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ABSTRACT. 

A review of instrumented impact testing, with 
particular reference to the instrumented Charpy test, 
shows that the measured hammer load and displacement 
histories are complex functions of the inertia and 
stiffness of both specimen and loading system. 
Specifically, the instant of maximum load measured at the 
hammer is not necessarily coincident with that of crack 
initiation and, due to inertia effects, this load cannot 
be directly used to characterise the fracture toughness of 
the specimen. 

A one-dimensional lumped mass-spring model, developed 
for the instrumented Charpy test, is applied for the first 
time to the Hopkinson pressure bar instrumented impact 
test. The model shows that the loading rate experienced by 
a linear elastic specimen is essentially constant and the 
stress intensity factor history is then derived. A strain 
gauge mounted on the specimen close to the crack tip is 
used to detect crack initiation and hence the dynamic 
initiation fracture toughness can be determined. 

The full test procedure is described and results are 
quoted for several tempers of En24 steel and two magnesium 
alloys (Magnesium Elektron ZCM 630-T6 and WE54) at a range 
of test temperature and impact velocity. Estimates are 
made of the effective contact stiffnesses at the impact 
point and the supports and these are found to be more 
compliant than theory predicts. 

The model is also used to examine the frequency and 
force magnitude changes caused by shortening the specimen 
so that its overhang at the supports is reduced. Estimates 
of crack velocity at initiation are made from the 
load-time characteristics and found to have important 
implications for the effective identification of crack 
initiation. 

Finally, an algorithm is introduced to extend the 
model to cover non-linear material behaviour based on a 
power law strain hardening relationship. 
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'1 do not know what 1 may appear to the world, 
but to myself 1 seem to have been 

only a boy playing on the seashore, 
and diverting myself in now and then 

finding a smoother pebble or a prettier shell 
than the ordinary, 

whilst the great ocean of truth lay 
all undiscovered before me.' 

1saac Newton. 
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NOTATION. 

A area of cross-section 

a crack length 
. 
a crack velocity 

a e effective crack length allowing for plastic zone size 

B thickness of specimen 

b half-width of contact zone in elastic problem 

b uncracked ligament, b = (W - a) 

C material constant in Cowper-Symonds relationship 
(equation 2.51) 

c wavespeed in a given medium 

c viscous damping coefficient 

specimen compliance c geometric constraint factor 

d scalar quantity in the relationship between b t and J 
(equation 2.25) 

d depth of penetration in plastic contact stiffness 
problem 

E total energy 

E Young's modulus 

Em emf in Wheatstone bridge network 

ebc potential difference across Wheatstone bridge 

F force measured at end section of incident bar 

G shear modulus 

G strain energy release rate 

Gd dynamic strain energy release rate 

h length scale 



I 

• 
J 

K 

k 

scalar quantity in KGS elasto-plastic model 
(equation 5.2) 

scalar quantity in KGS elasto-plastic model 
(equation 5.3) 

second moment of area 

normalisation constant in HRR field (equation 2.24) 

J-integral (equation 2.18) 

rate of change of J with time 

critical value of J-integral at fracture initiation 
in a static problem (mode I loading) 

critical value of J-integral at fracture initiation 
in a dynamic problem (mode I loading) 

stress intensity factor 

stress intensity factor (mode I loading) 

rate of change of stress intensity factor with time 

plane strain fracture toughness (mode I) 

dynamic plane strain fracture toughness (mode I) 

equivalent stress intensity factor derived from 
J-integral (equation 2.34) 

critical value of stress intensity factor at fracture 
initiation where plane strain condition is invalid 

stiffness 

anvil stiffness 

contact stiffness 

plastic component of contact stiffness 

strain gauge sensitivity 

specimen stiffness 

ksup support stiffness 

kw impactor stiffness 

k1 inertial model stiffness parameter (equation 4.1) 



k2 
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m 

m' 
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n ,., 

P 

Po 

P 
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r 

ry 

S 

S 

s 

T 

T 

inertial model stiffness parameter (equation 4.2) 

length scale 

length of specimen 

critical length scale in ductile fracture criterion 
(equation 2.45) 

critical length scale in cleavage fracture criterion 
(equation 2.43) 

bending moment 

strain rate parameter (equation 2.52) 

effective mass of specimen for inertial model 

mass of end section of incident bar 

strain hardening index in Ramberg-Osgood stress
strain relationship (equation 2.20) 

normal vector 

load 

limit load for perfectly plastic material 

material constant in Cowper-Symonds relationship 
(equation 2.51) 

size scale of HRR singularity 

electrical resistance 

radius 

distance from crack tip 

plastic zone size 

surface energy 

distance between supports in impact test (span) 

voltage sensitivity of Wheatstone bridge network 

arc length 

temperature 

kinetic energy 



T 
~ 

t 

u 

u 

. 
u 
.. 
u 

u' 

v 

v 

w 

w 

x 

y 

yo 
~ 

~' 

traction vector 

time 

time to fracture 

transition time beyond which a J-dominated field may 
be said to exist 

strain energy 

specimen displacement 

specimen velocity 

specimen acceleration 

u* complementary strain energy 

displacement vector from crack tip 

specimen/support interface displacement 

velocity 

travelling bar velocity at impact with incident bar 

non-dimensional function of crack length 
(equation 4.26) 

measurement plane (surface A) displacement 

width of specimen 

natural frequency 

Cartesian coordinate 

Cartesian coordinate 

half-width of contact zone in plastic contact problem 

material constant in Ramberg-Osgood stress-strain 
relationship (equation 2.20) 

strain rate parameter (equation 2.53) 

scalar quantity (- 2 plane stress, - 6 plane strain) 

scalar quantity (- 1.072 plane stress, - 1.456 plane 
strain) 

contour in definition of J-integral 

shear strain 



• 
€ 

?e 

9 

» 
n 

surface energy density 

crack tip opening displacement 

strain 

axial strain rate 

critical fracture strain (equation 2.45) 

effective strain at yielding, €y - ~y/E 

relative damping coefficient 

loading rate sensitivity of fracture toughness 
(equation 2.60) 

coefficient of elastic component of J-integral in 
deep-crack formulation (equation 2.39) 

coefficient of plastic component of J-integral in 
deep-crack formulation (equation 2.39) 

angle, centred at crack tip, above and below plane of 
crack 

Poisson's ratio 

potential energy 

density 

stress 

critical fracture stress (equation 2.43) 

yield stress 

dynamic yield stress 

shear stress 

period of oscillation 

angle 

factor in reducing plastic zone size correction in 
KGS elasto-plastic model (equation 5.9) 



1. INTRODUCTION : WHY STUDY DYNAMIC FRACTURE MECHANICS? 

1.1. The limitations of static, linear elastic fracture 

mechanics. 

Linear elastic fracture mechanics is now a widely 

used design tool for defining load safety factors and 

critical flaw sizes for a given structure. It is founded 

on the concept that a crack represents a site of stress 

concentration within the structure. In the same way that 

stress function theory can be used to define the local 

elevation of stress caused by the presence of a circular 

hole, Westergaard [1] has defined the mathematical 

singularity in stress and strain which exists for a sharp 

crack in a linear elastic material. The strength of this 

singularity can be stated in terms of the local stress 

intensity factor, KI , which has a limiting value, KIc ' at 

which crack initiation takes place. This limiting value is 

known as the plane strain fracture toughness and is a 

temperature-dependent material property. It can be used to 

define the stress level, dmax ' to cause fracture in a 

structure with a given flaw size: 

(1.1) 

or, inversely, the limiting flaw size, amax ' at a given 

load: 
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1 [Krc ] 2 

n l6max 
(1.2) 

Obviously, if failure is to be prevented then the minimum 

detectable crack size must be less than the limiting flaw 

size (allowing for a necessary safety factor). If the rate 

of stable growth of a sub-critical crack is known, then it 

is possible to define an inspection interval for any given 

component. This philosophy has been applied with 

considerable success, but it fails to take account of 

material plasticity or strain rate effects, both of which 

play an important part in determining the load-bearing 

capacity of a structure. 

For many materials truly elastic behaviour is only 

exhibited at either very low loads or very low 

temperatures. The effect of significant amounts of 

non-elastic (plastic) deformation is to increase the 

resistance to fracture of a material and hence its 

fracture toughness. This elevation of fracture toughness 

may take place due to a loss of constraint at the crack 

tip (caused by local yielding) or due to changes in 

critical stress levels on a microstructural scale. If 

elasto-plastic behaviour is accounted for in designs 

subject to static loading then it is possible to design 

structures to take higher loads or to use less material 

for the same load-bearing capacity. In either case a 

material cost saving can be made at no expense to safety. 
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In the case of dynamic loading, however, there is 

evidence to suggest that statically determined toughness 

values are non-conservative. Klepaczko [2] has measured a 

fall of fracture toughness with increasing strain-rate in 

the linear range, while with the advent of small amounts 

of plasticity in materials such as steel it is well known 

that the effect of strain-rate is to promote (less tough) 

elastic behaviour. 

A further reason for studying dynamic fracture 

originates in the laboratory. Theoretically, the material 

property, fracture toughness (KIc )' is defined for the 

situation of "plane strain" loading which implies a test 

specimen of infinite thickness. In practice, it is 

possible to define geometries within which the plane 

strain approximation is valid. This results in a minimum 

specimen size for a given material such that [3]: 

a,B,(W-a) > 2.5 [::c]2 (1.3) 

where a is the crack length, Band Ware specimen 

dimensions, and 6y is the material yield stress. For some 

materials at room temperature this condition requires very 

large and expensive specimens. However, since yield stress 

commonly rises with strain rate, the condition is less 

severe in a dynamic test and it is possible to define the 

material toughness-temperature relationship with smaller 

specimens at lower cost. 
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Unfortunately, as will be described in more detail in 

section 2.5, it is not as easy to obtain the required 

fracture toughness measurement from a dynamic test as from 

a static test and a major aim of this thesis is to examine 

the suitability of a Hopkinson pressure bar loaded impact 

rig for making just such a measurement. Furthermore, owing 

to the close relationship between dynamic and elasto

plastic effects it is desirable that the analysis 

technique should be capable of dealing with limited 

amounts of plasticity. 

1.2. An approach to the characterisation of dynamic crack 

initiation in an elasto-plastic material. 

The thesis is divided into four major sections. 

Chapter 2 contains an extensive literature survey 

which defines the parameters most widely used to 

characterise crack initiation and examines their range of 

validity. Two parameters - KIc ' for linear elastic 

materials, and the critical value of the J-integral at 

crack initiation, J Ic ' for elasto-plastic materials - are 

identified as being the most useful. Section 2.3 briefly 

describes the relationships between these parameters and 

the microstructure of the test material. The applicability 

of KIc and J Ic in characterising dynamic crack initiation 
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is then examined, followed by a survey of the problems 

arising in dynamic fracture tests. Section 2.6 considers 

the application of finite element modelling techniques to 

fracture mechanics. They are generally time-consuming and 

expensive, but offer solutions to otherwise insoluble 

problems. For laboratory analysis of dynamic fracture 

tests, however, there is a need for simpler modelling 

techniques. Finally, section 2.7 reviews some dynamic 

fracture measurements reported in the literature. 

Chapter 3 describes the Hopkinson pressure bar test 

apparatus and the test programme. Standard Charpy 

specimens (10 x 10 x 55 mm) are fractured in the three 

point bend load configuration and force-time and 

displacement-time characteristics derived for a range of 

temperature and impact velocity. The materials studied are 

different heat treatments (tempers) of En24 steel and two 

magnesium alloys. Techniques of detecting crack initiation 

are discussed. 

Chapter 4 presents a lumped mass-spring model of the 

Hopkinson pressure bar loaded impact test. This kind of 

model was first used by Glover et al [4] and Williams and 

Adams [5] for the Charpy pendulum test, but is especially 

suited for application to the Hopkinson pressure bar test 

where the load point displacement is accurately measured. 

The various parameters in the model are considered in some 

depth. The most important finding is that, due to inertial 
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effects, remotely measured loads are not always suitable 

for characterising dynamic crack initiation. The model is 

favourably applied to those test results where the 

specimen behaviour is purely elastic and derived fracture 

toughness values are presented. 

In chapter 5 the model is extended to allow for 

elasto-plastic behaviour of the specimen. There is further 

discussion of the applicability of the J-integral in 

dynamic testing. Some shortcomings are revealed in the 

material characterisation employed. Again the model is 

compared with experimental results. 
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2. THE CHARACTERISATION OF DYNAMIC CIlACK INITIATION. 

2.1. Linear elastic fracture mechanics (LEFM). 

A cracked body may be loaded in three distinct ways 

(figure 2.1) - the opening mode (I), sliding mode (11), 

and tearing mode (Ill). This thesis will be concerned with 

mode I loading only. 

The stress field near a crack tip loaded in the 

mode I configuration is given asymptotically by: 

611 1 - sin(e/2)sin(3e/2) 
Kr 

612 = - ~ cos(e/2) sin(e/2)cos(3e/2) 
(2nr) 

622 1 + sin(e/2)sin(3e/2) 

where KI is the mode r stress intensity factor: 

KI - Lim [(2nr)~ 622Ie-o] 
r..Q 

(see, for example, [6]). The loading may be further 

categorised as plane strain (633 = 0) or plane stress 

(633 = 0) depending on the geometry of the structure. 

(2.1) 

(2.2) 

In linear elastic fracture mechanics (LEFM) it is 

assumed that any non-linear material behaviour in the 

highly stressed region close to the crack tip is confined 

to an area which is small compared to the K-dominant 

region (ie the area where the asymptotic solution (2.1) is 

close to the full elastic solution). This condition is 

known as small scale yielding. 
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The size of the non-linear plastic zone can be 

estimated by assuming a yield condition such as the von 

Mises yield criterion: 

(2.3) 

For plane problems the principal stresses are given by: 

61 } "" 611 + 

62 2 

63 - {~(61 
plane stress 

+ (2) plane strain 

(2.4) 

which can be rewritten in terms of the stress intensity 

factor, K1 , by using equation (2.1): 

"" 

K 
I [1 ± sin(S/2)]cos(S/2) 

(2rtr /~ 

o plane stress 

2VKr 
~ cos(S/2) plane strain 

(2nr)'2 

Substituting (2.5) in (2.3) provides the size of the 

plastic zone, r - ry, as: 

K 2 
ry(e) "" r 2 [(1 - 2~)2(1 + cosS) + ~sin2e] 

4n6y 2 

for plane strain, and: 

Kr2 
ry(e) - 2 [1 + cose + ~sin2e] 

4n6y 2 

(2.5) 

(2.6a) 

(2.6b) 

for plane stress. Figure 2.2 shows a comparison of these 

boundaries for ~ "" 0.3. 

For the purposes of many calculations it is 
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convenient to estimate equations (2.6a) and (2.6b) by: 

ry = -=- [KI]2 
t>n ($y (2.7) 

where ~ - 2 for plane stress andft - 6 for plane strain 

[7]. Within the region of this plastic zone the asymptotic 

solution (2.1) is no longer representative of the true 

stress field, material yielding takes place, and there is 

a reduction in stiffness of the body relative to the ideal 

elastic case. Irwin [7] suggested that this reduction in 

stiffness could be represented in the ideal elastic body 

by introducing a correction to the actual crack length, a, 

thus giving an effective crack length, ae : 

(2.8) 

where ry is the plastic zone size given by equation (2.7). 

This is known as Irwin's plastic zone correction and is 

often used as a correction to the crack length when 

calculating the stress intensity factor - for example, see 

equation (2.13) below. 

Griffith [8] suggested a second characteristic 

parameter which can be derived by considering the exchange 

of energy in a cracked body • He postulated that during an 

increment of crack growth, da, there can be no net change 

in the total energy, E, of the body. If U is the potential 

energy of deformation and S the surface energy, then: 

dE .. dU + dS = 0 (2.9) 

If ~ is the surface energy density per unit area, then: 
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dS = 2~B da (2.10) 

and the strain energy release rate (or crack driving 

force) , G, is defined 

G = _~ [dU] = 2J 
B da u 

It can be shown from 

example, [9]) that: 

KI2 
G -

E' 

as: 

stress function theory (see, 

where E'- E (Young's modulus) for plane stress or 

El=- E/(l - })2) for plane strain. 

(2.11) 

for 

(2.12) 

Gross and Srawley [10] have analysed the three point 

bend specimen for linear elastic loading using a boundary 

collocation technique. Using Williams stress function they 

developed an expression for the stress intensity factor at 

the crack tip which is dependent only on the load and 

specimen geometry. Their results have since been 

incorporated in ASTM standard E399-83 for the plane strain 

fracture toughness testing of metals [3]. By this 

technique: 

(2.13) 

where F(a/W) is a dimensionless function of the crack 

length, a, normalised by the specimen width, W. In [10] 

the function F(a/W) was given as: 
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(2.14) 

for the range 0.45 < a/W < 0.55, but this has since been 

extended [11] to cover the full range of crack lengths, 

o < a/W < 1, by using: 

F(~) = 
a 1 a a a a 2 

3(W)2[1.99 - W(l - W)(2.15 - 3.93W + 2.7(W) ] 

a a 3 
2(1 + 2W)(1 - W)2 

(2.15) 

At fracture, Kr a KQ, which is only a valid measure of the 

plane strain fracture toughness, Krc ' if the constraint at 

the crack tip is sufficient to maintain plane strain 

conditions. This is generally held to be the case if the 

smallest specimen dimension satisfies the condition [3]: 

a,(W-a),B > 2.5 [~]2 (2.16) 
This condition effectively states that the smallest 

specimen dimension should be at least 50x the size of the 

plastic zone as defined by equation (2.7). 

Similar expressions to equations (2.13) - (2.15) for 

the three point bend specimen have been developed and 

tabulated for other specimen geometries [12,13,14]. Tada 

et al [14] also give compliance formulae for the three 

point bend specimen which have proved useful in the 

development of the present analysis (see section 4.4). 
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2.2. Elasto-plastic fracture mechanics. 

The size restriction (2.16) for a valid plane strain 

fracture toughness measurement requires impractically 

large test specimens to characterise the fracture 

behaviour of high toughness, low strength materials. In 

the 1960s and 1970s much work was carried out to develop 

test methods with less severe size requirements. In their 

review paper on the subject, Shih et al [15] note that any 

characterising parameter should be representative of the 

stress and deformation state around the crack tip, but, at 

the same time, capable of evaluation from global 

measurements remote from the crack. The parameter should 

also be independent of initial crack length and specimen 

geometry. 

The foremost parameter for characterising non-linear 

fracture is the J-integral [16]. This parameter is defined 

using the deformation theory of plasticity and so only 

strictly applies for monotonic, proportional loading. The 

latter is not the case when part of a body has yielded (eg 

for steel, ~ - 0.3 in the elastic zone, ~ - 0.5 in the 

plastic zone). History effects are also ignored and so the 

theory requires that there is no significant unloading 

during a test. Nonetheless the J-integral has proved 

popular because it can be shown to be representative of 

the magnitude of a certain type of elasto-plastic stress 
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singularity (see below) and is relatively easy to measure 

in the laboratory (by contrast with certain 

microstructural parameters). 

The J-integral wa~ originally defined by Rice [16] 

for a two-dimensional stress field about a crack tip 

(figure 2.3). He defined the strain energy density, U, for 

such a body by: 

U = J: 6· ·de·· 1.J 1.J (2.17) 

from which the J-integral is defined as: 

J - Jr (U dy - I.~ ds) (2.18) 

where T is the traction vector defined along an outward ,., 

normal U from the contourr, defined in figure 2.3, ~ is 

the displacement vector, and ds is an element of arc 

length along r. Of critical importance is the 

path-independence of the integral defined in equation 

(2.18). As Rice recognised, this implies that the contour 

defining the integral can be shrunk on to the crack tip, at 

which point the J-integral must become representative of 

the crack tip stress field. Rice and Rosengren [17] 

pointed out that this further implied that the product of 

stress and strain must obey the relationship: 

6· ·e· . ~ f(e)/r as r .. 0 1.J 1.J 

In fact, by assuming the widely used Ramberg-Osgood 

uniaxial stress-strain relationship [18]: 
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(2.20) 

where 6y is the yield stress, €y - 6y /E is the associated 

elastic strain, and ~ and n are parameters chosen to fit 

the data for a given material, Hutchinson [19] and Rice 

and Rosengren [17] developed the so-called HRR singularity 

for a non-linear material. It is assumed that the linear 

term in equation (2.20) becomes negligible compared to the 

power law term as the crack tip is approached. Equation 

(2.20) then simplifies to: 

:.. _ lX r~ ]n (2.21) 
€y Ld'y 

J2 deformation theory is then applied to generalise (2.21) 

to multiaxial stress states: 

€ij =- ~ 0( [d'e]n-1Sij 

€y 2 6y d'y 

where S·· is the stress deviator and: 1.J 

<5 - (~S. ·S· .)~ e 2 1.J 1.J 

(2.22) 

(2.23) 

For power law materials, therefore, the r-1 singularity in 

U implies a r-1/ n+1 singularity in the stresses and a 

r-n/ n+1 singularity in the strains. The HRR singularity 

fields can therefore be written: 

.J... 

d"ij - 6y [r1.d ~ I ~ln+1 ~ij(e,n) 
y y n:J 
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n 

€- - - <X€y 1J [ J r+1 

oc.6y€y1nr 
A 

€ij(S,n) (2.24b) 

..L 
J r6 

€ I T+1 
Y Y n 

tii(S,n) u- .. 
1 

In<"y J 
(2.24c) 

The dimensionless functions of e and the normalising 

constant In depend on the loading mode, n, and whether 

plane strain or plane stress conditions prevail. Eor high 

hardening materials n is in the range from 3 to 5, while 

for low hardening n > 20 is possible. Significantly, as n 

increases so the strength of the stress singularity 

weakens relative to the strength of the strain 

singularity. 

From equations (2.24) J can be regarded as a measure 

of the intensity of the strain-hardening crack tip 

singularity fields in the same way that K is a measure of 

the intensity of the elastic crack tip singularity. Thus, 

equal values of J imply identical conditions at the crack 

tip region regardless of specimen geometry or the extent 

of plasticity. There are two conditions: 

(i) that equation (2.21) is an adequate model of the 

small strain behaviour of the material, 

(ii) that regions of finite strain which inevitably 

exist very close to the crack tip are well contained 

within the region over which the HRR singularity fields 

act. 
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Hutchinson [20] gives an excellent review of the 

conditions for such a 'J-dominant' field. They are, 

perhaps, best understood in terms of a second widely used 

crack tip characterisation parameter, ~t' the crack tip 

opening displacement (CTOO). This has been variously 

defined in the literature but Shih [21] conveniently 

suggested that it should be measured at the point where a 

pair of 45 0 lines drawn from the crack tip intercept the 

crack faces (figure 2.4). (Figure 2.4 also shows the crack 

opening displacement (COD) which can be defined as the 

separation of parallel faces of the crack remote from the 

tip.) Shih then derived a relationship between J and b t of 

the form: 

(2.25) 

where d ranges from 0.8 for large n to about 0.3 for n-3. 

The CTOO is useful since it can be used as a size scale 

for the zone in which finite strains are important. 

McMeeking [22] has shown by finite element studies of 

crack tip blunting (ie studies which include the effect of 

finite strains close to the crack tip) that the position 

of maximum tensile stress ahead of the crack tip lies at a 

distance of approximately 20 t • The distance is less for 

strong hardening materials and the maximum stress 

elevation varies in magnitude from approximately 2.4~y for 

perfect plasticity to 4.16y at n-5. At distances closer to 
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the crack tip than this maximum, the tensile stress 

reduces due to diminishing constraint. The plastic strains 

only become large within a distance of 16t from the crack 

tip. One condition for J-dominance must then be that the 

size scale R over which the HRR field is significant obeys 

a relation of the kind [20]: 

(2.26) 

Microstructurally, ductile fracture is predominantly a 

process of void growth, itself a finite strain process, 

and so equation (2.26) is satisfactory. 

The extent of J-dominance is dependent on geometry 

and hardening. Under small scale yielding conditions 

numerical solutions [20] suggest that: 

ry 
R < -

8 
(2.27) 

Under fully plastic conditions for the bend configuration 

Shih and German [23] find from numerical studies that: 

R < 0.07 b (2.28a) 

for moderate to low hardening materials, where b - (W-a) 

is the size of the remaining uncracked ligament. For the 

centre-cracked tensile geometry the equivalent size is: 

R < 0.01 b (2.28b) 

for moderate hardening and vanishingly small for low 

hardening as n ~ 00 • 

Combining (2.25), where d = 0.6 for low to moderate 

strain hardening, with (2.28a) and (2.26) the condition 
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for J-dominance under fully plastic conditions is: 

b > 25 ~ (2.29) 
y 

for the bend specimen, compared with: 

b > 175 J 
6y 

(2.30) 

for the centre-cracked specimen. Shih and German [23] then 

assert that plane strain conditions will be satisfied if: 

B > b (2.31) 

The use of the J-integral as a fracture criterion was 

pioneered by Begley and Landes [24,25]. They exploited an 

alternative formulation of the J-integral, proposed by 

Rice [16], as the potential energy difference between two 

identically loaded bodies with neighbouring crack sizes: 

1 dn 
J .. -

B da 
1 dn .. - ---
B d(W-a) 

(2.32) 

where n is the potential energy. It can be shown (see, for 

example, [26]) that, for non-linear elastic deformation, 

for crack extension under constant displacement the change 

in potential energy dn is the same as the change in 

elastic strain energy dU, while for crack extension under 

constant load the change in potential energy dn is equal 

to minus the change in complementary energy dU*. Thus 

equation (2.32) can be rewritten: 

(2.33) 
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From this definition it is easy to see that, by comparison 

with equation (2.11), the J-integral is equivalent to G in 

the limit of small scale yielding: 

for small scale yielding (2.34) 

Equation (2.34) supplies the link between linear elastic 

and elasto-plastic fracture mechanics. In general, 

however, since the assumption of a monotonic stress-strain 

characteristic is not true for most materials, this 

equation cannot be used to interpret J in terms of the 

energy available for crack extension. 

Begley and Landes [24] derived J-integral values 

using equation (2.32) from multi-specimen tests on A533B 

pressure vessel steel and Ni-Cr-Mo-V steel alloy. The 

specimens used in these tests were much smaller than 

allowed for valid KIc measurement, but the values of 

toughness derived using equation (2.34) compared 

favourably with KIc measurements obtained from correctly 

sized specimens. As a result of Begley and Landes' work, 

Paris [27] suggested an empirical size relationship for 

valid J Ic measurements of the form: 

J 1c 
B, b > >.. 

6y 
(2.35) 

where A = 25 - 50 for the Begley and Landes data. Equation 

(2.35) agrees very well with the condition later 

determined for J-dominance (2.29). 
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Rice et al [28] determined that for bend specimens 

with deep cracks equation (2.32) can be rewritten in the 

form: 

2 Ucrack 
J - B (W - a) 

(2.36) 

where Ucrack is the component of energy absorption due to 

the crack. Some authors [29,30] have questioned the use of 

Ucrack in equation (2.36) and have proposed the simpler 

form: 

2 U 
J a (2.37) 

B (W - a) 

where U is the total area under the load-displacement 

curve: 

u - J: P du - J: M de (2.38) 

Atkins and Mai [26] identified the omission of the 

rotation of the beam outside of the plastic ligament in 

the derivation of equation (2.36) and so (2.37) will be 

preferred in this thesis. 

