theorem 3.B, is that the kernel V of the counit E :V ~ A 

be 'projectivising', in the sense that the functors 

V®A - and - ~AV map all A-modules to projective 

A-modules. This is the case for the ' free finitely 

generated' kernels of bocses which occur in [R, D, 

C-BJ. As explained at the beginning of §3, the result 

of Theorem 3.B is in fact far stronger than closure of 

I and Q under extensions; the latter, though, is the 

specific fact needed to use [AS]. 

In the brief §4 we extract from §§2,3 an 

existence theorem for almost split sequences, Theorem 

4.1: if A and V are finite-dimensipnal over a central 

subfield k, and V is projectivising, then add(!) and 

add(~) admit almost split sequences; if, additionally, 

idempotents split in a-mod, then !, ~ and therefore 

((-mod also admit almost split sequences. 

In §s, we again e~tract from §§2, 3 most of the 

information needed to formulate and prove the cotilting 

result Theorem 5.1, though finiteness of coresolutions 

requires an assumption that AA and AA be of finite 

injective dimension. 

§6 deals with the rather different and technically 

compl i.cated problem of characterising bocses for which 

idempotents split in their categories of 
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finite-dimensional representations, a key criterion in 

both [BKJ and our Theorem 4.1. As Roiter observed in 

[RJ, idempotent splitting seems to depend on suitable 

triangularity and freeness properties of the bocs, and 

Bautista and Kleiner have described in §5 of [BKJ a 

class of 'left triangular tensor' coalgebras with such 

properties. In our §6, we adopt left-right symmetric 

conditions and use a strategy of step-wise construction, 

to give a re-organised account of this complicated 

topic. 

Thanks are offered to the S. E.R. C. (U.K.) for 

funding a research studentship for the first-named 

author, and also a visiting fellowship enabling Raymundo 

Bautista to visit the University of Liverpool for four 

weeks in 1989; to Raymundo Bautista, to U.N.A.M. 

(Mexico), and to the British Council for enabling the 

second-named author to spend six weeks at U.N.A.M. 

Instituto de Matematicas in 1988; to the authors of [BKJ 

for sending us a preprint of their paper, which has 

strongly influenced the work presented here; and finally 

special thanks to Wendy Orr for typing our manuscript. 

Conventions. Bocses and their representations 

Throughout the paper A denotes a fixed ring, 

associative, with identity, subject to further 

qualification for specific results. The symbol ® 

always means ®A' For rings B, C, the notations BX, 

YC'BZC indicate that X, Y, Z are respectively, a left 

B-module, a right C-module, and a left B, right 
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C-bimodu1e (more briefly, a B-C-bimodu1e). 

Given BX, BX', HomB(X, X') denotes the group of 

left B-modu1e morphisms X ~ X'; likewise the group of 

right C-modu1e morphisms Y
C 
~ Yc is denoted 

Hom (Y, Y'). 
Cop 

Groups of B-C-bimodu1e morphisms are 

denoted Hom (-,-). 
BxCoP 

Given AZ, WA we often abuse notation by writing 

A ® Z - Z, W ® A - W. 

By a bocs (( we mean a quadruple a - (A, V ,jJ, e) , 

often denoted just CE- (A, V), in which V is an 

A-A-bimodu1e; the comu1tip1ication jJ :V ~ V ® V is an 

A-A-morphism and is coassociative, that is, (jJ ® l)jJ = 

(1 ® jJ)jJ; the counit e : V ~ A is an A-A-morphism, 

(1 ® e)jJ 1 - (e ® l)jJ; and 
V 

throughout to be surjective. 

is assumed 

In case A is an algebra over a central subring 

k, we also assume tacitly that k. acts centrally on 

V. 

The categories of (finitely generated) left 

[right] modules over any ring B will be denoted B-Mod 

(B-mod) [Mod-B (mod-B)]. 

Now let ct - (A, V) be a bocs. We define 

(r -mod to be the category with objects the finitely 

generated left A-modules X, Y, ... , and morphism groups 

(f(X, Y) given by 

ct(X, Y) = HomA(V ® X, Y), 

(we use a variant of this definition in §6). The 

compos i tion gf of f E Ci(X, Y) and g E (j(y, Z) is, as 
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usual, given by the composite of the maps 

V ® X /J®l > V ® V ® X l®f > V ® Y -g_> z· , 
composition is associative, the identity of X is 

e ® 1: V ® X ~ X, and in case A is a k-algebra 

then (f -mod is a k-category. 

Finally let B be a category; recall that 

idempotents split in B if every idempotent endomorphism 
2 e - e of every object X of B admits a factorisation 

X ~>y ~>X such that fg - ly. In particular if B 

is a full" subcategory of a module category then 

idempotents split in add(B), by which we mean the full 

subcategory containing all modules isomorphic to direct 

summands of finite direct sums of objects in B. 

§l The left and risht alsebras of a boes 

Let fr- (A, V, /J, E) be a bocs. We define its 

left algebra L /to be the A-A-bimodule Hom (V, A) 
AOP 

with multiplication given by the following rule: 

for e, f E L, e.f is the composite 

V _/J_> V ® V f®l > A ® V _ V _e_> A. 

We omit the purely formal verification of the following 

facts: this multiplication is associative, with the 

counit e as identity, and ae - ea for all a E A; 

(ae)(be) - (ab)e for all a, b E A; and 

V a E A, e, f e/L, (ea)f - e(af), (ae)f - af, and 

e(ae) - ea. / To summarise, we obtain: 

1.1 Proposition The bimodule 

above multiplication L ® L ~ L 

ALA' equipped with the 

and the map a 1--> ae 

of A into L, is an A-algebra with identity e, and the 
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bimodule structure on L induced along the map a~> af 

coincides with the natural A-A-bimodule structure on L. 

