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Abstract 

Apart from incidental involvement in optimisation of the spin-coupled wavefunc
tion by the so-called super-cofactor approach, and development of pair population 
analvsis. the work in this Ph.D. has taken the form of three major projects: va
lence bond interpretation of complete active space self-consistent field (CASSCF) 
wavefunctions, biorthogonal orbital optimisation, and calculation of inter-ionic 
potentials. These are all related to non-orthogonal orbital optimisation in partic
ular, and non-orthogonal methods in general, and so a fair amount of introductory 
detail has been given to these subject areas in the context of the spin-coupled 
method. 

A new highly efficient method for exact transformations of general CASSCF 
structure spaces has been developed, which may be of interest for other re
searchers in the field of multi-configuration orbital optimisation. In this work 
it has been used to obtain valence bond representations of 'N in N' CASSCF 
wavefunctions based on the form of the spin-coupled wavefunction. Four opti
misation criteria (CASVBI-CASVB4) have been investigated that seek either to 
maximise the covalent component of the CASSCF wavefunction, or to minimise 
the energy of this component. The results have not only highlighted the striking 
similarities between the spin-coupled and CASSCF methods for most cases, but 
also suggested alternative descriptions in the cases of ozone and diborane. 

A method for biorthogonal orbital optimisation based on the form of the 
spin-coupled wavefunction has been developed. A fully second-order treatment 
was found to be necessary to ensure satisfactory convergence, and such a scheme 
has been implemented. In this context, we appear to be the first to consider 
general optimisation of non-linear, non-symmetrical wavefunction parameters. 
The results show good agreement with those obtained from the variationally 
optimised spin-coupled wavefunction. At the very least this offers qualitatively 
correct results if the number of active electrons in the optimisation is larger than 
what may at present be treated using the spin-coupled method. 

The advantages of valence bond approaches for the study of intermolecular 
forces have been recognised for some time. Such a scheme may be applied with 
only minor modifications to the problem of obtaining reliable potentials for mod
elling of ionic solids. The main difference lies in the realistic simulation of the 
crystalline environment, and this has also proven to be the main factor determin
ing the accuracy of the potentials. Provided that a Madelung field of appropriate 
strength is applied very good agreement with existing potentials can be obtained. 
This suggests defining a suitable variable to be fitted to experimental data, or 
alternatively estimating the strength of the field in a simulation from the local sur
roundings of each individual ion. This will provide a consistent set of transferable 
potentials for the modelling of a variety of important systems and phenomena. 
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Chapter 1 

General spin-coupled valence 

bond theory 

1.0 The electronic Schrodinger equation 

Before considering the more specialised quantum chemical ideas of modern va

lence bond theory, it is appropriate to recount briefly the relation to general 

physics and quantum mechanics. 

The appropriate equation of motion for molecular systems was formulated by 

Schrodinger in 1926 [1]. In its non-relativistic form it may be written as 

a ' 
in a/I! = Hw, (1.1 ) 

in which iI is the Hamiltonian operator (see below) and \lI is the wavefunction 

of the system-a function of all the particle coordinates. Among cases where 

relativistic corrections are significant belong the coupling between the spin and 

orbital angular momenta, and situations where electrons attain very high veloci

ties close to the heavier nuclei (more pronounced for the innermost s electrons). 

See for example [2] or [3]. 

We will in this work consider only the time-independent form of this equation, 

applicable for the description of stationary states when the Hamiltonian contains 
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no time-related parts: 

iI'I! = E'I!. (1.2) 

Again if relativistic effects are neglected the Hamiltonian may be written as 

(1.3) 

where p and q are particles of the system. mp is the mass of particle p and Zp 

its charge in units of the (positive) electronic charge e. The first term in (1.3) is 

thus the kinetic energy term, the second term takes into account the electrostatic 

interactions. 

A major simplification may be achieved by separating the nuclear and elec

tronic motion as proposed first by Born and Oppenheimer [4]. This is achieved 

by writing the wavefunction as a product of nuclear and electronic wavefunctions, 

'I!(r, R)=w(r)'I!(R) where r is a position vector for the electrons and R a posi

tion vector for the nuclei, and neglecting certain coupling terms. This yields the 

electronic Schrodinger equation for the motion of the electrons as 

iI(R)w(r) = E'I!(r) (1.4) 

where the Hamiltonian depends parametrically on the nuclear coordinates ac-

cording to 

This may be solved for the electronic motion while the nuclei are kept fixed in 

their positions. The approximation is likely to break down when electronic states 

calculated in this way become degenerate or near-degenerate (see for example [5]). 

Examples of such cases are the well known Jahn-Teller distortion and the 'avoided 

crossing' rule. The equation above is the basis of a large amount of work in 

quantum chemistry, and its solution will be the subject of the remainder of this 

thesis. 

One inescapable relativistic notion for comparing theoretical predictions with 

experiment, is the concept of particle spin. The electron possess an intrinsic 
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angular momentum, its 'spin', amounting to h/2. We may thus write 

1 
SzQ = +-nQ 

2 

1 
sz/3 = - '2 n/3, (1.6) 

where Q and /3 are functions of the spin degree of freedom, eJ, and both eigenfunc-

tions of 82 and s z. It is often convenient to construct many electron wavefunction 

from spin orbitals, such that each electron occupies an orbital which is a function 

of four coordinates, for example ¢(Xi' Yi, Zi)Q(eJi). 

The electron spin has two major implications. Firstly, having a half-integral 

spin the electron may be classified as a fermion, the crucial consequence of which 

is formulated by the Pauli principle stating that the wavefunction must be anti

symmetric under any interchange of two electronic coordinates: 

(1.7) 

Alternatively, for a general permutation of electron coordinates we may write 

(1.8) 

where Ep is +1 for an even permutation, P, and -1 for an odd permutation. A 

wavefunction having this property may be realised very easily by taking simply 

a linear combination of determinants of spin orbitals (Slater determinants). 

Secondly, if the Hamiltonian is independent of spin, as is the case in equa

tion (1. 5 ), the total wavefunction must also be an eigenfunction of the total spin 

operator (since the two operators commute: [il,8 2]=0) which may be defined 

according to 

(1.9) 

The construction of spin eigenfunctions has been subject to a great deal of at

tention in the past. There are two basic strategies that may be employed. The 

simplest uses the theory of angular momentum to couple groups of electrons suc

cessively, according to a given scheme, until a final wavefunction with correct spin 
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quantum number is obtained. More elegant, perhaps, is the use of group theoreti

cal methods, in which one for example can classify spin eigenfunctions as forming 

bases for irreducible representations of the symmetric group SN. Normally the 

spin function will be constructed to ensure that the total wavefunction also ad-

heres to (1.8). We will not consider the construction of spin eigenfunctions any 

further here-for a comprehensive treatment of this area the reader is referred to 

the book by Pauncz [6]. 

Having thus defined the form of acceptable wavefunctions, we may now con-

sider how to approximate solutions to the time-independent Schrodinger equation, 

equation (1.2). There are several different ways of approaching this problem, but 

by far the most widely used strategy is the use of the variation theorem. For the 

optimisation of a ground state wavefunction it is straightforward to show that 

the energy expectation value of any trial wavefunction must always be above, or 

equal to, the exact ground state energy: 

(1.10) 

Furthermore, when lowering the energy of the trial wavefunction one cannot ob-

tain a worse approximation to the ground state wavefunction. So it is then very 

natural to assume that the best approximation to the ground state will be rep

resented by a trial wavefunction with a minimum value of (E). This function 

may then be minimised with respect to the parameter set used to define the trial 

wavefunction, lit. This is indeed a very powerful statement, but it should be 

kept in mind that such a formulation not necessarily yields accurate estimates of 

molecular properties other than the energy. 

As the reader may have become aware, several fundamental physical constants 

recur in most of the past equations. In order to ease the notation we shall therefore 

(unless otherwise stated) employ the so-called 'atomic units' in the remainder of 

this thesis. In this very common convention in the quantum chemical literature 

the ubiquitous constants me, e, nand "'0 ("'0=471"fo) are set to unity. Physical 

quantities may then be given as dimensionless numbers in that the appropriate 
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powers of me, e, hand /\'0 are understood. Often the derived unit of length will 

be useful (bohr): 

(1.11) 

or the corresponding energy unit (hartree): 

(1.12) 

1.1 Non-orthogonal orbital optimisation 

The two main reasons for the take-off of molecular orbital (MO) theory and the 

relative stagnation of valence bond (VB) based methods beginning in the early 

1950's, were the technical difficulties associated with the so-called 'N! problem' 

in practical VB calculations, as well as the quantitatively discouraging results 

these calculations tended to give. It was thought that sensible calculations could 

be constructed by direct use of atomic orbitals, but today it seems clear that an 

unprejudiced, initial orbital optimisation step is crucial. 

In variational orbital optimisation schemes the VB wavefunction must in gen

eral take a multi-determinant form. Firstly, a large number of doubly occupied 

orbitals corresponds in the VB case to high-energy configurations, so the case of a 

closed shell Hartree-Fock wavefunction (or something resembling it) would not be 

appropriate. Secondly, and more simply, in a single-determinant wavefunction the 

orbitals are only determined within a linear transformation. Any criteria defining 

non-orthogonal orbitals from such a wavefunction would thus not be able to avoid 

a certain degree of arbitrariness. For this reason, valence bond orbital optimi-

sation schemes are more complicated than simple Hartree-Fock theory, having 

more in common with standard, orthogonal multi-configuration self consistent 

field (I\ICSCF) methods. 

The first general scheme of non-orthogonal orbital optimisation is probably 

that of Goddard [7]. It was originally referred to as the 'GI wavefunction' (GI re

ferring to the combined spin-projection and antisymmetrisation operator en, and 
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later the 'GVB (generalised valence bond) wavefunction'. Like the spin-coupled 

wavefunction, it is a single configuration of N electrons in N distinct orbitals, 

but, at least initially. optimisation of the spin coupling was not considered for this 

wavefunction. The spin function was chosen as one of the if linearly independent 

Kotani functions, most commonly of course the perfect-pairing function. In this 

way the optimisation problem could be solved by iterative diagonalisation of the 

N effective one-electron operators as defined in section 1.5. Besides this single 

spin function or 'perfect-pairing' (PP) approximation, the 'strong-orthogonality' 

(SO) approximation was also often employed in practical calculations. In this ap

proach only overlaps between singlet-coupled orbitals are allowed to be non-zero. 

This simplifies the matrix element evaluation dramatically, but it is also justified 

by the notion of the electron pair as a single entity. 

Complete optimisation of the spin-coupled wavefunction and its theoretical 

consequences was first explored by Gerratt and co-workers [8, 9, 10]. The devel

opment of theory and applications is still ongoing, see for example refs. [11, 12, 13]. 

Further details concerning aspects of the past theoretical development likely to 

be of particular practical utility will be given in the remainder of this chapter. 

Besides the aforementioned work, mainly by Cooper, Gerratt and Raimondi, 

an early application of spin-coupled theory to atoms may be found in ref. [14]. 

~lore recently theoretical problems associated specifically with the spin-coupled 

wavcfunctioll havf' been considered by Doggett, Fletcher and co-workers [15]. 

Their approach differs most significantly in th(' optimisation proc('dure adopted. 

A super-CI (configuration interaction) scheme is used whereby each of the N 

orbitals is updated in turn. after which the spin-coupling coefficients are re

optimised. This is then repeated until self-consistency. A very significant ad

vantage of this is that excited states (of the same symmetry as the ground state) 

may also be described. Thus the relaxation of orbitals and spin coupling asso

ciated with very specific electronic excitations may be gauged. In many cases it 

is of paramount importance that ground and/or excited states are described at 
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equivalent levels of theory. 

The complete non-orthogonal generalisation of MCSCF (which is presently 

referred to as 'VB-SCF') has been considered, first by van Lenthe and Balint

Kurti [16], and more recently by Verbeek and van Lenthe in their work on the 

programming package 'TURTLE' [17J. The work is based on a super-CJ approach 

which allows for a relatively simple implementation of the orbital optimisation 

procedure for even the most complicated forms of wavefunction. 

The development of methods for non-orthogonal orbital optimisation of multi

configurational wavefunctions is an exciting field, and likely to grow in importance 

in the future. As has been found both in the case of standard MCSCF as well as 

for the spin-coupled wavefunction, it is likely that 'direct' optimisation schemes 

will be superior to the super-CJ procedure, both with regard to computational 

efficiency, as well as in the stability of the convergence. The efficient implemen

tation of such an algorithm is likely to be a monumental task. Work in this field 

has been undertaken by Penotti [18J in his 'OBS-MeSe' (optimised basis set

multi-configuration spin-coupled) approach. In this, first and second derivatives 

with respect to orbital, spin-coupling and (spatial) configuration coefficients as 

well as even basis function parameters (of Slater functions) are evaluated analyt

ically. An early conclusion of this work is that very accurate wavefunctions may 

be obtained using an impressively small number of variational parameters, with 

this combination of non-orthogonal orbitals and optimisation of basis function 

parameters. 

Since the computational difficulties associated with the non-orthogonal orbital 

optimisation are so immense, there has been a greater emphasis on approximate 

methods here than compared with, for example, standard MCSCF methods. The 

discussion of such methods lies outside the scope of this chapter, but we shall 

return to two such approximations-the biorthogonal method and the concept of 

orbital localisation-in later chapters. 

7 



1.2 The spin-coupled wavefunction 

For further information on the theory and applications of SC theory we refer the 

reader to a series of reviews on the subject, refs. [11, 19, 20, 21], and references 

therein. 

The spin-coupled wavefunction for N electrons with spin 5 is defined as 

(1.13) 

with 
It 

e~ (1, .. " N) = L CSke~;k(1, ... ,N). (1.14) 
k=l 

Here .A is the 'antisymmetriser', ensuring that the total wavefunction adheres to 

the Pauli principle. e~ (1, ... ,N) is a general spin-eigenfunction for N electrons 

and spin 5, given as the linear combination of f f linearly independent spin 

functions, as in equation (1.14). These could be defined by the Rumer, Kotani 

or Serber scheme, or indeed in any way convenient for the problem at hand. 

The name 'spin-coupled' alludes to the fact that there is complete freedom in 

the coupling of the electron spins. The electron coordinates are often suppressed 

in these equations (and will be below). In addition to defining the form of the 

wavefunction, we also have to state the fact that the spin-coupled orbitals are 

expressed as completely general linear combinations of basis functions: 

(1.15) 

the important point in this context being the absence of any orthogonality con

straints. The basis functions will in most cases be based on atomic orbitals 

centred on the nuclei of the molecular system in question. These could be either 

in the form of (in general contracted) Gaussian type orbitals (GTOs), or Slater 

orbitals, I or, alternatively, in the form of an intermediate basis formed from these, 

e.g. molecular orbitals found in a preceding Hartree-Fock calculation. The spin

coupled wavefunction is optimised with respect to both the cPI-' coefficients in 

1 For a discussion of the choice of basis sets see for example ref. [22J or [23J. 
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equation (1.15) and the CSk coefficients in equation (1.14). In general this will be 

done without the imposition of any constraints besides the trivial normalisation 

conditions: for the orbitals 

(1.16) 

and for the spin-coupling coefficients 

(1.17) 

It seems useful at this point, having defined the spin-coupled wavefunction, to 

present some arguments regarding its appropriateness. The major point in favour 

of the spin-coupled wavefunction is likely to be its easy interpretation. This is 

related to the fact that there are not many orbitals, but also the spin coupling 

provides useful information in an easily digestible form. These statements are 

particularly true from the viewpoint of most chemists. Quantum chemistry may 

be said to be situated in the border region between chemistry and physics, and 

while MO based methods can be said to be highly physical in nature, the concepts 

of VB methods, especially as provided by spin-coupled theory, are much closer to 

the way of thinking of most non-theoretical chemists. 

The fundamental guideline for all attempts at interpreting the spin-coupled 

wavefunction is the ansatz that the (first order) description of a covalent bond 

between two atomic centres is represented by two singlet-coupled electrons as

sociated with two orbitals localised on each of these centres. This notion dates 

all the \vay back to the early calculations of Heitler and London [24]. From this 

perspective, it is more appealing to use the Rumer basis to span the spin space, 

because there will often be a one to one correspondence between the spin-coupled 

structures and the resonance structures of classical VB theory. These ideas are 

prevalent in classical valence bond theory as well, and in many ways the Rumer 

basis may be termed the traditional VB spin basis. 

What distinguishes the spin-coupled wavefunction from alternative forms with 

non-orthogonal orbital optimisation? Enlarging the wavefunction will decrease 
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the energy, but at the loss of simplicity and interpretability. So the criterion for a 

suitable first order wavefunction, we argue, is the simplest possible wavefunction 

that gives qualitatively correct results for the systems of interest. 

We shall first consider the possibility of further simplifying the spin-coupled 

wavefunction by way of restricting the spin space. In many cases the approximate 

spin coupling is obvious with hindsight. For example, often the perfect-pairing 

functions constitutes 95% or more of the total spin function, so that a PP approx

imation would be justified. There is no way of knowing this a priori, however, 

and on more than one occasion where the bonding has seemed 'obvious', employ

ing the full spin space has yielded totally unexpected solutions. A commonly 

adopted approach is to perform an initial optimisation using only one spin func

tion. Thereafter the remaining spin-parameters may be released, and if the one 

spin function approximation was valid the calculation will typically converge in 

2-3 more iterations. The danger of such an approach is when the true solution is 

radically different from what ,vas supposed, since it is then very easy to converge 

onto a local minimum on the energy hyper-surface. In actual fact, restricting the 

spin space can be viewed in much the same way as imposing constraints on the 

orbitals-both have similar problems. One should always take care not to unduly 

prejudice the final solution. 

Retaining the full spin space is preferable in the general case, so that the spin

coupled ,vavefunction will normally be the simplest wavefunction we will wish to 

consider. \Ve shall now consider a few general, chemically relevant situations, 

to give an idea of if. and when, it might be appropriate to augment the single 

configuration description: 

• The fully covalent situation 

• Hybridisation 

• Charge transfer 

• Inherent multi-configurational situations 
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The fully covalent situation-where the N spin-coupled orbitals are each cen

tred on different atoms-is a situation to which a single configurational wavefunc

tion can be said to be tailored. The most famous example of this is probably the 

description of the 7r-electron system of benzene [25]. The six 7r-orbitals are each 

centred on a carbon atom, meaning that the five Rumer functions correspond 

closely to the two Kekule and the three Dewar structures. The two Kekule struc

tures dominate, as may be expected, contributing a total of approximately 80% to 

the wavefunction (the precise figure depending on the basis set used) [25]. Accord

ingly the orbitals are deformed slightly in the main bond-forming directions-of 

the neighbouring C atoms. This illustrates the fact that a large proportion of 

the energy lowering stems from the overlap between the pair-wise singlet-coupled 

orbitals. 

The situation where a single atom forms bonds simultaneously to several other 

atoms, even in the same resonance structure, is only slightly more complicated. 

In this case more than one orbital will be associated with a given atom, and 

these will often reproduce the well-known hybridisation schemes of early quantum 

chemistry. A good example of this is provided by the example of methane [26]. 

As in the fully covalent case the different modes of spin coupling correspond to 

different valence bond structures, and including the full spin space is necessary to 

avoid any prejudice regarding the final solution. With the core orbital, Is on C, 

excluded, the picture of the bonding corresponds closely to the classical Sp3 hy

bridisation scheme on C. with the remaining four electrons being accommodated 

by 18 orbitals on the hydrogens. The spI-type hybrids are slightly deformed to

wards the H atom to which they point, and all hydrogen 18 orbitals are slightly 

distorted towards the central carbon atom. 

In both these examples, where the classical description is well known, the 

spin-coupled picture confirms the qualitative ideas from traditional VB, while 

augmenting (as, for example, in adding the concept of orbital deformation) and 

quantifying it. Not only may accurate energies and observables be obtained, but 
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furthermore questions regarding, for example, details of the spin coupling may 

be answered. Additionally, in a large number of systems for which no classical 

VB analogues exist, a consistent interpretation of the bonding is obtained by 

applying these same concepts to the analysis of the spin-coupled wavefunction. 

Systems where charge transfer effects are important occur typically where 

electro-negative and electro-positive entities are found together. A simple exam

ple is provided by the formation of LiH (recently described in ref. [27], but see also 

references therein). In the long range, the wavefunction can be described as iso

lated fragments of the lithium and hydrogen atoms, whereas in the bond-forming 

region the wavefunction adopts significant Li+H- character. One might there

fore a priori expect that a two configuration wavefunction would be necessary 

to adequately describe the transition between these two extremes-one config

uration corresponding to the LiH situation, the other to the Li+H- situation. 

As it turns out, however, (although a two configuration description will always 

yield a lower energy than a one configuration one) the spin-coupled wavefunction 

also in this case gives a qualitatively correct description of the bond-forming pro

cess. It is a feature of the spin-coupled method that deforming the orbitals away 

from the purely one-centre case corresponds to the inclusion of so-called ionic 

(or charge-transfer) structures with purely one-centre orbitals. Analogously, in 

the spin-coupled description of LiH, a Li(2s) orbital adopts increasingly more 

character of an H-(ls) orbitaL in order to give the wavefunction its ionic, or 

charge transfer, character. So although the two configuration description cannot 

be ruled out in the case of LiH, the interpretational benefit in having only one 

set of orbitals seems to favour the single configuration description of this system. 

The situations where the single-configuration description demonstrably fails 

fall into two types. Firstly, there are the cases where more than one configuration 

is needed in order to obtain an overall wavefunction of the correct symmetry. The 

simplest example of this is for the dissociation limit of Ht, where two configura

tions corresponding to H+ -H and H-H+ are needed. The spin-coupled wavefunc-
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tion will converge onto one of these, and while this may be perfectly acceptable on 

energy grounds and for most practical purposes, it is not aesthetically very pleas

ing. In a few theoretical investigations (as for example the calculation of interionic 

potentials treated in a later chapter) it may be desirable to have a symmetry-pure 

wavefunction. In such cases the spin-coupled wavefunction may be easily 'sym

metrised' (for example by applying the symmetry operations of the system to the 

spin-coupled wavefunction and solving the generalised eigenvalue problem defined 

by the thus generated set of structures). However, in such cases the ability to 

create a fully variational wavefunction of the correct symmetry would probably 

be preferable. The second type of failing of the single-configuration description is 

more obscure, having to do with effects going beyond the purely 'non-dynamical' 

electron correlation provided by the spin-coupled method. Examples of such are 

extremely rare. One such is the case of ozone (03) where two conflicting spin

coupled descriptions lie very close in energy (see chapter 4). Typically one finds 

for such systems that the equivalent N in N CASSCF (complete active space 

self-consistent field) calculation is also inadequate. 

We can conclude from this discussion that the cases where the spin-coupled 

method fails to get the qualitative picture right, although they certainly exist 

and are easily characterisable, are few and far between indeed. This is in direct 

opposition to the traditional (pre-CASSCF) MCSCF methods, where the included 

configurations must be chosen carefully to suit the chemical problem at hand. As 

such spin-coupled can be viewed as the natural first order method in modern 

valence bond methods, and may be said to be for VB what the Hartree-Fock 

method is for MO theory. 

As for the Hartree-Fock method, the spin-coupled description may be im

proved, i.e., further electron correlation may be included, by way of a non

orthogonal CI step. The initial convergence of this expansion is in general 

rather better than for corresponding orthogonal CI calculations. However, due 

to the computational cost associated with setting up and solving the generalised 
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eigenvalue problem the number of CSFs that can be treated is correspondingly 

smaller-at least at the present stage of development. So for equivalent basis sets 

the orthogonal methods generally 'win out' in terms of the correlation energy 

that can be recovered. 

If VB methods in this way can be said to lag behind M 0 theory in the quan

titative accuracy attainable, it is in the interpretation of the wavefunction that 

valence bond methods come into their own (the interpretation of the spin-coupled 

wavefunction will be described further in section 1.6). The use of classical VB 

concepts, as well as the modern development of these ideas in the present for

mulation, are powerful interpretational tools indeed. This particularly holds true 

for the 'traditional' chemists for which the qualitative bonding picture, or the 

description of bond formation/breaking, is important. Traditionally quantum 

chemistry has had very little to offer this group of people, being more oriented 

towards physicists, physical chemists or spectroscopists. There is therefore the 

potential of a huge turn-around in the way of thinking of this section of the sci

entific community, if the ideas of spin-coupled theory can be made to gain wider 

acceptance. 

1.3 Optimising the spin-coupled wavefunction 

For both MCSCF and SC optimising with respect to the linear spin-coupling 

coefficients, or coefficients of configuration state functions (CSFs), is not prob

lematic, this for example being achieved by solving a matrix eigenvalue problem. 

It is the optimisation of the non-linear orbital parameters which represents the 

major difficulty. For this purpose McWeeny identifies three main families of 

methods in the case of MCSCF wavefunctions: Fock operator based methods, 

methods based on the direct minimisation of the energy using first (and per

haps higher) derivatives of the energy, and finally methods aimed at satisfying a 

generalised Brillouin condition, i.e., ensuring that matrix elements between the 
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optimised state and singly excited configurations over the Hamiltonian (of the 

form (woIHlwi)) become zero [23]. All these have also been applied to the op-

timisation of the spin-coupled wavefunction, the conclusion being that it is the 

direct optimisation schemes that provide the most rapid and stable convergence 

combined with maximum computational efficiency (Brillouin condition methods 

in the form of 'super-CI'-strategies may have other advantages as mentioned in 

section 1.2). 

The expectation value for the (electronic) energy of the spin-coupled wave-

function may be written on the form 

where D, D(JLllI) and D{JLlIlar) are the zeroth, first and second order density ma

trices respectively. HI and H2 are the one- and two-electron parts of the Hamil-

tonian. \Ve can approach this as a standard optimisation problem of numerical 

analysis, optimising the function E with respect to all variational parameters

in this case the orbital coefficients, cpJ1.' and spin-coupling coefficients, CSk. It 

is generally considered necessary to employ a complete, second order optimisa-

tion procedure to ensure rapid and stable convergence. We shall therefore first 

consider the expressions for the first and second derivatives, the computational 

difficulties encountered in their evaluation, after which we proceed to describe 

the various second order methods currently in use. 

1.3.1 First and second derivatives of the energy 

The derivative of the fraction given in (1.18) with respect to a generic parameter, 

P, is given by 

a l-t' -1 aw w aD 
ap D = D ap - D2 ap' (1.19) 
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whereas the second derivative, with respect to PI and P2 , in a similar manner 

can be seen to be 

82 Tr 82Tr (8H' 8D 8T-V 8D 82D ) 
8P

I
8P2 D = D-

I 
8P

I
8P

2 
- D-

2 
8P

I
8g + 8P

2
8P

I 
+ R' 8P

I
8P

2 

-3 .8D 8D 
+2D W 8P

I 
8g. (1.20) 

These expressions are straightforward but rather cumbersome, so we shall restrict 

further efforts direct Iv to the first and second derivatives of the overlap, D, and 

un-normalised energy, TV. 

The simplest derivatives to consider are those with respect to the spin-coupling 

coefficients which may all be derived from the relation 

D = L cSkcS/Dk/. 

k,l 

(1.21) 

In this equation CSk and CSl are the spin-coupling coefficients encountered in (1.14) 

and Dkl is the transition density matrix defined from the two structures with spin 

functions 8~;k and 8~;l respectively. From this we get 

(1.22) 

where we have conveniently defined the symmetrised, single-index density matrix, 

(1.23) 

These results hold for any order of density matrix. 

For the dependence of an orbital on the change of any given orbital parameter, 

we may use (1.15) to get 

8</>v = b /-IV Xp. 
8cp/-l 

(1.24) 

When considering expressions for the overlap or energy one must strictly speaking 

consider both updates to the bra and to the ket form of the orbital. This can be 

expressed 

8 8 8 ----+--
8cp/l - 8 {cP/-I I 8!cp/l) , 

(1.25 ) 
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where (cPIlI is the coefficient of the bra-orbital and Icpll ) the coefficient of the 

ket-orbital (these will in general be complex conjugates). While this considera

tion is only really important in the case of complex orbitals and coefficients, it 

nevertheless represents a useful short-cut to obtaining the derivative expressions. 

I\ot only is it simpler to consider the changes to bra- and ket-orbitals separately, 

but due to the bra-ket symmetry of the expressions we shall consider, the two 

terms in equation (1.25) will always be each others complex conjugate. 

The orbitals will enter the energy expression in the form of overlap, one-

electron or two-electron integrals. In all these cases the operations of differentia-

tion and integration may be interchanged to give 

8 
8 (c

PIl 
I (¢J1l11¢JIII) = 81J.IJ.I (Xpl¢J1I1), (1.26) 

8 A A 

8 (c
PIl 

I (¢JIJ.IIH11¢JIIJ = DlJ.llt (XpIH11¢Jllt) (1.27) 

and 
8 A A 

8 (c
PIl 

I (¢JlJ.t ¢J1J.2I H21cf>1I1 cf>1I2) = fJIJ.IlI (xpcf>1J.2IH2 1¢Jllt ¢J1I2) 

+fJ1J.1J.2 (¢JIJ.\ xpIH2 1¢J1I\ ¢J1I2) (1.28) 

for the three cases respectively. 

\Ve note first that an orbital derivative of a density matrix is independent of 

the form of a bra-orbital, say, if the corresponding orbital label occurs on the 

left-hand side of the vertical bar (similarly for a ket-orbital). In other words 

(1.29) 

The density matrix with a p label on the left-hand side is constructed from 

determinants of matrices in which the corresponding row has been removed (cf. 

appendix La). If p does not occur on the left-hand side the simplest way of 

proceeding is by using the 'induction' relation between different orders of density 

matrix. The general form of this is 
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for the relationship between density matrices of orders n-1 and n. This holds for 

any /-Ln not contained in the set {/-Ll,"', /-Ln-d· Applying this to the evaluation 

of the derivative gives 

(1.31) 

Indeed, since the value of the density matrix is zero if repetition occurs in either 

the /-L or v labels, equation (1.31) can be seen to encompass also the case of (1.29). 

This is the conventional form of the orbital derivative of a density matrix, given 

in terms of only the bra-orbital coefficient.2 

Summing up we can see that since differentiating with respect to an orbital 

parameter requires a density matrix of one order higher, whereas the derivative 

with respect to a spin-coupling parameter adds a spin-coupling label to the density 

matrix, the following density matrices are needed: 

• Dkl required up to second order for the spin-spin part of the Hessian 

• Dk required up to third order for the spin-orbital part of the Hessian 

• D required up to fourth order for the orbital-orbital part of the Hessian 

In addition various non-, semi- and fully transformed integrals are used: 

• Two-electron integrals: (c/>Jjc/>vi H2ic/>uc/>T)' (Xpc/>Jji H2ic/>vc/>l7) , (XpXqiH2ic/>tlc/>v) 

and (Xpc/>tliH2ixqc/>v). 

2The reader may wish to verify that the complete change with respect to an orbital coef

ficient, cN " in the case of real orbitals indeed reduces to the sum of changes with respect to 

(CPI' I and Icpl')' (This can for example be done by using (1.30) twice, expanding first over a 

bra-label and then over a ket-Iabel. In this way Jl. can be made to occur on both sides in the 

density matrix.) 
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The semi-transformed integrals may be extracted from most transformation pro

grams with very little additional effort, since these normally transform one index 

at a time. 

These quantities are basic for any exact second order method for the optimi

sation of the spin-coupled wavefunction, although they need not necessarily occur 

explicitly in the above form. The time spent transforming integrals is likely to 

be significant only in cases with relatively large numbers of electrons and under

lying basis functions. So for the majority of applications, evaluating the density 

matrices will be the most demanding task. At present what might be termed 

a 'brute force' approach is employed. The spin-coupled wavefunction is written 

in terms of Slater determinants (as are the if spin-coupled structures), which 

means the density matrices are expressed in terms of simple cofactors of the over

lap matrix between (spin-) orbitals (see appendix l.a). A detailed account of the 

algorithm in use may be found in refs. [12, 28J. Alternatives to this 'brute force' 

scheme could, for example, entail using a different orbital basis to express the 

density matrices (or even different bra- and ket- orbital sets as in the 'biorthog

onal' method). Such schemes could serve to simplify the structure of the density 

matrices. Another possibility is the use of group theoretical methods to establish 

non-obvious relations between density matrices of different orders or in terms of 

different spin functions. Various such schemes have been tested in the past, but 

so far the 'super-cofactor approach' has proven to be clearly the most efficient. 

1.3.2 Optimisation strategies 

In choosing a given optimisation scheme the behaviour of the objective function 

must obviously be considered. As such the behaviour far from convergence is im

portant to gauge the stability of a given strategy, whereas the behaviour close to 

convergence will determine the (maximum) convergence multiplicity (quadratic-, 

cubic- etc.) of a given algorithm. But apart from this, it is important to realise the 

relative cost of computing the various quantities required for a given procedure. 
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Such considerations may dictate that some variables be updated more often than 

others, or that other quantities be only approximated or estimated from previ

ous iterations. Other considerations regarding the choice of a given optimisation 

procedure include the handling of constraints and the elimination of redundant 

variables. This has been discussed in more detail in ref. [13] where the optimisa

tion of the core orbital set warranted a more sophisticated treatment of redundant 

variables and constraints than is probably otherwise necessary. A noteworthy ob

servation from this investigation is that the incorporation of the constraints into 

the objective function (as for example in Lagrange multiplier methods) actually 

hinders the convergence by making the function not as well behaved. So in this 

case a proper non-linear transformation to the set of free variables is worthwhile. 

In all these considerations the non-orthogonality of the orbitals is, of course, of 

very little relevance, and it is therefore possible to take advantage of the tra

ditional MCSCF literature. Here a vast amount of effort has been invested in 

order to obtain computationally efficient optimisation procedures-reviews may 

for example be found in refs. [29, 30]. It is likely that significant advances can be 

made in spin-coupled theory by in this way borrowing ideas from MCSCF. 

If it is the ground state of the molecule which is of interest, an optimisation 

procedure must locate the global minimum on the energy hyper-surface. We may 

arrange all free variational parameters in a vector, x, and it is then the objective 

function E(x) that must be optimised. (Note in particular that redundancies 

connected with the normalisation conditions (1.16) and (1.17) must be eliminated 

from x.) A minimum in the energy is characterised by having no first order 

change, and any second order change leads to an increase in energy, i.e., the 

gradient is zero 

g=O (1.32) 

and the Hessian positive (semi) definite, which may be expressed 

sGs ~ 0, 'Vs. (1.33) 

Here g and G are respectively the gradient vector and Hessian matrix corre-
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sponding to the variational parameter vector x. These criteria may define a local 

minimum, but convergence onto such a point is normally quite rare, and can as 

a rule be easily diagnosed from the nature of the solution. 

Conditions corresponding to (1.32) and (1.33) for the case of excited states 

may also be constructed (see for example ref. [29]). These will also be stationary 

points (i.e., (1.32) must be satisfied), but the Hessian will generally have one or 

more negative eigenvalues. Optimisation procedures for such cases will be a bit 

more involved than for the simple minimisation problem, and we shall forego the 

discussion of these. 

If one assumes a second order behaviour of the objective function the condition 

(1.32) can be satisfied as in the Newton-Raphson procedure by solving 

Go= -g (1.34) 

for the update o=x' -x. In realistic cases, i.e. cases that are not exactly second 

order, an iterative procedure will be required to obtain a solution, x, where (1.32) 

is satisfied. 

The Newton-Raphson scheme is rarely adopted without some form of trust 

region control. It is generally of paramount importance for the stability of opti

misation procedures (for a discussion see for example ref. [33]). If the third and 

higher derivatives of the energy all take reasonable values, the second order model 

can be expected to hold with fair accuracy within a region around the current 

point in the parameter space (defined by the vector x). The present strategy is 

to define a trust sphere size, H, above which no correction is accepted, i.e., 

fi6 < H. (1.35) 

The trust sphere size is normally given an initial value of 0.1, and then adjusted 

up or down in subsequent iterations according to the accuracy of the second order 

method. This may be gauged by comparing the actual energy improvement with 

that predicted from the second order method: 

E'-E 
r = -. 

go + ~oGo 
(1.36) 
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A scheme for choosing the next trust sphere size, H, based on this ratio, T, may 

be found in ref. [33]. Updates leading to actual increase in energy are rejected, 

followed by a severe decrease in the trust sphere size. Restricted step methods 

are subtly different from (1.34) in that in these the objective function is sought 

minimised, based on the second order model, subject to the constraint (1.35). 