Sumpter and Turner [29] further proposed the more 

general expression: 

Ue Up 

J - ~e B (W _ a) + ~p B (W - a) 
(2.39) 

where ~e and ~p are geometry dependent functions and the 

total energy is divided into elastic (including uncracked 

body energy) and plastic components, Ue and Up. That this 
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is a more appropriate form was clearly demonstrated by 

Srawley [30] who looked at the ratio of J I , as defined by 

equation (2.33), to the total work done per unit area of 

net cross-section: 

U/[B(W-a)] 

Comparing (2.39) 

_ (W-a) dU [OlnU J 
U d(W-a) = ~ln(W-a) u 

and (2.40) shows that: 

olnUe 
?e = dln(W-a) 

olnUp 
~p - oln(W-a) 

(2.40) 

(2.41a) 

(2.41b) 

Equations (2.41) indicate the validity of using (2.37) to 

estimate the J-integral. Srawley found that for linear 

elastic behaviour qe - 2 for a/W > 0.5 (in fact, 

~e - 2.02 ± 0.02 over the range 0.475 < a/W < 1.0) and for 

perfect plasticity ~p - 2 based on Green and Rundy's limit 

load solution [31]. For work hardening materials Kanninen 

and Popelar [6] have looked at the values of qp applied to 

an approximate elasto-plastic solution developed by the US 

Electric Power Research Institute [32]. They found that: 

~p - f(a/W,n) 

This relationship will be discussed in more depth in 

section 5.5. 

(2.42) 

The use of the J-integral to characterise 

elasto-plastic crack initiation depends on the extent to 

which it is truly representative of the crack tip stress 
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field under general yielding conditions. For it to be a 

useful parameter the J-integral for a small specimen 

undergoing general yield must be the same as that for a 

large specimen with small scale yielding. Slip line fields 

for different geometries can vary considerably [33], but 

if crack tip blunting occurs then, given certain geometric 

conditions - such as equations (2.29) to (2.31) - these 

variations may not be important [34,35] (see figure 2.5). 

As already noted, the effect of blunting is to elevate the 

stress level some distance ahead of the crack tip. Hancock 

and Cowling [33] measured a range of bt for several 

standard specimens varying by a factor of 10 from the 

double-edge-cracked tensile panel to the single-edge

notched tensile panel. Using finite element analyses, Liu 

and Zhuang [35] calculated that even allowing for the 

different geometric restrictions on each geometry -

equations (2.29) and (2.30) - there are still considerable 

differences in the crack-tip fields for small scale and 

general yielding. They suggested that in many cases of 

general yield loss of constraint results in relaxation of 

the stress ahead of the crack tip, increased ductility, 

and hence fracture at higher values of bt (and J). They 

proposed a dual parameter fracture criterion for such 

cases involving the CTOD and a measure of triaxiality, 

6yy /6e - the ratio of local tensile to effective stress -

at a distance x - 2bt from the crack tip. A major drawback 
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of this approach is that the local tensile stress cannot 

be directly measured and must be calculated from a finite 

element program. However, in cases where there is loss of 

constraint it seems that such an approach is inevitable. 

The discussion above has been limited to power law 

hardening materials since the stress-strain behaviour of 

materials presented in this study can reasonably be 

characterised by such a relationship. For other material 

constitutive laws the theory is less well developed and 

similar formulations must be sought. 

2.3. Microstructural aspects of crack initiation. 

As well as the global fracture parameters discussed 

above, fracture may be categorised on a microstructural 

scale. Typically the fracture mode is described as 

cleavage (brittle) or fibrous (ductile rupture). Knott 

[36] identified a nucleus, usually a second phase particle 

(eg carbide), as initiating the process in each case. In 

cleavage the nucleus is formed by a pile-up of 

dislocations causing a local stress increase until the 

particle or interface cracks. Propagation of such a 

nucleus in a fast, uncontrolled manner results in a 

crystalline, often shiny fracture surface due to cleavage. 

In a more ductile material, once a nucleus has been formed 
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by cracking a particle or debonding a particle/matrix 

interface, the resulting flaw is too blunt a stress 

concentrator to propagate as a sharp crack. Fracture 

proceeds by expansion of such nuclei as voids until they 

finally coalesce by either internal necking or fast shear. 

The fracture surface is characteristically dimpled (the 

size of the dimples being related to the distribution of 

second phase particles). 

Cleavage fracture is characteristic of lower shelf 

behaviou!and dominates in BCC crystallographic 

structures. Fibrous fracture occurs in FCC 

crystallographic structures, such as aluminium alloys, and 

in steels above the cleavage/fibrous transition 

temperature (ie on the upper shelf) [36]. 

It is generally assumed [2,36,37,38] that cleavage 

fracture is controlled by a critical value of the local 

stress, 6f , and fibrous fracture by a critical value of 

the local strain, €c. 

Ritchie et al [37] proposed that for cleavage 

initiation of sharp cracks the local stress, 6yy ' exceeded 

the critical fracture stress, 6f , over a microstructurally 

significant length scale, If' (the RKR model). Ritchie et 

al [38] developed this theory using the HRR singularity 

applied in the limit of small scale yielding to produce a 

general expression relating the plane strain fracture 

toughness, KIc ' to the critical fracture stresS: 
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where: 

e> = f(n) 

n+1 

crT 
n-1 

cSy2 

[

(1 -» 2)J 1/n+1 

€y1n 

(2.43) 

(2.44) 

Since equation (2.43) relies on the existence of the HRR 

singularity and small scale yielding its range of validity 

must be tested by experiment. If is typically found to be 

a small multiple of the grain size, probably the distance 

from the crack tip where the first grain boundary carbide 

initiates fracture [37]. 

Similarly, the ductile fracture criterion can be 

expressed as the requirement that the critical fracture 

strain, €c' be exceeded over a minimum distance within the 

body, lc [38,39]. Again the relationship between K1c and 

this critical strain has been developed: 

K1c - constant (€clccfyE)\ (2.45) 

although in this case the interpretation of K1c as the 

limiting stress intensity factor at an elastic singularity 

may no longer be valid. The length lc seems to represent 

not ,only the distance between individual particles which 

nucleate voids but also the critical number of such voids 

required to initiate crack growth [38]. 

Thus the fracture properties of a metal with a given 

chemical composition can be expected to vary with 
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parameters such as grain size, which, in turn, vary with 

heat treatment. In the case of AISI 4340 steel (the us 

equivalent of the En24 steel studied here) the grain size 

has been observed to increase with austenitisation 

temperature giving rise to improved toughness measurements 

[40]. 

The problem of constraint in ductile crack problems 

is also significant. McClintock [41] has shown that the 

existence of a triaxial stress state greatly increases the 

rate of growth of voids at inclusion sites. However, as 

discussed at the end of section 2.2, there is an opposite 

tendency for the crack tip to blunt, a process which 

reduces the stress elevation [22]. If the blunting process 

dominates then the difference between specimens with 

triaxial and planar stress states will be reduced. 

However, if triaxiality is the more important effect 

derived parameters such as J Ic will be geometry dependent 

unless plasticity is fully contained. This dependence on 

geometry is observed and discussed further by Hancock and 

Cowling [33]. Kalthoff et al [42] and Ritchie et al [40] 

have discussed the consequent effect of notch bluntness in 

the Charpy test on measured fracture toughness values. 
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2.4. Dynamic fracture mechanics. 

In the analysis of a dynamic fracture experiment it 

is necessary to distinguish between three possible effects 

of the dynamic loading: 

(i) stress intensification at the crack tip due to 

local inertia (ie wave) effects, 

(ii) macroscopic inertial effects in the specimen and 

loading system, 

(iii) strain rate dependence of material properties 

(such as yield stress, fracture toughness, critical 

cleavage stress) and fracture mode. 

Furthermore, as noted by Nilsson [43], the major 

difficulty is to determine the instant of crack initiation 

"for which no truly reliable method exists". 

Over very short time intervals the loading of the 

crack tip is by means of stress waves: a complex 

interaction between the initial impact wave and 

reflections from the specimen surfaces [44]. Over longer 

time scales a more quasi-static stress field may be 

considered to exist and the applied bending or tensile 

loads become the most significant. 

Theoretical reviews of dynamic fracture include 

excellent studies by Kanninen [45], Nilsson [43,46], and 

Klepaczko [47]. 

Assuming linear elastic conditions, the most widely 
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used dynamic crack initiation condition can be stated as: 

(2.46) 

where KId is assumed to be a material function which may 
• be determined by experiment, and KI is the rate of change 

of the stress intensity factor. Equation (2.46) is only 

strictly valid when the non-linear zone, which must 

inevitably exist very close to the crack tip, is well 

contained within the KI stress field. By analogy with the 

static case, this condition is usually expressed in terms 

of the characteristic length: 

b,B > w [::]2 (2.47) 

For quasi-static conditions w - 2.5, the well-known ASTM 

condition (cf equation 2.16). It is assumed that this 

relation holds for dynamic cases, too, but there is no 

theoretical justification for this [43]. 

When the linear theory no longer applies the body 

must be modelled using elasto-plastic constitutive laws 

which may then be strain rate dependent. Many conservation 

integrals similar in form to Rice's J-integral (equation 

2.18) have been proposed to characterise dynamic, elasto

plastic problems. In reviewing these, Moran and Shih [48] 

concluded that some are meaningless since they do not 

relate to the crack tip stress fields (in the way that the 

J-integral does through the HRR singularity) while most of 

the rest are generalisations of the dynamic energy release 
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rate, Gd , defined by: 

+ T)nl - (1'.··n· -2: dr 1J J \ 
ou.] 

oXl 
(2.48) 

where dij and ui are the Cartesian components of stress 

and displacement, and ni are the components of a unit 

vector normal to r and pointing away from the crack tip. U 

and T are the strain and kinetic energy densities defined 

by: 

T - (2.49a) 

U - ($ •• ~ dt J
t [O€i ~ 
o 1J dt (2.49b) 

The kinetic energy density term is included for a 

propagating crack since the contour r then moves through 

the confining medium. For the case of a stationary crack 

tip it is bounded at the crack tip and makes no 

contribution to (2.48). The energy release rate for this 

case is: 

J d - lim f ~unl - d'i· n . oUiJ dr 
r~o J J dx r 1 

(2.50) 

Comparing (2.50) with (2.18), it is seen that the 

J-integral in the dynamic case is determined only as the 

contour is shrunk onto the crack tip. In other words it is 

no longer path independent since local inertia effects 

result in the stress field no longer being proportional at 

each material point. 
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Thus, if J is to be used to characterise dynamic 

elasto-plastic crack initiation, it is necessary to 

demonstrate that the crack tip field is indeed J-dominant. 

Further, since the J-iutegral is no longer path 

independent in the dynamic case, the use of deep crack 

estimation formulae such as equations (2.37) and (2.39) 

must be justified. 

Both these problems have been addressed by Nakamura 

et al [49] using a finite element model of the three point 

bend fracture specimen. They argued that a reasonable 

measure of the time required to establish a J-dominant 

field at the crack tip could be found by considering the 

ratio of kinetic energy to strain energy in the specimen. 

At first this ratio is substantially greater than 1.0, but 

after a certain transition time it falls rapidly through 

1.0 and settles to a va\ue less than 0.1. After this 

transition time Nakamura et al hypothesise that a J

dominant field is established. This concept is discussed 

further in section 5.6 together with an examination of the 

contribution of specimen inertia in evaluating the deep 

crack formulation of the J-integral (equation 2.37). 

The general problem of accounting for inertia effects 

without recourse to expensive and time-consuming finite 

element computations can be approached using 1-dimensonal 

lumped mass-spring models [4,5,50]. This is the technique 

adopted here and it is discussed in depth in chapters 4 
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and 5. Some more empirical methods will be presented in 

section 2.5. 

The strain rate dependency of yield stress has been 

addressed by many authors. For mild steel Jones [51] 

recommended the Cowper-Symonds relationship: 

d'Yd [€J l
/P - .. 1 + -

6y C 
(2.51) 

where C and p are material constants. For mild steel 

(where C - 40.4 s-l and p - 5) this implies a doubling of 
• 

the yield stress for an increase in strain rate, €, of 

approximately 5 orders of magnitude. The same relationship 

(2.51) has been fitted to data for aluminium alloy, 

alpha-titanium, and 304 stainless steel [51]. 

For AISI 4340 VAR (vacuum arc remelted) steel 

Tanimura and Duffy [52] fitted the results of incremental 

strain rate tests in shear to relationships of the form: 

In(-(dl{s) 
m - . . 

In(~ dIgs) 
(2.52) 

0"1: 

1 {d - is 
- - • 
J3 

• 
In()( d/~s) 

(2.53) 

where ~d and -Cs are the values of shear stress in the 

dynamic and static cases and ~d and ~s are the appropriate 

shear strain rates. They noted that for FCC and Hep metals 

the strain rate parameters derived from incremental tests 

(ie tests with a step change in strain rate) could be 
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different from those obtained in constant strain rate 

tests between the same limits due to history effects. 

However, for BCC metals such as 4340 steel, these history 

effects are considered to be small. For three tempers of 

the 4340 steel Tanimura and Duffy found that the elevation 

of yield stress for a variation in the applied strain rate 

of over 5 orders of magnitude was between 6% and 12%. 

(These torsional test results can be converted to 

approximate axial equivalents by assuming the von Mises 

yield criterion and an incompressible material, whence 

6y 2 ~y3~, €y = ~y/3~.) 

In dynamic fracture tests it is the stress intensity 

factor that is commonly measured with time rather than the 

strain rate. Moreover, the strain rate will be different 

in different parts of the specimen. Klepaczko [2] 

attempted to relate the change of stress intensity factor 
• 

with time, KI , to the strain rate developed at the edge of 

Irwin's plastic zone, assuming the von Mises yield 

criterion. He obtained a function of the form: 

• 6y. 
€ - -- KIf(~) 

EKI 
(2.54) 

where f(~) - 1 was claimed in Klepaczko's derivation, but, 

strictly speaking, f(~) - (1 + ~) for plane strain and 

f(~) - (1 - ~) for plane stress (see Appendix 1). 

Hoff et al [53] developed a similar expression to 

equation (2.54) for a strain-hardening material with the 
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HRR singularity stress-strain field (equations 2.24): 

e .. _~€y [ EJ Jn~l 
1J 0(6 2r r y n 

-1 
n+l 

J 
• 1\ 

J e·· 1J 

Comparing equations (2.24b) and (2.55) gives: 

• 
• n J 
6·· - e· . 1J n+l J 1J 

and if e·· 1J is estimated by the Ramberg-Osgood 

law (equation 2.21), where 6y = cfy/E, then: 

cfy [:J~:J 
• 

• J e· . _ 01.-
1J E J 

and, for small scale yielding, differentiating 

(2.34) gives: 
• 

• 6y r 6 In r. nl Kr 
€ij - 2 ~ E L cry Ln+~ Kr 

(2.55) 

(2.56) 

pure power 

(2.57) 

equation 

(2.58) 

For 6 - Oy (ie at the edge of the plastic zone) equation 

(2.58) gives a strain rate of similar magnitude to (2.54). 

However, Hoff et al [54] calculated that the strain rate 

in the process zone close to the crack tip could be 

several orders of magnitude greater than in the plastic 

zone. 

The rate of change of the stress intensity factor, 
• 
Kr , is generally approximated by the mean value: 

• Krc 
Kr ---tf 

(2.59) 

where K1c is the critical stress intensity factor 

(fracture toughness) attained after a loading time t - tf. 
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On the basis of equation (2.54) Klepaczko [2] has 

described the loading rate spectrum (figure 2.6) from an 

assumed quasi-static level (Kr - 1 MPam~/s), through 

standard test pieces in conventional machines 

(Kr < lxl03 MPam~/s), to stress wave loading using 

machines such as the Hopkinson pressure bar 

(Kr < lxl06 MPam~/s), and finally shock wave loading 

(Kr ~ lxl09 MPam~/s). 

One implication of increased strain rate is to alter 

the restriction on minimum specimen size required to 

maintain plane strain constraint for elastic specimens 

(equation 2.16) and to give J-dominance in elasto-plastic 

specimens (equations 2.29 - 2.30). At a given temperature 

the typical variation of yield stress with strain rate is 

given by equation (2.51), and, if the loading rate 

sensitivity of fracture toughness is defined by [2]: 

lOKrc ] n m ----. (2.60) 
J ologKr T 

then equation (2.16), for example, can be rewritten as: 
• • 

a,(W-a),B > 2.5 
Krcs + ~ log(Kr/Krs) 

~Ys [1 + (€/C)l/p] 
(2.61) 

The loading rate sensitivity of fracture toughness ~ is 

often negative, particularly on the lower shelf, so the 

tendency is for both the raised yield stress and lower 

fracture toughness to combine to permit valid Krc tests 

with smaller (less expensive) specimens (with the slight 
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reservation expressed in the discussion of equation 2.47). 

Hoff et al [53] postulated that if the critical CTOD 

is rate insensitive then equation (2.25), together with 

equation (2.34) for small scale yielding, implies that: 

J 1Cb _[KICb]2 
J 1ca K1ca 

~b 
(2.62) ----

where subscripts a and b refer to two different loading 

rates. Thus J 1c would increase with loading rate. Besides 

neglecting the rate dependency of the coefficient d in 

equation (2.25) - which from [21] is likely to be 

important for small n - the assumption of a rate 

insensitive CTOD in the derivation of equation (2.62) may 

not be compatible with the enhancement of void nucleation 

and growth processes by a higher mean stress level (which, 

in turn, scales with yield stress). 

2.5. Instrumented impact testing. 

The Charpy pendulum test was one of the earliest 

techniques used to characterise the fracture behaviour of 

steel with temperature. Although it proved possible to 

define lower shelf (cleavage) and upper shelf (ductile) 

fracture zones (figure 2.7) in terms of the energy lost by 

the pendulum these values were not readily translated into 

parameters such as the plane strain fracture toughness. 
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In the 1970s considerable effort was put into 

developing an instrumented version of the test in which 

the forces generated in the hammer during impact were 

measured using strain gauges (see, for example, 

[55,56,57]). The approach sought to combine the standard 

method of static fracture toughness testing [3] with the 

standard for notched bar impact testing [58]. Server 

[59,60] proposed a number of guidelines for the conduct of 

such an "instrumented impact test". In particular, he 

pointed out that the impact loading of a specimen created 

inertial oscillations in the measured load which tended to 

reduce in magnitude with time (figure 2.8). Server 

proposed that a reliable load measurement at fracture 

could only be obtained if the time to fracture, tf' 

satisfied the condition: 

(2.63) 

where i is the period of oscillations in the load-time 

record. The time period t could be predicted empirically 

for the Charpy specimen (S/W - 4) by: 

(2.64) 

where c is the speed of a stress wave through the specimen 

and Cs is the specimen compliance. A further requirement 

when evaluating the total fracture energy Wm was to ensure 

that the the total available energy Eo - \mVo2 (where m 

and Vo are the mass and initial velocity of the hammer) 
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should be sufficient to ensure that the specimen was 

completely fractured. This condition was expressed in the 

form: 

(2.65) 

and claimed to represent a reduction in striker velocity 

of no more than 20% up to maximum load. Initiation was 

assumed to take place at maximum load for purely elastic 

fracture, from which equation (2.13) gives the dynamic 

plane strain fracture toughness. For ductile fracture the 

criterion of initiation at maximum load was held to be 

non-conservative though no alternative approach was 

suggested. The deep-crack formulation of the J-integral 

(2.37) was proposed for characterising the fracture. 

The problem of inertial oscillations was discussed in 

more depth by Ireland [61] for the case of pendulum 

impact. A typical force-time measurement from strain 

gauges mounted on the tup is shown in figure 2.8. The 

first peak is attributed to the force induced by rigid 

body acceleration of the specimen from rest to a velocity 

near that of the impacting hammer. This force is a maximum 

at the moment of impact and then rapidly decreases. The 

limited frequency response of the electronic measuring 

system results in a sinusoidal force measurement. The 

magnitude of the oscillation is related to the impact 

velocity. Subsequent oscillations occur due to stress wave 

effects and the periodic release of stored strain energy. 
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The vibration mode of the specimen is expected to be a 

combination of modes 1 and 3 (see figure 2.9). The 

frequency of stress wave reflections in the Charpy 

specimen is approximately 100 kHz (ie the ratio of 

dilatational wave speed to path length between the 

supports) and the tup will have a similar characteristic 

frequency dependent on its dimensions. The net effect is 

to produce a signal oscillating at about 30 kHz. Changes 

of impact velocity have little effect on the frequency but 

a large effect on the magnitude of the oscillations. 

Changes in specimen compliance have apparently no effect 

on either the frequency or the amplitude of oscillation, a 

phenomenon examined by the analysis in section 4.3. 

Ireland [61] also noted that investigators who placed 

additional strain gauges on the specimen found that the 

loads there had a smaller amplitude of oscillation and 

were approximately 1800 out of phase with the tup force. 

Ireland [61] further identified five energy absorbing 

processes which take place during the impact event: 

(i) acceleration of the specimen from rest to the 

velocity of the hammer, 

(ii) bending of the specimen, 

(iii) deformation at the specimen load points, 

(iv) vibrations within the impact machine after 

initial contact with the specimen, 

(v) elastic energy stored within the machine. 
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To these must be added the energy required to fracture the 

specimen. Thus, while the total energy absorbed in a test 

might be easy to measure, the derivation of an energy 

value suitable for calculating the J-integral from 

equation (2.37) is complex. Again the analysis of chapters 

4 and 5 will prove useful in this context. 

Kobayashi et al [62] presented data on large three 

point bend specimens which suggested that Server's 

criterion for the time to fracture (equation 2.63) is a 

special case limited to certain (small) geometries. They 

recommended the development of dynamic analyses which 

allow directly for inertial effects. 

Iyer and Miclot [63] considered the determination of 

the J-integral (equation 2.37) in the instrumented Charpy 

test using specimens with varying crack length. To 

evaluate the energy absorbed by the specimen they 

performed two operations on each measured force-time 

trace. Firstly they calculated the energy lost by the 

pendulum in successive time increments by relating the 

area under the force-time curve to the initial velocity 

and so derived a force-displacement curve. The second 

operation was to correct this curve for the compliance of 

the test machine. This was evaluated (as a function of 

load) in a separate test. The first correction was found 

to be only about 2.5% of the overall energy, but the 

second amounted to 30% in some cases. 
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Kobayashi [64] reported a similar analysis procedure 

for the instrumented Charpy test in which the inertial 

oscillations in the measured load were numerically 

smoothed. Load point deflection was determined from the 

rotation at the hammer axis and hence the apparent energy, 

E', stored in the specimen and test machine calculated. 

Kobayashi assumed that this could be related to the real 

energy absorbed by the specimen, E, by: 

E ~ E'[ Cs ] 
Cs + cm 

(2.66) 

where Cs and cm are the compliance of the specimen and 

test machine respectively. Kobayashi evaluated cm in an 

elastic low blow (ie low strain rate) test on an unnotched 

specimen as cm - 12.2 nm/N and assumed that it would 

remain constant across a range of temperature and strain 

rate. This assumption will be discussed in chapter 5. It 

was found that approximately 20% of the energy at maximum 

load was absorbed in the test machine. From other low blow 

tests Kobayashi concluded that crack initiation took place 

prior to the attainment of maximum load and that the 

energy absorbed up to crack initiation could be calculated 

from: 

(2.67) 

No attempt was made to justify the application of this 

expression to a wide range of impact velocities and crack 

tip strain rates. 
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The problem of reliably determining the load point 

displacement is largely solved if a Hopkinson pressure bar 

is used to load the specimen. Such a test has been 

described by Nicholas [65] and is the basis of the 

approach developed here (see chapter 3). 

The second problem of machine compliance is examined 

more deeply in chapters 4 and 5. 

Finally, the third major problem in the instrumented 

impact test has been the detection of crack initiation. 

Many authors, for example Iyer and Miclot [63], Tsukada et 

al [66], and Nguyen·Duy et al [67], have assumed this 

occurs at the maximum load. While Iyer and Miclot at least 

verified this assumption for slow bend tests, it is very 

difficult to test during high speed impact. By contrast, 

Kobayashi [64] found that in low blow tests crack 

initiation actually occurred prior to maximum load. 

Kalthoff et al [42] compared the load-time signals from 

strain gauges mounted on a drop-weight tup to measurements 

of the dynamic stress intensity factor made using the 

method of shadow caustics. They noted that the dynamic 

stress intensity factor only started increasing some time 

after the initial rise in tup load and that initiation 

occurred some time after the peak load was obtained. Thus 

there is no consensus on the relationship of remote load 

measurements to crack initiation and it seems likely that 

this will vary with material, temperature, and impact 
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velocity. 

A possible alternative approach is to instrument the 

specimen itself with one or more strain gauges close to 

the crack tip [68], an approach that will be discussed 

further in section 3.6. 

Kalthoff and co-workers [42,69,70] have highlighted 

further problems with the instrumented Charpy test, 

including that of loss of contact between the specimen and 

tup and between the specimen and anvil. Such effects only 

underline the necessity for a fully dynamic analysis. 

2.6. Finite element analysis in dynamic fracture. 

Gallagher [71] has reviewed the application of finite 

element modelling techniques to fracture mechanics 

problems. The discussion here will be limited to 

representations of the crack tip singularity ~ing 
suitably modified isoparametric elements (ie elements in 

which the elastic interpolation functions are the same as 

the shape interpolation functions). Alternative techniques 

exist [71] in which special crack tip elements are created 

with the classical fracture mechanics solutions 

incorporated directly in the finite element formulation. 

Henshell and Shaw [72] and Barsoum [73] independently 

observed that if the mid-side node of a quadratic 
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isoparametric line element is moved to the quarter-point 

(see figure 2.10a) then the derivative of the shape 

function is singular at one end (point 1 in figure 2.10a). 

It can further be shown that if the displacement field is 

expressed in terms of the same shape functions then the 

strain singularity at that point has the required order 

(l/r)~. Thus a crack tip can be modelled at the corner 

node of a quadrilateral 8-noded element (figure 2.10b). It 

was later realised that the singularity condition did not 

exist inside the element, but Barsoum [74] corrected this 

by collapsing one side of the element to form the 

triangular element shown in figure 2.10c. 

Gallagher [71] and Owen and Fawkes [75] have also 

reviewed various techniques for deriving the stress 

intensity factor (KI ) and the strain energy release rate 

(G). Plasticity effects can be incorporated through 

suitable constitutive relationships (eg Ramberg-Osgood 

[18]) or in a piece-wise manner from measured stress

strain curves. Moran and Shih [48] discussed an 

alternative formulation of the J-integral as a domain 

integral which is more suited to incorporation in finite 

element calculations than the line integral form. 

Dynamic fracture analyses using finite elements can 

largely be placed in three categories: 

(i) representation of the effect of local material 

inertia and strain rate on initiation fracture properties 
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[49,53,54,75,76], 

(ii) modelling of the complex interactions between 

specimen and loading system [77], 

(iii) crack propagation studies [78]. 

The third category is beyond the scope of this thesis; the 

other two are discussed in more depth below. 

Hoff et al [53,54] developed an "inertialess" loading 

technique by specifying constant nodal velocities scaled 

appropriately from the static deflection. Having thereby 

isolated strain rate effects they then derived effective 

dynamic Ramberg-Osgood coefficients, Cl.. d and nd' by 

combining equations (2.21), (2.51) and (2.56) to give a 

dynamic stress-strain characterisation defined by: 

l/nd 

d'Yd ~ t5y ["':Sy] (2.68) 
With this approach they demonstrated that if, as discussed 

in section 2.4, critical CTOD is taken as a rate-

insensitive fracture criterion, then a dynamically loaded 

rate-sensitive material will withstand a higher J-integral 

before this ~c is reached, compatible with the change of 

yield stress given in equation (2.62). 

