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Dynamic Inelastic Failure of Structural Elements

------Failure initiation, criteria and mechanisms

Abstract

The dynamic shear response and failure of structural elements under

transverse impact loads are studied in the present work.

The dynamic shear response is one of the important response modes in

structural elements under transverse impact loads, which may lead to various shear

failures depending on the loading rates and intensities. Transverse shear localization

phenomena, which are represented by a shear hinge, have been observed in several

structural elements when subjected to transverse dynamic loading and are studied in

this thesis. The features of a stationary shear hinge are illustrated using a rigid,

perfectly plastic simplification. The dimensions of a shear hinge for several structural

elements are estimated both theoretically and numerically. It is shown that there

exists a fixed shear hinge length for a given two-dimensional structural element. The

length of a shear hinge is determined by its bending and shearing properties which

can be obtained from a quasi-static analysis. When the shear hinge length has been

determined, the conventional rigid-plastic method can be used to calculate the shear

strain and shear strain rate within the shear hinge during the shear response phase.

These theoretical results are employed to model Menkes and Opat' s beam problem

to find two possible failure mechanisms, i.e., ductile shear failure and adiabatic shear

failure and the associated transition conditions.

A double-shear beam(DSB) subjected to a transverse projectile impact is

studied experimentally and numerically in order to provide a more fundamental

understanding on the features of structural failure in a localised shear zone. Both

ductile tensile failure and adiabatic shear banding failure are found in the shear notch

section. An analytical model and FEM simulation are developed to predict the DSB

response and failures. The theoretical background of the strain energy density failure

criterion is discussed and verified in this problem. Among the failure criteria

examined in the current study, the strain energy density failure criterion is observed

to give reasonable predictions for the failure initiation.
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I. PREFACE

1.1 Scope of the Problem

Unfortunately, structural failure is not an infrequent occurrence in modern

society, and sometimes leads to a large loss of life, destruction of property and

damage to the environment. The failure of structures due to an improper use of

material has also caused many disasters. It is remarked in the preface of Wierzbicki

and Jones( 1989) that "It is the responsibility of scientists and engineers to determine

the cause of failure, to describe the failure process, and to suggest measures of

preventing the failure from recurring". In order to achieve this aim, many

investigations have been conducted in the field of structural crashworthiness and

hazard assessment. For example, three successive international symposia on structural

crashworthiness(Jones and Wierzbicki(l983), Wierzbicki and Jones(1989) and Jones

and Wierzbicki(l993» have been held since 1983. These and many other conferences

on the behaviour of structures and systems have reported valuable results which may

be used for generating design methods and design data.

Frequently, external dynamic loads from impacts and explosions play an

important role in many structural failures. Even when the structural failure is initiated

sometimes from a static loading, the subsequent process is often a dynamic one. The

dynamic behaviour of various structures is a complicated process particularly when

material failure is involved. Therefore, an understanding of the basic failure modes

of structures is important for assessing the safety of practical structures in extreme

loading environments.

Generally speaking, every structural system consists of some basic structural

elements. The most frequent structural elements are beams, plates and shells. Thus,

investigations into the dynamic behaviour of these typical structural elements are

important for understanding the dynamic behaviour of a structural system which is

made of these elements. Basically, the dynamic behaviour of a structural element

involves its dynamic response, the initiation of failure and the failure process up to

complete collapse. Excessive deformations of structural elements may be an

important type of failure from an engineering viewpoint, for example, ingress into
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the minimum survivable occupant space in a vehicle. The dynamic response of

structural elements under large dynamic loadings often gives rise to plastic

deformations, which have been studied successfully using the well-developed rigid-

plastic method of analysis. The basic principles and developments of this method

have been introduced and reviewed by Jones(l989a,b). Many FEM softwares are also

capable of solving these problems. When the plastic deformations in structural

elements reach a critical value then a material failure will occur. The crucial point

for predicting material failure in structural elements is how to develop an appropriate

failure criterion and the corresponding analysis procedure, which can be used easily

by an engineer. The post-failure process is much more complicated because of the

interaction between the structural response and developments of material failure.

Although some studies have touched upon this topic, there remain many difficulties

requiring resolution in theoretical analyses, numerical methods and experimental

techniques.

Developing a proper failure criterion is crucial for predicting the initiation of

material failures in structural elements. Both analytical and FEM models need the

material failure criterion in structural failure analysis. Although many failure criteria

have been proposed for various practical applications there is still a shortcoming in

their physical foundations. Furthermore, different failure mechanisms may lead to

totally different failure types. A transition between two different failure mechanisms

requires totally different failure criteria in failure analysis.

Generally, two major classes of external loadings for a structural element are

associated with axial impact(or in-plane impact for plates) and transverse impact. One

possible structural failure mechanism for the first situation is the occurrence of

dynamic buckling, which may lead to material failure due to large localized strains.

Some methods of analysis for the dynamic buckling response of structural elements

have been discussed by Jones(l989a,b) though virtually no attention has been given

to the consequences of material failure. Our particular attention in this research will

focus on the dynamic ductile failure of structural elements under transverse loading

which is a very common loading throughout many engineering industries.

Investigations into the basic failure mechanisms of structural elements under
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transverse impact loadings are important for understanding the complicated failure

modes in many practical situations in the field of impact engineering.

As the simplest structural element, the behaviour of a beam under transverse

dynamic loading yields some important characteristics for the response of other

structural elements subjected to similar dynamic loadings. Therefore, an investigation

into the failure modes of a beam under a transverse dynamic loading will assist our

understanding of the failure mechanisms for more complex structural systems.

The scope of the present work is to study the localised shear deformation

behaviours and various failure mechanisms in a transversely loaded structural

element.

1.11 Outline of the Current Work

Dynamic transverse loading is a common loading type in structural dynamics.

Transverse shear localization and failures are frequently observed in practices, and

are studied throughout this thesis. The behaviour of a transversely loaded structural

clement and various failure mechanisms and failure criteria are introduced in Chapter

I, in which both ductile shear failure and adiabatic shear failure as well as the

possible transition between different failure modes are discussed. A rigid, perfectly

plastic theory is proposed in Chapter 2 to illustrate the shear localization phenomena

in structural elements when subjected to a dynamic transverse loading, which offers

a theoretical foundation for using the concept of stationary shear hinge in the

dynamic plastic response of structural elements. In order to estimate the deformation

distributions in a shear hinge, Chapter 3 evaluates the size of a shear hinge for

various structural elements. FEM simulations are conducted to describe the actual

formation process of transverse shear localization. These results give important

information for predicting the initiation of ductile shear failure and an adiabatic shear

band. Transition between these two failure mechanisms in a fully clamped beam

when subjected to an impulsive pressure loading is studied in Chapter 4 by using

rigid, perfectly plastic analysis and the knowledge developed in Chapters I to 3. A

similar discussion is conducted for circular plates and cylindrical shells, and projectile

impact loadings.
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In order to have a deep understanding on transverse shear response and failure

phenomena, experiments and results on double shear beams under projectile impact

are presented in Chapter 5. A thermo visco-plastic constitutive equation is also

proposed there based on static tensile, dynamic compressive and high temperature test

data. Both transformation and deformation shear bands are observed under different

conditions. Two different failure mechanisms, i.e., tensile fracture failure and

adiabatic shear band failure, are found at the notch corners. The response and failure

phenomena observed in Chapter 5 are analyzed by using an analytical model and the

FEM method in Chapter 6. Different failure criteria are verified using the

experimental results.

Comments and main achievements are concluded in Chapter 7.
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1.111 Notation

IX

Ak, Pij, Yij

B

D

e

E

E

H

L

M

q

Q

T

Till

thermodynamic forces

beam width

elastic and plastic shear wave velocities

specific heat

damage parameter

half length of a shear hinge

Young's modulus

Young's modulus of the material when free from any damage

hardening modulus

void volume fraction

static, dynamic and temperature factors III a thermo-viscoplastic

constitutive equation

thickness of structural element

rotatory inertia of a beam cross-section

volume ratio of material

thermal conductivity

length of the plastic bending, shear and membrane hinges

beam span

bending moment

pressure of the gas gun

parameter in Cowper-Symonds equation (5-3)

transverse shear force

time

temperature

melting temperature

room temperature

axial displacement

initial velocity

critical velocity
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Yk plastic internal variables
wI' inelastic strain energy density

wI' critical value of w" at failureL

W, transverse shear displacement

~ Taylor-Quinney coefficient

y engineering shear strain

L1 shear hinge length

Eij strain

Ec von-Mises equivalent strain

EEor zero gauge length engineering strain

ENOl' zero gauge length natural rupture strain

K bending curvature

v Poisson's ratio

~ discontinuity interface location

p material density

(J' effective stress

(J'o yield stress

(J'e von-Mises equivalent stress

(J'I: uniaxial engineering stress

(J'B hydrostatic stress

(J'm 3(J'H

(J'T uniaxial true stress

crn uniaxial true stress at failure

(J'TR' Tp defined in eq.(A14)

r shear stress.
<!> intrinsic mechanical dissipation rate

( ) d1dt

()' arax
1111 absolute value



Chapter 1

1. INTRODUCTION

1.1. Introduction

Dynamic inelastic response and failure of structural elements under intensive

loadings are of importance for safe design in the field of structural crashworthiness.

Different dynamic loadings may lead to the development of a different response and

failure modes. Three basic response and failure modes associated with a uniformly

distributed impulsive pressure loading were observed by Menkes and Opat(1973) for

a fully clamped beam, e.g.,

Mode I: Large inelastic deformations,

Mode II: Tearing(tensile failure) of outer fibres at or over the supports,

Mode III: Transverse shear failure at the supports,

which develop with an increase of loading intensity, as shown in Fig.I.I. Similar

conclusions on a beam were reached by Ross, et al.( 1977). Further experiments have

confirmed the existence of three response and failure modes in square plates(Ross,

et al.( 1977), Olson, et al.( 1991)), circular plates(Teeling-Smith and Nurick( 1991)) and

cylindrical shells(Ross, et al.( 1977), Opat and Menkes( 1974) and Stricklan, et

al.( 1976)), which have received considerable attention in recent years due to their

widespread use in various engineering fields. A reasonable failure criterion together

with a dynamic analysis procedure is necessary for understanding the responses and

failure modes in order to assess the structural safety under transversely dynamic

loads.

A theoretical analysis based on the rigid, perfectly plastic idealization together

with an elementary failure criterion was suggested by Jonest 1976, 1989) to predict the

occurrence of these response and failure modes in a fully clamped beam. A similar

analysis was adopted by Duffy( 1989) to predict the transverse shear failure at the

hard-point of a cylindrical shell. Lately, a more universal theoretical procedure using

the inelastic strain energy density failure criterion, as discussed in Appendix B,

together with rigid, perfectly plastic analysis has been proposed to predict the

observed response and failure modes in several structural elements(Shen and
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Jones( 1992), Shen and Jones( 1993) and Jones and Shen( 1993)). Material strain

hardening and strain rate effects have been considered by Wen( 1996) in an analysis

of the response and tearing failure of a fully clamped beam. Alves( 1996) incorporated

damage mechanics into a rigid-plastic analysis to predict beam failures, while, some

studies have combined FEM simulations with a failure criterion(Yu and Jones( 1989),

Clift, et a1.(1990». However, it appears that there are still many difficulties in

incorporating failure criteria into a FEM procedure for a dynamic response and the

failure of structures(Yu and Jones( 1997».

An important response feature of a structural element under a transverse

dynamic loading is the localization of deformations, represented by bending and shear

hinges, during the initial response period, which is followed by bending and

membrane responses. Generally, a shear hinge may be initiated firstly by an intensive

dynamic loading, followed by bending and then membrane responses if material

failure does not occur. A bending hinge is normally associated with low loading rate

and low to medium loading intensity, which develops into a membrane state with the

increase of transverse displacement. However, material failure may occur at any time

when a failure criterion is satisfied at the location of localized deformation. If

material failure occurs during the transverse shear response phase, it is characterized

hy a Mode III failure. A mode II failure is associated with bending and membrane

responses, although previous shear deformations may contribute to the final failure.

Clearly, Mode I is not associated with an actual material failure. Because large

permanent deformations of structural components may damage the contents in the

structure, a Mode I response is considered as a particular safety criterion from the

engineering view-point.

The failure criteria discussed in Section 1.3 may be used to predict material

isothermal failure including Modes II and III, where equilibrium thermodynamic

principles are applicable. However, the response characteristics associated with Mode

III may lead to a different failure mechanism, known as an adiabatic shear band,

which is initiated by material instability due to thermal softening. As pointed out

previously, both Mode II and III failures result from localized deformations in a

structural element related to bending and shearing hinges during the early response

phases. The physical nature of bending and shearing hinges in a transversely loaded
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structural element will be studied m Chapter 2 usmg a rigid, perfectly plastic

idealization.

In the present chapter, a transverse shear localization and related failure

mechanisms will be discussed. The possihle failure mechanisms in a transverse shear

hinge include isothermal fracture failure and an adiahatic shear banding failure.

General features of a transversely loaded structural element will be discussed in

Section 1.2. Various failure criteria that may he used to predict structural material

failure are reviewed in Section 1.3. Shear handing phenomenon is discussed in

Section 1.4. Failure transition hetween these two failure mechanisms is introduced

in Section 1.5.

1.2 Transverse Shear Response and Failure

It has been shown that transverse shear forces may influence significantly the

response of plastic structural elements under dynamic lateral loadings(Jones( 1989)).

Experimental and analytical results on the dynamic plastic response of structural

clements have shown the existence of a transverse shear hinge which is an

idealization of a localized shear zone. The critical conditions for the occurrence of

transverse shear hinge(sliding) have heen obtained for various structural

elements(Jones(l989), Li and Jones(l994), Li and Jones( 1995a,b» using the rigid,

perfectly plastic assumption. It appears that transverse shear localization is closely

associated with the two dimensionless parameters for a sufficiently rapid loading

and ( J-La.b)

where P is the pressure intensity of the loading, Po is the static plastic bending

collapse pressure, Qo and M, are the fully plastic generalized forces in structural

clements, R is the dimension of structural element, i.e., radius for circular plate or

the half length for a beam and a cylindrical shell(Li and Jones( 1991), Li and

Jones(1995b». Critical curves for the initiation of a transverse shear hinge in several

structural elements are shown in Fig.I.2 where a transverse shear hinge is initiated

above the corresponding curve. Another important factor which influences the

initiation of a transverse shear hinge is the loading rate described by V/cp' where V
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is the loading velocity and cr is the propagation speed of transverse plastic shear

deformations in a structural element, as shown in Chapter 3. Once a transverse shear

hinge has been formed, the external energy will be dissipated mainly through shear

deformations within the plastic hinge.

Symonds( 1968) was the first to provide a theoretical illustration for the

phenomenon of localized shear deformations in rigid, perfectly plastic beams. He

discussed the influence of the transverse shear force on the dynamic plastic response

of beams, and proved that a rigid-plastic shear interface remains stationary during the

dynamic plastic response. Although, Symonds' results are based on a particular

square yield curve which relates the bending moment and the transverse shear force,

his conclusions have been extended in Chapter 2 to general regular and singular yield

conditions, and furthermore, to circular plates and cylindrical shells. It is evident that

the accumulated shear deformations at a stationary plastic hinge will be responsible

for both the transverse shear failure observed by Menkes and Opat(l973) and the

adiabatic shear banding mechanism discussed in Section 1.4.

The transverse shear hinge introduced into a rigid, perfectly plastic analysis

is an idealization of rapid changes in transverse displacement across a short section

of a beam. The distribution of transverse shear deformations within the shear hinge

are complicated and cannot be determined with the aid of a rigid, perfectly plastic

method of analysis. However, experimental evidence(Zener( 1948), Jouri and

Jones( 1988)) suggests that the section which is deformed in shear is anti-symmetrical

about its mid-point for a pure shear hinge and may be divided into two parts with

rapid and slow changes of the transverse displacements in zones I and II, as shown

in Fig. 1.3. Most of the transverse shear deformation occurs within the zone I so that

the transverse shear sliding across a shear hinge is due mainly to the transverse

displacement accumulated across this zone. The shear deformation within zone I is

almost a simple shear flow, which is determined by

W
y=_.'

,1
(1-2)

where Ws is the transverse shear sliding across the shear hinge and A is the length

of shear hinge which will be determined in Chapter 3.
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Within the shear hinge, plastic deformation is a simple shear flow associated

with monotonic loading. Thus, the maximum shear strain failure criterion is

Y=Y,., (1-3)

where Ycis the critical shear strain determined by a pure shear test.

Eqs.(l-2) and (1-3) lead to the so-called elementary failure criterion

( 1-4)

where W,c is the critical value of transverse shear displacement, determined from

W,' =,,(,I1=AY,H =kH, (1-5)

where, k=AY" and A=MH=2e/H is a constant which will be given in Section 3.2 for

several structural elements. The validation of Eqs.( 1-4) and (1-5) have been studied

by Jouri and Jones(1988) through a series of tests on fully clamped double shear

beams made from aluminium alloy and mild steel. The elementary shear failure

criterion is given by

W =kll, (kk:S; I., (1-6)

which has been used in several applications(Jones( 1976, 1989».

Practically, structural dimensions may have a slight influence on parameter

k in eq.(1-6). Some results on beams and circular plates have been shown in Jouri

and lones(l988), Wen and Jones(l994), Jones, Kim and Li( 1997).

1.3 Failure Criteria

Various failure criteria have been developed to predict the initiation of

material failures in structural elements.

A general macroscopic failure criterion within the scope of continuum

mechanics depends on some state variables, such as stress, strain and temperature,

and some internal variables like plastic work. Among them, stress and strain failure

criteria are the earliest phenomenological failure criteria used to predict material

failures.

Early investigators suggested two general criteria for fracture, i.e., (a) fracture
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occurs when a critical state of strain is achieved, and (b) fracture occurs when a

critical state of stress is achieved. It is commonly accepted that stress failure criteria

is suitable for material brittle failure and strain failure criteria is proper for material

ductile failure because material brittle failure is controlled mainly by the existing

stress state as the internal driving forces among atoms, while material ductile failure

is dominated by the internal dissipation process preceding the failure.

Further investigations have shown that the critical strain and critical stress

laws for material failure are individually incorrect. A general expression of a stress

or strain failure criterion should he evaluated from the statement hy Dom( 1948):

Material failure initiates when a critical value o] the stress/strain state is achieved.

But the stress/strain state for material failure depends upon the inelastic dissipation

histories preceding the failure and some significant environmental variables.

A general stress/strain failure criterion can he expressed hy

( 1-7a,b)

where uj and ~i are significant state and internal variables, The function F and its

critical value Fe should he determined from experiments and a physical understanding

of the failure mechanisms. Some frequently used stress and strain failure criteria are

given below.

(a) Maximum normal stress failure criterion

( I -8a)

where O'j(i= 1-3) are principal stresses;

(b) Maximum shear stress failure criterion, or Tresca failure criterion

( I -8b)

(c) Equivalent(Von-Mises) stress failure criterion

(I-8e)
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where Sij=O'ij-Pijand Pij=O'klbklb;/3=pDij are deviatoric and hydrostatic stresses,

respectively;

(d) Hydrostatic tension failure criterion

a··~ ..
F(a .)=aH=_!!__!1_·IJ 3 '

( I-8d)

(e) Maximum plastic tensile strain failure criterion

(I-8e)

where £t(i= 1-3) are principal plastic strains;

(f) Maximum plastic shear strain failure criterion

( 1-8f)

where y;{=2£;{ is the engineering plastic strain;

(g) Equivalent plastic strain(Von-Mises) failure criterion

t~ ,------

F(Ei;)=! '!:_dE!:,AEI!=E'v 3 cr' IJ e'
o

(1-8g)

(h) Plastic/damage volume expansion failure criterion

( 1-8h)

which is identical to the void volume fraction failure criterion in damage mechanics.

The above failure criteria have been applied widely in engineering to predict

the initiation of material failure. The four stress type failure criteria described above

are illustrated in Fig.I.4. In a general sense, especially in engineering, a structural

failure can be defined as either a material failure or a plastic flow instability, or

sometimes simply excessive deformations. The proposed stress/strain failure criteria

are capable of predicting both of them.

The inelastic strain energy density failure criterion has been used in several

applications to predict material ductile failure initiation. The general expression of

an inelastic strain energy density failure criterion is
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(1-9)

in which, (Xi and PI are state and internal variables, which need to be identified in

material failure test. More discussion on inelastic strain energy density failure

criterion is given in Appendix B.

Some failure criteria are based on the theory of damage mechanics. The basic

theory of continuum damage mechanics is introduced by Lemaitre and

Chaboche(l990). The continuum damage mechanics approach is used by Alves( 1996)

for dynamic structural failure analysis. It should be noted that the macroscopic

phenomenological failure criteria do not exclude the possible existence of material

damage.

1.4. Adiabatic Shear Banding

The appearance of a shear hinge in a transversely loaded structural element

is a type of shear localization from the viewpoint of a global structural response.

However, the shear distribution within a shear hinge is still quite uniform if no

material thermal instability occurs. However, the geometrical configuration of a shear

hinge, shown in Fig.I.3 supplies an ideal environment for initiating a material

thermal instability, or adiabatic shear banding.

The formation of adiabatic shear bands in metal structures subjected to rapid

shearing through explosive or impact loading is an important deformation mechanism

which usually results in a catastrophic fracture. The basic phenomenon of shear

handing was pointed out by Zener and Holloman( 1944) and has received increasing

attention in recent years as it is a primary mode of ductile deformation and failure

in a variety of materials at moderate to high rates of deformation. The current

understanding of this topic is summarised by Bai and Dodd( 1992).

An adiabatic shear band can form in a ductile material when thermal softening

caused by the heat generated through plastic deformations dominates strain hardening,
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strain rate hardening and all other hardening mechanisms combined I. A simple shear

test on a Split Torsional Hopkinson Bar(STHB) is used frequently to generate simple

shear flow, and, thus, to initiate an adiabatic shear banding mechanism. Based on

their observations of the formation of shear bands in thin-walled HY -100 steel tubes,

Marchand and Duffy( 1988) have proposed that the localization of deformation into

narrow shear bands occurs in three stages. During stage one, a simple shear flow

develops homogeneously. Stage two begins when the shear stress attains a peak

value, and the softening caused by the heating of the material is balanced by the

strain and strain rate hardening. During stage two, the body deforms non-

homogeneously. The initiation of stage three is indicated by a precipitous drop in the

shear stress at a point in the body and the simultaneous localization of the

deformation into a narrow band. These three stages of the deformation have also been

confirmed by numerical studies of Molinari and Clifton( 1987) and Wright and

Walter(l987). These three stages can be described by a stress release model proposed

hy Grady and Kipp( 1987) and Grady( 1992) for a simple shear flow, as shown in

Fig.l.S. The adiabatic shearing developed from a simple shear flow possesses the

common features of adiabatic shearing evolved from any other plastic flow patterns,

which are characterised by the localization of plastic shear deformations into a well-

defined shear band and the anti-symmetric plastic deformations within and around a

shear band, as shown in Figure 6.6 of Dodd and Bai( 1987). Thus, conclusions

obtained from a simple shear flow are generally valid, which, probably, is one reason

why simple shear has heen used by most researchers to study the formation of

adiabatic shear banding.

According to the observations by Marchand and Duffy( 1988), global

instability is initiated from stage II when the maximum shear stress is reached.

Afterwards, the subsequent adiabatic shear banding is a natural outcome if the input

energy is supplied continuously. From an engineering viewpoint, the initiation of

stage two in Figure 1.5 coincides with the loss of stahility of a body in simple shear.

It has been pointed out that this instability is due to the thermal softening caused by

I Material damage or textural effects may have a similar effect as thermal softening, and lead to
an isothermal shear band or shear hand in combination with thermal softening effectstDodd and
Alkins(19H3».
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adiabatic heating'. Some linear(Costin, et al.( 1979), Bai(l982») and non-

linear(Wright and Walter(l987), Fressengeas and Molinari( 1987» analyses have also

shown that a localized shear deformation starts in a body after the peak homogeneous

simple shear stress. Therefore, the maximum shear stress is used frequently as an

approximate criterion for the formation of a shear band, as discussed by Dodd and

Bai( 1987), and Wang, et al.( 1988).

If deformation history effects and changes in the structure of the metal are

ignored, then the flow stress t may be written as a function of the shear strain y, the

shear strain rate y and the temperature T, i.e.,

t=f(y,y,n (1-10)

The maximum shear stress criterion may be expressed as

(1-11)

111 which, at/ar>0, dt/ay>O and at/aT <0 represent strain hardening, strain rate

hardening and thermal softening, respectively.

For adiabatic deformations, the increase of temperature with strain is given

by

( 1-12)

where, ~ is the Taylor-Quinney coefficient defined as the fraction of the plastic work

converted into heat(~=0.9-1.0)(see Taylor and Quinney( 1934), Birch, Jones and

.louri(l988), and Oliferuk( 1993»), r is the flow stress, p is the density of the metal

and C; is the specific heat. Although, a constant ~ has been used by all publications

known by the author, ~ may vary during an inelastic deformation process, which is

still an open topic for further research.

By using eqs.( 1-11) and (1-12), the maximum shear stress criterion can be

expressed as

2 Sometimes, a truly adiabatic condition is not obtained, but it is still known as adiabatic shearing.
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.t;(y, y )=0 , (1-13)

for an adiabatic process, wherej, depends on the particular form of the thermal

visco-plastic constitutive equation.

The initiation of material failure in an adiabatic shear hand is a complicated

process, where both brittle and ductile modes of fracture are observed. Shear bands

can he divided into two different types, i.e., deformation bands(without any micro-

structural transformation) and transformation hands(with a micro-structural

transformation). The majority of shear bands ohserved in nonferrous metals are

deformation bands. Transformation bands are most commonly observed in ferrous

alloys, in which they are associated with a ferrite-austenite transformation. Bai and

Dodd( 1992) give further details on the metallurgical and microscopic features of

shear bands.

When an adiabatic shearing process occurs in a uniform shearing material

section, the adiabatic shear banding criterion, eq.( 1-13), could be applied easily

because strain and strain rate are not related to wave propagation. However, when the

loading rate is very high, the whole event may be completed within the time when

wave effects are important. In this case, stress wave effects have to be considered for

both fracture failure and adiahatic shear banding failure. If material failure or

adiabatic shear banding occurs before the transverse shear wave reflects several times

hetween two ends of the gauge section, wave effects must be considered in the

deformation prediction and failure criteria. This is the case in Section 3.3.3(c) when

Ve-e, and the situation in Section 4.3.2 when V>V,w which limits the method

developed in Chapters 3 and 4 by using shear hinge concept within a proper impact

velocity range.

In order to establish a criterion for initiating adiabatic shear banding, let us

examine the "rate-independent" momentum equation

(1-14)

where u is the transverse displacement, and the transverse shear wave velocity, cp'

is determined by
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c 0 ~ 1 d,
P P dy'

(1-15)

The common concave t-y relationship in the isothermal case without a stress peak

will give a decreasing wave speed with increasing stress or strain. However, it is

unavoidable that an increase of shear strain at high strain rates may lead to a

significant temperature rise, which causes the flow stress to decrease due to the so-

called thermal softening effect. Texture softening, such as damage development, may

also lead to strain softening, which is not important in the present problem. For a

semi-infinite body loaded on its boundary surface with a monotonously increasing

driving velocity, the deformations propagate by shear wave patterns. As soon as the

shear stress reaches its maximum at a critical strain due to thermal softening, i.e.,

dt/dy=O, the corresponding wave velocity is zero. Beyond the critical shear strain,

which depends obviously on the loading rate, transverse shear disturbances cannot

propagate into the semi-infinite body and are trapped at the location where cp=O.This

provides a strong discontinuity and, thus, an abrupt jump of particle velocities which

leads to an adiabatic process and intensive shear strains at the location where cp=O,

and therefore, may be understood as the initiation of adiabatic shear banding. This

phenomenon was termed "wave trapping" and was first noticed by Erlich, et

al.( 1980). According to the physical nature of wave trapping, the location of

adiabatic shearing associated with shear wave propagation should be near the loading

boundary(Wu and Freund( 1984)), which is only possible when the loading rate and

intensity are both sufficiently high.

Now, let us consider an idealized shear propagation model, where the input

shear strain rate is constant' and the heat conduction is simplified by eq.( 1-12). The

balance of momentum in the absence of body forces is

'This is a simplification of the problem. After the occurrence of shear banding or wave trapping.
the rate sensitivity must be considered. which results in a finite thickness of the shear band(Wu and
Freund( 1984». It has been shown that this thickness varies with the boundary velocity in a certain
region(Wu and Freund( 1984 », which coincides with experimental observations that the shear band
thickness varies from 10-100l-un under different situations.
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( 1-16)

and the shear stress increment is

d =( i}t + ~'t ch)d + (hd·'t _ ---- Y _ Y
ay pC, aT ay

(1-17)

according to eqs.(l-ll) and (1-12). Before the occurrence of a shear instability, or

wave trapping in this case, the assumption of a constant input shear strain rate may

Icad to dr=O because the same relative velocity is imposed on the material particles

by the travelling shear stress wave. Thus, eq.(1-14) can be evaluated from eqs.(l-16)

and (1-17), in which the wave propagation velocity defined in eq.( 1-15) is given by

(1-18)

in the current case. cr=O implies that the input energy will be trapped at the place

where this condition is satisfied first, which will lead to a localized shear deformation

band.

It should be noted that the condition for wave trapping( or adiabatic shear

banding), cr=O, is identical to <.I't=Owhen the strain rate change is neglected, which

generally true before the initiation of adiabatic shear banding. After wave trapping

occurs, dy may not be zero. The term dy in eq.( 1-17) will be considered, as

discussed previously by Wu and Freund( 1984). It was shown that the strain rate

effect leads to a viscous dissipation which makes the wave trap diffuse with a

characteristic spatial length. The above analyses are only suitable for a limited

period when the reflected plastic wave has not arrived at the loading boundary.

Outside this period, the boundary conditions at the two ends of the shear section need

to be considered, and eqs( 1-16) and (1-17) require solving to predict the actual

location of wave trapping. Therefore, the features of an adiabatic shear band formed

hy wave trapping during the early response period when the stress wave effect is

important are different from those formed in the later phase when the stress wave

effect may be neglected but dynamic effects(strain rate and inertia) are still important.
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In the later case, the structure of a shear band is anti-symmetrical which has been

observed in many cases(see Fig.6.9 on pp.152 of Bai and Dodd(l992)). However, in

the wave trapping case, the distribution of deformation within the wave trapping layer

is not anti-symmetrical(Wu and Freund( 1984)). A detailed discussion on wave

trapping is introduced by Bai and Dodd( 1992).

Equation (1-18) is Klepaczko s( 1994) results. Klepaczko used a rate-

independent wave theory and rate-dependent constitutive equation in his evaluation,

which appears to be contradictory. This contradiction is eliminated in the present

evaluation when a characteristic strain rate is kept in the constitutive equation, but

its transient changes are neglected.

By using the following relationship

( 1-19)

along the non-linear characteristic lines, the critical impact velocity to initiate wave

trapping may be obtained by

Y,

v, =Jc dyle p
o

( 1-20)

where Ye is determined by cp=O(or d1=O), as shown by Klepaczko(l994).