Similarly, the right algebra R of a is the 

A-A-bimodule HomA (V, A), with multiplication given as 

follows: 

for s, t E R, S.t is the composite 

V _1"_> V ® V l®s > V ® A _ V _t_> A. 

1.1' Proposition The bimodule ARA' equipped with the 

above multiplication R ® R ~ R and the map a ~> af 

of A into R, is an A-algebra with identity f, and 

the bimodule structure on R induced along the map 

a ~> af coincides with the natural A-A-bimodule 

structure on R. 

Remark Note that, for a E A, the map af : V ~ A 

has different values according to whether it is viewed 

as an element of R or of L; for v E V, (af) (v) -

af(v) for af E L, whereas (af)(v) - f(v)a for 

af E R. 

To define actions of Land R on V, we first 

note that there are evaluation maps 

L ® V -> A e ® v 1--> e(v), 

V ® R ->, A v ® s 1--> s(v). 

Hence there is a left action of L on V, given by 

1 EL®l 
L ® V ®JJ > L ® V ® V > A ® V - V, 

and a right action of R on V, given by 

1 l®ER 
V ® R ~> V ® V ® R --> V ®A - V. 

Again we omit the entirely routine verification of the 

following statements: 



W.L. BURT & M.C.R. BUTLER 8 

1 . 2 Propos! tion The actions of Land R on V just 

defined induce an L-R-bimodu1e structure L VR on V, 

compatible with the original bimodu1e structure AVA 

after restriction along the maps a ~> ae of A into 

L and A into R. 

1.3 Corollary 

morphism. 

V ~ V ® V is an L-R-bimodu1e 

§2 Functoria11y finite imbeddings of Lt-mod 

Throughout 

2.1 Av and" V 
- A 

modules. 

§2, Ct - (A, V) is a bocs such that 

are finitely generated projective 

Therefore RA and AL are finitely generated 

projectives, and the duality maps 

AVR -> AHom (R, A)R and LVA -> LHomA(L, A)A 
AOP 

are bimodu1e isomorphisms. Also, given any left 

A-module X, there are natural maps 

f3 : R ® X --> HomA (V, X) 

Q :V ® X --> HomA (L, X) 

s ® XI-I --.> (v~>s(v)x), 

v ® XI-I ---.> (e~>e(v)x), 

and repeated use will be made of the following fact: 

2.2 Proposition For any AX, f3 is an isomorphism of 

R-modu1es and Q an isomorphism of L - modules. 

2: 3 Notation Let 1. denote the full subcategory 

of R-mod with objects the induced modules - that is, 

modules RM isomorphic to R ® X for some finitely 

generated AX. Let ~ denote the full subcategory of 

L-mod with objects the coinduced modules that is, 

modules LN isomorphic to HomA (L, X) for some 

finitely generated AX. 

Remark 2.1 will need to be supplemented for the proof 

in Theorem 2.6 that I is functoria11y finite in R-mod, 
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and ~ is so in L-mod. We need to ensure that 

restriction from R to A maps R-mod into A-mod, and 

that HomL(V,-) maps L-mod into R-mod. 

2.4 Theorem 

and HomL(V,-) 

The functors V ®R -: R-mod ~ L-Mod 

L-Mod ~ R-Mod restrict to mutually 

inverse equivalences between 1 and ~. 

Proof These functors map 1 and ~ into one 

another, since V®R(R ® X) e! V ® X e! HomA(L, X) and 

HomL(V, HomA(L, X»e! HomA (V, X) e! R ®X. To prove that 

they induce equivalences, we consider the natural 

transformations 

" : lR-Mod --> Ho~ (V, LV ®R -), 

given on RM by "M(m)(v) - v @Rm (for m E M, v E V), 

and 

a : V ®R HomL (V, -) --> 1 L-Mod' 

given on LN by aN(v ®R h) - h(v) (for v E V, 

h E HomL(V, N». 

For M = R ® X E 1, "M is the composite of the 

chain of isomorphisms 

X) -> Ho~(V, HomA(L, X» 

---.> Ho~ (V, V ®R (R ® X», 

and for N = HomA(L, X) E ~,aN is the composite of a 

second chain of isomorphisms, 

l®RP a 
-->V®R(R®X) ->V®X-> HomA(L, X). 
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It follows that (V ®R -) II and Ho~ (V, -) l,g 
are mutually inverse equivalences. 

10 

2.5 The Imbedding Theorem There are equivalences of 

cate ",ories F C : a'..mod ~,g and Fr : CP-mod ~ I. 

Proof We construct F C explicitly, then use the 

pre~ious theorem and define FI - HomL(V, -)Ico FC' On 

an object X = AX in a-mod, we let FC(X) - V ® X, 

which by Proposition 2.2 is in ,g. On a morphism 

f E C(X, Y) - HomA(V ® X, Y), we let FC(f) be the 

composite of the chain of maps 

V ® X ~®1> V ® V ® X l®f> V ® Y; this is an 

L-morphism by 1.3. It is routine to verify that 

Fe : ((-mod ~,g is a functor and is dense, so we need 

only show that it is full and faithful. Define 

G :HomL(V ® X, V ® Y) ~ {lex, Y) ; f'~> (e ® 1) 0 fl. 

Then there is a commutative diagram 

corestri c t 

HomL(HomA(L, X), HomA(L, Y» -----> HomA(HomA(L, X), Y) 
/). 

HomL(HomA(L, X), V® Y) 

s 1 a* 

* a 

HomL(V ® x, V ® Y) G > HomA(V ® x, Y) = (f(X, Y) 

in which all maps but G are isomorphisms, so G is 

also so. However GFC(f) - f, from which it follows 

that Fe is full and faithful. 
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In view of 2.5, the next result exhibits (f-mod as 

a full functorially finite subcategory of each of R-mod 

and L-mod, provided some finiteness conditions on 

ce hold. 