Provided that the Hessian matrix is positive definite from the outset, the 

Newton-Raphson algorithm will normally converge with reasonable stability and 

quadratic convergence close to the minimum. In most cases, of course, the Hessian 

will have one or more negative eigenvalues in which case the Newton-Raphson 

scheme is just as likely to converge onto an alternative stationary point. To 

amend this problem, the 'GQT method' may be employed [31]. In this approach 

equation (1.34) is replaced by 

(G + 0:1)6 = -g, (1.37) 

where 1 is the unit matrix, and the parameter 0: ensures that (G + 0:1) is positive 

definite. In practical calculations a value for 0: is chosen such that the update-

size is maximum subject to (1.35). The GQT method can be viewed as a linear 

combination of the Newton-Raphson and steepest decent methods [10]. When the 

Hessian in the course of the optimisation procedure becomes positive definite, the 

parameter 0: in equation (1.37) is set to zero whereby the GQT method reduces 

to the pure Newton-Raphson procedure. 

In a variation on the basic GQT method, the direction of the previous update 

is taken into account [32]. The 0: parameter is determined as in the basic GQT 

method, but the unit matrix in equation (1.37) is replaced by the matrix Q, 

according to 

(1.38) 

Here d is the update-vector from the previous iteration, and f3 an adjustable pa

rameter given an initial value of 0.9, but varied in subsequent iterations according 

to the quality of updates produced. This method is commonly referred to as the 
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'GQT2 method'. It has the effect of modifying the trust region from the purely 

spherical in the case of GQT, to an ellipsoid in the case of GQT2, elongated in 

the direction of the previous update. 

For most applications, if a 'reasonable' starting guess is employed, convergence 

may be achieved in 10-15 iterations, the last 2-3 being taken up by the pure 

Newton-Raphson procedure. Convergence is defined by the satisfaction of the 

following three criteria 

1. The Hessian is positive definite 

2. The gradient is 'small' 

3. The predicted update is 'small': fJ j < 10-6 

Here 2. and 3. are of course interrelated, 3. chosen as the determining factor in the 

present strategy. The exact numerical values in the case of 2. and 3. may be varied 

according to the application. Note that obtaining the correct coefficients within 

10-6 means that the spin-coupled energy is determined with an accuracy of 10-12 . 

In some cases the converged solution will have an effectively singular Hessian due 

to (near-) redundancies in the parameter space, in which cases the third criterion 

above may be dispensed with. Furthermore, in order to increase the stability of 

the optimisation procedure the Hessian may in such cases be modified slightly, 

according to equation (1.37)-even close to convergence. Setting a=l x 10-4, say, 

thus making the Hessian just positive definite will stabilise the size of the updates 

in the convergence limit. 

1.4 Core-valence separation 

A complete spin-coupled treatment is possible for only the smallest systems. At 

present much more than about 14 electrons is too computer intensive to be feasible 

on most available machines. While this number is likely to increase somewhat 

with increasing computational power and further development of the spin-coupled 
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method, there will clearly always be the need to include more electrons than the 

spin-coupled method itself can handle. Often a particular group of electrons will 

be particularly important for a given application, so these may be given a more 

refined description, while the remaining electrons are described more crudely in 

order to limit the computational difficulties. In the area of chemistry it is the 

valence electrons that are of particular interest, which is the justification for the 

core/valence terminology, but this should not be taken too literally. 

In this section we shall concentrate our efforts on describing a core consisting 

only of doubly occupied orbitals. Alternatives, such as the usage of a SOPP-GVB 

core, have been proposed [13] but no applications are available at the present time. 

With such a core the spin-coupled wavefunction may be written 

(1.39) 

each paIr of core electrons by necessity being singlet-coupled, as signified by 

eNc 
rNc. With this definition, it can be shown that the wavefunction is invariant 

00;/0 

under orbital transformations of the form 

.1,. --t .1 •. + )..1 •. 
'f'J 'f'J 'f'1' i#j ( 1.40) 

and 

(1.41) 

\Vriting the wavefunction as a linear combination of Slater determinants shows 

that such transformations correspond to 'column operations' on a subset of these 

determinants. That a determinant is unchanged by column operations is a basic 

result in linear algebra. For the purposes of this section, the consequences of 

this are that the core orbitals may be orthogonalised and the valence orbitals 

orthogonalised on the core orbital space. This is useful because it simplifies the 

expression for the energy and we shall in the following assume that such an 

orthogonalisation has taken place. 

We shall take the form of the energy expression (1.18) as our starting point. 
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Letting ~ signify either a core or a valence orbital this becomes 

(1.42) 

where the a, b, c, d labels now assume the full range from 1 to N + Nc . This 

expression is general for any form of wavefunction with the proviso that the 

summations over orbitals be over all non-virtuals. In the present case, however, it 

is possible to simplify the evaluation of this expression considerably by identifying 

the many vanishing density matrix elements. 

The first thing to note is that the overlap may be factorised into core and 

valence parts according to D=Dc x DV. With orthonormal core orbitals we fur-

thermore have DC=1. 

The core one-electron density matrix is identical to the Hartree-Fock case, 

namely 

(1.43) 

whereas the core-valence block, due to the previously performed orthogonalisa-

tion, is zero 

D(ilJ-l) = O. (1.44) 

Similarly to equation (1.44) the two-electron density matrix will be zero if the 

numbers of spin-coupled orbital labels on the bra- and the ket-side are not the 

same. \Vith at least one core orbital label on each side we can use the relation 

D(ablcd) = 1/2D(alc)D(bld) - 1/4D(ald)D(blc). (1.45) 

This is a well known result in the case of a single determinant of doubly occupied 

orbitals, but using the formulae given in appendix La and performing the spin 

integration will yield this result also in the present case. Direct application of this 

equation combined with (1.43) leads to the expressions for the core two-electron 

density matrix as 

DC(ijlji) = -1, (1.46) 
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which is a well known result in Hartree-Fock theory. For the core-valence block 

of the two-electron density matrix one similarly gets 

D(J.Lilvi) = D(iJ.lliv) = D(J.llv) 

D(J.liliv) = D(J.liliv) = -1/2D(J.llv). (1.47) 

Inserting all these expressions into (1.42) then gives for the energy 

E = 2L('¢iIHll'l/Ji) + L(2('¢i,¢jIH21'¢i,¢j) - ('¢i,¢jIH21,¢j'¢i)) 
i iJ 

1 { ~ + DC L D(J.llv)(<pIlIHll<plI) 
IL," 

+ L D(J.Llv) ((<PIl '¢iI H21<p,,'¢i) -1/2(<PIl'¢iI H21'¢i<P,,)) 
'I.,IJ.,II 

(1.48) 

If one wishes to optimise also the core orbitals, the derivatives of this expres

sion with respect to the respective orbital variations may be worked out and 

incorporated into a second order optimisation scheme in the same way as was 

done for the spin-coupled orbitals in section 1.3. This has been done in ref. [13]. 

Other than the obvious theoretical advantages of having a fully variational wave

function, optimising the core is likely to be important when the distribution of 

the valence orbitals differs widely from the, say, SCF description which would 

otherwise determine the core. 

We may define a Fock operator for the core orbitals, in a similar way as done 

in Hartree-Fock theory, according to 

(1.49) 

In this way the energy expression (1.48) becomes 

E = L('¢iIHl + FI'¢i) + ~c {L D(J.llv)(<pIlIFI<p,,) 
t Il," 

(1.50) 

26 



This formulation highlights the essential uncorrelated nature of the core electrons, 

and the lack of correlation between the motion of the core and valence electrons, 

the interaction being determined from simple Coulomb and exchange integrals. 

Most applications in this thesis have been carried out using a frozen (i.e., not 

optimised) core, which in the majority of cases is more than satisfactory. It is 

clear from equation (1.50) that in this case optimising the spin-coupled orbitals 

can be done exactly as described in section 1.3 provided that the integrals over 

the Fock operator rather than the usual one-electron integrals are used (this 

was first shown in ref. [34]). Thus, as far as the computer intensive part of the 

calculation is concerned, the problem is reduced from an Nc+N to only an N 

electron problem. 

The problem of choosing a core/valence separation is rarely of significance if it 

is possible to treat all chemical valence electrons by the spin-coupled method. In 

that case, if the SCF description is not wildly inadequate, the core may be chosen 

as the Nc/2 lowest lying (in orbital energy) molecular orbitals from the Hartree

Fock calculation (which in general may be open-shell). Although these will be 

delocalised over the entire molecule, they will be equivalent to the usual (but 

distorted) ls2 etc. atomic orbitals (by a linear transformation). If the Hartree

Fock description fails to describe the core orbitals sensibly, these may be obtained 

from MCSCF or (more commonly) CASSCF calculations. If there is ambiguity 

the core orbitals may as before be identified from the orbital energies. 

In the cases where the set of spin-coupled electrons does not coincide with the 

complete set of valence electrons, powerful localisation procedures may be used 

to separate the occupied SCF MOs (reviews may be found in ref. [35]). These 

serve to define a separation into orbitals associated with the core, individual 

chemical bonds and lone pairs. In most of these, a unitary transformation of the 

orbitals is sought (often iteratively) that satisfies a given localisation criterion. 

Two procedures, that have been used for a number of years, are based on, in 

some sense, minimising the average separation between two electrons occupying 
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a given MO. In Boys' scheme [36], the norm of the inter-electronic distance is 

minimised 

(1.51) 

with the sum including all mloe MOs that are sought separated. In a procedure 

due to Edminston and Ruedenberg [37] the 'self-repulsion' energy is similarly 

maximised 

(1.52) 

Comparing these two schemes, the orbitals from the E-R schemes tend to be 

the more completely localised. Another advantage is that E-R preserves a-7r 

separation whereas the Boys scheme always gives so-called banana bonds [38]. 

Computationally, however, Boys's scheme is preferable, the effort scaling only as 

mroe rather than mfoe for the E-R procedure. 

A recent scheme giving orbitals with the same characteristics as in the Ed-

minston-Ruedenberg scheme, but being computationally simpler is the Pipek-

Mezey procedure [38]. This method is based on the Mulliken [39] populations 

for individual orbitals. For each orbital a measure of the delocalisation may be 

defined from 

di = {l L Q~i} -I , 
A 

(1.53) 

where QAi is the population of 'l/Jj on centre .4. and the sum includes all atomic 

centres in the molecule. This quantity is a measure of the number of centres the 

orbital is delocalised over. For example for an orbital partitioned equally between 

P centres, we have 

(1.54) 

Having defined the delocalisation for a single orbital the mean delocalisation, 

defined from all MOs to be localised: 

{'" -I }-I PM{W} = mloe ~ d j , (1.55) 

may then be minimised as for the two other schemes. As an example of this, the 

valence 1'\,10s of diborane, B2H6 , were localised by this scheme. The orbital popu-
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MOs: B1 B2 Hb 
1 

Hb 
2 

Ht 
1 

Ht 
2 

Ht 
3 

Ht 
4 

1 .5830 .5830 .3004 .3004 .0583 .0583 .0583 .0583 

2 .5041 .5041 .0854 .0854 .2052 .2052 .2052 .2052 

3 .3905 .3905 .6095 .6095 .0000 .0000 .0000 .0000 

4 .5446 .5446 .0000 .0000 .2277 .2277 .2277 .2277 

5 .5375 .5375 .0000 .0000 .2312 .2312 .2312 .2312 

6 .4570 .4570 .0000 .0000 .2715 .2715 .2715 .2715 

LMOs: B1 B2 Hr H~ H\ H~ Ht 
3 

Ht 
4 

1 .4896 .4896 1.0322 .0004 -.0029 -.0029 -.0029 -.0029 

2 1.0404 -.0216 -.0093 -.0093 1.0048 -.0076 .0017 .0010 

3 .4896 .4896 .0004 1.0322 -.0029 -.0029 -.0029 -.0029 

4 -.0216 1.0404 -.0093 -.0093 .0010 .0017 -.0076 1.0048 

5 -.0216 1.0404 -.0093 -.0093 .0017 .0010 1.0048 -.0076 

6 1.0404 -.0216 -.0093 -.0093 -.0076 1.0048 .0010 .0017 

Table 1.1: Mulliken populations for the valence orbitals of B2H6 • 

lations before and after localisation are shown in table 1.1. After the localisation 

it is quite clear that orbitals 1 and 3 correspond to the three-centre two-electron 

bonds between the boron atoms and the bridging hydrogens, whereas the remain

ing 4 orbitals each correspond to a bond between a boron and terminal hydrogen 

atom. So if the spin-coupled description of the bridging region is of interest, the 

localised MOs 2,4,5 and 6 should be included in the core. For a comparison of 

the three localisation procedures in the case of B2H6 , see ref. [38]. 

1.5 The Fock operators 

In a similar way as may be shown in the case of MCSCF theory (see for example 

ref. [23]) the derivative of the energy expression with respect to an orbital param

eter leads to a Fock-type eigenvalue equation. Due to the non-orthogonal orbitals 

the derivation is slightly more involved in this case since the density matrices here 
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are dependent on the orbital parameters. For the spin-coupled wavefunction the 

derivative of the energy expression (1.18) can be written 

1 .} +"2 I: D(JLIJL21 1111l2) ((j>1'1 (j>1'2IH2 1(j>VI (j>V2) 
1'1,1'2,1.'1,1.'2 

= ~ {I: D(JLllI)(xpIHll(j>v) + I: D(JLJLlI1l1ld(xpl(j>v)((j>I'IIH11(j>vl) 
V 1'1,1.'1,1.' 

(1.56) 

This may be shown by direct application of the formulae in section 1.3. The two 

first terms here relate to the derivative of the one-electron energy, the two next 

to the two-electron energy, and the last is the derivative of the normalisation 

integral D. We can rewrite this as 

(1.57) 

where we have isolated terms proportional to the overlap, (xpl(j>v), as3 

€S':,) = I: D(JLJLlI1l1ld((j>I'IIH11(j>1I1) 
1'1,1.'1 

and other integrals between (xpl and 1(j>1I) in the generalised Fock operator, F(Il) , 

so that 

(xpIF(I')I(j>v) = D(JLI1I)(xpIH11(j>1I) + I: D(JLJLlI1l1ld(xp1>I'IIH2 1(j>1I(j>1I1)' (1.59) 
1'1,1.'1 

The last term in this equation can be though of as the action of a generalised 

Coulomb operator, JIlIIII' according to 

(1.60) 

3\\-'e have defined f here as a two-index quantity for later convenience. 
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So, similarly to the Hartree-Fock case, the generalised Fock operator describes, 

besides the usual one-electron terms, the electron-electron interaction with the 

N -1 remaining electrons in the wavefunction. 

The condition for the orbital derivative to be zero should be satisfied for any 

p in equation (1. 57). This means that the vector Lv {- .. } therein should be the 

zero vector. Furthermore, as we may assume linear independence of the ¢v orbital 

set,4 each v-term in the sum must vanish. So expanding the orbitals according 

to 

I¢>~») = L IXq)c~) (1.61 ) 
q 

then leads to a generalised eigenvalue problem of the form 

L(xpIF(jJ)IXq)c~) = L(xpIXq)C~)f~J (1.62) 
q q 

or 

(1.63) 

Solving this equation will give m possible eigensolutions, ¢>'t), for the p,th spin

coupled orbital. Since F is Hermitian these will be orthogonal, and the eigen

values f'tJ may be interpreted as orbital energies. This would be the energy of 

an electron occupying the solution orbital ¢>'t), experiencing the field of the re

maining N -1 electrons. There are N generalised eigenvalue problems of the form 

{1.63)-one for each of the spin-coupled orbitals. Associated with each of these 

will be a set, or 'stack', of orbitals and orbital energies, and while orbitals in the 

same stack must be orthogonal, between stacks the orbitals will in general be 

non-orthogonal. 

Getting expressions for the orbital energies, however interesting from a the-

oretical point of view, would be of little value on its own. It is the connection 

between the solutions of the one-electron problem with the description of excited 

states which is of paramount importance in valence bond theory. We begin by 

4Even if more orbitals are used in the definition of the wavefunction, the sum in equation 

(1.18) can always be restricted to a linearly independent set. 
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noting that, as in simple Hartree-Fock theory (or indeed MCSCF theory) there is 

a strict correspondence between the Fock operator formulation and the Brillouin 

conditions. The generalised Brillouin theorem [40] (for MCSCF wavefunctions) 

has been adapted to VB wavefunctions by Grein and Chang [41]. Firstly we may 

write 

(1.64) 

where '110 is the wavefunction being optimised and w~ is this wavefunction with 

the (single) orbital excitation cP,.,. - XP made. We then have 

(1.65) 

or 
BE _ (wolH - Elw~) 

8lcpJl) ('1101'110) 
(1.66) 

The condition for this to be zero is equivalent to (1.63), thus giving the same 

requirements for cPw Setting Xp=cPp. it is easy to see that (1.66) vanishes, so the 

non-trivial case is when XP lies in the orthogonal complement of cPw It should 

be clear that if the set {Xp} is defined to coincide with the set {cP~)} as defined 

previously, not only will there be no direct interaction between the Brillouin 

state and the spin-coupled ground state, but matrix elements between different 

Brillouin states will also vanish. So to first order, solving the Fock equations 

will give orbitals that describe excited states of the molecule. The corresponding 

singly excited configurations therefore constitute an excellent basis for a non

orthogonal CI description of these states. (That they are not true eigenstates 

has to do with the fact that the N -1 other orbitals, as well as the spin-coupling 

coefficients, are likely to relax when the electron in ¢p. is excited.) A larger non

orthogonal CI may be performed by exciting into several virtuals, and also by 

performing excitations in more than a single stack. This is in a sense an over

determined problem, since in theory one is using an mx N dimensional basis 

set where an m dimensional one would be sufficient. However, as long as care 

is taken when choosing the excitations, linear dependence in the many-electron 
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configuration set is unlikely to present any problems. 

1.6 Analysing the spin-coupled wavefunction 

It has been mentioned in the previous sections that one of the major advantages of 

the spin-coupled wavefunction is its easy interpretation. We shall in this section 

elucidate this claim by taking a brief look at the tools available for extracting 

information from the spin-coupled wavefunction. 

Central to the interpretation of the spin-coupled wavefunction is the notion, 

as mentioned section 1.2, that the first order description of a chemical bond is 

constituted by two orbitals with associated singlet-coupled orbitals. This idea, 

the very foundation of valence bond theory, may be attributed to Heitler and 

London's work on H2 from 1927 [24]. In modern valence bond theory (as opposed 

to classical VB) we are interested in describing orbitals that are more complicated 

than the pure atomic form considered in ref. [24]. This was first considered by 

Coulson and Fischer [42]. In section 1.6.2 ways ofrepresenting the orbitals defined 

in this manner will be described. If the Heitler-London calculation furthermore 

is generalised to more than two electrons, the need for a more rigorous analysis 

of the coupling of the electron spins arises, see section 1.6.3. The spin-coupled 

wavefunction consists of a spatial and a spin part, and as such it is useful to 

separate the analysis of these two. 

1.6.1 The symmetry conditions of the spin-coupled wave

function 

Before considering the detailed analysis of the orbitals and spin-coupling coeffi

cients, it is useful to establish the basic nature of the solution when the molecule 

possesses some degree of symmetry. A thorough account of the case of a non

degenerate electronic wavefunction may be found in ref. [9], and we shall here just 

summarise the most important results. The case of a wavefunction belonging to 
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a degenerate irreducible representation has been considered in ref. [43]. 

We have a set of symmetry operations belonging to the point symmetry group. 

g, defined by 

[H,R] =0. (1.67) 

Assuming that the spin-coupled wavefunction belongs to a nou-degenerate irre-

ducible representation of g, we furthermore have 

RlJ! = ((R)lJ!, I«(RW = 1. (1.68) 

This requirement for the spin-coupled wavefunction, with the assumption that 

the N spin-coupled orbitals are linearly independent, then gives the result 

(1.69) 

for the orbitals [9]. Each symmetry operation in this way leads to a permutation of 

the spin-coupled orbitals (the (-matrices are non-singular). Generally the orbitals 

may be divided into subsets such that all the symmetry operations either permute 

a subset cyclically or leave the order unchanged. A cycle of order higher than 

two will be associated with a corresponding rotation axis in the molecule. 

The symmetry requirements for the spin function may be derived straightfor

wardly from the orbital permutation. So that if 

(1. 70) 

the spin function must be unchanged, within a phase, under the same permutation 

of the electron labels: 

8(pR pR '" pR) - (spin(R)8(1 2 ... N) 
l' 2, 'N - '" (1. 71) 

with 

(1.72) 

To illustrate these ideas we take the singlet state of CH2 as an example (for a 

more detailed discussion see chapter 4). The spin-coupled orbitals are shown in 
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figure 1.1, the bonding spX-type hybrids and the hydrogen orbitals being plotted 

in the molecular plane, whereas the lone-pair orbitals are plotted in the plane 

bisecting the HCH angle. 

The lone-pair orbitals, LPI and LP2, are the only orbitals containing compo

nents antisymmetric with respect to reflection in the molecular plane (Jv. Con

sequently these two orbitals are interchanged by this operation. The remaining 

orbitals contain antisymmetric components with respect to (J~ -the plane bisect

ing the H-C-H angle-and by this operation SPI and SP2 are interchanged, as 

are HI and H2. This is in agreement with (1.69), indicating that the spin-coupled 

wavefunction is in fact symmetry-pure. 

Setting R=(J v in (1.71), we can see that e must be either symmetric or anti

symmetric with respect to the interchange of electron labels 1 and 2, i.e., electrons 

1 and 2 must be perfectly singlet-coupled or perfectly triplet-coupled. As it hap

pens the former is the case so that only two spin-coupling coefficients in the 

Rumer basis are non-zero (1 and 3). 

1.6.2 Representing the orbitals 

After a spin-coupled calculation N orbitals are available for analysis. These will 

as a rule be spatially well localised. This is an empirical finding based on a large 

number of actual calculations, but is also a likely form of solution from the point 

of view of maximising the distance between electrons in different orbitals, thus 

minimising the electron-electron repulsion energy. 

For SC there is no simple correspondence between the orbitals and the total 

electron distribution as is the case for simple Hartree-Fock orbitals or for the 

natural representation of the CASSCF molecular orbitals. If a core has been taken 

out in the calculation one will normally insist that the spin-coupled orbitals be 

orthogonal to the core orbital space, in which case the total electron distribution 

will be the sum of contributions from the core and valence electrons respectively.5 

5In some cases, however, as in the calculation of interionic potentials discussed in a later 
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LPI LP2 

H H 

SPI HI 

H H 

SP2 H2 

H H 

Figure 1.1: The different orbitals of CH2 (singlet). 
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The simplest source of information regarding the relationship between the 

orbitals is represented by the orbital overlap matrix. In many cases the most 

striking feature of the overlap matrix is the large overlaps (typically in the range 

0.6-0.9) between bond-forming orbitals (or orbitals for which the associated elec

tron spins are close to being singlet-coupled-this will be explored further in 

section 1.6.3). It is well known (see for example ref. [23]) that the favourable 

energy contribution arising from the exchange interaction is due to terms of the 

form (<PJLI<pII) x (<pJLIH11<p1I)' and so, to a certain extent, increasing the overlap be

tween such orbitals will be favourable in energy terms. (The counteracting factor 

here is the inter-electronic repulsion, which will tend to keep the orbitals apart.) 

This simple notion is sufficient to rationalise a whole range of observations for the 

spin-coupled orbitals, such as deformation of atomic orbitals along bond-forming 

axes and hybridisation that optimises the directional properties of the atomic 

orbitals. It is generally more difficult to find patterns in the overlap between or

bitals that are not associated with each other in the same way. There is of course 

a strong dependence on the spatial separation of the orbitals, and this should be 

take into account in the analysis. 

In table 1.2 the overlaps for CH2 (singlet) are given.6 The values of 0.67262, 

0.80601 and 0.80601 suggest, without further knowledge of the form of the or

bitals, that the bond-forming (or: nearly singlet-coupled) pairs are LPI and LP2 

(the lone-pair orbitals), SPI and HI (one of the spI-type hybrid on carbon and 

one of the hydrogen Is-like orbitals), and SP2 and H2 (the other spX-type hybrid 

and hydrogen orbital). (This is verified by the spin-analysis in the next section.) 

It is a noticeable fact that the overlap between the lone-pair orbitals is smallest in 

spite of the fact that these orbitals are on the same centre. Apart from this, the 

remaining overlap integrals follow a pattern consistent with the aforementioned 

general distance dependence. 

chapter, it may be preferable not to insist on this property. 

6Note that it is customary to choose the relative phases of the orbitals such that overlaps 

between bond-forming orbitals are positive and symmetry related integrals have the same sign. 
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LPI LP2 SPI HI SP2 H2 

LPI 1 0.67262 0.19725 0.13170 0.19725 0.13170 

LP2 0.67262 1 0.19725 0.13170 0.19725 0.13170 

SPI 0.19725 0.19725 1 0.80601 0.31433 0.12042 

HI 0.13170 0.13170 0.80601 1 0.12042 -0.05517 

SP2 0.19725 0.19725 0.31433 0.12042 1 0.80601 

H2 0.13170 0.13170 0.12042 -0.05517 0.80601 1 

Table 1.2: Overlap matrix for CH2 . 

LPI LP2 SPI HI SP2 H2 

LPI - 0.00000 1.50000 1.50000 1.50000 1.50000 

LP2 0.00000 - 1.50000 1.50000 1.50000 1.50000 

SPI 1.50000 1.50000 - -0.00650 1.57278 1.43372 

HI 1.50000 1.50000 0.02374 - 1.43372 1.57278 

SP2 1.50000 1.50000 1.67571 1.30055 - -0.00650 

H2 1.50000 1.50000 1.30055 1.67571 0.02374 -

Table 1.3: Expectation values of (slJ + slI)2 for CH2 • Numbers above the diagonal 

are those based on 'l1, below the diagonal on 8. 
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1.6.3 The spin-space 

The first problem one encounters when setting out to analyse the spin-space is as

signing weights to non-orthogonal functions. This problem occurs when analysing 

any non-orthogonal CI-expansion, and the various schemes available are outlined 

in appendix l.b. 

In analysing the coupling of the electron spin, there is a choice in which weights 

to use. One can base the weights on the If individual structures defined as 

(1.73) 

in the spin-coupled wavefunction \II or alternatively the weight can be obtained 

from the individual spin functions, e~;k in the total spin function e~. This may 

to a certain degree be a matter of taste, but there are conceptual advantages in 

separating completely the analysis of the space- and spin-parts. 

Recently powerful analytical tools in the form of 'spin correlation analysis' [44] 

have been made available. We consider first the expectation value 

(1.74) 

This value will describe the spin coupling between the electrons /-L and II. It is 

useful to consider the value for this quantity in the following 'ideal' cases: 

o for perfectly singlet-coupled electrons 

2 for perfectly triplet-coupled electrons 

1.5 for completely un-coupled electrons 

One will rarely obtain these ideal values, except when dictated by symmetry, but 

generally a small value for ((sJ.L + sv)2) will signify near-singlet-coupling of the 

associated electrons, a number close to 2 will signify near-triplet-coupling etc. 

Instead of using the total spin function in the expectation value we can use 

the complete wavefunction. In this way we may define the expectation value 

according to 

(\II~I(sJ.L + sv)2I\11~) == (\II~I.A[<I>l·· ·<I>N ((SJ.L + sv)2Ie~)]). 
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Defined in this way the expectation value gives a measure of the coupling of the 

electrons associated with the spin-coupled orbitals </>/1 and </>v, Similarly to the fact 

that the Chirgwin-Coulson weights based on the full wavefunction may sometimes 

give 'unphysical' negative weights, the spin expectation values occasionally lie 

outside the meaningful range of [0; 2J. The choice between (1.74) and (1.75) is 

analogous to the choice between e~k and W k in the evaluation of weights for the 

various modes of spin coupling. 

The above is not restricted to evaluating the total spin associated with pairs 

of orbitals, any subgroup of orbitals may be treated. It is often sufficient to 

consider all pairs of orbitals, however, in order to establish most patterns in the 

spin coupling. 

As an example the expectation values associated with all the pairs of orbitals 

for CH2 are given in table 1.3. For bond-forming orbital pairs the corresponding 

value will typically be in the range 0.0-0.2, and this can be seen to be the case 

for CH2 also. As mentioned in section 1.6.1, the lone-pair electrons are perfectly 

singlet-coupled for symmetry reasons. This also means that there can be no 

coupling between a lone-pair electron to any other electron, and this leads to the 

exact values of 1.5 in the first two columns (and rows). The value of 0.024 for the 

coupling between the electrons associated with a hydrogen orbital and spI-type 

hybrid is in agreement with the strong dominance of the perfect-pairing function 

of 98.8%. 

The notion of pair populations is closely related to spin correlation analysis 

using orbital pairs [27J. In traditional Mulliken population analysis a summation 

is restricted in the normalisation condition for the one-electron density matrix, 

leading to an electron population associated with the given atomic centres in the 

molecule. In the same way it is possible to restrict summations in the normali-

sation condition for the two-electron density matrix 

(N) = L D(ablcd)(ablcd) , 
2 abed 

(1.76) 

this leading to pair populations associated with pairs of atomic centres. It is 
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useful for pair populations to distinguish between symmetric and antisymmetric 

pairs, so the two basic pair population quantities are defined according to 

1 
JvIXB = - L L LD(ablcd)((alc)(bld) ± (ald)(blc)), 

2 aEA bEB cd 

(1.77) 

associated with centres A and B. Of course to pairs symmetric in the spatial part 

of the wavefunction will be associated singlet-coupling of the electron spins, and 

to pairs spatially antisymmetric will be associated triplet-coupling. So we denote 

M+, as defined above, as a singlet-like pair population, and M- a triplet-like 

pair population. This may be made slightly more precise by noting the Dirac 

spin-exchange identity [45] 

(1.78) 

Using this relation it is for example straightforward to demonstrate that, provided 

that the density matrix is expressed in terms of spin-coupled orbitals, and that 

there to each centre is associated one spin-coupled orbital (or if the summations 

in (1. 77) are restricted accordingly), the values for 2MAB (which in this case 

may be denoted 2Jvf;;v) correspond exactly to the expectation values obtained 

from (1.75). 

The pair population scheme thus has traits in common with the spin corre

lation analysis, but provides several advantages in that it is independent of the 

orbital basis used to express the density matrix. As such the analysis is not by 

any means restricted to the spin-coupled wavefunction. Another very interesting 

notion is the relationship between pair populations and bond order, as well as to 

the concept of valency. The quantity 

(1.79) 

where T/=1/3 for systems with S=O or S=1/2, will give a measure of the number 

of 'bond-forming' pairs. This would for a perfect-pairing spin function be the 

number of exactly singlet-coupled pairs, or ~N -So MA~ may be interpreted as 
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the bond order between centre A and B, and the quantity 

(1.80) 

provides a value for the valency of the A atom. Further details regarding the 

application of these quantities may be found in ref. [27]. 

Spin-correlation and pair population analysis are powerful tools for discovering 

patterns in the spin coupling associated with the spin-coupled wavefunction. The 

values for ((StL+sv)2) will not in general contain all the information inherent in the 

If spin-coupling coefficients, however. It is therefore often useful to transform 

the coefficients to a spin-basis, with an ordering of the orbitals, so as to highlight 

the observed trends established in the spin analysis. Highly efficient programs 

for doing this now exist [46, 47]. The most frequently used schemes are Rumer, 

Kotani and Serber, but for a thorough discussion of the choice of spin bases see 

ref. [6]. 

l.a Appendix: The Lowdin formula and density 

matrices 

One of the main technical problems in the practical implementation of valence 

bond theory is the calculation of matrix elements between many-electron wave-

functions defined in terms of non-orthogonal orbitals. The L6wdin formula [48], 

which gives expressions for matrix elements between Slater determinants, is the 

foundation for any attempt at addressing this problem. Since any antisymmetric 

wavefunction can be written as a linear combination of Slater determinants, any 

exact rule for evaluating matrix elements may be derived from the L6wdin for-

mula. The famous 'Slater-Condon' rules for the case of orthogonal orbitals are 

as such just a special case of this formula. 

We define two (un-normalised) Slater determinants in terms of spin-orbitals 
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according to 

The overlap between these can, by interchanging the operations of integration 

and antisymmetrisation, be seen to reduce to 

(cI>/IcI>J) = ~! J A['Pi(1)'P~(2) ... 'P~(N)]A[cpi(1)cp~(2) ... cp~(N)]dT 
= J cpi (1)cp~(2)··· 'P~(N)A['Pi (l)cp~ (2)··· 'P~(N)]dT 

(1.82) 

where Sl J is the matrix of orbital overlaps. From this the first order density 

matrix can be found by using the relation7 (the general form of which is given in 

(1.30)): 

D = L D(alb)(CPaICPb) , (1.83) 
a 

since the overlap between two wavefunctions is nothing but the zeroth order 

(transition) density matrix. In this way we can identify 

(1.84) 

where IS/JI(a,b) is a first order cofactor. The first order cofactor may be defined 

compactly as 
/J 81S/J1 

IS I(a,b) = o( I I J) 
'Pa 'Pb 

(1.85) 

(as may indeed the first order density matrix from the zeroth order-cf. equation 

(1.83)), from which, by considering the definition of a determinant, it may be 

seen to equal 

(1.86) 

7Note the exact analogy between this general relation for density matrices and the expression 

for the Laplace expansion of a determinant. 
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Here (SIJ)(a,b) is the sub-matrix of SIJ with the ath row and bth column removed. 

In a similar fashion the second order density matrix for determinants may be 

shown to be just the second order cofactor: 

(1.87) 

This reduces to the determinant of the overlap matrix with two columns and rows 

removed, plus a phase factor: 

IsIJI (l)a+b+c+dISIJ I (ab,cd) = EabEcd - (ab,cd) , (1.88) 

with €ab being +/-1 according to whether (ab) form an even (a < b) or odd 

(a > b) permutation. Similar expressions may be derived for the higher order 

density matrices and cofactors. 

Partial orthogonality between the spin orbitals will lead to a block diagonal 

overlap matrix SI J, and thus simplify the evaluation of the determinant and co

factors. The partitioning into alpha and beta spin orbitals is the most commonly 

encountered, but point group symmetry of the molecule may lead to additional 

simplifications. A rigorous account of the consequences of a block diagonal over

lap matrix may be found in ref. [49]. 

The spin-less density matrices may be evaluated from the density matrices in 

terms of spin-orbitals simply by integrating over the spin-variable: 

+ + --D(plv) = D{p I v) + D(p I v). (1.89) 

"\lorking with the spin-less density matrix is normally preferable, unless one is 

working with different spatial orbital sets for the alpha and beta spin orbitals 

(so-called unrestricted calculations). 

Once the relevant density matrix has been evaluated, by considering all many

electron wavefunctions and all orbitals defining the wavefunction under consid

eration, it may be transformed to a preferred representation. The many electron 

space may be transformed, such that if 

(1.90) 
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we get a partially transformed density matrix as 

(1.91) 

and a fully transformed density matrix as 

Dkl = LC/kCJID/J. (1.92) 
I,J 

Similarly the orbital representation may be transformed. Transforming the den

sity matrix, however, requires the inverse transformation (it transforms contra-

variant-this may be shown straightforwardly from (1.83)) such that if 

(1.93) 

the first order density matrix, in terms of the ¢' orbital set, can be written as 

D'(O'IT) = L(c-1)0'/L(c-1)rvD(J.L11I). (1.94) 
/L,V 

The higher order density matrices may be transformed in a similar fashion. 

l.b Appendix: Non-orthogonal weights 

Assigning weights when functions are non-orthogonal requires some considera-

tion. as the choice of scheme is not as unambiguous as in the standard case. 

vVhereas the squares of the coefficients is the only sensible choice of weight in the 

orthogonal case, there are an infinite number of ways of generalising this to the 

non-orthogonal case. 

