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Dynamic Inelastic Failure of Structural Elements

—————— Failure initiation, criteria and mechanisms

Abstract

The dynamic shear response and failure of structural elements under
transverse impact loads are studied in the present work.

The dynamic shear response is one of the important response modes in
structural elements under transverse impact loads, which may lead to various shear
failures depending on the loading rates and intensities. Transverse shear localization
phenomena, which are represented by a shear hinge, have been observed in several
structural elements when subjected to transverse dynamic loading and are studied in
this thesis. The features of a stationary shear hinge are illustrated using a rigid,
perfectly plastic simplification. The dimensions of a shear hinge for several structural
elements are estimated both theoretically and numerically. It is shown that there
exists a fixed shear hinge length for a given two-dimensional structural element. The
length of a shear hinge is determined by its bending and shearing properties which
can be obtained from a quasi-static analysis. When the shear hinge length has been
determined, the conventional rigid-plastic method can be used to calculate the shear
strain and shear strain rate within the shear hinge during the shear response phase.
These theoretical results are employed to model Menkes and Opat’s beam problem
to find two possible failure mechanisms, i.e., ductile shear failure and adiabatic shear
failure and the associated transition conditions.

A double-shear beam(DSB) subjected to a transverse projectile impact is
studied experimentally and numerically in order to provide a more fundamental
understanding on the features of structural failure in a localised shear zone. Both
ductile tensile failure and adiabatic shear banding failure are found in the shear notch
section. An analytical model and FEM simulation are developed to predict the DSB
response and failures. The theoretical background of the strain energy density failure
criterion is discussed and verified in this problem. Among the failure criteria
examined in the current study, the strain energy density failure criterion is observed

to give reasonable predictions for the failure initiation.
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PREFACE A

I. PREFACE

I.I Scope of the Problem

Unfortunately, structural failure is not an infrequent occurrence in modem
society, and sometimes leads to a large loss of life, destruction of property and
damage to the environment. The failure of structures due to an improper use of
material has also caused many disasters. It is remarked in the preface of Wierzbicki
and Jones(1989) that "It is the responsibility of scientists and engineers to determine
the cause of failure, to describe the failure process, and to suggest measures of
preventing the failure from recurring”. In order to achieve this aim, many
investigations have been conducted in the field of structural crashworthiness and
hazard assessment. For example, three successive international symposia on structural
crashworthiness(Jones and Wierzbicki(1983), Wierzbicki and Jones(1989) and Jones
and Wierzbicki(1993)) have been held since 1983. These and many other conferences
on the behaviour of structures and systems have reported valuable results which may
be used for generating design methods and design data.

Frequently, external dynamic loads from impacts and explosions play an
important role in many structural failures. Even when the structural failure is initiated
sometimes from a static loading, the subsequent process is often a dynamic one. The
dynamic behaviour of various structures is a complicated process particularly when
material failure is involved. Therefore, an understanding of the basic failure modes
of structures is important for assessing the safety of practical structures in extreme
loading environments.

Generally speaking, every structural system consists of some basic structural
elements. The most frequent structural elements are beams, plates and shells. Thus,
investigations into the dynamic behaviour of these typical structural elements are
important for understanding the dynamic behaviour of a structural system which is
made of these elements. Basically, the dynamic behaviour of a structural element
involves its dynamic response, the initiation of failure and the failure process up to
complete collapse. Excessive deformations of structural elements may be an

important type of failure from an engineering viewpoint, for example, ingress into
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the minimum survivable occupant space in a vehicle. The dynamic response of
structural elements under large dynamic loadings often gives rise to plastic
deformations, which have been studied successfully using the well-developed rigid-
plastic method of analysis. The basic principles and developments of this method
have been introduced and reviewed by Jones(1989a,b). Many FEM softwares are also
capable of solving these problems. When the plastic deformations in structural
elements reach a critical value then a material failure will occur. The crucial point
for predicting material failure in structural elements is how to develop an appropriate
failure criterion and the corresponding analysis procedure, which can be used easily
by an engineer. The post-failure process is much more complicated because of the
interaction between the structural response and developments of material failure.
Although some studies have touched upon this topic, there remain many difficulties
requiring resolution in theoretical analyses, numerical methods and experimental
techniques.

Developing a proper failure criterion is crucial for predicting the initiation of
material failures in structural elements. Both analytical and FEM models need the
material failure criterion in structural failure analysis. Although many failure criteria
have been proposed for various practical applications there is still a shortcoming in
their physical foundations. Furthermore, different failure mechanisms may lead to
totally different failure types. A transition between two different failure mechanisms
requires totally different failure criteria in failure analysis.

Generally, two major classes of external loadings for a structural element are
associated with axial impact(or in-plane impact for plates) and transverse impact. One
possible structural failure mechanism for the first situation is the occurrence of
dynamic buckling, which may lead to material failure due to large localized strains.
Some methods of analysis for the dynamic buckling response of structural elements
have been discussed by Jones(1989a,b) though virtually no attention has been given
to the consequences of material failure. Our particular attention in this research will
focus on the dynamic ductile failure of structural elements under transverse loading
which is a very common loading throughout many engineering industries.

Investigations into the basic failure mechanisms of structural elements under
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transverse impact loadings are important for understanding the complicated failure
modes in many practical situations in the field of impact engineering.

As the simplest structural element, the behaviour of a beam under transverse
dynamic loading yields some important characteristics for the response of other
structural elements subjected to similar dynamic loadings. Therefore, an investigation
into the failure modes of a beam under a transverse dynamic loading will assist our
understanding of the failure mechanisms for more complex structural systems.

The scope of the present work is to study the localised shear deformation
behaviours and various failure mechanisms in a transversely loaded structural

element.

LII Outline of the Current Work

Dynamic transverse loading is a common loading type in structural dynamics.
Transverse shear localization and failures are frequently observed in practices, and
are studied throughout this thesis. The behaviour of a transversely loaded structural
clement and various failure mechanisms and failure criteria are introduced in Chapter
I, in which both ductile shear failure and adiabatic shear failure as well as the
possible transition between different failure modes are discussed. A rigid, perfectly
plastic theory is proposed in Chapter 2 to illustrate the shear localization phenomena
in structural elements when subjected to a dynamic transverse loading, which offers
a theoretical foundation for using the concept of stationary shear hinge in the
dynamic plastic response of structural elements. In order to estimate the deformation
distributions in a shear hinge, Chapter 3 evaluates the size of a shear hinge for
various structural elements. FEM simulations are conducted to describe the actual
formation process of transverse shear localization. These results give important
information for predicting the initiation of ductile shear failure and an adiabatic shear
band. Transition between these two failure mechanisms in a fully clamped beam
when subjected to an impulsive pressure loading is studied in Chapter 4 by using
rigid, perfectly plastic analysis and the knowledge developed in Chapters 1 to 3. A
similar discussion is conducted for circular plates and cylindrical shells, and projectile

impact loadings.
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In order to have a deep understanding on transverse shear response and failure
phenomena, experiments and results on double shear beams under projectile impact
are presented in Chapter 5. A thermo visco-plastic constitutive equation is also
proposed there based on static tensile, dynamic compressive and high temperature test
data. Both transformation and deformation shear bands are observed under different
conditions. Two different failure mechanisms, i.e., tensile fracture failure and
adiabatic shear band failure, are found at the notch corners. The response and failure
phenomena observed in Chapter 5 are analyzed by using an analytical model and the
FEM method in Chapter 6. Different failure criteria are verified using the
experimental results.

Comments and main achievements are concluded in Chapter 7.
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LIII Notation

A Py Y, thermodynamic forces

B beam width

Cor €, elastic and plastic shear wave velocities

c, specific heat

D damage parameter

e half length of a shear hinge

E Young’s modulus

E Young’s modulus of the material when free from any damage

E, hardening modulus

f void volume fraction

F,, F,, F; static, dynamic and temperature factors in a thermo-viscoplastic
constitutive equation

H thickness of structural element

I rotatory inertia of a beam cross-section

J volume ratio of material

K, thermal conductivity

[ N length of the plastic bending, shear and membrane hinges

L beam span

M bending moment

P, pressure of the gas gun

q parameter in Cowper-Symonds equation (5-3)

Q transverse shear force

t time

T temperature

T, melting temperature

T, room temperature

u axial displacement

V, initial velocity

critical velocity
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V, plastic internal variables

w’ inelastic strain energy density

w. critical value of w” at failure

W, transverse shear displacement

B Taylor-Quinney coefficient

Y engineering shear strain

A shear hinge length

&; strain

€. von-Mises equivalent strain

o zero gauge length engineering strain
Enor zero gauge length natural rupture strain
K bending curvature

\Y Poisson’s ratio

& discontinuity interface location

p material density

o] effective stress

oA yield stress

(o von-Mises equivalent stress

o uniaxial engineering stress

Oy hydrostatic stress

C,, 3oy

Or uniaxial true stress

Orr uniaxial true stress at failure

O T, defined in eq.(A14)

T shear stress

(i) intrinsic mechanical dissipation rate
() d/dt

() d/ox

I absolute value



Chapter 1 1

1. INTRODUCTION

1.1. Introduction

Dynamic inelastic response and failure of structural elements under intensive
loadings are of importance for safe design in the field of structural crashworthiness.
Different dynamic loadings may lead to the development of a different response and
failure modes. Three basic response and failure modes associated with a uniformly
distributed impulsive pressure loading were observed by Menkes and Opat(1973) for
a fully clamped beam, e.g.,

Mode [ Large inelastic deformations,

Mode II: Tearing(tensile failure) of outer fibres at or over the supports,

Mode III: Transverse shear failure at the supports,
which develop with an increase of loading intensity, as shown in Fig.1.1. Similar
conclusions on a beam were reached by Ross, et al.(1977). Further experiments have
confirmed the existence of three response and failure modes in square plates(Ross,
et al.(1977), Olson, et al.(1991)), circular plates(Teeling-Smith and Nurick(1991)) and
cylindrical shells(Ross, et al.(1977), Opat and Menkes(1974) and Stricklan, et
al.(1976)), which have received considerable attention in recent years due to their
widespread use in various engineering fields. A reasonable failure criterion together
with a dynamic analysis procedure is necessary for understanding the responses and
failure modes in order to assess the structural safety under transversely dynamic
loads.

A theoretical analysis based on the rigid, perfectly plastic idealization together
with an elementary failure criterion was suggested by Jones(1976,1989) to predict the
occurrence of these response and failure modes in a fully clamped beam. A similar
analysis was adopted by Duffy(1989) to predict the transverse shear failure at the
hard-point of a cylindrical shell. Lately, a more universal theoretical procedure using
the inelastic strain energy density failure criterion, as discussed in Appendix B,
together with rigid, perfectly plastic analysis has been proposed to predict the

observed response and failure modes in several structural elements(Shen and
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Jones(1992), Shen and Jones(1993) and Jones and Shen(1993)). Material strain
hardening and strain rate effects have been considered by Wen(1996) in an analysis
of the response and tearing failure of a fully clamped beam. Alves(1996) incorporated
damage mechanics into a rigid-plastic analysis to predict beam failures, while, some
studies have combined FEM simulations with a failure criterion(Yu and Jones(1989),
Clift, et al.(1990)). However, it appears that there are still many difficulties in
incorporating failure criteria into a FEM procedure for a dynamic response and the
failure of structures(Yu and Jones(1997)).

An important response feature of a structural element under a transverse
dynamic loading is the localization of deformations, represented by bending and shear
hinges, during the initial response period, which is followed by bending and
membrane responses. Generally, a shear hinge may be initiated firstly by an intensive
dynamic loading, followed by bending and then membrane responses if material
failure does not occur. A bending hinge is normally associated with low loading rate
and low to medium loading intensity, which develops into a membrane state with the
increase of transverse displacement. However, material failure may occur at any time
when a failure criterion is satisfied at the location of localized deformation. If
material failure occurs during the transverse shear response phase, it is characterized
by a Mode III failure. A mode II failure is associated with bending and membrane
responses, although previous shear deformations may contribute to the final failure.
Clearly, Mode I is not associated with an actual material failure. Because large
permanent deformations of structural components may damage the contents in the
structure, a Mode 1 response is considered as a particular safety criterion from the
engineering view-point.

The failure criteria discussed in Section 1.3 may be used to predict material
isothermal failure including Modes II and III, where equilibrium thermodynamic
principles are applicable. However, the response characteristics associated with Mode
III may lead to a different failure mechanism, known as an adiabatic shear band,
which is initiated by material instability due to thermal softening. As pointed out
previously, both Mode II and III failures result from localized deformations in a
structural element related to bending and shearing hinges during the early response

phases. The physical nature of bending and shearing hinges in a transversely loaded
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structural element will be studied in Chapter 2 using a rigid, perfectly plastic
idealization.

In the present chapter, a transverse shear localization and related failure
mechanisms will be discussed. The possible failure mechanisms in a transverse shear
hinge include isothermal fracture failure and an adiabatic shear banding failure.
General features of a transversely loaded structural element will be discussed in
Section 1.2. Various failure criteria that may be used to predict structural material
failure are reviewed in Section 1.3. Shear banding phenomenon is discussed in
Section 1.4. Failure transition between these two failure mechanisms is introduced

in Section 1.5.

1.2 Transverse Shear Response and Failure

It has been shown that transverse shear forces may influence significantly the
response of plastic structural elements under dynamic lateral loadings(Jones(1989)).
Experimental and analytical results on the dynamic plastic response of structural
clements have shown the existence of a transverse shear hinge which is an
idealization of a localized shear zone. The critical conditions for the occurrence of
transverse shear hinge(sliding) have been obtained for various structural
clements(Jones(1989), Li and Jones(1994), Li and Jones(1995a,b)) using the rigid,
perfectly plastic assumption. It appears that transverse shear localization is closely
associated with the two dimensionless parameters for a sufficiently rapid loading

QR

p=t and v=20 (I-1a,b)
P() 2M

0

where P is the pressure intensity of the loading, P, is the static plastic bending
collapse pressure, Q, and M, are the fully plastic generalized forces in structural
clements, R is the dimension of structural element, i.e., radius for circular plate or
the half length for a beam and a cylindrical shell(Li and Jones(1991), Li and
Jones(1995b)). Critical curves for the initiation of a transverse shear hinge in several
structural elements are shown in Fig.1.2 where a transverse shear hinge is initiated
above the corresponding curve. Another important factor which influences the

initiation of a transverse shear hinge is the loading rate described by V/c,, where V
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is the loading velocity and c, is the propagation speed of transverse plastic shear
deformations in a structural element, as shown in Chapter 3. Once a transverse shear
hinge has been formed, the external cnergy will be dissipated mainly through shear
deformations within the plastic hinge.

Symonds(1968) was the first to provide a theoretical illustration for the
phenomenon of localized shear deformations in rigid, perfectly plastic beams. He
discussed the influence of the transverse shear force on the dynamic plastic response
of beams, and proved that a rigid-plastic shear interface remains stationary during the
dynamic plastic response. Although, Symonds’ results are based on a particular
square yield curve which relates the bending moment and the transverse shear force,
his conclusions have been extended in Chapter 2 to general regular and singular yield
conditions, and furthermore, to circular plates and cylindrical shells. It is evident that
the accumulated shear deformations at a stationary plastic hinge will be responsible
for both the transverse shear failure observed by Menkes and Opat(1973) and the
adiabatic shear banding mechanism discussed in Section 1.4.

The transverse shear hinge introduced into a rigid, perfectly plastic analysis
is an idealization of rapid changes in transverse displacement across a short section
of a beam. The distribution of transverse shear deformations within the shear hinge
are complicated and cannot be determined with the aid of a rigid, perfectly plastic
method of analysis. However, experimental evidence(Zener(1948), Jouri and
Jones(1988)) suggests that the section which is deformed in shear is anti-symmetrical
about its mid-point for a pure shear hinge and may be divided into two parts with
rapid and slow changes of the transverse displacements in zones I and II, as shown
in Fig. 1.3. Most of the transverse shear deformation occurs within the zone I so that
the transverse shear sliding across a shear hinge is due mainly to the transverse
displacement accumulated across this zone. The shear deformation within zone I is
almost a simple shear flow, which is determined by
W, (1-2)

=

where W, is the transverse shear sliding across the shear hinge and A is the length

of shear hinge which will be determined in Chapter 3.
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Within the shear hinge, plastic deformation is a simple shear flow associated

with monotonic loading. Thus, the maximum shear strain failure criterion is
Y=Y, (1-3)

where 7, is the critical shear strain determined by a pure shear test.

Eqgs.(1-2) and (1-3) lead to the so-called elementary failure criterion

W=Ww" (1-4)

Y 5

where W © is the critical value of transverse shear displacement, determined from
W, =y A=\yH=kH, (1-5)

where, k=Ay,, and A=A/H=2e/H is a constant which will be given in Section 3.2 for
several structural elements. The validation of Eqs.(1-4) and (1-5) have been studied
by Jouri and Jones(1988) through a series of tests on fully clamped double shear
bcams made from aluminium alloy and mild steel. The elementary shear failure

criterion is given by

W =kH, 0<k<I (1-6)

&z

which has been used in several applications(Jones(1976,1989)).
Practically, structural dimensions may have a slight influence on parameter
k in eq.(1-6). Some results on beams and circular plates have been shown in Jouri

and Jones(1988), Wen and Jones(1994), Jones, Kim and Li(1997).

1.3 Failure Criteria

Various failure criteria have been developed to predict the initiation of
material failures in structural elements.

A general macroscopic failure criterion within the scope of continuum
mechanics depends on some state variables, such as stress, strain and temperature,
and some internal variables like plastic work. Among them, stress and strain failure
criteria are the earliest phenomenological failure criteria used to predict material
failures.

Early investigators suggested two general criteria for fracture, i.e., (a) fracture
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occurs when a critical state of strain is achieved, and (b) fracture occurs when a
critical state of stress is achieved. It is commonly accepted that stress failure criteria
is suitable for material brittle failure and strain failure criteria is proper for material
ductile failure because material brittle failure is controlled mainly by the existing
stress state as the internal driving forces among atoms, while material ductile failure
is dominated by the internal dissipation process preceding the failure.

Further investigations have shown that the critical strain and critical stress
laws for material failure are individually incorrect. A general expression of a stress
or strain failure criterion should be evaluated from the statement by Dorn(1948):
Muaterial failure initiates when a critical value of the stress/strain state is achieved.
But the stress/strain state for material failure depends upon the inelastic dissipation
histories preceding the failure and some significant environmental variables.

A general stress/strain failure criterion can be expressed by
F(Oij) ZFC(a,',pj), or F(eij) =Fc(ai,[3j), (1-7a,b)

where o; and B, are significant state and internal variables. The function F and its
critical value F, should be determined from experiments and a physical understanding
of the failure mechanisms. Some frequently used stress and strain failure criteria are
given below.

(a) Maximum normal stress failure criterion

F(oij) =max(0,0,,0,), (1-8a)

where ¢,(i=1-3) are principal stresses;

(b) Maximum shear stress failure criterion, or Tresca failure criterion

g '03 _
F(0,)=7 e~ '2 ; (1-8b)

(¢) Equivalent(Von-Mises) stress failure criterion

(1-8c)
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7

where s,=0;-p;; and p,=0,,8,,6,/3=pd,

ij
respectively;

(d) Hydrostatic tension failure criterion
F(GU) oy~ 3 VY.

(e) Maximum plastic tensile strain failure criterion
Fe;)=max(ef,e},€h),

where g(i=1-3) are principal plastic strains;

(f) Maximum plastic shear strain failure criterion
Fle)=Yhy=€l -6,

where v,P=2¢." is the engineering plastic strain;

(g) Equivalent plastic strain(Von-Mises) failure criterion

Flep=] %dﬁfidﬁﬁ*e;
0

(h) Plastic/damage volume expansion failure criterion

F(e)ep+22+ 3

(1-8d)

(1-8e)

(1-8f)

(1-8g)

(1-8h)

are deviatoric and hydrostatic stresses,

which is identical to the void volume fraction failure criterion in damage mechanics.

The above failure criteria have been applied widely in engineering to predict

the initiation of material failure. The four stress type failure criteria described above

are illustrated in Fig.1.4. In a general sense, especially in engineering, a structural

failure can be defined as either a material failure or a plastic flow instability, or

sometimes simply excessive deformations. The proposed stress/strain failure criteria

are capable of predicting both of them.

The inelastic strain energy density failure criterion has been used in several

applications to predict material ductile failure initiation. The general expression of

an inelastic strain energy density failure criterion is
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€

o e 0,8 -

Y]
in which, o and f; are state and internal variables, which need to be identificd in
material failure test. More discussion on inelastic strain energy density failure
criterion is given in Appendix B.

Some failure criteria are based on the theory of damage mechanics. The basic
theory of continuum damage mechanics is introduced by Lemaitre and
Chaboche(1990). The continuum damage mechanics approach is used by Alves(1996)
for dynamic structural failure analysis. It should be noted that the macroscopic
phcnomenological failure criteria do not exclude the possible existence of material

damage.

1.4. Adiabatic Shear Banding

The appearance of a shear hinge in a transversely loaded structural element
is a type of shear localization from the viewpoint of a global structural response.
However, the shear distribution within a shear hinge is still quite uniform if no
material thermal instability occurs. However, the geometrical configuration of a shear
hinge, shown in Fig.l1.3 supplies an ideal environment for initiating a material
thermal instability, or adiabatic shear banding.

The formation of adiabatic shear bands in metal structures subjected to rapid
shearing through explosive or impact loading is an important deformation mechanism
which usually results in a catastrophic fracture. The basic phenomenon of shear
banding was pointed out by Zener and Holloman(1944) and has received increasing
attention in recent years as it is a primary mode of ductile deformation and failure
in a variety of materials at moderate to high rates of deformation. The current
understanding of this topic ts summarised by Bai and Dodd(1992).

An adiabatic shear band can form in a ductile material when thermal softening

caused by the heat generated through plastic deformations dominates strain hardening,
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strain rate hardening and all other hardening mechanisms combined’. A simple shear
test on a Split Torsional Hopkinson Bar(STHB) is used frequently to generate simple
shear flow, and, thus, to initiate an adiabatic shear banding mechanism. Based on
their observations of the formation of shear bands in thin-walled HY-100 steel tubes,
Marchand and Duffy(1988) have proposed that the localization of deformation into
narrow shear bands occurs in three stages. During stage one, a simple shear flow
develops homogeneously. Stage two begins when the shear stress attains a peak
value, and the softening caused by the heating of the material is balanced by the
strain and strain rate hardening. During stage two, the body deforms non-
homogeneously. The initiation of stage three is indicated by a precipitous drop in the
shear stress at a point in the body and the simultaneous localization of the
deformation into a narrow band. These three stages of the deformation have also been
confirmed by numerical studies of Molinari and Clifton(1987) and Wright and
Walter(1987). These three stages can be described by a stress release model proposed
by Grady and Kipp(1987) and Grady(1992) for a simple shear flow, as shown in
Fig.1.5. The adiabatic shearing developed from a simple shear flow possesses the
common features of adiabatic shearing evolved from any other plastic flow patterns,
which are characterised by the localization of plastic shear deformations into a well-
defined shear band and the anti-symmetric plastic deformations within and around a
shear band, as shown in Figure 6.6 of Dodd and Bai(1987). Thus, conclusions
obtained from a simple shear flow are generally valid, which, probably, is one reason
why simple shear has been used by most researchers to study the formation of
adiabatic shear banding.

According to the observations by Marchand and Duffy(1988), global
instability is initiated from stage II when the maximum shear stress is reached.
Afterwards, the subsequent adiabatic shear banding is a natural outcome if the input
cnergy is supplied continuously. From an engineering viewpoint, the initiation of
stage two in Figure 1.5 coincides with the loss of stability of a body in simple shear.

It has been pointed out that this instability is due to the thermal softening caused by

' Material damage or textural effects may have a similar effect as thermal softening, and lead to
an isothermal shear band or shear band in combination with thermal softening effects(Dodd and
Atkins(1983)).
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adiabatic heating®. Some linear(Costin, et al.(1979), Bai(1982)) and non-
linear(Wright and Walter(1987), Fressengeas and Molinari(1987)) analyses have also
shown that a localized shear deformation starts in a body after the peak homogeneous
simple shear stress. Therefore, the maximum shear stress is used frequently as an
approximate criterion for the formation of a shear band, as discussed by Dodd and
Bai(1987), and Wang, et al.(1988).

If deformation history effects and changes in the structure of the metal are
ignored, then the flow stress T may be written as a function of the shear strain v, the

shear strain rate y and the temperature 7, i.c.,

. 1-10
=YN.T) . ( )
The maximum shear stress criterion may be expressed as
di= 91(1 .__dy'+it_dT =0 , (-1
Y

in which, ot/0y>0, 01/dy>0 and 91/0T<0 represent strain hardening, strain rate
hardening and thermal softening, respectively.
For adiabatic deformations, the increase of temperature with strain is given

by

¢1T=itdy , (1-12)
pC,

where, B is the Taylor-Quinney coefficient defined as the fraction of the plastic work
converted into heat(B=0.9-1.0)(see Taylor and Quinney(1934), Birch, Jones and
Jouri(1988), and Oliferuk(1993)), T is the flow stress, p is the density of the metal
and C, is the specific heat. Although, a constant 3 has been used by all publications
known by the author, B may vary during an inelastic deformation process, which is
still an open topic for further research.

By using eqgs.(1-11) and (1-12), the maximum shear stress criterion can be

expressed as

2 Sometimes, a truly adiabatic condition is not obtained, but it is still known as adiabatic shearing.
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£y )=0, (1-13)

for an adiabatic process, where f. depends on the particular form of the thermal
visco-plastic constitutive equation.

The initiation of material failure in an adiabatic shear band is a complicated
process, where both brittle and ductile modes of fracture are observed. Shear bands
can be divided into two different types, i.e., deformation bands(without any micro-
structural transformation) and transformation bands(with a micro-structural
transformation). The majority of shear bands observed in nonferrous metals are
deformation bands. Transformation bands are most commonly observed in ferrous
alloys, in which they are associated with a ferritc-austenite transformation. Bai and
Dodd(1992) give further details on the metallurgical and microscopic features of
shear bands.

When an adiabatic shearing process occurs in a uniform shearing material
section, the adiabatic shear banding criterion, eq.(1-13), could be applied easily
because strain and strain rate are not related to wave propagation. However, when the
loading rate is very high, the whole event may be completed within the time when
wave effects are important. In this case, stress wave effects have to be considered for
both fracture failure and adiabatic shear banding failure. If material failure or
adiabatic shear banding occurs before the transverse shear wave reflects several times
between two ends of the gauge section, wave effects must be considered in the
deformation prediction and failure criteria. This is the case in Section 3.3.3(c) when
V>c, and the situation in Section 4.3.2 when V>V, which limits the method
developed in Chapters 3 and 4 by using shear hinge concept within a proper impact
velocity range.

In order to establish a criterion for initiating adiabatic shear banding, let us

examine the "rate-independent” momentum equation

oy (1-14)

where u is the transverse displacement, and the transverse shear wave velocity, c,,

is determined by
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1dec (1-15)

The common concave 1-y relationship in the isothermal case without a stress peak
will give a decreasing wave speed with increasing stress or strain. However, it is
unavoidable that an increase of shear strain at high strain rates may lead to a
significant temperature rise, which causes the flow stress to decrease due to the so-
called thermal softening effect. Texture softening, such as damage development, may
also lead to strain softening, which is not important in the present problem. For a
semi-infinite body loaded on its boundary surface with a monotonously increasing
driving velocity, the deformations propagate by shear wave patterns. As soon as the
shear stress reaches its maximum at a critical strain due to thermal softening, i.e.,
dt/dy=0, the corresponding wave velocity is zero. Beyond the critical shear strain,
which depends obviously on the loading ratc, transverse shear disturbances cannot
propagate into the semi-infinite body and are trapped at the location where ¢,=0. This
provides a strong discontinuity and, thus, an abrupt jump of particle velocities which
leads to an adiabatic process and intensive shear strains at the location where c,=0,
and therefore, may be understood as the initiation of adiabatic shear banding. This
phenomenon was termed "wave trapping” and was first noticed by Erlich, et
al.(1980). According to the physical nature of wave trapping, the location of
adiabatic shearing associated with shear wave propagation should be near the loading
boundary(Wu and Freund(1984)), which is only possible when the loading rate and
intensity are both sufficiently high.

Now, let us consider an idealized shear propagation model, where the input
shear strain rate is constant® and the heat conduction is simplified by eq.(1-12). The

balance of momentum in the absence of body forces is

“This is a simplification of the problem. After the occurrence of shear banding or wave trapping,
the rate sensitivity must be considered, which results in a finite thickness of the shear band(Wu and
Freund(1984)). It has been shown that this thickness varies with the boundary velocity in a certain
region(Wu and Freund(1984)). which coincides with experimental observations that the shear band
thickness varies from 10-100um under different situations.
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p V.ot (1-16)
ot oy
and the shear stress increment is
dr=( 9T BT 0T 9T (1-17)

dy pC, dT oy

according to egs.(1-11) and (1-12). Before the occurrence of a shear instability, or
wave trapping in this case, the assumption of a constant input shear strain rate may
lead to dy=0 because the same relative velocity is imposed on the material particles
by the travelling shear stress wave. Thus, eq.(1-14) can be evaluated from eqs.(1-16)

and (1-17), in which the wave propagation velocity defined in eq.(1-15) is given by

1,0t aft ot
c .| L0 apror (1-18)
P \J p(ay’pCVBT)

in the current case. ¢, =0 implies that the input energy will be trapped at the place
where this condition is satisfied first, which will lead to a localized shear deformation
band.

It should be noted that the condition for wave trapping(or adiabatic shear
banding), ¢,=0, is identical to dt=0 when the strain rate change is neglected, which
generally true before the initiation of adiabatic shear banding. After wave trapping
occurs, dy may not be zero. The term dy in eq.(1-17) will be considered, as
discussed previously by Wu and Freund(1984). It was shown that the strain rate
effect leads to a viscous dissipation which makes the wave trap diffuse with a
characteristic spatial length. The above analyses are only suitable for a limited
period when the reflected plastic wave has not arrived at the loading boundary.
Outside this period, the boundary conditions at the two ends of the shear section need
to be considered, and eqs(1-16) and (1-17) require solving to predict the actual
location of wave trapping. Therefore, the features of an adiabatic shear band formed
by wave trapping during the early response period when the stress wave effect 18
important are different from those formed in the later phase when the stress wave

cffect may be neglected but dynamic effects(strain rate and inertia) are still important.
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In the later case, the structure of a shear band is anti-symmetrical which has been
obscrved in many cases(see Fig.6.9 on pp.152 of Bai and Dodd(1992)). However, in
the wave trapping case, the distribution of deformation within the wave trapping layer
is not anti-symmetrical(Wu and Freund(1984)). A detailed discussion on wave
trapping is introduced by Bai and Dodd(1992).