1.5. Failure Mechanism Transition

It has been shown that isothermal fracture failure and adiabatic shear banding

failure are two important failure mechanisms, which may develop within a shear

hinge of a transversely loaded structural element. Previously, these two failure

mechanisms were studied separately because isothermal fracture failure and adiabatic

shear banding occur in different ranges of the loading rate and intensity.

Some recent studies have studied the interactions between an isothermal

fracture failure and an adiabatic shear banding failure. Kalthoff( 1987, 1990) observed

two distinct failure mechanisms in double-shear beams when subjected to projectile

impact. At a low loading rate, the usual opening fracture mode was observed. With

an increase of loading rate(impact velocity), the opening fracture mode was

transferee into an adiabatic shear mode, which is controlled by a totally different
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failure mechanism. Wang, et al.(1994) treated this problem as an interaction between

a dynamic opening fracture mode crack and an adiabatic shear band. The maximum

stress criterion given in Section 1.3, and elastic fracture mechanics were used to

predict the initiation of an adiabatic shear hand. Good agreement is found between

test and predicted results for a Ti-6AI-4V material, where the adiabatic shear band

is triggered by an existing crack. In a structural element where no "crack trigger"

exists, it is still possible to find the transition between these two failure mechanisms.

Based on a rigid-plastic idealization and the maximum stress criterion, Wang and

Jones( 1996) gave a theoretical analysis for a simply supported beam under an

impulsive loading, which is the first attempt to combine the studies on the dynamic

plastic response of structural elements with the mechanics of adiabatic shearing, and

gives some insight into the adiabatic shearing in an impulsively loaded beam.

However, further experimental and theoretical studies are required due to the

complexity of the problem.
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(<I) (h) (c)

Fig.6.1

Fig.l.l Three basic dynamic response and failure modes in a transversely loaded
structural element, (a) Mode I; (b) Mode II; (c) Mode III.
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Fig.I.2 Critical curves for initiating transverse shear hinge in several structural
clements.
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(a) (b)

Fig.l.3 (a) Idealized shear hinge; (b) Construction of a shear hinge .
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Fig.I.4. Stress failure criteria
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(a)

Rigid region

I -

"I

(h) (c)

Fig. 1.5. Displacement distributions in a simple shear body corresponding to different
stages of shear banding formation, (a) Stage I: uniform flow; (b) Stage II: non-
uniform flow; (c) Stage III: localized shear flow(Grady( 1992»)
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2. CONTINUITY CONDITIONS AT BENDING AND SHEARING

INTERFACES OF RIGID-PERFECTLY PLASTIC

STRUCTURAL ELEMENTS

2.1. Introduction

It has been shown in Chapter 1 that deformation localizations in a rigid,

perfectly plastic structural element when subjected to a transverse dynamic load are

represented by plastic hinges during the early response phase before a membrane

state is reached. These plastic hinges, including bending and shearing hinges, are

basically discontinuity interfaces of the generalized strains. For example, a bending

hinge corresponds to a discontinuity interface of bending curvature, and a shear hinge

is associated with the discontinuity interface of shear strain. Thus, the behaviour of

these discontinuity interfaces determine the behaviour of plastic hinges, and therefore,

the dynamic deformation localizations in a transversely loaded structural element.

Although, a discontinuity interface may appear in the dynamic response of

structural elements, made from a rigid, perfectly plastic material, the bending and

shearing hinges represent a general characteristic of dynamic plastic response of

several structural elements under transverse load. The continuity conditions at an

interface must satisfy the conservation of momentum across the interface and the

kinematic admissibility of the motion at this interface. A large literature now exists

for the dynamic plastic bending response of structural elements(Lee and

Symonds(l952), Hopkins and Prager(l954), and Hodge(1955», in which the

continuity conditions at bending hinges in structural elements were discussed. These

works are also be summarized by Jones(l989)(p. 77-81 for beams; p.133-134 for

circular plates; p.169-178 for cylindrical shells).

It has been shown that a transverse shear force plays an important role in the

dynamic plastic response of structures(p.216-275 of Jones(l989» when subjected to

an intensive loading. Symonds( 1968) discussed the continuity conditions at an

interface in a beam when the influence of the transverse shear force is retained in the
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yield condition, and these results have been used widely in the analyses of dynamic

plastic response of beams (Jones and Oliveira( 1979), Nonaka( 1977), and Li and

Jones( 1995a». However, Symonds' conclusions are based on a particular square yield

surface, which are not applicable when the stress components at a rigid-plastic

interface lie at a singular position of a yield surface, as pointed out by Jones and

Oliveira( 1979). The dynamic and kinematic continuity conditions at a discontinuity

interface in axisymmetric ally loaded circular plates and cylindrical shells have been

obtained by Jones and Oliveira( 1980, 1983) using generalized stresses and strains

when transverse shear force and bending moments are retained in the yield surface,

which is evaluated from the general dynamic and kinematic continuity conditions

across a discontinuity surface in a continuum(Nowacki( 1978)). Some further

investigations on continuity conditions required across a discontinuity surface in an

elastic-plastic solid have been discussed by Drugan and Shen( 1987) and Nernat-

Nasser and Gao( 1988).

Although, the above mentioned continuity conditions at an interface have been

used widely in theoretical and numerical analyses into the dynamic plastic response

of structural elements, and predict reasonable results, they were, nevertheless, stated

neatly for the convenient use in each case of rigid-plastic interfaces existing in rigid,

perfectly plastic structural elements described with generalized stresses and strains.

Symonds( 1968) discussed the properties of both moving and stationary bending and

shearing interfaces in rigid, perfectly plastic beams, which might be extended to

axisymmetrically loaded, rigid perfectly plastic circular plates and cylindrical shells

by a parallel analysis, but his proof is too restrictive to be used for a general yield

condition.

The purpose of this chapter is to extend Symonds' results for a square yield

curve between the bending moment and the transverse shear force in a beam to a

more general yield condition which may be a regular or a singular one, and to

present continuity conditions for each type of rigid-plastic interface. Furthermore, the

conclusions for a rigid, perfectly plastic beam are proved to be valid for

axisymmetrically loaded circular plates and cylindrical shells which are made from

rigid, perfectly plastic materials, even though different generalized stresses are

involved in the yield condition. The significance of these general results is to prove
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that plastic shear deformation in a two-dimensional metal element has the localization

feature when its plastic hardening modulus is relatively smaller than its elastic

modulus, i.e., rigid, perfectly plastic simplification is applicable.

2.2. Basic Assumptions and Equations

When the local theory(Oliveira and Jones(1978» is used in an analysis for the

dynamic plastic response of beams without axial deformations, the generalized

stresses and their associated generalized strains are M, Q, K and y, respectively,

which should satisfy the material stability postulate proposed by

Drucker(1951,1964)(also discussed by Martin(1975». Therefore, for a regular yield

surface I(M, Q)=O, we have

dx=d): a/ (2-la)aM
and

dy=d'A aI, (2-1 b)aQ

in which, d'A=O for /<O(before yielding, or rigid case) or /=0 and d/<O(unloading

case), and df..2:.0 for /=0 and d/=O(neutral loading case') when the beam is made

from a rigid, perfectly plastic material. In the plastic loading case, the flow directions

of the generalized strains are in a direction normal to a regular yield surface, which

has a unique normal direction at every point.

For a singular yield surface consisting of a number of n regular yield

functions liM,Q), p= 1,...,n, plastic yielding occurs as soon as at least one of the

functions Ip is zero. It is evident that all the points on the yield surface, when only

one function /p=O, are regular and the corresponding generalized plastic strain

increments are the same as those for a completely regular yield surface 1;,=0. In those

situations when the generalized stresses are at the intersection of two or more

surfaces /p=O, the flow rule of plastic yielding for such a singular point is obtained

, For a perfectly plastic material, the initial yield surface can not expand, therefore, only the
neutral loading case exists.
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by combining each yield function separately according to Keiter's

suggestion(Koiter( 1953)), which leads to

/I aj
dK=" .n: .zs.

~ [laM
(2-2a)

and

/I aj
dy=" d'A.z:~ [laQ'

(2-2b)

where,

d'A,,=O, for Jp<O(rigid case) or ~=O and dJp<O(unloading case),

d'A,,"2.0, for Jp ~ and dfp =Omeutral loading case).

(2-
3)

Generally speaking, the flow directions of the generalized strains are uncertain

at a singular point, but are bounded by the normal directions of each adjacent regular

surface. This uncertainty is avoided by using the dynamic equations and the

kinematic admissibility of the deformation field.

Furthermore, we assume that the final deformation of a beam is not influenced

by the loading sequence of the bending moment and the transverse shear force, and

therefore, the deflection of a beam is composed of two parts which are related to the

bending and shearing behaviour

W=Wh +w.\.. (2-4)

Differentiation of equation(2-4) with respect to time leads to

aw . . ._=w=w +wat h.1
(2-5)

From equations(2-4,2-5), we define the following quantities for small deformations

aw
_=\jI+yax (2-6a)
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a2
w =(0+ ay

atdx at
(2-6b)

and

(2-6c)

where, \jI=dwtlax, (O=d\jl/at and K are rotation angle, angular velocity and the

curvature associated with bending, respectively, and r=aw/dx is the transverse shear

strain.

The conservation of momentum across a discontinuity interface requires(p.230

in Jones(l989»

(2-7a)

and

(2-7b)

.
in which, ~ is the position of an interface, and ~ is the propagation velocity of a

moving interface.

2.3. Results For Regular Yield Surface

Now, the kinematic continuity conditions across a moving interface are(p.230-

231 in Jones( 1989), also see Symonds( 1968»

(2-8a,b)

which imply that
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(2-9a)

and

(2-9b)

which allow equations (2-7a,b) to be written as

[Q]1; =rrl:/ [Y]1;
(2-lOa)

and

(2-lOb)

when using equations (2-7a,b) and [awlax]1;=[\jIls+[Yls=[Y]1;'

Consider an interface moving from a perfectly plastic zone to a rigid segment,

as shown in Fig.2.l (a). The points on the rigid side of the interface will yield when

reached by the moving interface. Equations (2-1Oa,b) may be re-written as

dQ=fff,'2dy
(2-11 a)

and

dM=I~'2dK
(2-llb)

where, dA means the increment of a physical quantity A on the rigid side of an

interface shown in Figure 2.l(a).

For a rigid, perfectly plastic material,

(2-12)

during a loading process. According to equations (2-11 a.b) and (2-1 a.b), equation (2-
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12) gives

(2-13)

which indicates that d'A=O because ~:;z!:0, m>O, 1,>0 and dfldQ and dfldM can not equal

zero simultaneously. Thus, dy=dK=O or [Y]I;=[K1s=O, which means that there is no

discontinuity at such an interface in a rigid, perfectly plastic beam. It transpires that

a discontinuity in Yor K can not develop at an interface which moves from a plastic

zone to a rigid segment. This conclusion has been presented by Symonds( 1968) for

a rigid, perfectly plastic beam. However, the proof given by Symonds( 1968) is valid

only for regular points on the square yield surface, as mentioned by Jones and

01iveira( 1979).

If an interface in a rigid, perfectly plastic beam moves from a rigid segment

to a plastic zone, as shown in Fig.2.1 (b), the plastic side of the interface will become

rigid as the interface moves across it. This is an unloading process for the region on

the plastic side of interface, which, therefore, requires d'A=O in equations (2-1a,b), or

['V] =[K] =0I I; f, (2-14a,b)

and

[Q]f, =[M]f, =0. (2-15a,b)

In this case, ~ may not be zero, as observed in many theoretical results for the

dynamic plastic response of beams. One example is the second response phase for

the simply supported beam in Section 3.2 of Jones and 0Iiveira(1979).

If Ir=O, equation (2-13) shows that d'A is not required to be zero when

dfldQ=O. In this situation, [Y]i;=O, but [Klr, may not equal zero as an interface in a

rigid, perfectly plastic beam moves from a plastic zone to a rigid segment. The

appendix of Zhu, et al.( 1986) gave an example of this case for the bending response

of a simply supported beam subjected to a general pulse pressure loading. Similar

results for a circular plate was obtained by Youngdahl( 1971).

Equations (2-6a), (2-8b) and (2-14a) give [dwldx]s=[\jI]s+[Y]f,=O, and, therefore,
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according to equation (2-9a) whether I, equals zero or not. Thus, the kinematic

continuity conditions across a moving interface in a rigid, perfectly plastic beam(both

cases in Fig.2.l) are

(2-16a,b)

which, together with equations (2-15a,b) have been used in the previous theoretical

analyses reported by Symonds( 1968), Jones and Oliveira( 1979), Nonaka( 1977), and

Li and Jones(1995a). Itmay be shown that equations (2-16a,b) are the sufficient and

necessary conditions for the satisfaction of equations (2-8a,b) in the case of Figure

2.1(a), and equations C2-16a,b) are equivalent to equations C2-8a,b) for the case in

Figure 2.1 (b) under the assumption that ['Y]~=Owhen ~:;t:(). Thus, equations (2-16a,b)

may be used, instead of equations (2-8a,b), as kinematic continuity conditions across

the interface in a rigid, perfectly plastic beam moving from a plastic zone to a rigid

segment because a shear interface is always stationary which is an important

conclusion of previous analyses.

The above analyses show that a shear interface in a rigid, perfectly plastic

heam is always stationary whether or not Ir=O. This implies that the transverse shear

deformation is always localized in its initially formed zone throughout the dynamic

plastic response of beams. The characteristic length of this zone will be very small

compared with the beam length, because the size of the shear deformation zone does

not increase during the subsequent beam response. All transverse shear deformations

will be localized in this zone, which, therefore, may be idealized as a plane with

transverse shear sliding. The sliding displacement at an idealized plane is the relative

displacement at two sides of the transverse shear deformation zone, as illustrated in

Fig.l.3(a). Due to the antisymmetric property of the transverse shear force about the

mid-plane of a shear deformation zone, the kinematic continuity condition across the

transverse shear sliding plane is
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[\jI)~ =0, (2-17)

and equations (2-15a,b) should be satisfied for either I,~ or 1,=0.

It should be noted that the assumption of shear sliding does not mean that the

actual severance occurs at the shear sliding interface. [w k;t:O is an idealized result

when we neglect the size of the transverse shear deformation zone, as discussed

above.

For a stationary bending interface, only the transverse deflection need to be

continuous, i.e., [w]~=O which is equivalent to [wh=O according to equation (2-9a).

Equations (2-7a,b) require [Qh=[M]~=O.

In summary, the continuity conditions at an interface in a rigid, perfectly

plastic beam may be expressed as

(a) Moving bending interface( does not exist for the case in Figure 2.1 (a) when 1,-#0)

(2-18a-d)

(b) Stationary bending interface

(2-19a-c)

(c) Stationary shear slides

(2-20a-c)

(d) Stationary bending and shear interface

[Q]~ =0 and [M]~ =0. (2-21 a.b)

All these continuity conditions in each case are identical to those presented by Li and

Jones( 1995a) and reduce to the special cases examined by previous studies on the

transverse bending and shear responses of a rigid, perfectly plastic beam.

2.4. Results For A Singular Yield Surface

If one of the parameters dAp=O(p= 1,2) for a singular yield surface, then the

associated terms in equations (2-2a,b) are eliminated, and the remaining terms in
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equations (2-2a,b) are the same as equations (2-la,b). Therefore, the results for this

situation is the same as those for a regular yield surface.

In the case when dAp>O(p=1,2), then only the loading situation in Figure

2.1 (a) requires discussion. The results for the unloading situation in Figure 2.1 (b)

are similar to those for a regular yield surface.

Now, equation (2-3) with djp=O for neutral loading requires

(2-22a)

and

a/2 dQ+ a/2 dM=O.
aQ aM

(2-22b)

Equations (2-22a,b) with equations (2-IIa,b) and (2-2a,b) may be expressed in the

form

(2-23a)

and

(2-23b)

provided ~~.

The condition for dAp~(p= 1,2) is

or

(2-24)

when m~ and Ir~'

Equation (2-24) implies that
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(2-25)

.........
where, n, and n2 are the normal directions of f/(Q,M)=O and f2(Q,M)=O at the

~ ~
intersection point, respectively, and i and j are unit vectors of the local orthogonal

coordinates. Equation (2-25) implies that n, is parallel to n2• Therefore, the

intersection point off/(Q,M)=O andfiQ,M)=O must be a regular point if equation (2-

24) is satisfied, which has been discussed in Section 2.3. Thus

(2-26)

which leads to

from equation (2-23), and following conditions are reached

[111;=[Kl1; =0 and [Ql1; =[M]1;=0 (2-27a-d)

at an interface in a rigid, perfectly plastic beam by using equations (2-2a,b) and (2-

IOa.b).

It transpires that all the conclusions for a moving interface at a singular yield

point for a rigid, perfectly plastic beam are the same as those for the regular yield

surface studied in Section 2.3 when Ir:t:O. This conclusion is also true for the

continuity conditions at both moving and stationary interfaces.

If 1,.=0, then equation (2-lOb) gives

[M]1;=0 (or dM=O), (2-28)

while, equations (2-22a,b) become

af1dQ=o
aQ

(2-29a)

and
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(7-29b)

Equation (2-26) indicates that a//aQ and al/aQ can not equal zero simultaneously,

and therefore, dQ=O, or

[Q]~ =0 (2-30)

which leads to

['Y]~ =0 (2-31 )

from equation (2-lOa).

Again, a shear interface must be stationary, and equation (2-lOb) implies the

possibility that a bending interface may move, which is the same conclusion as that

reached for a regular yield surface. Thus, equations (2-18) to (2-21) are valid for both

regular and singular yield surfaces.

2.5. Continuity Conditions for Circular Plates and Cylindrical Shells

The yield surface, which is shown in Figure 2.2, has the following properties

a/I a/I a/2_=0, _=0 and _=0
aM aQ ap

(2-32a-d)

In which, P=Me(or N) for circular plate(or cylindrical shell); where Me is the

circumferential bending moment in a circular plate and N is the circumferential

membrane force in a cylindrical shell.

For both an axisymmetrically loaded circular plate and an axisymmetrically

loaded cylindrical shell, equations (2-1) to (2-11) will be satisfied according to the

basic equations in Jones and Oliveira(l980,1983f Furthermore,

2 For example, equations (2-7a,b) and (2-9a,b) here are the same as equations (2-4b,a) and (2-
6b,a) in Jones and Oliveira(l980, 1983), respectively, when M, 1< and x are replaced by M; 1<, and r
for circular plate.
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K6= 'V, for a circular plate
r

(2-33a)

and

Wcfl=--, for a cylindrical shell
R

(2-33b)

where, r is the radial coordinate of circular plate and R is the mean radius of a

cy lindrical shell.

In the following discussion, fiQ,M,P)=O is assumed to be a regular surface.

However, it does not influence the results when fiQ,M,P)=O is a singular one

because of the conclusions reached in Section 2.4.

The assumption of a rigid, perfectly plastic material requires

(2-34a)

and

(2-34b)

while, the plastic flow rule from equation (2-2) gives

(2-35a)

(2-35b)

and

(7-35c)

where, g=Kfl (or C8)'

It is evident that equations (2-34b), (2-35a,b) together with equations (2-1) to

(2-10) are the same as the corresponding equations for a beam. The extra equations
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(2-33a,b) may be satisfied by adjusting dA) which has no influence on dx and dr.

Thus, the continuity conditions for both a circular plate and a cylindrical shell are the

same as those for a beam, except for the additional condition from equation (2-34a)

[P]~=O. (2-36)

It should be noted that the dynamic plastic response of circular plates and

cylindrical shells usually lead to f,CQ,M,P)=O and dg=dA»O throughout the entire

area of a plate or a shell. In this case, the continuity conditions( equations (2-18) to

(2-21» are not related to an interface between rigid regions and plastic zones in a

rigid, perfectly plastic material, but to an interface in a plastic deformation zone.

These conclusions have been examined for the dynamic plastic analyses of circular

plates(Li and Jones(l994» and cylindrical shells(Li and Jones(1995b».

2.6. Comments

A rigid, perfectly plastic idealization has been used successfully to predict the

dynamic plastic responses of various structural elements. An important concept in this

analysis is plastic hinge, through which plastic deformations are propagated. Material

failures always appear at deformation localization points, which are formed by the

combination of bending and shear hinges, and sometimes, associated with the

membrane deformation. The conclusion of this chapter shows that a shear hinge

behaves like a "deformation trap" because of its stationary feature. Other analyses

have shown that plastic deformations are easier to be consumed in a shear hinge than

in a bending hinge or a membrane state. Thus, localized shear response and possible

shear failure become the dominate mode when the transverse shear conditions

discussed in Section 1.3 are satisfied, which are normally associated with dynamic

loads with sufficient intensities. Therefore, the response and failure Modes I to III

appear with an increase in the loading intensity.

Even when material strain hardening and strain rate effects are important, the

basic response feature of a plastic structural element shows no significant change.

Thus, a rigid, perfectly plastic analysis is sufficient for most engineering problems.

The shortcoming of a rigid, perfectly plastic analysis is its limitation to give

deformation distributions within a plastic hinge although some simplified methods
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have been introduced to overcome this difficulty(Nonaka(l967), Jones and

Shen( 1993)). Most of them, unfortunately, concern the construction of a bending

hinge, except Wang and Jones(l996) who proposed an one dimensional transverse

shear propagation analysis based on rigid, plastic strain hardening model. The

formation of a transverse shear hinge and its geometrical dimension will be studied

in Chapter 3.
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(a) (b)

Fig.2.1 Discontinuity interfaces in a rigid, perfectly plastic material, (a) Moving from
a perfectly plastic zone to rigid zone; (b) Moving from a rigid zone to a perfectly
plastic zone.

fiQ,M,P)=O

)..--------

Q

P
f )CQ,M,P)=O

Fig.2.2 Yield surface.
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3. FORMATION OF A SHEAR LOCALIZATION

IN STRUCTURAL ELEMENTS

UNDER TRANSVERSE DYNAMIC LOADS

3.1. Introduction

It is well-known that transverse shear becomes an important factor in the

dynamic response and failure of transversely loaded structural elements with

increasing dynamic loading rate and intensity and many studies have been published

to examine the influence of transverse shear on the dynamic plastic response and

failure of structural elements(Jones, 1989(a, b and c), Jones and Shen, 1993). The

concept of a 'shear hinge(or shear sliding)' was employed in these studies to

investigate the first stage of the response for those structural elements when shear

deformation dominates the bending and membrane deformations. Usually, it is

assumed that a shear hinge has an infinitesimal length for a rigid, perfectly plastic

idealisation. This assumption emerges from Symonds(1968)' conclusion that a

transverse shear hinge is always stationary in a rigid, perfectly plastic beam, which

implies that transverse shear will be localized within its initially formed zone if the

influence of material strain hardening can be neglected. Symonds' conclusion, which

was originally based on a particular square yield surface, has been extended to

arbitrary regular and singular yield conditions, and has been shown to be valid for

symmetrically loaded circular plates and cylindrical shells, as shown in Chapter 2.

Either in Symonds' original proof or in the subsequent studies on structural

elements, no efforts were made to explore the structure of a shear hinge. This

situation occurs because these studies concentrated mainly on global structural

responses, where the concept of shear and bending hinges can give a reasonable

prediction of the energy consumed without knowing the exact size of shear and

bending hinges in structural elements. In fact, the exact length of a shear or bending

hinge is not necessary when the hinge concept is used in dynamic plastic response
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analyses. The energy consumed within a shear or bending hinge may be estimated

from the relative transverse displacement across the shear hinge, or the relative

rotation angle across a bending hinge, respectively. However, if the results from rigid,

perfectly plastic analyses are used to predict the initiation of local failures or local

flow instabilities, then the size of shear and bending hinges are required in order to

obtain the deformation details within these hinges.

Usually, combined bending and shearing responses develop first in a structural

element under transverse dynamic Ioadstlonest 1985)). This is followed by a

combined bending and membrane response and, finally, membrane behaviour

dominates if no material failure has occurred during the response. However, a failure

may initiate at any stage during the response, which defines different failure modes

as observed by Menkes and Opat( 1973) and clarified by Jones(l976, 1989(c)) for

beams, which have been discussed in Chapter 6. The present investigation is confined

within the early time response period when shearing and bending effects dominate

the response, which often leads to shear failure or adiabatic shear instability

depending on loading rate and material properties. A study on the transition between

these two different shear failures will be given in Chapter 4.

A transverse shear localization might develop at the site of the impact

loading and hard point support interfaces and is formed by the propagation of the

transverse disturbance away from these interfaces. The propagation of transverse

disturbances in one or two dimensional structural elements, such as beams, plates and

shells, is complicated due to the existence of two free surfaces on the top and bottom

of a structural element. However, when the loading rate is low, the inertia or wave

propagation effect may be neglected. In this case, the formation of a shear

localization might be treated as a quasi-static problem, as studied by Wen, et

al.(l994) and Wen and Jones(l996) for a beam and a circular plate, respectively.

These methods will be re-examined in Section 3.2 of the present paper with a more

solid physical basis and will be extended to examine cylindrical shells. Several

investigations have used the simplification of a quasi-static behaviour to determine

the size of a shear hinge in order to study material failure, and observed encouraging

results when compared with experimental results(see Wen, et ale1995) and Jones, et

al.( 1995)).
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When the loading rate and intensity are high, material failure might occur

while the transverse disturbance is propagating across a structure. The actual strain

and strain rate cannot be determined from the shear hinge length predicted by a

quasi-static analysis and wave propagation theory is necessary to provide a realistic

prediction. Wang and Jones( 1996) proposed a transverse shear propagation model

within the scope of rigid, plastic analyses when retaining the influence of material

strain hardening. It was assumed that the transverse shear disturbance will propagate

with a constant velocity

(3-1 )

where El is the linear hardening modulus in a pure shear test and p is the material

density. Clearly, the influence of the top and bottom free surfaces of structural

elements on the propagation of the transverse shear disturbance are neglected, which

is, nevertheless, important for the actual shear wave propagation in a beam, as shown

in Section 3.3. A possible relationship between the quasi-static method and a wave

propagation analysis is studied numerically in Section 3.3 from this view-point, and,

thus, a description of transverse shear localization in structural elements is presented,

which might be used in material failure and flow instability analyses.

3.2. Quasi-static Analyses

3.2.1 Basic Equations

A shear dominant zone, which is described as a shear hinge in a dynamic

plastic analysis, might develop in a beam section under the generalised forces shown

in Fig.3.1 (a) for the static case, which produce the same response as the problem

specified in Fig.Ll (b). A necessary condition for the appearance of such a shear

dominant zone is that the length of the beam section is sufficiently short. With an

increase of the beam section length, a shear dominant deformation mode(Fig.3.I(c»

will become a bending dominant deformation mcde/Pig.Lltdl). The critical value of

this length for the transition between these two deformation modes defines the shear

hinge length in a quasi-static analysis, which will be evaluated in Sections 3.2.2 to
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3.2.4 for beams, plates and cylindrical shells, respectively.

The validation of the above postulate is examined by using the finite-element

code ABAQUS for the beam in Fig.3.1(a,b), which is idealized as a static plane strain

problem. Four node bi-linear plane strain elements are used for a 6061- T6

aluminum-alloy beam. The material is modelled by elasto-plastic model with a yield

stress cro=286.8MPa and a strain hardening modulus Eh=542.6MPa. Two typical

results from the ABAQUS analyses are presented in Fig.3.2(a, b) for two different

values of I/H, where Iand H are the half length and the thickness of a beam section,

respectively. It is evident that the deformation mode corresponding to a large value

of I/H is a bending dominant deformation mode and the one corresponding to a small

value of I/H is a shear dominant deformation mode. Therefore, it is assumed that

there exists a transition point from a shearing dominant mode to a bending dominant

mode with an increase of I/H. This transition condition is used to determine the shear

hinge length in a beam.

The response of a beam under transverse static and dynamic loads is very

different. In the static case, the bending deformation mode usually dominates the

shear deformation mode if there is no hard-point restraints near to the loading point',

because the small loading rate ensures that bending deformation starts first to absorb

plastic strain energy rather than the shear deformation mode. However, with a

rapidly increasing loading intensity in the dynamic case, the condition for initiating

shear deformation may be satisfied first at the loading location, which starts to absorb

plastic strain energy and leads to the subsequent propagation of a shear disturbance

in the beam. The shear deformation will be confined within a limited distance

because bending, and then membrane, deformations will prevent the further

propagation of the shear disturbance. Thus, it is necessary to study the formation of

a shear localization under various loading rates.

Experimental dynamic studies on beams have suggested that the main region

of a shear hinge consists of anti-symmetrical simple shear flow. Zener(l948)

provided a good demonstration of a typical shear dominant zone(see Fig.12 in

, The hard-point restraints may ensure the satisfaction of a short distance between a pair of the
external opposite forces, which may initiate the shear deformation mode.
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Zener(l948)). Similar results can also be found in Jones(l989(c)) although

considerable bending deformations are introduced at both sides of the shear hinge.

These anti-symmetrical features of the shear hinge are observed in the dynamic case

when the loading rates are within the low to medium range since the propagation

effects of a transverse disturbance may then be neglected. Now, the problem in

Fig.3.I(b) has the following boundary conditions

w(x=e)=-w(x=-e) (3-2)

when the place of anti-symmetry point is assumed to remain stationary'. The

corresponding generalized stress system is shown in Fig.3.1 (a). As mentioned above,

such boundary condition or stress system may lead to another flow mechanism, i.e.,

bending deformations, as shown in Fig.3.1(d), which occurs often in transversely

loaded thin sheet structures. If a generalized yield condition is described by

f(q,m, )=O (3-3)

where, q=QIQo and m=MlMo, when Qa, and M, are the static fully plastic transverse

shear force and bending moment, respectively. The normality rule of plasticity

requires

(3-4a,b)

where dyand dx are the increments of transverse shear strain and bending curvature,

respectively. Equations (3-4a,b) are associated with the transverse shear force and

bending moment through the energy dissipation relations. Therefore, the generalized

stresses on a yield surface satisfy the following requirements

II aj II >11 aj 11;:::0 for a bending dominated hingeam aq
and II aj 11>11 aj 11;:::0 for a shear dominated hinge.aq am

(3-5a,b)

For many yield conditions between q and m, equations (3-5a,b) would require

2 This does not lose any generality for a quasi-static problem.
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11m II:::::I for a bending dominated hinge
and Ilqll :::::1 for a shear dominated hinge.

(3-6a,b)

In particular, an independent yield condition between q and m, shown in Fig.3.3, is

used to simplify the following analyses and to provide an estimate for a shear

dominated hinge length. In this case, Figs. 3.I(c) and (d) are two possible responses

under condition (3-2) associated with equations (3-6b) and (3-6a), respectively. The

maximum length for the occurrence of shear dominant deformation will be

determined by a quasi-static method of analysis for three different structural elements.