In general if the function F is given as the linear combination 

(1.95) 

where the set of functions {J} has the overlap matrix 

(1.96) 

we wish to assign a number O(Ji), assessing the occupation, or weight, of Ji in F. 

For a sensible scheme we may reasonably require the fulfillment of the following 

criteria: 
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1. With orthonormal functions the weights reduce to the usual o(li) = c; 

2. The weights add to one: Li O(fi) = 1 

3. Each weight should be between 0 and 1 

where 2. and 3. may be said to be requirements for any weight, or probability 

measure. In the case of orthogonal functions we have also the following property: 

but it would probably be unreasonable to apply this also to non-orthogonal 

weights. 

A brute force methods of defining weights is to simply orthogonalise the func-

tions, and then use the new coefficients c~ to define weights in the usual manner. 

It has been shown that Lowdin orthonormalisation, i.e., using S-~ as the trans-

formation matrix, gives a set of functions resembling most closely the original (in 

a root mean square sense) [50]. It furthermore has the advantage of preserving 

any already existing partial orthogonality, thus, for example, not allowing any 

mixing between symmetries. The main drawbacks of this procedure is associ-

ated with determining the inverse of the overlap matrix. This can be quite a 

demanding task when the number of functions is large, and is also characterised 

by numerical instability in cases with near linear dependence. Especially in such 

cases the weights obtained by this procedure may be rather counterintuitive. 

The most commonly used approach in the spin-coupled group, which is after 

Chirgwin and Coulson [51]. takes advantage of the normalisation condition (where 

real functions are assumed), 

L CiSijCj = 1, 
i,j 

(1.97) 

for the function F. By restricting one summation in this expression occupation 

numbers that automatically add to one may be defined: 

O(fi) = L CiSijCj' 

J 

46 

(1.98) 



The main problem with this definition is that occasionally the weights defined 

in this manner lie outside the range [0; 1]. However, the three other criteria 

defined above may be seen to hold trivially for this scheme. In addition it is 

computationally extremely simple to obtain these weights, with quite a high 

tolerance against linear dependence. 

A third approach worth mentioning is represented by the so-called inverse 

overlap weights [52, 53]. The main argument in this scheme is that since it is 

the unique part of Ii which is important for the energy or other properties of 

F, this should be the determining factor for the weight. Accordingly Ii may be 

orthogonalised to the other functions, i.e., (flliJ)=O if j#i, and a weight defined 

as 

(1.99) 

This may be shown to reduce to o(fi)=lciI2 /(8- 1 )ii [53J. The weights defined in 

this way do not automatically add to one, but may be scaled accordingly. 

The choice of weights is largely a matter of taste. Familiarity with a particular 

scheme, its strong and weak points etc., is likely to be as important as choosing 

the theoretically 'best' procedure. 

For readers familiar with the various population analysis schemes in exis-

tence, particularly the Mulliken method [39], it may be worth mentioning the 

correspondence between these and the assigning of non-orthogonal weights. The 

normalisation condition for the one-electron density matrix can be written 

L D(plq)(xpIXq) = N. ( 1.100) 
p,q 

(The analogy with equation (1.9i) might be clearer if we were there to define 

D(ilj)=cjcj.) Similarly to what is done in the Chirgwin-Coulson scheme, this 

summation may be restricted to give 

O(Xp) = L D(plq)(xpIXq), (1.101) 
q 

essentially an occupation of the basis function Xp' By adding up occupation 

numbers for basis function associated with a given atomic centre, the population 
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on that centre may be gauged as in the Mulliken population analysis scheme. 

Alternatively the L6wdin population scheme may be used, where weights of the 

form 

(1.102) 

are added up according to the specific centres. It is easily shown that the L6wdin 

population analysis scheme is equivalent to the Mulliken scheme with symmetri

cally orthonormalised basis functions [22]. Thus in the same way as the Mulliken 

population analysis corresponds to the Chirgwin-Coulson scheme, the L6wdin 

population analysis corresponds to L6wdin orthonormalisation and use of stan-

dard weights. 
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Chapter 2 

Transformation of full-CI 

structure spaces 

The following three chapters are all concerned with the interpretation of CAS 

wavefunctions by use of valence bond methods. The ideas described in this chap

ter are the foundation for the different spin-coupled-based criteria described in 

the following chapters. They are of considerable more general utility, but we shall 

here introduce the ideas with the transformation of a CAS wavefunction in mind. 

In view of the later interpretations, we have tried to look at the CAS wavefunction 

from a perspective that highlights the similarity with the spin-coupled method. 

Since a full discussion of the scope for further use of these ideas will only become 

possible once the various orbital criteria have been introduced and preliminary 

results presented, a collective discussion for all three chapters will be given in 

section 4.6. 

2.1 Motivation for this research 

Many of the existing ab initio packages have the ability to perform complete ac

tive space self-consistent field (CASSCF, or just CAS) calculations, so that these 

at present are essentially routine-much more so than for example spin-coupled 

calculations (for a review of this method, see for example ref. [1]). It is widely 
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agreed that the CAS method takes excellent account of non-dynamical electron 

correlation. Although a rather vague term, this may be defined as the correlation 

necessary to describe the forming or dissociation of chemical bonds. (In this way, 

the method is well suited for the needs of many chemists, including researchers 

not purely interested in quantum chemistry.) An alternative, more theoretical, 

definition is represented by the statement that non-dynamical correlation is that 

obtained by 'internal' orbital excitations, i.e., excitations between already occu

pied orbitals, so that the CAS wavefunction in this way is the most completely 

non-dynamically correlated wavefunction for a given basis set. As such a subse

quent CI calculation based on excitations into the CAS virtual space will lower 

the energy, but not significantly alter the qualitative features of the energy surface 

(or that of most properties). 

The initial motivation for undertaking this study was based on a series of find

ings relating to the CAS method. Several of these suggest that there is a strong 

link between the CAS and spin-coupled methods. The inherent conceptual sim

plicity, its lack of bias and also the easy availability of CAS has made it a popular 

method, and also a convenient one for comparison with the spin-coupled method. 

Furthermore, as mentioned in section 1.4, using the CAS method to define the 

core orbital set for the spin-coupled \vavefunction is a commonly employed pro

cedure. Traditionally the spin-coupled method uses one orbital to describe each 

of the N active electrons, so it is natural that the association with the CAS 

method is strongest with the corresponding 'N in N' calculations (N electrons 

distributed in N active orbitals-this will be defined in more detail in the next 

section). Since spin-coupled is, like CAS, a method aimed particularly at obtain

ing non-dynamical electron correlation, the following similarities with the 'N in 

N' CAS procedure are perhaps not so surprising: 

1. Spin-coupled potential energy surfaces, as well as the molecular property 

surfaces, are generally parallel to, and close to, the equivalent CAS ones. 

2. Particularly for smaller numbers of electrons, N, the spin-coupled energy 
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tends to be only a few millihartree above the CAS energy. 

3. Performing a full CI based on all distributions of N electrons in the N 

spin-coupled orbitals yields a solution where the spin-coupled configuration 

is strongly dominant. 

The qualitative and, to a certain extent, quantitative agreement in the energy 

and properties are indirect indications that the two wavefunctions are relatively 

similar. The third statement above, in which the spin-coupled structure space 

is expanded to be of N in N CAS form, combined with the first two, suggests 

that a representation might be found for the CAS wavefunction in which the 

spin-coupled configuration would dominate. 

It is central for the further development of this theory, that the CAS wavefunc

tion is invariant under any linear transformation of the defining active orbitals. 

In this way the basic concept is the same as, for example, the various localisation 

schemes in existence for SCF (see section 1.4). We wish to define a transformation 

of the orbitals that increases the interpretability of the wavefunction. Direct in

terpretation of the CAS wavefunction, as represented for example by the natural 

orbitals and their (fractional) occupation numbers, is from a chemist's viewpoint 

far from ideal. As argued in chapter 1, it is in the interpretation that valence 

bond based methods have one of their main advantages. The aim of this work is 

thus to define a transformation of the CAS orbitals to a set of easily interpreted 

valence bond orbitals. In this way linking a powerful interpretational tool to 

an already well established MO based method might persuade more people to 

employ valence bond related methods. 

2.2 The CAS wavefunction 

We shall in this section look more closely at the CAS wavefunction, with special 

emphasis on similarities with properties of the spin-coupled wavefunction. 
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In the CAS method one begins by partitioning the orbital set into four sub-

spaces according to: 

1. Frozen core 

2. Optimised core 

3. Active orbitals 

4. Virtual orbitals 

As for the spin-coupled wavefunction, the core orbitals are also for the CAS 

wavefunction doubly occupied in all the structures. The frozen core is the part 

which is not optimised in the calculation, and this may be chosen and effectively 

removed from the problem in the way discussed in section 1.4. The CAS method 

is more general than the traditional spin-coupled approach in that the number 

of active orbitals, m, does not necessarily coincide with the number of active 

electrons, N. (As such one often talks about 'N in m' CAS calculations.) 

One of the great advantages of CAS, which it shares with the spin-coupled 

method, is in this way the lack of bias towards individual chemical systems. 

Once the partitioning of the orbital space has been chosen (particularly if all core 

orbitals are optimised), the wavefunction is fully defined. In this way the method 

has considerably more 'black box' character than, say, other MCSCF methods. 

\Ve can write the CAS wavefunction on the form 

WCAS = L <Plk = L ClkA[r2]8k j, (2.1) 
I,k I,k 

where r21 here is an orbital configuration of the form 

(2.2) 

These go through all possible occupancies of the N electrons in the m active 

orbitals. It is useful to classify each configuration according to the number of 

doubly occupied orbitals, p. In this way the total number of spatial configurations 
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can be calculated according to 

N /2 (m) ( m _ p ) 
Nconf = L x N _ 2 . 

p=O P P 
(2.3) 

With each configuration there is associated a set of spin functions, the 8 k 's in 

equation (2.1). These are often chosen to be eigenfunctions for the spin operators 

52 and 5z leading to f:- 2P1 different functions for the Ith configuration. We shall 

consider using Rumer or Kotani functions for these in section 2.6. Combining the 

expression for f:- 2P1 with each term of (2.3), the total dimension of the CAS CI 

space can be shown to be 

2S + 1 ( m + 1 ) ( m + 1 ) 
NCAS(N,m,S) = m+1 N/2-S N/2+S+1' (2.4) 

commonly referred to as the Weyl formula [2]. An alternative to using spin 

eigenfunctions is to use simple spin strings for the 8 k 's, in other words to expand 

the CAS wavefunction in terms of Slater determinants. This will be discussed 

further in section 2.6. 

It is the sheer size of the CAS structure space, as signified by NCAS , that 

limits the size of systems that can be treated by the CAS method. This number 

increases extremely rapidly, particularly with the number of active orbitals, m, so 

that Nand m are normally chosen to be of comparable magnitudes in practical 

calculations. 

It is instructive to compare the numbers of variational parameters to be op-

timised in typical CAS and spin-coupled calculations. We shall assume that the 

partitioning of the orbital space has been done in identical manners, so that the 

'N in N' CAS and spin-coupled calculations in this respect are equivalent. This 

means that, for rotations between the core/active, core/virtual and active/virtual 

orbital spaces, there are the same number of free parameters, namely m core x m, 

mcorexmvir and mxmvir respectively. (The core/core and virtual/virtual orbital 

rotations of course leave both wavefunctions unchanged.) The active/active or

bital rotations are redundant in the CAS procedure since these can always be 

expressed as variations of the CI expansion coefficients. For the spin-coupled 
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method there are in general N(N -1) free, active/active orbital parameters. Only 

in special cases, such as maximum spin (S=~N), may some (or all) of these be

come redundant. The number of free linear parameters is in the CAS method 

NcAs -1 associated with the CI expansion coefficients, and for spin-coupled if-1 

associated with the spin-coupling coefficients. 

It is clear that variations in both active/active orbital parameters as well 

as in spin-coupling coefficients can be expressed in terms of the CI expansion 

coefficients in equation (2.1). So the parameter-space defined by variation of 

the two former types of coefficients is a sub-space of that spanned by the CI 

expansion coefficients. Furthermore, we may take the difference in the dimensions 

of these two spaces as an a priori indication of the improved quality of the 

CAS wavefunction compared with spin-coupled. The numbers of free parameters 

for various numbers of active electrons are shown in table 2.1. Since this is 

the only difference between the two methods-the remaining orbital rotation 

parameters are the same in the two cases-we can see why EcAs ~ Esc must hold. 

Particularly for larger numbers of electrons it is clear from table 2.1 that the spin

coupled wavefunction is significantly more compact than the corresponding CAS. 

The fact that this difference in size is not normally reflected in a big difference 

in energy suggests that the spin-coupled wavefunction from a physical point of 

view takes a sensible form for describing the non-dynamical correlation effects. 

2.3 Previous related work 

As mentioned in section 2.2 the CAS wavefunction is invariant under linear trans

formations of the active orbital set. This has inspired a number of localisation 

schemes, analogous to those used for single-determinant SCF wavefunctions (see 

section 1.4). There has also been some interest in the transformation of the CAS 

orbitals to sets of non-orthogonal valence bond orbitals (we here define a locali

sation procedure as an optimisation scheme that preserves the orthogonality of 
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N;S CAS SC N;S CAS SC 

2;0 2 2 8 ; 1 2352 83 

2 ; 1 0 0 9' 1 , 2 8819 113 

3. 1 
, 2 7 7 10; 0 19403 131 

4;0 19 13 10 ; 1 29699 179 

4; 1 14 14 11 . 1 , 2 104543 241 

5 . 1 , 2 74 34 12 ; 0 226511 263 

6;0 174 34 12 ; 1 382238 428 

6;1 188 38 13 . 1 , 2 1288286 584 

7. 1 
, 2 783 55 14 ; 0 2760614 610 

8;0 1763 69 14 ; 1 5010004 1182 

Table 2.1: Number of free variational parameters for N in N CAS and spin-

coupled calculations not including orbital rotations involving core or virtual or-

bitals. 

the orbitals, otherwise it will be referred to as a valence bond based method). 

An important distinction between schemes for reinterpreting the CAS or

bitals, is whether these take into account the very complicated structure of the 

CAS wavefunction (in principle one could of course use SCF localisation meth

ods for CAS orbitals and vice versa). "Ve are currently aware of two methods 

particular to CAS that are independent of the exact form of the wavefunction. 

One localisation procedure involves projecting the optimised orbitals onto the 

atomic basis functions and then performing a symmetrical orthogonalisation [3]. 

Another, specific to the 'N in N' CAS wavefunction, involves minimising the 

energy of the perfect-pairing function [4]. 

For methods that do take the specific nature of the CAS wavefunction into ac-

count, the problem of transforming the structure space must be addressed. (This 

will be discussed in detail, in the next section.) For a general linear transforma-
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tion of the active orbital set 

{ 4>'} = {4>} 0, (2.5) 

there exists a corresponding transformation of the structure space 

{4>'} = {<p}T{O) (2.6) 

in which {<p} is the row-vector of the NCAS CAS structures defined in terms of 

the orbitals {4>} as in (2.1), and {<PI} is the corresponding row-vector defined in 

terms of {4>'}. 

This problem is also addressed in standard MCSCF calculations, but with 

slightly different emphasis. The conventional approach is to equate 

0= exp{A) (2.7) 

where A is anti-Hermitian (i.e., skew-symmetric for real orbital transformations). 

This is sufficient to ensure that the orbital transformation 0 is unitary [5]. Work

ing directly in terms of the m{ m - 1) /2 parameters needed to specify this matrix 

then circumvents the need for a constrained optimisation procedure. A further 

important simplification [6] is that the transformation of the structure space can 

be written in the form 

(2.8) 

with 

(2.9) 
r,s 

The at and as are here the conventional second-quantisation creation and anni-

hilation operators. This expression is not usually evaluated exactly, but it is a 

convenient way of identifying first, second, and possibly higher, order changes to 

the structure space. In most approaches (2.8) is used only as part of the eval-

uation of the various derivatives of the energy expression. For sizeable orbital 

updates the integrals are transformed, and the matrix elements between struc-

tures reevaluated. This type of approach could without doubt be generalised to 

non-orthogonal orbital transformations. However, when the full change to the 
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structure space is of interest, expressing the structure transformation using the 

exponential as in equation (2.9) is not necessarily very helpful. 

A method for generating a spin-coupled-like representation of the CAS wave

function has been developed by McDouall and Robb [7]. It is crucial for their 

scheme that the CAS orbitals have already been transformed to a set of orbitals 

relatively close to the spin-coupled representation-in their published work, the 

localisation procedure described in ref. [4] was used to achieve this. Using this 

orbital basis, the if CAS eigenvectors with largest projections onto the cova

lent space were chosen. The underlying assumption is that there is a one-to-one 

correspondence between these eigenvectors and the if spin-coupled eigenvec

tors. As such the eigenvalues are assumed to be the same, and the spin-coupling 

coefficients in each case are all assumed to coincide with the corresponding CI 

expansion coefficients. We can express that as 

(2.10) 

where). designates the different eigenvalues of the CI vectors. Transforming from 

the orbital guess to the resulting spin-coupled-like orbitals using (2.8), then gives 

the condition 

i-I .. · isN -, , (2.11) 

for the orbitals. This expression cannot in general be solved exactly because 

the functions \lI i are of a more general form than A<Pi' but a solution may be 

approximated by multiplying both sides of (2.11) by (\lid, and truncating the 

exponential after the linear term. 

When incorporating this number of assumptions and approximations into a 

method two questions should be addressed: a) the effect of the approximations 

on the end results; and b) the justification of the approximations in terms of the 

computational effort saved. The calculation on the 7r electron system of nitrone 

(CH2 NHO) seemed to give qualitatively similar results to spin-coupled, but it 

is of course difficult to base any conclusions on just one example. Particularly 
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testing a system with more than four active electrons seems imperative. Also the 

justification for the approximations may not be so clear-cut. As we shall demon

strate in the next and following sections, obtaining the complete transformation 

of the structure space is not nearly as computationally demanding as it might 

seem to the uninitiated. So clearly pursuing a more 'intuitively ob\'ious' scheme 

ought to be worthwhile. 

Recently Messmer and co-workers have taken advantage of the full-CI na

ture of the CAS space as a means of overcoming, or circumventing, the non

orthogonality problem [8]. Any set of valence bond expansion functions, {\II}, 

which is based on N active electrons expanded in no more than m orbitals, may 

be written as linear combinations of the corresponding 'N in m' CAS structures, 

i.e., 

{\II} = {~}C. (2.12) 

Once the matrix of coefficients, C, has been determined, it is straightforward to 

transform the overlap and Hamiltonian matrices, Sand H, and any vector in the 

CAS space c: 

S' = CtSC 

H' = CtHC 

c' = C-1c , (2.13) 

to the basis of valence bond functions. In this way Sand H may be con

structed using orthogonal orbitals, and then transformed to any appropriate 

non-orthogonal orbital basis, so that any explicit evaluation of non-orthogonal 

matrix elements is avoided. This may not be computationally the most efficient 

procedure, but it has the advantage of being very simple to implement. In ref. [8] 

a hierarchy of increasingly correlated valence bond wavefunctions were investi

gated, with emphasis on recovering a large proportion of the correlation energy 

produced by the CAS wavefunction. The so-called 'orbital relaxed' GVB wave

function (GVBjR) was suggested as the best compromise between compactness 
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and quality (in terms of correlation energy). This wavefunction consists, like the 

spin-coupled wavefunction, of if structures, but with each mode of spin cou

pling is used a different orbital product. The intrinsic over-completeness of such 

a description was not a problem in any of the examples examined, because of 

symmetry relations between the orbitals in different structures. It is an interest

ing idea in itself, but in my opinion it is not worth sacrificing the clarity of the 

spin-coupled model in order to gain such a relatively slight amount of, mainly 

non-dynamical, correlation energy. 

The specific technical problem of obtaining the structure transformation cor

responding to an orbital transformation has been considered by Malmqvist [9] 

with application to the so-called 'CASSCF state interaction method' [10]. The 

problem addressed here is how to calculate efficiently the transition density matrix 

between two separately optimised CAS wavefunctions (e.g., between wavefunc

tions describing the ground and excited states of the molecule). The core and 

active orbital sets defining a CAS will be individually orthonormal, but if the 

two CAS wavefunctions are freely optimised there will be non-vanishing overlaps 

between orbitals belonging to different CAS functions. In what seems to be a 

very general solution to this type of problem, the two orbital sets are biorthogo

nalised, rendering the calculation of any transition quantity quite straightforward 

(cf. chapter 5). 

This leaves the question of how to re-express the CAS CI coefficients following 

a general, non-unitary transformation of the orbital set (in general the orthonor

mality of the orbital sets must be sacrificed in order to ensure biorthogonality). 

This is done by expressing the orbital transformation as a sequence of single or

bital updates. Similarly to what is shown in section 2.5, this can be achieved by 

an LU decomposition of the orbital transformation matrix, so that, if O=LU, 

then 

{<P'} = {<p/}L + {<p} U, (2.14) 

where it is understood that the <P' orbitals are formed one at a time in ascending 
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order. It is useful to compare, as Malmqvist does, the computational effort with 

that of obtaining the one-electron energy from the expression 

El = (\lIcAsl ~]¢J'IHd¢II)E~",I\lICAS). (2.15) 
J',V 

As this can be achieved by N(N -1)/2 applications of EJ'v with J.L-:F1I (the one

electron term is symmetric), the effort must be roughly half that of a complete 

orbital transformation. 

2.4 The structure transformation 

When this research was initiated, it was assumed that the structure transforma-

tion would have to be approximated. Nevertheless it was thought worthwhile in 

the initial exploration to carry out the exact transformation as a means of gaug

ing the particular computational characteristics of the problem. The conclusion 

of this is, as will be clear in the following sections, that determining the structure 

transformation is not sufficiently computationally demanding as to warrant any 

approximations of this sort. 

To restate the problem defined in section 2.3, we wish to find the complete 

structure transformation matrix corresponding to a general, non-unitary orbital 

transformation: 

{¢'} = {¢}O - {4>'} = {4>}T(O). (2.16) 

We consider first a 'brute force' approach to obtain this transformation-both to 

gain a better understanding of the essence of the problem, and to confirm why 

such a scheme is not very practical. A given 'new' structure is defined according 

to 

Inserting into this expression the expansion of the orbitals, 

¢~ = LOji¢j, 
j 
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gives 

(2.19) 

In this expression the orbitals 4>h ... 4>jN may in general be in a non-standard order 

compared with the given ordering scheme adopted for the <Pa's. The problem of 

expressing the structures with reordered orbitals in terms of the 'old' structure set, 

{<p}, will be considered further in section 2.6. However, even if the computational 

cost associated with this could be considered negligible, the fact remains that 

each 'new' structure will have at least one contribution to every 'old' spatial 

configuration. As a minimum estimate, the computational effort will thus scale as 

NCAS X Nconf ' It was verified by our initial calculations that this is not acceptable. 

2.5 Sequential orbital updates 

The approach outlined in this section takes advantage of some simple properties 

of the structure transformation. {T(O)} must form a true representation of {O} 

such that 

(2.20) 

A useful result deriving from this, since T{I) = I, is 

(2.21 ) 

The basic idea is to describe the orbital transformation as a sequence of the 

simplest possible updates of the forms 

(2.22) 

For the diagonal case of Jl=V this just represents a scaling of the orbital by (1 + A). 

The problem can thus be stated as 

(2.23) 

where we wish to find an ordering of the m2 matrices and values for the A-variables 

so that the equality holds. Once a solution is found, the corresponding structure 
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transformation matrix can be constructed by using (2.20). As will be clear in 

section 2.6, the structure transformation matrices corresponding to updates of 

the form (2.22) have a particularly simple structure. 

The matrix corresponding to the update (2.22) is just 

(2.24) 

where I is the identity, and the matrix 6'iII is null with the exception 61l1l (J.L,lI)=1. 

The inverse of this has the same generic form, namely 

for J.L =1= lI, (2.25) 

and 

(2.26) 

Multiplying an expression of this form from the left on a general matrix will have 

the effect of adding a multiple of the lith row to the J.Lth row. Recasting (2.23) 

slightly, as 

(2.27) 

the problem can be seen to be equivalent to reducing 0 to the identity matrix us-

ing a sequence of such 'row-operations'. This problem is addressed in elementary 

numerical analysis, where several different methods exist for solving the general 

linear problem 

Ax=b, (2.28) 

where A is square (m x m, say) and b and x are column vectors, for x, using 

this basic strategy. Examples are Gaussian elimination with back-substitution, 

Jordan's method and Crout's factorisation algorithm, all of which essentially 

reduce the coefficient matrix, A, to the identity using m x m row-operations. In 

this work a strategy very similar to Jordan's method was used. Each orbital is 

updated in turn (using m updates), and within each orbital the 'diagonal' update 

(J.L=lI) is carried out first. A property of such a strategy is that the ith .A-value, 
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appropriate to 0 1111 in (2.27), may be taken directly as the (J.L,1I) element of the 

matrix 

(2.29) 

where a and 7 are orbital labels appropriate to matrix A-I in equation (2.27). 

For diagonal updates, (J1=1I) A may be determined as this value minus one. 

Generally, the main consideration in the choice of algorithm should be the 

numerical stability rather than computational efficiency. Most schemes will as 

such allow for permutations of rows or columns, for example, in order to minimise 

the effect of round-off errors. The dimension of 0 will always be reasonable, so 

the computational cost associated with any of the mentioned schemes may safely 

be ignored. On the other hand, any inaccuracy in the factorisation (2.23) is likely 

to accumulate when the corresponding structure transformation is constructed. 

2.6 Transforming the CI vector 

In the previous section it was demonstrated that a sequence of orbital updates 

on the form (2.22) is sufficient to describe any non-singular transformation of m 

orbitals. In this section we will show how the corresponding change of the many

electron functions may be evaluated very efficiently. We shall assume that the 

spin orbital set is restricted so that the alpha and beta spin orbitals have identical 

spatial parts (this is of course not necessary for the general formalism described in 

the following). The transformation of the spatial orbital set, as defined in (2.5), 

will then apply equally to the alpha and beta spin orbital sets, i.e., 0°=013=0. 

The structure transformation corresponding to the update (2.22) of an alpha 

spin orbital can be described by the action of the operator 

(2.30) 

on the structure set. The excitation operator E is defined as discussed in ap

pendix 5.a using an annihilation operator constructed from the dual orbital basis. 

With restricted orbitals the Q- and .B-updates are of course independent (the EQ 
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and E{3 operators commute), which means that the order of the respective trans-

formations may be chosen purely on the basis of computational considerations. 

2.6.1 Determinants 

Expanding the CAS CI space in Slater determinants yields the simplest possible 

algorithm for obtaining the transformation of the CI space (mainly because no 

evaluation of coupling coefficients is needed), and so this case will be considered 

first. Since an excitation of an alpha orbital will leave the beta-part of the deter

minant unchanged (and vice versa), it is convenient to define the determinants 

with the alpha orbitals arranged first followed by the orbitals with beta spin, e.g., 

+ + + + - - - -
4>1527 = 1 cPl cP3cP7cPScP2cP3cP5cP7 I· (2.31 ) 

This means, firstly, that any phase factor associated with the excitation of an 

alpha orbital, say, is determined by the alpha part of the determinants only. 

Secondly, the evaluation of indexing information is simplified. The determinant 

index can be defined from independent alpha and beta indices (independent since 

the structure space is of full CI form), as 

(2.32) 

where JO and J{3 index the alpha and beta strings respectively. With this defini

tion an alpha excitation will affect the alpha index only, making the change to 

Jdet trivial to calculate. 

The minimum number of determinants for a given spin can be obtained by 

insisting on the maximum possible M quantum number, i.e., No-N{3=2S. The 

total number of determinants is then 

(2.33) 

simply the product of the numbers of alpha and beta strings. 

For the diagonal update in (2.22) (i.e., J.L=II), (1 + )'E~/i) will have the effect 
+ 

of multiplying determinants in which cP/i is occupied by the factor (1 + ).) while 
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leaving other determinants unchanged (similarly for the beta-update). The num

ber of alpha spin strings corresponding to this, C~:-=-\), is very modest, and in the 

present strategy this information is stored in an indexing array. The schematic 

loop structure is shown in figure 2.1. The simplicity of this makes the code well 

suited for implementation on modern computer architectures (for example on a 

vector computer). 

The case of a genuine orbital excitation in equation (2.22) (i.e., J.L#v) is only 

slightly more involved than the diagonal case. Again the outer loop is over spin 

strings where the vth (alpha) orbital is occupied. The most CPU-efficient strategy 

was found to involve introducing an intermediate set of No.-1 alpha strings. This 

method serves to obtain both the phase factor and the indexing information very 

efficiently. It may be summarised as follows: 

1. Rearrange the alpha string to get ¢II first. This will give a phase-factor, PI, 

related to the parity of the permutation. 

2. 'Annihilate' ¢II' This will give an intermediate alpha string with No.-1 

orbitals; index: /0.-1. 

3. 'Create' ¢w (Get index for final alpha string.) 

4. Rearrange the alpha string to get ascending orbital order. (Get phase-factor 

P2 .) 

Both the phase-factor and indexing information are conveniently kept in pre

calculated arrays. The dimensions of these will in all cases be reasonable, and 

insignificant compared with the size of the CI vector. For the case of N=14, 

S=O, for example, the number of alpha strings is Ndet =3432, and the number of 

intermediate alpha strings N%e~ 1 =3003, whereas 11778624 real words are required 

to store even a single CI vector (see table 2.2). 

If ¢p. is already part of the No.-1 string in 3. above, the corresponding index 

is zero, and so one may proceed directly to the next alpha string. The schematic 

loop structure is shown in figure 2.1. A significant saving is connected with the 
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I J-L=v I 
Do ]=1, C~:~\) 

Lookup ]0(1) 

Do Jf3=1, N:et 

c(1°,If3) := (1 + A) X c(1°, ](3) 

End Do (1f3) 

End Do (1) 

Iwl=vl 
Do J =1, (;:~\) 

Lookup ]from(1) 

Lookup ]0-1 (1from' v) 

If (10-1=0) proceed to next] 

Lookup P1=P(1from' v) 

Lookup J~(10-1, J-L) 

Lookup P2=P(1~, J-L) 

Do Jf3=1, N:et 

c(1~, ](3) := c(1fo, J(3) + APIP2 x c(1from, J(3) 

End Do (1f3) 

End Do (1) 

Figure 2.1: Schematic loop structures for the updates of an alpha orbital using 

determinants to span the CAS space. 
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fact that that the vector, c, may be updated in place. (Standard programming 

would entail first copying the vector c-c' and subsequently carrying out the loop 

structure in figure 2.1 updating according to c':=C'+>.PIP2C.) In the present case 

it is clear that no recurrence is possible since I~om and I~ belong to disjoint sets. 

For the case of Rumer functions (next section) special care must be taken to avoid 

recurrence. 

An important simplification is possible for S=O, since in this case the CAS CI 

vector (and other vectors we shall consider later) will be symmetric with respect 

to the interchange of (all) alpha and beta spin orbitals. This means that there 

are only Ndet(Ndet + 1)/2 unique expansion coefficients (these can be thought of 

as the upper, or lower, triangular matrix extracted from the square c). It might 

not seem possible to limit the storage requirements to this extent, since after an 

alpha update, say, c will no longer posses the correct Q+-+{3 symmetry. However, 

if corresponding alpha and beta updates are done in pairs, one can still obtain the 

correct net effect of the total orbital transformation. The diagonal case of j.t=1I 

is uninteresting, since the correct result may be achieved by simply restricting 

the inside loop length in figure 2.1 to correspond to the upper triangle only. The 

loop structure for the 1I-j.t excitation is shown in figure 2.2. All the essentials of 
+ -

the problem are reflected by the transformation of the two-electron space 14>J.L4>J.LI, 
+- +- +-

14>J.L4>III, 14>1I4>J.L1, 14>114>111, and it is straightforward to verify for this case that the 

loop structure in figure 2.2 updating only the upper triangle is equivalent to that 

shown in figure 2.1. So the effect of this reformulation is a reduction of the storage 

requirements and computational effort by roughly a factor of two. 

A good measure of the computational cost, as indicated for example by the 

number of floating point operations, is given by the number of inner iterations for 

the loop structures shown in figures 2.1 and 2.2. In table 2.2 this number is given 

for various numbers of active orbitals/electrons (including m diagonal updates 

and m(m-1) off-diagonal). The rate of increase of this is only slightly bigger 

than that of the dimension of the CAS space. To exemplify this: for the largest 
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I Alpha update I 
If (I~ > If:om) then 

Else 

End If 

Do 113=1~, Nfet 

c(I~, 113 ) := c(I~, 113 ) + ),P1P2 x c(Jfrom, 113 ) 

End Do (l13) 

Do If3=I~, l{;om 

c(J~, 113 ) := c(l~, 113 ) + ),P1P2 x c(II3,lfrom) 

End Do (J13) 

Do 113=If:om, Nfet 

c(l~, 113 ) := c(l~, 113 ) + ),P1P2 x c(J{;om' 113 ) 

End Do (lf3) 

I Beta update I 
If (leo > Ifrom) then 

Else 

End If 

Do /°=1, Ifrom-1 

c(l°, lea) := c(JQ, leo) + ),P1P2 x c(JQ, Ifrom) 

End Do (Jet) 

Do let=lfrom, leo 

c(let, lea) := c(JQ, leo) + ),P1P2 x c(Jfrom,IQ) 

End Do (let) 

Do /°=1, leo 

c(JQ, leo) := c{lQ, leo) + ).P1 P2 X c(JQ ,Ifrom) 

End Do (Jet) 

Figure 2.2: Inner loop structures for the lJ-+j.L updates in the case of S=O. (Outer 

loop structure as in figure 2.1.) 
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N;S Ndet NL N;S Ndet NL 

2;0 4 8 8;1 3136 1.19x 105 

2;1 1 2 9. 1 
, 2 15876 7.78x105 

3· 1 , 2 9 63 10; 0 63504 1.91 x 106 

4;0 36 216 10; 1 44100 2.56x 106 

4 ; 1 16 160 11 .1 , 2 213444 1.52x107 

5 . 1 , 2 100 1.70 x 103 12 ; 0 853776 3.59x107 

6;0 400 4.80x103 12 ; 1 627264 5.14x 107 

6 ; 1 225 4.95x103 13 . 1 , 2 2944656 2.86x 108 

7· 1 , 2 1225 3.80x 104 14; 0 11778624 6.60x108 

8;0 4900 9.80xl04 14 ; 1 9018009 9.92x108 

Table 2.2: Number of determinants for N in N CAS and the number of loop 

iterations associated with a single structure transformation. 

systems given in table 2.2, the computational effort associated with a structure 

transformation matrix becomes ca. 110 times the effort required for the simple 

evaluation of the scalar product between two CAS vectors. In other words, the 

effort is extremely reasonable, and much better than the :::::'N~AS suggested by the 

brute force approach mentioned in section 2.4. 

2.6.2 Structures based on Rumer functions 

This approach was actually implemented before the determinant algorithms. A 

justification for this was that the number of structure transformation matrix 

elements was judged to be quite small (as shall be clear below) compared with say 

structures based on Kotani functions. However, the more practical consideration 

was that the non-orthogonal CI program available used these types of structures. 

This provided a very important test of our codes in the initial stages: If all 

(non-degenerate) solutions have been found using two different orbital sets we 

74 



have 

{w~ls} = {<I>}C = {<I>'}C', (2.34) 

with the NCAs eigenfunctions labelled by the eigenvalues, A, giving 

{<I>'} = {<I> }C(C')-l = {<I> }T(O), (2.35) 

with {cP'} = {cP }O. Since each eigenvector has an arbitrary phase, care should 

be taken that the phases in the two cases are consistent. By making only small 

changes to the orbitals it was also possible to check the first and second order 

transformations in this way (see section 3.2). 