Equation (1-18) is Klepaczko’s(1994) results. Klepaczko used a rate-
independent wave theory and rate-dependent constitutive equation in his evaluation,
which appears to be contradictory. This contradiction is eliminated in the present
evaluation when a characteristic strain rate is kept in the constitutive equation, but
its transient changes are neglected.

By using the following relationship

thdey =0 (1-19)

along the non-linear characteristic lines, the critical impact velocity to initiate wave

trapping may be obtained by
Y
_ 1-20
0
where v, is determined by ¢, =0(or dt=0), as shown by Klepaczko(1994).

1.5. Failure Mechanism Transition

It has been shown that isothermal fracture failure and adiabatic shear banding
failure are two important failure mechanisms, which may develop within a shear
hinge of a transversely loaded structural element. Previously, these two failure
mechanisms were studied separately because isothermal fracture failure and adiabatic
shear banding occur in different ranges of the loading rate and intensity.

Some recent studies have studied the interactions between an isothermal
fracture failure and an adiabatic shear banding failure. Kalthoff(1987, 1990) observed
two distinct failure mechanisms in double-shear beams when subjected to projectile
impact. At a low loading rate, the usual opening fracture mode was observed. With
an increase of loading rate(impact velocity), the opening fracture mode was

transferee into an adiabatic shear mode, which is controlled by a totally different
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lailure mechanism. Wang, et al.(1994) treated this problem as an interaction between
a dynamic opening fracture mode crack and an adiabatic shear band. The maximum
stress criterion given in Section 1.3, and elastic fracture mechanics were used to
predict the initiation of an adiabatic shear band. Good agreement is found between
test and predicted results for a Ti-6A1-4V material, where the adiabatic shear band
is triggered by an existing crack. In a structural element where no "crack trigger"
exists, it is still possible to find the transition between these two failure mechanisms.
Based on a rigid-plastic idealization and the maximum stress criterion, Wang and
Jones(1996) gave a theoretical analysis for a simply supported beam under an
impulsive loading, which is the first attempt to combine the studies on the dynamic
plastic response of structural elements with the mechanics of adiabatic shearing, and
gives some insight into the adiabatic shearing in an impulsively loaded beam.
However, further experimental and theoretical studies are required due to the

complexity of the problem.



Chapter 1 16

R A Rl

(a) (h (c)

Fig.6.1

Fig.1.1 Three basic dynamic response and failure modes in a transversely loaded
structural element, (a) Mode I (b) Mode II; (¢) Mode III.
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Fig.1.2 Critical curves for initiating transverse shear hinge in several structural
clements,
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Fig.1.3 (a) Idealized shear hinge; (b) Construction of a shear hinge.
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Fig. 1.5. Displacement distributions in a simple shear body corresponding to different
stages of shear banding formation, (a) Stage I: uniform flow; (b) Stage II: non-
uniform flow; (c) Stage I: localized shear flow(Grady(1992))
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2. CONTINUITY CONDITIONS AT BENDING AND SHEARING
INTERFACES OF RIGID-PERFECTLY PLASTIC
STRUCTURAL ELEMENTS

2.1. Introduction

It has been shown in Chapter 1 that deformation localizations in a rigid,
perfectly plastic structural element when subjected to a transverse dynamic load are
represented by plastic hinges during the early response phase before a membrane
state is reached. These plastic hinges, including bending and shearing hinges, are
basically discontinuity interfaces of the generalized strains. For example, a bending
hinge corresponds to a discontinuity interface of bending curvature, and a shear hinge
is associated with the discontinuity interface of shear strain. Thus, the behaviour of
these discontinuity interfaces determine the behaviour of plastic hinges, and therefore,
the dynamic deformation localizations in a transversely loaded structural element.

Although, a discontinuity interface may appear in the dynamic response of
structural elements, made from a rigid, perfectly plastic material, the bending and
shearing hinges represent a general characteristic of dynamic plastic response of
several structural elements under transverse load. The continuity conditions at an
interface must satisfy the conservation of momentum across the interface and the
kinematic admissibility of the motion at this interface. A large literature now exists
for the dynamic plastic bending response of structural elements(Lee and
Symonds(1952), Hopkins and Prager(1954), and Hodge(1955)), in which the
continuity conditions at bending hinges in structural elements were discussed. These
works are also be summarized by Jones(1989)(p.77-81 for beams; p.133-134 for
circular plates; p.169-178 for cylindrical shells).

It has been shown that a transverse shear force plays an important role in the
dynamic plastic response of structures(p.216-275 of Jones(1989)) when subjected to
an intensive loading. Symonds(1968) discussed the continuity conditions at an

interface in a beam when the influence of the transverse shear force is retained in the
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yield condition, and these results have been used widely in the analyses of dynamic
plastic response of beams(Jones and Oliveira(1979), Nonaka(1977), and Li and
Jones(1995a)). However, Symonds’ conclusions are based on a particular square yield
surface, which are not applicable when the stress components at a rigid-plastic
interface lie at a singular position of a yield surface, as pointed out by Jones and
Oliveira(1979). The dynamic and kinematic continuity conditions at a discontinuity
interface in axisymmetrically loaded circular plates and cylindrical shells have been
obtained by Jones and Oliveira(1980, 1983) using generalized stresses and strains
when transverse shear force and bending moments are retained in the yield surface,
which is evaluated from the general dynamic and kinematic continuity conditions
across a discontinuity surface in a continuum(Nowacki(1978)). Some further
investigations on continuity conditions required across a discontinuity surface in an
elastic-plastic solid have been discussed by Drugan and Shen(1987) and Nemat-
Nasser and Gao(1988).

Although, the above mentioned continuity conditions at an interface have been
used widely in theoretical and numerical analyses into the dynamic plastic response
of structural elements, and predict reasonable results, they were, nevertheless, stated
neatly for the convenient use in each case of rigid-plastic interfaces existing in rigid,
perfectly plastic structural elements described with generalized stresses and strains.
Symonds(1968) discussed the properties of both moving and stationary bending and
shearing interfaces in rigid, perfectly plastic beams, which might be extended to
axisymmetrically loaded, rigid perfectly plastic circular plates and cylindrical shells
by a parallel analysis, but his proof is too restrictive to be used for a general yield
condition.

The purpose of this chapter is to extend Symonds’ results for a square yield
curve between the bending moment and the transverse shear force in a beam to a
more general yield condition which may be a regular or a singular one, and to
present continuity conditions for each type of rigid-plastic interface. Furthermore, the
conclusions for a rigid, perfectly plastic beam are proved to be valid for
axisymmetrically loaded circular plates and cylindrical shells which are made from
rigid, perfectly plastic materials, even though different generalized stresses are

involved in the yield condition. The significance of these general results is to prove
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that plastic shear deformation in a two-dimensional metal element has the localization
feature when its plastic hardening modulus is relatively smaller than its elastic

modulus, i.e., rigid, perfectly plastic simplification is applicable.

2.2. Basic Assumptions and Equations

When the local theory(Oliveira and Jones(1978)) is used in an analysis for the
dynamic plastic response of beams without axial deformations, the generalized
stresses and their associated generalized strains are M, Q, K and Y, respectively,
which  should satisfy the material stability postulate proposed by
Drucker(1951,1964)(also discussed by Martin(1975)). Therefore, for a regular yield
surface f(M,0)=0, we have

dx =dki (2-1a)
oM
and
of
dy=d\ L, (2-1b)
Y 30

in which, dA=0 for f<O(before yielding, or rigid case) or f=0 and df<O(unloading
case), and dA>0 for f=0 and df=0O(neutral loading case') when the beam is made
from a rigid, perfectly plastic material. In the plastic loading case, the flow directions
of the generalized strains are in a direction normal to a regular yield surface, which
has a unique normal direction at every point.

For a singular yield surface consisting of a number of n regular yield
functions fp(M,Q), p=1,...,n, plastic yielding occurs as soon as at least one of the
functions f, is zero. It is evident that all the points on the yield surface, when only
one function f,=0, are regular and the corresponding generalized plastic strain
increments are the same as those for a completely regular yield surface f,=0. In those
situations when the generalized stresses are at the intersection of two or more

surfaces f,=0, the flow rule of plastic yielding for such a singular point is obtained

' For a perfectly plastic material, the initial yield surface can not expand, therefore, only the
neutral loading case exists.
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by combining each yield function separately according to Koiter’s

suggestion(Koiter(1953)), which leads to

n af
dk=Y"d) _* (2-2a)
> g
and
n af
dy=¥"dr 2, (2-2b)
L s
where,

dkp:o, for fp <0(rigid case) or fp =0 and dfp <O(unloading case), (2-
3)

dlpZO, for fp-—-O and dfp =0(neutral loading case).

Generally speaking, the flow directions of the generalized strains are uncertain
at a singular point, but are bounded by the normal directions of each adjacent regular
surface. This uncertainty is avoided by using the dynamic equations and the
kinematic admissibility of the deformation field.

Furthermore, we assume that the final deformation of a beam is not influenced
by the loading sequence of the bending moment and the transverse shear force, and
therefore, the deflection of a beam is composed of two parts which are related to the

bending and shearing behaviour
WEW, W (2-4)
Differentiation of equation(2-4) with respect to time leads to

LLr—— (2-5)
at R

From equations(2-4,2-5), we define the following quantities for small deformations
w (2-6a)

§x—=W+Y
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OW e Y (2-6b)
odx ot
and
k=Y (2-6¢)
ox

where, y=0dw,/dx, ®=0y/dt and K are rotation angle, angular velocity and the
curvature associated with bending, respectively, and y=dw /dx is the transverse shear
strain.

The conservation of momentum across a discontinuity interface requires(p.230
in Jones(1989))

L (2-7a)
[0l mé[w]g

and

[m§=_lr&'[aa—\f]§ , (2-7b)

in which, & is the position of an interface, and  is the propagation velocity of a

moving interface.

2.3. Results For Regular Yield Surface
Now, the kinematic continuity conditions across a moving interface are(p.230-

231 in Jones(1989), also see Symonds(1968))

[w];=0 and [y],=0, (2-8a,b)

which imply that
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ow, o Ow (2-9a)
W1 €121 =0
[ 5 | o I

and

oy, o oy (2-9b)
— 1.+ &[=—].=0
58150,
which allow equations (2-7a,b) to be written as
. 2-10
(0], =€ ], (1
and
(2-10b)

[M] =1 [x],

when using equations (2-7a,b) and [Ow/dx].=[y]+[Y].=[Y]:.

Consider an interface moving from a perfectly plastic zone to a rigid segment,
as shown in Fig.2.1(a). The points on the rigid side of the interface will yield when
reached by the moving interface. Equations (2-10a,b) may be re-written as

) 2-11¢
dQ=nt’dy (1)

and

. 2-11b

dM=IE’dx ( )
where, dA means the increment of a physical quantity A on the rigid side of an
interface shown in Figure 2.1(a).

For a rigid, perfectly plastic material,

of of _
Iif=—2_dQ+_2_dM=0 (2-12)
el 30 Q oM

during a loading process. According to equations (2-11a,b) and (2-1a,b), equation (2-
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12) gives

"2 g d 2-13
: dx[m(%)w,(a_{l)zw 1)
which indicates that dA=0 because &#0, m>0, I >0 and df/dQ and 9f/dM can not equal
zero simultaneously. Thus, dy=dx=0 or [V]e=[k]=0, which means that there is no
discontinuity at such an interface in a rigid, perfectly plastic beam. It transpires that
a discontinuity in Y or K can not develop at an interface which moves from a plastic
zone to a rigid segment. This conclusion has been presented by Symonds(1968) for
a rigid, perfectly plastic beam. However, the proof given by Symonds(1968) is valid
only for regular points on the square yield surface, as mentioned by Jones and
Oliveira(1979).

If an interface in a rigid, perfectly plastic beam moves from a rigid segment
to a plastic zone, as shown in Fig.2.1(b), the plastic side of the interface will become
rigid as the interface moves across it. This is an unloading process for the region on

the plastic side of interface, which, therefore, requires dA=0 in equations (2-1a,b), or

(7], =1x], =0 (2-14ab)

and
[Q)=[M],=0. (2-15a,b)

In this case, & may not be zero, as observed in many theoretical results for the
dynamic plastic response of beams. One example is the second response phase for
the simply supported beam in Section 3.2 of Jones and Oliveira(1979).

If 1=0, equation (2-13) shows that dA is not required to be zero when
df/dQ=0. In this situation, [v]:=0, but []; may not equal zero as an interface in a
rigid, perfectly plastic beam moves from a plastic zone to a rigid segment. The
appendix of Zhu, et al.(1986) gave an example of this case for the bending response
of a simply supported beam subjected to a general pulse pressure loading. Similar
results for a circular plate was obtained by Youngdahl(1971).

Equations (2-6a), (2-8b) and (2-14a) give [ow/dx].=[y].+[Y]:=0, and, therefore,
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ow
—_],=0
[ = I

according to equation (2-9a) whether I, equals zero or not. Thus, the kinematic
continuity conditions across a moving interface in a rigid, perfectly plastic beam(both

cases in Fig.2.1) are
[w];=0 and [1],=0, (2-16a,b)

which, together with equations (2-15a,b) have been used in the previous theoretical
analyses reported by Symonds(1968), Jones and Oliveira(1979), Nonaka(1977), and
Li and Jones(1995a). It may be shown that equations (2-16a,b) are the sufficient and
necessary conditions for the satisfaction of equations (2-8a,b) in the case of Figure
2.1(a), and equations (2-16a,b) are equivalent to equations (2-8a,b) for the case in
Figure 2.1(b) under the assumption that [y];=0 when E_,¢O Thus, equations (2-16a,b)
may be used, instead of equations (2-8a,b), as kinematic continuity conditions across
the interface in a rigid, perfectly plastic beam moving from a plastic zone to a rigid
segment because a shear interface is always stationary which is an important
conclusion of previous analyses.

The above analyses show that a shear interface in a rigid, perfectly plastic
beam is always stationary whether or not /,=0. This implies that the transverse shear
deformation is always localized in its initially formed zone throughout the dynamic
plastic response of beams. The characteristic length of this zone will be very small
compared with the beam length, because the size of the shear deformation zone does
not increase during the subsequent beam response. All transverse shear deformations
will be localized in this zone, which, therefore, may be idealized as a plane with
transverse shear sliding. The sliding displacement at an idealized plane is the relative
displacement at two sides of the transverse shear deformation zone, as illustrated in
Fig.1.3(a). Due to the antisymmetric property of the transverse shear force about the

mid-plane of a shear deformation zone, the kinematic continuity condition across the

transverse shear sliding plane 1s
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[y];=0. 2-17)

and equations (2-15a,b) should be satisfied for either 120 or /=0.

It should be noted that the assumption of shear sliding does not mean that the
actual severance occurs at the shear sliding interface. [w]e#0 is an idealized result
when we neglect the size of the transverse shear deformation zone, as discussed
above.

For a stationary bending interface, only the transverse deflection need to be
continuous, i.e., [w]:=0 which is equivalent to [w]e=0 according to equation (2-9a).
Equations (2-7a,b) require [Q]=[M]=0.

In summary, the continuity conditions at an interface in a rigid, perfectly
plastic beam may be expressed as

(a) Moving bending interface(does not exist for the case in Figure 2.1(a) when /#0)
[0],=0, [M],=0, [#],=0 and [w],=0; (2-18a-d)
(b) Stationary bending interface
[Q]&=O, [M]§=0 and [W]§=0(0r [W]%’;:O); (2-19a-c)

(c) Stationary shear slides

ow . A
[Q];=0, [M].=0 and [y],=0(or [Wlfo)’ (2-20a-c)

(d) Stationary bending and shear interface

[Q]§=O and [M]F’:O. (2-21a,b)

All these continuity conditions in each case are identical to those presented by Li and
Jones(1995a) and reduce to the special cases examined by previous studies on the

transverse bending and shear responses of a rigid, perfectly plastic beam.

2.4. Results For A Singular Yield Surface
If one of the parameters dA,=0(p=1,2) for a singular yield surface, then the

associated terms in equations (2-2a,b) are eliminated, and the remaining terms in
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equations (2-2a,b) are the same as equations (2-1a,b). Therefore, the results for this
situation is the same as those for a regular yield surface.

In the case when dA>0(p=1,2), then only the loading situation in Figure
2.1(a) requires discussion. The results for the unloading sitvation in Figure 2.1(b)
are similar to those for a regular yield surface.

Now, equation (2-3) with df,=0 for neutral loading requires

f' _deM -0, (2-220)

and

%d fsz 0. (2-22b)
a0

Equations (2-22a,b) with equations (2-11a,b) and (2-2a,b) may be expressed in the

form
i (_f‘_)2 ay f')]d?» \m df, df, o daf, of, Jd),=0, (2-23a)
30 3030 oM M
and
w0 D <{m( f2)2+,( fz)]dx 0 (2-23b)
aQ E)Q ’aM oM a0 oM

provided &;tO
The condition for dA #0(p=1,2) is

f] 2, f] 2 fz fz 21_ af] afz +] afl afz 2___0
[m (—-Q—) 1( )][ (== Q) (aM)] (maQaQ ’aMaM)
or
of, of, _afl afz=0 (2-24)
dQ oM oM dQ

when m#0 and 120.
Equation (2-24) implies that
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o, . of, . Of, . of, —
ﬁ"xr‘z;=(ii+ij)x(£i+%j)=0

! 00 oM~ o0 M

(2-25)

where, ﬁ, and ﬁz are the normal directions of f,(Q,M)=0 and f,(Q.M)=0 at the
intersection point, respectively, and ?andfare unit vectors of the local orthogonal
coordinates. Equation (2-25) implies that 7, is parallel to 7,. Therefore, the
intersection point of f,(Q,M)=0 and f,(Q,M)=0 must be a regular point if equation (2-

24) is satisfied, which has been discussed in Section 2.3. Thus

of, of, B of, af2¢0 (2-26)
0Q oM M 90
which leads to
di ] =d12=0

from equation (2-23), and following conditions are reached

[,=[k];=0 and [Q],=[M],=0 (2-27a-d)

at an interface in a rigid, perfectly plastic beam by using equations (2-2a,b) and (2-
10a,b).

It transpires that all the conclusions for a moving interface at a singular yield
point for a rigid, perfectly plastic beam are the same as those for the regular yield
surface studied in Section 2.3 when /#0. This conclusion is also true for the
continuity conditions at both moving and stationary interfaces.

It 1.=0, then equation (2-10b) gives

[M],=0 (or dM=0), (2-28)

while, equations (2-22a,b) become
—1d0=0 (2-29a)

and
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22 40-0 (7-29b)
30°¢

Equation (2-26) indicates that df,/dQ and 9df,/0Q can not equal zero simultaneously,
and therefore, dQ=0, or

01,=0 (2-30)

which leads to

[],=0 (2-31)

from equation (2-10a).

Again, a shear interface must be stationary, and equation (2-10b) implies the
possibility that a bending interface may move, which is the same conclusion as that
reached for a regular yield surface. Thus, equations (2-18) to (2-21) are valid for both

regular and singular yield surfaces.

2.5. Continuity Conditions for Circular Plates and Cylindrical Shells

The yield surface, which is shown in Figure 2.2, has the following properties

if_'=1, %4), P s Lo (2-32a-d)
JP oM a0 oP

in which, P=M,(or N) for circular plate(or cylindrical shell); where M, is the
circumferential bending moment in a circular plate and N is the circumferential
membrane force in a cylindrical shell.

For both an axisymmetrically loaded circular plate and an axisymmetrically
loaded cylindrical shell, equations (2-1) to (2-11) will be satisfied according to the

basic equations in Jones and Oliveira(1980,1983)*. Furthermore,

2 For example, equations (2-7a,b) and (2-9a,b) here are the same as equations (2-4b,a) and (2-
6b,a) in Jones and Oliveira(1980, 1983), respectively, when M, x and x are replaced by M,, x, and r
for circular plate.
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K _\I’, for a circular plate (2-33a)
r

and

89=—%, for a cylindrical shell (2-33b)
where, r is the radial coordinate of circular plate and R is the mean radius of a
cylindrical shell.

In the following discussion, f5,(Q,M,P)=0 is assumed to be a regular surface.
However, it does not influence the results when f,(Q,M,P)=0 is a singular one
because of the conclusions reached in Section 2.4.

The assumption of a rigid, perfectly plastic material requires

d d d d
df,= an‘ dQ+ aﬁ; dM + aﬁ dP= E)ﬁ dP=dP=0 (2-34a)

and

df.,= afz dQ+ afz dM + afz dP= af2 dM + afz dQ=0 (2-34b)
If,
a0 oM oP oM aQ

while, the plastic flow rule from equation (2-2) gives

dy=d\,—- 4 rdh,—2 ¥ xz_f_ (2-35a)
30 730
dx=d\, o, Y, 2 (2-35b)

oM YoM oM
and
dg=d\,— f' +dh,— % (7-35¢)
P
where, g=x, (or &g).

It is evident that equations (2-34b), (2-35a,b) together with equations (2-1) to

(2-10) are the same as the corresponding equations for a beam. The extra equations
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(2-33a,b) may be satisfied by adjusting d\, which has no influence on dx and dy.
Thus, the continuity conditions for both a circular plate and a cylindrical shell are the

same as those for a beam, except for the additional condition from equation (2-34a)

[P],=0. (2-36)

It should be noted that the dynamic plastic response of circular plates and
cylindrical shells usually lead to f,(Q,M,P)=0 and dg=dA,>0 throughout the entire
area of a plate or a shell. In this case, the continuity conditions(equations (2-18) to
(2-21)) are not related to an interface between rigid regions and plastic zones in a
rigid, perfectly plastic material, but to an interface in a plastic deformation zone.
These conclusions have been examined for the dynamic plastic analyses of circular

plates(Li and Jones(1994)) and cylindrical shells(Li and Jones(1995b)).

2.6. Comments

A rigid, perfectly plastic idealization has been used successfully to predict the
dynamic plastic responses of various structural elements. An important concept in this
analysis is plastic hinge, through which plastic deformations are propagated. Material
failures always appear at deformation localization points, which are formed by the
combination of bending and shear hinges, and sometimes, associated with the
membrane deformation. The conclusion of this chapter shows that a shear hinge
behaves like a "deformation trap” because of its stationary feature. Other analyses
have shown that plastic deformations are easier to be consumed in a shear hinge than
in a bending hinge or a membrane state. Thus, localized shear response and possible
shear failure become the dominate mode when the transverse shear conditions
discussed in Section 1.3 are satisfied, which are normally associated with dynamic
loads with sufficient intensities. Therefore, the response and failure Modes I to 111
appear with an increase in the loading intensity.

Even when material strain hardening and strain rate effects are important, the
basic response feature of a plastic structural element shows no significant change.
Thus, a rigid, perfectly plastic analysis is sufficient for most engineering problems.
The shortcoming of a rigid, perfectly plastic analysis is its limitation to give

deformation distributions within a plastic hinge although some simplified methods
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have been introduced to overcome this difficulty(Nonaka(1967), Jones and
Shen(1993)). Most of them, unfortunately, concern the construction of a bending
hinge, except Wang and Jones(1996) who proposed an one dimensional transverse
shear propagation analysis based on rigid, plastic strain hardening model. The
formation of a transverse shear hinge and its geometrical dimension will be studied

in Chapter 3.
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plastic

E—' arca

(a) (b)

Fig.2.1 Discontinuity interfaces in a rigid, perfectly plastic material, (a) Moving from
a perfectly plastic zone to rigid zone; (b) Moving from a rigid zone to a perfectly
plastic zone.

£4Q.M,P)=0

f(QM,P)=0

Fig.2.2 Yield surface.
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3. FORMATION OF A SHEAR LOCALIZATION
IN STRUCTURAL ELEMENTS
UNDER TRANSVERSE DYNAMIC LOADS

3.1. Introduction

It is well-known that transverse shear becomes an important factor in the
dynamic response and failure of transversely loaded structural elements with
increasing dynamic loading rate and intensity and many studies have been published
to examine the influence of transverse shear on the dynamic plastic response and
failure of structural elements(Jones, 1989(a, b and c¢), Jones and Shen, 1993). The
concept of a ’shear hinge(or shear sliding)’ was employed in these studies to
investigate the first stage of the response for those structural elements when shear
deformation dominates the bending and membrane deformations. Usually, it is
assumed that a shear hinge has an infinitesimal length for a rigid, perfectly plastic
idealisation. This assumption emerges from Symonds(1968)’ conclusion that a
transverse shear hinge is always stationary in a rigid, perfectly plastic beam, which
implies that transverse shear will be localized within its initially formed zone if the
influence of material strain hardening can be neglected. Symonds’ conclusion, which
was originally based on a particular square yield surface, has been extended to
arbitrary regular and singular yield conditions, and has been shown to be valid for
symmetrically loaded circular plates and cylindrical shells, as shown in Chapter 2.

Either in Symonds’ original proof or in the subsequent studies on structural
elements, no efforts were made to explore the structure of a shear hinge. This
situation occurs because these studies concentrated mainly on global structural
responses, where the concept of shear and bending hinges can give a reasonable
prediction of the energy consumed without knowing the exact size of shear and
bending hinges in structural elements. In fact, the exact length of a shear or bending

hinge is not necessary when the hinge concept is used in dynamic plastic response
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analyses. The energy consumed within a shear or bending hinge may be estimated
from the relative transverse displacement across the shear hinge, or the relative
rotation angle across a bending hinge, respectively. However, if the results from rigid,
perfectly plastic analyses are used to predict the initiation of local failures or local
flow instabilities, then the size of shear and bending hinges are required in order to
obtain the deformation details within these hinges.

Usually, combined bending and shearing responses develop first in a structural
element under transverse dynamic loads(Jones(1985)). This is followed by a
combined bending and membrane response and, finally, membrane behaviour
dominates if no material failure has occurred during the response. However, a failure
may initiate at any stage during the response, which defines different failure modes
as observed by Menkes and Opat(1973) and clarified by Jones(1976, 1989(c)) for
beams, which have been discussed in Chapter 6. The present investigation is confined
within the early time response period when shearing and bending effects dominate
the response, which often leads to shear failure or adiabatic shear instability
depending on loading rate and material properties. A study on the transition between
these two different shear failures will be given in Chapter 4.

A transverse shear localization might develop at the site of the impact
loading and hard point support interfaces and is formed by the propagation of the
transverse disturbance away from these interfaces. The propagation of transverse
disturbances in one or two dimensional structural elements, such as beams, plates and
shells, is complicated due to the existence of two free surfaces on the top and bottom
of a structural element. However, when the loading rate is low, the inertia or wave
propagation effect may be neglected. In this case, the formation of a shear
localization might be treated as a quasi-static problem, as studied by Wen, et
al.(1994) and Wen and Jones(1996) for a beam and a circular plate, respectively.
These methods will be re-examined in Section 3.2 of the present paper with a more
solid physical basis and will be extended to examine cylindrical shells. Several
investigations have used the simplification of a quasi-static behaviour to determine
the size of a shear hinge in order to study material failure, and observed encouraging
results when compared with experimental results(see Wen, et al(1995) and Jones, et

al.(1995)).
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When the loading rate and intensity are high, material failure might occur
while the transverse disturbance is propagating across a structure. The actual strain
and strain rate cannot be determined from the shear hinge length predicted by a
quasi-static analysis and wave propagation theory is necessary to provide a realistic
prediction. Wang and Jones(1996) proposed a transverse shear propagation model
within the scope of rigid, plastic analyses when retaining the influence of material
strain hardening. It was assumed that the transverse shear disturbance will propagate

with a constant velocity

(3-1

EI
€= | —,
p
where E, is the linear hardening modulus in a pure shear test and p is the material
density. Clearly, the influence of the top and bottom free surfaces of structural
elements on the propagation of the transverse shear disturbance are neglected, which
is, nevertheless, important for the actual shear wave propagation in a beam, as shown
in Section 3.3. A possible relationship between the quasi-static method and a wave
propagation analysis is studied numerically in Section 3.3 from this view-point, and,
thus, a description of transverse shear localization in structural elements is presented,

which might be used in material failure and flow instability analyses.
3.2. Quasi-static Analyses

3.2.1 Basic Equations

A shear dominant zone, which is described as a shear hinge in a dynamic
plastic analysis, might develop in a beam section under the generalised forces shown
in Fig.3.1(a) for the static case, which produce the same response as the problem
specified in Fig.3.1(b). A necessary condition for the appearance of such a shear
dominant zone is that the length of the beam section is sufficiently short. With an
increase of the beam section length, a shear dominant deformation mode(Fig.3.1(c))
will become a bending dominant deformation mode(Fig.3.1(d)). The critical value of
this length for the transition between these two deformation modes defines the shear

hinge length in a quasi-static analysis, which will be evaluated in Sections 3.2.2 to
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3.2.4 for beams, plates and cylindrical shells, respectively.

The validation of the above postulate is examined by using the finite-element
code ABAQUS for the beam in Fig.3.1(a,b), which is idealized as a static plane strain
problem. Four node bi-linear plane strain elements are used for a 6061-T6
aluminum-alloy beam. The material is modelled by elasto-plastic model with a yield
stress 0,=286.8MPa and a strain hardening modulus E,=542.6MPa. Two typical
results from the ABAQUS analyses are presented in Fig.3.2(a, b) for two different
values of I/H, where | and H are the half length and the thickness of a beam section,
respectively. It is evident that the deformation mode corresponding to a large value
of I/H is a bending dominant deformation mode and the one corresponding to a small
value of I/H is a shear dominant deformation mode. Therefore, it is assumed that
there exists a transition point from a shearing dominant mode to a bending dominant
mode with an increase of I/H. This transition condition is used to determine the shear
hinge length in a beam.

The response of a beam under transverse static and dynamic loads is very
different. In the static case, the bending deformation mode usually dominates the
shear deformation mode if there is no hard-point restraints near to the loading point',
because the small loading rate ensures that bending deformation starts first to absorb
plastic strain energy rather than the shear deformation mode. However, with a
rapidly increasing loading intensity in the dynamic case, the condition for initiating
shear deformation may be satisfied first at the loading location, which starts to absorb
plastic strain energy and leads to the subsequent propagation of a shear disturbance
in the beam. The shear deformation will be confined within a limited distance
because bending, and then membrane, deformations will prevent the further
propagation of the shear disturbance. Thus, it is necessary to study the formation of
a shear localization under various loading rates.

