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Abstract

This project has been concerned with deriving the intermolecular structure of 

liquid haloalkanes. Neutron diffraction experiments have been performed to produce 

experimental pair distribution functions. The molecular liquids investigated by this 

method have been trifluoromethane at 153 K, difluoromethane at 153 K, 1,1,1,2- 

tetrafluoroethane and 1,1,2,2-tetrafIuoroethane, both at 200 K, 250 K and 300 K. The 

scattering data for the methane derivatives, and for the ethane derivatives at 200 K, 

have been fully analysed and a structure factor and pair distribution function for each 

is presented.

Molecular dynamics simulations have been performed to reproduce the 

experimental pair distribution functions, and internal energies of a variety of 

halomethanes. Although the initial work on the fully halogenated methanes was 

performed by Dr. C. D. Hall, the analysis of that work has been completed in this 

project. The intermolecular pair distribution function for bromotrifluoromethane and 

chlorotrifluoromethane has been reproduced by the simulations and the orientations 

of the molecules analysed. The pair distribution function for

dichlorodifluoromethane has been simulated and the interpretation of the liquid 

structure performed with different conclusions to Dr. C. D. Hall being reached. The 

intermolecular structure of trifluoromethane has been simulated and, together with a 

reanalysis of the measurements made by Hall et al. on deuterated trifluoromethane, 

has led to a full interpretation of the liquid-state structure for this fluid. Finally 

attempts have been made to simulate the structure of difluoromethane but, as yet, a 

full interpretation has not been possible.
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Chapter One

Liquid Structure

1.1 Introduction

The structure of a physical sample is normally taken to mean the spatial 

distribution of the atoms or molecules in the sample. In the case of a solid this means 

the positions of the equilibrium sites of the atoms, which are largely time 

independent. However, for a liquid, the component molecules or atoms possess 

enough energy to move around the sample. Thus their positions are largely time 

dependent and hence there is no equilibrium position. Clearly then some method is 

needed to define the structure in a liquid that takes this into account. If a snap shot of 

the liquid is considered, then it is possible to work out the distribution of the atoms 

in this snapshot. The structure is usually defined in terms of the two-particle, or pair 

distribution function, g(r), which is a continuous function describing the probability 

of two atoms being a distance r apart. Considering a series of snapshots of the liquid 

over time, and averaging the pair distribution function over all these snapshots, leads 

to a resultant pair distribution function that can be considered to describe the average 

liquid structure, i.e. a time-independent description of the structure of the liquid.
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Figure 1.1 General pair distribution functions for (a) crystalline 

solid, (b) ideal atomic gas, and (c) molecular liquid.

For a crystalline solid, the pair distribution function consists of sharp peaks at 

the lattice spacings with nothing in-between (see figure 1.1). The pair distribution 

function for an ideal atomic gas would be zero within the distance of closest 

approach and would then step up to 1 and continue as a straight line. This shows the 

complete randomness of the ideal gas structure. A monatomic liquid would show a 

smooth curve rising to a maximum at a distance that is approximately twice the 

atomic radius and then oscillates about 1 with decreasing amplitude with increasing 

r- This indicates that the liquid shows short range structure, but averages out to 

randomness at long range. The pair distribution function is normalised to the ideal 

gas structure so that a value of 1 indicates the probability of finding two atoms with
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that separation in a completely random system. A value less than 1 indicates a lower 

probability and a value greater than 1 indicates a higher probability.

Assuming that for a polyatomic molecular liquid, the pair distribution 

function is that for any atom in the sample, there will be sharp peaks at the start due 

to the intramolecular structure, followed by oscillations in the intermolecular region. 

Whereas for a monatomic liquid, the pair distribution function fully describes the 

liquid structure, for a polyatomic molecular liquid there is no inherent information 

about the relative orientations of the molecules. However, if the total pair 

distribution function is considered to be made up of a series of partial pair 

distribution functions, then each of these partial pair distribution functions describes 

the probability of finding two defined atoms at a distance r from each other. 

Knowing all the possible partial pair distribution functions for a liquid leads to an 

insight into how the molecules in the liquid interact and orientate themselves to each 

other.

Neutron diffraction experiments can be performed to obtain a Structure 

Factor, commonly referred to as S (0 . This S (0  can be Fourier transformed to 

obtain the pair distribution function (see chapter two). The nature of neutron 

scattering means that the scattering from different elements, and isotopes of the same 

element, is different. It is possible, therefore, to perform isotopic substitution on 

molecules, for example D for H, and hence manipulate the data to obtain the partial 

pair distribution functions. However, frequently isotopic substitution is not possible 

or is prohibitively expensive and so some other means of extracting this data is 

needed.

In this project we have performed neutron scattering experiments to obtain an 

experimental pair distribution function, and then tried to reproduce this pair
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distribution function by simulating the liquid using molecular dynamics. By using 

molecular dynamics we are able to obtain the partial pair distribution functions 

directly. If the simulation can reproduce the experimental pair distribution functions 

as well as matching the internal energy, then it can be considered to be a reasonable 

portrayal of the liquid and hence be used to understand the structure of the liquid.

1.2 Previous Work In The Simulation Of Liquids

A number of simulations have been performed in the past that have compared 

computer simulations with neutron diffraction data. Yamell et al. [1] investigated 

liquid Argon near its triple point by performing neutron diffraction experiments. He 

then compared the experimental structure factor with that given by a molecular 

dynamics simulation using a Lennard-Jones effective pair potential. The agreement 

between the simulation and the experimental data was excellent. He also compared 

the pair distribution function with both the Lennard-Jones molecular dynamics 

simulation and a Monte Carlo simulation based on the BFW potential [2], He found 

that the agreement between the experiment and simulation was good, and that the 

two simulations were almost indistinguishable.

Evans [3] compared the results of computer simulations, using the Lennard- 

Jones potential with fractional charges, of trichloromethane with the partial pair 

distribution functions derived from a number of neutron diffraction experiments 

[4,5,6,7,8,9,10], The pair distribution functions from his simulations were similar but 

detailed agreement was not obtained. He attributed the failings to the fact that the 

pair distribution function obtained holds no information about orientation and only 

describes the structure in terms of the separation of the atoms. He also took account 

of the fact that the instrument precision was 1 %, and when coupled with the
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problems analysing the neutron data, can lead to disagreement between neutron 

diffraction data.

Kneller and Geigerf 11 ] compared the results of two molecular dynamics 

simulations, using a Lennard-Jones potential and an exp-6 potential, with the neutron 

diffraction results for dichloromethane from work by Jung et al.[12] Although there 

were a few dissimilarities between the experiment and simulation this was attributed 

to problems in the neutron data reduction.

Tetrachloromethane has proven to be a controversial problem with 

researchers. Gubbins [13] claims that the structure depends upon the long range 

electrostatic term, the octopole-octopole interaction. However other groups 

[14,15,16,17] claim that there is no such dependence. Eglestaff et al. [15] believe the 

molecule arranges itself in the 'apollo' or 'rocket' arrangement (see figure 1.2).

Figure 1.2 Proposed structures of trichloromethane. (a) apollo or 

rocket, (b) straddle, (c) interlocking

Lowden and Chandler [16] thought that the molecule arranged itself in a interlocking 

fashion (shown in figure 1.2(c)). McDonald et al. [17] discounted this interlocking 

type structure, but felt that the rocket structure was important. They also proposed 

the arrangement in figure 1 2(b) that is referred to as the straddle arrangement.
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J. Bohm et al. investigated a variety of different liquids using molecular 

dynamics simulations [18,19], The simulated structure factors were compared with 

diffraction data. These included chloromethane, acetonitrile, carbon dioxide and 

carbon disulphide, which gave good agreement with the experimental data although 

the peak heights were underestimated, dichloromethane, which exhibited a 

discrepancy in the height of the first peak and its shoulder for which they were 

unable to account, and trichloromethane, which varied in agreement to the 

experimental data according to the isotopic constitution of the molecule.

Ohba and Ikawa [20] compared two computer simulations with x-ray 

diffraction data. The simulations both used Lennard-Jones potentials but one also 

incorporated a fractional charge model. On comparison of the centre-of-mass pair 

distribution function it was found that both simulations were essentially the same 

and agreed with the experimental data. However the fractional charge simulation had 

angular correlations between the centres-of-mass whereas the uncharged model 

didn't. It can be taken from this paper the importance of reproducing the charge 

distribution in a molecular simulation as it can effect the underlying structure.

1.3 Literature Review

The rest of this chapter will constitute an overview of some recent work 

completed. Of particular interest is the use of simulation techniques to establish 

liquid structure. Unfortunately there are few comparative studies of neutron 

diffraction and molecular dynamics but other work to establish liquid structure has 

been performed using the reverse Monte Carlo method. Although this method has 

not been used in this study, as part of the aim was to produce intermolecular pair 

potentials as well as derive the liquid structure, it is a useful technique for
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establishing the liquid structure and can lead to insight into the way the molecules 

are orientating themselves, and hence help in choosing suitable parameters for the 

pair potentials. It is also worthwhile comparing the success of the two simulation 

methods in predicting the structure of the liquid.

1.3.1 Orientational Correlation-Function for Molecular Liquids [21]

Author : A K Soper

As indicated earlier, the availability of isotopic substitution in neutron 

diffraction means that the partial pair distribution functions can be obtained directly 

from experiment. Recent work by A. K. Soper [21 ] has shown how these measured 

partial structure factors (the data obtained by neutron diffraction experiments that is 

then transformed into the pair distribution function, see chapter two) can be used to 

generate a detailed view of the local intermolecular orientational distribution 

function. Using the measured structure factors for liquid water, the corresponding 

maps of the orientational distribution function were derived. He was able to show 

that, whilst the molecules have a high probability to arrange themselves according to 

the directionality of the hydrogen bonds , there are also a range of other local 

orientations that are compatible with the neutron data. This evidence goes against 

past speculation that water forms short-lived "ice-like" clusters at ambient 

temperature and pressure.

The method shown gives a powerful tool to aid in the analysis of neutron data 

of liquids. However, in order to be able to utilise it, the partial structure factors must 

be available. This is only possible in molecular liquids where isotopic substitution is 

possible to be able to eliminate various distributions in the experimental data. The
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molecules we are interested in do not have this ability and hence the method of 

molecular dynamics simulation was chosen.

1.3.2 Empirical Potential Monte Carlo Simulation of Fluid Structure 

(22|

Author : A. K. Soper

This paper uses Monte Carlo simulations to develop pair potential parameters 

in a similar method to the way in which potentials have been developed in our own 

project, that is changing the parameters in an iterative manner in order to reproduce 

the experimental data. The work not only compares to experimental neutron data, 

but, because pair potentials are included in the simulation, also compares the results 

to thermodynamic data. This is because there is only one unique solution that will 

reproduce all the experimental data and hence the simulation results can be taken as 

a good representation of the liquid.

The author uses a site-site Lennard-Jones potential (see equation 1.1) together 

with the simple point charge extended (SPCE) model of water.

7  7 1 2  f _  \ 6~

Uij =  4Sy
Oji

V r i j ) Vr,jJ
+

47180/-,, 1. 1

Where Uy is the effective pair potential between atoms i and J, e,j and a,; are the 

Lennard-Jones parameters, 7  is the separation of the two atoms, q, and qj are the 

partial charges on / and j  respectively, and eG is the permittivity of free space. The 

simulation is driven by equilibrating the energy distribution, unlike reverse Monte 

Carlo methods which are driven by equilibrating the value of chi2, which measures 

how close the fit to the experimental structural data is. The Monte Carlo method 

allows a random walk through a wide range of configurations to find the minimum

8



energy. The parameters are altered until the pair distribution functions match the 

experimental distribution functions obtained by neutron scattering. The resulting pair 

distribution functions are compared to those obtained from neutron scattering. The 

total, and partial pair distribution functions are available from neutron scattering 

experiments and so the accuracy of the simulation structure can be ascertained.

The empirical potentials derived show qualitative similarities with the true 

SPCE potential, although there are quantitative differences. Although the 

experimental pair distribution functions are reproduced, the internal energy and 

pressure are not.

1.3.3 A Transferable Potential Model For The Liquid-Vapour 

Equilibria Of Fluoromethanes.[23]

Authors: S. C. Potter, D. J. Tildesley, A. N Burgess and S. C. Rogers.

This paper is concerned with the development of intermolecular potentials by 

performing molecular dynamics simulations of coexisting liquid-vapour phases on 

fluoromethanes to obtain orthobaric curves. The molecules investigated were 

difluoromethane, trifluoromethane and tetrafluoromethane. By comparing with 

experiment the authors have derived a force field for these molecules which consists 

of a site-site 12-6 Lennard-Jones potential supplemented with point charges at the 

atomic sites, to model the coulombic interactions. The structure, intramolecular 

forcefield, and point charges were obtained by performing ab initio molecular orbital 

calculations using the GAMESS [24] package with a TZVP basis set. Although the 

bonds in the simulation were constrained to the equilibrium values, the bond angles 

were allowed to vibrate. The bending constant was calculated from the change in 

energy produced by distorting the bond angle by five per cent. Two types of
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molecular dynamics simulations were performed: two phase simulations to calculate 

the coexisting densities, and fully periodic bulk simulations of both coexisting 

phases to estimate the enthalpy of vaporization and the coexisting pressures. Fn the 

simulation of the two phase system, the long range corrections have been ignored. 

The two phase simulations were produced by taking a bulk fluid and running the 

simulation until the fluid had reached equilibrium. The periodic cell was then 

surrounded by two empty cells in the r direction and the system allowed to come to 

equilibrium, defined by no net drift in the coexisting densities. This equilibrated 

system was then allowed to run for five blocks of 1000 timesteps at constant energy. 

The orthobaric densities were fitted for each block and the standard deviation in the 

block averages gave an estimate of the error in the coexisting densities. The Lennard- 

Jones parameters were fitted to the data for difluoromethane, and then applied to 

trifluoromethane and tetrafluoromethane.

The model obtained reproduces the coexistence curve for difluoromethane 

reasonably well, although at the lower temperatures both the coexisting densities are 

greater than the experimental values. Despite various adjustments to the potential 

parameters the authors were unable to improve on this fit and they suggest that this 

problem is due to an inability of the potential to account for polarization effects, 

which are important in the liquid phase. The bulk liquid structure was compared to 

our own neutron pair distribution function obtained during the course of this project. 

Although the essential features are reproduced the simulation fails to reproduce the 

positions and heights of the maxima and produces a liquid that is too ordered 

compared with experiment. This is a problem we have also seen with our own 

simulations to this neutron structure.
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The fitted Lennard-Jones parameters were transferred directly to 

trifluoromethane. The reproduction of the coexisting densities is good, to within 

three per cent of the experimental values. The model also reproduces the neutron 

pair distribution function, again obtained from this work, with good accuracy, 

although the position of the maxima are at a slightly lower r than the experiment.

The transferred potential to tetrafluoromethane produces a reasonable fit to 

the orthobaric curves, although the fit worsens with high temperature. Unfortunately 

neutron data for tetrafluoromethane has yet to be published and so a comparison to 

the liquid structure is not possible.

The authors also performed bulk simulations to obtain an estimate of the 

enthalpy of vaporization and the vapour pressure. Again, trifluoromethane produces 

the best agreement with the enthalpy experimental data being within the error of the 

simulation for three of the four temperatures investigated. Difluoromethane 

consistently underestimates the enthalpy of vaporization whilst tetrafluoromethane 

overestimates it. The model produces a reasonable agreement with the vapour 

pressures although it overestimates them for difluoromethane, and underestimates 

them for tetrafluoromethane, with trifluoromethane again producing the best results.

In conclusion, the authors have produced a working model that transfers 

between three fluoro-methanes, and reproduces the coexistence curves for each. The 

model also reproduces the liquid structure for trifluoromethane, but not for 

difluoromethane. It is interesting to see that success in fitting one type of 

experimental data does not automatically lead to success in fitting another, 

particularly the exacting task of fitting the liquid structure, and the converse could be 

taken as being true. It would be an interesting exercise to implement the parameters 

obtained in our study into such a two phase simulation to see if the coexistence
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densities are reproduced. As can be seen from the above study and our work on 

halomethanes, the use of simple isotropic potentials may be a limiting factor in the 

success of reproducing experimental data with these more complicated systems.

1.3.4 Structural Investigation Of Liquid Formic Acid Using X-Ray, 

Neutron Diffraction, And Reverse Monte Carlo Study [25]

Authors : P. Jedlovszky, I. Bako, Palinkas, and J. C. Dore

Although this paper is not a comparison between molecular dynamics 

simulations and experiment, but rather using reverse Monte Carlo to fit to 

experimental neutron and x-ray data, it is of interest as a method of using computer 

simulation to extract the structural information from the experimental results that 

would otherwise be difficult to obtain.

The authors have performed x-ray and neutron diffraction studies on 

methanoic acid. They then performed reverse Monte Carlo simulations, fitting 

simultaneously to two total structure functions resulting from these experiments. 

This lead to a detailed analysis of the intramolecular structure from the experimental 

data, and the intermolecular structure from the simulation in association with the 

experiments.

The reverse Monte Carlo method used in the study was developed by 

McGreevy and Pusztai [26]. The difference between the reverse Monte Carlo method 

and that of the ordinary (Metropolis) Monte Carlo method is the difference between 

measured and calculated structure functions or pair distribution functions of the 

system are minimized instead of the system's potential energy. The molecules were 

represented by a flexible group of atoms with co-ordination constraints. The distance 

of atoms of types A and B in a molecule were described by two co-ordination
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constraints. The first constraint means that, within a sphere of radius r{ around every 

A atom there are no atoms of B, while the second constraint ensures that every A 

atom has exactly one B neighbour within a sphere of radius r2, where r2 > /y These 

constraints were introduced between every pair of atoms which were bonded to each 

other defining the bond lengths, and between every pair of atoms which were bonded 

to a common third atom. As the distance from the common neighbour atom were 

already constrained, a constraint of this type defines a bond angle around this 

common neighbour. The exception to this definition was that no value for r2 was 

used for the acidic hydrogen and either of the oxygens. A third constraint can be 

added to prevent non-bonded atoms approaching too closely. This makes atoms A 

singly co-ordinated to atoms B within a sphere of radius r3 (r3 > r2). This ensures a 

space around atom A in which only atoms within the molecule may appear.

The x-ray data obtained by the authors from their experiments was analysed 

to give the intramolecular structure of the methanoic acid, and this structure was 

compared to that from previous gas electron diffraction studies [27] and the neutron 

diffraction experimental data that had previously been reported [28], The results 

show a good agreement between both sets of data and the results of the x-ray 

experiment.

As the geometry of the methanoic acid in the reverse Monte Carlo simulation 

was defined only by the method above it was necessary that the results from the 

simulation reproduced the intramolecular structure. This is because a large 

proportion of the structure factor is due to this intramolecular structure. To ascertain 

if their simulation was reproducing the intramolecular structure the authors 

examined the values of three angles: the 0=C-0 bond angle, the C-O-H bond angle, 

and the angle between the O-H bond and the O=C-0 plane. They found that the
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results of these checks on the two bond angles agreed with the findings from their 

experiments, the distribution for the third angle was broad but still produced a 

realistic geometry for the molecule.

The neutron diffraction experiments had been carried out on a mixture of 

hydrogenated and deuterated methanoic acid (HCOOD : DCOOD 0.641 : 0.359) in 

order to produce an effective coherent scattering length of the acidic hydrogen of 

zero. They also performed experiments on the pure samples of DCOOD and 

HCOOD. The reverse Monte Carlo simulation was run to fit the former of these 

simultaneously with the structure factor from the x-ray experiment. The results of the 

pure liquid neutron scattering experiments were compared to the results of the 

simulation.

The fit to the structure factors for the x-ray and neutron experiments by the 

simulation are quite good, although it would appear that there is possible structure 

left in the residue. The authors suggest this residue is due to the fact that both 

experiments produced slightly different intramolecular structures, but the fit assumed 

both were the same. The comparison between the pair distribution functions for the 

neutron scattering experiments and the simulation are good, in particular the fit to 

the peak associated with the hydrogen bond. However the overlap between the intra- 

and intermolecular structures (approximately 2 - 2.5 A) is poorly fitted and this is 

possibly due to the simulation being unable to distinguish the inter and intra 

separation fitting at this point. However the authors feel that this problem is not so 

important as to effect the results with respect to the intermolecular structure. 