As discussed briefly in section 2.2, with this type of strategy each structure in 

the many-electron space is defined by the spatial occupation of orbitals and the 

mode of spin-coupling, e.g., 

(2.36) 

The ordering of the spatial configurations is determined on the basis of the number 

of doubly occupied orbitals, or ionicity, p. (In this work the configurations were 

arranged in order of increasing ionicity, and for each ionicity with a numerical 

ordering of the orbitals.) The main reason for this is, since doubly occupied 

orbitals must necessarily be singlet-coupled, e.g., 

ReS - Re2Re2Re4 
0;2 - 0 0 0;2' (2.37) 

that a given configuration will contribute only ff- 2P functions to the structure 

list. 

It is necessary for Rumer-based functions to combine the update of an alpha 

spin orbital and a beta spin orbital according to 

(2.38) 

If p,::j:.v, then E~~ describes single excitations of the spatial orbital cP" and EW 

describes double excitations. E~~ is the 'number operator' for cPp. with eigenvalues 
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of 0, 1 or 2 according to the occupancy of ¢I-" and E1~ similarly has eigenvalues 

o or 1 according to whether ¢p. is doubly occupied or not. In practice the effect of 

(2.38) is realised in the diagonal case by multiplying coefficients corresponding to 

structures where ¢I-' is only singly occupied by (1 + A), and coefficients for which 

¢p. is doubly occupied by (1 + A)2. 

The matrix representation of E1~ , E~2J, is straightforward to evaluate. It com

bines structures containing ¢~¢~ with structures of the same occupancy except 

for ¢e¢! with the simple factor of +l. 

A single excitation, as represented by E~J, will often have the effect of gener

ating a non-standard Rumer function. This will happen when the ordering of the 

orbitals in the newly created structure does not adhere to the ordering conven

tion otherwise used for the structure set. After the permutation of the orbitals 

needed to get the right ordering, the resulting spin function will still be based on 

singlet-coupled pairs, but the corresponding Rumer diagram could have crossing 

lines. Thus the problem of expressing general, non-standard Rumer functions as 

linear combinations of the standard Rumer functions must be addressed. In the 

present work we used the relation 

Regen = L RekSk'l(ReIIRegen). (2.39) 
k,1 

S is here the overlap matrix between the standard Rumer functions, and Regen is a 

general Rumer function. For obtaining overlaps between general Rumer functions, 

an algorithm based on superimposing the corresponding Rumer diagrams, as 

suggested in ref. [11], was employed. This approach, although conceptually very 

simple, is from a computational point of view quite demanding. It was therefore 

unavoidable to base the overall strategy on the precomputation, and storage of all 

the matrix elements of E~~.1 Although these matrices are extremely sparse (see 

table 2.3 and below), the memory requirements associated herewith sets a sharp 

upper limit to the size of systems that may be studied (see below). Thus more 

1 Since the algorithm for obtaining these elements will therefore not influence the performance 

of the procedure, it will not be considered in any further detail here. 
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N; S Nconf NeAS n(E~lJ) (avg.) n(E~2J) NL 

6;0 141 175 105 20 4.50 x 103 

6;1 121 189 123 15 5.00 x 103 

7 . 1 , 2 393 784 560 75 3.07 x 104 

8;0 1107 1764 1158 175 8.48 x 104 

8 ; 1 1037 2352 1728 189 1.21 x 105 

9 .1 , 2 3139 8820 6845 784 6.08 x 105 

10 ; 0 8953 19404 13991 1764 1.56 x 106 

10 ; 1 8701 29700 24237 2352 2.61 x 106 

11 . 1 , 2 25653 104544 88551 8820 1.16 x 107 

12 ; 0 73789 226512 179578 19404 2.83 x 107 

12 ; 1 72865 382239 344392 29700 5.28 x 107 

13 . 1 , 2 212941 1288287 1192782 104544 2.15 x 108 

14 ; 0 616227 2760615 2404525 226512 5.07 x 108 

14 ; 1 612795 5010005 4965163 382239 1.03 x 109 

Table 2.3: Scaling of key quantities for an N in N CAS based on Rumer functions, 

with increasing CAS space size. 

viable schemes are likely to involve the calculation, in place, of the E~lJ matrix 

elements. The simple structure of these matrices, with the few non-zero elements 

typically being simple powers of two, makes it seem likely that this should be 

possible. As far as we are aware, this problem has not previously been addressed 

in the literature. Alternatively, if the calculation of matrix elements for Kotani 

functions could be achieved more simply, this might be a deciding factor in the 

choice of expansion functions for the structure space. 

As in the previous sections on determinants, we wish to avoid any unnecessary 

copying of the CAS vector. In order to achieve this we divide the single excitations 

into two types: 

1. Single excitations-E£~-from structures where ¢II is already singly occu-
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pied. 

2. Single excitations-E1~-from structures where ¢II is doubly occupied. 

It is clear that the second type of excitation will affect the coefficients needed 

in the first, whereas the reverse is not true. So by simply ensuring that type 1 

excitations precede those of type 2, recurrence may be avoided, and the CAS 

vector updated in-place according to 

(2.40) 

Some important quantities indicative of the storage requirements and compu

tational effort associated with a complete transformation are given in table 2.3. 

The sparseness of the single (and double) excitation matrix is worth noting. For 

the single excitation matrix the exact number of non-zero elements varies slightly 

according to the different values of J.L and v so we have here given the average 

number. In principle these matrices are of dimension NCAS x NCAS but in practice 

the number of non-zero elements is smaller than even NCAS ' That being said, 

since there are m( m-1) of these matrices, the storage requirement for these is 

fairly large compared with that of the CI vector.2 It will therefore very likely 

(depending on computer architecture) be this that sets the upper limit on the 

system size that may be treated using this approach. 

The number of non-zero elements in the double-excitation matrix can be 

shown to be just the dimension of the CAS space with two electrons (and or

bitals) less, i.e., n(E~2J)=NcAS(N -2,m-2,S). A general expression for NCAS was 

given in equation (2.4). Similar expressions relating to the diagonal updates may 

be derived: 

n(E~~=O) = NCAS(N, m - 1, S), (2.41) 

n(E~~=l) = NCAs(N, m, S)-NCAS(N, m-1, S)-NCAS(N -2, m-1, S), (2.42) 

2In this work two integers (Ifrom and Ito) and one real was reserved for every matrix element 

of the E~lJ and E~J matrices. Although this might be reduced slightly due to the simple forms 

of the matrix elements, the basic conclusions are not altered. 
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and 

n(E~~=2) = NCAS(N - 2, m - 1, S), 

where only diagonal elements of E~lJ have been counted. 

(2.43) 

By combining these numbers, the total number of loop iterations associated 

with one transformation may be estimated (table 2.3). Comparing these numbers 

with the corresponding ones for determinants given in table 2.2, the similarity is 

surprising in view of the large difference in the dimensions of the function spaces. 

The two methods can of course strictly not be compared using only this measure, 

since the loop structure for Rumer functions is rather more involved. Of note 

is the extra multiplication in the loop structure for the off-diagonal updates and 

the essentially random access to the c vector. So on most architectures it seems 

likely that for the structure transformation the determinant approach will be the 

more efficient. 

2.6.3 Structures based on Kotani functions 

This approach has not been coded in the present work. We shall nevertheless 

briefly consider what would be involved in such a procedure. Particularly re

searchers in the fields of M CSCF or CI are likely to have much of the technology 

already available, in which case the implementation would of course be much 

simplified. 

A large part of the discussion in the last section concerning structures based on 

Rumer functions will apply equally well to structures based on Kotani functions. 

For example, the same ordering of the spatial configurations can be adopted, and 

for each configuration there are, as before, if -2p structures. 

The main advantages of using Kotani functions would be the orthogonality 

of the spin functions, and possibly a less involved evaluation of matrix elements 

of Ell!). A significant amount of effort has been devoted to the efficient, in-place, 

evaluation of these matrix elements. As in the case of Rumer functions, the 

important step is the evaluation of matrix elements between spin functions-the 
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so-called coupling coefficients. A detailed account of a possible approach may be 

found in ref. [12]. 

The single-excitation matrix is not likely to be quite as sparse for Kotani func

tions as was the case for Rumer functions. So, particularly for smaller systems, in 

terms of computational effort this approach might not attain maximum efficiency. 
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Chapter 3 

Valence bond interpretations of 

CAS wavefunctions 

3.1 Optimisation criteria 

The algorithms for obtaining the structure transformation matrix described in 

chapter 2 are completely general, and we believe they may be of interest to 

other researchers wishing to change the orbital representation of full-CI structure 

spaces. l This chapter will be concerned with the interpretation of CAS wavefunc

tions (particularly of the N in N type), based on the form of the spin-coupled 

wavefunction. We shall rely heavily on the ability to transform the structure 

space efficiently in doing so. Similarly to section 2.3, once the transformation 

matrix, T(O), appropriate to a particular orbital transformation, 0, is known, 

the change to the overlap and Hamiltonian matrices, and to any given vector in 

the CAS space, may be determined according to: 

S'(O) = Tt(O)ST(O) 

H'(O) = Tt(O)HT(O) (3.1) 

1 For orbital optimisation schemes the discussion in section 3.2 of first and second order 

transformation matrices might also be of interest. 
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and 

c'(O) = T-1(O)C. (3.2) 

The untransformed quantities, S, Hand c, are defined in terms of the orthogonal 

CAS orbitals, and may thus be obtained very efficiently. In this work c will always 

describe the lowest-energy state, but the theory (particularly the 'overlap-based' 

criteria below) could be applied equally well to, for example, excited states. 

Our interpretation of the CAS will be based on the form of the spin-coupled 

wavefunction. One formulation of our basic aim could therefore be to find the 

best possible approximation of a function of 'spin-coupled form' to the CAS wave

function. This leads directly to what we shall call an 'overlap-based' criterion of 

the form 

s - (wcAslwcov ) 
COy - 1/2' 

((Wcov I'll cov)) 
maximise (3.3) 

We have included the normalisation factor for the spin-coupled-like2 wavefunc-

tion for generality. The overlap between this and the CAS wavefunction is then 

maximised with respect to the parameters defining Wcov . 

An alternative to this is possible when the CAS function describes the ground 

state (or the lowest-energy state for a given symmetry). In that case we can use 

the variation principle to define a good approximation to the CAS wavefunction 

according to 

minimise Ecoy = (WcoyIHIWcov). 
('11 COy 1'l1 COy) 

(3.4) 

We will refer to this as an 'energy-based' criterion. Generalisations of this to 

excited states may also be envisaged, but we shall not consider that particular 

problem any further here. 

The quantities defined in (3.3) and (3.4) may now be optimised with respect to 

the parameters defining the spin-coupled-like wavefunction. Since we are after an 

2Since strictly the term 'spin-coupled wavefunction' should only be used for the variationally 

optimised wavefunction as defined in section 1.2, we have introduced the term 'spin-coupled

like'. We take this to mean a wavefunction of the spin-coupled functional form-irrespective of 

the similarity with the normal SC wavefunction. 
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interpretation of the CAS active orbital set, we expand the spin-coupled orbitals 

in terms of these only: 

(3.5) 

and this orbital transformation matrix can then be used in (3.1) and (3.2). 

The spin-coupling coefficients may, as for the spin-coupled wavefunction, be 

treated as an additional set of parameters in the optimisation. It is useful both 

for the analysis and the optimisation to separate the two parameter sets. As 

such, the two criteria above immediately suggest four optimisation schemes for 

the spin-coupled wavefunction. Equations (3.3) and (3.4) may be optimised si

multaneously with respect to the orbital and spin parameters as in what will be 

referred to as CASVB1 and 3 below (two 'VB versions' of the CAS wavefunc

tion), but also 'mixed' schemes, where one set of parameters are optimised on the 

basis of energy, the other on the basis of overlap, would be possible.3 We have in 

this initial investigation considered the more obvious optimisation criteria, but 

it should be clear from the calculations, chapter 4, that employing the 'mixed' 

criteria could be useful in some cases. 

Besides treating the spin-coupling coefficients as merely optimisation param

eters another very appealing approach is to extract them from the CAS wave

function defined in terms of the {¢SC} orbital set (i.e., from c' in (3.2)). In this 

case we use the fact that the CAS function is invariant under any linear transfor

mation of the orbital set, so this can be viewed as a trivial re-expression of the 

wavefunction. This idea will be pursued in CASVB2 and 4. 

3.1.1 CASVB1 

This criterion is the maximisation of (3.3) with respect to both orbital and spin

coupling parameters. As such the approach is very similar to the spin-coupled 

procedure in nature, but the optimisation is based on 'overlap' rather than energy. 

3We are indebted to Prof. Raimondi of Milan for pointing this independence of the parameter 

sets out to us. 
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In order to use the technology of structure transformations we express the spin-

coupled-like wavefunction in terms of CAS structures, according to 

Wcov = I:CSkWk = {<I>}T(O)Pcovc~. 
k 

(3.6) 

Here c~ is a vector of covalent coefficients corresponding to the spin-coupling 

coefficients CSk. Although not strictly necessary in this expression, we have in

troduced the projection matrix P COy which is diagonal with 1 's in the positions 

relevant to the covalent structures and D's elsewhere (including it here will be of 

use in section 3.2). We can now write the complete expression (3.3) as 

ItS/P I 

S 
_ C covcs 

COy - 1/2 

( 't I , ) csP cov S P covcs 
(3.7) 

This expression may now be optimised with respect to the parameters defining 

o (and hence T), as well as the iff spin-coupling coefficients. We will consider 

the evaluation of first and second derivatives of this expression in section 3.2. 

3.1.2 CASVB2 

To justify properly the idea of taking the spin-coupling coefficients from the CAS 

wavefunction in the case of the overlap-based criterion, we start by changing the 

perspective slightly. Given that a spin-coupled-like form of the CAS wavefunction 

is sought, it is natural simply to maximise the weight of its covalent part. We 

thus write the CAS wavefunction as 

W CAS = Ccov W COy + Cion W ion (3.8) 

where all the W's are normalised. This separation implicitly depends on the 

orbital representation used. Since the covalent and ionic part of the wavefunc

tion will not in general be orthogonal, we must address the problem of assigning 

weights to non-orthogonal functions. Various schemes for this were discussed in 

appendix l.b, and any of these would form a plausible basis for an orbital opti

misation scheme. How appropriate any of these are for the orbital optimisation 
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can only be determined by trial and error. Provided that we are prepared to 

disregard the exact form of Wion, a plausible scheme is to orthogonalise the ionic 

part onto the covalent part of the wavefunction: 

W CAS = ctov W COy + Cion W ~n (3.9) 

where 

(3.10) 

The covalent weight is then just cto~, with CZov given by 

ctov = Ccov + Cion (Wcov\Wion)' (3.11) 

This is of course equivalent to equation (3.3) in that ctov=Scov if the spin-coupling 

coefficients of the spin-coupled-like wavefunction equal the covalent CAS coeffi

cients. As it is slightly simpler we choose to optimise Scov directly rather than 

cto~. In terms of the vectors and matrices defined previously equation (3.11) 

becomes 

c'ts'P covc' 
Scov = , 1/2 

(c'tp covs p covc') 
(3.12) 

3.1.3 CASVB3 

In section 2.1 we listed evidence for the similarity of the spin-coupled and CAS 

wavefunctions. It is likely that such a similarity will be reflected in a corre-

sponding similarity of the spaces spanned by the active orbital sets (this will 

be corroborated further in the calculations, chapter 4). With this in mind, an 

obvious way of obtaining spin-coupled-like orbitals is to perform a standard spin

coupled calculation, but expanding the active orbitals only in the space defined 

by the CAS orbitals. If the spaces were in fact identical, this would yield the set 

of spin-coupled orbitals exactly. 

This optimisation may be performed using the standard spin-coupled code, or 

as before by employing the technology of CAS structure transformations. Using 

86 



the quantities defined above we write the energy expression as 

Itp H'p I E - Cs COY covcs 
COY - 't Sip I csP COy covcs 

(3.13) 

This expression must then be minimised with respect to the orbital parameters, 

as well as the f f -1 free parameters associated with the spin-coupling coeffi

cients. Verifying that the two methods gave identical converged solutions was a 

convincing test of the newly developed code.4 

Since the CAS and spin-coupled active spaces will in general differ slightly, the 

spin-coupled wavefunction thus obtained will not be optimal with respect to the 

core-active, core-virtual and active-virtual orbital rotations. If the 'proper' vari-

ational spin-coupled wavefunction is required, the approach suggested in ref. [8] 

may be adopted to remedy this fact. The spin-coupling coefficients can be trans

formed to the basis of CAS structures using 

Cs = Tc~, (3.14) 

after which the orbitals may be optimised with respect to the core-active, core

virtual and active-virtual rotations, using standard MCSCF procedures but keep

ing the CI expansion coefficients fixed. Then CASVB3 may be applied to this 

new orbital space, and this two-step process continued until self-consistency is 

reached. 

While this obviously may not be the most efficient approach imaginable,5 it 

can be implemented with very little effort. Also, as we have suggested earlier, 

the CAS and spin-coupled orbitals span virtually the same space, which means 

that (if one starts from a CAS calculation) the two-step procedure is likely to 

converge rapidly. 

4Regarding the relative efficiency of the two approaches, see section 3.3. 

5For example, a one-step procedure (which also might be feasible using this general type of 

approach) is normally preferable to a two-step one. 

87 



3.1.4 CASVB4 

This is just the energy-equivalent of CASVB2. The energy expectation value for 

the covalent part of the CAS wavefunction is 

'tp H'P , E = c cov covC 
c'tp covS'P covc' 

(3.15) 

which we may optimise with respect to the orbital coefficients. Compared to 

CASVB3, this approach has no degrees of freedom associated with the covalent 

spin-space. In this way it may be compared to the one spin function approxi

mation (often perfect pairing) occasionally adopted in spin-coupled calculations. 

The spin coupling is constrained to be that of the covalent part of the CAS wave

function expressed by the given orbitals. How appropriate this is, is likely to be 

connected with the amount of relaxation of the covalent coefficients associated 

with augmenting the spin-coupled wavefunction with ionic structures. This will 

be explored further in the calculations. 

3.2 Derivative expressions 

Orbital optimisation is generally a sufficiently complex problem as to warrant the 

evaluation of first and second derivatives, and our experience with the four opti

misation criteria discussed above has if anything verified the necessity of utilising 

also second derivatives in order to obtain reliable convergence. The optimiser ac-

tually used here is very similar to the GQT method described in section 1.3.2 used 

in the spin-coupled orbital optimisation. Due to the (relatively) large expense as

sociated with the Hessian evaluation, some experiments with optimisation of the 

length of the update vector were also carried out. (In this way the objective 

function may be evaluated more than once for a given gradient/Hessian pair. 

Using this idea one can for example optimise the a-parameter used in the GQT 

method-equation (1.37).) 

All the orbital derivatives may be obtained by considering the simple up

dates of the form (2.22). We do this, for the first order update, by writing the 
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total transformation matrix in either the form OO#,II().) or O#'II().)O. The cor

responding orbital gradients are trivially related via a similarity transformation. 

The more common way of defining orbital derivatives by writing the total trans

formation as 0+'\61'11 would not be so well suited to the strategy of structure 

transformations. 

The structure transformation matrix corresponding to the spatial update 

(2.22) (Le., identical updates to the alpha and beta spin orbitals) was in sec

tion 2.6.2 shown to be 

(3.16) 

which means that the first order transformation matrix can be identified as the 

single-excitation matrix E~~, i.e., 

(3.17) 

Expressions for the second order transformation matrices may be derived by 

considering an orbital transformation matrix of the form 

(3.18) 

This may be recast as a sequence of simple updates (2.22) by using 

(3.19) 

In this way, it is straightforward to verify that 

for IJ =I a, (3.20) 

for a =I j.L, (3.21) 

and 

(3.22) 

This gives, by inserting into the expression (3.16) and differentiating: 

for IJ =I a, (3.23) 
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for (j =J: /1, (3.24) 

and 

[
82

T(OIlV'VIl('xl' 'x2))] = E(1)E(l) _ E(l) 
8,X 8,X IlV III-' 1-'1-" 

1 2 Al =0,A2=0 

(3.25) 

for the second order structure transformation matrices. The evaluation of the 

orbital gradient and Hessian is in this way expressed solely in terms of the action 

of single-excitation matrices, E~~, the technology for which was developed in 

sections 2.4-2.6. 

For the derivatives with respect to spin-coupling coefficients (used in the op

timisation in CASVB1 and 3), with structures based on Rumer functions, the 

simplest approach is to let also the spin functions defining the spin-coupled wave

function be Rumer functions. The derivative is then just 

(3.26) 

where h(k) is a vector with 1 in the kth position and D's elsewhere (since the 

If first structures are covalent). In the case of determinants, we write the If 
linear independent spin-eigenfunctions (usually Rumer or Kotani) that define the 

spin-coupled wavefunction, as in (1.14), as linear combinations of the Ndet spin 

strings defining the determinants, according to 

eN - '" c(k)e S;k - ~ I /. 
/ 

Then, similarly to above, the derivative may be written 

8c~ = C(k) 

8CSk ' 

(3.27) 

(3.28) 

where the C(k) vector is just the vector of expansion coefficients as defined in 

(3.27). We note that both h(k) and C(k) are independent of the form of the 

orbitals or spin coupling, i.e., there are no second derivatives of c~. 

Having in general terms defined the derivatives with respect to the orbital 

and spin parameters, we are now in a position to derive explicit expressions 

for the gradients and Hessians corresponding to the four criteria as defined in 

equations (3.7), (3.12), (3.13) and (3.15). 
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As mentioned above there is a freedom in the definition of the orbital gradient 

(and Hessian), using either OOILI/(.X) or OILI/(.X)O as the total orbital transfor

mation. The first order structure transformation will then be either T( 0 )E~1J 

or E~~T(O). In the expressions for the four criteria considered here, the struc

ture transformation matrix always occurs in the combination TPcov , and this is a 

crucial factor making the former definition much simpler computationally. With 

this, the single-excitation matrices will occur as E~~P cov, and the computational 

effort associated with evaluating this is trivial compared with the general appli

cation of a single-excitation matrix. For the case of Rumer functions, only the 

elements with 

survive, and for determinants only the case 

(for the update of an ex orbital), thus making the inner ,B-Ioops in figures 2.1 

and 2.2 completely redundant. Taking the efficiency of this step into account is 

important in view of the large number of Hessian matrix elements. 

For the occurrence of the inverse of the transformation matrix, in CASVB2 

and 4, we expand according to 

(I + ).1 Tl + ).2T 2 + ).1).2T I2) -1 = 

1- ).1T1 - ).2T2 + ).1).2 (T1 T2 + T2Tl - T12) + ... (3.29) 

where terms containing ).~ or ).~ have been left out. So the first and second 

order transformations associated with T- 1 are trivially related to those of T. 

Furthermore, the inverse always occurs in the combination TPcov T-1, and so it 

is convenient to write 

(3.30) 
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Similarly, the various cases of second order changes, equations (3.23), (3.24) and 

(3.25), can be written as double commutators, for example 

for v =I (1. (3.31 ) 

For the cases in (3.23)-(3.25) where the single-excitation matrices do not com

mute, care should be taken to preserve the ordering when writing down the double 

commutator. 

The advantage of considering the changes to T and T-1 collectively in this 

fashion, is that several elements cancel out. For example, for the first order change 

the cases where I from and Ito are either both 'covalent' or both 'ionic' cancel. In 

particular contributions from the diagonal updates, p,=v, can be seen to vanish 

completely. 

In the following we shall dispense with writing the orbital transformations ex

plicitly. When the derivative with respect to A is taken we have the update (2.22) 

in mind, whereas when the second derivative is taken with respect to Al and A2, 

(3.18) is the underlying orbital transformation. Taking CASVB2 as the first case, 

we have, for the norm of the spin-coupled-like wavefunction: 

[ 
8 'tp S'p ,] - 2 'tpt S' [E(l) P ] , 8A e COy cove - e COy IlV' cove, 

>.=0 
(3.32) 

and for the overlap with the CAS wavefunction: 

[ 
8 ,ts'P ,] Its' [E(l) p ] I 8A e cove >'=0 = e /-IV' cove. (3.33) 

By combining (3.32) and (3.33) it is straightforward to construct the complete 

gradient corresponding to equation (3.12). For the second derivative we get 

2 'tpt S'IE(I) IE(I) p ll' 2 't[E(I) p lts/IE(I) P l' e COy /-IV , UT , COy e + e /w 'cov UT , COy e (3.34) 

and 

[ 
82 ,ts'p,] - ItS'[E(I) [E(l) p ll' 8A 8A e cove - e IlV' CTT' cove. 
1 2 >'1=0,>'2=0 

(3.35) 
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Here, and in the following, we assume the right ordering of the excitation matrices 

in the double commutators according to the three cases (3.23}-(3.25). These two 

expressions may then be combined with (3.32) and (3.33) to give the complete 

Hessian. 

For CASVBl the orbital gradient and Hessian may be constructed using very 

similar expressions as for CASVB2. The double commutators should be substi

tuted by simple products of single excitation matrices and Pcov, and occurrences 

of P covc' by P covc~. The only exception from this is in the occurrence of -E~~ 

in equation (3.25). However, by recognising that the contribution of E~2 to the 

total Hessian is just the orbital gradient corresponding to 0 ~~ (which is zero), 

this term may be omitted without introducing any errors in the final expressions. 

For the derivatives with respect to spin-coupling coefficients we have 

8 'tp S'p '- 2 'tp S'p (k) -8 Cs COy covCs - Cs COy covC 
CSk 

(3.36) 

(with C(k) = 6(k) for Rumer functions), and 

~c'ts'p c' - c'ts'p C(k) 

8 
covs- cov, 

CSk 
(3.37) 

for the first derivatives, and 

8
2 

'tp S'p I 2 (k)tp S'p (I) 

8 8 
Cs COy covCs = C COy covC 

CSk CSI 
(3.38) 

contributing to the second derivative. Finally we have the following contributions 

to the spin-orbital part of the Hessian: 

[ 
82 't P S'p , 1 8>'8 Cs COy covCs 

CSk A=O 

2 'tp S'E(l)p (k) 2 Itp E(l)tS'p (k) 
Cs COV /JII COVC + Cs COY ~II COVC, (3.39) 

and 

[ 
82 c'tS'P cll = c'tS'E(l)p C(k) 

8 '8 cov S ~II cov • 
" CSk A=O 

(3.40) 

The derivative expressions for the energy-based criteria are rather simpler 

than those described above. The derivatives of the overlap integrals occurring 
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in both denominators are the same as that for CASVB1 and 2 respectively. For 

the un-normalised energy in the two cases, we can simply substitute the overlap 

matrix in the overlap integral by the Hamiltonian matrix. The resulting first 

and second derivative expressions may then be combined to give the complete 

gradient and Hessian in the same manner as was discussed in section 1.3. 

3.3 Computational considerations 

In this section we discuss some of the basic considerations concerned with the 

implementation of the criteria and their first and second derivatives. Particularly 

for CASVB3 and 4 the basic strategy is governed by the necessity for transforming 

one index in the Hamiltonian at a time. So, for example, for the numerator in 

CASVB4, the vector 

is constructed in a right-to-Ieft fashion, before H (in the untransformed CAS 

structure basis) is multiplied on from the left. In this way the application of 

the Hamiltonian is reduced to an N~AS (or in the case of determinants Ndet) 

process. It is still, however, the time-limiting step for larger calculations, since, 

as was demonstrated in sections 2.6.1 and 2.6.2, the scaling of the structure 

transformation is roughly linear with the number of structures. The similar 

multiplication by the overlap matrix (for the case of Rumer-based expansion 

functions) can in comparison with this be treated as scaling linearly with NCAS . 

Once H'P covc' in this way has been constructed going right to left we may 

multiply from the left by 

1. cftpcov to get the un-normalised energy. 

2. cft[E~lJ, P COy jt to get the first derivative of the un-normalised energy. 

3. cft [E~lJ, [E~~ , P COy lP to get contributions to the second derivative of the 

un-normalised energy. 
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The same can be done for the denominator by constructing first S'P COyc' . 

For the CASVB3 we may similarly construct H'P COyCs and S'P COyCs and 

multiply from the left by 

1. c'tp COY to get the un-normalised energy and overlap integral. 

2. c'tp covE~lJt to get the first derivatives of these. 

3. c'tp COY (E~~E~~) t to get contributions to the second derivatives. 

For CASVB1, S'P COyCS and S'PionCs may be constructed and subsequently 

multiplied from the left by the same quantities as in the case of CASVB3. 

The computational effort associated with evaluating these quantities is thus 

very reasonable, involving at most a single multiplication by the Hamiltonian. It 

is the remaining parts of the Hessian which represent the major time consuming 

expressions. In these cases a single-excitation matrix (or its commutator) occurs 

on both sides of the Hamiltonian (or overlap matrix), so it is not possible to have 

only one right-hand vector. For CASVB2 there will be N(N -1)+ If -1 such 

right-hand vectors6 of the forms 

T(O)[E~~, Pcovlc~ 

and 

which will be multiplied by the Hamiltonian. For CASVB1 and 3 there will 

only be the N (N -1) vectors associated with the orbital variations. So the basic 

scaling properties of the energy-based criteria will, in the absence of any molecular 

symmetry, be: 

CASVB3: NtAS x (N(N - 1) + If) 

CASVB4: NtAS x (N(N - 1) + 1) 

6The diagonal orbital updates have been excluded since these are known to correspond to 

redundant parameters. 
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To put this in context, CASVB3 was for the test cases of N=6, 8=0 and N=8, 

8=0 found to be competitive with our standard spin-coupled codes, but slightly 

slower. Since the computer-intensive part of the code is essentially a simple ma

trix multiplication there does not seem to be much scope for optimisation of 

the algorithm. For some particular optimisation problems, however, the com

putational effort may be somewhat reduced. In the case of molecular systems 

possessing some degree of symmetry the Hamiltonian will be block-diagonal, and 

so the scaling properties of the methods will be significantly reduced compared 

with N6AS. Also when the number of free parameters are reduced for reasons 

other than symmetry (when redundancies occur or constraints are applied), the 

computational effort may be reduced accordingly. Since only right-hand vectors 

associated with the free parameter set need to be constructed, the computational 

effort for the structure transformation based strategy is in direct proportion to 

the number of these. The approach suggested in section 3.1.3 could as such be 

the optimal way of doing also full spin-coupled calculations in either of these 

cases. This would depend on the CASSCF program's efficiency in dealing with 

the core-active, core-virtual and active-virtual orbital rotations. 

For the present calculations the limiting factor in the case of CASVB3 and 4 

in the calculations was the storage requirements for the Hamiltonian, not the 

actual computational effort. Efficient algorithms for applying the Hamiltonian 

on a given vector without having to store it explicitly have been known for some 

time in the context of direct CI calculations (first proposed by Roos [1]). In the 

present work, however, the technology for doing this was not readily available, and 

the programming from scratch of such a scheme was judged too time-consuming 

a task. Implementation of this would be necessary for extending the utility of 

CASVB3 and 4 to larger systems. 

For CASVB1 and 2 the fact that no Hamiltonian enters the expressions makes 

the algorithms applicable to rather larger systems. We shall describe the strategy 

currently in use for determinants (the scheme for Rumer functions would be very 
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similar). Beginning with the slightly simpler CASVB2, the basic strategy is as 

follows: 

1. Construct c' = T(O-l)C. 

2. Project to get P COyC'. 

Now we use the orthogonality of the spin strings to write 

s' = Tt(O)T(O) = T(Ot)T(O) = T(s), (3.41) 

where s is the orbital overlap matrix. In this way we can write 

3. Apply T(s) on PCOyc' to get S'PCOyc'. 

4. Multiply S'PCOyc' from the left by c'tPCOY and c't to get SCOY' 

So in this way two structure transformations are sufficient to obtain a single 

function evaluation. 

5. Apply T(s) on c' (or T(O) on c) to get S'c'. 

6. Multiply from the left by c't[E~~,PcoYlt and c't[E~~, [E~~,Pcoyjt to obtain 

the gradient and contributions to the Hessian. 

7. Generate successively the right-hand vectors [E~l}, P cov]c', apply T(s) and 

multiply from the left by c't[E~12, P COy]t to get remaining part of the Hessian. 

If we assume that a single structure transformation scales as NL , values for which 

are given in table 2.2, and that the structure transformations are actually the 

time limiting step, we get an overall scaling property as 

CASVB2: (N(N - 1) + 2) X NL • 

In the case of CASVB 1, Scov can be evaluated using only a single structure 

transformation, according to 

1. Construct T(O)P COyCs. 
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2. Evaluate the norm, (T(O)Pcoycs)tT(O)PcoyCS' and overlap with the CAS 

wavefunction, c'S'PCOYcs = cT(O)PcoYCs, to get SCOY' 

Alternatively, as T(O)PcoyCs is not used in the evaluation of the first and second 

derivatives, SCOY may be calculated from the vectors generated in 3. below. This 

would save a structure transformation in cases where it is known in advance that 

the gradient and Hessian will be needed (i.e., if a rejection is not possible). We 

use the term 'rejection' to signify updates that lead to an increase in energy 

or decrease in the covalent overlap. Such updates are discarded, and a new 

updated instead attempted with the previous gradient/Hessian pair. Particularly 

for schemes that optimise the length of each individual update, it is useful that 

the cost of a single function evaluation is minimised as here. 

3. Apply T(O) on c to get S'c' and T(s) to PCOYCs. 

4. Multiply the two vectors above from the left by c~E~~t, C~(E~lJE~~)t and 

C(k) to get the gradient and contributions to the Hessian. 

4. Generate successively the right-hand vectors E~~cs, apply T(s) and mul

tiply from the left by C~E~lJt and C(k)t to get contributions to the orbital

orbital and spin-orbital parts of the Hessian. 

5. Generate successively the right-hand vectors c(l), apply T(s) and multiply 

from the left by C(k)t to get contributions to the spin-spin part of the Hessian. 

With the same assumptions as for CASVB2 we get an overall scaling property as 

CASVB1: (N(N - 1) + if + 2) x N L . 

In conclusion we can see that, for all four criteria, the cost of a function 

evaluation is small compared with the evaluation of the complete Hessian. If we 

take the example of N=10, S=O, the ratios of the computational effort between 

the two would be 1:134, 1:46, 1:132 and 1:91 for the four criteria respectively. 

Several schemes that seek to reduce the number of complete Hessian evaluations 
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are possible. As mentioned in section 3.2 one may attempt several updates for 

a single gradient-Hessian pair. Another possibility is to perform the calculation 

with an approximate Hessian, leaving out the expensive part. In our attempts at 

this, the algorithm showed a good ability to go from a 'wild guess' to a 'feasible 

region', but neither in the intermediate region nor close to convergence did this 

approach perform well. There is still scope for experimentation in this area, for 

example evaluating the complete Hessian only every, say, three iterations. 
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Chapter 4 

Applications of CAS to VB 

transformations 

For all molecular systems considered in this chapter, the integral evaluation, 

SCF and CAS [1, 2] calculations were carried out using the MOLPRO suite of 

programs [3]. All other calculations described here were performed using our own 

codes. 

4.1 Singlet methylene 

The geometry chosen for methylene was: r(C-H)=1.117A and L(H-C-H)=I02.4°, 

as used by Bauschlicher and Taylor [4]. Correlation consistent pVTZ basis sets 

by Dunning were used for C/H consisting of (IOs5p2d/5s2p) Cartesian gaussians 

contracted to [4s3p2d/3s2p] [5]. 

In the '6 in 6' CAS calculation described here, the core consisted of one opti

mised doubly occupied orbital (Ial, being roughly a Is orbital on C), 6 orbitals 

were active giving 36 virtual orbitals. In the natural orbital representation the 

active MOs thus defined are 2al, Ib2 ! 3al, IbI, 2b2 and 4aI, in order of decreas

ing occupation number. The active orbitals and their occupation numbers are 
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2allO=1.98121. 

3aIl 0=1.90963. 