3.2.2 Beam

The static equilibrium equations for a beam may be written In the

form(Fig.3.4(a))

aQ =0 and Q+ aM =0ax ax (3-7a,b)

When a shear dominant zone(shear hinge) with length ~=2D=2e is initiated In a

beam, equations (3-5b) or (3-6b) must be satisfied according to the previous

discussion. According to equations (3-6b) and (3-7a), Q:::::Qowithin the shear hinge,

so that integrating equation (3-7b) from x=-e to x=e gives

M(x=e)-M(x=-e)e- .
2Qo

(3-8)

The maximum value of e is determined when M(x=e)=-M(x=-e)=Mo,' In this case,

bending dominant zones(bending hinges) will be formed at x=e and x=-e, which

terminate the further propagation of shear deformations, and, thus, define the length

of a shear hinge. Therefore,

Mo f3e=_=_V"_H=0.433HQo 4
(3-9)

for a beam. A similar method was used by Wen, et al., (1995), in which M(x=e)=O

was assumed giving a value of e which is one-half of the present value, i.e.,

e=O.216H. An ABAQUS simulation of the idealized shear dominant zone in
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Fig.3.1 (a,b) has shown that a shear dominant behaviour will occur at e=0.3H. The

value of e for a circular plate in Section 3.3.2 is around 0.32S-0.342H, which is

larger than Wen et al.(l995)'s value for a beam, but smaller than the value given by

eq.(3-9). Because there are more restraints in a circular plate than in a beam, the

value of e for a circular plate should be smaller than the value for a beam according

to physical intuition. A similar conclusion is reached when comparing the values of

e for a cylindrical shell and a beam. This evidence supports the present prediction,

but further verification is necessary.

3.2.3 Circular Plate

The static equilibrium equations for a circular plate are(Fig.3.4(b))

d(Qr) =0 and
dr

dM M -Me
__ r +' +Q=O.
dr r

(3-lOa,b)

Equation (3-lOa) gives Qre-Qja if Q=-Qo is first reached at r=a. Therefore,

Q(r=a+~r)=-QoI( 1+~r/a) where &/ase/a. If the problem can be treated as a plate

problem, e/a-H/a« I is required in order to satisfy the plate assumptions. For

example, a may be the radius of a circular plate for a uniform impulsive pressure

loading, or the radius of blunt projectile for a mass impact problem. Thus, Q=Qo

within the shear hinge.

Under the further assumption that Mr=Me in the immediate vicinity of the shear

hinge, a static analysis has been presented by Wen and Jones(l996) to give a shear

hinge length

e 1+.j3 H=O.342H
8

(3-11 )

where the von-Mises yield condition was used to relate M, and Me. If the Tresca

yield condition is used instead, then a similar procedure gives the shear hinge length

_3/3e- __ H=O.325H.
16

(3-12)
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3.2.4 Cylindrical Shell

The static equilibrium equations for a cylindrical shell are(Fig.3.4(a) and (c))

dM +Q=O and dQ _ N =0,
dx dx R

(3-13a,b)

which may be written in the dimensionless forms

(3-14a,b)

where m=M/Mo, n=NlNo, q=QIQo, ~=xlL, v=QoLl2Mo and c2=Noe/MoR.

An independent yield condition between m and (q,n) is shown in Fig.3.3. It is

evident that a circumferential strain is always associated with a transverse shear flow,

while strains associated with bending are expected to be small in a shear hinge,

which means that material yielding only leads to significant circumferential and shear

deformations in a shear hinge. Therefore, an interactive yield condition between

transverse shear and the circumferential membrane force in a shear hinge is sufficient

for predicting the distributions of shear force within a shear hinge, although the

existence of a bending moment is important for satisfying the equilibrium equation

(3-14a).

The stress states in a shear hinge, which may enter the interactive yield

condition between q and n, are O'Il=O'eand 0'23=-'['

The von-Mises equivalent stress is

(3-15)

where

which leads to

(3-16)

or
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J 1 2n-T_q =1
2

(3-17)

when using eJo='to-.J3,N=eJeH and Q='tH.

Substituting equation (3-17) into equation (3-l4b) gIves the dimensionless

shear force

h c2q=V L. cos( __ ~)
.flv (3-18)

when using q= 1 at ~=O. Equations (3-l4a) and (3-18) with boundary conditions m=-l

at ~=elL and m= 1 at ~=-elL predict

(3-19)

Now, e/R«l for a cylindrical shell problem, which gives sin(e-.J3/R-.J2)ze-.J3/R-.J2,so

that, equation (3-19) simplifies to

(3-20)

which is smaller than the shear hinge length of a beam in equation (3-9) due to the

additional influence of the circumferential force.

3.3. Propagation of a Transverse Shear Displacement in a Beam

3.3.1 Description of the Problem

Within the scope of rigid, perfectly plastic materials, transverse plastic shearing

is stationary according to Symonds( 1968) and Chapter 2. However, when material

strain hardening is considered, the transverse disturbance will propagate along the

structural elements, as shown by Wang and Jones(l996), where a constant

propagation velocity of transverse shearing is found in a linear strain hardening beam.

This is a first degree approximation since reflections of a plane shear wave on the

upper and lower free surfaces of a beam are neglected. In fact, a transverse shear
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plane wave cannot propagate in a beam without scattering due to the existence of the

two free surfaces on a beam. Even within the characteristic length of a localized

transverse shear zone(shear hinge), this wave scattering is also important. In order

to understand the propagation of a transverse disturbance in a beam, an idealized

problem described below will be studied by using FEM simulations.

If the wave effects through the thickness of the structural elements are

neglected in either impulsively loaded beams or in beams impacted by a projectile,

the propagation of a transverse shear disturbance from the loading point may be

simplified into the problem given in Fig.3.1 (b), where the transverse shear

disturbance at the loading location is represented by a transverse displacement

history, Wet), described by

tw(t)=w_, for O~~T and W(t) =W for t>T,
T

(3-21)

in which T can be adjusted to represent different loading rates. The beam material

is elasto-plastic with a linear strain hardening relationship

G =G +E e,. 0 ",.
(3-22)

where Go and Eh are yield stress and hardening modulus given in Table 3.1. The

strain rate effect may be included through the Cowper-Symonds relationship

G
t ,=D(_f -1)"

( J

G"

(3-23)

where Er is the equivalent plastic strain rate, Gc' is the equivalent stress under static

loading condition. o, is the equivalent stress at a non-zero plastic strain rate and D

and p are given in Table 3.1.

Plane strain four-node bi-linear elements(CPE4) in ABAQUS/standard-5.4 are

used in the simulation. The plane strain element mesh is shown in Fig.3.5. Direct

implicit time integration is used in the dynamic analysis in ABAQUS/standard. An

automatic time step control based on the half-step residual concept is selected in the

simulation. Newton's method was employed for solving the nonlinear equilibrium

equations using the Hilber-Hughes-Taylor operator with the artificial damping
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parameter a=-O.05 and Newmark's formula were used for the displacement and

velocity integration. For more details of the numerical procedure the reader may refer

to ABAQUS Theory and User's Manuals, Version 5.4(1994).

3.3.2 Dimensional Analysis

A complete group of independent dimensionless variables for the prescribed

model are

B L V V aD W
H' H' v, p, TD,~, ~' E' H'

e p

(3-24a-i)

where e=0.433H is the shear hinge length given by eq.(3-9). V=W/T is the driving

velocity at one end of the beam. ce=-V(E/2(1+v)p) and cp=-V(E/3p) are elastic and

plastic shear wave speeds", respectively. In the following analyses, further postulates

are introduced, i.e.,

(i) Material strain rate effects are neglected. Thus, p and TD can be eliminated

from the group.

(ii) The present beam problem may be treated as a plane strain problem because

B/H=2.67. Therefore, B/H and v are eliminated from the group.

(iii) The beam response is dominated by large plastic deformations, r.e., elastic

effects are neglected in the analyses. Thus, aofE and VICe are removed from the

dimensionless groups.

(iv) LlH is an important factor in the transverse shear response(Jones(J 989a», which

reflects the influence of the parameter QoLl(2Mo)=2L1H on the initiation of the

transverse shear response mode in a beam with a rectangular cross-section. However,

it is likely that the size of the transverse shear localization zone does not depend on

this parameter if LlH» 1.

(v) The external work is determined by W/H, which may influence the characteristics

of shear localization. When the driving velocity is a constant, the dimensionless time

T/(e/c
p
) may be introduced to represent the input external work, equivalently, instead

3 According to von-Mises yield condition, the linear hardening modulus in a pure shear test is
given by E,=Eh/2( I+Y' )=Eh/3 when the material is incornpressibletv'r=Ofi), where Eh is determined from
a uniaxial tensile test.
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of W/H.

Thus, only two dimensionless parameters are significant for describing a

shear localization zone, i.e.,

V T
1"",=- and 11(=--,

c elc
P I'

(3-25a,b)

where cp=260mls and T*=e/cp= 15.8511Sare the characteristic velocity and response

time of the particular problem considered, respectively.

The FEM simulations show that three cases are possible, i.e., (a) 11v«I, or

V-c-cc.; (b) 11v<1and 11v-0(1), or Vee, and V-o(cp); (c) 11v>l, or V>cp• These three

cases correspond to a static or quasi-static process, a dynamic plastic response

process and a transient wave propagation process, respectively, as shown in

Figs.3.6(a-c). In case (c), two different situations, (cl) and (c2) are distinguished

when 11t$1 and 11t>1, which will be discussed in the subsequent section.

3.3.3 FEM Simulations

The three different cases (a)-(c) in Section 3.3.2 are simulated by the examples

in Table 3.2.

(a) Bending response when Voce,

Two simulations are conducted with V«cp=260mls. The parameters T=500l1s

and W=6.5mm are used for the first example, which gives V=13m1s and V/cp=O.05.

A second example with T=150l1s and W=5.0mm gives V=33.3m1s and Vlcp=O.128.

The final distributions of the equivalent plastic strains for these two examples are

shown in Figs.3.7(a,b), respectively. It is evident that they both belong to a typical

bending response, as shown previously in Figs.3.2(b) and 3.6(a). Thus, the response

mode when Vc-cc, is a bending dominant deformation.

The unsymmetrical distributions of the equivalent strains on the upper and

lower parts of the beam are due to the influence of the membrane force because the

two ends of the beam are restrained in the horizontal direction.

(b) Plastic shear hinge formation when V<cp and V-o( c.)

Propagations of both plastic equivalent strain and the transverse shear
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component of the strain tensor are shown in Figs.3.8(a) and (b) for T=20l-ls and

W=3.0mm with V=150mls and V/cp=O.58, respectively. The corresponding maximum

shear stress(Tresca stress) and axial stresstS 11) are presented in Figs.3.8(c,d). It is

observed that there is a localised transverse shear zone near the loading end, in which

an equivalent plastic strain consists mainly of the transverse shear component. This

shear deformation is propagated at speeds of approximately 244m1s and 239m1s

according to the first three simulation results in Fig.3.8(b) before T*=15.85I-ls. These

speeds are approaching the plastic shear wave speed, cp=260mls, and, the propagation

model proposed by Wang and Jones(l996) is adequate. However, after T>T*, the

propagated shear deformations are trapped in a zone with a length, e:::::0.433H,as

determined by the quasi-static analysis. Stress distributions in the beam are

complicated due to the existence of the upper and lower free surfaces. The

propagation of the axial stress in Fig.3.8(d) indicates the formation of a bending

mode in the beam, which is probably responsible for preventing any further

propagation of shear deformation.

The concept of a shear hinge has been used by many authors to estimate the

transverse shear strain when a uniform strain distribution is assumed. In order to

verify the validity of this assumption, Fig.3.9(a) gives plastic shear strain histories

at different locations across the length of a shear hinge where curves 1-10

correspond to the plastic shear strains in elements 386, 376, ...... 306 and 296 shown

in Fig.3.5. The size of each element is H/20. Therefore, these ten elements just cover

the whole length of a shear hinge(0.433H) which is calculated by the quasi-static

analysis. The shear hinge is completely established after a limited time. The shear

strain development ceases sooner near the loading end than at the far side of the

shear hinge, x=-e. The shear strain distribution in the shear hinge is not uniform. It

consists of a main shear zone with nearly constant shear strain and a transition zone

with decreasing shear strain, as shown in Figs.3.8(a,b) and 3.9(a).

It is interesting to check the validity of the traditional method for calculating

the shear strain in a shear hinge, i.e.,
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w
Y=-,

e
(3-26)

where Yis the engineering shear strain and W is the relative transverse displacement

across the shear hinge. The relative transverse displacement across a shear hinge

having a length(e) between nodes 5049 and node 5040 in Fig.3.5 is calculated by

ABAQUS in Fig.3.9(b), which predicts y:1.55/(0.433x9.52)=0.38. From Fig.3.9(a),

the maximum engineering shear strain(ABAQUS always uses the engineering shear

strain for the shear strain) is about 0.39. So that Y in equation (3-26) gives a good

estimate of the maximum engineering plastic strain in a shear hinge. A similar

conclusion is obtained from another example in Figs.3.1O(a,b) with VIcp=0.23I and

Ymax=0.103in Fig.3.10(a)4, which is comparable with y:0.447/(0.433x9.52)=0.11 from

equation (3-26).

When the loading time is smaller than the characteristic time, T*=elcp= 15.85J.Js,

the transverse shear deformation can only propagate a short distance before the input

energy stops, which is smaller than the shear hinge length from the quasi-static

method of analysis. Figs.3.11 (a-d) demonstrate four different cases with the same

impact velocity V=150mls corresponding to (a) W=1.5mm and T=lOJ.Js, (b)

W=3.0mm and T=20J.Js, (c) W=6.0mm and T=40J.Jsand (d) W=9.0mm and T=60J.Js.

It is evident that the length of a localised shear zone is smaller than the predicted

shear hinge length, e, when T<T*= 15.85J.Js.The predicted maximum shear strain from

equation (3-26) is 0.29, which is smaller than the numerically calculated one, i.e., Ymax

=0.38 in Figs.3.12(a-d). Therefore, plastic shear wave propagation must be considered

in this case. However, it should be noted that in most practical dynamic plastic

problems, the imposed velocity is normally within the intermediate range and the

loading time is much longer than T*. The maximum plastic shear strains

corresponding to Figs.3.12(a-d) have almost a constant value of 0.385. This implies

4 Normally, the shear strain in the element near to the boundary(element 386) is not accurate due
to the influence of the boundary on the strain calculation. Therefore, its connecting element(element
376) is used to give the maximum shear strain.

5 The later slightly increasing value of shear strain is due to the large geometrical deformations
which introduce a change of local co-ordinates and axial deformations. Here. a global reference frame
is used in the ABAQUS simulation. Thus, 112 represents the engineering shear strain in the original
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that the maximum shear strain is determined mainly by the magnitude of the impact

velocity.

(c) Shearing propagation when V>cp

Figs.3.13 and 3.14 present similar results as in Figs.3.8 and 3.9 for the loading

parameters T=Sl1s and We l.Smm, which give V=300rnls and V/cp=l.lS. One

important feature of this example is that shear deformations localize into a narrow

zone which is smaller that the calculated shear hinge length e=0.433H. Because the

loading time T is smaller than T*=e/cp' the transverse shear deformations cannot

reach the distance, e, determined by a quasi-static method of analysis, before the

input energy stops. In this case, a quasi-static analysis cannot be used to predict a

realistic shear hinge length, i.e., eq. (3-26) is invalid for predicting the maximum

strain in the localized shear zone. Thus, wave propagation of the transverse shear

disturbance must be considered as suggested by Wang and Jones(l996). According

to Fig.3.14(b) and eq.(3-26), the maximum shear strain in the shear hinge

length(e=0.433H) is 0.39, which is much smaller that the numerical calculated

maximum value of Ymax=0.83in Fig.3.l4(a) presented by the ABAQUS simulations.

When the loading time is longer than T*, the shear deformations are not

trapped within the calculated shear hinge length and a large shear zone is observed,

as shown in Figs.3.15(c,d). The propagation of shear deformations cannot be

predicted by a shear wave theory for T>T*. However, this situation rarely develops

in practice because material failure occurs normally for high impact velocities, which

prevents the input of any more external impact energy for T>T*. Again, the

maximum shear strains are the same for different loading parameters having the same

imposed velocity, as shown in Fig.3.16, which confirms the observation that the

imposed velocity is an important factor for determining the maximum shear strain.

3.4. Discussion

The actual transverse loads which act on structures are more complicated than

the idealized case considered in the previous sections. Two typical loads in impact

I and 2 directions.
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engineering are projectile impacts and explosive pressure loads, in which a transverse

shear localization may be formed at either the periphery of an impacted area or at

the hard-points such as supports. The characteristic velocities and loading times in

these cases are determined from the initial impact velocities and impact energies.

Within the early stage of the response, a compressive wave propagates from the top

surface to the bottom surface of a structural element and produces a transverse

disturbance. When the impact velocity is sufficiently high, considerable indentation

and local failure may occur during this stage. The interactions between the

indentation/failure and shear propagation must be considered for a realistic prediction

of the behaviour. Several practical models have been developed by Awerbuch and

Bodner(l974) for this purpose and the perforated profiles of the plate cross-section

in Figs 3 and 5 of Awerbuch and Bodner(l974) have a similar overall shape to the

current simulations in Fig.3.6(c).

For rapid and intensive loading, the material properties may change

significantly, which can only be simulated by a more complicated solid-fluid

interaction model. Even within the dynamic plastic response range, strain rate and

temperature effects are important for medium to high speed loadings. An adiabatic

shear band may be initiated during the shear propagation period due to thermal

softening of the material, which may prevent further extension of the conventional

shear zone. Instead, a more severe shear localization with a band width around

I0-1OO~mmay be formed and material fractures initiate within the band. The band

width is determined mainly by the material properties and is independent of the size

of the conventional shear hinge. This feature is similar to a shear hinge which is

determined mainly by the structural element properties, such as Qo and M, for a

heam, and is independent of the size of the structural element, e.g., the beam length.

In many cases, the temperature effect becomes important only after

considerable plastic work has been consumed, but, strain rate effects are always

important for rate sensitive materials. Therefore, the influence of material strain rate

sensitivity should be judged in the analyses of transverse shear propagation and the

formation of a shear hinge in a strain rate sensitive material, which are studied by

comparing the results with and without material strain rate effects when W=3.0mm

and T=20~s, as shown in Figs.3.l7 and 3.18. The distribution of transverse shear in
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Fig.3.17(a) when the strain rate effect is neglected is larger than that in Fig.3.17(b)

when strain rate effects are considered. Actually, the maximum shear strain has been

given in Fig.3.9(a) as 0.38 when the strain rate effect is neglected, which is nearly

double the value obtained from Fig.3.18(a) when the influence of material strain rate

sensitivity is retained. Therefore, the stress state, or the yield stress, may be another

important factor in the magnitude of the maximum shear strain in addition to the

impact velocity. It is noted from Fig.3.18(b) that the maximum shear strain from

eq.(3-26) is 0.22, which is comparable with 'Ymax=0.218from the ABAQUS

calculations.

Finally, it should be noted that the conclusions obtained in this study for a

beam might be applied to plates and cylindrical shells when subjected to large

dynamic transverse loads due to the similarities inherent in all transversely loaded

structural elements.
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Table 3.1 Material Properties of 6061- T6 Aluminum Alloy

E(GPa) p(Kg/m3)

286.8

p

6500.0

v

542.6

D( lis)

72.4 2686 0.32 4.0

Table 3.2 Numerical Simulation Data

No. W(mm) T(~s) V(rnls) 11v 11, Type Note

HI 1.5 5 300 1.154 0.32 (c 1)

H2 6.5 500 13 0.05 31.55 (a)

H3 3.0 50 60 0.23 3.16 (b)

H4 5.0 150 33.33 0.13 9.46 (a)

H5 3.0 10 300 1.154 0.63 (c 1)

H6 3.0 20 150 0.58 1.26 (b)

H7 1.5 10 150 0.58 0.63 (cl)

H8 3.0 20 150 0.58 1.26 (b) strain rate

H9 3.0 10 300 1.154 0.63 (cl)

HI0 6.0 20 300 1.154 1.26 (c2) Fig.8.15(c)

Hll 6.0 40 150 0.58 2.52 (b)

Hl2 9.0 60 150 0.58 3.79 (b)

Hl3 9.0 30 300 1.154 1.89 (c2) Fig.8.15(d)

xote'(aj.bendrng mode 11v«I); (Dr trapped snear mngem,«: ana 11v 0(1»; (c): transient snear wave

propagationm.> I), in which (c I) and (c2) correspond to 11,< I and 11,> I, respectively.
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Fig.3.t (a) Generalised forces on beam section; (b) Boundary condition of problem
(a); (c) Shear dominant deformation mode; (d) Bending dominant deformation mode

--- ~---~-- ------~---~--~----~-------------- -- -----

Fig.3.2 Static simulation of the plane strain problem in Fig.3.t (b) using ABAQUS.
(a) Shearing deformation mode(l/H=O.3); (b) Bending deformation modefl/Hetl.S)



Chapter 3 54

Q/Qo

1

A
M

B
-1 C 1

A' C -1 B'

Fig.3.3 Independent yield curve for a beam.
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Fig.3.4 Structural elements, (a) Beam; (b) Circular plate; (c) Cylindrical shell.
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Fig3.5 Plane strain finite element of a beam.
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Fig.3.6 (a) (cont. ..)
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(b)

(c)
Fig.3.6 Response modes of a transversely loaded beam, (a) Bending dominant
deformation(simulation No.H4); (b) Shear hinge at loading end(H6); (c) Shearing
localization formed by shear wave(Hl).
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(a)

rH
LU

(b)
Fig.3.7 Bending response, (a) W=6.5mm and T=500Jls(H2); (b)W=5mm and
T= 150Jls(H4).
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See the attachment(Eight pages)

Fig.3.8 Simulation results for W=3.0mm and T=20~s with V=150mfs(H6), (a)

Propagation of equivalent plastic strain; (b) Propagation of engineering plastic shear

strain(YI2); (c) Propagation of the maximum shear stress; (d)propagation of the axial

tensile stress.
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(b)
Fig.3.9 (a) Plastic shear and equivalent strain histories at different locations across
the shear hinge length in simulation H6; (b) Relative displacement across the shear
hinge length, e.

ele lI'lent '3'36 tt; ;.'It,

[",10 J

(a)

[1<10 J

[Kl0 I
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(a)

r >:10 )

Cb)

Fig.3.10 (a) Shear and equivalent strain histories at different location III shear
hinge(H3); (b)Relative transverse displacement across shear hinge.
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Fig.3.11 Deformation patterns of a beam with an imposed velocity of V=150mls, (a)
W=1.5mm and T=1OIlS(H7); (b) W=3.Omm and T=20IlS(H6); (c) W=6.0mm and
T=40lls(Hll); (d) W=9.0mm and T=60IlS(HI2).

D,

,

r:
U

• i~1!' • \.l__~~

Fig.3.12 Shear strain histories with an imposed velocity ofV=I50mls for (a) H7; (b)
H6; (c) Hl l and (d) HI2, in Table 3.2, where Ymax=O.38for (a)-(d).
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See the attachment(Eight pages)

Fig.3.13 Simulation results for W=1.5mm and T=51ls with V=300mls(HI), (a)

Propagation of equivalent plastic strain; (b) Propagation of engineering plastic shear

strain(YI2); (c) Propagation of the maximum shear stress; (d)Propagation of the axial

tensile stress.
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(b)
Fig.3.14 (a) Plastic shear and equivalent strain histories at different locations along
the shear hinge length in simulation HI; (b) Relative displacement across the shear
hinge length, e
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Fig.3.1S Deformation patterns of a beam with an imposed velocity of V=300mls, (a)
W=I.Smm and T=SJ1s(Hl); (b) W=3.0mm and T=1OIlS(H9); (c) W=6.0mm and
T=20J1s(HlO); (d) W=9.0mm and T=30J1s(H13).
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Fig. 3.16 Shear strain histories with an imposed velocity of V=300mls, (a)
Ymax=O.833(H1); (b) Ymax=O.844(H9); (c )Ymax=O.844(H10); (d) Ymax=O.850(H13).
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(a)

(b)
Fig.3.17 Shear strain distribution in a beam with W=3.0mm and T=20fJs, (a) Without
strain rate effects(H6); (b) With strain rate effects(H8)
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{>dO I

(a)

lx1(l )

[><,0 'I

(b)

Fig.3.18 (a) Shear strain histories with strain rate effects(W=3.0mm and T=20IlS in

H8); (b) Relative displacement across the length of a shear hinge when retaining

strain rate effects(H8).
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4. SHEAR FAILURES IN A SHEAR HINGE IN

A FULLY CLAMPED BEAM

UNDER IMPULSIVE PRESSURE LOADING

4.1. Introduction

Localized shear, known as a shear hinge in transversely loaded structural

elements, is an important deformation feature, which has been studied in Chapters 1-

3. It has been shown in Chapter I that further developments of the localized shear

deformation in a shear hinge might lead to either an isothermal fracture failure or an

adiabatic shear banding failure, depending on the loading rate and intensity as well

as the material properties.

Three failure modes have been observed by Menkes and Opat( 1973) for a

fully clamped beam under an impulsive pressure load. These three modes appear with

an increase of the impulsive intensity. Jones( 1976, 1989) has studied the failure

mode transition using rigid, perfectly plastic analyses and elementary failure criteria

outlined in Section 1.2. Dynamic plastic responses of an impulsively loaded beam

have been studied by Jones and de Oliveira( 1979) and Li and Jones(l995a).

Wen( 1996) predicted the tearing failure(Mode II) using a work-hardening model and

an effective strain failure criterion. Failure maps of clamped beams and circular

plates subjected to impulsive pressure loads are presented by Wen, et al.(l995a,b).

These response and failure studies on an impulsively loaded beam and other similar

studies on various structural clements are concentrated on isothermal response and

failure without considering temperature softening effects, which is sometimes

important, especially for high intensity loads. It has been shown that a failure

transition between an isothermal fracture failure and an adiabatic shear banding

failure may occur with continuously increasing loading rates and intensities. Thus,

if the impulsive intensity in Menkes and Opat's problem is sufficiently high, a fourth

response and failure mode, adiabatic shearing, is expected to appear, which has a

different failure mechanism when comparing with Modes II and III failures. A failure

transition between isothermal fracture and adiabatic shear banding has been observed
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hy Kalthoff, et al.( 1987, 1990) for a pre-cracked steel plate subjected to projectile

impact. Wang, et al.(l994) treated this problem as an interaction between a Mode II

crack and an adiabatic shear band, and predicted failure transitions in Ti-6AI-4V

specimen. The similar failure transition in a crack-free structural element is also

possible when subjected to a sufficient high loading intensity. This view-point has

been proposed by Wang and Jones( 1996), where the possibility of adiabatic shearing

in an impulsively loaded beam was studied briefly.

The occurrence of adiabatic shearing in Menkes and Opat's problem will be

studied in this Chapter by combining the rigid, perfectly plastic analysis, the

knowledge of shear hinge ohtained in Chapters 2 and 3, and the maximum shear

stress criterion introduced in Section 1.4. A description of failure mechanism

transition from the isothermal shear failure(Mode III failure) to an adiabatic shear

handing failure is presented. It transpires that the method developed here may be

applied to other transversely loaded structural elements.

4.2. Description of the Problem

The original problem in Menkes and Opat( 1973) is shown in Fig.4.1 (a), where

a sheet explosive is applied to the fully clamped beams over a neoprene buffer. This

problem may be simplified as a fully clamped beam with a uniformly distributed

initial velocity, as shown in Fig.4.1 (b).

The initial velocity of the beam is determined by

IV()=_
pH

(4-1)

where I is the impulsive intensity of the explosion(impulse per unit area), p is the

density of the beam material, 6061-T6 aluminium alloy, and H is the beam thickness.

The investigated beams have spans of L=203.2mm and 101.6mm, with a

rectangular cross-section B=25.4mm width by three different depths, H=4.74mm,

6.35mm and 9.S2mm, respectively.

The static isothermal constitutive equation is described by a linear strain

hardening relationship. as shown in ABAQUS(l994b)
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c =o' +E E
" 0 "('

(4-2)

where (in and Eh are the yield stress and strain hardening modulus, given in Table

4.1, respectively, o, and e, are equivalent stress and strain, respectively. The strain

rate effect IS included by the Cowper-Symonds relationship(Wen( 1996),

ABAQUS( 1994b»

(i t ~
___::=) +(-")1'
(J D

"

(4-3)

.
where (ide is the dynamic equivalent stress, and e, IS the equivalent strain rate.

D=6500.0s·1 and p=4.0.

The influence of temperature on the constitutive equation is included by the

following factor

T-T
I-( r )'1

T -Tm r

(4-4)

where Tr=20"C is the room temperature, Tm=652"C is the melting temperature given

hy Boyer and Gall (I985) for 6061- T6 material. There is no available data on q for

6061- T6 aluminium alloy. However, Johnson and Cook(l983) conducted tests on

2024- T35l and 7039 aluminium alloy, and found q= 1.0 for both materials. Thus,

q= 1.0 is used here for 6061-T6 aluminium alloy. One may use more realistic values

when experimental data become available. Other material properties are described in

Table 4.1.

Table 4.1 Material Properties of 6061- T6 Aluminium Alloy

ptkg/m') Cv(J/kgK) Kv(W/rnK) v E(GPa) <Jo(MPa) Eh(MPa) Hardness(HB)

26H6 937.4 167.3 0.32 72.4 286.8 542.6 95

Note: C, and K, are trorn Hal and Doddt I 'NL): Hare ness IS rrom Hoyer and Uall( 11J1S:l);others are

from Table 3.1 in Chapter 3.

4.3. Modelling the Problem

4.3.1. Isothermal and Adiabatic Conditions
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A deformation process may be idealised as either isothermal or adiabatic

process depending on the physical properties of the material and loading conditions.

It is the case that the deformation process is adiabatic for a well-developed shear

banding. But, before the shear stress reaches a maximum value, it might be necessary

to consider heat conduction aspects in order to determine the temperature from the

consumed inelastic work. The general equations to describe momentum and energy

balances for a simple shear deformation may be expressed by(pp.136 in Bai and

Dodd( 1992»

(4-5a,b)
and

where, K, is the thermal conductivity of the substance, and 't is determined by eq.( I-

10). The dimensionless forms of eqs.( 4-5a,b) are

(4-6a,b)

and

if the following dimensionless quantities are defined

and (4-7a-e)

where T, is the characteristic temperature, Ye is a characteristic shear strain rate, r,
is the characteristic shear stress, t, and x, are the characteristic response time and

length which depend on the phenomenon of interest. The dimensionless coefficients

in cqs.(4-6a,b) are

. 2
P'Ycx,

a=--,
t f, ,

KTand d- I' I

R . 2..,'t,'Ycx,
(4-8a-c)
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Similar equations have been obtained by Bai( 1989) to study adiabatic shear bands.

In a solid mechanics problem. it is necessary to determine the significance of both

inertia and temperature effects. For a simple shear motion described by eqs.(4-6) to

(4-X). the following situations in Table 4.2 may exist.

