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Abstract

A full likelihood-based approach to modelling categorical longitudinal data is studied,
in which all marginal expectations and interactions are parametrized. The dependence-
ratio model of Ekholm et al. (Biometrika, 82, 847-854, 1995) is extended to poly-
tomous data and a more general parametrization. I also introduce and criticise a
modification of the model of Fitzmaurice and Laird (Biometrika, 80, 141-151, 1993).
A method is given for fitting the original and modified Fitzmaurice and Laird models
to unbalanced data, without resort to computationally expensive imputation.

When fitting certain fully marginal models, we need to obtain cell probabilities corre-
sponding to specified odds ratios. It is shown that we must use numerical rather than
analytical techniques. An algorithm is presented that is shown by simulation to be up
to two orders of magnitude faster than the Newton-Raphson iteration proposed by
Glonek and McCullagh (JRSS, B57, 533-546, 1995). This considerably extends the
practical limit on the number of observations one can model. In certain circumstances
a solution is obtained that cannot be found using Newton-Raphson iteration. The
opposite also occurs; neither algorithm always converges.

Markov chain models are also studied, and a fitting method is given that lifts certain
restrictions of previous literature presentations. Such models are developed in great
generality and are considered for multivariate processes also; here we model prob-
abilities conditional not only on history but also on other simultaneously observed
outcome variables, which may be of different data types.

Such ‘timepoint-wise factorized’ models offer an intuitively appealing approach to the
problem of modelling data given that some subjects have dropped out of a trial, which
is almost inevitable in longitudinal studies. It is shown that one cannot use maximum
likelihood techniques to assess the degree of bias due to informative dropout. However,
if this need not be considered, a very flexible model, able to allow for different types

of dropout simultaneously, is proposed and examined.



Chapter 1

Introduction

1.1 Longitudinal data analysis

Consider an outcome variable, Y;, measured on each of several occasions (‘timepoints’)

t, for several units or individuals. The vector of outcomes for the uth unit is denoted
Yu = (Yulv Yu?a e YuT),s

where there are T timepoints. The methods are developed for constant T, though in
Chapters 5 and 6 non-constant T values are considered.

It will be assumed throughout that there is a set of explanatory variables, X,;, for
each timepoint, t = 1,2,...,T, and that such variables may vary with time.

In the most general setting, such as occurs with routine observational patient records
in hospitals, the observation times are not the same for all subjects. Such cases are
not discussed here in any detail. Thus, attention is restricted to discrete and fixed
time models that can be described theoretically by a multivariate distribution rather

than as realizations of some underlying stochastic process.

Longitudinal data are a subset of the more general case of dependent data, where
the classical assumption of independence does not hold. Even when the data are
not repeated measures, there may be a natural ordering to the subscripts: in human

sibling studies, excluding multiple births, children would be naturally ordered by age.

1



CHAPTER 1. INTRODUCTION 2

In animal litter studies such distinction may be impossible or meaningless. The general
case lies outside the scope of this thesis, although wherever possible I will indicate
when the longitudinal models described here may be used more widely.

The principle method of analysis throughout this thesis will be likelihood-based mul-

tivariate regression: the analyses use the model

g(E[Y]) =n(Y,X,v), (1.1)

where g and 7 are specified vector-valued functions, the explanatory variables X may
be manifest or latent, and -y is a vector of parameters, some of which may be nuisance
parameters. In general g is a function of the expected value (but sometimes also
higher moments) of Y, as in the classical generalized linear model (GLM), and 1 may
incorporate a description of the assumed error. The seemingly unusual appearance of
Y on both sides of the relationship is clarified below.

In common with the GLM, the function(s) g() is called the link function; almost
always here g() denotes a vector of such functions. Similarly n() is a vector of linear
functions known as the linear predictor(s).

For longitudinal and/or dependent data analysis, models are often split into three or
occasionally four main types (see, for example, Diggle et al., 1994, and Neuhaus, 1992).
These are the marginal, mixed (or random-effects), and transitional approaches, with
the optional but rare inclusion of response-conditional models. This terminology is
described before suggesting an alternative classification.

In the literature, g is usually of the form

g(E[Y]) = (91(E11]), g2(E[Y2)), - . . g7 (E[¥7]), 9x (E[¥]))". (1.2)

The overall model is a collection of individual models for expected values at each
timepoint, plus (possibly) a dependency model, here denoted g« (E[Y«]). A marginal

model is one for which at each timepoint

9 (E[Yur]) = m(Xut,7), (1.3)
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together with a dependency model to correct for biased estimates of standard er-
rors, where g; is now explicitly a function of the marginal (univariate) expectation
of Y. Such models are described by McCullagh and Nelder (1989) and were first
implemented by Liang and Zeger (1986) and Zeger and Liang (1986). The description
marginal is traditionally reserved for the model for E[Y}]; the dependency model may

take any of several forms, as discussed briefly below and in detail in Chapter 2.

A marginal model is applicable when timepoints are fixed, discrete, and the same
for all units. However, in most data sets there are missing observations for some
timepoints for some units. An observation y,2 denotes an observation on the uth unit
at some fixed time 2, and might be the first or second actual observation on that unit.
Certain predetermined timepoints might be omitted from the final analysis altogether,
if there are many missing data. Missing data are considered in detail in Chapters 5

and 6.

The marginal model is normally contrasted most sharply with the random-effects

model, for which again assuming (1.2),

Gt(E[Yue]) = ne(Xuty 74)- (1.4)

Note the presence of subscript u on + here and the implicit assumption of latent
variables among the explanatory X,,, the so-called random effects. Alternatively we
may consider those elements of -+, that vary with each unit as random variables and
then X,; can be represented as an observed/fixed design matrix; the effect is just
the same. Such models are inherently overparametrized, so that there is need for a

plausible set of restrictions. The strategy often used in the literature is that of setting

Yu=B+by

and then imposing some distributional assumptions on the “random effects” b, to
gain identifiability. (The above description of the approach is due to Diggle et al.,

1994, but embodies a vast literature including the seminal work of Laird and Ware,
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1982.) The assumed distribution is often Normal.

The random effects in this model may be estimated explicitly, or more often the
random effects are integrated from the likelihood or determined by sufficient statistics
(for example, Conaway, 1992), to give a model more naturally written as explicitly

conditional on the random effects:

gt(E[Yut I bu]) = m(Xut, v, bu). (1.5)

Such models are sometimes called conditional. In emphasising the distinction between
conditional and marginal models in the interpretation of the parameters v, Zeger et
al. (1988) used the terms “population averaged” and “subject specific” for marginal
and conditional estimates, respectively. Subject-specific effects might not be random,

although this is the common usage.

In a transitional model, rather than model functions of the univariate expectations,
the transitional probabilities from outcome y,; at time ¢ to outcome Yu(t+1) at time
t + 1 are parametrized. This thesis is almost exclusively concerned with polytomous
data, for which such a model of transitional probabilities is directly equivalent to a

model for the conditional expectations: in Chapter 4, the model
gt(E[Yut | Yur,-.. Yu(t—l)]) = nt(Yul’ .. Yu(t—l)» Xut - Xuta’f)a (16)

is considered. It is common to assume that the links and linear predictors are suffi-

ciently well chosen as to render the need for an interaction model g« (E[Yy]) redundant.

Finally, the response-conditional model of Rosner (1992b) is similar to the above
transitional formulation, except that dependency on all the other observations on

each subject, rather than only on previous observations, is modelled:

9(E[Yur [ {Yas : s #t}]) = n({Yus : s # t}; {Xur Vr}5 7). (L.7)

While this model may be of great importance for general dependent data structures,

it clearly makes no intuitive sense for longitudinal data: dependency on future values
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is not relevant for most longitudinal models. This model is accordingly not discussed
further.

The description conditional has been used above in two distinct senses: conditional on
unobserved random effects, and conditional on observed values. There is no particular
reason why we should not condition on both, to give a transitional model with random
effects. Thus, the hierarchy of model choice advocated here is that one first chooses
between response-conditional and univariate-expectation models (with allowance for
dependence), and then decides whether to include random effects. From this point
of view, the standard random-effects model is more marginal than conditional, in
that univariate (and in this sense marginal) expectations are modelled; the essential
difference between this and the standard marginal model is that effectively certain of
the explanatory variables, b,,, are unobserved in the ‘conditional’ model.

In summary, for longitudinal data there are two main types of model — marginal
and response-conditional — in either of which there may be latent variables (subject-

specific effects). This classification was proposed by Ware et al. (1988).

1.1.1 Special considerations for categorical data

When the outcome Y is a discrete random variable, certain of the inherent simplifi-
cations that arise with Normal data no longer hold.

Importantly, with any non-Gaussian data the marginal estimates of mean and covari-
ance parameters are closely linked: the fundamental simplification of classical ANOVA
— the independence of the estimates of means and standard deviations — fails to hold.
Linear models of continuous data with different covariance structures will give simi-
lar results with regard to estimates of means (indeed, asymptotically identical), but
for discrete data, because of the lack of independence of estimators, different models
can lead to quite different (indeed asymptotically non-equivalent) estimators. With
discrete data the fundamental difficulties are in the interpretation and in the esti-
mated parameter values, which are closely tied to the assumptions about the nature
of dependency.

Similarly, for linear random-effects models with Gaussian errors, estimates of the
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fixed-effect coefficients are robust to assumptions about the distribution of the ran-
dom effects; for discrete data this no longer holds. This observation is reminiscent of
the frequently quoted interpretation of random effects as accounting for otherwise un-
explained covariance; since for discrete data the assumed covariance structure affects
the estimates of marginal, fixed effects, so random-effects assumptions correspond to
covariance assumptions and thus must affect fixed effects.

A related issue adds enormous computational, and appreciable interpretational, diffi-
culties. For T-variate Gaussian data the entire dependency structure is encapsulated
in a T x T dispersion (covariance) matrix, but for T-variate binary data the equiv-

alent matrix is of size (27

— 1) x (2T = 1), which is enormous for even moderately
large T'. For polytomous data a complete description of the covariance structure is
cumbersome even for reasonably small T. The computational burden of a general
treatment often outweighs the possible advantages it might bestow, so simplifications
are of great importance and frequent consideration.

Another difference between Gaussian and polytomous models is that for Gaussian
data the link function to the marginal expectation is often the identity function, but
for binary data this is often, at least for the univariate/marginal links, the logit (or
probit, or complementary log-log) link to the probability m; of success at time ¢t. For

polytomous data we use the “baseline” extension,
T
log { —
()
w
log (—L) .
T—1

This latter form, or the more familiar cumulative logit link or even a link to the mean

or the adjacent-category link to

score is fully discussed in Agresti (1990) and is expanded where applicable below.
Transitional versions of these models are created simply by the presence of observed
historical values within the linear predictors for these same links. Importantly no
further new development is needed for the univariate marginal models that are the

backbone of models for longitudinal data; everything known about the properties of
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such links for univariate data holds here too, with the possible introduction of bias

from the dependency assumptions.

1.1.2 Modelling dependency

A key distinction between longitudinal and cross-sectional data is the almost certain
lack of independence between the measurements on each individual or unit. The three-
(or four-) way classification of models in the literature is perhaps most clearly justified
if we consider the methodology of dealing with intra-subject dependencies rather than
the univariate marginal, and random-effect-conditional marginal model that is often
the focus. Three distinct strategies emerge. For each of these strategies, subjects
are assumed to be mutually independent; we are only concerned with within-subject
dependence.

The easiest conceptual approach is that now linked to random-effects models. This is
simply to assume that observations on a subject are independent given the random
effects: more formally,

COV(Ym’,Yuj |bu) =0 V’i, ]

Because polytomous data are of primary concern, the terms ‘independent’ and ‘uncor-
related’ are frequently used synonymously; formally the dispersion matrix is assumed
to be diagonal. This assumption, often known as local independence, is adopted by
most advocates of random-effects modelling. A notable attractive exception (Conaway,
1989; Conaway, 1990) does not accept that local independence is a reasonable assump-
tion in the longitudinal data setting. Conaway’s solution is to incorporate previous
responses as covariates and so to advocate a model that is random-effects with condi-
tioning on history added: I would describe this model as transitional with additional
random effects. It is of course not necessary to assume local independence once random
effects have been included; one could parametrize covariance in the manner described
below, and in Chapter 2, and have random effects.

A second way to deal with within-subject dependence is to take a response-conditional

or transitional approach, since this factorizes the joint likelihood into a set of univariate
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likelihoods that are functionally independent, at least when the parameters are not
shared across timepoints. Thus, there is no need for a specific dependency model,
one of the many attractions of such conditioning, provided of course that such an
analysis addresses the underlying question. Discussion of these models, including

what happens when parameters are shared between timepoints, is given in Chapter 4.

The third main approach is to look towards a more completely specified model for the
joint likelihood and to specify the interaction terms linked to g« (Yx), equation (1.2),
estimating these parameters alongside those for the marginal means. This approach,
arguably the natural extension of the GLM to dependent data, is explored in Chapter
2. There is here no study of the addition of random effects within the marginal and/or
interaction models. In this case one would obtain perhaps the most natural extension

of the generalized linear mixed model (GLMM), but this is a topic for future research.

In pre-empting my discussion of such models in Section 1.2 and Chapter 2 below,
the approaches of Stram et al. (1988) and the GEE models of Liang and Zeger (see
later for full references) are considered here. In both of these approaches dependency is
regarded as strictly nuisance, and point estimates of marginal effects are obtained from
models assuming independence across timepoints; only when estimating the errors in
such estimates is the dependency utilized. Even crude (marginal) estimates which
ignore correlation are nearly optimal, but dependency is important when assessing the
precision of estimates (Zeger, 1988). Similarly Fitzmaurice and Laird (1993) stress
that univariate marginal estimates are robust to dependency misspecification. If only
the estimates of effects on such univariate distributions are needed, the independence
assumption may offer a practical compromise between computational simplicity and

accuracy, but much more may be needed.

Two of the above three methods for dealing with the dependence structure do not
model dependency directly. This might seem to be something of an anomaly for a

repeated-measures design. Louis (1988) writes

“If covariance parameters are not of interest, then the burden of proof will

be to show why a longitudinal study is necessary.”
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But in the same article, Louis (1988) writes that longitudinal studies, when used to

address cross-sectional questions, provide

“increased precision, more accurate measurement of covariates, and pro-

tection from certain types of selection and dropout bias”

Fully marginal models are introduced in Chapter 2 to address the specific modelling of
covariance structure, at least for data where T is sufficiently small for the analysis to
be computationally practicable. The transitional, or Markov model (Chapter 4) does
have a type of parametrized dependence, although this is expressed as a univariate
effect that is interpretable for descriptions and predictions, rather than, as for the
marginal approach, for descriptions of the distribution. The classical random-effects
approach with its assumption of local independence sidesteps the issue entirely and
is open to criticism if intra-subject dependence is of interest and cannot be brushed
aside as a set of nuisance parameters. Indeed, if longitudinal data have been collected
for the purpose of the analysis of change, the classical random-effects model is quite
inappropriate. Such considerations are important when choosing a modelling strategy,

and are considered in the next section.

1.1.3 Choice of longitudinal model

Each type of model described above has its advocates. Thus a newcomer to longitudi-
nal data analysis might reasonably ask “which type of model is best for my particular
problem?”. Obviously the reasons for collecting the data and the questions being
addressed influence the model choice. Following the spirit of generalization of many
particular models into the unifying framework of the generalized linear model, one
might think that there would be some “grand unified” longitudinal model that could

be fitted to provide answers to any relevant question posed. This is not the case

however:

“The megalomanical strategy of fitting a grand unified model, supposedly
capable of answering any conceivable question that might be posed, is, in

our view, dangerous, unnecessary and counterproductive. It violates that
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basic principle of applied statistics, the avoidance of unnecessary mod-

elling.”

(Melinda Drum and Peter McCullagh, in a comment on the review of Fitzmaurice et
al., 1993).

Consider a study (Neuhaus, 1992) of the sexual behaviour of a San Francisco based
cohort where the main outcome variable was whether or not a person had engaged in
unsafe sex during the past month, the question being repeated once per year for five

years. Neuhaus gives three problems, each calling for an entirely different modelling

strategy, as follows:

e Does the prevalence of unsafe behaviour depend on age? This type of question
might be studied by a cross-sectional study, which indicates the method of choice
for a cohort study: we require a marginal model. Indeed a first crude approxima-
tion might be to base one’s estimates for prevalence on the data obtained in the
first wave of the study only, that is to say, to ignore four fifths of the data and
perform only ordinary cross-sectional analysis. Such an estimate lacks power
because it fails to use all the available information, and is subject to bias when
compared to the estimate for time-1 prevalence obtained by extracting the time-
1 marginal from a model of the joint distribution. A non-technical explanation
for the bias in the simplistic approach is that a single cross section cannot allow
for an age-cohort effect, equivalent to prevalence being related to cohort rather
than to age per se; a particular generation may continue to practise unsafe sex
while a younger generation, say, might not. Only in the longitudinal design and

analysis is it possible to disentangle the effects of age and cohort.

e Does the probability of engaging in unsafe sex change after an individual receives
HIV antibody test results? Neuhaus identifies this as a subject-specific problem,
for which he advocates a random-effects approach. I would favour a transitional
approach here as the question more directly relates to change with respect to
previous behaviour. However, if the question is to be interpreted more precisely

as “is the behaviour of post-test individuals different on average from that of
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pre-test” then a marginal model is plausible. Whether or not random effects
would be justified in this marginal model depends on whether one wishes to

describe the relationship in the population at large or per individual.

o Does the probability of engaging in unsafe sex depend on previous sexual be-
haviour? This question is instantly framed in transitional terms; the concern is
the effect of previous outcome on present behaviour. Although less intuitive, this
question can be addressed by a fully marginal model, with attention focussed

on suitable marginal interaction parameters.

It would seem clear that marginal models — or at least, fully marginal models —
can answer almost all of the likely questions. Moreover, marginal models are not
longitudinal-data specific: they can be used to analyse the more general case of mul-
tivariate dependent data. However, marginal models in the usual meaning do not ad-
dress the problem of subject-specific interpretations, but marginal models with some
covariates unobserved can be considered to be standard random-effects models. An
advocate of random-effects models might argue that these, rather than the marginal
‘simplification’, were the most general model.

If a random-effects model is essentially a type of marginal model, then the same
strengths must apply. But random-effects should not be preferred to classical (popu-
lation averaged) marginal models merely because they are generally easier to fit, under
the assumption of local independence, and perhaps easier to interpret in the absence of
a plethora of dependence parameters. The decision to make before analysis is whether
population-averaged coefficient estimates are required, or whether individual (subject-
specific) effects are more important. In this latter case, in the longitudinal setting,
the transitional modelling approach, which is subject-specific in its incorporation of
previous values but otherwise population-averaged, should be a strong candidate for
analysis and interpretation.

While advocating the use of marginal, including subject-specific marginal, models, I
do not advocate the artificiality of answering questions such as the third in Neuhaus

(1992) by the use of marginal models. Here interpretation in a transitional framework
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is the most natural, and that decision should be taken before computational and other
practical details are considered.

A further question, not posed by Neuhaus (1992) but common in the longitudinal
setting, is that of the prediction of a future value given past history. A marginal model
cannot be used directly for this purpose; such a model might be used to construct the
modelled joint density, then to re-interpret this in a transitional framework. This
approach is not sensible if prediction is the only or primary object of the analysis.
Despite the above considerations when choosing a model, three main strands in the
choice of model in practice can be identified. These may be broadly categorized
as good — the study is designed to answer a clearly formulated problem with the
model predetermined; compromise — given what is generally a substantial amount
of collected data, such as complete patient records, decide what the question is (or
should have been) and analyse accordingly; and bad — fit all the models for which
software is available, and interpret what they tell you. Many consultancy episodes
tend towards the second and even the third of these categories.

Optimality, in the sense that the ideal model is to be fitted, and practicality, in
the sense that many models, especially for polytomous data, are impossible to fit
with current computing power, must be balanced. One might, therefore, be forced
to assume simplified forms of dependency structure, such as homogeneity or even
independence, while strongly believing them to be unlikely. Matrix size, and the
inevitable sparseness of data in high-dimensional contingency tables, may force such
CcomproInises.

The choice between subject-specific and population-averaged models is perhaps the
thorniest issue because either might be justified and the choice between the two is
often down to personal choice. In this thesis population-averaged marginal models
are considered in detail but the non-random-effects transitional model that is also
considered here is partly subject-specific in any case. Arguably, the local independence
assumption is less tenable for binary, and perhaps all polytomous data, than for
Gaussian data; however, it is not necessary to assume such independence given random

effects. Time limitations have prevented me from developing the multivariate GLMM
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sans conditional independence here.

Some argue that only subject-specific effects have any real meaning, but Ware et
al. (1988, p. 104) argue that very often marginal and subject-conditional estimates
are the same anyway, within estimation errors. For example, suppose that we wish
to answer the question of whether or not a given drug has an effect, as assessed by
analysing a crossover trial (e.g. Section 2.3.3). Inference is based on whether or not

the parameter relating to drug administration, (3, say, is significant. In general,

|Bpal < |Bss| (1.8)

where fpj is the estimate from a population-averaged model, and Ssg is that from
a random-effects model (Neuhaus et al., 1991). Thus if we fit a population-averaged
model and find that Bpa is significant, it is almost sure that Gsg will be likewise; unless
we are actually interested in the size of the effect, we are almost sure to reach the
same conclusion from either model. Similarly, even if the size of such a parameter is
of interest, a population-averaged model can be fitted because it gives a lower bound

for the subject-specific equivalent.

1.2 Some simpler models in the literature

1.2.1 The Koch model

The key reference to this model is Koch et al. (1977), which includes an extensive
references list representing work on the ideas crystallized by Grizzle et al. (1969).
Importantly, in the former paper a development of a general methodology for the
analysis of multivariate categorical data is attempted although the title claimed only
to tackle repeated measurements.

Data are presented as counts of the number of occurrences of each of the possible
response profiles. Since the data are categorical, there are a finite number of profiles.
Profile i has estimated probability 7; = n;/n, where n; is the number of subjects with

response profile ¢, and n = 3 n;. The modelling focusses on suitably chosen contrasts
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of the m;: that is, on some vector F = Ax. Suitable choices of A readily yield models
for cell probabilities, marginal probabilities or marginal expectations. A more general

form than that given in the Koch et al. (1977) paper is readily derived: namely

F(m) = A2 f(Arm)

where the A; are linear operators and f is a possibly nonlinear function, such as log
or exponential. The appendix to the original paper uses different notation to express
this, and more complex, models. The above nomenclature allows simple expressions
for the standard logistic transformation, in terms of differences specified in Ay of logs
of suitable summations in A;m of cell probabilities.

In this framework, hypotheses of interest are framed as CF = 0 for a suitable contrast

matrix C, and the test statistic is

(CF)'(CVrC)™!(CF)

which is distributed as a x? variate on degrees of freedom equal to the number of rows

of C under the null hypothesis. The matrix Vg, the dispersion matrix for F, is

!

Vi = P (diag(#t;) — ”#t')

The Koch model is inherently marginal in the sense developed above, and cannot be
adapted to subject specificity because of the nature of the model and because at no
stage is provision made for continuous covariates, as there is with all the later marginal
models. Indeed the Koch model stands in the same relationship with the general
marginal model as ANOVA does to regression (Zeger, 1988). This latter shortcoming
has led to the recent developments in marginal modelling described throughout this

thesis.

Another disadvantage of the Koch model is that modelling each profile could be equiv-
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alent to fitting a model to the individual cells of a very large multidimensional contin-
gency table; usually such tables are sparse, which raises questions about the validity
of maximum likelihood asymptotic theory. In a general review paper Landis et al.
(1988) proposed a Mantel-Haenszel strategy to overcome the problem, and discussed
strategies for dealing with missing data.

An alternative proposal to increase the efficiency of estimation in this setting (Zeger,
1988) is to use the fitted probabilities from a first-time Koch-model fit to compute
a fitted (rather than moment-estimated) multinomial covariance matrix for each cell,
and then to recalculate the model coefficients weighting by the fitted, rather than the

observed, covariance matrix. I know of no implementation of this technique.

1.2.2 The beta-binomial model

Early developments in this field make the application of beta-binomial mixed dis-
tributions to longitudinal data contemporaneous with that of Koch and co-workers.
Several papers (Griffiths, 1973; Williams, 1975) predate the more commonly cited
work of Crowder (1978), and differ in application; the first use of the beta-binomial
distribution is attributed to Skellam (1948).

The basic idea, when applied to clustered and/or longitudinal binary data, is to as-
sume that each repeated measurement on subject u has the same subject-constant
probability m, of success, but that =, varies across subjects according to a S(a,b)

distribution, and is modelled by, for example,

logit m, = a + B'xy, (1.9)

Classically the model is expressed in terms of m, following a beta distribution with
common mean g and variance éu(1 — p): the original use of the beta-binomial distri-
bution was to allow for under/overdispersion in binomial observations. The covariates
Xy in (1.9) are constant for each subject. For polytomous data, the model extends to

multinomial-Dirichlet (Crowder, 1978).

This model has the advantage over the Koch model of allowing for continuous covari-
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ates, but it still cannot allow for time-varying covariates x,;. Moreover, the model
imposed by the beta-binomial assumption, at least in its simplest original form, re-
stricts pairs of responses on a subject to having equal correlation. Steps were taken in
this direction (Prentice, 1986), but attention has shifted towards GEE, and more gen-
eral random-effects, models. A series of papers by Rosner (1984,1989,1992a,1992c),
propose response-conditional models with beta-binomial assumptions to account for
random effects, rather than beta-binomial models.

The beta-binomial can be thought of as ANOVA for proportions, representing the
subject-constants 7, (Crowder, 1978). This is easily seen if subjects (ANOVA ‘groups’)
in the same ‘supergroup’ (treatment group) have the same intercept, rather than a
separate parameter «, for each individual, although this restriction is not strictly nec-
essary. The conceptual simplicity of this interpretation leaves it as a model of choice if
the application is sufficiently straightforward. Consideration of the ANOVA aspect of
the model may have led Crowder to the proposition of binary proportions as Normal
variates (Crowder, 1985), an idea that continues to resurface (e.g. Rochon, 1996).
Whereas the Koch model is inherently marginal in nature, the beta-binomial model is
inherently subject-specific, though always estimable provided the number of observa-
tions is two or more; ordinary random effects need not be considered. Another way to
consider the idea of (1.9) is as ordinary, univariate regression on a summary measure

of subject response. Which leads us, entirely out of historical sequence, to two-stage

models.

1.2.3 Two-stage models — derived variables

The idea of derived variables — that is, a scalar summary of the vector outcome
— was well known to Wishart in 1938 (Diggle et al., 1994). Attempts to develop a
rigorous theory of such methods are not repeated. The inadequacy of ANOVA on a
derived variable to deal with problems involving longitudinal data has been discussed
by Diggle et al. (1994) and is not pursued here. Instead I follow Crowder and Hand
(1990), whereby a natural link between the process of two-stage modelling and that

of introducing formal random effects is exploited.
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To fit the two-stage model frequently cited as Korn and Whittemore (1979), we fit in

the first stage a model such as

Q(E[Yut]) = ay + Out (1.10)

for each subject u. Hopefully, the outcome vector will be large enough for this to
be tenable, and we can find an interpretable model that is linear in the predictor. If
By is not significant for ‘most’ of the subjects, then we might be justified in taking
o, as a derived variable for univariate analysis: the mean response for each subject
being taken as a derived variable. More generally, and especially when there are time
varying covariates, we would want not a univariate second-stage analysis but a further
by-subject analysis

9(E[Yut]) = au + vy Xut- (1.11)

Thus, we could in the first place have fitted

g(yut) =y + Pyt + '7:;xut (1'12)

and then tested if the model could be reduced to (1.11) by standard variable selection
techniques. Similarly, if in the standard first stage the «, were not ‘sufficiently’
different from each other, one would again look to covariate effects additional to the

slopes, ,, and return to model (1.12) with fixed «.

Equation (1.12) is a subject-specific model that is directly estimable without the
addition of random effects provided there are at least three time points and at least
as many observations as parameters. Suppose that the model does not fit well enough

and it is proposed to allow for time-varying intercepts and slopes:

9(E[Yue]) = ut + VoeXut (1.13)

where the time-varying intercepts au,: generalize the trend-based ‘intercepts’ a, + Byt

of (1.10) to allow for nonlinear time effects. This model now has more parameters
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than observations and can only be fitted by imposing artificial constraints on the pa-
rameters, which is commonly done by assuming that the parameters come from some
pre-assigned distribution. This is the standard random-effects formulation. In this
light, equation (1.12) is essentially nothing other than an estimable random effects
model without artificial constraints (or fixed effects). This approach offers further
insight into the philosophical debate on the precise interpretation of random versus
fixed effects. A fixed effect can be considered a model simplification of an assumed un-
derlying subject-specific effect. An effect that is more or less the same for all subjects
must be assumed to be more or less the same for the population but is still, neverthe-
less, a subject-specific effect. This approach contrasts with one often advocated: that
random effects represent a set of unmeasured or unmeasurable population-averaged
covariates.

The first stage of the Korn and Whittemore procedure is to fit equation (1.12). In the
second stage the covariate effect parameters -, are averaged over subjects. If there are
different numbers of observations between subjects, or simple forms of missing data,
the outcome vectors might be weighted. The averaging process assumes that the
individual effects, 4., and the variances of these, say ¥,, are distributed multivariate
Normally with mean 4 and variance X. If the variances, which are essentially nuisance
parameters, are assumed known, then < is simply a weighted sum of the individual
fitted v,. This is certainly plausible if the 4, are obtained by maximum likelihood,
and at least asymptotically are Normally distributed.

A different second stage could be advocated if from a preliminary analysis of (1.10) 3,
can be taken as zero or constant across units. Then ay:, the ‘random’ intercept, need
not be estimated by random-effects methods, but can be simply taken as the value
obtained in stage one. Then when fitting (1.12) or its fixed (or mixed) effect counter-
part, a, can be handled as an offset (to use GLIM terminology), with a potentially
large reduction in the number of computations.

Although I have shown that contemplating derived-variable models can lead conceptu-
ally to random-effects formulations, simpler analyses in terms of the derived variables

can be carried out. It is possible to take either the intercepts, ay, or the slopes, Gy, as
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the derived variable for the univariate analysis. Another common choice, at least for
continuous measures, is “area under the curve” but this is less attractive for discrete,
especially binary, data. Amongst the disadvantages of considering slopes as derived
variables is that no distinction is preserved between subjects for whom the change
is equal but the baseline is different: for example the distinction between low and

high-risk patients is lost, in the lung function example of Buist and Vollmer (1988).

Slope may be a poor summary with values far from the within-subject trend being
of intrinsic interest. Potentially enormous amounts of information are lost in the
summary process. Also, in the simple two-stage procedure, data from the goodness-
of-fit of the summary measure are not carried forward to the second-stage analysis.
Diem and Liukkonen (1988) proposed an alternative method in which rather than

model

ﬂu=X7+€u

directly, where €, is a Normal(0,02) error, let §, represent the error in the estimation

of the observed slopes, b,

buzﬁu"‘&u

and then estimate v in

by = X + €y + &y,

and so the heterogeneity of variance of slopes is accommodated. For their data, this
model fitted as well as a random-effects model. Although this is not always the case,
the errors §, more or less represent random effects in the standard formulation and

the method of estimation differs only slightly from the usual method.

1.2.4 The two-stage procedure of Stram et al.

Stram et al. (1988) take perhaps the simplest approach possible to multivariate de-
pendent data. Separate marginal models are fitted for each time point, by temporarily
assuming full independence, and then dependence is accommodated when considering

overall group effects over time.
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An obvious advantage of this approach is the simplicity with which the univariate
models may be modelled using standard methods for fitting and calculating the vari-
ance matrix of exponential-family GLMs or standard quasi-likelihood extensions to
this theory. Moreover, one can fit to unbalanced data, and to data when there are
missing observations, provided that the data are not missing informatively (defined
in Chapter 6). A strong disadvantage, however, is that the efficiency of parameter
estimates decreases with increasing departure from independence. For this reason,
such models are perhaps best restricted to where neither predictions nor marginal
estimates are required per se, but rather one is concerned with whether or not there

is a difference in mean score between groups or more generally some covariate effect.

Stram et al. (1988) consider ordered categorical data and claim that by 1988 (or 1985,
when the paper was first submitted) there were already sufficient flexible and general
methods for the analysis of continuous repeated measurements. However in the same

year Wei and Stram (1988) showed the generality of the method for all types of data.

Changed to conform with the nomenclature here, the parameters 4 of the linear

predictors for the univariate marginal expectations are modelled through link functions
g(“t)=Xt7t7 t=1a27T

by solving the full- or quasi-likelihood independent score equations

o _o

Ut(')'t) = 5‘71 =

where £ is the log likelihood. Each of these yields a maximum-likelihood estimate
7, that is asymptotically Normal with asymptotic variance equal to the information

madtrix
ou;
v

Appealing to the multivariate Central Limit theorem, the joint asymptotic dispersion

Li(v) = —
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of two sets of estimates v, and ~,, is

n -1 n n -1
(z DsuD;u) (zDsu ) (z o )
u=1 u=1 u=1

where D; and D, are weighted functions of U; and U, evaluated at the maximum
likelihood estimates of 4y (Stram et al., 1988). Implicit in this derivation is the as-
sumption that the models for the various timepoints all have the same form (the same
number of parameters). Ware et al. (1988) state succinctly that the asymptotic co-
variance matrix of 4 can be estimated empirically. They use the so-called sandwich
variance estimator (Section 1.4.5).

To test for the significance of an effect, one considers the corresponding estimates
across all timepoints. Stram et al. (1988) consider group effects, but parameters
related to continuous covariates may be tested similarly. This becomes a problem in
multiple statistical inference. In similar vein a linear trend in components of 4 over
time might be tested.

In these analyses we are establishing whether a covariate does or does not have an
effect, or that a covariate has an effect increasing by a certain proportion with each
time interval. However, the fitted marginal models should be interpreted with caution
because their estimates are inefficient when independence does not hold. The same can
be said of the very closely related GEE method, discussed more fully and compared
with full-likelihood models in Chapter 2.

The Stram procedure has the same aim as the Korn and Whittemore method; both
methods are designed solely to assess the population effect of covariates. In the Stram
method, a set of models, one for each timepoint, is defined; in the Korn and Whitte-

more method, the halfway stage is a set of models, one for each subject.

1.2.5 Independent increments models

Louis (1988) describes these models but provides no references. There seem to be
no published reports of using this attractively simple technique. Perhaps it is so

easily implemented with standard software that nobody has specifically mentioned the
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approach. First differences are assumed to provide independent observations, which
are analysed by univariate models. The local independence assumption of the standard
random-effects model is implicitly assumed and is intuitively plausible for continuous
outcomes though less plausible for discrete data. The method of differencing has one
unfortunate consequence: covariates that are constant across timepoints drop out of
the model by cancellation. Thus, while such strategies as the Koch and beta-binomial
models suffer from the inability to model time-varying covariates, the independent

increments mode] suffers from the opposite in that only time-varying covariates can

be modelled.

1.3 The random effects model

Random effects are introduced in Sections 1.1 and 1.2, but more discussion is needed
because of the importance of such models. The inclusion of random effects into models
helps when dealing with certain model inadequacies; in particular, random effects can
be used to model between-subject heterogeneity that is not otherwise accounted for. A
random effect is a latent, or unobserved variable. If the model assumes the correct form
for the distribution of such a variable, it may be strengthened. However, if a missing
variable is non-Normal, binary say, then ignoring it, or treating it as Normal, can give
an incorrect error structure that might have serious repercussions in interpreting the
fit and predictions of the model (Louis, 1988).

When examining the local independence assumption, dependency between outcomes
is explainable plausibly, or partially, by mutual dependency on some set of explana-
tory variables. The local independence assumption allows one to argue that all the
dependence is explained in this way, and that in general a single variable suffices
for this purpose. Conversely, modelled covariance structures, with more dependency
than that accounted for by univariate dependency on explanatory variables, can be
considered as surrogates for unmeasured covariates (Louis, 1988). By this latter ar-
gument we could assert that ordinary marginal models with full dependence structure

are in fact subject-specific. They are equivalent to a random-effects formulation with
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the random effects integrated/summed out, as in the REML fit of the Rasch model
(Section 1.3.1) with dependency models playing the part of sufficient statistics for the
REML fit.

These issues have been discussed for assumed Gaussian outcomes and random effects
(Louis, 1988). If the validity of a measured Gaussian covariate is tenuous, then it
should not be included in the model but instead modelled as a random effect. No
inferences can be drawn about the effect of that covariate, but improved inferences in
the other covariates are major benefits. Louis (1988) further asserts that if there is
a choice between ordinary and conditional maximum likelihood (that is, ML versus
REML) then REML produces less biased estimates of covariance parameters. Whether

this holds for categorical outcomes is a subject for future study.

1.3.1 Random-effects models in general

A random-effects model is one in which the linear predictor includes parameters at
the individual level that are not estimable by the data but only after some arbitrary
constraint has been imposed, such as assuming that such effects are multivariate

Normal. Given the random effects we model
gt (E[Yut | but]) = Xut'?'t + Zutbut (1.14)

fort=1,2,...T, and u = 1,2,... N, where X,; and Z,; are design matrices for the
fixed effects parameters, -,, and the random effects, byt, respectively.

There is no model for interaction terms, because it is implicit in all such models
discussed in the literature that the distributions of the Y,; given b,,; at each timepoint
are independent (the so-called local independence assumption).

If there is no intrinsic interest in the estimates of the random effects we may use
REML techniques, basing inference on the conditional likelihood of the data given
sufficient statistics for the random effects. However, this begs the question of whether
it is worth introducing such effects in the first place. One answer to this criticism is

that conditional-likelihood (REML) models use only the longitudinal information —
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based on comparisons within subjects — rather than the cross-sectional information,
to estimate the fixed effects 4. A marginal model uses both cross-sectional and lon-
gitudinal information for these estimates, which are therefore subject to two different

forms of potential bias.

If we do not use conditional likelihood methods, we have a true random-effects for-
mulation and need to make some distributional assumptions about the effects before
we can proceed. If the outcomes Y and the random effects (with expectation zero)
are assumed to be multivariate Normal, then for an identity link function (g above)

we have the model of Laird and Ware (1982).

More generally we can assume that (1.14) gives the standard link function to a gener-
alized linear model for an outcome for which Y, given b, is a member of the exponen-
tial family. Almost always the random effects are assumed to be multivariate Normal,
which may be as good an idea as any, given that this assumption is never testable.
However, recently Lee and Nelder (1996) have developed methods for extending the
possible random effect distributions to include the ‘conjugate’ of the exponential-
family outcome: the term is used in quotation marks to emphasise that this is not
synonymous with a Bayes conjugate. By the further assumption of local independence,

such models might be fitted to longitudinal data in the usual way.

1.3.2 Random effects for binary data

Soon after the pioneering work on random effects models for Normal outcomes, the
methodology was extended to serial observations with binary response by Stiratelli
et al. (1984). Interestingly, the algorithm used to overcome the problem of the
intractability of the integral, namely, the use of conditional modes rather than con-
ditional means and the use of approximations for the score equations, predates its
application to the more general setting of the mixed GLM (and hence to continuous

variables) by nearly a decade: see Breslow and Clayton (1993).

Stiratelli et al. (1984) use a logistic model for mean response, with the assumption that

the parameters of this model are Normally distributed in the population. Specifically,
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we link to the vector of log odds ratios for individual u using
Ay = Xyy + Zuby; (1.15)

the random effects b,, are arbitrarily taken to be multivariate Normal with mean 0 and
dispersion matrix D, say. Moreover, in the empirical Bayes approach that is intrinsic
to the strategy of Stiratelli et al. (1984), we assume a diffuse prior for v (specifically,

multivariate Normal with mean 0 and dispersion G, letting G~! tend to zero).

Writing 7t = Pr(Yyu: = 1) the likelihood contribution of the uth subject is
Hwy"‘ (1 = my,) 7o, (1.16)

(recall that this is based on the assumption of local independence throughout) and so

the observed overall likelihood is
N
- 11 /Luexp{—%b;D‘lbu}wl_l db,. (1.17)
u=1

If a closed-form solution existed, one could compute 4 and D by maximizing this, and

then obtain standard Bayes estimates

o
g
I

E[by | yu, 4, DJ; (1.18)

4 = Elvly, b, ¢ =0). (1.19)

{l

As there is no closed form for any of these integrals, including those implicit in the
expectations, Stiratelli et al. (1984) substitute conditional modes for conditional ex-

pectations and an approximation of (1.17) to obtain D.

Stiratelli et al. (1984) frequently refer to the two-stage procedure of Korn and Whit-
temore (1979), justifying the need for a more flexible model at the expense of consid-
erably increased computational overhead. I have already discussed the first of these
issues above when illustrating how the two-stage model can be viewed as “poor man’s

random effects”. Thus I concentrate on the computational problem, which is consid-
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erable: the EM fitting algorithm (Stiratelli et al., 1984) converged only after “several
hundred” steps. With current technology, this is less of a problem than it was in 1984;
but the method might be more widely applied as part of the day-to-day armoury of
the applied statistician. These days the models can be fitted in packages such as SAS,
using proc mixed, but this is not an identical formulation to that of Stiratelli et al.
(1984) and might be rather less efficient, as it is less finely tuned to the particular
problem of longitudinal binary data. Recent versions of the Multilevel software (for

example, MLn) might be applicable if nesting holds.

Another common technique in numerical computation, the Gibbs sampler, now enables
potentially highly-multiple integrals to be evaluated routinely, and so much of the work
of Stiratelli et al. (1984) in overcoming the obstacle of integrating expression (1.17)
might now be redundant. However, it is unclear that a ‘black box’ approach offers
solutions that are preferable to those resulting from the careful insight of Stiratelli et

al. (1984); in fact, it is not even yet known what precise criteria the MCMC algorithm

requires in order to converge at all.

1.3.3 Random effects for multinomial data

The key papers of Stiratelli et al. (1984), Gilmour et al. (1985) and Anderson and
Aitkin (1985) discussed only binary data. Even by the time of Agresti’s comprehen-
sive review of models for repeated ordered categorical response data (Agresti, 1989),
extensions to polytomous data were still only conjectural. An important idea is to

model

9t(E[Yur k | bu]) = g + by + o (1.20)

(with the addition of fixed effects X3 as applicable) for a suitable link function
g(), such as cumulative logit, adjacent-category logit, or mean (see Agresti, 1989;
Agresti, 1990). Here again u indexes subject/unit, ¢ indexes time and I introduce k to
denote the cutoff point of the presumed underlying continuous variable, that is, the
multinomial category in question. Again we assume local independence; there is no

interaction model. Inference is assumed to be concerned with tests for marginal ho-
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mogeneity: in this context, we are assessing whether there is a time effect in addition

to, or interacting with, covariate effects.

This approach has now been implemented (e.g. Agresti and Lang, 1993; Agresti, 1993).

A conditional-likelihood implementation was given by Conaway (1989).

1.4 Nomenclature and definitions

1.4.1 The polynomial exponential family

The ordinary multivariate exponential family is the family of distributions for which

the probability (density) function may be written, in canonical form,

f(y: Q) = exp{{’s(y) + c(y) - C(O)}, (1.21)

where s(y) is a vector of sufficient statistics for the canonical parameters ¢, ¢(-) is a
shape function (not depending on any unknown parameters), and C is a normalizing

constant (constant, that is, given constant parameters) namely

C =log {3 exp{¢'s(y) + c(y)}} (1.22)

where summation is over all possible values of Y: integration replaces summation for

continuous variables.

A subset of these distributions is the linear exponential family, for which

s(y) =y.

This subfamily includes all the common members of the ordinary univariate expo-
nential family. For a multivariate distribution with s(y) = y, independence of the
components of Y is immediate. There might appear to be no need to model the data
in this more complicated way. However, it is sometimes convenient to do so (e.g. in

Section 5.3).

The simplest useful multivariate family is the so-called quadratic exponential family
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(Gourieroux et al., 1984), which has been discussed in the context of longitudinal data
by many authors (e.g. Zhao and Prentice, 1990; Prentice and Zhao, 1991; Fitzmaurice
and Laird, 1993; Fitzmaurice et al., 1993; McCullagh, 1994). In this distribution we

retain the above linear terms but also introduce a vector of pairwise products w, i.e.

W = (y%a yg’ o ay%"v yiy2, ... 1yr, . - - ayT—lyT)l'

In particular, following the notation of Fitzmaurice and Laird (1993), we write

f(y;¥,Q) = exp{Py + Qw + c(y) - C(¥,Q)}. (1.23)

The most obvious member of this family is the ordinary multivariate Normal distri-

bution, which in any dimension T has sufficient statistics y and w.

For multivariate binary data, using the form (1.23), ¢(-) is expressed as a linear com-
bination of products of three or more of the elements of y (Zhao and Prentice, 1990).
Taking some such sufficient statistics into the shape function, however, violates the
original definition of the quadratic exponential family (Gourieroux et al., 1984), where
s(y) = (y', w')’ only. In other words, for a true member of the quadratic exponen-
tial family, the three-way and higher-order canonical parameters should be zero or

non-existent (as for a bivariate distribution, or multivariate Gaussian).

It is, however, convenient to take some (or all) of the higher-order ¢ terms into
the shape function. Whether or not to do so depends on the intended inference;
any parameters or interactions regarded as nuisance only are arguably more natu-
rally grouped into a ‘non-parametric’ shape function — especially if, as in Liang et
al. (1992) and Prentice and Zhao (1991), inference will intentionally be only semi-

parametric.

Effectively the choice is between full- or quasi-likelihood. A full likelihood approach
must allow for all the possible ¢ parameters. For example, if it happens that there are
no two- or higher-way interaction terms in the full distribution (such as for univariate

distributions), the distribution belongs to the linear exponential family. If, however,
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it is decided to simply ignore the interaction terms, we assume membership of a quasi-

linear family.

The distinction is less clear than this in practice. We might find from the likelihood
ratio of a quadratic family fit to that of a linear family fit that the interaction pa-
rameters could be taken as zero. The fit of this latter model is then full-likelihood
based, but is identical to the fit of a quasi-linear model (one for which we never even
considered interaction terms). On the other hand, we shall see in Chapter 2 that
in semi-parametric models we are forced to introduce some value for at least some
of the interaction terms {for example, zero for an independence model) because these
enter the score equations. Consequently, we cannot in practice fully achieve the quasi-

likelihood aim; we always fit a constrained version of the full likelihood (at least, for

polytomous data).

There is an obvious hierarchy of models characterized by the highest-order crossprod-
uct in a naturally extended definition of w. To this end we redefine the general form
(1.23) as the polynomial exponential family of distributions (PEF; McCullagh, 1994).
For this to hold we now formally take w as a vector of two- and higher-way products
of terms of y = (y1,¥2,...yr)’, up to and including the full T-way product (though
possibly some £ terms are zero). In this context I refer to the order of a model as
being the highest-order interaction parametrized (i.e. not taken to be zero, or taken

entirely into the shape function).

In the interests of simplicity and symmetry, it is convenient to concatenate the sufficient-

statistic and parameter vectors into

z=(y,w') and ¢=(¥,Q

and write (1.23) more concisely as

fly; &) = exp{€'z + c(z) — C(§)}, (1.24)

which is the parametrization I shall generally assume implicitly throughout this thesis.
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It is useful to note that for polytomous distributions

Ct)=—log P(Y; =Yy =---Yp =0). (1.25)

Throughout Chapter 2 the parameters € are variationally independent: none of them
is constrained a priori to be a function of another — though choice of linear predic-
tors may impose such constraints -—— and there are no structural zeros in the joint

probability table. Structural zeros are considered in Chapter 5.

1.4.2 A note on the use of the term order

Frequently pairwise interactions are called ‘first-order’, which is sensible when applied
to interactions, there being only one interaction between each pair. However this is
not the easiest terminology to apply to the hierarchy of odds ratios for discrete data.
Instead, therefore I refer throughout to an nth-order interaction as an interaction
between n variables, and an nth-order odds ratio as the ratio relating n variables.
This has the unfortunate consequence that what I call a first-order interaction is not

an interaction in any normal sense.
Also by analogy with the terminology GEE1 and GEE2 (Liang et al., 1992), I define

a GEEn model as being any model of order n in the above sense, to be fitted using

the generalized estimating equations approach discussed in Section 2.6.

1.4.3 Subdistributions and reproducibility

When observation vectors are not all the same size, or when some are only partially
observed, it is convenient to contrast full observations with these ‘sub-observations’.

The corresponding distribution is called here a ‘subdistribution’.

I use superscript set notation to pick out the elements of the full set of potential
values that appear in the sub-observation and write YA = {Y;|i € A}, where A C

T ={1,2,...,T} assuming a full observation is of size T.
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For polytomous data a full observation has probability function
P(Y) = exp{¢'z — C}.

For convenience, if the set superscript is missing, then a full observation or distribution

is implicit. The subdistribution of an incomplete vector Y for A C T is then

P(YA)= Y expi€z-C},

missing YT\4

where \ denotes set difference. A direct argument shows that this subdistribution,
being the marginal of a polynomial exponential family distribution, must again be

polynomial exponential, and so can also be written in canonical form as
P(Y#) = exp{¢*'z* - C*}

for ¢4 the canonical parameters of the marginal distribution. In general, eA £ €T
except for very degenerate cases.

In modelling terms, if the full vector Y satisfies a marginal model, then all subsets
YA, A C T, satisfy the corresponding subset of the model. This useful property
is known as reproducibility (Liang et al., 1992) or upward compatibility (McCullagh,
1989).

1.4.4 Constraints on the canonical parameters £, and model selection

The linear predictors may be deliberately chosen to ensure that no a priori constraints
are imposed on the canonical parameters, £ in (1.24). Most simply, for an identity-link

model (discussed in Section 2.4), writing
£=a+ X8, (1.26)

where X is the design matrix for explanatory variables, provided there is a separate

parameter in a for every corresponding parameter in &, for all orders of interaction,
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then the full PEF distribution is modelled. I refer to such a model as ‘€-unconstrained’
or equivalently, here, ‘intercept-unconstrained’.

This is a useful baseline, for likelihood-ratio testing for example, but certainly most
models of interest will violate such lack of constraint. Any marginal model that
imposes intercept constraints in a marginal framework, e.g. sharing an intercept for
the means at different timepoints, will be &-constrained, though the nature of such
constraints is not easily understood or usefully written in terms of £ constraints.
Similarly, in Markov models (Chapters 4 and 6), even an apparently unconstrained
model will not be £&-unconstrained if the link function, modelling the dependence on
previous values, is inappropriate. As for marginally-linked models, it can be very
difficult to determine what constraints on ¢ are imposed by the model chosen, and in
practice I do not attempt to do so.

Imposing as few restrictions on £ as possible is of some benefit. The high-order odds
ratios, in particular, will commonly be regarded as nuisance parameters, but one might
argue that they should still ideally be modelled as precisely as possible, because the
robustness of the ordinary parameter-estimate variance matrix depends on the prox-
imity of the modelled distribution to the true distribution. This is an argument against
merely setting high-order £ to zero for computational and interpretive simplicity, or
other strategies such as setting all ratios of like order to be the same. Likelihood-ratio
tests are also adversely affected by the number of unmodelled nuisance parameters —
an issue when choosing between various models for first-order margins, for example.
It is useful to be able to refer to and distinguish the intercept parameters, a, which
define an ‘intercept model’, as distinct from the parameters of presumably more in-
terest, i.e. 8, which define an ‘explanatory model’. I shall maintain this notational
distinction throughout. When the distinction is not needed, I denote the full set of
parameters as 7.

When testing for nonsignificant departure from model saturation, we can consider
dropping or equating some of the a, for distribution simplification, or some of the 3,
for covariate simplification, within a single, unified analysis-of-deviance framework.

The two sets of parameters are not mathematically distinct. The introduction of
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the concept of ‘intercept model’ clarifies the way in which parameters in the linear
predictors serve to constrain the parametric model for the underlying distribution.

In forward selection we need to consider what we mean by the null model. A com-
pletely null model, with £, = ¢, Va, b, and all 8 = 0, is not likely to be of any interest,
even for comparisons. The most natural analogue of the univariate-GLM null model
is a £€-unconstrained model with no explanatory variables. However in the literature

it is more common to start from the strongly &-constrained independence model.

1.4.5 Variance estimators

The ordinary estimate for the dispersion matrix of maximum likelihood parameter

estimates is the evaluated Fisher information matrix
=Y E[U,U,] (1.27)

where U, = 8¢, /0~ is the score contribution of subject u. However, this only gives
accurate assessment of variance if the dependency structure for the distribution of the
data is specified correctly. Often, for longitudinal data with several timepoints, this
cannot be achieved and the full distribution may be poorly specified. Liang and Zeger
(1986) proposed to use the so-called robust (to model misspecification) or sandwich

estimator:

s=17' (X uu,)z" (1.28)

This estimator is also that used by Stram et al. (1988).

A cruder approximation was proposed (for use within Fisher scoring iterations) by

Azzalini (1994):

A=) uU,u,. (1.29)

A justification for this approximation (not stated explicitly by Azzalini) is that over
a large sample the expectation and average of any statistic will converge, and hence

the sum of the evaluations approaches the sum of the expectations.
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Marginal and canonically-linked

models

A marginal model, as defined on page 2, equation (1.3), is one in which there are linear
predictors for the marginal means of the observations Y; at timepoints ¢t = 1,2,...,T.
The fully marginal models discussed below, in Section 2.3, have linear predictors
linked, perhaps indirectly, to all the marginal expectations, including the higher-
order expectations. I describe and generalize the approach of Ekholm et al. (1995) in
Section 2.3.1, and that of Molenberghs and Lesaffre (1994), Glonek and McCullagh

(1995), and independently, myself, in Section 2.3.2.

The mixed parametrization of Fitzmaurice and Laird (1993), discussed in Section
2.5, and the GEE and related methods of Section 2.6, offer marginal, but not fully
marginal, models. The new model introduced in Section 2.4, the canonically-linked
model, is not marginal. It is discussed in this chapter because it is a natural simplifi-

cation of the model of Fitzmaurice and Laird.

Before turning to the particular models, we discuss the idea of full linkage in general
terms in Section 2.1, and define and discuss the nomenclature for various types of

odds ratio in Section 2.2.

34
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2.1 Extending the GLM to multivariate data

The single-parameter GLM for univariate data is characterized by the use of a link
function from a linear predictor in terms of the parameters of interest to some spec-
ified function of the canonical parameter of the distribution. Other parameters are
essentially nuisance parameters and do not enter into the heart of the model, the linear

predictor.

This philosophy underpins McCullagh and Nelder’s marginal modelling approach to
multivariate data (see Liang et al., 1992). Interest is in the univariate margins of
the joint distribution for Y; the dependence structure, and any scale parameters, are
regarded as nuisance and are estimated separately. In Liang and Zeger’s GEE model
(now more properly called GEE1), there are no marginal scale parameters (at least
for discrete data) and the ‘nuisance’ interactions, parametrized by some « in their
notation, are essentially extrinsic to the model; of course the estimated values of the
interactions affect those of the parameters of interest, 3. Such models extend the
GLM inasmuch as the classical GLM has a single link function, and the multivariate
marginal version has a separate link to a function of the mean at each timepoint with
some exogenous correction for dependency to prevent biased estimates. The strategy
of Stram et al. (1988), discussed in Section 1.2.4, is explicitly two-stage: the marginal
models are fitted separately, as if the data were independent, and are then corrected

for dependency using the sandwich variance estimator (Section 1.4.5).

An alternative approach is to account for all the canonical parameters that need to
be modelled, an idea not often exploited in univariate, multiparameter GLMs but
now common in the multivariate setting (Fitzmaurice and Laird, 1993; Molenberghs
and Lesaffre, 1994; Glonek and McCullagh, 1995). This enables marginal modelling
to proceed as before, while simultaneously defining a specific model (not necessarily
marginal) for the interaction terms. This is invaluable not only when the interaction
is regarded as being of interest rather than nuisance, but also serves to emphasise just

how sensitive the marginal part of the model is to interaction mis-specification.

A further advantage of this fully-linked approach is that we are led to use maximum
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likelihood for all the parameter estimates, allowing use of the existing machinery for
hierarchical model selection. The generalized estimating equation approach, with its
exogenous interaction estimates, is essentially quasi-likelihood, so that this battery of
established techniques cannot be used directly. (Technically, the term quasi-likelihood
is misused here, because in the original definition quasi-likelihood refers to the integral
of the estimating equations, which may not exist in the multivariate setting — see
Liang et al., 1992. Nevertheless this label is frequently used in the literature.) Recent
and ongoing research uses approximate, empirical and/or projected likelihood methods
to overcome this shortcoming when assessing models that have been fitted using quasi-
likelihood techniques (Owen, 1988; Owen, 1991; McLeish and Small, 1992; Li, 1993;
Li and McCullagh, 1994; Tsou and Royall, 1995; Hanfelt and Liang, 1995). However,
I avoid the need to consider and evaluate such approximations since, apart from the
discussion of the generalized estimating equation method at the end of this chapter,

the models I shall present and discuss below are all fully-linked/full-likelihood.

2.2 The multivariate polytomous distribution

and nomenclature

Consider distributions belonging to the polynomial exponential family (Section 1.4.1).
If the variables y in (1.24) are continuous, and the shape function is identically zero, we
obtain the standard multivariate Normal distribution, which belongs to the quadratic
exponential family and only requires pairwise covariance specification. When the data
are discrete and the shape function is identically zero, and all crossproducts up to the
full interaction y1y; - yr are included in z (with corresponding parameters £), we
obtain the multivariate polytomous distribution, which belongs to the polynomial
exponential family of order 7. This is the only distribution considered in detail in
this thesis.

The crossproduct vector z for polytomous data coded such that each y; takes values
0,1,2,... contains only true crossproducts; terms such as y?, y3ys, etc., do not appear.

For binary data coded 0/1 this is obvious because y2 = y, but for polytomous data
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multiplication does not give similar group closure. The reason for the lack of squared
terms is because the joint probability, conveniently thought of as a table and denoted
7, is completely specified by kT — 1 odds ratios, where k is the number of categories.
The set of canonical parameters £ is precisely such a minimal set of odds ratios (i.e.
just sufficient to fully specify the probability table), as assumed in Sections 2.2.1 and
2.2.2 and discussed in Appendix A2.2.