Analysis of their reverse Monte Carlo data leads to the prediction that methanoic 

acid forms two types of hydrogen bond in the liquid phase, one where the carbonyl 

oxygen is the hydrogen bond acceptor, and another where the hydroxylic oxygen is

14



the acceptor. This latter type is not found in either the solid or gas phase, but 

constitutes forty per cent of the hydrogen bonds in this analysis. The average number 

of the hydrogen bonding interactions per molecule appears to be two. Integration of 

the peaks leads to an estimation of the co-ordination number of the molecule to be 

between 11 - 13. This is interesting because although the molecule is hydrogen 

bonded it still forms a closely packed liquid, instead of a more open structure. This 

could be explained by the cluster analysis of the reverse Monte Carlo simulation. 

Here they found that, unlike water, methanoic acid does not form a continuous space 

filling hydrogen bonded network, but instead contains small hydrogen bonded 

oligomers built up of just a few molecules, i.e. it prefers to form small branched 

chains than cyclic structures.

In conclusion the paper presents a very thorough structural analysis of liquid 

methanoic acid using the output from a reverse Monte Carlo simulation, fitted to x- 

ray and neutron data. However it should be bom in mind that these types of 

simulations have certain problems:

There is no inherent intermolecular potential included in the simulation and 

so the only information that can be verified is the outputted structure factors and pair 

distribution functions. This would mean that the conclusions drawn are a possible 

answer, but that there may be others that would equally well fit the data. Studies on 

water [29] show that the configuration produced by reverse Monte Carlo simulations 

are not uniquely related to the pair correlation functions that are used in the fitting. 

This is why molecular dynamics, with its dynamical information, can provide more 

confidence in the validity of the solution obtained. There is the added advantage that 

the final solution also contains a pair potential that can then be used to investigate 

other properties.
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A large percentage of the information contained within the structure factors is 

due to the intramolecular structure, which is already known, and the more interesting 

intermolecular structure lies beneath this. This means that in fitting this data care 

must be taken that the model reproduces the intramolecular structure well otherwise 

the simulation will waste a good number of moves trying to compensate for the 

inadequacies of the structure, instead of fitting the intermolecular region. Another 

problem associated with reverse Monte Carlo simulations is that moves are accepted 

according to the fit to the structure. This does not necessarily drive a true random 

walk through possible configurations, and the final result can sometimes depend on 

the original starting positions of the simulation.

1.3.5 Effective Potentials for Liquid Simulation Of the Alternative 

Refrigerants HFC-32: CH2F2 and HFC-23: CHF3 [30j 

Authors : M. Lisal and V. Vacek.

The authors have constructed a density-dependent semiempirical effective 

pair potential for difluoro- and trifluoromethane which reproduces the liquid 

thermodynamic properties. They modelled the molecules as rigid with interaction 

centres at the atomic sites.. This geometry was obtained from the gas-phase 

monomers. The van der Waals interactions were described using the Halgren Buf 

n -m  potential [31 ] which has the general form:

( 1 + 8 )  rm (n-m) r a + Y V n J *  J
_ F  +  S r m in _

where s is the well depth, rmm is the minimum-energy distance, 5 and y are the shape 

parameters and r is the interatomic distance. A choice of n = 12, m = 6, and y = 5 = 0 

gives the 12- 6 Lennard-Jones function. However the choice in the paper is n = 14
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and m = 7 with y = 0.12. The reasons this potential form was chosen was it contains 

only one energy and one length parameter (e and rmin ). However the potential is 

finite as r -> 0, which avoids the strong divergence found in the Lennard-Jones 

potential. It reproduces a dispersion power-series expansion (r'\ r'8, r '10) for 

distances up to a few times The adjustable parameter, 8, controls the magnitude 

of the dispersion power-series and influences only very slightly the distance and 

magnitude of the dispersion. Because the Axilrod-Teller interaction can be absorbed 

into the pair potential when the C6 coefficient of the dispersion energy -C6 / r6 varies 

linearly with the density [32], they introduced a linear density-dependence of the 

shape parameter 8.

The electrostatic potential was modelled by the Coulombic potential

U = ^ ~  13
c 4 mwah

where qa and qt are the atomic charges, e is the electron charge, and So is the 

permittivity of free space.

An account is taken within the potential for the energy needed to create the 

effective dipole / / ff from the gas phase value / / as. This enhanced dipole is regarded 

as acceptable due to the many-body induced polarization effects on the molecule. 

Thus the energy needed to create the induced dipole moment /j. = //cflr - f£as, is given 

by

1 4

where a  is the molecular polarizability. The correction for the fluctuation of the 

dipole moment can also be included, by approximating it to
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1.5i/flc.
3 kB T f  ̂  )

2 { f - 1)

where kB is the Boltzmann constant and T is the temperature.

Thus the final form of the potential between two molecules i and j  consisting 

of 5 atoms each is

5 5
u ,t = 1 1

a= 1 b=\

f
(1  +  0(y£?)) r mJ Î  1 1 2 r  7 ni . min ^ Q a Q b e 1 }

E a b
_ t ’a b  "b 0 ( /? ) /  mjn _

7 t r \  i 7*2  
J *a b  1 L T mjn ^  4 n e 0 r a h ,

~b i/self T î flct

1.6

The well depths s and the energy-minimum distances /-min were taken from 

the AMBER molecular mechanical force field with the interaction between unlike 

atoms being calculated by the Lorentz-Berthelot mixing rules. The charges were 

those predicted by Gough et al. [33,34] and were obtained from a fit to the 

electrostatic potential using an ab initio calculation with a 6 - 31G* basis set. This 

gave a dipole that was approximately nine per cent greater than the gas phase.

The authors determined the linear density-dependence of the shape parameter 

8 by performing molecular dynamics simulations at constant temperature, volume 

and number of molecules on the saturated liquid curves and adjusted the parameter 

to give the best agreement with experimental second virial coefficients.

The authors compare their results of constant pressure molecular dynamics 

simulations to the latent enthalpy of vaporization and molar volume for the 

molecules of interest at five different temperatures, and the molar volume. They also 

compared their constant volume results with the enthalpy of vaporization and 

experimental values of PV / RI\ They reproduce the molar volume and enthalpy well 

for difluoromethane but the trifluoromethane simulations consistently overestimate
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the enthalpy of vaporization. The simulations correctly produced the molar volume, 

but this is to be expected as 8 was obtained from the virial coefficients. Their 

prediction of the PV t RT is within experimental uncertainty, although several of the 

calculated values are negative.

The authors analysed the partial pair distribution functions produced by their 

simulations although they were unable to compare them to the neutron data that is 

only now available. They assign an interlocking type structure to both types of 

molecule based on their analysis of these distributions. Unfortunately the structure 

they propose does not appear to fit their simulation results as it takes no account of 

the H...H distance which is substantially shorter than their proposed structure will 

produce.

The paper also compares the partial pair distribution functions from their 

simulations, with that resulting from a simulation using their energy and length 

parameters in a Lennard-Jones potential. However it appears from the paper that 

these were substituted directly into the Lennard-Jones potential, whereas in actual 

fact the minimum energy distance rmin in the Buf potential does not correspond 

directly with o, which is the distance at which the potential is zero. The comparison 

of the plots indicates that the Lennard Jones is more repulsive, and hence gives 

greater structure at low r than the Buf potential but this would be expected if the 

minimum energy distance were used instead of o.

In conclusion, the authors have produced a potential that reproduces 

thermodynamic data for difluoromethane well, and gives a fair reproduction of the 

data for trifluoromethane although as mentioned earlier the reproduction of the 

molar volume would be expected. The poor analysis of the structural information is 

disappointing as only a proper analysis could be compared to our own conclusions
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for trifluoromethane. The comparison of potentials would be interesting if there were 

more information concerning the Lennard-Jones simulations. On reading this paper 

we attempted to perform our own simulations, inserting their Buf parameters 

(modified) into a Lennard-Jones potential and comparing to our neutron data. We 

found the simulations produced too much structure and the comparisons in the paper 

would have been helpful in ascertaining if the original potential would have been an 

improvement over the Lennard Jones structure if we could have been confident that 

the necessary adjustments to the potential had been made.

1.3.6 Effective Potentials For Liquid Simulation Of The Alternative 

Refrigerants HFC-134a : CF3CFH2 and HFC-125 : CF3CF2H [35j

Authors : Martin Lisal and Vaclav Vacek

This paper has been produced by the same authors as the previous paper. 

They use the Buf 14-7 potential again and the molecules are treated as semi-rigid, 

with rotation about the central bond being allowed. Again the parameters were taken 

from the AMBER force field [33,34], with the shape parameter, 8, being fitted to 

experimental saturated pressures and saturated-liquid densities, by a series of 

constant volume and temperature molecular dynamics simulations. The simulations 

for both molecules reproduce the molar volume, enthalpy of vaporization, and 

P V / RT with good accuracy.

Again the authors reproduce the structural information from their simulation, 

and compare the two molecules. Unfortunately our neutron data for HFC-134a is 

unpublished yet and a comparison with the data would be interesting. The two 

molecules show a very close similarity in structure, and their C...C distribution is 

remarkably different to that of ethane in their comparison. The paper also contained
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the self-diffusion coefficients calculated from the simulations but unfortunately their 

is no experimental data to compare to.

In conclusion the authors have managed to reproduce the thermodynamic 

properties of the two molecules with good accuracy with their potential.

1.3.7 Neutron Diffraction And Molecular Dynamics Study Of Liquid 

Benzene And Its Fluorinated Derivatives As A Function Of 

Temperature. [36]

Authors: M. I. Cabaco, Y. Danten, M. Besnard, Y., Guissani, B. Guillot

The authors performed neutron diffraction experiments on deuterated 

benzene (C6D6), deuterated trifluorobenzene (C6D3F3) and hexafluorobenzene 

(C6F6). The studies were on the pure liquids at various temperatures between 270 K 

and 350 K, along the liquid-vapour coexistence curves between melting point and 

boiling point. The liquids were also simulated using molecular dynamics and the 

results analysed.

The intermolecular structure factors for benzene and hexafluorobenzene 

show similar features, although peak heights are different. However the structure 

factor for trifluorobenzene shows quite marked differences. The intermolecular 

structure factors were converted into pair distribution functions via a direct Fourier 

transform. The curves for benzene and hexafluorobenzene are similar, although the 

positions of the peak heights for hexafluorobenzene are at slightly longer r. The 

distribution function for trifluorobenzene displays peaks at roughly the same position 

as for hexafluorobenzene but the heights are less pronounced and the general shape 

are different. The authors explain small oscillations seen in the curves by packing of 

the molecules. Considering that the pair distribution function was obtained from a
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direct Fourier transform of a truncated function with a modification function to

reduce the truncation effects, these features could just be a spurious result of the 

transform and not bare any physical meaning.

Molecular dynamics simulations were performed that used the Williams 

potential [37,38] placed at atomic sites.

Uap( f  ) — Bap exp( ~Cap r ap ) - A.ap ( r ap ) + (}a(jp ( f  ap') 1 -7

where A, B, C are parameters of the potential, Uap is the potential energy, a  and ft 

are atoms and rap is the distance between them. The partial charges were obtained 

from ab initio calculations, or chosen to reproduce the experimental quadrupole 

moment of the molecule. The comparison between the experimental intermolecular 

structure factor and the structure factor calculated from the simulations shows a 

broad agreement. The simulation reproduces the positions of the first peaks correctly 

but over estimates the heights. The agreement between experimental and simulated 

pair distribution functions is better. The agreement for benzene is good, whilst for 

hexafluorobenzene, and trifluorobenzene is reasonable. The authors feel the 

reproduction for the trifluorinated species is the worst, but it would seem that this is 

because the simulation fails to reproduce the small oscillations mentioned earlier. As 

these could simply be an artifact of the transform then they could be discounted.

Both the neutron diffraction experiments and the molecular dynamics 

simulations show that the local ordering is only very slightly affected in the 

temperature range under investigation.

The authors show by the analysis of their results that the orientational local 

order in liquid benzene is almost isotropic at distances corresponding to the first 

shell of neighbours. Hexafluorobenzene exhibits maxima for parallel and
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perpendicular configurations that occur at distinct r values, with the parallel being 

predominant at short distances. For 1,3,5-trifluorobenzene, the orientational order of 

the first shell is strongly anisotropic, and a stacked configuration involving a pair of 

molecules is observed at short distances of about 4 A. This finding, together with the 

value of the co-ordination number found from the simulation data clearly shows the 

existence of dimers (sandwichlike). The structure of hexafluorobenzene appears to 

be midway between that for trifluorobenzene and benzene.

In conclusion the authors have produced good experimental structure factors 

from neutron scattering for the three benzene molecular liquids. They have managed 

to reproduce this data using molecular dynamics and have analysed their simulation 

results to show the intermolecular structure in the liquids. The work shows how the 

combination of molecular dynamics and neutron scattering can be a powerful tool in 

the analysing of liquid structure.
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Chapter Two

Neutron Diffraction

2.1 Introduction

Sources of reference for this chapter have been Dr. C. D. Hall's thesis [1], 

Chemical Applications o f Thermal Neutron Scattering by B. T. M. Willis (Oxford 

University Press)[2] and Neutron Scattering in Chemistry by G. E. Bacon 

(Butterworths)[3],

In 1932 Chadwick performed an experiment in which Beryllium interacted 

with alpha particles from natural Polonium. From this experiment he produced a low 

flux of a new particle, the neutron. Even though the flux from this experiment was 

low it was still sufficient to show, in 1936, that these neutrons could be diffracted by 

condensed materials. When the first nuclear-fission reactor CPI (Chicago Pile 1) was 

developed in 1942 the attainable neutron flux increased seven fold from that 

produced by Chadwick. Since then spallation sources, such as that at the Rutherford 

Appleton Laboratory, have been developed. These fire pulses of high energy protons 

at a target such as Uranium, to produce neutrons as well as other nuclear particles.
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2.2 The Theory of Neutron Scattering

2.2.1 The Neutron

The neutron is a subatomic particle with a mass of 1.675xl0'27 kg, and a spin 

of 1/2 with a magnetic dipole moment of 1.913 nuclear magnetons. The energy of 

neutrons can be categorised as three different types:

epithermal, wavelength < 1 A

thermal, wavelength between 1 A and 3.5 A

cold, wavelength > 3.5 A.

Reactor sources produce neutrons with energies in the thermal and cold 

regions, spallation sources also produce epithermal neutrons. Diffraction studies are 

mainly interested with neutrons that possess energy in the thermal range. These 

neutrons are good at elucidating the structure and dynamics of the condensed phase 

because.

1. thermal neutrons have wavelengths of the order of interatomic spacings in 

condensed materials;

2. the energy of thermal neutrons is of the order of the vibrational excitation 

energies in the material;

3. neutrons are uncharged and can penetrate deeply into bulk samples;

4. the neutron scattering process is dependent upon the nature of the target 

atom and varies for both the atomic mass and the atomic number;

5. interaction of the neutron’s magnetic moment with unpaired electrons in 

magnetic materials means that neutrons are good at probing magnetism.
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2.2.2 Elastic And Inelastic Scattering

Upon collision of a neutron with a target nucleus two processes can occur. 

Either the neutron will lose some of its energy to the nucleus, in which case the 

scattering is inelastic, or it will retain all of its energy, in which case the scattering is 

elastic. In all collisions both types of scattering occur, but each leads to different 

information about the target sample. Inelastic scattering gives information on the 

dynamic effects, such as vibrational states, diffusion and sound modes of the system, 

whereas elastic scattering leads to information on the shapes, bond distances and the 

intermolecular / interparticle spacing. Thus it is necessary, when considering an 

experiment, to design the conditions so that the undesired scattering event is 

minimised. In the processing of the experimental data the elastic scattering must be 

separated from the inelastic scattering.

The experiments performed during this project have been elastic scattering 

and so the theory of neutron scattering presented here will be limited to this type of 

scattering.

2.2.3 Coherent And Incoherent Scattering

As a neutron possesses spin it can interact with a target nucleus that also has 

a non-zero spin state. This means that it can either be scattered coherently or 

incoherently (regardless of whether the collision is elastic or inelastic). As the name 

implies, coherent scattering leads to information but incoherent scattering only leads 

to background 'noise’.

Non-spin nuclei scatter totally coherently, but when the nucleus possesses 

spin / it can interact with the neutron in one of two ways. A compound nucleus 

(nucleus + neutron) will take a spin of (/+1/2) when the spins are parallel (coherent),
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or 7-1/2), when the spins are anti-parallel (incoherent). It is not possible to predict 

which arrangement of spins will occur [4] however there is a probability of the 

compound nucleus being either coherent or incoherent

2.1

2.2

where p(w+) is the probability of spin being coherent and p(w.) is the probability of 

spin being coherent.

2.2.4 Basic Theory of Nuclear Scattering

Considering the particle-wave duality of neutrons it is possible to think of a 

beam of neutrons being represented by the plane wave exp(ik.r), where r is the 

position vector and k the wave vector. The magnitude of k is 27tIX, where X is the de 

Broglie wavelength. Since k is a vector and A, is a scalar, it is better to use the wave 

vector of the neutron beam in preference to its wavelength, k is related to the neutron 

velocity, vn by

where ti = h!2n and mn is the neutron mass. This gives the kinetic energy as

If this plane wave is incident on a particle fixed  at r' (see figure 2.1) then the 

scattered neutrons can be represented by a spherical wave emanating from the point 

with position vector r'.

hk = mnvn 2.3

2.4
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It is shown in standard text books [5] that the solution of the Schròdinger

wave equation:

- A -  V2u/(r) + K(r)M/(r) = £V(r)n

for a spherically symmetrical potential V(r) at large |r - r'| is

2.5

, ,  ilc.r 1 2/Wn
'v ( r ) = e  w i r

f e ik'.(r - r )

|r - r* F(r')vj/(r')dr' 2.6

with dr' being a small volume element.

Figure 2.1 Scattering of a plane wave by spherically symmetrical 

potential field, d il is a small solid element within which neutrons are 

counted (such as in a detector) and 26 is the angle that the neutron 

has been scattered from the original direction.
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The second term in equation 2.6 represents a superposition of all the spherical waves 

of wave vector k' scattered from a source of strength (2mn//i2)T(r')v|7(r') at r'. 

Putting the wave function y (r') in this term equal to that of the incident beam gives 

the first Bom approximation:

V|/(r) = eik-r 1 2 mn
47i h2

r  ik'.(r - r')
E_________ ik'-r
|r  - r'|

F (r ')d rf 2.7a

which on reduction yields

el(k' k,)'r V ir 'W  2.7br - r |

hence

\j/(r) -  Jk r  _ 1 2 mn 
4tu h2

, s ik r 1 2mn
v(r) = e 4V W

ĝ'k'*(R' + r*)

IR'I
¡(k-kOr* 2.7c

where r - r' has been replaced with R'.

If there are n0 neutrons incident on unit area in unit time, and if dQ is an element of 

solid angle in which the number of neutrons scattered from r ' is counted (such as a 

detector), then it would be expected that the number counted is proportional both to 

«o and to d i l  The factor of proportionality is called the Differential Scattering 

Cross-Section and is denoted da/d il In this case, the plane wave term exp(ik.r) is a 

representation of a wave of unit density and velocity tik/mn, so that n(] is tiklmn. The
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spherically-scattered wave,/exp(ik'' R')/ |R '|, represents a wave of density | / | 2//?'2 

and velocity tik'fmn, where the amplitude/is

/  = -
1 2 mn 

4n h2
j ’^k-k'Yr' V(rf)dr' 2.8

The number of scattered neutrons per second crossing the area IR' 12dH in the solid 

angle dii is

a i L m .
I R '! 2 rnn

I R' 12dQ 2.9

and so,

dCT= i  | / | 2
dO A'* IR1r \2 m r R f|2 _ k' 1

k 4ti
e ,<k-k'>r' iS k ,/(r-)dr-

h
2.10

The scattering is elastic for fixed nuclei so the scalar value of the momentum 

before and after is the same, i.e. Ikl - Ik'I. However as momentum is a vector 

quantity there is a change in momentum at collision. This change is represented by 

the Momentum Transfer Wave Vector, Q:

Q = k - k \  2 11

thus the differential scattering cross-section can be written as:

da
dQ 471 % V ( r ' ) d r ’

n
2.12

The equations 2.7c and 2.12 show that the amplitude of the scattering is 

proportional to the Fourier transform of the interaction potential between the neutron 

and the nucleus, V(r), just as in X-ray diffraction, the amplitude scattered coherently
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by a single atom is proportional to the Fourier transform of the charge density of the

atom.