Experimental dynamic studies on beams have suggested that the main region
of a shear hinge consists of anti-symmetrical simple shear flow. Zener(1948)

provided a good demonstration of a typical shear dominant zone(see Fig.12 in

' The hard-point restraints may ensure the satisfaction of a short distance between a pair of the
external opposite forces, which may initiate the shear deformation mode.
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Zener(1948)). Similar results can also be found in Jones(1989(c)) although
considerable bending deformations are introduced at both sides of the shear hinge.
These anti-symmetrical features of the shear hinge are observed in the dynamic case
when the loading rates are within the low to medium range since the propagation
effects of a transverse disturbance may then be neglected. Now, the problem in

Fig.3.1(b) has the following boundary conditions

w(x=e)=-w(x=-¢) (3-2)

when the place of anti-symmetry point is assumed to remain stationary’. The
corresponding generalized stress system is shown in Fig.3.1(a). As mentioned above,
such boundary condition or stress system may lead to another flow mechanism, i.e.,
bending deformations, as shown in Fig.3.1(d), which occurs often in transversely

loaded thin sheet structures. If a generalized yield condition is described by
fg.m,.....)= (3-3)

where, g=Q/Q, and m=M/M,, when Q,, and M, are the static fully plastic transverse

shear force and bending moment, respectively. The normality rule of plasticity
requires

d’y—dlﬁ and dx=dA__ of (3-4a,b)
dq om’

where dy and dx are the increments of transverse shear strain and bending curvature,
respectively. Equations (3-4a,b) are associated with the transverse shear force and

bending moment through the energy dissipation relations. Therefore, the generalized

stresses on a yield surface satisfy the following requirements

|| o ||>|| o |20 for a bending dominated hinge
Iq (3-5a,b)

and f ||>|| of |>0 for a shear dominated hinge.
om

For many yield conditions between q and m, equations (3-5a,b) would require

? This does not lose any generality for a quasi-static problem.
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[mf=1 for a bending dominated hinge (3-6a,b)
and |g| =1 for a shear dominated hinge.

In particular, an independent yield condition between q and m, shown in Fig.3.3, is
used to simplify the following analyses and to provide an estimate for a shear
dominated hinge length. In this case, Figs. 3.1(c) and (d) are two possible responses
under condition (3-2) associated with equations (3-6b) and (3-6a), respectively. The
maximum length for the occurrence of shear dominant deformation will be

determined by a quasi-static method of analysis for three different structural elements.

3.2.2 Beam
The static equilibrium equations for a beam may be written in the
form(Fig.3.4(a))
90 ~=<=0 and Q+ (3-7a,b)
ox ax
When a shear dominant zone(shear hinge) with length A=2D=2e is initiated in a
beam, equations (3-5b) or (3-6b) must be satisfied according to the previous
discussion. According to equations (3-6b) and (3-7a), Q=Q, within the shear hinge,
so that integrating equation (3-7b) from x=-¢ to x=e gives

e=M(x=e)-M(x=—e). (3-8)
2Q()

The maximum value of e is determined when M(x=¢)=-M(x=-¢)=M,,. In this case,
bending dominant zones(bending hinges) will be formed at x=e and x=-e, which
terminate the further propagation of shear deformations, and, thus, define the length
of a shear hinge. Therefore,

M,
_0 \/3_H =0.433H (3-9)

Q, 4

e=

for a beam. A similar method was used by Wen, et al., (1995), in which M(x=¢e)=0
was assumed giving a value of e which is one-half of the present value, ie.,

e=0.216H. An ABAQUS simulation of the idealized shear dominant zone in
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Fig.3.1(a,b) has shown that a shear dominant behaviour will occur at e=0.3H. The
value of e for a circular plate in Section 3.3.2 is around 0.325-0.342H, which is
larger than Wen et al.(1995)’s value for a beam, but smaller than the value given by
€q.(3-9). Because there are more restraints in a circular plate than in a beam, the
value of e for a circular plate should be smaller than the value for a beam according
to physical intuition. A similar conclusion is reached when comparing the values of
e for a cylindrical shell and a beam. This evidence supports the present prediction,

but further verification is necessary.

3.2.3 Circular Plate

The static equilibrium equations for a circular plate are(Fig.3.4(b))

dQD g .o er+M’_M°+Q=O. (3-10a,b)

dr dr r

Equation (3-10a) gives Qr=-Qja if Q=-Q, is first reached at r=a. Therefore,
Q(r=a+Ar)=-Q,/(1+Ar/a) where Ar/a<e/a. If the problem can be treated as a plate
problem, e/a~H/a<<l is required in order to satisfy the plate assumptions. For
example, ¢ may be the radius of a circular plate for a uniform impulsive pressure
loading, or the radius of blunt projectile for a mass impact problem. Thus, Q=Q,
within the shear hinge.

Under the further assumption that M,=M, in the immediate vicinity of the shear
hinge, a static analysis has been presented by Wen and Jones(1996) to give a shear

hinge length

e= 1+8\/3—H=0.342H (3-11)

where the von-Mises yield condition was used to relate M, and M,. If the Tresca

yield condition is used instead, then a similar procedure gives the shear hinge length

e= 3\EH=0.325H. (3-12)
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3.2.4 Cylindrical Shell

The static equilibrium equations for a cylindrical shell are(Fig.3.4(a) and (c))

‘Z‘:+Q=0 and 92 _N_o (3-13a,b)

dx R

which may be written in the dimensionless forms

am__ovg ana 4.6 (3-14a,b)

dg d§ v
where m=M/M,, n=N/N,, g=Q/Q,, &=x/L, v=Q,L/2M, and c’=N,L*/MR.

An independent yield condition between m and (q,n) is shown in Fig.3.3. It is
evident that a circumferential strain is always associated with a transverse shear flow,
while strains associated with bending are expected to be small in a shear hinge,
which means that material yielding only leads to significant circumferential and shear
deformations in a shear hinge. Therefore, an interactive yield condition between
transverse shear and the circumferential membrane force in a shear hinge is sufficient
for predicting the distributions of shear force within a shear hinge, although the
existence of a bending moment is important for satisfying the equilibrium equation
(3-14a).

The stress states in a shear hinge, which may enter the interactive yield
condition between q and n, are 6,,=06, and G,,=-T.

The von-Mises equivalent stress is

3.
O'= ESU‘S’/ Iy (3_15)

i
where si/.=oi/.—(?(5k,5k,)5ﬁ,

which leads to

0(2,+%‘Cz =c, (3-16)

or
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2 1 2
n-+-—g-=1 (3-17)
2‘1
when using 6,=1,V3, N=0,H and Q=tH.
Substituting equation (3-17) into equation (3-14b) gives the dimensionless

shear force

g=Zcos(__8)

2v

(3-18)

when using q=1 at £=0. Equations (3-14a) and (3-18) with boundary conditions m=-1
at E=e/L and m=1 at E=-e/L predict

. _ (3-19)
sin( ﬁ) 8 R

Now, e/R<<1 for a cylindrical shell problem, which gives sin(eV3/RV2)=eV3/RV2, so

that, equation (3-19) simplifies to

e~ 3 H=~0.306H (3-20)
42

which is smaller than the shear hinge length of a beam in equation (3-9) due to the

additional influence of the circumferential force.
3.3. Propagation of a Transverse Shear Displacement in a Beam

3.3.1 Description of the Problem

Within the scope of rigid, perfectly plastic materials, transverse plastic shearing
is stationary according to Symonds(1968) and Chapter 2. However, when material
strain hardening is considered, the transverse disturbance will propagate along the
structural elements, as shown by Wang and Jones(1996), where a constant
propagation velocity of transverse shearing is found in a linear strain hardening beam.
This is a first degree approximation since reflections of a plane shear wave on the

upper and lower free surfaces of a beam are neglected. In fact, a transverse shear



Chapter 3 44

plane wave cannot propagate in a beam without scattering due to the existence of the
two free surfaces on a beam. Even within the characteristic length of a localized
transverse shear zone(shear hinge), this wave scattering is also important. In order
to understand the propagation of a transverse disturbance in a beam, an idealized
problem described below will be studied by using FEM simulations.

If the wave effects through the thickness of the structural elements are
neglected in either impulsively loaded beams or in beams impacted by a projectile,
the propagation of a transverse shear disturbance from the loading point may be
simplified into the problem given in Fig.3.1(b), where the transverse shear
disturbance at the loading location is represented by a transverse displacement

history, W(t), described by

W(t)=W_;_, for O0<IT and W()=W for T, (3-21)

in which T can be adjusted to represent different loading rates. The beam material

is elasto-plastic with a linear strain hardening relationship

6,=0,+E €, (3-22)

where o, and E, are yield stress and hardening modulus given in Table 3.1. The

strain rate effect may be included through the Cowper-Symonds relationship

G
€ =D(—~1) (3-23)
0.\

¢

where €, is the equivalent plastic strain rate, 6" is the equivalent stress under static
loading condition, G, is the equivalent stress at a non-zero plastic strain rate and D
and p are given in Table 3.1.

Plane strain four-node bi-linear elements(CPE4) in ABAQUS/standard-5.4 are
used in the simulation. The plane strain element mesh is shown in Fig.3.5. Direct
implicit time integration is used in the dynamic analysis in ABAQUS/standard. An
automatic time step control based on the half-step residual concept is selected in the
simulation. Newton’s method was employed for solving the nonlinear equilibrium

equations using the Hilber-Hughes-Taylor operator with the artificial damping
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parameter 0i=-0.05 and Newmark’s formula were used for the displacement and
velocity integration. For more details of the numerical procedure the reader may refer

to ABAQUS Theory and User’s Manuals, Version 5.4(1994).

3.3.2 Dimensional Analysis
A complete group of independent dimensionless variables for the prescribed

mode] are

B LoV YV W (3-24a-i)
H ¢, ¢, E H

H
where e=0.433H is the shear hinge length given by eq.(3-9). V=W/T is the driving
velocity at one end of the beam. ce=\/(E/2(l+v)p) and cp=\/(Eh/3p) are elastic and
plastic shear wave speeds’, respectively. In the following analyses, further postulates
are introduced, 1.e.,
(i)  Material strain rate effects are neglected. Thus, p and TD can be eliminated
from the group.
(ii) The present beam problem may be treated as a plane strain problem because
B/H=2.67. Therefore, B/H and v are eliminated from the group.
(iii) The beam response is dominated by large plastic deformations, i.e., elastic
effects are neglected in the analyses. Thus, Gy/E and V/c, are removed from the
dimensionless groups.
(iv) L/H is an important factor in the transverse shear response(Jones( 1989a)), which
reflects the influence of the parameter Q,L/(2M,)=2L/H on the initiation of the
transverse shear response mode in a beam with a rectangular cross-section. However,
it is likely that the size of the transverse shear localization zone does not depend on
this parameter if L/H>>1.
(v) The external work is determined by W/H, which may influence the characteristics
of shear localization. When the driving velocity is a constant, the dimensionless time

T/(e/c,) may be introduced to represent the input external work, equivalently, instead

3 According to von-Mises yield condition, the linear hardening modulus in a pure shear test is
given by E=E,/2(1+v’)=E,/3 when the material is incompressible(v’=0.5), where E, is determined from
a uniaxial tensile test.
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of W/H.
Thus, only two dimensionless parameters are significant for describing a

shear localization zone, i.e.,

and M =—1_ (3-25.b)

N~ ,
¢, e/cp

where ¢,=260m/s and T*=e/c =15.85ps are the characteristic velocity and response

time of the particular problem considered, respectively.

The FEM simulations show that three cases are possible, i.e., (a) 1n,<<I, or
V<<c,; (b) m,<1 and M, ~o(1), or V<c, and V~o(c,); (c) n,>1, or V>¢,. These three
cases correspond to a static or quasi-static process, a dynamic plastic response
process and a transient wave propagation process, respectively, as shown in

Figs.3.6(a-c). In case (c), two different situations, (cl) and (c2) are distinguished

when n,<1 and n>1, which will be discussed in the subsequent section.

3.3.3 FEM Simulations

The three different cases (a)-(c) in Section 3.3.2 are simulated by the examples
in Table 3.2.

(a) Bending response when V<<c,

Two simulations are conducted with V<<c =260m/s. The parameters T=500us
and W=6.5mm are used for the first example, which gives V=13m/s and V/c=0.05.
A second example with T=150ps and W=5.0mm gives V=33.3m/s and V/c,=0.128.
The final distributions of the equivalent plastic strains for these two examples are
shown in Figs.3.7(a,b), respectively. It is evident that they both belong to a typical
bending response, as shown previously in Figs.3.2(b) and 3.6(a). Thus, the response
mode when V<<c, is a bending dominant deformation.

The unsymmetrical distributions of the equivalent strains on the upper and
lower parts of the beam are due to the influence of the membrane force because the

two ends of the beam are restrained in the horizontal direction.

(b) Plastic shear hinge formation when V<c, and V~o(c,)

Propagations of both plastic equivalent strain and the transverse shear
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component of the strain tensor are shown in Figs.3.8(a) and (b) for T=20us and
W=3.0mm with V=150m/s and V/c,=0.58, respectively. The corresponding maximum
shear stress(Tresca stress) and axial stress(S11) are presented in Figs.3.8(c,d). It is
observed that there is a localised transverse shear zone near the loading end, in which
an equivalent plastic strain consists mainly of the transverse shear component. This
shear deformation is propagated at speeds of approximately 244m/s and 239m/s
according to the first three simulation results in Fig.3.8(b) before T*=15.85us. These
speeds are approaching the plastic shear wave speed, ¢ ,=260m/s, and, the propagation
model proposed by Wang and Jones(1996) is adequate. However, after T>T*, the
propagated shear deformations are trapped in a zone with a length, e=0.433H, as
determined by the quasi-static analysis. Stress distributions in the beam are
complicated due to the existence of the upper and lower free surfaces. The
propagation of the axial stress in Fig.3.8(d) indicates the formation of a bending
mode in the beam, which is probably responsible for preventing any further
propagation of shear deformation.

The concept of a shear hinge has been used by many authors to estimate the
transverse shear strain when a uniform strain distribution is assumed. In order to
verify the validity of this assumption, Fig.3.9(a) gives plastic shear strain histories
at  different locations across the length of a shear hinge where curves 1-10
correspond to the plastic shear strains in elements 386, 376, ... ... 306 and 296 shown
in Fig.3.5. The size of each element is H/20. Therefore, these ten elements just cover
the whole length of a shear hinge(0.433H) which is calculated by the quasi-static
analysis. The shear hinge is completely established after a limited time. The shear
strain development ceases sooner near the loading end than at the far side of the
shear hinge, x=-¢. The shear strain distribution in the shear hinge is not uniform. It
consists of a main shear zone with nearly constant shear strain and a transition zone
with decreasing shear strain, as shown in Figs.3.8(a,b) and 3.9(a).

It is interesting to check the validity of the traditional method for calculating

the shear strain in a shear hinge, i.c.,
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=2 (3-26)
e

where ¥ is the engineering shear strain and W is the relative transverse displacement
across the shear hinge. The relative transverse displacement across a shear hinge
having a length(e) between nodes 5049 and node 5040 in Fig.3.5 is calculated by
ABAQUS in Fig.3.9(b), which predicts y=1.55/(0.433x9.52)=0.38. From Fig.3.9(a),
the maximum engineering shear straintABAQUS always uses the engineering shear
strain for the shear strain) is about 0.39. So that 7y in equation (3-26) gives a good
estimate of the maximum engineering plastic strain in a shear hinge. A similar
conclusion is obtained from another example in Figs.3.10(a,b) with V/c,=0.231 and
Yimax=0-103 in Fig.3.10(a)", which is comparable with y=0.447/(0.433x9.52)=0.11 from
equation (3-26).

When the loading time is smaller than the characteristic time, T*:e/cp= 15.85ps,
the transverse shear deformation can only propagate a short distance before the input
cnergy stops, which is smaller than the shear hinge length from the quasi-static
method of analysis. Figs.3.11(a-d) demonstrate four different cases with the same
impact velocity V=150m/s corresponding to (a) W=1.5mm and T=10us, (b)
W=3.0mm and T=20ps, (c) W=6.0mm and T=40us and (d) W=9.0mm and T=60ps.
It is evident that the length of a localised shear zone is smaller than the predicted
shear hinge length, e, when T<T*=15.85us. The predicted maximum shear strain from
equation (3-26) is 0.29, which is smaller than the numerically calculated one, i.e., ¥,
=0.38 in Figs.3.12(a-d). Therefore, plastic shear wave propagation must be considered
in this case. However, it should be noted that in most practical dynamic plastic
problems, the imposed velocity is normally within the intermediate range and the
loading time is much longer than T*. The maximum plastic shear strains

corresponding to Figs.3.12(a-d) have almost a constant value of 0.38°. This implies

! Normally, the shear strain in the element near to the boundary(element 386) is not accurate due
to the influence of the boundary on the strain calculation. Therefore, its connecting element(element
376) is used to give the maximum shear strain.

* The later slightly increasing value of shear strain is due to the large geometrical deformations
which introduce a change of local co-ordinates and axial deformations. Here, a global reference frame
is used in the ABAQUS simulation. Thus, v,, represents the engineering shear strain in the original
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that the maximum shear strain is determined mainly by the magnitude of the impact

velocity.

(c) Shearing propagation when V>c,

Figs.3.13 and 3.14 present similar results as in Figs.3.8 and 3.9 for the loading
parameters T=5ps and W=1.5mm, which give V=300m/s and V/c=1.15. One
important feature of this example is that shear deformations localize into a narrow
zone which is smaller that the calculated shear hinge length e=0.433H. Because the
loading time T is smaller than T*=e/c,, the transverse shear deformations cannot
reach the distance, e, determined by a quasi-static method of analysis, before the
input energy stops. In this case, a quasi-static analysis cannot be used to predict a
realistic shear hinge length, i.e., eq. (3-26) is invalid for predicting the maximum
strain in the localized shear zone. Thus, wave propagation of the transverse shear
disturbance must be considered as suggested by Wang and Jones(1996). According
to Fig.3.14(b) and eq.(3-26), the maximum shear strain in the shear hinge
length(e=0.433H) is 0.39, which is much smaller that the numerical calculated
maximum value of v,,,,=0.83 in Fig.3.14(a) presented by the ABAQUS simulations.

When the loading time is longer than T*, the shear deformations are not
trapped within the calculated shear hinge length and a large shear zone is observed,
as shown in Figs.3.15(c,d). The propagation of shear deformations cannot be
predicted by a shear wave theory for T>T*. However, this situation rarely develops
in practice because material failure occurs normally for high impact velocities, which
prevents the input of any more external impact energy for T>T*. Again, the
maximum shear strains are the same for different loading parameters having the same
imposed velocity, as shown in Fig.3.16, which confirms the observation that the

imposed velocity is an important factor for determining the maximum shear strain.

3.4. Discussion
The actual transverse loads which act on structures are more complicated than

the idealized case considered in the previous sections. Two typical loads in impact

| and 2 directions.

4
~
N
€
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engineering are projectile impacts and explosive pressure loads, in which a transverse
shear localization may be formed at either the periphery of an impacted area or at
the hard-points such as supports. The characteristic velocities and loading times in
these cases are determined from the initial impact velocities and impact energies.
Within the early stage of the response, a compressive wave propagates from the top
surface to the bottom surface of a structural element and produces a transverse
disturbance. When the impact velocity is sufficiently high, considerable indentation
and local failure may occur during this stage. The interactions between the
indentation/failure and shear propagation must be considered for a realistic prediction
of the behaviour. Several practical models have been developed by Awerbuch and
Bodner(1974) for this purpose and the perforated profiles of the plate cross-section
in Figs 3 and 5 of Awerbuch and Bodner(1974) have a similar overall shape to the
current simulations in Fig.3.6(c).

For rapid and intensive loading, the material properties may change
significantly, which can only be simulated by a more complicated solid-fluid
interaction model. Even within the dynamic plastic response range, strain rate and
temperature effects are important for medium to high speed loadings. An adiabatic
shear band may be initiated during the shear propagation period due to thermal
softening of the material, which may prevent further extension of the conventional
shear zone. Instead, a more severe shear localization with a band width around
10-100pm may be formed and material fractures initiate within the band. The band
width is determined mainly by the material properties and is independent of the size
of the conventional shear hinge. This feature is similar to a shear hinge which is
determined mainly by the structural element properties, such as Q, and M,y for a
beam, and is independent of the size of the structural element, e.g., the beam length.

In many cases, the temperature effect becomes important only after
considerable plastic work has been consumed, but, strain rate effects are always
important for rate sensitive materials. Therefore, the influence of material strain rate
sensitivity should be judged in the analyses of transverse shear propagation and the
formation of a shear hinge in a strain rate sensitive material, which are studied by
comparing the results with and without material strain rate effects when W=3.0mm

and T=20ps, as shown in Figs.3.17 and 3.18. The distribution of transverse shear in
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Fig.3.17(a) when the strain rate effect is neglected is larger than that in Fig.3.17(b)
when strain rate effects are considered. Actually, the maximum shear strain has been
given in Fig.3.9(a) as 0.38 when the strain rate effect is neglected, which is nearly
double the value obtained from Fig.3.18(a) when the influence of material strain rate
sensitivity is retained. Therefore, the stress state, or the yield stress, may be another
important factor in the magnitude of the maximum shear strain in addition to the
impact velocity. It is noted from Fig.3.18(b) that the maximum shear strain from
eq.(3-26) is 0.22, which is comparable with 7y, =0.218 from the ABAQUS
calculations.

Finally, it should be noted that the conclusions obtained in this study for a
beam might be applied to plates and cylindrical shells when subjected to large
dynamic transverse loads due to the similarities inherent in all transversely loaded

structural elements.
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Table 3.1 Material Properties of 6061-T6 Aluminum Alloy

E(GPa) | p(Kg/m®) o,(MPa) \% E,(MPa) p D(1/s)

72.4 2686 286.8 0.32 542.6 4.0 6500.0

E. E,. p and D: ABAQUS (1993b); v: 1. Appl. Phys, 72, 329-43T(1992), p, G, Jones(1976).

Table 3.2 Numerical Simulation Data

No. W(mm) | T(ps) | V(m/s) | n, uf Type | Note

Hl 1.5 5 300 1.154 | 0.32 (cl)

H2 6.5 500 13 0.05 3L.55 | (a)

H3 3.0 50 60 0.23 3.16 (b)

H4 5.0 150 33.33 0.13 9.46 (a)

H5 3.0 10 300 1.154 | 0.63 (cl)

H6 3.0 20 150 0.58 1.26 (b)

H7 1.5 10 150 0.58 0.63 (cl)

H8 3.0 20 150 0.58 1.26 (b) strain rate
H9 3.0 10 300 1.154 | 0.63 (cl)

HI0 | 6.0 20 300 1.154 1.26 (c2) Fig.8.15(c)
HIl | 6.0 40 150 0.58 2.52 (b)

HI12 | 9.0 60 150 0.58 3.79 (b)

Hi3 | 9.0 30 300 1.154 1.89 (c2) Fig.8.15(d)

ote:(a):bending mode(m,<<T); (b): trapped shear hinge(m,<I and 1,~o(1)); (c): transient shear wave

propagation(n,>1), in which (c!) and (c2) correspond to <! and n>1, respectively.
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Fig.3.1 (a) Generalised forces on beam section; (b) Boundary condition of problem
(a); (c) Shear dominant deformation mode; (d) Bending dominant deformation mode

ABAQUS

h)
AL

ABAQUS

(@)

Fig.3.2 Static simulation of the plane strain problem in Fig.3.1(b) using ABAQUS,

0.3); (b) Bending deformation mode(l/H=0.8)

(a) Shearing deformation mode(l/H
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QQ,

M/M

Fig.3.3 Independent yield curve for a beam.

e
q
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Fig.3.4 Structural elements, (a) Beam; (b) Circular plate; (c) Cylindrical shell.
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ABAQUS
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Fig3.5 Plane strain finite element of a beam.

ABAQUS
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Fig.3.6 (a) (cont..
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ABAQUS

(b)

ABAQUS

()
Fig.3.6 Response modes of a transversely loaded beam, (a) Bending dominant
deformation(simulation No.H4); (b) Shear hinge at loading end(H6); (c) Shearing
localization formed by shear wave(H1).
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ABAQUS

ABAQUS

(b)
Fig.3.7 Bending response, (a) W=6.5mm and T

T=150ps(H4).

Smm and

500ps(H2); (b)W
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See the attachment(Eight pages)

Fig.3.8 Simulation results for W=3.0mm and T=20us with V=150m/s(H6), (a)
Propagation of equivalent plastic strain; (b) Propagation of engineering plastic shear

strain(,,); (c) Propagation of the maximum shear stress; (d)Propagation of the axial

tensile stress.
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ABAQUS

element 336 tc 29

ABAQUS

(b)

ixi0 ']

Fig.3.9 (a) Plastic shear and equivalent strain histories at different locations across
the shear hinge length in simulation H6; (b) Relative displacement across the shear

hinge length, e.
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ABAQUS

PEL2] 386
PEL22_3176
PE123_166
PEL24_156

PEL25_146
PEL26.136
PE127_326
PEL:8_316
PE119_306
PE1110_296

PEEQLO_296
PEEQS_106
PEEC8 116
PEEQ7_116
PEEQ6_316
PEEQS, 146
PEEQ4_156
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ABAQUS
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fxio "}

(b)

Fig.3.10 (a) Shear and equivalent strain histories at different location in shear
hinge(H3); (b)Relative transverse displacement across shear hinge.
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ABAQUS ABAQUS

AT

=3

[ owmmsnn
Fig.3.11 Deformation patterns o
W=1.5mm and T=10us(H7); (b) W=3.0mm and T=20us(H6); (c) W=6.0mm and
T=40us(H11); (d) W=9.0mm and T=60us(H12).

pameaTrLTL e = I LarmmT s AT
a beam with an imposed velocity of V=150m/s, (a)

ABAQUS ABAQUS

ele 33btoz7b

T
fx10 '}

ABAQUS ABAQUS

A5
[ERTITY S

S

Fig.3.12 Shear strzﬁﬁ lhlmi”storiés with ah irﬁposéd velocity of V’;15()mrn/s‘ for (a) H7;' (b)

H6; (c) H11 and (d) H12, in Table 3.2, where ,,,=0.38 for (a)-(d).




Chapter 3 62

See the attaChment(Eight pages)

Fig.3.13 Simulation results for W=1.5mm and T=5ps with V=300m/s(Hl), (a)
Propagation of equivalent plastic strain; (b) Propagation of engineering plastic shear
strain(y,,); (c) Propagation of the maximum shear stress; (d)Propagation of the axial

tensile stress.
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(b)
Fig.3.14 (a) Plastic shear and equivalent strain histories at different locations along
the shear hinge length in simulation HI; (b) Relative displacement across the shear

hinge length, e
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Fig.3.15 Deformation patterns of a beam with an imposed velocity of V=300m/s, (a)
W=1.5mm and T=5ps(H1); (b) W=3.0mm and T=10us(H9); (c) W=6.0mm and

T=20ps(H10); (d) W=9.0mm and T=30ps(H13).
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XHAL

Fig. 3.16 Shear ;frailﬁ histories with an .imposed velv;)\mt)';h of V=300m/s, (a
Yon=0-833(H1); (b) ¥7,=0.844(HO); (C)Y,n0x=0.844(H10); (d) ¥, =0.850(H13).
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(b)

Fig.3.17 Shear strain distribution in a beam with W=3.0mm and T=20us, (a) Without

strain rate effects(H6); (b) With strain rate effects(H8)
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(b)

Fig.3.18 (a) Shear strain histories with strain rate effects(W=3.0mm and T=20us in

HB8); (b) Relative displacement across the length of a shear hinge when retaining

strain rate effects(HS8).
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4. SHEAR FAILURES IN A SHEAR HINGE IN
A FULLY CLAMPED BEAM
UNDER IMPULSIVE PRESSURE LOADING

4.1. Introduction

Localized shear, known as a shear hinge in transversely loaded structural
elements, is an important deformation feature, which has been studied in Chapters 1-
3. It has been shown in Chapter 1 that further developments of the localized shear
deformation in a shear hinge might lead to either an isothermal fracture failure or an
adiabatic shear banding failure, depending on the loading rate and intensity as well
as the material properties.

Three failure modes have been observed by Menkes and Opat(1973) for a
fully clamped beam under an impulsive pressure load. These three modes appear with
an increase of the impulsive intensity. Jones(1976, 1989) has studied the failure
mode transition using rigid, perfectly plastic analyses and elementary failure criteria
outlined in Section 1.2. Dynamic plastic responses of an impulsively loaded beam
have been studied by Jones and de Oliveira(1979) and Li and Jones(1995a).
Wen(1996) predicted the tearing failure(Mode II) using a work-hardening model and
an cffective strain failure criterion. Failure maps of clamped beams and circular
plates subjected to impulsive pressure loads are presented by Wen, et al.(1995a,b).
These response and failure studies on an impulsively loaded beam and other similar
studies on various structural elements are concentrated on isothermal response and
failure without considering temperature softening effects, which is sometimes
important, especially for high intensity loads. It has been shown that a failure
transition between an isothermal fracture failure and an adiabatic shear banding
failure may occur with continuously increasing loading rates and intensities. Thus,
if the impulsive intensity in Menkes and Opat’s problem is sufficiently high, a fourth
response and failure mode, adiabatic shearing, is expected to appear, which has a
different failure mechanism when comparing with Modes 1I and III failures. A failure

transition between isothermal fracture and adiabatic shear banding has been observed
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by Kalthoff, et al.(1987, 1990) for a pre-cracked steel plate subjected to projectile
impact. Wang, et al.(1994) treated this problem as an interaction between a Mode 11
crack and an adiabatic shear band, and predicted failure transitions in Ti-6Al-4V
specimen. The similar failure transition in a crack-free structural element is also
possible when subjected to a sufficient high loading intensity. This view-point has
been proposed by Wang and Jones(1996), where the possibility of adiabatic shearing
in an impulsively loaded beam was studied briefly.

The occurrence of adiabatic shearing in Menkes and Opat’s problem will be
studied in this Chapter by combining the rigid, perfectly plastic analysis, the
knowledge of shear hinge obtained in Chapters 2 and 3, and the maximum shear
stress criterton introduced in Section 1.4. A description of failure mechanism
transition from the isothermal shear failure(Mode III failure) to an adiabatic shear
banding failure is presented. It transpires that the method developed here may be

applied to other transversely loaded structural elements.

4.2. Description of the Problem

The original problem in Menkes and Opat(1973) is shown in Fig.4.1(a), where
a sheet explosive is applied to the fully clamped beams over a neoprene buffer. This
problem may be simplified as a fully clamped beam with a uniformly distributed
initial velocity, as shown in Fig.4.1(b).

The initial velocity of the beam is determined by

v (4-1)

where I is the impulsive intensity of the explosion(impulse per unit area), p is the
density of the beam material, 6061-T6 aluminium alloy, and H is the beam thickness.
The investigated beams have spans of L=203.2mm and 101.6mm, with a
rectangular cross-section B=25.4mm width by three different depths, H=4.74mm,
6.35mm and 9.52mm, respectively.
The static isothermal constitutive equation is described by a linear strain

hardening relationship, as shown in ABAQUS(1994b)
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01' =G()+E/IS(‘ (4-2)

where G, and E, are the yield stress and strain hardening modulus, given in Table
4.1, respectively, 6, and €, are equivalent stress and strain, respectively. The strain

rate effect is included by the Cowper-Symonds relationship(Wen(1996),

ABAQUS(1994b))

¢ |

Ou =)

¢

(4-3)

where o, is the dynamic equivalent stress, and €, is the equivalent strain rate.
D=6500.0s" and p=4.0.
The influence of temperature on the constitutive equation is included by the

following factor

I —(_____")v

m r

(4-4)

where T,=20°C is the room temperature, T, =652°C is the melting temperature given
by Boyer and Gall(1985) for 6061-T6 material. There is no available data on q for
6061-T6 aluminium alloy. However, Johnson and Cook(1983) conducted tests on
2024-T351 and 7039 aluminium alloy, and found g=1.0 for both materials. Thus,
g=1.0 is used here for 6061-T6 aluminium alloy. One may use more realistic values

when experimental data become available. Other material properties are described in

Table 4.1.
Table 4.1 Material Properties of 6061-T6 Aluminium Alloy
ptkg/m*) C,(J/kgK) K (W/mK) v E(GPa) | o,MPa) E,(MPa) Hardness(HB)
2686 9374 167.3 0.32 724 286.8 542.6 95

from Table 3.1 in Chapter 3.