H H 

2b21 0=0.02285. 
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Figure 4.1: Natural orbital representation of active CAS MOs in CH2 and their 

occupation numbers. 
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E/hartree (E - ECAS ) / millihartree 

SCF -38.891714 61.59 

SCCAS -38.948156 5.15 

SC -38.948765 4.54 

SC+CI -38.952771 0.54 

CAS -38.953306 0.00 

Table 4.1: Energies of some of the wavefunctions considered for methylene. 

shown in figure 4.1.1 1bl is plotted in the plane orthogonal to the molecular 

plane, bisecting the H-C-H angle, with the other orbitals in the molecular plane. 

The three first MOs have occupation numbers close to 2 and the corresponding 

configuration with those orbitals doubly occupied dominated strongly the CAS 

wavefunction with a weight of 93.49%. Since the corresponding occupied Hartree

Fock orbitals are qualitatively similar, this would suggest that the SCF picture 

is basically correct, but it is well established [4] that a realistic treatment of this 

state requires at least a two-configuration description of the form ( ... 3aD - A(· .. 

Ibn· 

We can see that particularly for 2al and 3al the role in bond and lone-pair 

formation is not clear, and the manner in which 1b1, 2b2 and 4a1 serve to im

prove this picture is not at all obvious. In short: the MO picture alone is rather 

unsatisfactory for interpreting the chemical bonding. A total correlation energy 

of 61.59 millihartree was recovered in the CAS calculation (see table 4.1). 

In the subsequent spin-coupled calculation, the spin-coupled orbitals were ex

panded in the active and virtual CAS MOs. In order to facilitate the comparison 

1 All of the contour plots in this thesis depict representations of ¢ with positions of the nuclei 

projected onto the page and indicated by means of their chemical symbols. It is convenient 

to define Fl=min(l¢minl, !I¢maxl/nctr) and F2=I¢maxl-we have used nctr=6 or nctr=8. The 

plots were constructed by requesting nctr equally spaced contour heights (full lines) between 

Fl and F2, and a further nctr equally spaced contour heights (dashed lines) between -F2 and 

-Fl. Adjacent contour heights differ by (F2-Fd/(nctr+l). 

103 



[EJ LPI LP2 SPI HI SP2 H2 

LPI 1 0.67262 0.19725 0.13170 0.19725 0.13170 

LP2 1 0.19725 0.13170 0.19725 0.13170 

SPI 1 0.80601 0.31433 0.12042 

HI 1 0.12042 -0.05517 

SP2 1 0.80601 

H2 1 

Table 4.2: Overlap matrix for the spin-coupled orbitals of singlet methylene. 

with CASVBI-4, the core for this calculation was taken from the CAS wavefunc

tion. Contour plots of the spin-coupled orbitals are shown in figure 4.2, and the 

corresponding overlap matrix is given in table 4.2.2 The lone-pair orbitals are 

plotted in the plane bisecting the H-C-H angle, the bond-forming orbitals in the 

molecular plane. 

The two C-H bonds are described by spI-hybrids on carbon pointing towards 

slightly deformed Is orbitals on the hydrogens. The lone-pair orbitals can also 

be classified as spX-hybrids, but they are much more localised on carbon than 

the bonding orbitals (i.e., they have more s-character). The lobes point out of 

the molecular plane so as to form a rough tetrahedron with the C-H bonds, thus 

enlarging the average inter-electronic distance. It is particularly the description of 

the lone-pair which, being markedly different from that afforded by conventional 

MO theory, is interesting when comparing different VB methods. 

The overlap of 0.806 between SPI and HI is a typical value between orbitals 

forming a a-bond. Similarly, the overlap between the lone-pair orbitals (for which 

the corresponding electrons are also singlet-coupled) of 0.673 is significantly larger 

than for the other spx hybrid pairs. This is a consequence of their greater s-

2Since the phases of the orbitals are chosen such that the largest positive contours take its 

maximum value, this may not necessarily coincide with the relative phases of the orbitals in 

the overlap matrix. 
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Figure 4.2: Spin-coupled orbitals of CH2 (singlet). 
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character. 

The electrons associated with the lone-pair are exactly singlet-coupled. This is 

necessary to give a symmetry-pure wavefunction since only the lone-pair orbitals 

contain components of the Bl irreducible representation (cf. section 1.6.1). As 

a consequence there are only two non-vanishing coefficients in the Kotani basis 

(based on the orbital order shown in figure 4.2). The perfect-pairing spin function 

(K 8 5) is overwhelmingly dominant, contributing 98.81 % to the total spin function 

(see also table 4.5). 

The spin-coupled wavefunction recovered 92.63% of the correlation energy 

attained by the CAS (see table 4.1). The discrepancy of about 6 millihartree 

can be reduced by an order of magnitude by adding to the covalent structures 

of the spin-coupled orbitals all the ionic (see table 4.1-this energy is given un

der the heading: SC+CI). The final difference of about 0.5 millihartree may be 

attributed to the difference in the orbital spaces spanned by the spin-coupled 

and CAS orbitals respectively. Another way of indirectly obtaining a measure 

of this difference would be to perform a spin-coupled calculation in the space of 

the CAS active MOs (see table 4.1 under SCCAS). The energy difference between 

this and the full spin-coupled calculation is similarly around 0.6 millihartree. It 

is a general finding in the following that the difference in the orbital spaces is of 

relatively minor importance compared with the inclusion of ionic structures 

To quantify this difference we examined the distribution of each of the spin

coupled orbitals between the active and virtual orbital spaces. We found that 

0.0063%, 0.0901 % and 0.1024%, of the orbital was expanded in the virtual CAS 

MOs, for the lone-pair, spx-bonding hybrids and hydrogen orbitals respectively. 

Clearly, since all our criteria are based on the transformation of the active CAS 

MOs, this is the minimum deviation from the spin-coupled orbitals that we can 

hope to achieve (in the sense that the overlap between equivalent orbitals will 

be maximum), so it is encouraging that the numbers are so small. Projecting 

the spin-coupled orbitals onto the active CAS space (by simply truncating the 

106 



coefficient vectors) would give the 'ideally' most spin-coupled-like orbital set, so 

we will in the following compare this set with the orbitals obtained from the 

various criteria. This orbital set will be referred to as sctrunc. 

All four criteria have proven extremely successful in reproducing the spin

coupled picture for this system. The orbital plots shown in figures 4.3-4.6 are 

difficult to distinguish from the spin-coupled orbitals by eye. The clearest dif

ferences may be found in the diffuse low contours of the spx type hybrids. The 

CASVBl hybrids, for example, are clearly not as diffuse as those of the other 

orbital sets. Among the others CASVB4 seems to give the most diffuse hybrids 

whereas CASVB2 and spin-coupled are very similar indeed. Similar but less obvi

ous differences in the amount of deformation may be ascertained for the hydrogen 

and lone-pair orbitals. The spin-coupled solutions seems to give slightly more lo

calised hydrogen orbitals, but slightly less localised lone-pair orbitals whereas the 

difference amongst the various criteria are minute. 

Examining the overlap matrices (tables 4.3 and 4.4) gives a clearer picture of 

the pattern in the variations between the orbital sets. As indicated by the plots, 

all the methods agree very closely on the description of the lone-pair orbitals, and 

the variation in the LPI-LP2 overlap is less than 0.5% in all the cases. If we in this 

way assume the variations of the lone-pair orbitals to be negligible, the variations 

of the LP-SP and LP-H overlaps must be attributed to changes in the spx type 

hybrids and hydrogen orbitals. For the spx hybrids this thus gives an indication 

of the localisation of the orbital (but there will also be an angular dependence 

of the overlap). For the bonding orbitals, CASVB2 and 4 reproduce the spin

coupled picture almost exactly, whereas CASVB3 and particularly CASVBl differ 

somewhat. Of particular note is the decrease of the overlap between the bond

forming orbitals. 

We note that it is the inclusion of the Ib1 orbital in the CAS wavefunction 

that gives the spin-coupled-like description of the lone-pair. The need to go 

beyond simple HF (in which there is no Bl component) to describe this feature 
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should therefore be obvious. Furthermore, the great s-character of the lone-pair 

orbitals may be rationalised from the small occupation number of lb1 (0.08803). 

Turning from the analysis of the orbitals to the spin-space, we note that, as 

discussed in section 3.1, the spin coupling may be obtained on the basis of three 

different criteria-the overlap based and energy based optimisations, or taken 

from the CAS wavefunction expressed in terms of the given orbital sets. We have 

tabulated weights for the three possibilities in table 4.5 (with superscripts s, e and 

c respectively). We note that Be weights for the spin-coupled orbitals are based 

on the wavefunction obtained by performing a full CI using the SC orbitals, not 

the CAS wavefunction (with the present version of our codes is was not possible 

to overlap-optimise the spin coupling in this case). 

As a general trend, the perfect-pairing function clearly has the largest weight 

when the spin coupling is determined by the CAS wavefunction. Generally the 

weight is smallest when the spin coupling is energy-optimised, but the differences 

in this case are not as large. With the greater importance of the perfect-pairing 

function it is clear that the orbitals for CASVB2 and 4 adapt accordingly-by 

increasing the overlap between the bond-forming orbital pairs. That the spin 

coupling is generally different for CASVBl and 3 is a consequence of the fact 

that the orbitals in these two cases differ the most from the other orbital sets. 

Again it is interesting that for the spin coupling used in the two optimisations 

the weights of the perfect-pairing functions are quite low. 

In table 4.6 we have tabulated values of Scov and Ecov corresponding to the 

various orbital sets and spin-coupling coefficients. As such, CASVBl-4 optimise 

S~ov' S~ov' E~ov and Egov respectively-S~ov and E~ov would lead to the 'mixed' 

criteria mentioned in section 3.1. 

All orbital sets are of an excellent all-round quality when compared with the 

optimal values S~ov(CASVBl)=0.99862 and E~ov(CASVB3)=-38.948156 hartree. 

The CASVBl orbitals are perhaps a little behind the others, particularly in the 

value for Egov . It is worth noting, that the change in energy and the spin-coupling 
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Figure 4.3: CASVBI orbitals of CH2 (singlet). 
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Figure 4.5: CASVB3 orbitals of CH2 (singlet). 
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Figure 4.6: CASVB4 orbitals of CH2 (singlet). 
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I sctrunc I LPI LP2 SPI HI SP2 H2 

LPI 1 0.67272 0.19735 0.13178 0.19735 0.13178 

LP2 1 0.19735 0.13178 0.19735 0.13178 

SPI 1 0.80777 0.31426 0.12087 

HI 1 0.12087 -0.05554 

SP2 1 0.80777 

H2 1 

ICASVBll LPI LP2 SPI HI SP2 H2 

LP1 1 0.67317 0.24466 0.13304 0.24466 0.13304 

LP2 1 0.24466 0.13304 0.24466 0.13304 

SPI 1 0.74579 0.51738 0.11675 

HI 1 0.11675 -0.29320 

SP2 1 0.74579 

H2 1 

ICASVB21 LPI LP2 SPI HI SP2 H2 

LPI 1 0.67344 0.22814 0.15780 0.22814 0.15781 

LP2 1 0.22814 0.15780 0.22814 0.15781 

SPI 1 0.80943 0.31012 0.11663 

HI 1 0.11663 -0.07398 

SP2 1 0.80943 

H2 1 

Table 4.3: Overlap matrices for the truncated spin-coupled, CASVBl and 

CASVB2 orbitals respectively. 
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ICASVB31 LPI LP2 SPI HI SP2 H2 

LPI I 0.67092 0.22123 0.12949 0.22123 0.12949 

LP2 1 0.22123 0.12949 0.22123 0.12949 

SPI 1 0.78157 0.40317 0.11027 

HI 1 0.11027 -0.17451 

SP2 1 0.78157 

H2 I 

ICASVB4! LPI LP2 SPI HI SP2 H2 

LPI 1 0.67102 0.21018 0.14280 0.21019 0.14280 

LP2 1 0.21018 0.14280 0.21019 0.14280 

SPI 1 0.81085 0.26078 0.10507 

HI 1 0.10507 -0.03747 

SP2 1 0.81085 

H2 1 

Table 4.4: Overlap matrices for the CASVB3 and CASVB4 orbitals respectively. 

Kej Kes Kej Ke~ Ke3 Kec 
5 

SC - - 1.19% 98.81% 0.78% 99.22% 

sctrunc 1.20% 98.80% 1.34% 98.66% 0.83% 99.17% 

CASVB1 2.10% 97.90% 2.30% 97.70% 0.24% 99.76% 

CASVB2 1.08% 98.92% 1.28% 98.72% 0.82% 99.18% 

CASVB3 1.47% 98.53% 1.62% 98.38% 0.60% 99.40% 

CASVB4 1.01% 98.99% 1.18% 98.82% 0.90% 99.10% 

Table 4.5: Weights of the Kotani functions for methylene. 
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s~ov s~ov s~ov 

sctrunc 0.99855 0.99855 0.99854 

CASVB1 0.99862 0.99814 0.99814 

CASVB2 0.99860 0.99859 0.99859 

CASVB3 0.99858 0.99858 0.99851 

CASVB4 0.99856 0.99856 0.99856 

E~ov /hartree E~ov /hartree E~ov /hartree 

sctrunc -38.948108 -38.948111 -38.948070 

CASVB1 -38.948061 -38.948066 -38.946893 

CASVB2 -38.948080 -38.948085 -38.948051 

CASVB3 -38.948153 -38.948156 -38.947945 

CASVB4 -38.948125 -38.948129 -38.948117 

Table 4.6: Covalent overlaps and energies for the different orbital sets for methy

lene. 

coefficients upon adding all ionic structures, or when going form the (full) SC 

orbital set to the active CAS orbital space, is large compared to most of the 

differences between the various orbital sets. 

In conclusion, methylene can be viewed as a straightforward case, where the 

correspondence between the spin-coupled wavefunction and CAS is fairly clear

cut. All four criteria reproduce the spin-coupled picture, in particular the de

scription of the two non-bonding orbitals. We can therefore claim with some 

justification, that the CAS method vindicates the spin-coupled interpretation of 

the bonding in CH2 . 
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E/hartree (E - ECAS ) / millihartree 

SCF -230.764056 72.77 
~ 

SCCAS -230.829233 7.59 

SC -230.829331 7.49 

SC+CI -230.836729 0.09 

CAS -230.836822 0.00 

Table 4.7: Benzene energies for the various wavefunctions considered. 

4.2 Benzene 

The geometry used for benzene was r(C-C)=1.3964 A and r(C-H)=1.0831 A, as 

determined in ref. [7] by vibration-rotation spectroscopy. The basis set was the 

same p VTZ basis as used for methylene [5], except for the polarisation functions 

which were in this case a single Cartesian d Gaussian on C, with (=0.8, and a 

single p Gaussian on H, (=1.0.3 

The MOs in the CAS calculation were partitioned into 18 optimised core 

orbitals of (J symmetry, 6 active orbitals of 7r symmetry giving 96 and 30 virtuals 

of (J and 7r symmetry respectively. The converged active natural orbitals were in 

order of decreasing occupation number: 1alu, the two components of lelg , the 

two components of le2u, and Ib1g (see figure 4.7). As in the case of CH2 , the 

occupation numbers for the first three MOs were close to 2 (and the weight of the 

determinant with all three orbitals doubly occupied was 88.43%) suggesting no 

fundamental shortcomings of the Hartree-Fock picture (for which the basic MO 

picture is the same). The correlation energy retrieved by the CAS wavefunction 

amounted to 72.8 millihartree (see table 4.7). 

For the purpose of the spin-coupled calculation, the 6 active electrons were 

expanded in the 36 MOs of 7r symmetry. As for CH2 the core was chosen to 

be identical to the CAS core, i.e., it was not reoptimised for the spin-coupled 

3 Approximately the geometric mean of the corresponding polarisation function exponents 

used for CH2· This was done to limit the total number of basis functions. 
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lalu , 0=1.95996. lelg, 0=1.90031. 
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le~g, 0=1.90031. 1e2u, 0=0.10107. 

H H 

-- H H 

le~u' 0=0.10107. 1b1g , 0=0.03727. 

Figure 4.7: Natural orbital representation of active CAS MOs in benzene and 

their occupation numbers. 
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active-electron density. The spin-coupled solution consists of six highly localised, 

equivalent orbitals. A contour plot of 14>11 2
, 1 bohr above the molecular plane, 

is shown in figure 4.8. The spin-coupled description of benzene and a range of 

other aromatic molecules has been reported previously [6]. As can be seen, this 

orbital is essentially a 2p function centred on C, with slight delocalisation to

wards the neighbouring carbon atoms. The five other orbitals can be generated 

by successive C6 rotations. The coupling of the associated electron spins is con

veniently expressed in the Rumer basis, where the two 'KekuIe' structures are 

strongly dominant (having Chirgwin-Coulson weights of 40.6% each), with only 

slight contributions from the three so-called 'Dewar' structures (of 6.3% each) 

(see table 4.10). 

About 0.0022% of each spin-coupled orbital lay outside the CAS active space. 

This relatively low value is likely to be associated with the high symmetry of 

benzene, and the consequently reduced number of free parameters (we found this 

value to be heavily dependent on the basis set size, for example). So the major 

part of the energy difference can be attributed to adding the ionic structures (see 

table 4.7). The spin-coupled wavefunction recovered 89.71% of the non-dynamical 

correlation energy, but including the ionic structures took this number to 99.87%. 

Even though the energy gain is comparable to that for methylene, is seems that 

adding ionic structures has a more profound effect in the case of benzene. A clear 

indication of this fact is the change in the relative weights of spin-coupling as 

shown in table 4.10. It is clear that inclusion of the ionic structures significantly 

stabilises the Dewar structures relative to the Kekule structures. 

In the optimisation of the orbitals according to the four criteria, a tendency to 

break symmetry was encountered. This was particularly pronounced for CASVB2 

and 4, and the solutions presented here were reproduced with several different 

basis sets. 

Even in standard variational methods, solutions with broken symmetry or 

other features known not to be in agreement with the true physical state are 
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Figure 4.8: Orbitals of all symmetric orbital sets. 

119 



often encountered. Constraints are routinely imposed to ensure that the over

all wavefunction is of the correct symmetry. The fact that the optimisation is 

overlap-based or that particular constraints on the spin coupling are imposed 

should not affect these considerations. We have nevertheless included also the 

symmetry-broken solutions here, in order to, if possible, gain further insights into 

the nature of the optimisation schemes. 

The obvious problem when imposing constraints is how to do so without 

jeopardising the flexibility of the spin-coupled-like wavefunctions. When the 

symmetry-broken solutions, as in the present case, can be viewed as merely per

turbations of symmetry-pure solutions (and we expect this will often be the case), 

this is in practice not a problem. By running the unconstrained optimisation first, 

the basic nature of the solution will become obvious. 

When optimised in this way, CASVBl, 2 and 4 all had near-singular Hessians 

at convergence. In all cases there were two very small eigenvalues relating to vari

ations in the orbital parameters only. For CASVB2 the eigenvalues were positive, 

for CASVB4 negative, thus rendering the symmetry-pure solutions unstable. In 

the case of CASVBl the Hessian was (doubly) singular within the numerical accu

racy of our codes (it is possible that increased accuracy would reveal a preference 

for CASVB2- or 4-like solutions). For CASVB3, two low eigenvalues could simi

larly be identified, but they were in this case positive giving a stable symmetric 

solution. 

As can be seen from the orbital plots, figures 4.8, 4.9 and 4.10, all criteria 

reproduced the spin-coupled picture remarkably accurately. In the case of the 

symmetry-broken solutions for CASVB2 and 4 some variation in the deformation 

of the orbitals is present, but the symmetric versions of these criteria (which ap

proximately represents the 'average' amount of deformation of the un-symmetric 

orbitals) resemble the spin-coupled orbitals very closely. We note that the non

symmetric solutions both have mirror planes. For CASVB2 this goes through 

C1 and C4 so that <PI is symmetric and <P2, say, can be reflected into <P6. For 
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(4)d4>2) (4)114>3) (4)114>4) 

SC 0.52383 0.02939 -0.15700 

CASVB1 0.51564 -0.01664 -0.21672 

CASVB2 0.49919 -0.07186 -0.27225 

CASVB3 0.52355 0.02809 -0.15804 

CASVB4 0.50056 -0.04674 -0.23127 

Table 4.8: Unique overlap integrals for the symmetry-pure orbital sets of benzene. 

CASVB4 the mirror plane bisects the C1-C2 and C4-C5 bonds. This can be 

verified by examining the overlap matrices (table 4.9), but is also reflected in a 

partial symmetry in the spin-coupling coefficients (table 4.10). 

Examining the values for the overlap, the apparent success of CASVB3 in 

reproducing spin-coupled is remarkable. This, of course, is closely related to the 

relatively small difference between the CAS and SC orbital spaces. CASVB1 also 

gives very spin-coupled-like values, whereas the symmetric CASVB2 and 4 seems 

to agree more with each other than with the other orbital sets. 

These findings are reflected in the variations in the spin-coupling coefficients 

between the orbital sets (table 4.10). In this table we have used '(s)' for the orbital 

sets that were constrained to be symmetry-pure. The weights of the Kekule spin 

functions are largest for the energy-optimised spin couplings, and smallest when 

the spin coupling is determined by the CAS wavefunction, and this rationalises 

the decreased values for (4)114>2) for CASVB2 and 4, and the slightly higher value 

for CASVB3 seen in table 4.8. 

Values for Scav and Ecav are given in table 4.11. Again CASVB3 seems to 

be in best agreement with the (projected) spin-coupled values, but the variations 

between all the orbital sets are very slight. For the energy, for example, the 

maximum deviation amounts to no more than 0.5 millihartree. 
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ICASVB21 1 2 3 4 5 6 

1 1 0.58673 0.05608 -0.24512 0.05608 0.58673 

2 1 0.48906 -0.18195 -0.24708 0.16706 

3 1 0.42168 -0.24581 -0.24708 

4 1 0.42168 -0.18195 

5 1 0.48906 

6 1 

I CASVB4 I 1 2 3 4 5 6 

1 1 0.56136 0.09910 -0.21989 -0.04748 0.54559 

2 1 0.54559 -0.04749 -0.21989 0.09911 

3 1 0.44734 -0.16611 -0.21464 

4 1 0.45757 -0.16611 

5 1 0.44734 

6 1 

Table 4.9: Overlap matrices for non-symmetric orbital sets. 
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8 S 
Kl 81<2 8in 8in 8 s 

D3 

SCtrunc 36.92% 36.92% 8.72% 8.72% 8.72% 

CASVB1 36.53% 36.53% 8.98% 8.98% 8.98% 

CASVB2 33.72% 33.72% 10.64% 10.96% 10.96% 

CASVB2 (8) 34.33% 34.33% 10.45% 10.45% 10.45% 

CASVB3 36.87% 36.87% 8.75% 8.75% 8.75% 

CASVB4 33.66% 34.40% 10.48% 10.98% 10.48% 

CASVB4 (8) 34.51% 34.51% 10.33% 10.33% 10.33% 

8j(1 81<2 81n 81n 8 e 
D3 

SC 40.60% 40.60% 6.27% 6.27% 6.27% 

sctrunc 40.70% 40.70% 6.20% 6.20% 6.20% 

CASVB1 40.96% 40.96% 6.03% 6.03% 6.03% 

CASVB2 36.83% 36.83% 8.71% 8.82% 8.82% 

CASVB2 (8) 37.86% 37.86% 8.09% 8.09% 8.09% 

CASVB3 40.62% 40.62% 6.26% 6.26% 6.26% 

CASVB4 35.75% 37.40% 8.81% 9.22% 8.81% 

CASVB4 (8) 37.30% 37.30% 8.47% 8.47% 8.47% 

8kl ec 
K2 ec 

Dl 8 c 
D2 8 c 

D3 

SC 31.56% 31.56% 12.29% 12.29% 12.29% 

SCtrunc 31.50% 31.50% 12.33% 12.33% 12.33% 

CASVB1 31.37% 31.37% 12.42% 12.42% 12.42% 

CASVB2 32.92% 32.92% 11.48% 11.33% 11.33% 

CASVB2 (8) 32.37% 32.37% 11.75% 11.75% 11.75% 

CASVB3 31.52% 31.52% 12.32% 12.32% 12.32% 

CASVB4 32.09% 33.57% 11.48% 11.38% 11.48% 

CASVB4 (8) 32.56% 32.56% 11.63% 11.63% 11.63% 

Table 4.10: Weights of the Rumer functions for benzene. 
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s~ov s~ov S~ov 

sctrunc 0.99522 0.99517 0.99513 

CASVB1 0.99546 0.99540 0.99539 

CASVB2 0.99545 0.99542 0.99545 

CASVB2 (s) 0.99544 0.99540 0.99543 

CASVB3 0.99521 0.99517 0.99513 

CASVB4 0.99518 0.99516 0.99517 

CASVB4 (s) 0.99516 0.99514 0.99515 

E~ov /hartree Egov /hartree E~ov /hartree 

sctrunc -230.829185 -230.829233 -230.828956 

CASVB1 -230.828917 -230.828980 -230.828690 

CASVB2 -230.828812 -230.828849 - 230.828792 

CASVB2 (s) -230.828835 -230.828877 - 230.828776 

CASVB3 -230.829186 -230.829233 -230.828962 

CASVB4 -230.829087 -230.829113 - 230.829060 

CASVB4 (s) -230.829102 -230.829129 -230.829051 

Table 4.11: Covalent overlaps and energies for the different orbital sets for ben

zene. 
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E/hartree (E - ECAS) / millihartree 

SCF -40.212541 83.00 

SCCAS -40.275607 19.93 

SC -40.278158 17.38 

SC+CI -40.291257 4.28 

CAS -40.295536 0.00 

Table 4.12: Methane energies for some of the wavefunctions considered. 

4.3 Methane 

In the calculations on methane the carbon-hydrogen bond length was: r(C-H)= 

2.065 bohr. We used the same correlation-consistent p VTZ basis set as for 

CH2 [5]. 

The MOs in the CAS calculation were partitioned as follows: 

• One optimised core orbital, to describe the two core electrons (~C(ls2)); 

• Eight active orbitals, to accommodate the eight valence electrons 

• 52 virtual orbitals. 

The '8 in 8' CAS energy defined in this way (see table 4.12) represents an im

provement over the SCF description of 83.0 millihartree. The eight active MOs 

and their occupation numbers are given in figures 4.11 and 4.12. The four first 

occupation numbers are as before close to 2 (and the weight of the configuration 

with these orbitals doubly occupied is 96.06%) indicating the quality of the SCF 

description. 

A spin-coupled calculation was then carried out for the eight valence orbitals 

of CH4 , with the two core electrons accommodated in the core orbital from the 

CAS calculation (without further relaxation). In spite of it being only a single 

configuration wavefunction, the spin-coupled energy accounts for 79.06% of the 

correlation energy recovered by the CAS wavefunction. This is a somewhat lower 
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Figure 4.11: MOs of CH4 • 
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proportion than found for methylene and benzene, and this is a likely consequence 

of the increased number of active electrons (and thus the increased difference in 

the number of variational parameters between the two methods as indicated in 

table 2.1). 

The spin-coupled description of methane, calculated with a variety of ba

sis sets, has been presented on many occasions [9]. Although no such con

straints were imposed, the converged spin-coupled wavefunction consists of four 

symmetry-related pairs of orbitals, each associated with a different C-H bond. 

The symmetry-unique orbitals are shown in figure 4.13 (the plots are generated 

in the same way as for CH2 and benzene). Orbital 1 takes the form of a deformed 

spx-like hybrid on carbon and orbital 2 resembles a distorted H(1s) function. 

The overlap between these two is 0.69 (see table 4.13), with predominant singlet

coupling of the associated electron spins. Orbitals 3, 5 and 7 are the carbon 

hybrids in the other C-H bonds, orbitals 4, 6 and 8 respectively, are the hydro

gen orbitals to which they point. 

For a high-symmetry system such as methane it can be particularly beneficial 

to express the total spin function in the Serber basis. Each of the if =14 Serber 

functions for N =8 and 8=0 may be represented [10] 

(4.1) 

in which 812, 834, 856 and 878 may be 0 or 1 (for singlet and triplet electron pairs) 

and the 82p denote the total spin of the first p electron pairs. We find that there 

are only four unique non-zero spin-coupling coefficients for CH41 such that 

eg = +b1«(1l)2; 1)1; 1) + b2 «(1l)0; 1)1; 1) 

-b3 «(1O)1; 0)1; 1) - b3 «(0l)1; 0)1; 1) - b3 «(00)0; 1)1; 1) 

-b3«(1O)1; 1)0; 0) - b3 «(01)1; 1)0; 0) - b3«(1l)0; 0)0; 0) 

+b4«(00)0; 0)0; 0) (4.2) 

with all the bi positive. The Serber functions are orthogonal and so the corre

sponding weights of the different modes of spin coupling are simply b~, as given in 
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table 4.14. The spin coupling for SC is dominated by the perfect-pairing function 

(90.0%), but the weights ofthe other modes (particularly those in which only two 

pairs are triplet-coupled) are not insignificant. 

For methane we found that 0.35% and 0.56%, for the carbon and hydrogen 

orbitals respectively, was outside the CAS active space. Compared with the cor

responding values for methylene and benzene these numbers are quite large. The 

energy difference between SC+CI and the CAS energy was correspondingly larger, 

4.3 millihartree, and the difference between the 'full' spin-coupled calculation and 

the spin-coupled calculation performed in the CAS active orbital space was of a 

similar magnitude, 2.6 millihartree. 

The orbitals obtained from the four different criteria were somewhat less suc

cessful for methane than was the case for CH2 and benzene. CASVB2 and 4 

agree qualitatively with the spin-coupled picture, but CASVB1 and 3 can only 

be described as giving anomalous, 'rogue' solutions. (All the plots are given in 

figures 4.13 and 4.14.) In both cases the spx hybrids on C are extremely localised, 

and the overlaps between the (supposedly) bond-forming orbitals are a mere 0.20 

and 0.27 respectively (see table 4.13). We have previously encountered such 

anomalous solutions, exhibiting marked differences from the 'full' spin-coupled 

solution, only in cases in which the total number of orbital free parameters was 

severely restricted. 

The main difference between the solutions based on CASVB2 and 4 and spin

coupled is the larger delocalisation of the bond-forming orbitals for the CAS trans

formations. This gives rise to an increase in the C1-H1 overlap (table 4.13), and 

this may again be rationalised from the fact that the weight of the perfect-pairing 

function is increased when the spin coupling is taken from the CAS wavefunction 

(see table 4.14). 

Compared with the difference from the CAS spin coupling, the difference 

between the overlap- and energy-optimised spin couplings are minute. The form 

of the orbitals optimised with CASVB2 and 4 seems to favour the perfect-pairing 
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mode of spin coupling in all cases. Compared with this the spin couplings for 

CASVBl and 3 are very odd, being quite far removed from the perfect-pairing 

situation. To a good approximation the spin coupling corresponds to coupling all 

the electrons associated with the C spX-type hybrids constructively (to a quintet) 

and likewise for the electrons associated with the H orbitals. This mode of spin 

coupling has weights of 92.39% and 88.14% for CASVB1 and 3 respectively. For 

comparison the corresponding weight for spin-coupled would be 63%, and for 

CASVB2 and 4 around 48%. It is noticeable that even for the anomalous CASVBl 

and 3 orbital sets the perfect-pairing function becomes strongly dominant when 

the spin coupling is taken from the CAS wavefunction. 

Looking at the covalent overlaps and energies given in table 4.15 it is clear 

that CASVB1 and 3 do quite a bit better than the other orbital sets, generally 

around 0.001 in Scov and 2-3 millihartree in Ecov. That this is actually slightly 

better than might be expected was already indicated in table 4.12. For CH2 and 

benzene we had the approximate identity 

E SC+C1 - ECAS ~ ESCCAS - Esc, 

fulfilled within 0.1 millihartree. In this case the discrepancy amounts to 1.73 mil

lihartree. 

Basing the spin coupling on the CAS wavefunction (Le., imposing a near

perfect-pairing function) is totally inappropriate for CASVBl and 3, which is 

reflected in the nonsensical values for sgov and Egov' 

For CASVB2 and 4 it is interesting that both the overlaps and energies are 

actually inferior to the best sctrunc values. It therefore seems that decreasing 

the weight of the perfect-pairing function slightly, has a positive effect on these 

quantities, but it is likely that these two criteria don't have the flexibility to do 

so for reasonable orbital sets. 

In conclusion it is difficult to disregard the success of CASVBl and 3 in 

obtaining very good values for the covalent overlaps and energies. The orbitals 

do not, however, conform to the standard valence bond picture of the bonding, 
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(<PCIi<PHl) ( <Pcll<pC2) (<Pcll<pH2) ( ¢>Hll¢>H2) 

SC 0.69189 0.52904 0.09591 -0.15228 

sctrunc 0.69949 0.53129 0.09569 -0.15211 

CASVB1 0.20131 0.91557 -0.06164 -0.32211 

CASVB2 0.78266 0.32257 0.05914 -0.10900 

CASVB3 0.27192 0.88261 -0.03813 -0.31588 

CASVB4 0.75235 0.37043 0.05805 -0.13052 

Table 4.13: Unique overlap integrals for the various orbitals of methane. 

and we therefore regard them as 'anomalous' solutions probably caused, at least 

in part, by the small number of free orbital parameters. The 'full' spin-coupled 

energy surface was investigated in the regions around both converged solutions, 

but no evidence of local minima, or even stationary points, were found. This 

type of solution, it seems, simply does not exist for the standard spin-coupled 

calculations. It is clear that basing the spin coupling on the CAS wavefunction, as 

in CASVB2 and 4, goes a long way towards alleviating this problem by restricting 

the spin-coupled-like wavefunctions to physically more realistic parts of the energy 

surface. 
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(bi? (b2? (b3)2 (b4? 
Sctrunc 0.19% 0.23% 1.55% 90.29% 

CASVB1 0.83% 1.04% 6.72% 57.82% 

CASVB2 0.00% 0.00% 0.84% 94.95% 

CASVB3 0.64% 0.80% 5.66% 64.58% 

CASVB4 0.00% 0.00% 0.82% 95.08% 

(bn2 WD 2 (b3)2 (b4)2 

se 0.19% 0.24% 1.59% 90.00% 

sctrunc 0.13% 0.16% 1.56% 90.36% 

CASVB1 0.79% 0.98% 6.64% 58.37% 

CASVB2 0.00% 0.01% 0.89% 94.61% 

CASVB3 0.60% 0.75% 5.63% 64.85% 

CASVB4 0.00% 0.01% 0.87% 94.77% 

(b1)2 (b2? (b3)2 (b4)2 

se 0.01% 0.01% 0.48% 97.08% 

sctrunc 0.00% 0.00% 0.31% 98.13% 

CASVB1 0.13% 0.16% 1.09% 93.17% 

CASVB2 0.01% 0.01% 0.53% 96.79% 

CASVB3 0.07% 0.09% 0.58% 96.38% 

CASVB4 0.01% 0.01% 0.50% 96.99% 

Table 4.14: Weights of the Serber functions for methane. 
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S~ov S~ov S~ov 

sctrunc 0.99529 0.99529 0.99457 

CASVBl 0.99613 0.99612 0.98279 

CASVB2 0.99522 0.99521 0.99517 

CASVB3 0.99605 0.99605 0.98478 

CASVB4 0.99515 0.99515 0.99509 

E~ov /hartree E~ov /hartree Egov /hartree 

sctrunc -40.273644 -40.273646 -40.271765 

CASVBl -40.275304 -40.275324 -40.236634 

CASVB2 -40.273082 -40.273085 -40.272922 

CASVB3 -40.275602 -40.275607 -40.243954 

CASVB4 -40.273424 -40.273427 -40.273219 

Table 4.15: Covalent overlaps and energies for the different orbital sets for 

methane. 
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4.4 Ozone 

In the calculations on ozone the bond length was chosen as r(O-O)= 1.2717 A, 

and the angle as L(O-O-O)=121.6085°. For the three oxygens we added to a 

Huzinaga basis set [11] of (lOs6p) Cartesian gaussians contracted to [5s3p] a 

polarisation function in the form of a d-function with exponent (=0.85. 