2.6 Functorial Finiteness Theorem Let {] - (A, V) 

be a bocs (satisfying 2.1) 

generated, (b) Ho~(V, -) 

and 1 are functorially 

respectively. 

such that (a)AR is finitely 

maps L-mod to R-mod. Then ,g 

finite in R-mod and L-mod 

Remark (a) and (b) can be replaced by (a) and 

(b' ) A is left noetherian. For 

HomL (V, N) CHomA (V, N) 9! R ® N, which is in A-mod 

provided N E L-mod and (a),(b') hold; hence Ho~(V, N) 

is also in R-mod. 

Proof (i) ,g is covariantly finite in L-mod. Neither 

(a) nor (b) is needed for the well-known proof that for 

each N E L-mod, the covariant functor HomL(N, -)I,g is a 

finitely generated functor on ,g. By 2.2, 

HomA(L, N) 9! V ® N E L-mod. So the map 

N ~ HomA (L, N); n 1--> (e 1--> en), induces a surjective 

functor morphism 

HomL(HomA(L, N), -)I.Q --» Ho~(N, -)I,g 

from a representable functor on .Q, as finite generation 

of HomL(N, -)I,g requires. 

(ii) 1 is contravariantly finite in R-mod. We 

only need (a). Then for any M in R-mod, R® M is 

in R-mod. Let g : R ® M ~ M be the map s ® m ~> sm. 

Then the functor morphism induced by g, 

Ho~(-, R® M) 11 --> Ho~(-, M) II, 

is well-known to be surjective. Again using (a) to see 
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that R ® M E 1, we see that the contravariant functor 

Ho~(-, M)1
1 

is finitely generated. 

(iii) 1 is covariantly finite in R-mod. We need 

neither (a) nor (b). For any R-module M, consider the 

map 

h : M --> HomA (V, V ®RM); 

III 

m 1---> (v 1---> V®Rm) 

by (2.2) 

For MER-mod, finite generation of AV implies that 

R ® V ®RM E R-mod, in fact, that R ® V ®RM E 1. We 

show now that h actually induces a surjection of 

covariant functors 

* Ho~(HomA(V, V ®RM) , -)1
1 

_h ____ > Ho~(M, -)1
1

, 

which is the required result. By 2.2, modules in 1 

are of the form HomA(V, 

f E Ho~(M, HomA(V, X», 

f(v ®R m) = f(m)(v) and 

surjective. 

X), where X E A-mod. Let 

then 

(iv) ~ is contravariantly finite in L-mod. We need 

(a) and (b). For an L-module N, consider the map 

1 N = V ® Ho~ (V, N) ------> N; v ® k 1--> k(v), 

where N ~ HomA(L, HomL(V, N» by 2.2. 

The morphism 1* of covariant functors induced by 1, 

HomL(-, N) I~ --> Ho~(-, N) I~, ' 
is surjective, for taking, by 2.2, a typical object of 

~ to have the form V ® X, X E A-mod, any L-morphism 

g V®X~N lifts over 1* to IV ®g, where 
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g X ~ HomL(V, N) is given by g(x)(v) - g(v ® x). 

So to prove the contravariant finiteness of Q in L-mod 

it is only necessary to check that, for N E L-mod, we 

have N E Q. By (b) Ho~ (V, N) E R-mod, so by (a) 

AHo~(V, N) E A-mod. 

Q as required. 

Hence N - V ® Ho~(V, N) is in 

This completes the proof of theorem 2.6. 

We conclude this section with the observation that 

is 'balanced'. the bimodule LVR 

2 . 7 Propos i tJon The natural ring homomorphisms 

L ~ End (V) 
ROP 

S f-I --> (v t-I ----,> sv) 

ROP ~ EndL(V) 

are isomorphisms. 

e f-I --> (v t-I --> ve) , 

Proof L ~ End (V) 
ROP 

is the composite of the 

isomorphisms 
/"" .' 

L - Hom op(V, 1\) Ei! Hom (V, Hom (R, A» Ei! 

A ROP AOP 

and likewise 

End (V), 
ROP 

ROP ~ EndL(V) is the composite of the isomorphims 

ROP 
- HomA(V, A) Ei! HomL(V, HomA(L, A» Ei! EndL(V). 

Remark ROP ~ EndL(V) is also realised by the map v
R 

in the proof of 2r4~.an analogue of 2.4 for mod-R, mod-L 

would include the corresponding statement about 

L ~ End (V). 
ROP / 

§3 Extensiof;rroperties 
, 

In Th~rem 3.8, we give conditions on a bocs 

Ct - (A, V) which ensure that the subcategories ! of 

R-mod and Q of L-mod are closed under extensions. The 

conditions imply 2.1, so that the functors R ®- and 
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HomA(L, -) are exact on A-mod, and we will in fact 

obtain the much stronger result that the maps induced by 

these functors from Ext~ to Ext~-Ilxl and to Ext~l.Qx.Q 
are surjective for n - 1, and bijective for n ~ 2. 

We need some generalities about induction and 

coinduction, starting with the following well-known 

lemma of Eckmann and Shapiro. 

3 . 1 Propos! tion (a) Let R be an A-algebra such 

that RA is projective. Given AZ, RM, the induction 

isomorphism .. 

r : HomA(Z, M) -> Ho~(R ® Z, M) 

induces isomorphisms 

r(n) Ext~(Z, M) -> Ext~(R ® Z, M) 

for all n ~ O. 

(b) Let L be an A-algebra such that 

projective. 