2.2.5 Scattering from a single nucleus.

The scattering of a beam of neutrons from a single nucleus will depend on 

the interaction potential V(r) between the neutron and the atomic nucleus which are 

separated by a distance r. The detailed variation of this potential is unknown but it is 

extremely short ranged, and its value falls rapidly to zero outside a distance of the 

order of nuclear dimensions, i.e. greater than 10'14 m. Thus the range of the potential 

is much smaller than the wavelength of the neutron, which will be at the very least 

10'10 m. Due to this, the term exp(i(k-k').r') in equation 2.8 hardly deviates from 

unity before the scattering potential has declined to nothing. Hence the scattering 

amplitude is

nucleus

V(r) dr 2.14

which to a good approximation is independent of Q. The quantity - f  is called the 

Scattering Length of the nucleus, and is denoted by h. The scattering length is 

specific to the nucleus with a given proton number Z and neutron number N. This 

means that isotopes of the same element will have different scattering lengths. The 

most marked example of this is in the isotopes of hydrogen as can be seen in table 

2 . 1.
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b/1014 m

-0.374

2H 0.667

3h 0.47

Table 2.1 The scattering lengths of the isotopes of hydrogen.

The negative value for 'H signifies that there is a phase difference of 180° between 

the neutron wave scattered by the proton compared with waves scattered from other 

nuclides. If the phase of the scattered neutron from the majority of different nuclides 

is taken as positive then that for ‘H and a few others must be negative.

It is not possible to calculate b with any great accuracy so it has to be 

determined empirically by experiment. The value of b is dependent on two things, 

the physical size of the nucleus and the presence of resonance energy levels within 

the nucleus. These are related in Breit-Wigner formula in equation 2.15.

b = potential scattering + resonance scattering

1 r (r)J_ n
2 K

b = R + ----------- :—  2.15
[E-Er] + 2 iT

Where R is the nuclear radius, Tn(r) is the width of the nuclear resonance for re­

emission of a neutron, T is the total width of resonance, E is the energy of incident 

neutron, Er is the energy which would give resonance and k = 2n/X is the wave 

number of the neutron. From this formula it is apparent that b is generally a complex 

quantity with real and imaginary parts. However the imaginary part is only important
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for the few cases where the nuclei have resonances close to thermal energy, for 

example mCd and 149Sm. For the more common case of a remote resonance, the 

effect of the imaginary part is to make the value of b either larger or smaller than the 

potential scattering, R, and very slightly dependent on the neutron wavelength. If 

there are no resonance effects in the nuclei then the above equation indicates that b 

should equal the nuclear radius. If this is the case then, provided that the nuclear 

material is of effectively constant density, b should increase as the cube root of the 

mass number of the nucleus, A.

If, in its naturally occurring state, an element is present as several different 

isotopes, such as is the case for nickel, the effective value of b, or b , will be the 

average value of b among the isotopes, with each isotope weighted according to its 

relative abundance. Hence

b = L(»yb,) 2.16
r

where wr is the fractional abundance of the rth isotope and br is the scattering length 

of the r,h isotope.

Earlier it was described how the interaction of the neutron with a nucleus 

possessing spin produced two possible compound nuclei, (1+1/2, 1-1/2). The energy 

levels of the two possibilities will be different and, if resonance effects are 

significant, this will result in a difference between the two values of b. The symbol 

b+ denotes the scattering length when the spins of the neutron and nucleus are 

coherent (1+1/2), and b. when they are incoherent (1-1/2). Thus these spin effects 

must also be considered in the calculation of the average scattering length b .
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The differential scattering cross-section is isotropic for a single nucleus 

because b is independent of Q. The total cross-section is immediately given by 

integrating over all solid angles,

Ĉtot
"da

„ dQ dQ = 4jcb2 2.17

There are various tables available that list the scattering cross-sections for the 

nuclides [6], It should be noted that in neutron scattering studies samples of 

macroscopic dimensions are used, so that the relevant cross-sections are usually the 

bound atom values as discussed above.

In the above discussion it was assumed that the scattering atom was fixed at 

r', but for the free-atom treatment it is necessary to use centre of mass co-ordinates, 

replacing mn in the Scroedinger wave equation (equation 2.5) by the reduced mass

f  A '
vA+ly 2.18

where A is the ratio of the nuclear and neutron masses. The free-atom scattering 

length, a, is related to the bound-atom scattering length, b, by

'A + 0
b =

v A
a . 2.19

2.2.6 Scattering From Many Nuclei

br is the amplitude of the neutron scattered by a single nucleus at a position with 

position vector r. The subscript r is used because the scattering length, 5, varies 

irregularly from isotope to isotope, and from one nucleus to another of the same 

isotope if there is non-zero nuclear spin. The phase of the scattered neutrons is elQ r,
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so that the differential scattering cross-section for an assembly of many nuclei, all 

assumed to be stationary, is

da
dQ 2 b r exp[iQ*r] = £ b rtv  exp[iQ*(r-r')] = ][X  + Z  b ^  exp[iQ-(r-r')]

r,r' r r # r'

2.20
where r' indicates the position vector of another nucleus in the sample. The first 

term in equation 2.20 is N(b^ ), where N is the number of nuclei and the brackets <) 

denote the average value. If there is no correlation between bT and br> and so 

(6,2v) = (br)(br>) = (br)2, and the second term can be written

N<£r>2S exP[iQ,(r-r/)] = -N{br)2 + A^r^Sexp^CHr-r')] 2.21
r*r

where r = r' has been restored in the summation. Thus finally

da
d n N{{br2) - (br)2) + N(brf Xexp[iQ-r] 2.22

The term N((br2) - (br)2) in equation 2.22 can also be written as N((b2 - (br) f ). This 

indicates that it depends on the mean-square deviation of the scattering lengths from 

their average value. It is referred to as the incoherent scattering cross-section, and is 

zero for nuclides of zero spin (e g. 12C, !60). Both elastic and inelastic contributions 

to the cross-section are attenuated by the Debye-Waller factor, which arises because 

interference effects between different atoms on different sites are smoothed out by 

thermal vibrations. If the effect of the Debye-Waller factor is ignored, that is to 

continue with the approximation of static nuclei, then the incoherent elastic 

scattering is isotropic and gives a uniform background to the coherent scattering, 

represented by the remaining term,
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N{b)2 £ e x p ( i Q - r )  2 , 2.23
r

in equation 2.22. As can be seen, the coherent scattering cross-section takes into 

account interference effects, arising from the relative displacements of the nuclei in 

the assembly. The incoherent scattering cross-section has no phase term and so leads 

to no information on the structure of the sample.

In a neutron scattering experiment it is necessary to remove the incoherent 

scattering from the data. Hydrogen, however, exhibits incoherent scattering that is 40 

times its coherent scattering. This leads to problems in its data reduction and 

hydrogenated species need to have data collected over a long period in order to gain 

sufficient information to analyse.

Returning to equation 2.20 the differential scattering cross-section can also 

be written as

Here the first term is the self scattering term, and the second the interference 

scattering term. The summation in the interference term is related to the Structure 

Factor, S(Q), by

It is this structure factor that is obtained from a neutron scattering experiment. This 

is related to the pair distribution function, g(r), via a Fourier transform

2.24

2 ]exp[iQ-(r-r')] = s(Q) - 1 . 2.25

1 00
g ( r ) = 1 + 2 ^ ;  s q w q ) - 1 >sin(2-'-) dQ  ’ 2.26
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where p is the number density of the sample. Conversely the pair distribution 

function can be converted to the structure factor by a Fourier transform:

S (0 ) =  1 +  J{ g (r)  - 1 }rsm(Q.r) d r  2.27
^  0

2.3 Applying Neutron Scattering Theory to Experiment.

In a conventional neutron diffraction experiment, a constant beam of 

neutrons from a fusion source, is monochromated, collimated, and then fired at the 

target. The scattering of the neutrons from the target is spherical over a wide range of 

directions that are defined by the angles 0 and <(>. If the scatterer is isotropic, the 

intensity of the scattered neutrons is independent of <|> and hence a detector need only 

scan through one plane of 0 to obtain a complete description of the scattering [7,8] . 

However, the process of monochromating the beam results in a reduction of the 

neutron flux. This reduction means that the experiments must run for a long time to 

acquire good statistics, unless there is a large detector area.

An alternative approach is the Pulsed Time of Flight experiment in which a 

‘white’ collimated beam of thermal neutrons is fired at the target in pulses lasting At 

(At is typically less than lps), every 1/n seconds (n is in the range 25-50) (see figure 

2.2). A bank of detectors is fixed at a distance L away from the target, the detectors 

being placed at various angles 20. The number of neutrons, 1(0,t), and their time of 

arrival, t, at the detector are measured.

39



Figure 2.2 The scattering of incident neutrons by the target A. 

Neutrons are counted in the detector, B, which has a small solid 

detector angle dQ. 26 is the angle of scattering for the neutron.

From either of these methods it is possible to obtain the momentum transfer 

wavevector, Q, defined earlier as the change in momentum that has been transferred 

out of the z-direction into the (0,<j>) plane upon collision (see figure 2.3).
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Figure 2.3 The momentum transfer wavevector, Q.

Q=ko-ki

In an elastic scattering event the magnitude of ko and k, are the same, hence 

the magnitude of Q is given by :

Q = 2kosin0 2.28

, 27C
ko = rA,o

2.29

47tsin0

/C ii

o 2.30

where X0 is the wavelength of the incident neutron.

In an experiment the intensity of the scattered neutrons in a particular 

direction is measured and this gives the function I(Q). In the conventional 

experiment, A,0 is known, I(Q) = 1(0,()>), (1(9,<j>) = 1(0)) and Q is calculated by equation 

2.30 over the angle range. In the Time-of-Flight experiment I(Q) = I(t) at each angle. 

X is calculated for each time, t ,using the wavelength-time conversion,



where L is the distance from target to detector, m is the mass of a neutron and h is 

Planck’s constant. Q can then be calculated using equation 2.30. During a neutron 

diffraction experiment, the scattered neutrons are counted without analysing their 

energy and the result is the Differential Cross-Section. The differential cross-section 

of the scattered neutrons, at a detector positioned at angles (0,(J>) is defined by:

da _  KQ)
dQ N'P(Q)dQ 2.32

Where dcr/di2 is the differential cross-section, N is the number of scattering units, 

and NP(Q) is the incident neutron flux. The differential cross-section is the 

probability of a scattering event occurring at a chosen angle and is only dependent on 

Q; if the flux doubles then the intensity doubles and da/dD stays constant.

Since from equation 2.24 and 2.25

^  = A'<6r>2 + V<*r)2 {S(Q)-1}

it can be seen that the structure factor can be obtained readily from the experiment 

by removing the self-scattering from the data and dividing by N(bR)2.

2.4 Obtaining The Pair Distribution Function

As seen in equation 2.26 the pair distribution function is related to the structure 

factor via a Fourier transform. However, because the data from the experiment is 

available only over a finite range of Q, it is not possible to perform the integration to 

infinity, and the solution will contain periodic oscillations or ‘ringing’. Although it is 

possible to damp these oscillations by introducing a window function, a better 

approach to obtaining the pair distribution function was proposed by Soper [9] and 

referred to as the Minimum Information method.
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The basic principle behind the Minimum Information method is to produce 

the smoothest pair distribution function consistent with the experimental data. 

Rather than transform the S(Q) into a pair distribution function, a pair distribution 

function is produced and then converted into an S(Q) via a Fourier transform and 

compared to the experimental data. This avoids the problem of cut-offs in the 

Fourier transform, and hence ringing. Peaks and troughs are introduced into the pair 

distribution function at random and the moves are accepted based on two criteria:

1. The change in the pair distribution function increases the agreement to the 

experimental data.

2. The change in the pair distribution function reduces the amount of ‘noise’ 

in the pair distribution function.

Here the definition of noise is the number of turning points in the pair distribution 

function. If the criteria are balanced correctly then the pair distribution function 

produced will have the minimum number of peaks that are consistent with the data. 

Thus spurious peaks in the pair distribution function that have no physical meaning 

will be avoided.

2.5 Conclusions

From the information presented in this chapter it is possible to conclude that 

elastic neutron scattering is a powerful technique for gaining experimental 

information on the structure of solids and liquids. As can be seen, not only is it 

possible to derive a pair distribution function for the sample in question, but also, 

because of the dependence of b on the scattering nucleus, it can utilise isotopic 

substitution where possible to gain a greater understanding of the orientation of the 

molecules.
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Chapter Three

Computer Simulation

3.1 Introduction

Sources of reference for this chapter have been the thesis of C. D. HaII[I], 

Computer Simulation o f Liquids by M. P. Allen and D. J. Tildesley [2] (Clarendon 

Press), the manual for MDMPOL [4], and Theory o f Simple Liquids by J. P. Hansen 

and I. R. McDonald [3] (Academic Press). This chapter should be seen as an 

introduction to the subject of computer simulation and for a more in-depth study it is 

recommended to read the book Computer Simulation o f Liquids.

Neutron diffraction provides information about the total distribution of atoms 

in a liquid, however, for polyatomic molecules, this information is not enough to 

provide a full analysis of the intermolecular structure, i.e. how the molecules are 

orientated towards each other. What is needed for a full analysis is to separate the 

total pair distribution function into the distribution functions for individual pairs of 

atoms, or its partial pair distribution functions. This information can sometimes be 

obtained by performing neutron diffraction experiments on isotopically substituted 

liquids, such as replacing hydrogen with deuterium, however frequently this method 

is not an option. A more general approach is needed to obtain this information. One 

method is to try to reproduce the neutron data by simulating the liquid on a computer 

and then use the computer results to analyse fully the structure of the liquid. This 

project has utilised molecular dynamics in order to be able to do this.
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Initially a modified version of the CCP5 library program, MDMPOL [4] was 

used to simulate the systems of interest. However in the second year of the project 

this was changed to using the new molecular dynamics simulation program in the 

CCP5 library, DLPOLY [5]

3.2 Molecular Dynamics Simulations

Molecular dynamics is a method by which a system is simulated by solving 

the classical equations of motion. At each step in the simulation the equations of 

motion are solved for every atom / molecule in the system. The advantages of using 

this method is that the thermodynamics of the system can be reproduced as well as 

the liquid structure, providing a method to obtain a unique solution to the problem. 

Also, the information obtained can be used to predict other properties of the liquid. 

The disadvantage of this method is that, owing to the large number of calculations 

performed at every time step, the method is computationally very expensive and only 

small systems can be investigated at this current time.

3.2.1 Classical Liquids

Molecular dynamics utilises the principles of classical physics in order to 

simulate the motion of the atoms. However, because the systems examined are of a 

micro scale, and not a macro scale, it is necessary to validate the use of classical 

physics as opposed to quantum physics. Consider the de Broglie thermal wavelength

A:

A =
2tt p r

m 3.1
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where m is the mass of the atom, kb is Boltzmann’s constant and T is the 

temperature. To justify a classical treatment of static properties it is necessary that:

— « T  £7« p'3 3.2

where p is the density of the liquid. For molecules it is required, in addition, that:

h 2
© r o t « T  © rot -  3 . 3

where 0 rot is the characteristic rotational temperature and /  is the moment of inertia 

for the molecule.

Using the classical approximation means that the problem is simplified as the 

contributions to thermal motion can be separated from those due to interactions 

between particles.

A major obstacle to the development of an accurate theory of liquids is that 

there is no idealised model (such as with a perfect gas and harmonic solid) which 

can be treated exactly. The method that has been widely adopted in the past is to 

treat the liquid state as an intermediate between the gaseous and solid states, but this 

is unsatisfactory from a theoretical point of view as it does not take into proper 

account the geometrical factors. For example, lattice theories tend to overemphasise 

the solid-like character of the liquids, whereas expansions in powers of density are 

essentially theories of the imperfect gas and cannot be expected to perform well 

under triple point conditions. It is better to treat the problem of the liquid state 

without leaning too heavily on concepts taken over from the theories of dilute gases 

or solids.
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3.2.2 Intermolecular Forces

Consider two atoms, for example Argon, at an infinite distance apart, then 

the energy of the system, Es(oo), is the sum of the energies of the individual atoms, 

E,+E2. This is because the two atoms do not interact and so the main contribution to 

Ei and E2 is the translational kinetic energy of atoms 1 and 2. If the atoms are now 

brought towards each other there will be an interaction, U, between them. This 

interaction is dependent upon the distance they are apart, r. The system energy, Es(r) 

is now:

Es(r) = Ei + E2 + U(r) 3.4

U{r) is the intermolecular pair potential energy function, more commonly referred to 

as the Pair Potential, between the two atoms. It can be thought of as the work 

required to bring the two atoms together from infinity to a separation r. Taking F(r) 

to be the force acting between the atoms at separation r then:

U(r) = fF (r) dr 3.5
r

F(r) is by convention taken to be positive when repulsive and negative when 

attractive. The general form of U(r) and F{r) are shown in figure 3.1. For both 

functions there is a repulsive wall at short range and an attractive tail at long range. 

At req the potential energy, I7(req), is at a minimum, -e, and the force acting between 

the atoms, F(req) = 0. req is the interatomic separation where the attractive and 

repulsive forces between the two atoms are in equilibrium and hence is the favoured 

separation of the two atoms, e is known as the well depth. At a distance 

r = a, the potential energy (/(a) = 0. This distance a  is roughly equal to the sum of 

the atomic radii of the interacting atoms.
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Figure 3.1 Diagram of Force ( F(r)) vs. separation ( r ) (a) and 

interatomic potential ( U(r)) vs. separation (b).

The harsh repulsive wall in the pair potential gives rise to the short range 

order that is displayed in liquids. This repulsion is created by the overlap of the 

outer-electron shells which produce a reduction in electron density in this overlap 

region because of the Pauli Exclusion Principle. The reduction in electron density

49
L i V t  - •



reduces the masking of the positive charge at the nuclei and hence a repulsive force 

acts between them. The range of the repulsive force is roughly equal to the nearest- 

neighbour separation.

The attractive forces that act at longer range vary much more smoothly with 

distance and play only a minor role in determining the structure of the liquid. They 

provide instead an essentially uniform attractive background which creates the 

cohesive energy required to stabilise the liquid.

For a system with N  atoms the form of the potential energy is much more 

complicated. The system energy is the sum of the kinetic energies ( IE V) of all the 

atoms plus the sum of all the potential energies between all the atoms in the system. 

That is

ESW  = S E a, + X +  Z E  'LUi(rl,r„ri) + ... 3.6

Where U2{rx, r is the potential energy due to two-body interactions, is the

three-body term etc.

Es(a-) = I £ n + U(rhrprk,...) 3.7

Consider, as an example of the higher order terms in this equation, the three Argon 

atoms:
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The potential U(ri2,r23,r3i), where is the distance between atom x and atom y, is 

not the straight addition of the pair potentials U(r/2), U{r23), U(r3!), but also has an 

extra term included U3(rI2,r23,r3!) which arises from the non-additivity of the 

potential, i.e.:

Es{r) = HEn + U{r,2) + U{r23) + U(r31) + U3{ri2,r23,r3,) 3.8

E3(rj2,r23,r3I) may be written [6]

U3(ri2,r23,r3i) = v(r]2,r23,r3iy3( 3cos6>iCOS^cos6^ + 1 ) 3.9

where 0\, Oi, fy, are the angles of the triangle formed by the atoms and v is the three- 

body co-efficient. This is a small, but significant, contribution to Es(r)

3.2.2.1 Modelling the Pair Potential

In order to calculate the forces acting on the atoms in the simulation it is 

necessary to model the forces that act between the molecules. An effective pair 

potential is usually used to reduce the complexity of the calculations. The simplest 

model for the pair potential is that for a hard sphere (see figure 3.3). This model has
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the potential equal to zero at all r > a, which is the hard sphere radius, and equal to 

infinity at distances r < a

Figure 3.3 Pair potential of hard sphere model. 