We considered here treating only the four 7r-electrons of ozone as active. There 

were thus ten u orbitals as core (6 of Al symmetry and 4 of B2), leaving 35 and 

11 virtuals of u and 7r symmetry respectively. It was immediately clear that such 

a treatment leads to two CAS solutions very similar in energy, corresponding to 

active MOs of symmetries 1bI , 2bI , 3bI , 1a2 (solution A) or 1bI, 2b1, 1a2, 2a2 

(solution B). The MOs and occupation numbers for the CAS calculations with 

optimised core are shown in figures 4.15 and 4.16. Both solutions indicate the 

inadequacy of the SCF description in the marked differences in the occupation 

numbers from 2 for the lowest-lying MOs and from 0 for the highest-lying, and this 

is also reflected in the relatively large amount of correlation energy obtained with 

only four active electrons. With the core orbitals taken from the SCF solution 

the two CAS wavefunctions are almost degenerate-only 22 microhartree being 

in favour of solution A (see table 4.16). Optimising the core accentuates this 

difference slightly, giving an overall difference of 2.2 or 2.5 millihartree between 

the two solutions with the two cores respectively, again in favour of type A. The 

fact that there are near-degenerate solutions in this way, suggests that the '4 in 

4' CAS may not lead to a satisfactory description of the bonding for this system. 

This will be discussed further in the following. 

The traditional spin-coupled description using four active electrons, with the 

core taken from the SCF, is shown in figure 4.17. The central oxygen here forms 

two 7r-bonds in the same plane, and in this sense behaves 'hypervalent'. The 

perfect-paring mode of spin coupling dominates with a weight of 95.49%. 

When we examined the lowest-lying CAS solution (A), a very different pic

ture emerged. We have shown the orbitals obtained by applying the four different 
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Figure 4.15: MOs of ozone obtained from CAS A. 
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Figure 4.16: MOs of ozone obtained from CAS B. 
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Efhartree (ESCF - E) f millihartree 

SCF -224.319107 0.00 

SC A; SCF core -224.417478 98.37 

SC B; SCF core -224.417579 98.47 

CAS B; SCF core -224.417910 98.80 

CAS A; SCF core -224.417932 98.83 

SC B; A core - 224.424705 105.60 

SC B; B core -224.424833 105.73 

CAS B; opt. core -224.425112 106.01 

SC A; B core - 224.427020 107.91 

SC A; A core -224.427173 108.07 

CAS A; opt. core -224.427541 108.43 

Table 4.16: Ozone energies for some of the wavefunctions considered. 

criteria in figures 4.18 and 4.19. Since only the 01 and 03 orbitals contain com

ponents of the A2 irreducible representation, the corresponding electrons must be 

perfectly singlet-coupled. Since there are thus no free parameters associated with 

the spin-space there is therefore no difference between CASVB1 and 2, nor be

tween CASVB3 and 4. The description of the bond-formation between the central 

and terminal oxygens is here rather different from the standard valence bond de

scription in terms of orbital pairs with associated singlet-coupled electrons. Most 

of the energy-lowering is likely to be associated with the large delocalisation of 

the 02b orbital, and in this way the picture is very MO-like. Since the interaction 

between the terminal oxygens is likely to be quite modest, this solution is often 

referred to as being of 'diradical' type. 

Examining the 'full' spin-coupled energy surface again, the solution shown 

in figure 4.20 was found. This solution is in excellent agreement with the CAS 

interpretation as signified by the orbital plots and the overlap matrices given 

in table 4.17 below. This spin-coupled wavefunction produced 99.67% of the 
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Figure 4.18: CASVB1 (or 2) interpretation of CAS A (ozone). 

(02aI02b) (01102a) (01102b) (01103) 

SC 0.80625 0.19919 0.47042 -0.16651 

sctrunc 0.80628 0.19919 0.47043 -0.16651 

CASVB1 or 2 0.80519 0.19666 0.47416 -0.16639 

CASVB3 or 4 0.80767 0.19894 0.46958 -0.16714 

Table 4.17: Unique overlap integrals for ozone based on CAS A. 

143 



02a 02b 

01 03 

o o 

o o 

Figure 4.19: CASVB3 (or 4) interpretation of CAS A (ozone). 
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Figure 4.20: Spin-coupled orbitals of ozone (solution A). 
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Scov Ecov /hartree 

sctrunc 0.9999051 -224.427160 

CASVBl or 2 0.9999145 -224.427139 

CASVB3 or 4 0.9999051 -224.427162 

Table 4.18: Covalent overlaps and energies for the interpretation of CAS A. 

correlation energy obtained by the CAS wavefunction. Only 0.0017%, for both 

02a and 02b, and 0.000022% for the terminal orbitals, was outside the CAS 

space. 

Values for Scov and Ecov for the various orbital sets are given in table 4.18 

(again due to the lack of free spin-parameters there is only one set of values in 

each case). The values for Scov are probably of a quality that is to be expected 

when there are only four active electrons (considering the small difference in the 

number of free parameters, cf. table 2.1). The values for Ecov compare well with 

the full spin-coupled energy of Esc=-224.427173 hartree. 

When the second CAS was examined, the spin-coupled interpretations were 

found to correspond very well to the already well known 'hypervalent' solution 

(see figures 4.21 and 4.22). So there are in this way not only two very close CAS 

solutions, but to each of these a corresponding spin-coupled solutions exists. This 

correspondence is unique since the projection of the spin-coupled solution A on 

CAS B (or vice versa) would give linearly dependent orbitals. In other words: the 

distribution of CAS Mas among the irreducible representations alone determines 

the types of spin-coupled-like solutions that are possible. The different energies 

of the two solutions with various choices of core are shown in table 4.16. The 

spin-coupled solution B recovered 99.74% of the correlation energy produced by 

CAS B. For this set of spin-coupled orbitals only 0.00022% and 0.00018%, for the 

central and terminal orbitals respectively, was outside the CAS space. The over

lap matrices, spin-coupling coefficients and covalent overlaps and energies based 

on CAS B are given in tables 4.19-4.21. The weight of the perfect-pairing fune-
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tion is slightly bigger when the spin coupling is taken from the CAS wavefunction, 

but between the overlap- and energy-optimised spin couplings the differences are 

minute. The values of Scov and Ecov are all reasonable, and similar to those ob

tained from CAS A, except in those cases where the CAS spin coupling has been 

imposed (i.e., S~ov and E~ov for the sctrunc, CASVBI and CASVB3 orbital sets). 

For CASVB2 and 4 it seems the orbitals can easily adapt to the high weight of 

the perfect-pairing mode associated with the CAS spin coupling, but for other 

orbital sets this is not so appropriate. 

As a final argument regarding the close correspondence between the two CAS 

and spin-coupled solutions we have in figures 4.23 and 4.24 shown the natural 

orbitals of the two competing spin-coupled solutions. It is clear that the form of 

the orbitals, as well as the values for their occupation numbers, are very similar 

between the corresponding CAS and SC cases. It is worth noting that the form 

of the spin-coupled solution is sufficient to determine the distribution of the nat

ural orbitals between the irreducible representations, and this may be utilised to 

investigate various alternative bonding-pictures. In the present case, for exam

ple, it seems that the convergence characteristics of the standard spin-coupled 

methods are such that it is unlikely that the diradical solution will be found. 

But if such a solution was suspected it would then be trivial to construct the 

corresponding CAS, and hence the corresponding spin-coupled-like, and possibly 

full spin-coupled, solutions. 

N ear-degeneracy, as encountered in this case, is an indication that two differing 

descriptions may playa role in a realistic description of the molecular system. The 

natural thing to do, is thus to base an improved calculation on the corresponding 

two configurations-in this case SC A and SC B. This was done in a simple 

CJ step which gave an energy of E2cnf=-224.431396 hartree (the lowest-energy 

A-core was used in this case). This represents a lowering of 4.2 millihartree 

from SC A which is quite significant compared with the spacing between the 

two spin-coupled solutions (2.5 millihartree). As expected the two configurations 
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(02aI02b) (OI102a) (OI102b) (01103) 

SC 0.72540 0.57259 0.10621 0.13718 

sctrunc 0.71729 0.57165 0.09675 0.13358 

CASVBl 0.70673 0.56751 0.07920 0.12001 

CASVB2 0.80097 0.55848 0.16013 0.12406 

CASVB3 0.71729 0.57165 0.09675 0.13357 

CASVB4 0.79560 0.57062 0.17368 0.15033 

Table 4.19: Unique overlap integrals for ozone based on CAS B. 

Kef Ke~ Ke~ Ke~ Kec 
1 

Kec 
2 

sctrunc 5.52% 94.48% 5.62% 94.38% 2.61% 97.39% 

CASVBl 6.28% 93.72% 6.38% 93.62% 5.09% 94.91% 

CASVB2 3.23% 96.77% 3.33% 96.67% 3.22% 96.78% 

CASVB3 5.80% 94.20% 5.90% 94.10% 2.52% 97.48% 

CASVB4 3.19% 96.81% 3.29% 96.71% 3.23% 96.77% 

Table 4.20: Weights of the Kotani functions for CAS B interpretations of ozone. 

contribute comparable amounts to the two-configuration solution, the diradical 

dominating only slightly with 56.3% (Chirgwin-Coulson). 

One may of course also treat the two-configuration wavefunction in the context 

of orbital optimisation, and work along these lines is currently ongoing. Judging 

from the form of the natural orbitals, the '4 in 6' CAS suggests itself as a sensible 

calculation. 
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s~ov s~ov s~ov 

sctrunc 0.9999447 0.9999438 0.9989869 

CASVBl 0.9999458 0.9999450 0.9982762 

CASVB2 0.9999398 0.9999385 0.9999397 

CASVB3 0.9999452 0.9999443 0.9987433 

CASVB4 0.9999386 0.9999373 0.9999384 

E~ov/hartree E~ov /hartree E~ov /hartree 

sctrunc -224.424826 -224.424826 - 224.424005 

CASVBl -224.424825 - 224.424826 - 224.423396 

CASVB2 -224.424804 -224.424805 - 224.424804 

CASVB3 -224.424826 - 224.424827 -224.423795 

CASVB4 -224.424806 -224.424807 -224.424807 

Table 4.21: Covalent overlaps and energies for the different orbital sets for CAS B 

of ozone. 
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MO Occupation MO Occupation 

2ag 1.98694 2b1u 1.98276 

3ag 1.98018 3b1u 0.02294 

4ag 0.01849 4b1u 0.01322 

1b2g 0.02238 Ib2u 1.98035 

Ib3g 1.97852 2b2u 0.01978 

2b3g 0.01648 Ib3u 1.97796 

Table 4.22: Active MOs and occupation numbers for B2H6 • 

4.5 Diborane 

In diborane the terminal hydrogens and the boron atoms are all coplanar, whereas 

a perpendicular plane is defined by the boron atoms and the bridging hydro

gens. The precise geometry was chosen as r(B-B)=1.7665 A, r(B-Ht)= 1.2000 A, 

r(B-Hb)= 1.3260 A and L(B-B-Ht)=121° [12]. For B/R we employed correlation 

consistent pVDZ basis sets by Dunning [5], consisting of (9s4pld/4s1p) Cartesian 

gaussians contracted to [3s2pld/2s1p]' as stored internally in MOLPRO. 

Keeping the 1S2 on both boron atoms as core, there were 12 active electrons 

and orbitals, and 46 virtuals. The list of MOs and occupation numbers for the 

lowest-lying CAS wavefunction ('CAS A') is given in table 4.22. Of particular 

note is the distribution of the active MOs between the irreducible representations, 

as this will determine the nature of the spin-coupled-like representations that are 

possible. Judging from the CAS, the SCF description seems quite reasonable; 

the occupation numbers for MOs of symmetries corresponding to the occupied 

SCF MOs are close to two, the corresponding configuration dominates the CAS 

wavefunction by 94.47%, and the correlation energy obtained was relatively mod

est when taking into account that twelve electrons were correlated-90.32 milli

hartree (see table 4.23). 

We have interpreted the CAS wavefunction described above, using CASVB1, 
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E/hartree (ESCF - E) / millihartree 

SCF -52.815220 0.00 

SC -52.893038 77.82 

CAS B -52.898012 82.79 

CAS A -52.905543 90.32 

Table 4.23: Energies of some of the wavefunctions considered for diborane. 

2 and 3. The CASVB3 solution was obtained with our standard spin-coupled 

codes, but employing CASVB4 was not possible, since the present version of 

our codes requires storage of the complete Hamiltonian. All three criteria con

verged onto symmetry-broken solutions as was also seen for benzene. The or

bitals are shown in figures 4.25-4.27. As for benzene partial symmetry is re

tained, here in the form of a vertical mirror plane perpendicular to the bridging 

plane. The question for diborane is whether this symmetry-breaking can be con

sidered 'accidental' (as we argued was the case for benzene) or a consequence 

of the inadequacy of a single-configuration description. By 'accidental' we mean 

symmetry-breaking brought on by the constraints imposed on the spin and/or or

bital parameters. It is clear that a symmetry-pure two-configuration description 

can easily be constructed from solutions of the forms seen in figures 4.25-4.27, 

so that the symmetry-breaking could be viewed as a consequence of not having a 

two-configuration description (cf. the discussion in section 1.2). Various evidence 

suggests that the latter interpretation is more reasonable: the deformation of the 

orbitals is clearly larger than was the case for benzene, the differences in the co

valent overlaps and energies between symmetric and symmetry-broken solutions 

correspondingly larger (see below), and there is also the fact that even CASVB3 

leads to symmetry-breaking for B2H6 • We have nevertheless included also the 

symmetry-pure orbital sets for CASVBl and 2 in figure 4.28 (imposing the nec

essary symmetry constraints was not possible with the present version of the 

spin-coupled code, so the symmetric CASVB3 solution has not been included). 
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Figure 4.25: CASVB1 orbitals of B2H6• 
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Figure 4.26: CASVB2 orbitals of B2H6 • 
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Figure 4.28: Unique symmetry-pure orbitals of B2H6 (CASVB1 and 2). 
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In all the cases the terminal B-H bonds are described very much as would 

be expected from a standard spin-coupled calculation, by spX-type hybrids on B 

pointing towards what are essentially Is orbitals on H. The corresponding electron 

spins are to a good approximation singlet-coupled (see below). The description of 

the bridging three-centre two-electron bonds, however, is at odds with the more 

commonly accepted valence bond and LMO descriptions. These include SOPP

eVB calculations [13], four-electron spin-coupled treating the bridging region 

only [14], and twelve-electron spin-coupled calculations in a two-spin-function 

approximation [15]. The bonding in the bridging region is, in the interpretations 

of the CAS wavefunction, described by four orbitals, all being admixtures of spx_ 

type hybrids on boron and s-type functions on hydrogen. For the symmetry-pure 

solutions all orbitals are of course equivalent, whereas for the other orbital sets 

they are only pair-wise equivalent. The orbitals on the upper B atom in the 

figures here show very great H character, the orbitals on the lower B atom show 

quite little H character. The electrons in orbitals pointing towards the same 

hydrogen are near-singlet-coupled (see below). 

The orbitals for CASVB2 show greater deformation in the bond-forming di

rections, and this is reflected in greater overlaps for the bond-forming orbital pairs 

(see tables 4.24 and 4.25-the orbitals are ordered: upper left=1, lower left=2, 

upper right=3, lower right=4). This is likely to be associated with the higher 

weight of the perfect pairing function for CASVB2 (see table 4.26). CASVB3 

seems to be intermediate between the two overlap-based criteria with respect to 

both the amount of deformation of bond-forming orbitals, as well as the weight 

of the perfect-pairing mode of spin coupling. 

The values for Scov and Ecov are given in table 4.27. As for the other systems 

studied so far, all values are quite reasonable except for the cases where the CAS 

spin coupling is imposed. The difference between the overlap and energy based 

optimisations seems slightly greater than has been the case for the other systems 

we have examined. CASVB3 is lower than CASVB1 by about 0.4 millihartree, 
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(B~IB~) (B~IB3) (B~IB~) (B~IB~) 

CASVB1 0.49282 -0.36283 0.14605 0.83338 

CASVB2 0.77989 -0.10135 0.26491 0.57243 

CASVB3 0.65508 -0.34432 0.15566 0.68008 

CASVB1 (s) 0.77907 0.25364 0.18885 0.25364 

CASVB2 (s) 0.83506 0.21135 0.20927 0.21135 

Table 4.24: Overlaps for the bridging region of B2H6 . 

(B1IHD (B~IH~) 

CASVB1 0.70113 0.70739 

CASVB2 0.80969 0.81182 

CASVB3 0.78539 0.80069 

CASVB1 (s) 0.76968 0.76968 

CASVB2 (s) 0.80959 0.80959 

Table 4.25: Overlaps between bond-forming terminal orbitals for B2H6 . 

whereas CASVB1 is superior in the covalent overlap by about 2 x 10-4 • These 

differences may not be large, but the consequence is that diborane does not show 

the excellent agreement between overlap- and energy-based optimisations seen for 

the other systems. Also the effect of imposing symmetry constraints is larger for 

this system. Scov decreased by 2xlO-4 for CASVB1 and by 6xlO-5 for CASVB2, 

and Ecov increased by 0.21 millihartree and 0.05 millihartree respectively when 

these constraints were applied. For benzene the corresponding values were 2 x 10-5 

and 0.02 millihartree for CASVB2 and 2x 10-5 and 0.01 millihartree for CASVB4. 

We now examine the more commonly accepted description of the bonding re

gion. Considering the bridging region alone, our new picture of the three-centre 

two-electron bonds transforms as Ag+B2g+Blu+B3u,4 whereas the 'standard' 

description (discussed below) will transform according to 2Ag+2B3u . It is thus 

40f course strictly only the symmetry-pure solutions. 

161 



as 
pp e~p e~p 

CASVB1 85.13% 84.93% 95.28% 

CASVB2 94.90% 94.80% 96.05% 

CASVB3 91.18% 91.39% 96.43% 

CASVB1 (s) 92.62% 92.86% 96.15% 

CASVB2 (s) 94.80% 94.72% 95.52% 

Table 4.26: Weights of the perfect-pairing mode of spin coupling (Kotani) for the 

different orbital sets for diborane. 

s~ov S~ov S~ov 

CASVB1 0.99571 0.99570 0.98227 

CASVB2 0.99554 0.99553 0.99552 

CASVB3 0.99557 0.99557 0.99235 

CASVBl (s) 0.99549 0.99548 0.99539 

CASVB2 (s) 0.99548 0.99547 0.99546 

E~ov /hartree E~ov jhartree E~ov /hartree 

CASVBl -52.889322 -52.889349 -52.868926 

CASVB2 -52.889250 -52.889263 -52.889200 

CASVB3 -52.889762 -52.889782 -52.884695 

CASVBl (s) -52.889112 -52.889127 -52.888863 

CASVB2 (s) -52.889174 -52.889181 -52.889148 

Table 4.27: Covalent overlaps and energies for the different orbital sets for dibo-

rane. 

162 



(B~ IH~) (B~IB~) (B~IH~) (H~IH~) (BUHD 

CASVB1 0.84963 0.45686 0.26690 0.20090 0.80613 

CASVB2 0.85314 0.40036 0.24616 0.21447 0.82199 

CASVB3 0.85020 0.43526 0.25613 0.20175 0.82052 

Table 4.28: Overlaps between bridging and bond-forming terminal orbitals of 

B2H6• 

es 
pp e~p ec 

pp 

CASVB1 94.38% 94.56% 95.96% 

CASVB2 95.27% 95.34% 95.76% 

CASVB3 95.00% 95.14% 95.78% 

Table 4.29: Weights of the perfect-pairing mode of spin coupling for the different 

interpretations of CAS B. 

simple to identify the CAS wavefunction with the correct transformational prop

erties, with active orbitals transforming as 4Ag+2B3g+2Blu+2B2u+2B3U' This 

solution, 'CAS B', is 7.5 millihartree above the lowest CAS (see table 4.23). The 

interpretations of this CAS according to CASVBl-3, however, reproduce the 

conventional picture of the bonding (see figures 4.29 and 4.30). 

It is worth mentioning that although the energy gap was smaller for the cor

responding 4 in 4 CAS solutions (-52.840084 hartree and -52.838508 hartree 

for A and B respectively), solution A was also in this case lowest. Valence bond 

interpretations of these two solutions reproduced the same two descriptions of the 

bridging region that the twelve electron calculations in this work have produced. 

The overlap integrals and spin coupling show generally the same type of vari

ations between CASVBl-3 as seen for the other systems studied in this work 

(see tables 4.28 and 4.29). The values are significantly more uniform in this case, 

however, to the extent for example that imposing the CAS spin coupling is not as

sociated with significantly inferior covalent overlaps or energies. It is remarkable 
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Figure 4.29: CASVBl-3 interpretations of solution B; bridging orbitals. 
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Figure 4.30: CASVBl-3 interpretations of solution B; terminal orbitals. 
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S~ov S~ov sgov 

CASVB1 0.99862 0.99862 0.99858 

CASVB2 0.99861 0.99861 0.99861 

CASVB3 0.99861 0.99861 0.99860 

E~ov /hartree E~ov /hartree E;ov /hartree 

CASVB1 -52.892407 -52.892409 -52.892307 

CASVB2 -52.892424 -52.892425 -52.892413 

CASVB3 -52.892449 -52.892450 -52.892422 

Table 4.30: Covalent overlaps and energies for the different orbital sets for dibo-

rane. 

that the values for Scov and even Ecov are superior to the solutions based on CAS 

A (see table 4.30). The conclusion must be that this form of wave function 'lends' 

itself far better to a spin-coupled-like interpretation. Since the energy difference 

between CAS A and B is fairly significant, one must say that for this system the 

CAS and SC models do not agree in all particulars. 

Finally we have investigated the standard spin-coupled energy surface in order, 

if possible, to establish the effect of orbital constraints on the converged orbital 

sets. It is worth mentioning that spin-coupled calculations with 12 active electrons 

at this point in time is considered computationally quite intensive. Here we were 

able to reduce the total computer time significantly by using excellent starting 

guesses in the form of the converged CASVB1 or 2 solutions. In most cases 

convergence was reached in a handful of iterations. The important question to be 

asked is whether-in analogy with what was found for ozone-there corresponds 

a local, or global, minimum in the energy surface to the new description of the 

bonding region. Since there are significant differences between the symmetry

pure and symmetry-broken solutions both were investigated. This was done by 

simply starting from the appropriate CASVB solution, but in neither case was 

any evidence of a local minimum be found. A curious finding, however, was that 
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SC 0.85143 0.42939 0.24966 0.18963 0.82711 

Table 4.31: Spin-coupled overlaps between bridging and bond-forming terminal 

orbitals of B2H6• 

the symmetry-broken solutions converged extremely rapidly towards the standard 

solution. So the reason for the symmetry-breaking itself is perhaps to be found 

in the discrepancies between the CAS and SC predictions. It may be that in real 

terms the two descriptions are not so different as the form of the orbitals suggests. 

The (standard) spin-coupled orbitals with core orbitals taken from CAS A 

are shown in figure 4.31. It is clear, from the plots and overlaps (table 4.31), 

that this solution is in very good agreement with the interpretations of CAS B 

given above. Of course the energy difference between the SC wavefunction (see 

table 4.23) and the CAS interpretations, about 6 millihartree, should be kept in 

mind. The weight of the perfect-pairing spin function was in this case 95.68%. 
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Figure 4.31: Spin-coupled orbitals of B2H6• 
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4.6 Discussion 

The simple idea of arranging sequential updates so as to obtain the effect of 

simultaneous ones we believe may be a useful alternative to the approaches often 

adopted in, say, MCSCF theory. This would be true even for structure expansions 

not necessarily of full-CI form. The theory is of course applicable also to unitary 

orbital transformations, but transformations to non-orthogonal orbital sets are 

likely to be particularly useful in view of the computational cost associated with 

setting up and solving the eigenvalue problem in this case. Much of the technology 

related to the application of the single excitation matrices, for example evaluation 

of coupling-coefficients, is already widely available. So implementation of the 

suggested strategy would be very straightforward in conjunction with many of 

the already existing MCSCF codes. 

The criteria we have presented here are all based on the form of the spin

coupled wavefunction. It is of course perfectly straightforward to define similar 

criteria based on other functional forms, provided that these lie inside a general 

'N in m' CAS space. This might involve substituting P cov with a more gen

eral matrix, but as mentioned in section 3.2, it is important for the efficiency 

particularly of the Hessian evaluation that such a matrix can be identified and 

included in the expressions. In view of the simplicity of the procedures, general 

non-orthogonal MCSCF procedures based on such a procedure seem perfectly 

viable. These might, as in this work, attempt to interpret the CAS wavefunction, 

or, alternatively, with the two-step procedure adopted in ref. [8], be adapted to 

locate the fully variational solutions. 

These methods are quite simple to implement, but nevertheless have proven 

very competitive in relation to the standard spin-coupled codes. This is partic

ularly remarkable in view of the concentrated effort that has been put into the 

optimisation of this procedure. There is even the possibility that a CAS driven 

two-step procedure, as discussed above, could be significantly more efficient for 

systems containing some degree of symmetry. One drawback of the existing SC 
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codes is that no utilisation of symmetry is possible. It is quite likely that the 

present work could pave the way for this area to be developed further. There is 

the argument that rigorous constraints on the orbitals will predispose the calcu

lation towards certain types of solution, but a not so restrictive alternative would 

be to specify the distribution of natural orbitals among the irreducible repre

sentations. This would be equivalent to what is often done in CAS calculations 

utilising symmetry. 

This work has confirmed the previously existing notions regarding the simi

larity between equivalent CAS and SC calculations. If anything the link between 

the two methods has been considerably strengthened. We have presented various 

pieces of evidence for the similarity between the two wavefunctions, where of par

ticular note is the similarity between the active orbital spaces, and the impressive 

values for Scov that may be obtained with a function of spin-coupled form. 

Comparing the four criteria, the main, surprising, finding is the small dif

ference between the overlap- and energy-based criteria. In the systems studied 

here, for example, constraining the spin coupling as in CASVB2 and 4 seemed 

to have a far greater effect. Since the overlap-based criteria are considerably 

cheaper computationally, this suggests that future work on the interpretation 

of CAS wavefunctions will be mostly concerned with these. Alternatively, if an 

energy-based solution is required, the corresponding overlap-optimised orbital set 

is likely to provide an excellent guess. We can take this one step further. We 

may regard the spin-coupled wavefunction as the best energy-based approxima

tion to the CAS wavefunction, but with a general expansion of the orbitals, as in 

equation 1.15. It is easy to envisage the equivalent overlap-based optimisation, 

and it is likely that the resulting solution would be a very affordable, excellent 

approximation (or guess) to the spin-coupled wavefunction. Such an approach 

might also serve to alleviate some of the problems apparently associated with the 

small number of free orbital parameters in some cases. 

Two problems were encountered in the orbital optimisations: the 'rogue' so-
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lutions for methane and the symmetry-breaking found to occur for benzene and 

diborane. At this stage we have to admit that satisfactory explanations have 

eluded us for either. The shortness of the expansion of the spin-coupled-like or

bitals is one likely cause of the very different solutions found for methane. This is, 

of course, in spite of the small difference between the CAS and SC active orbital 

spaces. We have not encountered other such rogue solutions, so it is difficult at 

this stage adequately to gauge the extent of the problem. We believe the practical 

approach to this problem is always to perform calculations employing CASVBl 

and CASVB2 in tandem. If these two solutions agree on a qualitative level it is 

likely that a physically sensible solution is located, whereas if there are signifi

cant discrepancies a certain amount of care should be exercised in interpreting 

the results. 

The small number of orbital parameters is probably also the main factor in the 

symmetry-breaking found for benzene and diborane, but the constraints involved 

in CASVB2 and 4, and maybe also the nature of overlap-optimisation, could be 

contributory factors. In all the cases the breaking of symmetry was associated 

with a singular, or near-singular, Hessian, so although the improvement in Scov 

or Ecov was relatively modest, the distortion of the orbitals was quite significant. 

Nevertheless, it was in both cases clear what the corresponding symmetry-pure 

solutions would be, so in practice it should be simple to impose the applica

ble constraints once convergence onto a symmetry-broken solution is diagnosed. 

Occurrence of these solutions is perhaps not aesthetically very pleasing, but we 

believe that they do not in practice present any serious problems. The main 

problem is, as in the case of B2H6 , to determine whether the symmetry-breaking 

may be a genuine feature of the solution. This is to a certain extent a matter of 

interpretation, but we have in section 4.5 considered some of the evidence that 

may influence the decision one way or the other. 

By and large the agreement between the CAS interpretations and equivalent 

spin-coupled results has been excellent. Only for diborane can one say that 
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real disagreement between the two methods has occurred. It has always been 

possible to reproduce the qualitative SC solutions, but for ozone and diborane 

the interpretation of the CAS has suggested alternative (and for ozone probably 

more 'correct') descriptions of the bonding. It is slightly paradoxical that the 

constrained, and computationally cheaper, CASVB2 and 4, generally are closest 

to the spin-coupled solutions. This finding may be related to the fact that the 

weight of the perfect-pairing mode of spin coupling was generally higher for these 

two criteria. Of course, being close to SC is not necessarily an end in itself. It 

would be interesting to investigate which orbital set performs better in subsequent 

configuration interaction steps, for example. 

Another question that raises itself in relation to this, is the adaptation of other 

developments in spin-coupled theory to the spin-coupled-like wavefunctions. It 

should for example be straightforward to define virtual orbitals for the spin

coupled-like wavefunctions by constructing Fock operators in a similar fashion to 

the scheme employed for the spin-coupled wavefunction. 

In conclusion, we restate that it is the ability to transform exactly and effi

ciently the CAS CI space that has made this whole research practical. We believe 

that the utility of this method extends to many other areas. The link between 

the CAS and spin-coupled methods has been much strengthened-to the extent 

that one can almost call SC the 'little brother' of CAS-and it is our hope that 

this 'duality' will be considered by researchers employing both methods in the 

future. 
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Chapter 5 

The biorthogonal method 

5 .1 Introduction 

As we have seen evidence for in the past chapters, non-orthogonal methods, in 

particular those employing orbital optimisation, have been given a rebirth. Espe

cially from a chemists viewpoint these methods are immensely attractive. Unfor

tunately the many advantages to be obtained from valence bond (VB) approaches 

are limited to relatively small systems, mainly due to the poor scaling properties 

of the computational effort with the number of active electrons-the so-called N! 

problem. The biorthogonal approximation is an attempt at circumventing this, 

making the computational effort similar to that of orthogonal methods, at the 

expense of the variational property of the solutions. 

The biorthogonal method in electronic structure calculations has received at

tention on and off for the last 25 years. The use of a dual basis in quantum 

chemistry was first considered as an efficient way of calculating the matrix ele

ments between two Slater determinants by direct use of the Lowdin formula [1]. 

The foundation for the present work was laid in 1971 when, in a second quantised 

formalism, Moshinsky and Seligman considered using a dual basis for optimising 

many-electron functions [2]. Since then, the convergence properties of the method 

with respect to increasing number of configurations have been investigated [3], 
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and special attention has been given to the features of the variation principle [4]. 

Recently optimisation of non-orthogonal orbitals using the biorthogonal method 

has been carried out [5, 6]. 

The concept of biorthogonal sets, or reciprocal spaces, pervades many areas 

of mathematics, physics and chemistry. But the utility of non-symmetric ex

pectation values (as put forward in section 5.3) is not limited to addressing the 

non-orthogonality problem. A noteworthy application in quantum chemistry is 

the optimisation of explicitly correlated wavefunctions by the so-called transcor

related method [7]. The optimisation of 

\lI = II f(ri' rj)<J?, 
i>j 

(5.1) 

where f(ri, rj) is a general correlation factor between electrons i and j and <P is 

a wavefunction lacking explicit correlation (e.g., a linear combination of Slater 

determinants), is exceedingly difficult when the standard variation principle is 

employed. The main technical difficulty lies in calculating the very complicated 

integrals over the one- and two-electron operators and correlation factors. This 

problem is much simplified if a left-hand function of the form 

\lI' = IT f(ri, rj)-l<J? 
i>j 

is used [7]. The non-symmetric expectation value 

(E') = (\I1'IHI\I1) 
(\I1'lw) 

(5.2) 

(5.3) 

may then be optimised with respect to all non-linear parameters in the same way 

as discussed for the spin-coupled wavefunction in section 5.7. 

Since orbital optimisation is imperative to the success of valence bond meth

ods, we will in this chapter take a look at the biorthogonal method in this context, 

and for some simple systems attempt to gauge the validity of the approximations 

involved. The main way this differs from previous work is the possibility we have 

of quantifying the errors associated with the biorthogonal method, by comparing 

it with the equivalent calculations where non-orthogonality is incorporated fully, 

without approximations. 
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5.2 The biorthogonal orbital set 

The bottleneck in a large number of post-SCF methods is the calculation of ma

trix elements of the Hamiltonian between many-electron wavefunctions. For our 

purposes it is sufficient to consider matrix elements between Slater determinants, 

and we consider here the expensive part of the Hamiltonian: the two-electron 

operator. The efficiency of our method will be governed largely by the amount 

of work associated with calculating terms of the form 

N 

(1¢lll ¢M ... ¢IlN II~ g( i, j) 11¢1I1 ¢1I2 ... ¢IIN I), 
t<3 

(5.4) 

where the bra and ket are Slater determinants. 

Inspecting the Lowdin formula (see appendix l.a) we can see that second 

order cofactors of the overlap matrix between the two orbital sets are needed. 

This gives on the order of N4 terms for each pair of determinants. For most non

trivial set.s of Slater determinants the calculation of the cofactors is not in itself 

significant-the expensive part is the combination of cofactors with two-electron 

integrals. Thus the computational effort scales roughly as N4 Ndet for methods 

employing non-orthogonal orbitals directly.l 

By comparison we have in the orthogonal case only N2 elements for two iden

tical determinants, and N terms for determinants differing in one spin-orbital. 

The computational effort will thus scale as N2 Ndet or as an upper estimate N Ndet. 

There will, of course, be many vanishing matrix elements for determinants dif-

fering in more than two spin orbitals. It should be clear from this why from a 

computational point of view orthogonality is so attractive. 

In the biorthogonal method we consider two orbital sets with the property 

(5.5) 

where it is understood that neither of the orbital sets, {¢} or {¢>}, will in general 

1 A reduction in the amount of work necessary can be achieved by taking into account 

the orthogonality of the alpha and beta spin functions and the point-group symmetry of the 

molecule. This however will not affect the scaling properties of the methods. 
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be orthogonal. It is easy to show that, if the two sets are taken to span identical 

spaces, the biorthogonal, or 'dual', set is related to the direct set by the linear 

transformation 

(5.6) 

where slLv=(¢>ILI¢>v)' 

A 'left' and a 'right' set of determinants can now be chosen, such that any 

'left' determinant is constructed from ~ orbitals, and any 'right' determinant is 

constructed from ¢> orbitals. This means that the two sets of Slater determinants 

will also satisfy the biorthogonality condition 

(5.7) 

but as they in general span different parts of the full CI-space, the term 'biorthog

onal' has slightly different connotations here than in the case of the two orbital 

sets. 

Examining the Lowdin formula in appendix l.a, it is clear that since the 

overlap matrices between the left- and right-hand orbitals are identical in the 

biorthogonal and orthogonal cases, the co factors , density matrices etc. enter

ing the energy expressions will be exactly the same for the two. In this work 

all matrix elements were evaluated by considering pairs of Slater determinants 

whereby the simple Slater-Condon rules may be employed. More sophisticated 

schemes involving the direct evaluation of matrix elements between configuration 

state functions (CSFs) would also be possible. For those the basic procedure 

in the biorthogonal method would also be essentially unchanged. The main dif

ference, from a computational point of view, between the standard orthogonal 

and biorthogonal approaches lies in the one- and two-electron integrals. In the 

biorthogonal method the non-symmetric integrals 

(5.8) 
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are required. So the one- and two-electron integrals loses the normal left f-+ right 

symmetry associated with real orbitals. This in turn makes the Hamiltonian 

matrix non-symmetric. 2 

5.3 The energy expression 

We have concluded that Hamiltonian matrix elements between biorthogonal or

bital sets can be obtained very cheaply-essentially at the cost of the equivalent 

orthogonal calculation-but so far we have not presented any arguments relating 

to the utility of such a scheme. To do this we consider first the non-symmetric 

form of the energy expectation value taking the form 

(5.9) 

In general ~ and \II can be essentially unrestricted (Le., we could also consider 

right- and left-hand functions not constructed from biorthogonal many-electron 

functions), as long as their overlap remains non-vanishing. For such a quantity to 

be sensibly interpreted as an energy of the system one of two following conditions 

must be satisfied; either 

(5.10) 

or 

(5.11) 

In the biorthogonal method it is the second condition which is of most interest. 