Nakamura et al [49,75] have analysed two specimen 

geometries - notched round bar and three point bend - with 

a view to examining the effect of local material inertia 

on the establishment of a J-dominant stress field and the 

subsequent use of far-field measurements to characterise 
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the stress state at the crack tip. Their findings have 

been discussed in section 2.4 and will be developed 

further in chapter 5. 

Tvergaard and Needleman [76] employed more elaborate 

constitutive relationships which included the effect of 

void coalescence through a void volume fraction which 

could increase due to nucleation and/or growth. Nucleation 

could be stress- or strain-controlled. Failure was deemed 

to occur either by cleavage when the stress over an 

element scale length exceeded the critical cleavage stress 

or by void nucleation and coalescence once a certain 

critical stress or strain had been achieved. Because the 

degree of stress elevation due to triaxiality at the crack 

tip increases with strain rate it was demonstrated that 

high strain rate can promote the cleavage failure mode 

ahead of the ductile failure mode. Due to stress 

relaxation with void growth the energy absorbed in the 

transition temperature range increased sharply as the 

fracture mode changed from cleavage to ductile. 

Norris and Marston [77] modelled both the striker and 

the specimen in a Charpy impact test. By studying the 

early wave effects they identified specimen-striker 

separation as reported by Bohme and Kalthoff [69]. Their 

model also permitted slip of the specimen at its supports. 

Further development of finite element modelling is 

likely to prove important in the areas of predicting 

45 



specimen/test machine interaction and studying 

3-dimensional effects [79] which become important when 

determining the effect of crack tip constraint. 

2.7. Dynamic crack initiation: experimental results. 

Extensive fracture toughness measurements for 

different metals across a wide range of temperature and 

strain rate are not common. Individual authors have tended 

to concentrate on one or at most two strain rates. 

Klepaczko [2,80,81] has been one of the few to attempt a 

review of the available data and its synthesis with the 

microstructural relationships described in section 2.3. 

Figure 2.11 reproduces fracture toughness measurements on 

a carbon steel (0.45% C) at room temperature [82]. The 

fracture toughness is seen to fall at intermediate loading 

rates and to rise again at very high rates. The existence 

of a minimum fracture toughness which is less than the 

static value clearly has important design implications. 

Klepaczko [2] suggested that the fracture behaviour can be 

described in terms of the surface: 
• 

KIc - f(KI,T) (2.69) 

from which safe design levels can be established. 

Krabiell and Dahl [83] have presented data for three 

structural steels in terms of such a fracture surface. 
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Figure 2.12 shows a selection of their results for 

Fe E 460 steel (German standard). At very low temperatures 

dynamic and static v~lues of the fracture toughness 

coincide, but as temperature increases a negative loading 

rate sensitivity is observed and the transition 

temperature range is shifted to higher temperatures. At 

very high temperatures the loading rate sensitivity 

becomes slightly positive (although by this stage the K1c 

evaluation is no longer strictly valid due to loss of 

constraint). 

Similar results have been found by Marandet et a1 

[84] for SA 508 Cl. 3 steel at two loading rates (figure 

2.13) and by Costin and Duffy [85] for 1018 cold-rolled 

steel (figure 2.14). 

From basic thermodynamic considerations Klepaczko [2] 

has developed a constitutive relationship for the yield 

stress as a function of temperature and strain rate. This 

expression, combined with the microstructural criteria for 

lower shelf fracture (equation 2.43) and upper shelf 

fracture (equation 2.45), has been used to model the 

Fe E 460 data of Krabie11 and Dah1. The negative loading 

rate sensitivity in the transition zone is shown to be due 

to the effect of increasing yield stress. The positive 

loading rate sensitivity of the upper shelf is again 

predicted to be a function of yield stress by the 

simplistic approach of Hoff et a1 [53] - equation (2.62) -
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and the microstructural model (equation 2.45). However, 

none of these models predicts the minimum in fracture 

toughness shown for the 0.45% C steel in figure 2.11. The 

rise in fracture toughness at very high loading rates may 

be due to the effect of adiabatic heating at the crack tip 

causing a local rise in the yield stress [86] or, perhaps, 

to a change in critical cleavage stress induced at very 

high loading rate [80]. 

Results for AISI 4340 (the us equivalent of the En24 

steel reported here) have been contradictory. Costin et al 

[87] found that for samples tempered to Rockwell C 48 no 

rate sensitivity was evident between the static value of 

KIc - 61.6 MPam~ and the dynamic value of KId - 62.7 

MPam~. However, later tests on the same material [88] gave 

a mean value KId - 58.3 MPam~ for the instrumented Charpy 

test (KI - 2.2 x 105 MPam~/s) and KId - 56.3 MPam~ for a 

test at slightly higher strain rate (KI - 2.2 x 106 

MPam~/s). 

By contrast, Homma et al [89] in tests on a temper to 

Rockwell C 51 measured a large fall in fracture toughness 

from KIc - 50 MPam~ to KId - 31.7 MPam~ (RI - 5 x 105 

MPam~/s) accompanied by a change in the appearance of the 

fracture surface from dimpled rupture in the static test 

to a mixture of dimples and cleavage facets in the dynamic 

test. 

Giovanola [90] with a similar temper to Rockwell C 
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50, determining stress intensity factors by Loss's static 

calibration method [68], reported a static fracture 

toughness KIc - 63.7 MPam~ against a dynamic KId - 58.5 

MPam\ (KI - 3 x 105 MPam~/s) with no significant change in 

the fracture surface of dimples with both intergranular 

and cleavage fractures. 

Two possibilities for the contradictory nature of 

these results arise from the specimen composition and 

geometry. Ritchie et al [40] have noted that comparing 

different heat treatments of AISI 4340 the trend in 

fracture toughness obtained with fatigue pre-cracked 

specimens could be the opposite to that obtained with 

notched specimens. This phenomenon was explained in terms 

of the effect of notch bluntness on the constraint ahead 

of the crack tip. Furthermore, Cox and Low [91] have shown 

that a small rise in the amount of sulphur in AISI 4340 

steel can cause a marked fall in the fracture toughness 

(from 106.9 MPam~ for 0.004% S to 74.7 MPam~ for 0.013% S 

at a tempering temperature of 4300 C). They describe the 

fracture process as occurring in a brittle manner by 

dimpled rupture due to highly localised plastic 

deformation at voids initiated at inclusions of manganese 

sulphide (and hence the reduction in toughness with 

increasing sulphur impurity). 

Bilek [92] attempted to examine the effect of crack 

velocity on fracture toughness. He found that for the 
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38SoC temper the dynamic fracture toughness ranged from a 

minimum of KId - 37 MPam~ (at a - 60 m/s) to 

KId - 90 MPam~ (at a - 1000 m/s) compared with a static 

value of KIc - 62 MPam~. However, since he achieved the 

range of crack velocities by varying the notch root radius 

(from 0.2 mm - low velocity - to 1.0 mm - high velocity) 

it must be questioned whether his results were not merely 

a function of constraint, as discussed above. 
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(a) Mode I : opening mode. 

(b) Mode 11 : sliding mode. 

(c) Mode III tearing mode. 

FIG. 2.1. The three loading modes for a cracked body. 
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FIG. 2.2. Crack tip stress distributions showing: 
(a) elastic/inelastic stress distribution, 
(b) plastic zone boundaries. 
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FIG. 2.3. Contour for definition of the J-integral in 
a plane, cracked body. 
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FIG. 2.4. Crack opening displacement (COD) and 
crack tip opening displacement (CTOD). 



(i) 

(ii) 

FIG. 2.5a. Comparison of Prandtl slip line fields for: 
(i) a sharp crack, 
(ii) a circularly blunted crack tip [33]. 

FIG. 2.5b. Slip line field in the three point bend 
specimen [33]. 
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FIG. 2.8. Inertial oscillations in the load-time record 
for an instrumented Charpy impact test [61]. 



~-------------~ 

Mode 1 

~------~------~ 

Mode 2 

~----~---~----~ 

Mode 3 

FIG. 2.9. Vibration modes of a simply-supported beam. 
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FIG. 2.11. Effect of loading rate on the fracture 
toughness of 0.45% C steel at room 
temperature [82]. 
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FIG. 2.12. Fracture toughness as a function of 
temperature and loading rate for Fe E 460 
steel (83]. 
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1018 CRS as a function of temperature [85]. 



3. THE THREE POINT BEND IMPACT TEST LOADED WITH THE 
HOPKINSON PRESSURE BAR. 

3.1. Introduction: the Hopkinson pressure bar. 

In 1913 Hopkinson [93] used a ballistically suspended 

steel bar to transmit short pressure pulses from the 

detonation of gun-cotton at one end of the bar to a series 

of different length short bars attached lightly to its 

opposite end by magnetic attraction. By measuring the 

momentum imparted to the shorter bars Hopkinson was able 

to approximate the shape and time history of the pressure 

pulse generated by the detonation of the gun-cotton. 

Kolsky [94] adapted this technique to measure the 

stress-strain characteristics of materials at high strain 

rates by wedging a sample of the material between two bars 

instrumented with microphones and detonating a charge at 

the opposite end of one of the bars. This is the so-called 

split Hopkinson bar arrangement. 

Further development included the introduction of 

strain gauges to measure the longitudinal stress waves 

generated in the bars and a second striker or travelling 

bar to replace the need for an explosive charge. 

Nicholas [65] employed this arrangement of one bar 

impacting another to perform instrumented impact tests on 

several grades of beryllium using Charpy specimens loaded 
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in three point bend configuration. He demonstrated that 

the force-time and displacement-time behaviour of the 

specimens could be easily deduced from measurements at a 

single strain gauge mounted approximately halfway along 

the incident bar and that inertial oscillations were 

considerably reduced by comparison with results from 

instrumented Charpy tests at similar loading rates. 

However, the energy measured to failure was similar for 

both types of test. 

Tanaka and Kagatsume [95] performed similar tests on 

0.45% C steel except that they replaced the anvil support 

used by Nicholas with a cylindrical, instrumented output 

tube in a split Hopkinson bar arrangement. They deduced 

the load on the specimen from the stress wave in the 

support bar and the deflection of the specimen from the 

relative displacement of the ends of the incident bar and 

output bar. 

Yokoyama and Kishida [96] used a similar technique to 

study aluminium alloy and titanium alloy, except that they 

replaced the single transmitter tube with two instrumented 

bars. The rise in transmitted load occurred 50 x 10-6 s 

after the initial impact load reached the specimen, 

suggesting a loss of contact between the specimen and its 

supports. 

Ruiz and Mines [97,98] derived force-time and 

displacement-time characteristics for a pressure vessel 
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steel using two measurement points on the incident bar 

alone. This was the fundamental approach adopted for work 

in this thesis. It is described below together with some 

improvements to the test technique. 

3.2. General arrangement of apparatus. 

The apparatus basically consisted of two coaxial, 

cylindrical steel bars used to generate and transmit a 

pressure pulse to a standard Charpy specimen supported by 

an anvil (figures 3.1 - 3.3). The first, or "travelling" 

bar was accelerated by means of a catapult powered by 

bungees. Its velocity could be controlled by moving the 

saddle shown in figure 3.1 backwards and forwards along 

the supporting bars. The travelling bar then impacted the 

second - "incident" - bar which in turn was in direct 

contact with the specimen under test. Good contact with 

the specimen was ensured by attaching the incident bar to 

the anvil with another, lightly tensioned bungee. 

The stress wave generated by the impact between the 

two bars was measured using strain gauges positioned at 

points 51 and 52 in figure 3.1. There were two strain 

gauges at each measurement point, positioned on opposite 

sides of the bar, so that, by means of a Wheatstone bridge 

network, it was possible to separate out the normal stress 
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from any bending stress which might have been induced by 

the impact (see section 3.3). The resulting strain gauge 

signals were amplified by a gain of 2 - 10 x 103 and 

stored on a DLI080 transient recorder (figure 3.4). 

Recording was triggered by the leading edge of the Sl 

signal attaining a certain voltage. A fifth strain gauge 

(S3) was attached to the specimen itself to determine the 

instant of crack initiation (see section 3.5). All strain 

gauge records were subject to high frequency cut-off 

(-3dB) at 1 MHz and low frequency cut-off (-3dB) at d.c. 

conditions, giving an excellent range of frequency 

. . 1· f 0 2 10-6 s 1 d sensit1v1ty. A samp 1ng rate 0 • x was se ecte , 

thereby giving good resolution to all events with a period 

greater than 1 - 2 x 10-6 s. 

The velocity of the travelling bar could be 

determined from the strain gauges at Sl and S2 using 

I-dimensional wave mechanics. It was also measured 

independently by a photocell placed close to the impact 

point which then gave a basis for proving the calibration 

of the rig. 

3.3. Calibration of the Hopkinson pressure bar. 

A general Wheatstone bridge network is shown in 

figure 3.5a. For a balanced bridge voltage ebc - 0 and 
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hence: 

-- (3.1) 
R4 R3 

If R1 is made an "active" gauge (ie the strain gauge) then 

it will undergo a change of resistance bR1 on loading with 

a strain €1 such that: 

1 bR1 
€1 --

kg R1 
(3.2) 

where kg is the strain gauge sensitivity. Measurements may 

be taken either by: 

(i) using a calibrated variable resistor at R2 or R4 

to balance the bridge, or, 

(ii) measuring the unbalanced voltage across ebc 

after the bridge has been first balanced for the no-load 

condition. 

The first technique is impractical for high speed 

dynamic tests. Using the second approach, it was assumed 

that equation (3.1) still applies under the out-of-balance 

condition although this is not strictly true. It can then 

be shown [99] that for maximum voltage sensitivity 

R1 - R2 - R3 - R4' under which conditions the voltage 

sensitivity for a single active gauge at Ri is given by: 

Emkg 

4 

where Em is the driving emf for the bridge. 

In order to eliminate bending effects two strain 
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gauges were used on opposite sides of the incident bar 

(figure 3.Sb). If these gauges have the no-load 

resistances Rt and Rt ' then under load their resistance 

will change by the increments bRt and bR1 ' such that: 

bR t - bRn + bRb 

6R ' - bR - bRb 1 n 

where subscript n refers to normal stress load and 

subscript b to bending stress load. 

(3.4a) 

(3.4b) 

The two possible circuits for eliminating the bending 

component bRb are shown in figures 3.Sc and 3.Sd. It can 

be shown that the circuit in figure 3.5d has twice the 

voltage sensitivity of the circuit in figure 3.5c and that 

this voltage sensitivity is given by: 

ebc _ Emkg 
S ----v € 2 

n 

(3.5) 

provided that bRl/Rl « 1. (For a nominal impact velocity 

of 2.5 m/s, bR 1/R1 ~ S x 10-4 , so this condition is well 

satisfied.) Thus the circuit in figure 3.5d was selected 

with kg - 2.03, R1 - R2 - R3 - R4 - 120A, and Em - SV. 

To ensure that equation (3.5) gives a correct measure 

of the level of strain in the incident bar, it was used to 

deduce the velocity of the impact bar in each test and the 

result compared with the photocell measurement. From 

1-dimensional stress wave analysis (see, for example, 

[100]) the strain induced in a bar by the passage of an 

elastic stress wave with velocity c is: 
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6 
€ - - - (3.6) 

E E 

where V is the local particle velocity and E is Young's 

modulus. The elastic wave velocity can be expressed as: 

(3.7) 

and so, from equations (3.6) and (3.7): 

v - c€ (3.8) 

which is the particle velocity generated in the incident 

bar by the collision of the travelling bar at one end. 

Again from 1-dimensional stress wave analysis [100] 

applied to the collision of two bars of different cross

sectional area (figure 3.6), equilibrium requires that: 

(3.9) 

substituting from equation (3.6), for bars of identical 

material, equation (3.9) can be rewritten: 

AZ 
V1 - -- Vz 

Al 

where Vl and Vz are the particle velocities after 

collision of the travelling and incident bars 

respectively. If Vo is the initial velocity of the 

travelling bar, then, by continuity: 

Vo - V1 - Vz 
Combining equations (3.8), (3.10), and (3.11), the 

(3.10) 

(3.11) 

travelling bar velocity immediately prior to impact is: 
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Vo - [1 + ::J V2 - [1 + ::J cS 
(3.12) 

The strain magnitude € in equation (3.12) was 

determined directly from the mean voltage measured at the 

Sl strain gauge using equation (3.5). The resulting 

evaluations of velocity are compared with the equivalent 

photocell measurements in figure 3.7 for a range of impact 

velocities. Agreement is within 2% for Vo < 2.5 mls but as 

high as 6% for one of the high speed tests. However, for 

the higher speed tests the photocell measurements were 

comparatively erratic (due to short measurement times) 

while the Vo calculation (equation 3.12) for back to back 

tests (ie those for which the saddle position had not been 

altered) proved far more consistent. 

The electronic measuring system was in turn 

calibrated using reference voltages applied to the 

terminals of the differential amplifiers. 

3.4. Derivation of force-time and velocity-time traces. 

The analysis procedure for the strain gauge readings 

at Sl and S2 has been described by Ruiz and Mines [97]. 

The principle is that the stress wave generated by the 

impact of the travelling bar propagates down the incident 

bar to the specimen where part of it is reflected and part 
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of it transmitted through the specimen. Assuming that the 

pulses generated in the bar are purely elastic and travel 

in a non-dispersive manner at the elastic wave velocity, 

c, it is possible by appropriate manipulation of the S1 

and S2 traces to determine the force and velocity at the 

tip of the incident bar. A limiting time for useful 

measurements is imposed by the fact that these values can 

no longer be accurately determined once the reflected 

unloading wave has reached S1. This limit is achieved 

provided that the travelling bar is long enough to give a 

continuous stress pulse at S1 (ie it must be at least as 

long as the incident bar). The assumptions of 

1-dimensional wave mechanics as stated above are no longer 

strictly valid at the tip of the incident bar which is 

profiled to form a wedge and the implications of this will 

be discussed later. 

The basic data reduction technique is depicted 

schematically in figure 3.8. The strain gauges at S1 

measure the incident wave, 6r , while those at S2 register 

initially the incident wave and subsequently the 

difference between the incident wave and the reflected 

wave, 6r - €R. €R can be determined by aligning the two 

traces and subtracting appropriately. Further shifting of 

the reflected wave to coincide with the rise of the 

incident wave is equivalent to studying the stress wave 

history at the point of reflection (which, to a first 
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approximation, can be assumed to be at the tip of the 

incident bar) • The force on the specimen is then given by: 

F - A E (€r - €R)tip (3.13) 

where E is Young's modulus and A is the cross-sectional 

area of the incident bar. The particle velocity at the tip 

of the bar is: 

(3.14) 

3.5. Specimen specifications and preparation. 

The specimens were standard Charpy three point bend 

notched impact specimens (55 x 10 x 10 mm), as described 

by ASTM standard E23 [58] and illustrated in figure 3.9. 

The materials used and their heat treatments are specified 

in section 3.7. After their appropriate heat treatment the 

specimens were fatigue pre-cracked to approximately half 

their width using an Amsler vibrophone in the three point 

bend configuration and following the recommendations of 

Ireland [101] with respect to maximum load and loading 

range. These recommendations require the fatigue crack to 

extend at least 2.5 mm beyond the notch tip and during the 

last 0.5 mm of fatigue crack growth the maximum stress 

intensity factor for the fatigue cycle must lie within the 

range [101]: 

0.00013 E < {Kf)max < 0.00029 E (3.15) 
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The maximum load for each specimen material was evaluated 

to lie at the lower end of this range (since the upper 

limit was found to be comparable to the static fracture 

toughness values for all the materials used in the study), 

although higher values were sometimes needed to initiate 

the fatigue crack. The further stipulation that the stress 

intensity range should not be less than 0.9 (Kf)max was 

not achieved. In practice a range of only about 

0.6 - 0.8 (Kf)max was found possible before chattering 

began at the supports. 

Figure 3.9 also shows the position of the specimen 

crack tip strain gauge which was used to monitor crack 

initiation (see section 3.6). The strain gauges used were 

of constantan on a polyimide backing with larger than 

usual copper tabs to facilitate soldering of leads. Their 

specification was CEA-06-062UW-120. Installation was 

carried out using M-Bond 610 adhesive, following the 

surface preparation and curing cycle specified by the 

manufacturers [102]. 

3.6. The detection of dynamic crack initiation. 

The problem of detecting the instant of dynamic crack 

initiation has been discussed in section 2.5. The 

importance of inertial effects means that the assumption 
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of initiation occurring when the impactor load achieves a 

maximum value is too simplistic. It is necessary therefore 

to have a technique for determining the moment of crack 

initiation which is independent of the load-time trace. In 

the current study two possible techniques were considered, 

namely: 

(i) an alternating current potential difference 

(ACPD) commercial crack detector manufactured by Matelect 

Ltd (Crack Growth Monitor CGMS), and, 

(ii) a strain gauge mounted on the surface of the 

specimen close to the crack tip. 

The ACPD technique was developed by Marandet et al 

[84] and Venkatasubramanian and Unvala [103]. An 

alternating current is passed through the specimen and the 

potential difference measured across the crack. When the 

crack initiates the impedance rises. The method has 

several advantages over the corresponding direct current 

technique which requires large currents and great care 

that temperature variations do not generate thermoelectric 

and drift voltages which can be mistaken for crack growth. 

The ACPD approach relies on the skin effect where currents 

are restricted close to the surface and, since the AC 

impedance is much larger than the DC resistance, smaller 

currents can be used. AC coupled amplifiers are used to 

remove the DC voltage errors described above. 

Vpnkatasubramanian and Unvala have used the technique to 
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monitor slow crack growth and Marandet et al to measure 

the dynamic fracture toughness of SA SOB Cl 3 steel at an 

intermediate loading rate (Kr - 1.B x 104 MPam\/s). The 

latter used a current of 3A at frequency 10 kHz. 

Application of the ACPD technique in high speed dynamic 

tests is undocumented. The maximum frequency offered by 

the CGM5 was 100 kHz which suggested a resolution of the 

order of 10 x 10-6 s which would have been barely 

satisfactory. Unfortunately at this frequency the skin 

depth in steel is very shallow and the resulting signal 

too weak to interpret. Unvala (104] recommended an optimum 

operating frequency of 10 kHz for steel which would not 

achieve the required resolution, but even at a compromise 

of 30 kHz the signal was too weak and erratic. It was 

therefore concluded that the equipment was unsuitable for 

high rate tests on steel. It is also worth noting in this 

context that Okumura et al (105] have found that for very 

tough materials the AC impedance also increases with 

significant crack tip blunting, thus making initiation in 

elasto-plastic materials very difficult to determine. This 

point does not seem to have been appreciated by Marandet 

et al [B4] who assumed that initiation took place at the 

minimum potential difference for a wide range of specimen 

temperature. 

The use of a strain gauge mounted on the specimen 

itself to determine the instant of crack initiation in 
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linear elastic specimens is widely known. Mall et al [68] 

have even calibrated the strain gauge under static loading 

conditions to enable them to determine the midspan load 

during a dynamic test without the confusing presence of 

the inertial loads sensed by a transducer mounted on the 

impactor itself. Their technique is limited, however, to 

purely elastic tests (since the calibration cannot be 

carried out beyond the yield point of the metal) and is 

also time consuming in that each individual specimen must 

be calibrated. In this study it was decided to use the 

strain gauge as a purely qualitative assessment of the 

stress state of the specimen, anticipating that elastic 

cleavage initiation would be registered by a sharp drop in 

the reading and seeking to determine whether the technique 

would also work into the elasto-plastic transition range. 

MacGillivray and Cannon [106] have conducted a survey 

of suitable strain gauge types, adhesives, and locations 

on the specimen. Following their recommendations the 

strain gauge type CEA-06-062UW-120 was selected. These 

strain gauges were known to have good characteristics 

within the required temperature range (-1000 C to +1250 C). 

The strain gauges were mounted on the specimen centre-line 

approximately 5 mm from the crack tip (see figure 3.9). 

Another promising technique for monitoring crack 

initiation has been developed more recently by Kalthoff 

and co-workers and reported in English by Spies [107]. In 
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this technique the specimen is slightly magnetised so that 

when the crack initiates the resulting change in the field 

can be picked up by an electro-magnetic sensor. Again, the 

technique does not yet ~ppear to have been used in the 

elasto-plastic range of material behaviour. Unfortunately 

awareness of this technique came too late to permit its 

incorporation in the test programme. 

3.7. Material specification. 

The material specification for the various heats of 

En24 steel employed in the study is given in table 3.1. 

The En24 steel was selected because of its high strength 

and relatively low toughness which make it an ideal 

candidate for testing with the Charpy specimen size (see 

discussion of equation 2.16). Unfortunately insufficient 

material was ordered initially and the two batches 

ultimately used had different compositions - the second 

batch containing a larger proportion of manganese than 

allowed for in the En24 specification (see table 3.1). In 

addition, En24 is very sensitive to heat treatment. The 

effect of these small differences in composition, and, 

perhaps, also some small variation in the heat treatment, 

resulted in grossly different fracture characteristics for 

the specimen batches HC1 and HC2 which were nominally 
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equivalent. Six specimens from the HC2 batch were 

manufactured to a length of only 45 mm to examine the 

effect of reduced specimen inertia. Specimen batch HC3 was 

tempered at a higher temperature than HC2 in order to 

promote more ductile behaviour. In all there were 25 HCl 

specimens, 26 HC2 specimens (including the 6 shorter 

specimens), and 10 HC3 specimens. Table 3.1 also shows the 

specification for AISI 4340, the nearest US equivalent to 

En24. 

The HCl specimen batch was supplied in the 

as-quenched condition in the form of 16 mm diameter 

circular-section bar, the HC2 and HC3 specimens to the 

same heat treatment in 20 mm diameter circular-section 

bar. The specimens were then rough machined oversize, 

tempered as specified in table 3.1, and then finish 

machined. 

As examples of a non-steel, specimens of two 

different magnesium alloys were provided by Magnesium 

Elektron Ltd. These were a heavy rare earth alloy, 

Elektron WE54, and a zinc-copper-manganese alloy, Elektron 

ZCM 630-T6 (see table 3.2). 21 specimens were supplied of 

each alloy. 

The magnesium alloy specimens were cast into 8" x 8" 

x 1" sand cast plates, heat-treated, radiographed, cut, 

and finally machined [108]. 

Sections were cut of each of the main specimen types. 
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These were polished and then etched to reveal the finer 

details of the structure. The steel specimens revealed a 

structure typical of tempered martensite. The magnesium 

alloy WE54 showed a fine equiaxed grain structure with 

occasional particles at the grain boundaries, while the 

ZCM 630-T6 alloy possessed a more refined grain size of 

the characteristic lamellar form of eutectic magnesium 

with intermetallics at the grain boundaries. 

3.8. Development of the test apparatus. 

The mechanical parts of the apparatus remained 

unchanged throughout the test programme, with the 

exception of two early alterations made towards the end of 

the HC1 specimen batch (prior to tests 028 and 032-035). 

These alterations comprised replacing the incident bar due 

to some irregularities which had been noted in the shape 

of the tip profile and a redesign of the anvil. 

The geometry of the wedge-shaped profile of the tip 

of the incident bar is shown in figure 3.10. It differs 

from the shape of the profile recommended for the standard 

Charpy test machine in ASTM standard E-23 [58] by having 

an included angle of 600 rather than 300 , a modification 

which was made to reduce the measurement error incurred at 

the change of section in the HPB analysis. It was also 
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hoped that it would serve to improve the stiffness of the 

test machine. Any small irregularities in the profile 

result in poor contact with the specimen. 