4.3. Modelling the Problem

4.3.1. Isothermal and Adiabatic Conditions

1
ote: C, and K, are from Bai and Dodd{T997); Hardness is from Boyer and Gall(1985); others are
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A deformation process may be idealised as either isothermal or adiabatic
process depending on the physical properties of the material and loading conditions.
It is the case that the deformation process is adiabatic for a well-developed shear
banding. But, before the shear stress reaches a maximum value, it might be necessary
to consider heat conduction aspects in order to determine the temperature from the
consumed inelastic work. The general equations to describe momentum and energy
balances for a simple shear deformation may be expressed by(pp.136 in Bai and

Dodd(1992))

dy_dt
ot® ox? . (4-5a,b)
and pr-pc 9T ¢ OT
ot "dr Y ox?

where, K, is the thermal conductivity of the substance, and 7T is determined by eq.(1-

10). The dimensionless forms of egs.(4-5a,b) are

aYd azT(/
o=
e ox) (4-6a,b)
aT‘I ? !
and Ty =h__—-d—_
did 2

Tee =l x=2 1="" and 7,71, (4-Ta-e)
T " x T ¥

where T, is the characteristic temperature, v, is a characteristic shear strain rate, T,
is the characteristic shear stress, t. and x, are the characteristic response time and
length which depend on the phenomenon of interest. The dimensionless coefficients
in cgs.(4-6a,b) are

. 2
: cT KT
azpy(x, , b= Pole und d=—c (4-8a-c)

Tl Bty Bt y.x
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Similar equations have been obtained by Bai(1989) to study adiabatic shear bands.
In a solid mechanics problem, it is necessary to determine the significance of both
inertia and temperature effects. For a simple shear motion described by eqs.(4-6) to
(4-8), the following situations in Table 4.2 may exist.

Table 4.2 Various Processes of a Simple Shear Motion

I(isothermal)* H(heat conduction) A(adiabatic)
S(static) a<<l. d>>1(or b>>1) a<<l, b~d~1 a<<l, d<<l, d<<b
D(dynamic) a~1. d>>1(or b>>1) a~1, b~d~1 a~1, d<<l, d<<b

¥ According to eq.(4-6b). either d>>T or b>>T satisfies the 1sothermal condition. However,
h=5.5~0O(1) for the current test material in Chapter 5 when y,=Y.~1. Thus, d>>1 will be employed
in Section 6.2.3 instead of b>>1.

Three typical cases are discussed in Bai and Dodd(1990)(pp.165), i.e., (1)
isothermal case for a~d~1 and b~Pr, (2) quasi-static case for a~1/Pr and b~d~1, and
(3) adiabatic case for a~b~1 and d~1/Pr, which are three special cases (i.e., D-I, S-H
and D-A) in Table 4.2, where Pr is the effective Prandtl number defined by(Bai and
Dodd(1990)) Pr=C 1 /(K Y.) to represent the relative importance of the two dissipative
mechanisms, i.e., rate dependent diffusion and thermal diffusion, in adiabatic shear
band deformation, which is normally much larger than unity for metals within our
strain rate range of interest(i.e., below 10%"'). Wright and Ockendon(1996) used a
scaling law and perturbation method to find a finite wavelength with a maximum
growth rate that is claimed as the characteristic length of a shear band. In the current
cvaluation, analysis is focused on various stable mechanical-thermal processes of a
simple shear motion before material thermal instability occurs when the effect of
material thermal softness competes with other hardening effects on the shear stress.

According to Table 4.2, explicit strain rate conditions for isothermal and

adiabatic process are given by

Y.<}, for isothermal condition (4-9a,b)
t«t , and Y >y, for adiabatic condition

in which, t,,=pC.x.2 /K, and v, =K T/(Pt.x.).

In other cases when heat conduction is significant, the temperature increase
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may be cxpressed by

dT=iB_‘cdy
PC. 4-10
" 2 ( -l a,b)
o°T /o
with =] g O 1%

‘”,1

where, w,=Ty/1.y, is the dimensionless strain energy dissipation rate. The value of
parameter o0 depends on the particular problem. It is valuable to do further
investigations to find an approximate expression for parameter o for different class
of mechanical-thermal coupling problems. Particularly, within the current interesting
range of d<<l, eq.(4-10b) gives o=1, which, according to eq.(4-10a), leads to

adiabatic expression of temperature rise in eq.(1-12).

4.3.2. Analytical Model

The dynamic plastic response of the beam will be predicted by using rigid,
perfectly plastic analysis. This analysis is valid for predicting the global responses,
such as bending rotation across a bending hinge and transverse shear displacement
across a shear hinge when the actual size of these plastic hinges has no significant
influence on the global response of structural elements. The existence of an interface
between the shear hinge and outside rigid medium ensures the use of rigid, perfectly
plastic analysis to give a valid prediction on the structural response outside shear
hinge even when thermal softening becomes important within a shear hinge.

According to the results in Li and Jones(1995a), the shear response of a fully
clamped beam in Menkes and Opat(1973) with v=Q,L/2M,>3 is shown in Fig.4.2.
The relative transverse shear displacement across a shear hinge and the transverse

shear response time are

20 SpHV
WI=V”t-_°t2 and 1= P 0. (4-11a,b)
9pH 40,

respectively. The maximum transverse shear displacement at t=t, is
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_9pHY,
8o

(4-12)

1/
0

The maximum engineering shear strain and the average shear strain rate within the

shear hinge are

W , v
Y= 2=132V; and ym;Lo.ssﬁ“, (4-13ab)
t

2e S, |

in which, e=0.433H is given by eq.(3-9). It should be noted that the shear hinge
length might depend on the propagation of transverse shear wave when the
characteristic impact velocity is larger than the plastic shear wave speed, ¢,=260m/s,
as shown in Section 3.3. The characteristic velocity in the present case may be
represented by the average transverse shear velocity, V /2. Thus, an approximate
limitation for the valid application of the current analysis is V,<2c,=520m/s. Beyond
this impulsive velocity, wave effects need to be considered to describe the transverse
shear propagation, which is outside our interest.

Normally, strain rate effects are considered in the maximum shear stress
criterion, eq.(1-11), by using the average strain rate to represent a constant strain rate
process, which neglects the influence of strain rate change on the criterion, but
includes the average strain rate hardening effects on flow stress(pp.126 in Bai and
Dodd(1992), pp459 in Meyers(1994) and ppC8-35 of Klepaczko(1994)). Thus, egs.
(I-t1) and (4-10) lead to

ot drapr_, (4-14)
dy oT pC,

for a simple shear constitutive equation, in which T has the following form in the

present case

E L
SN N TV SRy SEA | (4-15)

\/:;— 3 \/—3_D TIH - TI‘

when cc=\/3r and eczy/\/B are substituted into egs. (4-2) to (4-4). Eqs.(4-14) and (4-
15) lead to
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o, E -
3B+ I:Y)Z[]+( v )" 1=pC E(T,-T). (4-16)

\/3— 3 \/.3—D m r

In order to find the minimum impulsive velocity, Y=y, and y=y,, in egs.(4-13a,b) are

substituted into eq.(4-16) to give

0.433pE V. 0335V !
3043[0'57700"' P L1 +( DH 0)”]=PC\.E;,(T -T), (4-17)

m r
0

which will be used to determine the critical impulsive velocity for the initiation of
adiabatic shearing failure. In eq.(4-17), o should be determined according to
discussion in Section 1.4. According to Table 1.1 or eq.(4-9b), the adiabatic condition
in the present case is d<<l, or t./t ,<<I, where tL_=t,=yC/'}C is the characteristic time of
the transverse shear response in a shear hinge in the present problem determined by

¢q.(4-11b). While the characteristic time of heat conduction is

. Bryx _0.563Bp V. H? 4-18)
“ K\Tl TI'K\'

when y.=W,/(2¢), T.=1,=6,/V3 and x =2¢ are used, where W, is given by eq.(4-12).
Thus, the time ratio of t/t is

{ TK
_=444_" " (4-19)
t' 0.()I_IV()

cd

when B=0.9 is used. It gives t/t~1.7x10" and 5.66x10™ for V,=100 and 300m/s,
respectively, with material parameters given in Table 4.1, which are much smaller

than the unit. Therefore, it is reasonable to assume an adiabatic condition during the

transverse shear response process, i.e., 0=1.0 in eq.(4-17).

4.4. Results

4.4.1. Temperature Rise
According to eq.(4-10) with o=1.0 and $=0.9, and eq.(4-15) with y=y, and

¥=Y,. in €gs.(4-13a,b), the temperature rise at the end of transverse shear response
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phase is
T=TIH —n( 7"/” _TI' (4_20)
where
oy, EXY y oL
BT 20y o ey 4-21
] B0 B @20
n=exp| - l.
p CI( 7‘”1 _TI'

The temperature at the end of transverse shear response phase varies with the
impulsive velocity, which 1s presented in Fig.4.3 for beams having three different
thicknesses. It appears that the temperature may rise from room temperature to nearly
400°C when the impulsive velocity is 340m/s. Heat conduction may be important for
low impulsive velocities, and need to be considered instead of the adiabatic condition
for predicting the temperature rise. However, it has been shown in Section 4.3 that
the adiabatic assumption is satisfied for the impulsive velocity range of
V,=100~300m/s. Thus, the predictions in Fig.4.3 give a realistic estimate of
temperature rise within a shear hinge of the studied impulsively loaded beam.

It has been shown that Mode 11 shear failure occurs in the impulsive velocity
range of 250-320m/s for three different thickness beams(Menkes and Opat(1973)).
The temperature rise within this velocity range is between 150 and 250°C according
to Fig.4.3. It is a common knowledge that material rupture strain increases
significantly with temperature. According to the predictions given by Jones(1976),
the shear rupture strain for Mode 111 failure is

w! (4-22)

Y =—=1.153k

using ¢q.(1-5) for W and eq.(3-9) for e. Jones(1976) found k=1 gives a fairly good
prediction for the critical impulse to initiate Mode 111 failure. Thus, the critical shear
strain responsible for Mode III failure is y,=1.153, which is much higher than the
valuc obtained by static tensile or shear test at room temperature. For example,
Wen(1996) used €.=0.17 in his calculation for the tearing failure of 6061-T6 beam,

which corresponds to ,=0.3 if von-Mises equivalent strain controls material failure.
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Nevertheless, y7.=1.153 becomes realistic at high temperature. It will be shown in
Chapter 5 that the rupture strain in a tensile test at 500°C may go up to €.=2.14 for
En24 steel while its static value is 0.65, approximately. Thus, the parameter k in an
elementary failure criterion contains the influence of temperature rise on the failure
initiation when it is significant, which has not been realised, previously.

The temperature rise in a shear hinge also leads to a decrease of the thermal
conductivity(Bai and Dodd(1992)), which makes an adiabatic assumption more
reasonable. On the other hand, the specific heat increases with temperature, as shown
in FigB.5 of Bai and Dodd(1992) for 6061-T6 aluminium alloy, while the specific
heat given in Table 4.1 is at room temperature. When the impulsive velocity is
300m/s, the temperature rise is about 200°C from Fig.4.3. The average specific heat
of 6061-T6 from room temperature to 200°C is C,=1176J/kgK, approximately,
according to Fig.B.5 of Bai and Dodd(1992), which will be used in predicting

adiabatic shearing initiation in the following section.

4.4.2. Critical Velocities

The minimum impulsive velocity for a given beam thickness is determined
by ¢q.(4-17). According to the discussion in Section 4.3 and 4.4.1, we have a=1.0,
B=0.9 and C,=1176J/kg.K. Other parameters are given in Table 4.1 and egs.(4-3) and

(4-4). Substituting all these parameters into eq.(4-17) leads to

0.25

(1+1.33x 107V )X(1+0.476 _°_)=14.65 (4-23)
HO‘ZS

which determines the relationship between V=V (m/s) and H(mm).

Jones(1976, 1989) suggested the following formula to predict a Mode III

farlure

G |
\/‘_;=%(2k_2)7 (4-24)

for a fully clamped impulsively loaded beam with a rectangular cross-section, where

a good agreement was reached when k=1.

Predictions on the minimum critical impulsive velocity to initiate adiabatic
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shearing are presented in Fig.4.4. It is shown that the adiabatic shearing failure
occurs at velocities higher than those for a Mode III failure. When the impulsive
velocity V>V, adiabatic shearing occurs before t=t,. However, according to the
discussion in Section 4.3.2, there is a limitation, V<V _,=520m/s, for the validity of
the analysis. Beyond this velocity, shear wave effects are significant for estimating
localized shear deformations. These observations and previous studies(Menkes and
Opat(1973), Jones(1976, 1989)), allow beam responses and failures under intensive
dynamic transverse pressure loadings to be classified into the following modes,
(a) Large plastic deflection response(Mode 1);
(b)Tearing failure from the combination of bending, shearing and membrane
responses(Mode 11);
(¢) Shear failure by localised transverse shear response in a shear hinge(Mode II1);
(d) Adiabatic shearing failure by localised transverse shear response in a shear hinge;
(¢) Response and failure introduced by the propagation of a plastic shear wave.
These response and failure modes appear with increase of the imposed
impulsive velocity. The first three modes have been confirmed by experimental
results given by Menkes and Opat(1973), and Ross, et al.(1977). However, further

systematic experiments are required to examined modes (d) and (e).

4.4.3. Adiabatic Shearing in Short Beams, Circular Plates and Cylindrical Shells

Similar analyses are possible for other structural elements under transverse
impulsive pressure loadings. Rigid, perfectly plastic analyses have been given by Li
and Jones(1994, 1995a,b) for the dynamic plastic response of a beam, circular plate
and cylindrical shell under general blast pressure loading. A transverse shear hinge
may develop for sufficiently large loading intensities, which depend on the parameter
v, as shown in Section 1.2. The parameter v depends on the ratio of length and
thickness for a solid cross-section structural element and determines the transverse
shear response model. The beam problem of Menkes and Opat(1973) with v>3 has
been studied in Sections 4.4.1 and 4.4.2. Here, the shear-only responses of a fully
supported beam, circular plate and cylindrical shell corresponding to small length to
thickness ratio will be studied.

(a) Beam(v<2)
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The maximum engineering shear strain and average shear strain rate within

a shear hinge of fully clamped bcam are

p L., . Vo .
=~ = and =0.58_" (4-25a,b)
WS Tar H

0

according to €q.(3-9) and Li and Jones(1995a). The critical velocity for the initiation

of adiabatic shearing is
v() 0.25 L 21>
[1 +0.476(ﬁ) 11 *0'0000102(77)‘/0 1?=14.65 (4-26)

by using egs.(4-25a,b) and (4-16).
(b) Circular Plate(v<3)

A similar procedure gives

V
Y, =0.633£%V(,2 and ¥,=0.731 _Hﬂ (4-27a,b)

4]

according to eq.(3-11) and Li and Jones(1994). The critical condition is
V() 025 R ' 4-28
[1+0.505(.ﬁ) 11 +0.00000646(ﬁ)v(,] =14.65. (4-28)

(¢) Cylindrical Shell(v<2)
Eq.(3-20) and the results in Li and Jones(1995b) predict

v
=14 P Ly g g =0817-2, (4-29a,b)
173207 o, A H

and the critical condition is

00000143 Ly g 65, (4-30)

1%
1+0.52(_ )01+ 7
| H I 1+1.732L/r H

In the above equations, the units of V, and H are m/s and mm, respectively. Fig.4.5
illustrates the relationship between the critical velocity for adiabatic shearing and
structural thickness for a length(diameter)-thickness ratio of 1.7. It appears that a
heam is the easiest one to be sheared adiabatically among the studied three structural

clements, then the circular plate and cylindrical shell, provided their
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length(diameter)/thickness ratios are the same. When the shell becomes slender, i.e.,
L/r increases, adiabatic shearing becomes more difficult. The extreme situation is
L/r<<l, corresponding to a fully clamped ring, in which adiabatic shearing is easier

than in a fully clamped beam, according to Fig.4.5.

4.5. Fully Clamped Beams Under Projectile Impact

The analytical procedure proposed in Sections 4.2 to 4.4 for an impulsive
pressure loading may be used to predict the initiation of adiabatic shearing in a
structural element under projectile impact. In the present case, a fully clamped beam
subjected to a blunt projectile impact at the mid-span, as shown in Fig.4.6, will be
studied.

According to the rigid, plastic results of Liu and Jones(1988), the transverse

shear displacement across a shear hinge at the periphery of the projectile impact is

3GLgV,
W= (4-31)
8M v(v+3g)

for a beam with v>3, in which, G is the projectile mass, V, is the impact velocity of

the projectile; g=pBHL/G and v is defined as before. The shear response time is

3GLg
[ = sV (4-32)

' AM v(v+3g)

Thus, the maximum transverse engineering shear strain and the average shear strain

rate are
2
y.= 9 p Vo and ¥ = Vo b
] 38 0_” 12,6 g a 251_1’ (4-33d, )

when the width of shear hinge is given by

A=3H, (4-34)

where, 6=0.866 according to eq.(3-9). However, in a practical projectile impact

problem, & may depends on both projectile and beam material properties, as well as
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the impact velocity range. Some evidence has been shown by Jones, Kim and
Li(1997) in an analysis of plate failure under projectile impact. As a qualitative
analysis, 6=0.866 is used here. However, it is possible to use a more realistic value
of 0 in a particular problem if experimental data are available.

By using the material properties of 6061-T6 aluminium alloy, given in Table
4.1 and same simplifications of o=1, =0.9 and C,=1176J/kgK, the average specific
heat with in 20-200°C, as discussed in Section 4.4.1, the minimum impact velocity
for initiating adiabatic shearing is determined by
Vi v,

[1+1.33x10 17[1+0.476( f;)"'”]=l4-65- (4-35)

1+2.6_5_
L/H

While, the minimum impact velocity tor Mode IlI failure may be determined by the

elementary failure criterion, eq.(1-6) proposed by Jones(1976, 1989), which leads to

8c k y J -
V"=\J 9” (I+2.()Lj’H) ~308.1 1+2.6Lj’_H : (4-36)
p

when k=1.0 is assumed.

Generally speaking. beam failures for small value of g(large projectile mass)
and low impact velocity are mixed modes, in which both tensile, shear and bending
deformations have contributions for beam failure(Jones(1989), Liu and
Jones(1987,1988)). In the present case, we concentrate on the case of a large value
of g(small projectilc mass) and medium impact velocity. Figs.4.7(a,b) gives the
predictions for the minimum velocities to initiate a Mode III failure and adiabatic
shearing in the studied beam corresponding to different mass ratios and beam
geometries. It is shown that there exists a transition impact velocity from Mode III
failure to adiabatic shearing failure, which depends on the beam thickness, beam
length and mass ratio, g. Adiabatic shearing may suppress a Mode III failure for a
relatively thin beam. Generally, the critical velocity for both Mode III and adiabatic
shearing failures increases with beam thickness, but decreases with projectile mass
and beam length. It is interesting to point out that the adiabatic shearing suppresses

a Mode 111 failure when the beam thickness is less than a given value which falls
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within a narrow range of 1~2mm for a broad range of other parameters. This means
that Mode III failure might not be found in a thin beam even a high impact velocity
is imposed because Mode Il failure transfers into adiabatic shearing failure with
increasing impact velocity. Unfortunately, there are no experimental results available

for comparison.

4.6. Remarks

A systematic analytical study on the transverse shear response and failure of
a beam when subjected to a transverse dynamic loading has been presented in
Chapters 1 to 3 and the current chapter. Most of the results for a beam are applicable
for other structural elements, such as plates and shells under similar loading
conditions. It is a common feature of these structural elements under transverse
dynamic loadings that a transverse shear localization zone(or shear hinge) may be
formed at some "hard points" like supports and at the impact loading periphery.
Within the shear hinge, both shear rupture failure and adiabatic shearing failure may
occur depending on loading rates and intensities as well as the thermal visco-plastic
properties of the material. Comparing with the formation of a shear hinge, the
formation of an adiabatic shear band is another type of shear localization due to
material thermal softening. Both shear rupture failure and adiabatic shearing failures
appear with increasing loading rate and intensity, and there may exist a transition
between these two failure mcchanisms that require different material and failure
models in analyses and simulations. Thus, this observation should be considered
seriously in relevant impact safety design.

Structural elements under projectile impact may introduce more difficulties
than an impulsive pressure loading because the contact of a projectile with the
structure may lead to considerable indentation. Indentation may result in a localized
material failure, changes of material properties and structural element thickness and
the absorbtion of projectile kinetic energy, which must be considered in order to use
the proposed model correctly. Thus, modifications are necessary for a projectile
impact problem, depending on the actual situation. For example, the transverse shear
displacement determining shear failure initiation is accumulated through half shear

hinge length given by eq.(3-11) in an aluminium alloy circular plate subjected to a
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blunt projectile impact, as shown in Jones, Kim and Li(1997). Although, these
problems are not discussed in the current study, it is obvious that incorporating
dynamic indentation analysis into the current model is necessary for some practical
impact problems.

It is well-known that the concept of a ballistic limit to perforate a structural
clement is an important design parameter for plate perforation and penetration. Many
models in the low to medium velocity range have been proposed to predict the
ballistic limit of given plate material and geometry based on various response and
failure analyses, for example, Liu and Stronge(1995). However, as shown in the
current analysis, adiabatic shearing may suppress other failure modes under proper
conditions. Thus, the consideration of the adiabatic shearing mechanism in predicting
the ballistic limit in a practically important impact velocity range may lead to an

improved understanding of plate perforation and penetration problems.
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Fig.4.1 (a) Explosive tests on fully clamped beam; (b) Simplified fully clamped
beam under uniformly distributed initial velocity.

0

Fig.4.2 Velocity profile of a fully clamped beam under impulsive pressure loading
when v>3.
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Fig.4.3 Temperature rise in the shear hinge of a beam under various impulsive
velocities.

Velocity(m/s)
w
o
=1
1

B A

N
250 €q.(4-18) for Mode 1l failure
1 |- eq.(4-17) for adiabatic shear failure
— £ experimental results of Mode Il failure
200 T T T T T T T T T T T )
0 1 2 3 4 5 6 7 8 9 10 11 12

Thickness(mm)

Fig.4.4 Critical conditions for adiabatic shearing and Mode III failures in tests of
Menkes and Opat(1973).
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Fig.4.5 Critical condition for adiabatic shearing failure in a short beam, circular plate
and cylindrical shell(L/H(or R/H)=1.7).

Fig.4.6 Velocity profile of a fully clamped beam under projectile impact when v>3.
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Fig.4.7 Variation of critical impact velocity of adiabatic shearing and Mode I
failures with beam thickness for the problem in Fig.4.6, (a) L=203.2mm; (b) g=3.0.
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S. EXPERIMENTS ON DOUBLE SHEAR
BEAM UNDER PROJECTILE IMPACT

5.1. Material Properties

5.1.1. Physical Properties

The bar material used in the tests is BS970/En24(equivalent to AISI-4340
steel) medium carbon steel alloy. The composition of the material according to the
supplier is shown in Table 5.1,

Other physical properties(at room temperature) are given in Table 5.2

The measured hardness of the present En24 material is RC-21, which is
smaller than the value for 4340 steel given by Johnson and Cook(1983), and is
probably due to the different heat treatment process. The specific heat of 4340 steel
given by Johnson and Cook(1983) is C,=477(JK'kg"), which is very close to the
value in Table 5.2 with a relative difference of 1%. The heat conductivity here is
compared with the value given by Bai and Dodd(1992)(pp.305), where K =37.6
(Wm'K™") for a 4340 steel which is only 1.4% smaller than the value in Table 5.2.
Both specific heat and heat conductivity vary with temperature, which may be
estimated according to Table 5.3

The value of C, in Table 5.3 is the mean specific heat from 20°C to the
temperature given in Table 5.3, which can be easily converted into their actual value,

as shown in Table 5.4.

The mechanical properties and the constitutive equation for the material will

be presented in Section 5.1.2.

5.1.2. Constitutive Equation

High-strain rate plastic deformation of a material is often described by a
thermo-viscoplastic constitutive equation, which links stress with strain, strain rate
and temperature. A general form of the rate and temperature dependent flow law may

be expressed as
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c,=F(e . T.V,) (5-1)

for an isotropic material model, in which G, and €, are von-Mises equivalent stress
and strain, T is temperature and V, are some internal variables, such as a strain
hardening parameter. The expression of function F is often identified by either a
uniaxial tensile/compressive test or a pure shear test. In the first case, which will be

used in the present research, eq.(5-1) is
o=F(e"¢"T.V) (5-2)

in which ¢ and €°(¢?) are the uniaxial stress and plastic strain(plastic strain rate),
respectively. It has been shown that the true stress and natural strain, defined in
Appendix Al, are more convenient for metal plasticity to achieve consistency. The
theory of dynamic plastic constitutive equation will not be discussed here, but may
be found easily by an interested reader in many sources, such as, Harding(1988),
Clifton(1983), Meyers(1994) and Walter(1992).

Normally, the function F in eq.(5-1) or eq.(5-2) satisfies the following

inequalities, i.e.,

9F 0. 9F 0 and %<0 (5-3)

de, e,
to reflect strain hardening, strain rate hardening and thermal softening. Strain
softening is also possible sometimes when void and texture softening mechanisms are
more important, as discussed by Zbib and Tubran(1992).
Practically, it is very difficult to determine the function F by conducting
limited experiments without further simplifications. Most proposed constitutive

equations employ the following multiplicative form(Johnson and Cook(1983),

Klepaczko(1994))
o=F(&"t",T,V,)=F (",V )F,(£"\F(T), (5-4)

where F, is determined from a quasi-static tensile test, F, is determined from a SHPB
constant strain rate test, and F; will be obtained by a static constant temperature test,

which will be described below. When eq.(5-4) is determined from uniaxial material
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tests it may be converted into the general form of eq.(5-1) by using equivalent stress
and strain definitions. Thus, at least two idealizations, i.e., (i) the influences of plastic
strain, strain rate and temperature on the constitutive equation can be separated into
the multiplicative form in eq.(5-4), and (ii) the constitutive equation is invariant with
respect to the equivalent stress and strain, have been adopted here to obtain the
material constitutive equation. The second idealization is based on the fact that the
plastic flow of metal materials is controlled by the von-Mises equivalent stress and
strain. The first idealization needs to be verified, which will be given in Section
5.1.3. Zerilli and Armstrong(1987,1990) proposed an another type of viscoplastic
constitutive equation based on a micro-mechanics basis, which also indicated the
uncoupled characteristics of plastic strain from strain rate and temperature, as

discussed by Meyers(1994).

(a) Static Tensile Test

The static tensile tests were conducted on an INSTRON test machine with the
axial loads being measured by a load cell installed in the machine. An extensometer
with a gauge length of 50mm was used to measure the elongation up to €;=2%.
Then, it was removed and the displacement was measured between the two
crossheads.

The specimens were made from annealed BS970/En24 steel, which came from
three different bars. The geometry of a test specimen is shown in Fig.5.1. The actual
dimensions are given in Table 5.5 together with the final measurements of the
diameter at the necked cross-section of a failed specimen.

The engineering stress-strain results are shown in Fig.5.2. Young’s modulus,
maximum engineering stress, the percentage elongation from the INSTRON
machine, the zero gauge length rupture strain, defined by eq.(A-11a), and the true
stress at failure are given in Table 5.6. Poisson’s ratio is 0.29.

It was found that the test results for two bars(SP2 and SP3 for Bar 2 and Bar
3) were fairly close. But there are noticeable differences between the results of these
two bars and Bar 1(SP1 and SP4). Generally, the average yield stress of Bar
1(421.45MPa) is about 8.7% higher than the average value of Bars 2 and
3(387.7MPa). Although, there is a noticeable discrepancy(about 22.02%) on the
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percentage elongation of SP1 and SP4 from the same bar, the error based on zero
gauge rupture strain is only 8.43% for SP1 and SP4. It is interesting to note that the
values of the zero gauge length rupture strain give consistent results when compared
with both UTS values and true stress values at failure(cy,). It has been realised that
the zero gauge length rupture strain is a more realistic index to measure material
ductility than the percentage elongation index that is specimen dependent. The
average value of gy, for SP1 and SP4 is 78.72%, which is 21.56% higher than the
average value of SP2 and SP3(gy,=64.76%). It is reasonable to treat Bars 2 and 3 as
the same material, but Bar 1 as a slightly different material. Thus, only Bars 2 and
3 are used in the DB beam test.

A relationship between true stress and natural strain for SP2 and SP3 is
evaluated in Fig.5.3 according to the tensile theory in Appendix Al when considering
the influence of a superimposed hydrostatic tensile stress introduced by necking
according to Bridgman’s formula, equation (A-14). A straight line interpolation is
used between the maximum stress point and final rupture point, which has been

verified by Alves(1996). The modification factor in eq.(A-14) is given by

£,=1.0224-0.0948¢,, (5-5)

according to Fig.2.13 in Alves(1996). This modification is not significant for the
present material, where f=0.96 for SP2 and SP3. However, when the material
ductility(eyy) is large, the stress value may be reduced more due to the further
development of non-uniform stress distributions across the necked cross-section.
According to Fig.5.3, material static true stress-true plastic strain curve for

Bars 2 and 3 may be described by

F =0, for O<e’<e|
F =0 +A(e’-€))" for €[<e’<e,; (5-6)
F =B +B(e’-€}) for €<e’

where 6,=387.7(MPa), A=1182.7(MPa), B,=784.08(MPa), B,=749.2(MPa), m=0.45,
£,°=0.65% and €,°=9.46%. The plastic strain energy density up to material failure is
606.64MJ/m* from eq.(5-6) when the average value of zero gauge rupture strain

64.76% is used. Eq.(5-6) is illustrated in Fig.5.3.

Enor=
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(b) Dynamic Compressive Test

A Split Hopkinson pressure bar(SHPB) is used for the dynamic compressive
testing. The parameters used in the SHPB system, described in Fig.5.4, are presented
in Table 5.7.

SHPB tests were conducted on specimens machined from three bars at various
strain rates. Basic results are presented in Table 5.8.