U(r) = oo r < a, U(r) = 0 r > a

This simple model is ideal for studying phenomena where the hard core of the 

potential is dominant. Hard sphere models used in computer simulations (for 

example [7, 8, 9,] ) have shown very clearly that the structure of a hard sphere fluid 

does not differ in any significant way from that corresponding to more complicated 

interatomic potentials, at least near crystallisation. However, the hard sphere model 

has no attractive forces between the atoms and hence, although it does undergo a 

freezing transition, it does not have a true liquid phase. A simple model that can 

describe a true liquid phase is given by adding a square attraction well to the hard 

sphere potential, (see figure 3.4)
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Figure 3.4 Pair potential of square well model. U(r) = qo r < a,

U(r) = -8 a < r < ya, (J(r) = 0 r > ya

Both of these potentials, whilst being simple, suffer the problem that they are 

unrealistic and are discontinuous. A more realistic potential for neutral atoms can be 

constructed using detailed quantum-mechanical calculations. At large separations the 

dominant contribution to the pair potential comes from the multipole dispersion 

forces that arise from the instantaneous electric moments in one atom inducing 

electric moments in another. These moments arise from fluctuations in the 

distribution of electrons around the nucleus. All the terms of the multipole series 

represent attractive contributions to the potential. The leading term, which is the 

most dominant, varies as r 6 and describes the dipole - dipole interactions. Higher 

order terms represent dipole - quadrupole ( r 8), quadrupole - quadrupole ( r 10) 

interactions, and so on. However these higher order terms are small in comparison 

with the leading term.

The short range repulsive interaction is much more difficult to represent. 

Various potentials represent it either as an inverse power law, such as r 12 in the 

Lennard-Jones potential, or as an exponential function, such as e(r/p) in the 

Buckingham potential. (This latter approximation must be supplemented by
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requiring that for r  less than some arbitrary value U ( r )  —> o o .)  The behaviour of l l ( r )  

in the two limiting cases r  —> 0 and r  —> <x> can be represented in a simple potential 

function of the form:

U(r) = 4s ' a Y2
iaO

i - f 3.10

where a  is the collision diameter (i.e. the separation of the particles when U{r) = 0) 

and e is the depth of the potential well at the minimum in U(r). This is the Lennard- 

Jones potential (see figure 3.5)

The Lennard-Jones potential provides a fair description of the interaction between 

pairs of rare-gas atoms and quasispherical molecules such as CH4.

All the above potentials refer to an isolated pair of atoms or quasispherical 

molecules. As indicated before, the use of such pair potentials in the simulation of 

multi-body systems involves the neglect of many bodied interactions, an
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approximation that cannot wholly be justified. Estimates of the magnitudes of the 

leading, triple-dipole, three body contribution have been made for inert gases in their 

solid-state face centred cubic lattices [10,11], It is found that up to 10 per cent of the 

lattice energy of argon (and more in the case of more polarizable species) may be 

due to these non-additive terms in the potential and it can be expected that the same 

order of magnitude holds in the liquid phase. However four-body terms (and higher) 

are expected to be small in comparison to the two- and three-body terms. The 

calculation of the three-body term in a computer simulation is very time consuming 

and is rarely used. [12,13] Maitland and Smith developed a potential [14] that took 

into account a large amount of experimental data, including molecular beam 

scattering, spectroscopy of the argon dimer, inversion of the temperature-dependence 

of the second virial coefficient, and solid-state properties, together with theoretical 

calculations of the long range contributions. This showed that the argon potential is 

not of the Lennard-Jones form, but has a deeper bowl and weaker tail. The pairwise 

approximation can still give a remarkably good description of liquid properties 

because the average three-body effects can be partially included by defining an 

'effective' pair potential.

The description of the interaction between two molecules is a more difficult 

problem than for spherical particles because the pair potential is a function of both 

the separation of the molecules and of their mutual orientation. For a system of N 

molecules, the analysis involves:

1) establishing the intermolecular effective-pair potential between every atom on 

every molecule

2) allowing for the free rotation of the molecules (energy = RE)
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3) estimating the vibration of the atoms in the molecules (energy = VE). 

For example, consider two diatomic molecules of HC1:

There are four atom-atom pairwise interactions. The energy of a molecular system 

(ignoring the orientational effects) is:

EAr) = 'LTE + Y fiE  + 'LVE + 'L'LUAr»b) 3.11 

where TE is the translational kinetic energy, is shorthand for ria - rjh, where ia is 

atom / of molecule a and j b is atom j  of molecule b, and U(r) = Z Z U a t> ( r a b )  >s the 

effective pair-potential.

For a molecule such as CHF3 there are twenty-five two body potentials to 

consider. The simulations of such liquids are frequently simplified by making the 

intramolecular structure rigid in order to avoid calculating the vibrational or internal- 

rotational energies.

A vast percentage of the computing time necessary for the simulation is spent 

calculating the forces between pairs of atoms. In order to reduce this time, use is 

made of a cut-off sphere, with the cut-off radius being less than half the length of the 

molecular dynamics cell. Together with the cut-off radius, use is made of neighbour 

tables. Although there are different schemes available the basic idea is very simple. 

In computing the total force acting on particle /, the loop on j  is restricted to those 

particles that, from calculations from earlier timesteps, are known to be relatively
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close neighbours of /, with all due allowance being made for the minimum image 

convention (see later). The necessary information is contained in tables that for each 

/, list the neighbours j  such that rtJ < rc + A. The quantity A corresponds to a thin shell 

that covers the cut-off sphere. The tables must be updated at intervals determined by 

the choice of A. If efficient use is made of the tables, then taking N  to be the number 

of atoms in the molecular dynamics box, the number of pair separations that must be 

calculated at each timestep is reduced from Vi (N)(N-\) to, N times the number of 

entries in the neighbour list of a typical particle. This in turn makes the computing 

time required per step a linear rather than a quadratic function of N.

3.2.3 Equations of motion for atomic systems

As previously stated, molecular dynamics involves the solution of the 

classical equations of motion for all the particles in the system of interest. Although 

the technical details of simulating a model with discontinuous potentials and purely 

impulsive forces, such as the hard sphere potential, differ from those appropriate to 

models with continuous potentials, nevertheless they are a good starting point in the 

discussion of molecular dynamics.

The motion of hard spheres is unusual in the respect that the velocities of the 

particles only change at collisions, and remain constant in-between. The time- 

evolution of such a system can therefore be treated as a sequence of strictly binary, 

elastic collisions. The laws of Conservation of Energy and Momentum apply as the 

particles possess mass. Taking vi, v2 to be the velocities of the two spheres before 

the collision, and v / ,  v2* to be the velocities of the two spheres after the collision, 

then the conservation of energy and momentum can be written as:
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Energy 3.12v i ? + i v 2y = i v i i 2 +i v, i 2

* *

3.13Vi + v2 = Vi + v2 Momentum

Hence :

Avi =  Vj* - Vi

= -(V2* - V2)
Avj =  -Av2 3.14

The projection of the relative velocity onto the vector joining the centres is reversed 

in an elastic collision

but the orthogonal components are unaltered. Thus the change in velocity at a 

collision is:

where ¿>i2 = Vi2.r12 and d is the hard sphere diameter. The term on the right-hand side 

of equation 3.16 must be evaluated at contact.

The algorithm for the calculation of the trajectories consists of first 

advancing the co-ordinates of all the particles until a collision occurs somewhere in 

the system, and then calculating the change in velocities of the colliding particles 

according to the above equations. The procedure is then repeated for as many

Vi2*.ri2 = (v2*-vi*). (r2 -ri)
= -(V2 - Vi). (r2 - rO
=  -v u .ru 3.15

Avi = -A v2

3.16
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collisions as are necessary to yield sufficient statistical reliability for the problem in 

hand. Since these equations are exact, it follows that the trajectories of the particles 

can be computed with a precision limited only by round off errors. As the kinetic 

energy is a conserved quantity, the temperature of the system stays rigorously 

constant.

When the potentials are continuous, the trajectories of the particles, unlike 

those of hard spheres, can no longer be calculated exactly. Consider the case of 

spherically symmetric potentials, the equations of motion are now the 3N coupled, 

second order, differential equations :

mr,(t) = -ViVn(rN) 3.17
where r, (/) are the co-ordinates of particle i at time t. These equations must be 

solved numerically by finite difference methods, which lead unavoidably to errors in 

the predicted trajectories of the particles. However it is rarely necessary to use an 

elaborate algorithm to obtain solutions.

Given that the co-ordinates of a particle i at time t are r, (/) then the co­

ordinates at time t ± h can be found from a Taylor expansion about r, (/):

h n
r, (t ±h)  = r, (/) ± h mrtii) + ŷ mr,(t) ± :yy mr, (/) + ct (h ) 3.18

The central difference prediction for r,{t + h) is obtained by adding the two 

expressions in equation 3.18 to give:

h 1
rit  + h) * - rit - h) + 2/•,-(/) + — F,(/) 3.19

where F,{t) is the total force acting on particle i at time /; in general F,{t) is 

calculated as a sum of pair forces Fy{/), with F^t) = - Fj,{t). The error of the
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predicted co-ordinates is of the order h4. Subtraction of the two expressions in 

equation 3.18 yields an estimate for the velocity of the particle / at time t.

n  (t) «  Yh + h} ' ^  3 20

The error here is of the order h2. Verlet [15] was the first to use the central difference 

algorithm and it has been the commonest choice of most later workers. The timestep, 

h, is taken as being constant. This is quite a strong contrast to the case for the hard 

spheres where the analogue of h, the time between successive calculations (or the 

time between collisions), is a quantity that varies throughout the calculation. The 

length of h is extremely important as this affects the stability of the algorithm. If h is 

too large then the fluctuations in the energy of the system will increase and 

eventually an upward drift will occur. However, too small a value of h means that the 

number of timesteps needed to obtain good statistical results spirals upwards to 

unwieldy amounts. A good compromise is a value that is an order of magnitude 

smaller than the mean collision time.

Despite its simplicity, the central-difference algorithm is apparently as stable 

as a variety of higher-order schemes [11,16,17] that have been proposed, including a 

number of so-called predictor-corrector methods.[18,19] On the other hand, higher- 

order algorithms are sometimes useful in obtaining estimates for the particle 

velocities that improve on the approximation in equation 3.19. At the start of a 

molecular dynamics simulation the particles are placed at arbitrarily chosen sites 

r,{0). A corresponding set of co-ordinates at an earlier time r,{-h) is then typically 

obtained by allocating, to the particles, random velocities drawn from a Maxwell- 

Boltzmann distribution appropriate to the temperature of interest. The velocities are 

chosen such that the net linear momentum is zero. The rest of the calculation is
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performed as a loop over time. At each step the time is increased by h, the total force 

acting on each particle is computed, and the particles are advanced to their new 

positions. In the initial few steps of the simulation the temperature tends to drift from 

the value at which it was originally set. This is because the initial configuration 

usually has too high a potential energy and, as the simulation is advanced, this 

potential energy is converted to kinetic energy thus raising the temperature. Hence it 

is necessary, in the early stages, to occasionally rescale the velocities to bring the 

temperature back to the desired value. Once the temperature has stabilised (a period 

referred to as the Equilibration Period), the system is allowed to evolve undisturbed, 

with both potential and kinetic energies fluctuating around steady mean values.

3.2.3.1 Equations of motion for molecular systems

The above methods are easily extended to molecular systems if the molecules 

are treated as consisting of independent atoms bound together by continuous 

intramolecular forces. However this is not a very good way to proceed. Apart from 

the problem of treating the vibrational motion classically, the choice of timestep is 

dictated by the timescale of the vibrations rather than the slower, but more 

interesting translational and rotational motions. This would mean that the number of 

timesteps needed to allow the system to evolve sufficiently would have to be much 

greater, making the computational time for a simulation extremely long. In general, 

therefore, it is much more economic to work with rigid molecules, even though the 

dynamical problem is much more difficult. The conventional approach to the 

solution of the equations of motion of a rigid body involves the separation of the 

internal and centre-of-mass co-ordinates. Consider a linear molecule with centre of
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mass co-ordinates r, and polar angles ( 6it </>,) relative to a laboratory-fixed frame of 

reference. In terms of these co-ordinates the equations of motion of the molecule are:

r, = ~ ' Fj ' m 3.21

N

6{ = sin#, cosdiif)? - j  3.22

.M

(j), = -IcoiOjOi (f>r

j* i

3.23

where m is the molecular mass and / the moment of inertia. The angular derivatives 

of the pair potential U(ij) are related to the torque acting on the molecule [20]. The 

motion of the centre-of-mass can be handled by the same central-difference 

algorithm that is used in the atomic case. The problem lies in obtaining solutions to 

the coupled rotational equations 3.21 and 3.23 because 3.23 has a singularity when 

sin6} = 0. This problem can be overcome by redefining the laboratory frame 

whenever the singularity is approached.

The most recent and successful method for dealing with the rotational motion 

of rigid molecules involves the use of quaternion parameters [21], Evans recognised 

the fact that singularity-free equations could not be obtained using just three 

independent variables and so suggested the use of four quaternion parameters as 

generalised co-ordinates. These quaternions have the property of having well- 

behaved equations of motion. The four quaternions are linked by one algebraic 

equation, so that there is only one ‘redundant’ variable.

A quaternion Q is a set of four scalar quantities
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Q = (<7o, q i, <72,#0 3.24

and it is often useful to think of the last three elements (q\,qi,q?) as constituting a

vector. The quaternions satisfy the constraint

<7o + <7i +  <h +  <73 ~ 1 3.25

The way in which such a quaternion may represent the orientation of a rigid body is 

discussed by Goldstein [22]. The four scalar quantities are defined in terms of the 

Euler angles 0, <(>, \\j which are defined in Figure 3.7.

Using this convention, it is most convenient to define the scalars as

q{) = cos!/2^ cos‘/ 2 (^+  y/)

<7i = sinVidQOsVi(<j) - y/) 

q 2 = s i n ' / ^ s i n ' / ^ -  y/)

<73 = cos V2 9  sin Vi{ <f>+ y/) 3.26

Using this definition the rotation matrix is

A =
rq l  + <71 - <72 - <73 2(^ i<72 + <7^3) 

2(<7i<72 - M 3) <7o - <71 + <72 - <73 
V 2(<7iqr3 + <7<y72) 2(qr2qr3 - q^q{)

2(<7i<73 - <70^2) ^
2(?2<73 + M i )  2 2 2 2  

<7o -  <7i - <72 +  <73 /
3.27
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The quaternions for each molecule must satisfy the equations of motion

/  . -S f \ f  >
0o 0o - 0 , “ 02 -0 3 0

0, _ 1 0, 0 O “ 03 0 2
b

COr 3.28
“ 2 b

0 2 0 2 03 0o - 0 , (O y

,0y <0, “ 02 0, 0<v
b

\Q )J

where the equations for the components of co in the body-fixed frame are

• b _ j £ ,0)x -  r +
Jxx V l xx

f I  .  /  A
l W l zz h h I (Oy COzJ

• b __£L .COv -  r +iyy

• b _  I s _  ,0)z ~  T +
177

l ZZ l XX  h h
— J Oh Oh

V ly y

/r r  “ I vx x  ~ 1 y v  b bI Ofx (OyITTV 7 22
3.29

Where /„, lyy, Izz are the three principal moments of inertia and tx, ty, and tz are the 

components of the torque acting on the molecule. The superscript b indicates the 

body-fixed system. The equations of motion, equations 3.28 and 3.29, using the 

matrix A in equation 3.27 to transform between space-fixed and body-fixed co­

ordinates, contain no singularities. They are a system of first-order differential 

equations which may be solved by the Gear predictor-corrector method. [23,24]

3.2.4 The Periodic Boundary Condition and the Minimum Image 

Convention.

In order to simulate a liquid as realistically as possible with only N  particles 

use is made of the periodic boundary condition. The liquid is viewed as an infinite 

periodic assembly of cells (usually cubic in shape), referred to as the molecular
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dynamics cell, each of which contains N  particles. The contents and dynamics within 

each cell are identical at any given instant in time and within this constraint the 

particles are free to move from cell to cell. Particles leaving a cell are replaced by 

identical particles with identical dynamical properties (see figure 3.8) entering the 

opposite face. Thus the periodic boundary condition enables the simulation of a 

pseudo-infinite liquid that is free of surface effects and requires only the study of a 

single cell and its contents.
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Figure 3.8 Array of repeated molecular dynamic cells in the 

_____________periodic boundary condition._____________

If the periodic boundary condition is being implemented then it is also 

necessary to use the minimum image convention. This decrees that the interaction 

between pairs of particles in the molecular dynamics cell is replaced by the 

interaction between the closest images of particles in the three dimensional periodic 

system (see figure 3.9)
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Figure 3.9 Diagram of the minimum image convention.

From figure 3.9 it can be seen that the interactions between particle A and particles 

B, C, D are replaced with the ‘nearest image’ interactions, i.e. A with B’, C , D’. The 

circle shown represents the interactions truncation radius, that is the cut-off radius. 

This requires for consistency, and to prevent the introduction of artificial correlations 

into the system, that the force law employed be truncated to zero value at a particle 

separation no greater than half the width of the molecular dynamics cell. However in 

a system where long range forces are evident, the minimum image convention must 

be abandoned for these forces.

3.2.5 The Fractional Charge Model

Many molecules, whilst being electrically neutral, contain an uneven 

distribution in the electron cloud giving rise to dipoles, quadrupoles etc. In order to 

simulate these materials some method is needed to represent the coulombic forces 

due to these partial charges in the simulation. This involves two problems.

1) Some reasonable representation of the electrostatic multipole associated with 

each molecule must be found.
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2) Some means of summing the long range influences on each molecule is needed, 

since these influences extend beyond the domain of a single molecular dynamics 

cell and its immediate neighbours.

The simplest solution to the first requirement is to place, at each Lennard-Jones site, 

(usually the atomic centres of the constituent atoms in the molecule), a small charge 

such that the sum of all the charges on the molecule comes to zero. This is referred 

to as the fractional charge model. The charges should be chosen to give some 

representation of the electronic distribution on the molecule. This distribution can be 

found by performing ab initio molecular orbital calculations on the molecule, and 

then a Mulliken population analysis. However it must be noted that such calculations 

are performed on an isolated molecule. In a liquid the presence of other charged 

atoms close by will influence the electronic distribution. Also, these charges are 

really a condensation of the multipoles onto each atomic site and take no account of 

the actual distribution of charge across each individual atom. Taking both these 

points into consideration, the charges obtained from a Mulliken population analysis 

should only be seen as a guide, it is preferable to consider the charges to be 

quantities that can be varied in order to fit experimental data. From experience we 

have found that the final charges on each atom are substantially less than that given 

by the population analysis.

A better method for representing this charge distribution is to use some 

method to describe the multipoles within the molecule. This could be done by 

including point multipole moments at the centre of charges [25], These multipoles 

can either be equal to the known values calculated on an isolated molecule, or 

'effective' values chosen to reproduce the experimental data and liquid structure. 

However such a multipole expansion is not rapidly convergent. An alternative for
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ionic and polar systems, is to use a set of fictitious 'partial charges' that are 

distributed about the molecule in a 'physically reasonable way' so as to reproduce the 

known multipole moments [26]. A further improvement on this is to distribute 

fictitious multipoles in a similar way [27], However the coding to include these in 

the molecular dynamics routines that have been used in this project was still under 

development and so unavailable.

The second requirement is difficult to tackle. A brute force solution would be 

to increase the size of the molecular dynamics cell to hundreds of nanometers in 

length so that the screening by neighbours would diminish the effective range of the 

potential. However this solution is impracticable as the time required to perform the 

simulation, with no use of neighbourhood tables, is approximately proportional to Nl 

ie. to L6 where L is the cell box length. An alternative is spherical truncation of the 

potential, but again this is unworkable because the resulting sphere around a given 

ion could be charged, since the number of cations and anions need not balance at any 

one instant. The basic minimum image method corresponds to cutting off the 

potential at the surface of a cube surrounding the ion in question. This cube would be 

electrically neutral. However the drawback is that similarly charged ions will tend to 

occupy positions in opposite comers of the cube. This would mean that the periodic 

image structure will be imposed directly on to what should be an isotropic liquid 

which would lead to a distortion of the liquid structure.