The anvil originally comprised two adjustable jaws 

mounted on a large block (figure 3.11a). This was 

apparently intended to facilitate alignment of the rig and 

specimen, but in practice the jaws had too great a freedom 

of movement and they were replaced with a single, more 

rigid block (figure 3.11b). 

The net effect of these two alterations was to 

improve the squareness with which the specimen was 

presented to the incident bar and resulted in a much 

improved test repeatability. A bungee was used to lightly 

clamp the incident bar to the specimen prior to each test 

since preliminary results showed a tendency for some slack 

to appear in the system prior to impact. 

3.9. The test programme. 

It was originally hoped to study the test materials 

across a wide range of temperature and strain rate. The 

strain rate was to be varied by adjusting the impact 

velocity of the travelling bar, but unfortunately the 

range of strain rates achievable in this fashion proved to 

be very limited. A lower velocity limit is imposed by the 
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requirement of obtaining crack initiation before the 

reflected wave reaches the Sl measurement point (see 

section 3.4), while if the velocity is too high inertia 

effects predominate and both the identification of crack 

initiation and the subsequent determination of fracture 

toughness become very difficult (see chapter 4). 

A temperature range of about 2000C was achieved, 

however. Sub-ambient temperatures were obtained by 

immersing the test specimen in liquid nitrogen for a 

period of about ten minutes, then inserting it in the rig 

and allowing it to heat up to the required test 

temperature. In the case of the En24 steel specimens the 

temperature was measured using a thermocouple spot-welded 

to the surface. Tests at Imperial College [106] have shown 

that temperatures measured in this way differ by only 

about lOC from those measured at the specimen centre-line 

by thermocouples inserted through drilled holes. In the 

case of the magnesium alloy specimens the thermocouple was 

inserted in a small hole drilled in the specimen since 

spot-welding proved impossible. Temperatures above ambient 

were obtained using a hot air blower to heat the specimen 

in situ to approximately 100e above the required 

temperature and then allowing it to cool. Heating the 

specimen in situ in this fashion will inevitably have 

given rise to uneven temperature distributions and, 

although it is hoped that these will have evened out 
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somewhat during the cooling process, it is felt that these 

temperature measurements will not have been as accurate as 

those from the very cold tests. Furthermore, some heat 

conducted back along the incident bar necessitating a 

rezeroing of the bridge balance immediately prior to the 

test. 

The complete temperature and strain rate (in terms of 

travelling bar velocity at impact) conditions for the 

dynamic fracture tests are presented in table 3.3 for the 

En24 steel specimens and in table 3.4 for the magnesium 

alloy specimens. 

In addition two specimens of the En24 HC2 batch and 

one specimen of the En24 HC3 batch were tested on a DARTEC 

machine at room temperature in order to obtain 

measurements of the static fracture toughness. The room 

temperature static fracture toughness for the magnesium 

alloy specimens was supplied by the manufacturers (see 

table 3.2). 

3.10. Static fracture toughness measurements of En24. 

The DARTEC machine was operated in three point bend 

configuration using an anvil and impactor of similar 

design to those used with the Hopkinson pressure bar rig 

(HPB). The crosshead speed was set to its lowest value and 
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the load applied incrementally in steps of about 200 N. 

Graphs of load v crosshead displacement are presented in 

figure 3.12 for the two HC2 specimens and in figure 3.13 

for the HC3 specimen. 

In the case of the HC2 specimens the applied load 

dropped abruptly as the crack initiated but since the 

tests were displacement-controlled the cracks were able to 

arrest. The specimens were heat-tinted (by heating for 1 

hour at 2000 C), then chilled in liquid nitrogen and broken 

open in the HPB rig to discover the fracture 

characteristics. In both cases the cracks had run for 

about 1 mm across a broad front in the middle of the 

specimen which reduced rapidly at the extreme edges where 

little growth had occurred. Fracture toughness values of 

37.9 MPam~ (specimen 068) and 38.2 MPam~ (specimen 069) 

were obtained using maximum load and equations (2.13) and 

(2.15). For a nominal yield stress, 6y - 1458 MPa (figure 

5.6b), the minimum ligament size (equation 2.16) for a 

valid fracture toughness measurement from these tests is 

1.7 mm which was easily satisfied. 

The HC3 specimen proved to be far more ductile and 

the load did not drop off rapidly once maximum load had 

been achieved, nor was it evident from the surface that 

cracking had started. The specimen was again heat-tinted 

and broken open to reveal a short central crack which 

tapered at the edges. The accurate determination of crack 
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initiation in this case would require the testing of many 

specimens to different loads. Furthermore, due to the 

considerable plasticity developed, a valid K1c measurement 

could not be made and an accurate assessment of the 

machine compliance would be needed in order to accurately 

determine the characteristic J-integral. For these reasons 

no attempt was made to estimate the static fracture 

toughness of the HC3 specimen. Figure 3.13 is included to 

show only the level of force obtained in the static test 

which varies considerably from that obtained in the 

dynamic tests reported later. 

3.11. Discussion of characteristic features of the 

Hopkinson Pressure Bar instrumented impact test. 

The HPB data reduction technique is shown for a 

typical test (En24 HC2 test 059 - T - 20oC, Vo - 1.7 m/s) 

in figure 3.14 with the derived force-time and velocity

time relationships given in figure 3.15. 

Since the derivation of force and velocity from the 

Si and S2 strain gauge measurements involves relative time 

shifts of the data, confidence in the accuracy of the 

derived values depends on the repeatability of the time 

shifts from test to test and their relationship to the 

physical features of the test apparatus. This will be 
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particularly true over short time periods. For longer 

times the even, flat-topped nature of the incident (Sl) 

wave (see, for example, figure 3.14a) will tend to 

compensate for such errors in the force and velocity 

calculations. However, the matching of the specimen strain 

gauge measurement of crack initiation to the force-time 

trace is again intimately dependent on the accuracy of the 

time shifts. For these reasons the determination of all 

these parameters will now be discussed in detail. 

It can be seen from the raw Sl and S2 data traces 

(figures 3.14a and 3.14b) that electronic noise makes the 

definition of a precise zero measurement impossible. A 

nominal value (Zero) was chosen by sampling the first 60 

data bits for both the Sl and S2 signals. A search was 

then made backwards from the maximum reading to find the 

time on the rising portion of the Sl signal when this 

value (Zerol) was last registered. This time, tOl' was 

then assumed to mark the rise of the incident strain wave 

and was used as the datum for subsequent time shifts. A 

similar search backwards from the maximum reading was made 

to find the time at which the uncalibrated stress level 

(Zero + 10) was last achieved for both Sl (Mergel) and S2 

(Merge2). The first time shift parameter, t12' was then 

defined as: 

t12 - Merge2 - Merge1 (3.16) 

(Zero + 10) was chosen to define t12 since, being on the 
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steeply rising part of the stress wave, it is more sharply 

defined than (Zero). t12 is the time taken for the 

incident wave to travel from the Sl measurement position 

to the S2 measurement position. Its value can be predicted 

from the longitudinal wavespeed, c (equation 3.7), in 

steel and the separation L12 of the strain gauges Sl and 

S2 (figure 3.8): 

L12 
(3.17) 

c 

The result of the time shift of S2 by -t12 relative to Sl 

is shown in figure 3.14d where the signals have also been 

calibrated above the previously defined (Zero) levels 

using equation (3.5). Any misalignment of the rising 

portion of the traces can be attributed to a combination 

of discretisation errors in the resolution of the DL1080 

recorder, zero error, and attenuation of the stress wave 

between Sl and S2. However, in general, the coincidence of 

the two curves is very good. 

Subtraction of the time-shifted S2 trace from the Sl 

trace results in the reflected unloading (tensile) wave 

(figure 3.14e). The rise point of this wave was estimated 

from the time-shifted, uncalibrated S2 signal by finding 

the time relative to tOl at which the stress level 

(Max - 2) first occurs after the peak value (Max). This 

time shift, t232' is the time taken for the incident wave 

to travel from S2 to the reflection point in the tip 
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region of the incident bar and then for the reflected wave 

to travel back to S2. The location of this reflection 

plane relative to the S2 strain gauge, L232' can be 

determined from: 

t232 - (3.18) 
c 

and should be somewhere within the wedge-shaped profile of 

the tip of the incident bar. 

The reflected wave (eR) was then time-shifted by 

-t232 relative to the 51 trace (61) and the force and 

velocity calculated from equations (3.13) and (3.14). Thus 

the force-time and velocity-time relationships presented 

in figure 3.15 pertain to the particular measurement plane 

defined by equation (3.18) and not the actual tip of the 

incident bar itself. 

The rise time of the specimen strain gauge (S3) 

signal relative to the datum of the derived force-time 

relationship was then calculated as: 

t232 
t03 ... tOl + t12 + -- (3.19) 

2 

It will be noted from figure 3.15c that this results in an 

initial period of some 15 - 20 x 10-6 s during which no 

load is registered by the specimen strain gauge. A small 

portion of this is due to the short distance between the 

reflection plane and the tip of the incident bar; the rest 

is consistent with observations by Ireland [61] and will 
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be seen in chapter 4 to result from the domination of 

inertial behaviour in the specimen during the initial 

loading phase. 

The Sl and S2 strain gauge separation, L12 = 753 mm 

and c - 5169 m/s, so, from equation (3.17), 

t12 - 145.7 x 10-6 s. The second column of table 3.5 gives 

the t12 time shifts for En24 HC2 and HC3 specimens. The 

mean value is 729 data bits (145.8 x 10-6 s) and 75% of 

the tests lie within the range 727 to 731 (total range 721 

to 734). This agreement is very good and the size of 

variation entirely attributable to zeroing and 

discretisation errors. 

The value of the second time shift parameter, t232' 

is more problematic. As the loading, compressive stress 

wave encounters the profiled change of section of the 

incident bar part of it will be reflected and part 

transmitted. This process will continue all along the end 

section of the incident bar and so represents a source of 

error that is not accounted for in the analysis. The error 

will be less for a shorter profiled tip and this was the 

reason for selecting an included tip angle of 600 rather 

than the 300 recommended for the instrumented Charpy test 

in ASTM standard E-23 [58]. The start of the change of 

section was therefore located only 15 mm from the 

specimen. The 52 strain gauge was 166.5 mm from the 

specimen so the range of values of L232 to give part and 
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total reflection is: 

151.5 mm < L232 < 166.5 mm 

and hence, from equation (3.18): 

(3.20) 

58.6 x 10-6 (293) < t232 < 64.4 x 10-6 (322) (3.21) 

From the third column of table 3.5 the mean value of t232 

registered in the En24 HC2 and HC3 tests was t232 - 303 

samples (60.6 x 10-6 s) with 67% of tests lying within the 

range 298 to 308 (total range 287 to 317). t232/2 

represents the time from the first passage of eI past S2 

to the instant when some of that wave is reflected. The 

specimen is only loaded when the remaining portion of eI 

reaches the tip of the profiled section. Thus, on average, 

the specimen is not yet loaded for the first 4 x 10-6 s of 

the derived force-time and velocity-time traces. The 

implications of this will be discussed further in 

chapter 4. 

Having determined the relative shift of the specimen 

strain gauge trace (equation 3.19), it remains to define 

the moment of crack initiation. For the abrupt initiation 

of a cleavage crack in a mining steel at low temperature 

this has been observed to be accompanied by a large drop 

in the S3 reading [109]. In general there is no such large 

drop in the measurements for either En24 steel or the 

magnesium alloys presented here. The assumption that the 

crack initiates at the maximum specimen strain gauge 

reading is also suspect since this can occur a 
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disproportionately long time after the maximum impactor 

load has been realised. However, in many cases there is a 

sharp drop or simila~ feature some time before the maximum 

reading which coincides approximately with the maximum 

impactor load (at least for specimens showing reasonably 

elastic behaviour). The signal after this "first drop" is 

often noisier and less regular than prior to it, giving 

rise to the hypothesis that it denotes the initiation of a 

crack inside the specimen which later, perhaps, arrests or 

propagates slowly, the load being carried by the outer 

ligaments (and hence S3 remains partially loaded). The 

increased level of noise on the signal could then be due 

to stress waves generated by the movement of the crack. 

Two examples of this behaviour are shown in figures 3.16 

and 3.17. These show results for En24 HC2 tests 052 and 

053 at the same nominal test condition of T - 1000 C and 

Vo - 2.5 m/so In both cases the "first drop" in the S3 

signal (excepting some uncharacteristic noise in the case 

of test 052) coincides approximately with the maximum 

impactor load. In the case of test 053 (figure 3.17) in 

particular the S3 signal immediately shows a higher level 

of noise. 
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3.12. Force-time characteristics in the HPB test. 

Representative force-time traces summarising the 

major trends in the experimental data are presented in 

figures 3.18 to 3.31. Only one trace is shown for each 

loading condition since those from repeat tests were very 

similar (compare, for example, figures 3.16 and 3.17 and 

figures 4.13a and 4.13b). 

Figures 3.18 and 3.20 show the effect of test 

temperature on the response of En24 HC1 specimens at two 

different impact velocities (2.5 m/s and 3.2 m/s); figure 

3.19 shows the effect of impact velocity at constant 

temperature (-200 C). Figure 3.21 shows the effect of test 

temperature on the response of En24 HC2 specimens at an 

impact velocity of 2.5 m/s. Comparing figures 3.18b and 

3.21a demonstrates the very different response of these 

nominally identical materials. Figures 3.22 and 3.23 

compare the behaviour of the standard Charpy specimens 

(L - 55 mm) with the truncated specimens (L - 45 mm) for a 

range of impact velocity at room temperature. Figure 3.24 

shows the behaviour of the standard specimen at lower 

impact velocities. Figure 3.25 shows the response of the 

more ductile En24 HC3 specimens for a range of impact 

velocity at room temperature. 

The temperature response of the magnesium alloys is 

presented at two impact velocities (figures 3.26 and 3.27 
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for Elektron ZCM 630-T6 and figures 3.29 and 3.30 for 

Elektron WE54) and their response to impact velocity at 

room temperature (figure 3.28 for ZCM 630-T6 and figure 

3.31 for WE54). 

Typically the force-time traces are oscillatory with 

a disproportionately large first peak. The height of this 

initial peak scales approximately with impact velocity 

independent of temperature, but is also somewhat sensitive 

to small changes in the time shift parameters. The peak to 

peak height of the subsequent oscillations is also 

dependent on the impact velocity (figures 3.19, 3.24, 

3.25, 3.28, 3.31) and for the steel specimens some damping 

is observed as the test temperature increases (figures 

3.18 and 3.20). Figures 3.18, 3.20, and 3.21 show the 

development of an extra peak as temperature increases, 

implying the presence of temperature-related plasticity in 

the steel specimens. The time period of the initial peak 

is longer than for the subsequent oscillations. The 

frequency of these later oscillations is generally similar 

for both the steel and the magnesium alloy specimens. The 

only exception is the truncated specimens which exhibit a 

substantially higher frequency of oscillation (figure 

3.23) which is compatible with the findings of Bohme and 

Ka1thoff [69,70]. It should also be noted that the S3 

strain gauge signals from these specimens are much more 

oscillatory than in the equivalent measurements on 
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standard specimens (figure 3.22). 

The assumption of crack initiation at the first sharp 

drop in the S3 strain gauge signal for the results from 

En24 HCl and HC2 specimens (figures 3.18 to 3.24) 

indicates that initiation takes place at a time either 

just before or just after maximum impactor load. In some 

cases (for example, figures 3.18c and 3.19c) the maximum 

S3 strain gauge reading is substantially later than the 

maximum impactor load and the selection of the "first 

drop" criterion seems well justified. In test 063 (figure 

3.24a) fracture occurs after a time longer than that for 

which a measurement of the impactor force can be made. 

This is possible because measurements are limited by the 

position of Sl and the loading pulse length is determined 

by the length of the travelling bar. 

For the more ductile En24 HC3 specimens no such clear 

features are obvious on the S3 strain gauge traces (figure 

3.25) and the instant of crack initiation is not clear. 

Note that the specimens 070 and 071 (figure 3.25a) did not 

fracture completely during the test, but were permanently 

bent. On heat tinting (for 1 hour at 2000 C) and then 

breaking open specimen 070 at very cold temperature it was 

found that a 1mm long crack had been initiated and then 

arrested inside the specimen. The measured impactor force

time traces indicate considerable plastic deformation for 

all the tests on this batch of specimens. 
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By contrast with the steel specimens, there is no 

clear effect of temperature on the impactor force-time 

characteristics derived for the magnesium alloy Elektron 

ZCM 630-T6 (figures 3.26 and 3.27). This observation is 

reflected in the similarity of the S3 strain gauge 

signals. A slight raising of the impactor force-time curve 

with increasing temperature is observed for the magnesium 

alloy Elektron WE54 at low impact velocity (figure 3.29), 

but this effect is hardly discernible at higher velocity 

(figure 3.30). Again these trends are also seen in the S3 

strain gauge measurements where the peak shifts to a later 

time as temperature increases and the reading then falls 

off less rapidly. However, for both alloys it is difficult 

to interpret the S3 strain gauge data in terms of fracture 

initiation. The behaviour of the magnesium alloy specimens 

with increasing impact velocity (figures 3.28 and 3.31) is 

similar to that for the steel specimens except that the 

size of the initial peak is proportionately much greater 

than the rest of the signal. 

3.13. Description of the fracture surfaces. 

The magnesium alloy specimens all broke cleanly with 

no shear lips leaving a rough, granular-looking fracture 

surface. The En24 He1 and HC2 steel specimens all had much 
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smoother, more finely structured fracture surfaces with 

small shear lips at the edges which increased slightly in 

size with temperature. The En24 HC3 steel specimens 

produced distorted and pitted fracture surfaces with large 

shear lips (with the exception of the two specimens tested 

at low impact velocity which did not fracture completely). 

A more detailed examination of selected fracture 

surfaces was carried out on the scanning electron 

microscope. Comparing room temperature examples of the two 

batches of En24 steel - HCl and HC2 - revealed that the 

HCl fracture surface (figure 3.32) was composed of 

80 - 90% ductile failure with just the occasional cleavage 

facet, whereas the HC2 fracture surface (figure 3.33) 

exhibited a mixture of predominantly intergranular and 

cleavage fracture with only about 10% ductile voids. The 

effect of increasing temperature producing an increase in 

the proportion of ductile voids is clearly seen by 

comparing En24 HC2 steel fracture surfaces for test 

temperatures of -80oC (figure 3.34), +20oC (figure 3.33), 

and +100oC (figure 3.35). The distorted specimen shape for 

the En24 HC3 steel tested at high impact velocity is shown 

in figure 3.36a and a close-up of the totally ductile 

fracture surface in figure 3.36b. 

No change in the appearance of the fracture surface 

with temperature was noted for the magnesium alloys. 

Figure 3.37 shows the characteristic intergranular 

83 



fracture surface of Elektron WE54 tested at room 

temperature. Figure 3.38 shows the fracture surface of 

Elektron ZCM 630-T6 which is obscured by the formation of 

(presumably) oxide on the surface, but is probably also 

intergranular. 

84 



TABLE 3.1. Compositional analysis and heat treatment of 
En24 steel specimens 

En24(AISI) Chemical composition % 

4340 
- f-------------

C Si Mn S 

Carbon Silicon Manganese Sulphur 
--- 1-----------------

Min. 0.35(0.38) 0.10(0.15) 0.45(0.60) -
--I--- ------ ---

Max. 0.45(0.43) 0.35(0.30) 0.70(0.80) 0.05(0.04) 

HC1 * I 0.44 0.20 0.63 0.025 
I 

HC2 * 0.37 0.34 0.75 0.030 
HC3 

I P 
-

Ni Cr Mo 

I Phosphorus Nickel i Chromium Molybdenum 
1------------ --- -~----

- 1. 30( 1.65) 0.90(0.70) 0.20(0.20) 

0.05(0.035) 1.80(2.00) 1.40(0.90) 0.35(0.30) 

0.005 1. 52 1.14 0.24 
-----

0.026 1.42 1.40 0.20 
-

Heat treatment according to BS 970 Part 1: 

(1) Heat at 835 0 C for 1 hour and quench in oil bath 

(2) Temper for 1 hour at the following temperature 
and then air cool: 

(i) HC1/HC2 : 375 0 C (Rockwell C hardness 48) 

(ii) HC3 : 5600 C (Rockwell C hardness 36.5) 

* Specimen compositional analysis performed by 
Amtac Laboratories Ltd, Altrincham. 



TABLE 3.2. Compositional analysis, heat -treatment, and 
physical properties of Mg alloy specimens. 

-~-------------~-----.----------------------------, 

Elektron ZCM 630-T6 * Elektron WE54 * -- ------------ --+--------------------------~ 

Heat treatment 

Solution heat treat for 
8 hours at 525 0 C. Hot 
water or polymer quench. 
Age for 16 hours at 250°C. 

Physical properties (20°C) 

Density 1850 kg/m3 

Proof stress 
0.1% / 0.2% 

177 MN/m~ 
200 MN/m 

Tensile strength 
250-255 MN/m2 

Fracture toughness 1 5 
11.4 MNm- • 

Heat treatment 

8 hours at 440°C. 
Hot water quench. 
16-24 hours at 180-200oC. 
Air cool. 

Physical properties (200 C) 

Density 1840 kg/m3 

Proof stress 
0.1% / 0.2% 

125 MN/m~ 
143 MN/m 

Tensile strength 
210-225 MN/m2 

Fracture toughness 1 5 
16.5 MNm- • 

* Data provided by Magnesium Elektron Ltd. 



TABLE 3.3. En24 test conditions. 

Temperature (oC) 
-80 -40 -20 

vo (m/s) I 
I , 

I 

5.70 i 

I 
I 

20 

074 
075 

054 
055 

100 

4 2o -------~---+-----~---r----072----------~---• 073 
082 
083 

I 
028 033 

3. 20 -----·----+-----+---g~6 --gj; ---------4---

032 I 
024 I 050 
025 022 gt~ 051 

_____ 026 _ 023 _ 018 070 _____ 052 _ 
2.50 027 064 020 071 053 

1.70---------g-~~I~-~--0~i-5--0-2rll---::!---------~r--
1.50 ____ ---t--Ol1_gi~ 

I 012 015 
! , 056 

1 20 ________ -+-____ +---__ ~--057--------~r_-
• 084 

085 
I 

O 95 _--------+----+------+---060 --------~---
• 061 

I 
O 60 _____ --+-___ -+-__ -+-__ 062 ----------If---

• 063 

I 



(table 3.3 continued) 

Key 01- } 
02- En24 HC1 (375°C temper - first batch) 
03-

05- } 
06- En24 HC2 (375°C temper - second batch) 

08- En24 HC2 ~3750C temper - second batch) 
truncated specimens) 

07- En24 HC3 (560°C temper - second batch) 



TABLE 3.4. Magnesium alloy test conditions. 

Temperature 
20 125 

Vo (m/s) 

013 
014 
020 

4.10------gi~-------------(g6~-)-------------gt~ 
'I (003) 
I (021) 

I 011 
(014) 012 (017) 

3.30---(015) (008)---------(018) 
(009) 

003 
____ 004 ___ 005 ___ 007 

(006) 006 008 2.40---010 
(007) 

___ (012) 
1.50 (013) 

____ (010) ________ (019) 
(011) (020) 

1.20 -- -- ... ··I--~~-~ 

Key ZCM 630-T6 
(WE54) 

061 I 002 

I 



TABLE 3.5. t12 and t232 time shift data for En24 HC2/HC3. 

I 
Test No. t12 t232 

, (bits) (bit~ 
f-------- - ---t ----. -------

I 

050 728 305 
051 I 732 296 
052 I 728 311 I 

053 I 728 300 
054 730 302 
055 729 307 
056 733 308 
057 734 301 
058 I 724 302 
059 

! 
729 317 I 

060 729 287 
061 I 730 289 
062 722 300 
063 721 300 
064 727 306 I 

I 

065 I 730 298 
I 

066 I 727 305 I 

I 
I 

070 I 727 303 
071 728 308 
072 729 306 
073 728 311 
074 I 729 301 
075 I 730 309 I 

I 
I 

080 I 729 307 
081 ! 728 304 
082 I 728 298 I 

I 

083 
I 

730 313 
084 728 292 
085 1 734 308 

.----------.--.-- --.----

N.B. 1 data bit = 0.2 x 10-6 s 
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FIG. 3.1. General arrangement of apparatus: the Hopkinson pressure bar instrumented impact rig. 



FIG. 3.2. The Hopkinson pressure bar instrumented impact 
rig: general view of catapult system, 
travelling bar, incident bar, and 
instrumentation. 



FIG. 3.3. The Hopkinson pressure bar instrumented impact rig: 
close-up of Charpy specimen, incident bar, and anvil. 
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bending stresses in the incident bar [99]. 



initial velocity o 

final velocity 

area of cross-section 

) 
( 

velocity 

c 
Vo 

Vi V2 __ c 

FIG. 3.6. The collision of two bars of different 
cross-sectional area. 

I 

I x 

I 

-~ --.. 
x 



velocity Vph (m/s) 

5.0 

4.0 

3.0 

2.0 

1.0 

o 
1.0 

/ 

2.0 3.0 4.0 5.0 velocity 
Vo (m/s) 
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FIG. 3.10. Detail of specimen support (a) and the profiled 
end of the incident bar (b) compared with the 
standard Charpy hammer (c). 
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FIG. 3.11a. Original anvil with two adjustable jaws. 

FIG. 3.11b. Second anvil with a single rigid block bolted 
to the base anvil. 
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FIG. 3.14. 
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FIG. 3.14d. 

FIG. 3.14e. 

Data reduction procedure for the Hopkinson 
pressure bar instrumented impact test 
{En24 HC2 059 - T = 20°C: Vo = 1.7 m/s): 
(a) incident wave at strain gauge Sl, 
(b) stress wave interaction at strain 

gauge S2, 
(c) specimen strain gauge measurement S3, 
(d) calibrated Sl and S2 signals aligned by 

shifting S2 by -t12 relative to Sl, 
(e) reflected wave at t~p of incident bar. 
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FIG. 3.15. Test En24 HC2 059 derived relationships: 
(a) velocity-time, 
(b) displacement-time, 
(c) force-time and S3 strain-time. 
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Titles for figures 3.18 to 3.31. 

FIG. 3.18. Force-time characteristics for En24 HC1 · · the effect of test temperature (VO = 2.50 m/s). 

FIG. 3.19. Force-time characteristics for En24 HC1 · · the effect of impact velocity (T = -200 C). 

FIG. 3.20. Force-time characteristics for En24 HC1 · · the effect of test temperature (VO = 3.20 m/s). 

FIG. 3.21. Force-time characteristics for En24 HC2 · · the effect of test temperature (VO = 2.50 m/s). 

FIG. 3.22. Force-time characteristics for En24 HC2 · · the effect of impact velocity (T = 20 0 C) in 
the standard Charpy size specimens. 

FIG. 3.23. Force-time characteristics for En24 HC2 : 
the effect of impact velocity (T = 200 C) in 
the truncated specimens. 

FIG. 3.24. Force-time characteristics for En24 HC2 : 
the effect of low impact velocities (T = 20 0 C). 

FIG. 3.25. Force-time characteristics for En24 HC3 : 
the effect of impact velocity (T = 200 C). 

FIG. 3.26. Force-time characteristics for magnesium alloy 
ZCM 630-T6 : the effect of test temperature 
(VO = 2.40 m/s). 

FIG. 3.27. Force-time characteristics for magnesium alloy 
ZCM 630-T6 : the effect of test temperature 
(VO = 4.10 m/s). 