2.2.1 Binary data

In this simplest of cases, the canonical parameters & are zero-conditional log odds
ratios (log CORs): that is, the logs of the odds ratios (denoted x = e€) conditional
on all other observations being zero. Thus, the first-order COR is

P(Yi=1]Y =0, Vt#i)
XM= PW=0|Y=0, vt £1)

and for pairwise interactions

= P=Y = 1Y =0, Vt#ij)P(Yi = ¥; =0]Y: =0, Vi #1,5)
YUPYi=1Y;=0]Y,=0,Vt#4,5)P(Y;=0,Y; =1|Y, =0, Vt #4,5)

Higher-order CORs are ratios of lower-order odds ratios: for example for a 3-way COR

1,COR;;

Xijk =
Y Xij

where the term 1,COR,;; refers to a pairwise odds ratio that is identical to the ordinary
COR, x;j, except that rather than condition on all the other observations being zero,
we condition on all other observations except y; being zero, with yx = 1. There are
several instances below of introducing a new index, here k, to define sets of ratios
inductively. The particular indexing is quite arbitrary; it is not implied that y; is a
later observation than y; or y;, and the same applies in higher dimensions too.

Throughout we assume i # j # k ---, and this gives us the minimal set of ratios -
discussed above and by, for example, Bishop et al. (1975, p. 42 fI.). From the above

definition &;; is the same as £j; for all ¢ and j, which allows the subscripts to be
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written in ascending order without loss of generality; the same convention is adopted

for higher order interactions.

When there is a single subscript, & is a zero-conditional logit, referred to here as
a ‘first-order log COR’ to avoid having to continually refer to ‘logits and log odds
ratios’. This convention also stresses the strong symmetry that lies at the heart of the
algorithmic techniques of Sections 2.4.5, 2.5.1 and Chapter 3. It is often expedient
to consider within the set of odds ratios a zeroth order ratio, defined as unity, which

represents the restriction that the cells of the probability table sum to one.

For two or more subscripts the obvious notation is followed: £,3 denotes the log COR

of Y1 and Y3, and 213 denotes the product y;ys.

When referring to an element of the vector £, or x, further notation is needed to
allow for an unspecified number of subscripts. Script capital letters, beginning at A,
denote a set of subscripts, with 4 C 7 = {1,2,...,T} for outcome vectors of size
T (cf Section 1.4.3 where a superscript denotes a set of variables). Single-element
subsets are included in this notation, as is the full interaction term, é7. Thus, ¢z
means any one element of £ (of any order, unless B is specified), whereas &; refers to
a first-order log COR (logit) and &;; to a second-order, etc. Although £4 refers to
elements of the £ vector, £, refers to the entirety of the ¢ vector for the uth subject.
This is unambiguous in context as subscript u is reserved exclusively for subject (i.e.

unit) and bold face is used for vectors.

Although the £ are the canonical parameters, we are more likely to wish to interpret
and parametrize the marginal odds ratios, which I designate by A, or even more
frequently their logs, denoted A. Again it is expedient to blur the terminological

distinction between marginal logits,

P(Y; = 1)
Ai=log ————

*®P(¥.=0)
and higher-order log odds ratios,

P(Y;=Y; = 1)P(Y;=Y; =0)
P(Y, =1,Y; =0)P(Y;=0,Y; = 1)’

’\ij = log
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and to refer to all the A (or A) terms as marginal (log) odds ratios, denoted MORs.
The subscript conventions described above apply here also.

There are the same number of marginal A as there are zero-conditional £, with the
same subscripts, but the joint probability distribution cannot be written in closed form
in terms of A when there are more than two variables since this involves inverting the
multivariate logistic transform (Chapter 3).

The full interaction ratios, A7 and x7, are identical and synonymous. This term
may be regarded as being marginal or conditional, there being no further variables
available on which to condition, in the conditional definition. This parameter is always
orthogonal to the lower-order A 4 (Molenberghs and Lesaffre, 1994).

In Chapter 5 we will consider specified-conditional odds ratios (SCORs)

P(Y; = 1| specified values of ¥}, ¢ # 1)
P(Y; = 0| specified values of Yy, t # 1)’

SCOR; =

an ordinary COR is a SCOR for specified values all zero. To avoid possible confusion,

‘ordinary’ CORs, x, are generally here referred to as zero-conditional ratios.

2.2.2 Polytomous data

Let variable Y; take k; values, which are coded here as 0,1,2,. .., (k;—1): some authors
use codes from 1 to k;. The probability table, 7, of the joint distribution of Y, has
TIE., k¢ cell probabilities and may be characterized by any of several minimal sets
of odds ratios: Agresti (1990) discusses the bivariate case and Bishop et al. (1975)
demonstrate certain aspects of the multivariate extension. The minimal set giving
the canonical parameters in equation (1.24) is the set of log CORs containing the
all-zero-index cell, mgg..., i.6. P(Y) = Y5 = --- = Y7 = 0). These ratios are called here
zero-based CORs, which extends the nomenclature zero-conditional CORS.

A simple example and an appeal to induction, given in Appendix A2.2, demonstrates
why this set of ratios must be the same as the set of canonical parameters in the
polynomial exponential family representation in all dimensions.

Although the canonical parameters are of theoretical importance, we will probably be
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more interested in marginal ratios, such as

ey =s
A = éﬁ“":—;i;ﬁ,

A
conditional on the levels of Y}, where the ratios are based on a marginal table collapsed
over the unindexed variables.
There is no particular reason to prefer one minimal set of such ratios over another
in the marginal case, other than for ease of interpretation. The CORs can never be
expressed in terms of the marginal ratios in closed form whatever set is used (Bishop
et al., 1975; Fitzmaurice and Laird, 1993).
If there are more than a few possible values k; or if T becomes large, there are an
enormous number of odds ratios, which will be very difficult to interpret whatever
form is chosen. This problem has been addressed for ordinal data, for which the natu-
ral ordering suggests simplifications (Agresti, 1989; Molenberghs and Lesaffre, 1994).
A different approach (Qu et al., 1992, 1995) views the categorical outcome as the
discretization of an underlying multivariate Normal variable and models the correla-
tion structure of the underlying distribution, which drastically reduces the number of
interaction parameters, and effectively removes the constraints that complicate their

marginal discrete counterparts.

2.3 The fully marginal model

The fully marginally linked model could be considered to be the essence of marginal
modelling. Perhaps the most obvious linkage is a straightforward extension of the

GLM to vector outcomes: for the uth unit, let

8(E[Z.]) = Xuv, (2.1)

where Z = (Y',W')’ is the vector of variables and crossproducts introduced in the
definition of the polynomial exponential family (1.24), X is a design matrix, and ~

represents the parameters to be estimated. However, there is a problem in determining
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a form for the components of the link function g() for polytomous data: the higher-
order expectations are severely constrained by the first-order marginal expectations
(Prentice and Zhao, 1991; Liang et al., 1992; and Section 3.2.6), as are the third-order

by the second, and so on, making the problem essentially intractable.

In an alternative approach (Prentice and Zhao, 1991) that does not overcome the

problem, the first-order marginal expectations are linked by
g (E[Y.]) = XY
and the triangular elements of the dispersion matrix are linked by
g% (vec {E[Z,Z,] —v,v}) = X{Py®,

where v, = E[Z,]; i.e. in the bivariate case, we link to p1, u2 and cov(y, y2) directly.
Although such links are perhaps more natural to interpret than the raw link to expec-
tations about the origin, we would need nonlinear predictors for the higher moments

involving functions of the lower moments to ensure that predicted values lay in the

correct region.

None of the fully marginal approaches described here or in the literature has been able
to overcome this problem in general. Perhaps the best compromise, due to Lipsitz et
al. (1991) and implemented by, for example, Liang et al. (1992), links to the marginal
odds ratios, A. The attraction is that interpretation is easy (in low dimension), and in
the context of bivariate polytomous data the constraint problem is overcome — fixing
all the AT and A3 imposes no constraint on possible values of AT§. With bivariate data,
the marginal Af$ are equivalent to the canonical x73, since there is no third variable
on which to condition for these zero-conditional ratios. Such canonical parameters
may lie anywhere on the real line, as shown formally in Section 2.4.5; I am unaware
of any reference in the literature to this. Similarly, with T-variate data, the T'th-
order odds ratio is unconstrained. However, all the intermediate marginal ratios are

constrained (see Section 3.2.6). The constraints on A are not as strong as are the
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constraints on marginal expectations and/or covariances, and in practice modelling
without inbuilt constraints seems to always yield valid results, at least provided the
true parameter values are not too close to the limits of the parameter space, just as
in the univariate case direct linear predictors can be considered for probabilities near

0.5 when in general a logit link should be used.

2.3.1 Dependence ratios
A (marginal) dependence ratio is defined to be
T12...t = _, (2-2)
including for convenience the univariate (degenerate) ratios
Tt = Vt, (2.3)

where v;;..4 = E[Y;Y;-- Y] are moments about the origin; such a ratio is unity if
there is (marginal) independence, and for the bivariate case is greater than unity if
there is positive correlation and less than unity if there is negative correlation. A
multidimensional analogue of correlation is required for T > 2. However, such ratios
are more highly constrained than simply to be positive. Consider bivariate binary

data; v19 = m12, v1 = w14 and v2 = w4, (plus for summation), and so
vi2 < min(v1, v2) = Vin;

the inequality is strict for non-degenerate distributions. Immediately

L4V < Vmin
Vmax Vmax
so that
1
Tig < ——. (24)

Vma.x
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Tighter constraints apply to higher-order ratios with T-variate data (mentioned but

not given by Ekholm et al., 1995).

Ekholm et al.’s approach is to link linear predictors to the logarithms of the dependence

ratios,

p=log T.

In the development of the model Ekholm et al. (1995) intended to obtain estimates us-
ing GLIM4 (Anders Ekholm, personal communication; algorithmic details in Ekholm
and Green, 1994). Rather than fit general models, the p are constrained to follow
certain simple symmetrical relationships, such as setting all ratios of like order equal
to each other (“horizontal homogeneity”). Although no attempt is made to explic-
itly include constraints to ensure that relationships such as (2.4) hold, inconsistent

estimates do not appear to arise in practice, as for odds ratios.

One claimed advantage of dependence ratios is the ease of interpretation even with
increasing order, which compares favourably with any form of odds ratios. A second
advantage is computational. Description of the method to obtain cell probabilities

7 from odds ratios A takes all of Chapter 3, which should be contrasted with the

following.

Denote logs of expectations as € = log v. The relationship between these and the
log ratios is simply the linear form e = Mp, where M is easily derived from (2.2),

specifically

€EA=PA= D Pis
i€EA

where the set notation for subscripts is as introduced on page 38, and summation runs

over only univariate ratios with an index in A.

For trivariate binary data, with p ordered p = (p1, p2, p3, P12, P13+ P23, P123)’, and sim-

ilarly for €, we have
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1 0 0 0000\
0 1 0 0000
0 0 1 0000
M=| -1 -1 0 1000 (2.5)
-1 0 -1 0100
0 -1 -1 0010
\ -1 -1 -1 00 0 1

The inverse, M~!, is very like M: wherever there is —1 in the off-diagonals of M,

M~! has +1. The general form of M in the T-variate case is

Ir 0
Mr = ’ ’ (26)
N Ig

where IT and Ig are identity matrices (S = 2(7~1) for binary data), and N is a
suitable § x T' matrix of ones and zeros: an element is —1 if the corresponding column
corresponds to an index of the v 4 for the row and otherwise it is zero.

I now derive the score equations for the general link formulation

g(Ty) = Xuv (2.7)

for subject u. Ekholm at al.’s models are special cases of this formulation for particular
choices of design matrix X and parameters 4, i.e. for restricted values of 7.

I restrict consideration to the following standard link functions: the univariate ratios,
i.e. univariate expectations, have a logit link, while the higher-order ratios have a log
link (that is, identity to the log ratios). Consequently the corresponding T estimates

are positive, but may fail to satisfy constraints such as (2.4).

The score equations and information matrix

For polytomous data, the probability function for the uth observation vector is the

order-T' polynomial exponential family form given in equation (1.24), with c(z) = 0.
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Assuming independence between subjects, the log likelihood is
€=3 =3 {&z.~C(&)} (2.8)
u u

Thus the score contribution for subject u is, by the chain rule,

_ 0nl, 8p), d€,, v, BE, oL,

= XIILAM,AuVu_l(zu - Vu)v (29)

where 7 are the linear predictors. Working through (2.9) from right to left, and

dropping the subscript u, the term

L
ot
follows from (1.22):
oC 1 ’ !
a—g:é—C—‘-Zzexp{Ez}::Zzexp{ﬁz—C}=V. (210)
Hence
o'

26 = 22z -v) exp{ga-C} =V,

the dispersion matrix. Assuming a non-degenerate distribution, this must be non-
singular, so that d¢'/dv is simply the inverse. See, for example, Zhao and Prentice

(1990) and Liang et al. (1992).

€

Since v = e, we obtain

!
%—: = A = diag{va}

where A runs over all possible sets of indices, and since e = Mp for M as above,

o€ ,
6—p—M.

The term A = dp'/dn, where 7 are the linear predictors, allows for the mixed links

under consideration, i.e. identity for all second- and higher-order log ratios, but logit
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for the first-order terms. The following general result is also used later: if
logit @ = log(a/(1 — a)) = b,

then

eb da
a = m and % —a(l—a). (211)

Consequently, the derivative matrix A takes the block diagonal form

where [ is a suitably sized identity matrix and B is as follows: since for first-order

terms
e"i

pi = log 7; = log m,

we have, using (2.11) and the chain rule,

B=diag{-7l(—1——ﬂ} = diag {1 — 7} .

1

Note that

!
D=ama=
on

is more efficiently computed in closed form than by actual matrix multiplication.
Finally, (2.9) is obtained by premultiplication by 85’ /0y = X'.

Assuming the canonical ¢ are variationally independent, exactly the same functional
form obtains for the unconstrained likelihood as for the constrained forms of Ekholm.
Only the form of the design matrix X, and the corresponding size and form of the
parameter vector <, are different. Although highly constrained forms can be more
efficiently calculated than by the above scheme, the penalty to pay for the improved
efficiency is the necessity to write computer code specific to each model. In any

data-fitting exercise, we want to compare the fits for several combinations of p and
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explanatory variable restrictions: a single program implementing the above full scheme
will serve to fit them all, for a variety of designs 7 = X-. Furthermore, it is extremely
difficult to express even the simplest of p-specified constraints (for example, horizon-
tal homogeneity above) in terms of constraints on &, rendering a direct likelihood-

constrained approach intractable in general.

The expected information matrix is easily derived from the score function U(vy). Each

subject contributes
I(y) =E[UU| = X' AM'AV'AMAX = X'DV-'D'X, (2.12)

the overall information being the sum of these terms. Given U and Z, the model may
be fitted by Fisher scoring. During the iterations, Azzalini’s approximation might be

used in place of Z (see Section 1.4.5).

Polytomous data

In principle the extension of the above to polytomous data is straightforward, but
there is risk of an explosion of parameters. Keeping the same conventions as before
(Section 2.2.2), k; values for Y; are indexed 0,1,2,...,(k; — 1), and using subscripts
for the variables in question, and superscripts for their values, denote the marginal

expectations, more easily viewed as marginal probabilities, as

LSt P(Y; = ’I‘,Yj =s,...,Y, =t). (2.13)

A
3>
f

By natural extension of the ideas of Ekholm et al. define a dependence ratio for

polytomous data as

V.
rset _ 1j---k
Tz]k - I/rl/s .. U’t ) (2.14)
L

=y =P(Yi=r). (2.15)
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In the binary case all superscripts are unity and may be dropped.

The score equations are essentially identical to the binary form (2.9) developed above,

except that wherever vy or some such term appears we now substitute the vector

ky—1
vy = (v, vE,

This adaptation is straightforward but tedious to write out in full.

The dependence ratios defined above can be adapted to deal with ordinal, as distinct
from nominal, data. If we replace the essentially unordered v by an ordered set of

cumulative probabilities
Vi =P(Yi<nY; <5, Y S ), (2.16)
we can define a set of “cumulative dependence ratios”
ot Vi
Kijok = 7 s @ (2.17)

Any of the standard cumulative link models can be used to ensure the ordering over
the univariate logits; unlike nominal data one can foresee problems in specifying the

necessary constraints if unconstrained ratios for the higher orders are used.

2.3.2 All marginal odds ratios

Although the dependence ratios of the above discussion are arguably easier to inter-
pret, marginal logit and pairwise marginal odds ratios are the most commonly quoted
measures of location and association throughout the literature. Thus, we consider

fully marginally linked models of the form
Au = X,u"y’ (218)

where A, is the full set of marginal log odds ratios described in Section 2.2.1, and Xy

is the design matrix, for the uth subject. This model allows fitted values of A to lie
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anywhere on the real line, and so fails to incorporate the constraints on A that ensure
a valid probability distribution (see Section 3.2.6). This procedure is followed in the
hope that extreme cases such as the trivariate binary

Al =X2=A3=0.5 ’ (2.19)

A2 =05, Ajs=1, A3 =20

for which no probability table exits, will not arise in practice nor will occur as inter-
mediate values in an iterative fitting process.
Although model (2.18) is conceptually tidy, the high-order ratios involved are very
difficult to interpret in any intuitive sense; a third-order odds ratio is often bafiling to
the non-specialist, and one needs to be able to clearly visualize a hypercube in order
to readily understand the effect of varying values of still higher order ratios. The
argument in favour of this type of model is not in the ease of interpretation, but in
reproducibility (defined in Section 1.4.3), assuming any missing data are missing at
random (defined in Section 6.2). Dependence-ratio models share this feature, but the
ubiquity of the odds ratio as the measure of first choice makes these less attractive.
One might posit a mixed model, linking to first- and second-order odds ratios and then
dependence ratios for higher orders, but such a model is likely to be algorithmically
unattractive (cf Section 2.5.2), and one might prefer instead the mixed model of
Fitzmaurice and Laird (1993), discussed in Section 2.5.
The conceptual problem of interpreting high-order dependencies, however specified,
remains unresolved. There appears to be no easy way to present such results, although
marginal odds ratios may be the easiest to explain. Another unresolved problem is
that high-order dependencies must be modelled from high-order sub-tables, which
increasingly contain small, even zero, observed values with increasing T', unless the
sample size is very large. Furthermore, if our model of choice proposes common odds
ratios, say Ai; = A Vi, J, k, 1, it is known that maximum likelihood estimation of such
common ratios is fragile; statistics such as the conditional ratios of Mantel-Haenszel
are designed to overcome this problem, but are not maximum likelihood estimates.

In the spirit of the existing literature on marginal modelling of binary data, I ignore

SIVERF e
UN} ik ¥

¥ LT UL
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these limitations and discuss maximum likelihood estimation.
The score equations are now derived in two ways. The first method is the most

common in the literature, but does not readily generalize to arbitrary dimension, as

now shown.

The score equations (standard formulation)

For polytomous data with links (2.18) and likelihood as in the previous section (equa-
tion 2.8), the score contribution for the uth subject is, by the chain rule,

o¢ _ oN v o€’ ok

where the derivation of all terms except D has been given in the derivation of the

dependence-ratio model (Section 2.3.1).

The form of D. D is (block) diagonal for the first-order terms, because by definition
each ); is a function of the corresponding v; only (and vice versa). For logit v; = J;,
we have established in (2.11) that

81/,-
OA;

= l/,‘(l - l/i) = va.r(Zi).

The completion of D for higher orders is considerably more complicated and several
approaches are explored. Anticipating the discussion of unbalanced data in Section
5.2, let us use the notion of subdistributions introduced in Section 1.4.3: for a sub-
observation y4, reproducibility of the marginal polynomial exponential family distri-
butions ensures that the subdistribution is again in the polynomial exponential family,

of order the number of subscripts in .A. We may write this in the canonical form
P(Y4 =y4) = exp {(£4)'2" - CA(N)} 5

€A # £ of the full distribution and the €4 are zero-conditional log odds ratios of the

subdistribution; x is the vector of observed y# and their pairwise crossproducts.
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The marginal expectations of this subdistribution are the ordinary marginal expecta-

tions of the full distribution (by reproducibility); in particular,

va=vi= Y zhexp{(£4)2* - CAEY)

all YA

so that
vy

5EA = var(Z3) = var(Z.)

again by reproducibility of marginal moments, and similarly for B a proper subset of

A
Ova
&g

Although {ﬁ = A4, Ovy/ 8§ﬁ and Ov4/0X 4 are not equal in general: the first state-

= vA(l — vg) = cov(Z 4, Zp).

ment is that the full-order log zero-conditional odds ratio (of the subdistribution) is
equivalent to the log marginal odds ratio, because there are no variables left to con-
dition on for the conditional ratio. (In an earlier version I presumed that the partial
derivatives equated.) Holding the 57’% fixed for the differentiation is not equivalent to
holding the Az fixed, where R indexes the remaining elements of the vector. Thus,
this approach is discontinued and an alternative sought.

Liang et al. (1992) claim that D is available ‘routinely’, while Molenberghs and Lesaf-
fre (1994) are more explicit in indicating that the terms may be found by implicit
differentiation. This does not illustrate the scale of the problem for data with larger
than trivariate observations. The implicit differentiation is suggested by the compara-
tive ease with which the marginal odds ratios may be written in terms of the marginal

expectations, that is

Aa=Aa(vs|BC A). (2.21)

Such expressions may, in theory, be inverted to yield v 4 in terms of Ag and A4, or
equivalently in terms of vz and A4, for B the proper subsets of A. These are poly-
nomial expressions of order 2%, where a is the number of elements of A. Simplifying
assumptions may be made when T' < 3 (Liang et al., 1992) that make such expressions

tractable, but the general, full model cannot plausibly be expressed in this way; see
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We might attempt to work from

OA' _ v’ AN’
X " oA v’

(2.22)

where the left-hand side is simply diag(A) and E = OA’'/Ov can be expressed alge-

braically possibly using a computer program such as Maple. Providing the matrix E

is invertible we then have

o' _

D= 35

diag(A)E~!. (2.23)

This method requires hard coding of the fitting routine for each possible problem
dimension, which is not attractive, apart from being likely to be very inefficient in

higher dimensions.

In search of a better method, we may consider the following. For T indexing the

full-order interaction,

this is not true for lower orders. For two sets of indices A and B,

Ov 4 )
A _ 2.24
B 0 fBZ A (2.24)

because each v4 is a function of (only) those Ag for B C A. Thus, in theory, we
can save a considerable amount of time by observing that D is upper triangular, with
further explicit zero entries in the upper half. Consider

dAr _ O OAr

X Ox ov (2.25)

that is,

e,r_, = Da, (2.26)

where the vector e is zero except for the last [(27 — 1)st] element, which is unity. The
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vector a is obtained from

oAT _ dkr _ o€ dkr

—_— =_l
v ~ O Ov O¢ Vb

where b is zero except for the last element, which is x7. This term cancels with the
equivalent term A7 on the left-hand side of (2.25) to leave e as above. In other words,

a is the last column of the inverse of the variance matrix, V.

This system is insufficient to determine D as some entries must be calculated before

we can complete with back substitution. Consider the bivariate case: the system is

explicitly

(o) [ o 2 ) [ve
0|l=| 0 % Zu Vs, (2.27)
()L e

where V' is the (i, j)th element of V1. We substitute the terms otherwise obtainable

into the first two entries of the diagonal, before obtaining

61/12 V13
TN nl=m) |~y

81/12 V23
FIW = n(l-1r) (_W)
Ovio 1

g VB

The trivariate case raises a new problem, the necessity for an exogenous explicit form

for the diagonal terms dv12/0)2, etc. (These may perhaps be supplied by the answer

to solving each bivariate system.)

As this approach is leading nowhere, I consider an alternative expression for the like-

lihood used in this context by Glonek and McCullagh (1995).
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The score equations (alternative formulation)

Rather than consider the observed data for each subject as a vector of outcomes y =
(y1,Y2,---,yr)’, consider the outcome as a single multinomial observation based on the
cells of the joint probability table, . Although still interested in the marginal means
and odds ratios, we obtain score equations from a different starting point. Denote
the multinomial observation by the vector m, of length 27 (for binary outcomes), but
write an element of this as m 4 using the set notation as above: in the bivariate case,
mys = 1 represents an outcome of y; = y» = 1; the all-zero outcome has mg = 1. Note

that one, and only one, element of m is unity and the rest are zero for each subject.

Denoting the logarithms of the probabilities # by p, and using the same subscript

notation where applicable, the likelihood contribution of the uth subject is

,=m'p=mapy (2.28)

for a particular outcome my4 = 1. Then the score contribution, assuming fully

marginal links, is

e, OX' 3p' d¢,,

, (0s'\ 7!
- X (%) m (2.30)

where s(p) = A is the transformation from log cell probabilities to log odds ratios
defined in Section 3.1, with derivatives given in Section 3.3.1. We can, then, relatively
easily obtain

ox _ 0s

op  op’
which can be inverted provided the transformation is nonsingular and all the partial
derivatives exist to yield Op’/dX. This always holds in non-degenerate cases (Glonek
and McCullagh, 1995). Unfortunately we cannot write p = s~!(\), which could be

differentiated directly, in closed form in general (see Chapter 3). Nevertheless, given

that we can obtain 8s'/0p (Section 3.3.1), the formulation (2.30) does not suffer
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the algorithmic difficulties of the standard form (2.20), and enables the fitting of
fully marginal models, with log-odds-ratio links, in arbitrary dimension — at least in

theory.

Calculation of v or p from given A

This transformation is potentially very demanding of computer time, at least when
T > 2: the whole of Chapter 3 is devoted to this topic. The transformation is needed
when evaluating (z — v), D and V™! in (2.20) in the standard approach, and for

evaluating p, whence ds’'/9p, in the alternative form (2.30).

Information matrix and model fitting

The (expected) information matrix can be derived easily from the score function U(v)
in both approaches. In the standard approach, each subject contributes

I(v) = E[UU'] = X'DV-!DX, (2.31)

the overall information being the sum of these terms. In the alternative approach we

formulate this as

I(y) =E[UU]|=X' [g—ﬁ B E[MM/] [(%Sé)’] B X, (2.32)

where E[MM'] = diag() since

mo momi

EMM] =3

ma.,
mom; mi ... I;IWA )

only one m 4 is nonzero in each term of the expansion.
Given U and Z, the model may be fitted by Fisher scoring. In simulation studies,

I have always been able to use the much simpler form A = 3, U, U, in place of its
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Table 2.1: Cerebrovascular deficiency data. Here outcome O represents abnormal
reaction to treatment, and outcome 1 normal reaction.

QOutcomes for the
(first, second) period

Group (0,0) (0,1) (1,0) (1,1)

AB 6 0 6 22
BA 9 4 2 18

A for placebo, B for active drug

expectation, Z; the full form of 7 is used only after convergence, when reporting the

parameter variance matrix.

Polytomous data

Except that there are more cell probabilities, the score and information matrix contri-
butions are unchanged from (2.30) and (2.32), respectively, for unordered categories.
Notation and algorithmic considerations are given in Section 3.8. Ordered categories

are considered by Glonek and McCullagh (1995).

2.3.3 Examples
Example 1 — cerebrovascular deficiency

The following data are from a 2 x 2 crossover trial on cerebrovascular deficiency, quoted
in Jones and Kenward (1989). This data set (Table 2.1) has been frequently used as

an example although it has appeared in slightly corrupted form, discussed below.

Zhao and Prentice (1990) and Fitzmaurice and Laird (1993) report the same table
but reverse the meaning of the outcome and so give parameter estimates that are
opposite in sign to those quoted below. Zeger and Liang (1992) and Diggle et al.
(1994) quote the same table but state that the codes are A for active and B for
placebo. Although such discrepancies might be construed as rendering any interpre-

tation essentially meaningless, the various formulations give the same answer to the
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key question; do the treatment and/or period have any significant effect on outcome?
As an exercise in variable selection, the true meaning of the codes is irrelevant, but

that is not the clinician’s view!

Example 1A The standard form of the marginal model for these data is as follows:
with covariates z; for treatment assignment (z; = 0 if treatment A or z; = 1 if

treatment B) and z, for period (z3 = 0 if period 1 or z3 = 1 if period 2)

logit P(Y; =1) = o+ Biz1 + Bazs + faz29; (2.33)

logMOR12 = ay9. (2.34)

Instead we can code the covariates together as z,;, denoting the treatment (formerly

z)) at timepoint ¢; then the first-order models are

A1 = ap+ Bz, (2.35)

A2 = (ag+ B2) + (Bi + B3)T12, . (2.36)

Noting that by the design of the experiment ;2 = 1 — z,7, model (2.36) becomes

A2 = (a0 + Y Bi) — (B + B3)en = oy + By, (2.37)

which is now a “separate regression lines” formulation. The interpretation of this form
of the model is so different that it is deferred to Example 1B.

Proceeding by standard analysis of deviance, the standard model reduces to

SE.robust SE.info
alpha_0 1.0788097 0.2807553 0.2807553
beta_1 -0.5600159 0.2356943 0.2356943
alpha_12 3.4011974 0.8316650 0.8316650

where SE.robust is obtained from the ‘sandwich’ variance estimator (Section 1.4.5).
Here these and the information-based standard error estimates are identical, which

occurs because this model is saturated (for data collapsed to ignore period).

Interestingly, the period parameter, G2, has been dropped in the selection procedure,
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though it is odd to consider a model ignoring period when the data are longitudinal
and when there is dependence over time. This might explain why the period-ignored
model is not advocated in previous reports. Here, the time dependence is modelled
as A12 = aj2 # 0, rather than in the first-order model.

Rather more worrying is the very different overall interpretation that results from

fitting the alternative parametrization introduced above and now described.

Example 1B To avoid any confusion with the parameters a and 8 of the previous

description, rewrite the links as

A1 = ap +bzn, (2.38)
A2 = az+boxyy, (2.39)
A2 = a1, (2.40)

where again z;; is treatment at period 1 (coded zero for treatment A).

Again proceeding by analysis of deviance, we reduce the model to

SE.robust SE.info
a_1 1.5694579 0.4121230 0.4197657
b_1 -1.1680850 0.4564135 0.4605571
a_2 0.6486954 0.2573044 0.2573044
a_12 3.5378033 0.8099391 0.8626233

that is, by (only) is dropped. Now from the (a,b) parameters, we infer that outcome
in the second period is independent of treatment — or more precisely: cannot be
shown to be otherwise — thus period 1 and 2 effects are modelled differently. This
accords with a glance at the following table for outcome equal to 1 (normal reaction

to treatment):

Period

Group 1 2
AB 28 22
BA 20 22

This inference contrasts with the inferences of all previous analyses, in which there is
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a single model for observation mean, always depending on treatment. That inference
is preferred on intuitive grounds, and the model is simpler. Unfortunately, the two
models are not nested, though the similarity of the evaluated likelihoods suggests that
a formal test for preference is unlikely to be conclusive.

The (a,b) model aliases treatment effect, which is of prime clinical interest, as pe-
riod effect, which is of secondary (if any) medical interest. The clinically important
inference if the (a,b) model is preferred is that participation in the study probably in-
duced a propensity to common outcome independent of treatment, although treatment
appears to have an effect on first-timers.

How could such different conclusions be obtained by seemingly the same method? In
fact the (a, b) model finally selected corresponds to dropping the original 33, but then
instead of dropping either (3, or 3, altogether we drop 3, from the time-2 model only.
This is not the sort of choice we make with the standard selection procedures for
univariate generalized linear models. This approach is effectively a relabelling of the
parameters with the corresponding deviance change assessed on one degree of freedom,
while the model still has the same number of parameters as in the original formulation.
It may be noted that dropping 3; from the time-2 model only induces a much smaller
change in deviance than does dropping 3, or dropping 3; altogether. This could be
considered a precautionary tale against “black box” approaches to variable selection,
most of which would advocate dropping the parameter giving the least change in the

deviance.

Example 2 — the 6 cities data

This second example is again a familiar one in the literature, and being a example of
a 4-wave discrete-outcome longitudinal study, provides an example of the feasibility
of the proposed algorithms for problems of reasonably high dimension. Another fully
marginal analysis was recently presented by Glonek and McCullagh (1995).

The Six Cities data set represents a repeated binary response: yearly wheezing status
(yes/no) on a cohort of children aged 7 years at the start of the study. As in the

previous example I am informed (G. Fitzmaurice, personal communication) that any
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Table 2.2: Six cities wheeze data. N represents no reported wheeze.

No maternal smoking Maternal smoking
Age 10 Age 10
Age7 Age8 Age?9 N Y Age7 Age8 Age?9 N Y
N N N 237 10 N N N 118 6
Y 15 4 Y 8 2
Y N 16 2 Y N 11 1
Y 7 3 Y 6 4
Y N N 24 3 Y N N 7 3
Y 3 2 Y 3 1
Y N 6 2 Y N 4 2
Y 5 11 Y 4 7

clinical implications drawn from an analysis of the published data set are to be taken
with extreme caution, since the available data represent an idealized situation in
which a truly ordinal or even continuous outcome (wheeze) is recorded only as a
dichotomy, only the 537 complete-record cases are presented and a key explanatory
variable (mother’s smoking) is treated as fixed although it is known to vary over time.
Thus, the primary purpose of the following discussion is to compare methodology and
potential differences in inferences.

The data set on the presence of wheeze at each age, and the explanatory vari-

able of interest, maternal smoking, are summarized in Table 2.2 (Zeger et al., 1988;

Fitzmaurice and Laird, 1993).

Fitzmaurice and Laird (1993) present the analysis of a so-called ‘saturated’ model, in
which there is saturation for the mean, with no constraints on the higher-order inter-
actions. This model is not intercept-unconstrained in my definition (Section 1.4.4),
because it has an intercept parameter common to the models for all four timepoints,
which allows for a linear trend with age/timepoint, but is not an unrestricted form
such as if age were a factor. However for comparison and as a starting point for

backwards selection this model is fitted: in the current notation

A = ap+ Pi(age) + B2(smokes) + B3(age.smokes), t=1,2,3,4
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M = aq, A={1,2},...,{1,2,3,4}.

Here age is taken as age minus 9 years (as in previous analyses in the literature). This
centring is important unless starting values are very carefully chosen, since linear pre-
dictor values in excess of £3 give cell probabilities of zero or one to four decimal places,
so that poor starting values or intermediate values will lead to failure of convergence

for an apparently degenerate distribution.

The obtained fits for this ‘saturated’ model are as follows:

estimated SE.robust SE.info

alpha_0 -1.90684196 0.11902508 0.11836386
beta_1 -0.16350163 0.05587540 0.05686830
beta_2 0.30776342 0.18798019 0.18890268
beta_3 0.08491753 0.08780011 0.08856262

alpha_12 2.00304438 0.26251198 0.26096563
alpha_13 1.74963235 0.26965664 0.26729976
alpha_14 2.07459385 0.26979057 0.27922043
alpha_23 2.47007135 0.28886314 0.27943656
alpha_24 2.05560914 0.28003753 0.28210986
alpha_34 0.09296585 0.61997793 0.62697781
alpha_123 -0.27899195 0.61472962 0.60687325
alpha_124 2.08649992 0.28760370 0.28862929
alpha_134 -0.23515451 0.61756146 0.62223226
alpha_234 0.10296020 0.66072021 0.66221609
alpha_1234 0.12054453 1.41728650 1.42261997

The higher-order parameters cannot be directly compared to values given in previous
literature since these sources did not use marginal odds ratios, except for Glonek
and McCullagh (1995), who did not present the values for this model. Whereas
Fitzmaurice and Laird (1993) found all 3rd and 4th order estimate z-tests (that is,
estimate/standard error) suggestive that the parameters could be taken as zero, in the
fully marginal formulation we find that o24 is apparently far from zero. A clinical
interpretation of this result is not easy: the log odds ratio for the time-1 and time-2
table, collapsed over time-3 value, is twice as great when the time-4 outcome is 1 as
when the time-4 outcome is 0 — but the clinical implications are not obvious.

Of the 2nd order parameters, the ‘odd man out’ is a34 in the marginal model above,
whereas in the conditional form of Fitzmaurice and Laird (1993) all the pairwise ratios

are roughly equal, except for the zero-conditional equivalent of 4.
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Of course inferences from univariate z-tests are always dubious since they are based on
a possibly wildly inaccurate assumption that the joint confidence region is spherical,
so potential simplifications of the above model were studied more formally by analysis
of deviance. The full model has fitted log likelihood —793.1496, and for the model
with a)934 = 0 (see Appendix A2.3.3) the log likelihood is —793.1531. The model in
which all 3rd-order ratios are set equal to zero has evaluated log likelihood —818.447,
giving deviance change of approximately 50 on 4 degrees of freedom. From the z-tests,
it is aj24 that is an unlikely candidate to be dropped, but I suggest it is unrealistic to

propose a model incorporating only one of the interactions of a certain order.

Goodness of fit can also be assessed as in Fitzmaurice and Laird (1993) by calculating

b
G?=2 Z {observed x log ° served} ,

—_— 2.41
expected ( )

where summation is over all cells in the multinomial table. This gives G? = 7.9 on
15 d.f. for the ‘saturated’ model, G2 = 7.91 on 16 d.f. when dropping o234, but
G? = 58.5 on 20 d.f. for the model dropping 3-way interactions. As these values
indicate, there is a sudden jump from very good to very poor predictions in the

attempted simplification.

Fitzmaurice and Laird (1993) found that a very simple model fitted well in their
parametrization: they were able to assume a common pairwise zero-conditional ra-
tio and drop all higher-order interactions. They could argue that this highlights
the advantage of their modelling approach, but it is possible to have data for which
marginal odds ratios may be simply modelled while zero-conditional ratios may not
(see Section 2.4.4). For comparison I studied the fit of models that are the marginal
analogues of their zero-conditional formulations, such as a lag-one Markov structure
(all interactions except a;(;;1) set to zero), a common marginal pairwise ratio, and
a full independence model (Appendix A2.3.3). None of these fitted sufficiently well
by analysis of deviance or G2 criteria. Although full details of these analyses are not
given here, I report that most of the poorly fitting models were very slow to converge,

and indeed the common-pairwise model failed to converge at all from any of several



CHAPTER 2. MARGINAL AND CANONICALLY-LINKED MODELS 63

attempted sets of starting values; problems arose specifically in finding the probability
table for the maternal smoking group, and this was not even helped by saturating the

pairwise ratio model to

Aa = aq + Ba(smokes).

The independence model converged in only 4 iterations from an all-zero start vector,
despite being the worst fit. Convergence criteria are apparently linked with the con-
ditioning of the odds-ratio-to-probability conversion problem dealt with at length in

Chapter 3, but formal quantification of such criteria is not attempted here.

2.4 Use of the canonical link

Since the zero-conditional log odds ratios may take values over the whole of the real

line, it is possible to model simply

£=X~.

Although this model is not marginal, it is a full likelihood model and is introduced for
comparison with the primarily marginal mixed models in Section 2.5. By a suitable
choice of zeros in the design matrices X; = (x],%5,...,%],_7)’ the parameters ¥
may be effectively split into sets relating only to ratios of each particular order. The
introduction of further notation to indicate such grouping of parameters would mar
the simplicity of the theoretical presentation below, but in practice reparametrization

might be helpful for ease of interpretation and for computational convenience.

The score contribution for subject u is readily obtained from (2.8):

Oty _ D€, ¢,

Uu(7) = '5:’_, = Oy 8€u

= Xy (2zy - vy), (2.42)

where v, = E[Z,] are the marginal expectations about the origin, as in the score
function for marginal models in the previous section. This provides very much simpler

score equations than previously considered either here or in the literature.
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The negative derivative

I(v)= i X, cov(Zy,) X, (2.43)
u=l

is obtained by straightforward application of the chain rule, noting that dv'/9€ =
cov(Z), as derived in Section 2.3, or by considering }_ E[U,U;]. The observed and
expected information matrices are equal in this case. This scheme is good for any poly-
nomial exponential family model with identity link, including models for continuous

data and in fact even for mixed discrete and continuous outcomes.

2.4.1 Partitions of the design matrix

Care needs to be taken deriving the information matrix for partitioned design matrices;

less calculations are saved than might be hoped at first. Let us write the design matrix

as

b
i

and similarly partition the linear model parameters as
¥ = (Yo 7b)

where, say, the v, are parameters in the linear predictors for the first-order logits,
and the vy, are linked to the higher-order log ratios. The score contribution of the uth

subject, dropping the subscript u for convenience,

Uly) =Y X'(z-v)

partitions as

Ua(7,) = DY A(y—-m)

Up(yy) = Y B'(w-n),
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where p = E[Y], n = E[W], and z is partitioned as (y’, w’)’. The derivative of each

of these is easily derived but for brevity only that for vy, is given:

au’ el oy au’ , A '
_ - =-S5 A'V,A 2.4
orn " ooty o~ AW Val| 2 AVl 24

where the V,;,, are the obvious conforming partitions of the full variance matrix V. If
one followed Fitzmaurice and Laird (1993) rather too blindly, it might seem that the

Newton—-Raphson parameter updates could be obtained from

A =49 + (3 A’VMA)_l (T 4y -w) (2.45)

with an analogous formula for the 4, updates. But this is quite wrong. The parameter
sets v, and <, are not orthogonal, unlike their analogues in the Fitzmaurice and
Lard model described in Section 2.5. While the marginally-linked and conditionally-
linked parameters are orthogonal, higher-order parameters within either set are not

orthogonal to lower-order parameters. In fact the information matrix here is

AV, A A'V.B
IV =)

B'V,wA B'VyoB

which is certainly not block diagonal.

Only having to invert this Z(-), once per Fisher scoring step, is better than having
to also invert the full variance matrix V, for every covariate pattern within each
scoring step, for the fully marginal model. This becomes of increasing importance for
larger outcome vectors: Z(v) is number-of-parameters square, whereas V for a full
interaction model is kT — 1 square, where k is the number of categories, and T is the

number of timepoints.

The incorrect form (2.45) corresponds very closely to using GEE1 (in the form of

Liang et al., 1992, equation 12) instead of GEET; this is equivalent to assuming a
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linear exponential model instead of a polynomial model of order T. Whereas if GEE1
is used instead of GEE T the penalty is only in lack of efficiency for the <4, estimates,
if one attempts to fit a conditional odds-ratio model using (2.45) it will generally fail
to converge.

At a fundamental level, zero-conditional odds ratio models are worse affected by vari-
ance mis-specification than are fully marginal models, which in turn are worse affected
than are mixed-marginal models. One should consider carefully before imposing con-

straints on £ in a fully zero-conditional model.

2.4.2 Advantages of all-canonical links

This model is extremely easy to fit (using, say, Newton-Raphson) in comparison with
other approaches discussed here, especially when any natural partitioning of the design
matrix can be exploited. Importantly, no matrix inversion is required when calculating
the score function, U, whereas whenever any part of the model is marginally linked,
inversion of at least part of the dispersion matrix V is needed. This is not true for
the information matrix Z, but this is a minor problem by comparison, as already
shown; Z needs to be inverted only once for each Newton-Raphson iteration, unlike
the inversion of V' that is needed to calculate each subject’s contribution to the score
in marginal and mixed models.

It is still necessary to calculate the marginal expectations from the conditional odds
ratios, but this is easier (and quicker) than for fully marginal or Fitzmaurice and Laird

(1993) models; an algorithm is described in Section 2.4.5.

2.4.3 Disadvantages of all-canonical links

None of the estimated parameters 4 have the easy and familiar immediate interpreta-
tion offered by those describing first- and second-order marginal odds ratios (although
some do have interpretation in terms of conditional independencies). This is a smaller
problem for higher-order ratios where interpretation of either variety of ratio is beyond
ordinary intuition. However, the canonical-link model suffers from having none of its

linear predictors immediately interpretable. Even though there is a useful interpreta-
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tion of zero-conditional odds ratios for certain types of multivariate problems, with
longitudinal data it is counterintuitive to seek to model a log odds ratio given that all
future observations are zero. Such models are particularly poor when the aim of the
modelling exercise is the prediction of outcomes; but this particular criticism could
be made of any model that does not feature history conditioning.

Another potentially quite serious drawback of the canonically-linked model is that
conditional odds-ratio models, including the Fitzmaurice and Laird hybrid model dis-
cussed in Section 2.5, are not reproducible (Section 1.4.3). Thus the formulation as
given above can only be used directly if all subjects have the same number of observa-
tions. Modifications to handle unbalanced designs and missing values are considered
in Section 5.2.

These models are extremely sensitive to mis-specification of the dispersion structure
and, when a poor model is chosen, fitting may be numerically impossible. Given the
simplicity and speed of fitting, one might always fit to unconstrained §, with the

interaction terms regarded as mere nuisance terms.

2.4.4 Marginal inference from zero-conditional fits

Consider the analogous fully marginal model A = X+, and zero-conditional model
€ = X+, where analogous models are those with identical design matrices X. Sup-
pose that the sole or primary object of the analysis is to assess whether some group
or continuous covariate, z; say, has a significant effect on outcome.

It is interesting to conjecture whether such a covariate effect, judged as significant
according to an analysis of deviance on stepwise selection of the simpler conditional
logit model, will necessarily remain significant as assessed by the same analysis of the
analogous marginal model. The conjecture is not that analogous models fit equally
well, but rather that the finally selected model includes the covariate (or not) according
to whether it is significant (or not) irrespective of the type of model, marginal or
conditional. In fact the simplistic idea that analogous models are likely to be of much
practical use is wrong, and the following counterexamples indicate a better approach

than analogous models to the question of covariate dependency.
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Suppose we observe the following cell counts in a simple comparison of binary response

pattern between two groups coded by the dummy variable z;:

;=0 rn =1 Pooled

¥2=0 y2=1 3=0 yp2=1 yp2=0 y2=1

n=_0: 5 5 ) ) 10 10
n =1 5 5 5 20 10 25

Here the zero-conditional first-order ratios (logits) are equal (specifically, £, = & = 0)

and do not depend on group: the parameter estimate of 3; in the model

& = a; + Bz

can be taken as zero. Thus group effect will be dropped from the first-order conditional
model. The maximum likelihood fits match exactly those of the observed, suitably
collapsed tables.

However, in the marginal formulation we find A; = A2 = 0 within the group z; =0

while A\; = Ay = log 25/10 in the other group. The analogous model to that above,
Ai = ai + Py,

has point estimate (3; = log 2.5 and this parameter would not be dropped by stepwise
or backwards selection; assume this for the purposes of illustration, although sample
size would have to be larger to be entirely sure of it.

Thus while group effect disappears from the first-order model in the conditional for-
mulation, it would not be dropped from the model for the pairwise conditional logs
odds ratios, which are 0 and log4, respectively, for the first and second groups, but
log 2.5 for the collapsed table. That is, z; contributes significantly to a model that
adequately models the observed dispersion structure, though it will not appear in
the model for the first-order zero-conditional ratios. Conversely, once z; is included
in the model for the marginal logits, it need not necessarily appear in the marginal
interaction model (although in this particular example it will appear here too, since

the marginal and zero-conditional ratios are equivalent for bivariate data).



CHAPTER 2. MARGINAL AND CANONICALLY-LINKED MODELS 69

It may not seem immediately apparent why one should want to fit a zero-conditional
model at all if one is interested only in marginal inference. The attraction is the speed
of the fit, and that for reasonably large numbers of observations the marginal algorithm
may not be numerically feasible. Consider the transform from fitted zero-conditional
€ = X4 using & = T(£), the odds ratio to cell probability transform discussed in
Section 2.4.5, to A = s(p), the further transform from log cell probabilities to log

marginal odds ratios (Section 3.1.5). We can then fit

by, say, ordinary least squares, to obtain estimates of the marginal parameters ).
Here X is assumed to be the same for both models, although this might be relaxed
provided the transformation remains one to one. In view of the appearance of covariate
effects at different levels of the zero-conditional and marginal fits illustrated above, X
should be at least intercept-unconstrained.

Because of the complexity and nonlinearity of the transform from € to A the form of
confidence regions for the marginal parameter estimates «y); is hard to assess. This
problem is not addressed here in detail, but considerations of whether or not to include
a covariate will have been dealt with at the zero-conditional stage; sometimes only
pointwise marginal estimates are needed. Alternatively, we might obtain a crude
interval by studying the range of values in the marginal interpretation as we vary the

zero-conditional y¢ between the extremes of the zero-conditional confidence intervals.

2.4.5 Calculating probabilities from conditional odds ratios

In evaluating the score equations (2.42) we require marginal expectations, v, but
only have direct estimates of the zero-conditional parameters £ = X+. Following the
approach of Fitzmaurice and Laird (1993), we first find the cell probabilities, &, and
from these read off the marginal expectations.

Shortcuts may be taken when, for example, all the high-order £ are constrained to be

zero, but a fully general algorithm is presented here.
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The principle of the algorithm is straightforward, and simpler and faster than that
mentioned in Fitzmaurice and Laird (1993) — see Section 2.5.1. Odds ratios with
appropriate multipliers are entered into appropriate cells of the probability table,
with a one in position (0,0,...). The whole is then divided by the sum of all cells to

give the desired probabilities.

I now present this technique as a formal algorithm and show, in Appendix A2.4.5,
that it gives valid results in all dimensions. The fact that marginal odds ratios are

subtly constrained (Section 3.2.6) suggests such proof is worth giving.

Denote a probability as, for example, w9111 = Pr(Y1 =1, =0,Y3=1,Y4 = 1,Y5 =
1), and let ¢ denote a cell in a table indexed as for the probability table. Further
define a subscript mapping from a subset B C T = {1,2,...,T} to cell indices s(B):
if B = {iy,4,...,4:}, then s(B) is the binary code having zeros everywhere except for
ones in positions 1,12, ...,%;. Recall that x = exp £&. Then we can find probabilities

using the following algorithm:

Al For all B C T (including the empty set, yielding the empty product, unity, and

for which we explicitly define xo = 1)

comy = ] xe-
cCB

A2 Then again for all BC T

my8) = Cs(8)] D Cs(c)-
CCT

The proof that this gives a correct probability table, given in Appendix A2.4.5, has
two corollaries: firstly, the canonical parameters are indeed variationally independent,
unlike their marginal counterparts, and secondly, each set of parameters ¢ corresponds

to a unique probability table.
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2.5 Mixed parametrizations

The approach of Fitzmaurice and Laird (1993) includes marginal modelling and ex-
ploits the canonical parametrization. Linear models are fitted to the marginal logits, as
in fully marginal or GEE models, but they use the identity link to the zero-conditional
log odds ratios for higher-order interactions, under the general assumption that higher-

order interactions are a nuisance rather than of intrinsic interest.

In theory one could set up a model that was marginal up to some higher order and
conditional thereafter, but this may be almost as difficult to fit as a fully marginal
model (see Section 2.5.2). Therefore here consideration is given only to the mixed

parametrization of Fitzmaurice and Laird (1993).

To emphasise the two sets of parameters, write the probability function as

P(y; ¥,9Q) = exp{P'y + Q'w — C(¥,Q)}, (2.46)

where w is a vector of crossproducts of elements of y, the ¥ are the first-order zero-
conditional ratios (that is, logits), and €2 the remaining zero-conditional, canonical

parameters. The first-order model is

g(“i)=XM7M7 i=172,'-'aT

for some link function g(), which is here assumed to be the logit, of the marginal

univariate means. The model is completed by setting

0= XC"Yc.

Simplifications such as common odds ratios, or high-order interactions set to zero, can

be considered.

Intrinsic to the Fitzmaurice and Laird method is the orthogonality of the parameter
sets vy and 4yc; the Fisher information matrix is block diagonal. Thus the score

equations (and Fisher-scoring steps) decompose, giving score contribution from each
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subject

Ulrm) = XuAVum( — #) (2.47)

Ulye) = Xglw—v = VouVuu(y - »)] (2.48)

where v denotes the marginal expectations about the origin of the crossproducts W,

A is a diagonal matrix of univariate variances, and the variance matrix V' decomposes

as follows:

VMM VMC COV(Y) COV(Y, W)

Vem Veco cov(W,Y)  cov(W)

In particular, only Vaim, a T x T matrix, needs to be inverted in evaluating each score
contribution, as compared to a fully marginal model where all of V' needs inverting each
time (or indeed to a fully zero-conditional model, where nothing at all needs inverting
during the evaluation of U). Most of the computational burden is in calculating the

marginal expectations g and v from the sets of odds ratios (Section 2.5.1).

A disadvantage noted by Fitzmaurice and Laird (1993) is common to all models using
links to any of the canonical parameters: even though it is first-order marginal the
model is not reproducible and so cannot deal with unbalanced designs and/or missing
values without considerable modification (Fitzmaurice et al., 1994). When the design
is balanced and the model may be fitted, it is likely that inference will be most
concerned with marginal means, with interactions merely nuisance. These are far
more quickly found by the Fitzmaurice and Laird approach than by fully marginal
approaches. Moreover, the orthogonality of the two sets of parameters means that
estimates of the marginal parameters are scarcely less efficient even under extreme
mis-specification of the conditional dispersion structure, which is certainly not true of

either of the ‘pure’ parametrizations.
P P
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2.5.1 Calculating probabilities from mixed odds ratios

For the mixed-parameter method of Fitzmaurice and Laird (1993), one needs to gen-
erate the probability table from the univariate marginal expectations, p;, or their

logits, A;, and the zero-conditional higher-order logits, £ 4, where A has at least two

elements.

An extra stage of calculation is required compared with the scheme in Section 2.4.5.
Firstly a table is filled such that it has the required higher-order ratios x4: in the
notation of Fitzmaurice and Laird, this is called S(§2). Secondly, iterative proportional
fitting (IPF) is used to scale the table to conform to the first-order margins p;. In
the process, on convergence the cell entries are assured to sum to unity, giving us the

required probability table.

As is well known (e.g. Bishop et al., 1975), IPF on first-order margins has the property
that higher-order marginal ratios are not altered; higher-order conditional ratios can

be shown to be similarly unaffected.

Filling S(2) to have the required conditional odds ratios is a simple adaptation of
algorithm step Al of Section 2.4.5. We simply temporarily set all the first-order x;
equal to unity. Actually, we could choose any values, since these first-order ratios have
no effect on the higher-order ratios being set in the table, as demonstrated in Section
2.4.5, but unity has the greatest computational advantage in that actual multiplication

need not be performed.

The second stage, IPF of the first-order margins, replaces step A2 of Section 2.4.5.
That step could be considered as IPF of the zeroth-order margin: namely, the proba-

bilities sum to one.

The proof that this scheme gives the required unique probabilities is almost established
by the proof in Appendix A2.4.5 that step Al is correct for all dimensions T'. The
second step is not controversial except for the question as to whether there are cases
for which the marginal p; are incompatible with the conditional x 4. But this question
is answered in Bishop et al. (1975) where it is shown that we can scale any contingency

table, here S(2), to fit arbitrary first-order margins (because what Bishop et al. call
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the configurations C; — that is, the univariate marginal totals — which follow directly
from the given u;, do not overlap, and the margins all sum to the same total, namely
unity). Thus we can make the table conform to the given y; provided only these lie
strictly between zero and one, as they must do if we use a suitable link function, such

as the logit.

2.5.2 Calculating probabilities when some higher-order ratios are

also marginal

In principal the mixed-ratios algorithm can be adapted to where we specify second-
order (or even higher) ratios marginally. In the first stage, all the marginally specified
ratios’ counterparts, that is x;, xij, etc., up to the required order, are set to unity,
just as we set xo and x; to unity above. In the IPF stage, we fit to the configurations
specified by the marginal ratios.

It is this latter stage that raises problems. Firstly, we cannot guarantee convergence,
because certain combinations of marginal odds ratios are incompatible. Because of
the way in which they are specified, the overlapping configurations are consistent in
the sense of Bishop et al. (1975), which is necessary but not sufficient for convergence.
Secondly, in the models we are fitting, the configurations per se are not specified, but
rather the set of odds ratios from which they are to be derived. One approach is
to calculate the complete multivariate configurations (as marginal probability tables)
from the given marginal ratios, although this is time-consuming (Chapter 3). However,
once we had the complete configurations, standard IPF could proceed directly.
Another approach is to fit, iteratively, and in descending order of given interaction,
to pseudo-configurations, which are marginal tables having only one of the required
ratios each. Although they violate consistency, such tables appear to work well in
practice (G. Molenberghs, private communication).

Given that neither method is concise or rapid, we might instead consider a different
approach, and solve the nonlinear system f(m) = (A’, x')’ using a suitably modified
version of the iterative scheme proposed for the pure marginal problem itself (Chap-

ter 3). Unfortunately, the symmetry of the fully marginal version is less apparent for
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mixed parametrizations. We might here simply follow the lead of Glonek and McCul-
lagh (1995) and use straightforward Newton-Raphson for suitably formulated f(=),

although as we will see in Chapter 3 this can be prohibitively slow.

2.6 GEE and related methods

It has become widely accepted that the generalized estimating equations (GEE) ap-
proach described below may be applied without regard to the true sample likelihood,
whenever it is desired to fit a marginal model to longitudinal, or otherwise corre-
lated, data. This is equivalent to modelling only the marginal mean and pairwise
covariances (or odds ratios) for some multivariate outcome. To help understand the
rationale of the GEE algorithm we first consider when the GEE2 equation gives the
maximum likelihood solution to the marginal model problem (Zhao and Prentice, 1990;

Zhao and Prentice, 1991).

2.6.1 The quadratic exponential assumption

In assuming all the three- and higher-way interactions in (1.24) or equivalently (2.46)
are identically zero, we assume our observations are from a quadratic exponential

family distribution, rather than from an order-T polynomial family. The score function

1s then _
ov!, o¢l o,
18 = —u_>u % (2.49)
) = 2 5y G 2%,
for the model
A4 = X474

as A runs through single and double indices only. By our assumptions the potential

3- and 4-way interaction terms in the dispersion matrix V', where

o¢'
-1_9%
4 o’

are taken to be zero, and so V! is assumed block diagonal, imposing orthogonality

between the first- and second-order 4 parameter estimates, provided of course they
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are distinct.

Equation (2.49), restricted to first- and second-order ratios only, is precisely the GEE
estimating equation proposed by Liang and Zeger (1986). Does the use of this equation
for polytomous data really imply an assumption of simplified likelihood (to quadratic
exponential) or do we accept the spirit of the original proposal and merely assert that
whatever the true likelihood, the GEE score is Godambe-optimal? A further subtle
claim is that the 3- and higher-way interactions are taken into a shape function which
is then estimated non-parametrically.