Table 4.2 Various Processes of a Simple Shear Motion

lt isotherrnal )* Hiheat conduction) A(adiabatic)

S(static) a«1. d»I(or b»I) a«I. h-d-I a« I. d« I. d«b

Dtdynarnic) a=I. d»I(or b»I) a-vl , h-d-I a-L d-c« l , d«b

": According to eq.( -ob), either (1)>1 or b» 1 satisnes the isotherma condition. However,
h"'.'i..'i-O( I) for the current test material in Chapter 5 when y,=it,-I. Thus, d» I will be employed
in Section 6.2.3 instead of h»I.

Three typical cases are discussed in Bai and Dodd( 1990)(pp.165), i.e., (I)

isothermal case for a-d->l and b-Pr, (2) quasi-static case for a-IIPr and b-d-l, and

(3) adiabatic case for a-b-J and d-IIPr. which are three special cases (i.e., D-I, S-H

and D-A) in Table 4.2. where Pr is the effective Prandtl number defined by(Bai and

Dodd( 1990» Pr=C,t/(K"i) to represent the relative importance of the two dissipative

mechanisms, i.e., rate dependent diffusion and thermal diffusion, in adiabatic shear

hand deformation, which is normally much larger than unity for metals within our

strain rate range of intercst(i.e .• below 10\-1). Wright and Ockendon(l996) used a

scaling law and perturbation method to find a finite wavelength with a maximum

growth rate that is claimed as the characteristic length of a shear band. In the current

evaluation. analysis is focused on various stable mechanical-thermal processes of a

simple shear motion before material thermal instability occurs when the effect of

material thermal softness competes with other hardening effects on the shear stress.

According to Table 4.2. explicit strain rate conditions for isothermal and

adiabatic process are given by

Y,<'(I for isothermal condition

1,<luI and Y,>'(I for adiabatic condition
(4-9a,b)

in which, tcu=pC,x} IK" and YCI=KvTJ(Ptcx}).

In other cases when heat conduction is significant, the temperature increase
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may be expressed by

dT= up tdy
pC,

(cPT/ax 2)
I d / "u= + ,

(4-lOa,b)
with

where, wd=rylt/yc is the dimensionless strain energy dissipation rate. The value of

parameter a depends on the particular problem. It is valuable to do further

investigations to find an approximate expression for parameter a for different class

of mechanical-thermal coupling problems. Particularly, within the current interesting

range of d«I, eq.(4-10b) gives a=l, which, according to eq.(4-lOa), leads to

adiabatic expression of temperature rise in eq.( 1-12).

4.3.2. Analytical Model

The dynamic plastic response of the beam will be predicted by using rigid,

perfectly plastic analysis. This analysis is valid for predicting the global responses,

such as bending rotation across a bending hinge and transverse shear displacement

across a shear hinge when the actual size of these plastic hinges has no significant

influence on the global response of structural elements. The existence of an interface

between the shear hinge and outside rigid medium ensures the use of rigid, perfectly

plastic analysis to give a valid prediction on the structural response outside shear

hinge even when thermal softening becomes important within a shear hinge.

According to the results in Li and Jones( 1995a), the shear response of a fully

clamped beam in Menkes and Opat( 1973) with v=QoLl2Mo>3 is shown in Fig.4.2.

The relative transverse shear displacement across a shear hinge and the transverse

shear response time are

20'0 )
W1=VJ---t- and

9pH
(4-11a,b)

respectively. The maximum transverse shear displacement at t=tl is
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9pHV(~w- _
II So

n

(4-12)

The maximum engineering shear strain and the average shear strain rate within the

shear hinge are

(4-13a,b)

In which, e=0.433H is given by eq.(3-9). It should he noted that the shear hinge

length might depend on the propagation of transverse shear wave when the

characteristic impact velocity is larger than the plastic shear wave speed, cp=260m/s,

as shown in Section 3.3. The characteristic velocity in the present case may be

represented by the average transverse shear velocity, VJ2. Thus, an approximate

limitation for the valid application of the current analysis is Vo<2cp::::520m/s. Beyond

this impulsive velocity. wave effects need to he considered to describe the transverse

shear propagation. which is outside our interest.

Normally, strain rate effects are considered In the maximum shear stress

criterion, eq.( I-II), by using the average strain rate to represent a constant strain rate

process, which neglects the influence of strain rate change on the criterion, but

includes the average strain rate hardening effects on flow stress(pp.126 in Bai and

Dodd( 1992), pp459 in Meyers( 1994) and ppC8-3S of Klepaczko( 1994)). Thus, eqs.

( I-I I) and (4-10) lead to

ih + ih; afh =0
ay or pC,

(4-14)

for a simple shear constitutive equation. in which r has the following form in the

present case

e; E . I T-T
-r=(_o +_"y)[l+(_y_)"][I- r ].

{3 3 {3D TIII-T,
(4-15)

when Cfc='h't and Ee=y/..J3 are substituted into eqs. (4-2) to (4-4). Eqs.(4-14) and (4-

IS) lead to



Chapter 4 74

o E Y . I
3a~(_() -r_" )2[ I +(_y_) 1>] =pC E (T - T).

M:1 M \. II III r
y_1 - y3D

(4-16)

In order to find the minimum impulsive velocity, "f=Y1 and Y=Yav in eqs.( 4-13a,b) are

substituted into eq.(4-16) to give

0.433pE, V(; 0.335 V ~
3a~[0.577cr+ ' ]2[1+( o)I']=pCE(T-T)() cr DH· \. II III r'

()

(4-17)

which will be used to determine the critical impulsive velocity for the initiation of

adiabatic shearing failure. In eq.( 4-17), a should be determined according to

discussion in Section 1.4. According to Table 1.1 or eq.( 4-9b), the adiabatic condition

in the present case is d« I, or tJtn6<1, where tc=tl=y/yc is the characteristic time of

the transverse shear response in a shear hinge in the present problem determined by

cq.(4-llb). While the characteristic time of heat conduction is

(4-18)

when Yc=WII/(2e), 'tc=to=crt/-J3 and xc=2e are used, where Wlf is given by eq.(4-12).

Thus, the time ratio of Vted is

(4-19)

when ~=0.9 is used. It gives Vtcd",,1.7xlO-J and S.66xlO_'~ for Vo=lOO and 300m/s,

respectively, with material parameters given in Table 4.1, which are much smaller

than the unit. Therefore, it is reasonable to assume an adiabatic condition during the

transverse shear response process, i.e., a=I.O in eq.(4-17).

4.4. Results

4.4.1. Temperature Rise

According to eq.(4-1O) with a=l.O and ~=0.9, and eq.(4-IS) with "(-'{I and

Y=Y,v in eqs.( 4-13a,b), the temperature rise at the end of transverse shear response
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phase is

T=T -n(T -T)
III II m r

(4-20)

where

cry Eo} . 1

~(_()_I+_"_"I)(1+(~)")

11=exp[ - f3 6 f3D J.
pC,{T

II1
-T,)

(4-21 )

The temperature at the end of transverse shear response phase vanes with the

impulsive velocity, which is presented in Fig.4.3 for beams having three different

thicknesses. It appears that the temperature may rise from room temperature to nearly

400"C when the impulsive velocity is 340m/s. Heat conduction may be important for

low impulsive velocities, and need to be considered instead of the adiabatic condition

for predicting the temperature rise. However, it has heen shown in Section 4.3 that

the adiabatic assumption is satisfied for the impulsive velocity range of

Vo=100-300m/s. Thus, the predictions in Fig.4.3 give a realistic estimate of

temperature rise within a shear hinge of the studied impulsively loaded heam.

It has heen shown that Mode III shear failure occurs in the impulsive velocity

range of 250-320m/s for three different thickness beams(Menkes and Opat(l973».

The temperature rise within this velocity range is between 150 and 250"C according

to Fig.4.3. It is a common knowledge that material rupture strain increases

significantly with temperature. According to the predictions given by Jones( 1976),

the shear rupture strain for Mode III failure is

W,"
y('=_=1.153k

2e
(4-22)

using eq.( 1-5) for W," and eq.(3-9) for e. Jones(l976) found k= I gives a fairly good

prediction for the critical impulse to initiate Mode III failure. Thus, the critical shear

strain responsible for Mode III failure is Ye=1.153, which is much higher than the

value obtained by static tensile or shear test at room temperature. For example,

Wen(l996) used £c=0.17 in his calculation for the tearing failure of 6061- T6 beam,

which corresponds to Y,,=0.3if von-Mises equivalent strain controls material failure.
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Nevertheless, 't=1.153 becomes realistic at high temperature. It will be shown in

Chapter 5 that the rupture strain in a tensile test at SOO"C may go up to tc=2.14 for

En24 steel while its static value is 0.65, approximately. Thus, the parameter k in an

elementary failure criterion contains the influence of temperature rise on the failure

initiation when it is significant, which has not been realised, previously.

The temperature rise in a shear hinge also leads to a decrease of the thermal

conductivity(Bai and Dodd( 1992»), which makes an adiabatic assumption more

reasonable. On the other hand, the specific heat increases with temperature, as shown

in FigB.S of Bai and Dodd(l992) for 6061-T6 aluminium alloy, while the specific

heat given in Table 4.1 is at room temperature. When the impulsive velocity is

300m/s, the temperature rise is about 200"C from Fig.4.3. The average specific heat

of 6061-T6 from room temperature to 200"C is C\,""'1176J/kgK, approximately,

according to Fig.B.S of Bai and Dodd( 1992), which will be used in predicting

adiabatic shearing initiation in the following section.

4.4.2. Critical Velocities

The minimum impulsive velocity for a given beam thickness is determined

hy eq.(4-17). According to the discussion in Section 4.3 and 4.4.1, we have a=1.0,

[3=0.9 and C\,=1176J/kg.K. Other parameters are given in Table 4.1 and eqs.(4-3) and

(4-4). Substituting all these parameters into eq.( 4-17) leads to

VO.25
'i 2 2 ()(l +1.33x 10- Vo) (I +0.476__ )=14.65

HO.25
(4-23)

which determines the relationship between Vo=VcJrnls) and H(mm).

Jones( 1976, 1(89) suggested the following formula to predict a Mode III

failure

(4-24)

for a fully clamped impulsively loaded beam with a rectangular cross-section, where

a good agreement was reached when k= 1.

Predictions on the minimum critical impulsive velocity to initiate adiabatic
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shearing are presented in Fig.4.4. It is shown that the adiabatic shearing failure

occurs at velocities higher than those for a Mode III failure. When the impulsive

velocity Yo>Yc,' adiabatic shearing occurs before t=tl. However, according to the

discussion in Section 4.3.2, there is a limitation, Yo<Y,w=520mls, for the validity of

the analysis. Beyond this velocity, shear wave effects are significant for estimating

localized shear deformations. These observations and previous studies(Menkes and

Opat( 1973), Jonest 1976, 1989», allow beam responses and failures under intensive

dynamic transverse pressure loadings to he classified into the following modes,

(a) Large plastic deflection response(Mode I);

(h ITeuring failure from the combination of bending, shearing and membrane

responses(Mode II);

(c) Shear failure by localised transverse shear response in a shear hinge(Mode III);

(d) Adiabatic shearing failure hy localised transverse shear response in a shear hinge;

(c) Response and failure introduced by the propagation of a plastic shear wave.

These response and failure modes appear with increase of the imposed

impulsive velocity. The first three modes have been confirmed by experimental

results given by Menkes and Opat( 1973), and Ross, et al.( 1977). However, further

systematic experiments are required to examined modes (d) and (e).

4.4.3. Adiabatic Shearing in Short Beams, Circular Plates and Cylindrical Shells

Similar analyses are possible for other structural elements under transverse

impulsive pressure loadings. Rigid, perfectly plastic analyses have been given by Li

and Jonest 1994, 1995a,b) for the dynamic plastic response of a beam, circular plate

and cylindrical shell under general blast pressure loading. A transverse shear hinge

may develop for sufficiently large loading intensities, which depend on the parameter

v, as shown in Section 1.2. The parameter v depends on the ratio of length and

thickness for a solid cross-section structural element and determines the transverse

shear response model. The beam problem of Menkes and Opat(l973) with v>3 has

been studied in Sections 4.4.1 and 4.4.2. Here, the shear-only responses of a fully

supported beam, circular plate and cylindrical shell corresponding to small length to

thickness ratio will be studied.

(a) Beam(v<2)
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The maximum engineering shear strain and average shear strain rate within

a shear hinge of fully clamped beam are

_ P L ~ . Vo
y1---VO and y =0.58_

0'0 H ill H
(4-25a,b)

according to eq.( 3-9) and Li and Jonest 1995a). The critical velocity for the initiation

of adiabatic shearing is

[1 +0.476(~y12'iH 1+0.0000 102(_£)V(;f= 14.65
H H

(4-26)

by using eqs.(4-25a,b) and (4-16).

(h) Circular Platetvc.I)

A similar procedure gives

Y
1
=0.633_f_~ V(; and y' =0.731 Vo

O'() H Ill' H
(4-27a,b)

according to eq .(3-11) and Li and Jones( 1994). The critical condition is

(4-28)

(c) Cylindrical Shell(v<2)

Eq.(3-20) and the results in Li and Jones( 1995b) predict

_ 1.415 P LV2 d' 0817VoY1 -- 0 an y =. -,
1 + 1.732L1r O'() H til H

(4-29a,b)

and the critical condition is

(4-30)

In the above equations, the units of Yo and Hare mls and mm, respectively. Fig.4.5

illustrates the relationship between the critical velocity for adiabatic shearing and

structural thickness for a length( diameter)-thiekness ratio of 1.7. It appears that a

beam is the easiest one to be sheared adiabatically among the studied three structural

clements, then the circular plate and cylindrical shell, provided their
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length( diameter)/thickness ratios are the same. When the shell becomes slender. i.e .•

Llr increases. adiabatic shearing becomes more difficult. The extreme situation is

Llr« I. corresponding to a fuJly clamped ring. in which adiabatic shearing is easier

than in a fully clamped beam. according to Fig.4.S.

4.5. Fully Clamped Beams Under Projectile Impact

The analytical procedure proposed in Sections 4.2 to 4.4 for an impulsive

pressure loading may be used to predict the initiation of adiabatic shearing in a

structural element under projectile impact. In the present case, a fully clamped beam

subjected to a blunt projectile impact at the mid-span. as shown in Fig.4.6. will be

studied.

According to the rigid, plastic results of Liu and Jones( 1988). the transverse

shear displacement across a shear hinge at the periphery of the projectile impact is

3GL!!,V(;w- _
1 SMov(v+3!!,)

(4-31 )

for a beam with v>3, in which, G is the projectile mass. Vo is the impact velocity of

the projectile; g=pBHLlG and v is defined as before. The shear response time is

3GL!!,Vo
11------

4Mov(Y+3!!,)
(4-32)

Thus, the maximum transverse engineering shear strain and the average shear strain

rate arc

Y = 9 P
1 - ----ss <Jo I+2.6__!i_

UH

(4-33a,b)

when the width of shear hinge is given by

L\=bH, (4-34)

where, b=O.866 according to eq.(3-9). However. In a practical projectile impact

problem, B may depends on both projectile and beam material properties, as well as
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the impact velocity range. Some evidence has been shown by Jones, Kim and

Li( 1997) in an analysis of plate failure under projectile impact. As a qualitative

analysis, b=0.866 is used here. However, it is possible to use a more realistic value

of (5 in a particular problem if experimental data are available.

By using the material properties of 6061- T6 aluminium alloy, given in Table

4.1 and same simplifications of u= I, ~=O.9 and C,=1176J/kgK, the average specific

heat with in 20-200ue, as discussed in Section 4.4.1, the minimum impact velocity

for initiating adiabatic shearing is determined by

(4-35)

While, the minimum impact velocity for Mode III failure may be determined by the

elementary failure criterion, eq.( I -6) proposed by Jones( 1976, 1989), which leads to

_I 8cri + R
~)-,I __ (I 2.6_) ~308.1

\j 9p LlH

(4-36)

when k= 1.0 is assumed.

Generally speaking, heam failures for small value of g(large projectile mass)

and low impact velocity are mixed modes, in which both tensile, shear and bending

deformations have contributions for beam failure(Jones( 1989), Liu and

Jones(1987,1988». In the present case, we concentrate on the case of a large value

of g(small projectile mass) and medium impact velocity. FigsA.7(a,b) gives the

predictions for the minimum velocities to initiate a Mode III failure and adiabatic

shearing in the studied beam corresponding to different mass ratios and beam

geometries. It is shown that there exists a transition impact velocity from Mode III

failure to adiabatic shearing failure, which depends on the beam thickness, beam

length and mass ratio, R. Adiabatic shearing may suppress a Mode III failure for a

relatively thin beam. Generally, the critical velocity for both Mode III and adiabatic

shearing failures increases with heam thickness, but decreases with projectile mass

and heam length. It is interesting to point out that the adiabatic shearing suppresses

a Mode III failure when the beam thickness is less than a given value which falls
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within a narrow range of 1-2mm for a broad range of other parameters. This means

that Mode III failure might not be found in a thin beam even a high impact velocity

is imposed because Mode II failure transfers into adiabatic shearing failure with

increasing impact velocity. Unfortunately, there are no experimental results available

for comparison.

4.6. Remarks

A systematic analytical study on the transverse shear response and failure of

a beam when subjected to a transverse dynamic loading has been presented in

Chapters I to 3 and the current chapter. Most of the results for a beam are applicable

for other structural elements, such as plates and shells under similar loading

conditions. It is a common feature of these structural elements under transverse

dynamic loadings that a transverse shear localization zone(or shear hinge) may be

formed at some "hard points" like supports and at the impact loading periphery.

Within the shear hinge, both shear rupture failure and adiabatic shearing failure may

occur depending on loading rates and intensities as well as the thermal visco-plastic

properties of the material. Comparing with the formation of a shear hinge, the

formation of an adiabatic shear band is another type of shear localization due to

material thermal softening. Both shear rupture failure and adiabatic shearing failures

appear with increasing loading rate and intensity, and there may exist a transition

between these two failure mechanisms that require different material and failure

models in analyses and simulations. Thus, this observation should be considered

seriously in relevant impact safety design.

Structural elements under projectile impact may introduce more difficulties

than an impulsive pressure loading because the contact of a projectile with the

structure may lead to considerable indentation. Indentation may result in a localized

material failure, changes of material properties and structural element thickness and

the absorbtion of projectile kinetic energy, which must be considered in order to use

the proposed model correctly. Thus, modifications are necessary for a projectile

impact problem, depending on the actual situation. For example, the transverse shear

displacement determining shear failure initiation is accumulated through half shear

hinge length given by eq.(3-11) in an aluminium alloy circular plate subjected to a
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blunt projectile impact, as shown in Jones, Kim and Li( 1997). Although, these

problems are not discussed in the current study, it is obvious that incorporating

dynamic indentation analysis into the current model is necessary for some practical

impact problems.

It is well-known that the concept of a ballistic limit to perforate a structural

element is an important design parameter for plate perforation and penetration. Many

models in the low to medium velocity range have been proposed to predict the

hallistic limit of given plate material and geometry based on various response and

failure analyses, for example, Liu and Stronger 1995). However, as shown in the

current analysis, adiabatic shearing may suppress other failure modes under proper

conditions. Thus, the consideration of the adiabatic shearing mechanism in predicting

the ballistic limit in a practically important impact velocity range may lead to an

improved understanding of plate perforation and penetration problems.
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Fig.4.l (a) Explosive tests on fully clamped beam; (b) Simplified fully clamped
beam under uniformly distributed initial velocity.
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FigA.2 Velocity profile of a fully clamped beam under impulsive pressure loading
when v>3.
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FigA.3 Temperature rise in the shear hinge of a beam under various impulsive
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Fig.4A Critical conditions for adiabatic shearing and Mode III failures in tests of
Menkes and Opat(1973).



Chapter 4 85

500

400

",300
E
~
uo
~ 200

100

beam
circular plate
cylindricalshell(Ur=1.0)

- - . cylindricalshell(Ur=1.S)

circular ring(L/r=O.OI

O~----'----'----'-----'----'-----r----'
o 2 4 6 8 10 12 14

Thickness(mm)

Fig.4.5 Critical condition for adiabatic shearing failure in a short beam, circular plate
and cylindrical shell(LlH( or RlH)= I.7).

Fig.4.6 Velocity profile of a fully clamped beam under projectile impact when v>3.
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FigA.7 Variation of critical impact velocity of adiabatic shearing and Mode III
failures with beam thickness for the problem in FigA.6, (a) L=203.2mm; (b) g=3.0.
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5. EXPERIMENTS ON DOUBLE SHEAR

BEAM UNDER PROJECTILE IMPACT

5.1. Material Properties

5.1.1. Physical Properties

The bar material used in the tests is BS970lEn24(equivalent to AISI-4340

steel) medium carbon steel alloy. The composition of the material according to the

supplier is shown in Table 5.1,

Other physical properties(at room temperature) are given in Table 5.2

The measured hardness of the present En24 material is RC-21, which is

smaller than the value for 4340 steel given by Johnson and Cook( 1983), and is

probably due to the different heat treatment process. The specific heat of 4340 steel

given by Johnson and Cook(1983) is Cv=477(JK1kg-I), which is very close to the

value in Table 5.2 with a relative difference of 1%. The heat conductivity here is

compared with the value given by Bai and Dodd( 1992)(pp.305), where Kv=37.6

(WmIKI) for a 4340 steel which is only 1.4% smaller than the value in Table 5.2.

Both specific heat and heat conductivity vary with temperature, which may be

estimated according to Table 5.3

The value of C, in Table 5.3 is the mean specific heat from 20°C to the

temperature given in Table 5.3, which can be easily converted into their actual value,

as shown in Table 5.4.

The mechanical properties and the constitutive equation for the material will

be presented in Section 5.1.2.

5.1.2. Constitutive Equation

High-strain rate plastic deformation of a material is often described by a

thermo-viscoplastic constitutive equation, which links stress with strain, strain rate

and temperature. A general form of the rate and temperature dependent flow law may

be expressed as
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(5-1)

for an isotropic material model, in which CJe and e, are von-Mises equivalent stress

and strain, T is temperature and Vk are some internal variables, such as a strain

hardening parameter. The expression of function F is often identified by either a

uniaxial tensile/compressive test or a pure shear test. In the first case, which will be

used in the present research, eq.(5-1) is

(5-2)

in which CJ and £P(£P) are the uniaxial stress and plastic strain(plastic strain rate),

respectively. It has been shown that the true stress and natural strain, defined in

Appendix A 1, are more convenient for metal plasticity to achieve consistency. The

theory of dynamic plastic constitutive equation will not be discussed here, but may

be found easily by an interested reader in many sources, such as, Harding( 1988),

Clifton(l983), Meyers(l994) and Walter(1992).

Normally, the function F in eq.(5-1) or eq.(5-2) satisfies the following

inequalities, i.e.,

(5-3)

to reflect strain hardening, strain rate hardening and thermal softening. Strain

softening is also possible sometimes when void and texture softening mechanisms are

more important, as discussed by Zbib and Tubran( 1992).

Practically, it is very difficult to determine the function F by conducting

limited experiments without further simplifications. Most proposed constitutive

equations employ the following multiplicative form(Johnson and Cook(1983),

Klepaczko( 1994»

(5-4)

where F, is determined from a quasi-static tensile test, F2 is determined from a SHPB

constant strain rate test, and F3 will be obtained by a static constant temperature test,

which will be described below. When eq.(5-4) is determined from uniaxial material
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tests it may be converted into the general form of eq.(5-1) by using equivalent stress

and strain definitions. Thus, at least two idealizations, i.e., (i) the influences of plastic

strain, strain rate and temperature on the constitutive equation can be separated into

the multiplicative form in eq.(5-4), and (ii) the constitutive equation is invariant with

respect to the equivalent stress and strain, have been adopted here to obtain the

material constitutive equation. The second idealization is based on the fact that the

plastic flow of metal materials is controlled by the von-Mises equivalent stress and

strain. The first idealization needs to be verified, which will be given in Section

5.1.3. Zerilli and Armstrong(1987,1990) proposed an another type of viscoplastic

constitutive equation based on a micro-mechanics basis, which also indicated the

uncoupled characteristics of plastic strain from strain rate and temperature, as

discussed by Meyers(1994).

(a) Static Tensile Test

The static tensile tests were conducted on an INSTRON test machine with the

axial loads being measured by a load cell installed in the machine. An extensometer

with a gauge length of 50mm was used to measure the elongation up to EE=2%.

Then, it was removed and the displacement was measured between the two

crossheads.

The specimens were made from annealed BS970lEn24 steel, which came from

three different bars. The geometry of a test specimen is shown in Fig.S.I. The actual

dimensions are given in Table 5.5 together with the final measurements of the

diameter at the necked cross-section of a failed specimen.

The engineering stress-strain results are shown in Fig.S.2. Young's modulus,

maximum engineering stress, the percentage elongation from the INSTRON

machine, the zero gauge length rupture strain, defined by eq.(A-l1a), and the true

stress at failure are given in Table 5.6. Poisson's ratio is 0.29.

It was found that the test results for two bars(SP2 and SP3 for Bar 2 and Bar

3) were fairly close. But there are noticeable differences between the results of these

two bars and Bar I(SPI and SP4). Generally, the average yield stress of Bar

1(421.45MPa) is about 8.7% higher than the average value of Bars 2 and

3(387.7MPa). Although, there is a noticeable discrepancy(about 22.02%) on the
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percentage elongation of SPI and SP4 from the same bar, the error based on zero

gauge rupture strain is only 8.43% for SPI and SP4. It is interesting to note that the

values of the zero gauge length rupture strain give consistent results when compared

with both UTS values and true stress values at failure(<TTf)'It has been realised that

the zero gauge length rupture strain is a more realistic index to measure material

ductility than the percentage elongation index that is specimen dependent. The

average value of ENOffor SPI and SP4 is 78.72%, which is 21.56% higher than the

average value of SP2 and SP3(ENot=64.76%). It is reasonable to treat Bars 2 and 3 as

the same material, but Bar 1 as a slightly different material. Thus, only Bars 2 and

3 are used in the DB beam test.

A relationship between true stress and natural strain for SP2 and SP3 is

evaluated in Fig.5.3 according to the tensile theory in Appendix Al when considering

the influence of a superimposed hydrostatic tensile stress introduced by necking

according to Bridgman's formula, equation (A-I4). A straight line interpolation is

used between the maximum stress point and final rupture point, which has been

verified by Alves(1996). The modification factor in eq.(A-14) is given by

I.: =1.0224-0.0948Eeq
(5-5)

according to Fig.2.13 in Alves( 1996). This modification is not significant for the

present material, where fc::::0.96for SP2 and SP3. However, when the material

ductilitY(ENof) is large, the stress value may be reduced more due to the further

development of non-uniform stress distributions across the necked cross-section.

According to Fig.S.3, material static true stress-true plastic strain curve for

Bars 2 and 3 may be described by

F( =<To for O:5EP<~

F( =<To+A(EP-E';)m for E';:5EP<Ei

F( =B( +B2(EP-Ei) for Ei::;EP

(5-6)

where <To=387.7(MPa), A=I182.7(MPa), B(=784.08(MPa), B2=749.2(MPa), m=0.45,

E/=0.65% and El=9.46%. The plastic strain energy density up to material failure is

606.64MJ/m3 from eq.(S-6) when the average value of zero gauge rupture strain

ENor64.76% is used. Eq.(5-6) is illustrated in Fig.S.3.
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(b) Dynamic Compressive Test

A Split Hopkinson pressure bar(SHPB) is used for the dynamic compressive

testing. The parameters used in the SHPB system, described in Fig.5.4, are presented

in Table 5.7.

SHPB tests were conducted on specimens machined from three bars at various

strain rates. Basic results are presented in Table 5.8.

A typical recording in SHPB test is given in Fig.5.S. It is evident that the

strain rate, determined by the reflected waves in the incident bar, varies with time.

Conventionally, the average strain rate may be calculated from eq.(A-ISc) or eq.(A-

20c). However, in practice, it may be obtained equivalently by measuring the total

shortening of the specimen and the total loading time. For example, the average

engineering strain rate is

(5-7)

in which TL is the total loading time, which depends on projectile length and elastic

wave speed. In our case, TL=IS5.6Jls. In Table 5.7, the average true strain rate is

defined by

L +L
(L,-L, )/( ,I' ,'f)

,\ ,\f 2
E-' __ -::::-- __

TL

(5-8)

with a 4% difference when compared with the value from eq.(5-7).

The true stress-true strain relationships at various strain rates are demonstrated

In Figs.5.6(a,b,c) for three bars. Various compressive strains were achieved for

different strain rates. The maximum compressive strain is about 24% when strain rate

is around 10\-1. Some of them are less than 10% when strain rate is low. The

dynamic yield stresses corresponding to different strain rates are presented in

Fig.5.7.

From these results, the strain rate effect represented by F2 in eq.(S-4) can be

described by the Cowper-Symonds relationship when using yield stress to determine

the parameters in it
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(5-9)

where q=4.41 for all three bars, D=186.7(1/s) for Bars 2 and 3, and D=378.3(1/s) for

Bar 1. A comparison between Eq.(5-9) and the test results is shown in Fig.5.7. Again,

a noticeable difference is observed between the results of Bar I and Bars 2 and 3.

If the dynamic stress at a fixed strain is used to determine the parameters in

the Cowper-Symonds relationship, different parameters will be obtained. This implies

that both D and q depend on the plastic strain. In order to verify the validity of the

Cowper-Symonds relationship, the dynamic flow stress at 12% plastic strain is used

to obtain the parameters, D and q. The experimental results used to obtain D and q

at 12% plastic strain are given in Table 5.9, which, by using the minimum square

method, leads to D=6948.3s-1 and q=5.132. Thus, D and q are plastic strain

dependent, as noted by Jones(1989). The bigger the parameter D is, the smaller the

strain rate sensitivity is. Both of the two sets of parameters obtained above will be

verified in Section 5.1.3. Their influence on DS beam response and failure will be

examined in Chapter 6.

(c) Temperature Effects

Static tensile tests were conducted at various temperatures from room

temperature to SOODCon an INSTRON test machine. A specimen is heated by a

1.5mm diameter, nickel coil, model HBS050, made by H&B Sensors Ltd(UK), which

has an inner heater wire and an outer sheath insulated by a magnesium oxide layer.

The coil heater is wrapped around and along the gauge length of the test specimen.

Two enlarged ends are screwed firmly to the specimen, which are used for installing

a cooling pipe. The temperature of the coil heater can be adjusted by changing the

input voltage. The complete test system is shown in Fig.5.8, and the specimen

geometry is shown in Fig.5.9(a).

Typical stress-strain curves, based on the gauge length in Fig.5.9(a), are

shown in Fig.5.10 for elevated temperatures. As expected the material yield stress

decreases with increasing temperature. Further tests showed that the distinct yielding

points disappears beyond 320DC.Table 5.10 presents the main test results.
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The ratios of a/ao are plotted in Fig.5.11 against temperature, which are

formulated by the temperature factor in the Johnson-Cook constitutive equation,

T-T
F =1-( r )"

3 T -T
In r

(5-10)

where a single parameter n=0.65 fits all experimental results well, as shown 10

Fig.5.11.