There are two types method of dealing with these long range forces which 

use well-known ideas from the theory of electrostatics. These are the reaction field 

methods and the lattice methods, such as the Ewald sum. The former of these 

methods tends to overemphasise the continuum nature of a polar fluid and require an 

a priori estimate of the relative permittivity, whilst the latter tends to overemphasise
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the periodic nature of the model fluid. It is this latter method, in particularly the 

Ewald sum [28] that has been utilised in this project for dealing with the electrostatic 

forces. It should be noted, however, that the inherent assumption of long range 

periodicity is not valid in real liquids and the use of the Ewald sum is only justified 

as a means of obtaining some account of the long range electrostatic effects. 

'Computer Simulations o f Liquids'[2] provides a good account of the Ewald sum but 

below are the main points.

The potential energy due to the fractional charges can be written as

1 f  N  N
y zz = — £  X- i - j l r i i  + n -l

n Vi = 1 j = 1
3.30

where z\ and z} are the charges on atoms / and j  respectively, N is the number of 

atoms in the box, the sum over n is the sum over all simple cubic lattice points, 

n = (nxL, nyL, nzL) with nx, ny, nz integers and L is the box length. This vector 

represents the shape of the basic box. The prime indicates that i = y is omitted for 

n = 0. The factor 47iSo has been omitted in this equation for simplicity of notation, 

and this corresponds to a non-SI unit of charge. For long range potentials this sum is 

conditionally convergent, that is, the result depends on the order in which the terms 

are summed. If the boxes are summed in order of their proximity to the central box 

(i.e. the first term is jn| = 0, the second |n| = L, etc.), then as further terms are added, 

the system is developed into an infinite system of roughly spherical layers. When this 

approach is adopted, then the nature of the medium surrounding the sphere, 

particularly its relative permittivity, es, must be specified. This is because the results 

for a sphere surrounded by a good conductor, such as a metal (es = 00 ), and for a 

sphere surrounded by vacuum (ss = l ) are different [29]
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V a (ss = ° ° ) = V /-7(ss =\  ) -
2n

3 ? r ; 3.31

This equation applies in the limit of a very large sphere of boxes. In the vacuum, the 

sphere has a dipolar layer on its surface: the last term in equation 3.31 cancels this. 

For the sphere in a conductor there is no such layer.

At any point in a simulation, the distribution of charges in the central cell 

constitutes the unit cell for a neutral lattice which extends throughout space. In the 

Ewald method, each point charge is surrounded by a charge distribution of equal 

magnitude and opposite sign, which spreads out radially from the charge. This 

distribution is conveniently taken to be Gaussian

p,z (r) = z, k 3 exp( -k 2 r 1 )/7t3/2 3.32

where the arbitrary parameter k determines the width of the distribution, and r is the 

position relative to the centre of the distribution. This extra distribution acts like an 

ionic atmosphere, to screen the interaction between neighbouring charges. The 

screened interactions are now short-ranged, and the total screened potential is 

calculated by summing over all the molecules in the central cube and all their images 

in the real space lattice of image boxes.

A charge distribution of the same sign as the original charge, and the same 

shape as the original distribution p f  (r) is also added. This cancelling distribution 

reduces the potential to that due to the original set of charges. The cancelling 

distribution is summed in reciprocal space. The formula includes the interaction of 

the cancelling distribution centred at r, with itself, and this self term must be 

subtracted from the total. The final potential is
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3.33

Here erfc (*) is the complimentary error function

erfc (x) = 172 /  exp (-/ 2)d/ 
v 1 )  „

3.34

which falls to zero with increasing*. Thus is at is chosen to be large enough, the only 

term which contributes to the sum in real space is that with n = 0, and so the first 

term reduces to the normal minimum image convention. The second term is a sum 

over reciprocal vectors k = 27in / L1.

3.3 Calculating The Pair Distribution Function

'Computer Simulation o f Liquids' by Allen and Tildesley[2] provides a very 

good description of the pair distribution function and how to incorporate it into a 

molecular dynamics simulation. However the salient points are presented below.

Although the pair distribution function is a continuous function, an 

approximation can be made by using a binning method to calculate the probability 

function. Consider the simple case of Argon atoms in the liquid phase at any one 

instant, (figure 3.10)
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Figure 3.10 A two dimensional distribution of Argon atoms

The figure shows a distribution in two dimensions for simplicity but in reality

this would be a number of concentric spheres.

The g(r) is derived from this distribution in five steps:

1) One of the atoms is arbitrarily chosen and spheres of radius r are drawn around it 

in increments of dr (the binwidth of a histogram).

2) The number of atoms n(r) within the shells between each sphere (of thickness dr) 

is counted and placed in the histogram bins.

3) n(r) is divided by the number density, p, and the volume of the sphere, 47ir2dr.

4) Steps 1 - 3 are repeated for all other atoms adding the results into the appropriate 

bins.

5) The totals in the bins are divided by the total number of atoms N.

This is equivalent to using:
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3.35gO*) =
(n(r))

47ipr1 2d r

This procedure is repeated at every nth timestep to achieve a time averaged 

picture of the structure in a simulation run.

3.3.1 Partial Pair Distribution Functions

The total pair distribution function can be considered to be a sum of all the 

partial pair distribution functions. Consider the molecule CHF3, the number of 

individual interactions between the two molecules can be calculated as below.

C H F F F

c a P X X X

II P 8 e E £

F X £ ♦ + ♦
F X 8 <l> *

F X £ ♦ ♦ ♦

Thus for any two molecules of CHF3 there will be:

1 C...C interaction (a)

1 H...H interaction (8)

2 C...H interactions (f3)

6 C...F interactions (x)

6 H...F interactions (s)

9 F...F interactions (<|>)

This makes a total of 25 possible interactions. However it is not possible to 

distinguish between the individual fluorines on each molecule. Thus if the partial 

pair distribution function for each type of pair were calculated then there would only
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be 6 distinct partial pair distribution functions. In order to sum these to create the 

total pair distribution function then each partial pair must be weighted according to 

the number of interactions there really are of that type:

glotall'*) =  I  “jfg x y W 3.36
X

Where gtotai(r) is the total pair distribution function, gxy(/-) is the partial pair 

distribution function for the pair xy, TVxy is the number of interactions for pair xy and 

TV is the total number of interactions possible. Thus, for trifluoromethane the sum 

would look like:

3.3.2 Comparing To Pair Distribution Functions From Neutron 

Scattering

The pair distribution functions obtained from neutron scattering experiments 

are ‘neutron weighted'. This means that the partial pair distribution functions have 

an extra factor referred to as the scattering length, h (see section 2.2.5). In order for 

the total pair distribution function from a simulation to be compared to that from a 

neutron scattering experiment, the neutron weighting must be taken into account. 

This is done by summing the partial pair distribution functions according to equation

TVx is the number of atoms in one molecule and ¿>x is the scattering length of atom x.

3.37.

/ \ fty gxy(**)
gtotalCw — /  'V  x r t  \2

( 2 X 6 x  )
3.37
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3.4 Establishing The Intermolecular Structure

Once the partial pair distribution functions have been obtained then some 

method is needed to extract the necessary information about molecular orientation. 

The peaks in the functions indicate the most likely separations for a pair of atoms in 

the liquid. Integration of the pair distribution functions leads to information about 

the number of atoms around a central atom. For example, integration of the sharp, 

intramolecular peaks indicates the number of bonds in the molecule. Integration of 

the first shell of the total pair distribution function gives the co-ordination number of 

the liquid:

'm
Z = 47m / g (r)r2 dr

o
3.38

n2 N(N-  1) 
V 2 3.39

Z is the co-ordination number, n is the conditional probability density of finding a 

molecule a distance r from the centre of a given molecule, N  is the number of 

molecules, V is the volume occupied by N  molecules and rm is the value of r where 

the integrand is at its first minimum. Examination of this co-ordination number in 

the total pair distribution function leads to information on the density of packing, i.e. 

whether the liquid is dose packed or of a more open structure. Performing this 

integration on the peaks in the partial pair distribution function leads to information 

about how the molecules are arranging themselves towards one another. Using a 

molecular modelling package it is possible to build structures of molecules that fit 

the information provided. Whilst these images of the structure are static they 

nevertheless provide an insight into the most probable arrangement of the molecules
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in the liquid. This in turn leads to a better understanding of the properties of that 

liquid.

3.5 Conclusions

Molecular dynamics simulations provide a solution to the problem of 

understanding what is happening within a liquid at the molecular scale and the 

results of such simulations can be compared to experimental data, and hence provide 

further information about that data than would be observed by conventional 

experimental techniques. 1 2 3 4 5 6 7 8
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Chapter Four

Molecular Dynamic Experiments

4.1 Introduction

Before discussing the results of the simulations that have been performed in 

this project it is beneficial to understand how these results were achieved. It is 

desirable for anyone continuing this work to begin where it has finished, rather then 

to retread over ground already covered. Bearing this in mind a section has been 

included that gives an overview of the program utilised in the project, that is 

DLPOLY [1], and the effect of varying the various parameters that can be 

manipulated in the program. The users manual for DLPOLY [1] has been used as a 

source for the information concerning the program and its use. This section should 

only be regarded as an overview, and if more detailed knowledge is needed then it is 

strongly recommended to read this manual.

4.2 How to use DLPOLY

DLPOLY [1] is a molecular dynamics simulation package developed by W. 

Smith and T. R. Forester under the encouragement of the Engineering and Physical 

Sciences Research Council (EPSRC). The aim of the program is to provide a 

simulation program that extended the techniques of molecular dynamics to the 

simulation of macromolecules, polymers, ionic systems and solutions on a 

distributed memory parallel computer.
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4.2.1 Setting up a start up configuration

As with all simulations, some method is needed to create the starting positions of all 

the molecules in the molecular dynamics cell. DLPOLY contains within it a program 

that generates a lattice configuration, Genial. This will produce an array of the 

molecules in a format such that DLPOLY can use. For the systems studied in this 

project it was necessary to calculate the volume occupied by one molecule, and 

produce a single cell of this volume containing one molecule. As the systems were to 

be simulated in a cubic cell, this was relatively straight forward, with the unit cell 

being cubic. The co-ordinates of the molecule must be entered in fractional co­

ordinates o f this single cell. The program takes this single cell and repeats it to fill 

the molecular dynamics cell. The repetitions along each side are defined by the user, 

and to obtain a cubic cell these values must be equal. For example, consider the 

molecule CCI2F2, then the input for Genlat would be as below:
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Header: CC12F2 at 153 K

Number o f basis atoms: 5

Unit Cell Vector a: 4.88 0 0

Unit Cell Vector b: 0 4.88 0

Unit Cell Vector c: 0 0 ■1.88

Integer multiples o f unit vectors: 5 5 5

Name and co-ordinates o f atoms:

Cl 0.0000 0.5943 0.0000

Cl 0.0000 0.0000 0.0000

F 0.4225 0.2971 0.0368

F 0.1637 0.2971 0.3913

C 0.1637 0.2971 0.1195

This would set up a cubic deck 5 x 5 x 5  i.e. 125 molecules. The box length for the 

molecular dynamics cell would be 24.402 A and the volume would be 1.453xl04 A3. 

The program is run interactively and produces a file called LATTICE containing the 

configurational details. This must be copied into a file called CONFIG. (Note: as 

with all unix systems, the capitalisation is important.)

4.2.2 The CONTROL file

This file contains the control variables needed for running a DLPOLY job. 

There are various options contained within this file and a good explanation of them 

is found in the user manual. In this section some of the important options used in this 

project are explained.
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temperature 153

This is fairly self explanatory. The temperature is entered in Kelvin, and DLPOLY 

uses this to select a range of initial velocities for the start of the run, and for rescaling 

during the equilibration period.

timestep 5.0E-3 ps

steps 50000

equilibration steps 40000

scale every 5

multiple timestep 1 steps

These define the simulation length and the equilibration period. Timestep sets the 

length of the timestep to n ps. This value is very important. As explained in Chapter 

Three, if the timestep is too short than the number of steps needed for the simulation 

to yield good results become very large, and hence the time taken for the simulation 

to complete becomes too large. If the timestep is too long than the energy will tend 

to drift instead of staying constant. The value shown provided constant total energy 

of the system, whilst keeping the runtime at a reasonable level. Steps is the total 

number of steps in the simulation, and equilibration steps is the number of steps that 

the simulation will spend equilibrating at the start of the simulation. Data are 

collected during the non-equilibration time, which is (steps - equilibration steps.) To 

ensure that data are collected steps must be greater than equilibration steps. Starting 

from a lattice configuration a large number of timesteps are needed to bring the 

liquid to equilibration. At least 80,000 steps were required for the molecules in this 

project This was ascertained by performing a simulation from the lattice structure 

and comparing the pair distribution function and total energy regularly until there 

was no change. However, if several runs are going to be made as forcefield
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adjustments are implemented then, provided the input deck is from a previous 

equilibrated run, the number of timesteps can be reduced to a much lower value, for 

example 4,000. A reasonable number of timesteps are needed during data collection 

to ensure good statistics, and usually a minimum of 5000 are required. Scale every 

indicates how frequently the velocities of the molecules are rescaled during the 

equilibration period to ensure that the temperature stays at the required value. 

Multiple timesteps specifies the number of timesteps that elapse between partitions 

of the full Verlet neighbour list into primary and secondary atoms. In all the 

simulations in this project this has been set to one.

cut-off 10.3

delr 0.2

Cut-off is the radius of the cut-off sphere, outside of which the force due to the pair 

potential is set to zero. This should be no greater than half the length of the 

molecular dynamics cell. Delr sets the Verlet neighbour list shell width. The list is 

updated whenever two or more atoms have moved a distance of more than delrl2 

from their positions at the last update of the Verlet list. 

rdf sampling every 10 steps

print rdf

Rdf sampling indicates the interval between calculations of the pair distribution 

function. This calculation requires a reasonable amount of computational time, so 

instead of calculating it at every step, the cell is sampled at regular intervals. The 

command print rdf informs the program to print the averaged partial pair distribution 

functions at the end of the OUTPUT file when the simulation is completed. 

ewaldsum 0.32 6 6 6
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Ewald sum indicates that the program is to use the Ewald sum for the electrostatics 

using the four parameters a; kl, k2, k3. a  is the Ewald convergence parameter (A'1), 

k l is the maximum k-vector index in the x-direction, k2 is the maximum k-vector 

index in the y-direction, k3 is the maximum k-vector index in the z-direction. The 

Ewald sum is explained in section 3.2.5. The k vector indicies in each direction is 

taken to be an arbitrary value, for example 8, 8, 8. a  should lie in the region of 0.32 

for the simulations in this project, but can be chosen by performing a series of single 

step simulations, changing a  each time, and plotting the Coulombic energy versus a. 

The plot should show a plateau which indicates that both the reciprocal and real 

space sums are converged. The smallest value for a  is picked for which the sums are 

converged, and the values of k are systematically reduced until they are the lowest 

value that still gives the energy within the accuracy desired.

ensemble nve

This command tells the program what type of ensemble is to be simulated. NVE 

indicates that the number of molecules in the box, the volume and the total energy of 

the system are to be kept constant. This ensemble was chosen for all the simulations 

described in this thesis.

Once a simulation has finished it is possible to restart using one of two 

commands. 

restart 

restart scale

Restart restarts the job from the end point of the previous run. In order to do this the 

final configuration is copied into the CONFIG file using the command.

gopo/y copy.
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This copy command also renames the REVIVE file, containing statistics arrays from 

the previous simulation, REVOLD. The previous number of timesteps performed is 

carried over and so the number of timesteps defined by steps must be greater than the 

last. Note that no extra equilibration is performed using this command, and so it 

should not be used when the potential parameters have been changed. Restart scale 

also needs to have the new CONFIG file copied over via the above command line. 

However with this command the simulation starts from zero timesteps again and an 

equilibration period will be performed if one is specified. The number of timesteps 

are not carried over and so an adjustment to the steps value is not necessary. When 

varying the parameters in a force field it is more useful to use the latter command so 

that the system can equilibrate with the new forces on the atoms.

4.2.3 The CONFIG file

This file contains the dimensions of the unit cell, the key for the periodic 

boundary conditions, the atomic labels, co-ordinates and, if the file has been written 

after a simulation, the final velocities and forces. If the initial configuration has been 

set up using Genlat then the LATTICE file will be in the correct format for the 

CONFIG file and can simply be renamed. This initial configuration will not contain 

the velocities of the atoms and these will be selected from a Maxwell-Boltzmann 

distribution suitable for the temperature specified in the CONTROL file.

4.2.4 The FIELD File

The FIELD file contains the information pertaining to the force field in the 

simulation. It contains the partial charges on the atoms, the vibrational forces and 

any constraints used in defining the molecules. It also contains the parameters for the
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intermolecular potential. There are a wide variety of options when defining the 

various parts of the force field and for the full range refer to the DLPOLY manual.

Although DLPOLY contains force fields to simulate the vibrations within a 

molecule it soon became clear that it was better to model the molecule as rigid. This 

was because the transference of energy between the vibrations and the rest of the 

system was poor. To overcome this it would have been necessary to greatly reduce 

the timestep for the simulation due to the small time period for the oscillations. This 

would vastly increase the number of timesteps needed to attain equilibrium and 

collect data, and hence the physical time taken to run a simulation and obtain results.

The file is divided up into three sections: general information, molecular 

descriptions, and non-bonded interactions.

4.2.4.1 General Information

The first record in the file is the title which must be followed by the units 

directive. Both these are mandatory. The energy units are described by additional 

keywords. The choice of energy unit also determines the choice of units used for 

length, time etc. The energy unit defined by internal (10 J mol'1) was used in this 

project, which is the unit DLPOLY uses internally. This means that the unit of length 

is defined in A and the unit of time in ps. Consequently all energy units in the input 

and output are given in 10 J mol'1.

4.2.4.2 Molecular Details

It is important that the order of specification of molecular types and their 

atomic constituents in the FIELD file follows the order in which they appear in the 

CONFIG file. If this does not happen then the program will fail.
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The entry of the molecular details begins with the mandatory directive:

molecules n

where n is an integer specifying the number of different types of molecule 

appearing in the FIELD file. For a pure liquid this value is 1. Once this directive has 

been encountered DLPOLY enters the molecular description environment in which 

only molecular description keywords and data are valid. These define :

1 the name of the molecule (for reference purposes)

2 the number of these molecules in the cell

3 the names, masses and charge of each constituent atom in the molecule.

4 the vibrational details, and / or constraints within the molecule, or whether 

the molecule is completely rigid.

Once the atoms have been named, they are referred to in the rest of the 

intramolecular descriptions by integers that indicate their position in the atomic 

definition list. This means a value of 1 means the first atom in the list, 2 the second 

etc. These indices are used in the definition of bonds, angles and dihedrals. It is 

important to define all the molecular structure as DLPOLY uses these definitions to 

create an excluded atoms list. These are the atoms that have a separate potential, or 

constraint defined for them and thus do not need to be included in the calculation of 

the intermolecular potential. Any separations that are not defined will have a 

Lennard-Jones potential applied between them using the intermolecular parameters 

that are defined at the end of the file. As such, because the distances are smaller then 

ct, a large positive value will be seen, leading to errors in the reported value of the 

energy.

Finish. This directive is entered to signal the end of the details for the molecule. The 

entries for the second molecular type may now be entered, beginning with the name
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and ending with finish. The cycle is repeated until all the types of molecules 

indicated by the molecules directive have been entered.

There are various other option available in the molecular description that we 

have not made use of. For more information refer to the user manual.

4.2.4.3 Non-bonded Interactions

The rest of the entries in the FIELD file are concerned with non-bonded 

interactions. These are identified by atom types as opposed to specific atomic 

indices. Again there are various different potentials available, both effective pair, 

and three body potentials. We have made use of the effective pair potential 

represented by the Lennard-Jones potential

where 8 is the depth of the potential well and a  is the distance at which the pair 

potential is zero.

Any pair potential not specified in the field file is assumed to be zero. The 

pair potentials are implemented between any pair of atoms that have not already 

been defined in the molecular descriptions.

The field file must be closed with the directive

close

which signals the end of the force field data. Without this directive DLPOLY will 

abort the job.

4 .1
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4.2.5 The REVOLD file

This file contains statistics arrays from a previous job. It is only required if 

the current job is a continuation of a previous run (i.e. if the restart directive is 

present in the CONTROL file).