Given AX, LN, the coinduction isomo~phism 

II : HomA (N, X) -> Ho~ (N, HomA (L, X» 

induces isomorphisms 

ll(n) : Ext~(N, X, -> Ext~(N, HomA(L, X» 

for all n ~ O. 

is 

3.2 Notation Far A-modules AZ, AX, there are natural 

transformations 

'Y : AX --> AR ® X ; x 1--> 1 ® x, 

6 : HomA (L, Z) --> Z ; h 1--> h(l), 

inducing n'tural transformations 
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(n) 
-y 

n n : ExtA (Z, X) --> ExtA (Z, R ® X), 

6(n) : n n 
ExtA(Z, X) --> ExtA(HomA(L, Z), X) 

fol. each n ~ O. 

We r .ve conditions on the bocs (i - (A, V) of 

which L, R are the left, right algebra (respectively) to 

ensure that -y(l), 6(1) are surjective and -y(n) , 6(n) 

bijective for n ~ 2. 

3.3 Definition The kernel V - AVA of a bocs 

Ct - (A, V) is the kernel of the counit E of (t. Since 

E is surjec~lve, the exact sequence of bimodules, 

o -> V -> V ~> A -> 0, 

splits as a sequence of left A-modules, and also as a 

sequence of right A-modules. So, for all AZ, AX, 

there are exact sequences of left A-modules 

* E -3.3 (a) 0 -> X -> HomA(V, X) -> HomA(V, X) -> 0 

3.3 (b) 0 -> V ® Z -> V ® Z E®l> Z -> O. 

* In fact, E and E ® 1 are given by 

* E - /3-y , E ® 1 - 6a 

with /3, a as defined in §2, and -y, 6 as in 3.2. 

3.4 Proposition Let V be the kernel of the bocs 

(( - (A, V), and Rand L the right algebra and left 

algebra, respectively, 9f a' 
(a) Assume AV is finitely generated projective, 

and X a left A-module such that 
(1) 

injective. Then, for all AZ, -y 
(n) 

-y is bijective for all n ~ 2. 

AHomA (V, X) is 

is surjective and 

(b) Assume VA is finitely generated projective 

and Z 

projective. 

a left A-module such that AV ® Z is 

Then, for all AX, 6(1) is surjective and 
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is bijective for all n ~ 2. 

Proof (a) Since AV is finitely generated 

projective, Proposition 2.2 
-1 * isomorphism, so ~ = fi £ . 

the result for the £*(n). 

shows that is an 

Hence it suffices to prove 

The last term of 3.3 (a) 

is injective, so the long exact sequence obtained by 

applying HomA(Z, -) to 3.3 (a) shows that £*(l)is 

surjective and £*(n) bijective for n ~ 2, as required. 

(b) In this case, the hypotheses imply that Q 

is isomot:phism, 0 (£ ® 1) -1 the result an so - Q , 
follows by applying HomA(-, X) to 3.3 (b) , in which 

the first term is, by hypothesis, projective. 

We now want to combine the results of 3.1 and 3.4. 

On taking M .. R ® X in 3.4 (a) and N = HomA(L, Z) 

in 3.4(b), we obtain at degree 0, maps 

r~(O) : Hom
A 

(Z, X) --> Ho~(R ® Z, R ® X) 

(0) 
M : HomA (Z, X) --> Ho~ (HomA (L, Z), HomA (L, X» 

which are easily verified to be givep by 

for h E HomA (Z, X). Of course 3.1 gives conditions 

under which these composites induce maps on Extn -

groups, and 3.4 gives further conditions under which the 

induced maps are surjeC'tive when n" 1, and bijective 

for n ~ 2. We can, however, describe these induced 

maps more explicitly using Yoneda I s interpretation of 

Extn , n ~ I, as a group of equivalence classes of 

In-fold extensions'- by which we mean exact sequences 

of the form 
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E* : 0 -7 Un -7 Un _l -7 ••• -7 Ul -7 Uo -7 U -7 o. 
3.5 Corollary With a, L, R, as in Proposition 

3.4 

(a) assume 
A

V is finitely generated projective 

and AX is a module for which is 

injective. Then RA is projective, the 'induction' 

maps 

n n 
r~ : ExtA(Z, X) ----> ExtR(R ® Z, R ® X) 

are defined for all AZ and all n ~ 1, are surjective 

for n - 1 anti bijective for n ~ 2, and are induced by 

the map E* ~> R ® E* of n-fold extensions E*. 

(b) assume VA is finitely generated projective 

and AZ is a module such that AV® Z is projective. 

Then AL is projective, the 'coinduction' maps 

n n 
6.0 : ExtA(Z, X) ----> ExtL(HomA(L, Z), HomA(L, X» 

are defined for all AX and all n ~ 1, are surjective 

for n = 1 and bijective for n ~ 2, and are induced by 

the map E* ~> HomA(L, E*) of n-fofd extensions E*. 

Proof All but the last assertion in each part 

follows immediately from 3.1 and 3.4. For (a), let 

E* be an n-fold extension of X by Z representing 
n 

some element r E ExtA(Z, X); we must show that R ® E* 

represents (r~) (n. Choose a projective resolution 

(p*, d*) of AZ, then there is a commutative diagram 

d d 
P n P n-l> P 

. .. n+ 1--> n n-l----> ..... ->PO-->Z--> 0 

f 
n 

1 'i/ 'i/ 'i/ 

o ---> X----> Yn - l --> ..... ->YO-->Z--> 0 
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in which the lower row is 

represents r. Since RA 

E* and the cocyc1e 

is projective, R ® -

18 

f 
n 

is 

exact and R ® P* is an R-projective resolution of R ® Z, 

so on applying R ® - to the above diagram, we see that 

the n-fo1d extension R ® E* is a Yoneda representative 
n of the element of ExtR(R ® Z, R ® X) determined by the 

cocyc1e 1R ® f n . Since 

1R ® f - (r-y) (f ), this element is 
n n 

(r-y) (n, as 

required. The proof of (b) is similar, using an 

injective resolution of AX. 