FIG. 3.28. Force-time characteristics for magnesium alloy 
ZCM 630-T6 : the effect of impact velocity 
(T = 200 C). 

FIG. 3.29. Force-time characteristics for magnesium alloy 
WE54 : the effect of test temperature 
(VO = 1.50 m/s). 

FIG. 3.30. Force-time characteristics for magnesium alloy 
WE54 : the effect of test temperature 
(VO = 3.30 m/s). 

FIG. 3.31. Force-time characteristics for magnesium alloy 
WE54 : the effect of impact velocity 
(T ::0 200 C). 
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FIG. 3.32. SEM photograph of En24 HC! 033 (T = 200 C) 
fracture surface (x 600). 

FIG . 3.33. SEM photograph of En24 HC2 050 (T = 200 C) 
fracture surface (x 580). 



FIG. 3.34. SEM photograph of En24 HC2 066 (T = -800 C) 
fracture surface (x 600). 

FIG. 3.35. SEM photograph of En24 HC2 052 (T = 1000C) 
fracture surface (x 670). 



FIG . 3 . 36a . SEM photograph of En24 HC3 075 (T = 20 0 C) 
fracture surface: general view (x 9.5). 

FIG . 3 . 36b. SEM photograph of En24 He3 075 (T = 200 C) 
fracture surface: detail (x 600). 



FIG. 3 . 37 . SEM photograph of Mg alloy WE54 (T = 200 C) 
fracture surface (x 170). 

FIG. 3.38. SEM photograph of Mg alloy ZCM-630-T6 
(T = -75°C) fracture surface (x 170). 



4. mE LINEAR INERTIAL MODEL OF mE BOPKINSON PRESSURE BAR 
TEST. 

4.1. Introduction. 

It was noted in the discussion of the instrumented 

impact test in section 2.5 that the impactor force-time 

measurement is dominated by inertial effects which must be 

allowed for when calculating the dynamic fracture 

toughness or dynamic J-integral for any given test. Since 

it is the current intention in using the Hopkinson 

pressure bar test to study high loading rates it is 

obvious from a simple inspection of the force-time 

characteristics in figures 3.18 to 3.31 that the analysis 

here must allow for these inertial effects. (It would, of 

course, be possible to adapt the design of the HPB rig to 

operate at lower impact velocities where the inertial 

oscillations would be practically negligible by comparison 

with the standard Charpy test at the same loading rates.) 

The most ambitious approach would be to use a 

3-dimensional finite element model of the specimen, the 

anvil, and the Hopkinson pressure bars. However, a study 

of this kind, reducing the requirements to a 3-dimensional 

model of the specimen alone with simplified support and 

loading conditions [79], resulted in an analysis which 

took approximately 100 hours on a Cray supercomputer. Such 
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computer-loading would be useless for a projected standard 

test technique and can at best be used to validate simpler 

models. Even 2-dimensional finite element models are bulky 

and difficult to use with realistic boundary conditions 

due to the complex geometry of the wedge-shaped profile of 

the incident bar and the anvil. Because of these 

difficulties it was felt that a 1-dimensional model of the 

system - providing it could account for parameters such as 

the initial crack length and the total specimen length -

would be almost as accurate in representing the load-time 

history, while at the same time allowing a considerable 

saving of computer time. If successful, such a model would 

be suitable to form the basis of a standard test 

technique. 

Nash [110,111] has described an approximate technique 

to predict the hammer force and specimen bending moment in 

a dynamic three point bend test using a refined 

i-dimensional bending theory. This approach has been 

developed by Kishimoto et al [112] to produce a simple 

expression relating the dynamic and quasi-static fracture 

toughness values. Although mathematically complex, this 

method enables dynamic fracture toughness values to be 

easily calculated once the natural frequency of the 

cracked specimen is known. However, it is currently 

restricted to linear elastic material behaviour. 

A still simpler approach has been suggested by Glover 
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et al [4] and Williams and co-workers [5,50,113] in which 

the specimen is represented by a point mass supported on a 

spring. The method has the advantage that the loading and 

support system can be represented by further springs (and 

masses, if required) and insight gained into the 

specimen/loading system interaction. The approach was 

developed for the standard Charpy test assuming a constant 

rate of displacement at the load point. It will be shown 

in the following section that the accurate determination 

of load point displacement in the HPB test makes the 

method especially applicable in this case, although a 

numerical rather than analytic solution of the governing 

equation is required. In subsequent sections the various 

components of the model are examined in detail and 

consideration made of their effect on the final derivation 

of fracture toughness. A further advantage of the lumped 

. " . t· 1" d 1· th tIt 1 . mass-spr~ng, or ~ner ~a , mo e ~s a e as o-p ast~c 

effects can be introduced by changing the specimen 

stiffness and this will be discussed further in chapter 5. 

4.2. The numerical lumped mass-spring model. 

The essential features of the lumped mass-spring 

model are shown in figure 4.1. The specimen is represented 

by an effective mass m' supported on a spring of stiffness 

87 



k2. The contact between the loading system and the 

specimen is represented by a second spring of stiffness 

k1. It is then possible to break down the stiffnesses k1 

and k2 into series components which can be identified 

physically in the Hopkinson pressure bar test system 

(figure 4.1) as: 

[
1 1 J-1 

k1 - kw + kc1 
(4.1) 

and: 

k2 - [
1 1 J-1 

ks + ksup 
(4.2) 

where kw is the stiffness of the impactor (in this case 

the wedge-shaped profile at the end of the incident bar), 

kc1 is the so-called "contact", or indentation, stiffness 

(calculated from the Hertzian contact problem in the 

elastic case), ks is the stiffness of the specimen itself, 

and ksup is a combination of the stiffness of the 

abutments ka and the support "contact" stiffness kc 2. 

The equation of motion for the model is then simply: 

(4.3) 

where u(t) is the displacement of the specimen at the load 

point and v(t) is the displacement imposed on the loading 

system at surface A in figure 4.1. From the analysis in 

chapter 3 it is obvious that surface A should be the point 

of reflection of the incident stress wave. In section 3.11 

it was shown that this plane cannot be precisely located, 
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although it is closer to the beginning of the change in 

section than to the tip of the bar. For this reason it is 

assumed hereafter that surface A is located at the 

beginning of the change uf section of the incident bar. 

The force generated at the tip of the incident bar is 

then given by: 

P1 - k1[v(t) - u(t)] (4.4) 

while the force experienced by the specimen is: 

P2 - k2u (t) - P1 -
••• m u 

Williams and Adams [5] and Glover et al [4] then 

assumed a constant impact velocity V and hence a ramp 

displacement function: 

vet) - Vt 

(4.5) 

(4.6) 

In effect, this assumes that the pendulum in the Charpy 

test moves at a constant velocity throughout the test (an 

assumption that inevitably introduces a small error - see, 

for example, [63] reported in section 2.5). Analysis of 

the Hopkinson pressure bar stress waves, however, gives 

the real particle velocity Vet) (equation 3.14) and hence, 

by integration, the real displacement. It is then possible 

to solve equation (4.3) numerically using the Runge-Kutta

Nystrom technique for second order differential equations 

(see, for example, [114]). At the same time it is a simple 

matter to include a viscous damping term Cll on the left 

hand side of equation (4.3) should this be considered 

desirable. The numerical algorithm to solve equation (4.3) 
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is given in Appendix 2. 

Since the Hopkinson pressure bar wave analysis also 

gives the force at surface A (equation 3.13), a useful 

check on the accuracy of the model can be obtained by 

comparing this measured force with the predicted force 

given by: 

(4.7) 

where ffiw is the mass of the incident bar between surface A 

and the specimen. The wedge-shaped end of the incident bar 

is therefore assumed to behave as a point mass with 

acceleration v(t) calculated by differentiating the 

measured velocity V(t). In practice it was found necessary 

to smooth excess oscillations in the raw signal of V(t) by 

using a five point moving average technique both before 

and after the differentiation. 

4.3. Evaluation of the equivalent point mass m'. 

The magnitude of the equivalent point mass m' 

controls the strength of the oscillations in the force 

history of the model. Glover et al and Williams and Adams 

used conventional vibration theory to derive the 

equivalent point mass for the first mode of vibration of 

an uncracked beam: 
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17 
m' - 35 eSBW - 0.49~SBW (4.8) 

where Band Ware specimen dimensions, S is the supported 

span, and ~ is the material density. Equation (4.8) is 

derived in appendix 3.1. 

This value of the equivalent point mass takes no 

account of the notch and fatigue crack length in pre

cracked Charpy specimens, nor of the overhangs of typical 

specimens at the supports. Thus, it is to be expected 

that: 

m' - f(e,S,B,w,a/w,S/L) (4.9) 

The effect of notch and fatigue crack depth can be 

estimated by adapting the eigenvalue analysis of Nash 

[110] for a cracked Euler-Bernoulli beam. In this analysis 

plasticity effects, shear deflection, and rotary inertia 

are neglected and a refined 1-dimensional bending theory 

used to derive a shape function Yi(x/S) for the deflected 

beam. Appendix 3.2 shows how an equivalent point mass can 

be derived from Nash's theory by equating the kinetic 

energy of the equivalent point mass with the distributed 

energy of the beam. This gives an equivalent mass: 

(4.10) 

In a specimen with such a small span to width ratio 

(S/W - 4) it may not be reasonable to neglect the effects 

of shear deformation and rotary inertia as in the Euler

Bernoulli beam discussed above. The Timoshenko beam 
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studied by Kishimoto et al [115] includes these effects 

but their approach was otherwise the same as Nash. They 

found that the time period of the force oscillation 

increases relative to the Euler-Bernoulli case which 

implies a reduction in the frequency of vibration, w, so 

that, for constant machine/contact stiffness k1 the 

equivalent mass would be greater (by equation 4.14). 

The effect of higher mode vibration has been 

considered by Williams [116] for the uncracked beam as a 

further series of equivalent masses and stiffnesses, but 

for the three point bend test configuration he found that 

less than 1% of the energy lay in the second mode. 

However, Tse et al [117] have noted that the effects of 

rotary inertia are more pronounced at higher frequencies 

and so the influence of the higher modes may still be 

greater than implied by Williams' calculation. 

Further evidence of the importance of the third 

vibration mode can be obtained by calculating the natural 

frequency of vibration of a simply-supported beam 

constrained by a spring at its midpoint (figure 4.2a). 

This is a more realistic representation of the three point 

bend specimen than that used by Williams in deriving 

equation (4.8) and shows that the stiffness kl also 

influences the equivalent mass of the system. Again 

neglecting the effects of shear deformation and rotary 

inertia, the standard wave equation for the Euler-
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Bernoulli beam is: 

d4U ~2u 
El - + f;)AO - - ° 

dX4 , dt2 
(4.11) 

By assuming harmonic solutions of the form u - f(x)e iwt 

and applying appropriate boundary conditions, it can be 

shown that (see appendix 3.3) the natural frequencies are 

given by: 

w
2 - ;:0 [(:~J 4 (4.12) 

where Nm is a solution of the frequency equation: 

k1 r. ] [Nm J 3 - Ltan(Nm) - tanh(Nm) + 2EI -- - 0 
2 (S/2) 

(4.13) 

For such a system the governing equation of the equivalent 

mass is found by setting equation (4.3) to zero. From the 

resulting expression for the natural frequency the 

equivalent mass is: 

m' -
(k1 + k2) 

w2 
(4.14) 

Using the value of k2 for an unnotched beam (k2 - 48EI/L3) 

equation (4.13) was solved for various values of k1 and 

the appropriate natural frequencies and equivalent masses 

calculated (table 4.1). Figure 4.2b shows the effect of k1 

on the solution of equation (4.13). It can be seen that as 

kl ~ 0, then Nm ~nn/2 (where n - 1,3,5,7,9 ••• ), and the 

frequency of the first mode is: 
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w1 -
n
2 [El J~ 

S2 ~AO 
(4.15) 

which is the solution for the frequency of the first mode 

of vibration of a pinned-pinned beam with no midpoint 

constraint, and hence: 

k2 
m' ~"2 - 0.01546 (kg) - 0.49 ~SBW 

w 
(4.16) 

Also, as k1 -.«l, Nm ..... 3Tt/2, and the frequency of the first 

mode is then: 

(4.17) 

which is the solution for the frequency of the third mode 

of vibration of a pinned-pinned beam. In this case: 

(4.18) 

which is to be expected since the centre of the beam has 

now effectively become a node. This is no longer 

physically accurate since the centre of the beam is free 

to move laterally under forced loading, but equations 

(4.16) and (4.18) do illustrate the important conclusion 

that the equivalent mass is dependent on the ratio k1/k2• 

The natural frequency of the system is bounded by the two 

limits imposed by equations (4.15) and (4.17). 

h ff f i " h " Tee ect 0 spec men over ang at the supports 

will now be considered. Bohme and Kalthoff [69,70] have 

shown that this overhang has a marked influence on the 
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size and frequency of inertial oscillations in the 

measured force-time relationship. They considered the 

effect of varying a/Wand L/W. Specimens with a/W = 0.5 

and L/W - 4.1 were observed to have larger dynamic 

oscillations than specimens of longer length (L/W = 5.5) 

or shallower crack depth (a/W - 0.3). 

An attempt to quantify the contribution of overhang 

to the equivalent specimen mass was made using a finite 

element model. The specimen was modelled in two dimensions 

using plane strain elements and loaded through springs in 

the same way as in the inertial model. The mesh used in 

the calculations is shown in figure 4.3. It incorporates 

the quarter point concept for modelling the elastic crack 

tip singularity (see section 2.6) together with similarly 

modified transition elements [118] to link the quarter 

point elements to the conventional isoparametric elements 

in the rest of the mesh. 

The stiffness of the mesh under static loading 

compared favourably with the value derived by Tada et al 

[14] for a cracked beam - equation (4.28) below. 

Refinement of the mesh close to the loading and support 

points resulted in a decrease in the stiffness which was 

attributed to local effects due to the loading being 

concentrated at a single node. This fact prevented a 

proper demonstration of mesh convergence, but the 

satisfactory result for the static loading case is 
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presented as giving confidence in the suitability of the 

model. For the dynamic loading a time-step of 0.5 x 10-6 s 

was selected to sati~fy the criterion that a stress wave 

should be able to cross the largest element at least once 

in any given time-step. The loading was input as the 

displacement history at the end of the spring kl (see 

figure 4.3) for the En24 HCl 027 test. 

It was then assumed that the lumped mass-spring model 

presented in section 4.2 could be applied to the finite 

element model such that the mesh would have an equivalent 

mass for any given loading condition. As shown above, this 

mass may vary with the stiffness kl. Analyses were carried 

out for several different nominal stiffness values kl and 

the resulting predictions of load compared with the 

measured force-time trace for test 027 to determine which 

had the closest frequency response (figure 4.4). Using 

this stiffness value the mesh was then loaded using a 

constant displacement rate (which effectively removed the 

influence of forcing frequency effects) and the natural 

frequency determined by measuring the peak to peak period 

(figure 4.5a). (In practice this period varied slightly 

from cycle to cycle and for consistency the second and 

third peaks were used to measure the period.) Equation 

(4.14) could then be used to evaluate the equivalent mass, 

or, in practice, the approximation: 
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(4.19) 

since kl is typically found to be at least an order of 

magnitude greater than k2. The equivalent mass derived in 

this way should include the effects of rotary inertia and 

shear deformation, as well as those of kl/k2 and the 

specimen overhangs. A good fit to the experimental data 

was obtained with kl - 5 x 108 Nm-1 and an equivalent mass 

m' - 0.023 kg, or: 

m' - 0.73~SBW 

For the truncated specimen (figure 4.5b) the 

equivalent mass by this technique was found to be 

m' - 0.0155 kg, or: 

m' - 0.49~SBW 

indicating the large role played by the overhangs in 

determining the behaviour of the specimen. 

For the magnesium alloy (figure 4.6), for 

(4.20) 

(4.21) 

kl - 1.2 x 108 Nm- 1 , the equivalent mass came out to be 

m' - 0.0056 kg, or: 

m' - 0.76~SBW (4.22) 

The difference between equations (4.20) and (4.22) is 

within the likely error of the method. 
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4.4. Evaluation of specimen stiffness in the three point 

bend test. 

For an unnotched, uncracked, simply supported beam 

loaded at its midpoint Timoshenko and Goodier [119] give 

the deflection as: 

u _ PS 
3 

+ [PS I ~ 
nc 48EI 2W 4G 

3 

10E 
3l> 1 PJ - - - 0.21 -
4E E 

(4.23) 

where the first term is the deflection due to bending and 

the second a correction for local shear effects. 

Substituting G - E/[2(1 + ~)] and ~ - 0.3, equation (4.23) 

becomes: 

(4.24) 

In their handbook of elastic crack formulae, Tada et al 

[14] quote the deflection due to a crack in a three point 

bend specimen as: 

ue - PS3 [6(~) V2(~)J 
48EI S 

where: 

[5.58 - 19.s7(~) + 36.82(~~ 

-34.94(~~ + 12.77(~jJ 

(4.25) 

(4.26) 

and thus the total deflection of a cracked beam, u, is 

given by the sum of equations (4.24) and (4.25): 
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The 

is 

U - unc + Uc 

PS3 [ 
- -- 1 + 

48EI 

stiffness, ks' 

P 
ks --

U 

of the 

then easily determined. 

specimen: 

4.5. Evaluation of other component stiffnesses. 

(4.28) 

The stiffness of the profiled end section of the 

incident bar can be calculated by dividing it firstly into 

a wedge and a rounded tip, then subdividing each of these 

into a number of elements and performing a series 

stiffness calculation (see figure 4.7). 

In the case of the wedge the cross-sectional area An 

at a given section n is defined by: 

[
Rnhn RO 2,f1nJ 

An- 4 --+ 
2 2 

where: 

hn - (R02 - Rn2)~ 

and: 

(4.29) 

(4.30) 

~n - 8in-1(Rn/RO) (4.31) 

from which the element stiffness is: 
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1<n-
(xn - xn -1) 

(4.32) 

The stiffness of the rounded tip is more problematic 

since the load is not carried across its full width (the 

specimen is only 10 mm thick against a bar diameter of 19 

mm). The included half angle 90 (see figure 4.7) is given 

by: 

(4.33) 

The cross-sectional area of a given element is 

approximately: 

An - Ww (Yn + Yn-1) (4.34) 

where Ww is a width parameter which can be adjusted to 

allow for the fact that the load is not carried across the 

full section width and Yn is the section height defined 

as: 

Yn - RTsin9n (4.35) 

at an axial distance xn given by: 

xn - RT (cos9n - cos90) (4.36) 

The elemental stiffness again has the form of equation 

(4.32) and the total stiffness is: 

kw-[t (1 ) m (~J tipf - +~ (4.37) 
n-1 kn wedge n-1 

where m is the total number of increments used in the 

calculation. The total mass of the profiled end section is 

then: 
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(4.38) 

where the summation is over both the wedge and the tip. 

For ease of calculation it was assumed that the load was 

carried over the full width of the wedge section and over 

the specimen thickness within the rounded tip. For the 

given geometry the following values were obtained: 

Mw - 0.0144 kg (4.39) 

kw - 1.54 x 109 N/m (4.40) 

which were well converged with m-lOO increments. 

The contact stiffnesses are less easily evaluated. 

They are generally stated to be non-linear, but then are 

assumed to be constant for ease of calculation [5]. Some 

justification for this assumption can be demonstrated by 

considering the linear elastic Hertzian contact problem. 

Timoshenko and Goodier [119] derived the half-width b 

of the contact zone between a cylinder and a plane loaded 

with force w per unit length as: 

[
WRJ% 

b - 1.52 ~ (4.41) 

where both the cylinder and the plane deform elastically 

and have similar material constants E and ~. 

From the geometry of the rounded tip of the incident 

bar it is possible to estimate the normal deformation z 

caused by the Hertzian contact stress acting in this zone 

as: 
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(4.42) 

If the contact stiffness is then defined as the force per 

unit indentation at the load point, then: 

P wB 
kc - - - -- (4.43) 

z z 

The mean stress in the contact zone is: 

~ -c 

P 

2Bb 
(4.44) 

The radius of the rounded tip of the profiled end 

section of the incident bar is 8 mm, while the radius at 

the edges of the supports is 1 mm. The contact stiffnesses 

evaluated at these two interfaces are almost identical but 

the mean stresses are very different (see figure 4.8). 

The contact stiffness at the incident bar/specimen 

interface was determined to be approximately constant at: 

kcl - 18.0 x 108 N/m 

kcl - 3.8 x 108 N/m 

(En24 steel) 

(Mg alloy) 

It can be seen from figure 4.1 that the contact 

stiffness at the supports is really made up of two 

identical components in parallel and so the required 

stiffnesses for the model were determined as: 

kc2 - 2kc - 36.0 x 108 N/m (En24 steel) 

(Mg alloy) 

(4.45) 

(4.46) 

Typical yield stress values for both materials are 

also shown in figure 4.8 and it is observed that the 

stresses generated in the contact zones exceed these 
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values at relatively low forces. In the present analysis 

it is assumed that any resulting plastic compliance will 

be negligible. However, in chapter 5, which discusses the 

effects of plasticity on specimen behaviour, a simple 

algorithm is introduced which allows an estimate to be 

made of the magnitude of this extra source of compliance. 

The scale of the contact stiffness effect is such 

that the effective value may be significantly altered by 

any out-of-squareness in the rig and perhaps even surface 

roughness of the specimen. 

The problem of evaluating the support stiffness ksup 

is compounded by the unknown abutment stiffness ka which 

cannot be estimated without a 3-dimensional finite element 

analysis and which is very difficult, if not impossible, 

to measure experimentally. 

For these reasons the theoretical estimates of the 

stiffness components are used for comparison purposes only 

and the stiffness parameters kl and k2 evaluated from the 

experimental records themselves. 

4.6. Evaluation of stiffness components from the 

experimental record. 

For the step input (equation 4.6) Glover et al [4] 

and Williams and Adams [5] derived the specimen 
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displacement u(t) as: 

u(t) _ k1V [t _ Si:wtJ 
(k1 + k 2 ) 

(4.47) 

The input force P1 is then, from equation (4.4): 

(4.48) 

which can be rewritten in the form: 

kl k2 [ kl SinwtJ P1 - V - wt + -
(k1 + k2) w k2 

(4.49) 

Differentiating equation (4.49): 

dP1 k1 k2 [ k1 w coswtJ - - V -:; w + 
dt (k1 + k2) k2 

(4.50) 

and at time t - 0: 

(4.51) 

Hence for a constant displacement rate test the stiffness 

parameter k1 may be calculated from the initial slope of 

the force-time diagram. 

For an initial ramp velocity input reaching velocity 

Vo after time to: 

Vo _ - t 2 v(t) 
2to 

(4.52) 

and: 

u(t) - klVO [::.. _ 1 + ~ coswtJ (4.53) 
m'w2 2tO w2tO w2t o 

Hence, from equation (4.4), the input force is: 
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whence, differentiating: 

and at time t - 0: 

dP1 
- (t-O) - 0 
dt 

+ 

coswt») ] 

(4.54) 

sinwtJ 
(4.55) 

(4.56) 

Thus for a ramp velocity input (which best models the 

early time history of the Hopkinson pressure bar 

experimental data - see figure 3.15a) the stiffness 

component k1 is indeterminable by this approach. It might 

also be noted that for anything less than a perfect step 

velocity input equation (4.51) is invalid and an 

underestimate of the value of k1 is likely to ensue. 

However, for a given equivalent mass, it is possible 

to iterate the values of k1 and ksup to minimise the error 

between the predicted force at surface A, Fp (equation 

4.7), and the force actually measured there, Fm. The root 

mean square error can be defined by: 

Err - [~ ;t [Fm(t) - Fp(t)]2J~ 
t-O 

(4.57) 

where the summation is carried out over the n sample 

points from the numerical solution up to the time of 

fracture tf predicted by the specimen strain gauge S3. kl 
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and ksup were varied independently to give a grid with 

error contours superimposed. These contours were found to 

indicate a clearly defined minimum which gave the best fit 

between the model and tne experimental data. It is assumed 

that the variations in these iterated solutions for kl and 

ksup represent and account for small changes in the 

configuration of the test apparatus. Such changes may 

arise due to changes of test condition (temperature and 

impact velocity) or geometry (for example, out of 

squareness between the specimen and the impactor/support 

system). In that the values were calculated up to the time 

of fracture indicated by the S3 strain gauge they 

represent mean values and may include corrections for 

plasticity at the loading system/specimen interfaces and 

the effect of any separation between the specimen and the 

loading system. Typical values of the stiffnesses derived 

by this technique are quoted in tables 4.2 to 4.4. 

4.7. The derivation of dynamic crack initiation fracture 

toughness from the inertial model. 

The characterisation of dynamic crack initiation has 

been discussed earlier (sections 2.4 and 2.5). Here it is 

assumed that stress wave effects within the specimen are 

negligible and that at any given instant the state of the 
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crack is controlled by the quasi-static stress field due 

to the force P2 (equation 4.5). 

For a linear elastic material the dynamic stress 

intensity factor KId can then be defined as the direct 

analogue of its static counterpart (equation 2.13) with 

the difference that the force P2(t) is now a function of 

time: 

(4.58) 

At time t - tf equation (4.58) gives the dynamic 

initiation fracture toughness of the material. As equation 

(4.58) explicitly excludes the inertial loading component 

this approach is, of course, distinct from that of authors 

who have used the measured load at the impactor as a 

direct input in calculating the dynamic stress intensity 

factor (see, for example, [60,88,98]). The implications of 

this will become apparent in the following section. 

By similar reasoning, the dynamic J-integral can be 

determined as the dynamic analogue of the (far field) deep 

crack estimation formula (equation 2.37) as: 

2 U(t) 

JId - B (W - a) 

where the energy function: 

U(t) - f: P2 d(u - u') 

(4.59) 

(4.60) 

in which (u - ut) is the net displacement of the specimen 
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(see figure 4.1) and so excludes the effect of contact and 

support stiffnesses. As discussed in section 2.4, the use 

of the deep crack estimation formula to determine J must 

be justified in terms of the establishment of a J-dominant 

field which, in turn, is reasonably quasi-static (since 

the true dynamic J-integral is not path independent). 

These conditions are discussed further in section 5.6. 

Nonetheless, it is suggested that the form of equation 

(4.59) and the solution procedure leading to the 

evaluation of P2 are more satisfactory and reveal more 

about the interaction between specimen and rig than the 

more piecemeal approaches of Iyer and Miclot [63] and 

Kobayashi [64] described in section 2.5. 

4.8. Discussion of the characteristics of the three point 

bend impact test as revealed by the inertial model. 