A typical recording in SHPB test is given in Fig.5.5. It is evident that the
strain rate, determined by the reflected waves in the incident bar, varies with time.
Conventionally, the average strain rate may be calculated from eq.(A-18c) or eq.(A-
20c). However, in practice, it may be obtained equivalently by measuring the total
shortening of the specimen and the total loading time. For example, the average

engineering strain rate is

@ L,
€, =_T_

L

(5-7)

in which T is the total loading time, which depends on projectile length and elastic

wave speed. In our case, T;=155.6pus. In Table 5.7, the average true strain rate is

defined by

L~L,

(L,-L )/ ) (5-8)

&=

T

L

with a 4% difference when compared with the value from eq.(5-7).

The true stress-true strain relationships at various strain rates are demonstrated
in Figs.5.6(a,b,c) for three bars. Various compressive strains were achieved for
different strain rates. The maximum compressive strain is about 24% when strain rate
is around 10%'. Some of them are less than 10% when strain rate is low. The
dynamic yield stresses corresponding to different strain rates are presented in
Fig.5.7.

From these results, the strain rate effect represented by F, in eq.(5-4) can be

described by the Cowper-Symonds relationship when using yield stress to determine

the parameters in it
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1

¢ -
F.=1+ q (5-9)
=g

where q=4.41 for all three bars, D=186.7(1/s) for Bars 2 and 3, and D=378.3(1/s) for
Bar 1. A comparison between Eq.(5-9) and the test results is shown in Fig.5.7. Again,
a noticeable difference is observed between the results of Bar | and Bars 2 and 3.
If the dynamic stress at a fixed strain is used to determine the parameters in
the Cowper-Symonds relationship, different parameters will be obtained. This implies
that both D and q depend on the plastic strain. In order to verify the validity of the
Cowper-Symonds relationship, the dynamic flow stress at 12% plastic strain is used
to obtain the parameters, D and q. The experimental results used to obtain D and g
at 12% plastic strain are given in Table 5.9, which, by using the minimum square
method, leads to D=6948.3s"' and q=5.132. Thus, D and q are plastic strain
dependent, as noted by Jones(1989). The bigger the parameter D is, the smaller the
strain rate sensitivity is. Both of the two sets of parameters obtained above will be
verified in Section 5.1.3. Their influence on DS beam response and failure will be

examined in Chapter 6.

(¢) Temperature Effects

Static tensile tests were conducted at various temperatures from room
temperature to 500°C on an INSTRON test machine. A specimen is heated by a
1.5mm diameter, nickel coil, model HBS050, made by H&B Sensors Ltd(UK), which
has an inner heater wire and an outer sheath insulated by a magnesium oxide layer.
The coil heater is wrapped around and along the gauge length of the test specimen.
Two enlarged ends are screwed firmly to the specimen, which are used for installing
a cooling pipe. The temperature of the coil heater can be adjusted by changing the
input voltage. The complete test system is shown in Fig.5.8, and the specimen
geometry is shown in Fig.5.9(a).

Typical stress-strain curves, based on the gauge length in Fig.5.9(a), are
shown in Fig.5.10 for elevated temperatures. As expected the material yield stress
decreases with increasing temperature. Further tests showed that the distinct yielding

points disappears beyond 320°C. Table 5.10 presents the main test results.
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The ratios of ©/0, are plotted in Fig.5.11 against temperature, which are

formulated by the temperature factor in the Johnson-Cook constitutive equation,

T-T
A% (5-10)
T -T

m r

Fy=1~(

where a single parameter n=0.65 fits all experimental results well, as shown in
Fig.5.11.

Temperature also increases material ductility, which can be seen from
comparing the values of €y at failure locations of TO! and TO3. Unfortunately, other
failures occur outside the heating section, and, thus, they cannot be used to show the
dependence of g, on temperature. These limited results also show that the maximum
tensile stress varies little with temperature before it reaches 300°C. More tests on
tapered specimens, shown in Fig.5.9(b), are conducted in order to confine the failure
location at the middle of the specimen. The results are given in Table 5.11.

According to the test results in Table 5.11, and the results of T11 and TO3 in
Table 5.10 for €, which is defined using the zero gauge length given by eq.(A-11a)
in Appendix Al, a relationship between material ductility and temperature up to
500°C is presented in Fig.5.12. It shows that the increase of material ductility with

temperature is significant, especially when T>300°C.

5.1.3. Verification of the Constitutive Equation

In the proposed constitutive equation, the influences of plastic strain, strain
rate and temperature on the constitutive equation are separated into a multiplicative
form, as shown in eq.(5-4). Furthermore, the strain rate effect is included by using
the Cowper-Symonds relationship, which was proposed originally for estimating the
strain rate effect for the dynamic yield stress. Thus, it is necessary to verify the
validity of eq.(5-4) when other functions, F,, F, and F,; are identified.

In our modelling, the function F, is assumed plastic strain independent.
However, both the flow stress at zero and 12% plastic strains are used to obtain two
sets of the parameters, D and q. The stress-strain predictions from them can be
compared with the stress-strain result of a SHPB test to verify the proposed form of

the constitutive equation. According to the discussion in Section 4.3.1, the
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deformation process in a SHPB test can be idealized as an adiabatic process. The
temperature rise during the test is estimated using eq.(1-12). The actual stress-strain
curve in a SHPB test may be influenced by temperature, which, however, is not
significant in the present case. Another factor is the variation of strain rate during the
loading process. Fig.5.14(a) shows the measured incident, transmitted and reflected
waves in SHPB test(specimen D22 in Table 5.8). The strain rate is proportional to
the reflected wave. It is evident that strain rate is not constant during the test, and
decreases monotonously from its maximum value to a minimum value that is less
than half of the maximum value. The reflected wave in a typical SHPB record in
Mayer(1994)(pp.310) also show this common feature of a SHPB test. Normally, the
variation of strain rate during a test is neglected, and is replaced by the average
value. The average strain rate, which is used in eq.(5-9), is about three-fifths of the
maximum value. These factors should be considered in the verification. After
considering both the temperature rise and the strain rate variation, the predicted result
for D=186.7s" and q=4.41 is higher than the test result, as shown in Fig.5.14.
However, this difference tends to reduce with the increase of strain. The relative
difference at 10% strain is about 20%, which reduces to about 10% at 24% strain.
In the DS beam test programme, most of the material in the notch section of a DS
beam experience plastic strain up to 25% to 50%, as shown in Chapter 6. It is
expected that the proposed constitutive equation will give closer results for larger
plastic strains. Unfortunately, the present capability of SHPB can only produce
compressive strain of 24% in the specimen.

Predictions using D=6948.3s™ and q=5.13 are also shown in Fig.5.14. It is
close to the experimental result at a plastic strain of 10%. The relative difference
increases with increasing plastic strain. It is hard to judge which set of parameters
offer a more accurate description of the strain rate effect from small to large plastic
strains. However, it appears that these two curves for the two sets of parameters give
upper and lower bounds on the test results. Their influences on DS beam response
and failure will be verified in Chapter 6.

More complicated constitutive equations should include the variations of strain
rate and temperature effects with plastic strain, which means that the function F, and

F, depend on plastic strain as well. However, it is still difficult to fit material
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behaviours in a range of strain rate and temperature. Alves(1996) obtained parameters
for the Cowper-Symonds equation based on average values to fit yield stress, ultimate
stress and failure stress simultaneously. However, the actual strain rate variation

during the test was not discussed.

5.2. Experimental Description

The aim of the proposed experiments is to study the response and failure
within the notch of a double shear(DS) beam under projectile impact in order to
understand the features of the response and failure in a localised shear zone, or shear
hinge, in the dynamic plastic response of a structural element. Responses and failures
corresponding to different loading rates will be recorded and analyzed in order to
supply the necessary information for further theoretical and numerical analyses.
Experimental details are described in this section and the experimental results are

presented in Section 5.3.

5.2.1. Loading System

A gas gun is used to accelerate the projectile. The velocity of the projectile
is estimated according to an approximate formula derived from the gas pressure and
Newton’s second law of rigid body motion, which is expressed as

1% =_2ﬂ(m/s), (5-1D)
M

where M(kg) is the mass of the projectile and Py(psi) is the initial pressure of the gas.

The actual impact velocities measured by the photocell system in Fig.5.15(a)
are given in Table 5.12, which agree with the predicted results of Eq.(5-11), as
shown in Fig.5.16.

The projectiles are made from an aluminium alloy shell with 20mm diameter
and a hardened steel cap. The actual mass used in a test is shown in Table 5.12.

In order to achieve a normal impact and to prevent the barrel and the
measuring device from being damaged by a projectile, the projectile is kept inside
the barrel after hitting the beam. Two plates fixed beside the specimen are used as

stoppers for this purpose, as shown in Fig.5.15(b).
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5.2.2. Clamper and Specimen

A double shear beam is clamped by two 5mm screws and two clamps on a
255x152x24(mm’) steel plate, which itself is clamped firmly on a massive steel
block. The details of the clamping system are shown in Fig.5.15(b). Two hardened
beam strips are used as stopper, which is on the same level as the top of double shear
beam. A 10x10(mm?®) sheet with a given thickness is fixed on the top of the central
block of the double shear beam to control the travelling distance of a projectile. The
actual thickness of the sheet and its mass are given in Table 5.12.

The geometry of the double shear beam specimen is described in Fig.5.15(a).

The notch width is 2mm.

5.2.3. Microscopic Observation Preparation

Specimen samples are prepared by sectioning, grinding, polishing and etching.
After sectioning, it is mounted in resin. The mounted sample is ground, then,
polished by a successively fine diamond paste down to 1p until a mirror finish is
achieved. The polished sample is etched by using 2% nital for 5 to 10 seconds which
depends on experience to observe the colour of the etching surface.

Although there are different etching methods for various materials, the above
reveals the deformation lines and both deformed and transformed adiabatic shear

bands, which will be shown in Section 5.3.2.
5.3. Experimental Results

5.3.1. General Experimental Results

A detailed description of the experimental results on DS beams is given in
Table 5.12 for various impact velocities and two different pad thicknesses.

Generally, simple shear dominates the deformations in the notch section.
When the impact velocity is low, symmetrical shear deformations are observed in
both notch sections. However, with increasing impact velocity, one of the two
notches starts to fail. With further increase of the velocity, failures are observed in
both notches. Normally, failures are initiated at the corners of a notch. A tensile

failure appears at the upper-left(upper right) and lower-right(lower left) corers for



Chapter 5 97

the left hand notch(right hand corner) of a DS beam(We will refer to a left hand
notch in the following discussion), which are noted as upper-tensile(UT) and lower-
tensile(LT) corners. While, a shear failure associated normally with adiabatic shear
banding is observed at the upper-right and lower-left corners, which are noted as
upper-shear(US) and lower-shear(LS) corners in the rest of this chapter and in
Chapter 6.

It was found that there are negligible changes in the pad thickness and the
thickness of the central block after impact. However, bending contributions to the
displacement of the central block are noticeable. The bending displacements are
measured after impact for some specimens, and are given in Table 5.12. These data
are plotted in Fig.5.18 for impact velocities below 80m/s. The bending displacement
reaches its maximum value at V;=40-50m/s, then starts to decrease due to the failure
initiation at the notch corners. An approximate linear relationship between the
bending displacement and the impact velocity is given in Fig.5.18. The shear

displacement of the central block, Wy, is calculated from

Wf=Af—(dp -A)-W,, (5-12)

in which, the measured value of W, is used when it is available, and the approximate
relationship in Fig.5.18 is used when it is unavailable. The transverse displacement
of the central block according to eq.(5-12) is given in Fig.5.19 for various impact

velocities, which will be compared with the theoretical predictions in Section 6.3.

5.3.2. Observation of Tensile Failure and Shear Banding

The two failure mechanisms found within the notch of a DS beam specimen
are a tensile failure and an adiabatic shear banding failure. Although, there is a small
radius of 0.2mm at each corner of the notch, the stress concentration, and, thus,
deformation concentration, is quite severe according to micro-observations presented
in this section and the FEM simulations in Chapter 6. Thus, the failure of a DS
beam, either a tensile failure or an adiabatic shear banding failure, is initiated from
its four corners. This behaviour is different from the behaviour of a thin-wall tube
tested in a torsional Hopkinson bar where failure is initiated in the middle of the

gauge section, as shown by Marchand and Duffy(1988) for the adiabatic shear band
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formation process.

(a) Tensile failure

Tensile failures are initiated in the tensile domain zones at either upper-
tension(UT) or lower-tension(LT) corner(or both of them) when the impact velocity
exceeds a critical velocity. The critical velocity to initiate tensile failure in the current
DS beam tests is between 40 and 50m/s for both pad thicknesses. Normally, cracks
appear in one of the two notches when the impact velocity just exceeds the critical
velocity

Cracks extend in the direction of about 30 degrees, as shown in Fig.5.20. The
crack extension length depends mainly on the input kinetic energy, or projectile
impact velocity. It appears that the LT corner fails first because many experiments
show that cracks at the DT corner extend more than the cracks at the UT corner.
More discussion on this will be given in Section 6.4.

With a further increase of impact velocity, a third crack is found at the UT
corner of the other notch. Obviously, this is due to the fact that cracks at the LT
corner extend more than the cracks at the UT corner, which decreases the tensile
concentration at the LT corner in the other notch. However, with a further increase
of impact velocity, tensile failures are found at the UT and LT corners in both
notches.

The microscopic examinations are conducted on the crack and its path. Crack
propagation is irregular on the microscopic scale because the outline of a crack on
a microscopic scale is characterised by fractal patterns, which is unpredictable on the
macroscopic scale. The microscopic failure on the grain size is complicated, which
may involve both tensile and shear effects. A microscopic tensile stress field over a
finite region is consistent with the formation of a macroscopic tensile stress field. The
observed macroscopic tensile crack seems to be in the vertical direction of the
macroscopic tensile stress. Thus, it is believed that the macroscopic failure pattern
can be determined by a macroscopic stress field at the front of a crack during the
failure process. But, the failure in microscopic scale is determined by the microscopic
local stress field. Thus, any failure phenomena and criteria have their associated

spatial scale, which is necessary to be specified in any failure analysis. A proper
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macroscopic failure criterion can predict the macroscopic failure initiation in
structures if the failure index in a failure criterion is determined by a material test
having the same failure mechanism.

In addition to the tests in Table 5.12 on the originally delivered En24 steel,
some tests were conducted on a heat treated En24 steel with a hardness HRC 44-46
after heat treatment. No tensile failures were found at the UT and LT corners, but
instead shear failures occurred at the upper-shear(US) and lower-shear(LS) corners,

which will be described below.

(b) Adiabatic shear bands

Adiabatic shear bands are found in the shear domain zones at both the US and
LS corners shown in Fig.5.21(a). Microscopic examinations are conducted for the
post-test specimens and adiabatic shear bands are found in front of the cracks at the
US and LS corners. It has been claimed in several publications(see pp.448
Meyers(1994)) that shear bands are precursors to fracture, which is true in some
situations as in a SHTB test. However, it is highly possible that a pre-existing crack
or an initiated crack may also play a precursor role for the development of an
adiabatic shear band, which has also been confirmed by Kalthoff(1987, 1990). Shear
band initiation in a DS beam is more complicated than in SHTB tube specimen
because the local US and LS shear domain zones are not in a simple shear mode. It
is also hard to find which phenomenon(crack or shear band) is initiated first, and then
to be the precursor of another phenomenon. No matter which phenomenon occurs
first, a failure transition between these two failure mechanisms are confirmed in the
present test programme.

According to the microscopic observations in Fig.5.21(a), grains in a shear
band are elongated into narrow strips along the shear band. The elongation of the
grain decreases rapidly away from the core of a shear band. It is a practical view-
point that an adiabatic shear band can only be achieved under rapid shear
deformation, and it is hard to find evidence of shear bands in a macroscopic tensile
stress field(that is why the term "shear band" is used for this material instability
phenomenon). The elongation of the grains is much larger than that in macroscopic

tension mode, shown in Fig.5.20. It appears that the compressive force created by the
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macroscopic shear field could supply higher material ductility than a tensile stress
field, which offers material an opportunity to consume more external energy to
increase its temperature. Another advantage of a shear stress field to trigger adiabatic
shear banding is its simultaneous deformation over a finite material domain, while
a tensile failure mode is more likely to be a progressive process which makes it
difficult to heat material up sufficiently to obtain a high ductility. Thus, adiabatic
shear banding is more likely to be initiated in a shear stress field. Another factor is
the loading rate. It is believed that the reason why grains can experience such high
elongation is due to the rapid rise of temperature, which triggers the material
instability to localize material deformations in this narrow zone, and, on the other
hand, increases the material ductility significantly. The shear band length depends on
the availability of input external energy and the material behaviour at the front of a
shear band.

The maximum shear stress criterion has been used frequently to predict the
initiation of an adiabatic shear band. If the adiabatic shear band is initiated in a
simple shear field, the shear stress and strain of the simple shear motion can be used
in the criterion because the local instability criterion is consistent with a global
instability criterion in this case. SHTB can be used to create simple shear motion,
and many analyses have been given to predict adiabatic shear bands in a SHTB
specimen based on the maximum shear stress criterion. For a general stress field, the
maximum shear stress criterion can be generalised as a maximum Tresca stress
criterion. However, as discussed in Section 6.4, the maximum shear stress criterion
is not always consistent with material instability because it could be satisfied during
an unloading process without a material instability. Thus, the maximum Tresca stress
criterion is one of the two necessary conditions to initiate adiabatic shear banding.
More discussion on this topic will be given in Section 6.4.

The material around a shear band is sheared severely for about 20 times the
shear band width in the present case. If this is taken as a characteristic size to model
the initiation of a shear band(not the shear band itself), the FEM element size in this
area should be the order of 10xA, for an accurate simulation. For FEM simulations

on instability development and the evaluation of an adiabatic shear band, finer

elements are necessary.
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There are two kinds of adiabatic shear bands, i.e., transformed shear band and
deformed shear band. The first one is normally associated with hardening brittle
materials, and the second one is frequently observed in ductile materials. In the
current study, both the original delivered En24 steel and heat treated En24(H) are
tested. The original delivered En24 can be classified as a ductile material, whose
results have been reported above. The En24(H) is much more brittle than En24 with
a high hardness. All the tested specimens on EN24(H) failed completely. Typical
observations of an adiabatic shear band are shown in Fig.5.21(b). The failure surface
is a shiny colour, which is believed to be fractured by failures in the shear band. In
addition to the main failure surface, shear band branches are found beside the main
failure surface, which satisfies the description for a transformed shear band from its
white shiny colour. Because there is no material data available for the En24(H)
material, most of the discussion is concentrated on the results obtained using the

original delivered En24 material.
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Table 5.1 Material Composition of En24 Mild Steel

Compositions | C Cr Mo Ni
(%) 0.35-0.45 1.4 0.3 1.4
Table 5.2 Physical Properties
pkgm?) | C(JK'kg") | K(Wm'K") | T,(K) Hardness(Rockwell)
7830 482 38.13 1793 RC-21

p, T:Johnson and Cook(1983); C,, K,:Woolman and

ottram(1966);Hardness: from hardness test.

Table 5.3 Variations of Mean Specific Heat and Heat Conductivity With

Temperature(Woolman and Mottram(1966))

T(CCy* 20 100 200 300 400 500 600 700 800 900

C,JK'kg') | 481.2 | 481.2 | 502.1 | 514.6 | 531.4 | 556.5 | 5858 | 627.6 | 707.1 | 6904

K (Wm'K"') | 38.08 | 38.08 | 3849 | 38.08 | 37.24 | 34.73 | 32.22 | 29.29 | 2636 | 27.20

Table 5.4 Variation of Specific Heat with Temperature According to Table 5.3

T(C) 20- 150 250 350 450 550 650 750 850 950
100

C,JK'kg') | 481.2 | 5188 | 537.1 | 5784 | 651.9 | 726.4 | 870.0 | 1247.7 | 560.1 | 608.1
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Table 5.5. Diameter of the Test Specimens
SP1 Sp2 SP3 SP4
Dy(mm) 5.00 4.99 4.99 4.96
D¢mm) 3.32 3.58 3.64 3.40
Or{(MPa) 607.86 635.81 632.31 614.85
Note Bar 1 Bar 2 Bar 3 Bar ]
» initial diameter of the specimen; Dy final diameter of the specimen at necking;
Ogs engineering stress at failure.
Table 5.6 Tensile Test Results(INSTRON)
E(GPa) | 6,(MPa) | UTS(Mpa) | elongation(%) | ey %) 6+{(MPa)
SP1 | 210.3 412.7 749.2 15.96 81.90 1378.7
SP2 | 212.8 391.5 719.5 13.44 66.42 1235.3
SP3 | 214.5 383.9 711.3 14.28 63.09 1188.3
SP4 | 215.4 430.2 746.3 13.08 75.53 1308.5
Table 5.7 Parameters of SHPB System
L, L, L, D p(kg/m’) | E(GPa) | c(m/s) | 6,(MPa) | V_, (m/s)
400 | 750 | 450 | 23 7830 206.8 5140 531.65 2642
bars; L, L, and L,(in mm) are shown in Fig.5.4; p,

(mm): diameter of the incident and transmitter

E, o, and c are density, Young’s modulus, yield stress and elastic wave speed of SHPB bars,
respectively; V. is the maximum impact velocity to ensure an elastic impact.
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Table 5.8. SHPB Test Results
No. Vi(m/s) | L, d, L, d,; &(s™) Note
DO1 14.60 4315 9.990 3.980 10.410 | 519.0 | Bar |
D02 | ------- 4.315 9.980 3.760 10.750 883.2 Bar |
D03 20.68 4315 9.990 3.640 10.950 1090.4 | Bar |
D12 14.19 4310 9.990 3.990 10.410 495.4 Bar 3
D13 16.74 4310 9.980 3.840 10.630 741.0 Bar 3
D14 21.59 4.300 9.985 3.550 11.050 1226.2 | Bar 3
D21 13.41 4310 9.975 4.050 10.310 399.6 | Bar2
D22 21.90 4310 9.970 3.565 11.050 1215.7 | Bar 2

V,: impact velocity of projectile; L, and d(in mm) are defined in eq.(A-22), and L and d,; are their
final values measured after test; € is the average strain rate.

Table 5.9 Dynamic Flow Stress At 12% Plastic Strain

No. e"(%) 6,(MPa) c/o* e’(s™)
D22 12.02 1342.0 1.721 1215.7
D13 12.01 1285.0 1.647 741.0
D14 12.02 1350.0 1.731 1226.2

¥0, is the flow stress at 12% In quasi-static tensile test.
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Table 5.10 Static Tensile Test Results At Various Temperatures

stresses at test temperature and room temperature, respectively.

Table 5.11 Variation of €y, on Temperature

No. | dy(mm) | d(mm) | T(°C) | o/o, Enor G,.(MPa) | Note

TO1 | 4.985 3.700 20.0 1.0 0.60 1104.8 Bar |
TO2 | 4.965 3.610 1650 | 0.82 0.64 1046.5 Bar |

TO3 | 4.950 1.700 500.0 2.14 Bar 1,#1
T11 | 4.980 3.660 20.0 1.0 0.62 Bar 2

T12 | 4.960 3.610 1150 | 0.81 0.64 Bar 2,#2
T13 | 4.940 3.670 2400 | 0.64 0.60 Bar 2,#2
T21 | 4.970 3.570 320.0 | 0.68 0.66 1118.1 Bar 3

ote: #1: no yielding phenomenon; #2. failed outside heating section.G and G, are static yielding

No. T(°C) Dy(mm) D{(mm) €nor Note
TB1 340 6.09 3.88 0.90 Bar 2
TB2 430 6.01 3.28 1.21 Bar 2
TB3 250 6.09 4.16 0.76 Bar 2
TB4 175 6.12 4.29 0.71 Bar 2
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Table 5.12 Experimental Results of DS Beam

No. P(psi) | V,(m/s) d,(mm) [ A(mm) | Afmm) | W (mm) | W(mm) | Note
NTI 50 80.5 1.59 1.47 1.44 0.14 1.18 M, C
NT2 50 82.8 1.58 1.60 0.06 M, C
NT3 30 60.2 1.46 1.35 1.37 1.04 M,, B
NT4 60 82.8 1.46 1.34 1.64 1.42 M, C
NTS 20 473 1.46 1.39 1.01 0.29 0.65 M, B
NT6 15 39.2 1.46 1.35 0.81 0.26 0.44 M, A
NT7 15 40.3 1.51 1.40 0.78 0.24 043 M, A
NT8 25 52.3 1.49 1.44 1.26 0.96 M, B
NT9 70 91.7 1.49 1.46 1.66 1.53 M,, C
NT10 | 35 63.38 0.19 M, B
NTI1 | 40 70.1 1.58 1.50 1.64 1.38 M,, C
NTI12 | 80 96.1 1.58 1.45 1.93 1.72 M, C
NTI13 100 110.3 1.58 1.52 2.00 1.91 M, C
NT21 | 30 58.4 1.99 1.87 1.65 0.22 1.31 M, C
NT22 | 20 49.6 1.98 1.88 1.14 0.34 0.70 M,. B
NT23 15 47.7 1.98 1.85 1.13 0.28 0.72 M, A
NT24 | 50 78.4 1.98 1.91 2.11 0.01 2.03 M, C
NT25 | 15 41.7 1.98 1.88 0.86 0.32 0.44 M, A
NT26 1.98 1.86 0.85 0.32 0.41 M, A
NT27 | 10 38.7 1.98 1.84 0.76 0.30 0.32 M, A
NT28 | 35 62.1 1.98 1.84 1.86 0.14 1.58 M, C
NT29 | 45 74.5 1.98 1.91 2.02 0.12 1.83 M, C
NT30 | 60 85.1 1.98 1.86 2.20 0.16 1.92 M, C
NT31 | 80 96.1 1.98 1.87 2.32 0.07 2.14 M, C
NT32 | 100 106.4 1.98 1.91 2.58 0.03 2.48 M,, C
=58.3g, M=62.0g, M,=60.45g, M,=562.38g;

A-symmetrical shear deformation in notch sections, B-failure occurrence in one notch, C-failure occurrence in both notches, as

shown in Fig.5.17(a)
D- appearance of adiabatic shear band; E: appearance of tensile failure;

F: stopper plate(or impact pad or projectile) broken.

d;; pad thickness, A,: initial distance from pad top to the surface of stop plate, A; final distance from stop plate surface to the
top of central block of DS beam, W,: bending displacement of the central block, W, shear displacement of the central block,

defined in Fig.5.17(b).




Chapter 5

95+ 0.01 r=6

1 b

612

150

Fig.5.1 Geometry of the tensile specimen(Dimensions are not scaled,
all units are mm)

— = 8P1
I
] - 8P
— P4

Engineerin Stress(MPa)

T T T T T rryrrr+rJ1r rrrr1r 111111 rrrypr1
0.0 25 50 7.5 10.0 125 15.0
Engineering Strain(%)

Fig.5.2 Engineering stress-strain curves for specimens SP1-SP4.



Chapter 5

1B

True Stress(MPa)

Fig.5.3 True

1000
750
so0
ar [EREPPE
I i Py |
N Eq(nu)“
250} !
o-<
LI S N N S 0 I B N N L W |
0.0 0.1 0.2 03 0.4 05 06 07

True Strain

stress-natural strain curves for specimens SP2 and SP3.



Chapter 5 708

stri incident bar dq SRS ,
striker transmitter bar dash pot

’._14’—-1 L L L ) L
C ] [ ) . ]
strain puage —{} f— L

/ v L,

gas gun
]7

amplifier

straip guage

transien )
ansient computer

recorder

(a)

(b)

Fig.5.4 (a) A SHPB system; (b) An overall view of the SHPB system.
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(b)

Figure 5.8 (a) High temperature test system; (b) An overall view of the heating and
cooling system.
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(b)

Fig.5.17 (a) Different deformation and failure modes in the notch section,
A:symmetrical deformation(NT7); B:failure occurrence in one notch(NT?3);
C:failure occurrence in both notch(NT13); (b) Definition of bending
displacement in DS beam.
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Figure 5.20 Microscopic observation of tensile failure for NT21.
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(a)

(b)
Figure 5.21 Microscopic observation of adiabatic shear bands, (a) Deformation shear
band in original En24 steel(NT21), (b) Transformation shear band in heat treated

En24(H) steel(T3).
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6. RESPONSE AND FAILURE OF A DOUBLE SHEAR
BEAM UNDER PROJECTILE IMPACT

6.1. Introduction

It is well-known that pure shear material tests conducted at different strain
rates and temperatures can provide fundamental information for developing material
constitutive equations. It is also an important way to investigate shear fracture and
adiabatic shear band phenomena. Most experimental studies of both constitutive
equations and adiabatic shearing were conducted by using Split Hopkinson Torsional
Bar(SHTB) and pressure-shear impact(PSI) techniques. However, the strain rate
limitation(~10%") for SHTB and maximum strain limitation(<few percent) for PSI
actually introduce many difficulties for systematically investigating material dynamic
behaviour(Klepaczko(1994)).

One of the most promising specimen configurations, which can be applied at
low, medium and high strain rates in shear is the double-notch shear(DS) specimen.
Such a specimen was first introduced by Ferguson(1967) to study the dynamic
plasticity of single crystals. Later the DS specimen was applied with the Hopkinson
bar technique by Campbell and Ferguson(1970), where nominal strain rates in excess
of 10%" were achieved with impact velocities from 1.2 to 11.0ms"'. However, the
determination of the shear strains in Campbell and Ferguson(1970) when they are
higher than a few percent leads to large errors due to non-uniform shear and severe
plastic deformations at the specimen supports, which have been shown by Ruiz, et
al.(1989, 1991) by using photo-elasticity and ABAQUS FEM software. It was also
shown that within the range of small strains the distribution of shear stresses in the
shear zone(or gauge section) does not vary much, but stress concentration at the
corners of the square notch of width 0.84mm is quite high. A modified double
shear(MDS) technique was proposed by Klepaczko(1994) to overcome these
shortcomings with a direct impact of a flat projectile on the MDS specimen to give
greater flexibility to control the shear strain rate in the gauge length by changing

impact velocities. However, the axial displacement of the central block of the MDS
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specimen has to be measured by an optical method. The proposed MDS geometry has
a wider gauge length, 1=2.0mm(previously 0.84mm in Ferguson, Hauser and
Dorn(1967), Campbell and Ferguson(1970), and Ruiz, Harding and Ruiz(1989,
1991)), and the sharp corner in previous use was changed into a round corner which
substantially reduces stress concentrations near the notch corners. The extension parts
were designed to be longer than before, and were clamped to the transmitter tube
to prevent rotations. Such MDS geometry was analyzed statically by FEM at different
stages of plastic deformation for low alloy steel XCI18(French Standard).

It was shown that the shear strain fields up to 0.5 shear strain were quite
uniform with a small asymmetry due to a bending component from the support.
However, the extension part of the specimen outside the notch section also deformed
plastically, causing an increasing tendency for rotation. A large width of the
extension part may decrease this effect. Since the thickness of the gauge section in
a MDS specimen is only 5mm, and the mean shear stress T, is assumed to be
determined from an infinite layer, a calibration factor is introduced to calculate the
actual shear stress in the uniform region of the gauge section from the mean shear
stress. This calibration factor was found to be 1.2 approximately by Klepaczko(1994)
for 0.05<y<1.0. No calibration factor for the shear strain was introduced. This
experimental technique was used to investigate the initiation of adiabatic shear
banding in the gauge section of a MDS specimen subsequently(Klepaczko(1994b,
1995)).