4.2.6 The HISTORY file

The HISTORY file contains the atomic co-ordinates, velocities and forces. Its 

principal use is for off-line analysis. This file is created only if the directive (raj 

appears in the CONTROL file. To date we have made no use of this facility so a 

detailed analysis of it shall not be included. More information is available in the 

DLPOLY manual.

4.2.7 The OUTPUT file

As its name implies this file contains the main output results from the 

simulation. It also contains regular summaries of the statistical data, reported at 

intervals determined by the directive print every in the command file. Thus the 

simulation can be monitored to ascertain the simulation progress during a run. The 

file consists of seven sections: header, simulation control specifications, force field 

specification, summary of the initial configuration, simulation progress, summary of 

the statistical data, sample of the final configuration, and the pair distribution 

functions. These sections are written at various stages of the job. The OUTPUT file 

is always created when DLPOLY is run.
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4.2.7.1 Header

This gives the version number of DLPOLY, the number or processors used and a title 

for the job as specified in the CONTROL file.

4.2.7.2 Simulation control specifications

This section reproduces the input from the CONTROL file. Some values may 

be reset if illegal values were specified.

4.2.7.3 System force field specification

This reproduces the FIELD file. A warning line is printed if the system is not 

electrically neutral. This warning will appear immediately before the non-bonded 

short-range potential specifications.

4.2.7.4 Summary of the initial configuration

This section states the periodic boundary specification, the cell vectors and 

volume and the initial configuration of 20 atoms in the system. For periodic systems 

this is followed by the long range corrections to the energy and pressure.

4.2.7.5 Simulation progress

The header for this is printed at the top of every page. The manual gives a 

description of each statistical variable in the list. The energy terms are given in the 

internal units, that is 10 Jmol'1. However this means per mole of the molecular 

dynamics cell. To obtain the energy per mole of species (or molecule for a pure 

liquid) it is necessary to divide this figure by the number of molecules in the cell.

At each timestep that printout is requested the instantaneous values of the 

statistical variables are given in the appropriate columns. Immediately below these
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three lines of output the rolling averages of the same variables are given. The 

working number of timesteps for rolling averages is controlled by the directive stack 

in the CONTROL file.

4.2.7.6 Summary of statistical data

This section of the output file contains the number of timesteps, the averages 

and the root mean squared deviations for each of the statistical variables. The 

statistics only refer to the production portion (i.e. the non-equilibration portion) of 

the run Also provided in this section is an estimate of the diffusion coefficient for the 

different species in the simulation, which is determined from a single time origin and 

is therefore very approximate. There is an estimate of the average pressure tensor 

provided.

4.2.7.7 Sample of final configuration

This section of the output file contains the positions, velocities and forces of 

the 20 atoms used for the sample of the initial configuration.

4.2.7.8 Radial (pair) distribution functions

If the commands rdf and print rdf are included in the CONTROL file then the 

OUTPUT file will contain the partial pair distribution functions of all the atoms in 

the simulation. First the number of timesteps, i.e. configurations used for collection 

of the histograms is stated. Then each function is given in turn. For each function a 

header line states the atom types (‘a’ and ‘b’) represented by the function. Then r, 

g(r), and n(r) are given in tabular form. Output is given from two entries before the 

first non-zero entry in the g(r) histogram. The pair distribution function excludes
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information about the intramolecular structure, assuming that all the intramolecular 

separations have been defined in the molecular description section of the FIELD file. 

n(r) is the average number of atoms of type ‘b’ within a sphere of radius r around an 

atom of type ‘a’.

In order to be able to analyse, display, sum and neutron weight these partial 

pair distribution functions a program has been written to extract the relevant 

information from the OUTPUT file. This program has been set up as part of 

DLPOLY and can be run by typing : 

gopoly rdfedit 

at the command prompt.

4.2.8 The REVCON file

REVCON contains the data for the restart configuration file. The file is 

written every ndump timesteps in case of a system crash during execution and at the 

termination of the job. A successful run of DLPOLY will always produce a 

REVCON file, but a failed job may not produce the file if an insufficient number of 

timesteps have elapsed, ndump is defined in the source code but can be altered and 

the whole program recompiled. REVCON is identical in format to the CONFIG 

input file.

4.2.9 The REVIVE file

This file containes the accumulated statistical data. It is updated whenever 

the REVCON file is updated.
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4.2.10 The STATIS file

This file contains the instantaneous values of statistical variables, defined in 

the manual, that have been appended to the file, at intervals determined by the stats 

directive in the CONTROL file, during the simulation. No use was made of this file 

in this project.

4.3 Choosing a suitable intermolecular potential

All the molecular dynamics simulations in this study have used a site-site 

Lennard-Jones potential augmented with fractional charges at the atomic positions. 

The Lennard-Jones sites also coincide with the atomic positions. It is the selection of 

suitable potential parameters and charges that determine the success of the 

simulation.

4.3.1 Lennard-Jones Potential Parameters

The Lennard-Jones potential has the form shown in equation 4.1. eab and oab 

are adjusted to obtain different simulation results. In the past it has been usual to 

chose the values of these parameters for the like - like interactions such as C...C and 

F...F, and to use a mixing rule to calculate the like - unlike interactions, such as 

C .. F, for example the Lorentz-Bertheholt mixing rules:

j_
Sab —  (  Saa^bb ) 2

C?ab =  \  (  CTaa +  (Tbb )  4 .2

These mixing rules provide a reasonable starting point for the cross parameters but 

we have found that an improvement to the fit to the experimental data can be 

obtained by allowing the cross parameters to vary.
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As the choice of the potential parameters is an empirical fitting exercise then 

their values will change from run to run as they are adjusted to improve the 

reproduction of the experimental data. However reasonable values must be chosen at 

the start for the first simulation. The value for a  can be estimated from the sum of 

the Van der Waals’ radii although the value obtained in this way will, in general, be 

too large. The best method for obtaining starting values for the parameters is to look 

over past simulations to see what values have been used. Although the values for the 

parameters will not necessarily be the same from one molecular type to another, they 

will usually be similar, particularly in the value of a. The value of 8 takes into 

account the polarizability of the atoms and should have a higher value for the more 

polarizable atoms.

It is useful to have some indication of how an adjustment in the parameters 

will effect the output of the simulation. The value of cr has the greatest effect on the 

local structure. An increase in a  leads to greater ordering and hence the peak heights 

of the individual pair distribution function will increase. The position of the first 

peak maxima will move to slightly longer r , although this effect may not be as 

noticeable as the change in peak height.

Altering the value of 8 has a much more subtle effect on the structure. 

Frequently no change is perceptible with only small changes in value. However the 

changes do effect the energy and so 8 can be used to produce fine adjustments to the 

value of the configurational energy.

As the mixed interactions are adjusted separately from each other, an 

alteration in the value of a  for one pair will only effect the pair distribution of 

another pair by a ‘knock-on’ effect. That is, if the alteration makes one interaction
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more favourable, then by necessity another interaction must become less favourable. 

This must be bom in mind when trying to increase or decrease a peak height in an 

individual pair distribution function.

However the contribution of the Lennard-Jones potential to the general shape 

of the total pair distribution function is limited. Adjustments really only result in 

slight changes in peak heights and positions unless large changes are made to cr. The 

general structure in most methane derivatives that have no significant dipole is 

determined by volume minimisation and so the changes to a  simply alter the way the 

molecules fit together. In molecules with a reasonable dipole, such as 

trifluoromethane, the fractional charges can dramatically alter the shape of the pair 

distribution function.

4.3.2 Fractional Charges

At each Lennard-Jones potential site there is a fractional charge. These are 

used to represent the charge distribution within the molecule. As such it is a very 

simple model, and consequently can only be expected to be a rough representation. 

As a starting point the fractional charges are obtained from a Mulliken Population 

analysis of an ab initio molecular orbital calculation on an isolated molecule. When 

these values are used in a molecular dynamics calculation the energy is normally 

greater than the experimental value and total pair distribution is too structured. In the 

past modellers have kept the values of these charges set at the Mulliken values and 

altered the Lennard-Jones parameters until the energy was correct. However this 

usually results in far too much structure in the pair distribution function. During the 

course of this project comparisons of the coulombic potential using fractional 

charges were compared with the potential produced by the distributive multipoles
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obtained from ab initio molecular orbital calculations on the molecule. It was found

that the decay of the coulombic potential took longer than for the distributive 

multipoles over distance. Considering that the calculation for the Mulliken 

population analysis is performed on an isolated molecule, rather than a molecule in a 

liquid, and given that the fractional charges are point charges rather than disperse 

charges, it seems reasonable to consider the fractional charges as being a variable 

quantity for the purpose of fitting the structure and energy. If this is done then not 

only can the energy be reproduced, but close fitting to the pair distribution function 

can also be seen. For molecules that only possess a small dipole, such as 

bromotrifluoromethane and chlorotrifluoromethane, the charges have little effect on 

the shape of the pair distribution function and the optimum values are quite low. The 

polarisation of the large atoms is taken into account by the more discriminating s in 

the Lennard-Jones potential. In molecules such as trifluoromethane, the dipole plays 

a large part in determining the orientation of the molecules in the liquid. As such, 

both the size of the fractional charges and also their relative values to each other are 

important. Again the relative values need not necessarily be those produced by 

Mulliken population analysis, but this provides a good place to start. Unfortunately 

there is no fixed method of determining the distribution and only trial and error can 

be used.

4.4 Establishing the general liquid structure

A molecular dynamics simulation must not only reproduce the experimental 

pair distribution function but also, to feel confident that the simulation is a 

reasonable portrayal of the liquid at this temperature, the potential energy must
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compare favourably with experimentally determined values for the enthalpy of 

vaporisation. This can be done as follows:

AHV = (PE + KE +P. V)g - (PE + KE + P. V\ 4.3

where the subscripts g and i represent the gas and liquid phases respectively, PE and 

KE are the potential and kinetic energies, P is the pressure and V is the molar 

volume. The kinetic energies cancel and by assuming ideal gas behaviour, the 

following relation may be derived:

AHV* R T -  PE, 4.4

The further approximations used to yield equation 4.4 are that P. V\ and Peg are both 

close to zero. For a liquid well below its boiling point equation 4.4 normally holds 

fairly well but at higher temperatures it is preferable to use equation 4.3 if all the 

data is available.

Once a successful run has been completed that reproduces satisfactorily the 

experimental data then the partial pair distribution functions can be analysed to 

establish the favoured orientation of the molecule in the liquid state. The average 

pair distances can be read off from the distribution functions together with the width 

of the distribution. Using this information, and utilising a molecular modelling 

package to calculate the atomic separations, various arrangements of molecules can 

be tested to see if they reproduce the peaks in the distribution functions. In this way 

an arrangement can be discarded if the pair distances are not at, or close to, the pair 

distances from the experiment. Sometimes there are two or more arrangements that 

when combined reproduce all the peaks and (more importantly) do not give extra 

peaks that are not in the distribution functions.
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As well as pair distances it is possible to integrate the distribution functions 

to obtain co-ordination numbers. Although co-ordination numbers usually refer to a 

solid where the constituents do not move away from each other, it can still have 

some meaning in the more mobile liquid phase. Here it means the average number of 

molecules surrounding a molecule (or atoms around an atom) at any given instant. 

By integrating the total pair distribution function from the simulation from r = 0 to 

the first minimum then it is possible to obtain the co-ordination number for the first 

shell of molecules. This is equivalent to n(r). The simulation results are used as 

DLPOLY gives n(r) in the output, and because the intramolecular details are not 

included in the distribution. By examining the individual pair distribution function 

for the central atom in the molecule, i.e. C...C in a methane, the value of n(r) at the 

first minimum is the co-ordination number for the molecule. If this method is also 

applied to the individual pair distribution functions then the number of closest pair 

interactions for each molecule can be calculated. Combining all this information 

means that a detailed picture of the average structure of the liquid can be built up.

4.5 Conclusions

DLPOLY is a flexible routine for performing molecular dynamics 

simulations. The program allows the user to perform repetitive simulations when 

adjusting the forcefield parameters without the need to start from a lattice 

configuration each time, reducing the amount of time necessary to obtain results. 

The analysis of the output is straightforward and can be used to obtain an insight into 

the way the molecules are orientating themselves within the liquid phase.

98



1 T. R. Forester and W. Smith, 1994, DLPOLY: a molecular dynamics program for 

the simulation of polyatomic molecular liquid mixtures, CCP5 Program 

Library (Manchester, UK: Daresbury Laboratory).

99



Chapter Five

Results

5.1 Introduction

Both neutron diffraction and simulation studies have been performed in the 

course of this project. Although the initial work on the fully halogenated methane 

derivatives was performed by Dr. C. D. Hall [1] the analysis has been completed in 

this project. New neutron diffraction measurements have been made on 

trifluoromethane, difluoromethane, 1,1,1,2-tetrafluoroethane and 1,1,2,2,- 

tetrafluoroethane and the total pair distribution functions for these molecules 

established. The intermolecular structure of trifluoromethane has been simulated 

and, together with a reanalysis of the measurements made by Hall et al. [2], has led 

to a full interpretation of the liquid-state structure of this fluid [3], Finally attempts 

have been made to simulate the structure of difluoromethane but, as yet, a full 

interpretation has not been possible.

5.2 Trifluoromethane

Neutron diffraction experiments were carried out using the SANDALS 

facility at Rutherford Appleton Laboratory on hydrogenated trifluoromethane during 

the course of this project. Deuterated trifluoromethane had already been studied 

using this facility [2] but the results were reanalysed using the minimum information 

method of Soper [5], Molecular dynamic simulations were then performed to attempt 

to reproduce the pair distribution functions and the internal energy.
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5.2.1 Neutron Diffraction Experiment

Trifluoromethane, supplied by BOC at a purity of 99.998%, and deuterated 

trifluoromethane, supplied by ICI at a purity of > 99%, were studied using neutron 

diffraction on the SANDALS facility at the pulsed neutron source, ISIS, at the 

Rutherford Appleton Laboratory. The liquid was contained in a cylindrical, thin- 

walled pressure vessel, constructed of a null scattering titanium-zirconium alloy. 

Diffraction data were collected at 153 ± 1 K for both liquids and at 250 ± 1 K for 

deuterated trifluoromethane. The data were analysed using standard correction 

routines [4] to obtain the differential cross-sections.

The contribution to the differential cross-section from self-scattering needs to 

be subtracted before the data from the various detector banks can be merged to 

obtain a structure factor. The routine to do this calculates the self-scattering by 

assuming that it can be described by a low order Chebychev polynomial, found by 

fitting the differential cross-section. A parameter rmin is used to define the distance 

below which there is no contribution to the differential cross-section from the pair 

distribution function, i.e., g( r ) = 0. Hydrogen exhibits incoherent scattering that is 

forty times its coherent scattering level, and so the order of the polynomial and the 

value chosen for rmin can affect the result quite critically. For example figure 5.1 

shows the difference between the corrected cross-sections for various selections of 

parameters.
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Figure 5.1 Corrected cross-sections obtained from the 14 banks of detectors for 

trifluoromethane. (a) The final version with rmin = 0.9 and Chebychev 

polynomial of order 3. These results were merged to obtain the final structure 

factor, (b) The version with rmin = 0.5 and Chebychev polynomial of order 3. (c) 

The version with rmill = 0.9 and Chebychev polynomial of order 5.
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Each curve should oscillate about zero, but for ease of inspection the results for each 

bank have been separated by 0.05. The highest angle bank (31.28°) is plotted at the 

bottom of each figure and the lowest angle bank (3.83°) is plotted at the top. In each 

plot there is evidence of a small inelastic feature as indicated by a peak that varies 

position with angle. The merging program should average out the effect of this 

feature. Above 10 A'1 there was no obvious differences between the analyses. A 

good subtraction is indicated when the corrected cross-sections for each data bank 

are as similar as possible. In figure 5.1 it can be seen that a low /*min leads to a poor 

subtraction. Likewise, choosing a polynomial that is too high produces dissimilar 

cross-sections. Once a good match between the groups is obtained, the data can be 

merged to produce an S( Q ). For the hydrogenated sample it was found that the 

optimum order of polynomial was 3 and that should be set to 0.9 A.

5.2.1.1 Neutron Diffraction Results

The structure factor, S(Q), obtained from the neutron diffraction experiments 

are shown in figure 5.2. By convention, these are defined per atom. The pair 

distribution functions shown in figure 5.3, were obtained from the structure factors 

using the minimum information method of Soper et al [5],The intramolecular 

geometry can be read directly from the position of the sharp peaks at low r, but it is 

better to attempt to represent the peaks by Gaussians. Data in the region 0.85 < r / A 

<2.5 were represented by a combination of four Gaussians and a small background 

term. The positions and heights of all the peaks are allowed to vary freely, but to 

obtain a reasonable fit it was necessary to fix the width of the F...F peak at 0.1 A.
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The widths of the other peaks were allowed to vary. The results are shown in table

5.1 and are compared with experimental measurements on the isolated molecule.

Figure 5.2 Atomic structure factors S((?) for liquid trifluoromethane: (a) 

trifluoromethane at 153 K; (b) fully deuterated trifluoromethane at 153 K; (c) 

fully deuterated trifluoromethane at 250 K.
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Figure 5.3 Total pair distribution functions g(r) for liquid

trifluoromethane:(i) range 0.5 - 3.0 À, (ii) range 0.0 - 30.0 Â,

(a) trifluorom ethane at 153 K; (b) deuterated trifluorom ethane at 

________ 153 K; (c) deuterated trifluorom ethane at 250 K
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Isolated
molecule

Liquid State
CDF3( 153 K ) CDF3 ( 250 K ) CHF3 ( 153 K )

rCH ! A 1.098 1.061 ±0.002 1.073 ±0.002 1.183 ± 0.019
Tcf/ A 1.332 1.3290 ±0.0007 1.3324 ±0.0009 1.328 ±0.009
Thf/ A 2.09 ±0.11 2.06 ± 0.02 2.14 ±0.01
Tff / A 2.167 2.09 ±0.02 2.10 ± 0.01 2.18 ±0.007

Table 5.1 A comparison between the intramolecular atomic 

separations in trifluoromethane. The structure of an isolated 

molecule as determined by microwave spectroscopy [6] is compared

with the liquid state structures.

Examination of the pair distribution functions reveals that the liquid is 

structured out to further than 20 A at 153 K. The fourth shell is easily visible and the 

fifth shell is discernible. However, as demonstrated in figure 5.3, at 250 K the liquid 

displays structure only out to 15 A, with only the first three shells being visible. This 

suggests that the liquid is substantially organised, possibly due to Coulombic 

interactions between the molecules, and that this organisation is reduced at higher 

temperatures.

After a subtraction of the pair distribution functions according to

2 2 
( ZJ^xbx) g( r )cdf3 ■ ( zJVxbx) g( r )chf3

= ( bD- bH) ( 2bc g(r  )CH + ( bD + bn ) g( r ) Hh  + 6 bF g( r )FH)

5.1

only the C...H, H...F and H...H contributions to the pair distribution function 

remain. In this equation, Nx is the number of atoms of type X in the molecule, bx is
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the scattering length of atom X, g( r )moi is the pair distribution function of molecule 

'mol', and g( r )Xy is the partial pair distribution function of atom pair X... Y.

r i  Â

Figure 5.4 A subset of the total pair distribution function obtained 

from a suitably weighted subtraction of the pair distribution 

functions obtained for CHF3 and CDF3. In the subtraction, 

contributions from C-F interactions are removed.

Figure 5.4 illustrates the results of this subtraction. Within the intramolecular 

region, only the C-H bond and H...F distance peaks are left. The C-F bond distance 

has been subtracted out quite successfully. In the intramolecular region there is 

evidence of a peak at a distance as low as 2.5 A. It is thought that this could be a

H. . .F intermolecular peak. If so, this distance is quite short and could indicate the 

presence of hydrogen bonding between the molecules. No further information about 

the intermolecular structure can be extracted from the experimental results.
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5.2.2 Molecular Dynamics Simulations

Molecular dynamics simulations employing 125 molecules, were performed 

on IBM RS6000 workstations using the DLPOLY [7] augmented with our own 

routines for analysing pair distribution functions.