The working of the inertial model of the Hopkinson 

pressure bar impact test will now be discussed with 

respect to a typical test result (En24 HC2 059). The 

measured velocity-time and force-time traces are shown in 

figures 4.9a and 4.9b. The solution procedure was as 

follows: 

(i) the velocity was integrated to give the 

displacement function v(t) at the measurement plane A as 
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input to the governing equation (4.3), 

(ii) the mean crack length a was determined in 

accordance with the requirements of ASTM standard E-399 

[3] (ie by measuring the length at midspan and quarter

span, then averaging and ensuring that all the 

measurements fell within the tolerances specified in [3]) 

and hence, 

(iii) the specimen stiffness ks(a/W) was evaluated 

from equations (4.26) to (4.28), 

(iv) the best estimate of the equivalent mass 

(equation 4.20) was taken from the finite element analysis 

described in section 4.3 (m' - 0.023 kg), 

(v) trial values of k1 and ksup were input and the 

governing equation solved for the specimen displacement 

u(t) using the Runge-Kutta-Nystrom numerical algorithm 

(see appendix 2), 

(vi) the predicted input force Fp(t) was calculated 

from equations (4.4) and (4.7) and compared with the 

measured force Fm(t), shown in figure 4.9b, to determine 

the error defined by equation (4.57), 

(vii) steps (v) and (vi) were repeated to establish a 

minimum value of the error and the corresponding optimum 

stiffness components: 

kl - 4.7 x 108 N/m 

ksup - 1.13 x 108 N/m 

ks(a/W) - 4.19 x 107 N/m 
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Figure 4.10a shows the derived force P1(t) generated 

at the tip of the incident bar (equation 4.4) and the 

force P2(t) actually experienced by the specimen (equation 

4.5). P1 is seen to oscillate with time while P2 is almost 

linear. In addition, the small oscillations in P2 lag the 

larger oscillations in P1 by 1800 and the loading of the 

specimen does not start for approximately 20 x 10-6 s 

after the datum. The added effect of the inertia of the 

profiled end of the incident bar is plotted in figure 

4.10b and the resulting predicted force (equation 4.7) 

compared with the measured force in figure 4.10c. The 

agreement is seen to be very good up to the nominal time 

of fracture. 

The time delay predicted before the rise of the P2 

force is very similar to that measured for the specimen 

strain gauge 53 (figure 4.10c). As discussed in section 

3.11, part of this time delay (N 4 x 10-6 s) is due to the 

finite length of the profiled end section of the incident 

bar and the question arises whether the P2 and 53 traces 

are correctly phased. Wave effects are specifically 

neglected in the inertial model analysis, but the wave 

passage time down the profiled end section is implicitly 

included in the measured input displacement function v(t) 

at surface A. The net effect will be to "smudge" an 

otherwise sharp signal and thereby damp the initial 

response of the specimen. It is clear, therefore, that 
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while the time shift defined by equation (3.19) is not 

strictly accurate the error introduced will be much less 

than 4 x 10-6 s. The nature of the two analyses in 

chapters 3 and 4 does not permit a more precise evaluation 

but the error has, at least, been reduced by the use of a 

600 wedge angle at the end of the incident bar rather than 

the standard 300 in the Charpy test hammer. 

The inertia of, firstly, the profiled end section of 

the incident bar, and, secondly, the specimen dominate the 

initial peak of the force-time response (figure 4.10b). 

Loss of contact between the incident bar and the specimen 

might be expected to be observed as a zero force 

measurement, but figure 4.10b shows the possibility that 

such an event could be concealed by the inertial loading 

of the profiled end section on the measurement plane A. 

Among others, Kalthoff [70] has observed separation 

between hammer and specimen in a three point bend drop

weight test and similar behaviour cannot be ruled out in 

the measurements reported here. However, if any such 

separation took place it was restricted to the end of the 

initial load oscillation and was short-lived. Kalthoff 

[70] has also observed loss of contact between specimen 

and supports but this aspect of behaviour was not studied 

here. 

The nominal time to fracture from the 53 strain gauge 

is shown in figure 4.10c (assuming initiation at the 
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maximum strain gauge reading in the absence of any sharp 

"first drop" event). Obviously beyond this point the 

predicted solution is no longer valid since the specimen 

stiffness ks is dependent on crack length and falls to 

zero as the crack propagates through the ligament. Section 

4.12 discusses the possibility that an estimate of the 

crack velocity may be obtained from the rate of descent of 

the measured force-time trace. 

The dynamic fracture toughness, evaluated by equation 

(4.58), for this test was KId - 44.8 MPam\. The minimum 

size restriction for a valid plane strain measurement is 

given by equation (2.47). Using the static yield stress 

dy - 1458 MPa (see figure 5.6b) this becomes: 

b,B > 2.4 mm (4.62) 

which is well-satisfied (see figure 3.9). 

Further results from the inertial model analysis of 

the En24 steel specimens are presented in figures 4.11 to 

4.17 and the derived values tabulated in tables 4.2 to 

4.4. From section 4.5, the best theoretical estimate of k1 

for the En24 steel specimens is (equation 4.1): 

[1 1 ]-1 
kl - - + - - 8 x 

kw kc1 
(4.63) 

while ksup has the maximum value given by (equation 4.46): 

ksup < (kc2 - 36 x 108 N/m) (4.64) 
ka -+ (X) 

for a rigid anvil. These values are considerably greater 

than those deduced by iteration from the experimental 
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measurements and quoted in the tables. It has already been 

noted that some plastic yielding at the interfaces 

(particularly between specimen and support) is likely due 

to the magnitude of the contact stresses and this may 

account for some of the difference. Out of squareness may 

be even more significant since close examination of the 

specimen surfaces revealed small indentations left by the 

supports which tended to be deeper on one side than the 

other. In view of the order of magnitude disparity in the 

estimate of ksup assuming a rigid anvil, such an 

assumption is clearly not justified. 

Some difficulty was encountered in iterating 

component stiffness values at the extreme test conditions. 

In test En24 HC2 066 at T - -80oC the support stiffness 

ksup was unconverged at a value ksup - 9 x 109 N/m (see 

table 4.3a). Similar problems were encountered with some 

of the magnesium alloy specimens (see section 5.9) and 

this seems to be a feature of tests where fracture takes 

place at low force levels. It probably occurs when the 

proportion of inertial loading is high and discretisation 

errors in the model are therefore more critical. 

Similarly, at high loading rate, for the tests on 

truncated specimens En24 HC2 082 and 083 (VO - 4.2 m/s) 

when the time to fracture tf < zt the iteration technique 

failed to converge and mean stiffness values were used to 

evaluate the dynamic fracture toughness (see table 4.4b). 
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Model agreement for the En24 HC1 specimen batch 

(figures 4.11 to 4.13) is best for high impact velocity 

and low temperature. The model overestimates the size of 

the inertial oscillations at high temperature (figure 

4.11c) and low velocity (figure 4.12a). Damping may be 

needed to improve the modelling of these conditions and, 

in fact, it would be easy to include a viscous damping 

term (see appendix 2). However, the physical justification 

for the inclusion of this type of damping is not clear. 

Furthermore, the model agreement for the En24 HC2 

specimen batch (figures 4.14 to 4.17) is excellent at all 

velocities and temperatures. The "first drop" initiation 

criterion is not always easy to apply (figures 4.14b and 

4.14c), but generally gives more reasonable looking 

results (figures 4.15a and 4.15b). The reduced equivalent 

mass (equation 4.21) for the truncated specimens correctly 

models the higher frequency of oscillation seen in the 

measured force-time traces (figure 4.17) while giving 

iterated stiffness values k1 and ksup (table 4.4a) 

consistent with those derived for the full geometry. This 

ability to account for a significant change in specimen 

geometry gives confidence in the validity of the inertial 

modelling procedure. (For tests En24 HC2 080 and 085 the 

53 strain gauge leads sheared during impact and so dynamic 

toughness values for these tests were evaluated using the 

times to fracture from tests 081 and 084 respectively.) 
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The effect of the introduction of the new supports 

(figure 3.11) and corrected tip profile of the incident 

bar (see section 3.8) after test HCl 029 in table 4.2 is 

difficult to quantify. The iterated stiffness solutions 

for tests at T - -20oC and Vo - 3.2 m/s with both the old 

and new geometries were: 

Old geometr) (029) kl - 5.0 x 108 , ksup - 1.7 x 108 N/m 
(Fig. 3.11a 

(030) kl - 5.1 x 108 , ksup - 1.3 x 108 N/m 

New geometr) (028) kl - 5.1 x 108 , ksup - 2.8 x 108 N/m 
(Fig. 3.11b 

(032) kl - 4.7 x 108 , ksup - 3.3 x 108 N/m 

These values do permit the tentative conclusion that the 

revised geometry was indeed stiffer and subsequent tests 

on the HC2 specimen batch (table 4.3) also showed much 

greater consistency of the iterated stiffness parameters. 

The question arises whether the analysis is sensitive 

enough to detect changes in contact stiffness parameters 

due to the effect of temperature and strain rate on the 

local yield stress and, indeed, whether such changes are 

likely over the range of conditions covered by the tests. 

The iterated value of kl does seem to increase with impact 

velocity for both HCl and HC2 specimens (tables 4.2a and 

4.3a) which would be consistent with reduced plasticity 

due to increasing strain rate, although the range of 

velocity covered by the test programme might not seem to 

warrant the conclusion. Further work is required to 

clarify this point. 
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4.9. Summary of dynamic fracture toughness results for 

En24 steel. 

The dynamic fracture toughness derivations are 

presented in tables 4.2 to 4.4 and a summary plot of 

dynamic fracture toughness against test temperature is 

presented in figure 4.18. Also shown in figure 4.18 are 

the static measurements reported in section 3.10 and some 

static measurements for AISI 4340 steel made by Lee and 

Kang [120]. The approximate limit for valid plane strain 

measurements is indicated using both the static value of 

yield stress and the dynamically adjusted value assuming 

the relationship of Tanimura and Duffy (equation 2.52) 

adapted to an axial stress state together with Klepaczko's 

loading rate relationship (equation 2.54). Again, wide 

disparity is observed between the En24 HCl and HC2 

specimen batches. Examining the compositional differences 

between HCl and HC2 (table 3.1) shows that HCl has a 

higher proportion of carbon and a lower proportion of 

manganese than HC2 both of which should promote more 

brittle behaviour [121] - the reverse of the observed 

trend. However, the reduced proportion of silicon [121] 

and the reduced level of sulphur [91] are both compatible 

with the observed increase in ductility. Furthermore, 

hardness tests on the two specimen batches showed that the 

HC2 specimens (Rockwell C hardness ~ 49 - 50) were harder 
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than the HCl specimens (Rockwell C hardness ~ 47 - 48), a 

variation which suggests slightly different tempering 

conditions leading to increased ductility of the HCl 

specimens [127]. This increased ductility is very obvious 

in the SEM photographs of the fracture surfaces of the two 

materials (figures 3.32 and 3.33). 

The dynamic fracture toughness values of the En24 

HC2 specimens tested at very low temperatures (T < -400 C) 

agree well with the static values at room temperature. 

However, the dynamic toughness values at room temperature 

are significantly larger. This positive rate sensitivity 

is the reverse of the embrittlement generally expected 

(see section 2.7) and is difficult to explain in the lower 

part of the transition curve. It is possible, of course, 

that initiation has taken place earlier than indicated by 

the S3 strain gauge readings. This possibility will be 

emphasised in the discussion of crack velocity at 

initiation for the magnesium alloy specimens (section 5.9) 

where it is observed that in a displacement-controlled 

test of this kind a slow crack velocity implies that 

significant bending loads can remain in the specimen after 

initiation. In the case of the En24 HC2 specimens, 

however, estimates of the crack velocity (section 4.12) 

show that this is not a likely explanation for the 

elevated dynamic fracture toughness levels. The increased 

toughness must therefore be attributed to the effect of 
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strain rate on the critical cleavage stress and/or a local 

rise in yield stress caused by adiabatic heating at the 

crack tip. 

It is unfortunate that no static fracture toughness 

measurements were made with the En24 HCl specimen batch. 

However, the distribution of dynamic toughness data with 

temperature is compatible with the static data of Lee and 

Kang [120] for the similar AISI 4340 steel. The En24 HCl 

tests at T - -200 C and T - 20 0 C did not satisfy the 

minimum ligament requirement and so are not valid plane 

strain fracture toughness measurements. 

Figure 4.19 shows the variation of dynamic fracture 

toughness of the En24 HC2 specimens with loading rate. No 

clear trend can be distinguished across such a limited 

range (2.3 x 105 MPam~/s < RI < 9.6 x 105 MPam~/s), 

emphasising the need to take measurements on several 

different kinds of apparatus operating at very different 

loading rates. The slight positive gradient which may be 

discerned in figure 4.19 would be compatible with the 

small delay likely to exist between crack initiation and 

reaction to it at the S3 strain gauge. If this delay was 

of constant time then the error in the fracture toughness 

evaluation would increase with loading rate. 
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4.10. The constant displacement rate assumption in the 

inertial model. 

Inspection of equations (4.49) and (4.54) shows that 

the oscillatory part of the Pi solution for a ramp 

velocity input lags the equivalent solution for a step 

velocity input by 900 , behaviour which is readily seen in 

figure 4.20a which compares the response to a step input 

with the response to a real velocity input. (In this case 

the step velocity input is simply the average of the real 

velocity input.) This has important consequences for the 

predicted impactor-specimen interaction and hence for the 

initial rise of P2 shown in figure 4.20b from which it is 

evident that the assumption of constant displacement rate 

would result in an over-estimate of P2 and hence of the 

dynamic fracture toughness (equation 4.58). Over short 

loading times, therefore, the Hopkinson pressure bar test 

cannot be considered a constant displacement rate test as 

is sometimes assumed. 

The simple lumped mass-spring model does not allow 

for separation of the impactor from the specimen or the 

specimen from its support. Figure 4.20a shows that at this 

loading rate the Pi force goes negative after about 

23 x 10-6 s if a constant displacement rate is assumed. In 

reality the behaviour of the specimen then needs to be 

modelled independently of the stiffness kl (since there 
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will be a gap between specimen and impactor), whereas in 

the model there is a tensile force restraining the 

specimen. Williams and Adams [5] ignore this and apply 

their analytic solution beyond the separation time. A more 

accurate solution might be achieved by resorting to a free 

body model until the gap defined by u(t) - v(t) is closed. 

However, with the small reservation expressed in 

section 4.8 with respect to the possible masking effect of 

the inertial load components, separation does not appear 

to have occurred in the Hopkinson pressure bar tests 

reported here, or, at worst, occurred only for very short 

times. 

4.11. The effect of error in the value of equivalent mass. 

Given the uncertainty and estimations surrounding the 

correct derivation of the equivalent mass it is important 

to establish what effect errors in this parameter might 

have on the iterated stiffness solutions and the final 

evaluation of fracture toughness. Table 4.5 gives the 

iterated stiffness values for a wide range of equivalent 

mass estimates. From figure 4.21a it can be seen that 

these parameters have a dramatic effect on the magnitude 

of oscillation of the P1- time relationship. This is 

expected since Williams and Adams [5] have shown that the 
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size of these oscillations (for the constant displacement 

rate test) is strongly dependent on the ratio k1/w. 

However, the effect on P2 is not discernible on the scale 

of figure 4.21b. and the derived fracture toughness values 

given in table 4.5 are essentially constant. 

Thus the value for m' used in the model will not 

effect the derived fracture toughness, but only the 

quality of matching the predicted and measured forces. 

Figure 4.21c shows that the value of m' - 0.023 kg derived 

from the finite element results (equation 4.20) gives the 

best fit to the experimental data for this test (HC2 059). 

This result, together with similar success in predicting 

the behaviour of the truncated specimens (figure 4.17), 

gives confidence in the method of determining the 

equivalent mass and in the integrity of the derived 

fracture toughness results. 

4.12. Can the inertial model be used to estimate crack 

initiation and propagation velocities? 

Examination of figures 3.22a to 3.22c shows a marked 

variation in the gradient of the force-time traces after 

crack initiation. At low impact velocity the force takes 

some 60 x 10-6 s to reduce to zero, while at high impact 

velocity this is achieved in some 20 x 10-6 s. It seems 
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likely that these gradients will be a function of the 

crack velocity a and so it should be possible to estimate 

the crack velocity from the traces. 

For simplicity it was assumed that the crack 

propagated across the ligament at constant velocity. The 

solution was run as before until the initiation time was 

reached, at which point the crack length was incremented 

to: 

a (At) 
e(I+1) - e(l) + (4.65) 

w 
The corresponding change in the specimen stiffness was 

computed from equations (4.26) to (4.28) and the solution 

continued until the ligament was fully cracked when k2 was 

set to k2 - O. The solution was run for several trial 

crack velocities until a reasonable match was obtained 

with experimental data. 

Two loading conditions were examined for En24 HC2 

specimens - at low and high impact velocity. For the case 

of low impact velocity (figure 4.22) a crack velocity of 

50 m/s matches the experimental data quite successfully, 

while a velocity of 100 m/s is obviously too severe. In 

the case of high impact velocity (figure 4.23), where the 

53 strain gauge suggests initiation on the rising part of 

the force-time trace, the situation is less clear. A crack 

velocity of 1000 m/s reproduces the correct behaviour 

immediately following initiation, but, if true, is 

122 



apparently not sustained across the ligament. A crack 

velocity of 100 m/s is seen to be too slow and perhaps the 

best value is the compromise of 250 m/s shown in figure 

4.23b. 

An improved technique of studying crack growth might 

be achieved by evaluating the stress intensity factor at 

each increment of growth and making appropriate 

adjustments to the crack velocity. 

As discussed in section 2.7, Bilek [92] has suggested 

that the value of fracture toughness measured in dynamic 

tests on AISI 4340 steel is a function of crack velocity. 

If the estimates of crack velocity above are realistic 

then this finding is certainly not true of the current 

data, adding weight to the suspicion that Bilek's finding 

was a function of crack-tip constraint caused by varying 

the notch root radius. 

4.13. En24 HC3 steel and magnesium alloy results. 

It is clear from figure 3.25 that the En24 HC3 steel 

specimens behaved in a highly ductile manner and so the 

linear analysis presented here would be inadequate. 

Accordingly a non-linear algorithm for the specimen 

stiffness is developed in chapter 5. 

Results from the magnesium alloy specimens, although 

123 



not necessarily appearing to be non-linear up to crack 

initiation, did not satisfy the plane strain requirement 

(equation 2.47) for valid fracture toughness measurements 

and so further discussion of these results is deferred 

until after the presentation of the non-linear model. 
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TABLE 4.1. Values of the equivalent mass m' for varying 
midspan constraint stiffness k1 • 

k1 

(N/m) 

2 x 106 

2 x 107 

2 x 108 

5 x 108 

1 x 109 

.01 

.15 

' 1.5 
; 

13

•

8 

7.7 

----~ 

2 I Nm w1 m' 
I (rad/s) (kg) I 

5 

t- ----
92771 0.01545 1.577 

1.627 98747 0.01548 

1.97 144771 0.01579 

I 2.30 197335 0.01620 

2.62 256065 0.01725 

N.B. k2 evaluated from equation (A3.2) for an uncracked 
beam assuming properties for steel. 



TABLE 4.2. Summary of results for En24 Hel steel: 
(a) inertial model stiffness parameters. 

------------- -- -_._- "--... -----

Temperature (0 
I-----_____ ~~O-_ 

C) 
-40 -20 20 -_._-----

Vo (m/s) 
----------~--

1.5 I 
kl (x 108 

ksup (x 108 

a/W 

011 014 
N/m) 3.9 3.2 
N/m) !0.48 0.63 

I .529 .526 

ks (x 107 N/m) 3.51 3.56 

1027 2.5 
I 

023 016 

kl 4.7 2.7 4.4 

ksup 1.0 1.05 0.76 

a/W .534 .524 .535 

ks 3.44 

3.2 

_V· 59 3.42 

029 033 
I 

kl 5.0 4.9 
ksup 1.69 1.81 
a/W .555 .559 

ks 3.13 3.07 

035 

I 4.8 
2.79 
.555 
3.13 

----------~-



TABLE 4.2. (cont.) Summary of results for En24 Hel steel: 
(b) dynamic fracture toughness evaluations. 

,...-------- ~----

Temperature (oC) 
-80 

~----~- -~ --

vo (m/s) 

1.5 
tf (us) 
KId/KQ (MPam~) 
Kr (xl05 MPam~ 
Ligament (mm) 

2. 5-:-1~!~o 

3.2 

Krd/KQ 56.0 
KI 5.7 
Lig. 3.1 (2.6 

tf 
Kld/KQ 
• 
KI 
Ligament 

tf 
Kld/KQ . 
KI 
Ligament 

L--_------1----~ .~-~- ---

-----~ 

1-40 
! 

--+ 
1011 
i 217.4 

162.2 
I 

/s)i 2•9 
4.2 (3.6) , 

I 
I 

I 

! 023 
! 
: 124.4 

j69.6 
I 

i 5.6 
) 15.3 (4.5) 

_._- .. _. f-------.-~-~ - --------

I 

! 

I -.--

-20 20 

014 
250.4 
76.8 
3.1 
6.6 (5.7) 

016 
140.6 
76.9 
5.5 
6.6 (5.6) 

029 033 
104.2 146.0 
84.1 114.7 
8.1 7.9 
7.9 (6.7) 15.5 (13.2) 

035 
144.2 
118.5 
8.2 
16.5 (14.1) 

N.B. Ligament - 2.5 l:~l2 based on static (dynamic) yield 

stress. If Ligament < 5.0 then KId - KQ (see 
discussion following equation 2.47). 

I 

I 



TABLE 4.3. Summary of results for En24 HC2 steel: 
(a) inertial model stiffness parameters. 

Temperature (OC) 

Vo (m/s) 

1.2 

kl 
ksup 

t_:- BO 

(x 

(x 

lOB N/m) 

lOB N/m) I 

I 

-40 
._. 

a/W 

ks (x 
------- ----

1.7 

l07~ ___ t_ 
kl 
ksup 
a/W 

ks 
---_.------

2.5 

' 4 • 2 

kl 
ksup 
a/W 

ks 

kl I 

a/W 

066 
4.0 
>90.0 
.505 
3.BB 

k

sup I j 
L--_-k-s ___ _. ____ _ 

--

064 065 
4.1 3.9 
2.70 3.19 
.545 .531 
3.27 3.19 

- -------------

20 100 

056 057 
4.3 4.5 
1.2B 1.55 , 
.517 .510 
3.70 3.81 

058 059 
4.5 4.7 
1.36 1.13 
.523 .486 
3.60 4.19 

050 051 052 
4.5 4.3 4.4 
1.36 1.30 2.53 
.527 .522 .526 
3.54 3.62 3.56 

054 055 
4.3 4.5 
1.33 2.34 
.510 .517 
3.81 3.70 

053 
4.2 
1.68 
.534 
3.44 

(table continued overleaf) 

I 
I 



Temperature (oC) 
1-80 

--+ 
vo (m/s) ! 

----+-- .. -~~-- -.--~~-- -+-

0.60 

0.95 

40 
--------.---~--. --_ .. 

~----

(table 4.3a continued) 

20 100 
--.~-~-----r--

062 063 
3.5 3.1 
1.59 1.82 
.518 .522 
3.68 3.62 

--

060 061 
3.6 4.0 
1.65 1.68 
.520 .537 
3.65 3.39 



TABLE 4.3. Summary of results for En24 HC2 steel: 
(b) dynamic fracture toughness evaluations • 

.----------~-~--- -~ .,---------.-------------------------, 
Temperature (OC) 

-80 -40 20 100 
1------------ ---- ------+------t--------i 

Vo (m/s) 

1.2 
tf (us) 
KId/KQ (MPam\) 
KI (xl05 MPam\/s) 
Ligament (mm) 

---------1-----+---------1 

056 057 
178.2 169.0 
49.7 48.9 
2.8 2.9 
2.9 2.8 

-------+--------------+------1------+--------1 

1.7 

tf 
KId/KQ 
• 
KI 
Ligament 

---- 1----

2.5 066 
tf 63.0 

KId/~ 39.5 
• KI 6.3 
Lig. 1.5 

.--- -- .. _---_.- -- -_. --~ 

4.2 

tf 
KId/KQ 
• 
KI 
Ligament 

1 

------f---------

064 
69.0 
39.1 
5.7 
1.7 

---.. _._- ._-".-

058 059 
125.2 114.8 
51.7 44.8 
4.1 3.9 
3.1 2.4 

---------

065 050 051 052 053 
70.4 91.2 94.0 109.8 105.8 
40.2 52.5 52.7 68.5 63.7 
5.7 5.8 5.6 6.2 6.0 
1.8 3.2 3.3 5.8 5.1 

054 055 
57.8 55.6 
49.4 53.4 
8.5 9.6 
2.9 3.4 

(table continued overleaf) 



Temperature (oC) 
1----- ___ l-~_O_ ---------
vo (m/s) jl 

-------- - -- ----------

0.60 

0.95 

tf i 
KId/KQ 
• 
KI 
Ligament 

tf 
KId/KQ 
• 
KI 
Ligament 

L...----~------

---

-40 

I 
1 

--

(table 4.3b continued) 

20 100 

062+ 063+ 

365.6 359.4 

- -
- -
- -

060 061 
204.0 219.2 
47.1 52.1 
2.3 2.4 
2.6 3.2 

N.B. Ligament - 2.5 [:~12 based on static yield stress. 

If Ligament < 5.0 then KId - KQ (see discussion 
following equation 2.47). 

+ 53 strain gauge indicates initiation beyond the 
last force-time measurement point. 



TABLE 4.4. Summary of results for En24 HC2 steel 
(truncated specimens): 
(a) inertial model stiffness parameters • 

.------------ ----- ------------ ~ .. --.-

Temperature (OC) 
-80 

~----+ ----- --- 1-40 
--_ .. -

Vo (m/s) I 

I ~--
1.2 I 

kl (x 108 N/m 
ksup (x 108 N/m 

a/W 
(x 107 N/m 

) 

) 

) 

, 

! 

j 
I 

i 
I 

I , 
i 
I 
I 

i 
_____ J 

, 
I 

1.7 i 

2.5 
.. + 

I 

I 
I 

, 
i 
I 

I 

1 
--- I 

I 
: 

4.2 

--------~------
I 

- --~-

20 100 

084 085 
4.7 4.5 
1.23 0.99 
.507 .504 
3.85 3.90 

080 081 
4.5 5.1 
1.04 0.97 
.519 .490 
3.67 4.12 

082 083 
4.75* 4.75* 
1.09* 1.09* 
.501 .515 
3.95 3.73 

N.B. * Mean values for tests 080/081 and 084/085 (tf < 2 ) 



TABLE 4.4. Summary of results for En24 HC2 steel 
(truncated specimens): 
(b) dynamic fracture toughness evaluations. 

,------------ ._- - ---

I 
~ 

Temperature (0 
-t -8_Q._ 

. 

C) 
--- --- - --- -- -

Vo (m/s) I 
t------ ._--.. _--- --

il.2 
j 

i 
1 1•7 

I 
tf (us) 
Krd/KQ (MPam 
Kr (xl05 MP 
Ligament (mm 

j 
, 

I 
I 

4-2.5 

Ligament 

4.2 
-1---

! 

Ligament 
__ L _____ _ 

\) 
am\/s) 
) 

_. -
~----
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---

080 081 
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- 5.3 
3.0 2.8 

082 083 
65.4 61.4 
59.4 54.8 
9.1 8.9 
4.2 3.6 

N.B. + Based on S3 strain gauge for test 085 
- Based on S3 strain gauge for test 081 
Ligament as defined in table 4.3b. 
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TABLE 4.5. The effect of varying the equivalent mass m' on 
iterated values of kl and ksup and hence on the 
derived fracture toughness (test En24 HC2 059). 

m' I kl ksup KId 

(kg) : (Nm-1) (Nm-1 ) (MPam~) 
--!----- ._ .. -_._- --- --_._-----

! 

! 
108 108 0.015 i 3.1 x 1.27 x 44.72 

I 

108 108 0.023 i 4.7 x 1.13 x 44.80 

0.030 6.5 x 108 1.06 x 108 44.86 
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Titles for figures 4 . 11 to 4.17. 

FIG. 4 . 11 . Inertial model results for En24 HC1 with 
increasing test temperature (VO = 2.5 m/s). 

FIG. 4 . 12 . Inertial model results for En24 HC1 with 
increasing impact velocity (T = -200 C). 