Although these studies have proposed the possibilities to use DS specimen as
a standard material test technique at various strain rates, it is far from the mature
technique like uniaxial tension or SHPB techniques. Previous studies have not given
a systematic and complete description on the relationships between the shear
stress/strain  in the main part of the gauge section and the measurable
force/displacement, which are crucial for calculating shear stress and shear strain.
Temperature effects are neglected in these studies, which may be important for high
strain rate tests and it is necessary to check its influence on the deformation of a DS
specimen. Another interesting topic on the DS test is the initiation of failure at the
notch corners where stress concentration is evident(even for a MDS specimen), which

include both fracture and adiabatic shearing mechanisms. It has been shown that
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only a fracture failure mechanism is involved in the failure process under a low
velocity impact. The impact behaviour of a double shear specimen made from
aluminium alloy and mild steel with a sharp triangle notch were studied by Jouri and
Jones(1988). Only fracture failure was observed within the velocity range up to
I12ms'. However, Kalthoff(1987, 1990) observed failure transition in a specimen with
two parallel edge notches when impact velocities varied from 50 to 100ms™. It
transpires that fracture and adiabatic shearing failures in a given DS specimen may
appear with increasing impact velocities depending on the notch tip radius and
material properties. Because fracture and adiabatic shearing are controlled by
different criteria, it is significant for an engineering impact problem to determine the
transition point when a new failure mechanism emerges. A general discussion on the
failure transition has been given in Chapter |, which has been used to study the
failure transition in a fully clamped beam in Chapter 4.

In Chapter 5, a DS beam having a similar geometry(except the width of the
gauge section) to Klepaczko(1994) has been tested by impact velocities within the
range of 30 to 110m/s. Various deformation and failure modes have been recorded.
In the present chapter, a combination of FEM simulation and analytical analysis are
proposed to describe the behaviour of a DS beam under projectile impact. The
advantages and disadvantages of using a DS beam for studying material dynamic
properties and failure criteria are discussed. Section 6.2 studies the distributions of
shear stress and strain in the gauge section, the temperature effects and the valid use
of adiabatic condition. An analytical model is proposed in Section 6.3 for the motion
of the central block based on the results from Section 6.2, which is compared with
the test results and will be used as loading conditions in Section 6.4 where the actual
response of a DS beam tested in Chapter 5 is simulated by using a FEM method.
Various failure criteria are examined. The basic verification procedures proposed here

may be used to modify other DS specimen results developed in any practical

applications.
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6.2. Stress/Strain and Temperature Distributions in a DS beam Under Various

Strain Rates

6.2.1. Description of the Problem

Loading, clamping and specimen geometry of the DS test have been described
in Section 5.2.2. Physical and mechanical properties of BS970/En24 are given in
Section 6.1, which are incorporated into the ABAQUS material model. The coupled
temperature-displacement procedure in ABAQUS is available for performing fully
coupled heat transfer/stress analysis, where the thermal and mechanical solutions are
obtained simultaneously. A set of elements are provided for this purpose, which
generally use a lower-order(linear) interpolation for temperature than for
displacement(linear or parabolic) in order to obtain a compatible variation of thermal
and mechanical strain. The temperatures are integrated using a backward difference
scheme, and the coupled system is solved using Newton’s method. In the present
study, 4-node bi-linear displacement and temperature plane strain element, CPE4T
is used. The validity of using a plane strain assumption will be verified in Section
6.2.4. More details about fully coupled temperature-displacement elements in
ABAQUS are given in ABAQUS User’s Manual(Vol.l Section 3.2.3).

With the option of coupled-temperature-displacement procedure, "inelastic
heat fraction", "specific heat" and "conductivity" options are needed. Because there
is no phase change in the present problem, the "latent heat" option is unnecessary.
Data of specific heat and conductivity are given in Section 5.1.1, which depend on
temperature. The coefficient of inelastic heat fraction, B, is taken as 0.9. Parameters
in Cowper-Symonds relationship are D=186.7s"' and g=4.41. A parameter study on
B, D and g will be conducted in Section 11.2.4 and Section 6.4.

Adiabatic analysis may be used in cases where mechanical deformation causes
heating and the event is so rapid that this heat has no time to diffuse through the
material. Generally, the adiabatic assumption can be used for very high strain rate
events while isothermal assumption is valid for very low strain rate events. For inter-
medium strain rate events, heat conduction should be considered. However, the
present study indicated that adiabatic behaviour is a relative concept depending on

the geometry scale of the phenomenon. For example, the dynamic deformation
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process may be considered as an adiabatic phenomenon on the scale of the notch
section. But, it may be invalid on the scale of the stress concentration area at notch
corners. This problem will be discussed further in Section 6.2.1.

FEM mesh of the DS specimen is shown in Fig.6.1. It is not necessary to
model whole specimen shown in Fig.5.15(a) In Fig.6.1(a), GH is the central line of
the central block. The distance from AB to the notch edge is 2mm. AB and BC are
assumed to be fully clamped. While a given velocity is imposed on FG and GH. In
order to maintain a constant nominal strain rate, the imposed velocity must be held
constant. However, in Section 6.4, the central block velocity calculated from Section
6.3, which varies with time, will be used. The notch has four round corners with
radius, 0.2mm, which are modelled by six elements as shown in Fig.6.1(b).

Numerical simulation input data are given in Table 6.1, where t is the total
simulation time, At is the fixed time increment, W, is the maximum transverse
displacement of the central block corresponding to maximum nominal shear strain,
v,=1.0, 7, is the nominal shear strain rate, V is the imposed velocity at the

boundaries FG and GH, and INC is the total incremental number.

Table 6.1 ABAQUS Simulation Data-1

No. Y.(s") t(s) At(s) INC W/{mm) | V(ms') | Note
DS 2x10° 50x10° | 5x107 100 2.0 40.0

DS2 5x10° 20x10° | 2x107 100 2.0 100.0

DS4 50 20x107 | 4x10™ 50 2.0 0.1

DS5 5x107? 20.0 0.1 200 2.0 0.0001

6.2.2. Stress/Strain Distributions

In a DS test, the displacements of the central block and the extension supports
and the reaction force at the extension supports can be recorded. It is assumed that
the total reaction force at the extension supports is the same as the total force on the

cross-section DE. Thus, the nominal shear stress can be defined as
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T _Flfn (6-1)

where A is the cross-section area of DE and F; is the total transverse shear force
on a notch cross-section. It will be shown later that the total transverse shear force
on the notch cross-section does not vary from the mid-point to the edge of the notch.
Thus, Fy,; may be understood as the total transverse shear force at the edge of notch,

i.c., cross-section DE in Fig.6.1(a). The nominal shear strain is

'Yn — (6_2)

w
A
where W is the displacement of central block(the extension support has negligible
permanent displacement) and A is the notch width.

It has been shown that there exists a shear area in the notch section where the
shear stress and shear strain distributions do not vary much although the stress
concentration in the corners of notch are quite high(Klepaczko(1994)). The mid-point
of the notch section is always within this uniform shear area. Thus, the shear stress
and strain at the mid-point of a notch section will be used to model the material
response. In order to obtain the true shear stress(T)/true shear strain(y) at the mid-

point of notch section from the nominal stress/strain, the following relationships are

defined

T=0,T, and y=0.,Y, (6-3a,b)

where o, and o, will be determined by using FEM simulations.

Three constant nominal strain rate simulations, DS2, DS4 and DS5 in Table
6.1, have been conducted for strain rates of 0.05, 50.0 and 50000.0 s'. Time
variations of the transverse shear strain at the mid-point of a notch section, T, are
shown in Fig.6.2. The mid-point of the notch is in the middle of elements 210, 211,
230 and 231. However, the transverse shear strain in these four elements are almost
identical, as shown in Fig.6.2(a). Therefore, in Figs.6.2(b) and (c), the outputs from
element 210 are used to represent the mid-point output. Because, these problems are
simulated under a constant imposed velocity, the nominal strains can be calculated

from the response time, and therefore, the relationships between 7y and ¥, can be
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evaluated from Fig.6.2, which are demonstrated in Fig.6.3. It shows that the strain
calibration factor o, varies slightly with both plastic strain and strain rate. Thus, a
constant value of 0,=0.718 can be used to obtain the actual shear strain at

the mid-point of a notch section from the nominal shear strain. No strain calibrations
are given by Klepaczko(1994). Ruiz, Harding and Ruiz(1991) introduced a calibration
factor, but did not show its actual value on their DS beam tests.

Stress distributions are also analyzed in these simulations. Fig.6.4(a-c)
compares the mean shear stress defined by eq.(6-1) at the mid-point(curve MA) and
cdge(curve BA) of the notch cross-section for three different strain rates. It is found
that the total transverse shear forces at the different location of a notch section are
almost the same although deformation distributions may vary significantly. Therefore,
the constant transverse shear force assumption in eq.(6-1) is valid for these tests
within the notch section.

~ Since the width of the notch section is finite while the nominal shear stress
T, is defined for an infinite layer, a calibration factor o, has been introduced in eq.(6-
3a). Klepaczko(1994) found that o, has a mean value of 1.2 for 0.05<y,<1.0
according to a static FEM simulation. Ruiz, Harding and Ruiz(1991) also introduced
a constant o, to calibrate the results, where the actual value of o, is not given.
Fig.6.5 give the variations of a, throughout the response period for various strain rate
simulations. Generally, o, varies within a narrow range from 1.06 to 1.22 for
0.0<y,<1.0 depending on the nominal shear strain and strain rate. It increases from
a low value to its maximum at ¥,=0.25, then starts to decrease. Practically, this small
variation may be neglected by introducing an average value, o,=1.1, which is
independent of both the nominal shear strain and strain rate, and can be used in
eq.(6-4a) to obtain the mid-point shear stress before material failure or thermal
instability occurs. Also, this value is very close to the value(o,=1.2) obtained by

Klepaczko(1994) using static FEM simulation.

6.2.3. Temperature Effects

The temperature rise is significant in most of the present impact tests. The
temperature distributions in a DS beam are shown in Fig.6.6 for three simulations,

DSI, DS2 and DS4 in Table 6.1. Even at a low impact velocity(DS4), the
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temperature rise in the shear section is 139°C, which has a noticeable influence on
the material mechanical properties according to Chapter 5. Thus, it is necessary to
consider temperature effects in both the response and failure analyses.

According to Fig.6.6, there exist three distinct areas in which temperature rise
is significant; namely the tensile notch corners(point E and its opposite corner E’),
shear notch corners(point D and its opposite corner D’) and the main shear zone in
the middle of the notch section. Generally, when the strain rate is high(DS1 and
DS2), the temperature at a shear notch corner is higher than the temperature at a
tensile notch corner. In the low strain rate case(Fig.6.6(c) for DS4), the main shear
zone has the highest temperature up to 139°C at y,=1.0, and the temperatures at the
shear and tensile notch corners are 106°C and 97°C, respectively, although the plastic
strain energy density at both the shear and tensile corners are higher than that in the
main shear zone due to the stress and strain concentrations. This is because the stress
concentration area of either shear or tensile notch corner are very small and the heat
produced from the dissipative plastic strain energy in these localised areas is
conducted into the surrounding material when the strain rate is low. In the main shear
zone, the whole material experiences the same amount of plastic deformation, and,
thus, is heated simultaneously from the dissipative plastic strain energy, in which the
temperature decrease due to heat conduction is not as significant as at the localised
shear and tensile north corners. It has been shown in Section 5.1.2 that the yield
stress at 100°C is 15% less than the yield stress at room temperature. Therefore, it
is recommended that a thermal-coupling analysis with temperature effects on material
properties is necessary when the characteristic strain rate is over 10’ in a similar
problem.

For the high strain rate case, the temperature in the main shear zone is lower
than the temperatures at both the shear and tensile notch corners. The temperature at
the shear/tensile notch corners in Fig.6.6(a) and (b) are 859/439 °C and 1050/536 °C,
respectively, which are significantly higher than the corresponding temperatures of
246°C and 298°C in the main shear zone in Fig.6.6(a, b). This feature indicates that
thermal softening phenomenon is more likely at the shear notch corner which

coincides with the experimental observations.

According to the material property test criterion proposed in Appendix Al,
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the response in the main shear zone of a DS beam before material failure could be
used to evaluate the dynamic mechanical properties of the material. However,
temperature effects should be taken into account in the material constitutive equations
for medium/high strain rate test depending on the physical properties of the tested
material. This is a common problem in any dynamic material test techniques.
Isothermal and adiabatic assumptions may simplify calculations for the
temperature rise in a thermal-coupling dynamic problem. However, it is necessary to
find the valid range of strain rates to use these simplifications. There are various
ways to define the accuracy of a simplification depending on applications. One of

them is to use the relative difference of temperature, i.c.

; -T
e=l—=] and e =[— 21|, (6-4a,b)
T ‘ T

i

where, T is the temperature at the mid-point of a notch section when mechanical-
thermal coupling and heat conduction are considered, T,=T,=20°C is the isothermal

temperature at the same location, and T, is the adiabatic temperature calculated from

=1+ P (6-5)

where, w, is the plastic strain energy density at the mid-point of a notch section
calculated by ABAQUS. It should be noted here that the "adiabatic analysis
procedure" in ABAQUS assumes no heat conduction on any geometrical scale which
is not suitable for the present problem, as mentioned in Section 6.2.1. The results
obtained by "adiabatic analysis procedure" are obviously unrealistic even when the
strain rate is high, in which plastic deformations are largely concentrated in the shear
corners of the notch. This is probably due to the occurrence of material instability
which prohibits large deformations. However, adiabatic behaviour is valid within the
scale of a notch section, which will be discussed below based on eq.(6-5).
According to the dimensional analysis results in eq.(4-9) of Section 4.3.1,
t.,=0.4(s) and ¥.,=14(s""). Thus, principally, if the characteristic strain rate, Y. is much
larger than ¥,,, the adiabatic assumption could be used. On the other hand, when Y.
is much less than Y., the isothermal assumption is valid, which means that the

temperature rise can be neglected. When Y. is in the same order as 7y,,, any heat
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conduction effects need to be considered. These three situations are examined by
using ABAQUS FEM simulations. Table 6.2 gives data on the simulations and Table
6.3 gives the corresponding results.

It was shown by simulations using the current FEM mesh in Fig.6.1(a) that
the isolated boundary has no influence on the temperature rise and distribution when
v,210%". When vy,<10°s"', the heat conduction on boundaries AB, BC and FG is
considered by introducing extra material to conduct heat. The dimensions of the
introduced material are represented approximately by the real dimensions of the
clamps, in which the temperature at the extended boundaries is fixed at room
temperature. This is accurate enough to model the heat conduction at the boundaries.
There is an obvious improvement on the temperature distributions from the model

in Fig.6.1(a) according to our simulation resuits.

Table 6.2 ABAQUS Simulation Data-II

No. | 7.8 | ts) At(s) | INC W{(mm) | V(ms"') | Note
TT1 | 107 1000 |2 500 2.0 2x10° #a
TT2 | 107 100 0.5 200 2.0 2x 107 #a
TT3 | 10" 10 0.1 100 2.0 2x10* #a
TT4 | | [ 0.01 100 2.0 2x107 #a
TTS | 10 0.1 0.001 | 100 2.0 2x10 #a
T6 | 10° 0.01 10 100 2.0 0.2

T7 | 10° 0.001 | 107 100 2.0 2

T8 10* 10" 10° 100 2.0 20

T9 10° 10° 10”7 100 2.0 200

Fa- Extra matenials are introduced to eliminate boundary effects on heat conduction.
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Table 6.3 Simulation Results From Table 6.2

No. |TTI |TT2 |TT3 |TT4 |TT5 |T6 |T7 |T8 |T9
T 20.1 | 214 | 26.6 | 46.7 | 119.6 | 150 | 184 | 230 | 314
T, 122 | 1339|153 | 184 |230 | 314
T, 48 |76 | 130 | 245 | 437 | 699
T, 536 | 556 | 610 | 754 | 996 | 1358
e(%) |05 |65 |248 |572 |833

e (%) 161. [ 120 (20 |00 |00 |00
Note |#b [#b |# [#b |#b |# |# |# |#

" 1s the average temperature at the upper-shear notch corner and T, is the adiabatic value of T,

according to eq.(6-5). All temperatures have unit "C.
#b: Maximum temperature occurs at the mid-point of notch section when the strain rate is low
#c: Maximum temperature occurs at the up-shear notch corner with high strain rates.

Two typical curves for the variation of T and T, with response time up to
v,=1.0 are shown in Fig.6.7. It indicates that the adiabatic simplification in €q.(6-6)
for the notch section response is accurate when ¥,210%™, as shown in Fig.6.7(b).
However, the difference between the adiabatic simplification and the heat conduction
analysis becomes significant for a decreasing strain rate, as shown in Fig.6.7(a).
Variations of e, and e, with logarithm strain rate are shown in Fig.6.8. If the accuracy
of isothermal and adiabatic simplifications are controlled by 10% of ¢; and e, it is
found that isothermal and adiabatic simplifications based on the scale of the notch
section can be used for y.<10%s")<<y,, and ¥,>10%s")>>Y,,, respectively, and heat
conduction should be considered for ¥.~Y,,, which agree with the dimensional analysis
results in eq.(4-9). It is necessary to remember that the scale of a notch section is
used in the dimensional analysis. Thus, the result obtained is valid on this scale. In
Table 6.3, the temperature at the upper-shear corner of the notch where localised
stress concentration is very severe is compared with the adiabatic temperature.
Although the difference between T, and T, decreases with increasing strain rate,
there is still quite a large difference at Y,=10°(s"'), which means that adiabatic
simplification for the localized stress concentration at the upper-shear corner of the
notch is not valid up to ¥,=10°(s"). A much smaller space scale should be used in
dimensional analysis to find the valid strain rate range of the adiabatic simplification

in this local area, which will not be discussed here. It is expected that the
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observations in this particular problem are generally true, but, more verification on

other dynamic problems are necessary before they can be accepted.

6.2.4 Verifications on Plane Strain Modelling and Material Parameters

The actual geometry of the modelling specimen does not belong to either
plane strain or plane stress. However, due to the intensive "in-plane” deformation
within the notch section, the effect of "out-plane” constraint may be neglected. Thus,
it is expected that plane strain and plane stress elements give similar results, which
will be verified through an example.

The FEM model DS4 in Table 6.1 is simulated after changing the plane strain
element type, CPE4T, into plane stress element type, CPS4T. As expected, the
variations due to employing the plane stress assumption are negligible when
comparing with the corresponding plane strain results. One calculated example is
shown in Fig.6.9 for von-Mises equivalent stress. The maximum relative difference
between using plane strain and plane stress assumptions is 3.3% after yielding.

In the DS beam test, material failure is found in the notch corner when the
impact velocity is in the range of 40m/s to 50my/s. Thus, DS1 in Table 6.1 with
imposed boundary velocity, 40m/s, is used to verified the influence of Taylor-
Quinney coefficient B and the parameters, D and q in the Cowper-Symonds
relationship on the response of a DS beam. The parameters used in simulation are
shown in Table 6.4. Fig.6.10 (a,b) show the plastic equivalent strain and histories in
the middle and tensile corner of a notch section. The maximum relative differences
on final equivalent plastic strain and final plastic strain energy density for §=0.0 and
B=0.9 is 10% and 4.4%, respectively. Thus, the influence of B on deformations in
the notch section within the discussed impact velocity range is negligible. It is also
shown that the influence of the parameters in Cowper-Symonds relationship on
plastic equivalent strain history is very small. More parameter verifications will be

presented in Section 6.4 according to the DS beam test results.



Chapter 6 135

Table 6.4 Parameters Used in Verification

Curve No. B D(s™) q
EM_210 0.9 186.7 4.4]
ERM_210 0.9 6948.3 5.132
EBOOM_210 0.0 186.7 441
EBO5SM_210 0.5 186.7 441
ECA 0.9 186.7 4.41
ERCA 0.9 6948.3 5.132
EBOOCA 0.0 186.7 4.41
EBO5CA 0.5 186.7 441

6.3. Analytical Model of Central Block Motion

The problem is simplified as a fully supported DS beam, shown in Fig.5-15.
A projectile travelling with a velocity V, impacts on the impact pad, a given
thickness square sheet which is made from hardened steel and used to control the
travelling distance of the projectile. After impact, the projectile, impact pad and the
central block move together with a common velocity when ignoring stress wave
propagation effects. The initial velocity of the central block is estimated by
momentum conservation,

v,=m_’%vo (6-6)

in which, M is the mass of projectile, m is the mass of central block, and m, is the
mass of impact pad. According to the analysis in Section 6.2, the transverse shear
force along the notch section is almost constant. Thus, the force acting on the

boundary of the central block is T,A, where T, is the nominal shear stress defined by

eq.(6-1), A=bh, where b and h are the width and thickness of a notch section.
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Therefore, the movement in this stage is governed by

(M+m +mp)¥=—2‘[”A, (6-7)
t

where, V is the velocity of the central block of the DS specimen. The initial

conditions are

V(1=0)=V. and W(r=0)=0, (6-8)

where, V; is given by €q.(6-6) and W is the transverse displacement of the central
block.

After travelling a fixed distance determined by the thickness of the impact
pad, the projectile is stopped by the surrounding stoppers and the impact pad is

separated from the central block. Thus, the equation of motion is

mﬂ =-2T A (6-9)
dt
after t=t,, which 1s determined by
W(r=t))=d (6-10)

from eqs.(6-7) and (6-8), where d is the thickness of the impact pad.

In the above formulation, deformations of the impact pad and projectile are
neglected because their stiffness is relatively larger than the stiffness of the DS
specimen. Wave propagation effects in the specimen are not considered because the
characteristic time of wave propagation in the central block is only about 4us which
is much shorter than the response time.

Relationships between the nominal shear strain(rate) and the true shear
strain(rate) at the mid-point of a notch section are

Woand =Y (6-11a,b)

Yll _X e

in which, A is the width of notch section.

Shear stress-strain relationship in Section 5.1.2 can be expressed by
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et (1o U D T (0200 (6-12)
3234 116

where, the temperature is obtained from eq.(1-12) by using the adiabatic
simplification which has been proved to be valid in Section 6.2 for the present impact
velocity range, and T, is given by

T,=223.84(MPa) for 0<y<0.01126,

T,=223.84(MPa) +533.29(MPa)(y-0.01126)"* (6-13)
for 0.01126<y<0.16,

and T =411.8(MPa)+249.7(MPa)y for +vy>0.16.

The final displacements of a DS beam have been obtained in Section 5.3,
which are compared with the current theoretical predictions, as shown in Fig.6.11.
Generally, the theoretical predictions for both the 1.5mm and 2.0mm pad thickness
tests are lower than the experimental results. One important factor responsible for this
phenomenon is the local shear and tensile failures at the notch corners which reduce
the transverse strength of the notch section, which is not considered in the analytical
model. However, in general, the agreement between experimental and theoretical
results is fairly reasonable, which gives a good assessment on observations obtained
in Section 6.2. The method proposed in this section will be use to predict the

velocity-time history that can be used in the next section for a FEM simulation on

the DS beam tests.

6.4. FEM Simulation On the Failure behaviour of a DS Beam

The dynamic response of a DS beam under projectile impact described in
Chapter 5 is simulated by using ABAQUS FEM software with the input impact
velocity-time history predicted in Section 6.3. A typical deformation process of the
notch section of specimen NT6 is shown in Figs.6.12(a-d). It shows that most of the
notch section experiences transverse shear deformations. The transverse shear
deformations in the middle area are quite uniform throughout the duration of
response, which is one of the advantages of DS beam specimens for material testing.
The equivalent stress, strain, strain rate, plastic strain energy density and temperature

histories at the middle point of the notch section are given in Figs.6.13(a-€). The
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average strain rate is about 4x10%s™". The plastic strain energy density and temperature
curves are related each other according to eq.(6-5). Thus, the response of the notch
section can be classified as an adiabatic response.

Two failure modes have been observed in Section 5.3 on a DS beam under
projectile impact. Shear failure appears at the upper-shear(US) and lower-shear(LS)
notch corners, as shown in Section 5.3.1. While tensile failure occurs at the upper-
tensile(LT) and lower-tensile(LT) notch corners. It is not the purpose of this section
to describe the whole post-failure process of the DS-beam, which would need mesh
reconstructing by removing failed elements and redefining boundary conditions. This
is still a difficult topic for many failure problems. However, the mechanical
conditions to initiate these failure modes can be studied by using FEM simulations,
which is the primary in a structural failure problem, and has not been fully
understood with satisfactory confidence for most practical problems.

It has been shown that adiabatic shear banding appears when the impact
velocity approaches 60m/s. The location of adiabatic shear banding is at either the
upper-shear(US) corner or lower-shear(LS) corner(or both of them) within the notch
section, where the stress concentration is very severe and would not be predicted on
the basis of the nominal shear stress and strain. Thus, using a DS beam to study the
shear banding phenomenon is unrealistic in the present experimental configurations
unless the stress concentration at the shear corner is understood well.

A shear band normally originates from a non-homogeneous deformation phase
followed by a localization phase, which was observed by Marchand and Duffy(1988)
for the formation of shear bands in a thin-walled steel tube. It is generally accepted
that the maximum shear stress criterion predicts the initiation of the non-
homogeneous deformation phase, and thus, has been used as the criterion for the
initiation of an adiabatic shear band. However, this has been confirmed only on a
system where the deformation within the gauge length is one-dimensional, such as
the tube test on SHPB. In the present case, where the formation of an adiabatic shear
band is very local and has little influence on the global response of the DS beam, this
criterion does not predict the initiation of a shear band. In Fig.6.13(a), the von-Mises
equivalent stress at the mid-point of a notch section, which consists mainly of

transverse shear stress, reaches its maximum value at t=17.5us. However, it does not
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correspond to the initiation of an adiabatic shear band. The decrease of the shear
stress is due to the decrease of strain rate controlled by the external energy input, but
not due to the thermal softening of the material. Thus, the maximum stress criterion
should be reconsidered in these situations.

In order to simulate the formation of a shear band, a special mesh design is
necessary. Most of the FEM simulations are based on some well-defined plastic
deformation patterns determined by given boundary condition, such as simple shear.
The loading rate, or external energy input is continuous. In this case, the drop of the
resistant force, or shear stress, is purely from a thermal softening factor. Therefore,
it could be used to predict the initiation of a shear band. In the present case, it is
extremely difficult to determine the boundary conditions around the local shear
corner in the notch section of a DS beam. The current mesh design is also too coarse
to model! the shear banding phenomenon. Further efforts are necessary on the shear
banding initiation in a DS beam. The following discussion is concentrated on the
tensile failure in the notch.

It has been shown in Chapter | that there are various failure criteria which
may be used to predict material ductile failure. Six different failure criteria discussed
in Section 1.3 will be examined here, which are maximum normal stress failure
criterion, maximum shear stress(or Tresca) failure criterion, von-Mises equivalent
stress failure criterion, maximum plastic tensile strain failure criterion, equivalent
plastic strain failure criterion, maximum plastic shear strain failure criterion and
plastic strain energy density failure criterion. The following simulations are based on
the velocity-time history developed in Section 6.3 and the FEM model is the same

as that in Section 6.2.

According to the experimental observations on material tensile failure in a DS
beam, all tensile failures initiate from the UT and LT notch corners. The critical
impact velocity is between 40.3m/s(specimen NT7 without failure) and
47.3m/s(specimen NT5 with failure), as shown in Table 5.12. The maximum failure
indexes under this critical impact velocity, such as equivalent plastic strain and
maximum plastic strain energy density, occur at the middle elements at the corner of

a notch described in Fig.6.1(b), will be used to examine the validation of the

available failure criteria.
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Table 6.5 gives the predicted values from DS beam tests and ABAQUS FEM
simulations, which are compared with the measured values in material tests described
in Table 5.6. The impact velocities for NT5 and NT7 are 47.3m/s and 40.3m/s,
respectively. Tensile failures are found in all specimens when the impact velocity is
higher than 47.3nv/s. But, there is no any tensile failure when the impact velocity is
lower than 40.3m/s. One exception 1s NT23 that does not fail at an impact velocity
of 47.7m/s. The impact pad for NT23 is 1.98mm, which is different from the pad
thickness used for NT5 and NT7. Thus, it is believed that the critical velocity to
initiate tensile failure at the corner of a notch is between 40.3m/s and 47.3m/s. The
predictions for various failure indices at these two impact velocities are given in
Table 6.5.

It observed that plastic strain energy density failure criterion obtained from
static tensile test gives a reasonable prediction for failure initiation. Stress failure
values from material tests are smaller than the values at failure in the tensile notch
corner. But, strain failure values are higher than the predicted values at failure. The
variations of the maximum values of €°, and w" with the impact velocities are
calculated using ABAQUS, and compared with the critical values of €°,, and w", as
shown in Fig.6.14(a,b). The FEM simulation results show that the maximum values
of €",, and w” occur at the upper tensile corner, which is contrast to the experimental
observations that tensile failures are more likely to initiate from the lower tensile
corner. However, the difference in the maximum value for &, and W’ is not
significant between the UT and LT corners according to the ABAQUS simulations.
For example, the maximum values of w® are 652.4MJ/m” and 576.5MJ/m’ at UT and
LT corners, respectively, when the impact velocity is 40m/s. Thus, their average
value will be used to give the maximum value in failure prediction. Obviously,
bending effects cause the LT corner to fail more easily than the UT corner. The
critical value of €",, €, is the static natural strain based on the zero gauge length
defined in Appendix A1, which has an average value of 0.648 according to Table 5.6
for specimens SP2 and SP3 at room temperature. This value increases with
temperature, as shown in Fig.5.12. The critical value of w”, w., is calculated from

the uniaxial true stress-true strain relationship at room temperature given by eq.(5-6).
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Table 6.5 Critical Values of the Failure Indices(=0.9, D=186.7s"', q=4.41)

Failure Criterion | Material Test Value | Predicted Predicted
Value(NT7) Value(NTS5)

O ux(MPa) 1211.8% 3230.0 3410.0
oy (MPa) 605.9% 1512.0 1595.5

O MP2) 1211.8* 2619.0 2763.0

€ 0.648 0.264 0.294

", 0.648" 0.231 0.337

€ ax€ min 0.972* 0.461 0.587
wP(MJ/m’) 606.64 599.0 816.0

F 20 1e«s=Omux=Omisc, 1N UNIaxial tensile test; ™ For plastic incompressible material.