Temperature also increases material ductility, which can be seen from

comparing the values of £NOf at failure locations of TOI and T03. Unfortunately, other

failures occur outside the heating section, and, thus, they cannot be used to show the

dependence of £NOf on temperature. These limited results also show that the maximum

tensile stress varies little with temperature before it reaches 300De. More tests on

tapered specimens, shown in Fig.5.9(b), are conducted in order to confine the failure

location at the middle of the specimen. The results are given in Table 5.11.

According to the test results in Table 5.11, and the results of TIl and T03 in

Table 5.10 for £NOf' which is defined using the zero gauge length given by eq.(A-lla)

in Appendix A I, a relationship between material ductility and temperature up to

500DC is presented in Fig.5.12. It shows that the increase of material ductility with

temperature is significant, especially when T>300De.

5.1.3. Verification of the Constitutive Equation

In the proposed constitutive equation, the influences of plastic strain, strain

rate and temperature on the constitutive equation are separated into a multiplicative

form, as shown in eq.(5-4). Furthermore, the strain rate effect is included by using

the Cowper-Symonds relationship, which was proposed originally for estimating the

strain rate effect for the dynamic yield stress. Thus, it is necessary to verify the

validity of eq.(5-4) when other functions, FI, F2 and F3 are identified.

In our modelling, the function F2 is assumed plastic strain independent.

However, both the flow stress at zero and 12% plastic strains are used to obtain two

sets of the parameters, D and q. The stress-strain predictions from them can be

compared with the stress-strain result of a SHPB test to verify the proposed form of

the constitutive equation. According to the discussion in Section 4.3.1, the
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deformation process in a SHPB test can be idealized as an adiabatic process. The

temperature rise during the test is estimated using eq.(l-12). The actual stress-strain

curve in a SHPB test may be influenced by temperature, which, however, is not

significant in the present case. Another factor is the variation of strain rate during the

loading process. Fig.5.14(a) shows the measured incident, transmitted and reflected

waves in SHPB test(specimen 022 in Table 5.8). The strain rate is proportional to

the reflected wave. It is evident that strain rate is not constant during the test, and

decreases monotonously from its maximum value to a minimum value that is less

than half of the maximum value. The reflected wave in a typical SHPB record in

Mayer(l994)(pp.310) also show this common feature of a SHPB test. Normally, the

variation of strain rate during a test is neglected, and is replaced by the average

value. The average strain rate, which is used in eq.(5-9), is about three-fifths of the

maximum value. These factors should be considered in the verification. After

considering both the temperature rise and the strain rate variation, the predicted result

for 0=186.7s-1 and q=4.41 is higher than the test result, as shown in Fig.5.14.

However, this difference tends to reduce with the increase of strain. The relative

difference at 10% strain is about 20%, which reduces to about 10% at 24% strain.

In the DS beam test programme, most of the material in the notch section of a OS

beam experience plastic strain up to 25% to 50%, as shown in Chapter 6. It is

expected that the proposed constitutive equation will give closer results for larger

plastic strains. Unfortunately, the present capability of SHPB can only produce

compressive strain of 24% in the specimen.

Predictions using 0=6948.3s-1 and q=5.13 are also shown in Fig.5.14. It is

close to the experimental result at a plastic strain of 10%. The relative difference

increases with increasing plastic strain. It is hard to judge which set of parameters

offer a more accurate description of the strain rate effect from small to large plastic

strains. However, it appears that these two curves for the two sets of parameters give

upper and lower bounds on the test results. Their influences on OS beam response

and failure will be verified in Chapter 6.

More complicated constitutive equations should include the variations of strain

rate and temperature effects with plastic strain, which means that the function F2 and

F3 depend on plastic strain as well. However, it is still difficult to fit material
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behaviours in a range of strain rate and temperature. Alves( 1996) obtained parameters

for the Cowper-Symonds equation based on average values to fit yield stress, ultimate

stress and failure stress simultaneously. However, the actual strain rate variation

during the test was not discussed.

5.2. Experimental Description

The aim of the proposed experiments is to study the response and failure

within the notch of a double shear(DS) beam under projectile impact in order to

understand the features of the response and failure in a localised shear zone, or shear

hinge, in the dynamic plastic response of a structural element. Responses and failures

corresponding to different loading rates will be recorded and analyzed in order to

supply the necessary information for further theoretical and numerical analyses.

Experimental details are described in this section and the experimental results are

presented in Section 5.3.

5.2.1. Loading System

A gas gun is used to accelerate the projectile. The velocity of the projectile

is estimated according to an approximate formula derived from the gas pressure and

Newton's second law of rigid body motion, which is expressed as

2.65 r;;-v- yro (rnls),

'1M
(5-11 )

where M(kg) is the mass of the projectile and Po(psi) is the initial pressure of the gas.

The actual impact velocities measured by the photocell system in Fig.5.15(a)

are given in Table 5.12, which agree with the predicted results of Eq.(5-11), as

shown in Fig.5.16.

The projectiles are made from an aluminium alloy shell with 20mm diameter

and a hardened steel cap. The actual mass used in a test is shown in Table 5.12.

In order to achieve a normal impact and to prevent the barrel and the

measuring device from being damaged by a projectile, the projectile is kept inside

the barrel after hitting the beam. Two plates fixed beside the specimen are used as

stoppers for this purpose, as shown in Fig.5.l5(b).
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5.2.2. Clamper and Specimen

A double shear beam is clamped by two 5mm screws and two clamps on a

255x 152x24(mm3
) steel plate, which itself is clamped firmly on a massive steel

block. The details of the clamping system are shown in Fig.5.15(b). Two hardened

beam strips are used as stopper, which is on the same level as the top of double shear

beam. A lOx 1O(mm2
) sheet with a given thickness is fixed on the top of the central

block of the double shear beam to control the travelling distance of a projectile. The

actual thickness of the sheet and its mass are given in Table 5.12.

The geometry of the double shear beam specimen is described in Fig.5.l5(a).

The notch width is 2mm.

5.2.3. Microscopic Observation Preparation

Specimen samples are prepared by sectioning, grinding, polishing and etching.

After sectioning, it is mounted in resin. The mounted sample is ground, then,

polished by a successively fine diamond paste down to 1~ until a mirror finish is

achieved. The polished sample is etched by using 2% nital for 5 to 10 seconds which

depends on experience to observe the colour of the etching surface.

Although there are different etching methods for various materials, the above

reveals the deformation lines and both deformed and transformed adiabatic shear

bands, which will be shown in Section 5.3.2.

5.3. Experimental Results

5.3.1. General Experimental Results

A detailed description of the experimental results on DS beams is given in

Table 5.12 for various impact velocities and two different pad thicknesses.

Generally, simple shear dominates the deformations in the notch section.

When the impact velocity is low, symmetrical shear deformations are observed in

both notch sections. However, with increasing impact velocity, one of the two

notches starts to fail. With further increase of the velocity, failures are observed in

both notches. Normally, failures are initiated at the comers of a notch. A tensile

failure appears at the upper-lefuupper right) and lower-right(lower left) comers for
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the left hand notch(right hand corner) of a DS beam(We will refer to a left hand

notch in the following discussion), which are noted as upper-tensile(UT) and lower-

tensile(LT) corners. While, a shear failure associated normally with adiabatic shear

banding is observed at the upper-right and lower-left corners, which are noted as

upper-shear(US) and Iower-sheartl.S) corners in the rest of this chapter and in

Chapter 6.

It was found that there are negligible changes in the pad thickness and the

thickness of the central block after impact. However, bending contributions to the

displacement of the central block are noticeable. The bending displacements are

measured after impact for some specimens, and are given in Table 5.12. These data

are plotted in Fig.5.18 for impact velocities below 80rn/s. The bending displacement

reaches its maximum value at Vj"",40-50rn/s, then starts to decrease due to the failure

initiation at the notch corners. An approximate linear relationship between the

bending displacement and the impact velocity is given in Fig.5.18. The shear

displacement of the central block, Wf, is calculated from

(5-12)

in which, the measured value of Wb is used when it is available, and the approximate

relationship in Fig.5.18 is used when it is unavailable. The transverse displacement

of the central block according to eq.(5-12) is given in Fig.5.19 for various impact

velocities, which will be compared with the theoretical predictions in Section 6.3.

5.3.2. Observation of Tensile Failure and Shear Banding

The two failure mechanisms found within the notch of a DS beam specimen

are a tensile failure and an adiabatic shear banding failure. Although, there is a small

radius of O.2mm at each corner of the notch, the stress concentration, and, thus,

deformation concentration, is quite severe according to micro-observations presented

in this section and the FEM simulations in Chapter 6. Thus, the failure of a DS

beam, either a tensile failure or an adiabatic shear banding failure, is initiated from

its four corners. This behaviour is different from the behaviour of a thin-wall tube

tested in a torsional Hopkinson bar where failure is initiated in the middle of the

gauge section, as shown by Marchand and Duffy( 1988) for the adiabatic shear band
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formation process.

(a) Tensile failure

Tensile failures are initiated in the tensile domain zones at either upper-

tension(UT) or Iower-tensiontl.T) corner(or both of them) when the impact velocity

exceeds a critical velocity. The critical velocity to initiate tensile failure in the current

DS beam tests is between 40 and 50mls for both pad thicknesses. Normally, cracks

appear in one of the two notches when the impact velocity just exceeds the critical

velocity

Cracks extend in the direction of about 30 degrees, as shown in Fig.5.20. The

crack extension length depends mainly on the input kinetic energy, or projectile

impact velocity. It appears that the LT corner fails first because many experiments

show that cracks at the DT corner extend more than the cracks at the UT corner.

More discussion on this will be given in Section 6.4.

With a further increase of impact velocity, a third crack is found at the UT

comer of the other notch. Obviously, this is due to the fact that cracks at the LT

corner extend more than the cracks at the UT corner, which decreases the tensile

concentration at the LT corner in the other notch. However, with a further increase

of impact velocity, tensile failures are found at the UT and LT corners in both

notches.

The microscopic examinations are conducted on the crack and its path. Crack

propagation is irregular on the microscopic scale because the outline of a crack on

a microscopic scale is characterised by fractal patterns, which is unpredictable on the

macroscopic scale. The microscopic failure on the grain size is complicated, which

may involve both tensile and shear effects. A microscopic tensile stress field over a

finite region is consistent with the formation of a macroscopic tensile stress field. The

observed macroscopic tensile crack seems to be in the vertical direction of the

macroscopic tensile stress. Thus, it is believed that the macroscopic failure pattern

can be determined by a macroscopic stress field at the front of a crack during the

failure process. But, the failure in microscopic scale is determined by the microscopic

local stress field. Thus, any failure phenomena and criteria have their associated

spatial scale, which is necessary to be specified in any failure analysis. A proper
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macroscopic failure criterion can predict the macroscopic failure initiation in

structures if the failure index in a failure criterion is determined by a material test

having the same failure mechanism.

In addition to the tests in Table 5.12 on the originally delivered En24 steel,

some tests were conducted on a heat treated En24 steel with a hardness HRC 44-46

after heat treatment. No tensile failures were found at the UT and LT corners, but

instead shear failures occurred at the upper-shear(US) and lower-sheart l.S) corners,

which will be described below.

Cb)Adiabatic shear bands

Adiabatic shear bands are found in the shear domain zones at both the US and

LS corners shown in Fig.5.21(a). Microscopic examinations are conducted for the

post-test specimens and adiabatic shear bands are found in front of the cracks at the

US and LS corners. It has been claimed in several publications(see pp.448

Meyers( 1994) that shear bands are precursors to fracture, which is true in some

situations as in a SHTB test. However, it is highly possible that a pre-existing crack

or an initiated crack may also play a precursor role for the development of an

adiabatic shear band, which has also been confirmed by Kalthoff( 1987, 1990). Shear

band initiation in a DS beam is more complicated than in SHTB tube specimen

because the local US and LS shear domain zones are not in a simple shear mode. It

is also hard to find which phenomenon(crack or shear band) is initiated first, and then

to be the precursor of another phenomenon. No matter which phenomenon occurs

first, a failure transition between these two failure mechanisms are confirmed in the

present test programme.

According to the microscopic observations in Fig.S.21 (a), grains in a shear

band are elongated into narrow strips along the shear band. The elongation of the

grain decreases rapidly away from the core of a shear band. It is a practical view-

point that an adiabatic shear band can only be achieved under rapid shear

deformation, and it is hard to find evidence of shear bands in a macroscopic tensile

stress fie1d(that is why the term "shear band" is used for this material instability

phenomenon). The elongation of the grains is much larger than that in macroscopic

tension mode, shown in Fig.S.20. It appears that the compressive force created by the
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macroscopic shear field could supply higher material ductility than a tensile stress

field, which offers material an opportunity to consume more external energy to

increase its temperature. Another advantage of a shear stress field to trigger adiabatic

shear banding is its simultaneous deformation over a finite material domain, while

a tensile failure mode is more likely to be a progressive process which makes it

difficult to heat material up sufficiently to obtain a high ductility. Thus, adiabatic

shear banding is more likely to be initiated in a shear stress field. Another factor is

the loading rate. It is believed that the reason why grains can experience such high

elongation is due to the rapid rise of temperature, which triggers the material

instability to localize material deformations in this narrow zone, and, on the other

hand, increases the material ductility significantly. The shear band length depends on

the availability of input external energy and the material behaviour at the front of a

shear band.

The maximum shear stress criterion has been used frequently to predict the

initiation of an adiabatic shear band. If the adiabatic shear band is initiated in a

simple shear field, the shear stress and strain of the simple shear motion can be used

in the criterion because the local instability criterion is consistent with a global

instability criterion in this case. SHTB can be used to create simple shear motion,

and many analyses have been given to predict adiabatic shear bands in a SHTB

specimen based on the maximum shear stress criterion. For a general stress field, the

maximum shear stress criterion can be generalised as a maximum Tresca stress

criterion. However, as discussed in Section 6.4, the maximum shear stress criterion

is not always consistent with material instability because it could be satisfied during

an unloading process without a material instability. Thus, the maximum Tresca stress

criterion is one of the two necessary conditions to initiate adiabatic shear banding.

More discussion on this topic will be given in Section 6.4.

The material around a shear band is sheared severely for about 20 times the

shear band width in the present case. If this is taken as a characteristic size to model

the initiation of a shear band(not the shear band itself), the FEM element size in this

area should be the order of lOx~sb for an accurate simulation. For FEM simulations

on instability development and the evaluation of an adiabatic shear band, finer

elements are necessary.
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There are two kinds of adiabatic shear bands, i.e., transformed shear band and

deformed shear band. The first one is normally associated with hardening brittle

materials, and the second one is frequently observed in ductile materials. In the

current study, both the original delivered En24 steel and heat treated En24(H) are

tested. The original delivered En24 can be classified as a ductile material, whose

results have been reported above. The En24(H) is much more brittle than En24 with

a high hardness. All the tested specimens on EN24(H) failed completely. Typical

observations of an adiabatic shear band are shown in Fig.5.21 (b). The failure surface

is a shiny colour, which is believed to be fractured by failures in the shear band. In

addition to the main failure surface, shear band branches are found beside the main

failure surface, which satisfies the description for a transformed shear band from its

white shiny colour. Because there is no material data available for the En24(H)

material, most of the discussion is concentrated on the results obtained using the

original deli vered En24 material.
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Table 5.1 Material Composition of En24 Mild Steel

Compositions C Cr Mo Ni

(%) 0.35-0.45 1.4 0.3 1.4

Table 5.2 Physical Properties

Hardness(Rockwell)TmCK)

RC-217830 482 38.13 1793

p.

Table 5.3 Variations of Mean Specific Heat and Heat Conductivity With

Temperature(Woolman and Mottram( 1966))

T("c)* 20 100 200 300 400 500 600 700 800 900

Cv(JK"'kg-') 481.2 481.2 502.1 514.6 531.4 556.5 585.8 627.6 707.1 690.4

Kv(Wm-1K"1) 38.08 38.08 38.49 38.08 37.24 34.73 32.22 29.29 26.36 27.20

Table 5.4 Variation of Specific Heat with Temperature According to Table 5.3

T(°C) 20- 150 250 350 450 550 650 750 850 950

100

Cv(JK'kg-') 481.2 518.8 537.1 578.4 651.9 726.4 870.0 1247.7 560.1 608.1
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Table 5.5. Diameter of the Test Specimens

SPI SP2 SP3 SP4

Do(mm) 5.00 4.99 4.99 4.96

DrCmm) 3.32 3.58 3.64 3.40

crErCMPa) 607.86 635.81 632.31 614.85

Note Bar 1 Bar 2 Bar 3 Bar 1

lJn: rrunal diameter 0 tne specimen; Uf: nnal diameter ot the s ecimen at neckm ,p g

aEf: engineering stress at failure.

Table 5.6 Tensile Test Results(INSTRON)

E(GPa) croCMPa) UTS(Mpa) elongation( %) CNOrC%) O"Tt{MPa)

SPI 210.3 412.7 749.2 15.96 81.90 1378.7

SP2 212.8 391.5 719.5 13.44 66.42 1235.3

SP3 214.5 383.9 711.3 14.28 63.09 1188.3

SP4 215.4 430.2 746.3 13.08 75.53 1308.5

Table 5.7 Parameters of SHPB System

La LI L2 D pfkg/rrr') E(GPa) c(m1s) O"o(MPa) Vmax(m1s)

400 750 450 23 7830 206.8 5140 531.65 26.42

J(mm): diameter or the mordent ana transmitter Mrs; ~" L, and Lim mm) are shown In t'Ig.).4; p,
E, an and c are density, Young's modulus, yield stress and elastic wave speed of SHPB bars,
respectively; Vmax is the maximum impact velocity to ensure an elastic impact.
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Table 5.8. SHPB Test Results

No. V'(rn/s) Ls ds r., d., f(S-I) Note

DOl 14.60 4.315 9.990 3.980 10.410 519.0 Bar 1

D02 ------- 4.315 9.980 3.760 10.750 883.2 Bar 1

D03 20.68 4.315 9.990 3.640 10.950 1090.4 Bar 1

D12 14.19 4.310 9.990 3.990 10.410 495.4 Bar :3

D13 16.74 4.310 9.980 3.840 10.630 741.0 Bar :3

D14 21.59 4.300 9.985 3.550 11.050 1226.2 Bar 3

D21 13.41 4.310 9.975 4.050 10.310 399.6 Bar 2

D22 21.90 4.310 9.970 3.565 11.050 1215.7 Bar 2
Vi: Impact velocity of projectile: L, and dJm mm) are defined In eq.(A-22), and Lsi and d,l are their
final values measured after test; i: is the average strain rate.

Table 5.9 Dynamic Flow Stress At 12% Plastic Strain

No. EP(%) ad(MPa) a/as * €P(S-I)

D22 12.02 1342.0 1.721 1215.7

D13 12.01 1285.0 1.647 741.0

D14 12.02 1350.0 1.731 1226.2
cr. IS the now stress at I L'1o In quasi-static tensile test.
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Table 5.10 Static Tensile Test Results At Various Temperatures

No. do(mm) dAmm) T(°C) a/(Jo cNOf amax(MPa) Note

T01 4.985 3.700 20.0 1.0 0.60 1104.8 Bar I

T02 4.965 3.610 165.0 0.82 0.64 1046.5 Bar 1

T03 4.950 1.700 500.0 2.14 Bar 1,#1

TIl 4.980 3.660 20.0 1.0 0.62 Bar 2

T12 4.960 3.610 115.0 0.81 0.64 Bar 2,#2

T13 4.940 3.670 240.0 0.64 0.60 Bar 2,#2

T21 4.970 3.570 320.0 0.68 0.66 1118.1 Bar 3
Note: #1: no ieldin menomenon: HL: tailed outside heatin secnon.o and o are static iercmuy g p g
stresses at test temperature and room temperature, respectively.

(} y g

Table 5.11 Variation of cNOf on Temperature

No. T(°C) Do(mm) DAmm) cNOf Note

TB1 340 6.09 3.88 0.90 Bar 2

TB2 430 6.01 3.28 1.21 Bar 2

TB3 250 6.09 4.16 0.76 Bar 2

TB4 175 6.12 4.29 0.71 Bar 2
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Table 5.12 Experimental Results of DS Beam

No. pepsi) Vj(m/s) dp(mm) ~,(mm) ~lmm) Wb(mm) W,(mrn) Note

NTI 50 80.5 1.59 1.47 1.44 0.14 1.18 M,.C

NT2 50 82.8 1.58 1.60 0.06 M2• C

NT3 30 60.2 1.46 1.35 1.37 1.04 M2• B

NT4 60 82.8 1.46 1.34 1.64 1.42 M2• C

NT5 20 47.3 1.46 1.39 1.01 0.29 0.65 Ml.B

NT6 15 39.2 1.46 1.35 0.81 0.26 0.44 M1.A

NT7 15 40.3 LSI 1.40 0.78 0.24 0.43 M2• A

NT8 25 52.3 1.49 1.44 1.26 0.96 M1• B

NT9 70 91.7 1.49 1.46 1.66 1.53 M2• C

NTIO 35 63.38 0.19 M2• B

NTII 40 70.1 1.58 1.50 1.64 1.38 M2• C

NTI2 80 96.1 1.58 1.45 1.93 1.72 M2• C

NTI3 100 110.3 1.58 1.52 2.00 1.91 M3• C

NT21 30 58.4 1.99 1.87 1.65 0.22 1.31 M4• C

NT22 20 49.6 1.98 1.88 1.14 0.34 0.70 M4• B

NT23 15 47.7 1.98 1.85 1.13 0.28 0.72 M4• A

NT24 50 78.4 1.98 1.91 2.11 0.01 2.03 M4• C

NT25 15 41.7 1.98 1.88 0.86 0.32 0.44 M4• A

NT26 1.98 1.86 0.85 0.32 0.41 M4• A

NT27 10 38.7 1.98 1.84 0.76 0.30 0.32 M4• A

NT28 35 62.1 1.98 1.84 1.86 0.14 1.58 M4• C

NT29 45 74.5 1.98 1.91 2.02 0.12 1.83 M4• C

NT30 60 85.1 1.98 1.86 2.20 0.16 1.92 M4• C

NT31 80 96.1 1.98 1.87 2.32 0.07 2.14 M4• C

NT32 100 106.4 1.98 1.91 2.58 0.03 2.48 M4• C
M ....:5K.3' • M, -=62,UI • M,-={)U.4:lg. M.={)L,JIIg;I g 2 g
A-symmetrical shear deformation in notch sections. B-failure occurrence in one notch. C-failure occurrence in both notches. as
shown in Fig.S.17(a)
D- appearance of adiabatic shear band; E: appearance of tensile failure;
F: stopper plate(or impact pad or projectile) broken,
dp: pad thickness. 80: initial distance from pad top to the surface of stop plate. t\; final distance from stop plate surface to the
top of central block of DS beam. Wh: bending displacement of the central block. WI: shear displacement of the central block.
defined in Fig.S.17(b).
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Fig.5.l Geometry of the tensile specimen(Dimensions are not scaled,
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Fig.5.2 Engineering stress-strain curves for specimens SPI-SP4.
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Fig.S.4 (a) A SHPB system; (b) An overall view of the SHPB system.
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Fig. 5.6 True stress-strain curves at various strain rates, (a) Bar 1; (b) Bar 2; (c)
Bar 3.
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Cb)
Figure 5.8 (a) High temperature test system; (b) An overall view of the heating and
cooling system.
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(a) (b)

Fig. 5.9 Specimen geometries, (a) Cylindrical specimen; (b) Tapered
specimen for failure test.
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Fig. 5.10 Typical uniaxial tensile stress-strain curves with temperature.
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Figure 5.15 Experimental arrangement, (a) General description and specimen, (b)
Clamps and stop plates.
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Fig. 5.16 Variation of projectile velocity with pressure.
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Fig.5.17 (a) Different deformation and failure modes in the notch section,
A:symmetrical deformation(NT7); B:failure occurrence in one notch(NT3);
C:failure occurrence in both notch(NT13); (b) Definition of bending
displacement in DS beam.
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Figure 5.20 Microscopic observation of tensile failure for NT21.
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(a)

(b)
Figure 5.21 Microscopic observation of adiabatic shear bands, (a) Deformation shear
band in original En24 steel(NT21), (b) Transformation shear band in heat treated
En24(H) steel(T3).
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6. RESPONSE AND FAILURE OF A DOUBLE SHEAR

BEAM UNDER PROJECTILE IMPACT

6.1. Introduction

It is well-known that pure shear material tests conducted at different strain

rates and temperatures can provide fundamental information for developing material

constitutive equations. It is also an important way to investigate shear fracture and

adiabatic shear band phenomena. Most experimental studies of both constitutive

equations and adiabatic shearing were conducted by using Split Hopkinson Torsional

Bar(SHTB) and pressure-shear impact(PS!) techniques. However, the strain rate

Iimitation( _10\·1) for SHTB and maximum strain limitation( <few percent) for PSI

actually introduce many difficulties for systematically investigating material dynamic

behaviour(Klepaczko( 1994)).

One of the most promising specimen configurations, which can be applied at

low, medium and high strain rates in shear is the double-notch shear(DS) specimen.

Such a specimen was first introduced by Ferguson( 1967) to study the dynamic

plasticity of single crystals. Later the OS specimen was applied with the Hopkinson

bar technique by Campbell and Ferguson( 1970), where nominal strain rates in excess

of 104S·1 were achieved with impact velocities from 1.2 to l l.Oms'. However, the

determination of the shear strains in Campbell and Ferguson( 1970) when they are

higher than a few percent leads to large errors due to non-uniform shear and severe

plastic deformations at the specimen supports, which have been shown by Ruiz, et

al.(l989. 1991) by using photo-elasticity and ABAQUS FEM software. It was also

shown that within the range of small strains the distribution of shear stresses in the

shear zone(or gauge section) does not vary much, but stress concentration at the

corners of the square notch of width 0.84mm is quite high. A modified double

shear(MOS) technique was proposed by Klepaczko(l994) to overcome these

shortcomings with a direct impact of a flat projectile on the MOS specimen to give

greater flexibility to control the shear strain rate in the gauge length by changing

impact velocities. However. the axial displacement of the central block of the MOS
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specimen has to be measured by an optical method. The proposed MDS geometry has

a wider gauge length, 1,=2.0mm(previously 0.84mm in Ferguson, Hauser and

Dorn( 1967), Campbell and Ferguson( 1970), and Ruiz, Harding and Ruiz( 1989,

1991», and the sharp corner in previous use was changed into a round corner which

substantially reduces stress concentrations near the notch corners. The extension parts

were designed to be longer than before, and were clamped to the transmitter tube

to prevent rotations. Such MDS geometry was analyzed statically by FEM at different

stages of plastic deformation for low alloy steel XC 18(French Standard).

It was shown that the shear strain fields up to O.S shear strain were quite

uniform with a small asymmetry due to a bending component from the support.

However, the extension part of the specimen outside the notch section also deformed

plastically, causing an increasing tendency for rotation. A large width of the

extension part may decrease this effect. Since the thickness of the gauge section in

a MDS specimen is only Smm, and the mean shear stress r; is assumed to be

determined from an infinite layer, a calibration factor is introduced to calculate the

actual shear stress in the uniform region of the gauge section from the mean shear

stress. This calibration factor was found to be 1.2 approximately by Klepaczko( 1994)

for O.OS<y< 1.0. No calibration factor for the shear strain was introduced. This

experimental technique was used to investigate the initiation of adiabatic shear

banding in the gauge section of a MDS specimen subsequently(Klepaczko( I994b,

1995».

Although these studies have proposed the possibilities to use DS specimen as

a standard material test technique at various strain rates, it is far from the mature

technique like uniaxial tension or SHPB techniques. Previous studies have not given

a systematic and complete description on the relationships between the shear

stress/strain in the main part of the gauge section and the measurable

force/displacement, which are crucial for calculating shear stress and shear strain.

Temperature effects are neglected in these studies, which may be important for high

strain rate tests and it is necessary to check its influence on the deformation of a DS

specimen. Another interesting topic on the DS test is the initiation of failure at the

notch corners where stress concentration is evident(even for a MDS specimen), which

include both fracture and adiabatic shearing mechanisms. It has been shown that
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only a fracture failure mechanism is involved in the failure process under a low

velocity impact. The impact behaviour of a double shear specimen made from

aluminium alloy and mild steel with a sharp triangle notch were studied by Jouri and

Jones( 1988). Only fracture failure was observed within the velocity range up to

lZms'. However, Kalthoff(l987, 1990) observed failure transition in a specimen with

two parallel edge notches when impact velocities varied from 50 to lOOms-I. It

transpires that fracture and adiabatic shearing failures in a given OS specimen may

appear with increasing impact velocities depending on the notch tip radius and

material properties. Because fracture and adiabatic shearing are controlled by

different criteria, it is significant for an engineering impact problem to determine the

transition point when a new failure mechanism emerges. A general discussion on the

failure transition has been given in Chapter I, which has been used to study the

failure transition in a fully clamped beam in Chapter 4.

In Chapter 5, a OS beam having a similar geometry(except the width of the

gauge section) to Klepaczko( 1994) has been tested by impact velocities within the

range of 30 to 11Om/s. Various deformation and failure modes have been recorded.

In the present chapter, a combination of FEM simulation and analytical analysis are

proposed to describe the behaviour of a OS beam under projectile impact. The

advantages and disadvantages of using a OS beam for studying material dynamic

properties and failure criteria are discussed. Section 6.2 studies the distributions of

shear stress and strain in the gauge section, the temperature effects and the valid use

of adiabatic condition. An analytical model is proposed in Section 6.3 for the motion

of the central block based on the results from Section 6.2, which is compared with

the test results and will be used as loading conditions in Section 6.4 where the actual

response of a DS beam tested in Chapter 5 is simulated by using a FEM method.

Various failure criteria are examined. The basic verification procedures proposed here

may be used to modify other DS specimen results developed in any practical

applications.
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6.2. Stress/Strain and Temperature Distributions in a DS beam Under Various

Strain Rates

n.2.1. Description of the Problem

Loading, clamping and specimen geometry of the OS test have been described

in Section 5.2.2. Physical and mechanical properties of BS970/En24 are given in

Section 6.1, which are incorporated into the ABAQUS material model. The coupled

temperature-displacement procedure in ABAQUS is available for performing fully

coupled heat transfer/stress analysis, where the thermal and mechanical solutions are

obtained simultaneously. A set of elements are provided for this purpose, which

generally use a lower-order(linear) interpolation for temperature than for

displacement(linear or parabolic) in order to obtain a compatible variation of thermal

and mechanical strain. The temperatures are integrated using a backward difference

scheme, and the coupled system is solved using Newton's method. In the present

study, 4-node bi-linear displacement and temperature plane strain element, CPE4T

is used. The validity of using a plane strain assumption will be verified in Section

6.2.4. More details about fully coupled temperature-displacement elements 10

ABAQUS are given in ABAQUS User's Manual(Vol.l Section 3.2.3).

With the option of coupled-temperature-displacement procedure, "inelastic

heat fraction", "specific heat" and "conductivity" options are needed. Because there

is no phase change in the present problem, the "latent heat" option is unnecessary.

Data of specific heat and conductivity are given in Section 5.1.1, which depend on

temperature. The coefficient of inelastic heat fraction, p, is taken as 0.9. Parameters

in Cowper-Symonds relationship are 0= 186.7s-1 and q=4.41. A parameter study on

p, 0 and q will be conducted in Section 11.2.4 and Section 6.4.