FIG. 4 . 13. Inertial model results for En24 HC1 at room 
temperature for impact velocity Vo = 3.2 m/so 

FIG. 4.14. Inertial model results for En24 HC2 with 
increasing test temperature (VO = 2.5 m/s) 
- maximum specimen strain criterion. 

FIG. 4.15. Inertial model results for En24 HC2 with 
increasing test temperature (VO = 2.5 m/s) 
- "first drop" initiation criterion. 

FIG . 4 . 16 . Inertial model results for En24 HC2 with 
increasing impact velocity (T = 20 0 C) 
- standard Charpy specimens. 

FIG . 4.17. Inertial model results for En24 HC2 with 
increasing impact velocity (T = 20 0 C) 
- truncated specimens. 
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5. ELASTO-PLASTIC BEHAVIOUR IN THE BOPKINSON PRESSURE BAR 
LOADED THREE POIRT BEtm IMPACT TEST. 

5.1. Introduction. 

The lumped mass-spring model developed in chapter 4 

has been shown to represent satisfactorily the behaviour 

of the three point bend impact specimen up to the moment 

of crack initiation provided that plasticity effects can 

reasonably be ignored (ie in the limit of small scale 

yielding). This assumption is no longer valid in the case 

of the En24 He3 specimens or the magnesium alloy 

specimens. There is no intrinsic reason, however, why the 

analysis of chapter 4 should not be extended to cover 

elasto-plastic material behaviour; it is simply a matter 

of redefining the specimen stiffness relationship in 

equations (4.26) to (4.28). The problem is to find a 

suitable constitutive relationship. One such relationship 

for power law hardening materials is presented in section 

5.2 and is then included in the inertial model analysis. 

To use this specific elasto-plastic algorithm it is 

required only to know the uniaxial stress-strain 

relationship for the test material, which must then be 

suitable for characterisation by the Ramberg-Osgood power 

law (equation 2.20). The general approach may be adapted 

to other material constitutive laws. 
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A simple algorithm for estimating the contribution of 

plasticity to the contact stiffnesses is presented in 

section 5.4 and its effect on the behaviour of the model 

then explored. 

Finally, the use of the J-integral to characterise 

dynamic crack initiation in impact loaded tests is 

considered and data presented for the En24 He3 and 

magnesium alloy specimens. 

5.2. An algorithm to include the effect of specimen 

plasticity in the lumped mass-spring model. 

Following an approach first developed by Goldman and 

Hutchinson [122] to analyse a centre-cracked strip under 

tensile loading, Kumar et al [32] have produced 

expressions for the plastic deformation of the single

edge-cracked plate in three point bending. Their approach 

utilises the plastic component of the Ramberg-Osgood 

uniaxial stress-strain relationship (equation 2.21) 

generalised to multi-axial stress states using J 2 

deformation theory (equation 2.22). Kumar et al report 

Ilyushin [123] as having demonstrated that the solution to 

the resulting boundary value problem has the following two 

properties: 

(i) local field quantities are proportional to the 
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load parameter raised to the strain hardening index n, 

thus: 

cS'i j _ [6'«>] n ~. . ( x , n ) 
~ 1J ,.,. 

dy uy 

where ~~ represents the applied stress and ~ij is a 

dimensionless function of spatial position ~ and n, 

(5.1) 

(ii) since the stress and strain at every point 

increase in exact proportion, the fully plastic solution 

based on the deformation theory of plasticity is the same 

as that given by the flow theory provided no unloading 

occurs. 

The fully plastic crack tip parameters for the three 

point bend specimen are then given by: 

Jp - (X tS
y 

€y (W - a) hi (~, n) [:oT+i 

and: 

Ucp - OC€y a h3(a,n) [:oJ 
where Po is the limit load for a perfectly plastic 

material. This can be written in the form: 

(W - a)2 
B 

s 

(5.2) 

(5.3) 

(5.4) 

where ~I - 1.456 for plane strain conditions [31] and 

~. _ 1.072 for plane stress conditions [124]. The 

dimensionless functions hi and h3 have been evaluated 

using finite element techniques developed by Goldman and 

127 



Hutchinson [122] and tabulated in the EPRI handbook [32]. 

Kumar et al then propose that the behaviour of the 

specimen in the elasto-plastic regime (ie before complete 

yielding) be estimated by the superposition of the elastic 

solution, modified to account for the effect of the 

plastic zone in small scale yielding, with the plastic 

solution given above. Thus, the J-integral can be written 

as: 

J - Je(ae ) + Jp(a,n) (5.5) 

and the specimen displacement as: 

u - ue(ae ) + ucp(a,n) (5.6) 

where the elastic contributions Je(ae ) and ue(ae ) are 

based on Irwin's effective crack length (equation 2.8) 

modified to account for strain hardening: 

(5.7) 

where: 

ry - ;n (: : :) [::r (5.8) 

and: 

1 

/if - [1 + (p/PO)2J 
(5.9) 

For plane strain fo - 6 and for plane stress ~ - 2. The 

factor Jf serves to reduce the plastic zone size correction 

under conditions of contained plasticity. The stress 

intensity factor KI is evaluated from equations (2.13) and 

(2.15) based on the original crack length a. The elastic 
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component of displacement ue(ae ) is given by equation 

(4.27) except that the non-dimensional function V2(a/W) 

(equation 4.26) is evaluated in terms of the effective 

crack length ae (equation 5.7). 

The implementation of this plasticity correction in 

the analysis of chapter 4 is best seen with reference to 

the flow diagram in figure 5.1 and the load-deflection 

curve (inset to figure 5.2) defined by equation (5.6). The 

initial stiffness is elastic and the solution proceeds as 

before until the error between the numerical solution for 

u (and hence P2) and the "target" solution ut defined by 

equation (5.11) below is larger than a given tolerance 

(see figure 5.2). The k2 stiffness component is then 

incremented slightly (see figure 5.3) and the solution 

reiterated until the tolerance is satisfied. In the first 

instance this will mean decreasing the stiffness, but the 

process must allow for over-correction and hence requires 

increasing refinement in the incrementing procedure. The 

result is that the force-deflection behaviour of the 

specimen can be forced to follow the target solution to 

whatever accuracy is required. 

In practice, it was found easiest to evaluate an 

effective "elastic" stiffness k2e defined by: 

k .-+--
[ 

1 1 J-1 

2e kse ksup 
(5.10) 

where kse is the specimen stiffness evaluated in terms of 
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the effective crack length and ksup is the support 

stiffness as before, except that in this case it is 

possible to include a component to account for plastic 

deformation at the supports (see section 5.4). The target 

value of displacement u' for a given load P is then (from 

equation 5.6): 

u' - -.:.. +IX€yah3[:"Jn 

k2e Po 
(5.11) 

k1 and (the elastic component of) k sup were evaluated 

for each specimen by the iterative technique using 

equation (4.47) except that curve-fitting was restricted 

to the linear part of the force-time curve. This produced 

estimates of kl and k sup for the En24 HC3 steel which were 

comparable with those computed for En24 HC2 steel in 

section 4.8. The estimates for the magnesium alloy 

specimens were more erratic due to the low magnitude of 

the measured forces and the difficulty of defining the 

truly linear part of the curves. 

5.3. Stress-strain characterisation of En24 steel and 

magnesium alloys ZCM 630-T6 and WE54. 

Use of the Kumar et al (KGS) [32] plastic solutions 

given in equations (5.5) and (5.6) requires fitting the 

Ramberg-Osgood uniaxial stress-strain relationship 
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(equation 2.20) to the measured stress-strain 

eharacteristic of the material under test. Ideally, this 

should be a dynamic stress-strain curve recorded at the 

identical strain rate and temperature used in the test to 

be analysed. In the case of a bending test the process is 

made difficult by the approximate nature of strain rate 

evaluation (see discussion following equations 2.54 and 

2.58). In practice, it is often necessary to rely on 

statically determined stress-strain curves and to scale 

these using approximate relationships for the effect of 

strain rate - for example the Cowper-Symonds relationship 

(equation 2.51) discussed in section 2.4. (Again, of 

course, the large strain rate gradients in the bend 

specimen can only be accommodated very approximately.) For 

En24 steel the strain rate relationships developed by 

Tanimura and Duffy [52] for AISI 4340 VAR steel (equations 

2.52 and 2.53) have already been used in determining the 

minimum ligament size for valid plane strain fracture 

toughness measurements in chapter 4. Similarly, the effect 

of temperature is often known only for the yield stress, 

but is required for the full range of stress and strain 

which requires further extrapolation. 

Figures 5.4a to 5.4c show static stress-strain tensile 

clata measured by Chait [125] for three tempers of AISI 4340 

steel. These are fitted with Ramberg-Osgood curves using a 

least squares approximation. The fits are reasonable 
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considering the high yield stresses although, possibly, a 

bilinear characterisation would be more suitable. Figures 

15~5a and 5.5b show tensile stress-strain data for the two 

magnesium alloys [126]. Although measured data was only 

available up to the 0.2% yield point, the analyses of the 

impact tests to be presented show fairly limited 

plasticity and so the implied extrapolation is not 

serious. The results of the Ramberg-Osgood 

characterisations are presented in table 5.1. 

Yield stress data for several heats of AISI 4340 

steel has been measured as a function of test temperature 

by Lee and Kang [120] and Tanimura and Duffy [52]. (The 

latter report results from torsion tests which can be used 

to approximate axial yield stress behaviour by assuming 

von Mises yield criterion and an incompressible material.) 

Both these sets of data are presented in figure 5.6a 

together with linear interpolations to the 3750 C temper 

(nominally equivalent to the En24 HC1 and HC2 specimen 

batches). The very good agreement results in the mean 

curve of yield stress against temperature for the 3750 C 

temper shown in figure 5.6b. The room temperature value is 

1458 MPa which compares very favourably with a similar 

measurement for En24 [127]. 

By comparison, the 5500 C temper (equivalent to the 

En24 HC3 specimen batch) has a room temperature yield 

stress of 1137 MPa. 
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I 
Unfortunately no data is ava{lab-le on th'e" 'var{~tion of 

~ the stress-strain characteristic of the magnesium alloys with 

i temperature or strain rate, although, as observed in section 

3.12, the consistent shdpes of the derived force-time 

curves for a wide range of temperature suggests that the 

temperature dependency of these materials is much weaker 

than that of the En24 steel. 

5.4. The effect of plasticity on contact stiffness. 

It has already been observed in figure 4.8 that the 

stresses generated in the contact zones between the 

incident bar and the specimen and between the specimen and 

its supports exceed the yield stress for all study 

materials at relatively low forces. As a first 

approximation of the resulting plastic component of the 

contact stiffness consider the contact problem of a rigid 

cylinder impacting a rigid-perfectly plastic plane. The 

cylinder will sink into the plane a distance d dependent 

on the magnitude of the impact force P, the yield stress 

of the surface ~Y' and the area of normal contact between 

the cylinder and the plane. Let this area have a half

width yO and breadth B, then, as figure 5.7 shows: 

P 
(5.12) 
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IO;~ere c • ~.8 is the constraint factor [130]. Then: 

Yo -
26yBc 

(5.13) 

and: 

(5.14) 

so tha t: 

d • RO - (R02 - Y02)\ (5.15) 

The approximate plastic contact stiffness component is 

then given by: 

Now, 

5.8 

p 

k -cp 
d 

RO • 8mm 

RO - lmm 

at 

at 

(5.16) 

the incident bar/specimen interface, and 

the specimen/supports interface. 

The resulting stiffness values are plotted in figure 

as a function of impact load. As in the elastic 

problem, the contact stiffness at the supports is really 

made up of two components acting in parallel, so the 

required stiffness is: 

kc2p - 2kcp (5.17) 

For convenience only the results for the magnesium alloy 

WE54 have been plotted in figure 5.8b; the equivalent 

results for ZCM 630-T6 are very similar. It is obvious 

that, while the assumption of perfect plasticity is an 

extreme one, the additional compliance caused by plastic 

effects, at the supports, in particular, could be 

considerable. 
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The contribution of this plastic contact stiffness 

component to the overall specimen behaviour is discussed 

further in section 5.8. 

5.5. Use of the far-field, deep crack formula to estimate 

the J-integral in elasto-plastic power law materials. 

In discussing the application of the Rice et al [28] 

deep crack estimate of the J-integral (equation 2.37) in 

section 2.2, the approach of Srawley [30] was described as 

a means of verifying the validity of far-field 

approximations in linear elastic and perfectly plastic 
1 

materials. The same method can be applied to the KGS fully 

plastic solutions described above. The work done Up is 

simply: 

Up - JUcp 
P du o cp 

where, from equation (5.3): 

P • Po 
G 

ucp J l/n 

CX€yah 3(a/W,n) 

Substituting equation (5.19) in 

integrating gives: 

[ 
1 J1

/n 
Po ()(6y ah3 

n 
U .-

p (n+1) 

equation (5.18) and 

n+l 
n ucp 

(5.18) 

(5.19) 

(5.20) 

From equation (2.41b), the ratio of the true J-integral, 
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as defined by equation (2.32), to the work done per unit 

area of net cross-section is: 

np _ ( w - a) r 0 U p 1 _ r~ 1 n U p 1 
I Up Ld(W-a~u L~ln(W-aJu 

(5.21) 

where the u indicates partial differentiation at constant 

displacement. From equations (5.20) and (5.21) ~p can be 

rewritten as: 

?p _ ~~:o In r~p(a+ba)l ~n I.w - (a+ba)] (5.22) 
L Up(a) j/~ L W - a 

which, from equation (5.20), is: 

Lim r~0(a+6a) (h3(a) a \!J 
ryp - 6a.0 Inlpo(a) h3(a+ba)o (a+oa)}n 

)nl : ~a:ba)J (5.23) 

But, from equation (5.4), Po OC (W - a)2, and so equation 

(5.23) becomes: 

Lim 1 [ ?p - 2 + ba~ ~ 1 + 
In[h3(a)/h3(a+ba)] ] 

1 n [ {W - (a +6 a )}/ ( W - a)] 

(5.24) 

In the limit of perfect plasticity, as n +00, then IJp + 2, 

but for finite n there will be a finite correction 

dependent on the gradient of the dimensionless function h3 

with respect to crack length. This function is tabulated 

in Kumar et al [32]. Figure 5.9a shows the function 

plotted against a/W for a range of values of n. For each 

value of n the function was fitted with a quadratic curve 
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and the limit defined by equation (5.24) evaluated. The 

results are plotted in figure S.9b. For moderate strain 

hardening materials and crack lengths of around half the 

ligament it appears that equation (2.37) can overestimate 

the plastic component of the J-integral by up to 10%. This 

will be a much smaller fraction of the total J-integral 

(which includes the elastic component) and is effectively 

negligible except in the case of large scale plasticity. 

5.6. How long after impact does it take a J-dominated 

field to become established? 

Nakamura et al [49] have suggested that a J-dominant 

field is likely to have been established once the ratio of 

kinetic energy to strain energy has fallen below 1.0 (see 

discussion in section 2.4). They estimated the kinetic 

energy from Eu1er-Bernoulli beam theory and the elastic 

strain energy as U - \Pu, from which they derived a 

non-dimensional transition time tT given by: 

ctT 
--- - 27 (S.25) 
w 

where c is the wavespeed (equation 3.7) and W the width of 

the specimen. 

A similar estimate can be made using the derived 

values from the inertial modelling routine. The specimen 
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velocity u in the model is explicitly determined from the 

R-K-N iterations and so it is a simple matter to estimate 

the kinetic energy 

1 
T == - m' u2 

2 

as: 

(5.26) 

In the linear elastic case the strain energy within the 

specimen is given by: 

1 _ u,)2 
1 P22 

U = - k (u = -e 2 s 2 ks 

or in the elasto-plastic range by: 

U :a J U P2 d( u-u' ) 
p 0 

(5.27) 

(5.28) 

where u' is as defined in figure 4.1. In practice, very 

little energy was expended in plastic deformation over the 

loading range of interest and so equation (5.27) was 

considered sufficient to determine the strain energy. The 

ratio of kinetic energy to strain energy has been plotted 

for the steel specimens (figure 5.10) and for the 

magnesium alloy ZCM 630-T6 (figure 5.11) at high and low 

velocities. The transition time for all these cases is 

covered by the range: 

39.6 x 10-6 < tT < 44.4 x 10-6 (5.29a) 

or: 

ctT 
19.5 < < 21.3 (5.29b) 

W 

for the magnesium alloy, and: 
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ctT 
21.9 < --- < 23.0 

W 
(S.29c) 

for the steel specimens (where data for En24 HC2 specimens 

has been used due to the linear nature of the analysis, 

but the results are expected to be equally valid for En24 

He3 specimens considering the low load levels attained 

before tT). The difference between equations (5.29) and 

equation (5.25) is another indication of the reduced 

proportion of inertial loading in the Hopkinson pressure 

bar test compared with a simple drop-weight or pendulum 

test. Since all the times to fracture in the specimens 

tested were well in excess of the range defined in 

equation (5.29a) it is reasonable, by this criterion, to 

consider the J-dominant field to have been well 

established by these times and therefore that the crack 

initiations can sensibly be characterised by the 

J-integral. 

Nakamura et al [49] also considered the bending 

moment definition of the strain energy (equation 2.38) and 

the difficulty of inferring the true bending moment at the 

crack tip from remote measurements at, say, quarter-span. 

From their finite element results they determined that 

inertial forces could contribute approximately 7% of the 

total bending moment at the transition time t-tT (compared 

with over 401 at t-tT/2). The inertial modelling routine 

is designed to allow for this contribution, albeit in a 
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coarser manner than can be achieved with a two-dimensional 

finite element analysis, so that this objection to remote 

measurements is at least compensated for. 

5.7. A loading rate parameter for elasto-plastic 

materials. 

The approximation of the rate of change of stress 
• 

intensity factor, KI , defined in equation (2.59) is useful 

because it is approximately constant in a linear elastic 

test. A similar parameter for elasto-plastic materials 
• 

might appear to be J I , where: 

• JId 
J I - -

tf 
(5.30) 

but in a constant displacement rate test this would only 

be constant for a perfectly plastic material since, by 

equation (2.37), J is proportional to the strain energy. 

In fact, for materials with low strain hardening 

coefficient and limited ductility, equation (2.59) is 

probably more appropriate. It is therefore proposed to use 
• 

the parameter KIJ to characterise the effective loading 

rate in the magnesium alloy 

r EJId J\ 
L(l _})2) 

tests, where: 

from equation (2.34), although small scale yielding 
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conditions are not, of course, strictly applicable. 

Equation (5.31) is also used to characterise the loading 

rate in the En24 HC3 tests since it allows some comparison 

with loading rates in the En24 HC2 tests. However, with 

the amount of ductility observed in these tests it is no 

longer a consistent measure of loading rate and the values 

obtained must be treated with some caution. 

5.8. Elasto-plastic analysis of the En24 HC3 tests. 

1 
The KGS elasto-plastic algorithm presented in section 

5.2 has not been validated at very high strain hardening 

coefficients (the h3 functions are only tabulated up to 

n - 20). Although stress-strain measurements are not 

available for the En24 steel, the Ramberg-Osgood 

characterisations of the US equivalent steel AISI 4340, 

presented in section 5.3, suggest a strain hardening 

coefficient n for the HCt and HC2 tempers in excess of 40. 

Thus it is not possible to re-analyse the room temperature 

En24 HCt results in which the ligament was too small to 

permit a valid plane strain fracture toughness 

measurement. However, as shown in figure 5.4c, the 5400 C 

temper (equivalent to the HC3 specimen batch) is 

characterised by n - 23.3, from which it is possible to 

obtain extrapolated estimates of the h3 and hi functions 
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in equations (5.2) and (5.3). It can be shown that small 

errors (NIOl) in these extrapolations have a negligible 

effect on the results. For ease of calculation all h3 and 

hi evaluations have been made for a/W - 0.5, a reasonable 

assumption for the case of limited plasticity. For large 

scale plastic effects in Charpy-size specimens the errors 

in h3 and hI evaluations are very small compared with the 

difference between assuming a plane strain or plane stress 

solution (see below). 

Plane strain solutions are presented for the three 

impact velocities in figure 5.12 and derived quantities 

tabulated in table 5.2. Large scale plasticity is evident 

and the KGS elasto-plastic algorithm tends to overestimate 

the forces generated. It is impossible to say with any 

confidence where crack initiation takes place on any of 

the traces in figure 5.12. The maximum specimen strain 

gauge (S3) readings are indicated (and values of the 

J-integral evaluated at these points) but the absence of 

any sharp features makes their interpretation as crack 

initiation events very tentative. In addition, the 

oscillations in the S3 signals indicate significant 

inertial loading even up to 100 x 10-6 s in the high 

impact velocity test (075 - figure 5.12c). The large shear 

lips (figure 3.36a) suggest the possibility of crack 

initiation and tunnelling at the centre of the crack front 

while considerable load is still carried by intact 
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ligaments near the surface. At the lowest impact velocity 

(VO - 2.5 mls - figure 5.12a) it is probable that 

initiation takes place beyond the end of the force-time 

trace and the J-integral values quoted in table 5.2 are 

evaluated as minimum values at the end of the measurement 

interval. In fact, at this condition, the specimens did 

not fracture completely, the cracks arresting after just 

lmm growth. At the highest impact velocity (VO - 5.7 m/s) 

the divergence of the measured force and the KGS elasto

plastic solution suggests that crack initiation has indeed 

occurred either at or some time just after the maximum S3 

reading. 

Two J-integral values are quoted in tables 5.2a, 

5.3a, and 5.4a. One was evaluated using the far field 

formulation adapted for the inertial model (equation 

4.59), the other from the KGS estimate given in equation 

5.5. The agreement is within about 5% for all cases and is 

often much better. This is good considering that use of 

the KGS formulation requires interpolation (and even 

extrapolation in the case of En24 HC3 specimens) of both 

the h3 and h1 functions. The error is greatest in those 

specimens with the highest proportion of plasticity and is 

consistent with over-estimation caused by assuming ~p - 2 

in the evaluation of the far-field J-integral. However, it 

could equally be due to interpolation error. 

With such extensive ductility the assumption of plane 
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strain conditions may no longer be valid, in which case 

the solutions presented here should represent an upper 

bound. The lower bound solution would result from assuming 

plane stress conditions (figure 5.13). As expected the KGS 

solutions now underestimate the measured force traces, so 

confirming the possibility of such a loss of constraint. 

The resulting change in J-integral values (table 5.2) is 

only of the order of 10%, however, which is small given 

the uncertainty surrounding the identification of crack 

initiation. 

The situation is made still more complicated if 

strain rate effects are included. At the loading rates 

realised in these tests, the data of Tanimura and Duffy 

(52] suggests that a stress elevation of 10% would be a 

reasonable estimate, an increase which would raise the KGS 

plane strain solution still further. 

The KGS solutions shown in figure 5.12 are undamped, 

while the measured force oscillations display a marked 

degree of damping. As shown in appendix 2, it is a simple 

matter to include a viscous damping term in the inertial 

model. The somewhat inconclusive result is shown in figure 

5.14 for the high velocity test (VO - 5.7 m/s) with a 

relative damping coefficient 3 - 0.05, where: 

c 

3 - (5.32) 
2m'w 

Although the curve fitting is improved over the first two 
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inertial oscillations, the match breaks down around the 

time that yielding occurs. Of note is the considerable 

fall in the P2 force level (figure 5.14c) which results in 

almost a halving of the J-integral (table 5.2). 

The occurrence of some kind of damping in the 

impactor-specimen-support interaction is inevitable, 

although the type of damping and its magnitude is not 

obvious. Viscous damping was selected as the easiest to 

model and is presented here purely as an example of how 

the presence of damping might effect the parameters used 

to measure crack initiation. The inclusion of damping 

involves the dissipation of energy and so can have a 

critical effect on the value of the J-integral pertaining 

to the test. 

Plasticity at the specimen supports was included in 

the contact stiffness by superposition of the iterated 

value of ksup from equation (4.57) and the estimated 

plastic component (equation 5.17): 

[ 
1 1 J-1 

ksuppl - - + --
ksup kc2p 

(5.33) 

The effect of including this algorithm is shown in figure 

5.15. The small change in system compliance results in a 

decrease of 5% in the J-integral at the estimated moment 

of crack initiation (table 5.2). Since perfect plasticity 

has been assumed, this value represents over-compensation. 

Figure 5.15b indicates that the impactor load Pi is 
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insensitive to the inclusion of the plastic component of 

contact stiffness at the supports. 

5.9. Elasto-plastic analysis of the magnesium alloy tests. 

The maximum specimen strain gauge (S3) reading for 

the magnesium alloy tests is more sharply defined than for 

the extremely ductile En24 HC3 results, but again sudden 

drops are rare, making the identification of crack 

initiation uncertain. Again the instant at which the 

maximum S3 reading occurs has been taken as that of crack 

initiation (figures 5.16, 5.17, 5.19, and 5.20) except in 

the case of two ZCM 630-T6 results (figure 5.18) where a 

sharp drop prior to the maximum reading does occur and 

yields more believable J-integral evaluations (table 5.3). 

The model results are presented for each alloy in 

terms of the effect of varying test temperature at two 

different speeds. The overall frequency response and the 

magnitude of oscillation are better matched than was the 

case with the En24 HC3 specimens. 

Test repeatability was less consistent than for the 

steel specimens. Results are presented for single tests 

where two very similar force-time traces were obtained. 

The results are summarised in tables 5.3 and 5.4 and in 

figure 5.21 which shows the variation of J 1d with test 
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temperature for the two alloys. In all cases the dynamic 

evaluations of the J-integral are larger than the static 

(room temperature) measurements provided by Magnesium 

Elektron Ltd. However, the ZCM 630-T6 specimens at the 

_7SoC condition yield a J-integral only fractionally 

higher than the room temperature static value. A 

contributory factor was the wide range of iterated k sup 

solutions (see tables 5.3a and 5.4a) caused by both low 

force levels and short times to either fracture or 

yielding. This observation points up the need to find ways 

to measure accurately both the compliance of the anvil and 

the specimen contact stiffness so that more consistent 

support stiffness values can be used. The errors in the 

k evaluations, however, are not sufficient to explain 
sup 

the size of variation from static to dynamic J-integral 

evaluations. In the case of ZCM 630-T6 test 17 (figure 

5.17c) and WE54 test 10 (figure 5.19b) the divergence of 

the measured and predicted forces at the indicated time of 

initiation suggests that crack initiation occurs somewhat 

earlier and the J-integral evaluations for these tests are 

probably too high. Thus the detection of crack initiation 

is the real problem. Figure 5.21 shows the large 

difference in J-integral evaluations that can result from 

changes in tf estimates of the order of 20 x 10-6 s 

between "first drop" and maximum specimen strain gauge 

initiation criteria. Further problems which arise if the 
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crack velocity at initiation is very low are discussed 

below. 

The minimum ligament sizes to give a J-dominant field 

(equation 2.29) are also shown in tables 5.3b and 5.4b. 

They are satisfied in all cases. The proportion of 

plasticity in the KGS J-integral evaluations (tables S.3b 

and 5.4b) is small and the fracture surfaces (figures 3.37 

and 3.38) are predominantly intergranular. There might 

therefore seem to be little necessity for using the 

elasto-plastic algorithm for these materials (although its 

use is justified by the fact that the ligament size 

restriction for valid Klc evaluations - equation 2.47 - is 

exceeded severalfold). Comparisons between the linear and 

elasto-plastic model results are given in figures 5.22 to 

5.26. J-integral values (J1de) derived from the linear 

model are presented in tables 5.3b and 5.4b. These are 

generally larger (ie non-conservative) than the elasto

plastic values and so illustrate the importance of using 

the correct constitutive model in this kind of analysis. 