If the full likelihood can be maximized, as for polytomous data for short series of
observations, then that approach should be preferred, as advocated above. In the
following review of the principal approaches to GEE modelling I concentrate on
(first-order) marginal models, ignoring other approaches such as the latent poly-
choric covariance approach (Qu et al., 1992; Qu et al., 1995) and the use of additive

(non-linear) links in analogues of generalized additive models (Yee and Wild, 1996;

Wild and Yee, 1996).

2.6.2 Choice of parametrization

A fundamental design consideration is whether to link to (i) the mean and pairwise
(marginal) odds ratios (Lipsitz et al., 1991; Liang et al., 1992) or (ii) the mean and
pairwise covariances (Zhao and Prentice, 1990; Zhao and Prentice, 1991; Prentice and
Zhao, 1991). Denoting the parameters of interest in the linear predictor for the mean

as (1) and those in the predictor for association as 7(x), we have functions

r = vy

7 = (1) (x))

where p are univariate marginal means and 7 are the expectations about the origin

of pairwise crossproducts, 7;; = E[Y;Y]]. In the Prentice & Zhao case,

Mij = Oij + Biptj,
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where o = o (v(x))-

The score contribution of each subject, equation (2.49), is

83/3’7(1)

= D'V~If, (2.50)
36/8’70()
where V is the dispersion matrix,
o' 10 0 -
p=| /%0 and £=|° "1, (2.51)
on'[0vqy OM'/0v(x) w—n

for w the vector of pairwise crossproducts of y.

Prentice and Zhao make a further transformation to express this in terms of

8 = (811, 512,513, + - » Snn)’
where
Si; = (yi — #i)(yj - #j)

is the pairwise empirical covariance, and the predicted covariances, o;;, to give

. ou' 0 - -
B K /071y ond Fo| YT

00'[0v) Od'/dv(x) s—o

, (2.52)

with
7= var(Y) cov(Y,S) - (2.53)
cov(S,Y) var(S)

This can be written as a linear transformation f = Af, V = AVA’, D = AD, for an

obvious choice of the matrix A (Prentice and Zhao, 1991, p. 839).
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2.6.3 GEE1l and GEE2

In the original formulation now known as GEE1 in the terminology following Liang

et al. (1992), we substitute for the above terms the simpler block-diagonal matrices

_ oy’ 0
b= | ¥/ (2.54)
0 o' [0v(x)
and
_ var(Y) 0
V= (2.55)
0 var(W)

with obvious analogous substitutions for the Prentice and Zhao formulation. Be-
cause of this block diagonal form the system can now be decomposed into two sets
of equations, with the ‘top half’, estimates for v(,), still depending on -, through
var~1(Y).

Thus, as originally proposed, GEEL1 is a two-stage algorithm, first solve the ‘top half’
for 7(1), using the current estimates of vy, then re-estimate v, by any of several
methods (none of which is the same as solving the single system described above)
generally based on Pearson-type residuals using the current values of 7,y in the Liang

and Zeger approach. Prentice proposed other methods and advocated the form given

carlier.

These older methods are not discussed further here as the the single-system formu-
lation above appears to be becoming generally accepted (at least by Liang, Zeger,
Prentice and Zhao), though even the current Statlib S-PLUS GEE library is based on
old GEEL.

In preferring GEE1 over GEE2, we “ignore some functions involving higher-order
interactions since they contain ‘little relevant information’” (V.P. Godambe in the
Discussion of Liang et al., 1992). GEEL1 gives consistent estimates of (,), but these are
less efficient than those obtained by GEE2 if the dependence of pairwise interactions in
7(x) is misspecified. On the other hand, the increased efficiency of the GEE2 estimates

is at the cost of introducing bias if due to misspecification E[S] # o or E[W] # n,,.



CHAPTER 2. MARGINAL AND CANONICALLY-LINKED MODELS 79

This consideration prompts Prentice and Zhao (1991) to advocate taking D, as block
diagonal regardless of the postulated covariance model.

Liang et al. (1992) suggest that if interest is in (1) With () considered primarily
a set of nuisance parameters, GEE1 may be preferable apart from its simplicity and
speed, while GEE2 should be used when dependence is the object of the study. I
would argue that in the first case the model of Fitzmaurice and Laird is greatly to
be preferred, because of the true parameter orthogonality; and in the second case, I

would suggest a fully marginal model (at least in the absence of software to fit a mixed

marginal/zero-conditional form).



Chapter 3

Algorithms for marginal models

The fully marginal models discussed in Section 2.3.2 link parameters of interest, vy, to

marginal log odds ratios

Ay = Xuy

for each subject u with covariate matrix X,. However, the likelihood, and hence the
score equations (2.30), are expressed in terms of the vector of log probabilities, p,
rather than A. The whole of this chapter is concerned with the difficult algebraic and
numerical problem of obtaining the required p from given A, or equivalently, for ease
of discussion and presentation, finding the probability table, # = exp{p}, from given

marginal odds ratios (MORs), A = exp{A}.

In Section 3.1, nomenclature and a new, recursive definition of the system of equations
to be solved is given. The need for numerical techniques to solve the problem is

highlighted by detailed consideration of the analytic solution in Section 3.2.

The numerical technique adopted by Glonek and McCullagh (1995) is a standard ap-
plication of Newton—Raphson iteration; this is reviewed in Section 3.3. An alternative
algorithm based on residual correction (or equivalently here quasi-Newton-Raphson)
techniques is presented in Section 3.4. This algorithm was developed independently of
the publication of Glonek and McCullagh (1995); it is often not an improvement, be-
ing slower than Newton-Raphson when the number of timepoints, T, is small, though

quicker when T > 6.

80
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Both of these algorithms are prohibitively slow when T is large, as is evident from the
results of simulations presented in Section 3.7. Moreover, it is seen that both can fail
to find a solution even when one exists. In an effort to overcome these obstacles, I
have developed and studied two further algorithms, one (called SR) based on residual
correction, the other (denoted SQb) on a modified Gauss-Seidel technique. These are
presented in Sections 3.5 and 3.6, respectively. Both are considerably quicker than
Newton-Raphson — though they also do not always converge — with SQb preferred
in almost all cases both on grounds of speed and on probability of convergence. This
is demonstrated and discussed in Section 3.7.

The numerical and analytical techniques are extended to polytomous, unordered out-
comes in Section 3.8. In Sections 3.1-3.7, it is assumed that the outcome variables

are binary, which greatly simplifies the discussion.

3.1 Precise formulation of the MOR problem

In the following subsections, we define terms and set out a recursive definition of the
system of equations we will need to solve to find ® from A (or p from A); that is,
we give a new description of what Glonek and McCullagh (1995) call the multivariate
logistic transform. With this groundwork established, the thrust of this chapter —

finding the inverse of the transform - begins in Section 3.2.

3.1.1 Subscript notation

Denote by m, the cell probability
7ra=P( (Y17Y2"--1YT),=(a1’a’2""’aT)l )

for the T-variate variable Y, where a; € {0, 1}, « = 1,2,...,T. For convenience,
any particular vector subscript a is written as a string of binary digits rather than as
a vector over Z,. Less conventionally, for reasons given in the next paragraph, this
string may be read from right to left, considered as a binary number, and then the

subscript is written as the decimal representation of this subsequent number, ignoring
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any leading zeros. For example, the trivariate cell mp;; and the 4-variate mg110 are
both denoted 7¢ in the decimal subscript system.

There are three reasons for adopting this unusual convention. Firstly, it usefully
allows us to write, for example, mg as the probability that Y, and Y3 are one and all
other variables are zero, without having to specify how many other variables there
are. Secondly, of some use when computer programming, the decimal subscript is the
index of a one-dimensional array representation of the probability table, using the
standard conventions that the first element is subscripted zero and that first subscript
changes fastest. Finally, the decimal subscripts give the sequence of the elements of
the vector 7 in the recursive definition of the logistic transform in Section 3.1.5.

The same conventions apply to the subscripts of the logarithms of the cell probabilities
used frequently below, denoted p.

The subscripts of the MORs themselves, A, or equivalently their logarithms, A, follow
a different logic, through necessity and to obey the standard conventions. Here, the
number of subscripts indicates the order of the interaction, and the (decimal) values
of the subscripts indicate which Y-variables are under consideration. Thus, A; is the
log odds ratio (logit) for Y;, A;; is the marginal log odds ratio between Y; and Yj, and
so on. This convention is as followed in Chapter 2. Again assume without loss of
generality that the subscripts are ordered i < j < --- < T, without repeats.

As a further aid to symmetry, define Ag = 1 as the ‘zeroth order’ interaction; this will
serve as the condition that cell probabilities sum to unity. On the log scale, likewise

define A\g = 0. The subscript 0 is not used in any other combination.

3.1.2 Tilde notation

The system of equations to be solved, derived in the following three subsections, and
denoted S(w) = A, involves the operations of addition, multiplication and division.
Except for the convention that a/b denotes componentwise division of vectors, stan-
dard notation will suffice to define the system S(7) recursively.

However, in the approach of Glonek and McCullagh (1995), see Section 3.3, and in

calculation of the score equations (2.30), one works directly with log probabilities and
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odds ratios, so that it is also useful to write the problem on this scale, i.e. as s(p) = A
(see following three subsections for the definition of this system also). To avoid the
complexity of notation involved in writing down logarithms of sums of exponentials,
and thus greatly tidy the recursive definition of s(p), define the binary operator %

(‘tildeplus’) as follows:

a # b= log(e® + eb).

It is easy to show that tildeplus is associative and commutative, and that ordinary
addition is distributive over it; these properties are used in Section 3.1.4 and 3.1.5.

Also, for a > b,

a#b=a+log(l +e"9), (3.1)

which is computationally more efficient, since only one exponentiation is needed, and
additionally since e®~% < 1, the logarithm is in standard form for series expansion.

Equation (3.1) also shows that for any a, b,

a £ b < max(a,b) + log 2, (3.2)

with equality iff a = b, a result we will use in Section 3.4.3. Some further aspects are

considered in Appendix A3.1.2.

3.1.3 The univariate case

To motivate the form of the general definition of the multivariate logistic transform
in Section 3.1.5, we first consider the univariate system, which although itself trivial,
illustrates the symmetry of the larger, nontrivial systems. Given the log odds ratio
(logit) A1 (or its exponential, A;) what probability lies in each of the cells? Of course,
this problem can be solved directly without recourse to representation as a system of

equations, since the inverse of the logit transform may be written explicitly, to give

m1; then mg = 1 — m follows immediately.
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But let us here write this out as a system of two equations in two unknowns:

mg+m = Ap (33)

m1/mo Ay, (3.4)

where Ay =1 as defined at the end of Section 3.1.1. This system of equations is more

concisely denoted

Si(mw) = A. (3.5)

The subscript to S indicates the number of ocutcome variables.
Equivalently, for the log cell probabilities, on substituting for p = log(s) and taking
logarithms of both sides of equations (3.3) and (3.4), also writing log(eP® + €P!) as

Do # p1, we obtain

Po # P1 Ao

—po + M1 Al

This system is denoted by s;(p) = A (lower case for logs).

3.1.4 The bivariate case

To further motivate the general T-variate formulation of Section 3.1.5, the bivariate
or 4-cell system is now given explicitly. On the natural scale, and using the decimal

subscript convention of Section 3.1.1,

mo+m +me+m3 = A (36)
(m +m3)/(mo+7m2) = A (3.7
(m2 +m3)/(mo +m) = A2 (3.8)

(moms)/(mim2) = Ayg, 3.9
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denoted S2(m) = A. On the log scale, using tilde notation, the system sa(p) = A is

PO P#p2Eps = Mo (3.10)
oA p)+ P Aps) = M (3.11)
—(Po#tpi)+(P2#p3) = X (3.12)

Po—pL—p2+ps = A (3.13)

Some further subscript notation facilitates the partitioning of the 4-vector into

Po
p =
P1
where po = (po, p1)’ is effectively identical to the p of the univariate case, and p; =
(p2,p3)’ are the ‘new’ elements. Bold face is used for both the symbol and subscript
of p1 to distinguish it from the element p; (which is in pg). This notation facilitates

later extension to polytomous variables (Section 3.8).

Recalling that in the preceding subsection we have already defined the function

Po Po % p1
s1(po) = s1 = (3.14)

1 —po+m

and further introducing the concept of componentwise tildeplus for vectors,

Po P2 Do # p2
Po %P1 = % = . (3.15)

P1 P3 P1 %P3

the bivariate system can be written

s2(p) = $1(Po 7 p) = A (3.16)

—s1(po) + s1(p1)

As the notation is unfamiliar, let me clarify that in (3.16) the term s;(po # P1)
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represents the operation of s; as in (3.14), but acting on the components of pg # p1
given in (3.15), i.e. in (3.14) substitute pg % po for pg, and p; % ps for p;. Equation
(3.10) is recovered exactly on noting the commutativity of tildeplus. It is vital for the
emerging symmetry that the components of p and A are introduced in the order given

here and stated in Section 3.1.5.

The unlogged equivalent version is

So(m) = Simotm) ) _ (3.17)

S1(m1) / S1(mo)

where operation S; is defined by (3.5) to act on two components according to (3.3)
and (3.4). Expression (3.17) is readily verified by expansion. The division sign is used

to denote componentwise division, here and throughout.

3.1.5 The general case

This is obtained by induction. Suppose that the problem for T variables is

Sir_ +
Sr(m) = () (o + 711) = A, (3.18)

S-1) (m1) / Sr-1) (7o)

as is shown to hold for T = 2 in the preceding subsection. Here

—_ !
7o = (7o, M1, ..., Far-1_y)

is the vector of probabilities for the (T — 1)-variate case — except for an additional

trailing zero in the binary form of the subscripts — and

™ = (7r2(1-_1), e ,7I'2T_1)’
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are the ‘new’ probabilities (those where Y7 = 1 rather than zero). To illustrate: in

the trivariate case, using binary subscript notation,

!
o (7f00077f100,7f010,7f110)

!
1 (001, T101, 011, T111)

Note that in the decimal subscript notation (Section 3.1.1) the sequence is simply

MYy Wly--- M7

To preserve symmetry, the order of introduction of the odds ratios A is equally im-
portant, and obeys the following scheme. For T = 1, A = (Ag, A;)’, while for T = 2,
A = (Ao, A1, Ag, Ay3). This generalizes to

A = (Ao, A1, A2, Aig, Az, A, Aoz, Agas, . ). (3.19)

The ‘new’ interactions with Yy are ordered by appending T to the subscripts for the
(T — 1)-variate case. For convenience (and following accepted usage) the subscript 0 is

dropped except for Ag itself. This convention is as followed in Glonek and McCullagh
(1994).

We can now build the system for T + 1 variables. First consider the the equations
for the ‘top half’ of the problem — that is, for those components of A that appeared
in the T-variate system, i.e. (Ag,...,A23..7)". Since these are marginal odds, they
are found by collapsing the probability table over the (T + 1)st variable, i.e. from the

probabilities wg + 3 of the (T + 1)-variable table. Hence
St(mo + ®1) = (Ao, -. ., A123...T)' (3.20)

by the induction hypothesis that Sr is the appropriate transformation for a T-variable

probability table, here wg + 7, to its marginal log odds ratios.

The remaining equations of the new system concern ratios Az, Ay(g.qy, -+ > Ayo3..T(T+1),
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the elements of which are by definition

(odds ratios between Y4 € {Y1,...,Yr}, given that Yr4; = 1)
(odds ratios between YA € {Y1,...,Yr}, given that Y7, =0)

(3.21)

as A runs though all subsets (beginning with the empty set, giving the marginal
logit) in the order determined above for A. Again by the induction hypothesis, the

numerators are found by Sr(m;) and the denominators by Sr(wg). Hence

Sr(m1)/87(mo) = (A1, A1y - - - Ar2s (1)) s (3.22)

as always here assuming componentwise division.

Thus the general T-variate case is as stated in (3.18), by the combination of equations
(3.20) and (3.22), and the preceding demonstration of the validity for T = 2.
On taking logs, the sequence of logged systems sy is readily seen to grow according

to
orar(p) = st(pPo # P1) (3.23)
—sr(po) + sT(p1)
where the log probabilities p are partitioned into halves pg and p; by direct analogy
with the case for unlogged .
For completeness define so and Sy as the identity function, enabling us to make the
decompositions (3.18) and (3.23) on even the univariate system.

The technical report by Glonek and McCullagh (1994) appears to be the only previous

reference that gives an explicit, recursive, general form for the multivariate logistic

transform. They write the system in the form

Clog(Lw) = A

(in my notation for 7 and A), where the matrices C and L are defined in terms of the
direct products of the related matrices for the problem in one less dimension. The
form s(p) = A is simpler and quicker to evaluate (flop counts for both methods are

given in Section 3.7.2). However, Glonek and McCullagh’s description is a little more
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general than mine, in that they also allow for ordinal data; I consider only binary data

(above) and unordered polytomous data (in Section 3.8).

3.2 Analytic solutions and considerations

Given a probability table, the mapping S(=) specifies only one set of odds ratios, but
we are concerned here with the inverse problem: obtaining probabilities from odds
ratios, i.e. finding m = S~1(A). This mapping is not unique, as seen at several
points below, unless we specify the constraint that all probabilities are positive (the
first equation, for Ag = 1, then ensures the probabilities cannot exceed one, so this
is not a necessary further constraint). Such lack of uniqueness is generally ignored in
previous publications (e.g. Liang et al., 1992, Glonek and McCullagh, 1995). Better
documented is that for certain A there is no solution to the constrained problem.
There are further constraints to be imposed, on the odds ratios, that are difficult to
write explicitly and to interpret.

The term valid solution is used here to denote a solution that meets all the implicit
and explicit constraints: a solution that represents a well-defined probability table. By
conjecture (Darroch, 1962; discussed in Appendix A3.2), only one, if any, of the many
solutions to the unconstrained problem is valid, as we shall discuss further below.
The structure of this section is as follows. In Sections 3.2.1 and 3.2.2 we find S~1(A)
analytically for T = 1 and 2, respectively; then in Section 3.2.3 we illustrate the
extreme difficulty of solving when T' = 3, showing also that for T > 4 one is forced
to turn to numerical techniques. Successive solutions for T = 1, 2 and 3 suggest a
hierarchical approach discussed in Section 3.2.4. Numerical techniques are likely to
suffer from the existence of multiple solutions to the unconstrained problem (Section

3.2.5); moreover, some systems have no valid solution at all (Section 3.2.6).

3.2.1 The univariate solution

The univariate system is trivial to solve. The quickest solution is already given, at

the beginning of Section 3.1.3. Proceeding more directly by isolating m; in equation
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(3.4) then substituting in (3.3), we have

Ag

= _fo 3.24

o 1+ A, (3.24)
Aoy

- , 3.25

m 1+ A, (3.25)

Note that there is is a unique solution to the unconstrained problem even when Ay #
1. This will seldom concern us, since we must have Ag = 1 for a valid probability
table, but we will consider circumstances in which Ag # 1 in Section 3.6 (page 119).

Guaranteed uniqueness of the solution fails to hold for T > 2, as we now see.

3.2.2 The bivariate solution

To tidy the form of the bivariate inversion S™!(A), to find =, the system S(m) is
made as linear as possible by inverting the logit in equations (3.7) and (3.8), giving
expressions in terms of the marginal means, p; and po. For given values of A and

A2, the values of p; and pg are easily calculated. This gives

moo + w0 + oy + A1 = 1, (3.26)

To+mTu = pi, (3.27)

oL + 11 = P2, (3.28)

T10701
By successive substitution,

w0 = M1 — i1, (3.30)

o1 = M2 — 11, (3.31)

oo = 11— —p2+my (3.32)

and so we obtain the following quadratic equation in probability 7;:

g(m11) = (1 — A2)wdy + [1 = (1 — Ag2)(p1 + B2)]my; — Apopypz = 0 (3.33)
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Other choices for substitution give rise to similar, quadratic expressions in terms of mqg,
mo1 Or mip as desired, but such expressions are no simpler than (3.33). The solution of
a quadratic is only avoided when A2 = 1, which is the case for independent variables,
when the solution is trivial. When Aj2 # 1, equation (3.33) has two distinct real
solutions, as illustrated shortly below; complex roots cannot occur. Thus the general,
unconstrained problem does not have a unique solution even for two variables, a fact
which is frequently overlooked.

The constraint that the solution must represent a valid probability table, m;; > 0
(strict inequality assuming a non-degenerate distribution), might suggest that it is
enough to find a solution to (3.33) in the range (0, 1) — indeed this was claimed by
Liang et al. (1992, p. 13). But there can be two solutions in this interval (though
not both admissible), as seen by example: if y; = po = 1/4 and A2 = 4, then
m1 = (54 v/13)/12, approximately {0.116, 0.717}. In this case, only the smaller root
gives rise to a valid table, a result we now generalize.

To ascertain which of the solutions to the quadratic gives a valid solution in all com-

ponents, we note that for 71, > 0, (3.30)-(3.32) introduce the requirement
a = max {0, p + p2 — 1} < 71 < min {yy, po} =0. (3.34)

Darroch’s (1962) result (Appendix A3.2) shows that precisely one of the solutions lies
in this range. More practically, I now derive a simple method of predetermining which
one.

The quadratic g(711) of equation (3.33) is negative at the lower bound and positive
at the upper (Darroch, 1962). Then by reference to Figure 3.1, considering the sign

of the leading coefficient, namely 1 — Ay,, it is clear that

if A2 > 1, valid solution is the smaller root
if Aj2 = 1, degenerate case, w13 = B9

if Aj2 < 1, valid solution is the larger root

Liang et al. (1992) only give the solution with smaller root. Of course, when we expect

positive association, as they do in all their examples, and in general for repeated
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Figure 3.1: Possible quadratic curves with a single root between points a < b, both
lying between 0 and 1.

measures data, this is likely to be the right choice.

3.2.3 The trivariate problem and beyond

We have previously considered the ‘explosion’ in the number of parameters as T
grows; the algebraic complexity of the solution to the system grows similarly quickly.
The problems are compounded because for T > 3 there may be no solution to the
constrained problem at all, and the conditions under which this obtains cannot be
easily specified in terms of the given odds ratios themselves (Section 3.2.6).
Something of the complexity of the trivariate problem is revealed if one uses the com-
puter algebra system Maple to solve the system directly. Even on a Unix mainframe,
this attempt crashes because the subexpressions exceed available buffer space.

We can, however, do rather better by hand. Proceeding as for the two-variable case
in Section 3.2.1, firstly simplify by inverting the first-order logits to give expressions

in pu;, 1 = 1...3: this creates the system

To00 + T100 + To10 + T110 + Too1 + Mio1 + Tor1 + M1 = 1 (3.35)

moo0 + T110 + T01 + M1 = (3.36)
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To10 + 110 + T110 + T111
(mo0o + moo1) (7110 + M11)/(o10 + To11)(T100 + T101)
Too1 + o1 + To11 + 7111
(mo00 + To10)(T101 + m111)/ (Mo02 + To11) (7100 + T110)
(moo0 + m100)(wo11 + m111)/(Foor + 101)(Tor1 + Mi11)

(71007010001 T111)/ (T000 T 1107101 T011)

H2
Az

93

(3.37)
(3.38)
(3.39)
(3.40)
(3.41)

(3.42)

Substitute first for m 99, mo10 and mye; by (3.36), (3.37) and (3.39), then for mogp by

(3.35), i.e.
Ti00 = H1 — T110 — 7101 — 7111
To10 = M2 — 7110 — Tor1 — Tl
Toot = M3 — W101 — 7011 — 111
Tooo = 1 —p1 — 2 — p3+ 2m + T0 + Toul + Pio

(3.43)
(3.44)
(3.45)

(3.46)

After this particular substitution (only) we obtain expressions for the two-way odds

ratios — (3.38), (3.40) and (3.41) — each in terms of 711, and only one other proba-

bility (namely that for which subscript positions ¢ and j are unity, and the remaining

position is zero, for each A;;). These can then be expressed as quadratics with coeffi-

cients in terms of 71, (and known A) only. For example, from (3.38)

(r- A12)7r%10 + [2(1 —Ap)mun+ Q-1 =Ap) (e + /AQ))]WUO +g(m11) =0, (3.47)

where ¢() is precisely the quadratic function in equation (3.33).

The expression of the roots of these equations using the standard formula is unpre-

possessing, but on scrutiny reduces to

m™10 = @12 — 7111, 7101 = 13 — @111, 7011 = @23 — M111,

(3.48)
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where
1 iy 1
aij =g\ pitpE T, Ay #l (3.49)
ij

where 4;; is the determinant of the relevant quadratic. Expressions (3.49) do not
simplify greatly in the general case, though importantly they do not include m1; or
any other unknowns. As an exceptional case, if A;; = 1, for any pair (i, j), then (3.49)

is replaced by
Qij = Hiltj-

Observe that a;; = v;;, the marginal expectation; this is the probability in the (1,1)-
cell of the marginal bivariate subsystem for Y; and Yj.

Consequently, only one of the two roots provides a valid solution to the constrained
problem; the other root yields an invalid subtable with ‘probabilities’ outside the range
(0,1). The root that should be chosen is as prescribed in the previous section; (3.49)
is the root of (3.33) after summation over the relevant third subscript.

Finally, substituting for w10, mo11 and mp; into (3.42) gives a quartic in w17 with
coeflicients in terms of the known odds ratios and known a;; only; given the solution
to this, the remaining probabilities are determined by back substitution. As noted by
previous authors (e.g. Molenberghs and Lesaffre, 1994), the equation is unattractive,
and an algebraic solution, while possible, is inelegant.

The quartic equation is given here for completeness and to show how unwieldy this

expression is. The coefficients, with ¢, denoting the coefficient of nf;,, are

ca = 1-Ajas,
3 = —(1—=p1—p2—ps+2(arz+ao3+a3))(1— A2s) + 1,
c2 = [(1 — M1 — M2 — pu3 + a12 + a3 + 023)(0112 + o3 + 023)

+ o203 + a12023 + anzaes](l — Ajaa)
+ pip2 + paps + paprz — (1 4+ pr)azs — (1 + p2)ons — (1 + pa)anz,
a1 = —[(1=p —p2— p3+ a1z + a13 + az)(apa1s + arzazs + d13a23)
+ a20n3023)(1 — Ar23) + ai20n3 + Q12023 + azazs + 2012013023 + pip2ps

— (p2 + p3 — @23)pros — (p1 + ps — aus)peons — (p1 + B2 — G12)psonz,
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co = —(1=—p1—p2—psz+ o2+ 013 + aos)aizaizazzAieg

I have collected terms as multiples of 1 — Ao3 where applicable, which shows how the
equation simplifies, at least a little, when the high-order ratio is unity. Liang et al.
(1992) always make this simplifying assumption.

Although these coefficients can indeed be substituted into a generic solution to the
quartic, to determine 711, there is very little simplification of the expanded terms (just
as the determinant of the earlier quadratics, 4;;, is no simpler than ¢ — 4cacg). We
are essentially forced to adopt numeric techniques, unless a neater analytic solution to
the quartic is found. Moreover, we now face the extra problem of determining which
of the four possible solutions is valid.

For T = 4, analogous successive substitution would lead us into having to solve six
quadratics, four quartics (each time choosing the correct solution), and finally an octic,
for which there is no explicit formula. Indeed, in this case (and beyond) no general
formula can be written, though this does not preclude the existence of a formula for
our particular problem. However, instead of seeking such a formula, I more practically

emphasise the need to turn from analytical to purely numerical solutions.

3.2.4 The hierarchical approach

The successive substitutions in the trivariate case above were chosen to simplify the
algebra, rather than for statistical meaning, our concern being to find a solution by
the shortest computational route. If the order of substitutions is changed, one does
not arrive at quadratics in only two cell probabilities and a quartic in one, but instead
one obtains simultaneous quadratics and quartics in four probabilities. In fact Maple
fails to find a solution precisely because it appears to follow one of these wrong paths
irrespective of the order of the input equations.

However, if we review the successive substitutions for the trivariate problem, we see we
have firstly solved the three marginal bivariate problems (in finding the a;; = v;;), and

secondly via the quartic equation distributed these marginal probabilities to individual
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cells (in finding vy23 = my;; and then using back substitution). This is now seen to be
identical to the scheme proposed by Liang et al. (1992); they were seeking expectations
directly, but the transform between m and v is trivial (i.e. linear). Liang et al. (1992)
also note that the high-order equations need to be solved numerically, although one
need not make their assumptions of high-order independence.

As a refinement of the numerical technique proposed by Liang et al. (1992), Molen-
berghs and Lesaffre (1994) point out that when solving the high-order equation one
can efficiently find the unique solution between the limits a and b of equations (A9) and
(A10) in Appendix A3.2 (c¢f 3.34), by using Newton-Raphson starting from (a + b)/2,
which should ensure speedy convergence to the valid solution. But this is not use-
ful for problems in higher dimensions, because the limits @ and b, and any required
derivatives, are prohibitively difficult to calculate.

It would seem, therefore, that algebraic complexity forces the hierarchy to end at

T=3.

3.2.5 Solutions to the unconstrained system

As seen in Section 3.2.3, if the constraints leading to a valid probability table are
not made explicitly, then there are a potentially enormous number of solutions. For
the bivariate case there are potentially two solutions (Section 3.2.1); for the trivariate
case, there are not four, but potentially 32 solutions: up to two choices for each a;j
give rise to up to eight different quartic equations, each having up to four solutions.
Often, many solutions are complex. If any A;; = 1 there are multiple roots (more
particularly, then there is only one choice of a;;). For independent variables, with all
Aij = Aj23 = 1, there is only one solution.

A general formula for the number of solutions can be derived, but there is little need
for one. Importantly, there can be very many solutions, which is unfortunate for
iterative schemes hoping to find one of them rather than another; in Section 3.7.3
it is shown that Glonek and McCullagh’s (1995) Newton-Raphson technique can set
off towards an invalid solution if the start value is poor (a generic problem of the

method). My algorithm SQb, Section 3.6, can suffer likewise.
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In iterative schemes one wants to be assured of convergence, and convergence to the
right solution. This problem is poorly addressed in the literature, and I can offer no
analytical results for T > 3. However the results of extensive simulations reported in

the following sections of this chapter shed some light on this matter.

3.2.6 Constraints on A

As the problem is meaningless if A terms are not strictly positive, positivity is assumed
throughout. In fitting marginal models with an identity link to the logits, negative A
components cannot occur.

The constraints that must be met to give a valid table are naturally expressed in
terms of marginal expectations (Darroch, 1962; Glonek and McCullagh, 1994) written
here p; and v;; for first- and second-order moments. For example, for the trivariate

problem, one such constraint is

p2 — V12 — U3 + 113 > 0,

which on using (3.49), recalling that v;; = a;;, becomes

/2 1/2 1/2

+ .
1—A13 1—-A12 1—A23

As noted by Glonek and McCullagh (1994), this expression does not simplify to any-
thing that may be easily interpreted.

In the wider application of fitting marginal models, poor starting or intermediate
values for parameters v in the linear predictors may generate a set of A = X+ for

which there is no valid probability table. Worse still, necessary conditions for this

event in terms of \ are not readily available.

Solving the bivariate marginal problems, giving the required marginal expectations,
can test whether a valid solution exists, and this can be done if the chosen algorithm
fails to find a solution. However, this is not readily extended to higher dimensions be-

cause of the algebraic complexity of the marginal expectation constraints themselves.
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An old method for determining the number of roots of a polynomial between two
points a and b is to use Sturm sequences (for a modern description, see Dobbs, 1980).
I attempted this method here to ascertain the existence of a real solution in (0, 1)
for the (1,1,...,1)-cell for a given set of odds ratios, in the hope that the constraints
might become clearer in this alternative formulation. Ideally, one would want to test
for a solution not merely in (0, 1) but between the limits (a, b) of Appendix A3.2, but
as stated at the end of Section 3.2.4, calculating these limits is itself impractical. Once
the coeflicients of the high-order polynomial are calculated, testing for sign changes
over (0,1), or if possible over (a,b), involves comparatively little computation. I do
not report details for two reasons: firstly, algebraic expressions for the coefficients are
not currently available for T > 4, and secondly, one seeks an algebraic, not numerical,
formulation of the tabulated sign changes to classify sets of ratios with no solution.
But even for T' = 3, the Sturm sequence process gives expressions far more complicated

than those rejected as useful above.

3.3 The Newton—-Raphson method

Glonek and McCullagh (1995) use Newton—-Raphson iteration to solve the nonlinear

system of equations s(p) = A for p. Here this is to iterate according to

(1) _ (n) _ | 08’
oo [2

-1
] {s(p™) - A} (3.50)

p=p™

For problems of small dimension this approach is feasible (although about 6 times
slower than Algorithm SQb of Section 3.6 even for T' = 3; see Section 3.7). The cost
of evaluation, and inversion, of the derivative matrix, which is not great for T' < 3, is

offset by quadratic convergence, provided there is convergence.

For problems with many variables, however, the cost of evaluating and inverting a
huge derivative matrix (2T x 2T) is prohibitive, and this has led to my seeking a
more efficient alternative. In Section 3.4 we study a quasi-Newton-Raphson method

~— i.e. a fixed matrix replaces the true derivative matrix and is chosen so as to be
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trivially invertible. The subsequent loss of quadratic convergence, however, makes
this particular method much less efficient for small T'; it is only faster for T > 6. In
Sections 3.5 and 3.6 we will consider two further algorithms that are always faster (as

shown by simulations reported in Section 3.7), and increasingly so with increasing T'.

With modern computers one sometimes questions the need to accelerate numerical
methods. But consider a large-sample data set with 9 or 10 timepoints, taking, quite
plausibly on current hardware, a whole day to fit using algorithm SQb within the
Fisher scoring loops (bear in mind that if there are continuous covariates, a sepa-
rate set of odds ratios has to be inverted for every individual, every Fisher scoring
iteration). We will see in Section 3.7 that the SQb algorithm is at least 175 times
faster than Newton-Raphson for problems of this size. Thus is would currently take

approximately six months to fit the same model using the Newton-Raphson technique.

Even more important than speed however, is the observation that there are sets of
odds ratios for which Newton-Raphson is unable to find a solution even when one
exists. This can be due to poor starting values, which is a well-known shortcoming of
the method, though to be fair this problem occurred only rarely in the simulations.
A way to overcome this is to use one of my alternative algorithms to limited precision

to obtain good starting values.

But failure to converge may also be due to numeric singularity of the derivative matrix
at or near the solution, despite Glonek and McCullagh’s proof of its analytic non-
singularity. The particular cases in which this occurs all have specified odds ratios
that are extremely diverse in magnitude, and the corresponding solution p values
are likewise extremely diverse in magnitude. Sometimes, at such extremes, all the
algorithms considered here will fail. Depending upon the particular set of ratios,
indeed sometimes Newton-Raphson succeeds when all my alternative algorithms fail.
However, there are sets of odds ratios not invertible by Newton-Raphson that are
invertible by SQb and/or other algorithms. Thus, algorithms other than Newton-
Raphson are clearly needed, even if a dramatic increase in speed is not regarded as

essential.
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3.3.1 Calculating the derivatives of s(p)

We now consider the calculation of

ds(p)’

op

which is required for calculating the score function (2.30) of Section 2.3.2 for fully
marginal models, and more particularly in the present context when using the Newton-

Raphson algorithm.

First, a technicality: rather than 9s’'/dp, which involves s(p)’ as a row vector, here 1
instead give Js/0p’, which leaves s(p) as a column vector, making it easier to refer
back to the columnar definitions of the system in Section 3.1. The required ds'/dp is

the transpose of the matrices shown here.

I now develop a general form for the derivative inductively. First note the general

result that

D it = Lioglet +eb) = — (3.51)
da "~ Oa gle T e e’ '
Then for the univariate case,
0 1
Isi(p) _ 8 [ Po¥m gpf:jﬁ gp%m— (352)
- = .
o Ip —po + 1 -1 1
which can be expressed in terms of the unlogged cell probabilities as
0s1(p) _ 1ro7-r+-1r1 1ro1-r§-1r1
9s1(p) _ , (3.53)
op' _m  0m
o m

The unusual form for the second row is chosen to illustrate the emerging symmetry,
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which becomes clearer in the bivariate case:

Lifs} 1 T2 3
mo+m1+7w2+73 wo+m1+w2+73 wo+m1+mw2+73 wo+mwL+T2+73

8 70 S T2 73
52(p) _ To+m2 m+7s To+72 T1+73 (3.54)
op’ __m __m _m _m
To+71 mo+my w2+7w3 Ta+73
Tg _m T2 3
™0 81 w2 m3

In order to generalize, introduce the operation on two scalars a and b
b
Ap = - (3.55)
a

and extend this to 2-vectors ¢ = (cg,c1)’ and d = (dp, d;)’, say, as

do d co+cCy co+cl1
c _ co+c1  co+cy - Ado Adl (3.56)
d— d d = . .
— a) __ A€o (5]
co c Ado Adl

Finally extend this to general vectors, of length a power of two, according to the right-
hand expression above, letting subscripts zero and one refer to a vector consisting of

the first and second halves, respectively, of the elements of the vector in question.

We have shown

dsT(p)
op

= AT (3.57)

for T =1 and 2 by simple substitution. To see why the formula must hold in general,

consider (3.23), repeated here for convenience:

orar(p) = sT(po # P1) (3.58)

—sr(po) + sT(p1)

Then in general
dsT(poZp1) 3sr(porp1)

0sT41 (p) - Jpo op1
op' _9s7(po) 9s7(p1)
8po op1

In our systems the terms such as pg # pi are the tildesums of log probabilities, which
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are simply the logs of sums of probabilities, and these sums of probabilities are explicit
in the A notation. Thus, equation (3.57) holds in full generality.

Expression (3.57) may be calculated readily in languages allowing recursion such as
S-PLUS and C. The C function sdiff.c given in Appendix A3.3.1 is one such imple-

mentation.

3.4 The SM algorithm

The following iterative scheme may be considered either as an application of the
method of residual correction or as a quasi Newton-Raphson scheme. I have been
unable to demonstrate clear conditions for convergence but in simulations this algo-
rithm only very rarely fails to converge to the solution when one exists. However,

convergence is very slow; this section concludes with methods for addressing this.

3.4.1 A residual correction approach

As an alternative to the Newton-Raphson approach of Section 3.3, we now consider
using the method of residual correction. I first describe this method in quite general
terms, since it may be unfamiliar and will be referred to again in Section 3.5. The
particular choices that specify the SM algorithm from the general scheme are given
below.

We wish to find a solution p* to a nonlinear problem (e.g. that defined in equation
3.23):

s(p) = A, (3.59)

where s is not directly invertible, so that the equation cannot be straightforwardly
cast into a fixed-point problem. To overcome this obstacle, we introduce an invertible
function, M, hopefully ‘close’ to s in some sense. The difference between evaluations

of M and s is denoted
c(p) = M(p) - s(p) (3.60)

which is a ‘residual’ term ‘correcting’ for the approximation of s(p) by M(p). On
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rearranging (3.60) to isolate s(p) and substituting in the equation to be solved, (3.59)

can be written M (p) = A + ¢(p), whence, since M is chose to be invertible,
p=MT1\+c(p) (3.61)

This manoeuvre has, as desired, re-expressed (3.59) as a fixed-point problem: the

required solution satisfies p* = M ™[\ + c¢(p*)].

The standard iterative approach to such a problem (Burden and Faires, 1985) is to
iterate according to p(®t!) = M~1[\ + ¢(p{™)]. In general, however, there is no

simpler expression for ¢(p) than its definition (3.60), and it may now be eliminated:

p(*D) = M7'A+ M(p™) — s(p("))]. (3.62)

In the SM algorithm, we choose M to be not only invertible but also linear. Equation

(3.62) then becomes

p™+D) = [ = M~1s] p( + M~IA (3.63)

where operator notation is used for s.

The choice of a trivially invertible matrix M, characterizing the SM algorithm, is

given in Section 3.4.3.

In (3.62) and (3.63) we have eliminated the correction terms that motivated our ap-
proach. Instead it can be useful to concentrate on these, and eliminate p. Substituting

for p in (3.60) according to (3.61) gives the fixed-point formulation

cm+D) = e 4 X = s(M~(c™ + N)) (3.64)

At convergence, to ¢ say, p* = M (A + ¢*) is the required solution to (3.59).
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3.4.2 A quasi Newton—Raphson approach

As mentioned in Section 3.3, the derivative matrix in (3.50) is difficult to invert because
of its size, at least for large 7. A solution is to substitute some simpler, fixed matrix,
say M~!, for the inverse derivative matrix (Burden and Faires, 1985). Substituting
M™! for 8s/0p in (3.50) yields exactly the scheme (3.63) developed above.

Despite the equivalence of these two approaches, we will in this Section consider the
method as being residual correction, particularly because the accelerator steps in

Section 3.4.4 are based on consideration of successive correction terms.

3.4.3 Choice of M

The choice of M is free, but to be applicable M should be ‘close’ to s (in the residual
correction approach) or ds/dp (for quasi Newton-Raphson). The transformation M
is described here as a pseudo-loglinearization (PLL) of s. The PLL transform replaces
# wherever it occurs in the system s by +, while existing addition and subtraction
are left unchanged. Although this definition is likely to be more widely applicable
than to the current problem, the range of applications is not considered here. The
terminology PLL comes from a further equivalent definition avoiding the definition
of #: after taking logs of an original system e* we substitute loga + logb for any
log(a + b), etc.

The resulting matrix here is indeed not extremely ‘close’ to s, but nevertheless con-
vergence to the potentially large correction terms is generally obtained in practice.
The absolute value of the difference between the true forms a £ b and the substituted

a + b is bounded by
‘(a #b) — (a+b)| = ‘ —a —bl < max(—a, —b) + log 2;

the right-hand side of this inequality, from equation (3.2), is positive when a and b
are log probabilities (hence negative).

The approximation is worst for the first line of equations in s(p), when the difference



CHAPTER 3. ALGORITHMS FOR MARGINAL MODELS 1056

is bounded only by

< max(-p;) + log 27.

|log Ze”* - Zlog Di

For the rest of the equations, in practice the inaccuracy in the positive terms is roughly

cancelled by similar inaccuracy in the negative terms — see for example Figure 3.3.

Despite the lack of precision of the approximation of s by a PLL form M, there are
two important reasons for studying it further: firstly it is easily defined recursively,
making computer implementation simple for general T'; secondly, it has an extremely

simple inverse as seen shortly below.

As in the recursive definition of the MOR system sp in terms of s7_;, unsurprisingly
the PLL forms M7 exhibit a similar recursive pattern. For example, the PLL matrix

for the univariate system s, is

M1= )
-1 1

while that for T = 2 is readily seen to be, in block form,

M, M,

-M, M,

It is straightforward to derive the general case:

MT+1 = . (3.65)

Importantly, it is easily shown using mathematical induction that, provided M; has

the given form, Mr satisfies

1
M;' = ﬁMf (3.66)
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Figure 3.2: Trace plots for p convergence to 6 d.p.: values of successive iterates plotted
against iteration number, with successive values of each component joined by straight
lines (barely visible on these particular examples).
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for all T'; prime denotes transpose.

This particular choice of M is of enormous numerical benefit, central to the usefulness
of the algorithm, because it avoids the need for matrix inversion. The recursion

formula (3.65) may be rewritten as

Mp' Mg My —My
Ml == = = ; (3.67)
Mzt Mg! Mp M}

DN | =
(S
he}

3.4.4 Convergence and accelerator steps

The trace plots in Fig. 3.2 illustrate typical convergence of p using the SM algorithm.
[terates change fast initially, reaching convergence to within one or two decimal places

of the answer after roughly 27! iterations. Thereafter, convergence is always slow.

To study convergence behaviour analytically, it is helpful to work in terms of the
residual corrections, i.e. to consider the scheme (3.64). Note that (3.64) involves
terms s(M~1(x)), which is considered more easily than the expression M ~!(s(x))

within the formulation (3.63).

If there is convergence, to ¢® say, then p = M~!(c® + \) is the required solution. In

practice it can take up to 30% more iterations to obtain ¢ convergence to the same
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Figure 3.3: Trace plots for ¢ convergence, for ¢ a vector of sixteen components, i.e.
T = 4. The right-hand figure is a detail of the first 50 iterations not including the

dominant ¢y term.
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The correction terms, at convergence, are more diverse in value than are p. Figure
3.3 is typical of results in all dimensions, with one component dominating the others
in magnitude; this is always the ¢g term. Initial convergence is not monotonic for
all components; the pattern can be more extreme when A values differ greatly in

magnitude.

However, after possibly a ‘burn-in’ period of comparatively few iterations, we see
that for c iterates (as for p iterates), the behaviour is very like that of obtaining the
sum of a geometric progression (GP) by adding its successive terms. This observation
motivates the accelerator steps introduced later in this section, but let us first consider

some analytic results for 7' =1 and T = 2.

The univariate problem always has an explicit solution so is a trivial application of the
algorithm; nevertheless it is informative to note that after expansion and factorization

(3.64) becomes

R %an)+¢0()\1), (3.68)

C1

0, (3.69)
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where

do(M1) = — (_%)‘l * %)\1) = —log (2C05h %/\1) ,

and )¢ = 0 is omitted. Expanding the sequence (3.68) and noting ¢(®) = 0 gives

n 1 (n 1 (1 (n- 1 1
cg+1)=§cg)+¢o=§<§cg" 1)+¢)+¢="'=(1+§+Z+"')¢

so that c§° is found as the sum of a GP, with first term ¢y and common ratio %, i.e.
c® = 2¢.

In the bivariate case, after some algebra exploiting the distributive property of addition

over tildeplus, iterates are

C(()n+1) =1 (n) ¢0(C1 ,cz ) A1, A, A12) (3.70)
Y = Lo+ B = (S, Ag, M) (3.71)
= e+ Fro — ol A, Ana) (3.72)
s = 0 (3.73)
where
o = jl—a—ca—Ai—do+dp) ALl —c+i —A2— )
Fi(—atea—A+d—dp)Zila+a+h+r+An),
1 = (% c2+ A2+ /\12)) v (%(62 + A2 - /\12)) ’
where

¥(a) =a £ —a. (3.74)

When A2 = 0, for independent variables, ¢, and ¢, are zero, so that (3.71) and (3.72)
find the sum of a GP.

Otherwise we may substitute (3.72) in (3.71), assuming convergence, to give us the

logarithm of a quadratic equation which can be solved easily, and then by back sub-
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stitution find all correction terms analytically. This is not better than using the
ordinary solution of Section 3.2.1, nor does it prove that the iterative scheme will
converge. Moreover, even if a proof can be given, it could not be used directly to show

convergence for T > 3, which is the important application.

Both iterative schemes (3.63) and (3.64) have the same derivative except for a trans-
position which does not affect the following argument. To prove convergence it would

suffice to show
1 08

3.75
p <1, (3.75)

|1 -

for some matrix norm, evaluated at all p generated within iterations.

It might be possible to make some headway with the very cumbersome expressions in
(3.75) using the infinity-norm, but it is easy to find numerical examples with T > 3
where the infinity-norm exceeds unity. Thus, we have to look to the smallest possible

norm, the spectral radius, denoted here p, if we are to show convergence.

Unfortunately, it is not feasible to write a closed-form expression for the spectral radius
for T > 3, since this requires obtaining expressions for all the eigenvalues (which are
found to be complex, since the matrix of real values is not symmetric). We may
nevertheless find p numerically for a large number of different p values and consider

the results of this in lieu of formal proof.

‘The results in Table 3.1 suggest that (3.75) may hold analytically, but certainly not

always numerically. It emerges that the lower bound is apparently

oT _
p= .
2T

However for large values of T' this rarely obtains, unless components of p are similar
in magnitude (i.e. the variables are near independence). It is rare to find p in excess of
unity except for large T and/or extremely diverse cell probabilities. The simulations
reported in Section 3.7 below suggest this may be numerical artifact rather than proof

of non-convergence. This is however of little consolation given that one must proceed

numerically.
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Table 3.1: Minimum, median and maximum evaluations of the spectral radius of
I — M~1(8s/0p), evaluated at p values generated by initially letting p be generated
as a random sample from a 3(a,b) distribution then dividing each component by the
sum of the generated set. For the strongly U-shaped generator, the spectral radius
can exceed unity. Summaries are for 1000 simulated p values for each combination.

2T
Generator 4 8 16 32 64 128
5(3,3) min 0.7500 0.8750 0.9375 0.9687 0.9844 0.9922

med 0.7500 0.8750 0.9375 0.9688 0.9844 0.9922
max 0.8234 0.9417 0.9709 0.9900 0.9956 0.9985

B(1,1) min 0.7500 0.8750 0.9375 0.9687 0.9844 0.9922
med 0.7500 0.8750 0.9581 0.9866 0.9959 0.9988
max 0.9966 0.9956 0.9998 0.9998 0.9999 1.0000

£(0.1,0.1) min 0.7500 0.8750 0.9375 0.9951 1.0000 1.0000
med 0.7500 0.9905 1.0000 1.0000 1.0000 1.0000
max 1.0000 1.0000 1.0021 1.0320 1.0713 1.3864

For the examples considered — see Table 3.1, the conjectured lower bound for p, and
the simulations in Section 3.7 — the SM algorithm takes more iterations to converge

with increasing T and as the spectral radius becomes close to unity.

Algorithm SM¢ and its modifications

The factorizations of s(M~!(¢ + A)) within (3.68) and (3.70)—(3.72) suggest the fol-

lowing:

Conjecture 1 For any number T of variables, for each component of the vector of
correction terms, ezcept the last, which is identically zero, successive iterates are ob-
tained as

M = ™ g™ (3.76)

where
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1. r; = 1/m; given the following recursive definition of the vector

mri1 = (2mp, my)  with my = (2, 1)’;

2. ¢>z(") is a function of possibly all the X and possibly all the other correction terms,

but not cz(-n), for alln.

Justification. Equation (3.76) holds exactly for T = 1, when ¢ is constant (see above).
I have verified by expansion that the conjecture holds not only for T = 2 (as above)
but also for T' = 3. More precisely, I have verified that for a given set of values c; then
all ¢; are independent of the corresponding c;, but that within the iterations of the
SM algorithm, the cg-") within ¢§"), for at least one j # %, are functions of c§"‘”. Thus
(3.76) can be considered a “first order” approximation only. For T > 4, the algebra
is too daunting. In addition, I have found that the following algorithm, SM¢, based
on this conjecture, indeed converges whenever the raw SM algorithm converges, for
all T < 8 (though I have not done many simulations at this extreme).

Algorithm SM¢ is based both on Conjecture 1 and on the observation that in all
simulations the sequence ¢>§") converges faster than does the sequence CE"), for all 4.

By Conjecture 1, for each component, at iteration n + 1 we find
A" = g gD 42 g (3.77)
and in the limit, if there is convergence,

X = X + rip® + 12X + - = 1_‘1’17 (3.78)
-

Assume that at step n + 1 the ¢; terms appear to have converged; then

¢
w0, H 3.79
o B (3.79)

We find by simulation that successive approximations to ¢{° calculated from the cor-

rection terms of the raw SM algorithm generally reach convergence after roughly half
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the number of iterations required for convergence of correction terms; see Appendix

Al 4.

Algorithm SM¢ denotes making the “safe” acceleration to ¢{® once successive SM
approximations to it have converged. It is computationally faster, but not equivalent,
to check for convergence of ¢;; ¢ is estimated to less precision than is ¢; since
1/(1 —r;) > 1 for all components (under Conjecture 1). In practice, I have found it
satisfactory to use ¢ convergence to one more decimal place than is required for c
convergence. It is clear that this scheme converges whenever SM does, and converges
to the same limit. However, even halving the number of SM steps leaves too many to

compete with other algorithms.

Algorithm “SM¢@!” denotes taking the unsafe step of using the projected ¢ as the

correction term for the next iteration, i.e. given cgn), find c$"+1) in the usual way, but
then take

" = (@ = e/ - ).

The exclamation mark denotes danger: although when T' < 4 we frequently find a
spectacular improvement over SM¢, for extreme sets of odds ratios, and generally for
large T, there is no convergence. Often two or more candidate values appear to ‘flip’
between two or more values to ever increasing precision; unfortunately none are the
correct answer. The obvious approach to this particular problem of considering the
mean of each successive pair of SM¢! projections as a new next iterate fails to converge

on sets of A for which unmodified SM¢! converges very well.

A compromise is possible and has been implemented as Algorithm SM¢,. The first
modification is to introduce a quantity ¢, or a vector of such values, and at each
iteration check for ¢ convergence to precision ¢., componentwise. If this is attained,
take an SM¢! acceleration step on each such component, otherwise continue with an
ordinary SM step. So far, this is essentially the same as SM¢! with the addition of
a “burn-in” to precision ¢.. This is in itself a generally useful addition because the
first SM iterates can be far from the final values and may even move away from them

(despite the observation of eventual convergence in almost all cases); see Fig. 3.3.



CHAPTER 3. ALGORITHMS FOR MARGINAL MODELS 113

The second modification is to decrease individual components of ¢, by some amount
d. after every SM¢! acceleration of the corresponding correction term. This is done
here by multiplying affected components by some fixed d. < 1, with the effect that
acceleration is disabled after |In(c./¢e)/ Ind.] accelerations have been made, where c,
is the precision required for ¢ terms. This overcomes the observed oscillation problem
because eventually no further acceleration steps are taken and final convergence is
under raw SM (if it is not already attained under SM¢ steps). Thus, provided SM
converges, SM¢, will also converge.

Although SM¢, is safe in this sense, the total number of iterations might exceed that
of SM, if a poor set of projections leads away from the solution before a final pure

SM phase begins. But simulations show it to be a great improvement in all cases; see

Appendix A3.4.

The optimum choice of ¢, and d, differs according to the particular set of A values at
hand. However, by trial and error initial values of ¢, = 0.01, for all components, and
de = 0.75, work well for most A when T' < 9, with ¢, =1 x 1078,

The four variants of the SM algorithm are compared in Appendix A3.4, where it is

seen that SM¢, is preferred over the other three. In the remainder of the main text,

only SM¢, will be discussed.

Aitken acceleration

Even ignoring Conjecture 1, from inspection of successive iterates in all simulations,
all the series appear to converge as a geometric progression (GP), at least after a

burn-in that depends on the dimensionality of the problem.

Assuming that n is sufficiently large that we are in the GP tail, then writing %, for
the ¢; value at the end of burn-in,
c$"+2) Yy+a;+aq+...+ a,~q}"‘2 +a;q"" ! + a;q", (3.80)

"D = Dy ta e ...+ e g e (3.81)
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for some, unspecified m and constant a;.

The ratios g; are found by writing
c$n+2) - cEnH) = a4, (3.82)

cE"H)-—c(-") = aq" . (3.83)

1

Division gives
[n+2) _ (n+1)
gi=—4+t—— "1t (3.84)
i D _
which is independent of a; and m.

The GP assumption is that iterate values converge to
1 — j
= " LS g, (3.85)
3=0

where by (3.82) and (3.83),

b = cgn+2) _ c§n+l)

_ m
i =a,q9; .

Though the series cannot be assumed to be a true GP we obtain an estimate

o m )y B (3.86)

Using this projected value as the next iterate can be recognised as Aitken (sometimes
called Steffenson) acceleration, although this is usually only presented in textbooks in

univariate applications (e.g. Burden and Faires, 1985).

For T < 4 this acceleration can work well (though not as well as the accelerators
discussed above). However when T exceeds 5, convergence is observed to be no better

than for raw SM iterations.

Such acceleration is also observed to do very badly when applied to the series of p

iterates using (3.63); convergence is far worse or not obtained when T > 3.

Aitken acceleration is accordingly not considered further.
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3.5 The SR algorithm

In the SM algorithm, the linear approximation M~! to the true nonlinear inverse
s~1 is quickly evaluated but is not accurate, especially in the first component. We
now consider using a better, nonlinear approximation. Since the system is defined

recursively, it is natural to find and define such an inverse recursively.

In this section we will work with the unlogged system S. Letting # = (mo,7')
and A = (A¢’,A;) be partitioned as in Section 3.1.5, the system Sryi(w) = A

decomposes as

If
>
o

Sr(mwo + m1) (3.87)

Sr(w1)/Sr(me) = M (3.88)

where division and multiplication are componentwise. The SR algorithm uses the

approximation

S(mo + m1) = S(mo) + S(m1), (3.89)

which is similar in spirit to the PLL transform of Section 3.4.3, but makes less false
replacements of logs of sums by sums of logs. Having made this change to (3.87) the

system has block solution

Ao
1+A1’

AoA;
1+A,

Sr(mo) = Sr(m) = (3.90)

compare the true univariate inverse in equations (3.24) and (3.25) of Section 3.2.1.
Each system in (3.90) is then approximately inverted using the same method, and so
on recursively, until we reach univariate systems S1, for which the analytic inverse is

determined.

Denote the approximate inverse found by recursive application of (3.89) in (3.90) as
R~!. Although R~! approximates S~! quite well — actually, remarkably well in
lower dimensions — it is not precise enough to be a simple substitute. In the SR

algorithm we again use the method of residual correction (Section 3.4.1) to find C
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such that # = R™!(AC) is the solution of S(7) = A, i.e. # = S71(A). For the
unlogged system, multiplicative correction terms (based on ratio residuals) are found
to be analytically and numerically preferable to additive terms, i.e. in the theoretical

development of Section 3.4.1, (3.60) becomes

C(m) = R(w) / S(m),

where R is the inverse of R™! (this exists in simple closed form, but is not given here).

The multiplicative version of (3.64) used here is

ctn+h) = Ac™ /SR~ (AC), (3.91)

This algorithm is not as succinctly expressed in terms of & or its logarithm, p, directly
(unlike the SM algorithm). Because R~! is not linear, both R~! and its inverse would

have to be evaluated in the multiplicative equivalent of (3.63):

o) = gl (AR("")) .
S(m)

As for the quality of the approximation, for T = 2, only one component of S(R™!(x))
is not mapped to itself; there is only one correction term to calculate. It is shown on
page 282 of Appendix A3.5 that (3.91) always converges, to the valid solution, in this
case.

For T > 3, the first, and last two, correction terms are equivalent to unity, which is
to say, the approximation is less good with increasing T'. Convergence properties are
correspondingly worse; see Appendix A3.5 and Section 3.7.3.