5.2.2.1 Simulation Results

A lattice of 125 molecules was set up in a cubic array. The potential used in 

the molecular dynamics simulation was varied until the simulation reproduced the 

pair distribution functions from the neutron scattering experiments and the internal 

energy calculated from tables. Initially the simulation was performed using CDF3 

molecules and the potential fitted to the deuterated trifluoromethane experimental 

data at 153 K. Once a fit was obtained the partial pair distribution functions were 

neutron weighted and summed to reproduce the hydrogenated data and compared to 

the experimental data for trifluoromethane at 153 K. The simulation was then 

repeated using CHF3 molecules and the same potential parameters to ensure that 

there was no discrepancy in the simulation. It was found that both simulations 

produced the same results for the pair distribution function and the internal energy. 

To examine the possibility of cut-off errors in the potential affecting the short-range 

structure, the simulation was run using 216 molecules in the molecular dynamics 

cell. After the simulation had equilibrated over 80,000 time steps, no discernible 

difference was seen in the short range structure of the two simulations up to 11 A, 

which is half the box length of the smaller simulation. It was concluded therefore 

that the 125 simulation was sufficient to reproduce the intermolecular structure up to 

half its box length.
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In order to test the potential produced, CDF3 was simulated at 250 K using 

the parameters optimised at 153 K, and the pair distribution function was compared 

to the corresponding neutron data.

q e/Jinol'1 ct/Â

c 0.296 C...C 449.35 3.10

F -0.151 C...F 453.95 3.06

H 0.157 F...F 413.51 2.76

H...F 298.77 2.50

H...C 255.29 2.66

H...H 86.84 2.10

Table 5.2 Potential parameters and partial charges used in the

simulation of CHF3.

Temperature / K experiment [13] / kJmof1 simulation / kJmof1

153 -17.6 ±0.3 -17.6 ±0.2

250 -10.3 ±0.3 -9.74 ± 0.3

Table 5.3 Comparison of experimental internal energy and the 

configuration energy from the simulation for CHF3

The final potential parameters used in the simulation are shown in table 5.2. 

The comparison of the configuration energy of the simulations at 153 K and 250 K 

with the corresponding internal energy at these two temperatures, is shown in table
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5.3. As can be seen, the fitted simulation reproduces the internal energy exactly. The 

high temperature simulation also reproduces the internal energy reasonably well. 

Figure 5.5 shows the comparison between the experimental neutron data and the 

three simulations. As can be seen, the fit to the deuterated data at 153 K is excellent. 

The comparison between the hydrogenated data and the simulation is reasonably 

good. There is a discrepancy in the height of the first shoulder, but this region is 

fitted well in the deuterated data. It could be surmised the discrepancy lies in the 

neutron data due to the difficulties involved in the analysis of hydrogenated data. If 

an attempt were made to improve the fit to this region of the data it is found that the 

fit to the corresponding deuterated data is worse. The comparison between the 

deuterated data at 250 K and the simulation at this temperature is very good, with 

only a slight over estimation in the height of the first shell. It would appear, therefore 

that the potential fitted at 153 K is valid over at least a temperature range of 100 K.
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Figure 5.5 Comparison of molecular dynamics simulation pair distribution 

functions with neutron diffraction data, (a) CHF3 at 153 K. (b) CDF3 at 153 K.

(c) CDF3 at 250 K.
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5.2.3 Interpretation
In order to extract meaningful information from the partial pair distribution 

functions it is helpful to have some model of what features one might expect the 

liquid structure to exhibit. There are two possible orientations of tetrahedral 

molecules which one would anticipate on the basis of packing arguments. These are 

namely the ‘rocket’ or ‘Apollo’[8] conformation and the ‘straddle’[9] conformation, 

both depicted in figure.5.6.

Figure 5.6 Diagram of (a) straddle and (b) rocket arrangement

If the partial pair distribution functions, shown in figure 5.7, from the 

simulation are summed without neutron weighting, then the resulting pair 

distribution function can be integrated to give a co-ordination number for the liquid:

(a)

(b)

Z = 4;in Jg( r ) r2 d r 5.2
0
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In this equation, Z is the co-ordination number, n2 = N ( N - 1 ) V 1 is the conditional 

probability density of finding a molecule a distance r  from the centre of a given 

molecule, N is the number of molecules, V is the volume occupied by N  molecules, 

and r m  is the value of r  where the integrand is at its first minimum. Integrating the 

total pair distribution function from the simulation at 153 K up to r m  = 6 A gave a 

co-ordination number of approximately twelve. This is the maximum number of 

molecules that can be fitted around one molecule, and so it appears to indicate a 

close packed structure. A hydrogen-bonded structure would be expected to be more 

open, leading to a lower co-ordination number. A value of twelve suggests that the 

structure is driven by volume minimization. By applying this integration method to 

the partial pair distribution functions it is possible to obtain an indication of the 

number of atoms involved in the first peak of each of the distributions, and this is 

shown in table 5.4. By using this information together with the partial pair 

distribution functions an attempt was made to try to understand how the molecules 

were orientating themselves within the liquid phase.
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X...Y Position of Maximum 

of Peak (A)

Approximate 

Co-ordination Number

H...H 4.2 12

H...F 2.6 5

H...C 3.7 3

F...F 3.1 6

F...C 3.6 5

CL- • • . c 4.3 12

Table 5.4. The co-ordination numbers for the first peak in each 
individual pair distribution function. The co-ordination number 

indicates the number of atoms V around atom X.
It was found that no single arrangement of two molecules could satisfy all the 

distances in the partial pair distribution functions. In particular the close H...F 

distance of 2.6 A posed great problems. It was found that the straddle arrangement, 

shown schematically in figure 5.8, satisfied the majority of interactions, except for 

the low H...F distance. However, when the molecules were placed in a close-packed 

lattice, with the molecules being placed straddle to each other in each layer, then the 

rest of the distances, including the short H...F distances were satisfied. Although it 

cannot be said for certain that this is the way the molecules arrange themselves in the 

liquid it is the only solution that satisfies all the simulation results, without 

introducing pair interactions that do not appear in the partial pair distribution 

functions. Obviously this type of structure is not a permanent arrangement as the
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structure of the liquid is dynamic, but it is thought that this is how the molecules 

prefer to be arranged.

Figure 5.7 Individual pair distribution functions g'(r) as obtained 
from the computer simulation for CDF3 at 153 K. In the figure each 

pair distribution has been neutron weighted. The total pair 
distribution function is obtained by a simple summation of these pair 

distribution functions. For clarity each curve has been displaced 
vertically by the amount indicated in the diagram.
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Figure 5.8 Schematic of the proposed structure for trifluoromethane
in the liquid phase.

The structure for solid trifluoromethane has been published [10] and the 

agreement between our proposed liquid structure and the solid state structure is 

encouraging. It was found that the close non-bonded distances in the solid agree with 

those found in the liquid phase. In addition, although the unit cell does not contain 

any straddle arrangements, when the crystal structure is built up by repeating the unit 

cell it can be observed that the molecules do appear to arrange themselves in this 

orientation across adjacent cells.

5.2.4 Conclusions
The main conclusion of this work is that the liquid structure of 

trifluoromethane is driven by coulombic interactions and volume minimisation 

rather than hydrogen bonding. To justify this statement it is important to define what 

has been considered as hydrogen bonding. Thus, consider two molecules containing 

a highly electronegative atom, such as fluorine, and hydrogen. Hydrogen bonding is 

caused when a lone pair of electrons on fluorine is partially donated to the hydrogen 

and forms a partial bond between them. The strength of this bond is determined by 

the degree of displacement of the electron density in the formal bond that the 

hydrogen is involved with ( in the case of trifluoromethane, between the hydrogen
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and the carbon ) from the hydrogen and onto the other atom. This shift in electron 

density leaves the hydrogen more able to accept the lone pair from the fluorine. 

Given this definition, if there is hydrogen bonding in trifluoromethane, the C-H...F 

bond angle must be close to 180° and, because the lone pairs on the fluorine are in p 

orbitals, the C-F...H must be close to 90°. In addition the H...F distance would be 

shorter than expected for non-bonding.

As can be seen in table 5.4 there are five fluorine atoms associated with each 

hydrogen at an average distance of 2.6 A. The sum of the van der Waals radii for

H. ..F is 2.55 A. As a comparison, the hydrogen bonded O...H distance in water is

I. 8 A compared with the sum of the van der Waals radii of 2.6 A. This alone 

indicates that there is no hydrogen bonding in this structure. If, in addition, 

consideration is given to the orientational arrangement of the molecules, there is 

further evidence of a lack of directional hydrogen bonding. For example, if the 

C-H...F bond angle is close to 180°, then there must be evidence of a C...F 

separation of 2.6 A + 1.1 A = 3.7 A. The most dominant C...F peak occurs at a 

separation of less than this (3.6 A), which is indicative of an average C-H.. .F bond 

angle of 150°. Alternatively, if the C-F...H bond angle is close to 90°, then there 

must be evidence of a C... H separation close to 2.9 A. The first C... H peak occurs at 

a separation much greater than this (3.7 A), which is indicative of an average C- 

F...H bond angle of 140°. Finally, although there is significant orientational 

ordering, as indicated by the similarity between the H...H and the C...C partial pair 

distribution functions, the molecules are close packed, suggesting that the 

orientational ordering is due simply to the effect of the Coulombic interactions. 

Taking this into consideration, together with the lack of evidence of a shift in the
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vibrational frequency of the C-H bond [11], then it can be concluded that 

trifluoromethane does not hydrogen bond in the liquid phase.

5.3 Difluoromethane
Difluoromethane has been studied using neutron diffraction and also by 

molecular dynamics simulations.

5.3.1 Neutron Diffraction Experiments
Difluoromethane was supplied by ICI at a purity of > 99 %. The liquid was 

studied using neutron diffraction on the SANDALS facility at the pulsed neutron 

source, ISIS, at the Rutherford Appleton Laboratory. The liquid was held in a 

container that has a slab geometry and was constructed of a null scattering titanium- 

zirconium alloy. The diffraction data were collected at 153 ± 1 K. The data were 

analysed using standard correction routines [4] to obtain differential cross-sections. 

Care was taken on the selection of suitable parameters for the Chebyshev polynomial 

used to subtract the self-scattering from the differential cross-sections.

5.3.1.1 Neutron Diffraction Results
The S(Q) obtained from the experiment for difluoromethane is shown in 

figure 5.9. This data was then analysed using the minimum information routine of 

Soper [5] and the pair distribution function obtained is shown in figure 5.10
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Figure 5.10. Experimental pair distribution function for CH2 F2 at 153 K
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5.3.1.2 Interpretation

As can be seen from figure 5.10, difluoromethane is not as structured as 

trifluoromethane at 153 K. Only three shells are visible with the long range structure 

being effectively random beyond approximately 13 A. It would appear, therefore, 

that the long range forces are not as strong in difluoromethane as in 

trifluoromethane. Table 5.5 shows the intramolecular structure of the molecule 

obtained from the neutron data.

r /A

r CH 1.10

1.32

r HH 1.75

1*HF 2.05

r FF 2.25

Table 5.5. Intramolecular structure for difluoromethane from 

neutron scattering experimental data.

Beyond the intramolecular region of the pair distribution function there is a 

negative peak at 2.6 A. This is the H...F intermolecular distance. This distance is too 

long for a hydrogen bond so it is probable that difluoromethane does not hydrogen 

bond in the liquid phase. This conclusion is supported by the lack of long range 

ordering seen in the pair distribution function. It is impossible to assign any other 

intermolecular distances in the experimental pair distribution function and further 

interpretation can be obtained by reproducing this distribution function using 

molecular dynamics simulations.
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5.3.2 Molecular Dynamics Simulations

Molecular dynamics simulations employing 125 molecules, were performed 

on IBM RS6000 workstations using the DLPOLY [7] augmented with our own 

routines for analysing pair distribution functions.

5.3.2.1 Simulations Results

Unfortunately we have been unable to reproduce the structure from the 

neutron diffraction data. Figure 5.11 shows a comparison between the latest results 

and the neutron diffraction data. No structural analysis of this simulation has been 

done as we have failed to reproduce the neutron data with sufficient accuracy. The 

intermolecular H...F peak is overestimated, although the difference in height could, 

in part, be due to the overlap of the intramolecular F...F peak in the experimental 

data. The shape of the first shell is not reproduced very well, although the second 

peak is matched by the shoulder of the simulation's first shell. The plateau between 

the first and second shell is reproduced, and the fit to the second shell is far better 

than the first shell.
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Figure 5.11 Comparison of simulation results with neutron 

diffraction for difluoromethane at 153 K

It is not clear why the simulations have failed to produce a reasonable fit to 

the experimental data. Although there are problems with analysing neutron data from 

hydrogenated samples because of the high incoherence scattering, the neutron 

experiment had been conducted over a long period to ensure good statistics were 

obtained. In addition, the care taken in selecting the parameters for the self 

subtraction would make it seem unlikely that the error in the neutron data could be 

as large as the difference in the two structures. The Lennard-Jones parameters for the 

simulation were chosen to reflect those obtained in the successful trifluoromethane 

simulation. It seems likely that the problem lies with the modelling of the charge 

distribution and the induced polarisation within the liquid phase. Although the first 

peak is overestimated in the simulation, because of the presence of the negative 

scatterer hydrogen in the molecule produces negative peaks in the partial pair

122



distribution functions, this could be due to the simulation producing the wrong 

orientation of the molecules and not necessarily due to excessive ordering in this 

shell. A further neutron diffraction experiment on deuterated difluoromethane may 

be beneficial in reducing the number of uncertainties in the problem.

5.3.3 Conclusions

Neutron diffraction experiments have been performed on difluoromethane at 

153 K. The data have been analysed and a pair distribution function obtained. The 

intramolecular structure has been obtained but so far molecular dynamics 

simulations have been unsuccessful in reproducing this pair distribution function, 

and so the intermolecular structure remains unknown.

5.4 Bromotrifluoromethane

The neutron scattering experiment for this molecule was performed by Dr. C. 

D. Hall and the results were given in his thesis [1], However, only a preliminary 

attempt was made to simulate the structure of the fluid and this project has involved 

a more extensive look at this with an improved fit to the experimental data. The 

molecular dynamics simulations were performed on IBM RS6000 workstations using 

DLPOLY [7] drawn from the CCP5 library. A site-site Lennard-Jones potential was 

used, augmented by fractional charges at the atomic sites. Initially the fractional 

charges were extracted from a Mulliken population analysis from ab initio 

calculations performed using the molecular orbital package GAMESS [12]. 

However, as justified earlier, these values were considered adjustable in order to 

obtain the best fit to the data. The Lennard-Jones potential parameters were initially 

taken from previous work [1], but were varied empirically until the neutron weighted
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pair distribution function from the simulation reproduced the experimentally-derived 

pair distribution function in addition to the configuration energy from the simulation 

reproducing the internal energy calculated from standard enthalpy of vaporisation 

tables.

5.4.1 Results

The pair distribution function obtained from the neutron diffraction 

experiments by Dr. C. D. Hall [1] is shown in figure.5.12. The function was plotted 

to 20 A to observe the extent of long range structure in the liquid. Although the 

intramolecular structure can be inferred directly from the positions of the sharp 

peaks at low r, a better method is to fit them using Gaussian distributions and these 

are shown in table 5.6. As can be seen from figure 5.12 only two shells are visible 

indicating that the liquid structure randomises quite quickly with distance. This 

would suggest that there are no strong long-range forces acting within the liquid and 

the structure is driven by volume minimisation.
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Figure 5.12 Experimental neutron diffraction pair distribution 

function for CBrF3 at 153 K [1 ]
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Distance / A

C-F (bond) 1.328 ±0.014

C-Br (bond) 1.904 ±0.01

F...F (gem) 2.154 ±0.013

F...Br (gem) 2.676 ±0.011

Table 5.6 Intramolecular structure of CBrF3 derived from 

experimental neutron scattering.

The comparison between the intermolecular region of the experimental pair 

distribution function and the neutron weighted pair distribution function from the 

simulation is shown in figure.5.13. The results from the simulation show only the 

intermolecular distances and not the intramolecular structure and hence the g(r) at 

the start of the plot is equal to 0. The comparison between the simulation’s 

configurational energy and the internal energy calculated from enthalpy of 

vaporisation tables is shown in table 5.7.

experiment [13J / kJmol1 simulation / kJmof1

-19.2 ±0.23 -19.57 ± 0.12

Table 5.7 Comparison between the experimental internal energy and

the simulation’s configurational energy at 153 K

The fractional charges and Lennard-Jones potential parameters used in the 

simulation are shown in table 5.8. As mentioned earlier, there is little long range
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structure and this is reflected in the fact that the fractional charges are low. The 

polarisability of the bromine is accounted for in the value of s, rather than the 

charges as this reproduces the short range effectiveness of this property better than a 

point charge on bromine.

Q 8/Jmoi'1 a lA

c 0.1460 C...C 394.8 3.35

F -0.0252 C...F 350.28 3.085

Br -0.0704 F...F 310.8 2.82

Br...F 571.2 3.20

Br...C 643.86 3.485

Br...Br 1050.1 3.62

Table 5.8 Potential parameters and partial charges used in the 

simulation of CBrF3 at 153 K
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The simulation reproduces the experimental data very well and can therefore 

be assumed to be a reasonable representation of bromotrifluoromethane at 153 K. 

The partial pair distribution functions from the simulation can be analysed to 

ascertain how the molecules are organised within the liquid phase. The partial pair 

distribution functions are shown in figure.5.14. These are not true pair distribution 

functions but have been neutron weighted and number averaged so that a simple 

summation yields the total pair distribution function.
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Figure 5.14 The neutron and number weighted partial pair 

distribution functions for CBrF3 at 153 K. The functions have been 

separated by 0.1 each to aid clarity.

5.4.2 Interpretation

For bromotrifluoromethane there are eight different possible arrangements of 

the two molecules and these are illustrated in figure 5.15 and identified as (a) to (h)
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distribution functions, and by calculating the atomic separations for each 

arrangement, it is possible to establish which of the arrangements are likely to occur. 

The C...C distribution shows a maximum at 4.6 A and a shoulder at 5.8 A. This 

would indicate the presence of at least two arrangements. This evidence is supported 

by the fact that there are two peaks in the Br...Br distribution at 4.0 A and 5.8 A. As 

there is only one bromine atom on each molecule, the two peaks must come from 

different arrangements. The F...F distribution exhibits peaks at 3.0 A and 4.9 A. The
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C... Br distribution exhibits peaks at 4.4 A and 5.9 A and the C...F peaks are at 3.9 A 

and 5.6 A. The F... Br distributions has maxima at 3.5 A and 5.3 A.

The straddle arrangement can achieve closer C...C separations than the 

rocket as no outer atoms point straight at the other molecule. It would be reasonable, 

therefore, to assume that the shorter C...C maximum is due to a straddle 

arrangement and the longer due to a rocket arrangement. If the molecules are 

arranged as (a) in figure 5.15, with the C...C distance of 4.6 A, the Br...Br distance 

is 3.23 A and the short F...F distance is 3.42 A. The former is slightly short of the 

maximum in the distribution, and the latter is slightly long. However it is likely that 

the molecules will twist to accommodate the much larger bromine atom leading to 

these distances becoming 4.0 A and 2.9 A for Br...Br and F...F respectively. This is 

in much closer agreement to the distribution functions. The longer F...F separations 

in this arrangement occur at 4.4 A, 4.8 A and 6.3 A. The first two of these fall within 

the second F . . . F peak and the last is in the part of the distribution where no structure 

is visible. The C...F separations are 3.7 A and 5.5 A which agree well with the 

peaks in the pair distribution functions. The C... Br separation is 4.3 A which is close 

to the value for the first maxima in the C...Br distribution. The F...Br separations 

are 3.5 A, 4.8 A and 5.5A. The first of these is at the maximum for the first peak in 

the F...Br distribution, the latter two are either side of the maximum for the second 

peak, but still fall within it.

Many of the separations in the other straddle arrangements, (b) - (d), will be 

similar to those for (a) so it is only necessary to consider those separations that are 

different. Arrangement (b) has a separation of 4.6 A for Br...Br which has a low 

probability in the distribution. The C...Br separation is 5.8 A which matches well 

with the second peak in the pair distribution function. Arrangement (c) has a Br... Br
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separation of 6.01 A. Which, although not at the maximum for the second peak in 

the Br . Br  distribution, has a reasonable probability. The (d) arrangement has no 

close Br... Br separation, the distance being 7.17 A. It would therefore appear that, of 

the possible straddle arrangements, (a) appears to be the most likely.