In that case we have 

(~~ill\ll) ~ E (~I\II) = E 
(wl\ll) (\111\11) (5.12) 

so that no matter how poor a wavefunction is ~, we may still interpret E as a 

meaningful approximation to the energy associated with the wavefunction \II. 

2If the left-hand and right-hand determinant sets span different spaces, the eigenvalues of 

the non-symmetric Hamiltonian will not be upper bounds to the energy. One of the main 

drawbacks of the biorthogonal method is this breakdown of the variation principle. 
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It should be borne in mind that this kind of non-symmetric expectation value 

only makes sense if \If (or ~) is close to being an eigenfunction of the operator in 

question. I.e., the expression 

(5.13) 

cannot be sensibly interpreted as an expectation value for 6 unless \If happens 

to be a near-eigenfunction for this operator. Otherwise the standard symmetric 

expression will have to be used. The biorthogonal method as formulated here is 

thus restricted to optimisation of the wavefunction and evaluation of, specifically, 

the energy. In the context in which we shall consider the biorthogonal method 

it is the optimisation step that requires the majority of the computational effort 

with standard methods. For the size of systems we intend to study here analysing 

the wavefunction in terms of, say, one- and two-electron properties will in general 

be quite straightforward using the standard expressions. 

5.4 The non-symmetric eigenvalue problem 

With no exceptions of which we are aware, previous work utilising the biorthog

onal approximation has been based on solving the associated linear variational 

problem. It therefore seems appropriate to go into some detail here in describing 

the non-symmetric generalisation of the standard eigenvalue problem. 

As discussed in section 5.3, our aim is for the relation 

(5.14) 

to be satisfied as accurately as possible. We can write that as 

(5.15) 

A necessary condition for cI> to be zero is then 

(5.16) 
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Constructing the matrix representation, ii, of the Hamiltonian operator in the 

basis of the left- and right-hand function sets, {~} and {'l1} respectively, this 

condition may be expressed as 

(5.17) 

with WI being the optimal wavefunction. This result is analogous to the cor

responding condition normally put on the symmetric Hamiltonian. In the tra

ditional case the component of ~ in the direct space is forced to zero, whereby 

W becomes the projection of the exact solution onto the direct space. In the 

biorthogonal method it is the component of ~ in the biorthogonal space which is 

zero. 

We wish to find a general non-singular transformation of the Ndim right-hand 

structures, according to 

{w'} = {W}T, (5.18) 

such that (5.17) is satisfied. The transformation of the left-hand structures must 

then, in order to preserve biorthogonality, be 

(5.19) 

In this way the overlap matrix, which we can assume to be the identity for the 

untransformed direct and biorthogonal sets (if CSFs based on orthogonal spin 

functions are used), is unchanged: 

(5.20) 

As an illustrative example it is useful to consider the solution to a simple 

two-state problem with Hamiltonian 

(5.21) 

where in general H12=1H21 • We can solve this for the first eigenvector by trans

forming according to 

iI' = T-liIT = ( 1 
-..\1 
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( 

Hll - >"IHI2 

- H21 + >"1 (Hn - H22 ) + >..~ H12 
(5.22) 

In this way solving the equation 

(5.23) 

for >"1, will lead to the required solution for the first (right-hand) eigenvector. 

We have two comments to this statement. Firstly, we may consider solving the 

equation to first order in >"1' Ignoring terms containing >..~ above, we get 

H21 
>"1 = - - -, 

Hll - H22 
(5.24) 

and thus an associated energy to first order as 

(5.25) 

This is analogous to what may be obtained by a first order perturbation treatment 

of the symmetric case. Secondly, we note that complex eigenvalues and roots are 

possible, in the present case if 

(5.26) 

The complex eigenvalues will always occur as complex conjugate pairs with com

plex conjugate eigenvectors.3 A given eigenvalue will be real if the matrix H is 

not very 'far' from being symmetric and if the closest eigenvalue evaluated from 

the symmetrised H (Le., !(H+flt)) is not near-degenerate [8]. 

In the same way as was done for the first eigenvector, we may obtain the second 

eigenvector by transforming H. This will give a total (direct) transformation 

matrix as 

(5.27) 

3We can view the roots as being solutions to the secular polynomial (or: characteristic 

equation) of Ndimth degree: det(H - ~I) = O. The complex roots of a polynomial with only 

real coefficients will always occur as conjugate pairs. 
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with 
fl~2 fll2 

A2 = - - - - - (5.28) Hh - H~2 Hu - H22 - 2AIH12 

The diagonal elements of ii' will be unaffected by this second transformation 

since fl~l =0. In the general case it is thus sufficient to bring the Hamiltonian to 

triangular form in order to obtain the correct eigenvalues. If all the eigenvectors 

are also required, however, the Hamiltonian must be completely diagonalised. 

Once the Hamiltonian has been diagonalised, the right-hand eigenvectors are 

the best possible approximations in {w} to the corresponding exact eigenstates, 

in the sense that all components of iIw i in the biorthogonal space {~} are zero 

except for ~ i. Similarly the left hand eigenvectors will be the best possible approx

imations in {~} to the corresponding eigenstates, since when the Hamiltonian is 

completely diagonal the conjugate of (5.17) is also fulfilled. 

As mentioned before, the eigenvalues of the non-symmetric eigenvalue prob

lem do not adhere to the variation principle, in the sense that Ei > E:x will not 

necessarily hold for any given i. In spite of this it is generally assumed that 

the ordering of the eigenvalues is basically correct. Thus the ith eigenvector is 

interpreted as the best approximation to the ground state if 

for all j -::/= i. (5.29) 

This will pursued further in sections 5.6 and 5.7. 

In practice most computational subroutine libraries have procedures available 

for carrying out such diagonalisations of non-symmetrical matrices. Special con

siderations may be necessary for larger dimensions of the matrix involved, as often 

encountered in quantum chemical problems. Normally only the lowest-lying roots 

are required, and this is utilised in a generalisation of Nesbett's algorithm [8J, and 

in a modification of Davidson's scheme [91. 
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5.5 Error analysis 

The energies obtained using the biorthogonal method are in error for two reasons: 

the error in the biorthogonal energy evaluation, and the error in the biorthogonal 

optimisation criterion. It has been shown, [10], that the error in the hiorthog

onal energy is proportional to the errors in the dual and direct wavefunctions 

respectively, as 

bE oc I~I x IAI, (5.30) 

where the exact eigenfunction in the full CI space is written as 

(5.31) 

Wex , ~ and W all being normalised. With the assumption that IAI is big, and IAI 
is small (since W is close to being an eigenfunction), we can see that the error in 

the energy is first order in the error of the wavefunction-not second order as is 

the case for traditional methods. 

The next step is to ask: how big is the actual error in the biorthogonally 

optimised wavefunction defined by the condition (5.17), and what is the differ

ence between the biorthogonally optimised wavefunction and the traditionally 

optimised one? We will attempt to answer these questions in the calculations. 

5.6 A super-CI approach for orbital optimisa

tion 

The super-CI approach is a widely used method for optimising orbitals, using 

a sequence of CI calculations [11, 12, 13], and the scheme described below has 

some points in common with the strategy for optimising non-orthogonal orbitals, 

employed by van Lenthe and coworkers [14, 15, 16]. The super-CI approach is 

often preferred in circumstances where using the explicit conditions on the or

bitals would in some way be impractical. For the biorthogonal method there are 
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two good reasons to prefer such a scheme: the non-symmetric eigenvalue prob

lem, as described in section 5.4, is very well understood, and a straightforward 

minimisation of the energy functional is not feasible due to the break-down of the 

variation principle. 

We will here concentrate on optimising a wavefunction of spin-coupled form 

(5.32) 

We aim to optimise this function with respect to the spin-coupling coefficients, 

CSk, and the orbital parameters, in a similar manner as was described in sec-

tion 1.3. 

We first consider the relationship between the direct and dual orbital sets for 

this case. It is useful, as done in section 2.2, to partition the direct orbital set 

according to 

1. Fro7.en core 

2. Optimised core 

3. Active orbitals 

4. Virtual orbitals 

We may assume, without loss of generality, that the core and virtual orbitals 

are orthogonal amongst themselves as well as to the active orbital set. The only 

necessary non-orthogonality is between different active orbitals. This means that 

the dual active orbitals are given as 

{5.33} 

with SIlV=(cPlllcPlI)' The dual core and virtual orbitals coincide with the direct 

ones. In the following we will for simplicity only allow frozen core orbitals, which 

we will assume have been effectively removed from the problem as discussed 

in section 1.4, but it would be fairly straightforward to extend the procedures 

described bellow to allow also core optimisation. In the remainder of this chapter 
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we will use 1-", v, ... for occupied orbitals, ct, f3 for virtual orbitals, and 1], () for 

orbitals that may be either occupied or virtuals. 

The super-CI scheme adopted in this work may be classified as a two-step 

procedure, with alternating updates of spin-coupling coefficients and orbital pa

rameters. This is useful to limit the size of the non-symmetric Hamiltonian that 

has to be set up and diagonalised. Other schemes have taken this one step further, 

updating one orbital at a time, for example (see ref. [17]). 

The spin coupling coefficients, CSk, are obtained by solving the If x If secular 

problem, ensuring that 

(5.34) 

It should be noted that the biorthogonal Hamiltonian matrix of spin-coupled 

structures is symmetric. This is due to the fact that only the spin-part of the 

wavefunction varies between the different functions. However, since there is also in 

this case a difference in the spaces spanned by the left- and right-hand structures, 

the energies obtained will still not be variational. 

For this set of spin coupling coefficients we now consider, as in section 2.5, 

orbital updates of the form 

(5.35) 

As discussed in section 3.2 this give rise to a change in the wavefunction according 

to 

.T, --+ .T, + QE~ (I),T, + ( Q)2E· (2).T, 
'.l.'se '.l.' se Cil TlIJ '.l.'se clJ TlIJ '.l.' se· (5.36) 

Indeed any arbitrary combination of orbital updates gives rise to a change in the 

wavefunction of the form 

\lise --+ 'lise + (L C~E~~\lIse) + O(c2
), 

IJ.TI 
(5.37) 

where O(c2
) contains the terms of second and higher orders in the orbital coeffi

cients. The next step is to set up and solve the secular problem in the space of 

\lise and all the singly ionic and singly excited structures. Assuming first order 
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behaviour in equation 5.37, we may then obtain the orbital parameters from the 

corresponding coefficient of the given eigenvector. 

Since the higher order terms of the orbital parameters will be negligible only 

close to convergence, it is necessary to iterate until self-consistency. All these 

considerations are equivalent to the standard super-CI case, the only difference 

being that a non-symmetric secular problem is solved in order to obtain the 

right-hand CI-vector. 

A number of problems were encountered in the practical optimisation, which 

are not normally associated with variational super-CI schemes. Various 'conver

gence accelerating' schemes, along the lines of those described in ref. [16], were 

attempted, but none gave any considerable improvement. An important compli

cation was the finding that the converged solution did not always correspond to 

the lowest root of the secular problem (this will be discussed further in the follow

ing section). So by consistently choosing the lowest-lying CI-vector for the next 

update, convergence onto the correct solution is by no means ensured. An alter

native strategy attempted, was to choose the CI-vector that is changed the least 

from the previous iteration, but this instead risks convergence onto higher-lying 

solutions. 

These complications may perhaps be overcome, but the main consideration 

making a more sophisticated treatment of the optimisation problem warranted is 

the exceptionally poor convergence characteristics of the super-CI scheme. This 

made convergence literally impossible when the numbers of active electrons and 

spin functions took reasonable values. 

5.7 A non-symmetric Newton-Raphson scheme 

The convergence characteristics of the super-CI approach has proven to be unsa

tisfactory-especially since systems with a reasonable number of orbitals and 

spin functions often exhibit oscillatory convergence characteristics. We now be-
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lieve the poor convergence characteristics to be a consequence of the inherent 

assumption regarding the transformation of the dual structure set as laid out in 

equation (5.19). After the orbitals are updated in a real iteration, both the direct 

and dual structures will span entirely different spaces, and this is what leads to 

the break-down of that assumption. 

In order to lay the foundation for a more rigorous treatment of the optimi

sation problem we start by generalising the case of linear variation as outlined 

in section 5.4 to the case of general non-linear variables. In order to do this we 

consider again the linear two state problem as in section 5.4. We transform the 

direct wavefunction as 

(5.38) 

and the dual wavefunction similarly according to 

(5.39) 

The factor in front is included to keep the overlap between \lI~ and ~~ normalised. 

This will give a biorthogonal energy as 

- - 1 - - __ __ 
E = H~1 = 1 _ ,\~ (Hu + ,\H12 + ,\H2l + ,\,\H22 ) 

= fIu + ,\fI12 + ~fI21 + '\~(fI22 - fIu) + 0(,\3), (5.40) 

where we have expanded the normalisation factor. With this formulation the 

variables ,\ and ~ will of course in general be interdependent. The necessary 

condition for WI to be an eigenfunction, that H21 =0, can with this formulation 

be expressed as 
aE 
-- =0. a,\ (5.41) 

Generalising this to an arbitrary number of variables, we can write this condition 

as 

with 

g=o, 

_ aE 
gi = ---. 

a'\i 
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Note that this gradient is defined as the partial derivative of the biorthogonal 

energy. The ordinary gradient, on the other hand, would take the relationship 

between the direct and dual parameter sets into account (see below). 

For a variational method the Hessian must be positive (semi-) definite since 

otherwise an infinitesimal change of the parameter set could lead to a decrease 

in the energy. Examining (5.40) it is clear that this is equivalent to the condition 

H22>Hu. So generally, a variational super-CI scheme must always converge 

onto a situation where the solution is lower in energy than all other roots of the 

secular problem. As was seen in the last section, this is not always the case 

for the biorthogonal super-CI scheme, and this feature must be accepted if a 

non-variational optimisation is undertaken. This also means that one can put 

no conditions on the biorthogonal Hessian-it may have, and indeed often has, 

a number of negative eigenvalues at convergence. We note that it is of course 

possible to converge onto stationary points with a positive definite Hessian, but 

the energy for such a situation may very well be quite a bit higher than for the 

situation with one or more negative eigenValues. 

Our basic aim is to solve (5.42) using a simple Newton-Raphson procedure. 

To achieve this we define a Hessian matrix according to 

(5.43) 

Note that this is the ordinary derivative with respect to the direct parameter. In 

this wayan update may be found, simply by solving 

G6 = -g. (5.44) 

This is the basic underlying equation for the optimisation procedures considered 

in the present work. We will first outline how the gradient and Hessian entering 

this expression may be evaluated for the case of the spin-coupled optimisation 

problem, after which further details of the optimisation schemes actually em

ployed will be provided. 
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For the (ordinary) derivative with respect to a right-hand parameter it is 

necessary to use the chain rule: 

~=~+LO~j ~ . 
dAi aAi j aAj OAj (5.45) 

In the optimisation we may consider the optimisation of spin coupling coefficients 

and orbital parameters respectively. The present implementation of this approach 

is, like the super-CI procedure described in the last section, a two-step procedure 

with alternating updates of the spin-coupling and orbital parameter sets. We here 

derive sufficient expressions to make it clear how also a complete second-order 

procedure could be employed. 

Optimisation of the linear spin-coupling coefficients is of course little different 

from the considerations given in section 5.4. As such the optimal coefficients 

may be determined simply by solving the secular problem. In the context of an 

iterative orbital optimisation procedure, however, step-size control is likely to be 

imperative (see section 1.3). 

As mentioned in the last section, the biorthogonal Hamiltonian of the spin

coupled structures is symmetric. The secular problem (d. section 5.4) may thus 

be solved by a unitary transformation, or: identical transformations of the direct 

and dual structure basis. So there is no difference between the two sets of spin

coupling coefficients, and (5.7) reduces to the trivial 

d a a 0 
-=-+-=2-
dCsk aCSk aCSk aCSk . (5.46) 

The derivative of the biorthogonal energy with respect to a spin coupling 

coefficient is (similarly to the discussion in section 3.2) given as 

with 

aE - ~ 
~ = (wscIHlwk) 
UCSk (5.47) 

(5.48) 

In order to obtain expressions for the derivatives with respect to the orbital 

parameters, we consider again simple updates of the form 

(5.49) 
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It is useful to distinguish between what might be termed 'internal' updates of the 

form 

(5.50) 

and orbital updates utilising the virtual orbital space 

(5.51) 

The former type of update is the simpler, since the change in the dual orbital 

set is just 

(5.52) 

This may be verified by confirming that the dual set defined in this way does in 

fact satisfy the biorthogonality condition (5.5). As shown in ref. [4], if the direct 

orbital set on one hand and the space spanned by the dual set on the other are 

both defined, the biorthogonal set is unique. I.e., only one set of dual functions 

exists that satisfies (5.5). This leads to the expression 

8CJ!: 
~=-1 
8d!. ' 

'" 
with the remaining such derivatives all being zero. 

(5.53) 

For the second type of update the change in the dual set, by use of (5.6), can 

be shown to be 

(5.54) 

to first order in c~. There will also be higher-order terms due to the change in 

the direct overlap matrix of the form 

(5.55) 

but these are not required for our purposes. This then gives 

[8c~l ( -1) 8&.: = S III-'" 

'" q!=o 
(5.56) 

Using this first to obtain expressions for the ordinary gradient, g, gives 

g,; = [:~L:o -[::1.::0 (5.57) 
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and 

r
aE] -1 raE] 

9cf, = a&.: + 2:(8 )/11-1 8~ _ . 
p. S!=O /I /I ~=O 

(5.58) 

Similarly, for the Hessian matrix, G, defined as in (5.43) one gets 

(5.59) 

and 

(5.60) 

The first (partial) derivatives of the biorthogonal energy with respect to the 

orbital parameters may be expressed as 

(5.61) 

and 

r
aE] _ A(I) - A 

a-TI - (EfiP. 'I1scIH I\lIsc ). 
ep' c:=o (5.62) 

For the second derivatives required we have 

for (J-LTJ) =1= (vB), (5.63) 

(5.64) 

and 

(5.65) 

with E~:) -_ describing the corresponding double excitation. All these derivatives Tlp',e" 

were evaluated by expanding the direct and dual wavefunctions in terms of Slater 

determinants. In this case it is simple to identify the respective values by using 

the Slater-Condon rules for matrix element evaluation. 

For the 'pure' Newton-Raphson scheme, employing 5.44 directly, the con

vergence characteristics were very encouraging indeed. Trust region control is 

important for the stability of the optimisation procedure (as discussed in sec

tion 1.3), and in order to implement this, some measure of the 'success' of an 
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update is in general needed. For the 'pure' Newton-Raphson, the quantity 

(5.66) 

was defined (the norm of this gradient would be an alternative choice). In this 

fashion, updates that increase k may be rejected, and the improvement of k may 

be contrasted to that predicted by the second order model. In this way the 

trust region size may be adjusted in much the same fashion as for variational 

procedures. 

The pure N ewton-Raphson scheme will not in general converge onto the 

lowest-energy solution. To amend this fact, a modification in the spirit of the 

CQT method described in section 1.3 has proven very successful. The CQT 

method may be viewed as a linear combination of a steepest-descent approach 

and the Newton-Raphson scheme. In the variational variant of this procedure 

this linear combination is made such as to favour updates that obtain a positive 

definite Hessian, but this is not applicable to the biorthogonal case. Instead we 

have had good experience with the simple combination 

6' = a(6 - /3g). (5.67) 

Here 6 is obtained from (5.44), /3 is adjusted during the optimisation procedure, 

and a is determined so as to obtain an update within the trust region size. An 

inherent problem with this, as for any non-variational procedure, is how to deter

mine trust sphere sizes and values for the parameter /3. The pure steepest-descent 

method, when applied to biorthogonal orbital optimisation, obtains essentially ar

bitrarily small energies, this generally being associated with linear dependence in 

the direct orbital set. Thus if /3 above is chosen too big this kind of divergence 

may occur. On the other hand if the value for /3 is too small, convergence onto 

an excited state is likely. We have not found this to be a major problem, there 

seems to be scope for quite a bit of variation in the choice of /3. A feasible starting 

value in many cases, is given by 

(5.68) 
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Close to a stationary point the modification of the pure Newton-Raphson scheme 

will of course impede convergence. When k defined in (5.66) becomes sufficiently 

small, the value of f3 is thus adjusted down and eventually set to zero. 

A consideration we have not touched upon so far is the cost of integral transfor-

mations during the optimisation procedure. Implementing the algorithm outlined 

above literally, would require a full transformation of all two-electron integrals 

every iteration which would soon become computationally prohibitive. To cir

cumvent this we consider updates of the form 

(5.69) 

where XP is a generic basis function. To obtain the the orbital gradient, the two 

following partial derivatives are then required: 

and 

[:]0:=0 . 
Similarly, for the evaluation of the Hessian partial derivatives of the forms 

and 

[ 
a2E ] 

a~att C!=O 

are needed. Once these quantities are evaluated it is trivial to transform them 

to obtain expressions for the partial and ordinary gradient defined in terms of 

occupied/virtual orbitals. In the evaluation the following partially transformed 

integrals will be required 

• Two-electron integrals: (XP¢IJIH21<Pv<Pu), (¢IJ¢vIH2Ixp<Pu), (XpXqIH2 1<pIJ <pv) 

and (Xp¢IJIH2 IXq<Pv)' 
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This may be compared with the similar quantities needed in the (variational) 

optimisation of the spin-coupled wavefunction (see section 1.3). Also for the 

present case there is little extra cost involved in obtaining the partially trans

formed integrals since the fully transformed integrals are normally constructed 

by transforming one index at a time. Thus the cost of the integral transformations 

is comparable to that for standard spin-coupled calculations. 

5.8 Triplet methylene 

A series of test calculations were performed on the triplet state of the CH
2 

molecule. CH2 has C2v symmetry; the geometry was taken to be L(H-C-H)=130° 

and r(C-H)=1.082A. For the basis set a standard double zeta (DZ) set [18] was 

chosen, consisting of (9s5P/4s) gaussians contracted to [4s2p/2s] for C/H. The 

lowest-lying SCF MO (corresponding approximately to Is2 on C) was kept doubly 

occupied (frozen core), while the 6 valence electrons were active, the correspond

ing orbitals expanded in the basis of the remaining 13 MOs. 

The spin-coupled orbitals for this system are shown in figure 5.1 (six positive 

contours were plotted). The bonding orbitals are plotted in the molecular plane, 

the non-bonding in the perpendicular plane. The corresponding overlaps are 

given in table 5.1. The description of both C-H bonds resembles what was 

found for the singlet state of this molecule (section 4.1), i.e., spX-type hybrids 

on carbon pointing towards deformed Is orbitals on hydrogen. (Since SP2 and 

H2 are related to SPI and HI by symmetry, they have not been included in 

figure 5.1.) The corresponding electron pairs are very nearly singlet-coupled. 

The non-bonding orbitals, LPI and LP2, are in this case slightly different. LPI 

is an in-plane spX-type hybrid, whereas LP2 is a 7r-type orbital (of B} symmetry). 

The electrons associated with the non-bonding orbitals are in this case very nearly 

triplet-coupled. 

The spin coupling for CH2 is shown in table 5.2. As for methane, the Serber 
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SP1 HI 

H H 

LP1 LP2 

Figure 5.1: Spin-coupled orbitals of CH2 (triplet). 

(SP1/H1) (SP1/SP2) (SP1/H2) (SP1/LP1) (H1/H2) (H1/LP1) 

SC 0.79257 0.50835 0.19120 0.44087 -0.05886 0.21367 

BO 0.82807 0.32601 0.18761 0.30293 0.11655 0.15005 

Table 5.1: Non-zero, symmetry-unique overlap integrals for CH2 triplet. 
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Figure 5.2: Biorthogonal orbitals of CH2 (triplet). 
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SC BO 

((11)2;1) 0.07% 0.03% 

((10)1;0) (-)0.06% (-)0.05% 

((01)1;0) (-)0.06% (-)0.05% 

((11)1;0) 0.00% 0.00% 

((10)1;1) (-)2.59% (-)3.04% 

((01)1;1) (-)2.59% (-)3.04% 

((11)1;1) 0.00% 0.00% 

((11)0;1) (-)0.74% (-)0.40% 

((00)0;1) 93.90% 93.38% 

Table 5.2: Weights of Serber spin functions for the SC and BO wavefunctions 

(phase in brackets). 

basis is convenient for highlighting the relationship between symmetry-equivalent 

functions. The perfect-pairing mode of spin coupling is dominating, and adding 

the modes where only one of the SP-H pairs is triplet-coupled accounts for 99.1 % 

of the total spin function. The tendency for the non-bonding orbitals to couple 

to a singlet is very small indeed. 

The biorthogonal orbitals for CH2 are shown in figure 5.2. As can be seen there 

is quite good qualitative agreement between the spin-coupled and biorthogonal 

orbitals. The bonding orbitals exhibit a slightly greater deformation towards each 

other, which is reflected in their greater overlap, but this is in spite of a smaller 

weight of the perfect-pairing function for the biorthogonal wavefunction. Also 

the non-bonding spX-type hybrid is slightly more diffuse for BO, whereas the two 

7r orbitals are very similar. 

The biorthogonal wavefunction had at convergence 9 negative eigenvalues of 

the orbital-orbital Hessian defined according to 

(5.70) 
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(Since the spin-spin Hessian is symmetric the lowest root must of course be the 

first.) This would correspond to convergence onto root number 10 in the super

CI strategy. This illustrates one of the problems in the super-CI strategy that 

a number of roots may have to be investigated before the correct solution is 

obtained. 

To illustrate the relationship between the SC and BO wavefunctions further, 

we show here Hamiltonian and overlap matrices evaluated between the structures 

'lise, WBO, ~se and ~BO respectively: 

-38.95026 -38.88167 -1.15049 -1.18677 

-38.88167 -38.94768 -1.18476 -1.22989 
H= 

-1.15049 -1.18476 -35.19663 -34.73075 

-1.18677 -1.22989 -34.73075 -35.15383 

1 0.99824 0.02950 0.03043 

0.99824 1 
8= 

0.03043 0.03159 

0.02950 0.03043 1 0.98731 

0.03043 0.03159 0.98731 1 

As can be seen the quality of the biorthogonal wavefunction is quite good, it is 

only separated from the spin-coupled wavefunction by some 3 millihartree. One 

must say that the dual wavefunctions are exceptionally poor energy-wise. Their 

purpose is to facilitate the matrix element evaluation, but they can be attributed 

no real physical meaning. The similarity of the spin-coupled and biorthogonal 

wavefunctions is also indicated by their large overlap-0.998. Comparing equiv

alent orbitals for the two cases much the same conclusion emerged, the smallest 

overlap being 0.989 between the two equivalent LPI orbitals. 

From the matrices above we may also obtain the biorthogonal energies for the 

spin-coupled and biorthogonal wavefunctions, as 

Esc = H(3, 1)/8(3, 1) = -1.15049/0.02950 hartree = -38.99403 hartree 
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and 

EBD = H(4, 2)/S(4, 2) = -1.22989/0.03159 hartree = -38.93630 hartree. 

That these values agreed with those obtained using the biorthogonal energy evalu

ation was a reassuring check of the new program. It is clear that the biorthogonal 

energy for the biorthogonal wavefunction is rather more realistic than the corre

sponding energy for the spin-coupled wavefunction. In an attempt to understand 

the underlying reasons for this we follow the error analysis by Boys [10]. 

We note that the 'error', measured as the length of the difference vector, is 

related to the overlap integral according to 

(5.71) 

for normalised wavefunctions. With the spin-coupled orbitals (full CI in the space 

of the 6 orbitals) an energy of ESC+CI=-38.95375 hartree is obtained. The error 

in the spin-coupled wavefunction is 

(Wexlwsc) = 0.99897 -+ I~I = 0.04541 

and in its dual 

(~exl~sc) = 0.03016 -+ I~I = 1.39167. 

Using these values then gives estimates for the proportionality constant, € as may 

be defined from equation (5.30), as €=1.72, €=1.94 and €=-O.64, for the spin

coupled wavefunction, its dual, and the biorthogonal energy respectively. The 

biorthogonal energy for the spin-coupled wavefunction is in this case lower than 

the full-CI energy, so € must thus be negative. 

We may also perform this analysis for the biorthogonal wavefunction. The 

energy for the full-CI wavefunction in this case was EBO+CI =-38.95285 hartree. 

The error in the biorthogonal wavefunction is 

and in its dual 

('l1 ex lwsc) = 0.99777 -+ I~I = 0.06680 

(~exl~sc) = 0.03094 -+ I~I = 1.39216. 
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This then gives f=1.16, f=1.96 and f=0.18 for the three cases respectively. 

It seems that these variations in f do not conform to any logical patterns, and 

one must conclude that the errors in the optimised wavefunctions are too big to 

make such analysis very useful. 

5.9 Naphthalene 

As an example of a system with slightly more active electrons we have chosen the 

7r-electron system of naphthalene, ClOHs, (singlet). The considerations regarding 

the validity of (J-7r separation are of course analogous to the case of benzene. 

Naphthalene is planar with D2h symmetry, the precise geometry used in this 

work was as determined by rotational spectroscopy in ref. [19]. The same basis 

set as for CH2 (triplet) was employed [18]. There were 29 core orbitals and the 

10 active orbitals were expanded in 20 functions of 7r symmetry. 

The spin-coupled description of naphthalene has previously been reported in 

ref. [20]. The symmetry-unique spin-coupled and biorthogonal orbitals are shown 

in figure 5.3 (8 positive contours were plotted 1 bohr above the molecular plane). 

The description is reminiscent of that found in benzene with highly localised or

bitals associated with each carbon atom. Each shows slight deformation towards 

its nearest neighbours. 

We remark that for naphthalene the Hessian defined as in (5.70) had 10 neg

ative eigenvalues. Thus if a super-CI scheme was employed, the solution would 

at convergence be root number 11. 

The biorthogonal orbitals seem also in this case to be a very good approxi

mation to the spin-coupled orbitals. Particularly 4>10 seems to be slightly more 

localised for the BO orbital. This may be verified by examining the overlap ma

trix, table 5.3 (the orbitals are here numbered consecutively round the ring). We 

have in this case chosen to present the spin coupling as the expectation values of 

(8#+8 11 )2, between the symmetry-unique orbital pairs-table 5.4, but we have also 
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Figure 5.3: SC and BO orbitals for naphthalene. 
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(112) (113) (114) (115) (116) 

SC 0.60682 0.06326 -0.02668 0.06780 -0.07032 

BO 0.60602 0.11714 0.04941 0.10290 -0.04997 

(117) (118) (119) (1110) (213) 

SC -0.05099 0.00330 0.09933 0.42746 0.39764 

BO -0.01871 0.02654 0.07784 0.36890 0.38036 

(214) (215) (216) (217) (218) 

SC 0.06326 -0.12157 -0.05099 0.01706 0.02213 

BO 0.11714 0.01615 -0.01871 -0.00628 0.00879 

(219) (2110) (3110) (4110) (5110) 

SC 0.00330 0.04319 -0.12157 0.06780 0.59086 

BO 0.02654 0.10208 0.01615 0.10290 0.58812 

Table 5.3: Symmetry-unique overlap integrals for naphthalene. 

(112) (113) (114) (115) (116) 

SC 0.30660 1.85126 1.10894 1.79468 1.40106 

BO 0.23589 1.86780 1.06717 1.83922 1.32013 

(117) (118) (119) (1110) (213) 

SC 1.61266 1.35912 1.65881 0.90687 0.86627 

BO 1.66733 1.31664 1.68929 0.99652 0.95098 

(214) (215) (216) (217) (218) 

SC 1.85126 1.20556 1.61266 1.36278 1.61375 

BO 1.86780 1.12839 1.66733 1.32918 1.66047 

(219) (2110) (3110) (411O) (5110) 

SC 1.35912 1.82199 1.20556 1.79468 0.54180 

BO 1.31664 1.84332 1.12839 1.83922 0.38508 

Table 5.4: Symmetry-unique expectation values of (8#,+8,.,)2 based on the total 

spin function. 
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SC BO 

ReI: (1-2,3-4,5-6,7-8,9-10) 13.96% 3.15% 

Re20 : (1-2,3-4,5-10,6-7,8-9) 30.95% 32.36% 

Re23 : (1-10,2-3,4-5,6-7,8-9) 13.96% 3.15% 

Table 5.5: Chirgwin-Coulson weights of the 'KekuIe' spin functions for naphtha

lene. 

given the Chirgwin-Coulson weights of the three Kekule-type Rumer functions

table 5.5. The smaller overlaps between the bond-forming orbitals in the case 

of BO is contradicted by the larger tendency towards singlet coupling between 

these orbitals, i.e., smaller values for ((8",+811 )2). This is the reverse of what was 

found for CH2 where larger bond-forming overlaps were associated with a smaller 

weight of the perfect-pairing mode of spin coupling. 

We have again constructed Hamiltonian and overlap matrices in the basis of 

'lise, WBO, ~sc and ~BO respectively: 

-383.34272 -373.43529 -1.41123 -2.44918 

-373.43529 -383.32426 -2.44677 -4.05072 
H= 

-1.41123 -2.44677 -379.81846 -369.13665 

-2.44918 -4.05072 -369.13665 -379.96811 

1 0.97415 0.00368 0.00639 

0.97415 1 0.00638 0.01057 
s= 

0.00368 0.00638 1 0.97170 

0.00639 0.01057 0.97170 1 

The separation between the two wavefunctions is 18 millihartree which is some

what disappointing, but a likely consequence of the biorthogonal approximation 

for this number of active electrons. The overlap between the two wavefunctions , 
0.97415, might also have been higher. The individual overlaps between equiva

lent orbitals were slightly better, the smallest being 0.99328 between the central 
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orbitals. The biorthogonal energies for the two wavefunctions are 

Esc = H(3, 1)/8(3, 1) = -383.57261 hartree 

and 

EBo = H(4, 2)/8(4, 2) = -383.22066 hartree. 

The uncertainty in these values is of course unacceptable, so it seems imperative 

that the biorthogonal energy expression should be used only during the optimi

sation. 

5.10 Discussion 

A fairly substantial amount of work has been invested in evolving an acceptable 

optimisation procedure, and we believe that this has been achieved to a large 

extent. Certain inescapable problems are connected with the fact that the opti

misation is not a simple minimisation problem, but these may be circumvented 

fairly straightforwardly. One should, however, exercise some critical sense in ver

ifying that the state obtained is in fact reasonable, but this probably holds true 

for any optimisation procedure. 

In this work we have assumed that the optimal biorthogonal root would have 

the lowest biorthogonal energy. This has been true for the examples given here, 

but in view of the large discrepancies between the energies evaluated using the 

variational and biorthogonal expressions, this may not always be the case. In 

practice the nature of the orbitals and spin coupling are likely to suggest the 

existence of lower solutions. A possible way to take this into account could be 

to search for the stationary point, as defined by (5.41), that has lowest standard 

energy. These roots might for example be classified by the number of negative 

eigenvalues of the biorthogonal Hessian, and this would suggest schemes more in 

the spirit of traditional GQT schemes in order to locate different solutions. 

The biorthogonal optimisation criterion seems to have been fairly successful 

for the cases treated here. This is in spite of the quite large variations in the 
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biorthogonal energy between similar wavefunctions. The biorthogonal approxi

mation may not in all cases give quantitatively satisfactory results particularly 

for larger numbers of active electrons, but in view of the small computational 

cost the results are still very encouraging. It is likely to be an excellent way of 

getting qualitative descriptions for systems outside the scope of the variational 

spin-coupled or CAS methods. The biorthogonal method may be the only viable 

way of obtaining spin-coupled-like pictures for 16 or 18 active electrons and the 

full spin space. 