Adiabatic analysis may be used in cases where mechanical deformation causes

heating and the event is so rapid that this heat has no time to diffuse through the

material. Generally, the adiabatic assumption can be used for very high strain rate

events while isothermal assumption is valid for very low strain rate events. For inter-

medium strain rate events, heat conduction should be considered. However, the

present study indicated that adiabatic behaviour is a relative concept depending on

the geometry scale of the phenomenon. For example, the dynamic deformation
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process may be considered as an adiabatic phenomenon on the scale of the notch

section. But, it may be invalid on the scale of the stress concentration area at notch

corners. This problem will be discussed further in Section 6.2. I.

FEM mesh of the OS specimen is shown in Fig.6.1. It is not necessary to

model whole specimen shown in Fig.5.15(a) In Fig.6.1(a), GH is the central line of

the central block. The distance from AB to the notch edge is 2mm. AB and BC are

assumed to be fully clamped. While a given velocity is imposed on FG and GH. In

order to maintain a constant nominal strain rate, the imposed velocity must be held

constant. However, in Section 6.4, the central block velocity calculated from Section

6.3, which varies with time, will be used. The notch has four round corners with

radius, 0.2mm, which are modelled by six elements as shown in Fig.6.1 (b).

Numerical simulation input data are given in Table 6.1, where t is the total

simulation time, .1t is the fixed time increment, W, is the maximum transverse

displacement of the central block corresponding to maximum nominal shear strain,

1,,= 1.0, Yn is the nominal shear strain rate, V is the imposed velocity at the

boundaries FG and GH, and INC is the total incremental number.

Table 6.1 ABAQUS Simulation Oata-l

No. rn(s-I) t(s) .1t(s) INC W,(mm) Vtrns') Note

OSI 2xl04 SOx10-6 5x 10-7 100 2.0 40.0

OS2 5xl04 20xlO-6 2x 10-7 100 2.0 100.0

OS4 50 20x 10-1 4x10-4 50 2.0 0.1

OSS 5x 10-2 20.0 0.1 200 2.0 0.0001

6.2.2. Stress/Strain Distributions

In a OS test, the displacements of the central block and the extension supports

and the reaction force at the extension supports can be recorded. It is assumed that

the total reaction force at the extension supports is the same as the total force on the

cross-section DE. Thus, the nominal shear stress can be defined as
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r..T =__ ,
1/ A

(6-1 )

where A is the cross-section area of DE and FDEis the total transverse shear force

on a notch cross-section. It will be shown later that the total transverse shear force

on the notch cross-section does not vary from the mid-point to the edge of the notch.

Thus, FDEmay be understood as the total transverse shear force at the edge of notch,

i.e., cross-section DE in Fig.6.I(a). The nominal shear strain is

W
YI/=~' (6-2)

where W is the displacement of central block(the extension support has negligible

permanent displacement) and Ll is the notch width.

It has been shown that there exists a shear area in the notch section where the

shear stress and shear strain distributions do not vary much although the stress

concentration in the corners of notch are quite high(Klepaczko( 1994)). The mid-point

of the notch section is always within this uniform shear area. Thus, the shear stress

and strain at the mid-point of a notch section will be used to model the material

response. In order to obtain the true shear stressrtj/true shear strain(y) at the mid-

point of notch section from the nominal stress/strain, the following relationships are

defined

T=a T and y=a 'V
I " .2 'II'

(6-3a,b)

where u1 and Uz will be determined by using FEM simulations.

Three constant nominal strain rate simulations, OS2, DS4 and DS5 in Table

6.1, have been conducted for strain rates of 0.05, 50.0 and 50000.0 S-I. Time

variations of the transverse shear strain at the mid-point of a notch section, T, are

shown in Fig.6.2. The mid-point of the notch is in the middle of elements 210, 211,

230 and 231. However, the transverse shear strain in these four elements are almost

identical, as shown in Fig.6.2(a). Therefore, in Figs.6.2(b) and (c), the outputs from

element 210 are used to represent the mid-point output. Because, these problems are

simulated under a constant imposed velocity, the nominal strains can be calculated

from the response time, and therefore, the relationships between y and Yn can be
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evaluated from Fig.6.2. which are demonstrated in Fig.6.3. It shows that the strain

calibration factor u2 varies slightly with both plastic strain and strain rate. Thus. a

constant value of u2=0.718 can be used to obtain the actual shear strain at

the mid-point of a notch section from the nominal shear strain. No strain calibrations

are given by Klepaczko( 1994). Ruiz, Harding and Ruiz( 1991) introduced a calibration

factor. but did not show its actual value on their OS beam tests.

Stress distributions are also analyzed in these simulations. Fig.6.4(a-c)

compares the mean shear stress defined by eq.(6-1) at the mid-point(curve MA) and

edge( curve BA) of the notch cross-section for three different strain rates. It is found

that the total transverse shear forces at the different location of a notch section are

almost the same although deformation distributions may vary significantly. Therefore,

the constant transverse shear force assumption in eq.(6-1) is valid for these tests

within the notch section.

Since the width of the notch section is finite while the nominal shear stress

'til is defined for an infinite layer, a calibration factor u1 has been introduced in eq.(6-

3a). Klepaczko(l994) found that o, has a mean value of 1.2 for 0.05<Yn<1.0

according to a static FEM simulation. Ruiz, Harding and Ruiz( 1991) also introduced

a constant c, to calibrate the results, where the actual value of u1 is not given.

Fig.6.S give the variations of u1 throughout the response period for various strain rate

simulations. Generally, u1 varies within a narrow range from 1.06 to 1.22 for

O'(kYI1<1.0 depending on the nominal shear strain and strain rate. It increases from

a low value to its maximum at Yn"",0.25,then starts to decrease. Practically, this small

variation may be neglected by introducing an average value, u1"" 1.1, which is

independent of both the nominal shear strain and strain rate, and can be used in

eq.(6-4a) to obtain the mid-point shear stress before material failure or thermal

instability occurs. Also, this value is very close to the value( u1= 1.2) obtained by

Klepaczko( 1994) using static FEM simulation.

6.2.3. Temperature Effects

The temperature rise is significant in most of the present impact tests. The

temperature distributions in a OS beam are shown in Fig.6.6 for three simulations,

OS I, OS2 and OS4 in Table 6.1. Even at a low impact velocity(OS4), the
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temperature rise in the shear section is 139"C, which has a noticeable influence on

the material mechanical properties according to Chapter 5. Thus, it is necessary to

consider temperature effects in both the response and failure analyses.

According to Fig.6.6, there exist three distinct areas in which temperature rise

is significant; namely the tensile notch corners(point E and its opposite corner E'),

shear notch corners(point D and its opposite corner D') and the main shear zone in

the middle of the notch section. Generally, when the strain rate is hight DS I and

DS2), the temperature at a shear notch corner is higher than the temperature at a

tensile notch corner. In the low strain rate case(Fig.6.6(c) for DS4), the main shear

zone has the highest temperature up to 139"C at Yn= 1.0, and the temperatures at the

shear and tensile notch corners are 106"C and 97"C, respectively, although the plastic

strain energy density at both the shear and tensile corners are higher than that in the

main shear zone due to the stress and strain concentrations. This is because the stress

concentration area of either shear or tensile notch corner are very small and the heat

produced from the dissipative plastic strain energy in these localised areas is

conducted into the surrounding material when the strain rate is low. In the main shear

zone, the whole material experiences the same amount of plastic deformation, and,

thus, is heated simultaneously from the dissipative plastic strain energy, in which the

temperature decrease due to heat conduction is not as significant as at the localised

shear and tensile north corners. It has been shown in Section 5.1.2 that the yield

stress at 100"C is 15% less than the yield stress at room temperature. Therefore, it

is recommended that a thermal-coupling analysis with temperature effects on material

properties is necessary when the characteristic strain rate is over I02S-1 in a similar

problem.

For the high strain rate case, the temperature in the main shear zone is lower

than the temperatures at both the shear and tensile notch corners. The temperature at

the shear/tensile notch corners in Fig.6.6(a) and (b) are 859/439 lie and 1050/536 lie,

respectively, which are significantly higher than the corresponding temperatures of

246"C and 298"e in the main shear zone in Fig.6.6(a, b). This feature indicates that

thermal softening phenomenon is more likely at the shear notch corner which

coincides with the experimental observations.

According to the material property test criterion proposed in Appendix AI,
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the response in the main shear zone of a OS beam before material failure could he

used to evaluate the dynamic mechanical properties of the material. However,

temperature effects should be taken into account in the material constitutive equations

for medium/high strain rate test depending on the physical properties of the tested

material. This is a common problem in any dynamic material test techniques.

Isothermal and adiabatic assumptions may simplify calculations for the

temperature rise in a thermal-coupling dynamic problem. However, it is necessary to

find the valid range of strain rates to use these simplifications. There are various

ways to define the accuracy of a simplification depending on applications. One of

them is to use the relative difference of temperature, i.e.

T-T
e·=II-'1I, T

T-T
and e=II__ III1,

II T
(6-4a,b)

where, T is the temperature at the mid-point of a notch section when mechanical-

thermal coupling and heat conduction are considered, T;=Tr=20"C is the isothermal

temperature at the same location, and T, is the adiabatic temperature calculated from

T =T + PW"
(/ rC'P \

(6-5)

where, wr is the plastic strain energy density at the mid-point of a notch section

calculated by ABAQUS. It should be noted here that the "adiabatic analysis

procedure" in ABAQUS assumes no heat conduction on any geometrical scale which

is not suitable for the present problem, as mentioned in Section 6.2.1. The results

ohtained by "adiabatic analysis procedure" are obviously unrealistic even when the

strain rate is high, in which plastic deformations are largely concentrated in the shear

corners of the notch. This is probably due to the occurrence of material instability

which prohibits large deformations. However, adiabatic behaviour is valid within the

scale of a notch section, which will be discussed below based on eq.(6-5).

According to the dimensional analysis results in eq.( 4-9) of Section 4.3.1,

t
,d
=O.4(S) and YcI=14(s-I).Thus, principally, if the characteristic strain rate, Ye is much

larger than Yel' the adiabatic assumption could be used. On the other hand, when Ye
is much less than Yel' the isothermal assumption is valid, which means that the

temperature rise can be neglected. When i is in the same order as Yel' any heat
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conduction effects need to be considered. These three situations arc examined by

using ABAQUS FEM simulations. Table 6.2 gives data on the simulations and Tahle

6.3 gives the corresponding results.

It was shown by simulations using the current FEM mesh in Fig.6.1 (a) that

the isolated boundary has no influence on the temperature rise and distrihution when

YII:2:I02S-I.When YII<102s-l, the heat conduction on boundaries AB, BC and FG is

considered by introducing extra material to conduct heat. The dimensions of the

introduced material are represented approximately by the real dimensions of the

clamps, in which the temperature at the extended houndaries is fixed at room

temperature. This is accurate enough to model the heat conduction at the houndaries.

There is an obvious improvement on the temperature distributions from the model

in Fig.6.1 (a) according to our simulation results.

Table 6.2 ABAQUS Simulation Data-II

No. Yn(s-I) t(s) ~t(s) INC Wr(mm) Vuns') Note

TTl 10-3 1000 2 500 2.0 2xlO-6 #a

TT2 10-2 100 0.5 200 2.0 2x10-5 #a

TT3 10-1 10 0.1 100 2.0 2xlO-4 #a

TT4 I I 0.01 100 2.0 2xI0-'~ #a

TT5 10 0.1 0.001 100 2.0 2x 10-2 #a

T6 102 0.01 10-4 100 2.0 0.2

T7 103 0.001 10-5 100 2.0 2

T8 104 10-4 10-6 100 2.0 20

T9 105 10-5 10-7 .100 2.0 200
Ha: bxtra matenats are Introduced to enrrunate boundary errects on heat conduction.
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Table 6.3 Simulation Results From Table 6.2

No. TTl TT2 TT3 TT4 TT5 T6 T7 T8 T9

T 20.1 21.4 26.6 46.7 119.6 150 184 230 314

Ta 122 133.9 153 184 230 314

Te 48 76 130 245 437 699

Tea 536 556 610 754 996 1358

ej(%) 0.5 6.5 24.8 57.2 83.3

e/%) 161. 12.0 2.0 0.0 0.0 0.0

Note #b #b #b #b #b #b #c #c #c
T. IS the avera e tern erature at the upper-shear notcn corner aru T .. IS the adiabatic value of T., g p
according to eq.(6-5). All temperatures have unit "C.
#b: Maximum temperature occurs at the mid-point of notch section when the strain rate is low
#c: Maximum temperature occurs at the up-shear notch corner with high strain rates.

Two typical curves for the variation of T and T, with response time up to

YI1=1.0are shown in Fig.6.7. It indicates that the adiabatic simplification in eq.(6-6)

for the notch section response is accurate when Yn~102s-', as shown in Fig.6.7(b).

However, the difference between the adiabatic simplification and the heat conduction

analysis becomes significant for a decreasing strain rate, as shown in Fig.6.7(a).

Variations of ej and ea with logarithm strain rate are shown in Fig.6.8. If the accuracy

of isothermal and adiabatic simplifications are controlled by 10% of ej and ea' it is

found that isothermal and adiabatic simplifications based on the scale of the notch

section can be used for Yc<IO-2(s-I)«YcI and Yc>102(s-I»>Yel' respectively, and heat

conduction should be considered for Ye-'ic I' which agree with the dimensional analysis

results in eq.( 4-9). It is necessary to remember that the scale of a notch section is

used in the dimensional analysis. Thus, the result obtained is valid on this scale. In

Table 6.3, the temperature at the upper-shear corner of the notch where localised

stress concentration is very severe is compared with the adiabatic temperature.

Although the difference between T, and Tea decreases with increasing strain rate,

there is still quite a large difference at Yn=105(s-'), which means that adiabatic

simplification for the localized stress concentration at the upper-shear corner of the

notch is not valid up to Yn=105(s-'). A much smaller space scale should be used in

dimensional analysis to find the valid strain rate range of the adiabatic simplification

in this local area, which will not be discussed here. It is expected that the
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observations in this particular problem are generally true, but, more verification on

other dynamic problems are necessary before they can be accepted.

6.2.4 Verifications on Plane Strain Modelling and Material Parameters

The actual geometry of the modelling specimen does not belong to either

plane strain or plane stress. However, due to the intensive "in-plane" deformation

within the notch section, the effect of "out-plane" constraint may be neglected. Thus,

it is expected that plane strain and plane stress elements give similar results, which

will be verified through an example.

The FEM model DS4 in Table 6.1 is simulated after changing the plane strain

element type, CPE4T, into plane stress element type, CPS4T. As expected, the

variations due to employing the plane stress assumption are negligible when

comparing with the corresponding plane strain results. One calculated example is

shown in Fig.6.9 for von-Mises equivalent stress. The maximum relative difference

between using plane strain and plane stress assumptions is 3.3% after yielding.

In the OS beam test, material failure is found in the notch corner when the

impact velocity is in the range of 40mls to 50mls. Thus, OS 1 in Table 6.1 with

imposed boundary velocity, 40mls, is used to verified the influence of Taylor-

Quinney coefficient ~ and the parameters, 0 and q in the Cowper-Symonds

relationship on the response of a OS beam. The parameters used in simulation are

shown in Table 6.4. Fig.6.10 (a.b) show the plastic equivalent strain and histories in

the middle and tensile corner of a notch section. The maximum relative differences

on final equivalent plastic strain and final plastic strain energy density for ~=O.Oand

~=O.9 is 10% and 4.4%, respectively. Thus, the influence of ~ on deformations in

the notch section within the discussed impact velocity range is negligible. It is also

shown that the influence of the parameters in Cowper-Symonds relationship on

plastic equivalent strain history is very small. More parameter verifications will be

presented in Section 6.4 according to the OS beam test results.



Chapter 6 1~

Table 6.4 Parameters Used in Verification

Curve No. ~ D(s·l) q

EM_210 0.9 186.7 4.41

ERM_210 0.9 6948.3 5.132

EBOOM_210 0.0 186.7 4.41

EB05M_210 0.5 186.7 4.41

ECA 0.9 186.7 4.41

ERCA 0.9 6948.3 5.132

EBOOCA 0.0 186.7 4.41

EB05CA 0.5 186.7 4.41

6.3. Analytical Model of Central Block Motion

The problem is simplified as a fully supported OS beam, shown in Fig.5-15.

A projectile travelling with a velocity Vo impacts on the impact pad, a given

thickness square sheet which is made from hardened steel and used to control the

travelling distance of the projectile. After impact, the projectile, impact pad and the

central block move together with a common velocity when ignoring stress wave

propagation effects. The initial velocity of the central block is estimated by

momentum conservation,

M
Vj- ~)

M+m +mr

(6-6)

in which, M is the mass of projectile, m is the mass of central block, and mp is the

mass of impact pad. According to the analysis in Section 6.2, the transverse shear

force along the notch section is almost constant. Thus, the force acting on the

boundary of the central block is 'tnA. where 'tn is the nominal shear stress defined by

eq.(6-1). A=bh. where band h are the width and thickness of a notch section.



Chapter 6 P6

Therefore, the movement in this stage is governed by

dV
(M+m+m )-=-2! A

I' dt 1/'

(6-7)

where, V is the velocity of the central hlock of the OS specimen. The initial

conditions are

V(t=O)=V and W(t=O)=O,
f

(6-8)

where, Vi is given by eq.(6-6) and W is the transverse displacement of the central

block.

After travelling a fixed distance determined by the thickness of the impact

pad, the projectile is stopped by the surrounding stoppers and the impact pad is

separated from the central block. Thus, the equation of motion is

dVm_=-2! A
dt 1/

(6-9)

after t=t" which is determined by

(6-10)

from eqs.( 6-7) and (6-8), where d is the thickness of the impact pad.

In the above formulation, deformations of the impact pad and projectile are

neglected because their stiffness is relatively larger than the stiffness of the OS

specimen. Wave propagation effects in the specimen are not considered because the

characteristic time of wave propagation in the central block is only about 41ls which

is much shorter than the response time.

Relationships between the nominal shear strain(rate) and the true shear

strain(rate) at the mid-point of a notch section are

d . Van y =_
1/ d'

(6-1Ia,b)

in which, d is the width of notch section.

Shear stress-strain relationship in Section 5.1.2 can be expressed by
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v(s -I) 1 (T«OC) _ 20)0.65
t=T [I +(_,_)TIT][I_ ]

II 323.4 116
(6-12)

where, the temperature IS obtained from eq.( 1-12) by using the adiabatic

simplification which has been proved to be valid in Section 6.2 for the present impact

velocity range, and tSI is given by

t =223.84(MPa) for 0:::;~0.01126,
II 1-'

t'l=223.84(MPa) +533.29(MPa)(y-0.0 1126)045
for 0.01126<y5,0.16,

and t,,=411.8(MPa)+249.7(MPa)y for y>0.16.

(6-13)

The final displacements of a OS beam have been obtained in Section 5.3,

which are compared with the current theoretical predictions, as shown in Fig.6.11.

Generally, the theoretical predictions for both the 1.5mm and 2.0mm pad thickness

tests are lower than the experimental results. One important factor responsible for this

phenomenon is the local shear and tensile failures at the notch corners which reduce

the transverse strength of the notch section, which is not considered in the analytical

model. However, in general, the agreement between experimental and theoretical

results is fairly reasonable, which gives a good assessment on observations obtained

in Section 6.2. The method proposed in this section will be use to predict the

velocity-time history that can be used in the next section for a FEM simulation on

the OS beam tests.

6.4. FEM Simulation On the Failure behaviour of a DS Beam

The dynamic response of a OS beam under projectile impact described in

Chapter 5 is simulated by using ABAQUS FEM software with the input impact

velocity-time history predicted in Section 6.3. A typical deformation process of the

notch section of specimen NT6 is shown in Figs.6.12(a-d). It shows that most of the

notch section experiences transverse shear deformations. The transverse shear

deformations in the middle area are quite uniform throughout the duration of

response, which is one of the advantages of OS beam specimens for material testing.

The equivalent stress, strain, strain rate, plastic strain energy density and temperature

histories at the middle point of the notch section are given in Figs.6.13( a-e). The
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average strain rate is about 4xlO\-'. The plastic strain energy density and temperature

curves are related each other according to eq.(6-5). Thus, the response of the notch

section can be classified as an adiabatic response.

Two failure modes have been observed in Section 5.3 on a DS beam under

projectile impact. Shear failure appears at the upper-shear(US) and lower-sheartl.S)

notch corners, as shown in Section 5.3.1. While tensile failure occurs at the upper-

tensile(L T) and lower-tensilerL T) notch corners. It is not the purpose of this section

to describe the whole post-failure process of the DS-beam, which would need mesh

reconstructing by removing failed elements and redefining boundary conditions. This

is still a difficult topic for many failure problems. However, the mechanical

conditions to initiate these failure modes can be studied by using FEM simulations,

which is the primary in a structural failure problem, and has not been fully

understood with satisfactory confidence for most practical problems.

It has been shown that adiabatic shear banding appears when the impact

velocity approaches 60rnls. The location of adiabatic shear banding is at either the

upper-shear(US) corner or Iower-sheart l.S) corner(or both of them) within the notch

section, where the stress concentration is very severe and would not be predicted on

the basis of the nominal shear stress and strain. Thus, using a DS beam to study the

shear banding phenomenon is unrealistic in the present experimental configurations

unless the stress concentration at the shear corner is understood well.

A shear band normally originates from a non-homogeneous deformation phase

followed by a localization phase, which was observed by Marchand and Duffy( 1988)

for the formation of shear bands in a thin-walled steel tube. It is generally accepted

that the maximum shear stress criterion predicts the initiation of the non-

homogeneous deformation phase, and thus, has been used as the criterion for the

initiation of an adiabatic shear band. However, this has been confirmed only on a

system where the deformation within the gauge length is one-dimensional, such as

the tube test on SHPB. In the present case, where the formation of an adiabatic shear

band is very local and has little influence on the global response of the OS beam, this

criterion does not predict the initiation of a shear band. In Fig.6.13(a), the von-Mises

equivalent stress at the mid-point of a notch section, which consists mainly of

transverse shear stress, reaches its maximum value at t"='17.5I-1s.However, it does not
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correspond to the initiation of an adiabatic shear band. The decrease of the shear

stress is due to the decrease of strain rate controlled by the external energy input, but

not due to the thermal softening of the material. Thus, the maximum stress criterion

should be reconsidered in these situations.

In order to simulate the formation of a shear band, a special mesh design is

necessary. Most of the FEM simulations are based on some well-defined plastic

deformation patterns determined by given boundary condition, such as simple shear.

The loading rate, or external energy input is continuous. In this case, the drop of the

resistant force, or shear stress, is purely from a thermal softening factor. Therefore,

it could be used to predict the initiation of a shear band. In the present case, it is

extremely difficult to determine the boundary conditions around the local shear

corner in the notch section of a DS beam. The current mesh design is also too coarse

to model the shear banding phenomenon. Further efforts are necessary on the shear

banding initiation in a OS beam. The following discussion is concentrated on the

tensile failure in the notch.

It has been shown in Chapter 1 that there are various failure criteria which

may be used to predict material ductile failure. Six different failure criteria discussed

in Section 1.3 will be examined here, which are maximum normal stress failure

criterion, maximum shear stress( or Tresca) failure criterion, von-Mises equivalent

stress failure criterion, maximum plastic tensile strain failure criterion, equivalent

plastic strain failure criterion, maximum plastic shear strain failure criterion and

plastic strain energy density failure criterion. The following simulations are based on

the velocity-time history developed in Section 6.3 and the FEM model is the same

as that in Section 6.2.

According to the experimental observations on material tensile failure in a DS

beam, all tensile failures initiate from the UT and LT notch corners. The critical

impact velocity is between 40.3m1s(specimen NT7 without failure) and

47.3m/s(specimen NTS with failure), as shown in Table 5.12. The maximum failure

indexes under this critical impact velocity, such as equivalent plastic strain and

maximum plastic strain energy density, occur at the middle elements at the corner of

a notch described in Fig.6.1 (b), will be used to examine the validation of the

available failure criteria.
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Table 6.5 gives the predicted values from OS beam tests and ABAQUS FEM

simulations, which are compared with the measured values in material tests described

in Table 5.6. The impact velocities for NT5 and NT7 are 47.3m/s and 40.3m/s,

respectively. Tensile failures are found in all specimens when the impact velocity is

higher than 47.3m1s. But, there is no any tensile failure when the impact velocity is

lower than 40.3m1s. One exception is NT23 that does not fail at an impact velocity

of 47.7m1s. The impact pad for NT23 is 1.98mm, which is different from the pad

thickness used for NT5 and NT7. Thus, it is believed that the critical velocity to

initiate tensile failure at the corner of a notch is between 40.3m1s and 47.3m/s. The

predictions for various failure indices at these two impact velocities are given in

Table 6.5.

It observed that plastic strain energy density failure criterion obtained from

static tensile test gives a reasonable prediction for failure initiation. Stress failure

values from material tests are smaller than the values at failure in the tensile notch

corner. But, strain failure values are higher than the predicted values at failure. The

variations of the maximum values of EP
e4 and wP with the impact velocities are

calculated using ABAQUS, and compared with the critical values of EP
eq and w", as

shown in Fig.6.14(a,b). The FEM simulation results show that the maximum values

of EP
e
,! and wP occur at the upper tensile corner, which is contrast to the experimental

observations that tensile failures are more likely to initiate from the lower tensile

corner. However, the difference in the maximum value for EP
eq and w" is not

significant between the UT and LT corners according to the ABAQUS simulations.

For example, the maximum values of w" are 652.4MJ/m3 and S76.5MJ/m3 at UT and

LT corners, respectively, when the impact velocity is 40mls. Thus, their average

value will be used to give the maximum value in failure prediction. Obviously,

hending effects cause the LT corner to fail more easily than the UT corner. The

critical value of EP
eq, EP

cqc, is the static natural strain based on the zero gauge length

defined in Appendix A 1.which has an average value of 0.648 according to Table 5.6

for specimens SP2 and SP3 at room temperature. This value increases with

temperature, as shown in Fig.5.I2. The critical value of w", w/, is calculated from

the uniaxial true stress-true strain relationship at room temperature given by eq.(5-6).
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Table 6.5 Critical Values of the Failure Indices(~=0.9, D=186.7s·l, q=4.41)

Failure Criterion Material Test Value Predicted Predicted

Value(NT7) Value(NT5)

(J'max(MPa) 1211.8* 3230.0 3410.0

(J'Trcsca(MPa) 605.9* 1512.0 1595.5

(J'Mises(MPa) 1211.8* 2619.0 2763.0

£Pmax 0.648 0.264 0.294

p 0.648# 0.231 0.337E cq

£Pmax-£1'min 0.972# 0.461 0.587

wP(MJ/mJ
) 606.64 599.0 816.0

,.:'20" .... -0" . -0" . In uruaxrat tensile test; : 1"01' ilasttc mcom ressibte materrat.p p

Table 6.6 Critical Values of the Failure Indices(~=0.9, D=6948.3s·l, q=5.132)

Failure Criterion Material Test Value Predicted Predicted

Value(NT7) Value(NT5)

(J'max(MPa) 1211.8 2109.0 2163.0

(J'Trcsca(MPa) 605.9 986.0 10 11.5

(J'Miscs(MPa) 1211.8 1708.0 1752.0

£Pmax 0.648 0.341 0.430

p 0.648 0.394 0.473£ ClJ

£Pmax-£1'min 0.972 0.680 0.815

wP(MJ/m3
) 606.64 598.7 747.6
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Table 6.6 gives simulation results using D=6948.3s-1 and q=5.132 in order to

examine the validity of parameters used in Cowper-Symonds relationship. Similar

conclusions are obtained from the results in Table 6.6, i.e., only plastic strain energy

density failure criterion gives a reasonable failure prediction. It should be noted that

these two sets of Cowper-Symonds parameters used in Tables 6.5 and 6.6 offer upper

and lower bounds of the actual property of material strain rate sensitivity, as

discussed in Section 5.1.3. Thus, the strain energy density failure criterion is the only

suitable one in the current problem to predict material failure at the tensile corner of

a notch section.

According to the results from Table 6.5 and Fig.6.14(a), the equivalent strain

failure criterion does not agree with the experimental results. The actual tensile

failure appears at a value of EP
eq which is much lower than 0.648. The local

temperature at the failure site is about 150°C when the impact velocity is 45.0mls,

which leads to less than 10% increase on EP
eqc• The strain rate effect is another

important factor that may reduce material ductility significantly. Thus, the actual

value of EP
eqc at the failure site is between 0.3-0.35 corresponding to an average strain

rate of -104(s-l) according to ABAQUS analyses, which is much lower than the static

one. Generally speaking, two factors may contribute to this result. One is the strain

rate effect on failure strain, which has not been studied thoroughly. Another factor

is the stress triaxiality, which may reduce the failure strain. In uniaxial tensile test,

the value of stress triaxiality, OH/oe' is 0.33. The time history of the average stress

triaxiality at the upper-tension corner is calculated by using ABAQUS, as shown in

Fig.6.l5 for specimen NT7. The value of oH/oe is 0.655 at the end of response,

which is the double of the value in uniaxial tensile test. It has been shown by

Alves( 1996) that the equivalent fracture plastic strain goes down from 1.0 at

OH/Oe=O.4to 0.5 at oH/oe=0.8(see Fig.3.11 in Alves( 1996). A similar observation on

this phenomenon is reported by Holmes, et al.(1993). Thus, this may be the important

reason for the reduction of the equivalent plastic strain at failure.

w/ gives a good prediction for the tensile failure initiation. The actual failure

occurs at w/ between 599-816MJ/m3, which is somewhat higher than

w/=606.64MJ/m3 obtained in a static tensile test. However, the static critical value

of plastic strain energy density is reasonably close to the predicted value in an actual
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failure. This result supports the postulate proposed in Appendix B that both

temperature and strain rate effects on wP
r are small. Thus, a plastic strain energy

density failure criterion appears to be a more promising procedure in the present

work for predicting failure than other stress and strain type failure criteria examined

in the present paper. It is possible that other failure criteria are applicable when other

influencing factors, such as strain rate, temperature and hydrostatic effects, are

identified in material failure tests. However, this requires more advanced measuring

techniques and extra tests.

ABAQUS simulations indicated that the maximum temperature at the critical

impact velocity of the corner tensile failure is around 150°C, which has little

influence on the uniaxial failure strain, as shown in Fig.5.12. The temperature effects

on uniaxial failure stress up to 300"C are negligible according to the recorded data

in Table 5.10. It has been shown in Section 6.2.4 that the Taylor-Quinney coefficient

has little influence on the DS beam response when the impact velocity is around

40m/s. This conclusion is confirmed by Fig.6.16 where the variations of maximum

plastic strain energy density at critical impact velocities (for both NT5 and NT7) with

coefficient P are presented.

6.5. Conclusions

The response and failure of a DS beam when subjected to a projectile impact

are studied in the present Chapter. With the aid of a FEM simulation, the details of

the stress and strain distributions in the notch section are obtained, and are used to

set up relationships between the nominal values of stress/strain and their actual values

in the major shear zone within the notch section. This information is particularly

useful when using a OS beam for a dynamic shear test. Temperature effects are

discussed in the present analysis by using a coupled-temperature-displacement

procedure in ABAQUS.