Table 6.6 Critical Values of the Failure Indices($=0.9, D=6948.3s"', g=5.132)

Failure Criterion | Material Test Value | Predicted Predicted
Value(NT7) Value(NTS5)

G,,..(MPa) 1211.8 2109.0 2163.0
Orresca(MPa) 605.9 986.0 1011.5

Oy MPa) 1211.8 1708.0 1752.0

e 0.648 0.341 0.430

£, 0.648 0.394 0.473

e € 0.972 0.680 0.815
wl(MJ/m?) 606.64 598.7 747.6
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Table 6.6 gives simulation results using D=6948.3s™! and q=5.132 in order to
examine the validity of parameters used in Cowper-Symonds relationship. Similar
conclusions are obtained from the results in Table 6.6, i.e., only plastic strain energy
density failure criterion gives a reasonable failure prediction. It should be noted that
these two sets of Cowper-Symonds parameters used in Tables 6.5 and 6.6 offer upper
and lower bounds of the actual property of material strain rate sensitivity, as
discussed in Section 5.1.3. Thus, the strain energy density failure criterion is the only
suitable one in the current problem to predict material failure at the tensile corner of
a notch section.

According to the results from Table 6.5 and Fig.6.14(a), the equivalent strain
failure criterion does not agree with the experimental results. The actual tensile
failure appears at a value of €°, which is much lower than 0.648. The local
temperature at the failure site is about 150°C when the impact velocity is 45.0m/s,
which leads to less than 10% increase on €°,,. The strain rate effect is another
important factor that may reduce material ductility significantly. Thus, the actual
value of €7, at the failure site is between 0.3-0.35 corresponding to an average strain
rate of ~10*(s™") according to ABAQUS analyses, which is much lower than the static
one. Generally speaking, two factors may contribute to this result. One is the strain
rate effect on failure strain, which has not been studied thoroughly. Another factor
is the stress triaxiality, which may reduce the failure strain. In uniaxial tensile test,
the value of stress triaxiality, o,/0,, is 0.33. The time history of the average stress
triaxiality at the upper-tension corner is calculated by using ABAQUS, as shown in
Fig.6.15 for specimen NT7. The value of o,/c, is 0.655 at the end of response,
which is the double of the value in uniaxial tensile test. It has been shown by
Alves(1996) that the equivalent fracture plastic strain goes down from 1.0 at
0,/6,=0.4 to 0.5 at 6,/5.=0.8(see Fig.3.11 in Alves(1996). A similar observation on
this phenomenon is reported by Holmes, et al.(1993). Thus, this may be the important
reason for the reduction of the equivalent plastic strain at failure.

w_ gives a good prediction for the tensile failure initiation. The actual failure
occurs at wp between 599-816MJ/m’, which is somewhat higher than
w_"=606.64MJ/m* obtained in a static tensile test. However, the static critical value

of plastic strain energy density is reasonably close to the predicted value in an actual
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failure. This result supports the postulate proposed in Appendix B that both
temperature and strain rate effects on w”, are small. Thus, a plastic strain energy
density failure criterion appears to be a more promising procedure in the present
work for predicting failure than other stress and strain type failure criteria examined
in the present paper. It 1s possible that other failure criteria are applicable when other
influencing factors, such as strain rate, temperature and hydrostatic effects, are
identified in material failure tests. However, this requires more advanced measuring
techniques and extra tests.

ABAQUS simulations indicated that the maximum temperature at the critical
impact velocity of the corner tensile failure is around 150°C, which has little
influence on the uniaxial failure strain, as shown in Fig.5.12. The temperature effects
on uniaxial failure stress up to 300°C are negligible according to the recorded data
in Table 5.10. It has been shown in Section 6.2.4 that the Taylor-Quinney coefficient
has little influence on the DS beam response when the impact velocity is around
40m/s. This conclusion is confirmed by Fig.6.16 where the variations of maximum

plastic strain energy density at critical impact velocities (for both NT5 and NT7) with

coefficient B are presented.

6.5. Conclusions

The response and failure of a DS beam when subjected to a projectile impact
are studied in the present Chapter. With the aid of a FEM simulation, the details of
the stress and strain distributions in the notch section are obtained, and are used to
set up relationships between the nominal values of stress/strain and their actual values
in the major shear zone within the notch section. This information is particularly
useful when using a DS beam for a dynamic shear test. Temperature effects are
discussed in the present analysis by using a coupled-temperature-displacement
procedure in ABAQUS.

Due to the high stress intensity at the notch corners in a DS beam, two types
of material failures may be initiated easily in these locations, i.e., tensile and shear
failures. Among several failure criteria examined in the present work, i.e., the failure
criteria defined by maximum normal stress, maximum normal plastic strain, von-

Mises equivalent stress, equivalent plastic strain, maximum shear stress and
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maximum plastic shear strain, the plastic strain energy density failure criterion gives
a good prediction for the initiation of a tensile type failure. Parameter verifications
are conducted to ensure correct material property modelling is used in the simulation.
A shear failure is normally associated with adiabatic shear banding due to material
instabilities. Comments are made on further studies on simulating adiabatic shear
band initiation in the notch section of a DS beam.

It is concluded that a DS beam specimen satisfies the requirement for a
material property test, proposed in Appendix Al. However, this is only applicable up
to the initiation of material failure. It is difficult to obtain a material failure index
from a DS beam test because it fails due to stress concentration locations at the notch
corners.

Both FEM and analytical models are used in the analyses. Predictions are
compared with experimental results with reasonable agreement for the central block

motion and tensile failure initiation.
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Fig.6.1 (a) FEM model of a DS beam; (b) Mesh of the notch corner.
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7 CONCLUSIONS

Structures used to sustain transverse dynamic loads have been used widely in
many applications. Transverse shear localization in some basic structural elements
under transverse dynamic loads may reduce significantly structural strength, which
is studied in the present thesis. The main achievements of the present work are given

below with a discussion on existing problems and suggestions for further work.

7.1 Dynamic Shear Localization in Transversely Loaded Structural Elements

In dynamic plastic structural response, shear localization is represented by a
so-called shear hinge. The existence of a shear hinge is based on experimental
observations and Symonds’(1968) proof that a shear interface in rigid, perfectly
plastic beam is always stationary when its yielding behaviour is based on a condition
which has no interaction between bending and shearing. Symonds’ conclusion on a
shear interface is extended into several frequently used structural elements, including
beams, plates and cylindrical shells in Chapter 2. Furthermore, the restrictions on
yielding surface are removed. Thus, the shear localization in dynamic plastic
response of structural elements is an intrinsic property of a transversely loaded, two-
dimensional ductile material that can be characterized by a rigid, perfectly plastic
model. This conclusion is applicable for many metals when their plastic hardening
effect is not very significant. Complete continuity conditions at both bending and
shear hinges are obtained in Chapter 2, which should be satisfied in a dynamic plastic
response of structural elements.

In the dynamic plastic response of structural elements, both bending and
shearing hinge sizes are neglected. This leads to a discontinuity in the transverse
displacement across a shear hinge, and a discontinuity on the rotation angle across
a bending hinge. This idealization does not influence the dynamic plastic analysis
because the idealized hinge concept caters for the consumed plastic energy within the

hinge. This idealization faces a challenge when dynamic plastic analyses are
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combined with failure predictions. In this case, it is necessary to understand a hinge
as a finite deformation zone. Its dimension is an important parameter to describe the
hinge.

Chapter 3 evaluates the shear hinge length for beams, plates and cylindrical
shells using a quasi-static method proposed by Wen, et al.(1994). The validity of the
results from quasi-static method is verified by FEM simulations on a elastic, linear
plastic hardening beam. After a dimensional analysis, two dimensionless parameters
given in eq.(3-25) are found to be significant for the propagation of shear
deformations. Three distinct cases are identified for different characteristic transversc
loading rates that can be determined by eq.(3-25), i.e., (1) Bending response mode
for low loading rate; (2) Stationary shear hinge mode for medium loading rate, and
(3) Plastic shear wave mode for high loading rate. The shear hinge size obtained by
a quasi-static method is applicable in Case (2), where the shear wave is trapped
within the shear hinge. The shear wave mode proposed by Wang and Jones(1996)
belongs to Case (3).

The current understanding of the geometrical structure of a bending hinge is
based on some simple slip line analyses. It would not be difficult to use the FEM
method to explore the forming process of these localized deformations and their
geometry structures, which can supply useful information when conducting failure

analysis together with a rigid, perfectly plastic model analysis.

7.2 Strain Rate and Temperature Effects on Structural Response and Failure

It has been confirmed that the flow stress increases with strain rate and
decreases with temperature. On the other hand, material ductility decreases with
strain rate and increases with temperature. These features have been observed in the
material tests in Chapter 5, which may influence structural response and failure. The
strain rate and temperature effects in the proposed constitutive equations on the DS
beam response and failure are verified by comparing theoretical and numerical
predictions on material response and failure with test results.

A portion of the mechanical deformation work will be converted into heat,

which may lead to a temperature rise when the characteristic time for heat conduction



CHAPTER 7 6]

is longer than the characteristic response time. There exist two extreme cases, i.c.,
isothermal and adiabatic processes, which can greatly simplify the analysis.
Isothermal and adiabatic processes are normally associated with low and high strain
rates, respectively. A dimensional analysis is given in Chapter 4 to obtain strain rate
conditions for these two processes. These conditions, which are verified in Chapter
5 using FEM simulations, have been employed in Chapter 4 to predict the
temperature rise in an model analysis of Menkes and Opat’s beam problem. It shows
that the temperature rise is significant when the impulsive intensity is high.
Temperature may go up to 200°C when the impulsive velocity is around 300m/s,
which is about the velocity corresponding to mode III failure for these particular
tests. This temperature rise leads to an increase of material ductility. This gives a
reasonable explanation for the successful application of the elementary failure
criterion to predict mode III failure, where the temperature effect is not included
explicitly, but the choice of parameter k takes into account temperature.

Few papers report the observation that failure transition from ductile fracture
failure to adiabatic shearing failure is possible with increasing loading rate. This
failure mechanism transition is confirmed in the double shear beam test. It is believed
that this is an important issue in fatlure predictions because a totally different failure
criterion and modelling method have to be used for different failure mechanisms.
For example, adiabatic shearing failure is associated with material thermal instability,
which may become very localised, and thus, need to refine the element mesh to its
characteristic dimension. In Chapter 4, critical conditions for this transition are
obtained for Menkes and Opat’s beam problem using a model analysis, which is
applicable for other structural elements under similar loading conditions including
both impulsive and projectile impact loadings. The predicted velocity is in a

reasonable range beyond the critical velocity for mode III failure, which needs to be

confirmed by experiments.

7.3 Failure Criteria

With the rapid developments of computational capabilities and expert systems,

problems of structural deformation and failure could be solved based on valid
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fundamental physical foundations and material property descriptions. The
incorporation of a failure criterion into a FEM code is a promising way forward to
allow engineers to duplicate the actual failure possibilities at the design stage.

Several failure criteria, which have been used in various cases, arc cxamined
in modelling the failure of a double shear notch in Chapter 6. Equivalent plastic
strain, maximum normal plastic strain and maximum plastic shear strain failure
criteria overestimate the failure initiation. This is partly due to the influence of
hydrostatic stress according to the numerical modelling results. Strain ratc effect on
material ductility is another cause. Stress type failure criteria are maximum normal
stress failure criterion, equivalent stress failure criterion, and maximum shear stress
failure criterion. The predicted values are much higher than the corresponding
material values. It is shown that plastic strain energy density failure criterion is the
most promising failure criterion in the present case. Several successful applications
of the plastic strain energy density failure criterion for both static and dynamic
structural failure predictions have been reported previously in the literature. Thus, the
plastic strain energy density failure criterion is capable of predicting a range of
macroscopic failure phenomena, and therefore, it is worth exploring the physical base
of the plastic strain energy density failure criterion. A general strain energy density
failure criterion based on continuum thermodynamics is proposed in Appendix B. It
is assumed that material failure is basically a "brittle failure" process initiated by the
local internal forces or a specified elastic strain energy density. Inelastic dissipations,
including the plastic strain energy density, influence material failure by reducing the
material resistance to the local internal forces through a continuous change of
material internal states. When the ductile failure is controlled mainly by plastic
dissipation, the plastic strain energy density failure criterion is expected to give a
good prediction. However, several other issues, such as the influence of strain rate
and temperature on the critical value of plastic strain energy density, hydrostatic
effect, etc., need to be studied further.

The maximum stress criterion has been recognised as the criterion for
predicting the initiation of a shear band. The FEM modelling in Chapter 6 indicates

that the maximum stress criterion is only a necessary condition for shear banding
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initiation. During a practical loading process, equivalent(or maximum shear) stress
may reach its maximum due to the decrease of strain rate(not the thermal softening
that is associated with increasing strain rate). Further studies are necessary on this
topic.

One of the vital problems concerning the combination of FEM and failure
criterion is to find the correct volume of material, or the correct mesh size of the
element, on which the failure criterion can be expressed correctly. This requires a
good-understanding of the physical nature of material failure and a proper design of

material property and failure tests.

7.4 Response and Failure Features of a Double Shear Beam

Experiments on a double-shear(DS) beam are reported in Chapter 5. Because
the DS beam has been used for the purpose of material property test, the relationships
between its measurable quantities and the actual responses are important for
evaluating material property data. For the current design of the DS test, the two
factors are identified to convert the measurable nominal stress and strain into the
actual stress and strain at the mid-point of notch section by using FEM method.
Although the obtained factors may vary for different design of DS specimen, the
procedure used in the present study is general.

The localised shear in the notch section of a DS beam can be used to explore
the shear response and failure occurred in a shear hinge of a structural element. In
impulsively loaded or impact loaded structural elements, the localised shear zone, or
shear hinge, is not as evident as in the notch of DS beam. The current results show
that the basic shear response in the notch section is similar to the deformation in a
shear hinge. Two failure mechanisms in the notch section has been reported
separately in other impulsive and impacted problems. In the shear section of a notch,
tensile failure is on one side of the notch and shear failure is on another side of the
notch where the external force is applied. These observations may be helpful for
understanding failures in a shear hinge.

The temperature effect has to be considered during the response process of

a DS test. In the current case, a strain rate of 50s" can lead to a temperature rise of
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139°C at a unit shear strain according to the simulation in Section 6.2.3. With a
further increase of strain rate, the temperature rise may lead to thermal softening
which develops into an adiabatic shear band. The local stress concentration at the
notch corner may lead to material failure, which has been shown in Chapter 5 and
simulated in Chapter 6. These limitations should be considered when using DS test
as a material property test.

Due to the high localisation of stress and deformation at the notch corners,
the failure index obtained from a DS test is difficult to interpret, and thus, it is not

recommended as a material failure test.

7.5 Closure

Material failure is a long term interest of material and structural engineers and
researchers. Gradually, engineers change their previous design criterion from
"yielding" to "failure" with accumulated confidence in their predictions. The basic
purpose of the current study is to add some more understanding to this difficult yet
important field.

In some cases, shear response and failure can be distinguished from other
response and failure modes, which offers a simple environment to study the response
and failure features. Other response and failure modes are equally important in a
practical problem and are interactive with shear modes. For example, a shear
response is only one of the three phases in a transversely loaded beam. While,
material failure within the DS notch is actually a tensile failure. Therefore, it is
believed that some conclusions in the present study are not confined to an increased

understanding of shear response and failure.
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APPENDIX A: MATERIAL TEST THEORY

Al. Tensile Test

The behaviour of a material under a uniaxial tensile load is very important for
the understanding of material properties. In a tensile test, the specimen is subjected
to a tensile force along its axis. Specimens, in the form of cylindrical rods, or flat
sheets, usually have a reduced section, or gauge length, to obtain a uniform state of
stress and strain.

Typical tensile curves for ductile nonferrous and steel metals arc presented in
Figs. Al(ab), respectively. The concepts of engineering(nominal) stress(c,;) and

engineering strain (€;) are used in these curves and are defined as

A (A-D)
0

and

£,=n-1 ’“=Tlo , (A-2)
respectively, where P is the axial load, A, is the initial cross-section area, M is the
stretching ratio defined as the ratio of the current(/) and the original(/,) gauge lengths.
The physical interpretations for the different regions of Figs.Al(a,b) have been
discussed in detail by Dodd and Bai(1987) and Nadai(1950). A mechanics
interpretation for a common tensile curve up to failure was given by Duffy(1989),
as depicted in Fig.A2. The initially unloaded sample (4,) is loaded elastically from
stress free state A to B, the tensile yield point of the material. From B to D, the
material continues to flow plastically and to strain-harden, carrying increased load.
This increased load capacity is counteracted in part by a reduction in area caused by
thinning of the material in the transverse directions. At D, the maximum load-

carrying capability due to strain-hardening exactly equals the loss in capacity due to
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the reduction in area. Following this point of neutral stability, local necking occurs(k)
followed at a later point(F) by complete separation of the material(sometimes due to
the growth and coalescence of voids in the material).

The engineering stress-strain curve is important for understanding the various
deformation mechanisms which occur during a uniaxial tensile test. Two parameters
are normally taken as measures of material ductility in a tensile test(Dodd and

Bai(1987))

€= / 0=£;- R = 0 "., (A-3u’b)

where /; and A, are the final length of the original gauge length(/)) and the final
cross-sectional area in the necked region at specimen failure, respectively. g is the
value of g at failure. However, for a uniaxial tensile test, the reduction in arca, R,
is a more significant measure of material ductility than the extension of the gauge
length to fracture(Dodd and Bai(1987)).

Natural strain is defined by the expression

[
g,=lm=ln_—=In(1+€,) , (A-4)
lO
and is commonly used with true stress in constitutive equations for metal plasticity.
It is evident that gy=€, for small strains. Some applications for using natural strain

were given by Nadai(1950).

The engineering stress in uniaxial tension is defined using the original
configuration of the test specimen as one of the components of the Lagrangian stress
tensor. The corresponding component of the Eulerian stress tensor is defined using

the current configuration of the test specimen and is called a true stress in a tensile

test(or)

(A-5)

where A is the current area of the cross-section. When material is incompressive, one

has IA=lA,, or A=l Ay/l=A/(1+¢,). Therefore,
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°T=A£(1+€E):°E(1 +ep). (A-6)
0

From the or-gy(or €;) curve shown in Fig.A2, one cannot distinguish casily
the critical point for the onset of necking in a uniaxial tensile test because the effect
of the reduction of cross-section area is eliminated by the definition of the true stress.
A continuation of the true stress beyond D in Fig.A2 is difficult due to experimental
difficulties in measuring the minimum cross-section during the necking process. Even
if the whole range of the true stress-strain curve could be obtained, it is only
significant before point D’ in Fig.A2 because of the non-uniform deformations
introduced into the test specimen after the initiation of necking. The true stress-strain
curve according to equations (A-4) and (A-5) may be used only as the uniaxial stress-
strain relationship before the maximum stress point in an engineering stress-strain
curve.

The strains in equations (A-2) and (A-4) are defined on finite gauge length
in a uniaxial tensile test, and are a valid description of the local deformations within
the gauge length only when the deformation is uniform along the gauge length. After
the occurrence of necking, the deformation within a finite gauge length is
nonuniform. Thus, a valid strain measure should be defined on an infinitesimal
length, which is called a zero gauge length strain throughout this report'. Let /,,
represents an infinitesimal length at any given location within the gauge length in the
original configuration of the tensile test specimen, which lengthens to /, in the current
configuration of the test specimen. Therefore, the zero gauge length natural strain in

uniaxial tension is

In this report, zero gauge length strain and rupture (or failure) strain are represented by
subscripts 0 and f, respectively. For example, zero gauge length engineering strain and its critical value
at fatlure are €y, and &g, respectively.
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!
£yIn(0) . (A-Ta)

i0

while the zero gauge length engineering strain’ in uniaxial tension is

€ = 10 (A-7h)

and they are assumed to remain constant within the infinitesimal length /, in the

current configuration of a test specimen. Equation (A-4) gives a relationship between

them.
If it is assumed that the material is incompressible, then
lA=l A =const, (A-8a)
or
Adl +ldA=0, (A-8b)

where, A, and A are respectively the original and the current cross-sectional areas at

the location where [, and /; are measured in the test specimen. Thus,

A
e, =In(—2 (A-9a)
o= 10( A)
which yields
oL (A-9b)
NoAdr

when egs.(A-8a,b) are used and () represents differentiation with respect to time .
Before the initiation of a localized neck, a tensile specimen deforms uniformly
along the gauge length and, therefore, the 6-€y and G-y, curves are identical. The

advantage of using the zero gauge length natural strain is its capability for describing

2 The zero gauge length engineering strain defined here was called effective elongation by
Ludwik(see Timoshenko(1956)).
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the local uniaxial deformation between necking and material failure. Equation (A-3b)
can be expressed in terms of the zero gauge length rupture strain gy, when failurc

occurs, which is defined by equation (A-9a) when substituting A by A,

£
R=1-¢ "w=_"2 (A-10)
I+ew,,
where
Cin( o A A-1lab
EW—IH(E) and 850,=7/-1. (A-11a,b)

This is why equation (A-3b) is more significant than equation (A-3a) for measuring
the material ductility, as mentioned before.

The measurement of oy, €y, and €, after necking may be obtained by using
a transient image recorder, for example, a high-speed camera, as implied by Dodd
and Bai(1987)(pp.26), to record continuously the specimen configuration in the arca
of necking. However, majority of the experimental results published previously did
not give this information. One published result based on this method were given by
Alves(1996) for dynamic tensile tests up to €=239.9s"'. But, it seems that an
engineering strain rate instead of a natural strain rate in equation (A-9b) was used
there. Nevertheless, it confirmed that a straight line could be used to connect the
necking point and the failure point on true stress-strain curve, as suggested by Yu
and Jones(1991).

Although the ©;-gy, relationship reflects more the nature of a material than

the ©.-g. curve, the Oy-g curve is useful when necking is the basic failure

mechanism on the macroscopic scale.

The critical strain energy density within a characteristic unit volume of the

material at the failure location is

(A-12)
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according to eqs. (A-4) and (A-6).

Historically, there are different strain definitions for a uniaxial loading test,
for example, true strain and logarithmic strain are used by different authors instcad
of natural strain. These strains are usually defined over a finite gauge length which
cannot describe local deformation features after the maximum point of the
engineering stress-strain curve. Furthermore, these definitions should be consistent
with  the general strain definitions for a three-dimensional solid
continuum(ABAQUS(1994a)). In order to clarify these strain definitions in a tensile
test and connect them to the general definitions in a three-dimensional solid
continuum, a strain, which is defined across an infinitesimal length, is called a zero
gauge length strain. The definition of stress should be a conjugate quantity in the
sense that the product of stress and strain gives strain energy density. Conventionally,
in a uniaxial loading test, the Eulerian stress component, which has the conjugate
quantity, €y, is called a true stress(0;), and the Lagrangian stress component, which
has the conjugate quantity, €g,, is called an engineering stress(cy), as shown in eq.
(A-12).

The general expression of eq. (A-12) in three dimensional stress state is

t Dj
(A-13)
Wc=_[°T.qudt= f oEidiij’
0 0

where oy, and Gy are Eulerian and Lagrangian stress tensor, respectively. While, D;;
and V;; correspond to the displacement gradient tensor defined on original
configuration and the deformation rate tensor. t is the internal time scale. t; and D,/
are the value of t and D;; at material failure. In metal plasticity, Eulerian stress tensor
and deformation rate tensor are commonly used. Therefore, true stress and zero gauge
length natural strain should be used in a uniaxial tensile test.

Once necking develops in a cylindrical rod specimen, a rotationally symmetric
triaxial tensile stress state is induced in the region, which is shown in Fig.A3. In this
case, it has been shown that the strain distribution is still uniform across the necking
cross-section. The stress system in the neck consists of two parts, a superimposed

hydrostatic tension stress(7,=6,=0,4=0,-Org) Whose magnitude varies with radius,
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increasing from zero on the outside of the neck to a maximum on the axis, and a
longitudinal constant stress Gy across the necking cross-section, which is given by
0-T

Org= O - A-14
R a ( )
(1+22)in(1+___
a) ( ZR)

according to Bridgman(1944)(also see Dodd and Bai(1987)), where « and R arc
defined in Fig.A3 and o;=P/na’is the true stress.

Strictly speaking, the uniaxial true stress obtained from eq. (A-5) or (A-6)
should be modified by eq. (A-14) after necking. And the method for calculating the
strain energy density over the characteristic necking volume in eq. (A-12) need to be

modified too. The superimposed hydrostatic tensile stress

a’+2aR-r’, (A-15)

T, =orrzoee=°zﬁ°TR=OTRh‘( 2aR

p

has negligible influence on the plastic flow of material, which has been confirmed
by the uniform distribution of uniaxial strain across necking cross-section. However,
hydrostatic stress is one of the important factor to influence material failure, which
has been confirmed by many test results.

A tensile test is one of the important material mechanical property tests used
to establish the constitutive equation and failure parameters although there are many
other ways to achieve the same purpose. These tests normally use the global
responses of a finite volume of material to predict deformation or failure parameters.
The following criterion could be used to judge the validation of a material test
Material Property Test Criterion: When conducting a material property test, there
should exist a fixed collection of materials whose internal mechanical responses are
predictable from the measurable global responses until material failure is initiated.

A uniaxial tensile test is capable to satisfy this requirement due to Bridgman’s
brilliant contributions.

Although the standard tensile test has been used for a long time to obtain the
mechanical properties of materials, there is still an incomplete understanding of the

results from this simple test, as realised by Orowan half a century ago, 'The tensile
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test (1s) very easily and quickly performed but it is not possible to do much with its
results, because one does not know what they really mean. They are the outcome of
a number of very complicated physical process ... ... The extension of a piece of
metal (is) in a sense more complicated than the working of a pocket watch and to
hope to derive information about its mechanism from two or three data derived from
measurement during the tensile test (is) perhaps as optimistic as would be an attempt
to learn about the working of a pocket watch by determining its compressive
strength.”(E.Orowan, Proc. Instn. Engrs Vol.151, p133, 1944).

Therefore, there are still many research works being conducted on the

investigation of uniaxial tensile test until today.

A2. Split Hopkinson Pressure Bar(SHPB)

SHPB has been widely used to determine dynamic constitutive equations of
various materials over a strain rate range of 10>-10%"'. The SHPB apparatus for
compression testing consists of a striker bar, an incident bar and a transmitter bar,
made from the same material with same diameter, and associated instrumentation for
recording data as shown schematically in Fig.5.4. The incident and transmitter
pressure bars are mounted in teflon or nylon bushings to assure accurate axial
alignment while permitting stress waves to pass without dispersion. The striker bar
is fired from a gas gun. Its velocity is measured by two photocells and light sources
at a known distance apart. When the striker bar impacts the incident bar, constant
amplitude compressive pulses are generated in both bars. The length or duration of
the compressive pulse generated in the incident bar is twice the wave-transit time in

the striker bar and the magnitude is directly proportional to the striker velocity,
determined by

(A-16a,b)

OI:%pCV or elzzl'g's

where o,(g,) is the incident stress(strain) magnitude in the incident bar, p is the
density of the bar material, ¢ is the longitudinal elastic-wave velocity in the
Hopkinson bars, and V is the impact velocity of the striker bar. In order to keep the

Hopkinson bar system in elastic range, it requires that 6,<g,, or,
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p< 2% (A-17)

where G, is the yield stress of the bar material.

Under the following postulates
(a) The dispersion of a longitudinal wave in the Hopkinson bar system is negligible,
which means that a one-dimensional wave theory is applicable;
(b) An uniaxial compressive stress state can be achieved in the specimen, which
demands an ideal interface between Hopkinson bars and specimen to eliminate
transverse friction, and requires that the transverse inertia effects are negligible in the
specimen;
(c) The stress and strain are uniform along the specimen, which requires that the
wave transit time in the specimen is much smaller than the pulse duration and that
there no failures or flow instabilities occur in the specimen during the measurement;

the engineering strain, stress and strain rate in the specimen are

A

A

t
A -2¢ . -2cC
op.=E"¢, e.=——|edt and €= €, (A-18a,b,c)
E t E Ls_{rd E Ls r

where L, and A, are the original length and area of the specimen, A is the area of
incident and transmitter bars, and E is the Young’s modulus of the Hopkinson bars.
[t should be noted that £,(>0) and g(<0) are the reflected and transmitted strain pulses
in strain gauges located at incident and transmitter bars.

It has been mentioned in Section Al that true stress-natural strain curve is
required to describe the plastic behaviour of a metal. Therefore, eqs. (A-18a-c) need

to be modified according to egs. (A-4) and (A-6) together with the natural strain rate

described by

€f (A-19)
1+eE’

€N=

according to eq. (A-4). The modified formulas are



APPENDIX A 174

t H
A 2c 2¢
c=F_(1-ledt ) , €.=In(1-__|edt
T A\( L r ) t N ( L r )

s 0 s 0

2ce (A-20a,b,c)

and £,=- !
t

L -2c [edr

0

These equations are based on material incompressibility of the specimen material,
which is generally correct for metal materials in moderate plastic deformations. Some
researchers did not do these modifications when they evaluated the material
constitutive equation by using the results from SHPB, which is correct only for small
strains.

Normally, the SHPB system requires L, >L,2L,»L,, as shown in Fig.5.4. It was
recommended that the system be calibrated dynamically by passing a known stress
wave through the strain gauges on both the incident and transmitter bars without a
specimen. The magnitude of the strain pulse set up in the bars is V/2c, which can be
compared with the output from strain gauges on both incident and transmitter bars
to give a calibration factor. This method is employed in the present studies. An
alternative method of calibration is sometimes used to check the dynamic calibration.
This merely involves shunting a known calibration resistor across one arm of the

strain-gauge bridges. This produces a simulated strain of

e=l f (A-21)
FRR

where f is the gauge factor and R, and R, are the gauge and calibration resistances.
This method verifies the dynamic calibration to within several
percent[Nicholas(1982)].

Considerable studies have been conducted to check the conditions when the
pre-assumed postulates are satisfied(see Bertholf and Karnes(1975), Nicholas(1982),
and Follansbee(1985)). It is generally accepted that SHPB technique is very accurate
and can be reliably used for the measurement of dynamic properties. The optimum

specimen dimension proposed by Davies and Hunter(1963) and confirmed by

Bertholf and Karnes(1975) is
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d
v 4 (A-22)

—

L3

where d, and L, are the diameter and length of the cylindrical specimen. Some work
has been conducted using strain gauges or non-contact methods directly to measure
the strain on the specimen. One of them was published recently by Ramesh and

Narasimhan( 1996).
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Fig.A3 Stress distributions in the neck of a tensile specimen.
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APPENDIX B: STRAIN ENERGY DENSITY
FAILURE CRITERION

B.1. Introduction

Many failure criteria have been proposed to predict the initiation of
macroscopic material failure under various conditions. Generally speaking, they may
be divided into four different types, (a) stress or strain failure criteria; (b) energy type
failure criteria; (c) damage failure criteria; (d) empirical failure criteria, and have
been used successfully in various failure problems. It appears that the validity of all
these failure criteria is restricted to specified types of failure problems. It is necessary
to set up a physical basis for further developments of more universal material failure
criteria on the macroscopic scale.