5.a Appendix: Biorthogonality as a notational 

tool 

This discussion does not fit in with the main test of this chapter, but it never

theless se~ms useful to point out how biorthogonality may be utilised, not as a 

method of computational convenience, but as a convenient notation when non

orthogonality is encountered. 

As pointed out in [21], a Hamiltonian matrix, say, may be defined in two quite 

distinctly different manners. The most commonly used definition is according to 

(5.72) 

In many cases however, the Hamiltonian matrix defined as the transformation 

matrix of the set of functions {~}, i.e., according to 

{iI<l>} = {<l>}H, (5.73) 

will be required. For the case of orthogonal functions, the two definitions coincide , 
but this seems to be the source of no little confusion for the corresponding case of 

non-orthogonal functions. The general relationship between the two definitions 

is 

(5.74) 

206 



So by defining a dual set of functions in the usual manner, 

(5.75) 

it is possible to define H also in the 'standard' form via its matrix elements 

according to 

(5.76) 

To give just one example where such a strategy may be very useful, we take 

the second quantised formalism which is widespread in the standard MCSCF 

literature. In the standard fashion we define the set of creation and annihilation 

operators corresponding to the spin orbital set {cp} according to 

(5.77) 

and 

(5.78) 

The anticommutation relations 

{at at} - 0 r' 8 - (5.79) 

and 

are a simple consequence of the antisymmetry of the wavefunction. For the 

relationship between a creation and an annihilation operator we have 

(5.81) 

which leads to the anticommutation relation 

(5.82) 

With this definition, many of the second quantised relations normally used for 

orthogonal orbitals will hold also for non-orthogonal orbitals. The energy ex

pectation value, for example, may be evaluated using a Hamiltonian on second 
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quantised form according to 

(5.83) 

This formulation is of course entirely equivalent to what may be derived from 

considering standard Hamiltonian matrix elements between antisymllletric wave

functions. As such the L6wdin formula may be derived from the anticommutation 

relation (5.82) directly. 

The above definitions are useful when we are evaluating just the H' represen

tation of the Hamiltonian (or any other operator), but one inadequacy becomes 

clear if we consider, say, the excitation operator Era. With orthogonal orbitals 

this is defined according to 

(5.84) 

It is clear, that if the orbitals are orthogonal, we have 

(5.85) 

So Ers may be interpreted as an excitation operator in the normal meaning of 

the word, in that it simply substitutes occurrences of <Ps by 'Pr. This will not be 

the case for non-orthogonal orbitals, however, due to (5.82). In this case it makes 

more sense to define, as done in ref. [2], the annihilation operator from the dual 

orbital set {<p} defined in the usual fashion 

(5.86) 

This means that the anticommutation relation analogous to 5.82 becomes iden-

tical to the orthogonal case 

(5.87) 

So with the definition of the excitation operator according to 

(5.88) 

the effect is, as in the orthogonal case, the simple substitution of 'Ps by 'Pr. This 

definition was used in chapter 2. 
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Chapter 6 

Two-body potentials for 

modelling ionic solids 

6 .1 Introduction 

Atomistic simulation have proven to be an important tool in the study of ionic 

solids, especially in areas that are not readily accessible for experiment such as: 

obtaining defect energies, describing surface effects and obtaining properties of 

crystals under extreme temperatures and pressures. 

The present study concentrates on highly ionic systems of mono-atomic ions, 

mainly the oxides and halides of the first two main-group metals. Only when 

a satisfactory understanding of these fairly simple systems is obtained, is it ap

propriate to raise our ambitions and consider more challenging areas. There is 

a tendency at present to become over-ambitious very early. Thus attempts at 

describing systems such as diamond and graphite using ionic models have been 

made-before universal agreement has been reached on a 'simple' system such 

as MgO. The comparative success of calculations employing such strategies illus

trates the power of present-day methods in describing covalent effects, but a lot 

of physics is lost from this inappropriate starting point. 

In most simulations, energy estimates are required for relatively arbitrary 
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configurations of ions. A large amount of attention has been given to this, 

including, to mention just a few approaches, density functional theory (OFT) 

calculations on the super-molecule, MO super-molecule treatments, techniques 

based on perturbation theory, finite cluster calculations, periodic Hartree-Fock 

and Carr-Parrinello schemes. 

In a large body of work [1, 2, 3, 4, 5, 6, 7, 8]. the interactions are divided 

according to the number of interacting species, into pair or two-body interactions, 

three-body, .... By only including interactions up to a certain (normally quite 

low) order, an estimate of the total energy may be obtained. In this work we 

concentrate on obtaining suitable pair potentials. 

There are inherent problems with this approach which should be pointed out. 

Although the above expansion is in principle exact if interactions up to N-body 

are included for the treatment of an N-particle system, there is no unique parti

tioning into the various many-body interactions. More serious, perhaps, is that 

no convergence in the energy estimate can be assured as more interactions are 

included in the expansion. For the pair interactions in particular it should be 

noted that there is no such thing as a 'correct' potential. During a practical 

calculation, a particular inter-ionic distance may be sampled under a wide range 

of circumstances (different surrounding geometries, varying degrees of shielding 

by species between the two ions in question etc.), and the best potential is there

fore, more than anything else, the best compromise between all these types of 

interaction. 

The pair potential is often written on the form [3] 

ZAZB N ) P 
VAB(R) = ~ + UAB(R + UAB(R;etA,etB)' (6.1) 

where R is the inter-ionic distance, and ZA and ZB the (formal) charges of the ions. 

Since the Coulombic part of this expression in general will be strongly dominant, 

this term is often excluded for comparison purposes. It is generally most accurate 

to calculate the electronic polarisation energy directly from the polarisabilities of 

the ions, O'.A and O'.B, as indicated by UfB(R; etA, etB) in equation (6.1). A very 
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successful method for dealing with this term is represented by the shell model, 

first introduced by Dick and Overhauser [9], in which a mass-less charged shell is 

combined with a spring such that, with appropriate charge and spring constant, 

the correct polarisability is obtained. It is not in the scope of this work to 

describe further details of the shell model. A large amount of attention has 

been given in the to the problem of obtaining realistic polarisabilities of ions in 

crystals [10, 11, 12, 13]. The particular relevance of this work to the present is the 

necessary attention to the effects of the crystalline environment on the description 

of the ions. This will be pursued further in section 6.4. We shall not consider 

the actual calculation of polarisabilities further here, but one thing that it is 

important to keep in mind when combining a theoretically obtained potential with 

the shell model (or other models taking into account the electronic polarisation 

energy) is to ensure that the polarisation energy component is properly excluded 

from the calculation. In other words, only the quantity UfB in equation (6.1) 

should be calculated. 

Pair potentials may be obtained in a variety of ways, but may be loosely di

vided into empirically based methods, and non-empirical. In empirical procedures 

a functional form of the potential is normally assumed, and the corresponding 

parameters fitted such that a subsequent simulation would give realistic crystal 

properties (lattice parameters, phonon frequencies, cohesive energies, elasticity 

constants etc.). The basic drawback of this approach seems to be the poor trans

ferability of pair potentials to different crystal systems, from bulk to surface prop

erties, or to different temperatures and pressures. Also typical sampling distances 

should be taken into account. A potential based on bulk properties at normal 

temperatures and pressures may not be appropriate for the study of interstitial 

formation, for example. These facts mean that, although many structures may be 

rationalised using empirical potentials, only few actual predictions can be made 

with any degree of confidence. 

A theoretical investigation is therefore important to clarify exactly which fae-
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tors are important in determining the form of a potential. The basic problem 

of calculating the interaction energy for two ions has many features in common 

with intermolecular forces, as will become clear in section 6.3. We shall therefore 

briefly recapitulate a highly successful approach to intermolecular forces based 

on the spin-coupled model. Thereafter we consider the actual potential genera

tion, before investigating methods of generating appropriate descriptions of the 

individual ions. 

6.2 Intermolecular forces using a valence bond 

approach 

The area of interest is here the interaction between two or more species that 

do not form actual chemical bonds. Often one or more of these will be closed

shell entities, but the actual charges of the interacting systems will not be of 

particular relevance to the development of the theory. Since the interactions 

considered here are very weak, especially in the intermediate and long range, it 

seems obvious that an approach based on unperturbed fragments as a starting 

point must be preferable. Ordering the different terms of the interaction energy, 

which can be done by perturbative methods, leads to electrostatic, induction and 

dispersion interactions. Furthermore, charge-transfer and correlation effects may 

play important roles for the interaction potential [14, 15]. Another consequence 

of the small magnitude of these interactions is that relativistic effects, which 

are customarily neglected when considering chemical interactions, may become 

important enough to affect the form of the inter-ionic potentials, particularly for 

the heavier ions (third row and beyond). These will not be considered further 

here, however. 

In the basic MO approach, interaction energies are obtained from a calcula

tion on the complete system of interacting species (the super-molecule). Since 

the interaction energy in the case of intermolecular forces is so small, a serious 
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problem in super-molecule calculations is the occurrence of basis set superposi

tion error (BSSE). This occurs when the description of one fragment is improved 

due to the larger basis set available in the presence of another fragment. This 

artificial error, which would not occur with a complete basis set, is unfortunately 

highly geometry dependent-one may say that the quality of the basis set de

pends strongly on the geometrical arrangement. Various schemes for correcting 

this error exist, but they are not always very reliable. By allowing non-orthogonal 

orbitals, the wavefunctions can be constrained to be on separate fragments, and 

this problem may be completely avoided. In chemical bond formation BSSE can 

be neglected compared with the (large) chemical interaction energy, so the average 

quantum chemist is most likely to come across this term only when considering 

intermolecular forces problems. 

The approach described here was first suggested by Wormer and coworkers (16) 

who showed that for the He-He system, very simple VB calculations reproduce 

the interaction energy obtained from fairly sophisticated MO-CI (super-molecule) 

treatments. This method has been further developed by Cooper and coworkers. 

A useful introduction may be found in the review, ref. [17], or most recently in 

work on the LiH··He system [18, 19]. For treating the interaction between two 

subsystems A and B, we define zeroth order wavefunctions 4>~ and 4>~, where 4>~ 

is defined in terms of A orbitals, ¢A, and 4>~ is defined in terms of B orbitals, 

¢B. The zeroth order wavefunctions may vary in level of sophistication, but will 

normally be simple SCF or SC wavefunctions. In order to avoid BSSE, orbitals 

belonging to system A are constrained to be expanded only in terms of A basis 

functions, and similarly for the B orbitals. We will consider here briefly the 

example of the Li .. He system, further details may be obtained from ref. [18, 19] 

or ref. [8]. Spin-coupled wavefunctions were obtained for the two fragments of 

the forms 

(6.2) 
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for LiH, and 

<pO _ A[.J.He.J.HeeHe] 
He - '1-'1 '1-'2 • (6.3) 

for the He subsystem. The ¢LiH orbitals are only expanded in basis functions 

centred on Li and H, and the ¢He orbitals similarly only in basis functions centred 

on He. 

The electrostatic interaction between the two systems is found by simply 

constructing the antisymmetrised product 

(6.4) 

and evaluating the energy. Besides the purely Coulombic interaction (between 

electron cloud A, electron cloud B, nuclei in A and nuclei in B) this includes the 

exchange interaction where an electron from system A is interchanged with one 

from B, stemming from the antisymmetriser in equation (6.4). 

The illduction energy can be attributed to the configurations .A[4>~IH<PHe] and 

A[<i>~iH<i>~el where the <i>/s are singly excited configurations. The dispersion contri

bution to the interaction energy can analogously be attributed to configurations 

of the form A[<i>bH<PHel· The form of the singly excited configurations in both of 

these expressions will of course strongly affect the rate of convergence of these 

different terms. It is therefore important to choose the virtual orbitals with some 

care. A recent publication that addresses this particular problem for the spin

coupled wavefunction may be found in ref. [19]. 

To determine the relative importance of these different terms, all configura

tions are included in a non-orthogonal CI calculation, and the relevant secular 

problem is solved. In this manner the interaction energy can in a consistent way 

be attributed to the electrostatic, induction and dispersion terms. 

Further correlation can be added to the SCF or SC description by describing 

each fragment by a small CI (VB) expansion. The electrostatic energy is evaluated 

by considering the direct product of these two wavefunctions. The size of this 

expansion increases very rapidly as the expansions on each fragment are enlarged, 
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and it is therefore not practical to augment the study of correlation effects with 

that of the induction and dispersion terms. 

The study of charge transfer effects requires a great deal of care, since these 

are closely connected with the BSSE mentioned earlier. A feasible approach is to 

optimise separately the ionised fragments A +, B-, A-and B+. These may then 

be combined, and the relative importance of the structures A[~A4>BI. A[~A~BI 

and A[cI>AcI>~l can be assessed by constructing the corresponding list of structures, 

and solving the secular problem He = ESc. This is the physically most direct 

way of describing charge transfer, so it is likely that BSSE related errors will be 

minimised. Even so, the effect of increasing basis set size on the importance of 

charge transfer should be investigated. 

It is important to realise that any error occurring from BSSE in the above 

scheme will tend to overestimate the importance of charge transfer. Thus if the 

energy improvement due to charge transfer and perhaps BSSE with a relatively 

small basis set is already negligible, this computation can be dispensed with in 

more sophisticated calculations. 

6.3 Describing the super-system 

It is useful to consider here the treatment of the super-system before we address 

the problems associated with describing the individual fragments. This will enable 

us in the next section to illustrate the effects of varying descriptions of the ions 

directly on the calculated potentials. 

This work is mainly concerned with the calculation of the electrostatic inter

action, or the simple Coulomb and exchange terms, as defined in equation {6.4}. 

Optimisation of the super-system wavefunction presents special problems in the 

case of ionic systems-some of these will be considered in appendix 6.a. The 

types of fragment wavefunctions we consider will be of either SCF, se or SeVB 

form. The optimisation of these wavefunctions will be performed in a simulated 
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crystal environment, as will be described in section 6.4, but once the set of vari

ational parameters that define the given wavefunction has been determined, the 

subsequent theory will be indistinguishable from the case of intermolecular forces. 

A technical point is the transformation of the spin functions used in the super

molecule calculation (e.g. Rumer, Kotani or Serber basis), to direct products of 

the spin functions from the calculations on the two subsystems. The transforma

tion matrix was in these calculations found simply by considering the coefficients 

of the spin functions in the determinant basis. If the spin functions on subsystem 

A and B are defined in terms of determinants as 

8kA) = L ~~A)(A)b)Ik 
I 

and 

8kB) = L ~~B)(B)b)Ik' 
I 

(6.5) 

then the direct product spin functions are 

8k1B) = L A(~~A)~}B»)(A)b)II:(B)b)JI' 
I,J 

(6.6) 

which, expressed in terms of the new spin basis, becomes 

8k1B) = L (AB)b-l)JJm(A)bhk(B)b)Jle~B) 
I,J,m 

(6.7) 

since 

e~B) = LA(~~A)~}B»)(AB)b)JJm. 
I,J 

(6.8) 

This rather 'brute force' way of obtaining the transformation matrix, has the 

advantage of being applicable irre~pective of the spin basis used in the three 

calculations. It is generally possible, especially if one is using Rumer functions, 

to reduce the spin space used in the super-system calculation. 1 Finding the 

direct product basis is of course necessary when the fragments are not allowed to 

relax, but even in the case when the super-system is reoptimised, it is useful to 

1 In some cases the maximum reduction may be obtained if orbitals in some of the configu

rations are reordered. 
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distinguish between the direct product and other type of spin coupling. In many 

cases2 restricting the spin space to be only direct products makes a great deal of 

sense. 

6.4 Describing a single ion 

A realistic description of an ion in a crystal is important for the determination 

of a range of properties, specifically the calculation of inter-ionic potentials. This 

has been addressed previously in for example ref. [20], but we also refer the 

reader to the general literature on calculation of inter-ionic potentials and ion 

polarisabilities. The present investigation is limited to mono-atomic ions, and 

we shall constrain these to be spherical. There is considerable evidence, both 

theoretical and experimental, that this is in fact an excellent first approximation. 

When considering the interaction between two non-spherical species, averaging 

over the angular variables would be necessary to obtain an interaction curve of 

high accuracy. The discussion is kept simpler and the computational effort more 

reasonable by insisting on spherical ions. 

In this section MgO is taken as a generic example to illustrate the main 

issues involved in generating inter-ionic potentials. MgO, or periclase, has rock

salt structure with lattice constant alat=4.208 A [21]. This being a highly ionic 

system means that an approach based on intermolecular forces is likely to be very 

well suited. For the same reason we can expect the effects of three-body (and 

higher) forces to be minimal. This being said there has for a number of years 

been disagreement on this system-particularly the description of the 0 2- ion. 

Resolving these discrepancies could mean a big step forward for this field as a 

whole. 

Unless otherwise stated the ions were described at the SCF level, both having 

electron configurations Is22s22p6. The basis sets used in the two cases were 

of triple-zeta-valence (TZV) quality, a (lOs6p)/[5s3p] basis for 0 2- [22], and a 

2E.g. if the iterative scheme proposed in the appendix (or something equivalent) was used. 
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(12s9p)/[6s5p] basis for Mg2+ [23]. 

To a first approximation we represent the surrounding ions by a simple lattic(' 

of point charges. For the highly ionic systems considered here it seems reasonable 

to neglect any effects related to charge-transfer, which means we can assign simple 

integer values to the point charges. For systems such as Ti02 which are ionic, but 

for which charge transfer is likely to play an important role, one might reconsider 

this premise. So for MgO the Madelung potential is simulated by an array of 

alternating +2 and -2 charges. We have here followed a scheme first introduced 

by Evjen [24] of scaling point charges on faces, edges and corners by ~, ~ and ~ 

respectively. The advantage of this is faster convergence with increasing lattice 

size of the Madelung potential in the vicinity of the central ion. Most molecular 

packages, including MOLPRO [25] which was used in the present work, have the 

ability to include point charges in the integral evaluation. 

If the electron density is constrained to be spherical, any point charge lattice 

can be substituted by a spherical potential. Even though for technical reasons we 

have performed the calculations using point charges, it is illustrative to consider 

the radial part of the spherically symmetric potential. It is easy to show that a 

point charge q, at distance a from the origin contributes 

{ 

-q/a, R < a 
E(R;q,a) = 

-q/R, R>a 
(6.9) 

to the energy of a single electron when averaged over the angular variables. In fig

ure 6.1 the radial parts of spherically averaged Madelung potentials from 3 x 3 X 3, 

5x5x5, 7x7x7 and finally 15x15x15 point charge lattices are shown. This was 

done to determine what lattice size would be sufficient to simulate accurately the 

infinite crystal. The Madelung potentials here are generated by putting point 

charge lattices around 0 2- at the perfect lattice points. As can be seen the po

tentials differ in two ways. For smaller distances there is a relatively small (except 

for the 3x3x3 lattice), constant separation stemming from the different contri

butions from the edges to the first term in equation (6.9). Of course a constant 
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Figure 6.1: Convergence of Madelung potential with the size of the point charge 
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Figure 6.2: Radial distribution functions for 0 2

- (full line) and Mg2+ (broken 

line). 

shift of the potential energy does not alter the electron distribution, or indeed 

any physical aspects of the problem. Only at distances where the magnitude of 

the point charges differ is there a significant deviation. The form of the 5 x 5 x 5 

and 7x7x7 potentials is for example identical for distances below alat=4.208 A. 

Thus only electron density beyond this distance will be affected by the difference 

between these two lattices. To put this in context we have in figure 6.2 shown 

the radial distribution functions (RDF) for Mg2+ and 0 2- (SCF wavefunctions 

calculated in the field of a 15x15x15 point charge lattice). The electron density 
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more than alat from the nucleus corresponds to merely 10-5% of the total for even 

the 0 2- radial distribution. 

To re-iterate: the description of the central ion converges very rapidly as the 

size of point charge lattice is increased. The Madelung potential is not converged 

in absolute terms (since there is a constant difference in the potential energy), but 

this will not affect the electron distribution. The central ion does not extend far 

enough to be affected by the fact that the point charge array is finite. An illus

tration of this is that the difference between the MOs calculated with 13 x 13 x 13 

and 15x15x15 lattices is much smaller than the convergence threshold of the 

MOs themselves. Since no particular computational effort is associated with in

cluding the point charges, all the systems considered here have been generated 

using 15x 15 x 15 point charge lattices. 

There are two ways in which the potential generated by the point charge lat

tice may be significantly different from the above: the crystal system may not be 

simply cubic, or the lattice constant may be altered. In figure 6.3 we have shown 

the Madelung potentials experienced by an 0 2
- ion in systems with rock-salt, 

CsCI and anti-fluorite structures respectively. In order to allow a direct compar

ison, the CsCI and anti-fluorite Madelung potentials have been shifted so as to 

coincide with the periclase potential at the origin. This is admittedly rather arbi

trary, since different crystal systems will generally have differing lattice constants. 

Out to a distance of about 4A the forms of the potentials are surprisingly similar, 

and it is likely that the description of the central ion will not be significantly 

affected by the crystal geometry, provided that the lattice separations are chosen 

appropriately. 

Varying compounds will of course have different lattice constants, and even 

for the same compound the lattice separation will depend to a certain degree on 

temperature and pressure. It is therefore useful to investigate the effect of the 

lattice constant on the radial distribution function and inter-ionic potentials. The 

RDFs for 0 2
- with a varied from 4 bohr to 8 bohr as well as the limit in which 
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Figure 6.3: Madelung potentials for various crystal geometries. Fullline=rock
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the lattice is removed entirely, are shown in figure 6.4. There is no appreciable 

difference between the 8 bohr distribution and the distribution in the absence of 

a lattice (equivalent to infinite separation). Since 8 bohr is close to the actual 

lattice constant for periclase, one must conclude that the point charge lattice 

alone has only a very mildly stabilising effect for this case. 

The corresponding interionic potentials between Mg2+ and 0 2- are shown in 

figure 6.4. Of course the above variations in the lattice constant may be rather 

severe, but there seems nevertheless to be an appreciable effect on the potential. 

For special cases, such as interstitial formation for example, it may be advisable 

to adjust the interionic potentials to account for the stronger Madelung field. 

Diminishing the lattice constant for the point charge array has to a good 

approximation the effect of shifting the potentials to the left. The interaction is 

predominantly repulsive, so this can be taken as a consequence of the increasingly 

localised charge distributions. We will return to the idea of 'shifted' potentials in 

section 6.5. 

The corresponding 0 2- -02-interaction curves are shown in figure 6.4. As can 

be seen there is a favourable interaction in this case-the potential even being 

attractive for some separations. The potentials are therefore arranged in the 

reverse order compared with the Mg2+ -02-curves-the most delocalised charge 

distributions generally leading to the least repulsive potentials. 

More sophisticated ways of approximating the Madelung potential have been 

investigated in the literature. Instead of approximating the surrounding ions by 

point charges, one can depict them as spheres of sizes close to the ionic radii. 

Also a rough estimate of the exchange interaction with neighbouring ions can be 

incorporated [26]. In this work we improved the description of the crystalline 

environment by substituting the nearby point charges with actual ions. Compu

tational cost normally limits the number of ions that can be included in this way. 

Thus for MgO the 0 2- ion was described with the 6 nearest Mg2+ ions included, 

described at the SCF level. The effect of this, as is reflected by the RDFs shown 
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in figure 6.5, was to contract the 0 2- slightly. The equivalent procedure was 

followed for the description of the Mg2+ ion, and as may be seen from figure 6.7 

the effect was far smaller in this case. It is generally considered that, since anions 

are generally much more diffuse than cations (cf. figure 6.2), the description of 

the anion is the more important. Including nearest neighbours for also Mg2+ was 

an attempt at verifying this supposition. 

To get a more precise idea of the effect including nearest neighbours, interac

tion potentials were calculated as shown in figure 6.6. For 0 2- the effect of nearest 

neighbours is quite significant. The contraction of the electron density makes the 

potential clearly less repulsive. The effect of nearest neighbours for Mg2+ is, as 

suggested above, minute in comparison. Similarly to what occurs when the point 

charge separation is diminished, the change of the potential is in this case also 

roughly a leftward shift. It seems that the form of the stabilising Madelung field 

may be of minor importance compared with the approximate strength thereof. A 

very good approximation to the potential in figure 6.6 could be obtained by just 

decreasing the separation in the point charge lattice by approximately 15%. 

The effect of nearest neighbours on the 0 2- -02-potential can also be seen 

to be quite significant-in this case in the direction of a more repulsive potential 

(see figure 6.6). Also in this case the effect is roughly equivalent to a decrease in 

the point charge lattice separation, but in this case probably nearer 20%. 

It is important also to investigate the role of correlation effects in determining 

the form of potentials. In this work the starting point has always been a restricted 

Hartree-Fock (RHF) calculation (most of the ions considered were closed-shell 

systems). Various spin-coupled wavefunctions have been investigated, with some 

or all electrons in the outermost shell active. For further electron correlation a 

non-orthogonal CI based on the spin-coupled orbitals might be performed. In 

this case, however, the super-molecule calculation tends to become prohibitively 

large very quickly. 

In the most correlated description of 0 2
- considered here, an eight electron 
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spin-coupled calculation was performed. This gave a symmetry-broken solution, 

however, with the pair of s-orbitals mixing with a pair of p-orbitals in one of 

the three equivalent directions. Since it is essential for the potential calculation 

to have a spherically symmetric description of the fragment, the SC solution 

was 'symmetrised' by solving the secular problem spanned by the three possible 

symmetry-related SC solutions. As can be seen in figure 6.7 the effect of increased 

correlation is to contract the electron density slightly. This hence makes the 

Mg2+ -02-potential slightly more repulsive, in agreement with the general trends 

observed when varying the strength of the Madelung potential. 

6.5 Test of potentials 

The sections 6.2-6.4 we believe provide a plausible theoretical foundation for the 

calculation of potentials. It remains to be seen of course how well potentials 

calculated in this way perform compared with the existing empirical and non

empirical potentials. 

Generally very good agreement between potentials calculated in the manner 

described above and the 'standard' potentials has been found for the cation-cation 

and cation-anion potentials. As an example of this we have shown in figure 6.S 

a comparison with two already existing Mg2+ -02-potentials, an empirical and 

electron gas potential employed in ref. [27]. As can be seen there is very good 

qualitative agreement between the three curves, although the new potential is 

slightly more repulsive for shorter distances. We will come back to what might 

be done to improve the quality of our potentials. 

The strongest test of any new method for potential generation must be the 

'difficult' 02--02-potential. In figure 6.9 we have shown the comparison between 

the new potential and three previously employed potentials. The calculated po

tential in this figure, was obtained using an SCF wavefunction for Q2-with nearest 

neighbours of Mg2+, and point charge lattice with a=4.20S A. As can be seen 
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System a/A System a/A 

LiF 4.0270[29] KCI 6.2788[33] 

LiCI 5.1295[30] MgO 4.2080[21] 

NaF 4.6140[31] CaO 4.7990[34] 

NaCI 5.6420[32] 

Table 6.1: Lattice constants for highly ionic systems. 

there are substantial differences between the existing potentials. The new method 

agrees with the electron gas approach on the very long range of the potential. 

They diverge already at about 3.3 A, however, and this is most likely connected 

with the assumption of additivity of the electron densities, an approximation 

which will break down for shorter T. The new potential seems to agree tolerably 

well in the short-range region with the probably most reliable empirical potential 

due to Binks and Grimes [28]. This should probably be taken with a pinch of salt, 

however, since the errors in both potentials will be largest in this region. The 

fact remains that the new potential seems to be generally rather too repulsive. 

An important consideration when comparing these potentials is the typical 

sampling distances used in simulations. It will be in this region that existing 

theoretical potentials have 'stood their ground', and also here that the empirical 

potentials are most accurately determined. In table 6.2 we have shown the typical 

sampling distances for a range of systems studied in ref. [27]. Experimental 

and calculated Hugoniot data were compared in that work, and this is normally 

considered a particularly severe test of inter-ionic potentials. As can be seen from 

table 6.2, however, even this application does not sample as small separations as 

might have been supposed. 

The most important variable in the generation of these potentials is the 

'strength' of the Madelung field, as related for example to the separation in the 

point charge array. Including next-nearest neighbours might for example have an 

appreciable effect on this particular aspect. A very attractive approach would be 
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System Potentials r/A 
LiF M/M & X/X 2.42-2.85, 3.42-4.04 

M/X 1.71-2.02, 2.96-3.50 

LiCI M/M & X/X 2.91-3.48, 4.12-4.93 

M/X 2.06-2.46, 3.56-4.27 

NaF M/M & X/X 2.76-3.29, 3.91-4.66 

M/X 1.96-2.33, 3.39-4.03 

NaCI M/M & X/X 3.48-3.92, 4.93-5.64 

M/X 2.46-2.82, 4.27-4.88 

MgO M/M & X/X 2.66-3.16,3.76-4.48 

M/X 1.88-2.24,3.26-3.88 

CaO M/M & X/X 3.04-3.40 

M/X 2.15-2.41, 3.73-4.17 

Table 6.2: Ranges of inter-ionic separations (r) sampled for the B1 phase of some 

of the materials studied at high pressures and elevated temperatures by Allan 

and coworkers [27]. 
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to leave this variable free-as an empirically determined parameter. This would 

probably involve fitting the potentials to an assumed function form, in order to 

obtain analytical expressions for the dependence on the lattice separation. An

other problem with the strict comparison of potential curves in figure 6.9 is that 

the empirical potential is generic in the sense that it is not particular to the 

MgO system. With this in mind we show also the previously used potentials 

with the new potential calculated for three different point charge lattice separa

tions. It is clear that very good agreement can be obtained by an appropriate 

choice of a. The small, long-range maximum that remains for all three curves 

is almost certainly an artifact of neglecting the dispersion contribution to the 

energy. Attempts at estimating this has not been made in this work, but we refer 

to appendix 6.a for a strategy that might work well for the case of inter-ionic 

potentials. Generally the convergence of this term is quite rapid [8], so reliable 

estimates should be possible with quite reasonable computational effort. 

Now we compare calculated potentials with a range of more 'benign' cases for 

which potentials exist. The work by Allan and coworkers [27] has been based 

on electron gas potentials. These are probably not very reliable in themselves 

(d. figure 6.9, but these were shifted left or right so as to obtain sensible crystal 

data. No justification for this has previously been offered, but in light of the 

discussion in section 6.4 this seems very likely to be roughly equivalent to varying 

the Madelung field experienced by individual ions. This means that the shifted 

potentials are probably reasonably reliable in the sampled regions. 

For Li+ we employed a (14s9p)/[6s5p) basis set [35], whereas for most of the 

other ions the basis sets were of triple-zeta-valence (TZV) quality. For 0 2- and 

F- a (lOs6p)/[5s3p) basis was used [22), for Na+, Mg2+ and CI- a (12s9p)/[6s5p] 

was used [23], and for K+ and Ca2+ (12s6p)/[7s3p] Huzinaga basis sets were 

available from the MOLPRO library. 

The potentials involving the smaller cations can be seen to agree exceptionally 

well with the electron gas potentials. The K+-K+ and Ca2+-Ca2+ potentials 
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diverge for smaller r, but this will occur far below the relevant sampling regions for 

these cases. Significant deviations tend to occur for the anion-anion potentials, 

as well as for the cation-anion potentials involving K+ and CaH . In all of these 

cases the tendency is for our new potentials to predict too repulsive potential 

curves compared with the more reliable 'shifted' potentials. It therefore seems 

that further attention must be given to the accurate simulation of the Madelung 

field. 
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Figure 6.14: Interionic potentials for KCl. Key: full curves - SCF/SCF; dashed 

curves - electron gas; dot-dash curves - shifted electron gas. 
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6.6 Discussion 

In this work we have showed how the theory of inter-molecular forces may be 

applied to the calculation of inter-ionic potentials. This extension is in principle 

quite straightforward, just requiring essentially a core removal for the optimisa

tion of the fragment wavefunction. A similar strategy could be adopted for the 

super-system for schemes that seek to relax the fragments in the presence of each 

other (as outlined in appendix 6.a). 

The major difficulty in the potential generation has proven to be the realistic 

description of the Madelung field experienced by the central ions. In comparison 

the role of correlation and dispersion effects are relatively minor, although the 

dispersion contribution is probably required particularly for accurate anion-anion 

potentials. Of course, the potential will normally be employed in conjunction 

with, say, the shell model to take into account the polarisation energy. The 

relatively strong dependence of the potentials on the Madelung field suggests 

that the whole concept of widely transferable potentials is perhaps a dubious 

one. A single potential is simply not going to be appropriate to widely differing 

crystal systems, not to mention modelling of interstitials or surface effects where 

the Madelung potential is likely to vary particularly drastically. 

The simplifying factor we have found is that the potentials seem to vary 

relatively simply according to just the 'strength' of the Madelung field. This 

suggests two alternative ways forward which would make simulations practical. 

As mentioned previously, one may leave this as a free variable (as defined for 

example by the point charge lattice separation, a), i.e., as a parameter to be fitted 

to experimental data. Another approach would be to obtain a crude estimate 

of the magnitude of the field, by, during the simulation, taking the immediate 

surroundings of the respective ions into account. Both strategies would require 

obtaining suitable functional forms for our potentials, so that interaction energies 

could be obtained cheaply for essentially arbitrary Madelung fields. 

From an electronic structure point of view we believe that most problems 
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concerned with the potential generation have been essentially solved. Also for 

the 0 2- -02-potential our calculated potentials had the ability to perform quite 

well-but again only if the 'right' Madelung field was applied. Further work 

would of course take into account the dispersion contribution. This being said, 

we have highlighted some fundamental problems which should be addressed by 

any non-empirical approach attempting to use anion-anion potentials in practice. 

6.a Appendix: Relaxing the fragments 

Reoptimising the wavefunction for the super-system is necessary in order to de

scri be the relaxation of the two ions in the presence of each other. The problem is 

how to define a point charge lattice consistent with both subsystem calculations. 

Ideally one would like an A-electron to 'feel' a point charge lattice appropriate 

to subsystem A, and a B-electron to 'feel' a point charge lattice appropriate to 

subsystem B. 

An iterative scheme in which subsystem A is reoptimised in the field of the A 

point charge lattice and the B ion (with 'frozen' variational parameters), followed 

by a similar reoptimisation of ion B, etc., can be envisaged. The convergence 

characteristics of such a method would most likely depend heavily on the number 

of structures, but would probably be feasible in the case of two SCF wavefunctions 

(the crucial point being that due to the weakness of the interaction, the relaxation 

is fairly small). 

More practical than an iterative procedure, would be a simple modification 

of the one-electron integrals, so that the reoptimisation could be performed in a 

single step. This suggests modifying the one-electron integrals according to 

(6.10) 

where basis functions rt>~ and rt>; are centred on system A, the Q AS are the point 

charges (charge: ZQJ appropriate to A, and the distance to electron i is R,QA' 
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Similarly 

(l/>~Ihll/>~) --+ (l/>~Ih - L ~Q8 Il/>~). 
Q8 "I..iQs 

(6.11) 

To be equivalent to the aforementioned iterative procedure, the integrals between 

orbitals on different centres should be left unchanged. Furthermore in order to be 

equivalent to the iterative procedure, only direct product spin functions should 

be included in the super-system calculation. After the reoptimisation step the 

one-electron energy should, as was the case for the subsystems, be recalculated 

without the point charge lattices. 

The considerations from intermolecular forces regarding size-consistency etc. 

still hold true, so that if subsystem A is described by N A structures and the sub

system B is described by N8 structures, all NAXN8 structures must be included 

in the super-molecule calculation. 

The effect of charge transfer can, in this type of scheme, be studied in a man

ner similar to the case of traditional intermolecular forces (this is one additional 

advantage of modifying the integrals instead of using the iterative scheme di

rectly). Especially for systems containing transition metal ions this is likely to 

be important. The orbitals used for an ion of a given charge are obtained by an 

initial optimisation of the subsystem with the same charge. The core orbitals are 

best kept unchanged in each charged species, since reoptimisation of these would 

in most cases dramatically enlarge the calculation. 
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