For the application to bocses in Theorem 3.8 

below, we will symmetrise the hypotheses given 

separately in (a) and (b) of the preceding proposition. 

We begin with a definition: 

Definition An A-A-bimodu1e U will be called a 

projectivising bimodu1e if, for all AZ, WA, the 

A-modules U ® Z and W®U are projective. 

3.6 Lemma Let AUA be a bimodu1e. It is 

proj ectivising if and only if, for ~ll AX, Y
A

, HomA(U,X) 

and Hom (U, Y)are injective. 
AOP 

Proof We just sketch the 'only if' part. 

is projectivising AU and 

and U ® ~ are exact. 

UA are projective, so ® U 

For any short exact sequence 
, 

AZ* and module AX, there is an isomorphism 

HomA(Z*, HomA(U, X» ~ HomA(U ® Z*, X). 

Since UA is projective, U ® Z* is exact, and split 

exact since U is projectivising. Hence, for all X 

and Z*, the left hand side is exact, and so for each 

fixed AX, HomA(U, X) is injective. Similarly, 

Hom (U, Y) is injective for each Y
A

. 
AOP 
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3.7 Examples For any algebra A over a semisimple 

artinian subring k, A ®k A is projectivising, as also 

is any A-A-bimodule summand of anl direct sum of copies 

of A ®kA. 

3.8 Extension Closure Theorem 

Let Ct - (A, V) be a bocs such that A V and VA 

are finitely generated, and AVA is a projectivising 

bimodule. Then for all AX and AZ, the maps 

n n Ext
A 

(Z, X) --> Ext
R

( R ® Z, R ® X) 

n • n 
ExtA (Z, X) --> ExtL (HomA (L, Z), HomA (L, X» 

induced by induction and coinduction exist, and are 

surjective for n - 1 and bijective for n ~ 2. 

Moreover, the subcategories I of R-mod and .Q of L-mod 

are closed under extensions. 

Proof We have already noted that AV, VA are 

projective, so A
V and VA are finitely generated 

projective modures. Hence all conditions of 3.5 hold, 

proving the assertion about the mappings of Ext -groups. 

We prove that I is closed under extensions. 

Let 0 ~ R ® X ~ M ~ R ® Z ~ 0 be a short exact sequence 

of R-modules with X, Z E A-mod. Then 3.5(a) for n - 1 

shows that there is a short exact sequence 

o ~ X ~ Y ~ Z ~ 0 in A-mod and an exact commutative 

diagram 

O-->R®X-->R®Y-->R®Z-->O 

'1 ! II 
O-->R®X--> M -->R®Z-->O 

Hence M ~ R ® Y, so MEl. 

is similar. 

The proof for .Q in L-mod 
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§4 Almost split sequences 

Let k be a field, and (i/ - (A, V) a finite 

-dimensional DOCS over k, by which we mean that A 

is a finite-dLlensional k - algebra and di~(V) < <Xl 

Then Land R are also finite-dimensional k-algebras. 

We now briefly give conditions for the existence of 

almost split sequences in ((-mod, 1, and ~, using the 

Auslander-Sma10 criteria [AS:2.4). 

4.1 Theorem Let C2 = (A, V) be a finite-dimensional 

bocs over a .. central subfield k, with kernel V a 

projectivising A-A-bimodule. Then add(l) and add(~) 

admit almost split sequences. 

idempotents split in a~mod, then 

almost split sequences. 

If, additionally, 

({-mod, 1 and ~ admit 

Proof We just prove the assertions pertaining to the 

subcategory 1 of R-mod, those pertaining to ~ being 

similar. Since R is a finite-dimensional algebra, we 

must verify - following [AS:2.4) - that add(l) is a full 

subcategory of R-mod, closed under isomorphisms, direct 

summands, and extensions in R-mod, and is functorially 

finite in R-mod. 

Since V is proj ectivising and V finite 

-dimensional, (2.1) holds. Therefore all conditions of 

Theorems 2.6 and 3.8 a,re satisfied, so that 1 - and 

hence addU) - is functorially finite in R-mod and is 

closed under extensions. The other Auslander-Sma10 

requirements are, of course, true by definition of 1 

and add(l). Therefore add(l) admits almost split 

sequences. If idempotents split in a -mod, then 

idempotents split in 1, so since 1 is full in R-mod, 

Ct -mod ~ 1 = add(l). 
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4.2 Remarks (i) V E add (A @kA) is the most 

frequently occurring type of projectivising kernel of a 

bocs. 

(ii) the R-modules in add(I) are often called 

relatively projective modules, the L-modules in add(~) 

are similarly called relatively injective modules ;they 

are the (finitely generated) projectives and injectives 

for the relative homological algebras based on short 

exact sequences in R-mod and L-mod, respectively, which 

split on restriction to A. 

(iii) The entirely different sort of problem of 

describing bocses (r for which idempotents split in 

(C -mod is the subject of §6. 

§S Cotilting Properties 

We assume here that {t- (A, V) is a bocs in 

which A is an artin algebra and AV, VA are finitely 

generated projective. 

Let where i.d. 

denotes injective dimension. When d < 00 it is well 

known that i.d. AA 

Note that L, R are also artin algebras; we shall 

denote the usual duality associated with any of the 

artin algebras A, L, R by D. Our main result is as 

follows: 

5.1 Cotilting Theorem Under the above hypotheses and 

assuming that d < 00, LV, V
R 

are generalised cotilting 

modules of i.d. at most d. 

Proof 

(i) 

(ii) 

We must show that LV satisfies 

i.d. LV :S d 

i 
ExtL(V, V) = 0 (i ~ 1) 
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(iii) There is an exact sequence 

0---> Vd --> 
with V. E add V. 