A modification of the algorithm, denoted SRquad, is to introduce a term that gives
the analytic solution of the quadratic equation for the correction term for the bivariate
case. In other words, take R, =85 ! exactly and do not recurse as far as Rl’l =5y L
This ‘quadratic correction’ is applied to every 4-vector encountered in the recursion.
When T = 2 this modified R~! process, denoted Ry ! is of course the exact inverse,

and there are no residual corrections to be made. For T > 3 the first, and last four,
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components need no residual correction; for brevity, the details are omitted. As before,
Ry ! approximates S~! increasingly badly with increasing T'. Nevertheless, simulations
reported in Appendix A3.5 show the SRquad algorithm is a great improvement over
the raw SR form, for T < 6, even though the ‘quadratic corrections’ are applied to

subsystems for which this is not the true analytic correction at all.

Other types of corrections have been considered extensively. Although various block-
wise and partial corrections have been tried, none have worked as well as the above

SRquad process.

As seen in Section 3.7.3 and Appendix A3.5, neither SR nor SRquad are sure to
converge for T > 3 even when a valid solution exists. However, when they do converge,
the usual situation for nonextreme tables, they do so much more quickly than the SM
algorithm of the previous section, and also considerably more quickly than Newton-

Raphson.

3.6 The SQ algorithm

Although SR and SRquad are generally much quicker than SM¢,, and Newton-
Raphson, they do not always converge. We now study a different algorithm that
is both quicker and observed to converge more often. Part of this speed gain is no
doubt due to the reduction of the problem to the size of that of one less variable, as

we shall show below.

Here, in solving Sp(m) = A, instead of using approximate inverses, we assume that
a numeric (or even analytic) solution to the inverse problem for T — 1 variables can
be found. Then we can write, exploiting the recursive definition of the problem, from
(3.88),

71 = Sz, (A1S7(m0)), (3.92)

which in (3.87) gives

7o + S7L1(A1ST-1(m0)) = ST1,(Ao). (3.93)
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However, even assuming S;il can be calculated exactly, g is not found easily, because
it is not explicit in (3.93). System (3.93) can be solved analytically, at least for
T = 2, but gives a system of two simultaneous quadratic equations; substituting,
evaluating the coefficients and solving is much less efficient than simply using the
bivariate analytic solution of Section 3.2.1.

We will thus proceed iteratively, after finding a suitable fixed-point formula of the
general form

x(t) = g(x (), (3.94)

Naively we might attempt to use (3.93) directly and set
mo" Y = §71(Ap) — ST (A1S(mo™)). (3.95)

Unfortunately this is found to generate negative components unless initial estimates

are very good, and such components stay negative.

Instead, the SQ algorithm uses

S~!(Ao)
(n+1) _ . (n)
e (7"0(")+S‘1(A15(Wo("))) ! (3.59)

which is obtained from (3.93) by division by its left-hand side, then multiplying
through by mg. By using division instead of subtraction, the generation of nega-
tive values, as in (3.95), is avoided. Note that the term in large parentheses in (3.96),
unity on convergence by construction, decreases the value of the next iterate when the
denominator is too large, and increases it when it is too small (for each component)

— which while by no means being a proof is encouraging for convergence.

In particular, note that the number of elements in the vector scheme (3.96) is only half
that of other algorithms. On convergence, to wp™ say, w1 = S~1(A1S5(me™)) follows
(o 0]

from (3.88), as indeed does the less computationally expensive 7, = S™!(Ag) — 7o

from (3.87).

For discussive purposes, and in mimicry of the computational steps required, scheme

(3.96) can be re-expressed as follows: given current estimates o™ and w1, calcu-
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late
x(t1) = nl(")/wo("), (3.97)
whence
g+1) — ls:x(___(‘:ﬁ) (3.98)
and then find
w D = 71 (A1 S(me ™t Y)). (3.99)

This scheme can now be seen as an adaptation of the Gauss-Seidel acceleration method
for linear systems (Burden and Faires, 1985), but applied blockwise — i.e. first evalu-
ating the top half of g(#) in (3.94), using the latest available updates of w1 to modify
7o, then updating 71 using mg just obtained.

A sufficient condition for convergence of a fixed-point scheme is

dgi(w)| _ K

< = 3.100

‘ aﬂj - 2T ( )
for each 7 = 1,2,...,2T and each component function g;, for some K < 1 (Burden

and Faires, 1985). Unfortunately, this cannot in general be evaluated here, since the
functions g; involve elements of the inverse transform S~!, which cannot practically
be written in closed form, at least for T > 3 — the only cases of real interest. I
observe that since convergence is not always attained in simulations (Section 3.7), it
is clear that the sufficient condition does not hold globally.

A feature of the SQ algorithm is its calculation, in (3.99), of S~!(a) for a not a set
of odds ratios; all components of a are positive, but the first is not necessarily unity,
so the answer is not a probability table. From the discussion in Section 3.2, there are
multiple solutions §~!(a), some with negative and/or complex values. However, we do
not in practice observe convergence to a solution that causes the overall algorithm to
fail, except in two related circumstances: poor starting values, and extremely diverse
odds ratios, when iterate values may reach machine zero or infinity. Such numerical
errors aside, it would appear that Darroch’s conjecture (Appendix A3.2) holds in

greater generality than originally proposed.
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3.6.1 Calculating $~!; algorithm SQb

There remains the question of calculating S~! in (3.93) and (3.92). In the SQ algo-
rithm I use the same method recursively, also noting that S~!(Ag) need only be found
once. This works well, but is wasteful in recalculating the inverse in (3.99) each time.
The obvious modification, denoted SQa, is to start with the values from the previous
iteration, i.e. S~1(A1S5(mo(™)); the closer we are to the true values of o, the greater
the saving.

A less obvious further modification, denoted SQb, is to run the recursive evaluations
to less precision than required overall, because it is wasteful to calculate a quasi-exact
inverse for the wrong term. But as convergence is approached, increasingly greater
precision is needed, and ultimately the recursive evaluations must be calculated to one
more significant figure than required overall if we are to avoid numerical problems.
My solution is to converge subsystems to precision §/d2, where 4 is the current infinity
norm of 7g(®*Y) — m(™ and to converge S~!(Ag) to precision €/d;, where ¢ is the
desired overall precision. The simulations assume d; = 2 and d2 = 5 except where
stated otherwise.

Algorithm SQb offers great improvements over both SQ and SQa as seen in Appendix
A3.6. In the comparisons in Section 3.7, only SQb is considered.

An implementation of algorithm SQb in C code is given in Appendix A3.6.

3.6.2 Starting values and an alternative formulation

As mentioned in the discussion around equation (3.100), the SQ algorithm(s) are
sensitive to starting values. Using those most easily calculated, the independence
values, i.e. m; = 1/2T Vi, works far worse in practice than using the following scheme
(a detailed comparison is not given here).

First, instead of arbitrary values ignoring A let us use values satisfying one of the two
sets of original equations. Since §~!(Ap) is already calculated, the obvious choice is
(3.87), i.e. let us satisfy wo + 7y = S~}(Ao). To determine how much of the marginal

probability collapsed over Y7 — i.e. S~!(Ag) — should be apportioned to each of mg
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and wy, we note that Ap (which is the first component of Aj) readily gives pr, the
marginal mean of Yr. Specifically,

Ar 1

= . l—pr= .
M= T T = 1 Ar

At the solution we also require Y. w3 = pur and Y me = 1 — ury, where summation is
over the elements of each vector. Values that satisfy both (3.87) and the Y7 marginal

totals simultaneously are

) _ ArST'(Ag)

_ - — Apmo.
TS T A T T1FAr 770

These values, incidentally, render a first iteration of (3.98) redundant: on eliminating

x, by (3.97), (3.98) becomes

S (Ao)
(n+1) _ o (n) [ 2 _\20)
0 0 (7‘_0(") n 771(")) .

Thus the first step taken is (3.99).

These are the starting values used for all the simulations reported in Appendix A3.6
and Section 3.7. Despite the above rationale for their choice, the splitting of the
marginal probability S~!(Ag) by a constant factor does not always give good results.
It works extremely well when pr (hence also Ar) is very small: then at the solution
the subtable mg, which contains almost all the probability, is very close to S~}(Ao),
so that the starting value is very close to the solution.

When pur = 0.5, however, there is no such guarantee, and indeed convergence is
observed to be worse for such tables (detail omitted).

At the other extreme, for pr close to one, 1 = S™!(Aq), so that starting values for
the tiny probabilities wg can be very poor (while those for 7y are very good). For
such cases it is possible to re-express the algorithm by first isolating 7o rather than

71 in (3.88):

(n) (n)
nt1)y — [T tm 101
1 ™1 ( S_I(Ao) ’ (3 )
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(n+1)
me™t) = g1 (S("Xl )), (3.102)

and in such cases this is observed to work extremely well (details omitted). I have
implemented code (not presented here) that chooses scheme (3.98)-(3.99) when ur <
0.5 and (3.101)—(3.102) otherwise, but its results are disappointing. Except in very
extreme cases, for example pr > 0.99, there is surprisingly little gain. In most cases,
and especially in real applications, pur will not be this extreme, and (3.97)-(3.99)

works quite adequately.

Real gains are apparently only to be made by better apportioning the marginal prob-
ability S~!(Ap), according to odds ratios in addition to Ap. However, to do so is to
develop another algorithm in its own right, which is left for future research. In the
remainder of this chapter, alternative formulations and starting values are not con-
sidered. The simulations in Appendix A3.6 and Section 3.7 all use the above starting

values and the standard form (3.96).

3.7 Comparison of algorithms

Algorithms SM¢,, SR, SQb and Newton-Raphson (NR) are compared with each other
on both flop count and robustness (in the sense of whether convergence is reached, and
if so, whether it is to the desired precision) in Section 3.7.3; variations within versions
of the same algorithm are reported in Appendices A3.4-A3.6. The mechanism of
simulation is considered in Section 3.7.1 before describing the details of flop counts in
Section 3.7.2. A measure of extremity of sets of odds ratios is defined within Section

3.7.1; this measure is shown to be a fair if not good predictor of algorithm performance.

The Summary to Section 3.7.3, beginning on page 144, shows that after much detailed
consideration there is a very simple strategy for choosing which algorithm to use —

in particular, always use SQb first.
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3.7.1 Simulating A values

Since one wishes to study S~!(A), naively we might generate sets of values A directly.
Bias towards values greater than unity can be avoided by simulating the log ratios, A,
say from a uniform distribution on (—a,a), with Ao set to zero. Unfortunately, how-
ever, this method generates sets of odds ratios for which there are no valid solutions,
a problem which becomes more acute in higher dimension.

Instead, a probability table, 7, can be generated and by setting A = S(7) the existence
of a valid analytic solution is guaranteed. Even then, if the generated w values are
diverse in magnitude, there can be numerical problems when running the algorithms.
For example, the following apparently unexceptional « values were generated from a

set of random uniform variates on (0, 1), with each term subsequently divided by the

sum:
mo = 0.0024, m; = 0.2156, mp = 0.1975, 73 = 0.0005,

74 = 0.2592, w5 = 0.0134, g = 0.1240, w7 = 0.1874.

The corresponding odds ratios are

Ao =1, A, = 0.7149, A, = 1.038, A;2 = 0.6677,
Az = 1.4037, A3 = 0.4846, Aoz = 1.2577

but

T4 T

Ajos = =9.39 x 10°.

ToM3 5T

Unfortunately such diversity in the odds ratios occurs quite often and many examples
are more extreme: the diversity occurs when in the expression for the odds ratio
there is one or more very small value in the denominator and no small values in the
numerator (or vice versa). It is unclear whether the diversity is purely a numerical
artifact or whether we should expect such enormously divergent values for high-order
odds ratios in general. Simply setting the high-order ratios to unity, as in the GEE
estimation procedure of Liang et al. (1992), is not obviously always valid.

Tables with less extreme ratios are generated by narrowing the range before division

by the sum: that is, reducing the diversity of the probabilities w. This is achieved
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here by using the beta distributions such as £(3,3) and 3(5,5). Such tables could be
more representative of the data encountered in practice. Conversely, by using strongly
U-shaped distributions such as £5(0.1,0.1) in the simulations, diverse odds ratios are

generated and can be studied when considering relative robustness.

In the first simulations, considered in Appendices A3.4~A3.6, a set of 420 tables was
generated for each size T'= 3,...,7. Samples of size 60 were drawn from each of the
6(,14), distributions for 4 in {0.1,0.5,0.75,1,3,5,10}. These 420 tables were grouped
into four sets, of increasing ‘extremity’, regardless of the initial generator. ‘Extremity’
here (as discussed further shortly) was taken to be the ratio of the largest to the

smallest odds ratio in S(#) and is denoted

(3.103)

The whole set was then divided equally using the quartiles as cutpoints.

With increasing T, table ‘extremity’ increases for the same (3, 1) generator. This can
lead to tables near the median of the sets simulated here having at least one odds
ratio in excess of a million. Again, whether these should be reclassified as extreme, or

accepted as ‘normal’, is open to doubt and more work is needed.

The arbitrary cutoff points, the quartiles of the first simulation, were replaced in sub-
sequent simulations by the values 100, 500 and 50 000. Although hardly less arbitrary,
these cutoff points are based on close scrutiny of the tables where convergence was

slow or not obtained in the first simulations.

As seen in Section 3.7.3, the measure of extremity % in (3.103), though ad hoc, is
a good predictor of Newton-Raphson convergence: when 7 > 50000, the derivative
matrix is mostly numerically singular, causing fatal error, while for < 50000 this
did not occur in any simulation. For other algorithms, 7 is a somewhat crude measure
of extremity, because convergence can be poor for tables not judged to be extreme,
and good for ‘extreme’ tables. In study not detailed here, the ratio Apax/Amin iS &
much better predictor than is Apyax alone, confirming that a more precise predictor of

convergence would take into account more than two of the odds ratios.
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This is not pursued here, since I cannot offer a clear theoretical framework on which to
base such a measure (cf the difficulty of specifying conditions for there being a valid
solution, Section 3.2.6). Moreover, ultimately n need not be taken account of when

choosing which algorithm to use in practice; see Summary subsection on page 144.

3.7.2 Flop counts
Methods of counting

For the SM, SR and Newton-Raphson algorithms it is convenient to calculate the
number of floating-point operations (flops) per iteration, and to count the number
of iterations to convergence. For the SQ algorithm this is not possible since it calls
itself recursively an unpredetermined number of times within each ‘outer’ loop; in this
case a modified version of the program is run, summing additions and multiplications
during iterations.

The following pairs of operations are treated as equivalent: addition and subtraction,
division and multiplication. These two types are totalled separately here, although on
many modern processors manufacturers claim there is little difference between them.
It is less clear how to deal with exponentiation and taking logarithms. On RISC
machines, such as most university mainframes, such operations are done in software,
and the number of additions/subtractions and divisions/multiplications depends on
the compiler; source code is generally not made available to the user. Let us assume
that exponentiation is based on the evaluation of a series expansion, and assume that
the necessary number of multiplications is k;. Similarly, let the necessary number of
multiplications in evaluating a logarithm be k2. Reasonable estimates for software
evaluations are k1 = 20 and k; = 50 (V. Alexandrov, Department of Computer
Science, University of Liverpool; personal communication). As exponentiation is an
on-chip operation on some mainframes, however, meaningful comparisons might be
made with ky = ko = 1.

In practice the issue is not critical here. Low values would considerably increase

the relative performance of SM¢, over that reported here, but not to such an extent
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that it would be better than other algorithms; the effect on the Newton-Raphson
flop count is very minor, since few such operations are required in comparison to
the number of ordinary multiplications and additions. The other algorithms do not
involve logarithms or exponentials. The evaluation of tildeplus, notationally useful

but computationally expensive — see equation (3.1) — is avoided below.

Flops in evaluating S(7) and s(p)

Referring to equation (3.18), for 7 a vector of length 27, the top half requires 2(T-1)
additions before recursing, and the bottom half 2(T—1) divisions after recursing. Each
of the three systems S(r_;) has the same requirements with 2(T=2) replacing 2(T-1)
in the counting, and so on until we reach three systems Sp. Hence the total number

of divisions is T' terms of the geometric progression
2(T—1) + 31 X 2(T—2) + 32 x 2(T—3) 4o+ 3(T-1) — 3T _ 2T,

which is identical to the total number of additions.

If S is evaluated non-recursively many of the divisions can be replaced by multiplica-

tion, but this makes little if any practical difference.

Unless # is ever implemented as a floating-point CPU instruction (an unlikely event),
it is more efficient to evaluate the log system, s, by taking logs of the evaluated
unlogged system, at a cost of only 27 exponentials of the argument passed, and 27

logarithms of the result.

Glonek and McCullagh (1994) evaluate the form Clog(Lexp p). This takes 27 loga-
rithms and 27 exponentials, and two matrix multiplications of vectors, requiring up
to (27)% multiplications and additions each. The term “up to” is used because the
block diagonality of C' might be exploited to reduce one of the calculations. But no
matter how efficiently this is done, it takes more operations of all kinds to evaluate

the Glonek and McCullagh form than it does to evaluate the form (3.18).
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Flops in evaluating M~! for the SM algorithm

Referring to equation (3.67), we see M~ 1x can be evaluated without performing any
multiplication or division until the vector has been calculated, after which comes

division of all elements by 27

The process thus requires only (27)2 additions or subtractions and 27 multiplications

or divisions.

Flops in evaluating R~! and R, ! for the SR algorithms

Working on the unlogged recursive system (3.90), which avoids evaluating tildeplus, at
the first stage we calculate Ag/(1+ A1) and AgA1/(1+ A1), where division is compo-
nentwise and the A; are vectors of length 2(T-1) The common denominator requires
2(T=1) additions of one, which are considered here as ordinary floating additions, al-
though they could be done more efficiently by CPU increment instructions. There are
2(T-1) componentwise divisions in Ag/(1 + A1), and a further 2(T-1) multiplications
for the bottom half.

On recursion, these counts are repeated for each half of the system, with 2(T-2) re.
placing 2(T—1) until each half is a scalar, for which one division is performed with a
further multiplication on the bottom half. Since there are progressively two halves with
2x 2(T=2) divisions/multiplications, then four quarters each with 2x 2(7"~3 etc., there
are 2 x 2(T=1) flops at each stage, giving a total count of 727 divisions/multiplications.

Similarly there are T2(T—1 additions of one in the total.

The ‘quadratic correction’ is equivalent to finding the analytic solution to the bivariate
problem, and as such is evaluated most quickly as in Section 3.2.1. If the square
root operation is equivalent to 20 multiplications, the correction is obtained in 37
multiplications and 7 additions. The remaining counts are as above except that one
recurses only 7' — 1 levels before reaching 4-vectors to which the quadratic correction
is applied. The tally is (T + %?)ZT multiplications and (T + %)2(7“1) additions.

No exponentials or logarithms are required.



CHAPTER 3. ALGORITHMS FOR MARGINAL MODELS 128
Flops in evaluating ds/dp

With reference to Section 3.3.1, at the first stage of recursion we need to calculate
2(T=1) additions for the superscripts of the subsystems, and one sign change, which is
disregarded. Each of the four subsystems generates 2(T—2) additions, if one does not
avoid unnecessary repetitions of the same calculation. This is continued until each A
is operating on scalars, when there is one division.

There are thus (27)? divisions in total, and the number of additions is T terms of the

geometric progression
2T=1) 44l 5 2(T=2) 4 g2 5 o(T=3) 4 ... 4 g(T-1) = oT-1)(oT _ ),

If the log probabilities p have not yet been converted to =, there are a further 27
exponentiations to perform, but in the summary counts below, calculating 7 is already
accounted for.

In the form proposed by Glonek and McCullagh (1994) one needs here to evaluate
CD~'L where D = diag(Lm). Excluding the 27 exponentiations needed, i.e. assuming
that 7 = exp(p) is already calculated elsewhere, and avoiding unnecessary multipli-
cation by zero in calculating D~ L, the process needs (27)2 divisions. Then one must
multiply the result by C, with a potential cost of (27)3 multiplications and additions
(though this could be reduced by exploiting the block diagonality of C). No matter
how one estimates this last stage, the process is not as fast as evaluating the matrix

using my recursive method.

Flops per SM iteration

Referring to expression (3.63), M1\ is evaluated only once, contributing 27 divisions
and (27)? additions as ‘baseline cost’ for the first iteration only.

We must evaluate s(p) for the logged system here, which costs 27 logs and exponentials
plus 37 — 27 divisions and the same number of additions in evaluating the unlogged
S(x). Multiplying this result by I — M~! costs only 27 divisions, with (27)2 + 27

additions/subtractions.
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Allowing for the 27 additions of elements of precalculated M ~! A, the tally is as follows:
3T + (k1 + k2)27 div/multi, 37 + (27)? + 2T add/sub (3.104)

per iteration, where k; and ky are multiplication costs of exponentials and logs, re-
spectively.

The SM¢ algorithms use (3.64) rather than (3.63), but the flop count is the same for
both expressions. However, we now also have to evaluate the vector ¢ (ZT multipli-
cations, 27 subtractions), the absolute difference of o™t — (™ (2T subtractions,
sign changes ignored), and perform the accelerations. In SM¢, acceleration is made
only once; in SM¢@!, at every step. In SM¢, the number of accelerations per compo-
nent is unknown a priori; the C routine used in my simulations — function smphi in
Appendix A3.4 — keeps a cumulative count of accelerator steps, on which the results

presented below are based.

Flops per SR iteration

With reference to expression (3.91), evaluating AC costs at most 27 multiplications; a
fully efficient implementation need only perform multiplication on components where
corrections are not fixed at unity. There are then at most 27 divisions by components
of SR~}(AC), evaluation of which costs 3T + (T — 1)27 multiplications and 37 + (T -

2)2(T-1) additions. At its least efficient, the total is
37 + (T + 1)27 div/multi, 37 + (T —2)27) add/sub. (3.105)
For algorithm SRquad, this becomes
3T + (T +2) o7 div/multi, 37+ (T+ 1) 27" add/sub. (3.106)

Flops per Newton—-Raphson iteration

With reference to expression (3.50), here we need to evaluate firstly s(p) — A, 37 +

(k1 + k2 — 1)2T multiplications and 37 additions, and then evaluate 9s/dp, which
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costs at worst (27)2 divisions with ((2T)2 - 2T) /2 additions (grouping terms to build
a polynomial in 27). Next, solving a linear system, efficiently and ignoring pivoting
manipulations, costs ((27)3 + 3(27)? — 27)/3 multiplications and (2(27)3 + 3(27)? -
5(27))/6 additions (Burden and Faires, 1985). Finally, there are 27 subtractions,

giving a tally

5T +2027)2 + (ki + ky — 1) (27) + 37 div/multi,

(3.107)
3273 + (27)2 - 327 + 37 add/sub.

Flops per SQ iteration/convergence

At the ‘outer’ level of recursion, calculating x in (3.97) costs 2(T—1 divisions, while
evaluating (3.98) requires a further 2(7-1) divisions, 27~V additions, and calculation
of S71(Ag). The cost of this latter is unknown a priori, as is the cost of the inverse
in (3.99), though we can count here 2("~1) multiplications by components of A; and
3(T-1) _ o(T-1) multiplications and additions in evaluating Sr_;.

The immediate cost of an ‘outer’ iteration is thus
371 4 2T div/multi, 3T~V add/sub. (3.108)

Exceptionally, when T" = 1 there are 2 multiplications but only one addition in finding
the analytic solution. Also, for T = 2, in SQ and SQa exact inverses are found, using
37 multiplications and 7 additions (again assuming 20 multiplications in obtaining
a square root). In SQb, the exact inverse is found only within calculation of the
constant S~1(Ag); there is overall speed and robustness gain in solving S~!(A;1S(mp))
to reduced precision.

Total flops including ‘inner’ recursions are counted in a modified version of the C

function sqbalgor in Appendix A3.6.

3.7.3 Comparison of flop counts and robustness

While it is impossible to separate entirely the issues of speed of convergence and

percentage of tables for which a solution is found, throughout this subsection the
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most important aspect for each case is identified and discussed.

The effects of applying the modifications and/or accelerator steps on each of the new
algorithms of Sections 3.4-3.6 are discussed in Appendices A3.4-A3.6; here only the
‘best’ versions of the algorithms are compared. Post-simulation quartile cutoff points
for extremity index 7 are used in the intra-algorithm comparisons, while for ease of
interpretation, comparisons between algorithms use the cutoff points = 100, 500,
and 50000. The presentation of two different cutoff schemes provides more insight
into the effect of  than would the use of either alone.

No single algorithm always converges when 1 exceeds a certain value (depending on

T). Beyond a certain limit, none of the algorithms considered here — including

Newton-Raphson — ever converge.

Methods

For brevity, only the quickest and/or most robust forms of my algorithms, as demon-
strated in Appendices A3.4-A3.6, are here compared with Newton-Raphson. Because
the A values in the simulations were obtained from known 7, it was possible to assess
how close the offered solutions were to the true solutions. All algorithms converged to
the same values (if they converged) with the very rare exception of SQb (in Simulation
4 only; details are given there).

The tables that follow denote failure to converge to full desired precision within a
specified maximum number of iterations as ‘soft’ failure; at least some approximation
to the true value is found, and if left to run longer, convergence would be obtained.
Failures denoted ‘fatal’ are those where no value at all was returned (e.g. numbers out
of range, division by zero, etc.).

To attempt fair comparison, all algorithms were run until convergence to 6 d.p., using
the infinity-norm on successive iterate values. This is not entirely satisfactory, because
the targets for convergence are different. For Newton-Raphson, log probabilities p are
considered; almost without exception a new iteration is started when there is already
convergence to 5 d.p., and this next iteration gives convergence to about 10 d.p. A

check against the original simulated 7 values shows convergence to around 17 d.p., i.e.
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to full double-precision accuracy. However unfair this may seem in comparing to other
schemes, inspection of Tables 3.2-3.5 and 3.7 shows that no substantive difference in
conclusions would result in omitting one (or even two) of the final iterations.
Algorithm SM¢, converges on correction terms; 6 d.p. convergence here is observed
to correspond to between 6 and 10 d.p. convergence for =.

Algorithms SR and SRquad converge on multiplicative correction terms and find 7
accurate to between 8 and 10 d.p.

As algorithm SQb converges to = directly, the least accurate results of those reported
are obtained. However, 8 d.p. precision does not increase substantively the flop count
(compare Tables A3 and 3.2) and can actually slightly improve the flop count. This
is not studied in depth here.

All my algorithms converge quickly to one or two decimal places, rather more slowly
to three or four, and finally much more slowly to five or six. Newton-Raphson, on
the other hand, converges initially comparatively slowly (depending of course on the
quality of the starting value), but once it has found the right direction, it converges
very rapidly indeed — provided it is not numerically unstable at the solution.
Probabilities accurate to 6 d.p. appear to be satisfactory when these routines are called
within Fisher iterations when fitting marginal models.

Convergence to 6 significant figures rather than decimal places has been considered
but rejected. Firstly, except for very extreme tables, probabilities are not so different
in magnitude that significant rather than decimal places would make an important
difference — and when it might make a difference the numerical instability of the
algorithms makes the question redundant as there is unlikely to be convergence. Sec-
ondly, it has no apparent effect on convergence of Fisher scoring for marginal models,
although this claim is not supported by a large-scale simulation.

Calculation of p("“) - p(") (or equivalent) is included in the flop counts, to avoid
bias for algorithms that take a large number of quick iterations. As in Section
3.7.2, sign changes, comparisons and overhead such as function calls and pivoting
(within Newton-Raphson iterations) are not included; these are heavily compiler—

implementation dependent. With the possible exception of the latter, for large T,
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such overhead is not great in compiled C code.

Simulations for comparison between algorithms

It has already been reported, at the end of Section 3.7.1, that the cutoff points reported
in Appendices A3.4-A3.6 are not the best if one is interested in the likely behaviour of
a particular algorithm. As a compromise the following comparative simulations were
based on tables having odds-ratio extremity 7 between the following cutoff points:
non-extreme (n < 100), moderate (100 < 5 < 500), extreme (500 < n < 50,000) and
very extreme (n > 50,000). Exceptionally, Simulation 5 reports results based only on

the wider range n < 50000.

Simulation 1: non-extreme ratios (Table 3.2)

The results for so-called non-extreme tables are given in Table 3.2. Not reported
there is a single SM¢, failure when 27 = 32; this is a non-fatal or ‘soft’ failure, with
5= “n(") — 1l'“ = 3.2 x 107 after 597K multiplications. Increasing the maximum
allowed iterations overcomes this problem, but at a ‘flop cost’ which can hardly be
recommended; SM¢, is already the slowest algorithm here. Clearly it is better to use
a different algorithm in this range.

There was also an otherwise unreported SQb fail, with § = 1.9 x 102 after 10K multi-
plications, when 27 = 16. This can be overcome by converging to greater precision at
all levels of recursion or by increasing the maximum allowed flop counts. If precision
is not vital, one might of course simply use the obtained approximation.

There was one fatal error for SRquad when 2T = 128 (it is not recommended here
anyway). For smaller T, raw SR fails for 27 = 16 (once, fatally), 32 (once fatal, once
non-fatal), and 64 (twice fatally, twice non-fatally), while SRquad does not fail.
Algorithms SQb and SRquad are always appreciably quicker than Newton—Raphson,
and increasingly so with increasing T. Indeed for T > 6 even SM¢, is on average
faster than Newton-Raphson — considerably so for T = 7.

In these simulations, for T > 5 SRquad was somewhat quicker than SQb on average,

but occasionally much slower. Since the difference is less than an order of magnitude,



CHAPTER 3. ALGORITHMS FOR MARGINAL MODELS 134

Table 3.2: Flop counts to convergence of algorithms SM¢,, SRquad (raw SR for
27 = 128), SQb and Newton-Raphson, to 6 d.p. These are summaries of counts for
100 sets of non-extreme odds ratios, with n < 100.

SMe. SR(quad) SQb Newton-Raphson
oT multis adds multis adds multis adds multis adds iters

8 min 4267 925 428 196 238 150 3500 1068
med 9739 2032 646 294 373 246 4375 1335
upper 18K 3754 891 594 512 345 4375 1335
max 75K 16K 3827 2535 1759 1236 5250 1602

16 min 11K 3865 1811 932 1087 779 12K 6852
med 26K 8476 2855 1463 1909 1397 15K 8565

upper 48K 16K 4617 2361 2634 1925 15K 8565
max 272K 89K 12770 6517 7648 5615 21K 12K

32 min 7818 1540 1082 490 5440 4112 62K 49K
med 13K 2524 1518 686 7722 5882 77K 61K

upper 19K 3692 1954 882 9299 7066 77K 61K

max 292K 60K 42K 19K 37K 28K 123K 98K

64 min 75K 75K 20K 13K 23K 18K 403K 369K
med 119K 116K 30K 19K 32K 25K 503K 461K

upper 183K 177K 36K 23K 41K 31K 503K 461K

max 400K 385K 82K 52K 58K 45K 604K 553K

128 min 150K 265K 48K 40K 9K 64K 3.0M 2.9M
med 219K 379K 80K 66K 101K 81K 3.7M 3.6M

upper 266K 455K 90K 74K 115K 92K 3.7M 3.6M

max 449K 761K 963K 791K 143K 114K 4.5M 4.3M

[=2 R <) S, BTN S Ov O e 0 v O -3 v Ut S O OV
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and both are clearly in all cases considerably faster than either SM¢, or Newton-
Raphson, in the interests of simplicity I recommend that SQb should be used in

preference to all other algorithms when 7 < 100.

Simulation 2: moderate ratios (Table 3.3)

By comparison with those for non-extreme ratios, the flop counts in Table 3.3 are
appreciably higher, especially at the maxima.

Most of the reported failures are non-fatal, with SRquad a little more robust than
SQb, but generally a fraction slower, and occasionally very much slower than even
Newton-Raphson. For large T the speed gain in using SQb in preference to Newton-
Raphson is considerable, the compromise being that under SQb approx. 2 out of 1000
runs will not converge to the full 6 d.p. This is a small price to pay for a 25-fold speed
gain.

For T > 6, SM¢, continues to be considerably faster than Newton-Raphson at least
75% of the time, but can, on the other hand, be spectacularly slow in some cases.
My recommendation for choice of algorithm here is to first try SQb. In the rather
unlikely event of a soft failure, use the approximate solution as starting values for
Newton-Raphson. In the very unlikely event of fatal error under SQb — none were
seen here — simply use Newton—Raphson from other suitable start values (for sugges-
tions see page 144). The cost of any wasted SQb run is trivial compared to the cost
of the Newton—Raphson steps, especially for large T. Though SR generally performs
very well, occasional extremely large flop counts exclude its general recommendation

(at least, in the absence of a better predictor of performance than 7).

Simulation 3: extreme ratios (Table 3.4)

Perhaps the most startling feature of Table 3.4 is in the failure of the Newton-Raphson
method for small T. These errors are reported as fatal because a non-invertible deriva-
tive matrix was obtained after two or three iterations, despite the analytic proof of
nonsingularity given in Glonek and McCullagh (1994). However, failure was a result

of poor starting values, not of instability at or near the solution. When re-run from
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Table 3.3: Flop counts to convergence of algorithms SM¢,, SRquad (raw SR for
2T = 128), SQb and Newton-Raphson, to 6 d.p., for 100 < 7 < 500. Summaries
are for 100 sets of ratios, except for T = 6,7, where size was increased to 1000 to
better estimate the small percentage of failures. The maxima, and failures, are not
necessarily for the most extreme ratios. Rows ‘soft’ record the percentage of non-fatal
failures to converge (i.e. an answer is obtained, though not to the desired precision),

while ‘fatal’ is the percentage where missing values are returned.

SMo. SR(quad) SQb Newton~-Raphson

2T multis adds multis adds multis adds multis adds iters
8 min 18K 3754 537 245 370 246 4375 1335 5
med 45K 9166 1736 784 835 576 5250 1602 6
upper 58K 12K 2281 1353 1176 817 5250 1602 6
max 284K 59K 93K 42K 2188 1500 11K 3204 12

soft (2) 1) 4) —

fatal — — — —
16 min 22K 7474 2855 1463 2056 1493 15K 9K 5
med 171K 56K 8336 4256 4574 3353 18K 10K 8
upper 300K 99K 14730 7514 6908 5063 21K 12K 7
max 1.1IM 346K 130K 66K 12640 9185 46K 26K 15

soft (6) (1) (10) -

fatal — — -— —
32 min 41K 23K 9493 5445 7975 6068 77K 61K 5
med 175K 97K 20K 12K 15K 11K 92K 73K 6
upper 479K 265K 39K 23K 21K 16K 108K 85K 7
max 2.2M 1.2M 295K 169K 62K 46K 139K 110K 9

soft (14) 4) (7) —

fatal — (1) — —
64 min 76K 75K 22K 14K 21K 17K 503K 461K 5
med 221K 212K 45K 29K 45K 35K 604K 553K i
upper 369K 355K 63K 40K 56K 44K 604K 553K 6
max 51IM 49M 14M 891K 497K 373K 1.1M 1.0M 11

soft (5.3) (2.2) (2.3) —

fatal — (0.1) — —
128 min 172K 303K 64K 53K 92K 73K  37M 3.6M 5
med 391K 665K 141K 116K 149K 118K 3.7M 3.6M 5
upper 653K 1.1M 228K 187K 179K 142K 4.5M 4.3M 6
max 10.5M 17.8M 3.1M 25M 460K 368K 74M 7.2M 10

soft (0.5) (10.8) (0.2) —

fatal
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Table 3.4: Flop counts to convergence of algorithms SM¢,, SRquad (raw SR for 2T =
128), SQb and Newton-Raphson, to 6 d.p., for more extreme ratios, 500 < n < 50 000.
Summaries are for 100 sets of ratios.

SMé. SR(quad) SQb Newton-Raphson
2T multis  adds multis adds multis adds multis adds iters

8 min 27K 5K 428 196 244 156 4375 1335 5
med 79K 16K 2826 1274 1040 723 6125 1869 7
upper 142K 29K 4870 2193 1599 1114 7000 2136 8
max 518K 107K 62K 28K 2872 1974 9625 2937 11

soft (5) (1) (22) —

fatal — — — (7

16 min 67K 22K 4160 2128 2824 2063 15K 9K 5
med 369K 121K 15K 7714 5908 4337 18K 10K 6
upper 575K 189K 26K 13K 8782 6341 21K 12K 7
max 1.2M 388K 204K 104K 22K 16K 34K 19K 11

soft (16) (4) (27) —

fatal — (1) — (2)

32 min 59K 33K 11K 7K 9253 7010 77K 61K b3
med 1.0M 580K 65K 37K 27K 21K 108K 85K 7
upper 1.8M 989K 116K 66K J9K 20K 123K 98K 8
max 2.5M 14M 463K 265K 92K 67K 170K 134K 11
soft (37 (5) (40) —
fatal — (6) (1) —

64 min 119K 116K 35K 22K 32K 25K 503K 461K 5
med 535K 515K 173K 110K 77K 60K 705K 646K 7
upper 31M 30M 321K 204K 139K 107K 806K 738K 8
max 49M 47M 12M 740K 370K 279K 12M  1.1M 12
soft (54) (22) (40) —
fatal — (8) — —

128 min 207K 360K 83K 69K 92K 73K 3.7M 3.6M
med 675K 1.1M 234K 192K 199K 158K 4.5M 4.3M
upper 878K 15M 356K 293K 244K 191K 45M 4.3M
max 87M 148M 26M 21M 15M 12M  74M 7.2M
soft (19) (39) (2) —
fatal — (—) 9 —

et
oo
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values closer to the solution, convergence was indeed obtained.

A suggestion is to run one of my algorithms until convergence to, say, 2 d.p., and
then use these as starting values for Newton-Raphson. (This idea is incorporated in
the proposed overall strategy at the end of this section, on page 144.) For the ratios
simulated here, with T' = 3, two iterations of SRquad generally suffices, costing only
about 200 multiplications while gaining full robustness.

Alternatively, one can alter the parameters of SQb to eliminate the non-fatal failures
altogether. Here, for T = 3, letting dy = 1.5 (see Section 3.6.1) and allowing up to
1000 iterations increases the median flop count to only 1252 multiplications, and the
maximum to 21K multiplications. This is then as robust and in almost all cases up
to five times quicker than start-value modified Newton-Raphson; unfortunately, there
are occasional exceptions.

Indeed the average flop counts and robustness for SQb can be improved for all the
examples in Table 3.4. For T = 7, for example, setting d2 = 1.5 and increasing
maximum allowed iterations to 100 decreases the multiplication count to 80K (min),
165K (median), 212K (upper quartile) and 1.1M (maximum), gives no non-fatal errors,
and only four fatal errors.

For 2T = 128, a special type of SQb failure is found: the algorithm returns a value
with error status 1 (maximum iterations reached, which almost always indicates ‘soft’
failure) for two cases where there will clearly never be convergence; in one such case,
Ilw(") - 1r” = 6.8 x 107. These are reported as fatal failures in the table and can be
detected in practice (when = is unknown) by comparison of S(7r) evaluated at the
‘solution’ with the given A.

For large T, convergence is always obtained under Newton-Raphson, but the cost is
high in terms of speed. My recommendation is again to first try SQb, and if the
algorithm fails, use Newton-Raphson with the approximate SQb solution (if any) as
starting values. If SQb fails fatally, generate starting values from a truncated SR run
as suggested above. The joint scheme is more efficient on average than is the saving
of two or three Newton-Raphson iterations by using the second method only, since

SQb will very often converge fully on its own. For T = 7, the cost of a wasted SQb
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run is similar to a single Newton-Raphson step: 717K multiplications.
If the SQb parameters were set optimally the scheme would be even better; however
the nature of the relationship between these parameters, T, and the odds ratios, is

not yet known precisely enough to recommend use of other than the default settings.

Simulation 4: very extreme ratios (Table 3.5)

The results in Table 3.5 indicate that no algorithm always converges, and Newton-
Raphson is less robust (with respect to fatal failures) than SQb, for T < 6. For T > 7,
Newton-Raphson appears to be slightly more robust than SQb, but with a 59% failure
rate can hardly be called ideal.

These failures are due to the numerical singularity of the derivative matrix evaluated
at the solution and are not the result of poor starting values. Good starting values
merely ensure the error occurs more quickly.

All the SM¢, errors are reported as non-fatal, since the return status indicated maxi-
mum allowed iterations were exceeded rather than obvious non-convergence. However,
this is misrepresentative because convergence is not obtained in all cases even on set-
ting the maximum iteration count to 10000, and trace plots show increasing divergence
rather than convergence. Not every failure case was thus studied because of the time
involved, and because it would not obviously be worthwhile, considering the reported
flop counts for maximum iterations set at 1000.

The SRquad and SR algorithms are considerably slower than SQb here, and also less
robust. They are thus not considered further.

The non-fatal failures of algorithm SQb are further analysed in Table 3.6, where the
maximum number of allowed iterations has been increased. The number of non-fatal
failures decreases at the cost of sometimes appreciable increase in fatal failure. The
algorithm calculates near-zero probabilities and attempts to divide by them. The true
probabilities are close to, but never actually, zero in these simulations so that subtrac-
tions can leave the larger probability values unchanged or give numerator/denominator
ratios of machine infinity. The problem might be circumvented somewhat by having

more than double precision, but is endemic to all algorithms considered here.
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Table 3.5: Flop counts to convergence of algorithms SM¢,, SRquad (raw SR for
2T = 128), SQb and Newton-Raphson, to 6 d.p., for very extreme ratios, n > 50 000.
Summaries are for 100 sets of ratios.

SM¢. SR(quad) SQb Newton-Raphson
oT multis adds multis adds multis adds multis adds iters
8 min 36K 7K 319 147 136 78 5250 1602 6

med 100K 21K 4952 2230 889 618 7875 2403 9
upper 274K 56K 15K 7K 1446 999 8750 2670 10
max 586K 121K 108K 49K 2500 1740 18K 5K 20
soft (48) (20) (59) —
fatal — (20) (1) (68)

16 min 388K 127K 8858 4522 4327 3095 18K 10K 6
med 607K 200K 54K 28K 8383 6137 30K 17K 10
upper 961K 316K 121K 62K 11K 8K 36K 20K 12
max 1.2M 399K 237K 121K 17K 12K 46K 26K 15
soft (90) (21) (74) —
fatal e (48) (10) (75)

32 min 388K 215K 33K 19K 21K 16K 92K 73K 6
med 1.1M 614K 203K 116K 43K 32K 123K 98K 8

upper 2.1M 12M 311K 178K 51K 38K 154K 122K 10
max 2.5M 14M 549K 314K 94K 68K 200K 159K 13

soft (94) (19) (63) —
fatal — (60) (27) (64)
64 min — — 206K 131K 72K 55K 705K 646K 7
med 5.2M 5.0M 519K 329K 103K 79K 906K 830K 9
upper — — 670K 425K 108K 83K 1.0M 922K 10
max — — 1.2M 738K 191K 146K 1.3M  1.2M 13
soft (99) (6) (45) —
fatal — (83) (49) (63)
128 min — -— — — 563K 441K 52M 5.0M 7
med _ — — — 639K 488K 74M 7.2M 10
upper — — — — — — 82M 79M 11
max — — — 640K 504K 156M 15.1M 21

soft (100) _(93) (8) —
fatal — ) (89) (59)
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Table 3.6: Algorithm SQb applied to the same set of ratios as in Table 3.5, with the
maximum number of iterations increased to 2000 for 27 = 8 and 16, 500 for 27 > 16
(the latter to avoid counts in excess of 100M multiplications). For brevity only the
number of multiplications is shown.

2T
8 16 32 64 128

min 136 4444 21K 72K 563K
med 3970 33K 140K 615K 1.2M
upper 9246 58K 265K 998K 2.6M
max 151K 768K 1.1IM 11.8M 4.4M
soft 2 6 8 2 0
fatal 4 13 40 62 88

The joint algorithm of first running SQb to convergence or fatal error, then running
Newton-Raphson if needed, is obviously not robust but might produce an answer; in
fact SQb performs well for T = 3 and 4 without recourse to the Newton-Raphson
algorithm. Using SR to produce approximate starting values is even less robust —
here this routine will often crash at the first iteration — and even if it does not, often
Newton-Raphson fails at the solution.

Currently the best recommendation would be to use the SQb-Newton-Raphson com-
bination, but not to expect perfect results. A meta-algorithm that might help solve
the problem is proposed on page 143, but is not yet implemented. It may be that the
best achievable is an approximate solution obtained by this method or by adjusting

the parameters for SQb suitably.

Simulation 5: very large T (Table 3.7)

An overview of the problem in even higher dimension is given in Table 3.7. Many of
these odds ratio sets are ‘extreme’ (7 approaching 50000), but this would seem to be
an inapt description, judging by the convergence patterns in Tables 3.2 to 3.5.

No attempt has been made to look at even larger dimensions. Anticipating 7 Newton-

Raphson iterations is to anticipate 2520 million multiplications until convergence when
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Table 3.7: Flop counts to convergence of algorithms SM¢,, SR, SQb and Newton-
Raphson, to 6 d.p., for very large T, for a wide range of odds ratios, 0 < n < 50, 000.
Summaries of 100 applications, except for Newton-Raphson, T = 9, because of the
excessive computer time involved; here only 10 sets of odds ratios were used. There
were no Newton-Raphson failures in this small simulation. SQb fatal failures can be
eradicated by decreasing the number of allowed iterations.

SMo. SR SQb Newton-Raphson

2T multis adds multis adds multis adds  multis adds iters

256 min 478K 1.5M 221K 190K 380K 309K 28.7M  28.3M 5
med 957K 2.8M 638K 546K 556K 448K 34.5M 34.0M 6
upper 1.7M 5.1M 1.3M  1.IM 721K 580K 34.5M  34.0M 6
max 226M 668M 6.0M 52M 12M 977K 575M  56.6M 10
soft (3) (42) — -
fatal — (20) (11) —

512 min 12M 62M 14M 13M 15M 1.2M —
med 1.7M 85M 26M 23M 1.8M 1.5M 317M 315M 7

upper 21M 10&8M 3.1M 27M 19M 1.5M —

max 5.5M 278M 45M 40M 38M 3.0M —
soft (4) (48) —
fatal — (2) (30) N

T = 10, and this is currently impractical. Failure rates might improve as 7 becomes

successively less ‘extreme’.

One point is very clear: all my algorithms are enormously quicker than Newton-
Raphson for problems in high dimension. For example, for T = 9, SQb is on average

175 times faster than Newton—Raphson.

As with previous tables, altering the parameters of the SQb algorithm can improve the
reported results even further. For example, reducing the maximum allowed iterations
to 20 decreases the failure rate for T = 9 to 2 non-fatal and only 3 fatal failures. This
may seem counter-intuitive until one considers that if more iterations are allowed
within the recursive calls one can get too close to a numerically unstable solution for a
sub-iteration based on values not near the solution; when such failures are eliminated

the outer loop can proceed to full convergence.

Indeed fatal errors can be avoided altogether in this example by reducing maximum
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iterations further, to only 10. The cost is the introduction of 36 non-fatal failures
— but even the worst of these is within 5 d.p. of the true solution. Multiplication
count median rises to 2.7M, the maximum to 3.9M. The maximum allowed number
of iterations could be progressively increased, using successive approximate solutions
as start values, but this strategy is left for further study.

The joint algorithm is now first to try SQb, and if this fails, start afresh with SM¢,.
For large tables, SM¢, is much quicker than Newton-Raphson (even noting the high
addition counts) and it would appear just as unlikely to suffer fatal error. The SR
algorithm, in general quicker, is not robust enough to recommend for general use here.

Newton-Raphson, although apparently fully robust, simply takes too long to fit to be

seriously considered.

A meta-algorithm for extreme tables

We have seen that for very extreme sets of odds ratios, when 5 > 50,000, numerical
instability often prevents a solution being obtained under any scheme. Even for less
extreme problems, increasing 7 decreases speed and robustness for all algorithms. A
method of addressing this problem is proposed now without any deep study.
Suppose we can easily solve the problem for VA (where root is taken component-
wise). Since this operation preserves to some extent the relative magnitudes of the
interactions — at least they retain the same rank -— the solution could be similar to
that of the intended system, with somewhat less extreme diversity of cell probabilities.
Such a solution would be a good starting value for the original problem, and it will
be obtained comparatively quickly (by construction, frequced = /Toriginal)-

When applied to SQb, this meta-algorithm has been found to offer convergence in a
similar (though always greater) number of flops to that found under raw SQb, but
with increased robustness.

Greater robustness, and a little speed, is obtained if one applies the meta-algorithm
iteratively, reducing n to 100 or less by successive square-root operations, then finding
a solution used as the start value for the square of the final Apgqifeq, and so on

until finding the solution to the original system. An admittedly small number of
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simulations suggest the applicability of modifying the starting values so that the ratios
of starting values to previous solution is the same as the ratio of the two previous
solutions, being a crude approximation to the diversifying effect of squaring the odds
ratios: if (1) and =@ are the first and second solutions, start the third process with
n(tat) — (22 /7 (1) rather than just (2.

One might also use less drastic power transformations than the square root (or indeed
any other transformation shrinking the ratios towards unity), gaining robustness in
approaching the final solution in smoother steps; but the cost in terms of flop count
might be prohibitive.

This approach is not pursued in detail here primarily because this method still cannot
solve the major problem for > 50,000, when there is sometimes instability near the
solution (under SQb) or even at the solution (for Newton-Raphson, SR and SM). But
if one reports the last non-fatal failure of the meta-algorithm, hopefully one has at
least a sensible approximation to the true solution. Whether this is useful, say within

Fisher iterations when fitting marginal models, remains to be seen.

Summary and discussion

A common theme has emerged in the conclusions of the individual Simulations 1-5
above. Except where noted below, the recommended method for all combinations of

T and 7 is a combined approach as follows:

1. Attempt to obtain a solution using SQb. This generally succeeds, leaving the
following redundant. However, in the event of non-fatal failure, retain the ap-
proximate solution returned. After fatal failure, simply proceed to the next

step.
2. Use Newton-Raphson, with starting values

(a) obtained from the previous step, if available, or

(b) obtained from a limited-iteration run of SR(quad) (37 iterations is gen-

erally enough to be within 2 d.p. of the true solution), or if this should
fail
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(c) taken arbitrarily, say all zero (even though this does not represent a valid
probability table, it generally works), or all equal and summing to unity

(the full independence solution with all means 0.5).

Exceptions are that for 7 < 100 one would not ever expect to reach step 2, and
for n > 50000 one should not expect an answer at all. Also, for T > 8, replace the
second step, if needed, by using SM¢,, because the cost of Newton—-Raphson iterations

becomes prohibitively expensive at this point.

If great accuracy is required, I have discussed (on page 131) the virtues of Newton-
Raphson, perhaps first obtaining start values for this under SR(quad) or SQb to non-
fatal failure or reduced precision. This will, however, never be available for extreme 7

because of inherent numerical instability at the solution.

If precision to even 6 d.p. is not required, then for all simulated ratios considered the
optimum is to decrease maximum allowed iterations and use SQb — except if really
only 2 d.p. are required, in which case SRquad is always quicker. (Full details have
not been given of this study in the interests of brevity.) This approach will generally
give non-fatal failures with returned approximate solutions near the true solution,
and might even converge to full precision. Simply decreasing the specified precision,
rather than the iteration count, does not offer this latter benefit. For example, using
the simulated odds ratios for T' = 7 and n < 50,000, the SR algorithm is observed to

converge to within at worst 2 d.p. of the true solution within 20 iterations in all cases

(at a multiplication count of 64K).

The SQb phase of the mixed algorithm approach recommended might be considerably
improved by better settings for the control parameters (for intermediate precision de-
termination, and for limiting maximum allowed iterations). The optimum, however,
appears to depend on T and the odds ratios in a complex way that is not yet under-

stood. As it is, the defaults used still lead to recommending attempting to use SQb

in preference to Newton—-Raphson.

The problem of very extreme odds ratios remains unresolved and is likely to remain

so, although preliminary results of the meta-algorithm are encouraging in some cases.
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I have demonstrated that algorithm SQb is very much faster than Newton-Raphson
— by up to two orders of magnitude for problems in large dimension. This will enable
the fitting of marginal models on several timepoints, perhaps as many as ten, in an
acceptable amount of time. The documentation for the software associated with the
paper of Glonek and McCullagh (1995) perforce warns against attempting this.

It is true that SQb does not always converge. However it is equally important to
note that in certain circumstances, notably small 7 and n > 50000, my algorithms

offer a solution while Newton-Raphson fails to do so due to numeric instability at the

solution.

3.8 The MOR problem and algorithms for polytomous
data

3.8.1 The system of equations, S(x)

The recursive definition of the system of equations S(sr) in Section 3.1, specifically
equation (3.18), is now extended to variables that are polytomous on k categories.
Since repeated measures are of major concern, assume that & is constant across time-
points.

Consider firstly a single, ternary variable. Again adopt the convention that the sub-
scripts of probabilities 7 denote the values taken by the variable (writing the value
of y; before that of ys, etc.), while for odds ratios A we introduce superscripts for

values taken and retain subscripts for variables. The MOR problem is, in terms of

multinomial odds ratios,

T+ T+ = Ao, (3.109)
m/mg = Al (3.110)
mo/me = A2 (3.111)

Here A} = m;/m rather than m;/(1 — m;). The argument is now developed in terms of

such multinomial odds ratios.
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Taking care with the order and the form of the equations, the system for two ternary

variables can be written as follows:

moo + o1 + Moz + W10 + M1 + M2 + M0 + T2y + M2 = Ao,
(m10 + i1 + m12) / (moo + mo1 + Wo2) = Aj,

(w30 + may + ma2) / (mop + mor + me2) = A},

(mo1 + ™1 + m21) / (moo + w0 + m0) = A3,

(m11/mo01) / (m0/m00) = Als,

(ma1/mo1) / (m20/mo0) = A%,

(mo2 + m12 + ma2) / (moo + Ti0 + m0) = A3,

(m12/702) / (m10/m00) = Al3,

(ma2/mo2) / (ma0/mo0) = A3

By analogy with the development for binary variables, let So() denote the identity

and let Sy (mp, 71, 72) be the univariate system. Then with

oo o1
wo = 10 ) ™ = ™1 ’ w2 =
720 721

the bivariate system above can be written as

Si(mwo + 71 + m2)
Sa(mo, w1, 72) = S1(m1) / S1(mo)
S1(m2) / S1(mo)

o2
22
= A. (3.113)

By direct analogy with the inductive argument for binary variables, this relationship

is readily seen to hold for general T'. It is tedious to illustrate even the next step, for

which there are 27 equations.

Furthermore, analogous reasoning shows that the fully general problem for variables
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polytomous on k categories grows as

Sr(mo+m1+ -+ Tg—1)

St(m1) / Sr(mo)

St+1(mo, ®1,..., We—1) = =A. (3.114)

St(me-1) / St(mo)

The succinctness of this description of the system hides the complexity and more im-
portantly the enormous number of parameters involved, when T and/or k are greater
than three.

To review notation: for k-ary variables the vector of cell probabilities 7, when parti-

tioned into k equal divisions, is written

™= (mo/,m,...,mh_1)
This naturally extends the notation for binary variables. The bold subscript represents
the value taken by Yr for all the cell probabilities within the vector.

Similarly, A is partitioned as
A =(Ag,Ay,... ,Ak_l), ,

but here there is no intrinsic meaning to the bold subscripts other than numerical

sequence.

3.8.2 Analytic solutions and considerations

With ternary variables, an algebraic solution is unmanageable even for the bivariate
problem. Attempts to obtain a solution using Maple were thwarted by lack of available
buffer space. Proceeding as in Sections 3.2.1 and 3.2.3, successive substitution reduces
the problem to a system of two simultaneous cubic equations in two cell probabilities:
more precisely, one derives a cubic equation in 7y involving 72 and another cubic in

72 involving mg;, where the second is derived from the first by swapping the names
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of the variables and by substituting 1 for 2 in the superscripts of A. These cubic
equations are not reproduced here as each requires, before reduction, four sides of
A4 paper to print using Maple’s highly compressed 1lprint format. (By contrast,
the quartic equation given in Section 3.2.3 required one side of A4, before further

hand-calculated reduction.)

A solution might be obtained but it is of dubious value. Firstly, as will be seen in
Section 3.8.6, the problem can be solved iteratively in less than 1000 floating-point
operations. Secondly, by direct analogy with the results for binary variables, even the
addition of one further variable yields a system with no closed-form solution, involving

linked polynomials of degree 9. A general analytic solution cannot be written.

Again as for binary variables, the constraints on A that would ensure the existence of
a solution are not expressible in any interpretable form. One might conjecture that
the bivariate system has a unique solution for any positive set of odds ratios. In higher
dimensions, extending Darroch’s (1962) conjecture, if a solution exists, it is unique.
This conjecture is supported in the study of ternary systems in Section 3.8.6, in that

convergence to the same solution under three different algorithms suggests uniqueness.

3.8.3 Extension of the SM algorithm

A recursively defined pseudo-loglinear form of (3.114) is easily written, to give the
matrix M of the SM algorithm (see Section 3.4.3). Unfortunately, unlike for binary
variables, the inverse of this matrix fails to have the simplicity of (3.66): even in the

univariate case, we find

1 11 1 -1 -1
1
-1 0 1 1 -1 2

Since the motivation behind the SM algorithm is the avoidance of matrix inversion, I

do not consider its extension to polytomous data.
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3.8.4 The SR and SQ algorithms extended

Unlike the SM algorithm, both the SR and SQ algorithms extend readily to k-ary

data. We consider each in turn.

The SR algorithm extended

By direct analogy with the development of equation (3.90) of Section 3.5, the gener-

alized SR approximation, (3" m;) =~ _ S(=;), gives

_ A " Aoy
St(mo) = m1+A2£...+Ak_1’ Sr(m) = 1+ A+ A2 ++Ap—y’

AoAp_1 (3.116)
1+A1+A2+--~+Ak_1

oy S7(TR—1) =

As before, recursive application of the approximation yields an approximate inverse to

ST+1, again denoted R,;}H, and this is used in the residual correction scheme (3.91).

For ternary variables, in the bivariate case all but two components of SR~!(x) are
mapped to themselves. However, only 15/27 are so mapped for T = 3, and just as
with binary variables, R™! is an increasingly worse approximation to the true inverse

S~! with increasing 7.

Since no analytic solution to the bivariate system is given here when k > 2, an analogue

of the ‘quadratic correction’ is not proposed.