The purpose of this Appendix is to fulfil this task by establishing a theoretical
framework for a criterion of failure initiation in macroscopic continuum solids. This
theoretical framework will embody the following three features, (1) a macroscopic
energy density concept to define macroscopic material failure; (2) a correlation
between the physical mechanism of macroscopic material failure with the
microscopic material behaviour; (3) incorporation of the different failure types
including brittle and ductile failures when consideration of material damage effects.

An energy concept to define material failure was proposed initially by
Freudenthal(1950). He realised that material failure occurs in different scales
simultaneously, which led him to introduce an energy concept to describe material
failure. The importance of the energy concept was also emphasized by Gordon(1976).

Furthermore, Freudenthal realised the difference between elastic
deformations(related to potential energy) and inelastic deformations(dissipated
energy) in an energy type failure criterion, which is expressed by the following
statement(pp.20 in Freudenthal(1950))

"Since the process of bond separation which initiates fracture depends on the

momentary elastic strain or the potential energy in a different manner from what it
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depends on the inelastic strain or the dissipated energy, the elastic and inelastic
strain energy must enter the fracture condition separately.”

While, Gordon(1976) also pointed out that(pp.71)

"The weakening mechanism, rather than the bond strength, was what really
controlled mechanical strength.”

Although many types of strain energy failure criteria have been proposed after
Freudenthal, most of them didn’t distinguish such an important difference between
the contributions of elastic strain energy and inelastic strain energy in an energy
failure criterion except Lemaitre and Chaboche who expressed a similar viewpoint
in their book(pp.402-403 in Lemaitre and Chaboche(1990)). However, they did not
progress from this point to set up a general energy type failure criterion.

Section B.2 will establish a theoretical framework of material failure criterion
evaluated from Freudenthal(1950)’s original work, which is the specified elastic
strain energy density failure criterion. The influence of irreversible process on
material cohesive potential described by a dissipative function based on
thermodynamics is also discussed in this section. For material ductile failure, this
function could be used to describe material failures, and will be defined as dissipative
energy density failure criterion, which reduces to several previous successful ductile

failure criteria, as discussed in section B.3.

B.2. Strain Energy Density Failure Criterion

B.2.1. Potential and Dissipative Energies in a Mechanical System

The material behaviour in a mechanical system is a complex process involving
deformation and damage mechanisms from atomic to macroscopic levels, as shown
in Fig.B.1. The input mechanical energy will be either stored or consumed in a
mechanical system through different deformation and failure mechanisms. Material
deformations and failures at different levels have different physical meanings, which
may be related from one level to another by proper statistical methods. Generally
speaking, the material behaviour on one level is a collective, or group, behaviour of
the material on a sub-level. It is understandable that the general significance of the
results is lost unless the interrelation between the observed macroscopic material

behaviour and the internal structure in terms of atomic, molecular, or microscopic
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phenomena can be established(pp.4 in Freudenthal(1950)). A successful deformation
or failure theory should be physically consistent at each material level.

Macroscopical material deformations may be divided into elastic and inelastic
deformations, which have different physical mechanisms at the microscopical level.
The metal theory at atomic level was set up by Drude and Lorenz when they
introduced the free-electron theory of metals, which suggests that in a metallic crystal
the valency electrons are detached from their atoms and can move freely between the
positive metallic lattice, and the negative free electrons to provide the cohesive
strength of the metal. Such a linkage may be regarded as a special case of covalent
bonding through a valency electron cloud. The equilibrium spacing between two ions
bonded together is determined by a balance between the attraction due to the bond
and the repulsion which develops when their outer electron shells begin to overlap
each other. Thus, atoms in condensed phase occupy equilibrium positions about the
valley of the inter-atomic energy curve(Fig.B.2) determined by the formed atomic
bonds(Woo and LI(1993)). Upon the application of external force, the atoms are
displaced from their equilibrium positions which changes the potential energy of the
system, and which is recoverable with the removal of external force within a certain
range of displacement. Macroscopic elastic deformation is a collective behaviour of
atomic displacements from their equilibrium positions. And, the macroscopic stress,
defined as the material interactions on the level of continuum mechanics, is the
collective behaviour of interactions between atomic bonds.

On the other hand, atoms may overcome their energy barriers and move into
a new equilibrium valley of free energy with excessive input of external mechanical
energies, which leads to the breaking of the previous bonds and re-establishing a new
configuration of bonds. Material defects, or material damages, will be formed during
this re-bonding process. A collective atomic migration in a stress field causes a
slip(or dislocation) in a crystal, whose collective behaviour leads to macroscopic
plastic(or inelastic) deformations. Furthermore, the atomic bond may be disrupted by
obstructing atomic migrations due to the piled up dislocation barriers during atomic
migration process. Therefore, macroscopic inelastic deformation is an important

mechanism to weaken the macroscopic material cohesive potential.

It is evident that failure on the atomic level does not imply a material failure
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on macroscopic level. However, both the atomic migration and atomic bond
disruption cause a change of the material structures, and, therefore, a change of the
material macroscopic properties. For ductile materials, void developments are
important under certain conditions, which also represents a material structural change
from the view point of macroscopic level. The common feature for inelastic
deformations and material damages is their irreversibility, which are energy
dissipation processes from an energy viewpoint. Thus, the macroscopic failure
process of a material should be described by the thermodynamic theory of

irreversible processes.

B.2.2. Thermodynamic Foundation of Dissipative Process

Material failure is a process involving thermal and mechanical phenomena
from atomic to macroscopic levels, which may be described by various deformation
processes in a mechanical system. The thermodynamics of a continuum medium
determines the thermal and mechanical behaviours of solid continuum in its
deformation and failure process. It has been noted in Section B.2.1 that any material
structural changes related to macroscopic failure process may be described by
irreversible thermodynamic theory.

The Clausius-Duhem inequality is

T,,

. : ’l -
where the specific free energy ‘W=e-Ts is introduced, in which o;; is the Cauchy(true)
stress, i—:,j is the rate of deformation, p is the material density, e is the specific internal
energy of the material, s is the specific entropy, T is temperature, q is the heat flux

vector. The specific free energy ¥ is determined completely by o; and other state
variables, i.e.,
‘P=‘I’(oij, other state variables) (B-2a.b)

or ¥=¥(e, other state variables).

In egs.(B-2a,b), the so-called "other state variables" may be represented by
a group of observable and internal variables, T, Vo=D;(as damage internal variables),

V. (k=1,2,... ... )(as plastic internal variables). Thus, we have
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P =P (e, ) (B-3a,b)

1]’ ank) or ‘P ‘P(e Gfp 1]9

where, €,=¢;°+¢;" is employed for simplicity’. Eqs(B-3a,b) gives

¥ e 0¥y O 5  3Y
—T+——D,;+——V,
et / " oT aD y* aV
IT. 3¥.p 6‘PT ¥ py 9%y
o, ¥ ot 5T oD, iy aV k

y

P
(B-4a,b)
or ¥-=

Thus, the Clausius-Duhem inequality, eq.(B-1) predicts

oY oY

Oij=p—-——,
Oey or (B-5a-c)

u IJ+Y]DIJ+Ak - Tq,T >0

where Py=-pd'¥W/de;”, Y,=-pd¥/dD; and A=-pd¥/0V, are thermodynamical
forces(stresses) corresponding to intrinsic dissipative processes represented by €.", D;,
and V,. 0y, determined from eq.(B-5a), has a one to one relationship with g; for

given T, €, D and V, within a non-discontinuous stress set. It may be proved that

oF _o¥ 3% B-6)

* o o

and therefore, P,;=0;, which means that the macroscopic Cauchy stress is the
thermodynamical force of plastic dissipation when it is represented by plastic strain.

The dissipation in a mechanical system can be described by eq.(B-5c)
according to the thermodynamic principles. When intrinsic mechanical dissipation and

thermal dissipation due to heat conduction are decoupled, the intrinsic mechanical

dissipation rate is expressed by

$,= yy+Ak +YJ.D,J20 (B-7)

Function ¢, in eq.(B-7) describes an intrinsic dissipative process in a mechanical

system, which will be used as an intrinsic scale to measure material’s life expectancy

' In eq.(B-3b), specific free energy is expressed by observable variable €;and T and internal
variables €. D, and V,. Although eq.(B-3a) and (B-3b) lead to same results, the results derived from
eq.(B-3b) can give a symmetrical and elegant expression of thermodynamics forces.
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before macroscopic failure.

In a mechanical system, P;, Y; and A, are defined as a group of
thermodynamic stresses. Each thermodynamic stress corresponds to an internal
variable which introduces a mechanical intrinsic dissipative mechanism. Their
contributions to the total mechanical intrinsic dissipation are reflected in eq.(B-7).
Generally, these thermodynamic stresses are functions of stress tensor and other
internal variables. However, in many cases, thermodynamic stresses depend only on
the stress tensor. It has been shown that P,=c; in eq.(B-6). In the following analyses,
it may be assumed that Y;=Y;(G;) and A,=A,(0;).

When it is assumed that mechanical dissipation is independent of heat
conducting dissipation (see Truesdell and Noll(pp256 in Malvern(1969)). Now, the

mcchanical dissipative energy density, ¢,, and its rate, d),, are defined by

¢
: . _db B-8
¢1 =£d¢1 and ¢1 =_.dt_l ( )

which may be used to describe the material de-bonding process at the macroscopical

level within the scope of a thermodynamic framework.

B.2.3. Specified Elastic strain Energy Density Failure Criterion

According to Freudenthal(1950) and the above discussion the macroscopic

material failure criterion may be described by the following statement:
When the specified potential strain energy® over a given collection of
particles of the material’ exceeds its critical value, which depends on the
preceding irreversible dissipative process and some other environmental
parameters, the macroscopic material failure occurs in this material

collections.

It is evident that a proper statistical average process is necessary to express

4 The specified potential strain energy may be understood as the specified elastic strain energy
which refers to the maximum possible releasable strain energy in the given material collection.

5 A given collection of material particles can be identified using material(or Lagrangian)
descriptions according to initial material configuration. The choice of the size of a given collection of
material particles depends on the described physical properties and material constructions.
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this failure criterion within the scope of continuum mechanics. It has been shown
that, despite the large difference in the nature and structure of materials, there is a
great unity displayed in their macroscopic behaviour, described by macroscopic
physical quantities, such as material density, stress, strain, etc., which are defined as
average values over a representative material configuration. Together with the
limitation concept in mathematics, this technique defines all meaningful physical
quantities in continuum mechanics at a geometrical point®. Here, we assume that
such an average technique is valid for describing macroscopic material failure in

continuum mechanics. Therefore, the proposed failure criterion may be described by

wg =We(d,.$,.T,0p) (B-9)

where , w is the specified elastic strain energy density defined on the original

representative volume’, w.° is its critical value, ¢, and (i), are the mechanical
dissipative energy density defined on the original representative volume of the
material and its rate, respectively, T is the temperature and oy, is the hydrostatic
stress value. It should be noted that if Cauchy stress and natural strain are used, the

volume change should be considered in calculating w.°. Similar principles are

applicable to ¢, and ¢,.

B.2.4. Material Brittle Failure

[i is well-known that materials under low temperature or high strain rate tend
to fail in a brittle manner with only a small amount of prior plastic flow. In this case,
the influence of internal mechanical dissipation, ¢,, on w,® in equation (B-9) may be
neglected. Furthermore, existing investigations have shown that the mechanism of
brittle failure, i.e., cleavage, is a mechanism involving the breakage of interatomic

bonds. This mode of failure is not very sensitive to temperature and strain rate

® The geometrical point in continuum mechanics, on which macroscopical physical quantities
are defined, should be sufficiently large on the microscopic level. It was pointed out by Hancock and
Mackenzie(1976) that failure initiation must involve a minimum amount of material which is
characteristic of the scale of physical events involved.

" Material mass is more proper to represent the given collection of material particles(Matic et
al.(1988)), which is equivalent to using their original geometrical volume due to the conservation of

mass.
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according to the Ludwik-Davidenkov-Orowan hypothesis(Cottrell(1964)) and the
discussions in Dodd and Bai(1987) (pp.51-71) and Polakowski and Ripling(1966)
(pp.230). Therefore, the failure criterion, equation (B-9), simplifies for brittle fatlures

to

€_yp€ (B-10)

Sc*

w

s

Within the scope of linear elastic mechanics, the influence of volume change on the

specified elastic strain energy density may be neglected because

C

3oy
Je="H1-2v)~-H-10? (B-11)
£ (2 g

for most metals, where o, is the critical value of hydrostatic tensile stress for
material failure.

The different choice of a specified elastic strain energy density leads to
different types of stress failure criteria which have been used widely to calculate the

material strengths in brittle failure analyses.

(1) Maximum Normal Stress Failure Criterion

If material failure is initiated by the potential of strain energy related to the

maximum normal stress

2
e 1
Ys“EE

1+v 2 3voy (B-12)
—0 gy,
E ' TE

("1"2“’1“3)

where 6,206,206, are the principal stresses. Therefore, equation (B-10) is equivalent
to

O =0 (B-13)

which is the maximum normal stress failure criterion.

(2) Von-Mises Failure Criterion

When material failure is initiated by the potential of distortion strain energy
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as proposed by Freudenthal(1950) (pp.387-394)

4(1+v) 2
we=wi="—"a,, (B-14)
equation (B-10) may be expressed by

0,=0 (B-15)

which is the von-Mises or octahedral shearing stress failure criterion.

(3) Maximum Shear Stress Failure Criterion

The elastic strain energy corresponding to the maximum shear stress is

_ 2
W ffmaxd - "“”‘—(";(;’3). (B-16)

So, equation (B-10) reduces to the maximum shear stress failure criterion, i.c.,

g,”03 -
a2 (B-17)

T

(4) Hydrostatic Tension Failure Criterion

In this case

e_.e_3(1-2v) o :
W =W \ (B-18)
sTVTTE B
therefore, equation (B-10) is equivalent to

0H=0;’; (B'19)

where o,° is the critical value of the hydrostatic tension stress.
These failure criteria are commonly used to estimate the failure strength of

various materials, and may be generalised as a stress type failure criterion

fia)=0 (B-20)

which could be simplified further by using material isotropic properties.
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This type of failure criterion is suitable for brittle material failure due to its
independence of the strain history. The key issue is to define the specified elastic-
strain energy density which controls a particular type of brittle failure. More
discussion on the stress type failure criteria is presented in Polakowski and
Ripling(1966), Dorn(1948) and Nadai(1950) (pp.207-228). Equation (B-20) may also
be used in predicting ductile material failures when the influence of deformation
history is retained in the failure criterion(Dorn(1948)). Dorn’s conclusion is consistent
with the present expression in equation (B-9) when the deformation history is
understood as an irreversible dissipative process. In a plane stress state, these failure
criteria are frequently described by biaxial failure maps in metal forming studies. It
should be noted that using a stress type failure criterion to predict a ductile material
failure is difficult because of the importance of the strain history effects in ductile
failure processes. In a case when the loading path or deformation pattern is certain,
a stress type failure criterion may be useful for predicting ductile material failures.
This is why biaxial failure maps are used widely in the metal forming industry

where the loading path is known for each working process.

B.3. Dissipative Energy Density Failure Criterion Associated With Large

Inelastic Deformation and Material Failure

B.3.1. Dissipative Energy Density Failure Criterion

If, w.* is considered as material strength, it decreases with the irreversible
dissipative process, i.e., ow,7/9¢0,<0. Therefore, material ductile failure is a
progressive process represented by the continuous decrease of material strength with
the continuation of the dissipative process, which emerges as a natural outcome of
excessive internal dissipation in a mechanical system. After a sufficiently large
dissipation, which normally corresponds to large inelastic deformations, material
failure is controlled mainly by the conducted dissipative process instead of being
determined by internal interactions among atoms in the case of small inelastic
deformations although these internal interactions are still the active driving force to
separate material. Experimental studies by Bridgman(1952) have shown that

hydrostatic stress has a strong influence on material failure. A tensile stress triaxiality
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decreases the ductility of a material, while a compressive stress triaxiality increases
it. Thus, the hydrostatic stress should be considered as an environmental parameter
when other elastic actions are neglected in material ductile failure®. If Ludwik-
Davidenkov-Orowan hypothesis(see Section B.2.4) is applicable for inelastic
deformation process, the failure criterion for ductile material failure in large inelastic

deformations becomes
4’1 =¢1c(°H) (B-21)

according to eq.(B-9), where, ¢, is the critical value of the mechanical dissipative
energy density. Equation (B-21) is the dissipative energy density failure criterion,
which may be used in the prediction of material ductile failures under large inelastic

deformations.

According to eq.(B-7), the dissipation energy is

b, =wPrwd-w" (B-22)

where, w"=fcsijd£ij" is the inelastic strain energy density, ¢, is the intrinsic dissipative
energy density, w'=BdD is the damage dissipation density(from now on, Y, and D;
in eq.(B-7) are substituted by B and D when the isotropic damage is assumed) and
w'=J(-A)dV, is the stored energy density of cold work(Chrysochoos and
Belmahjoub(1992)). For metals, w" is the energy of the field of the residual micro-
stresses which accompany the increase in the dislocation density. It represents only
5-10% of the term w” and is often negligible’(pp.68 in Lemaitre and
Chaboche(1990)). Therefore, eq.(B-22) is simplified into

¢1 =wP +w d- (B-23)

If it is assumed that material plastic flow and material damage are two different

physical processes, as shown by Lemaitre and Chaboche(1990), we have

¥ Actually, the influence of stress triaxility on material failure(both ductile and brittle) can be
considered by including specified elastic strain energy density in eq.(B-9).

® For example, a coefficient B=90%-95% is used when calculating the temperature rise due to

plastic work.
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0,20 and BD:0. (B-24a.b)

Eqs. (B-24a,b) implicate that the intrinsic dissipation consists of two different types,
i.e., plastic dissipation and damage dissipation represented by two monotonously
increasing functions, w? and w, and the effects of these two different processes on
material failure may be different.

B.3.2. Inelastic Strain Energy Density Failure Criterion

Inelastic strain energy density failure criterion has been used widely in
predicting material ductile failures for various purposes. Cockcroft- and
Latham(1968) suggested that the critical value of the inelastic strain energy density
at fracture is practically constant at moderate strain rates, which was used to study
the fracture of solid polymers by Vinh and Khalil(1984). Gillemot(1976) used it to
predict the crack initiation in materials. Clift, et al.(1987,1990), employed the finitc-
element technique and several failure criteria to predict the fracture initiation in a
range of simple metal-forming operations. It turns out that only the inelastic strain
energy density failure criterion predicts successfully the correct fracture initiation
sites, which were observed in the experimental results. An inelastic(or plastic) strain
energy density failure criterion was combined with dynamic rigid, perfectly plastic
analyses of beams and circular plates by Shen and Jones(1992, 1993a,b) and Jones
and Shen(1993), and good agreement was found with the actual dynamic failure in
several structural elements. These investigations have shown the validity of this
failure criterion in some circumstances. However, many other failure criteria like the
damage failure criterion also give encouraging failure predictions. It appears that both
the damage failure criterion and the inelastic strain energy density failure criterion
work well in many circumstances. A reasonable explanation on this aspect is given
throughout the present Appendix.

Based on eq. (B-24a,b), it is concluded that material ductile failure is
controlled by two dissipative mechanisms, which are inelastic(or plastic) deformation
dissipation and damage dissipation, respectively. Material failure may occur due to
either excessive plastic dissipation with small material damage from void
development or excessive material damage from void coalescence. It is also possible

that two dissipative mechanisms are important for the initiation of failure. If material
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failure is mainly controlled by the plastic deformation mechanism, the failure
criterion will become a plastic strain energy density failure criterion where the
contributions from voids are negligible for material failure. In this case, material

incompressibility is approximately valid, i.e., dg, ,P+dey, +de;;"=0, and therefore,

I 2
wP= f 0 jde= { s Adeli+ { o (del, +deb, +dely) = f 0, deby=wr, (B-25)
0 0

where, 5;=0,-0648,, w.” is the critical value of plastic strain energy density determined
by experiments. Equation (B-25) is described by generalized plastic work per unit
volume in Clift et al.(1987, 1990), and is called (plastic) strain energy density failure
criterion in Jones and Shen(1993). Basically, inelastic strain energy density failure

criterion is valid for failure initiation controlled mainly by plastic dissipative process.

B.3.3. Continuum Damage Failure Criteria

In this section , we will discuss the situation when the failure process is
controlled mainly by material damage dissipation. The microscopic mechanism is the

coalescence of voids due to the initiation of unstable flow between the neighbouring

voids. In this case, the failure criterion is

wid=-w2 or w"(E—l)=de (B-26)
E
where w'=wS(E/E-1) according to damage mechanics, E is the Young’s modulus of
the virgin material, w.' is the critical value of the damage dissipation density. The
elastic strain energy, w°, depends on strain hardening(also depends on strain rate
hardening if it is significant), hydrostatic stress, 0y and current Young’s modulus, E,

while, the current Young’s modulus depends on the damage parameter, D. Thus,

eq.(B-26) may be expressed by
D=D (o) (B-27)
when material plastic strain hardening is not significant during a damage control

failure process. Eq.(B-27) is well-known as damage failure criterion and has been

used widely in continuum damage mechanics to predict the initiation of material
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ductile failure. The significance of the parameter 6, on the value of D, need to be
verified by experiments. Alves(1996) examined the influence of o, on the critical
damage parameter, D.. It was concluded that the critical damage parameter docs not
seem to be highly stress state dependent for the mild steel. A similar conclusion was
reached by Otsuka et al.(1987) for a structural steel SM41A. However, other
evidence gave controversial results(Becker(1987) and Shi et al.(1991)). A discussion
on this topic is given by Alves(1996). Strain rate and temperature influences on the
critical value of D are not included in eq.(B-27). It was also shown by Alves(1996)
that strain rate does not significantly influence the critical damage parameter in the
studied problem. However, it is well-known that material ductility decreases with
increase of strain rate(and also with decrease of temperature). For a damaged
material, material ductility includes both plastic deformation and damage
development. Thus, it is highly possible that strain rate and temperature have some
influences on the critical damage parameter, which need to be verified by further
experiments,

Another potential theory used to predict material failure, is the porous ductile
material model established by Gurson(1977) and developed successively by many
other authors. In spite of the different modelling procedures used in these two
theories, similar concepts are used in both theories to define material failure. In
continuum damage mechanics, the surface density of the discontinuity of the
material(D) is used to represent material damage and to define material failure by its
critical value(D,). In porous ductile material model, the void volume fraction(f)
together with its critical value(f;) is used to define the material failure. For an
isotropic material, there is a relationship between them for a given void type.

Therefore, eq.(B-27) can be expressed equivalently by

f=f(o,) (B-28)

as used in many void growth models(Gurson(1977), Tvergaard(1990)).

The application of eq.(B-27) or eq.(B-28) requires the solution of the
evolution equations of a damage index, which depends on the development of
macroscopic stress and strain and their histories, and, in turn, the macroscopic stress

and strain contain the information of both plastic dissipation and damage dissipation.
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Therefore, it is possible to use macroscopic stress and strain to define a failure

criterion, which have been proved by existing results.

After defining a dissipative surface, F, which distinguishes the elastic domain
from other dissipative responses, the thermodynamical principle and the minimum

free energy theorem lead to

de-drF ) %F -29;
i=d 0, and dD-=dA 3B (B-29a,b)

Substituting dA determined from (B-29a) to eq(B29-b) gives

dD-df— B =Gdeb. (B-30)

Similar procedures were used by Zheng et al.(1994), in which the potential function

F was expressed by

F(o,-j,B)=oe+g(B,om) (B-31)

where dg/do.=0. However, in their later discussion, dg/dB was expressed as a
function of ©,, which is not consistent with their previous assumption that g is
independent of 6,. Furthermore, the Levy-Mises relationship is evaluated from eq.(B-
31) by Zheng et al.(1994), which is not valid generally for a porous ductile material,
as shown by porous ductile material model(Gurson(1977) and Tvergaard(1990)).
The material damage failure criterion according to eqs.(B-27) and (B-30) may

be expressed by

(B-32)

where G=G(6,,0,,,D) is determined by eq.(B-30).

A large group of ductile failure criteria have been proposed in the form of
¢q.(B-32). Some examples are listed below.

(1) M.Oyane(1972):
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G=(1+i&)€e%
0 %e

where 6,=30y, and a, and ¢, are material constants.

(2) M.Zheng, et al.(1994):

1 g
G=— 5"
exp(l.5 Ue)

where A is material constant.

(3) R.Chaouadi, et al.(1994):

G=[l+a ﬁexp(h)]oe

g, O'e

where o is material constant.

(4) T.J.Wang(1992a,b, 1993):

G-F("2 &) -kft 2Hy(l - Dkt

o, ag

where k is a damage coefficient, €,° is the void nucleation strain, and

O,

FEB)=2(14v)+3(1-20)2p.
3 o

(B-33)

(B-34)

(B-35)

(B-36)

When k=1 it is identical to Lemaitre and Chaboche(1990)’s results(pp.440).

These failure criteria have been used in many applications when material

damage plays an important role during structural failure.

B.4. Applications of Plastic Strain Energy Density Failure Criterion in Dynamic

Structural Responses

It has been observed that several structural elements, when subjected to

sufficiently large transverse dynamic loads, may fail in one of three principal modes,

ie.,

Mode I : large inelastic deformations,

Mode II: tearing(tensile failure),
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and  Mode III: transverse shear failure(fracture),

which were first observed for beams(Menkes and Opat(1973), Ross, et al.(1977) and
Jones(1976)), and then for square and circular plates(Ross, et al.(1977), Olson, et
al.(1993) and Teeling-Smith and Nurick(1991)) and cylindrical shells(Ross, et
al.(1977), Opat and Menkes(1974) and Strickland, et al.(1976)). Only Mode II and
Mode III relate to actual material failures and some experimental results for failure
exhibit the characteristics of combined modes I and III.

A detailed examination of the experimental results reveals that Modes 11 and
IIT belong to a local tensile failure(Jones(1989)) although with different response
features. Therefore, the values of w." for an inelastic strain energy density failure
criterion could be determined from a uniaxial tensile test with the proper
consideration of strain rate and hydrostatic effects.

Rigid, perfectly plastic simplifications have been used successfully to predict
the dynamic response of a wide range of structural elements. It has some advantages
in qualitative analysis and saves computer time when compared with numerical
simulations. This section is concentrated mainly on the applications of an inelastic
strain energy density failure criterion to a beam made from rigid, perfectly plastic
material, which, however, may be extended to plates and cylindrical shells.

Generalized stresses and strains could be introduced in order to simplify the
analyses of beams and other structural elements. These generalized stresses and
strains are defined with respect to the entire cross-section of a beam. However, a
Mode II failure, for example, is a local phenomenon, which does not occur
simultaneously across the entire cross-section, but develops at a macroscopic point,
as illustrated in Fig.B.2(a). Such a macroscopic failure point is always located within
a severely deformed zone where a mixture of bending, shearing and tensile
deformations exists and which is called a plastic hinge for a rigid, perfectly plastic

beam. The inelastic strain energy density at the expected failure point may be

(
expressed as'

9" Here we assume that the deformations corresponding to the bending moment, transverse
shearing force and the membrane force are separable.Therefore, the total deformations at a
macroscopic point of a beam is the superimposition of the deformations at that point, which correspond
to bending moment, transverse shearing force and membrane force defined in a beam cross-section.
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w p=Wm+Wr+Wrx R (B-}g)

where w,_, w_and w, are the inelastic strain energy densities associated with the
bending moment, shearing force and membrane force at the failure point A in
Fig.B.2(a), respectively. A rigid, perfectly plastic analysis does not provide any
information on the structure of a plastic hinge. However, it is reasonable from an
engineering viewpoint to assume that the stresses and deformations associated with
bending, shearing and membrane hinges have the uniform distributions in the
longitudinal direction within the hinge as shown in Figs.B.2(b-c). Therefore, the

inelastic strain energy density failure criterion expressed by equation (B-37) may be

cast in the following form

/ l
Wm+_l"lW‘,+l_'"Wn=BHlmw(‘" . (B-39)
because
%% w w
w=_" w=__" and w=__"_, (B-40a-c)
" BHlm ' BHl_‘, " BHln

where B and H are the width and thickness of the beam, and W, W, and W, are the
dissipated inelastic energies in the total length of the corresponding plastic hinges
which have hinge lengths [, I and [, respectively. The value of w should be
determined from a dynamic uniaxial tensile test. It should be noted that [ is the
average bending hinge length which is defined by the half length of the bending

deformation zone, as shown in Fig.B.2. If it is assumed that [,=/_, then equation (B-

39) becomes''
Wr=W +yW +W =BHI w. , (B-41)
where y=[ /I. Equation (B-41), in principle, may be extended to circular plates,

cylindrical shells and other structural members in a similar way. Nonaka(1967) used

slip line theory to study the behaviour of beams and obtained the average hinge

"' No generality is lost when it is assumed that [ =/, because membrane force and the associated
deformations are uniform along the beam. In this case, W, is the total inelastic energy corresponding
to the membrane force in an average bending hinge length.
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length [;=H/2 for a pure bending moment and /,=H at the beginning of a membranc
state.

If y=1, equation (B-41) is simplifies to
Wr=Ww +W +W =w,BHI =W/ (B-42)

which is identical to equation (9) in Jones and Shen(1993). However, the assumption
Y¥=1 requires verification.

Shen and Jones(1992,1993a,b) and Jones and Shen(1993) used the inelastic
strain energy density failure criterion described by equation (B-42) to investigate
material failures in various structural elements under different dynamic loadings.

In the particular case of a rigid, perfectly plastic beam having a width B and
a thickness H, the actual inelastic work absorbed at failure in a plastic hinge having

an average length [ across the beam thickness is
W."=BHI w,(¢,) (B-43)

where w.(¢,) is determined from material test, €, is the mean strain rate..

The influence of material strain rate sensitivity on the critical value of the
inelastic strain energy density is unclear. w.” increases with strain rate according to
the experimental data in Yu and Jones(1991) for an aluminium alloy. However, other
source assumed that the value of w.p is insensitive to strain rate(Jones(1989), also
discussion in Section 5.1.4). Thus, it is difficult to estimate the influence of strain
rate effects on the value of w,” and further systematic experiments are required at
various strain rates in order to achieve an understanding of this problem.

Shen and Jones(1992,1993a,b) and Jones and Shen(1993) use this procedure
to analyze the material failure of impact loaded beams and circular plates. These
theoretical results are compared with the corresponding experimental results(Liu and
Jones(1987), Yu and Jones(1991) and Teeling-Smith and Nurick(1991)), and have
demonstrated the advantages of the strain energy density failure criterion as a more
universal failure criterion, which can be combined with various dynamic analysis

procedures or numerical finite-element analyses to predict material failure in different

types of structural elements.
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Fig.B.l The inter-atomic energy curve, r is the distance between atoms.
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Fig.B.2 (a) Macroscopic failure point in the deformed zone of a beam; (b) Stress and
strain distributions under bending; (c) Stress and strain distributions corresponding
to membrane force; (d) Transverse shear deformation and stress distributions.
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