--> Vo --> DL --> 0 

1 

Consider the isomorphism of 3.l(b) 

i - i ExtA(N, X) -> ExtL(N, HomA(L, X» 

To prove (i) put X ~ A; since LHomA(L, A) ~ LV, this 

shows that i.d. LV ~ i.d. AA -d; (ii) follows by 

putting N 

and X = A. 

LV, which is projective as a left A-module, 

Since i.d. A = d 
A 

there is a projective 

resolution 

o --> Pd --> ... --> Po --> A(DA) --> 0 
of DA. Applying Hom

A 
(L, -) to this yields a 

resolution of HomA(L, DA) ~ DL in add(HomA(L, A» which 

is add(LV). This proves (iii). 

The proof of the corresponding result for 

similar, using the analogue of 3.1(b) for right 

right A-modules, and a projective resolution of 

a right A-module. 

VR is 

Rand 

DA as 

Remarks (i) When V is a projectivising bimodule we 

have (for i ~ 2): 

i - i 
ExtA(Z, X) --> ~xtL(HomA(L, Z), HomA(L, X» 

so putting X = A and i = d shows that, if d ~ 2, LV 

has i.d. equal to d. 

(ii) Since R ~ EndL(V)oP the fact that VR is a 

coti1ting module also follows at once from LV being a 

coti1ting module. 

(iii) In applications A is usually hereditary 

and V projectivising so LV, VR are either projective 

modules, or classical cotilting modules. 
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We determine here the Ext-projective and 

Ext-injective modules in 1 and ~. Full details will be 

given for 1 and the proof for ~ (which is similar) will 

be omitted. 

Recall that M
l

(M
3

) in 1 is Ext-injective 

(Ext-projective) if every short exact sequence 

o -> Ml -> M2 -> M3 -> 0 with each Mi E 1 is 

split. 

5.2 Theorem Suppose idempotents split in Gt-mod and 

V is a projectivising bimodule; then the Ext-projectives 

in 1 are the finitely-generated projective R-modules 

and the Ext-injectives in 1 are the objects of 

add(DV). 

Proof Since V is projectivising there is a 

surjection 
1 

ExtA(Z, X) --> 1 
ExtR(R ® Z, R ® X) 

Putting X - DA, so R ® X ~ DV, we see that all the 

objects of add(DV) are Ext-injective. The finitely 

generated projective R-modules are obviously 

Ext-projectives in 1. 

If M = R ® Z is Ext-projective consider a short 

exact sequence 

o -> K -> Ar -> Z -> o. 
Applying R ® - yields a sequence in 1 with 

middle term in add(R). As R ® Z is Ext-projective the 

induced sequence splits and so M is in add(R). 

Likewise considering a short exact sequence 

o -> X -> (DA)r -> C -> 0 

and applying R ® shows that if R ® X is 

Ext-injective then it is in add(DV). 
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5.3 Theorem Suppose idempotents split in U?-mod and 

V is a projectivising bimodule; then the Ext-projectives 

in ~ are the objects of add(V) and the Ext-injectives 

in ~ are the finitely generated injective L-modules. 

Remark Since Land Rare cotilted from each 

other the number of isomorphism classes of simple left 

L-modules and simple left R-modules are equal by the 

analogue of [M : 1.19] for cotilting modules. If this 

number is s then s is finite and is also equal to 

the number of isomorphism classes of Ext-projective or 

Ext-injective indecomposables in ! or ~, provided 

C2 satisfies the hypotheses needed for Theorems 5.2 

and 5.3. 

§6 Splitting of Idempotents 

In 6.4 we give sufficient conditions on bocses 

over fields for idempotents to split in their categories 

of finite-dimensional representations. The 

construction of such bocses starts with a so-called 

principal bocs and proceeds via finite sequences of 

elementary extensions of two basic types, which we call 

triangular kernel and triangular tensor algebra 

extensions. The bocses so obtained include all 

'additive Roiter bocses' [CB: 3.5]. 

As mentioned before, the construction is 

essentially a different presentation of the material 

relevant to bocses over fields in [BK, §5]. As in that 

account, some rather extensive preliminaries are needed 

before the main result can be stated and proved. 

Throughout §6 we keep fixed a base field k and a 

commutative k-algebra S (S is an analogue of the 

underlying minimal category of the bocses considered by 
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Crawley-Boevey [C-B: 2.1, 3.6]). Each algebra 

considered in §6 is an S-algebra on which k acts 

centrally, but these algebras need not have finite 

k-dimension. As usual we only consider bimodules on 

which k acts centrally. 

assume that each bocs 

More fundamentally we also 

(e - (A, V) possesses a 

grouplike element centralised by S, that is, an element 

w of V such that 

f(W) = 1, ~(w) = w ® w, sw - ws for s E S. 

Hence V has direct decompositions 

AVS = AVS + Aw, SVA - SVA + wA, 

and SV ® Vs a direct decomposition 

V ® V = V ® V + V ® wA + wA ® V + wA ® w; 

(in which we have identified V ® V with its canonical 

image in V ® V). 

We also need the differentials [C-B: 3.3] 

d
l 

: A ~ V, d2:V~ V®V 

defined by: 

d
2

(v) = ~(v) - v ® w - w ® v, 

which one may check do indeed have images inside V and 

[C-B 3.4(2)]. Often we denote either 

differential by d; both~differentials are S-S-bimodule 

morphisms. 

We will study only representations X = AX of 

of finite k-dimension; these determine a full 

subcategory, to be denoted It-k-mod, of a-mod. For any 

AX, AY write (X, Y) for Ho~(X, Y). Then (X, Y) is an 

A-A-bimodule, and throughout this section we will take 

ct (X, Y) to be a natural transpose of Hom
A 

(V ® X, Y), 
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namely, 

Gr(X, Y) - Hom (V, (X, Y». 
AxA°P 

In this form the composite of 8 e {[(X, Y) with 

~ eL(Y, Z) is the morphism 

V _Jl._> V ® V ~8 > (Y, Z) ® (X, Y) _c_> (X, Z), 

where c is composition of k-linear maps. 