From the simulations the extended SR algorithm seems to be much faster than Newton-

Raphson, but less fast than the following extension to algorithm SQb.

The SQ algorithm extended

By analogy with equation (3.92) of Section 3.6, the last k — 1 sets of equations in

(3.114) rearrange as

™ = S;I(AiST(ﬂ'o)), i=12,...,k—-1. (3.117)
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The first set of equations then becomes
mo + Y S7' (AiSr(me)) = S7'(Ao). (3.118)

Choosing x; to satisfy

A;iSt(mo) = St(x;i7m0) (3.119)

leads to a natural extension of the algorithm of Section 3.6. Specifically, given ;™

1i=0,...,k—1, let

xi("=D = M m™, i=1,2,.. k-1 (3.120)
then
S~ (Ao)
(n+1) _
o N 1+ xl(n+1) + -+ xk_l(n+1) (3121)
and

") = STHAS(me™HY)), i=1,2,...,k—1. (3.122)

This is called recursively to evaluate the inverses, S~!, to specified precision.

Since with binary variables SQb was seen to be considerably better than pure SQ or
SQa, the same modifications are applied when fitting polytomous data. The poten-

tially enormous improvement over Newton-Raphson is discussed in Section 3.8.6.

3.8.5 The derivatives of s(p) for polytomous data

By direct analogy with Section 3.3.1 and with vector subscript notation as introduced

above, for k-ary data define

( co+c€1++Ck— cot+c1+---+Ck-1 . co+Ci+-+Ck—1
Ado 1 Adl . Adk-l \
—A°o
A§ = do (3.123)
: : <
block diag {Adi }i=1,...,k—1

N /
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but for scalars a and b,

A = g (3.124)

By analogous reasoning to that of Section 3.3.1, with this definition

Ost(p)
op

= AT (3.125)

for any number, T, of k-ary observations.

The size of this matrix grows quickly with k£ as well as with T, leading to the poor

performance of the Newton-Raphson technique reported in the following subsection.

3.8.6 Comparison of algorithms

Space and time constraints preclude study or discussion at the same level of detail as
for binary data. Here attention is restricted to simulated ternary variables, at values

of T and n shown to be of special interest in the binary studies.

Simulated values

Probability tables for multivariate ternary observations were obtained as in Section
3.7.1, guaranteeing the existence of a solution. The extremity index 7 as defined in
(3.103) was again used to classify the tables thus obtained. It would appear that for
small T, n > 50,000 again represents a ‘very extreme’ table, in that finding a solution

becomes problematical under any algorithm.

Flop counts

The counts obtained in Section 3.7.2 are easily generalized.

For the SR algorithm, cf equation (3.105), flops per iteration are

(k+ 1T + (T + )&T div/multi, (k+1)7 +[T(k 1) —k]T~V add/sub. (3.126)
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A Newton-Raphson iteration, cf equation (3.107), requires

LT +2(T)2 + (ku + k2 — 4) (6T) + (k + 1)T div/multi,

(
LR+ (5 + gy ) 6702 + (1 — gy — 2) 7 + (k + 1) add/sub.
(3.127)

The cost of an outer loop under SQ, cf equation (3.108), is
37D 4 2(k — KT~ div/multi, (k + 1)~V add/sub. (3.128)

Again here we need to maintain a running total when assessing the performance

because counting only outer loops would ignore recursive calls.

Comparison of flop counts and robustness; summary

Table 3.8 details flop counts and failures for the limited number of simulations consid-
ered. Newton-Raphson is apparently not at all robust for very extreme tables, though
this may be more due to poor starting values than to instability at the solution; com-
pare discussion of Table 3.5 given a similar number of parameters but with binary
data.

Algorithms SR and SQb do not fail fatally here, although in many cases convergence
to required precision is not obtained with the control settings used for this simulation
(maximum iterations 200 for SR; maximum iterations 50, d; = 2 and d2 = 5 as in
Section 3.6 for SQb). The binary study suggests that recalibrating these values for
extreme tables could improve the performance.

The optimum strategy for choice of algorithm is the same as for binary data (page 144):
in essence, use SQb by choice, Newton-Raphson only out of necessity, should SQb fail
to reach desired precision. However, for very large T — for ternary data, I mean
T > 5, giving vectors of length 243 or more — the use of Newton-Raphson is hardly
an option because it is so slow at such extremes. Even for T = 5, a single Newton-
Raphson iteration takes 4.9M multiplications (compared with median full convergence
in 58K multiplications under SQb). This rises sharply to 130M multiplications per

iteration for T = 6, compared with an average of 1.6M to convergence under SQb
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Table 3.8: Multiplication counts to convergence of algorithms SR, SQb and Newton-
Raphson, to 6 d.p., for ternary variables. Algorithms were fitted to the same simulated
A values for each case illustrated, except that SR was not fitted at T = 5 where it was
observed to be slower than SQb. There were no failures under any algorithm when
n < 50, 000.

3T  Extremity Summary SR SQb NR

9 1 < 50,000 min 120 78 4156
med 304 144 4156
max 1195 562 7273

n > 50,000 min 163 210 5195
med 679 298 8312
max 4979 1046 24K
soft  (13) (17) —
fatal — — (22

27 1 < 500 min 833 916 40K
med 1693 1387 50K
max 6853 2823 60K

7 > 50,000 min 3929 2011 50K
med 11K 4554 70K

max 30K 9516 170K

soft  (46)  (49) —

fatal — —  (59)
243 7 < 50,000 min — 44K 24M
med — 58K 24M
max — 160K 30M

(sample of size 10 only; n < 1 x 10°%). Restricting attention to T' = 5 based on a
sample of size 100, it is seen that SQb is on average over 400 times faster than Glonek
and McCullagh’s (1995) method, offering perhaps one model fit per day rather than
one every 13 months.

In addition, SQb will often offer a full solution, or if not that, then an approximate

one, while Newton—Raphson fails to do so due to numeric instability at or near the

solution.



Chapter 4

Markov chain models

In this chapter we turn from marginal to transitional models, in the form of Markov
chain models, introduced in Sections 4.1 and 4.2. 1 present new methodology, in
Sections 4.3 and 4.4, for fitting logistic regression models to the set of transition
probabilities at each timepoint simultaneously, allowing for parameters to be shared
across timepoint models, in a more general setting than previously reported in the
literature. Sections 4.3 and 4.4 cover unordered and ordered categories, respectively,
in each case first examining the univariate models before applying them to multivariate
outcomes. Both these types of data may occur in the same data set; the score equations
are easily adapted to meet this situation, as shown in Section 4.5. Examples with
discussion follow in Section 4.6. Further examples and the simultaneous modelling of
dropout, which is very naturally handled within a Markov-chain framework, are taken

up in Chapter 6.

In previous chapters I considered polytomous data as an extension to binary models,
but in Markov chain models the factorized probability function is easier to specify, so
that we may start with the assumption that the data are polytomous, and the binary

case need not be considered separately.

155
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4.1 Distributions defined by Markov chains

Transitional models have been briefly considered in Section 1.1; we now consider
them in more detail. As in previous chapters, let Y1,Y,...,Yr be T random vari-
ables measuring some response on the same unit. In particular, assume for now that
the responses are repeated measurements of an underlying variable Y* at each of T
timepoints, and that the responses are ordered naturally from time 1 to time T. The

joint distribution may be factorized in time sequence as follows:

Fy) = fly)f(wly) - - flyr v, y2, - yr—1)- (4.1)

The right-hand side of (4.1) represents a Markov process of order T. For useful
models, we will probably wish to restrict the order to less than T, but in the following
theoretical developments no such restriction is imposed.

A general class of multivariate distributions f(y) may be defined according to (4.1) by
letting each univariate, conditional distribution on the right-hand side be distributed
as D. Restricted to D within the exponential dispersion family, and a process of
first order only, such distributions have been discussed by Lindsey (1993). More
generally, disregarding any consideration of an underlying stochastic process, D may
be any univariate distribution. The resulting marginal distributions may not be D,
nor may the joint distribution thus defined coincide with the standard definitions
of multivariate analogues of D. For example, the multivariate conditionally-defined
Poisson does not have marginal Poisson distributions, from timepoint 2 on, and the
joint distribution is not the same as the symmetric multivariate Poisson as defined in,
say, Lindsey (1993). Special cases of conditionally-defined Poisson distributions are
considered by Lindsey (1993) and Diggle et al. (1994).

The implementation of the more general models is a subject for future research. Here I
only consider multivariate polytomous data, for which the Markov-chain defined joint
distribution is necessarily identical to that of the standard definition considered in Sec-
tions 1.4.1 and 2.2. Because of this restriction, I use here the discrete-data terminology

Markov chain rather than the general Markov process and refer to the probabilities
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defined by the univariate, conditional distributions as transition probabilities.

4.2 Markov chain models for polytomous data

For polytomous data, the canonical parameters, €, for the joint distribution f(y) in
(4.1), considered as a member of the polytomous exponential family, are as described
in Chapter 2. In transitional models, however, it is more natural to take as ‘canonical’
the canonical parameters of the univariate, conditional distributions that define the
chain. To maintain a distinction, I refer to these latter as conditional-canonical and

denote them ¢, with ¢, being the canonical parameters for the time-t conditional

model.

A Markov chain model is taken here to mean a set of generalized linear models, one

for each of the conditional distributions, assuming links of the form

91(#;) = me(hy, x,+), (4.2)

where

h; = (y1,y2,. ., Y1)’ (4.3)

is as defined by Diggle and Kenward (1994) history at time t, and
x{ = (x},%3,...%;)’ (4.4)

is covariate history and current values combined. The distributional form (4.1) may

now be written more fully as

fylé,xF) = f(nld1,x1)f(y2| ¢2, h2,x3)

Xf(y3|¢3,h3,xg-)"'f(yT|¢T,hT,X{-1t)- (4'5)

Limiting the number of terms and/or interactions modelled in the linear predictors
leads to models commonly given specific names in the literature. Limiting the num-

ber of modelled terms within h, for example, reduces the order of the chain, and if
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parameters are set to be common for different timepoints can lead to an ordinary,
first-order Markov chain with stationary transition probabilities. If there are no inter-
action parameters for previous values, but only additive terms, the model is known as
an autoregression (by, for example, Lindsey, 1993; others use the term more loosely).
In autoregression, one generally also assumes stationarity; if this is not imposed, the
result is an ante-dependence model.

In the implementation of models of the distribution (4.5) in this chapter, no restrictions
are imposed. Indeed, users are free to specify a model of full order with every h
interaction included, and include interactions between h and x, the latter to allow
for different dependence structure between groups, or for different ages, for example.
Practical models are unlikely to exploit every option, but it is the modeller, not the
modelling mechanism developed here, that imposes restrictions.

In the following subsections, I introduce notation and discuss some issues common to

both unordered and ordered categories.

4.2.1 Univariate polytomous data; notation

Consider a univariate random variable, Y, polytomous on k categories. Such variables
fall into two broad types: either the classes are in some sense ordered, so that Y
might be considered as a discretization of an underlying continuous variable, or else
the class labels are arbitrary. In the latter case such variables are commonly described
as nominal, but here I use the terms ordered and unordered to emphasise the contrast.
Binary variables can be classified as either ordered or unordered.

Let the classes be labelled 0,1,...,(k — 1), as in Section 2.2.2. If Y is unordered,
assume that class 0 is the “baseline” category: we may relabel arbitrarily. Letting
y; € {0,1} be an indicator for an observation falling in class 4, a univariate observation

may be represented as a vector (over Z3):

Y. = (y1,v2,- - Yk-1)"-

This is a vector of length k£ — 1 with no more than one element non-zero, and with the
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zero vector representing an observation of class 0 (that is, one for which yo = 1).

Another convenient way to describe an outcome is

class(y) =i <=y, = 1.

This form is preferred for concise representation of outcomes on computer.

I draw special attention to the fact that single subscripts of scalar y here do not refer to
timepoints, as they have in all preceding discussion. To highlight the distinction, the
general scalar subscript is ¢ rather than ¢. Subscripts of vectors refer to timepoint, e.g.
¥t., with the single exception of subscript u, which denotes unit (or subject). When
scalar y carries two subscripts, the first refers to timepoint: ys; is the ith element, y;,

of ys..

For ordered categories, it is more appropriate to take the last class as baseline, because
we will use cumulative probabilities in this case. In my notation this class is the

(k — 1)th, hence

Y. = (y()a Ylyevey yk—?)l-

Note the double dot subscript for ordered variables. The y; and class(y) notation
remain the same, except that for ordered categories I use the general subscript j rather
than ¢, which is helpful when both types of data are under consideration simultaneously

(as they are in an example in Chapter 6, Section 6.6).

In either case, the distribution of a single observation of Y is completely specified by
the set of probabilities of Y being recorded in class k: only k — 1 probabilities need
to be specified as the sum must be unity. These probabilities are called class proba-
bilities, distinguishing them from contingency-table cell probabilities. The distinction
is made because a multinomial distribution is less easily specified and for this latter
distribution inter-observation sampling must be independent with constant probabil-
ities across observations. Note in particular that the familiar problem of multinomial

over- or under-dispersion does not arise with single polytomous observations.
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The univariate polytomous distribution may be written as

fy) = ng’ni'ny? - mty (4.6)

where y is either y. or y. and m; = P(class(y) = i), constrained either by mg = 1 —
(w1 + -+ + mk_1), with analogous constraint for yg, for unordered categories, or by

Tg—1 = 1 —(mo+- -+ mk_2, with analogous constraint for y;_,, for ordered categories.

4.2.2 Multivariate data

We now return to the joint distribution of polytomous variables

Y. = (YY), ... Y,

Note that here Y. denotes a multivariate observation, but the indexed forms, e.g. Y;.,
represent univariate observations written in vector form following the conventions of
Section 4.2.1 above. A colon replaces the dot if the categories are known to be ordered.
For each timepoint ¢ we model f(y,. | ¢;, h;,x;") for some appropriate link of the form
(4.2). These conditional distributions are assumed to have variationally independent
parameters ¢, which will lead to fully general models, even though ultimately in
practice ¢ = g~!(X~y) will be restricted by choice of design matrix. I illustrate this
important point after developing the general form for the score equations, at the end
of Section 4.3.2 (page 167), and consider it further in Section 4.5.

The conditional distributions f(y,.|¢;,h,,x;") specify transition probabilities from
previous state(s), hy (possibly truncated), to value 7 at time ¢. For unordered cate-
gories, the conditional-canonical parameters ¢ are the logits of such transitional prob-
abilities, described in Section 4.3.1, so that an identity link is natural. For ordered
categories, in Section 4.4, we prefer a cumulative link, which is a nonlinear function
of ¢.

In both Sections 4.3 and 4.4 below, we precede discussion of multivariate data with

a detailed consideration of the univariate case, which is appropriate because Markov
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chain models are essentially just a set of univariate models. This no doubt led Lindsey
(1993) to say of Markov chains that “these may be studied using logistic or log-linear
models; the theory and practice are standard and well known”. For models with
no parameters shared across timepoints, certainly, standard statistical packages may
be used to fit separate models. Given, however, our preference to smooth rather
than over-fit (Agresti, 1990), we will want to estimate several common parameters.
For common parameter estimation, e.g. for stationary chains, Lindsey (1993) uses
log-linear models, but these cannot incorporate continuous covariates. Diggle et al.
(1994) show how ordinary logistic regression may be used to model stationary chains,
but their methodology does not allow fitting of different explanatory variable models
at different timepoints, nor fitting common baseline cutoff points for non-stationary
chains, which might be called for if timepoints are not equally spaced, or if there are
not many timepoints. In this chapter, I develop methodology for fitting the entire
spectrum of models, from saturation to independence, using logistic regression for all

analyses, within a unified framework.

4.3 Markov chain models for unordered categories

4.3.1 Conditional-canonical links

The univariate probability function (4.6) can be written as

giving the linear exponential-family canonical form

fly) =exp{yié&s +yobo + - yk—1€k—1 — C(§)}, (4.8)

where the ¢ are multinomial-style logits with reference to class 0 as baseline: §; =
log (%{;) The normalizing constant is C(§) = — log 7, as in equations (1.22) and

(1.25) of Section 1.4.1.

The univariate models of interest in Markov chain modelling are conditional on pre-
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vious values, and we denote their canonical parameters ¢ rather than £ to emphasise
that these are not the same canonical parameters as in Chapter 2. Using the standard
form P(A|B) = P(AN B)/P(B) and denoting g, = P(Yiq4 =1,Ys, = 1), etc., the

conditional probabilities are seen to be of the form

Tar.-. '
P(Ytz = 1IYIq =1Yy =1,... Y(t—l)s = 1) Tar:50 ( - 81) ) (49)

ﬂ'qr.“s+ qu...s()

where + denotes summation over an index. Note that while they are conditional in
the ordinary sense, such probabilities are marginal with respect to future observations,

showing that Markov chain models have some degree of reproducibility inherent.

Writing the set of probabilities (4.9), for i = 1,2,...,k—1, in the form of (4.7), shows

that the conditional-canonical parameters are multinomial logits,

¢t = log <M> ) (4.10)

Tgr...s0

that is, logits with respect to baseline class 0 of the probabilities in the appropriate

row of the transition matrix, given history.

An obvious (though not universally justifiable) choice of link is the identity function,
since ¢, may lie anywhere on the real line. Thus, using a for ‘intercepts’ (which
includes parameters setting different intercepts for different histories) and 8 for ex-

planatory slopes, we get a sequence of links such as the following:

é1i

Bojly=1 = Q25 + 2y, Y15 + X35B89; (4.12)

oy + X081 (4.11)

where the X* are design matrices. For the model to be ¢-unconstrained, there is a
separate parameter a); for each i at time 1, and a set of time-2 a guaranteeing a
separate parameter ¢,;|,,.—1 for each time-2 class j given each time-1 class 1, etc.

Note that since at most one element of Y. is nonzero this link is written more clearly
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and concisely as

! *
$2i |y, = Qg5 + ag15y1. + X3;B89;,

using the set of values y;. as dummy variables.

The time-3 link highlights the explosion of parameters for ¢-unconstrained distribu-

tions:

! ! ! *
B3k |y1.,y2. = Qak + Q31xY1. + Q3ox Yo + Q3 Wio + X5 Bax,

where wy,. is a vector of time-1 and time-2 class indicator interactions.

Unless the sample size is large, there is danger of overspecification. An unconstrained
intercept model, even if desirable, is frequently not feasible technically, and we will
need to impose some model restrictions. This could be by specifying restrictions on
the structure of the Markov chain through constraints on ¢ using a, or by collapsing
the original data to fewer classes. In certain circumstances it might be possible to

treat a priori unordered classes as though ordered.

Despite the number of parameters, it is usually easier to interpret those relating to
transitional probabilities than those relating to high-order marginal odds-ratios; see

Section 4.6.2 for an example.

In the remainder of this section, concerned with estimation rather than interpretation,
the distinction between intercepts, a, and slopes, 3, need not be made, and we simplify

by writing the conditional-canonical links as

¢tk | ¥1. Y25 0Y (t-1)- = th‘Ytky

where

Xee = (e, Hil Xi) and v=(c,8),

for H* the design matrix for the historical observed values.
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4.3.2 Maximum likelihood estimation of parameters

The univariate case

A univariate multinomial sample has likelihood proportional to that of a Poisson dis-
tribution (see for example Aitken et al., 1989), so standard packages such as GLIM can
be used for fitting. However, this method is impractical if there are many explanatory
factors, and is not readily extended to the multivariate case. Thus I derive here direct

maximum likelihood estimation techniques.

From equation (4.8), with ¢ replacing £ for conditional logits, the contribution of the

uth polytomous observation to the log likelihood is

by = Yu1Bu1 + Yu2du2 + - -+ + Yuk—1)Pu(k—1) — C(Pu)s (4.13)

where dependence of the parameters ¢, on u is via the link

g(d,) = Xuv.

The score contribution for the uth observation is obtained from

oe, _ d¢), oL,

oy~ v 0o,
where
o4,
E¥S =Yy — Ty
u
where 7, = (71, Tu2,. .- Tu(k—1))’ is the vector of class probabilities determined by

¢, Note this excludes mp = 1 — f;ll m;. We have used 0C(¢,,)/0Pui = ui, which is
easily shown (as in equation 2.10 on page 45). In particular, for a canonical link, the

score contribution is

Uu(7) = Xy (Yu — 7). (4.14)
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In general the score contribution is

04,

(Yu — 7u.)s (4.15)

although for certain links it may be simpler not to write the likelihood and derivatives

in terms of ¢ at all (see, for example, cumulative-logit links in the next section).

For the canonical link, the information matrix contribution from subject u is given
by either taking the second derivative directly or by calculating the expected value of

U, U,; the direct approach yields

on
=X/t 4.16
Iu(’Y) Xu a¢;t Xu’ ( )
where
om, )
20, = diag(w,.) — m, wl,. = var(Y,), (4.17)

easily derived by noting that my; = efui—C(®.),

Estimates of v are then obtained by the standard Newton-Raphson iterative scheme,

here equivalent to Fisher scoring:

-1
A+ = () [Z Iu('y(s))] [Z Uu(—y(s))] : (4.18)

u

The multivariate case

For a Markov-chain defined distribution, by (4.1) the contribution to the log likelihood

of the uth multivariate observation is

by =Ly +lyz + - + Ly (4.19)
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where each of the univariate £,;. is of the form given in the previous subsection (equa-

tion 4.13). For the canonical link, by concatenating

Y1 ™. ¢1
y2. ™. ?

y. = ) , ®.= ) and ¢ = _2 = X~
yr T ér

where parameters 4 are not assumed to partition into sets for each timepoint, we

obtain from the previous results the score contribution of the uth subject:
Uu(y) = Xy(Yu. — 70.)- (4.20)

This is identical to (4.14) except that the vectors have been extended. The information-

matrix contribution is again

, Omy.
= 4.21
Iu(")') Xu 6¢; Xu? ( )

but where now since the parameters ¢,, and hence the probabilities r,., of the indi-
vidual conditional distributions are assumed to be distinct,
o,

54 = block diag (‘;,;’;,“'") . (4.22)

The nonzero blocks are each as given for the univariate case (equation 4.17). A modifi-
cation of Azzalini’s approximate information matrix (Section 1.4.5) might be used; the
appropriate modification is as discussed on page 175 for ordered categories. However,

(4.21) is sufficiently simple to calculate that it is not obviously worth approximating.

If the elements of -« are distinct for every time point ¢, then clearly the system de-
composes completely into T separate regression problems, and such parameters are
orthogonal. An equivalent formulation of this limiting special case is that the design
matrix X is block diagonal (with the obvious partitioning). It is assumed that this

will not be the case for models of interest.



CHAPTER 4. MARKOV CHAIN MODELS 167

Since we have the link

g(o) = X,

the independence of the canonical parameters, ¢, is lost as soon as we depart from
~ orthogonality. Despite these constraints, we may still fit the model according to
equations (4.20), (4.21) and (4.22) above; the necessary ‘collapsing’ over less-than-
saturated v is handled by multiplication by the appropriate model matrix, X, in
(4.20) and (4.21). This is due to the general result in vector analysis that if £ =
€h1(), d2(7), - . .) we can obtain the partial derivatives with respect to - either by the
chain rule (as above) or by re-writing the likelihood in terms of 4y and differentiating
directly.

The importance of this assertion is that a single computer routine suffices to fit any of
the possible restricted models, from the (probably meaningless) completely null model
with one « parameter, through to saturation; the required constraints are supplied by
the user by specification of the model matrix. As already argued on page 47, in similar
circumstances, for any particular model it could be of some computational advantage
to re-write the likelihood function in terms of 4 and to take derivatives directly, but
the consequent loss of flexibility is a high price to pay; we usually fit several different

models during any real data analysis exercise, and do not want to program each model

separately.

4.4 Markov chain models for ordered categories

If there is a natural order to the classes 0,1,...,(k — 1), then this should be reflected
in the model. In particular, it is no longer appropriate to link to unconstrained,
unordered multinomial logits, as in the previous section. A natural choice for or-
dered categories is a cumulative link, whether logit (for an underlying logistic), probit
(for underlying normal) or complementary log-log (for underlying exponential distri-
bution). Agresti (1990) gives a comprehensive introduction to the use of such link

functions.

As in the previous section, an algorithm for fitting the univariate case is developed
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and then its extension to multivariate data is described.

4.4.1 The univariate case
Notation and the cumulative link

In the present context it is easier to develop procedures for fitting models writing the
distribution in the form (4.6) rather than the canonical (4.7). Thus the contribution

of the uth unit to the log likelihood is

€y = YuoPuo + YulPul + *** + Yu(k—1)Pu(k—1)s (4.23)

where p,; = log my; are the log class probabilities, which here assume a similar function

to that of the canonical parameters for unordered data. Recall

Yu: = (yuo, Yuly - - - 7yu(k—2)),a

where each y,; € {0,1}, no more than one y,; is nonzero, and the zero vector represents
an observation of class (k —1). Furthermore y,x_1) = 1 — f;g Yui and w1y =
1 Ef:—(? Mui-

Unlike the previous section, the baseline class is now the last — the (k — 1)th. The

reason is simply because, in notation echoing that of Agresti, the cumulative link to

the c.d.f., F| is
Fj(x) = Gjla; = Bix;), j=0,1,2,...,(k—2), (4.24)

where j runs from 0 to k—2 only, since F;,_,(x) = 1. Note that 8; may vary with class,
J; I do not impose a restriction to proportional odds models, as does, for example,

Agresti (1990).

It is again convenient to define the common parameter vector ¥ = (a',8’)’ and to

write the vector of linear predictors as

n=X~.
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The cumulative link may be written as

mo +m + - + 1 = Gj(n;). (4.25)

Derivation and calculation of the score equations

Score equations for the general cumulative link are derived in the Appendix to the
seminal paper of McCullagh (1980), although as Fienberg comments in the Discussion
of that paper, “he skips rather blithely over the critical issues of computation”. Also,
the only models considered here in detail use a standard, logit link; nothing equivalent
to McCullagh’s scale parameter 7 is introduced. Rather than leave the discussion at
the point where the score is given only in terms of unexpanded derivatives (as in

McCullagh, 1980), in the following an explicit form for the logit link is derived.

The log likelihood is naturally written in terms of log probabilities, p, while the link
is in terms of unlogged probabilities, w = eP. Thus, for the score equations, I use the

chain-rule decomposition
o¢, _ Om, Op, Oty
oy Oy Omy Opy

(4.26)

Dropping the subscript u for notational convenience, the rightmost term on the right-

hand side of (4.26) is easily obtained from the derivatives for the components:

ot apk_l .
Z i+ e , §j=0,1,... k-2
Op; Y5 (yk 1 op; J

Since at most one y; is nonzero, 8¢/3p = e; is a vector of zeros except for the jth
element, which is unity. Exceptionally, when y. = 0, i.e. y,_; = 1, all elements are

equal to

Opr—1 0 )
L = — log{l —ePo — Pt — ... —@Pk-2) = _ T
dp;  Op; B ) Tg—1

(4.27)

The second term on the right-hand side of (4.26) is

ap’ _ .. (31?1') : :
—— =diag | =— | = diag(1/7;), 7 =0,1,...,k—2. 4.28)
ar 371']' J (
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Together, these results give the further computational simplification

o0 op' o8 ﬂ-l—-jej if class(y) = j < k-1,

A = 4.29
Jor 0w Op ( )

- -1 if class(y) = k — 1.

Th—

where 1 is vector with all elements unity. This simplification hides the analytic form

of the expression needed to find second derivatives. This form is

£o(-mf-m o faa) o

on T Tr-1) Llm me_y k-2  Tg-1

To derive the remaining term in (4.26), consider that the definition of the link function,

equation (4.25), implies that for j = 0,1,...,(k — 2),
T =G; -Gt (4.31)
Written in vector and matrix form, equations (4.31) become
T=MG

where

Then, by further application of the chain rule,

on' _ on' 9G' on’

N O O _ wiap 4.32
5y = 3y o0 3G X'AM, (4.32)

where, if Gj_1 is the logit function, a general result already quoted (equation 2.11)
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gives

A = diaglG;(1 - G;)],  §=0,1,...,(k—2). (4.33)

The general form for any cumulative link G is

!

Um=§mmx (4.34)

where

oe , 00
=3¢ M5

- (-2 -2
0 ™ ’ ™ P B

a(y, )

!’
[y_r _ yr+1] . [yk-'z B yk-lD . (4.35)
Tr  Tr41 Te—2  Tk-1

For the logit link we may also simplify computation by calculating
U(y) = X'b(y, ) (4.36)

where

b(y,n) = Aa(y, ).

A further simplification arises by considering that the definition of the cumulative link
function (4.24) implies that

X7 = Ik—la - X*ﬂa

where I_, is an appropriately sized identity matrix. It follows that

X*'b
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The information matrix and model fitting

To fit the model by Fisher scoring we must also calculate the information matrix

contribution

Z(v) = E[UU'] = X'AE[aa’|AX
for each subject. The (7, j)th entries in aa’ are of the form

Yi-1Yj—1  YiYj-1  Yi-1Yj + Yiy;
K
Ti—1T5-1 mTi—1 W17 Ty

(4.37)

which have expectation zero whenever there are no indices in common (since only one

y: value may be nonzero). Hence E = E[aa’] is tridiagonal with entries

1 1
E; = + —, (4.38)
Ti—1 T
1 .
Eii-y) = T (4.39)
1
Ei(i+1) = —;;. (440)
1

Here i indexes matrix rows and columns and so runs from 1 to k& — 1 rather than
from 0 to k — 2, but the subscripts for 7 on the right-hand sides are in my standard

notation. There is of course no entry E;( or E(k_l)k.

Re-introducing the subject index u, we may then obtain estimates of v by iterating

according to

‘7(8+1) — 7(3) + [Z(XLAUEUA“X“)

u

-1
] [zum‘”)} : (4.41)
s u

Simplifications using X = (I  X*) may be made here as described above. An even
greater simplification is to use the approximate information A = Y, UU’ for T (Azza-
lini, 1994; see Section 1.4.5). Simulations have shown that in the current context this
approximation, which holds for large n, is effective for fairly small samples provided

that the solution is not too close to the edge of the parameter space.

The true information matrix should always be calculated after fitting to obtain max-
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imum likelihood estimates of the parameter standard errors. In practice, simulations
have shown that as the sample size increases there is increasingly little to choose
between A, T and the “sandwich” estimator, S (Section 1.4.5). In the examples in

Section 4.6, these matrices differ only in the fourth or fifth significant digit.

4.4.2 The multivariate case

The extension of the above results to the multivariate case closely parallels the devel-
opment of the multivariate (unordered) analogue of the univariate (unordered) logit
models given at the end of the previous section. Again the contribution of the uth
multivariate observation to the log likelihood is the sum of the univariate contribu-

tions:

eu = éul: + £u2: + -+ guT: (442)

We concatenate the vectors of observations, probabilities and linear predictors for the

individual timepoints as

Y ™ ™
Yo 2! n

y. = , M. = 2 and n= 2 = X7a
YT ™. nr

as appropriate. Then the score contribution of the uth subject is

oG/
Uu(v.) = —%“au, (4.43)

which is identical in appearance and derivation to equation (4.34), but a is now the
concatenation of univariate forms (4.35) and G is the concatenation of the T cumu-

lative link functions Guz,..., Gyy. For all-logit links,

Uu (7u) = X:LAuauv (4'44)
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where

A, = block diag (Ay1,...,Aur),

with each d,; as in (4.33). The information matrix contribution is
X!AEA X, (4.45)

where

E, = block diag (Ey1, ..., Eur), (4.46)

for the E,; derived in (4.37)—(4.40). The block diagonal form of matrix E,. is obtained
by considering the expectations of expressions like (4.37). Letting the first subscript
denote a timepoint, while the second is the class indicator, the general cross-product

in multivariate aa’ (¢f 4.37) becomes, before expansion,

Ys(i-1)  Ysi Yi-1)  Yij 5 .
|\ = = h(ys, ), say. 4.47
(,rs(i_ N ﬂm) (m(j_l) mj) 9s(ys)ge(ye) = h(ys, 1), say (4.47)

Then

Ey, v.[h(Ys, Y2)] = Ey,{Ey,|v,=.[M(Ys Y1)}
= Ey,{9:(Ys) Ey, | v,=y,[9:(Y2)]}
= Ey,{gs(Ys)[L - 1]}

=0

for all s # t. (When s =t we of course recover the univariate results already given.)

An approximation to Z may be used in numerical work as for the univariate case.

However, the simple form

A(ra.w) _ u.u
Xu: Ul

is not in general close enough to Z to ensure convergence. Instead, we need to ensure
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that the “meat” in the “sandwich” E[X'Aaa’'AX] is set to be
block diag (a,;ay;,--.,a,ra,7)

rather than the raw, non-block-diagonal form a,a,. I label this slight modification
of Azzalini’s approximation A(M°d  The modification is clearly consistent with the
considerations of block diagonality in (4.22) and (4.46). Substitution of Almed) for T

has been successful in simulation studies.

4.5 Models for multivariate chains

We will consider, in Chapter 6, data sets where at each timepoint two observations
are made (one is the outcome of interest, ¥, the other an indicator of whether it is
observed, R). In the example considered in Section 6.6, Y is an ordered categorical
variable, while R is unordered, ternary. By the device of assuming that R is observed
‘before’ Y at each timepoint, or vice versa, we can fit a ‘Markov chain’ model to each

pair, modelling ‘transition’ probabilities conditional on all previous values of both Y

and R:

f(yti’rt' IY1:5'-' aY(t—l):arl‘,-"7r(t—l)-) =

f(rt' |y1:7 fee 7Y(t—1):7r1'7 e 7r(t—1)-)f(yt: |yl:’ e 7y(t—1):1r1~1 ceey rt-)

The methods developed above enable such models to be fitted with ease. Each uni-

variate, conditional model with linear predictor , = X -, leads to a score equation

of the form
, 08

.= =X'b 4.48
U Xsans 8§78y ( )

where s = 1,2, ..., S reflects the order chosen for the Markov chain style factorization

(no longer a simple question of time sequence). Now as in both Sections 4.3 and 4.4,
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the log likelihood for the whole series is
b=l +b+ -+

and the 7, are assumed variationally independent both within and across conditional
models. Thus writing n = (9},...,7%) and b = (b}, ..., b%)’, the contribution for
the entire chain to the overall score equation is, for each subject,

o _

=X
U =

X'b. (4.49)

By choice of design matrix X, different 17, may share some parameters -, but this does
not affect the general form (4.49). Furthermore by the same reasoning the information

matrix contribution is

T = X'E[bb}X, (4.50)

where E[bb’] = —8¢2 /87’0 is necessarily block diagonal.

Any mixture of data types could be fitted using (4.49) and (4.50) for Fisher scoring.
One merely needs to be able to calculate the univariate elements 0¢,/0n, = b, and
corresponding E[b,b}] for each pseudo-timepoint s according to the distributional
form assumed for variable Y;. Parameters common to different conditional models are

specified by choice of X independently of the individual forms b, which are the same

for all models to be considered.

In this thesis I have derived b, only for logistic regression models for ordered and
unordered categorical data. Clearly, however, extensions to other types of data will

be straightforward, and are worthy of further study.

Some new terminology would be useful: the conditional probabilities for Y given R,
above, are not in any normal sense ‘transitional’ and the proposed factorizations of

multivariate probability functions at each timepoint do not correspond to any under-

lying Markov process.
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4.6 Examples and further discussion

We illustrate here with two simple examples where the data are binary, the object be-
ing to contrast the interpretation of Markov chain models with that already discussed
for marginal models in Chapter 2. For a more demanding application, involving both

ordered and unordered polytomous outcomes, see Chapter 6, Section 6.6.

4.6.1 Cerebrovascular deficiency revisited

This data set has been discussed in Section 2.3.3. For comparison consider now the
Markov chain analysis. Such an analysis is not the obvious one for cross-over data;
although there are clearly defined sequential and discrete timepoints, the measure is by
design repeated under different conditions, and the focus of attention is the treatment
and not the period.

The fully saturated Markov chain model is

o1 = ap+ Gz

@2

ag + az + ag1y1 + Bexa + PorT2y)

where z; is the treatment at time ¢ (z; = 0 for placebo), and there is no explicit period
covariate since the period is included in the intercept terms. Equivalently, for the time
1 and 2 intercepts we could take o] = a¢ and o = ag + az. The model reflecting

that chosen in the marginal literature is

o1 = o9+ Py

b2 = g+ oz +any + P

This is not exactly equivalent to any presented before, because of the different mecha-
nism for modelling dependency, but in essence there are both period (a2) and common
treatment effects (3) plus simplified allowance for dependence. This model fits insignif-
icantly worse than the saturated one, the evaluated log likelihoods being —69.6572 and

—69.7596, respectively. We cannot drop the time effect from this model as the log
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likelihood reduces to —78.436, but as for the marginal analysis, we can drop 8 from
the time-2 model (for a log likelihood of —70.98).

Again this has somewhat worrying consequences in interpretation; the drug appears
to have no discernible effect at time 2 once previous outcome is allowed for, in contra-
diction to the original conclusions. The Markov chain model serves here to strengthen
a controversial conclusion; we should not be surprised by failure to fit a common pa-
rameter for the drug effect at each timepoint. In this example, 3; is the logs odds
ratio increase due to active treatment, while 835 is the ratio adjusted for both period
and history. There is no reason to suppose that a model setting these equal would
have any natural interpretation.

The nature of a cross-over trial introduces considerable confounding within a Markov
chain approach. Here, for example, from the maximum likelihood estimate ﬁl = -1.2,
P(Y; = 1) is elevated when a patient receives placebo at time 1, so that as; is more
likely to contribute to the time-2 linear predictor when drug is administered at that
time. Because of such difficulties, I would not advocate Markov chain models for the

analysis of such data.

4.6.2 6 cities revisited

A question that was not raised by Fitzmaurice and Laird (1993) in their analysis of the
6 cities data (see Section 2.3.3, Example 2) is whether the covariates age and maternal
smoking are indeed significant if the dependency model is fully specified. The thrust
of their presentation, and of my comparative fully marginal model, was the discussion
of potential simplifications in dependency specification.

The brief answer is yes for age, but no for maternal smoking. A completely saturated
model, for different smoking effects across timepoints, has evaluated log likelihood
—790.8, whereas a saturated (@-unconstrained) model for the table collapsed over
smoking has log likelihood —792.9. Thus the deviance change is approx. 4 on 4 d.f,
which is not significant. Both these models are saturated for age effect, which is here
naturally aliased by period in the process of fitting a separate set of unconstrained

intercept parameters for each timepoint (or one might model a linear trend through
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Table 4.1: Intercept-unconstrained Markov chain model for the 6 cities data. Aster-
isks mark significance under a z-test. Standard deviations obtained from the true,
approximate and sandwich estimators were identical to 4 d.p.

Parameter Estimate SD
oy -1.6433 0.1171
a -2.0794 0.1500
a3 -2.5489 0.1928
o -3.0995 0.2556
s 1.9644 0.2620
oy 1.1352 0.4187
ol 2.1434  0.3471
as312 -0.0730 0.6059
aly 14573  0.5140
g2 0.9023 0.6601
412 -0.1764 0.9923
als 1.7558  0.5248
413 -0.8067 0.9871
423 -0.1776  0.9304
4123 0.8380 1.4426

the non-history-dependent intercepts, o).

As already mentioned, not too much should be made of this finding clinically, because
the data set is not particularly robust.

Parameter estimates and standard deviations for the intercept-unconstrained Markov
chain model are given in Table 4.1. The asterisks mark parameters significant on
univariate z2-tests: not the most robust of analyses, but highly indicative nonetheless.
In the marginal, canonical or mixed parametrizations of Chapter 2 the selected de-
pendence structure was difficult to interpret, but here clearly we have a mixture of
lag-one dependence and dependence on the initial value. Those who are wheezing by
age 7 are likely to do so during the whole of the study period, and once contracted

wheeze is likely to persist from one year to the next.

4.6.3 Further discussion

When they are appropriate, Markov chain models for longitudinal data are relatively

easy to interpret, because dependency expressed as functions of previous values is
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easier to conceptualize than quantities such as the high-order odds ratios of marginal-
modelling approaches, and is in my view more plausible than the local independence
assumption of random-effects models. Common-sense notions of dependency on previ-
ous values can be expressed as parameter constraints in an obvious way. Example 4.6.2
contrasting the two approaches illustrate these points. On the other hand, Example
4.6.1 stresses that Markov chain models are by no means always appropriate.
Another important consideration is that most longitudinal studies suffer from appre-
ciable dropout, or attrition. In Chapter 6 the Markov chain approach is seen to be
natural in this setting and also offers a concise proof that informative-missing data
are unidentifiable by maximum likelihood. Unfortunately the Markov chain model
does not deal particularly easily with missing data patterns other than the monotone
pattern of dropout — but neither does any other type of model.

The generalized model discussed in Section 4.5 imposes no restrictions on the possible
values of the vector Y. The values may be continuous, discrete, or even mixed at
each timepoint, and we need not even insist that each Y; is a repeated measure on
some Y*. Such models could even be used for the analysis of clustered data, when
there is only one ‘timepoint’, but one applies factorization (4.1) to some more or less
arbitrary labelling of the Y;. Of course one would then face problems of interpretation
in terms of arbitrary “history” and choice of “baseline”, Y}, and in general then surely

a marginal model would be more natural.



Chapter 5

Unbalanced data and

multivariate models

5.1 Introduction

In the discussion of marginal models in Chapter 2, it was assumed that the outcome
data were balanced: all the outcome vectors were the same size and there were no
structural zeros. In this chapter the effect of violating each of these assumptions is

considered.

Motivating applications include missing data and dropout problems when nonresponse
is assumed to be either at random or completely at random (in the sense of Little and
Rubin, 1987; defined here in Section 6.2 of the following chapter). Of course, one
should never make such assumptions with regard to missing data without careful

consideration.

In Section 5.2 we consider models for data subject to dropout, where the dropout
mechanism (but not its presence) is ignored; in Section 5.3 we consider models for
the probability of dropout, where the data model is ignored. We might fit both

simultaneously to a suitable dataset.

181
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5.2 Unbalanced data

Almost inevitably while collecting longitudinal data on people or animals, subjects
will drop out of the study. In this chapter I assume that such dropout is completely
at random or at random in the sense of Little and Rubin (1987); in particular, the
observed likelihood is then adequate for valid inference. Another common situation
arises when the outcome vectors represent data on siblings or litters, since then it is
unlikely that all families will be of the same size. Or subjects might not all be followed
up at every occasion, for reasons unconnected with the outcome measurement.

In any of these cases, suitably modified fully marginal models, as discussed in Section
5.2.1, may be preferable to other approaches, such as mixed or canonical parametriza-
tions, because of their reproducibility (Section 1.4.3). However, when there are many
timepoints, fully marginal models can be very difficult to fit (Chapter 3), so that other

approaches are considered in Sections 5.2.2 to 5.2.5.

5.2.1 Fully marginal approach

As for balanced data, we model

A= X7,

but now estimation is based only on those observations that are actually measured
at each timepoint (i.e. we use all the available data). The ‘full’ model is that for
the largest observed vector, although this may itself be considered a submodel for a
potentially larger vector, by reproducibility.

This model is not inherently restricted to monotone missing-data patterns. When
calculating the score contribution of a subject, we need only mask terms involving
margins and/or interactions that are not present in the outcome vector concerned.
For incomplete observations, rows of X corresponding to unobserved marginal odds
ratios and interactions may be set to zero, so that when the score function is evaluated,
contributions may be added to the correct elements of the score vector. However,
when calculating log probabilities p and 8s/8p (Chapter 3), one should calculate an

appropriate marginal probability table, not one of full size with unmodelled log odds
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ratios set to zero. Practically, it is easiest to work with X set to the natural size of the
sub-observation, and then after evaluating the corresponding raw score contribution,

add the results to the correct entries in the full-size score vector.

5.2.2 Canonical parametrization

Referring to Section 1.4.3 we may write the canonical form of the distribution functions
of sub-observations Y in terms of ¢4 and z4, as B runs over the subsets of A. To

fit linear predictors to the canonical parameters, we must set, for the uth subject,
&'l =X~ ACT. (5.1)

That is, there is a different set of canonical parameters 4* for every observation
subset A occurring in the data. Hence it is not immediately sensible to use the
same <y for all outcome vector sizes, because they parametrize different odds ratios.
Nevertheless, this approach is followed here because it is the simplest algorithmically,

and the consequences are considered.

5.2.3 The false identity link

Suppose we use the same « for two or more different identity links:
¢ =Xpy, & =Xkvy, BCACT. (5.2)

This makes the simplifying but unjustifiable assumption that the CORs of each sub-
distribution are the same as for the full distribution — hence the terminology false
identity link.

Since in general £# # ¢5 for A # B, in this case the fitted 4 from (5.2) will be a form
of weighted average of the ‘true’ % obtained from (5.1) to estimate the same-order
interactions in the true models. Conceivably, if hierarchical analysis of deviance, or
prediction, is the object of the exercise rather than parameter estimation or interpre-

tation per se, it may be enough to fit according to (5.2). The precise nature of the
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bias in the v estimates and variances can only be established on a case-by-case basis,

given the particular design matrix X to be used.

In certain circumstances, the CORs might actually be equal and the link then not be
false. One such case is independence. For the bivariate case this is easily established,
but for three or more variables in the full observation, the CORs might be equal in

other circumstances too, as we now describe.

Addressing this issue indirectly, consider a closely related question: when are the
CORs and their corresponding marginal odds ratios (MORs) equivalent? As previ-
ously noted, the ‘saturating’ (highest-order) CORy and MORy are always equivalent.
Of more current interest is when some lower-order CORs of the full distribution are
equivalent to saturating CORs for corresponding subdistributions; these latter are also
MORs by highest-order equivalence. Hence we can consider criteria for COR-MOR

equivalence rather than COR7-CORA equivalence.

Consider bivariate binary data, 7 = {1,2}, with probability distribution

P(YT) = mp (m)yl (W—m-)yz (I“—m)ylyz, (5.3)

oo 700 01710

where 7m;; = P(Y) =1,Y2 = j). Summing over values of Y5, we obtain the marginal
for Y, which in current terminology is also the ‘full’ marginal distribution for a sub-

observation Y4 with A = {1}:

n Y
P(Y;) = oo (@) + oy (ﬂ) (5.4)
o 01
)
= mo+ (E‘i) (5.5)
o+

where subscript + denotes summation over the index in question.

The question of COR equivalences posed above becomes: when does the false-identity

link, for say, COR,,

¢ =¢ft = X1y
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become a true equivalence? Explicitly here, when is the equality

10 Pt
log —2 = log =+
700 o+

satisfied? The answer is: when independence holds, and in the degenerate case when

P(Y> = 0) = 1. To show this, consider the 2 x 2 table of specified odds ratios

1 X2
X1 | X12X1X2

where x4 = COR4 = expé 4, determined by the parameters € (see Section 2.4.5).

From this table,

1
MOR, = x1(x12x2 +1)
x2 +1

so that if (in fact iff, provided that y2 # 0) MOR; = COR{' = CORJ = ¥, then
x12 = 1. QED.

Thus, given independence, the false-identity link becomes true identity. More impor-
tantly, using the false-identity link implies an independence assumption, with unpre-

dictable effect on a parametrized £;5.

The simplicity of the bivariate case is lost for higher-order observations, and general
rules as to the effect of a false-identity link are intractable. Immediately, for trivariate

binary data, we may derive by direct analogy with the above

MORy, = (x123x12X13X23X1X2X3 + X12X1X2) (X3 + 1)
(x23x2x3 + x2)(x13x1X3 + X1)
(x123x13x23Xx3 + 1)(x3 + 1)
(x23x3 + 1) (x13x3 + 1)

X12

so that MOR;2 = CORj2 iff the ratio on the right-hand side is unity. One such case
is when all the 2nd- and 3rd-order ratios are unity (independence); another is when
x13 = X123 = 1 (a first-order Markov chain with not necessarily stationary transition

probabilities). However, there are infinitely many other sets of values that meet the
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criterion but that defy easy interpretation (e.g. if x3 = 1 and xi123 = 1/x13X23,
then the ratio is unity for any (1 4+ x13)(1 + x23) = 4). Note in particular that
the quadratic exponential family assumption, here x123 = 1, is not sufficient to ensure
that MOR,2, = COR; 2 although it does ensure that the zero-conditional ratios become

ordinary conditional ratios (Section 2.4.3).

Analysis of deviance might be used to test whether a fuller model such as described in
the next section might be reduced to a false identity fit without loss. However, since
in so doing we lose almost all interpretability, this might not be a worthwhile strategy.
The false identity link is proposed because it facilitates the compromise fit of a model
when observation vectors are too large for any fuller alternative to be computationally
viable. A false identity link might also be considered acceptable when only a small
proportion of observations are less than full; however, it is not clear that this would

be any more robust than a complete-case only analysis. Further work is needed here.

5.2.4 The corrected false identity link

In the previous subsection we rejected the idea of fitting the true model (5.1) because
of the number of parameters involved. For short series, however, it may be feasible to
do so, especially if we are prepared to compromise on explanatory-variable saturation.

Thus we might fit

¢ = a? + X3, (5.6)

imposing considerably less untested assumptions than for a false identity link. If
we were interested only in variable selection, say, or prediction perhaps, rather than
interpretation of parameter estimates, this model is not restricted to the assumption
that data are missing completely at random. Moreover, it is extremely quick to fit by
comparison with the adaptations needed to the mixed model approach (Fitzmaurice
and Laird, 1993, and Section 5.2.5).

Consider the following artificial example (adapted from Agresti, 1990) that is intended
to illustrate the process. 696 students were asked, in 1979, whether or not they used

drugs; the question was then asked of the same students the following year, by which
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time 259 had left and so were not available for survey. Assuming that graduation
is not related to drug abuse, it might seem a priori reasonable to assume these 259
were missing completely at random; this example will also show how wrong such an
assumption can be.

The responses were

Y
Y1 No Yes N/A

No 380 18 222
Yes 27 12 37

for which the false-identity model

& = o
2 = m
§12 = a2
gives point estimates a} = —2.24, as = —3.02 and a5 = 1.84. The corrected false

identity model (which is here saturated) is

61 = o+ acIc
&2 = o
€12 = o2

where I, is an indicator, being unity for observations of size one only, which has
estimates oy = —2.64, ap = —3.05, aj2 = 2.24 and ‘correction term’ a, = 0.85.
Although the value for a; is very similar for both models, in each case being estimated
only from the fully observed (two-timepoint) part of the table, that for a2 is rather
different between models. Again this latter parameter is only estimated from bivariate
observations, but for the false identity link the calculation is biased by the bias induced

in & evaluation.
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The deviance change between these two models is approximately 10 on 1 d.f.; the false
identity link is significantly worse than the saturated model. The false identity link
implies, in particular, that dropout is missing completely at random; the saturated
model does not. Thus we conclude that the data are at least missing at random,
rather than completely at random, which is equivalent to asserting that the pattern
of response amongst those who dropped out is significantly different to that of those
who did not. In the present context, there is then evidence of at least a cohort effect;
1979 graduates used more drugs. (The data might also be missing informatively, but

we cannot hope to test for this; see Chapter 6.)

5.2.5 Unbalanced data and mixed parametrizations

If we adopt the strategy of Fitzmaurice and Laird (1993) and model the means

marginally but the odds ratios conditionally, that is,

glpn) = Xmvwm

A —
6(2nd+ order) — Xcves

where M denotes marginal-model and C zero-conditional, then at least the part of
the model we are most interested in is reproducible. Unfortunately, as pointed out in
the above reference, the higher-order part of the model is not reproducible; this led

Fitzmaurice et al. (1994) to consider using an EM approach.

However, this complexity can in general be avoided by correcting the false identity
link (for the higher-order ratios only) as in the previous section. Admittedly this
assumes there are enough occurrences of each missing data pattern to make estimation
feasible, and also it leaves the question of explanatory variable effect open. When
interaction parameters are regarded as nuisance parameters, there will rarely be need

for complicated models in the linear predictors, and an unconstrained intercept model

should suffice.
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5.3 Models for dropout

A commonly occurring situation, in which the cell probability table for multivariate
binary data features structural, as distinct from merely observed zeros, is when that
data set represents binary indicators for dropout, a topic discussed more fully in
Chapter 6. If our attention is focussed on dropout itself, we are led naturally to the
following models.

After introducing terminology and describing the relevant distribution function in
Section 5.3.1, we consider two types of parametrization of the model. In Section 5.3.2
we look at marginally-linked parameters, which, however, lead to unidentifiable models
in the presence of time-varying covariates and suffer from difficulties in constraining
monotonicity of the survival function. To overcome these problems, in Section 5.3.3 we
use a semi-canonical link that nevertheless offers a reproducible model. Interpretation
of parameters is, however, not straightforward, as highlighted by an example data set
studied in Section 5.3.4. Otherwise, the semi-canonical model has several advantages,
discussed in Section 5.3.5.

Throughout this section I assume dropout is at worst missing at random in the co-
variate effects (Little, 1995), which is to say that unrecorded covariates at dropout

time might affect the probability of dropout.

5.3.1 Odds ratios and canonical parameters

In this section the outcome vector is a set of binary indicator variables denoted R =
(R1,Ry,... Rr)’. Although for binary indicators the coding is not important, for
consistency with the literature I will code R; = 0 for dropout at time t. We assume
that if there is dropout at time ¢, then Ry 1, ... Rr are also zero (i.e. a subject does not
re-enter a trial having once dropped out). The distribution of R, a multivariate binary
vector, must belong to the polynomial exponential family. However, simplifications
can be made to the general formulation as a result of the structural zeros.

Consider first the case of bivariate binary data. Again using 7 to denote cell proba-

bilities and adopting the convention that first subscript refers to first variable, etc.,
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we have that

P(Rg=1|R;=0) = 0= ::0% (= mo1 = 0); (5.7)

P(Ry=0|Ri=1) = —2, (5.9)
T4

P(Ry=1|Ri=1) = -1 (5.10)
T4

(where + denotes summation over an index) so that the probability table

moo | O

o | 711

has two degrees of freedom, as elements must sum to unity. For multivariate data,
the structural zeros are those of the form ...10...01 (where the first string of ones may
be empty). Thus, in particular,

M1...10--0 = T1--104+-

The probability table may be written in terms of the marginal means p; of Ry:

Note how easily this table is built, compared with the difficulty of completing a general
2 x 2 table from the means and the odds ratio (Section 3.2.1). The ease of construction

continues into the general multivariate case.

Consider now the distribution function rather than its tabulation. The (marginal)

univariate distribution of R; is by definition

P(R, = ry) = moy (Ei)l (5.11)

o+
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(we can write mgg for mp4 ), and combining (5.7)-(5.10) gives the conditional probability

T1 T2
P(R2 =79 | Ry = 7‘1) = (%111) (:—1;) C('r‘1,7‘2) (5.12)
+

where the shape function ¢(-) is zero for the impossible observation (0,1) and unity
otherwise. This may be derived directly or by using the general formula for polynomial

exponential family conditional distributions (equation 4.9 on page 162). Here

T2
P(R2=T‘2|R1=1)=m<ﬂl’) ’

Ti+ \T10

so that

P(Ry =72 | Ry = r;) = [r.h.s. of above]™ x shape

because of the simplicity of the structural zero pattern.

Multiplying (5.12) by the marginal of R;, (5.11), gives the joint frequency function

T1 T2
P(Ry, Ry) = mo4 (;TIZ) (:—1;) c(r1,m2). (5.13)

The derivation extends naturally to the trivariate case, for which

T T r3)T172
P(R3 =73 I Rz,Rl) = Iiﬂ (—!ll) ] X shape
T114+ \7110

giving after multiplication by the joint frequency (5.13)

T1 172 T1T2T3
Tio+ 110 T
P(R1, R2, R3) = moy4 (——) (—) (—) c(r1,72,73).
To+ 10+ 110

Clearly this pattern will extend to the general T-variate case. On taking logs we see
that the canonical parameters are log specified-conditional odds ratios (SCORs; see
Section 2.2.1): these are the log odds ratios given that previous observations are unity
and future values are zero. Moreover, these are ratios of first order only and there are
no interaction terms. The nature of dropout allows the replacement of crossproduct

terms, such as ryry - -y, by just ry; if 7 = 1 then v, = 1 for all s < ¢, whereas if r; is
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zero then of course the product is zero. Thus the full joint distribution of R belongs

to the linear exponential family:

P(R) = c(r) exp{&'r — C(€)}, (5.14)

with ¢(r) an indicator shape function and C(§) the normalizing constant (— log mgo...0)-

The SCORs, except that for the last timepoint in an observation, are reproducible,

since they are functions of marginal expectations: for example,

p1 = p2\™ (2 —p3\ ( ps \™®
P(Ry,Ry,R3) = (1 — ( ) ( ) . 5.15
(R, B By) = (1= ) 1—m By — 12 K2 — p3 (5.15)

Note that the dropout-time canonical parameter for a subject who drops out differs
from that for the same time for a larger observation. For example, letting fl(t) denote
the canonical parameter for timepoint i given dropout at time ¢, an observation with

dropout at ¢t = 3 has

@) _ (W111+) _ ( B3 )
=log|—— ) =1lo
3 8 T110+ 8 H2 — K3

but an observation with dropout after time 3 has

T1110+ H4 — H3
&) =1o (__) ~lo (_—) .
3 8 110+ 8 Ho — 43
If we were considering a full identity-link model, in this example we would estimate

&(33) only for subjects with observed dropout at time 3, and Eét) only for subjects with

no dropout before or at time 3.

A quite different approach to dropout models stems from noting that the indicator
vector R can be aliased by a random variable, D say, denoting dropout timepoint
(i.e. the first timepoint with missing observation). This new variable D follows a
geometric-type distribution, being a count of the number of ‘successes’ until a ‘failure’
of a Bernoulli process. Unlike the standard geometric distribution, successive trials

do not have the same probability of success, and in addition the distribution will
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be truncated to some maximum number of ‘successes’. Ilet D = 1,2,...,T denote
dropout time and arbitrarily let D = T + 1 if there is no dropout. (In Sections 5.3.3
and 5.3.4 these values are all decreased by one.) It is, however, unnecessary to express
the truncated success-varying geometric distribution explicitly in order to estimate the
changing success probabilities, since these are more easily obtained as shown below;

the same modelling process allows either interpretive framework.