Due to the high stress intensity at the notch corners in a DS beam, two types

of material failures may be initiated easily in these locations, i.e., tensile and shear

failures. Among several failure criteria examined in the present work, i.e., the failure

criteria defined by maximum normal stress, maximum normal plastic strain, von-

Mises equivalent stress, equivalent plastic strain, maximum shear stress and
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maximum plastic shear strain, the plastic strain energy density failure criterion gives

a good prediction for the initiation of a tensile type failure. Parameter verifications

are conducted to ensure correct material property modelling is used in the simulation.

A shear failure is normally associated with adiabatic shear banding due to material

instabilities. Comments are made on further studies on simulating adiabatic shear

hand initiation in the notch section of a DS beam.

It is concluded that a OS beam specimen satisfies the requirement for a

material property test, proposed in Appendix A 1. However, this is only applicable up

to the initiation of material failure. It is difficult to obtain a material failure index

from a DS beam test because it fails due to stress concentration locations at the notch

corners.

Both FEM and analytical models are used in the analyses. Predictions are

compared with experimental results with reasonable agreement for the central block

motion and tensile failure initiation.
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Fig.6.1 (a) FEM model of a DS beam; (b) Mesh of the notch corner.
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Fig.6.2 Variations of plastic shear strain with timers), (a) DS5; (b) DS4; and (c) DS2.



Chapter 6 147

0.8

(;
13
I'll
~ 0.6
o
~
,g

~
c 0.4
.~

Ui

• OS5(5X10's')
(') 054(50s ')

OS2(5X10's')
-0.718

0.2

o.o,_------,------,------,------,,------.------.
0.0 0.4 1.20.2 0.6

Nominal strain
0.8 1.0
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Fig.6.4 Variation of the mean shear stress on the cross-section of notch with time,
(a) DS5; (b) DS4; and (c) DS2, MA: at the mid-point of notch, BA: at the edge of
notch.
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Fig.6.5 Variations of shear stress calibration factor with time(nominal shear strain)

for different strain rates, (a) DS5(average value u,=1.108); (b) DS4(average value

u,=1.108); (c) DS2(average value u,=1.118).
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Fig.6.6 Temperature distribution in a DS specimen at nominal shear strain, Yn=l.O,

(a) DSl(V=40mls, Yn=20000s·I); (b)DS2(V=100mls, Yn=50000s-I); (c) DS4(V=0.1m1s,

Yn=50s-').
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Fig.6.7 Variations of T(with heat conduction) and T/adiabatic simplification) with
time, (a) TI5; (b) T6 in Table 6.2.



Chapter 6 152

200

50

150

o

~ 100~
OJ

-3 -2 -1 o 2 3
Log shear strain rate

Fig.6.8 Variation of ej and ea with logarithm strain rate according to Table 6.3.

I---~
,. ,---,-----,------,----"."

[ x 10 'I)
;:~;;j(

':F. ~ 11'

XMIN ~,OOOE-O;
XMAX s. OOOE- O~

YMIN 6.99~Et(l~
YHAX 1 _,Q1F.. o-

'I"TA.L TIME [ x t u 'I

Fig.6.9 Comparison between plane strain and plane stress idealizations.



Chapter 6 I~

,
;~

\I"

(I(\0F. 01'

YHIN
YMA>:

r,'TAL TIM!' ( x t n

a

~MIN L. ':,OOE- or
XMAX

r,.402E-IJ:/.

OJ.'' J7E· (11

40 4')

[xlO '

b
Fig.6.10 Equivalent plastic strain histories at (a) middle, (b) Tensile corner, of the
notch section for various material parameters in Table 6.4.



Chapter 6 1~

3.0

[!] Experimental(NT1-NT13)

.- Tneorelical(NT1-NT13)

Expenmenlal(NT21·NT32)

- - Theoretical(NT21·NT321

2.5

2.0

1.0

E
g 1.5
~

0.5

O.O-r-----,------r-----.------r-----.r-----.-----~
o 20 40 60 80 100 120 140

Impact velocity(m/s)

Fig.6.ll Comparison between experimental and theoretical results on final transverse
displacement of OS beam.



Chapter 6 15.';

(a)
(11)

(c)
Fig.6.12 Deformations of the notch section of NT6 at. (a) t=0f..1S;(b) t=8f..1s;(c) t= 16f..1s,
and (d) t=25.6f..1s.

(d)



Chapter 6 l:n

------- _--~----_--_----,-----------.
I /"\Hl!'\~)lUIJ:,;

-~----'~~'~C-'---'-,~.J
I
I I

i_

Ca) Cb)

--_ -~--r---~~i
I

/ !

I_:_- ::-_]

I
. - ~- -~ ---~ - ~_.I

__~_d) ____j______ f~)_ _

Cc)

1. ..._c_J

Fig.6.13 Response histories of (a) Mises equivalent stress; (b) Plastic equivalent
strain; (c) Plastic equivalent strain rate; (d) Plastic strain energy density, and (e)
Temperature, at the middle point of notch section of NT6.



Chapter 6 157

0.8

0.7

0.6
c
"§
iii 0.5
o
"ti
'"Ci 0.4
C
QJ
<ti.;::0.3
'"0"UJ

0.2

0.1

0.0
0

x

K X

x

K

A without tensile failure

X with tensile failure

equivalent plastic strain failure crilenon(64.76%)

10 20 30 40 50 60 70 80 90
Impact velocity(mis)

(a)

2000 x

Xr
x

x

x

A without tensile failure
X WIthtensile failure

plastic strain energy density lallure cnterion(606.64MPa)

o 10 20 30 40 50 60 70 80 90

Impact velocity(mis)

Cb)
Fig.6.14 Predictions of tensile failure initiation in notch section of a DS beam, (a)
Equivalent plastic strain; (b) Plastic strain energy density.



Chapter 6 I~

f\
! i,
I \
I "

I
i
I,,
\
\
\
I\1
\- ..1

,
/

./

YlHII l '''','1':.,
);H~), '·l"f."

"'111 " ".~I'.I'l
n"~ ~.Ill." ~I

i A J n ~ 1

Fig.6.IS Variation of stress triaxiality, crH/crc' at the upper tension corner of specimen
NT7.

" - ..-- - - -- - ----.-- ..-..--- .._.-- "';TS
.€
~ 750

~
VJ

~ NT?
>-e> 500
Q)
c
Wc
.~

Ci5
o
tl 250co
0:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Taylor-Quinney Coefficenl

Fig.6.16 Dependence of the predicted plastic strain energy densities for NTS and NT7
on the Taylor-Quinney coefficient.



CHAPTER 7 15)

7 CONCLUSIONS

Structures used to sustain transverse dynamic loads have been used widely in

many applications. Transverse shear localization in some basic structural elements

under transverse dynamic loads may reduce significantly structural strength, which

is studied in the present thesis. The main achievements of the present work arc given

below with a discussion on existing problems and suggestions for further work.

7.1 Dynamic Shear Localization in Transversely Loaded Structural Elements

In dynamic plastic structural response, shear localization is represented by a

so-called shear hinge. The existence of a shear hinge is based on experimental

observations and Symonds' (1968) proof that a shear interface in rigid, perfectly

plastic beam is always stationary when its yielding behaviour is based on a condition

which has no interaction between bending and shearing. Symonds' conclusion on a

shear interface is extended into several frequently used structural elements, including

beams, plates and cylindrical shells in Chapter 2. Furthermore, the restrictions on

yielding surface are removed. Thus, the shear localization in dynamic plastic

response of structural elements is an intrinsic property of a transversely loaded, two-

dimensional ductile material that can be characterized by a rigid, perfectly plastic

model. This conclusion is applicable for many metals when their plastic hardening

effect is not very significant. Complete continuity conditions at both bending and

shear hinges are obtained in Chapter 2, which should be satisfied in a dynamic plastic

response of structural elements.

In the dynamic plastic response of structural elements, both bending and

shearing hinge sizes are neglected. This leads to a discontinuity in the transverse

displacement across a shear hinge, and a discontinuity on the rotation angle across

a bending hinge. This idealization does not influence the dynamic plastic analysis

because the idealized hinge concept caters for the consumed plastic energy within the

hinge. This idealization faces a challenge when dynamic plastic analyses are
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combined with failure predictions. In this case, it is necessary to understand a hinge

as a finite deformation zone. Its dimension is an important parameter to descrihe the

hinge.

Chapter 3 evaluates the shear hinge length for beams, plates and cylindrical

shells using a quasi-static method proposed by Wen, et a1.(1994). The validity of the

results from quasi-static method is verified by FEM simulations on a clastic, linear

plastic hardening beam. After a dimensional analysis, two dimensionless parameters

given in eq.(3-25) are found to be significant for the propagation of shear

deformations. Three distinct cases are identified for different characteristic transverse

loading rates that can be determined by eq.(3-25), i.e., (I) Bending response mode

for low loading rate; (2) Stationary shear hinge mode for medium loading rate, and

(3) Plastic shear wave mode for high loading rate. The shear hinge size obtained by

a quasi-static method is applicable in Case (2), where the shear wave is trapped

within the shear hinge. The shear wave mode proposed by Wang and Jones( 1996)

belongs to Case (3).

The current understanding of the geometrical structure of a bending hinge is

based on some simple slip line analyses. It would not be difficult to use the FEM

method to explore the forming process of these localized deformations and their

geometry structures, which can supply useful information when conducting failure

analysis together with a rigid, perfectly plastic model analysis.

7.2 Strain Rate and Temperature EtTectson Structural Response and Failure

It has been confirmed that the flow stress increases with strain rate and

decreases with temperature. On the other hand, material ductility decreases with

strain rate and increases with temperature. These features have been observed in the

material tests in Chapter 5, which may influence structural response and failure. The

strain rate and temperature effects in the proposed constitutive equations on the DS

beam response and failure are verified by comparing theoretical and numerical

predictions on material response and failure with test results.

A portion of the mechanical deformation work will be converted into heat,

which may lead to a temperature rise when the characteristic time for heat conduction
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is longer than the characteristic response time. There exist two extreme cases, i.c.,

isothermal and adiabatic processes, which can greatly simplify the analysis.

Isothermal and adiabatic processes are normally associated with low and high strain

rates, respectively. A dimensional analysis is given in Chapter 4 to ohtain strain rate

conditions for these two processes. These conditions, which arc verified in Chapter

5 using FEM simulations, have been employed in Chapter 4 to predict the

temperature rise in an model analysis of Menkes and Opal's beam problem. It shows

that the temperature rise is significant when the impulsive intensity is high.

Temperature may go up to 200°C when the impulsive velocity is around 300m/s,

which is about the velocity corresponding to mode III failure for these particular

tests. This temperature rise leads to an increase of material ductility. This gives a

reasonable explanation for the successful application of the elementary failure

criterion to predict mode III failure, where the temperature effect is not included

explicitly, but the choice of parameter k takes into account temperature.

Few papers report the observation that failure transition from ductile fracture

failure to adiabatic shearing failure is possible with increasing loading rate. This

failure mechanism transition is confirmed in the double shear beam test. It is believed

that this is an important issue in failure predictions because a totally different failure

criterion and modelling method have to be used for different failure mechanisms.

For example, adiabatic shearing failure is associated with material thermal instability,

which may become very localised, and thus, need to refine the element mesh to its

characteristic dimension. In Chapter 4, critical conditions for this transition are

obtained for Menkes and Opat's beam problem using a model analysis, which is

applicable for other structural elements under similar loading conditions including

both impulsive and projectile impact loadings. The predicted velocity is in a

reasonable range beyond the critical velocity for mode III failure, which needs to be

confirmed by experiments.

7.3 Failure Criteria

With the rapid developments of computational capabilities and expert systems,

problems of structural deformation and failure could be solved based on valid
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fundamental physical foundations and material property descriptions. The

incorporation of a failure criterion into a FEM code is a promising way forward to

allow engineers to duplicate the actual failure possibilities at the design stage.

Several failure criteria, which have been used in various cases, arc examined

111 modelling the failure of a double shear notch in Chapter 6. Equivalent plastic

strain, maximum normal plastic strain and maximum plastic shear strain failure

criteria overestimate the failure initiation. This is partly due to the influence of

hydrostatic stress according to the numerical modelling results. Strain rate effect on

material ductility is another cause. Stress type failure criteria are maximum normal

stress failure criterion, equivalent stress failure criterion, and maximum shear stress

failure criterion. The predicted values are much higher than the corresponding

material values. It is shown that plastic strain energy density failure criterion is the

most promising failure criterion in the present case. Several successful applications

of the plastic strain energy density failure criterion for both static and dynamic

structural failure predictions have been reported previously in the literature. Thus, the

plastic strain energy density failure criterion is capable of predicting a range of

macroscopic failure phenomena, and therefore, it is worth exploring the physical base

of the plastic strain energy density failure criterion. A general strain energy density

failure criterion based on continuum thermodynamics is proposed in Appendix B. It

is assumed that material failure is basically a "brittle failure" process initiated by the

local internal forces or a specified elastic strain energy density. Inelastic dissipations,

including the plastic strain energy density, influence material failure by reducing the

material resistance to the local internal forces through a continuous change of

material internal states. When the ductile failure is controlled mainly by plastic

dissipation, the plastic strain energy density failure criterion is expected to give a

good prediction. However, several other issues, such as the influence of strain rate

and temperature on the critical value of plastic strain energy density, hydrostatic

effect, etc., need to be studied further.

The maximum stress criterion has been recognised as the criterion for

predicting the initiation of a shear band. The FEM modelling in Chapter 6 indicates

that the maximum stress criterion is only a necessary condition for shear banding
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initiation. During a practical loading process, equivalent(or maximum shear) stress

may reach its maximum due to the decrease of strain rate(not the thermal softening

that is associated with increasing strain rate). Further studies are necessary on this

topic.

One of the vital problems concerning the combination of FEM and failure

criterion is to find the correct volume of material, or the correct mesh size of the

element, on which the failure criterion can be expressed correctly. This requires a

good-understanding of the physical nature of material failure and a proper design of

material property and failure tests.

7.4 Response and Failure Features of a Double Shear Beam

Experiments on a double-shear(DS) beam are reported in Chapter 5. Because

the OS beam has been used for the purpose of material property test, the relationships

between its measurable quantities and the actual responses are important for

evaluating material property data. For the current design of the OS test, the two

factors are identified to convert the measurable nominal stress and strain into the

actual stress and strain at the mid-point of notch section by using FEM method.

Although the obtained factors may vary for different design of DS specimen, the

procedure used in the present study is general.

The localised shear in the notch section of a OS beam can be used to explore

the shear response and failure occurred in a shear hinge of a structural element. In

impulsively loaded or impact loaded structural elements, the localised shear zone, or

shear hinge, is not as evident as in the notch of OS beam. The current results show

that the basic shear response in the notch section is similar to the deformation in a

shear hinge. Two failure mechanisms in the notch section has been reported

separately in other impulsive and impacted problems. In the shear section of a notch,

tensile failure is on one side of the notch and shear failure is on another side of the

notch where the external force is applied. These observations may be helpful for

understanding failures in a shear hinge.

The temperature effect has to be considered during the response process of

a OS test. In the current case, a strain rate of 50s-I can lead to a temperature rise of
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139lJC at a unit shear strain according to the simulation in Section 6.2.3. With a

further increase of strain rate, the temperature rise may lead to thermal softening

which develops into an adiabatic shear band. The local stress concentration at the

notch corner may lead to material failure, which has been shown in Chapter 5 and

simulated in Chapter 6. These limitations should be considered when using DS test

as a material property test.

Due to the high localisation of stress and deformation at the notch corners,

the failure index obtained from a DS test is difficult to interpret, and thus, it is not

recommended as a material failure test.

7.5 Closure

Material failure is a long term interest of material and structural engineers and

researchers. Gradually, engineers change their previous design criterion from

"yielding" to "failure" with accumulated confidence in their predictions. The basic

purpose of the current study is to add some more understanding to this difficult yet

important field.

In some cases, shear response and failure can be distinguished from other

response and failure modes, which offers a simple environment to study the response

and failure features. Other response and failure modes are equally important in a

practical problem and are interactive with shear modes. For example, a shear

response is only one of the three phases in a transversely loaded beam. While,

material failure within the DS notch is actually a tensile failure. Therefore, it is

believed that some conclusions in the present study are not confined to an increased

understanding of shear response and failure.
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APPENDIX A: MATERIAL TEST THEORY

Al. Tensile Test

The behaviour of a material under a uniaxial tensile load is very important for

the understanding of material properties. In a tensile test, the specimen is suhjectcd

to a tensile force along its axis. Specimens, in the form of cylindrical rods, or flat

sheets, usually have a reduced section, or gauge length, to obtain a uniform state of

stress and strain.

Typical tensile curves for ductile nonferrous and steel metals arc presented in

Figs. AI(a,b), respectively. The concepts of engineering(nominai) stress(O",) and

engineering strain (EE) are used in these curves and are defined as

P
0"£=--A o

(A-I)

and

I
EE=T1-1 .n =T '

o
(A-2)

respectively, where P is the axial load, Ao is the initial cross-section area, 11 is the

stretching ratio defined as the ratio of the current(l) and the original(lo) gauge lengths.

The physical interpretations for the different regions of Figs.AI(a,b) have been

discussed in detail by Dodd and Bai(1987) and Nadai(l950). A mechanics

interpretation for a common tensile curve up to failure was given by Duffy( 1989),

as depicted in Fig.A2. The initially unloaded sample (Ao) is loaded elastically from

stress free state A to B, the tensile yield point of the material. From B to D, the

material continues to flow plastically and to strain-harden, carrying increased load.

This increased load capacity is counteracted in part by a reduction in area caused by

thinning of the material in the transverse directions. At D, the maximum load-

carrying capability due to strain-hardening exactly equals the loss in capacity due to
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the reduction in area. Following this point of neutral stability, local necking occursre')

followed at a later point(F) by complete separation of the material(sometimes due to

the growth and coalescence of voids in the material).

The engineering stress-strain curve is important for understanding the various

deformation mechanisms which occur during a uniaxial tensile test. Two parameters

are normally taken as measures of material ductility in a tensile test(Dodd and

Bai( 1987))

_if-io _ _ A(] -AI
e--l--cl!I' Ri--A-,(] (]

(A-3a,h)

where If and Af are the final length of the original gauge length(lo) and the final

cross-sectional area in the necked region at specimen failure, respectively. EH is the

value of EE at failure. However, for a uniaxial tensile test, the reduction in area, R;

is a more significant measure of material ductility than the extension of the gauge

length to fracture(Dodd and Bai(1987)).

Natural strain is defined by the expression

(A-4)

and is commonly used with true stress in constitutive equations for metal plasticity.

It is evident that cN::::EE for small strains. Some applications for using natural strain

were given by Nadai( 1950).

The engineering stress in uniaxial tension is defined using the original

configuration of the test specimen as one of the components of the Lagrangian stress

tensor. The corresponding component of the Eulerian stress tensor is defined using

the current configuration of the test specimen and is called a true stress in a tensile

testecrT)

(A-5)

where A is the current area of the cross-section. When material is incompressive, one

has lA=I(y4(), or A=I~/I=AI(1+eE)' Therefore,



APPENDIX A 167

(A-6)

From the O"T-CN(orCE)curve shown in Fig.A2, one cannot distinguish easily

the critical point for the onset of necking in a uniaxial tensile test because the effect

of the reduction of cross-section area is eliminated by the definition of the true stress.

A continuation of the true stress beyond D in Fig.A2 is difficult due to experimental

difficulties in measuring the minimum cross-section during the necking process. Even

if the whole range of the true stress-strain curve could be obtained, it is only

significant before point D' in Fig.A2 because of the non-uniform deformations

introduced into the test specimen after the initiation of necking. The true stress-strain

curve according to equations (A-4) and (A-5) may be used only as the uniaxial stress-

strain relationship before the maximum stress point in an engineering stress-strain

curve.

The strains in equations (A-2) and (A-4) are defined on finite gauge length

in a uniaxial tensile test, and are a valid description of the local deformations within

the gauge length only when the deformation is uniform along the gauge length. After

the occurrence of necking, the deformation within a finite gauge length is

nonuniform. Thus, a valid strain measure should be defined on an infinitesimal

length, which is called a zero gauge length strain throughout this report'. Let lio

represents an infinitesimal length at any given location within the gauge length in the

original configuration of the tensile test specimen, which lengthens to l, in the current

configuration of the test specimen. Therefore, the zero gauge length natural strain in

uniaxial tension is

In this report, zero gauge length strain and rupture (or failure) strain are represented by
subscripts 0 andf, respectively. For example, zero gauge length engineering strain and its critical value
at failure are EI'IJ and EEllf' respectively.
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(A-7a)

while the zero gauge length engineering strain' in uniaxial tension is

(A-7h)

and they are assumed to remain constant within the infinitesimal length Ii in the

current configuration of a test specimen. Equation (A-4) gives a relationship between

them.

If it is assumed that the material is incompressible, then

I,A =1;rJlo =const, (A-8a)

or

AdZ.+ldA=O,, , (A-8b)

where, Ao and A are respectively the original and the current cross-sectional areas at

the location where liO and Ii are measured in the test specimen. Thus,

(A-9a)

which yields

. 1 dA
ENO=--- ,

A dt
(A-9b)

when eqs.(A-8a,b) are used and ( ) represents differentiation with respect to time t.

Before the initiation of a localized neck, a tensile specimen deforms uniformly

along the gauge length and, therefore, the crT-EN and crT-cND curves are identical. The

advantage of using the zero gauge length natural strain is its capability for describing

2 The zero gauge length engineering strain defined here was called effective elongation by

Ludwik(see Timoshenko( 1956)).
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the local uniaxial deformation between necking and material failure. Equation (A-3h)

can be expressed in terms of the zero gauge length rupture strain ENor when failure

occurs, which is defined by equation (A-9a) when substituting A by At

(A-IQ)

where

AD Ao
ENo,=ln(-) and EEof=_-1. A . A

f f

(A-11a,b)

This is why equation (A-3b) is more significant than equation (A-3a) for measuring

the material ductility, as mentioned before.

The measurement of aT' END and END after necking may be obtained by using

a transient image recorder, for example, a high-speed camera, as implied by Dodd

and Bai( 1987)(pp.26), to record continuously the specimen configuration in the area

of necking. However, majority of the experimental results published previously did

not give this information. One published result based on this method were given hy

Alves(1996) for dynamic tensile tests up to e=239.9s-'. But, it seems that an

engineering strain rate instead of a natural strain rate in equation (A-9b) was used

there. Nevertheless, it confirmed that a straight line could be used to connect the

necking point and the failure point on true stress-strain curve, as suggested by Yu

and Jones( 1991).

Although the O'T-ENO relationship reflects more the nature of a material than

the aE-EE curve, the O'E-EE curve is useful when necking is the basic failure

mechanism on the macroscopic scale.

The critical strain energy density within a characteristic unit volume of the

material at the failure location is

EN/If EJ-:tif

Wc= f crriENO= f cr;lEEO .
D 0

(A-12)
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according to eqs. (A-4) and (A-6).

Historically, there are different strain definitions for a uniaxial loading test,

for example, true strain and logarithmic strain are used by different authors instead

of natural strain. These strains are usually defined over a finite gauge length which

cannot describe local deformation features after the maximum point of the

engineering stress-strain curve. Furthermore, these definitions should be consistent

with the general strain definitions for a three-dimensional solid

continuum(ABAQUS( 1994a)). In order to clarify these strain definitions in a tensile

test and connect them to the general definitions in a three-dimensional solid

continuum, a strain, which is defined across an infinitesimal length, is called a zero

gauge length strain. The definition of stress should be a conjugate quantity in the

sense that the product of stress and strain gives strain energy density. Conventionally,

in a uniaxial loading test, the Eulerian stress component, which has the conjugate

quantity, tNO' is called a true stressio-), and the Lagrangian stress component, which

has the conjugate quantity, tEO' is called an engineering srresstog), as shown in eq.

(A-12).

The general expression of eq. (A-12) in three dimensional stress state is

'r DC
Wc=f cTijV;pt= f °Ei}dDij.

o 0

(A-l3)

where 0TII and 0Eij are Eulerian and Lagrangian stress tensor, respectively. While, D;

and Vii correspond to the displacement gradient tensor defined on original

configuration and the deformation rate tensor. t is the internal time scale. t, and Di/

are the value of t and Dii at material failure. In metal plasticity, Eulerian stress tensor

and deformation rate tensor are commonly used. Therefore, true stress and zero gauge

length natural strain should be used in a uniaxial tensile test.

Once necking develops in a cylindrical rod specimen, a rotationally symmetric

triaxial tensile stress state is induced in the region, which is shown in Fig.A3. In this

case, it has been shown that the strain distribution is still uniform across the necking

cross-section. The stress system in the neck consists of two parts, a superimposed

hydrostatic tension stress(Tp=O'rr=O'ee=O'z-O'TR)whose magnitude varies with radius,
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increasing from zero on the outside of the neck to a maximum on the axis, and a

longitudinal constant stress (JTR across the necking cross-section, which is given by

(JT
(JTR - =fc,(JTR .

R a(J +2_}ln( J +_)
a 2R

(A-14)

according to Bridgman(l944)(also see Dodd and Bai(1987», where a and Rare

defined in Fig.A3 and (JT=Phta2 is the true stress.

Strictly speaking, the uniaxial true stress obtained from eq. (A-5) or (A-6)

should be modified by eq. (A-14) after necking. And the method for calculating the

strain energy density over the characteristic necking volume in eq. (A-12) need to be

modified too. The superimposed hydrostatic tensile stress

(A-IS)

has negligible influence on the plastic flow of material, which has been confirmed

by the uniform distribution of uniaxial strain across necking cross-section. However,

hydrostatic stress is one of the important factor to influence material failure, which

has been confirmed by many test results.

A tensile test is one of the important material mechanical property tests used

to establish the constitutive equation and failure parameters although there are many

other ways to achieve the same purpose. These tests normally use the global

responses of a finite volume of material to predict deformation or failure parameters.

The following criterion could be used to judge the validation of a material test

Material Property Test Criterion: When conducting a material property test, there

should exist a fixed collection of materials whose internal mechanical responses are

predictable from the measurable global responses until material failure is initiated.

A uniaxial tensile test is capable to satisfy this requirement due to Bridgman's

brilliant contributions.

Although the standard tensile test has been used for a long time to obtain the

mechanical properties of materials, there is still an incomplete understanding of the

results from this simple test, as realised by Orowan half a century ago, 'The tensile
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test (is) very easily and quickly performed but it is not possible to do much with its

results, because one does not know what they really mean. They are the outcome of

a number of very complicated physical process ...... The extension of a piece of

metal (is) in a sense more complicated than the working of a pocket watch and to

hope to derive information about its mechanism from two or three data derived from

measurement during the tensile test (is) perhaps as optimistic as would be an attempt

to learn about the working of a pocket watch by determining its compressive

strength.'(E.Orowan, Proc. Instn. Engrs Vol.1SI, p133, 1944).

Therefore, there are still many research works being conducted on the

investigation of uniaxial tensile test until today.

A2. Split Hopkinson Pressure Bar(SHPB)

SHPB has been widely used to determine dynamic constitutive equations of

various materials over a strain rate range of 102-104s·l• The SHPB apparatus for

compression testing consists of a striker bar, an incident bar and a transmitter bar,

made from the same material with same diameter, and associated instrumentation for

recording data as shown schematically in Fig.SA. The incident and transmitter

pressure bars are mounted in teflon or nylon bushings to assure accurate axial

alignment while permitting stress waves to pass without dispersion. The striker bar

is fired from a gas gun. Its velocity is measured by two photocells and light sources

at a known distance apart. When the striker bar impacts the incident bar, constant

amplitude compressive pulses are generated in both bars. The length or duration of

the compressive pulse generated in the incident bar is twice the wave-transit time in

the striker bar and the magnitude is directly proportional to the striker velocity,

determined by

(A-16a,b)

where O',(E,) is the incident stress(strain) magnitude in the incident bar, p is the

density of the bar material, c is the longitudinal elastic-wave velocity in the

Hopkinson bars, and V is the impact velocity of the striker bar. In order to keep the

Hopkinson bar system in elastic range, it requires that 0'1<0'0' or,
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V< 200,

pC
(A-17)

where on is the yield stress of the bar material.

Under the following postulates

(a) The dispersion of a longitudinal wave in the Hopkinson bar system is negligible,

which means that a one-dimensional wave theory is applicable;

(b) An uniaxial compressive stress state can be achieved in the specimen, which

demands an ideal interface between Hopkinson bars and specimen to eliminate

transverse friction, and requires that the transverse inertia effects are negligible in the

specimen;

(c) The stress and strain are uniform along the specimen, which requires that the

wave transit time in the specimen is much smaller than the pulse duration and that

there no failures or flow instabilities occur in the specimen during the measurement;

the engineering strain, stress and strain rate in the specimen are

(A-ISa,b,c)

where L, and As are the original length and area of the specimen, A is the area of

incident and transmitter bars, and E is the Young's modulus of the Hopkinson bars.

It should be noted that £,(>0) and £I(<0) are the reflected and transmitted strain pulses

in strain gauges located at incident and transmitter bars.

It has been mentioned in Section A 1 that true stress-natural strain curve is

required to describe the plastic behaviour of a metal. Therefore, eqs. (A-18a-c) need

to be modified according to eqs. (A-4) and (A-6) together with the natural strain rate

described by

(A-19)

according to eq. (A-4). The modified formulas are
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I I

A 2e} 2e}(}r=E-(l-- e dt )£ , EN=ln( l-_ e dt )A L r I L r
.\ .r 0 J 0

2e£r (A-20a,h,c)
I

L\.-2e JE,dt
o

These equations are based on material incompressibility of the specimen material,

which is generally correct for metal materials in moderate plastic deformations. Some

researchers did not do these modifications when they evaluated the material

constitutive equation by using the results from SHPB, which is correct only for small

strains.

Normally, the SHPB system requires LI~L2~Lo>Ls' as shown in Fig.S.4. It was

recommended that the system be calibrated dynamically by passing a known stress

wave through the strain gauges on both the incident and transmitter bars without a

specimen. The magnitude of the strain pulse set up in the bars is V/2c, which can be

compared with the output from strain gauges on both incident and transmitter bars

to give a calibration factor. This method is employed in the present studies. An

alternative method of calibration is sometimes used to check the dynamic calibration.

This merely involves shunting a known calibration resistor across one arm of the

strain-gauge bridges. This produces a simulated strain of

1 R"£ _ 0

c f Rc+R/i'
(A-21)

where f is the gauge factor and R, and R, are the gauge and calibration resistances.

This method verifies the dynamic calibration to within several

percent[Nicholas( 1982)].