We also need a description of 8 e ([(X, Y) as a 

pair () - «()O' 8) where ()O = ()(w) e (X, Y) and 

() - ()i,,· Since aw - wa - d ( a) , ()O and 8 are related 

by 

a()O - ()Oa = 8(d(a» for every a e A. 

Conversely any pair satisfying this 

relation determines a bocs morphism, and the 

correspondence set up in this way is bijective. Note 

that ()O is S-linear. 

The formula for the composite of 

() = «()O' 8) e (((X, Y) and ~ - (~O' q;) e (f(y, Z) is 

given by 

(~()O = ~O()o' 

~()(v) = ~08(v) + q;(v)()O + c(q; ® 8) d(v) for v e V; 

the identity morphism in Ct(X, X) is EX - (lx' 0). 

These formulae show that there is a functor, 

* denoted w , 

* : a-k-mod ~ w k-mod 

given by X ~ kX , () 1-> ()O· In what follows we first 

* exhibit a class of bocses for which w reflects 

isomorphisms - i.e. if 8 * is such that w «() is an 

isomorphism then () is an isomorphism in (i -k-mod, 

which means that the isomorphisms in the category 
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Gt-k-mod are exactly the morphisms 0 for which 0 is 

invertible. 

We need several concepts of one bocs being an 

extension of another. 

6.l(i) Definition Let (( - (A, V) be a bocs. We 

say that ce is an extension of the bocs Ct' - (A', V', 

/J', f') if 

(i) A' is an S-subalgebra of A, 

(11) V' is an A' -A' -subbimodule of V 

containing w (,the group-like of (l), and the following 

diagrams commute (®' is the tensor product over A'): 

V' ---> V V'------------> V 

f' /J' 

'i/ 'i/ 'i/ 'i/ 

A' ---> A V' ®' V' --> V ®' V --> V ® V 

Remarks It is clear that V' 

differentials satisfy 

composite 

d' - d 1 1 1 A' , 

and the 

is the 

d' 
V' __ 2> V' ®' V' --> V ® V. 

Notice that there is a 'restriction' functor 

{( -k-mod ~ (f' -k'-mod, defined by X 1-> A'X and 0 1-> 0' 

where 0' = 01 = (0 0, B' ) and 0' - 00 , B' -Blv' . V' 0 
6.1 (ii) Definition The extension Cr' of (l' is 

called a triangular kernel extension if A' -= A, and 

there is an S-S-subbimodule U of V such that 

(a) the natural map V' G) (A ®S U ®S A)~ V 

induced by the inclusions V'c V and U c V is an 

isomorphism; 
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(b) d(U) ~ V' ® V' 
V ® V via (a». 

(viewed as a subbimodule of 

6.1 (iii) Definition The extension a of {£, is 

called a triangular algebra extensjon 

(triangular tensor algebra extension) if 

(a) there is an S-S-subbimodule E of A such 

that the morphism of A'-algebras 

®A' (A' ®S E ®S A' ) -->A 

induced by the inclusion E ~ A is surjective 

(bij ective) ; 

(b) the natural map A ®' V' ®' A ~ V is an 

isomorphism; 

(c) deE) k V' . 

6.2 Definition The principal bocs of an algebra B, 

is the bocs (B, B) with comultiplication B e; B ®B B 

and counit 1 : B ~ B. This has a grouplike (namely 1) 

* and w clearly reflects isomorphisms since (B, B)-mod 

is just B-mod. 

6.3 Proposition Let ,a - (f be a 
n 

.':inite sequence of bocses such that a 0 is principal 

and for i = 0, 1, ... , n - 1, {[. 1 is a triangular 
~+ 

kernel or algebra extension of a ., 
* ~ 

w : C(k-mod ~ k-mod reflects isomorphisms. 

Then 

Proof Since w * : -ao - k-mod ~ k-mod reflects 

isomorphisms «(~ is a principal bocs) it is sufficient, 

by induction, to prove the following lemma. 

Lemma Let l( be a triangular kernel or algebra 

extension of ee', then if 

* w C( -k-mod ~ k-mod 

reflects isomorphisms so does 
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* ') W : LL-k-mod ~ k-mod. 

Proof Let 0 = (0
0

, 0) E ({(X, Y) and suppose 0
0 

is invertible. We need to show that o is an 

isomorphism. The restriction 0' - (Ob, 0') E a'(X, Y) 

is an isomorphism as 0b - 8
0 

is an isomorphism.We will 

show how to extend an inverse cp' - (cpb' q)' ) E (L' (Y, X) 

for 0' to a left inverse cp - (CPO' q) ina(y, X) for 

0; a similar construction gives a right inverse for 0, 

so 0 is invertible. 

We set CPo - CPo so CP0 90 - lX' 90CPO - ly. 

Case (1): Let (i be a triangular kernel extension of {i' , 

so A' - A, V = V' ® (A ®s U ®s A) and d(U) ~ V' ® V' . 

Define cp - cp' on the summand V' of V. For 

u E U, since d(u) E V' ® V' we may set 

q;(u) - - CP08(u)cpO - c(q;' ® 8')(d(u» CPo ; 

this gives an S-S-bimodule map U ~ (Y, X), and so has 

a canonical extension to an A-A-bimodule map of the 

second summand of V to (Y, X) . This completes the 

definition of cp and of cp - (CPO' q) ; cp is a bocs 

morphism because 

~(d(a» = cp'(d(a» - acpO - CPOa - acpO - CPOa 

for each a E A. 