5.3.2 Marginal/survival parametrization

Motivated by the widespread use in other settings of marginal models, consider linking
to the marginal expectations. For dropout data this gives a discrete-time survival

model, directly parametrizing the survival function (or in practice its logit). Since
P(Rt = 1)=P(R1 =R2=... =Rl — 1),

then

pe = E[Ry] = P(Ry = 1),

is the probability of survival until at least time ¢t.

Two different approaches to the marginal fitting/modelling process will now be con-
sidered. Both suffer from two serious problems that are addressed by moving away

from the standard canonical parametrization in Section 5.3.3.

Marginal links — method 1

Because the distribution here belongs to the exponential family and is of the canonical
form, we can most simply apply the score equations of Section 2.3.2, e.g. equation
(2.20) on page 50, which are for the general polynomial exponential family, merely

noting that there are no interaction parameters to model. The variance matrix here

is
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( pr(l—p1) pa(l—p1) ps(l=p1) - pr(l—m) )
pa(l—p2) pa(l—p2) -+ pr(l —p2)
V= p3(l—p3) -+ pr(l—ps) |,
symmetric pr(l — pr) J

for dropout at time 7". This is easily calculated, but must still be inverted for each
subject when calculating the score and information contributions in fitting. Although

inversion of V' is feasible, we can avoid even having to evaluate it, by using the following

method.

Marginal links — method 2

The score equations For this particular distribution, we can derive 9¢/dv directly
(rather than as 8¢’ /0v-0¢/DE; cf equation 2.20), because here £ can be written readily
in terms of v. In the following the more familiar g is used in preference to v because

only first-order expectations need be considered.

For greater symmetry I introduce the notation

& =-C(§)

and, with a change of previous notation write

£ = (603617 s 1£T)’$

where the first element is indexed zero rather than one to avoid confusion with stan-

dard element names.

The distribution function can now be written as

P(R) = c(z) exp{¢'z}, (5.16)
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a minor modification of (5.14), where

2= (17T17T2a"',TT)’a

indexed as zp to zp. The probability constraint on £ is now implicit.
In this notation we obtain a symmetric form for expressions of &; in yy to pr. Since

110 = T114 — T111, €tc., and any number of subscript + can be added to all of these

terms, generalizing (5.15) gives

£ = log (’-‘1—1’1”—1) . t=1,2,....T (5.17)
Hi—1 — Mt

where pp = 1 and pr41 = 0. These values for impossible timepoints are not entirely
arbitrary. That po = 1 follows from &; = log[(p1 — p2)/(1 — p1)], read from the dis-
tribution function. The algebraic convention adopted here has no effect on inference.
By contrast the highest-indexed SCOR (alone) dictates that pury, should be zero if
the general form is to hold for all SCORs. This supposition has certain consequences
discussed shortly in deriving the derivative matrix 8¢’/0pu.

For the uth subject, with log likelihood contribution
L=¢'z (5.18)
where subscript u is omitted for clarity, and links
p=g""(Xv),

the score contribution is

ol

_ ot _on'opog ot _ .,
U(7)—(9'7_3 on Op e—XAMz,

where 7 is the vector of linear predictors, and assuming a logit link,

0
OI:) = A = diag[u (1 — p1)),
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as derived in (2.11). The T x (T + 1) derivative matrix M has nonzero entries only

as follows: fort =1,2,...,T

My = - _ __ 1
A pi—1 = pit]
_ .aﬁ _ Ht—1 — P41 .
Ht+1) = 35 (e — peg1) (me—1 — pe)’
0141 1
Myt42) = ——
t(t+2) Oy Bt — Mt

since these are the only SCORs with nonzero derivatives w.r.t. each u; (see equation
5.17). As there is no term Mr(r42), the last row of M has only two entries, compared
with three nonzero terms in each of the other T rows.

The size of M is related to the definition pry; = 0 in (5.17). One could let M be
T x (T +2), assuming an unobserved (indeed unobservable) z7,, fixed at zero — this
corresponds to explicitly treating a non-dropout subject as if dropped out at time
T +1. But then g7 must be fixed at zero too. With the extended scheme, we would
need some arbitrary value for £74;. But there is no point in this; the added terms

cannot contribute to the likelihood.

Information matrix In order to fit by Fisher scoring we need the sum of contri-

butions of the form

I =E[X'AMZZ'M'AX],

or else evaluate the second derivatives of the log likelihood and use Newton-Raphson.

An extreme simplification follows from assuming that each subject contributes
I=UU"

The reason is perhaps not immediately apparent and E[ZZ’], the only part of Z that
might depend on R, is derived by two different strategies.

First, suppose all Z vectors are of the same size, T": that is, we carry on ‘observing’
zeros after dropout until design timepoint T. If, in fact iff, there are no missing

explanatory variables, all is well, because at each cycle of the fitting algorithm we can



CHAPTER 5. UNBALANCED DATA AND MULTIVARIATE MODELS 197

calculate all the y;, and so we can evaluate

(1 B p2 - BT \
L p1 p2 ot BT
EZZ)=| py p2 p2 - pr (5.19)
\ BT MBT KT -0 BT )

But this is an unlikely scenario except in simple experiments with non-time-varying
covariates only. Whenever there is a time-varying covariate, it can be assumed that
it will not be observed at dropout time or subsequently. We already have a difficult
enough problem with missing variables at dropout time especially if, as is indeed likely,
the effect of such variables on the probability of dropout is of interest. We would not
want to compound this problem by having to deal with unobserved (and unobservable)

variables for several occasions after dropout.

As an alternative, consider models where Z = (1, R')’ is truncated after the first zero,
if there is dropout. Then observations z are vectors of length d + 1 if there is dropout
at timepoint d, and Z has an induced marginal exponential distribution of the form
(5.16), by reproducibility.

An immediate problem arising from different observation vector lengths is that sense
must be made of the score contribution X'AMz for different lengths of z. For the
score contribution itself, this is easily handled; form X so that the contributions for
those B not inherently of interest, within each particular subject, are set to be zero,
or in practice more efficiently use a smaller X for the nonzero contributions only,
and pad the result with suitable zeros before adding to the cumulative sum. Either
of these schemes is parallel to the standard marginal modelling approach exploiting
reproducibility.

When there is dropout at time d, naively E[ZZ'] might be taken to be a (d+1) x (d+1)
version of that given in (5.19). But this is wrong if we attempt to use the ‘smaller’

X and E[ZZ'] and pad the calculated result with zeros to make a matrix conforming
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with the largest size, T. Reproducibility fails here because we have not taken account
of the structural zeros; this procedure is also equivalent to assuming a false identity
for the dropout-time parameters (e.g. §§3) = ét) in the example on page 192).
Instead, take a fully pattern-mixture approach (defined in Section 6.2) whereby Z is no
longer a random variable, but is a constant, given dropout time. Hence E[ZZ’] = zz’.
Practically, this can be calculated for ‘smaller’ X and z up to dropout size only, or
for the full version with design zeros explicitly given in X and with z padded with
trailing zeros after dropout up to full time 7.

Since the likelihoods with indicators R (or Z) considered as outcome variable, and
those with dropout time, D, as outcome, are necessarily equivalent, the information
contributions must be the same, and substituting zz' for E[ZZ'] is always valid. This
establishes the surprising result that (5.19) need never be evaluated, even though
E[ZZ'] # zz' if Z is viewed as a random variable.

In simulations (not presented here), convergence speed under either scheme is roughly
the same. Of course, different intermediate values for the information (and thus score,
after the second step) occur before convergence to identical parameter and information
estimates.

Only rather trivial examples (with time-constant explanatory variables) could be sim-
ulated for comparative analysis because of the problems of monotonicity of means and
evaluation of dropout-time links. In the absence of constraints, the fitting algorithm
is extremely sensitive to the starting values for the Fisher steps, and if there are any
time-varying covariates, the linear predictor at dropout time cannot be evaluated.

These problems are overcome in the following model.

5.3.3 A reproducible, semi-canonical model for dropout

Again we ignore the case when unobserved covariate values directly affect the proba-
bility of dropout — the case of informative dropout — and concentrate on so-called
random dropout: the dropout probability depends here only on observed values of
explanatory variables X.

We will again take dropout time, rather than the set of indicators R (or Z), as the
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random variable, although it is convenient to maintain the z notation as in the previous

section.

Note especially that from now in this section, exceptionally, timepoints are labelled
starting at zero, thus R; indicates dropout at the ith follow-up; we also redefine T as
the number of follow-ups, rather than number of timepoints, and in similar vein the
dropout variable D now takes values starting at zero. These conventions are natural

given the ‘shifted’ parametrization now considered.

We revert to using € only for the polynomial exponential family parameters and in-

troduce a ‘shifted’ parameter set
0 =(6p,61,...,05)', d<T
truncated after dropout at follow-up d (if there is dropout), where we let
0;=¢&, i=12,...,d (5.20)
where the subscripts of £ are timepoints, as previously (i.e. follow-up plus one). We

will let 8y be a free parameter to be modelled, with the role of normalization constant

now taken by Eg'“. I will label this £, to avoid confusion in subscript numbering

conventions.

From the canonical form

C(€) =log Y c(z)exp {¢'z} =log 3 exp {¢'z}.

all z possible z

Thus for a subject dropping out at follow-up d,

b = -C(§)=—log (1 +eft pefrtée 4.y e£1+.-~+<+)

= —log(l1+ef +ehith ... 4 eh ),
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Rearranging expresses £, in terms of 6:

e——00 — (1 + e01 +601+92 4o +e01+"'+0d)
e01+"’+0d

1— (eao 4 ebotbr 4 ... 4 eao+"'+9d)

= e , (5.21)

e§+ =

from which we can obtain derivatives 3¢, /06. The numerator of (5.21) is the marginal
mean for follow-up time d, 114, which gives us an explicit formula for converting from
canonical to marginal estimates. Note that such means are constrained to monotonic-
ity, pq > pd+1, overcoming a problem with the previous approach (Section 5.3.2).

Alternatively, if we have already calculated £,

pd=exp(fo+---+0s+&).

Score equations

Assume for simplicity a full identity link:

0= X'y.

In practice I use a complementary log-log link to the probability 8y, but this introduces
only trivial complications to the following theoretical development. We transform the

likelihood contribution for the uth subject (subscript u omitted),

£=¢'7-C(§),
using the chain rule:
_ 5%,

Here X is the same as X except that the first row is multiplied by 8 = 86p/day for the
link 6y = —e®0. Also I have used the standard marginal-model result 9¢/0¢ = z — p,

for p the marginal means, and using (5.20) and (5.21)
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o _
98 Liaxa)

fa+1

where I is an identity matrix and the (d + 1)-vector f has jth entry

o€, (600 4 efotbr L .4 e00+...+9j_2) _1

fi= (99]'_1 - ] — (690 P o T e00+"'0d~1)

, j=12...,d+1. (5.23)

For j = 1, the numerator is —1, otherwise the numerator equals —p;_o. If there is no

dropout, when conventionally we set d = dpax + 1, we set here instead d = dipax.

If we again condition on observed dropout time D, rather than regarding Z as a

random variable, the information matrix contribution for Fisher scoring is just

IZ=uU

as in the previous section.

Simplifications in fitting. Instead work from the observed likelihood (conditional

on observed dropout time), expressed in terms of @ and final design timepoint param-

eter £, only, i.e. equation (5.18) substituting £ = (8',£,)'. For subjects who drop

out,
o _,
08 7
while for subjects who do not drop out,
ot 0€4
8 ~ *" o0
= z+4+f

where f is given by equation (5.23).
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5.3.4 Example

As part of on ongoing study into causes of renal transplant failure at the Royal Liv-
erpool University Hospital, the relationship between graft failure and unusual levels
of the treatment drug Cyclosporin A (CyA) was studied. If CyA level is too low then
rejection might follow (the known overall effect of CyA being to repress the body’s
rejection of grafts), but high levels of CyA are toxic to the liver itself. It was of interest
to determine if CyA as assessed by measuring the trough level, i.e. immediately before
administration of the next dose, exhibited this expected behaviour.

Data were available for 150 transplant patients, with graft status and trough CyA
(measured on a 3-point scale, —1 for low, 0 for normal, 1 for high) at 12, 24, 48, 60
and 72 months after the operation, hereafter labelled follow-up 0 to 4.

Graft failure is dropout in the terminology of this chapter, and the models of the
preceding subsections may be used to study it. I will illustrate only the shifted-
canonical model of Section 5.3.3; certain marginal-model inference can be drawn from
this as shown below (page 205). The intercept-unconstrained parametrization for the

null-explanatory model is

6 = —e0

0 = o, i=1234.

This model is saturated for the observed marginal dropout pattern given in Table
5.1. Parameter estimates, standard errors and model deviance are given in Appendix
A5.3.4; this is model A5.1 of that section.

The comparatively large standard errors for follow-ups 2 to 4 suggest that a common
intercept for these timepoints would fit well, but this is not pursued here since the
focus of attention is the explanatory model. If these intercepts were forced to be equal
then the sample differences might incorrectly affect estimates for explanatory-model
parameters.

Trough CyA levels prior to time 0 were not available in the database and 6, is modelled

as a constant throughout. (In fact there are some CyA level values prior to time 0, at
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Table 5.1: Renal graft failure, given as observed failures at each timepoint and as
Kaplan-Meier proportions, i.e. failures/(number remaining); a constant dropout rate
is unlikely.

Failure time
0 1 2 3 4 No failure

25 9 15 13 26 62
(0.166) (0.072) (0.129) (0.128) (0.295)

6 months in the records, but these have not all been entered into the database.)

If low and high CyA trough levels affect the probability of graft failure uniformly we

would expect (naively; see below) to find a significant improvement for the model

0; = i + BiowTiow + BhighThigh

where the = are dummy variables relating to follow-up 7 — 1 and the normal CyA
level is the baseline. In fact, model (A5.2) is no better than the null model (deviance
change 4.95 on 2 d.f.). There is a nominally significant improvement (P = 0.047)
on the null model if only the effect of low CyA is added to it (A5.3), but this is not
convincing.

To see why this model fits so poorly we can ascertain non-constant effects by using
a separate @ parameter pair at each timepoint. Although this model (A5.4) fits
significantly better than the null model (deviance change 28.9 on 8 d.f.; P < 0.001),
we find that a low trough CyA level appears to increase the failure rate at follow-up
2 but decrease it at follow-up 3; high CyA level appears to increase the probability
of failure at follow-up 4 only. There are further discrepancies when considering the
effects that are not significant on univariate 2-tests. As this is clinically implausible,
we infer this is an artifact.

Instead, let us consider a linear effect for the trough CyA level; model A5.5 shows
the fit for a model not assuming such effects are constant over timepoints. This is

also significant w.r.t. the null model but far more plausible, with high trough CyA
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levels decreasing the probability of failure at follow-ups 1 and 2, but increasing it
at follow-ups 3 and 4 (and vice versa for low CyA). A clinical interpretation is that
trough CyA is a reasonably good surrogate for overall CyA level; high trough CyA in
the early years does what CyA should do, prevent graft rejection, but later its toxic

effect outweighs this advantage.

Suppose the drug regime were changed so that all patients had constant high trough
values. Using the estimates of model A5.5, a sample of 150 would have pointwise
expected failures (25, 8.8, 8.3, 12.5, 42.4). This is broadly the same as the observed

sample excepting a large overestimate of failures at the last timepoint.

Interpretation of parameters

The linear predictors (except for time 0, for which 6 is just the log probability of
immediate dropout) are, from equation (5.17),

o, _ P(D=4d

TPD=d-1)

(5.24)

This is not the usual conditional probability,

P(D = d)

P(D=d|D2d-1) =gy

its closest counterpart is the adjacent logit model (e.g. Agresti, 1990). The interpre-
tation of the result that all the 6; are approximately zero is that there is an even
spread of observation vector lengths; the dropout rate itself would be increasing. A
constant dropout rate would have P(D =d + 1)/P(D =d) = k < 1, so the 64 should

be constant but negative. Neither of these occurred in the CyA data set.

The parameters 8 have an interesting interpretation if the dropout rate is constant.
Consider an artificial sample with N = 1000 with dropout vector (100,90,81,...),
i.e. a constant dropout rate of 0.1. Then P(D =d) = (0.1,0.09,0.081,...) gives

ef = (0.9,0.9,...); that is, 84 is the log probability of not dropping out at time d.

This does not hold in general.
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Naively, if an explanatory variable has a constant effect on the probability of dropout,
it should have roughly equal numerical influence on the linear predictors, even if the
baselines are not constant. But equality does not hold in this case, and a change in
04 is more easily interpreted in terms of the marginal P(D = d — 1), rather than an
effect on the rate itself.

For this more marginal interpretation, noting pg = P(D > d), we can write
efot0 = yy — )y =P(D = 0).

In general

6o+60; + -+ 6441 =log P(D =d).

If

O4+1 = ags1 + Bay1Ta

then for two different values :vfil) and sz), assuming all other previous covariates are

the same,

P(D=d|z
ﬁd+1(z§"—w&2’)=1og( (D =dl|zg )>.

P(D =d|z{))
This is easier to interpret than the effect on the adjacent-category ratio efa+1; namely

exp{Ba4+1} is the relative risk of dropout at follow-up d for a unit difference in covariate

z at follow-up d.

5.3.5 Discussion

Choosing the ‘shifted’ parameter set @ in Section 5.3.3 overcomes the problem that the
canonical parameter £, for a subject not dropped out by time d is different to ;4 for a
subject with dropout at time d. The 8 are identical for different observation sizes, so
we gain full reproducibility. It is a curiosity that for non-degenerate distributions the
marginal model is reproducible, whereas for this distribution for dropout, the (shifted)
canonical parameters achieve this aim.

Another reason for introducing the new parameters is that 8, which corresponds

exactly to the constant term, —C(€), in the standard canonical form, is easily inter-
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pretable as being the log probability of immediate dropout. It makes good sense to
model this as a constant (in regression terms, an intercept), since in cases of immedi-
ate dropout we could never realistically expect to know the values of any explanatory
variables.

In the shifted model, explanatory variables at dropout time are not explicitly modelled
even if known, but their history determines 8 and hence £,. The set of parameters 8
uniquely determines the full distribution function for the outcome vector, in the same
way as a full set of £ values determine the constant C(&).

A further advantage of the new parametrization is that it ensures monotonicity of the

derived marginal expectations without the need to build in explicit constraints.



Chapter 6

Data with possibly informative

dropout

This chapter extends the discussion in Chapter 5 of the analysis of data when some
values are missing to the case when those values are missing ‘informatively’, a concept
defined in Sections 6.1 and 6.2. In Section 6.3, we consider the adaptation of the
Markov chain model of Chapter 4 to deal with data of this type and find that it
offers a very natural framework in which to specify a data model and the missing-data

mechanism simultaneously, in a variety of new and established modelling frameworks.

In Section 6.4 we consider what I describe as imputed mazimum likelihood, i.e. the
computation of ordinary maximum likelihood estimators for data with imputed val-
ues substituted for missing values (analogous to the the M step of the classical EM
algorithm). We consider both marginal and transitional modelling of such imputed
probability tables, in Sections 6.4.2 and 6.4.3, respectively. In Section 6.4.4 we look
at the process of estimation and the inter-relationship between specification of a com-
pleted table and pre-specification of otherwise non-identifiable parameters, and ex-
tend this discussion in Section 6.4.5 to show that pre-specifying such non-identifiable
parameters is equivalent to the EM approach, since the missing data makes no con-
tribution to the likelihood. This point is made again in Section 6.4.6 by noting the

failure of a profile likelihood approach to determine the non-identifiable parameters.

207
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The certain failure of maximum likelihood techniques to provide any evidence for or
against data being missing informatively is demonstrated in Section 6.5.

The chapter concludes in Section 6.6 with an example analysis of a study of senile de-
mentia. Here we demonstrate the use of the timepoint-wise pattern-mixture approach
of Section 6.3.2, and reveal some perhaps unexpected difficulties in model selection,
even after the simplifying decision not to model the missing data as informative. This
example also illustrates the use of a ternary missing-value indicator and demonstrates

how easily this is incorporated within a Markov chain approach.

6.1 Introduction

Almost inevitably, when measurements are repeated over time, some subjects will
be lost to follow-up. If T observations are intended, a subject observed only up
until timepoint ¢ — 1 is said to exhibit dropout at time ¢ (with ¢ < T). I do not
consider here models for which some subjects return after being missing for a number
of observations.

To illustrate, let variables Y; and Y3 be observed sometimes (/) and sometimes not

(x), with each subject in one of the four patterns

| Yo

ARARS)
v | x| (b)
x |V | (0)
x | x | (d)

Data missing entirely (pattern d) is usually considered a question of sample selection
bias, rather than as a missing data problem as such. I do not consider here in detail
the possibly biasing effect of such entirely missing data, although such ‘immediate
dropout’ has been discussed in Section 5.3.

Pattern (c) corresponds to dropin, which as mentioned above is not considered in

detail, although the marginal approach (Section 6.4.2) is able to handle this pattern
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too.

Dropout is the simplest class of missing data problem; in the tableau above, data
are subject to dropout if there is a mixture of patterns (a) and (b). More generally
dropout models apply to strictly monotone missing data patterns, with no missing
values at time 1.

The term dropout modelling has come to be used ambiguously. Here dropout model
means a model for the probability of dropout (as in Section 5.3). Otherwise when
attention is focussed on the intended measurement, with dropout a nuisance, it is
more correct to use model for data subject to dropout; the dropout model is only a

part of the overall model and in many cases need not be parametrized.

6.2 Nomenclature

Let Y be the vector of observations, of length T if there is no dropout, with joint
density f(y). Missing observations are recorded by a vector of indicators R, of length
T, with
1, Y; observed
Rt =
0, Y; unobserved.
For inference, we model the joint density of Y and R. This can be factorized in several

ways (see for example Section 6.3) of which there are two extreme types: a selection

model takes

fly,r) = f)f(rly), (6.1)
whereas a pattern-mizture model uses
fly,;r) = f(r)f(ylr). (6.2)

For a random sample of observation vectors Y, with associated indicators Ry, u =

1...n, the contribution of each to the overall likelihood is the observed marginal

2 F(Yu,ru). (6.3)

missing Yut
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In the following, the subscript u is dropped. Integration replaces summation for

continuous variables.

It is natural to partition Y into observed and unobserved values and write

YZ( :)bS? ;niss)l'

Though this notation is quite general, for dropout patterns the order of the elements
is unchanged. The likelihood is obtained from contributions f(yops,r) only.

Data are said to be missing

(a) completely at random (MCAR), if

flrly) = f(x); (6.4)

(b) at random (MAR), if
flxly) = f(rlyobs); (6.5)

(c) non-ignorably (NIGmiss) — also known as informatively, and as non-randomly
— if

f(l‘ | y) = f(r | Yobs: ymiss);

Note that it is the presence of ymiss in the conditional distribution that deter-

mines NIGmiss, even if f(r|y) does not depend on ygps.

Under the MCAR assumption, data are missing at random in the obvious sense; under
MAR the observed values determine the probability of data being missing. Although
this terminology frequently causes confusion, it is so well established it is retained
here. The conceptual problem stems from the fact that when data are not NIGmiss
— hence either MCAR or MAR — it is common to refer to them as non-informative
missing data (here denoted NINFmiss). But under MAR the data are informative in
predicting dropout.

The NIGmiss assumption is that the unobserved data values are correlated with the

indicators. For example, with binary outcomes, if subjects who would record a score
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of 1 are less likely to turn up for interview than those who would score 0, then the
data are NIGmiss. The observed mean is then a biased estimate of the population
mean.

The NINFmiss definitions (6.4 and 6.5) can be written in conditional-independence
operator notation as

R 1L Ymiss | YobSa

Because of the symmetry of this form an equivalent defining condition for NINFmiss

data is that

f(ymiss | Yobs: I‘) = f(ymiss | )’obs)- (6-6)

Thus we could redefine

(c) data are NINFmiss if the conditional distribution for the missing data only
depends on observed data values, and not on dropout pattern; otherwise they

are NIGmiss.

If NINFmiss holds we can impute missing values from those observed, which is fun-
damental to the EM algorithm for MAR or MCAR data (Dempster et al., 1977).
However, there is little reason to suppose NINFmiss holds, except for computational
and conceptual simplicity. It is shown in Section 6.5 that it is always impossible to

test for NINFmiss by maximum likelihood ratio tests alone.

6.2.1 Ignored vs ignorable missing values

For data with dropout, a distinction should be made between the ignored missing
values, i.e. Y; Vs > t, and the nuisance missing value for Y; at dropout time ¢.

In a seminal paper (Diggle and Kenward, 1994) the more general case of non-ignorably
missing data is restricted to non-ignorable dropout (NIGdrop), which is defined as
occurring if the (unobserved) value of the dropout-time variable, Y;, affects the prob-
ability of dropout, f(r¢|y1,y2,.-.,¥t)- The issue of possible dependence between
post-dropout, Y, values, and history, i.e. (y1,...,%) and (ry,...,7,) for t < u < s,

for each s, is not addressed, nor is that of allowing potential Y, values to influence the
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estimation of the mean for Y;. No attempt at modelling the full joint distribution is

made.

This strategy is reasonable, because the modelling of such variables would introduce
many more nuisance missing values. However, it does introduce an implicit two-tier

scheme of ignorability, under which

(a) Post-dropout Y, values are always ignored, although no attempt is made to
assess whether in terms of the true, full model such values are or are not actually

NIGmiss ignorable; and

(b) Dropout-time Y; values are not necessarily ignored but are called ignorable if

they do not affect the true (or assumed) dropout model.

This same scheme is adopted here. One reason is that both dropout, Y;, and post-
dropout, Y, values can readily be ignored in the limited sense that such unobserved
values cannot affect the likelihood as defined in (6.3). On the other hand, such val-
ues should not be ignored if we wish to allow for NIGmiss, although we cannot use
likelihood-based inference to test for this. It seems sufficient to be concerned for
now with NIGdrop only, given that a full NIGmiss model has greater problems than
NIGdrop, which is itself unidentifiable (Section 6.5).

6.3 Markov chain models for data with dropout

The joint probability f(y,r) has many other possible factorizations than those given
in equations (6.1) and (6.2). For longitudinal data is is natural to first factorize by
timepoint,

fly,r) = f(y,m1)f(y2:m2ly1,71) -+ - f(yr,rr | Ay, her) (6.7)

where h; is restrictively-defined history (Section 4.2) and h,; is similarly-defined in-
dicator history. This is a Markov model for bivariate observations. Because there is

no dropout at time 1 in our models (Section 6.1), r; is redundant, and also indicator
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history h,; reduces to just r;_y (¢f Section 5.3). Thus equation (6.7) reduces to

fy,r) = fy)f(ye,r2ln1) -~ flyr,rr | hr,rr-1). (6.8)

After this factorization, a selection-model type approach is to take

f(ytﬂ”t | ht,"'t—l) = f(yt | hz,Tt—l)f(Tt Iyt, htﬂ“t—l)» (6-9)

whereas a pattern-mixture type model uses

Flyerelhy,reoy) = f(rel by, o) f(ye | 7o, he). (6.10)

These factorizations lead to new models, which I call timepoint-wise selection and
pattern-mixture, respectively. Classically, a selection model specifies the full marginal
joint distribution, f(y), and a pattern-mixture model specifies the full joint conditional
f(y|r). The models following from (6.9) and (6.10) are selection and pattern-mixture,
respectively, at each timepoint, but not overall. Both of them contain elements of both

selection and pattern-mixture approaches, as will be discussed further in Section 6.3.2.

6.3.1 Selection models

A full selection model can be developed by considering its timepoint-wise counterpart,

as follows (Diggle and Kenward, 1994).

We wish to model the set of marginal expectations E[Y,*], where y; is the actual value

of a (possibly unobserved) measure at time ¢. Denote the observed value as Y3; that is

NA, t>D

where D is a random variable identifying dropout time. In terms of indicators R =
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(R1, Ry, ... ,RT)’ this is

},t*’ Rla"-aRt—l__‘l’ Rt#o
Y: =

NA, atleastoneR; #1,i=1,...,t
or in terms of observed values

v, i €1{0,1} known

<
H

NA, y; = unknown

The probability function of Y* is given by the model for the underlying process, which
here I assume to be polynomial exponential family. We need also a model for dropout;

for binary indicators

P(Rt =Tt | y:,ht) = exp{qbtr,g — C(d)g)}, Tt € {0, 1} (611)

for dropout at time £. Recall the convention here, and in the following, of using ¢ for
the canonical parameters of the conditional distribution, reserving ¢ for the canonical

parameters in the joint polynomial exponential family form.

Assume a logit link for parameters of more immediate interest, 8:

& = X;56

where X is the dropout-model design matrix. This may share terms with the design
matrix for the main model, and will probably include a time effect. Also, unless
dropout is non-informative, X must include values of y; which are not observed for
subjects who drop out. An important related point, not mentioned by Diggle and
Kenward (1994), who simplified most of their presentation by excluding explanatory
variables, is that X; must include only known terms and does not allow for missing

explanatory-variable values.

Suppose first that dropout depends strongly on the (unobserved) Y*, but that YV*

itself depends strongly on H;; then a random dropout (MAR) model will probably be
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quite adequate. Suppose instead that intra-subject association is very weak, but that
Y is predicted quite accurately by explanatory variables, X*; then Y;* (and hence
dropout) depends strongly on X rather than the observed H;, and in most cases

these critical predictors will not be observed.

The factorized distributions for R and Y* together induce a conditional distribution

for Y; specifically

P(Y; =y | hy) = P(Y; =y | h)P(Ry =ro(yr) | v, he), e € {0,1,NA},  (6.12)

where
1, ye€{0,1}
0, y=NA

In less cluttered notation, P(y) = P(y*,r) = P(y*)P(r|y*). By the law of total
probability (no derivation is given in Diggle and Kenward, 1994) the probability of

dropout at time ¢ is then

P(R,=0|h)) = P(Y;=NA|h)

= Y P(Y{ =y | h)P(R=0|y; h) (6.13)
y; €{0,1}

provided always that h; is known, that is, the observation unit has not already dropped

out, since

P(Yy =NA|ye-1) =NA)=1

for permanent dropout.

This in turn induces a joint density for Y@ that is, for a subject dropping out at

time d, as

d—
P(y(d)) = P(y*(d—l)) ([[l PR, =1 | y:,ht)> PYy = NA | hy), (6.14)
t=2

with the final term on the right-hand side not present for a full observation. This is
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expressed in terms of the unconditional joint density for Y*, parametrized as

g(E[Y']) = Xv

and the conditionals for each R, parametrized as in (6.13).

The use of this form of the density is natural in the original setting of Gaussian
data where the joint distribution is especially easily derived from the conditional dis-
tributions in canonical form. For categorical data, implicitly Y* can be modelled
marginally, so that the distributions for vectors of different sizes are easily obtainable
(by reproducibility). However, for categorical observations there are other possibil-
ities. Instead the super-observation (Y,R), which has straightforward polynomial
exponential family distribution, can be modelled directly and the dependencies can
be modelled by parametrizing the higher-order interactions, allowing for the structural

zeros inherent in the dropout process. A simple example of this approach is given in

Section 6.4.

Timepoint-wise selection models

Alternatively, one might parametrize the model directly in its Markov chain factorized

form, here shown by example. Consider trivariate binary data with

-

fy,r) = f(y) Flvalyr) Fralyr,y2) flys | vi,v2,72) f(rs] v, y2,7m2,73) (6.15)
N e N ’ > ~ ”

-~ ~
o) az,azy 82,621,822 ag, az2 03,621, 6822

where the parameters for each univariate conditional distribution are indicated under
the braces. For simplicity assume there are no explanatory variables, although the
possible danger of such simplification has been mentioned on page 214. For this

example (with later discussion in Section 6.5.2) assume a non-saturated model with

¢Y1 = om
dyvoly, = o2t aam;

PRy V1Y, = 02+ 021y + d22y2
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dvs|v1,Ys,Re = Q3+ Q3292

PRy |Y1,Y2,Y3,R2 = 03 + d21y2 + 22y3

For binary data the expression ¢g, |v,, for example, actually describes two separate,
variationally independent (if unconstrained) parameters, ¢g, |y,=1 and ¢g, |y,=o- Sim-
ilarly, ¢y, |v;,r, is shorthand for four canonical parameters.

The parameters o are intercepts for the model of main interest while the § parametrize
the dropout mechanism. Here the Y; depend only on Y;_;, but the dependency is not
forced to be common. Dropout probabilities for time ¢ are assumed to depend on Y,
and Y;_; with the same parameters, but the intercept is not assumed common.

As with any Markov-type factorization, the time-1 model is of little intrinsic interest
and could without loss be omitted. Also, the dropout predictors will in general not
share parameters with the data model, so can be fitted separately (or not at all,
if NINFmiss is assumed), but note that in the selection-type factorization possibly
unobserved values enter the linear predictors for dropout indicators. This feature is
shared with the Diggle and Kenward model above, where dropout is parametrized

piecewise conditionally no matter what form is taken for P(Y*).

6.3.2 Pattern mixture models

For a pattern-mixture model it is unnecessary to assume the existence of an underlying
true variable Y*. With reference to the tableau on page 208, a selection approach
models rows (a) and (b) combined, whereas a pattern-mixture approach has a separate
model for (a) and (b).

In practice we might introduce simplifying parameter-led constraints while studying
pattern-mixture models that would introduce elements of selection modelling; for ex-
ample, we might assume certain common parameters for outcome vectors of varying
size, and indeed this is the assumption in Section 6.6. Thus, the terminology is of less
use in practical modelling than it is for theoretical developments. Pure selection mod-
els should be based on f(y*), marginalized over R, but many practitioners advocate

that the number of observations should appear as a covariate; pure pattern-mixture
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models are for f(y |r), but r need not appear as such in the linear predictors provided
dropout is NINFmiss.

A full pattern-mixture model as defined by equation (6.2) models the marginal density
of R and this can be reduced to a univariate variable, D, indicating dropout time
(Section 5.3). Thus all the modelling can be based on f(y | d), which is fully observed,
provided the dropout model itself is not of interest. A selection model such as above
is biased for Y* if dropout is misspecified, whereas the pattern-mixture f(y | d) is not.

However, a selection model is often preferred because of ease of interpretation.

Timepoint-wise pattern-mixture models

The timepoint-wise pattern-mixture model, in common with timepoint-wise selection
models, has elements of both selection and pattern-mixture approaches, since predic-
tors for Y depend on R (or D) and predictors for R depend on Y. The difference is
that here I will factorize f(y;,7:) as f(v¢|7:)f(r:) where above we had f(y)f(r¢|ye),
all dependent on history and probably covariates.

The analogue of the model at the end of the previous subsection, page 216, is

—

Fy,r) = f(y) flral 1) Fy2 Ly, m2) F(r3y1,y2,72) f(y3 | 91,92, 72,73) (6.16)
Nty Nt e - — e

N— Rp—

7 7 ! ’ ' 0 (] ! ' I !
@ 8%, 05, a), oy, 05 63,03, oy ayy, 0y,

parametrized as

by, = m
bralys = G+ 0}
R2|\y — ©2 2191
— 7 ’ !
Pya|vi,Ry = Q2+ apy1+0pr2
. ! !
SR3 V1Yo, k2 = O3+ 05192
— ! ! !
¢Y3 |Y1,Y2,R2,Rs = @3 + ag9y2 + (5227‘3

Primed parameters are broadly equivalent to their counterparts in the previous for-
mulation; similarly named parameters have the same function as each other, but have

different values, because they do not appear in the same linear predictors. Further
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discussion and a comparison of this and the previous formulation are considered in

Section 6.5.2.

6.4 Imputed maximum likelihood

Imputation (that is, assumption) lies at the heart of any strategy for estimation when
data are missing. If the missing mechanism is MCAR or MAR, then the imputation
is equivalent to the combined effects of the E-steps in the EM algorithm. Often only
one such step will be needed for models near saturation. Imputed mazimum likelihood
(IML) represents the likelihood maximized in the M-step, after replacing the missing
values by their E-step expectations.

When data are NIGmiss, there is insufficient information in the sample on which to
base E-step expectations, and one approach is multiple imputation (Little and Rubin,
1987). IML estimates are in this context those obtained for each single imputation of
the multiple process.

Throughout this section a simple example of missing data is considered (Section 6.4.1;
discussed at some length in Little and Rubin, 1987). Marginal and Markov chain
parametrizations for the example problem are set out in Sections 6.4.2 and 6.4.3,
respectively. In Section 6.4.4 various approaches to imputing the missing values are
introduced. Viewing the filled-in table as though it were a complete observation leads
to the formulation of the log likelihood function described and analysed in Section
6.4.5, whereas a stricter definition of likelihood (as a function of the parameters given
the observed data) leads to the analyses of Section 6.4.6. Both approaches are seen to
fail to produce acceptable parameters: in the first case likelihood is maximized outside

the parameter space and in the second, the likelihood maximum is not unique.

6.4.1 A simple example

The data in Table 6.1 are taken from Little and Rubin (1987). Data follow patterns
(a) and (b) of Section 6.1, page 208, so we need a model for data subject to dropout,

albeit the simplest possible case of this.
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Table 6.1: Data from Little and Rubin (1987), Chapter 11.

Y; Yo Rs Cell count Numerical example
0 0 o0 hooo hooo + horo = 40
1 0 O hioo hioo + h110 = 60
0O 1 O hg1o

1 1 0 hi1o

0 0 1 moo1 100
1 0 1 mion 30
0 1 1 mo11 20
1 1 1 mi11 50

With no dropout at time 1, we require only one indicator variable, Ra, coded 0 for

dropout. The data are assumed to be for a single group, with no covariates.

In Table 6.1, the cells denoted m are actually observed but the h-cells are not. We

do, however, fully observe the (Y7, Ry) margin, giving us the m-sums

Mmo+0 = hooo + ho1o

and

mi4o0 = hioo + h110-

6.4.2 Marginal formulation

The trivariate distribution of the binary variables (Y}, Y2, Ry) can be written directly
in polynomial exponential family form, with log likelihood contribution, for the uth
subject,

t=¢z-C(¢)

where

’

z = (Y1,Y2, T2, Y1¥2, Y172, YaT2, Y1Y272)

Despite the risk of introducing confusion, it is convenient to use subscript 3 to refer

to Ry, as it is, the third variable listed, so that the above log likelihood contribution
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can be written

&y + &y + &30 + 1212 + E13Y172
+&a3y2r2 + L1231 Y22 — C(€).

The parameters £ are zero-conditional log odds ratios; interest is more likely to focus
on their marginal equivalents. Thus we might take a straightforward link for marginal

saturation as

lOgitpt—':)\t = oy t=1,2
log MOR12 = A12 = 12

logit pp, = A3 = oa3.

The last term, A3, may be considered nuisance but is directly estimable from the
observed table. The other odds ratios, A3, A23 and Aj23 will characterize the missing
data mechanism. If two of these are zero then the missing data mechanism is MAR;

if all three are zero, the missing data are MCAR.

6.4.3 Markov chain formulation

A Markov chain formulation is

exp {¢1y1 — C1(¢)}
exp {¢2|iy2 - Cz|i(¢2|i)} , 1=0,1

p(r2|y1 =i,y =3) = exp {¢3|ij7‘2 - C'3|ij(¢3|ij)}, i=0,1; =01

p(y1)

Il

ply2 |1 =1)

In this simple case, the timepoint-wise selection model is a full selection model. A
pattern-mixture type model for the probability of Y2 given dropout pattern could
equally well be applied but is omitted here.

In contrast to the previous section, we now assume that interest lies in the response-
conditional means, which are the inverse logits of the parameters ¢. The parameters

of immediate interest, (a, 3, §), model the dependency between Y; and Yz, and that
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between the dropout indicator Ry and the Y, as follows:

logit H1 = Op
logit pyjy,—y, = Bo+bin
logit p3jy,=y; Ya=y, = 0o+ 1y + 22 + dr2p192.

The last of these links is a saturated dropout model as given. Whereas the MCAR
assumption sets §; = dp = &3 = 0, the MAR model takes §; = §;2 = 0. If (and only
if) data are NIGmiss, d; # 0.

6.4.4 Estimation and imputation
ML and IML parameter estimation in general

Regarding the table of example data, Table 6.1, as an observation from a multinomial
distribution with eight classes, immediately the maximum likelihood (ML) estimates
of the cell probabilities are the sample proportions. Provided there are no observed
zeros, the ML estimates of the odds ratios, which are one-one functions of the cell
probabilities for any of the models discussed above, follow by invariance.

However, the h-cell totals are unknown. Following a joke suggestion in Crowder and
Hand, one way round this problem is to fill in the missing cell counts while nobody’s
looking. Such a filled-in table would now have uniquely and clearly specified ML
estimates, which are here called imputed maximum likelihood (IML) estimates (the
terms pseudo- and quasi-ML are already in use for other purposes). Below, IML
estimates are indicated with a tilde rather than a hat, which is reserved for true ML

estimates.

ML estimates for incomplete multinomial counts

Even if two or more of the cell counts in a multinomial sample are unknown, the ML
estimates for the observed cells are the observed cell counts. For example, consider a

trinomial sample (a, b, c), with only ¢ and the sample size, n, observed. Then this is
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a fully observed binomial sample (n — ¢, c), for which obviously ¢ = cyps.
Thus for models that are saturated over the observed data, the observed cell estimators
must be the observed cell counts themselves. More generally, any fully observed odds

ratios are their own ML estimates.

Imputation by pre-specifying certain parameters

In a certain sense a set of true ML estimates actually determines the cell counts from
which they were obtained, since the estimates could not be ML for any other observed
values. Similarly, a set of IML estimates determines, uniquely, a filled-in table. The

following are equivalent:
(a) filling-in the h-cell totals (and leaving the m-cells untouched);
(b) specifying IML cell probabilities 7« and sample size n;
(c) specifying IML odds ratios € (or A or ¢) and sample size n.

Consider for simplicity only the canonical parameters £; analogous results will hold
for any other set of parameters fully specifying the distribution. For the missing-data

example introduced above, if we are prepared to specify

(a) any two £ parameters, and

(b) that the imputed table matches the observed table everywhere where known (i.e.

the imputed table m-cells and counts match the observed m-cells and counts),

then all the other IML estimates will have been uniquely determined, since parameters
cannot be IML for a table they would not determine.

The two parameters arbitrarily specified apparently have a different status to the
others, which are truly IML, in the sense that IML estimates are functions of the data
plus any constraints sufficient to complete the table. This in turn means that the
arbitrarily-specified parameters must now become IML estimates for the odds ratios
they themselves pre-specified. Hence the ordinary tilde notation is used for these.
By pre-specifying two parameters for the example data in Table 6.1, the observed

cells can be taken as an observation on 6 categories, requiring only 5 parameters in



CHAPTER 6. DATA WITH POSSIBLY INFORMATIVE DROPOUT 224

total (of the canonical 7) to fully specify. Since transformations to marginal A and
conditional ¢ must be one-one, it is enough to prespecify two of these, although the
choice of which two is no longer free if the table is to be saturated. Some details on
the admissibility of pre-specified IML parameters are given in Appendix A6.4.4. It
is seen there that one has considerable freedom in choosing parameters assuming a
MAR or NIGmiss model that is saturated over the observed part of the table. The
conceptually simpler MCAR model is harder to specify, unless it should so happen

that the observed part of the table is consistent with this assumption.

6.4.5 EM and plug-in likelihood

At the kth step of the EM algorithm, given parameter estimates E(") , the E step is to
find the expected likelihood

¢k = /Z(€ |y, ) f (Ymiss | Yobs: T, € = g(k)) dYmiss

(Little and Rubin, 1987). These authors note that there is no need to calculate this
integral directly in their examples, because for exponential family distributions, the
process is equivalent to substituting the expected sufficient-statistic values into the
likelihood expressed in terms of the sufficient statistics, s say. The M-step maximizes

the likelihood using the imputed values
s*) = E[s(Y) | Yobs, R, £F).

This is equivalent to the following rather more naive approach.

Plugged-in values

Specifying the unknown CORs completes the probability table and so gives us an
IML estimate of E[Y2], denoted 2, allowing for the (current) estimate of the missing

datum. Suppose then that for those observations with Y; missing, §, is substituted,
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then the (IML) plug-in likelihood would be

g(y1,7‘2, g?) = Zf'i - C(s)v

where z = (y1, J2, 72, V172, Y172, Y272, Y19272)". One idea would be to try various values

for the unidentifiable CORs and so obtain a profile IML likelihood.

This does not work, because this profile is maximized for CORs zero or infinity. The
likelihood function attains its maximum for a non-stochastic process — here for all
the otherwise unassigned probability lying in only two of the four h-cells. In such

cases the second-order COR becomes zero or infinite.

The overall process is still stochastic, but in some sense ‘less so’ for six possible cells
than for seven or eight possible cells. More formally, for a multinomial distribution
with a model that is cell-saturated where possible and marginally where not, the
evaluated likelihood for any t-way table is greater than that for any s-way table with
s > t. For example, the binomial model for cells (n — ¢, ¢) introduced in Subsection
6.4.4 must have greater evaluated likelihood than the trinomial model allowing for an
extra stochastic allocation of the n — ¢ marginal counts to one of cells a or b. That
part of the log likelihood sum relating to fully-observed values, for which z = z, is

constant, regardless of any choice of (admissible) unobserved CORs, even at the limit.

The value of the IML likelihood is finite as the parameters tend out of range. In the
limit this value is exactly that of the log likelihood evaluated according to the methods
of the following sections: the value is —499.8502 for data in Table 6.1. This is because

the limiting case assesses the likelihood over only six cells, as do the following methods.

The imputed values for missing data, {2, are non-integer, which is alarming for binary
data. However, this is not the cause of the estimation problem, since the evaluated
log likelihood is the same for non-integer values directly as for that which would be
obtained if we assigned integer values randomized given jip; these would, at least

asymptotically, give the sample proportions again given the missing CORs.
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Equivalence of EM and plug-in

Using the cell-count notation introduced in Table 6.1, for this data the sample log

likelihood is

LEh..,m..) = (mio1 +mi1 + miy0)é)
+(mo11 + ma11 + hoto + h110)é2
+(mi11 + h11o)&12
+mé&3 + (mio1 + min)s
+(mo11 + mu11)é€2s + mani€i2s

—nC(§)

where m is the sum of observed m-cells and n is the sample size. The given counts
are sufficient, if the h-cells are known. As a check on the validity of this expression,
note that if it is differentiated once with respect to € and set equal to vector zero, we
get the familiar ML result

counts — nj = 0.

Note that the above holds only for data in a single group: that is, there are no
covariates in the model. For grouped data, similar results would hold within groups.
With continuous covariates this breaks down, since the sufficient statistics become the
data themselves.

Using ¢, the IML estimates, always gives the same observed m-cell counts, and so is
equivalent to specifying sufficient statistics s(Y), based on the current estimate of the
missing mechanism. Thus, the IML plug-in values are equivalent to the EM algorithm
here.

Apart from the likelihood attaining a maximum for values outside the parameter space,
the EM algorithm fails to converge here because of the complete lack of information
with respect to the h-cell counts required. Speed of convergence depends on the ratio
missing/complete information, and the numerator here is zero unless a restricting

model such as MAR is imposed.
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6.4.6 Marginalized likelihood
Marginal formulation

Rather than look at the E-step (or plug-in) likelihood above, we can look at the
observed likelihood. That is, when Y5 is missing, the likelihood is taken from the joint

marginal distribution of (Y3, Rs). For this example the joint marginal distribution is

p(y1,m2) = plyr,r2,92 = 0) + ply1, 72,92 = 1)
= exp{&iy1 + &y + E13y1m2 — C(€)}

+exp {&1y1 + €372 + Lisyare + €2 + &12y1 + Lasre + Ei2anre — C(€)}

in terms of the £ parameters of the full trivariate distribution. This may also be

written

Ply1,r2) = exp {€1y1 + &Pra + Eldyirs - C(E)},

where 513 are the canonical parameters of the subdistribution for Y7 and R,. The
transform from & to £€'2 is not straightforward, and may not be useful. It is the
(Y1,Y32) marginal distribution that is likely to be of primary interest.

When Y5 is missing, Ry = 0, and the above simplifies:

p(Yi=y1, R, =0) = exp{{iy1 — C(§)}

+exp{&iy1 + & + &2y — C(€)},

which contributes

&1y1 — C(€) + log[1 + exp(&2 + &1211)]

to the log likelihood, while the frequency function in the absence of dropout is p(y;, y2, Rz =
1). Hence the observed log likelihood is

Z({ | m) = (m101 +my + m1+0)fl

+(mo11 + m111)é2
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+minéiz

+mé&; + (mio1 + min)éis
+(mo11 + m111)é2s + miniizs
-nC(€)

+muollog(l + exp{&2 + £12})]

+mo+o[log(l + exp{&2})]

Differentiating with respect to £ gives the score equations

Mmiy+ = 0N
M40 Mo40
myq + ( + ef2 = nuy
1+&+62 1+&
myyr = NU3
Mi4o0
miy + —————ef? = npy
1+& + &2
my1y = nag
myy1 = N3
mipy = N3

where + denotes summation over an index and v are marginal expectations about the
origin.
Clearly this is overparametrized, since & and &5 must be specified to obtain marginal

expectations 5 and vy, or vice versa, and none of these are directly identifiable from

the observed data. One might consider proceeding by profile likelihood — discussed

shortly.

Markov chain approach

When Y5 is missing the likelihood contribution is from

p(y1) 3 p(r2 | v1, ¥2)p(y2 |y1)
Y2
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which is just

p(y1)p(r2 | y1) = p(y1,72)

exactly as above, except for the difference in parametrization.

The marginalized log likelihood is

tp|m..) =
min [¢1 — C1(d1) + dop1 — Cop(@211) + daj11 — Capna(Ba)i1)]
mon [—Ci(#1) + d20 — Cojo(P210) + 3101 — C3j01(P3)01))]
mio1 [¢1 — C1(#1) — Cap(da1) + 3110 — Csj10(B3)10))
[~C1 (1) — Capo(@210) + b3100 — Cj00(P3100)]

moto [~C1(#1) + log {exp (—Cajo(#210) — C3j00(H3)00))

+ exp (¢210 — C210(¢210) — Csj01(3)01)) }]
+ moto [¢r — Ci(¢1) + log {exp (—Cx1(d21) — C3110(¢3110))

+exp (211 — Copn($a) — Cajna(83j11)) }]

Mool

+ o+ o+ o+

This is the form evaluated for the following attempt at analysing the profile likelihood.

Failure of profile IML likelihood

Suppose we proceed as attempted earlier: that is, specify IML parameters £ and §~2
arbitrarily, insist that the predicted table match the observed where known, and thus
determine all the other IML parameters. Alternatively we might specify any two ¢3);;
to give a set of IML conditional parameters.

The terminology profile IML likelihood represents the evaluation of the observed
(marginalized) likelihood at the IML parameter estimate set obtained from the choice
of the first two of this set.

No matter what values are assumed for £; and 2, at least, provided they are admis-
sible, the IML log likelihood has the same value (—499.85 for the example data). In
other words, every possible completion of the table is equally likely. This result is

shown more generally in the following section.
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For the numerical example, I have observed that even quite large departures in nu-
merical value from a set of valid IML parameters result in only a small decrease in
evaluated likelihood. Non-saturated (hence non-IML, in the strict sense) models fit
well or at least not substantially worse based on a likelihood ratio test. This is not
a general claim; clearly sensitivity to departures from saturation is a function of the
proportion of missing data, 33% in this example.

This observation prompts the idea that, in ascertaining the ratio of the likelihood of
a non-saturated model to that of a saturated model, it suffices to assess the latter by

the easily fitted MAR model, even if the simplified model is not strictly a submodel
of this.

6.5 On the non-estimability of missing data

As already mentioned, a sample has no information on whether or not missing data
are informative. In Section 6.5.1 a simple, but general, demonstration is given that in
the presence of dropout the likelihood, the product of terms as in equation (6.3), does
not have a unique maximum, for any random variables Y. In Section 6.5.2 I reinforce
this result with specific reference to the examples given at the end of Sections 6.3.1 and
6.3.2, showing that both models must be overparametrized with respect to estimation

within incomplete observations. I conclude with further discussion of the issues raised.

6.5.1 General proof

Consider the pattern-mixture factorization of the joint probability density (or fre-
quency) function given in equation (6.2). The right-hand term can be fully or partially

expanded to give the equivalent forms (6.17), (6.18) and (6.19):

fly,r) = f(r)f(y1 ) f(y2] ho, 1) - -~ f(yr | By, 1), (6.17)

which gives univariate conditional functions for given missing-data pattern r;

fy,r) = f(r)f(yr,- - ve—1 [ T)f ¥ty -, yr | By, 1), (6.18)
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where the joint densities are obtained as the product of two or more conditional

densities; and

fly,r) = f(©)f(y,-.. y—1|r)f(ys | hy,r)

Xf(yt+17"'ayT|ht+lar)' (619)

where there is a specific time ¢ of interest.

For a subject dropping out at time ¢, the observed likelihood contribution, according

to (6.3), substituting factorization (6.18), is the product of contributions of the form

> fly.r)=

missing Y

f(r)f(ylv--'vyt—l Ir) Z f(yt’---ayT|y1a'-'7yt—17r) (620)
Yi,., YT

with integration replacing summation if the variables are continuous. The first two
terms in the expansion (6.18) are independent of Y; and subsequent observations, and
so can be written outside the summation. Then the right-hand summation in (6.20)

is equivalent to unity because it is a sum over the range of a probability function.

Thus, the likelihood for subjects dropping out at time t reduces to contributions from

f) f(y1,-- g1 ]|r)

alone. This part of the joint density, then, is estimable; the last term in (6.18), i.e.
flyey .-y yr | hy,r), is not.

Parameters occurring in only the dropout and post-dropout conditional densities, that
isin f(yt,...,yr|v1,..-,Yt-1,r), do not contribute to the score function.

Of course, the dropout time is not the same for all subjects, which might lead one
to believe that, assuming there is at least one subject with no dropout at time 7, all

parameters would contribute to the overall likelihood. But, such contributions occur

only over the fully-observed part of the data.

Suppose that the conditional density of ¥; (given history and given r; = 1 for i < t and



CHAPTER 6. DATA WITH POSSIBLY INFORMATIVE DROPOUT 232

r; = 0 thereafter) depends on some parameter(s) ¢;4,, where d; is an abbreviation
for dropout at time t and history h;. Now the conditional density at time ¢ given later
dropout depends on some other parameter(s) ¢;4,. From the unquestioned validity
of the pattern-mixture decomposition, the densities for two different patterns, here
dropout times, cannot in general be taken to be equal even if history up to time ¢ or

even t' are the same. Hence, they do not in general have the same parameters:

bi1a, # Peia, t<t.

Inestimability now follows from noting that there is a nonzero contribution to the
score only for timepoints before dropout; specifically for s > ¢, for dropout at time ¢,

none of the ¢4, are identifiable.

While almost any set of arbitrary constraints can be imposed to give a model that
is not overparametrized, none of the parameters relating to portions of the data that
are missing can affect the observed likelihood. Thus, the likelihood ratio between any
two models which differ only in their specification of the unidentifiable parameters is
unity, and so none of the missing-data parameters are directly identifiable by mazimum
likelihood, and any set of constraints imposed to make them identifiable is untestable

by likelihood-based inference.

As a consequence, the model fitting all the observed values and marginal covariances
and assuming that missing values come from exactly the same distribution as those
observed (the ‘saturated MAR model’) yields the maximum likelihood; this holds only
in the strict sense that no other model has greater likelihood, while infinitely many

others have the same likelihood.

Note too that such a MAR fit is always attainable; we need only constrain

¢t(d, = ¢t|dtr>t’

that is, set the conditional parameter for dropout at time ¢ equal to that estimated

for timepoint ¢ for subjects with no dropout by time t. We are always free to do this.
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Since all other parametrizations of the likelihood are monotone transformations of ¢,

this result holds in full generality.

6.5.2 A specific example

Consider the model in Section 6.3.2, page 218. This model is not saturated for the
observed likelihood, but despite the constraints the model remains overparametrized.
Specifically, we can only estimate the two contrasts aj + 83, and of + d3,, which is
insufficient to give a separate estimate of d5,. The underlying reason for this is given
above, but for illustration, for those subjects who drop out later than time 2, the

parameter that contributes to the score is

’ ' ’
¢Y2 | Yi=y1,Ra=1 = Q2 +any + 5227

while if there is dropout at time two (so that ro = 0), the canonical parameter

N ’
Yy | Yi=y1,R2=0 = Q3 + Q1 Y1,

which would be needed to distinguish o from 855, never contributes to the score. The
same obviously holds at time 3, and for any outcome vector length.

Thus, we see that even under heavy constraints it is impossible to estimate, by maxi-
mum likelihood, the key parameter for informative dropout, here 85, (missing data is
NINFdrop iff this is zero — see the equivalent definition for NIGmiss, equation 6.6).
Similarly, in the formulation at the end of Section 6.3.1, page 216, we cannot estimate
022, which has the same interpretation for informative dropout as #5,. Less obviously
for the selection-type formulation, this parameter is unidentifiable without further
constraints; but by monotonicity of ML estimates, iff it were identifiable, then so
would be 5.

Again maximum likelihood is not a tool that can be used to assess whether missing

data are, or are not, ignorable, nor can maximum likelihood be used to assess the

quantitative effect of a wrong assumption.
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6.5.3 Discussion

We cannot assess the pattern of missing data if we assume it is informatively missing
(Little and Rubin, 1987). The NIGmiss assumption is that the missing data have
a different distribution to that observed, and it is not surprising to find that the
observed likelihood has nothing to contribute to the assessment in terms of estimation.
Nevertheless if enough constraints are placed on the model for the observed data,
estimates for the missing-data parameters are imputed since there are a fixed number
of degrees of freedom. The selection model of Diggle and Kenward (1994), for example,
assumes a simple form for the correlation structure, which enables a parameter for
informative missingness, the equivalent of d23 above, to be estimated. That approach
fails for bivariate data and is unproven for categorical data; the unidentifiable model of
Section 6.3.1 follows the same approach, except for its parametrization of dependency.
Even if a model is sufficiently specified to estimate the equivalent of d9, it is deceptive
to call this a ‘maximum likelihood estimate of informative missingness’, the implication
being that such an estimate is determined by the data. Rather, it is the untestable

assumptions that determine the parameter estimate.