If we consider the various rocket arrangements with a C...C separation of

5.8 A, then arrangement (e) will have a Br...Br separation of 5.8 A which agrees 

with the separation in the pair distribution function. The F...F separation will vary 

from 5.8 A to 6.4 A. If we examine the F...F pair distribution function in this range 

then it appears fairly flat which indicates that there is free rotation about the C...C 

axis. The corresponding C... Br separations are 3.9 A and 7.7 A. The latter of these is 

lost in the second shell and the former, although not at the maximum for the first 

peak, still has a reasonable probability in the distribution function. As with the 

straddle arrangements, there are several separations that are repeated in other rocket 

arrangements and so it is only necessary to examine the different separations. 

Arrangement (f) has a F...F separation of 5.8 A. Although there appears to be a 

shoulder on the second peak at this distance, it is still much lower in probability than 

the other peaks. This arrangement also gives a F...F separation of 4.2 A as the short 

F...F separation. Again this separation appears to have low probability in the pair 

distribution function. The Br...Br separation will be somewhere between 5.8 A and

6.9 A, although the longer distance would be expected to reduce the steric 

interference between the two bromine atoms. The pair distribution function does not 

seem to reflect this, having a higher probability for 5.8 A and a low probability for

6.9 A. The C...Br separations are 5.5 A and 6.7 A. The former of these is short of 

the second peak maximum and the latter has a low probability. The short C...F 

distance is 4.4 A which is close to the minimum in the C...F distribution. The short
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F... Br distance is 4.2 Â which is very close to the minimum in the pair distribution 

function. Arrangement (g) has a Br...Br distance of 3.7 Â, which is short of the 

maximum but still has a reasonable probability. The F. ..Br distance in this case is

5.2 Â which is close to the second maximum. Arrangement (h) has a Br...Br 

separation of 8.6 Â which is in the second shell of the distribution. The Br...F 

separation is 6.4 Â which has a reasonable probability in the pair distribution 

function. This suggests that the rocket structure (e) is the most likely.

5.4.3 Conclusions

There is plenty of support in the pair distribution functions for arrangements 

(a) and (e). However neither or these arrangements explain the C... Br separation of 

5.8 Â. Although this peak in the pair distribution function has a much lower 

probability than the first peak, it is nevertheless of significant probability and so 

must be caused by another arrangement. The other three straddle arrangements all 

give this separation. However (b) is unlikely because of the lack of evidence for a 

B r . B r  separation of 4.6 Â. Arrangement (d) has a short F...F distance that is less 

likely than the maximum but cannot be completely discounted, although it does not 

provide any Br...Br separation within the first shell. Out of these three arrangements 

(c) is the most likely and provides the greatest agreement with the rest of the 

distribution peaks. The rocket arrangements (f) and (h) have a low probability due to 

the lack of evidence for their low F...F separation, but arrangement (g) agrees with 

the distribution functions.

Considering the potential parameters it is evident that the interaction between 

bromine atoms is more favourable than between bromine and fluorine atoms, which 

is more favourable than between fluorine and fluorine atoms. However
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counterbalancing this is the fact that bromine atoms are considerably larger than 

fluorine atoms and so volume minimisation would favour the reverse order of these 

interactions. These considerations, together with the evidence from the pair 

distribution functions suggest that bromotrifluoromethane adopts the arrangements 

(a), (c) and (e) in that order of preference.

5.5 Chlorotrifluoromethane

The neutron scattering experiments on this molecule were performed by Dr. 

C. Hall and the result shown in his thesis [1], Positions of the intramolecular 

separations were found by fitting the intramolecular peaks using Gaussians. 

Simulation studies of the liquid structure have been performed with a good fit to the 

experimental data obtained. The simulations have been performed in the same 

manner as for bromotrifluoromethane with the Lennard-Jones parameters and 

fractional charges considered as adjustable in order to fit the experimental data.

5.5.1 Results

The experimental pair distribution function for chlorotrifluoromethane is 

shown in figure 5.16. the  intramolecular separations are shown in table 5.9. As in 

bromotrifluoromethane, the liquid shows very little long range structure with only 

the first two shells being clearly visible. Again this suggests that the structure is 

driven by volume minimisation and that the long range coulombic forces are small.
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Figure 5.16 Neutron experimental pair distribution function for

CC1F3 at 153 K
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Distance / A

C-F (bond) 1.328 ±0.014

C-Cl (bond) 1.753 ±0.005

F...F (gem) 2.148 ±0.005

F...C1 (gem) 2.532 + 0.005

Table 5.9 Intramolecular structure of CC1F3 derived from 

experimental neutron scattering.

The comparison between the experimental pair distribution function and the 

pair distribution function obtained by the simulation is shown in figure 5.17. The 

simulation reproduces the experimental structure well and, as can be seen in table 

5.10, correctly predicts the internal energy of the liquid at 153 K.

experiment [5] / kJmol1 simulation / kJmol'1

-15.9 ±0.24 -15.84 ±0.11

Table 5.10 Comparison between the experimental internal energy 

and the simulation’s configurational energy at 153 K
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Figure 5.17 Comparison between experimental and simulation pair 

distribution functions for CC1F3 at 153 K

The potential parameters and fractional charges used in the simulation are 

shown in table 5.11. As in bromotrifluoromethane, the charges are low showing the 

small contribution they play in the overall structure of the liquid. The polarizability 

of chlorine is shown in the value of s. This parameter reflects the range of effect of 

the polarisability better than a point charge. The values of e for chlorine are smaller 

than that for bromine, which is to be expected, as bromine is larger and therefore 

more polarizable.
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q E / J m o f 1 a / A

c 0.3562 C...C 387.4 3.40

F -0.1018 C...F 336.0 3.125

Cl -0.0508 F...F 547.0 2.80

C1...F 450.0 3.10

C1...C 592.0 3.45

C1...C1 1131.1 3.35

Table 5.11 Potential parameters and partial charges used in the

simulation of CC1F3

The partial pair distribution functions obtained by the simulation are shown in figure 

5.18. As can be seen the functions are similar in shape, allowing for the neutron 

weighting, to those obtained for bromotrifluoromethane, and the analysis reveals a 

close similarity between the two structures. This is unsurprising as the structure of 

these liquids is driven by volume minimisation, and each has only one large halogen 

atom. The possible arrangements for the molecules are the same for 

bromotrifluoromethane and are shown in figure 5.9
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Figure 5.18 The neutron and number weighted partial pair 

distribution functions for CC1F3 at 153 K. The functions have been 

separated by 0.1 each to aid clarity.

5.5.2 Interpretation

Close examination of the partial pair distribution functions confirms that 

chlorotrifluoromethane arranges itself in a very similar fashion to 

bromotrifluoromethane. There is a C...C peak at approximately 4.6 A with a shoulder 

at longer r. The Cl. Cl distribution shows two peaks, indicating at least two 

arrangements, with the longer Cl..Cl peak being directly above the C...C shoulder at 

a distance of 5.5 A. This would suggest a rocket conformation as shown in 

figure.5.9(e). Again the associated F...F peaks are smeared suggesting rotation about 

the C...C axis. The same arguments as before can be used to assign the short Cl...Cl 

distance (~ 3.7 A) to the straddle arrangement shown in figure.5.9(a), and the C1...C
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distance of approximately 5.8 À to the straddle arrangement in 5.9(c). Again there is 

no evidence for the presence of any other conformation in any appreciable quantity. 

From the size of the Cl. . .Cl peaks it would appear that the populations of the ‘rocket’ 

and first straddle conformations are approximately equal with the population of the 

second straddle being smaller.
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Figure 5.19 Possible arrangements for CC1F3
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5.5.3 Conclusions

From examination of the simulation results that chlorotrifluoromethane 

arranges itself in a similar manner in the liquid phase to bromotrifluoromethane and 

that the most probable configurations are (a), (c) and (e) as shown in figure 5.19.

5.6 Dichloro-difluoromethane

Molecular dynamic simulations were performed to try and reproduce the 

neutron pair distribution function obtained by Hall et al.[9], It proved difficult to 

match the experimental data completely although the final result produces a fair 

match to the data and the internal energy was reproduced in the simulation. The 

analysis of the pair distribution function was more difficult, owing to the symmetry 

of the molecule. However it was possible to rule out various arrangements and draw 

reasonable conclusions about the way the molecules arrange themselves in the 

liquid. The conclusions drawn are different to that obtained by C. D. Hall.

5.6.1 Results

The comparison between the neutron pair distribution function and the 

neutron weighted pair distribution function from the simulation is shown in figure 

5.20. It was difficult to match the intermolecular liquid structure for this molecule 

and the figure shown is the best match obtained in this work, however the match is 

an improvement on that obtained by Hall et al. [9] The difficulty may be due to the 

model potential used in the simulation failing to account for the anisotropy in 

chlorine’s potential. However the fit is still reasonable, reproducing the main 

features of the first shell, and matches the height of the maxima. Table 5.12 shows 

the configurational energy from the simulation compared to the calculated internal

141



energy. As can be seen the simulation reproduces the internal energy well and as 

such can be assumed to be a reasonable portrayal of dichloro-difluoromethane in the 

liquid phase at this temperature. The potential parameters used in this simulation are 

shown in table 5.13.

Figure 5.20 Comparison of the pair distribution function obtained 

by neutron diffraction [7] and molecular dynamics simulation for

dichloro-difluoromethane

experiment |5] / kJmoi'1 simulation / kJmol'1

-23.1 ±0.23 -23.74 ±0.12

Table 5.12 Comparison of experimental internal energy and the 

configuration energy from the simulation for CCI2F2
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q e/Jmor1 a/A

c 0.18432 C...C 613.0 3.40

F -0.08352 C...F 336.0 3.125

Cl -0.00864 F...F 347.0 2.80

CI...F 400.0 3.20

C1...C 592.0 3.65

C1...C1 1131.1 3.35

Table 5.13 Potential parameters and partial charges used in the

simulation of CCI2 F2

The partial pair distribution functions are shown in figure 5.21. As can be seen the 

C...C distribution has a maximum at 4.8 A and a shoulder centred at 5.6 A. There is a 

minimum in the Cl...Cl distribution at 4.8 A and a maximum at 5.6 A. The low r peak 

in the Cl...Cl distribution is at a separation of 3.7 A. The F...F distribution has maxima 

at 3.0 A and 5.2 A and a minimum at 4.0 A. The C1...F distribution has maxima at 3.2 

A and 5.4 A, and a minimum at 4.3 A. The C1...C distribution consists of 1 peak with 

two shoulders. These are at 4.3 A, 4.9 A and 6 A. The F...C distribution has maxima at 

4.0 A, 4.8 A and 6.2 A, and a minimum at 3.2 A.
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Figure 5.21 The neutron and number weighted partial pair 

distribution functions for CC12F2. The plots have been separated by 0.1

each to aid clarity.

5.6.2 Interpretation

Figure 5.22 shows the various possible orientations that 

dichlorodifluoromethane could adopt in the liquid phase.
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As seen previously, the straddle conformation allows the molecular 

separation to be shorter and so it could be expected that a C...C separation of 4.8 A 

would be associated with straddle and a separation of 5.6 A associated with a rocket 

conformation. If this is the case then, considering that there is a low probability of a 

Cl...Cl separation at 4.8 A, then it would appear that any straddle conformation that 

gives this separation can be discounted. The arrangements (a), (d) and (f) in figure 

5.22 above fall into this category. Of the straddle arrangements, many of the 

separations are repeated and so it is only necessary to examine a few of them to 

ascertain the most favourable arrangements. The separation between two Cl atoms 

facing each other is 3.4 A, and for two F atoms facing each other, 3.6 A. The 

separation between a Cl atom and a F atom facing each other is 3.5 A. Considering 

arrangement (a), the distance between the Cl atoms are 4.8 A and 5.6 A, and 

between the F atoms are 4.8 A and 5.3 A. The C...C1 distances are 4.05 A and 6.0 A 

and the F...C distances are 4.15 A and 5.7 A. Arrangement (a) has already been 

discounted due to the Cl...Cl separation of 4.8 A, however many of the other 

separations are reproduced in the other arrangements. Consider arrangement (b). 

This has no close Cl...Cl distances and no long F...F distances. The C1...F 

separations are 5.10 A and 6.88 A which are possible, but this arrangement gives too 

great a probability for the short F... F at 3.4 A, when the peak maximum is at 3.0 A. 

In fact the short Cl...Cl separation for all the arrangements is really too short and it 

would seem probable that, as in bromotrifluoromethane and chlorotrifluoromethane, 

there is some twisting of the molecules to accommodate the size of the chlorine 

atoms. This would have the effect of lengthening the Cl... Cl distance and shortening 

the F. . .F distance. Also, considering the size of the first peak in each of these 

distributions, and allowing for the contribution from arrangement (h) in the Cl...Cl
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peak, it seems likely that there is equal amounts of close F...F and close Cl...Cl in 

the straddle arrangements. This favours arrangement (e) (arrangement (d) being 

unfavourable due to the Cl... Cl separation at 4.8 A.)

Given that there is a high probability of a Cl... Cl separation at 5.6 A, and the 

presence of a C...C separation at this distance, it would seem probable that 

arrangement (h) is present. This is supported by the short Cl...Cl distance in this 

arrangement, which occurs at 3.6 A, within the first peak in the Cl...Cl distribution. 

The remainder of the separations in this arrangement are reproduced in the partial 

pair distributions from the simulation. The F...F distribution also has a high 

probability at a separation of 5.6 A which would support the presence of 

arrangement (i). However this separation would give a low F...F separation of 4.0 A, 

but the F... F distribution has a minimum at this value making this arrangement and 

arrangement (k) unlikely. Many of the distances in arrangement (j) are the same as 

for arrangement (h). The separation between the F and Cl atoms that lie on the C...C 

axis is 5.2 A, which is present in the C1...F distribution and so this is another 

possible arrangement.

5.6.3 Conclusions.

Dichlorodifluoromethane can be simulated using molecular dynamics to 

reproduce the internal energy and the main features of the experimental liquid 

structure. The most probable arrangements of the molecules in the liquid phase at 

153 K are shown in figure 5.23.
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5.7 Neutron Diffraction Studies of 1,1,1,2-tetrafIuoroethane (R134A)

1,1,1,2-tetrafluoroethane (CF3CFH2, R134A) was supplied by ICI at a purity 

of 99.9%. The experiment was performed at the ISIS facility at Rutherford Appleton 

Laboratory using the SANDALS diffractometer. The experiment was performed with 

the assistance of Dr. A. Burgess of I.C.I, and Dr A. Soper of the Rutherford Appleton 

Laboratory.

The liquid was contained in a cylindrical, thin-walled pressure vessel, 

constructed of a null-scattering titanium-zirconium alloy. Diffraction data were 

collected at (200 ± 1) K, (250 ± 1 ) K, and (300 ± 1) K. The data were analysed using
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standard correction routines [4] to obtain the differential cross-sections, and then a 

fitted Chebyshev polynomial was subtracted from the data to account for the self­

scattering.

5.7.1 Results

At this stage only the analysis on the lower temperature has been completed 

and it is this that has been included here. Figure 5.24 shows the S(Q) obtained from 

the sample for the lowest temperature, 200 K. Figure 5.25 shows the pair distribution 

function, g(r), obtained from the S(Q) by using the minimum information method [5] 

on the data.

Figure 5.24 S(Q) for 1,1,1,2-tetrafluoroethane at 200 K.
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Figure 5.25 pair distribution function for 1,1,1,2-tetrafluoroethane

at 200 K
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5.7.2 Interpretation

The negative peak at 1.1 A and the positive peak at 1.35 A are due to the 

average C-H and C-F bond distances respectively. The C-C bond distance would be 

at 1.5 A which lies within the first positive peak. The next shoulder at 1.8 A is 

probably attributable to the intramolecular H...H distance, with the negative peak at 

2.0 A being the close F... H intramolecular distance. The peak at 2.2 A will be due to 

the close F...F intramolecular distance. The peak at 2.4 A is probably due to the 

distance between two fluorines that are cis to each other on different carbons, and 

likewise the negative peak at 2.6 A is probably the cis F1...F intramolecular distance. 

Beyond this the intramolecular region and the intermolecular region overlap, making 

it difficult to assign peaks. Unfortunately we have as yet to perform molecular 

dynamic simulations on this molecule and this is a project for the near future.

5.8 Neutron Diffraction Studies on 1,1,2,2-tetrafluoroethane (R134)

1,1,2,2-tetrafluoroethane (CF2HCF2H, R134) was provided by ICI at a purity 

>99.9%. The experiment was carried out by with the assistance Dr. K. A. Johnson 

and Dr. A. Burgess with help from W. S. Howells.

The liquid was contained in a cylindrical, thin-walled pressure vessel, 

constructed of a null-scattering titanium-zirconium alloy. Diffraction data were 

collected at 200 ± 1 K, 250 ± 1 K, and 300 ± 1 K. The data were analysed using 

standard correction routines [4] to obtain the differential cross-sections, and then a 

fitted Chebyshev polynomial was subtracted from the data to account for the self­

scattering.
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5.8.1 Results

Again the analysis for this experiment has only been completed at this time 

for the lower temperature, 200 K. The S(Q) obtained is shown in figure 5.26. This 

data was transformed into a pair distribution function using the minimum 

information method of Soper [5], This g(r) is shown in figure 5.27.

Figure 5.26 S(Q) for l,l*2,2-tetrafluoroethane at 250 K
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Figure 5.27 pair distribution function from l,l*2,2-tetrafluoroethane
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5.8.2 Interpretation
The negative peak at 1.1 A is due to the average C-H bond distance. The first 

positive peak covers both the C-F and C-C bond distance. The C-F bond length is

1.3 A and the C-C bond length is 1.5 A. The close F-H distance produces a negative 

peak at 1.95 A. The next positive peak is at 2.3 A and corresponds to the close F-F 

distance. There is a dip in the distribution function at 2.6 A which corresponds to the 

long H-F distance. Beyond this the intramolecular separations are of the same length 

as the close intermolecular separations, making it difficult to assign peaks.

Molecular dynamics simulations have yet to be performed for this molecule 

and so an analysis of the intermolecular structure cannot be done at this stage.
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Chapter Six

Conclusions and Future Work

Neutron diffraction provides a good method of establishing bulk liquid 

structure with relative ease. The advances in instruments and analysis techniques 

make even hydrogenated samples accessible to this method. Molecular dynamics has 

in the past shown its ability in providing a method for developing potentials by 

empirically fitting to experimental data. However this project has shown that the 

combination of both techniques provide a powerful tool in deriving a complete 

understanding of the liquid structure as well as the intermolecular forces at work 

within the liquid.

The work has established the structure for several fully halogenated methanes 

as well as providing a complete understanding of the structure and forces involved in 

trifluoromethane. Neutron diffraction studies of 1,1,1,2-tetrafluoroethane and 

1,1,2,2,-tetrafluoroethane have been performed and the low temperature 

intramolecular structures have been established. Neutron diffraction has also been 

performed on difluoromethane, although simulation studies have yet to reproduce the 

neutron structure.

The problems with simulating difluoromethane need to be investigated, and 

inadequacies in the potential dealt with. This may mean changing to a more 

complicated potential function, or the inclusion of multipoles within the forcefield. It 

would also be interesting to compare the results of a neutron diffraction experiment 

on deuterated difluoromethane with the hydrogenated, and simulation work.

156



The higher temperature neutron data analysis of the fluorinated ethanes, when 

completed, will provide, with the data already analysed, a good set of data for 

comparisons with molecular dynamics simulations. The range of temperatures will be 

able to provide a test of the potential as was seen with the deuterated trifluoromethane 

work.

The potentials already developed could now be implemented in other 

molecular dynamics simulations to investigate a range of dynamic and 

thermodynamic data.

It would be interesting to extend the work into mixtures and non-aqueous 

solutions as an aid to the understanding of solvation effects. Once the potentials have 

been developed for the pure liquids, the problem would be in calculating the cross­

terms for the intermolecular potentials, and again, neutron diffraction results on these 

mixtures will help in the fitting process.
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