A short calculation shows that cpO v ~ (X, X) is 

zero on V' and V, and hence on V. Therefore 

cpO - fX' as required. 

Case (U) : Let Ci: be a triangular algebra extension of 

(!', so A is generated by A' and the S-S-subbimodule 

E of A, V ~ A ®' V' ®' A, and deE) ~ V' . For this 

case we extend q)' in the natural way to obtain 
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rp V ~ A ®' V' ® A --> (Y, X). 

Since rp' is a left inverse of 0' we have, for 

v' E V' ,the equation: 

(1) 0 = rpbO'(v') + ~(v')Ob + c(rp' ®' 0') d(v') 

Let e E E then d(e) E V' , and if we put 

v' - d(e) in (1) and recall that O'(d(e» - O(d(e» 

eO O - °Oe, 0' = 0
0

, rp' -1 and dd(e) = 0 - rpO = 00 ' we 
0 0 

see that the relation 

(2) rp(d(a» - arpO - rpOa 

is satisfied for a E E. Also (2) holds for a E A' , 

and if it holds for and then it holds for 

a l + a
2 

and a l a
2

. Since A' U E generates A, (2) 

holds for all a E A. Therefore rp - (rpO' ~) E ct(Y, X). 

By definition (rpO)O = Ix and rpolv' - rp'O'= O. Since 

V' generates V over A we conclude that rpO- O. So 

finally we conclude that rpO- EX' as required. 

We now give our main theorem concerning idempotent 

splitting, and will need Proposition 6.3 in its proof. 

6.4 Theorem Let (j'0' ifl , ... , an - (j' be a finite 

sequence of bocses such that eto is principal and, for 

i = 0, 1, ... , n-1, {r'. 1 is either a triangular kernel 
~+ 

or triangular tensor a1g~bra extension of (l'i' Then 

idempotents split in (C-k-mod. 

Proof Following [BK] we prove that if U E a(X, X) 

is an idempotent there is an isomorphism a E Ct(X, Y), 

for some Y, 

that 
fO 

Y-> 

-1 
(aua )0 

go 
Z -> Y 

such that ~ aua - O. It then follows 

is an A-module idempotent and if 

is a splitting of this idempotent then 
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-1 . -1 
is a splitting of aaa Hence a - (a (go' O»«fO,O)a) 

is a splitting of a. Since this property holds 

for all principal bocses it is enough, by induction, to 

prove the following lemma (in which a' - (li 

for some i ~ 0). 

Lemma Let " a be a triangular kernel or tensor 

algebra extension of (f'. Suppose that for every 

idempotent a' in (['-k-mod there is an isomorphism a' 

-1 
such that a'a'(a') - 0; then for every idempotent a 

in Ct -k-mod there is an isomorphism a such that 

-1 
aaa = O. 

Proof Given a = consider the restriction 

a I E C(" (X, X). 

By hypothesis there is an isomorphis'!l a ' E (j' (X, Y), 

for some Y, such that -1 
a'a'(a ' ) -0. 

Case (i) Ci is a triangular kernel extension of 

a" ,so that A' = A, V = V' ® (A ®S U ®S A), 

d(U) ~ V' ® V'. Hence Y is already an A-module, and 
. 

we define a E (X, Y) by a O - ab ' ~lvI = ~I and 

a = 0 on A ®S U ®S A; it is easy to see that 

a = (aO'~) is in {t (X, Y) and since {t" Ci. 
1 

for 

some i and a
O 

= ab is an isomorphism a is also an 

isomorphism (by 6.3). 

Let r - aaa-l'Then r - r 2e [f(y, Y) and flv I = O. 

We must further modify r, and will use the fact 

that, since d(A) C V', if rp, (J E (1(y, Y) satisfy 
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~Iv' - 0 - el v " then ~8Iv' - 0, and hence that 

~8(v) = ~08(v) + ~(v)80 for all 

Define fJ E (j(y, Y) by fJO - lX' 

fJ(v) = rOr(v) r(v)r O for v E V. Then 

v E V. 

32 

2 
2fJ - fJ = £Y' so fJ(v) is an automorphism of Y 

wi th fJ -1 - 2 £ X - fJ. 
-- -1 

We claim that fJr fJ - O. 

Using the remark above, one sees that 

-1 -fJrfJ (v) = r(v) - rO r(v) - r(v)r O + 2r Or(v)r O' 
2 - - -

Since r = r 'we have r<v) - r Or<v) + r<v)r 0' and 

(3) 

as 
2 -

rO = rO it follows that rOr<v)r O - o. Using these 

two relations in (3) shows that fJrfJ- l - o. 
~ Let ~ - fJa, then ~o~ - 0 as required. 

Case (11) :ais a triangular tensor algebra extension of 

((', so that 

A = ®A,(A' ®S E ®S A'), V - A®' V' ®' A, and d(E) k V. 

We have first to extend the action of A' on Y 

to an action of A, and for this it suffices to define a 

suitable S-S-bimodule morphism of E to (Y, Y). We 

take this morphism to be 

e I-->aoe(ao)-l +a' (d(e» a o- l . 

Next we define 1 E C(X, Y) by taking ~O = aO' 
and ~ to be the canonical extension of a' to 

V = A ®' V' ®' A. We need to check the relation 

l(d(a» alO - lOa for a E A. 

As in the proof of 6.3 it is sufficient to do this 

for a E A' (which is easy: 

~(d(a» = o'(d(a» = aa'O - a'Oa - a~O - ~Oa 

if a E A'), and for a E E which is a consequence of 

the definition of the action of E on Y. 
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Thus 1 Ea(X, Y) is an isomorphism by 6.3 and 
----1 -
1(11 - 0 on V' since ---:II -1 1(11 V' - a' (1' (a' ) - O. 

Since V' generates V over 

as required. 

, -] 
A we conclude that 1(11 - 0, 
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