6.6 Example: the Liverpool CHITC study

6.6.1 Data and dropout pattern

The Liverpool Continuing Health in the Community project was created to study the
incidence and prevalence of dementia in the elderly. An original sample of 1070 people
aged 65 or over were assessed by interview, questionnaire, cognitive tests and blood
pressure measurements for dementia, with further assessments planned after three and
six years. As would be expected in this population, there was considerable attrition
due to subject death. Moreover there was a similar rate of refusal to complete the
study. In all, of the 1063 non-excluded subjects at year 0, only 696 remained in the
study by year 3 (179 had died, 188 refused to interview or were lost to follow-up);

by year 6 the sample size reduced to 437 people (148 more had died; 111 more were
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otherwise missing). Clearly a complete-case analysis of the 437 who completed the

study would be inadequate.

The scores and measurements for these people were filtered through a computer diag-
nosis program, AGECAT (Copeland et al., 1986), which outputs 8 ordered categorical
scales known as “syndrome clusters”, in addition to an overall diagnosis. In this ex-
ample only the so-called organic cluster is considered as outcome variable; depression
score (at baseline, thus time-invariant) is considered as a covariate. The original 6-
point scale for organic cluster reduces naturally to a ternary outcome: original scores
of 3 or above are cases, scores of 1 or 2 are called subcases, and scores of zero denote
absence of syndrome. Despite the sample size, the data are too sparse to analyse on
the finer scale. For example, there were no outcomes greater than 3 at year 0. In
keeping with other analyses (e.g. Copeland et al., 1992) only the three-point scale is
considered further, relabelled from 0 (no syndrome) to 2 (case). Depression was only
available as a binary variable (case or not at time 0).

The other available covariates of interest were age and sex.

The outcomes are shown in Table 6.2. This is presented in pattern-mixture style, with
class 0, 1, and 2 totals for each pattern appearing before the dividing rules; the heavy
rules delimit the three dropout patterns (outcome vector sizes). A further split into the
two types of dropout is too cumbersome to present and the data may be conveniently
represented in more conventional tables. For example, the association between year 0

organic score and year 3 dropout type is well illustrated by the following table:

dropout
organic cluster 0 1 2
0 620 126 154
1 41 35 19
2 35 18 15

where 0 indicates no dropout, 1 denotes death, 2 denotes otherwise missing. There
are two important additions to the previous discussion of dropout indicators. Firstly,
the de facto standard for binary indicators is 0 for dropout, but for computational

convenience the opposite convention is adopted here: zero for no dropout, nonzero for
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Table 6.2: CHITC outcome; 0 = no syndrome, 1 = subcase, 2 = case.

0 398 0 380 0 344

1 18
2 18
1 8 0 3
1 4
2 1
2 10 0 7
1 1
2 2
1 22 0 12 0 6
1 1
2 9
1 6 0 1
1 2
2 3
2 4 0 1
1 1
2 2
2 170 15 0 8
1 3
2 4
1 1 0 0
1 0
2 1
2 10 1
1 0
2 0
0 222 0 197
1 17
2 8
1 19 0 6
1 10
2 3
2 18 0 9
1 5
2 4
0 280
1 54

2 33
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some type of dropout. Second, the use of a ternary dropout indicator is novel to this

presentation.

A ternary indicator is called for here because it is important to maintain a distinction
between dropouts due to death and dropouts due to refusal; the latter are believed
by the researchers to be strongly informative, in that more refusees would be diag-
nosed as dementia cases than would be the case for participants. However, it must
be recognised that the degree of informative missingness cannot be estimated here,
as in general (Section 6.5), and there has been no follow-up study on a sample of
withdrawals. Nevertheless distinguishing the two dropout types enables us to directly
address important clinical questions such as the relationship between recorded demen-
tia and subsequent death and/or subsequent withdrawal while fitting a single model.

The relationship between dementia and subsequent binary dropout is of no direct

interest.

A cross-tabulation of dropout status at years 3 and 6,

dropout 6
dropout 3 0 1 2
0 437 148 111
1 0 0 179
2 8 34 146

reveals that the data set includes missing patterns other than monotone; 8 subjects
refused at year 3 but participated at year 6. This is such a small number that I
simplify by treating these as monotone missing by year 3; there was no clear pattern
to the response profile to suggest any appreciable bias would be introduced by this
assumption. Also, 34 subjects were missing (refused) at time 2 but known to have
died between years 3 and 6. Treating these as ordinary type-2 dropouts (which I do)
might bias results for a lag-2 dropout model; a more comprehensive study than the

current example should take this into account.
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6.6.2 Analysis

Here I shall only consider the incidence of dementia, rather than its prevalence, because
the former can conveniently be studied using Markov chain models. This approach
facilitates the study of dropout models. Prevalence is better studied by a marginal
model, which is how the initial sample at year 0 was studied by Copeland et al. (1987).
The estimates are inefficient compared with those of a marginal model that takes into
account the data from subsequent timepoints.

Data were analysed using a custom written program, hcfit (see Appendix A6.6).
This program implements the timepoint-wise pattern-mixture model of Section 6.3.2,
specifically equation (6.14), but the selection-type model (6.14) is also available al-
though it is not analysed here. The hcfit program enables data and dropout models
to be fitted simultaneously, assuming both are of interest. The models can also be
fitted separately; indeed if data are not assumed informatively missing, only the data
model need be fitted. The program-evaluated log likelihood is partitioned into con-
tributions from each model, ¢y and ¢, to facilitate analysis of deviance when both
data and dropout models are modified in the same step and the missing mechanism
is assumed at worst MAR. If dropout is informative, the log likelihood partition is a
mere artifact and only the sum of £y and ¢ should be considered.

Cumulative logit models as described in Chapter 4 were fitted to the ordered data, Y,
while the nominal data, R, were fitted via a canonical link to the multinomial logits,
using R; = 0 as baseline.

To study the effects of covariates a rule of thumb is to fit them to a intercept-
unconstrained model. However, here 16 parameters would be included in the data
model alone without considering potential interaction factors for the year 6 model,
and it is extremely hard to find starting values that lead to convergence. I found that
forward selection (from common intercept, to separate intercepts, to Markov lag one,
etc.) was able to overcome this problem.

The modelling strategy adopted here is as follows:

1. Select a model for the intercept parameters (the ‘intercept model’ or ‘depen-
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dence model’). This features baseline cutoffs and history dependence, but ex-
cludes explanatory variables x. I use analysis of deviance to compromise between

adequacy of fit and reducing the number of parameters.

2. Forward selection of explanatory variables added to the intercept model. Each

variable selection step consists of several substeps:

¢ add each remaining effect in turn to the current model using the fullest
possible submodel (i.e. separate parameters for each outcome value for each

timepoint);

o choose the effect that increases the log likelihood most significantly (if none,

then stop);
¢ simplify the model for the effect chosen;

e repeat.

3. Reconsider simplifications of the intercept model now that covariates are in-
cluded in the full model, and perhaps consider adding interactions between ex-

planatory variables and previous outcomes.

It is important to fit full models for effects before simplifying them in step 2. A very
simple model, such as a single parameter added to all links, might fail to detect an
important effect altogether.

The overall strategy advocated, which is essentially block stepwise selection, does
not consider every possible model and can be criticised on such grounds. However,
all-subset regression is totally impractical for the CHITC data.

For the intercept (a-parameter) model, that is, the model ignoring covariates, I used
forward stepwise selection from the simplest model that has any meaningful interpre-

tation:

ny, = ajj
MRy = NRai
N, =Myzj =~ O

fi
g
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where 7 are the linear predictors for a timepoint-wise pattern-mixture model, for
conditional logits of the subscripted variables, j is 0 or 1 for the cumulative logit links
(fitted to Y), and ¢ is 1 or 2 for the multinomial logits (fitted to R). The history
dependencies are suppressed from the n notation for simplicity (and indeed there is
no conditioning on history in this model). The time 1 model is included primarily
because hcfit expects one, though the baseline is always of some interest. This model
should not include parameters in common with that for other timepoints, as this might
bias the dependency model.

Labelled output from the hcfit program, showing parameter estimates and standard
errors and evaluated log likelihoods for the models fitted here, is given in Appendix
7.5. Numbers in raised square brackets cross-reference the models; the above is (1,
Note that years 0, 3 and 6 become timepoints 1, 2 and 3 so that Y3 is the outcome at
year 6, not 3.

The above model is null in that it assumes no change over time. Another contender

for the title of ‘null model’ is the independence model,?

v = 0y
NR, = 02
My, = Q25
MRy = O3
My, = O3j

This has similar log likelihood to the null model, but has four more parameters. The
time-1 and time-3 data-model parameters are very similar, suggesting either that the
time-1 marginal analysis is adequate and that time-2 values are suspect, or that data
are indeed missing informatively. Nevertheless, since we cannot test for this (Section
6.5), we proceed, for simplicity of illustration, assuming the data are at worst MAR.
The first model of any intrinsic interest incorporates dependency on previous values

Yi-1, that is, a lag-1 Markov model. History is assumed to have a linear effect for the
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present and the time-2 and time-3 models are assumed to be the same, depending on

yt-1. That is, this simplest lag-1 Y; model (t = 2,3) ist?!

ny,j = 025 + QpYp-1,

which assumes a common model across timepoints excepting the Y; model. This is a
proportional odds model; the cutoff points ay; are shifted equally by apy;—1, which
corresponds to assuming the same distribution for each history except for a logit-
linear change of location parameter. There is no significant improvement when the
common-distribution assumption is dropped: that is, if two parameters ap;, j = 1,2,

replace of ah,[4] the deviance change is only 2.2 on 1 degree of freedom.

History can be fitted as a factor rather than as a scalar. This does more than depart
from linearity as it avoids demanding a monotonic relationship; since here the scales
are ordered, a non-monotone relationship would cast serious doubts on underlying

assumptions. In practice, here we obtain a monotone fit to the factor model: %!

My,j = 025 + a;l:y(t—l):

where

ap. = (0,ap1, op2)’

treats history 0 as baseline, GLIM style; the colon notation denoting ordered categories
was introduced in Chapter 4. This is a significant improvement on the linear effect

model.

Previously we saw a non-significant improvement when the common-distribution as-
sumption was dropped. However for the nonlinear effect model there is a clear im-

provement when ﬁtting[G]

Ny,; = a2 + a;Ij:y(t—l):

with separate parameters for j = 0, 1. This model is almost intercept unconstrained as

far as the lag-1 relationship is concerned. If the a2; were replaced by timepoint-varying
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oy; and the apjr by aunjr we would have variationally independent ¢. Equivalent to
the first of these steps but more readily interpretable is the addition of a period effect

apj to the time-3 model:[”)

My = a2j+a;zj:Y(t—1):

Mvej = €2+ Qpj+ 0h;.¥ (),

This gives a significant improvement over the common-intercepts model above, as
perhaps suggested by the independence model earlier. The final step, to lag-1, non-
stationary saturation,[sl offers no further improvement. Thus the lag-1 dependence
structure is adequately modelled as stationary. This is encouraging for prediction,
although the time-dependent baselines are a problem and this is addressed below.
Also, we obtain time-invariant estimates of the effect of 3-year previous history on

incidence, one of the main objectives of the study.

A lag-2 dependence model is less obviously desirable for a 3-wave study since it is
based on only one pair of observations, and thus cannot be verified to be station-
ary. Moreover, when there is as much potentially informative dropout as here, the
complete-case sample might not represent the study population. Nevertheless the

effect of adding a simple lag-2 effect to the Y3 model,[gl
MYsj = Q25 + pj + Q.Y (4 1). + Chn.Y(1-2):

was highly significant and so could not be ignored (deviance 25.6 on 2 d.f.). Moreover,
the period effect, a;;, can be dropped from this model with almost no change in the
log likelihood, and this gives a more appealing overall model'% than one with different
baselines for times 2 and 3. Substituting a non-proportional-odds parameter set cpp;.
for app. gave no significant improvement.[n] Interactions between 3,1 and y;—2 were

not then considered.

Estimates for the chosen intercept model, for the data model, are summarized in Table

6.3. Interpretation of these parameters follows in Section 6.6.3.
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All the potential explanatory variables were found to be significant when added to
this model. In general a separate parameter for each effect for each timepoint is
required, as discussed on page 238ff., since the effects are adjusted for the time-
varying circumstances of the intercept model. The full explanatory model could be
reduced (without significant loss) to have a simple logit-linear effect for age (common
across timepoints and proportional-odds), with depression and sex also significant but
only for the time-2 model (given age). The individual fits for the stepwise selection
procedure used are omitted from the Appendix for brevity; only the final model is

shown there (and summarized in Table 6.3):(!2

My = O2j+ ;Y 1), + ChaY(s—2). + Balage) + Baz(depress) + Byz(sex)

Mai = 025+ @Y 1) T XhnY(e—a) + Balage)

Here ‘age’ is actual age minus 65 dived by 10 (to avoid magnitude problems for initial
estimates of the logits), ‘depress’ is depression cluster at year 0 (0 if a clinical case,

else 1; time-varying score was not available), and sex is 0 for females, 1 for males.

Once explanatory variables are incorporated into the overall model it might be possible
to simplify the intercept model. Although not necessary for this analysis, if the chosen
intercept model had been the period-effect model, then one would consider dropping
the period effect from any model incorporating the simultaneously-varying covariate
age. For these data, this approach gives a significantly worse fit than a model with

both age and period (hcfit output omitted).

While fitting the successive data models, the dropout model can be developed simul-
taneously. The additions to the null model for R closely parallel those for the data
model; intercept parameters (cutoffs §; and 4, and history dependencies 8p;.) could
all be taken to be common for both timepoints, but one could not assume common
parameters for the two types of dropout (as expected). Successive significant improve-
ments were found for the addition of linear lag 1 (i.e. probability of dropout depending

on previous Y outcome), then nonlinear lag, 85;., analogous to aypj. in the data model.
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Table 6.3: Estimates for the intercept (1) and final (2) models selected, for both data
model (parameters a and 3) and dropout model (parameters §). Standard errors
(SE) of the estimates are those obtained from the information matrix. Approximate
and sandwich estimates are given in Appendix A6.6.

Parameter Estimate (1) SE (1) Estimate (2) SE (2)
a1 1.71 0.085 1.71 0.085
an 2.68 0.125 268 0.125
asgp 2.43 0.115 2.58 0.136
asy 3.22 0.162 3.39 0.169
ORo1 -2.66  0.300 -2.46  0.313
O po2 -1.51 0.324 -140  0.339
ap11 -1.50  0.386 -1.37  0.404
ap12 -1.42  0.377 -1.35 0.410
Qph1 -2.22 0.400 -1.85 0.464
Qph2 -2.00 0.477 -1.62  0.516
Ba -0.62 0.157
Baz -0.92  0.270
Bs2 034 0179
& -1.83  0.071 -2.05 0.113
&2 -1.33 0.065 -1.29  0.085
dn1 1.33 0.208 1.13 0.220
On12 0.93 0.239 0.67 0.253
dno1 1.01 0.226 096 0.227
Ohoo 0.33 0.289 0.31 0.290
ba1 096 0.103
051 0.71 0.135
052 -040 0.142
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There was no significant lag-2 effect.

For the explanatory model for dropout, after reduction, there is an effect for age on
death, d,1, though not on refusal/missing, and a sex effect for both death, 45, and
refusal, d52; all these are the same, i.e. not significantly different, for dropout times 2
and 3. Estimates and their SEs are given in Appendix A6.6, with those for the final
model!'? in Table 6.3.

6.6.3 Comments

The chosen explanatory models indicate that age increases the probability of organic
dementia and simultaneously increases the probability of death (this latter is hardly
a surprising finding). Also previous history of dementia is strongly associated with
increased probability of both dementia and death. Dementia subcases are associated
with refusal to participate further (parameter é,9; is significant) but, surprisingly, full
cases are not significantly less likely to participate. Given the other results this may
be simply because these people tend to die before having a chance to refuse.

It is hard to interpret the significance of depression score and sex at time 2 only, for
the data model. The first can perhaps be explained by supposing depression has a lag
1 but not lag 2 effect; if we had the time-varying depression score our estimates might
change. The sex effect may be confounded by age effect. Otherwise the estimates
suggest that males are less likely to be cases at time 2, but according to the dropout
model are more likely to die then (and at time 3). Also, the significance of Js2 suggests
that males are less likely to refuse. A plausible explanation for these joint findings
is that females who refuse are less likely to be cases than those who do not refuse,
that is, that dropout is informative. This hypothesis is however not testable by the
available data.

Model selection is not an easy task here. There are far too many possible models for
all-subsets regression to be applied blindly, but there is surely great danger of missing
a good model if selection is not in some way systematic. Each model may take a
considerable time to interpret as there are so many potential inter-relationships, but

it is necessary to interpret each of them carefully when selecting on more intuitive
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grounds; when I first started selection, I frequently found that adding an effect in a
particular form would then suggest an unsuspected, non-nested simplification. The
block stepwise selection algorithm given above was developed as a result of many
earlier frustrated attempts. Even so, that algorithm might fail to find the best model,
and still takes a considerable amount of time. Further guidelines for model selection

are needed.



Chapter 7

Summary and conclusions

In longitudinal data analysis, we are concerned with an outcome variable, Y;, measured
at each of T timepoints, on each of N subjects or units. In this thesis, we have
restricted attention to categorical outcomes, and to the case when the timepoints are

fixed (and the same for all subjects). Then, writing
Y =(1,Ys,..., Y1),

the joint probability function, f(y), is a member of the polynomial exponential family,

with canonical form

f(y) = exp{€'z — C(€)}, (7.1)

where

Z= (Y1, YT Y192, - - - ,YT—1YT» - -+ Y1¥2 - - y1) -

In Chapter 2, reviewed in Section 7.1, we considered multivariate models for f(y), of
two main types, as now outlined. When a multivariate model directly parametrizes
E[Y:], the mean at each timepoint, it is called a marginal model. If the model fur-
ther parametrizes all higher-order marginal expectations, from pairwise E[Y;Y;] to
full-order E{Y1Y>---Y7], it is called here a fully marginal model. This nomenclature
extends to the case when marginal odds ratios, rather than expectations, are directly

modelled. Fully marginal models are reviewed in Section 7.1.1.

247
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If only first-order expectations are modelled marginally, with the remaining speci-
fication of the multivariate probability function being other than through marginal
parameters, the model is here called first-order marginal. By extension, a second-
order marginal model parametrizes each E[Y;] and E[Y;Y;] marginally, but completes
specification of the distribution other than marginally. Collectively such models are
called partially marginal. The only models considered here use a canonical link for
the high-order interaction parameters. These and non-marginal models that use a

canonical link for all parameters are reviewed in Section 7.1.2.

In another approach, the joint probability function may be factorized

F(y) = fu)fly2ly) - flyr v, y2, - - - yr-1). (7.2)

A model for the set of univariate, conditional distributions on the right-hand side of
this expression is known in general as a transitional model. For categorical outcomes,

this is a Markov chain model. Such models are reviewed in Section 7.2.

In a longitudinal study, very often not all subjects are available for measurement at
every pre-determined timepoint. Commonly, a subject, once missing, is lost to all
subsequent follow-up; this is known as dropout. Strategies for modelling data when
some subjects drop out are reviewed in Section 7.3. A further summary of strategies
available for a cross-classification of model type and dropout specification is given in

Section 7.4.

I conclude in Section 7.5 with a brief summary of the novel contributions made in this

thesis, and highlight some topics for future research.

7.1 Multivariate models

We consider here models for the joint, multivariate probability function f(y). I review
fully marginal models in Section 7.1.1, then in Section 7.1.2 consider models that
are marginal only up to some given order of interaction, being canonically linked

thereafter.
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7.1.1 Fully marginal models

Fully marginal models were introduced by Molenberghs and Lesaffre (1994) and Glonek
and McCullagh (1995), who studied marginal odds ratio models fitted to binary data
or ordered categories (Glonek and McCullagh consider also unordered categories), and

by Ekholm et al. (1995), who introduced dependence ratio models for binary data.

In Section 2.3.1 I have generalized the approach of Ekholm et al. (1995) in two
ways. Firstly, I have derived score equations that do not impose constraints such as
‘horizontal homogeneity’ (i.e. constraining all ratios of like order to equality); I allow
full freedom of choice of parametrization. Secondly, I have illustrated how the ratios

and models can be extended to polytomous data, both ordered and nominal.

My main contribution to the field of marginal odds ratio models is computational.
The new SQb algorithm (Section 3.6) makes it feasible to fit models on many more
timepoints than hitherto practical, because it is much faster than Newton-Raphson
iteration as adopted by Glonek and McCullagh (1995). The method employed by
Molenberghs and Lesaffre (1994) has not been extended to more than three timepoints,
as it requires analytic formulae for the coefficients of high-order polynomials, which

are not currently available (as discussed in Section 3.2).

For many sets of odds ratios, at the extremes of the parameter space, the Newton—
Raphson balgorithm fails to find a solution for the probability table, @ — even though
one exists, and can be found readily using SQb. On the other hand, ratios also exist
for which Newton-Raphson finds a solution but SQb cannot. Thus a robust computer
routine for finding # must have both algorithms available in case one fails. A joint
strategy is proposed (on page 144): briefly, attempt SQb first, but use Newton—
Raphson if this fails. With an increasing number of timepoints an entire wasted run

of SQb is increasingly quicker than a single Newton-Raphson step.

When all odds ratios lie between 0.1 and 10 — or are constrained to do so — the SQb
algorithm has never been observed to fail to converge within reasonable time and can
entirely replace Newton-Raphson. As an example of the speed advantage: if there are

7 timepoints, SQb is on average 400 times faster than Newton-Raphson.
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Of the other algorithms studied, SM¢, fails as seldom as does Newton—-Raphson, but
it is never very much quicker on average, and can be rather slower. The SR algorithm
(modified to SRquad for less than seven timepoints), is often close to SQb in speed, but
is occasionally much slower, and more often fails to find a solution within an acceptable
amount of iterations. Because it is based on an approximate inverse for the logistic
transform, the SR algorithm does, however, generally give very good approximations
to within 2 or 3 decimal places within a remarkably small number of iterations.

Sometimes all algorithms fail. I have proposed a meta-algorithm whereby a less ex-
treme problem is solved to give either an approximate solution, or better starting
values for the original problem, but this has not yet been fully studied. It is more
urgent to study whether the extreme conditions that lead to numerical instability are

likely to occur in practical applications.

7.1.2 Partially marginal and zero-conditional models

Motivated by the considerable computational advantage of first-order marginal models
as proposed by Fitzmaurice and Laird (1993), I have studied taking the process one
stage further, whereby all the odds ratios are zero-conditional, giving a model with
identity link to the canonical parameters, £ in (7.1).

This model is computationally simpler than that of Fitzmaurice and Laird (1993).
However, it is sensitive to mis-specification of the dependence structure, and in this
it is considerably worse than the Fitzmaurice and Laird model, which has efficient
estimators of marginal means even when high-order, zero-conditional ratios are poorly
specified.

In the fully zero-conditional model, the probability table corresponding to a set of
zero-conditional log odds ratios, &, is easily expressed in closed form. This enables
some analytical insight into the transform to marginal log odds ratios, A. The par-
tially marginal set of ratios used in the Fitzmaurice and Laird model does not give a
probability table expressed in closed form.

Canonical models are attractive because of the speed of the fit, and because for rea-

sonably large numbers of observations the marginal algorithm may not be compu-
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tationally feasible. These simpler models generate maximum likelihood estimates of
the probability table, #, from which marginal odds ratios, X, may be simply read. If
one is ultimately interested in the parameters vy of a more or fully marginal model,
one might use, say, least squares to fit them to A = X M- We might obtain crude
confidence intervals for such estimates by studying the range of values in the marginal
interpretation as we vary the zero-conditional parameters between the extremes of
their estimated confidence intervals.

This has not been studied; instead I have concentrated on extending the practical limit
on the number of observations for which fully marginal parameters can be estimated
directly (see previous subsection). Indirect techniques remain potentially useful, how-
ever, for data based on more than ten timepoints.

I have been perhaps too dismissive in Section 2.5.2 in claiming that mixed parametriza-
tions with greater than first-order odds ratios modelled marginally are too difficult to
fit. Although I have not yet found a recursive definition and/or algorithm as succinct

as that for the fully marginal case, this would be a useful area for further study.

7.2 Markov chain models (and generalizations)

A series of discrete observations with conditional probability functions obeying

f(yt|y1’---,'yt—-1) = f(y |yt—m,---ayt—1)

is called a Markov chain of order m. A set of such probabilities for t = 1,...,T defines
a multivariate distribution for y = (y1,...,yr) as in equation (7.2). In Section 4.5
we have seen how this is readily extended to the case when a vector of observations
is taken at each timepoint, giving a multivariate Markov chain. Furthermore we have
noted that decomposition (7.2) can be applied to any joint distribution even when the
variables are not repeated measures; this is not a Markov chain model. In particular,
in Sections 4.5 and 6.3 we have used the decomposition on the vector of observations
at each timepoint of a multivariate chain.

This generalized model can be fitted using the same methodology as for any standard
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Markov chain model, as indicated in Section 4.5. The log likelihood for a set of
S conditional probability functions obeying the decomposition (7.2), whether they

represent a Markov chain or not, is the sum

b=0+l+-- +Ls.

Assume that the linear predictors, n, = X,v, are variationally independent both
within and across conditional models; departure from this assumption is treated
shortly below. Concatenating n = (n},...,n%)" and b = (b},...,b%)’, where b; =
9¢;/0n;, the contribution for the entire series to the overall score equation is, for each
subject,

U=X+— =X'Db. (7.3)

By choice of design matrix X, built from the set of X, different n; may share some
parameters 4. But this does not affect the general form (7.3), because the results of
applying the chain rule as above, or of re-writing the likelihood in terms of 4 and
differentiating directly, are necessarily identical. As a result, parameters common
to different conditional models can be specified by choice of X independently of the
individual forms by, which are the same for all models to be considered. Furthermore

by the same reasoning the information matrix contribution is

I = X'E[bb']X, (7.4)

where E[bb’] = —8¢2/0n'dn is necessarily block diagonal.

In this thesis I have derived b, only for logistic regression models — not assuming
standard proportional odds restrictions — for ordered and unordered categorical data.
I have used a logit link throughout; other standard links, such as probit or complemen-
tary log-log should also be considered. Extensions to other types of data are worthy

of further study and can be easily incorporated into the above framework, given the

relevant form of b; and E[b,b}].

The use of the generalized score equations within standard Markov chain modelling
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is novel and allows great flexibility. For example, we may fit different explanatory
variable models at different timepoints while assuming stationarity with respect to
previous outcomes, or fit common baseline probabilities within non-stationary chains,
or allow for interaction between history and covariates in chains of arbitrary order. A
single algorithm suffices to fit every model to be considered, which seems preferable to
introducing a series of more tailored methods such as reviewed by Lindsey (1993) and
Diggle et al. (1994). It also allows for easy forward or backward selection of nested
models.

A large number of parameters is unavoidable, given the large number of potential
interactions. As a rule of thumb, we should not set parameters common to timepoints
adjusted for different histories. Parameters can safely be shared across timepoints
when modelling stationary, fixed-order chains, for example. Otherwise, similar pa-
rameter values from an unrestricted set can suggest simplifications in the interests of
parsimony, but care may be needed in subsequent interpretation.

I am still in search of a name for the generalized model. Restricted to longitudinal
data, ‘timepoint-wise factorized Markov chain’ is adequate, though clumsy. Whatever
it is called, the ‘Markov chain’ approach offers an intuitively appealing model when

there is dropout, as seen in Chapter 6 and discussed in the following section.

7.3 Dropout

As mentioned in the introduction to this chapter, dropout occurs when a subject
becomes and remains unavailable for further measurement before the final timepoint
of the planned study. A standard approach to modelling when there is dropout follows
the more general method of Little and Rubin (1987): we introduce a vector of indicator
variables for occurrence of dropout, R, and model the joint probability f(y,r). In the
nomenclature of Little and Rubin, dropout is non-random if the probability of dropout
depends on the value of the outcome variable that would have been observed had the
subject not dropped out. Dropout is said to be completely at random (MCAR) if

the probability of dropout is independent of all observed data values, and at random
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(MAR) if dropout probability depends on observation history.

The joint distribution f(y,r) may be factorized

f(y,r) = f(y)f(r]y) (7.5)

which gives a selection model, or otherwise as

fly,r) = f(r)f(y]r), (7.6)

which is called a pattern-mizture model. In a selection model, the observed data are
assumed to be a subset of an underlying complete observation y*; this assumption is
not required in pattern-mixture models, because f(y |r) is fully observed. A different

factorization is introduced in Section 6.3 and discussed below in Section 7.3.2.

I use the terminology data model for f(y) or f(y|r), and dropout model for f(r)
or f(r|y). Unless dropout is non-random, data and dropout models can be fitted
separately. Thus in this case one could model both f(y|r) and f(r|y) even though

these do not combine directly to give f(y,r).

In the following I split discussion of marginal and transitional models into separate
subsections, though it is possible and sometimes desirable to mix the two approaches,

using, say, a marginal data model with transitional dropout model, as in Molenberghs

et al. (1997).

First, though, I re-iterate an important general point spelled out in Section 6.5: we
cannot assess the pattern of missing data if we assume they are informatively miss-
ing. If enough constraints are placed on the model for the observed data, however,
estimates for the missing-data parameters, and hence the missing data, are imputed,
since there are a fixed number of degrees of freedom. I argue though that even if a
model is sufficiently specified to estimate such parameters, their significance should
not be construed as a ‘test for informative missingness’, the implication being that
the outcome of such a test is determined by the data. Rather, it is the untestable

assumptions that determine the outcome of the test.
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7.3.1 Multivariate models

In Chapter 5 we considered models based on either full selection or full pattern mixture
approaches, that is, we considered f(y) or f(y|r) in Section 5.2, and f(r) or f(r|y)

in Section 5.3.

For the data models, a fully marginal model naturally follows a selection approach,
while for partially marginal, and zero-conditional models, inherent lack of reproducibil-
ity demands imputation of missing values before a selection model can be fitted (even
assuming MCAR dropout). I have shown in Section 5.2.4 how the introduction of a
correction term — a separate intercept parameter for each dropout pattern — enables
a quasi-pattern-mixture model to be fitted without recourse to imputation. Parame-
ters other than the intercept may be the same for all dropout patterns, which violates
the definition of full pattern-mixture modelling. A full pattern-mixture model is easily
fitted without imputation; observations of different lengths are modelled separately.

This approach has not been favoured in the literature.

For dropout models, I have considered ordinary marginal models adapted to take
account of the structural zeros in the vector of R values, but encountered problems

both in fitting and in modelling time-varying covariates.

To overcome such problems, a semi-canonical model has been proposed in Section
5.3.3. Advantages are that this is very easy to fit, that successive means are inher-
ently constrained to be monotone decreasing, as they need to be, and that the linear
predictors are identical for different observation sizes, so we gain reproducibility (or
more correctly a type of reproducibility; such that the model for timepoints 1 to d is

a subset of that for timepoints 1 to d + 1, etc.).

In this model, explanatory variables at dropout time are not explicitly modelled even
if known, but their history determines the canonical parameters and hence uniquely
determines the distribution function for the outcome vector. A loss is that time-

varying explanatory variables at the final timepoint are not incorporated.

The vector of indicators R can be aliased by a variable D, denoting dropout time,

which follows a truncated geometric-type distribution where probabilities of ‘success’
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vary in successive trials. However, there is no obviously simpler way to model the
time-varying probabilities than by using the above model.

Even for a trial with primary outcomes measured at discrete timepoints, dropout time
may be known more fully, such as when dropout is due to death and this is followed
up and recorded. In such cases, unless dropout is non-random, any suitable, standard

survival model can be fitted.

7.3.2 Markov chain models

After factorizing the joint probability f(y,r) according to (7.5) or (7.6), we may use
standard Markov chain models for the data and/or dropout models. Rather than
pursue this directly here I have studied instead factorizing first by timepoint, giving

a multivariate Markov chain:

f(y’r) = f(ylarl)f(y23r2 Iylarl) e f(yTarT l hTarla T arT—l)'

Assuming that we do not attempt to model timepoints beyond dropout time, the
conditional model for (y¢,7;) depends only on previous outcomes and r;_;.

After this factorization, a selection-model style approach is to take

ferelhe,rey) = flye | e, re1) f(re | ye, he, 1),

whereas a pattern-mixture style model uses

flye, e | he,me—1) = flre |y, re1) f(ye] e, he)-

These are called here timepoint-wise selection and timepoint-wise paltern-mizture
models, respectively. Both combine elements of both ordinary selection and pattern-
mixture models: in general the conditional probabilities for y depend on r and those
for r depend on y.

Model selection can be difficult even for data on a small number of timepoints. There

are far too many possible models for all-subsets regression to be applied blindly, but
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there is surely great danger of missing a good model if selection is not in some way
systematic. The block stepwise selection algorithm proposed in Section 6.6 is a first
attempt at tackling this problem, but certainly might fail to find the best model. More

work is needed here.

Parameters will not be shared between data and dropout models, so that each can be
optimized separately, unless dropout is non-random. If one is simultaneously imputing
values according to various non-random dropout assumptions, however, the models

do not separate and model selection becomes even more difficult.

Setting common parameters within a timepoint-wise pattern-mixture model, for each
timepoint model for each dropout pattern, as in the example in Section 6.6, is very
similar to a selection model approach. The assumption made is that all the observed
values up to timepoint d are realizations of a common distribution f(y(® |D > d),
which is itself nested within a common distribution f(y{¢t1 | D > d + 1), and so on.
These distributions are neither the selection f(y*) nor the pattern-mixture f(y|d),
but are much closer to the former in concept and interpretation. Given a marked
preference in the literature for selection models, the proposed mixed approach should

prove appealing.

7.4 Complete and incomplete observations — summary

I here summarize considerations for the four main types of model studied, i.e. the fully
marginal, first-order marginal, canonical (zero-conditional) and Markov parametriza-

tions, according to missing data presence or assumption, i.e. complete data, MCAR,

MAR and non-random missing or dropout.

The marginal Koch and Stram models, the subject-specific Korn & Whittemore, beta-
binomial and random-effects models, and split-plot ANOVA methods, discussed in
Chapter 1, are not included in the following. For GEEI, see ‘first-order marginal’.
Comments would be similar for the GEE2 and other partially marginal models not

studied here in depth.
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Fully marginal, complete data. These models are discussed extensively in Chap-

ter 2, Section 2.3, and in Section 7.1.1 above, q.v.

Fully marginal, MCAR data. As discussed in Section 5.2.1, in this case ordinary
likelihood methods are applied to the observed data. It suffices to mask out score and
information matrix contributions relating to variables not observed for a particular
subject. Reproducibility (Section 1.4.3) makes fully marginal models very attractive
in this setting. Such models easily deal with any pattern of missing data (except

entirely missing), not just the monotone pattern of dropout.

Fully marginal, MAR data. The comments of the previous paragraph apply here
too, if one is concerned only with the data model. This gives a selection model. A
full pattern-mixture model would ignore reproducibility, raising doubt as to whether
one should ever attempt to use marginal models in a pattern-mixture setting. Pa-
rameters might be common for each of the odds ratios, as in selection models, but
with observation-vector size introduced as a further explanatory variable. If there is
interest in the missing-data mechanism, it needs to be modelled separately, perhaps

using one of the methods proposed in Section 5.3.

Fully marginal, informative missing. I have considered this case in Section 6.4,
specifically for binary data, in Subsections 6.4.2 and 6.4.6. One must be prepared
to make untestable assumptions about the missing mechanism in order to obtain an
identifiable model. Recently Molenberghs et al. (1997) have proposed a selection
model for ordinal data, with a logistic regression model for the missing-data mecha-
nism, which is restricted to dropout. With informative missing data, selection models

require imputation of missing Y values (Molenberghs et al. use the EM algorithm).

First-order marginal, complete data. These models were proposed by Fitzmau-
rice and Laird (1993) and are discussed in Section 2.5. Orthogonality between the
marginal (first-order) and zero-conditional (higher-order) odds ratio estimates makes

these models particularly attractive when only the univariate marginal odds are of
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interest, since estimators of these are efficient even if the dependency model is very
poorly specified. GEE1 serves a similar purpose but fails to take account of high-order

dependence and gives less efficient marginal estimates.

First-order marginal, MCAR and MAR data. Even in the relatively simple
case of MCAR data, the lack of reproducibility of the zero-conditional (higher-order)
odds ratios presents a problem. I have highlighted the problems of assuming common
zero-conditional odds ratios for outcomes with a different number of observations in
Section 5.2.3, and suggested a pattern-mixture style correction for this (the ‘corrected
false-identity link’) in Section 5.2.4, reviewed in Section 5.2.5. Fitzmaurice et al.
(1994) proposed to use the EM algorithm in an alternative, selection-model approach.

Another option is to use weighted GEE methods (Robins et al., 1995).

First-order marginal, informative missing. The difficulties mentioned in the
preceding paragraph apply here too, with the added problem of non-identifiability of
the missing-data mechanism. I have not studied this particular combination in any
detail, though it is clear that a combination of corrected identity links and multiple

imputation would offer a feasible modelling strategy.

Canonical link, complete data. Canonical link models, proposed and discussed in
Section 2.4, are extremely easy to fit but difficult to interpret. Their use as a stepping
stone to marginal inference is considered in Section 2.4.4. More work is needed on
this particular aspect, but it is clear that for a particular set of covariate values, a
canonically-linked model that is not too simplified gives a good estimate of the joint
probability table, from which marginal and/or ordinary conditional odds ratios can

be read, as desired. A disadvantage is sensitivity to variance mis-specification.

Canonical link, MCAR and MAR data. The false identity link and its correc-
tion have already been discussed in the paragraph for first-order marginal models with
MCAR or MAR data, above. This offers a pattern-mixture type model. I have not

considered selection models in this context, though one could adapt the EM approach
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of Fitzmaurice et al. (1994) here.

Canonical link, informative missing. The issue of non-identifiability of such
models is detailed in Section 6.4.5. As for first-order marginal models, a combination
of corrected identity links and multiple imputation would offer a feasible modelling

strategy.

Markov, complete data. Discussed extensively in Chapter 4 and Section 7.2

above, q.v.

Markov, MCAR data. Provided that the missing-data pattern is monotone, i.e.
the only missing data is due to dropout, fitting is identical to that for complete data
except that one truncates the Markov chain immediately preceding dropout time for
each incomplete observation. Other missing-data patterns present a more difficult

problem, which has not been addressed here.

Markov, MAR dropout. In timepoint-wise models, both pattern-mixture and
selection, data are MAR if previous y values enter the linear predictors for the dropout

model. The data model itself is identical to that under the simpler MCAR assumption.

Markov, informative missing. I have considered this case primarily in illustrating
inherent non-identifiability of informative missing data, in Section 6.5. Practically, one
must be prepared to make some strong assumptions to gain identifiability, perhaps as

part of an exercise in multiple imputation.

7.5 Conclusions

The algorithms introduced for numerical solution of the inverse logistic transform,
especially algorithm SQb, make feasible the fitting of fully marginal models for data
observed over more timepoints, and with more extreme dependence structure, than
hitherto practical. Algorithm SQb could be improved still further by automating judi-

cious choice of control parameters; the important gain would be in further increasing
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the probability of obtaining a solution, though there can be improvement in speed
also.

Algorithms SR and SRquad are chiefly useful in obtaining approximate solutions
quickly; otherwise they compare unfavourably with SQb. Algorithm SM¢. is opti-
mum only in exceptional circumstances (a very large number of timepoints with odds
ratios close to machine infinity or zero). In common with all other algorithms studied,
Newton-Raphson iteration does not always offer a solution. Otherwise it has excel-
lent convergence properties, though at the cost of being prohibitively slow for large
problems. A combined strategy is proposed exploiting the best features of all four
algorithms.

A generalization of the dependence-ratio model of Ekholm et al. (1995) is given,
imposing fewer constraints, and dependence ratios have been defined for polytomous
data. Score equations have been derived for these extended models.

The model of Fitzmaurice and Laird (1993) has been extended to cater for unbalanced
data without the need for imputation. Another extension has been to models with
all the canonical parameters parametrized directly using identity links. This is the
computationally fastest to fit of this family of multivariate models, but it is sensitive
to mis-specification of the dependency structure.

Score equations have been derived for generalized Markov chain models, allowing a
flexible framework for fitting a broad class of models regardless of whether or not the
factorization exploited corresponds to an underlying stochastic process. The method-
ology, specified for categorical outcomes, is amenable to extension to other data dis-
tributions.

Timepoint-wise factorizations of multivariate Markov chains introduce models for
dropout that are neither purely selection nor purely pattern-mixture, but which may
lean strongly towards one or the other extreme as the modeller prefers. For polyto-
mous data, and ordinal data not assuming proportional odds models, there are many
potential parameters to consider, and though I have suggested heuristic guidelines,
more work is needed on subset selection.

Three broad areas for further work relate to both multivariate and transitional models.



CHAPTER 7. SUMMARY AND CONCLUSIONS 262

Firstly, a useful addition would be the ability to incorporate random effects (not
necessarily including a local independence assumption), enabling one to allow for
heterogeneity between subjects not accounted for by existing models. Secondly, the
techniques considered here for discrete timepoints need to be extended to the case of
unequally spaced observations. Finally, more work is needed on software development,

in that programs need to be both more efficient and more user-friendly.
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The section number of these appendices reflects that of the chapter and section to which they
relate.

A2.2 PEF canonical parameters for polytomous data

Consider a bivariate distribution of ternary variables with the following cell probabilities:

Y,
Y7 O 1 2

0 m®oo ®o1 o2
1 mo mu mo2
2 Ty W1 22

Let &I be the zero-based, zero-conditional univariate log odds ratios for variable i = 1,2:

& = log—= (A1)
700

& = log=¥r (A2)
700

where r = 1,2; the convention is subscript for variables, superscript for value. The bivariate
ratios are based on the ‘anchor’ cell g giving

€15 = log 170 (A3)

TroTOs

These are canonical parameters for the polynomial exponential family form (1.24), as may be
readily verified directly; for example

P(i=2Y;=1)

exp{& + & + &5 — C8)}

2.1.21
X1X2X12700

20 o1 721700
. — ——— ] Too
Too oo m20701

= 7,

where C(£) = —logmgeo (by definition) and x = e€ as for binary variables with the same
sub/superscript conventions as for £.

It is easy (but tedious) to verify that other choices of minimal sets of ratios, such as adjacent-
cell ratios (Agresti, 1990, equation 2.9) cannot be the canonical set. Starting with C(€) =
— log moo, there is a lack of freedom of subsequent choice by the very definition of the polyno-

263
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mial exponential family form (1.24).

For three ternary variables, the 27-cell probability table can be considered as a 3 x 3 x 3
cube rather than as three tables side by side; the direction of the levels of Y3 is orthogonal
to the plane of (Y1,Y2). With four or more variables we consider the equivalent tables as
hypercubes. For three variables, the ‘bottom layer’ of the cube, Y3 = 0, can be categorized
by the univariate and bivariate ratios £ with the modification that each of the = terms has
an extra subscript zero. This is precisely what we define a zero-conditional odds ratio to be,
conditional on all other cells being zero. That is, the CORs of the bivariate system or ‘face’
(Y1,Y2) — implicitly taking Y5 = 0 — are the CORs for (Y7,Y3) in the trivariate case —
explicitly taking Y3 = 0 — and the former set have been shown already to be the canonical
parameters. This argument readily extends to more dimensions; in general, we regard the =
terms as having implicit trailing zeros.

By symmetry, considering the face of the (hyper)cube where ¥; = 0 for the CORs of (Y, Y3),
the zero-based first and second order CORs, for all pairs, in all dimensions, are the canonical
parameters.

Having verified that the zero-based trivariate log CORs are canonical parameters for (Y1, Y2, Ya),
the argument can be extended to arbitrary dimension by similar reasoning. Unfortunately it
is tedious to verify the three-dimensional case, and it becomes increasingly tedious for more
dimensions, and mere verification is not an inductive proof. The general verification procedure
reduces to showing that the system of equations

. L — iy i iyio i
Tiyigir = X1' X9 " X1ooor - X M00---0 (A4)

has a unique solution, which it will have if and only if the matrix of the log of this system is
non-singular.

A proof of this general result is not attempted here, but by following an example using the
geometric approach outlined above, it becomes increasingly obvious that the result must hold.
Although no formal proof of this fundamental assertion has been offered, the result has been
tacitly assumed by both Liang and Zeger (1986) and Glonek and McCullagh (1995) in their
key papers.
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A2.3.3 Six Cities data: fully marginal model

The fit for the intercept-unconstrained model is given in the main text (Section 2.3.3). Full
output for the fit for the model dropping the 4-way interaction term is as follows:

$out.table:
estimated SE.robust SE.info

alpha_0 -1.90667422 0.1190109 0.11835835
beta_1 -0.16336173 0.0558646 0.05686523
beta_2 0.30731250 0.1879929 0.18890689
beta_3 0.08454771 0.0878113 0.08855784

alpha_12 2.00308953 0.2625182 0.26096447
alpha_13 1.74965922 0.26896587 0.26729904
alpha_14 2.07416785 0.2697889 0.27920543
alpha_23 2.47007633 0.2888587 0.27944056
alpha_24 2.05603879 0.2800217 0.28211751
alpha_34 0.09611362 0.6201641 0.62699526
alpha_123 -0.28213826 0.6145637 0.60676994
alpha_124 2.08680648 0.2876003 0.28863899
alpha_134 -0.23136507 0.6177819 0.62222742
alpha_234 0.10020013 0.6604717 0.66207244
$ell:

[1] -793.1531

$G2:
[1] 7.910195

$df:
[1] 16

$P:
(1] 0.951495

$ptables:
$ptables([1]]:

(1] 0.678534427 0.067149364 0.043844147 0.018709618 0.036618872
0.010879501

[7] 0.017821337 0.014411863 0.031894926 0.014161739 0.004836081
0.011527087

(13] 0.006278528 0.005602062 0.009380985 0.028363648

$ptables[[2]]:

[1] 0.628071562 0.061889351 0.044638676 0.017497885 0.041657968
0.011947229

(7] 0.021399113 0.015573369 0.040585507 0.017711151 0.006713393
0.014833823

[13] 0.010099881 0.008668500 0.015568736 0.043158510

$est.fit:
$est.£it([1]]:

[1] 237.487049 23.502277 15.345452 6.548366 12.816605
3.807825

7] 6.237468 5.044152 11.163224 4,956609 1.692628
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4.034481

[13] 2.197485 1.960722 3.283345 9.927277

$est.fit[[2]]:

[1] 117.449382 11.573309 8.347432 3.272104

2.234132

(7] 4.001634 2.912220 7.589490 3.311985

2.7739256

[13] 1.888678 1.621009 2.911354 8.070641

7.790040

1.2554056
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Abbreviated output for the model dropping all 3-way interactions (note cells for which the fit

is very poor):

$out.table:
estimated SE.robust SE.info
alpha_0 -1.9118070 0.11833014 0.10280651
beta_1 -0.1470229 0.05793643 0.05817628
beta_2 0.2989133 0.18762564 0.16353474
beta_3 0.0968851 0.09155967 0.09159680
alpha_12 1.7653004 0.26295761 0.26169888
alpha_13 1.1472224 0.27383779 0.26446182
alpha_14 1.5925187 0.25982558 0.27247016
alpha_23 1.9736280 0.26821286 0.26900619
alpha_24 1.2521553 0.25738166 0.26935413
alpha_34 -0.1837351 0.59884757 0.57862228

$ell:
(1] -818.4471

$G2:
[1] 58.49811

$est.fit[[11]:
[1] 225.6267515 23.0727700 15.5782397
4.0269188
(7] 8.6796025 7.7368034 17.5435445
5.7073917
[13] 0.7200952 0.5835083 0.8755088

$est.fit[[2]]:

[1] 109.7247226 10.7137111 7.9331377
2.5440744

[7] 6.0846692 4.9754357 12.5846938
4.0949216

[13] 0.6529852 0.5233501 0.9097640

For the lag-1 Markov model:

$out.table:
estimated SE.robust SE.info
alpha_0 -1.93180775 0.11801410 0.09443219
beta_1 -0.14605059 0.05856323 0.07103304
beta_2 0.30349280 0.18730100 0.14875857
beta_3 0.09902214 0.09137343 0.11376171
alpha_ij 1.44270373 0.22175107 0.15785077

.1473181

. 7345094

.9214883

.7060803

.3397017

.8662653

19.5290349

3.5216582

12.5209205

2.8282184
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$ell:
{1] -858.0214

$G2:
{1] 137.6469

For verification, the independence model as fitted by Fitzmaurice and Laird (1993):

$out.table:

estimated SE.robust SE.info
alpha_0 -1.90345085 0.11941216 0.08912967
beta_1 -0.16404626 0.05601693 0.06937986
beta_2 0.31656227 0.18804971 0.13968567
beta_3 0.09363723 0.08686099 0.11063898

$ell:
[1] -912.6204

$G2:
[1] 246.8449

The S-PLUS code used to fit the above models follows. fmm.fit is the top level program;
this loops through fmm.loop (which calls fmm.vars) until convergence, after which it calls
fmma.vars, an extended version of fmm.vars that also evaluates the log likelihood and G?
and returns probability and expected tables for diagnosis. For brevity fmm.vars is omitted
from the following and only fmma.vars is included. The S-PLUS function algor.c, which
calculates probabilities from odds ratios, is a wrapper calling the C version of algorithm SQb
given in Appendix A3.6.
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function(m, counts, X, sizes, gammas, gamma.names, ptables, etables)

{
#

HARBHRBHR B R ARG BRBRF BB RHS Tmm . £1t $RBBRRBBRRBREGBR BB EBRBHBE G

# H HHHEEHRRHAESR

Get SEs (robust and info) and ell, G"2 value for fmm (ALL-MOR) model

Arguments: as in fmm.loop; additionally

ptables a list as long as X (garbage on call, but
names will be retained if you want pretty)

etables ditto

gamma.names (character data) for pretty array print

HARBRBR BB RBHBBRBRERRBRRRR BB RBBRBRRAR RS R}

#

num.params <- length(gammas)
uut <- array(0, c(num.params, num.params))
info <- uut
U <- rep(0, num.params)
ell <- 0
G2 <- 0
stop.difference <- 1
iters <- 0
gammas.new <- gammas
while(stop.difference >= 0.0001) {
gammas.old <- gammas.new
gammas .new <- fmm.loop(m, counts, X, sizes, gammas.old)
iters < iters + 1
stop.difference <- infty.norm(gammas.old - gammas.new)
}
for(i in 1:length(X)) {
vars <- fmma.vars(X[{i]]}, m[[i}], counts[[i]], gammas.new,
sizes$num.obs, sizes$msize, sizes$vmsize, U, uut, info,
ell)
U <- vars$U
uut <- vars$uut
info <- vars$info
ell <- vars$ell
ptables[{i]l] <- vars$ptable
counts.sum <- sum{counts[[i]])
etables[[i]] <- vars$ptable * counts.sum
G2 <- G2 + 2 * sum(counts[[i]] * log(counts[[i]]/etables[[i]]))
}
inv.info <- solve(info)
out.table <- cbind(gammas.new, sqrt(diag(inv.info %x*) uut %x’ inv.info)
), sqrt(diag(inv.info)))
dimnames(out.table) <- list{(gamma.names, c("estimated", "SE.robust”,
"SE.info")) #
df <- 2 * (2"sizes$num.obs - 1) - length(gammas)
P <- 1 - pchisq(G2, df) #
list(out.table = out.table, ell = ell, G2 = G2, df = df, P = P, ptables
= ptables, est.fit = etables)
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function(m, counts, X, sizes, gammas)
{
RERBBBHRBRBBRRBBBHBBRRWBBJHE Tn . Loop #HBRRBHBRRFRFFERBBHBHERRRHIH

One loop towards iterative solution of MOR score equations
Needs to have
m a list of observed cluster indices (plus 1), ie
index 1 is all obs zero, index 2 is Y1=1 only, etc
Each vector of observed indices in the list has

the same X matrix.

counts a list of vectors of observed ‘cell counts’ (each in list
corresponds to counts for the same list for m

X a list of design matrices X_i, to give X_i*)gammas;
each in list applies to all m observations at
this level

sizes a list (with named components) as follows:

sizes$num.obs = (common) cluster size
sizes$msize 2 num.obs (size of cell probability table)
sizes$vmsize msize - 1 (size of variance matrix including zeros)

gammas vector of current parameter estimates

H# Ot O3 O O MR H R HERHERHREHR RN

HARBERBRBERBBBERHBUBRBRHRBRR R R RBRRR AR BB R IR

#
num.params <- length(gammas)
uut <- array(0, c(num.params, num.params))
info <- uut
U <- rep(0, num.params) #
#

for(i in 1:length(X)) {
vars <- fmm.vars(X[[i]l], m[{i}], counts[[i]], gammas, sizes$
num.obs, sizes$msize, sizes$vmsize, U, info)
U <- vars$U
info <- vars$info
}
newgammas <- gammas + solve(info, U)
newgammas
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function(X, m, counts, gammas, num.obs, msize, vmsize, U, uut, info, ell)
{
HERRBHBARRBRBRBBUBRBRRBRBH#E Tmma . vars #dEE#BBGHBHRHARBBBERREREBIBBE 3

calculate the variance matrix, marginal expectations, and ptable
for design matrix X and params gammas

--- FULLY MARGINAL MODEL ----

ptable is msize = 2°T long (it is given as vector, not array, but
in the sequence it would have as an array (ie first subscript changing
fastest, etc)

H O HEH KRR IR

HURBBHAB BB EHBRBH BB HHHBREBERERBRBRBERGRRBR BB R H W
#
# first find (all) lambda values:
lambdas.wrapped <~ c(0, X %*% gammas) #
X <- rbind(0, X) # put in the constraining row for lambda_0 = 0O
# go find p table:
algorans <- algor.c(lambdas.wrapped)
p <- exp(algorans$ans) #
dmat <- array(.C("sdiff",
as.double(p),
as.integer (msize),
as.double(1l: (msize * msize))){[3]], c(msize, msize))
for(i in 1:length(counts)) {
#
# invert it and times by m-observed (somewhat inefficient for now)
mi <- rep(0, msize)
mi[m[i]] <- 1
partans <- solve(dmat, mi) # finally u is X’ times this:
contrib <- t(X) Y%, partans
U <~ U + counts[i] * contrib
uut <- uut + counts[i] * contrib %*Y% t(contrib)
ell <- ell + counts[i] * algorans$ans[m[i]]
}
info <- info + sum(counts) * t(X) %*% solve(dmat) %=*% diag(p) %*% solve(
t(dmat)) %*% X
list(U = U, wut = wut, info = info, ell = ell, ptable = p)
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A2.4.5 Calculating probabilites from conditional odds ra-
tios

We need to establish that algorithm steps A1 and A2 on page 70 give the correct probability
table for all problem sizes 7. It is trivial to check that the algorithm is correct for T = 1,2.
Then using induction, suppose that the algorithm yields a valid table for T — 1 variables, with
odds ratios x1,x2;,---X12.(T—1)- Let us call the T'th variable the ‘new’ variable, since in the
T-variate case we have a set of odds ratios labelled the same as the (T — 1)-variate case, the
‘old’ values, plus a new set of the same length as the old that has the same indices except
for the addition of a further subscript indicating the new variable, Y7, together with the new
univariate ratio x.
First, fill in the half of the table corresponding to Yr = 0 as for the (T" — 1)-variate case, but
do not yet divide by the sum, step A2; by the induction hypothesis this ‘old’ half of the table
has the required odds ratios for these cells. No matter what values go into the ‘new’ half of
the table, where Y7 = 1, these odds ratios will be unaffected since by definition they are based
entirely on probabilities with Y = 0.
The odds ratios required in the ‘new’ half of the table, where throughout Yy = 1, are not
the ‘new’ ratios themselves, but rather the conditional ratios xp|y,= for all subsets B of
T* = {1,2,...(T — 1)}. Using the algorithm to fill this (T — 1)-variate subtable with such
conditional ratios, the induction hypothesis ensures that we obtain a subtable having these
ratios, as required. Subsequent division of the entire T-variate table by the sum of all its
entries then necessarily converts it to the required probability table.
However, the algorithm does not explicitly fill the table in two halves as just proposed, and
so it remains to show that the two schemes are equivalent. By definition the ‘new’ ratios are
of the form XB | yieet

xpr = ~2lw=l (A5)

XB|y=0

where xp|y,=0 are the ordinary xp, and B C T*; the subscript BT is an abbreviation for
BuU{T}. Thus

XB|y=1 = XBTXB; (A6)

where the right-hand side is in terms of zero-conditional ratios. When B is the empty set,
X0|y.=1 = XT since by convention xo = 1. The two-half algorithm fills the ‘old’ half of the

table as
csimo = | xe (A7)
cCB

while over the ‘new’ half

Cs(B)1 = H XB|y=1 = H Xcrxe = H XD, (A8)

cCB ccB DC{BU{T}}

as in each case B runs through all the subsets of 7*. But consider what happens as B runs
through all subsets of 7, as in algorithm step Al. When variable Y7 is not selected, we
obtain cells according to (A7); when Yr is selected we obtain the remaining cells, equation
(A8). Thus the ‘two-half’ version, which is directly validated by induction, is equivalent to the
stated version (steps Al and A2). Division of the the cells by the sum to obtain probabilities
is not controversial provided that the log odds ratios are real, or equivalently that the odds
ratios are strictly positive, and clearly yields a unique solution.
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A3.1.2 The tildeplus operator

If we hypothesise a complete ordered field T'(#£, +) order-isomorphic to R(+, x) and if we let
+ in T be the ezact same numeric operator as + in R, the definition of # as given in the
main text must follow. The isomorphism from R to T is that of taking logarithms, and T
is an extension of R to include (unique) logarithms of the negative numbers. Put rather less
formally: £ is the operation we would have to perform on the logs of two numbers in order
to obtain, by taking antilogs of the result of the operation, the sum of the original numbers.

Some other observations are that the ‘one’ of T is 0; the ‘zero’ I write as @. This @ represents
negative infinity, and under addition (and hence multiplication) it behaves formally as one
would naively expect: @ +z =@, n@ =@ Vz,n € R. Given that the isomorphism from R
to T is the logarithmic function this is clear, since we must map log0 — @, where @ € R, one
of the set of new ‘tilde numbers’. Also, tildeplus has a natural inverse denoted ~ (tildeminus).
Tildeminus and tildeplus are also unary operators leading to the idea of ‘tilde-sign’. Denoting
@ ~ z = £ is another way of deriving the unique set of ‘log negatives’.