Considerable studies have been conducted to check the conditions when the

pre-assumed postulates are satisfied(see Bertholf and Karnes(l975), Nicholas(l982),

and Follansbee( 1985». It is generally accepted that SHPB technique is very accurate

and can be reliably used for the measurement of dynamic properties. The optimum

specimen dimension proposed by Davies and Hunter(l963) and confirmed by

Bertholf and Karnes(l97S) is
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(A-22)

where d, and L, are the diameter and length of the cylindrical specimen. Some work

has been conducted using strain gauges or non-contact methods directly to measure

the strain on the specimen. One of them was published recently by Ramesh and

Narasimhan( 1996).
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Fig.A3 Stress distributions in the neck of a tensile specimen.
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APPENDIX B: STRAIN ENERGY DENSITY

FAILURE CRITERION

8.1. Introduction

Many failure criteria have been proposed to predict the initiation of

macroscopic material failure under various conditions. Generally speaking, they may

be divided into four different types, (a) stress or strain failure criteria; (b) energy type

failure criteria; (c) damage failure criteria; (d) empirical failure criteria, and have

been used successfully in various failure problems. It appears that the validity of all

these failure criteria is restricted to specified types of failure problems. It is necessary

to set up a physical basis for further developments of more universal material failure

criteria on the macroscopic scale.

The purpose of this Appendix is to fulfil this task by establishing a theoretical

framework for a criterion of failure initiation in macroscopic continuum solids. This

theoretical framework will embody the following three features, (I) a macroscopic

energy density concept to define macroscopic material failure; (2) a correlation

between the physical mechanism of macroscopic material failure with the

microscopic material behaviour; (3) incorporation of the different failure types

including brittle and ductile failures when consideration of material damage effects.

An energy concept to define material failure was proposed initially by

Freudenthal( 1950). He realised that material failure occurs in different scales

simultaneously, which led him to introduce an energy concept to describe material

failure. The importance of the energy concept was also emphasized by Gordon( 1976).

Furthermore, Freudenthal realised the difference between elastic

deformations(related to potential energy) and inelastic deformations(dissipated

energy) in an energy type failure criterion, which is expressed by the following

statement(pp.20 in Freudenthal( 1950»

"Since the process of bond separation which initiates fracture depends on the

momentary elastic strain or the potential energy in a different manner from what it
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depends on the inelastic strain or the dissipated energy, the elastic and inelastic

strain energy must enter the fracture condition separately."

While, Gordon(l976) also pointed out that(pp.71)

"The weakening mechanism, rather than the bond strength, was what really

controlled mechanical strength. "

Although many types of strain energy failure criteria have been proposed after

Freudenthal, most of them didn't distinguish such an important difference between

the contributions of elastic strain energy and inelastic strain energy in an energy

failure criterion except Lemaitre and Chaboche who expressed a similar viewpoint

in their book(pp.402-403 in Lemaitre and Chaboche( 1990». However, they did not

progress from this point to set up a general energy type failure criterion.

Section B.2 will establish a theoretical framework of material failure criterion

eval uated from Freudenthal( 1950)' s original work, which is the specified elastic

strain energy density failure criterion. The influence of irreversible process on

material cohesive potential described by a dissipative function based on

thermodynamics is also discussed in this section. For material ductile failure, this

function could be used to describe material failures, and will be defined as dissipative

energy density failure criterion, which reduces to several previous successful ductile

failure criteria, as discussed in section B.3.

B.2. Strain Energy Density Failure Criterion

B.2.1. Potential and Dissipative Energies in a Mechanical System

The material behaviour in a mechanical system is a complex process involving

deformation and damage mechanisms from atomic to macroscopic levels, as shown

in Fig.B.I. The input mechanical energy will be either stored or consumed in a

mechanical system through different deformation and failure mechanisms. Material

deformations and failures at different levels have different physical meanings, which

may be related from one level to another by proper statistical methods. GeneraJIy

speaking, the material behaviour on one level is a coJIective, or group, behaviour of

the material on a sub-level. It is understandable that the general significance of the

results is lost unless the interrelation between the observed macroscopic material

behaviour and the internal structure in terms of atomic, molecular, or microscopic
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phenomena can be established(ppA in Freudenthal( 1950)). A successful deformation

or failure theory should be physically consistent at each material level.

Macroscopical material deformations may be divided into elastic and inelastic

deformations, which have different physical mechanisms at the microscopical level.

The metal theory at atomic level was set up by Drude and Lorenz when they

introduced the free-electron theory of metals, which suggests that in a metallic crystal

the valency electrons are detached from their atoms and can move freely between the

positive metallic lattice, and the negative free electrons to provide the cohesive

strength of the metal. Such a linkage may be regarded as a special case of covalent

bonding through a valency electron cloud. The equilibrium spacing between two ions

bonded together is determined by a balance between the attraction due to the bond

and the repulsion which develops when their outer electron shells begin to overlap

each other. Thus, atoms in condensed phase occupy equilibrium positions about the

valley of the inter-atomic energy curve(Fig.B.2) determined by the formed atomic

bonds(Woo and LI(l993». Upon the application of external force, the atoms are

displaced from their equilibrium positions which changes the potential energy of the

system, and which is recoverable with the removal of external force within a certain

range of displacement. Macroscopic elastic deformation is a collective behaviour of

atomic displacements from their equilibrium positions. And, the macroscopic stress,

defined as the material interactions on the level of continuum mechanics, is the

collective behaviour of interactions between atomic bonds.

On the other hand, atoms may overcome their energy barriers and move into

a new equilibrium valley of free energy with excessive input of external mechanical

energies, which leads to the breaking of the previous bonds and re-establishing a new

configuration of bonds. Material defects, or material damages, will be formed during

this re-bonding process. A collective atomic migration in a stress field causes a

slip(or dislocation) in a crystal, whose collective behaviour leads to macroscopic

plastic( or inelastic) deformations. Furthermore, the atomic bond may be disrupted by

obstructing atomic migrations due to the piled up dislocation barriers during atomic

migration process. Therefore, macroscopic inelastic deformation is an important

mechanism to weaken the macroscopic material cohesive potential.

It is evident that failure on the atomic level does not imply a material failure
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on macroscopic level. However, both the atomic migration and atomic bond

disruption cause a change of the material structures, and, therefore, a change of the

material macroscopic properties. For ductile materials, void developments are

important under certain conditions, which also represents a material structural change

from the view point of macroscopic level. The common feature for inelastic

deformations and material damages is their irreversibility. which are energy

dissipation processes from an energy viewpoint. Thus, the macroscopic failure

process of a material should be described by the thermodynamic theory of

irreversible processes.

B.2.2. Thermodynamic Foundation of Dissipative Process

Material failure is a process involving thermal and mechanical phenomena

from atomic to macroscopic levels, which may be described by various deformation

processes in a mechanical system. The thermodynamics of a continuum medium

determines the thermal and mechanical behaviours of solid continuum in its

deformation and failure process. It has been noted in Section B.2.l that any material

structural changes related to macroscopic failure process may be described hy

irreversible thermodynamic theory.

The Clausius-Duhem inequality is

(B-1)

where the specific free energy 'I'=e-Ts is introduced, in which O'ijis the Cauchy(true)

stress. E'j is the rate of deformation, p is the material density, e is the specific internal

energy of the material. s is the specific entropy, T is temperature, q is the heat flux

vector. The specific free energy 'I' is determined completely by O'ijand other state

variables. i.e.,

\}' = 'I'((Jij' other state variables)
or 'I' = \}' (eij, other state variables).

(B-2a,b)

In eqs.(B-2a,b), the so-called "other state variables" may be represented by

a group of observable and internal variables, T, Vo=Dij(as damage internal variables),

Vk(k= 1,2,...... )(as plastic internal variables). Thus, we have
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(8-3a,b)

where, Eij=Ei/+Eit is employed for simplicity'. Eqs(B-3a,b) gives

(8-4a,b)

Thus, the Clausius-Duhern inequality, eq.(B-l) predicts

a'I' a'l'a ..=p- s=--
'J ae ..' aT

". P iJ y'~ 1r.:..+y. ..+Ak"k--q.T ·~O
'J lJ I lJ T t "

(B-5a-c)

where PiJ=-pd\}l/dt/, Yij=-pd\}l/dDjj and Ak=-Pd\}l/OVk are thermodynamical

forces(stresses) corresponding to intrinsic dissipative processes represented by E/, Dij
and Vk• criJ, determined from eq.(8-5a), has a one to one relationship with tij for

given T, tit. D and V k within a non-discontinuous stress set. It may be proved that

(8-6)

and therefore, Pij=O'ij' which means that the macroscopic Cauchy stress is the

thermodynamical force of plastic dissipation when it is represented by plastic strain.

The dissipation in a mechanical system can be described by eq.(B-5c)

according to the thermodynamic principles. When intrinsic mechanical dissipation and

thermal dissipation due to heat conduction are decoupled, the intrinsic mechanical

dissipation rate is expressed by

(B-7)

Function <1>1 in eq.(B-7) describes an intrinsic dissipative process in a mechanical

system, which will be used as an intrinsic scale to measure material's life expectancy

~ In eq.(B-3b), specific free energy is expressed by observable variable Eij and T and internal
variables E/. D'I and Vk• Although eq.(B-3a) and (B-3b) lead to same results. the results derived from
eq.(B-3b) can give a symmetrical and elegant expression of thermodynamics forces.
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before macroscopic failure.

In a mechanical system, Pjj, Yij and Ak are defined as a group of

thermodynamic stresses. Each thermodynamic stress corresponds to an internal

variable which introduces a mechanical intrinsic dissipative mechanism. Their

contributions to the total mechanical intrinsic dissipation are reflected in eq.(B-7).

Generally, these thermodynamic stresses are functions of stress tensor and other

internal variables. However, in many cases, thermodynamic stresses depend only on

the stress tensor. It has been shown that Pjj=<Jjj in eq.(B-6). In the following analyses.

it may be assumed that Yjj=Yi<Jij) and Ak=Ak(<Jij).

When it is assumed that mechanical dissipation IS independent of heat

conducting dissipation (see Truesdell and Noll(pp256 in Malvern(1969». Now, the

mechanical dissipative energy density, <PI' and its rate, <1>1' are defined by

(B-8)

which may be used to describe the material de-bonding process at the macroscopical

level within the scope of a thermodynamic framework.

B.2.3. Specified Elastic strain Energy Density Failure Criterion

According to Freudenthal( 1950) and the above discussion the macroscopic

material failure criterion may be described by the following statement:

When the specified potential strain energy' over a given collection of

particles o] the material' exceeds its critical value, which depends on the

preceding irreversible dissipative process and some other environmental

parameters, the macroscopic material failure occurs in this material

collections.

It is evident that a proper statistical average process is necessary to express

4 The specified potential strain energy may be understood as the specified elastic strain energy
which refers to the maximum possible releasable strain energy in the given material collection.

~ A given collection of material particles can be identified using material(or Lagrangian)
descriptions according to initial material configuration. The choice of the size of a given collection of
material particles depends on the described physical properties and material constructions.
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this failure criterion within the scope of continuum mechanics. It has been shown

that, despite the large difference in the nature and structure of materials, there is a

great unity displayed in their macroscopic behaviour, described by macroscopic

physical quantities, such as material density, stress, strain, etc., which are defined as

average values over a representative material configuration. Together with the

limitation concept in mathematics, this technique defines all meaningful physical

quantities in continuum mechanics at a geometrical point", Here, we assume that

such an average technique is valid for describing macroscopic material failure in

continuum mechanics. Therefore, the proposed failure criterion may be described by

(B-9)

where , w/ is the specified elastic strain energy density defined on the original

representative volume", «: is its critical value, $1 and $1 are the mechanical

dissipative energy density defined on the original representative volume of the

material and its rate, respectively, T is the temperature and O'H is the hydrostatic

stress value. It should be noted that if Cauchy stress and natural strain are used, the

volume change should be considered in calculating w,c. Similar principles are

applicable to $1 and $1'

B.2.4. Material Brittle Failure

Ii is well-known that materials under low temperature or high strain rate tend

to fail in a brittle manner with only a small amount of prior plastic flow. In this case,

the influence of internal mechanical dissipation, $1' on w,/ in equation (B-9) may be

neglected. Furthermore, existing investigations have shown that the mechanism of

brittle failure, i.e., cleavage, is a mechanism involving the breakage of interatomic

bonds. This mode of failure is not very sensitive to temperature and strain rate

(, The geometrical point in continuum mechanics, on which macroscopical physical quantities
are defined. should be sufficiently large on the microscopic level. It was pointed out by Hancock and
Mackenzie(1976) that failure initiation must involve a minimum amount of material which is
characteristic of the scale of physical events involved.

7 Material mass is more proper to represent the given collection of material particles(Matic et
al.( 19XX». which is equivalent to using their original geometrical volume due to the conservation of
mass.
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according to the Ludwik-Davidenkov-Orowan hypothesisrCortrellt lcoaj) and the

discussions in Dodd and Bai(l987) (pp.51-71) and Polakowski and Ripling( 1966)

(pp.230). Therefore, the failure criterion, equation (B-9), simplifies for brittle failures

to

(8-10)

Within the scope of linear elastic mechanics, the influence of volume change on the

specified elastic strain energy density may be neglected because

(8-11 )

for most metals, where crHc is the critical value of hydrostatic tensile stress for

material failure.

The different choice of a specified elastic strain energy density leads to

different types of stress failure criteria which have been used widely to calculate the

material strengths in brittle failure analyses.

(I) Maximum Normal Stress Failure Criterion

If material failure is initiated by the potential of strain energy related to the

maximum normal stress

(8-12)

where crl~cr2~cr~ are the principal stresses. Therefore, equation (8-10) is equivalent

to

(B-13)

which is the maximum normal stress failure criterion.

(2) Von-Mises Failure Criterion

When material failure is initiated by the potential of distortion strain energy
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as proposed by Freudenthal(1950) (pp.387-394)

(8-14 )

equation (8-to) may be expressed by

(8-15)

which is the von-Mises or octahedral shearing stress failure criterion.

(3) Maximum Shear Stress Failure Criterion

The elastic strain energy corresponding to the maximum shear stress is

(8-16)

So, equation (Bv l.O) reduces to the maximum shear stress failure criterion, i.e.,

(8-17)

(4) Hydrostatic Tension Failure Criterion

In this case

(8-18)

therefore, equation (8-10) is equivalent to

(8-19)

where OHC is the critical value of the hydrostatic tension stress.

These failure criteria are commonly used to estimate the failure strength of

various materials, and may be generalised as a stress type failure criterion

(8-20)

which could be simplified further by using material isotropic properties.
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This type of failure criterion is suitable for brittle material failure due to its

independence of the strain history. The key issue is to define the specified elastic-

strain energy density which controls a particular type of brittle failure. More

discussion on the stress type failure criteria is presented in Polakowski and

Ripling(l966), Dorn(l948) and Nadai(l950) (pp.207-228). Equation (B-20) may also

be used in predicting ductile material failures when the influence of deformation

history is retained in the failure criterion(Dorn(l948». Dorn 's conclusion is consistent

with the present expression in equation (B-9) when the deformation history is

understood as an irreversible dissipative process. In a plane stress state, these failure

criteria are frequently described by biaxial failure maps in metal forming studies. It

should be noted that using a stress type failure criterion to predict a ductile material

failure is difficult because of the importance of the strain history effects in ductile

failure processes. In a case when the loading path or deformation pattern is certain,

a stress type failure criterion may be useful for predicting ductile material failures.

This is why biaxial failure maps are used widely in the metal forming industry

where the loading path is known for each working process.

B.3. Dissipative Energy Density Failure Criterion Associated With Large

Inelastic Deformation and Material Failure

B.3.1. Dissipative Energy Density Failure Criterion

If, w,/ is considered as material strength, it decreases with the irreversible

dissipative process, i.e., dWs//d<PI<O. Therefore, material ductile failure is a

progressive process represented by the continuous decrease of material strength with

the continuation of the dissipative process, which emerges as a natural outcome of

excessive internal dissipation in a mechanical system. After a sufficiently large

dissipation, which normally corresponds to large inelastic deformations, material

failure is controlled mainly by the conducted dissipative process instead of being

determined by internal interactions among atoms in the case of small inelastic

deformations although these internal interactions are still the active driving force to

separate material. Experimental studies by Bridgman( 1952) have shown that

hydrostatic stress has a strong influence on material failure. A tensile stress triaxiality
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decreases the ductility of a material, while a compressive stress triaxiality increases

it. Thus, the hydrostatic stress should be considered as an environmental parameter

when other elastic actions are neglected in material ductile failure". lf Ludwik-

Davidenkov-Orowan hypothesis(see Section B.2.4) is applicable for inelastic

deformation process, the failure criterion for ductile material failure in large inelastic

deformations becomes

(B-21 )

according to eq.(B-9), where, <I>,c is the critical value of the mechanical dissipative

energy density. Equation (B-21) is the dissipative energy density failure criterion,

which may be used in the prediction of material ductile failures under large inelastic

deformations.

According to eq.(B-7), the dissipation energy is

(B-22)

where, wP=JcrijdEi{is the inelastic strain energy density, <1>, is the intrinsic dissipative

energy density, wd=JBdD is the damage dissipation density(from now on, Yij and Dij

in eq.(B-7) are substituted by Band D when the isotropic damage is assumed) and

wv=J(-Ak)dVk is the stored energy density of cold work(Chrysochoos and

Belmahjoub( 1992». For metals, WV is the energy of the field of the residual micro-

stresses which accompany the increase in the dislocation density. It represents only

5-10% of the term wP and is often ncgligible'(pp.Sd in Lemaitre and

Chaboche( 1990». Therefore, eq.(B-22) is simplified into

(B-23)

If it is assumed that material plastic flow and material damage are two different

physical processes, as shown by Lemaitre and Chaboche( 1990), we have

H Actually. the influence of stress triaxility on material failure(both ductile and brittle) can be
considered by including specified elastic strain energy density in eq.(B-9).

9 For example. a coefficient ~=90%-95% is used when calculating the temperature rise due to
plastic work.
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(8-24a,0)

Eqs. (B-24a,b) implicate that the intrinsic dissipation consists of two di fferent types,

i.e., plastic dissipation and damage dissipation represented by two monotonously

increasing functions, w" and w'', and the effects of these two different processes on

material failure may be different.

B.3.2. Inelastic Strain Energy Density Failure Criterion

Inelastic strain energy density failure criterion has been used widely in

predicting material ductile failures for various purposes. Cockcrott- and

Latham( 1968) suggested that the critical value of the inelastic strain energy density

at fracture is practically constant at moderate strain rates, which was used to study

the fracture of solid polymers by Vinh and Khalil(1984). Gillemot( 1976) used it to

predict the crack initiation in materials. Clift, et al.(l987, 1990), employed the finite-

element technique and several failure criteria to predict the fracture initiation in a

range of simple metal-forming operations. It turns out that only the inelastic strain

energy density failure criterion predicts successfully the correct fracture initiation

sites, which were observed in the experimental results. An inelastic(or plastic) strain

energy density failure criterion was combined with dynamic rigid, perfectly plastic

analyses of beams and circular plates by Shen and Jones(l992, 1993a,b) and Jones

and Shen( 1993), and good agreement was found with the actual dynamic failure in

several structural elements. These investigations have shown the validity of this

failure criterion in some circumstances. However, many other failure criteria like the

damage failure criterion also give encouraging failure predictions. It appears that both

the damage failure criterion and the inelastic strain energy density failure criterion

work well in many circumstances. A reasonable explanation on this aspect is given

throughout the present Appendix.

Based on eq. (B-24a,b), it is concluded that material ductile failure is

controlled by two dissipative mechanisms, which are inelastic(or plastic) deformation

dissipation and damage dissipation, respectively. Material failure may occur due to

either excessive plastic dissipation with small material damage from void

development or excessive material damage from void coalescence. It is also possible

that two dissipative mechanisms are important for the initiation of failure. If material
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failure is mainly controlled by the plastic deformation mechanism, the failure

criterion will become a plastic strain energy density failure criterion where the

contributions from voids are negligible for material failure. In this case, material

incompressibility is approximately valid, i.e., dEl/+dE2/+dE:l/=0, and therefore.

~ ~ ~ ~~q

wp=f °i,def;= fs;f1ef;+ Jon<defl +deI;2+deI;3)=f oeqd~q=w!,
o 0 0 0

(8-25)

where •.\'ij=Ojj-OH8jj,w/ is the critical value of plastic strain energy density determined

by experiments. Equation (B-25) is described by generalized plastic work per unit

volume in Clift et al.(l987, 1990). and is called (plastic) strain energy density failure

criterion in Jones and Shen(1993). Basically, inelastic strain energy density failure

criterion is valid for failure initiation controlled mainly by plastic dissipative process.

8.3.3. Continuum Damage Failure Criteria

In this section , we will discuss the situation when the failure process is

controlled mainly by material damage dissipation. The microscopic mechanism is the

coalescence of voids due to the initiation of unstable flow between the neighbouring

voids. In this case, the failure criterion is

(8-26)

where wd=we(EIE-l) according to damage mechanics, E is the Young's modulus of

the virgin material, wed is the critical value of the damage dissipation density. The

elastic strain energy, we, depends on strain hardening(also depends on strain rate

hardening if it is significant), hydrostatic stress, OHand current Young's modulus, E,

while, the current Young's modulus depends on the damage parameter, D. Thus,

eq.(B-26) may be expressed by

(B-27)

when material plastic strain hardening is not significant during a damage control

failure process. Eq.(B-27) is well-known as damage failure criterion and has been

used widely in continuum damage mechanics to predict the initiation of material
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ductile failure. The significance of the parameter O"H on the value of Dr need to be

verified by experiments. Alves( 1996) examined the influence of O"H on the critical

damage parameter, D; It was concluded that the critical damage parameter docs not

seem to be highly stress state dependent for the mild steel. A similar conclusion was

reached by Otsuka et al.( 1987) for a structural steel SM41 A. However, other

evidence gave controversial results(Becker(l987) and Shi et al.( 1991». A discussion

on this topic is given by Alves( 1996). Strain rate and temperature influences on the

critical value of 0 are not included in eq.(B-27). It was also shown by Alvcs( 1996)

that strain rate does not significantly influence the critical damage parameter in the

studied problem. However, it is well-known that material ductility decreases with

increase of strain rate(and also with decrease of temperature). For a damaged

material, material ductility includes both plastic deformation and damage

development. Thus, it is highly possible that strain rate and temperature have some

influences on the critical damage parameter, which need to be verified by further

experiments.

Another potential theory used to predict material failure, is the porous ductile

material model established by Gurson( 1977) and developed successively by many

other authors. In spite of the different modelling procedures used in these two

theories, similar concepts are used in both theories to define material failure. In

continuum damage mechanics, the surface density of the discontinuity of the

material(D) is used to represent material damage and to define material failure by its

critical value(DJ. In porous ductile material model, the void volume fraction(f)

together with its critical value(fF) is used to define the material failure. For an

isotropic material, there is a relationship between them for a given void type.

Therefore, eq.(B-27) can be expressed equivalently by

(B-28)

as used in many void growth models(Gurson(l977), Tvergaard(l990».

The application of eq.(B-27) or eq.(B-28) requires the solution of the

evolution equations of a damage index, which depends on the development of

macroscopic stress and strain and their histories, and, in turn, the macroscopic stress

and strain contain the information of both plastic dissipation and damage dissipation.
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Therefore. it is possible to use macroscopic stress and strain to define a failure

criterion. which have been proved by existing results.

After defining a dissipative surface, F,which distinguishes the elastic domain

from other dissipative responses, the thermodynamical principle and the minimum

free energy theorem lead to

dEf=d'J... aF and dD=d'J...aa~.
lJ aOij D

(B-29a,b)

Substituting dA determined from (B-29a) to eq(B29-b) gives

aF
aBdD =d~--;=::=:;;:::::::;;;;: =Gd~.

2 aF aF
(B-30)

Similar procedures were used by Zheng et al.(1994), in which the potential function

F was expressed by

(B-3 I)

where dg/dae=O. However, in their later discussion, dg/dB was expressed as a

function of o., which is not consistent with their previous assumption that g is

independent of a,.. Furthermore, the Levy-Mises relationship is evaluated from eq.(B-

31) by Zheng et al.( 1994), which is not valid generally for a porous ductile material,

as shown by porous ductile material model(Gurson( 1977) and Tvergaardf l S'Xll).

The material damage failure criterion according to eqs.(B-27) and (B-30) may

be expressed by

~

D=JGd~=Dc'
o

(B-32)

where G=G(ar,aH,D) is determined by eq.(B-30).

A large group of ductile failure criteria have been proposed in the form of

cq.(B-32). Some examples are listed below.

( I) M.Oyane( 1972):
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(B-33 )

where <Jm=30'H' and a, and Co are material constants.

(2) M.Zheng, et al.(1994):

GlOm=-exp(l.5-)
A 0e

(B-34)

where A is material constant.

(3) RChaouadi, et al.(1994):

(B-35)

where a is material constant.

(4) T.J.Wang(l992a,b, 1993):

(8-36)

where k is a damage coefficient, EoP is the void nucleation strain, and

(8-37)

When k= 1 it is identical to Lemaitre and Chaboche(l990)' s results(pp.440).

These failure criteria have been used in many applications when material

damage plays an important role during structural failure.

B.4. Applications of Plastic Strain Energy Density Failure Criterion in Dynamic

Structural Responses

It has been observed that several structural elements, when subjected to

sufficiently large transverse dynamic loads, may fail in one of three principal modes,

r.e.,

Mode I: large inelastic deformations,

Mode II: tearing(tensile failure),
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and Mode III: transverse shear failure(fracture),

which were first observed for beams(Menkes and Opat(l973), Ross, et al.( 1977) and

Jones(l976)), and then for square and circular plates(Ross, et al.( 1977), Olson. et

al.( 1993) and Teeling-Smith and Nurick(l991» and cylindrical shells(Ross, et

al.(1977), Opat and Menkes(l974) and Strickland, et al.( 1976)). Only Mode II and

Mode III relate to actual material failures and some experimental results for failure

exhibit the characteristics of combined modes II and III.

A detailed examination of the experimental results reveals that Modes II and

III belong to a local tensile failure(Jones(l989)) although with different response

features. Therefore, the values of w/ for an inelastic strain energy density failure

criterion could be determined from a uniaxial tensile test with the proper

consideration of strain rate and hydrostatic effects.

Rigid, perfectly plastic simplifications have been used successfully to predict

the dynamic response of a wide range of structural elements. It has some advantages

in qualitative analysis and saves computer time when compared with numerical

simulations. This section is concentrated mainly on the applications of an inelastic

strain energy density failure criterion to a beam made from rigid, perfectly plastic

material, which, however, may be extended to plates and cylindrical shells.

Generalized stresses and strains could be introduced in order to simplify the

analyses of beams and other structural elements. These generalized stresses and

strains are defined with respect to the entire cross-section of a beam. However, a

Mode II failure, for example, is a local phenomenon, which does not occur

simultaneously across the entire cross-section, but develops at a macroscopic point,

as illustrated in Fig.B.2(a). Such a macroscopic failure point is always located within

a severely deformed zone where a mixture of bending, shearing and tensile

deformations exists and which is called a plastic hinge for a rigid, perfectly plastic

beam. The inelastic strain energy density at the expected failure point may be

expressed as"

I() Here we assume that the deformations corresponding to the bending moment. transverse
shearing force and the membrane force are separable. Therefore. the total deformations at a
macroscopic point of a beam is the superimposition of the deformations at that point. which correspond
to bending moment. transverse shearing force and membrane force defined in a beam cross-section.
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wP=w +w +w
m .\' ,,'

(B-38)

where Wm, W, and w, are the inelastic strain energy densities associated with the

bending moment, shearing force and membrane force at the failure point A in

Fig.B.2(a), respectively. A rigid, perfectly plastic analysis does not provide any

information on the structure of a plastic hinge. However, it is reasonable from an

engineering viewpoint to assume that the stresses and deformations associated with

bending, shearing and membrane hinges have the uniform distributions in the

longitudinal direction within the hinge as shown in Figs.B.2(b-c). Therefore, the

inelastic strain energy density failure criterion expressed by equation (B-37) may be

cast in the following form

l l
W +_'::W +_.::W =BHI W PmZsZ n m"

s "

(B-39)

because

W = Wm
In BHZ

m

W
W = sand

, s RHZ
s

W
IIw= __ ,

II RHZ
II

(B-40a-c)

where Rand H are the width and thickness of the beam, and Wm' Ws and W" are the

dissipated inelastic energies in the total length of the corresponding plastic hinges

which have hinge lengths 1m, l, and In' respectively. The value of w/ should be

determined from a dynamic uniaxial tensile test. It should be noted that 1m is the

average bending hinge length which is defined by the half length of the bending

deformation zone, as shown in Fig.B.2. If it is assumed that In=lm' then equation (B-

39) becomes!'

WP=W +yW +W =RHI wPm .f n me'
(B-41)

where y=/,,/i,. Equation (B-41), in principle, may be extended to circular plates,

cylindrical shells and other structural members in a similar way. Nonaka(l967) used

slip line theory to study the behaviour of beams and obtained the average hinge

)) No generality is lost when it is assumed that In=lm because membrane force and the associated
deformations are uniform along the beam. In this case, Wn is the total inelastic energy corresponding
to the membrane force in an average bending hinge length.
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length Im=HI2 for a pure bending moment and Im=H at the beginning of a membrane

state.

If y= 1, equation (B-41) is simplifies to

W"=w +W +W =w ('BHI =WP
m s II P m l

(B-42)

which is identical to equation (9) in Jones and Shen( 1993). However, the assumption

y= I requires verification.

Shen and Jones(l992,1993a,b) and Jones and Shen(1993) used the inelastic

strain energy density failure criterion described by equation (B-42) to investigate

material failures in various structural elements under different dynamic loadings.

In the particular case of a rigid, perfectly plastic beam having a width Band

a thickness H, the actual inelastic work absorbed at failure in a plastic hinge having

an average length 1m across the beam thickness is

(B-43)

where w/(£m) is determined from material test, Em is the mean strain rate ..

The influence of material strain rate sensitivity on the critical value of the

inelastic strain energy density is unclear. w/ increases with strain rate according to

the experimental data in Yu and Jones( 1991) for an aluminium alloy. However, other

source assumed that the value of w/ is insensitive to strain rate(Jones( 1989), also

discussion in Section 5.1.4). Thus, it is difficult to estimate the influence of strain

rate effects on the value of w/ and further systematic experiments are required at

various strain rates in order to achieve an understanding of this problem.

Shen and Jones(l992, 1993a,b) and Jones and Shen( 1993) use this procedure

to analyze the material failure of impact loaded beams and circular plates. These

theoretical results are compared with the corresponding experimental results(Liu and

Jones(1987), Yu and Jones(l991) and Teeling-Smith and Nurickt lO'JlI), and have

demonstrated the advantages of the strain energy density failure criterion as a more

universal failure criterion, which can be combined with various dynamic analysis

procedures or numerical finite-element analyses to predict material failure in different

types of structural elements.
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r
-----_._-_ ....

Fig.B.I The inter-atomic energy curve, r is the distance between atoms.

(a)

(b) (c) (d)

Fig.B.2 (a) Macroscopic failure point in the deformed zone of a beam; (b) Stress and
strain distributions under bending; (c) Stress and strain distributions corresponding
to membrane force; (d) Transverse shear deformation and stress distributions.
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