A3.2 Darroch’s conjecture

Darroch (1962) conjectured that, in problems of all dimensions, if there is a valid solution (in
my terminology) at all, then it is unique. This conjecture was shown in that paper to hold
good for bivariate and trivariate binary outcomes (and also a 3 x 2 x 2 table).

The conjecture is claimed to hold good more generally by Lemma 1 in Molenberghs and
Lesaffre (1994). The steps of the proof are identical to those of Darroch (1962), the essential
extension being that of establishing that the highest-order interaction equation is always of
the form, in notation closer to that of Darroch,

(T—1)
12‘=1 (7T1...1 —a,')

(T-1) ?
e, (b —mia)

where a; and b; are functions of the lower-order odds ratios. A valid solution must satisfy

A12...T = (Ag)

a = max(a;) < 7.1 < min(b;) = b, (A10)

with strict inequalities for nondegenerate distributions; the unique valid solution lies between
a and b (since the function is continuous and monotone increasing, and Aj,..r = 0 at a and
— o0 as m...; = b; Darroch, 1962).

The justification for the form (A9) — the critical step — is not explicit in Molenberghs and
Lesaffre (1994). It is a consequence of their equation (4.6), but this itself is not formally proved.
It is not immediately obvious from the defining equations, nor by considering the hierarchi-
cal approach outlined in Section 3.2.4, the controversial issue being whether the successive
substitutions do indeed give rise to terms with the same signs as in (A9), for all dimensions.
As an extension, I note on page 119 that the conjecture also appears to hold when the ‘prob-
abilities’ sum to some arbitrary value Ag > 0. Such odds ratios occur in practice when the
logistic transform is applied to a subset of a full probability table — as in the derivation of
(3.21), for example.
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A3.3.1 Evaluating the derivative Js(p)/dp

The top-level call is to sdiff, which is a wrapper to sdiff_internal to avoid the S-PLUS
calling routine having to pass too many arguments.

/*

sdiff (super,sub,vlen,nowlen,row_offset,col_offset,ans)

Find diff S / diff p, initial call with super=sub= pvector
*/

void sdiff_internal (super,sub,vlen,nowlen,row_offset,col_offset,ans)
double *super, *sub, *ans;
long vlen, nowlen, row_offset, col_offset;

long i,halflen;
double newsuper [nowlen/2];
double negsuperi[nowlen/2];

if (nowlen == 2) {
*(ans + row_offset*vlen + col_offset) =
sub[0]/ (super [0]+super[1]);
*(ans + row_offset*vlen + col_offset+l) =
sub[1]/(super [0]+super[1]);
*(ans + (row_offset+l)*vlen + col_offset) =
- sub[0]/super[0];
*(ans + (row_offset+i)*vlen + col_offset+l) =
sub[1]/super[1];
} else {
halflen = nowlen/2;
for (i = 0; i < halflen; i++) {
newsuper [i] = *(super+i) + *(super+i+halflen);
negsuper1[i] = - *(super+i);
}
sdiff_internal(newsuper, sub, vlen, halflen,
row_offset, col_offset, ans);
sdiff_internal (newsuper, sub+halflen, vlen, halflen,
row_offset, col_offset+halflen, ans);
sdiff_internal(negsuperl, sub, vlen, halflen,
row_offset+halflen, col_offset, ans);
sdiff_internal (super+halflen, sub+halflen, vlen, halflen,
row_offset+halflen, col_offset+halflen, ans);

void sdiff(pvector,plen,ans)
double *pvector, *ans; long* plen;
{
double halflen;
sdiff_internal (pvector,pvector,*plen,*plen,0,0,ans);

}
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A3.4 The SM algorithms

Comparison of algorithm SM and its modifications

A comparison of the number of iterations until p convergence to 6 d.p. is shown in Table A1,
for the SM algorithms discussed in Section 3.4. Only sets of A values up to the first simulated
set that contained any failure to converge are presented here. For brevity 27 = 16 is omitted
entirely, and the second-quartile 7 set for 27 = 128, where failure was common, is not shown.
Such omission is redressed in the tables in the main text.

The failures reported in Table Al were all due to reaching a preset maximum number of
allowed iterations. Values not far from the true solution were obtained. By increasing the
allowed number of iterations, convergence to desired precision would be obtained. This would
of course increase the median and other flop counts reported.

Exceptionally algorithm SM¢! can fail fatally (for ratios more extreme than those shown):
either successive iterate values oscillate between two fixed sets of values, or a numeric error
occurs when, for example, the logarithm of {machine) zero aborts the algorithm.

Full conversion to flop counts is not made in Table Al as the count per iteration is roughly
the same for all four algorithms, ignoring the small overhead of the accelerator steps. Flop
counts rather than iterations are given below when comparing with other types of algorithm.
The accelerated algorithms consistently offer fewer flop counts (including the cases not shown
in the table) but are less robust. With few exceptions, SM¢! is quicker than SM¢, not
only on average (as shown) but also for each set of odds ratios fitted. However the situation is
different for the more extreme sets of ratios not shown here, when SM¢! fails to converge more
frequently than SM¢, — and the latter’s failures are all non-fatal, except for very extreme
7, when all algorithms fail. Given that any speed advantage is minor, only the more robust
SM¢. is considered further.

Extremity index € is a fair, but not excellent, indicator of algorithm performance. The max-
imum flop counts shown in Table Al were not necessarily for those tables with the most
extreme 7 within the given range, though n was in the upper half of the range.

The SM algorithm: implementation
/*

Function infty_norm finds infinity norm of its input vector

*/

double infty_norm(v,vlen)
double *v; long *vlen;
{
double max;
long i;
max = 0;
for (i = 0; i < *vlen; i++){
if (max < fabs(v[i]) ) max = fabs(v[i]);
}

return max;
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Table Al: Iterations to convergence to 6 d.p. of algorithms SM, SM¢, SM¢! and SMe,,
for sets of 105 simulated odds ratios for each range of  indicated. All four algorithms were
fitted to the same values. For each 7', tabulation stops after the first set of ratios for which
there was any failure. Minima (rows ‘min’) and medians (rows ‘med’) are close, so that lower
quartiles are omitted for brevity. The upper quartile is abbreviated ‘upper’, maximum as
‘max’. Summary counts are calculated only on those runs where there was convergence.

o7 7(A) SM SM¢ SM¢! SMd,
8 <34 min 95 23 7 7
med 95 38 10 10

upper 95 41 11 13

max 96 53 14 17

[3.4,10.9) min 95 32 9 9

med 95 49 14 17
upper 96 56 17 20
max 101 83 27 37

(10.9,276) min 95 38 15 16
med 106 97 33 46

upper 129 127 48 64

max 399 398 180 330

fails — — (1) —

32 < 19.8 min 367 85 11 12
med 367 140 18 18

upper 367 162 22 23

max 378 307 46 67

[19.8,591) min 367 114 14 15
med 369 228 38 46

upper 425 320 82 96

max 1949 998 738 935

fails 4 @an 4) (8)

64 <93 min 705 159 12 13
med 706 264 22 23

upper 707 320 32 33

max 742 660 75 206

[93,11K) min 706 178 17 19
med 708 387 47 59

upper 725 546 95 110

max 1933 962 859 631

fails (16) (24) (6) (20)

128 < 896 min 1346 305 17 17
med 1347 468 27 29

upper 1348 557 36 41

max 1460 957 109 505
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/*

minvmulti(v, vlen, ans)

Premultiply by M-inverse (not full efficiently here)
*/

void minvmulti(v,vlen,ans)
double *v; double *ans; long *vlen;
{
double *top, *bot, terml[*vlen], term2[*vlen];
long halflen, termlen=xvlen/2, i, j;

if (*vlen == 1) {
*ans = *v;
} else {
top = v;
halflen = *vlen/2;
bot = v + halflen;
minvmulti(top,&halflen,&termi[0]);
minvmulti(bot,&halflen,&term2{0]);
for ( i = 0, j = halflen; i < halflen; i++, j++) {
ans[i] = (termi[i] - term2[i])/2.0;
ans[j] = (termi[i] + term2(il)/2.0;
}
}
}

/*
Seval(v,vlen,ans)
Evaluate S(v) (unlogged version)

*/

void Seval(v,vlen,ans)
double *v; long *vlen; double *ans;
{
double *top, *bot, terml[*vlen/2], term2[*vlen/2], term3[*vlen/2];
long i, halflen;

if (*vlen == 1) {
*ans = *v;
} else {
top = v;
halflen = *vlen/2;
bot = v + halflen;
for (i = 0; i < halflen; i++)
termi[i] = topl[i] + bot[il;
Seval (terml,&halflen,ans);
Seval(bot,&halflen,term2);
Seval(top,&halflen,term3);
for (i = 0; i < halflen; i++)
ans[i+halflen] = term2[i] / term3[i];
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The function seval called in smphi below is omitted for brevity; it simply passes the expo-
nential of its argument vector to Seval above, and returns the logarithm of that answer.

/*

smphi (lambda,vlen,ans,status)
The SMphi_epsilon algorithm, all in C
*/

void smphi(lambda,vlen,epsi,maxiters,iters,ans,status,
phi_epsi,phi_multi,multis, multicount)
double *lambda; double *ans; double *epsi;
double *phi_epsi; double *phi_multi; double *multis;
long *vlen; long *maxiters; long *iters; long *status; long *multicount;

double p_old[*vlen], c_old[*vlien], c_new[*vlen];
double phi_old{*vlen], phi_new([*vlen];

double workspacel[*vlen], landc[*vlen];

double stop_difference;

double rvec[*vlen], multidenoms[*vlen];

long i, changed;

*multicount 0;

for (i = 0; i < *vlen; i++) {
rvecfi] = 1 - (1/multis{i]);
multidenoms[i] = 1 / (1 - rvec[il);

}

minvmulti(lambda,vlen,ans); /* ans (p_new) holds M-1 lambda */
seval(ans,vlen,workspacel); /* hold s(this) =*/
for (i = 0; i < *vlen; i++) {

c_new[i] = lambda[i] - workspacellil;
phi_new[i]l = c_new[il;
landc[i] = lambdal[i] + c_new([i];

}

minvmulti(landc,vlen,ans);

stop_difference = {;

xiters = 1; /* in fact first iteration is cheaper */
*status = 0;

while ( (stop_difference >= *epsi) &k (*iters < *maxiters) ) {
for (i = 0; i < *vlen; i++) {
p-old[i] = ans[i];
c_old[i] = c_new[i];
phi_old[i] = phi_new[i];
}
seval (ans,vlen,workspacel) ;
for (i = 0; i < *vlen; i++) {
c_new[i] = landc[i] - workspacell[i];
phi_new[i] = c_new[i] - rvec[il*c_old[i];
if (fabs(phi_new[i] - phi_old[il) <= phi_epsilil) {
phi_epsi[i) = phi_epsilil * phi_multi[il;
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c_new[i] = phi_new[i] * multidenoms[i];
*multicount = *multicount + 2;
}
landc[i] = lambdali] + c_newl[i];
}
minvmulti(landc,vlen,ans);
for (i = 0; i < *vlen; i++)
workspacet[i] = ans([i] - p_old[il;
stop_difference = infty_norm(workspacel,vlen);
*iters = *iters + 1;
}
if (*iters == *maxiters)
*status = 1;

A3.5 The SR algorithms
Comparison of algorithms SR and SRquad

The SRquad algorithm of Section 3.5 seldom outperforms the raw SR algorithm for any of
the simulations shown in Table A2, not only on average as tabulated, but also for most
individual simulations. However, for extreme ratios, provided 27 < 64, SRquad converges
more frequently. On the other hand, at 27 = 128, SRquad very rarely converges at all, while
SR is comparatively robust. For 27 > 256 (discussed below) I have never observed SRquad
to reach a second iteration before generating a fatal error.

The problem is numerical: some of the SRquad correction terms are calculated as machine
zero, though this is not the analytic solution. The quadratic equation could here be solved by
a more robust formula (Burden and Faires, 1985, p. 15). But as SRquad offers no speed gain
over SR, this is not considered further.

Certain modifications to SRquad offer better speed performance in particular cases, especially
for small T and non-extreme A, but are far less robust in other circumstances. They are
therefore omitted from discussion.

The failures shown in Table A2 are all non-fatal, in that the algorithms were stopped after
1000 iterations. Fatal failures become more common than non-fatal with increasing n (not
shown in Table A2; but see main text).

As with the SM variants, since the flop counts are very similar, in later comparisons I use the
most robust: the SR algorithm for T > 7, otherwise SRquad.
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Table A2: Flop counts and number of iterations to convergence of algorithms SR and SRquad,
to 6 d.p., for the same non-extreme odds ratios (and other considerations) as in Table A1,
excepting 27 = 128 which is discussed in the text. Columns ‘multi’, ‘adds’ and ‘iters’ count
multiplications and divisions, additions and subtractions, and iterations, respectively.

SR SRquad
2T n(A) multis  adds iters multis adds iters
8 <34 min 287 195 5 319 147

med 464 312 8 537 245
upper 464 312 8 646 294
max 641 429 11 755 343

[34,109) min 346 234 6 428 196
med 641 429 11 755 343

upper 759 507 13 864 392

max 1340 897 23 1191 539

[10.9,276) min 582 390 10 537 245 5
med 1290 858 22 1300 588 12

upper 1939 1287 33 1945 882 18

max 15863 10491 269 11982 5390 110

fails (1) —

32 <198 min 5188 3876 12 6318 3630 10
med 6928 5168 16 8223 4719 13

upper 8668 6460 20 9493 5445 15

max 19534 14535 45 17113 9801 27

[19.8,591) min 6058 4522 14 7588 4356 12
med 13888 10336 32 14573 8349 23

upper 26503 19703 61 36798 21054 58

max 353K 262K 811 521K 298K 821

fails (11) —

64 <93 min 17591 13815 15 18860 12012 12
med 27007 21183 23 31476 20020 20

upper 37600 29472 32 39361 25025 25

max 343K 268K 291 130K 83K 83

fails (2) —

00 =1 & IOy O

[y
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The SR algorithm: implementation

Both the SR and SQ algorithms call the infty norm and Seval functions already listed in
Appendix A3.4. SR is given rather than SRquad, for brevity.

/*

Rinv(v,vlen,ans)

Evaluate R-inverse (unlogged versiom)

*/

#include <S.h>
#include <math.h>

void Rinv(v,vlen,ans)
double *v; long *vlen; double *ans;

{

double denom[*vlen/2];

double vtopl[*vlen/2];

double vbot[*vlen/2];

long halflen;

long i;

if (*vlen == 2) {
denom[0] = 1 + v([1];
ans{0] = v[0]/denom([0];
ans[1] = ans[0]*v[1];
} else {
halflen = *vlen/2;
for (i = 0; i < halflen; i++) {
denom[i] = 1 + v[halflen + il;
vtop[i]l = v[i] / denom[i];
vbot[i} = vtop[i]l * v[halflen + i];
}
Rinv(vtop,&halflen,ans);
Rinv(vbot,&halflen,ans+halflen);
}

}

/*

sralgor (Lambda,vlen,ans,status)
The SR algorithm, unlogged, all in ¢
*/

void sralgor(Lambda,vlen,epsi,maxiters,iters,ans,status)
double *Lambda; double *ans; double *epsi;
long *vlen; long *maxiters; long *iters; long *status;
{
double C_new[*vlen], C_old[*vlen];
double workspacel[*vlen], workspace2[*vlen], stop_difference;
long 1i;
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Rinv(Lambda,vlen,workspacel);
Seval (workspacel,vlen,workspace2);
for (i = 0; i < *vlen; i++)
C_new[i] = Lambdal[i] / workspace2[i]l;
stop_difference = 1;
*iters = 1;
*status = 0;

wvhile ( (stop_difference >= *epsi) && (*iters < *maxiters) ) {
for (i = 0; i < *vlen; i++) {
C_old[i] = C_new[i];
C_new[i] = C_new([i] * Lambdal[i]; /* note: overload use of C_new */
}
Rinv(C_new,vlen,workspacel);
Seval (workspacel,vlen,workspace?) ;
for (i = 0; i < *vlen; i++) {
C_new([i] = C_new[i] / workspace2[i];
workspacel[i] = C_new[i] - C_old[il;
}
stop_difference = infty_norm(workspacel,vlen);
*iters = *iters + 1;
}
for(i = 0; i < *vlen; i++)
workspacel[i] = C_new[i] * Lambdalil;
Rinv(workspacel,vlen,ans);
if (*iters == *maxiters)
*status = 1;
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SR algorithm: proof of convergence for T = 2

We show that the sequences of correction terms starting from C{®) = 1 are either constant

or monotone increasing and bounded, and hence converge by an elementary proposition in
mathematical analysis.

Iterations take the form
ci*th) = g(c!™) (A1)

and for such schemes the standard sufficient condition for convergence is that the infinity-norm
of the Jacobian, i.e. ) i | 89:/0C;| < 1, for all 4, in some interval about the root (Gerald and
Wheatley, 1984). However, here I am unable to prove this relationship holds, and hence turn
to the following direct proof of necessity of convergence.

Existence of a unique solution. Expansion of the bivariate system SR~!(A) shows
— after some algebraic manipulation — that the elements Ag, A2 and A, are mapped to
themselves, that is, the residual correction term for these components is simply unity. In other
words, here C = (1, C}, 1, 1)’ and we need only consider the second element of SR™!(AC),
denoted [SR™!(AC)], for iterations

(1) _ -1 _ 1
Ci =AC/[SRTH(AQ))y FAC)’
where AC
a0y +ar
A= —"— = Al12
hiao) = (BpgEe), (A12)
where
a; = (14 A2)A),
ay = (1 + A12) (1 + Ay A12) y
az = (1+A)(A2+Ap),
as = (1+A)2(1+Ay).

The last of these is strictly redundant: ay = az + as. At convergence, when C; = CP° say,
Ci° fi(AC™>) — 1 = 0. Substituting expression (A12) into this equation and collecting terms
gives the following quadratic in C;:

a1A1C'f + ((12 - a3A1)Cl — a4 =0. (A13)

This equation could of course be solved directly, giving us the answer to the problem without
recourse to iteration. However we must first establish here that a real solution exists, and that
such a solution gives a valid probability table.

The left-hand side of (A13) is negative when C; = 0, and as the leading coefficient of (A13)
is positive, there must be one real positive root and one real negative root. The negative
solution always yields an invalid solution to the system, since R~!(A) is not positive in all
components when A; (or here A;C}) is negative and the other components are positive. To
show this, consider

Ao (14A12)
(1+A2)(1+A124+M1Ch)

TR EAnTATTn)
-1 - 1+A2)(14+A2+A,C)
R, (AC) Mo As (14 hee) . (A14)

(1+A2)(1+A12+A1CrA2)

Ao A1Cr Az A g

(1+A2)(1+A12+A1 CrAys)
If 1+ A2+ A, C) is negative, the first and third components are negative, otherwise the second
and fourth components must be negative. Thus, the positive solution of (A13) for C; = C{°
gives a unique solution to the constrained system.
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Importantly for what follows, the solution C7° is not only positive, but also greater than unity;
the left-hand side of (A13), evaluated at C; = 1, can be written

—(AL + Ao)(A1 +1) — Ap(Ay + 1), (A15)

which is negative for all A > 0.

Having established the existence of a valid solution, we now show that the sequence {Cf")}
converges to it.

Magnitude of correction terms. Starting at Cfo) > 0, consecutive C, terms generated
by the algorithm are greater than unity. This follows because fi() lies between zero and
unity, for any positive A and C;; the difference between denominator and numerator, after
factorization, is the positive quantity

(A2 + A2)AC1 + Ax(1 + Ap2) + A2(1+ Aya). (A16)

Thus each new correction term Cf"H) = 1/f1(AC™) is greater than unity.
Monotonicity. If1 < C™ < C® then C™ < 1/fi(AC™) = C(*+1)_ As shown by
the discussions of equations (A13) and (A15), here C{")fl(AC(")) — 1 < 0 and monotonicity

follows immediately.

Boundedness. If1 < C™ < C® then 1 < C("*D < C*. Consider the expression

(n+1) (n+1)y _ 1 — 1 A 1 =
cttb g (AChD) 1“f1(AC(n))f1 (fl(AC("))) 1=0. (A17)

Expanding f, (AC™) according to (A12) and collecting terms, this is
Alai(azas — a1a4)CE + Aj(aza3 — ajas)(az — asA1)Cy — Arag(azas — a1aq) =0 (A18)

But this is precisely equation (A13), on division by the common factors A; and (aza3 — ajaa).
This second factor can be written

(azas — a1a4) = A2 (A3, — 1)% (A19)

For independent variables, A;> = 1, (A18) is identically zero, and the division is invalid.
However, in this special case convergence is achieved at Cf® = 1/ f1(A) after only one step,
whenever C{o) = 1, which is the usual starting value here.

Since (A18) and (A13) have the same roots, and the common factor, by (Al9), is positive
except in the special case just discussed, both functions change sign at the same values of
C,. Thus C'f"“)fl(AC("H)) — 1, the left-hand side of (A18), is negative, which happens iff
Cf"H) < C7°, which completes the proof.

It can be shown similarly that starting from Cfo) > C{°, the sequence is monotone decreasing
to its limit. Thus we obtain convergence starting at any positive choice of Cfo).
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Table A3: Flop counts for algorithms SQ, SQa and SQb until convergence of m components
to 8 d.p. (though elsewhere convergence is only to 6 d.p.), for the same non-extreme odds

ratios as in Table Al.

SQ SQa SQb

27 n(A) multis  adds multis adds multis adds
8 <34 min 307 116 294 183 240 148
med 469 182 450 291 370 240
upper 523 204 514 335 424 276
max 631 248 622 407 516 340
[3.4,10.9) min 415 160 440 283 305 194
med 877 226 669 441 525 346
upper 631 248 779 517 572 380
max 1009 402 1378 923 865 582
[10.9,276) min 523 204 542 355 361 234
med 1009 402 1325 889 925 625
upper 1333 534 1888 1272 1160 783
max 2683 1084 4970 3331 2669 1826

fails (2) (2) 3)
32 < 19.8 min 39330 16910 15290 10920 8071 5918
med 75760 32370 26700 19040 11180 8200
upper 105K 45K 35K 25K 12K 9K
max 254K 108K 73K 51K 21K 16K
64 <93 min 403K 175K 91K 66K 36K 27K
med 1.0M 446K 180K 131K 51K 38K
upper 1.7M 713K 306K 220K 63K 47K
max 15.2M 6.4M 1.1M 801K 106K 78K

fails (18) 4) (0)
128 < 896 min  16M 705K 556K 415K 86K 69K
med 44M 19M 1.1IM 786K 129K 103K
upper 100M 45M 19M 14M 168K 133K
max 110M 47M 6.6M 48M 425K 336K

fails (15) (8) 0)
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A3.6 The SQ algorithms

Comparison of the SQ algorithms

Referring to Table A3, for 27 = 8 it might seem surprising that algorithms SQa and SQb
do not necessarily outperform unmodified SQ, since both modified algorithms call themselves
recursively with start values based on previous iterations while SQ starts afresh from arbitrary
values. However, for T = 3, the two halves of the system are solved exactly using SQ at each
iteration, so that start values are not required. As T increases, the advantage of SQb becomes
clear both in speed and robustness.

It is perhaps a surprise that SQb should be as superior to SQa as demonstrated in Table A3.
The speed gain applies to almost every individual run, and is not merely on average as tabu-
lated here. A trace of intermediate values shows that less ‘outer’ iterations are needed under
SQb than SQa, where one might have expected the only speed gain to be in the computation
of ST (AS(m)) to less precision.

A further gain for which full details are omitted is found in running the algorithms to greater
precision. Attempting to run SQa to 15 d.p. generally fails, with successive iterate values
oscillating between two sets, each accurate to within perhaps 13 d.p. of the solution. But SQb
seldom if ever suffers from this, at least for non-extreme odds ratios.

The failures to converge reported in Table A3 are non-fatal, the error flag being raised on
reaching the maximum allowed number of iterations (set at 50 for these simulations) in the
outermost loop. But convergence was in fact very nearly obtained (to no worse than 5 d.p.
precision).

All SQ variants can crash fatally in generating zero values and then attempting to divide by
them. The relative frequencies of these types of failure (for SQb) are shown in the main text.
Because it is up to 40 times quicker than SQ, 10 times quicker than SQa, and far more robust,
only variant SQb is considered further below and in the main text.
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The SQb algorithm: implementation

Code for the simpler SQ and SQa variants, a subset of the following, is omitted for brevity.
The unlisted function Rinvq returns the exact solution for the bivariate case.

/*
Algorithm SQb in C

with cumulative flop counts
*/

void sqbalgor(lambda, starts, ans, vlen, epsi, divisorl, divisor2,
starts_flag, upper_flag, maxiters, status, anyfail, multis,
adds, trace)

double *lambda, *starts, *ans, *epsi, *divisorl, *divisor?2;

long *vlen, *starts_flag, *upper_flag, *maxiters,

*status, *anyfail, *multis, *adds, *trace;

/* all args are pointers, saves S-PLUS interface overhead

ans = solution on completion
vlen = length of Lambda vector
epsi = required precision
divisorl = precision for sinvlam0, epsi/divisorl
divisor2 = precision for S"{-1}(Lambda_2 S(\pi_0)), stop_difference/divisor2
starts_flag = 1 if starts mean anything, eg if self-called;
upper_flag = 1 if inverting constant lambda_top to full precision
maxiters =

max allowed iterations through loop (auto reduced to prevent ’hang’)
status = 0 if nominally ok (but this includes when NaN are returned),

1 if maxiters reached/exceeded;
from this and ans it is possible to distinguish other failure types

anyfail = 1 set on return if any iters failure at any time

note: status on return refers only to outer loop, overwriting

any previous setting; anyfail remains set if ever set.
multis = multiplications and divisions
adds = additions and subtractions
trace = flag, set if you want a screen trace

*/
{

/* in the following, ’a’ is pi_O in write-up, ’b’ is pi_1
the newXXXXXX variables are needed to created new instances to be pointed
to for recursive calls
*/
double xnew; /* not actually a vector, only need one component at a time */
double stop_difference, newepsi, a_first;
double tmp[*vlen/2], a_new[*vlen/2], a_old[*vlen/2], a_diffs[*vlen/2];
double b_new[*vlen/2], b_old[*vlen/2];
double sinvlamO[*vlen/2], newstarts[*vlen/2];
long iters, i, capt, threet, halflen, newflag;
long newmaxiters, nextmaxiters, newupper;
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/* FOR 2-VECTORS, JUST FIND ANALYTIC SOLUTION:
*/

if (*vlen == 2) {
ans[0] = lambda[0] / (1 + lambdaf1}l);
ans[1] ans[0] * lambdaf1];
*multis = *multis + 2;
*adds = *adds + 1;
*status = 0;

/* FOR 4-VECTORS, FIND ANALYTIC ONLY IF LAMBDA_O, FIXED:
*/

} else if (*upper_flag && *vlen==4) {

Rinvq(lambda, vlen, ans);
*multis = *multis + 37;
*adds = *adds + 9;
*status = 0;

/* ALL OTHER CASES:
*/

} else {

halflen = *vlen/2;
if (*upper_flag) {

newepsi = *epsi/(*divisori);
} else {

newepsi = *epsi,;
}
newflag = xstarts_flag;
newmaxiters = *maxiters;
newupper = *upper_flag;

/* FIND INVERSE S~{-1){Lambda_0} (called sinvlamO)
*/

if (newflag)
for (i = 0; i < halflen; i++)
newstarts[i] = starts[i] + starts[halflen+i];
sqbalgor (lambda, newstarts, sinvlamO, &halflen, &newepsi,
divisorl, divisor2, &newflag, &newupper, &newmaxiters,
status, anyfail, multis, adds, trace);
if (*status && newupper)
printf("\n **** Warning: sinv(lamO) failure, halflen = %3d ****\n",
halflen);

/* BEGIN TO SET UP FOR LOOPING
*/

capt = log(halflen)/log(2); /* ie number of variables */
threet = pow(3,capt); /* ie 3°T, for flop count */
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if (newflag) {
for (1 = 0; i < halflen; i++) {
a_newli] = starts(i];

b_old[i] = starts[halflen+i];
}
newepsi = *epsi;
} else {

for (i = 0; i < halflen; i++) {
a_new[i] = sinvlamO{i]J / (1 + lambdal[halflen]);
b_old[i] = a_new[i] * lambdal[halflen];

}

*multis = *multis + halflen + halflen;

*adds = *»adds + 1;

newepsi = 0.01; /* only find 2 dp, just to kick off */

}

/* DO THE FIRST ITERATION OUTSIDE THE LOOP TO SET IT UP
*/

Seval (a_new, &halflen, tmp);
for (i = 0; i < halflen; i++) {
tmp[i] = lambdalhalflen+i] * tmpl[i];
}
newupper = 1; /% this will flag that we dn’t want analytic for 4-vector */
newflag = 1; /* use b_old from above as start values */
sqbalgor(tmp, b_old, b_new, khalflen, &newepsi,
divisorl, divisor2, &newflag, &newupper,
&newmaxiters, status, anyfail, multis, adds, trace);
*adds = *adds + threet;
*multis = *multis + threet;
iters = 1;
stop_difference = 1;

/* NOW ENTER MAIN LOOP:
*/

while (1) {
/* we break out on stop_difference < epsi or iters =newmaxiters x/
/* save old values, find a_new, and keep count */

for (i = 0; i < halflen; i++) {
a_old[i] = a_new[i];
b_old[i] b_newl[il;
xnew = b_old[il/a_old[i];
a_new[i] = sinvlam0[i] / (1 + xnew);
}
*adds = *adds + halflen;
*multis = *multis + halflen + halflen;

/* now find S~ {-1}(Lambda_2 * S(a)) */

Seval(a_new, ghalflen, tmp);
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for (i = 0; i < halflen; i++) {
tmp[i] = lambdalhalflen+i] * tmp(i];
a_diffs[i] = a_new[i] - a_old[i];
}
stop_difference = infty_norm(a_diffs, &halflen);
if (stop_difference < *epsi) break;
newepsi = stop_difference / (*divisor2);
if (newepsi >= 0.1) newepsi = 0.1;
if (newepsi < *epsi/(*divisorl)) newepsi = *epsi/(*divisoril);
nextmaxiters = newmaxiters - iters;
sqbalgor (tmp, b_old, b_new, &halflen, &newepsi,
divisori, divisor2, &newflag, &newupper,
4nextmaxiters, status, anyfail, multis, adds, trace);
*adds = *adds + threet;
smultis = *multis + threet;
iters++;
if (iters >= newmaxiters) break;

/* screen trace if required */

if (*trace) {
for (i=0; i < halflen; i++) {
printf("%10.8f",a_new[il);
}
printf ("\n");
}
13

/* END OF LOOP. TEST FOR CONVERGENCE STATUS THEN WRITE TO ANS:
*/
if (iters >= newmaxiters) {
*status = 1;
*anyfail = 1;
} else {
*status = 0; /* but leave anyfail alone */
}
for (i = 0; i < halflen; i++) {
ans[i] = a_new[i];
ans[halflen+i] = b_new([i];
}
}

289
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A5.3.3 Trough CyA example

The following fits were obtained for the models described in the main text.

===== MODEL bA.1 =====

param SE
alpha_0 0.5831981 0.1018966
alpha_1 -1.0216512 0.3887301
alpha_2 0.5108256 0.4216370
alpha_3 -0.1431008 0.3789324
alpha_4 0.6931472 0.3396831

$deviance:
[1] 473.5809

param SE

alpha_0 0.5831981 0.1018966
alpha_1 -1.1499672 0.3995642
alpha_2 0.4237940 0.4270334
alpha_3 -0.2726461 0.3901164
alpha_4 0.5696920 0.3464134

beta_1l 0.2367043 0.1040708 # effect for low trough
beta_2 0.1182576 0.1178449 # effect for high trough

$deviance:
[1] 468.6298

param SE
alpha 0 0.5831981 0.10189659
alpha_1 -1.0831102 0.39331738
alpha_2 0.4889126 0.42321617
alpha_3 -0.2137026 0.37989183
alpha_4 0.6260172 0.34373365
beta_1 0.1731713 0.08182806 # effect for low trough

$deviance:

[1] 469.6489

===== MODEL 5A.4 =====

param SE
alpha_0 0.58319807 0.1018966
alpha_1 -1.19694076 0.4529151
alpha_2 0.17218295 0.4907894
alpha_3 0.39053238 0.4425680
alpha_4 0.01626171 0.5333484
beta_11 0.31032651 0.2627729 # time-varying effect for low trough
beta_12 1.25381389 0.3109085
beta_13 -1.21880124 0.4136122
beta_14 0.61865843 0.5644120
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beta_hl 0.16264428
beta_h2 -0.23638602
beta_h3 0.01783771
beta_h4 1.20297315

$deviance:
[1] 444.6433

alpha_O0 O.
alpha_1 -1.
alpha_2 O.

alpha_3
alpha_4
beta_1
beta_2
beta_3
beta_4

param

$deviance:
[1] 457.6116

58319808
02250470
55147614

.09838013
.65990276
.12503234
.64415769
.36885414
.36935033

0.
0.
0.
0.

2648334
2729881
3221271
4664767

.1018966
.3928144
.4244982
.3989115
.3479203
.1108798
.1500666
.1686123
.1972701

# time-varying effect for high trough

# time-varying linear trough effect

291



Appendices 292

A6.4.4 Imputation by parameter pre-specification

Cell counts h and m refer to unobserved and observed observations, respectively, in the ex-
ample data presented in main text Table 6.1.

Pre-specification of PEF canonical parameters

Suppose we specify, arbitrarily, the IML parameters & and £. Then it follows that

hooo = M—
1+ x2
hoio = hoooX2
hioo = hoooX1
hito = mito0 — hioo

where § = exp {£} are the unlogged CORs, this being the solution to the systems

hooo + hoto = moto
hoto/hooo = X2
and
hioo +h110 = miyo
hioo/hoso = xa.

Notice that x2 determines hogo, SO that ¥ is restricted by the choice of x2, since we need

m
0<x1 < m1+0/h000 = (1 +X2) 1+0.
Mo4o

This example shows that even pre-specification of canonical parameters is subject to con-
straints; the curvature induced in the distribution by specification of the first chosen value is
subtle.

Selection-model constraints

In the presentation of Diggle and Kenward (1994), the dropout interaction parameter, 6,2
here, is always zero. Equivalently, in this context, ;53 = 0 in the canonical parametrization.
The derivation of this result is as follows. Dropping the tilde throughout and setting &2 = 0,

d3i01
efain = e50+61+52 = e%310pd2 — e¢3|1oe¢a|o1—5o — e%at10 €

e?sjo0

Hence
e¢3|ll e¢3|00 = e¢8|1oe¢3|01 , (A20)

ie. X123 = 1.

As acorollary: equation (A20) becomes, in terms of cell counts, for any admissible pre-specified
filled-in values (here assumed to be the two cells hogg and hyqp),

miil Meo1 _ Mio1 mMo11
mi+o — R1oo hooo  hiso Movo — hooo

Rearranging, .
Xi2Mo+oh100
mi+o — (1 — x15)h10o’

hooo =
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or
m1+oh000

xi2mo+o + (1 — x12)hooo’

hioo =

where
1 _ MinMeol1

2 Me11M101
is the odds ratio of the observed part of the table, that is, the one-conditional rather than
zero-conditional ratio.
Having restricted once by choosing 812 = 0, there is effectively only one degree of freedom
remaining. The choice of an admissible hggo forces a unique value of hygp and vice versa.
Provided
0 < hgoo < moto0,

hooo is admissible. Substituting from above and rearranging,

X}2m0+0h100 < m0+0[m1+0 -(1- X}-z)hmo]
= hijgo < Mo

which is the condition that hygp must satisfy in order to be a priori admissible.

In other words, admissibility of the one chosen cell, be it hgoo or hjgg, is sufficient to ensure
admissibility of the rest of the table. This also means that there are still infinitely many
ways of completing the table given only the Diggle and Kenward restriction 8,2 = 0, with
uniqueness following only after further specification of any one cell.

As already mentioned, the assumption d; = 0 corresponds to a MAR model. The joint as-
sumptions §;2 = §; = 0 also give a unique table, this time with possibly informative dropout
since J; is now fixed by the pre-conditions and the data to some probably nonzero value. Little
and Rubin (1987) highlight this model as being the only one of the hierarchical models from
{Y1Y2R»} to {Y},Y>, R} with both informative dropout and identifiable parameters. Equiv-
alently this is an arbitrary pre-specification, and the pre-conditions are not jointly verifiable
in any way. The likelihood ratio between the full {Y;Y>R2} and this {Y;Y2,Y2R,} is unity,
as is the likelihood ratio between either of these and the much more simply estimated MAR
assumption.

The joint assumptions 6; = d» = 8,2 = 0 give a non-saturated model implying MCAR data.

Imputing MCAR and MAR tables

If the data satisfied the MCAR or MAR assumptions, R, would be independent of Y>, condi-
tional on Y; for MAR, and unconditionally for MCAR. In both cases, the EM imputed values
for the missing y» would be given by the regression of the observed y, on the observed y; and,
more generally, on other covariates, although there are none in this example.

In the current context, under MCAR, this is equivalent to taking the unobserved odds ratios
equal to those in the observed m-cells, from which we estimate &;, & and &2, which imme-
diately gives IML estimates &3 = £23 = &123 = 0. These are in fact ordinary ML estimates
for the MCAR model: IML implies saturation over observed cells but ML does not. Such
IML estimates do not exist in general; only in special cases is it possible to specify CORs
that match the observed half of the table and the observed marginal constraints. The IML
approach is here attempting to impose three constraints given only two degrees of freedom.
Of course, ordinary ML estimates always exist for the MCAR model.

Under the weaker MAR assumption

Y2 L Ry | V1,
which becomes MCAR if also Y7 1 R; marginally, IML forces

mo11/moo1 = horo/hooo = x2 (observed)
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hoio + hoopo = moyo

which uniquely determines these unobserved cell counts. Also

mii/mior = hiio/hio0 = observed
hi10 + hioo

mi+o

determines the remaining unknown cells. Thus all the IML #, and hence &, estimates are fixed
simply by assuming the data to be MAR. The table is unique.

Conversely — and importantly — we can thus always impute a MAR table perfectly fitting
the observed data. This is true not only for this example but in full generality (Section 6.5).
Note that here x25 = 1 and X123 = 1, but %, is a function of the marginal totals mg4o and
mi40, and therefore not necessarily equal either to unity or to the odds ratio of the observed
data; nor is the marginal odds ratio As3 necessarily equal to x23 (i.e. unity); nor are the
conditional y,2 or marginal A2 necessarily unity, nor need they be equal.

With the MCAR assumption we do not need to specify the trivariate distribution, since all
inference follows from analysing the fully-observed data. The induced £ (log x) values are
given here to indicate those values which must be excluded if the model is forced to incorporate
informative missingness: that is, at least one of the above x values must not hold.
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A6.6 Timepoint-wise models for data with dropout

Labelled output for models fitted to the CHITC data set (Section 6.6) follows. In the printouts,
se(A), se(I) and se(S) are the square roots of the diagonals of the estimated (A4 = UU’),
observed expected (Z) and sandwich (S) variance matrix estimators (Section 1.4.5).

Model numbering reflects the order in which the data models were introduced in the main
text. Dropout model selection is in practice simultaneous so that in the following sometimes
a modified dropout model appears before being discussed in the text. Since the parameters
of the two models are always independent and the likelihoods separate, this should present no
difficulty.

Matlab code used to fit these models follows.

=========== Model 1 (null) ===========

param se(A) se(I) se(S)

1.7086 0.0851 0.0851 0.0851 % alpha_10

2.6832 0.1253 0.1253 0.1253 % alpha_11
-1.2427 0.0628 0.0628 0.0628 % delta_21 = delta_31
-1.3322 0.0650 0.0650 0.0650 % delta_22 = delta_32
1.9349 0.0895 0.0895 0.0895 % alpha_20 = alpha_30
2.7830 0.1268 0.1268 0.1268 % alpha_21 = alpha_31

elly = -1.0944e+03 ellr = -1.5784e+03

param se(A) se(I) se(S)

1.7086 0.0851 0.0851 0.0851 % alpha_10
2.6832 0.1253 0.1253 0.1253 % alpha_11
-1.3580 0.0838 0.0838 0.0838 % delta_21
-1.3089 0.0822 0.0822 0.0822 ¥ delta_22
2.0843 0.1208 0.1208 0.1208 % alpha_20
3.0658 0.1837 0.1837 0.1837 % alpha_21
-1.0827 0.0951 0.0951 0.0951 % delta_31
-1.3704 0.1063 0.1063 0.1063 % delta_32
1.7265 0.1336 0.1336 0.1336 % alpha_30
2.4411 0.1762 0.1762 0.1762 % alpha_31

elly = -1.0913e+03 ellr = -1.5756e+03

param se(A) se(I) se(S)

1.7086 0.0851 0.0851 0.0851 % alpha_10
2.6832 0.1253 0.1253 0.1253 % alpha_11
-1.3922 0.0700 0.0695 0.0690 % delta_1
-1.4016 0.0703 0.0699 0.0696 % delta_2
2.2117 0.1069 0.1033 0.1001 % alpha_20
3.1142 0.1383 0.1422 0.1466 % alpha_21
0.6618 0.1059 0.1075 0.1095 % delta_hl
0.3807 0.1238 0.1230 0.1226 7, delta_h2
-1.1467 0.1336 0.1357 0.1395 % alpha_h

elly = -1.0630e+03 ellr = -1.5594e+03
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[l eNeNeNolNolNe oo e

elly = -1.0619e+03

se(A)

[l el eNelNeNeolNelNoNe e Ne Neo/

.0851
.1253
.0710
.0710
.0995
.1268
.2079
.2258
.2988
.2385
.2889
.3278

elly = -1.0573e+03

-1.7126
-1.6719

se(A)

OO O0OO0OO0O0CO0OO0OOOO0OOOo

.0851
.1253
.0710
.0710
.1093
.1524
.2079
.2258
.2961
.3700
.2385
.2889
.3127
.3842

elly = -1.0431e+03

se(I) se(S)

0.0851 0.0851
0.1253 0.1253
0.0695 0.0690
0.0699 0.0696
0.1035 0.1003
0.1460 0.1429
0.1075 0.1095
0.1230 0.1226
0.1410 0.1506
0.1721 0.1650

ellr = -1.5594e+03

se(I) se(S)

0.0851 0.0851
0.1253 0.1253
0.0710 0.0710
0.0710 0.0710
0.0999 0.1003
0.1268 0.1268
0.2079 0.2079
0.2258 0.2258
0.2777 0.2585
0.2385 0.2385
0.2889 0.2889
0.3045 0.2832

ellr = -1.5502e+03

se(I) se(S)

0.0851 0.0851
0.1253 0.1253
0.0710 0.0710
0.0710 0.0710
0.1093 0.1093
0.1524 0.1524
0.2079 0.2079
0.2258 0.2258
0.2961 0.2961
0.3700 0.3700
0.2385 0.2385
0.2889 0.2889
0.3127 0.3127
0.3842 0.3842

ellr = -1.5502e+03

alpha_10
alpha_11
delta_1

delta_2

alpha_20
alpha_21
delta_hl
delta_h2
alpha_ht
alpha_h2

alpha_10
alpha_11
delta_1
delta_2
alpha_20
alpha_21
delta_hl1l
delta_h21
alpha_hl
delta_h12
delta_h22
alpha_h2

alpha_10
alpha_11
delta_l
delta_2
alpha_20
alpha_21
delta_hil
delta_h21
alpha_hO1
alpha_hil
delta_hi12
delta_h22
alpha_h02
alpha_h12

296



Appendices

Model 7 (lag 1 history, plus

se(A)

.0851
.1253
.0710
.0710
.1494
.2189
.2079
.2258
.3042
.3775
.2385
.2889
.3174
.3861
.1959
.2654

OO0 0000000000000

elly = -1.0377e+0

se(I)

.0851
.1253
.0710
.0710
.1489
.2147
.2079
.2258
.3030
L3779
.2385
.2889
L3171
.3889
.1954
.2637

CO0O0O0OO0CO0OO0OODO0OOOO0O0OO0OO0

se(S)

.0851
.1253
.0710
.0710
.1484
.2106
.2079
.2258
.3019
.3785
.2385
.2889
.3171
.3922
.1951
.2622

0O 000000000000 O0O0

ellr = -1.5502e+03

period)

Model 8 (lag 1 data saturated)

OO0 0000000000000 OO0OOO0
N
w
o]
(4]

elly = -1.0375e+03

CO0O 00000000000 OOO0OOO0OO0
S
N
©
o

se(S)

.0851
.1253
.0710
.0710
.1581
.2392
.2079
.2258
.35622
.4790
.2385
.2889
.3969
.5083
.2195
.3113
.6109
.6242
.5265
.6107

OO0 O0OO0OO0OOOOO0OOO0OOO0O0O0OOCO0

ellr = -1.5502e+03

Model 9 (lag 2 with period)

se(A)

0.0851
0.1253
0.0710

se(I)

0.0851
0.1253
0.0710

se(S)

0.0851
0.1253
0.0710

o~

alpha_10
alpha_11
delta_1
delta_2
alpha_21
alpha_22
delta_hil1l
delta_h21
alpha_hO1
alpha_hl1l
delta_h12
delta_h22
alpha_h02
alpha_h12
alpha_pO
alpha_pl

delta_2
alpha_20
alpha_21
delta_hll
delta_h21
alpha_h201
alpha_h211
delta_h12
delta_h22
alpha_h202
alpha_h212
alpha_p0
alpha_pl
alpha_h301
alpha_h311
alpha_h302
alpha_h312

alpha_10
alpha_il
delta_1
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.4291
.56310
.3704
.3338
.00563
.7164
.5704
.9312
.3305
.5534
.4732
.0079
.8248
.2626
.3510

.0710
.1500
.2200
.2079
.2258
.3071
.3937
.2385
.2889
.3265
.3776
.4315
.4928
.2156
.2913

CO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0OOo

elly = -1.0249e+03

Model 10

se(A)

.0851
.1253
.0710
.0710
.1157
.1623
.2079
.2258
.3004
.3851
.2385
.2889
.3236
.3767
.4002
.4746

OO0 O0OO0OO0OO0OO0OOOO0OO0O OO0 O

elly = -1.0258e+03

Model 11

se(A)

.0851
.1263
.0710
.0710
.1158
.1655
.2079
.2258
.3013
.3842
.2385

QO O0OO0O0OO0OO0O0OO0OO0Oo

0.0710 0.0710 % delta_ 2
0.1467 0.1436 % alpha_20
0.2096 0.1997 % alpha_21
0.2079 0.2079 % delta_hl1l
0.2258 0.2258 % delta_h21
0.3085 0.3103 ¥ alpha_hO1
0.4013 0.4109 % alpha_h11
0.2385 0.2385 % delta_hl2
0.2889 0.2889 Y delta_h22
0.3326 0.3406 % alpha_hO2
0.4116 0.4515 % alpha_h12
0.4661 0.5062 % alpha_pO
0.5107 0.5294 ¥ alpha_pil
0.2135 0.2118 % alpha_hhi
0.2861 0.2819 % alpha_hh2

ellr = -1.5502e+03

(lag 2, no period) ===========
se(I) se(8)
0.0851 0.0851 % alpha_10
0.1253 0.1253 % alpha_11
0.0710 0.0710 Y% delta_1
0.0710 0.0710 % delta.2
0.1145 0.1134 % alpha_20
0.1584 0.1546 % alpha_21
0.2079 0.2079 % delta_hil
0.2258 0.2258 % delta_h21
0.3031 0.3060 % alpha_hO1
0.3943 0.4041 % alpha_hilti
0.2385 0.2385 % delta_h12
0.2889 0.2889 % delta_h22
0.3299 0.3375 % alpha_h02
0.4084 0.4447 % alpha_h12
0.4381 0.4813 % alpha_hhl
0.4923 0.5109 % alpha_hh2

ellr = -1.5502e+03

(lag 2, non proportional) ==s========
se(I) se(S)
0.0851 0.0851 % alpha_10
0.1283 0.1253 ¥ alpha_11
0.0710 0.0710 % delta_1
0.0710 0.0710 % delta_2
0.1146 0.1134 % alpha_20
0.1610 0.1567 % alpha_21
0.2079 0.2079 % delta_hii
0.2258 0.2258 % delta_h21
0.3030 0.3051 % alpha_hO1
0.3978 0.4126 % alpha_hi1l
0.2385 0.2385 % delta_hl2
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0.3305 0.2889 0.2889 0.2889 % delta_h22
-1.5143 0.3250 0.3296 0.3366 % alpha_h02
-1.3967 0.3761 0.4100 0.4504 % alpha_h12
-2.0620 0.4721 0.4813 0.4966 J, alpha_hhO1
~-2.3471 0.4410 0.4838 0.5320 % alpha_hhi1l
-2.0827 0.4951 0.5091 0.5257 J alpha_hhO2
-1.8330 0.5547 0.6051 0.6615 J alpha_hhil2

elly = -1.0253e+03 ellr = -1.5502e+03

=========== Model 12 (flnal model) ===========

param se(A) se(I) se(S)

1.7086 0.0851 0.0851 0.0851 ¥% alpha_10
2.6832 0.1253 0.1253 0.1253 ¥ alpha_1t
-2.0480 0.1130 0.1126 0.1123 % delta_l
-1.2880 0.0845 0.0846 0.0848 ¥ delta_2
2.5122 0.1441 0.1395 0.1360 % alpha_20
3.3261 0.1766 0.1793 0.1843 % alpha_21
1.1295 0.2187 0.2195 0.2203 ¥ delta_hil
0.9580 0.2278 0.2268 0.2260 % delta_h21
-2.4604 0.3330 0.3169 0.3038 % alpha_hO1
-1.1970 0.3903 0.4068 0.4263 Y% alpha_hl1l
0.6686 0.2453 0.2527 0.2609 % delta_hl2
0.3125 0.2890 0.2896 0.2905 % delta_h22
-1.3775 0.3409 0.3441 0.3494 7 alpha_h02
-1.2660 0.3878 0.4182 0.4555 % alpha_h12
-1.9708 0.4100 0.4482 0.4920 % alpha_hhi
-1.7026 0.5047 0.5030 0.5033 % alpha_hh2
-0.6114 0.1581 0.1604 0.1648 7 beta_a
-0.9458 0.3037 0.2908 0.2850 % beta_.d2
0.7459 0.2740 0.2858 0.2996 ¥ beta_s2
0.9559 0.1010 0.1030 0.1052 % delta_al
0.7146 0.1357 0.1353 0.1351 ¥ delta_sl
-0.4019 0.1422 0.1420 0.1420 Y% delta_s2

elly = -1.0090e+03 ellr = -1.4887e+03

The above models were fitted in Matlab using the following program. Matlab was chosen over
Splus because of its speed advantage when running native code; even so models took up to 10
minutes to fit (the program is not, however, by any means optimized as yet).

The routine hcevals is not given here as it is the same as hceval except that it is stripped of
comments and does not calculate the likelihood, which is not needed until convergence. The
routine alogit returns the inverse logit.

The user needs to write the program with name passed to eta_eval according to the desired
model. An example is given below. This part of the program suite is very inefficient and not
at all user friendly.

The Y and R data, in columns ordered by time as in the main text, need to assigned globally
to a variable named y. Explanatory variables also need to be assigned globally (as x) for my
sample logit evaluation routine.

function [table,elly,ellr] = ...
hefit(startgamma,N,k,indicators,T,links,eta_eval)

%
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% HCFIT --- LOOP THROUGH HCEVALS AND HCEVAL UNTIL CONVERGENCE (OR NOT)

oldgamma=zeros(size(startgamma)) ;
iters=0;
okflag=1;

while sum(abs(startgamma - oldgamma)) > 0.001
difference = sum(abs(startgamma - oldgamma))
{u,inform] = ...
hcevals(startgamma,N,k,indicators,T,links,eta_eval);
oldgamma = startgamma;
startgamma = startgamma + inform\u’;
iters=iters+i;
if iters==20

ell = NaNl;
okflag = 0;
break;
end
end
if okflag==1

[u,uut,inform,elly,ellr] = ...
hceval(startgamma,N,k,indicators,T,links,eta_eval);
table = [ startgamma sqrt(diag(inv(uut))) sqrt(diag(inv(inform))) ...
sqrt(diag(inform\uut/inform)) J;
else
table = [];
end

function [u,uut,inform,elly,ellr] = ...
hceval (gamma,N,k,indicators,T,links,eta_eval)

% HCEVAL

% evaluate multivariate score etc
% for the mixed/cumulative link model, and sum of uu’ for pseudo info;
% and true information matrix.

% log likelihood returned split into y and r models contributions

% gamma is vector of parameters at which to evaluate ell

% N is sample size

% k is a vector giving number of classes for timepoints 1,2,...,T

% indicators is a vector coded 0 for no dropout, 1 for dropout-indicator,
% for each of the T variables

% (ie stop processing loop after including this term if > 0)

% T is number of timepoints (for a full cluster; constant)

% links is a character vector, holding ’c’ for cumulative link,

% else anything

% eta_eval is a user-written function which must return a vector

% of linear predictors and the matrix Xi for cluster i, called by
% ‘’eta_eval(i,gamma)’
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% observed data and covariates must be pre-assigned global
global y

gammalength = length(gamma);

u = zeros(l,gammalength); ‘ieventually holds the score function
uut = uxu’; %eventually holds the pseudo-info
inform = uut; ‘ieventually holds the true info
elly = 0; %eventually holds the likelihood evaluation
ellr = 0;
for i = 1:N
[Xi,eta] = eval([eta_eval ’(i, gamma)’]); % user evaluate all this

% cluster’s linear predictors

% general housekeeping -~-----=--—-----

b_build = zeros(size(eta))’; % eventually to hold b’ (see notes)
mark = 1; % initialize for vector-index subscripts
uutmp = zeros(length(eta),length(eta)); % temp space to build this
inftmp = uutmp; % clusters uu and info matrices
dropout = 0; % no dropout time zero
Y e m e
for h = 1:T

kh = k(h);

k_less_one = kh - 1;

k_less_two = kh - 2;

indices = mark: (mark+k_less_two);
mark = mark + k_less_one;

b = zeros(k_less_one,1)’; Y%will contribute to b_build
e = zeros(k_less_one,k_less_one); %and inftmp
j = y(@i,h); % read the y value, coded in j notation

eta_h = eta(indices); % extract relevant bits
if links(h) == ’¢’
Y akkkkdokkorkkksrkx CUMULATIVE LOGIT LINKS #iksokionskkkkkk

gvec = alogit(eta_h); % find G(eta) for time h
delta = gvec .* (1 - gvec);

if j ==

b(1) = (1 - gvec(1));
elseif j == k_less_one

b(k_less_one) = - gvec(k_less_one);
else

p = gvec(j+1) - gvec(j);

b(j) = - 1 ./p.*gvec(j).*(1 - gvec(j));

b(j+1) = 1 ./p.*gvec(j+1).*x(1-gvec(j+1));
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end

ph = gvec - [0 gvec(1:(k_less_two))’]’; % NB p above redundant
ph = [ph’ 1-gvec(k_less_one)]’; % vector of p values

pis = log(ph); % and their logs (pi values)
iph = 1 ./ ph; % and their inverses

e(1,1) = iph(1) + iph(2);

if kh > 2
e(1,2) = - iph(2);
e(k_less_one,k_less_two) = - iph(k_less_one);

e(k_less_one,k_less_one)
for hi = 2:(k_less_two)

iph(k_less_one) + iph(kh);

e(hi,hi-1) = - iph(hi);
e(hi,hi) = iph(hi) + iph(hi+1);
e(hi,hi+1) = - iph(hi+1);
end
end

inftmp(indices,indices) = e .* (deltaxdelta’);
else
% *kkkdkokkxxkkkkx UNORDERED MULTINOMIAL LOGIT LINKS sokkskkksknk

% convert from eta (equiv \xi) to p

A = log( 1 + sum(exp(eta_h)) );
p = exp( eta_h - A )’; % note this has p_1 as p(1)
pis = [-A log(p)]’; % note this contains pi_0 as pis(1)
% find b = (y - p)
b = -p;
if j >0
b(j) = b(j) + 1;
end

% the innards of the info contribution
inftmp(indices,indices) = diag(p) - p’*p;

end
% kkskokkoorkskokskkkokk COMMON TO EITHER TYPE OF LINK skskakokoskokokskkokok

uutmp(indices,indices) = b’ * b;
b_build(indices) = b;

ell = ell + pis(j+1);

if indicators(h) ==
ellr = ellr + pis(j+1);
ifj>0
break
end
else
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elly = elly + pis(j+1);
end

end

evalu = b_build * Xi;

u = u + evalu;

uut = uut + Xi’ * uwutmp * Xi;

inform = inform + Xi’ * inftmp * Xi;
end

VYA A AN Y YN AN YN Y YA AN A A YA Y YA A S
function [Xi, eta] = etas47(i,gamma)
% final model matrix

global y x

Xi = zeros(10,22);

Xi(1:6,1:6)=eye(6);
Xi(7:8,3:4)=eye(2);
Xi(9:10,5:6)=eye(2);

if y(i,1)==
Xi(3:6,7:10)=eye(4);
Xi(9:10,15)=ones(2,1);
elseif y(i,1)==
Xi(3:6,11:14)=eye(4);
Xi(9:10,16)=ones(2,1);
end

if y(i,3)==1
Xi(7:10,7:10)=eye(4);
elseif y(i,3)==2
Xi(7:10,11:14)=eye(4);
end

Xi(5:6,17)=ones(2,1) .*(x(i,1)-2)./10;
Xi(9:10,17)=ones(2,1) .*(x(i,1)+1)./10;
Xi(5:6,18)=ones(2,1) .*x(i,3);
Xi(5:6,19)=ones(2,1) .*(x(1,2)-1);
Xi(3,20)=(x(i,1)-2)./10;
Xi(7,20)=(x(i,1)+1)./10;
Xi(3:4,21:22)=eye(2) .*(x(i,2)-1);
Xi(7:8,21:22)=eye(2) . %(x(i,2)-1);

eta = Xixgamma;

WRIAAI NI I D DD DIRD DR DRANI AL DD DDA DAAL DY,
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