Attempts to estimate the rate of crack growth were 

carried out on two ZCM 630-T6 specimens (figures 5.27 and 

5.28) and two WE54 specimens (figure 5.29) in the manner 

described in section 4.12. For the ZCM 630-T6 specimens at 

tWO impact velocities a crack velocity of a - 25 m/s seems 

tOO low while a-50 m/s models the data quite well. For 

the WE54 specimens a - 25 m/s seems suitable for both 
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impact velocities. Thus crack speed appears to be 

generally lower compared with the steel specimens and less 

dependent on impact velocity. 

Since the P2 force defined by equation (4.5) 

represents the bending load acting on the specimen,its 

behaviour with time might be expected to be similar to 

that of the surface stresses measured by the S3 strain 

gauge. This is true in terms of the initial time lag of 

approximately 20 x 10-6 s before the two signals rise and 

the fact that they both lag the P1 and measured forces by 

a phase angle of about 1800 (see, for example, figure 

5.12c), although the S3 signal is generally more 

oscillatory. For the crack growth predictions in figures 

5.27 to 5.29 the force P2 continues to rise for some time 

after initiation if the crack velocity is low enough. 

Since this occurs in tests where the assumed velocity fits 

the measured data (figures 5.28b and 5.29b) the 

implication is that the stresses measured at S3 could also 

have continued to rise after initiation and the J-integral 

values given above would then be non-conservative. Since 

errors in determining time to fracture have already been 

shown to result in very large changes in the magnitude of 

the J-integral (see figure 5.21) it is possible that slow 

crack velocity at fracture initiation may be responsible 

for much, if not all, of the apparent increase in 

toughness of the magnesium alloys with strain rate. 
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On the microstructural mechanics of fracture of 

magnesium alloys in general, Roberts [128] noted that high 

strain rates were not particularly detrimental. He 

reported that cracking begins microscopically at strains 

as low as one half those required to produce final 

fracture. Failure occurs in tension when these microcracks 

join by intergranular cracking. The intergranular fracture 

surfaces found with Magnesium Elektron ZCM 630-T6 and WE54 

have already been presented in figures 3.37 and 3.38. The 

progression from tension to compression (and hence 

reduction in axial strain) across the ligament of the 

Charpy specimen may well therefore be responsible for the 

low crack velocities deduced from the force-time data. 
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TABLE 5.1. Ramberg-Osgood characterisation parameters from 
figures 5.4 and 5.5. 

Material 

AISI 4340 (1) 
315°C temper (Rc·48) 

AISI 4340 (1) 
427 0 C temper (Rc·44) 

AISI 4340 (1) 
~54~OC temper (Rc·38) 

Magnesium alloy 
ZCM 630-T6 (2) 
Curve A 
Curve B 
Mean (as plotted) 

Magnesium alloy 
WE54 (2) 
Curve A 
Curve B 
Mean (as plotted) 

Notes: 

6y (MPa) 

, 1740 

1412 

! 1137 
; 

----

125 
i 125 
i 
I 
I 

i 
I 
I 
I 

t177 177 

----------

(1) Data from Chait [124]. 

n (X 

48.5 0.241 

49.5 0.297 

23.3 0.369 

7.8 0.36 
6.1 0.36 
6.9 0.36 

6.0 0.25 
6.7 0.25 
6.3 0.25 

(2) Data supplied by Magnesium Elektron Ltd. [125]. 
(3) The h1 and h3 functions [32] for the elasto-plastic 

algorithm were estimated as follows: 
For n • 23.3 at a/W - 0.5: hl w 0.042, h3 ~ 0.130 

For n • 6.9 at a/W - 0.5: hl - 0.504, h3 - 1.69 
For n • 6.3 at a/W - 0.5: h1 - 0.558, h3 - 1.91 

(plane strain) 
For n • 23.3 at a/W - 0.5: hl ~ 0.011, h3 ~ 0.050 

(plane stress) 



TABLE 5.2. Summary of results for En24 HC3 steel: 
(a) inertial model stiffness parameters. 

- --.---

Temperature (OC) 20 
... - --'---~ -

Vo (m/s) 
- _._-- ----- -'-------

2.5 Test 071 
4.6 x 108 

1.64 x 108 

.502+ 

kl (N/m) 

ksup (N/m) 

a/W 

ks (N/m) 3.92 x 107 

I 

4.2 Test 072 
4.6 x 108 

1. 77 x 108 

I · 528 
3.53 x 107 

Test 075 
5.2 x 108 

5.7 

1. 78 x 108 

j .491 

~ ~_:l ... x 10
7 

N.B. + Mean value from En24 HC3 specimens (070, 072-075) 
since specimen preserved in deformed state. 



TABLE 5.2. (cont) Summary of results for En24 He3 steel: 
(b) J-integral toughness evaluations. 

Temperature (oC) ,20 
,4 ----'------------------l 

Vo (m/s) 
--" 

2.5 

4.2 

5.7 

tf 

JId 
JId KGS 
· KIJ 

(s) 

(Jm- 2) 
(Jm- 2) 
(MPam\/s) 

Test 071 
>278.2 x 10-6 (331.2 x 10-6)
>116 x 103 (plane strain) 

1>117 x 103 (plane strain) 
I (5.9 x 105) 

Ligament (mm) 1(2.6) 
(Jm- 2) JId 

JId KGS (Jm- 2) 
1>109 x 103 (plane stress) 
1>108 x 103 (plane stress) 

,- l------------------------i 

tf 

JId (eq. 

JId KGS (eq. 
• (eq. KIJ 
Lig. (eq. _ .. _,,---". 

tf 

JId 
JId KGS 
• 
KIJ 

4.59) 
5.5) 
5.31) 
2.29) 

iTest 072 
198.4 x 10-6 

185 x 103 (plane strain) 
175 x 103 (plane strain) 
10.4 x 105 

3.9 
----+----------------1 

i 
'Test 075 
111.8 x 10-6 

122 x 103 (plane 
'120 x 103 (plane 
115.0 x 105 

strain) 
strain) 

12.7 
i 

Ligament 

JId 
JId 
JId 
JId 

1114 x 103 

KGS :109 x 103 
(plane stress) 
(plane stress) 
(plane strain) 
(plane strain) 

(damped SOlutiOn)l 66 x 103 

(plastic ksup ) 117 x 103 
-, -----,--. ,-----,- ------------__ ---l 

N.B. - Values quoted at tf - 278.2 x 10-6 s - the last 
Sl:S2 data point (S3 max at tf - 331.2 x 10-6 s). 



TABLE 5.3. Summary of results for Mg alloy ZCM 630-T6: 
(a) inertial model stiffness parameters. 

Temperature (OC) 
-75 20 125 

"-_. - -- ---.-----_.---

Vo (m/s) 
"~---~-- ----------- 1-------

2.4 Test 10 Test 04 Test 08 

kl (x 108 N/m) 1.4 1.5 1.5 

ksup (x 108 N/m) 0.19 >10.0 >10.0 

a/W .516 .531 .524 

ks (x 106 N/m) 7.9 7.4 7.7 

----_._--

4.1 Test 15 Test 14 Test17 

kl 1.6 1.6 1.7 

ksup 5.0 >1.5 >5.0 

a/W .493 .501 .525 

ks 8.7 8.4 7.6 
----------_.- --,-_ .. _--- -----_ ... __ ._-_._. 



TABLE 5.3. (cont) Summary of results for ZCM 630-T6: 
(b) J-integral toughness evaluations. 

Temperature (OC) 

- -----

Vo (m/s) 

static J Ic (Jm -2) 

2.4 

4.1 

tf (us) 
J Id (Jm- 2) 

JId KGS 
(JIdp KGS 

• 5 KIJ (x 10 

--~------.-- --

) 

MPam~/s) 
Ligament (mm) 

JIde 

"first dro 

tf 
JId (e 
J Id KGS (e 

(JIdp KGS 
• 
KIJ (e 
Lig. (e 

JIde 

"first dro 

pIt tf 
J Id . 
KIJ 

- . -"--

q. 4.59) I 
q. 5.5) 
) 

q. 5.31) I 

q. 2.29) 

pIt tf 
J Id • 
KIJ 
JIde 

-75 20 125 

5505 

Test 10 Test 04 Test 08 
133.2 145.8 141.0 
5943. 10852. 10071. 
5809. 10341. 9663. 

(1139.) (3939.) (3439.) 
1.3 1.6 1.6 
1.2 2.2 2.0 
5757. 11945. 

119.6 
7412. 
1.6 

"--.- --_ .... _- . 

Test 15 Test 14 Test 17 
64.6 69.8 102.2 
5770. 7179. 14056. 
5667. 7015. 13325. 

(1022.) (1717.) (6084.) 
2.6 2.7 2.6 
1.2 1.4 2.8 
6135. 

82.2 

8896 • 
2.6 
9675. 

J 



TABLE 5.4. Summary of results for Mg alloy WE54: 
(a) inertial model stiffness parameters. 

-- ---- - - - .. -.-- --~-

Temperature (oC) 
-75 20 125 

Vo (m/s) 
---_._-

1.5 Test 13 Test 10 Test 19 

kl (x 108 N/m) 1.2 1.1 1.1 

ksup (x 108 N/m) 1.33 3.2 0.67 

a/W .516 .497 .469 

ks (x 106 N/m) 7.9 8.6 9.5 
--- - _.- - --- ---- ------ 1------

3.3 Test 15 Test 08 Test 18 

kl 1.6 1.6 1.4 

ksup 0.38 0.77 0.41 

a/W .486 .482 .463 

ks 7.2 8.1 9.7 
_. 



TABLE 5.4. (cont.) Summary of results for WE54: 
(b) J-integral toughness evaluations. 

T emperature (oC) 
-75 20 125 

------

(m/s) 
--~-

sta tic J Ic (Jm- 2) 2628 

1.5 Test 13 Test 10 Test 19 
tf (us) 206.0 269.2 >282.6+ 

JId (Jm- 2) 8362. 16058. >15705. 
JId KGS 8247. 15770. >15500. 

(J Idp KGS) (758.) (3692.) (>3402.) 
KIJ (x 105 MPam~/s; 1.0 1.0 (1.0) 
Ligament (mm) 1.2 2.3 >2.2 

JIde 8707. 17477. 

3.3 Test 15 Test 08 Test 18 

tf 94.6 109.8 112.2 

JId (eq. 4.59) 6209. 11273. 10292. 
JId KGS (eq. 5.5) 6088. 11082. 10099. 

(JIdp KGS) (285.) (1553.) (1172.) 
KIJ (eq. 5.31) 1.9 2.2 2.0 
Lig. (eq. 2.29) 0.87 1.6 1.5 
J Ide 6200. 10313. 

N.B. + Values quoted at tf - 282.6 x 10-6 s - the last 
Sl:S2 data point (S3 max at tf a 318.2 X 10-6 s). 
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FIG. 5.4. Ramberg-Osgood characterisations of the stress
strain behaviour of three tempers of AISI 4340 
steel: 

(a) Temper 315°C: n - 48.5, ~ - 0.241, 
(b) Temper 427°C: n - 49.5, ~ - 0.297 
(c) Temper 540°C: n - 23.3, ~ - 0.369 
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Titles for figures 5.12 to 5.20. 

FIG. 5.12. Elasto-plastic inertial model results for En24 
HC3 with increasing impact velocity (T = 200 C) 
- plane strain. 

FIG. 5.13. Elasto-plastic inertial model results for En24 
HC3 with increasing impact velocity (T = 200 C). 
- plane stress. 

FIG. 5.14. Elasto-plastic inertial model results for En24 
HC3 test 075: the effect of damping (~= 0.05): 

(a) damped model result, 
(b) comparison of Fp forces, 
(c) comparison of P2 forces. 

FIG. 5.15. Elasto-plastic inertial model results for En24 
HC3 test 075: the effect of plasticity in the 
support contact stiffness: 

(a) model result, 
(b) comparison of Fp forces, 
(c) comparison of P2 forces. 

FIG. 5.16. Elasto-plastic inertial model results for 
magnesium alloy ZCM 630-T6 with increas i ng test 
temperature (Vo = 2.4 m/s). 

FIG. 5.17. Elasto-plastic inertial model re~ults for 
magnesium alloy ZCM 630-T6 with increasing test 
temperature (Vo = 4.1 m/s). 

FIG. 5.18. Elasto-plastic inertial model results for 
magnesium alloy ZCM 630-T6 using "first drop" 
initiation criterion. 

FIG. 5.19. Elasto-plastic inertial model results for 
magnesium alloy WE54 with increasing test 
temperature (VO = 1.5 m/s). 

FIG. 5.20. Elasto-plastic inertial model results for 
magnesium alloy WE54 with increasing test 
temperature (VO = 3.3 m/s). 
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Titles for figures 5.22 to 5.26. 

FIG. 5.22. Comparison of linear and elasto-plastic 
inertial model results for magnesium alloy 
WE54 test 15 (T = -75 0 C : Vo = 3.3 m/s): 

Ca) linear model result, 
Cb) comparison of Fp forces, 
Cc) comparison of P2 forces. 

FIG. 5.23. Comparison of linear and elasto-plastic 
inertial model results for magnesium alloy 
WE54 test 18 (T = 1250 C : Vo = 3.3 m/s): 

Ca) linear model result, 
Cb) comparison of Fp forces, 
Cc) comparison of P2 forces. 

FIG. 5.24. Comparison of linear and elasto-plastic 
inertial model results for magnesium alloy 
WE54 test 13 (T = -75 0 C : Vo = 1.5 m/s): 

Ca) linear model result, 
Cb) comparison of Fp forces, 
Cc) comparison of P2 forces. 

FIG. 5.25. Comparison of linear and elasto-plastic 
inertial model results for magnesium alloy 
ZCM 630-T6 test 10 (T = -750 C : Vo m 2.4 m/s): 

(a) linear model result, 
(b) comparison of Fp forces, 
Cc) comparison of P2 forces. 

FIG. 5.26. Comparison of linear and elasto-plastic 
inertial model results for magnesium alloy 
ZCM 630-T6 test 08 (T = 1250 C : Vo = 2.4 m/s): 

Ca) linear model result, 
(b) comparison of Fp forces, 
(c) comparison of P2 forces. 
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6. CONCLUSIONS. 

The Hopkinson pressure bar loaded instrumented impact 

test on three point bend Charpy size specimens allows 

measurement of the dynamic fracture toughness of metals at 

high strain rates (Kr ~ 5 x 105 MPam~/s). The inertial 

load component is much reduced by comparison with the 

standard Charpy pendulum or drop-weight test at the same 

nominal strain rate due to the finite rise time of the 

stress wave which loads the specimen. Thus the Hopkinson 

pressure bar technique can be used effectively at higher 

strain rates than are attained with the Charpy test. The 

range of useful strain rates is limited at low speed by 

the requirement of obtaining fracture initiation within 

the lifetime of the incident stress pulse and at high 

speed by the increasing importance of wave e~fects at 

short times to fracture. With the test configuration 

reported here the lower strain rate limit is further 

restricted by the siting of the measurement points 51 and 

52, which means that fracture can still occur after 

measurements have ceased. 

A lumped mass-spring model of the impact event has 

been used to account for the dynamic nature of the test. 

This approach is a compromise over a fully 3-dimensional 

finite element model of the loading bar, specimen, and 

supports. The inertia of both the specimen and the loading 
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system are explicitly included in the model and so truly 

dynamic toughness evaluations can be made. In particular, 

the load measured at the point of reflection of the 

incident bar is different from the load acting directly on 

the crack. Theoretical calculations of the stiffness of 

the profiled end section of the incident bar and the 

(linear elastic) stiffness of the contact zone with the 

specimen overestimate the "machine" stiffness compared 

with values derived from the experimental results. These 

differences are probably attributable to plastic 

deformation at the load points, possible out-of-squareness 

in the seating of the specimen, and, in the case of the 

support stiffness, the unknown contribution of the anvil. 

The reliability of the derived fracture toughness 

results depends, firstly, on the accuracy of defining the 

instant of crack initiation and, secondly, ~n the 

efficiency with which the model represents the experiment. 

It is hypothesised that the latter can be determined by 

how well the derived impact force matches the measured 

force at the change of section of the incident bar up to 

the instant of crack initiation. 

The model has also been used to demonstrate how the 

frequency of oscillations in the measured force-time trace 

depends on factors such as the ratio of impactor to 

specimen stiffness, the effective mass of the specimen, 

and the degree of "overhang" at the supports. The very 
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similar fracture toughness derivations from the full size 

and truncated specimens demonstrate how well the inertial 

(ie lumped mass-spring) model copes with different load 

characteristics. 

Crack velocities have been estimated from the 

unloading rate of the measured force traces. In the En24 

steel specimens these estimates ranged from 50 m/s to 250 

m/s depending on impact velocity (and degree of 

plasticity), while for the magnesium alloys the crack 

velocities were approximately constant at 50 m/s for 

ZCM 630-T6 and 25 m/s for WE54 throughout the loading rate 

range. It is supposed that this difference in behaviour is 

related to the different material structures and modes of 

fracture (predominantly cleavage in the steel and 

intergranular in the magnesium alloys). 

The effect of crack velocity on the derived specimen 

force (P2) in the inertial model is critical. For rapid, 

brittle crack growth the force falls abruptly, in just the 

same way as the specimen strain gauge (S3) signal. 

However, at lower crack speeds it develops a "peak", 

sometimes continuing to rise after the assumed crack 

initiation. Again this behaviour is matched by the 

specimen strain gauge, suggesting that initiation may have 

occurred at low crack velocity some time earlier than 

indicated by the peak measurement. Thus the inertial 

modelling technique may be used to assess the limits of 
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specimen-mounted strain gauges in identifying crack 

initiation. 

Even with relatively brittle crack initiation the 53 

strain gauges sometimes measured sharp falls in strain 

with subsequent recovery and increase to a peak. In these 

cases comparison with the measured force in the incident 

bar shows that this "first drop" corresponds approximately 

to the peak measured load. It is proposed that sharp 

"first drop" features of this kind can be treated as crack 

initiation events. 

Elasto-plastic specimen behaviour has been treated 

with a suitable algorithm based on power law strain 

hardening. For a ductile temper of En24 steel the 

algorithm resulted in an over-prediction of load if plane 

strain conditions were assumed. As expected, a second 

prediction based on the assumption of plane ,stress 

conditions bracketed the real measurement. It is not clear 

whether this result demonstrates a loss of constraint or 

is simply due to the over-stiff nature of the Ramberg

Osgood stress-strain characterisation used in the 

prediction. The amount of plasticity present in the 

specimens meant that identifying crack initiation from the 

53 strain gauge traces was not really possible. J-integral 

values have been quoted for the maximum S3 reading, but it 

is not expected that these are accurate initiation values. 

Using the same model for the magnesium alloy 
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specimens showed that few significant plastic effects 

occurred prior to crack initiation, although the plastic 

zone sizes computed from a linear analysis were too large 

to permit evaluation of valid plane strain fracture 

toughness measurements with Charpy size specimens. 

Compositional changes in the two batches of En24 

steel meant that these had to be treated as separate 

materials (in fact, the HC2 and HC3 steel lay outside the 

specification for En24 in their proportion of manganese). 

The relative change of toughness is the reverse of what 

might be expected from the relative changes in proportion 

of carbon and manganese, but is compatible with the 

increased amount of sulphur in the HC2 specimens. Small 

differences in heat treatment may also have contributed. 

The En24 HC2 steel was tested under bot~ quasi-static 

and dynamic loading conditions at room temperature. The 

measured rise in fracture toughness from 38 MPam~ to 

45-53 MPam~ with increasing strain rate is not typical for 

this sort of material at these temperatures. From the 

increase of yield stress with strain rate, more brittle 

behaviour is expected. However, a corresponding increase 

in the critical cleavage stress with strain rate would 

explain the observed trend. 

The increase of fracture toughness with test 

temperature in the transition zone is exactly as expected. 
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No significant trend in fracture toughness can be 

discerned over the (very limited) range of strain rates 

achieved in the tests. 

The dynamic fracture toughnesses (as represented by 

J-integrals) of the magnesium alloys are also found to be 

higher than static values supplied by the manufacturers. 

In the case of the dynamic measurements, identification of 

crack initiation is not so clear cut as with the steel 

specimens. Slow crack velocities, implied by the shape of 

the force-time traces, may not have caused a drop in the 

S3 strain gauge measurements until some time after 

initiation. This hypothesis is supported by information 

from other sources on the microstructural mechanics of 

fracture in magnesium alloys and so it is possible that 

overprediction of the crack initiation time was 

responsible for most, if not all, the differ~nce between 

static and dynamic measurements. 
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7. RECOMMENDATIONS FOR FURTHER WORK. 

The most important shortcoming revealed by this study 

is in the identification of crack initiation. With strain 

gauges mounted on the specimen this becomes increasingly 

difficult as the degree of plasticity increases. 

Furthermore, if crack initiation occurs at low crack 

velocity in a displacement-controlled test of this kind, 

the accompanying drop in load may be too small to detect. 

Non-load-dependent techniques of crack detection are 

therefore required. Alternating current devices need to 

operate at higher frequencies than have been achieved to 

date if they are to be useful in this respect. A possible 

approach is the electromagnetic sensor briefly mentioned 

in section 3.6 if this can be used in the presence of 

considerable ductility. 

It is desirable that the dynamic stress intensity 

factors derived from a lumped mass-spring analysis of the 

kind described in this thesis be compared with direct 

measurements using, say, the method of caustics. These are 

qualitatively similar, but this similarity needs to be 

quantified to give more confidence in the approach to 

analysis presented here. 

It would be possible to extend the (limited) loading 

rate range of the Hopkinson pressure bar rig by increasing 

the Sl/S2 strain gauge separation. This could be achieved 

157 



by moving the Sl strain gauge closer to the end of the bar 

or simply lengthening the incident bar. Further 

information about the loading of the specimen (including 

the possibility of specimen/support separation) could be 

obtained by replacing the solid anvil with two parallel 

output bars and measuring the transmitted component of the 

stress pulse. 

It is important that specimens are prepared in single 

large batches so that vagaries of composition and heat 

treatment are minimised. Static tests should always be 

carried out on a given batch of specimens and ideally the 

rig should be modified so that these tests may be 

performed in situ with the same machine stiffness 

components. 

The inertial modelling approach should be applied to 

as wide a range of materials as possible to ,improve the 

definition of the model components. This would entail 

using Hopkinson pressure bars of different cross-section 

(and, perhaps, material composition) to control the 

magnitude of forces generated at the loading section. 

Greater understanding of the loading 

bar/specimen/support interaction could be obtained by 

further numerical modelling of the whole system. This may 

be feasible with the new transputers, although special 

care will need to be taken with the contact conditions. 
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APPENDIX 1 : The relation,hip b~tween the loading rate 
parameters, Sand KI -

Assuming the von Mises yield criterion, the size of 

the plastic zone in the direction 9 = 0 can be determined 

from equations (2.6a) and (2.6b) to be: 

(1 - 21»2 [KIJ2 
ry = 

2n 6y 

for plane strain and: 

ry = 1 [K r 2" 6: 
for plane stress. 

(A1.1a) 

(A1.1b) 

The stress field is described by equation (2.1) so 

that: 

KI ($22 :s ($11 ... 
(2nr)~ 

and the equivalent strain is: 

at 9 ... 0 (A1.2) 

(A1.3) 

Substituting for plane strain and plane stress conditions 

respectively, equations (A1.2) and (A1.3) give: 

or: 

K 
6 22 _ I ~ (1 - 2~)(1 + ») 

E(21tr)""2 

K 
€22 - I (1 - ))) 

E(2nr)\ 
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(A1.4a) 

(A1.4b) 



Differentiating both sides of equations (A1.4a) and 
. 

(A1.4b) with respect to time gives the strain rate, 622' 

perpendicular to the axis of the crack. At the edge of the 

plastic zone, r = ry, and so, substituting from equations 

(A1.1a) and (A1.1b) the relationship between strain rate 
• 

and the rate of change of the stress intensity factor, Kr , 

at that point is: 

. r5y • 
622 == - Kr (1 + ») 

EKr 
(A1.5a) 

for plane strain and: 

• rfy 
(1 - ))) 622 = -- Kr 

EKr 
(A1.5b) 

for plane stress. Of course, the strain rates will be 

higher within the plastic zone itself while the rate of 

change of stress intensity factor will be constant for a 

given loading condition. 
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APPENDIX 2 : Solution of the governing equation for the 
linear elastic lumped mass-spring model. 

The equation to be solved (equation 4.3 with the 

inclusion of a damping term) is: 

m'u + cu + (k1 + k2)u = k1v 

where u and v are functions of time, u is the first 

derivative with respect to time, u is the second 

derivative, m' is the equivalent mass, c is the 

(A2.1) 

coefficient of damping, and k1 and k2 are the system 

stiffness values defined in equations (4.1) and (4.2). 

Equation (A2.1) can be rewritten as: 

which is of the form: 

U a [Const1]u + [Const3]u + [Const2]v 

where: 

Const1 = -

k1 
Const2 = 

m' 

c 
Const3 = 

m' 

m' 

(A2.2) 

(A2.3) 

(A2.4a) 

(A2.4b) 

(A2.4c) 

The Runge-Kutta-Nystrom method (see, for example, 

[114]) solves initial value problems of the form: 

u - f(t,u,u) (A2.S) 
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The solution requires the auxiliary quantities: 

A = n (h!2) f(tn,un,un ) 

= (h!2) [Const1.un + Const2.vn + Const3.un ] 

B = n (h!2) f(tn + h!2,un + bn,un + ~) 

where bn = (h/2)(un + An/2) 

C = n (h!2) f(tn + h!2,un + bn,un + Bn) 

D = n (h!2) f(tn + h,un + dn,un + 2Cn ) 

where dn = h (un + Cn) 

whence the new values of displacement and velocity are: 

un+l = un + h (un + Kn) (A2.6) 

where Kn = (An + Bn + en )!3 
. • + Kn* (A2.7) un+l = un 

where K * = n (An + 2Bn + 2Cn + Dn)/3 

h is the step length (typically 0.4 x 10-6 s in the 

analysis of the HPB results reported here, since values of 

v are available every 0.2 x 10-6 s). The method is fourth 

order. 

The initial values for u and u in the HPB loading 

system are zero. 

The accuracy of the numerical algorithm was proved by 

comparison with the analytic results for both step 

velocity and ramp velocity inputs. 
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APPENDIX 3 : Evaluation of equivalent specimen mass for 
variously loaded cracked and uncracked beams. 

A3.1. Simply supported uncracked beam. 

In the following analysis simple beam theory is used 

to derive an estimate of the equivalent point mass m' for 

the three point bend specimen subjected to a dynamic force 

P at its midspan. Shear forces are neglected and so the 

midpoint deflection is (from equation 4.23): 

PS3 
(A3.1) 

48EI 

This is also the deflection of the equivalent point mass 

which, therefore, has the associated stiffness: 

p 
k .. - = 

48EI 

S3 

and a natural frequency of vibration w given by: 

k 
w2 == -

m' 

(A3.2) 

(A3.3) 

The deflection of any point, distance x from the end 

of the beam, at time t is given by: 

u .. f(x)e iwt (A3.4) 

where: 

p 

[_ x3 + S2x] 
El 12 16 

for 0 < x < ~ (A3.5) f(x) == -

which can be derived from the bending moment equation 
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(see, for example, [129]): 

Px d 2 f 
M = -- = El 

2 dx2 
(A3.6) 

Rayleigh's method (see, for example, [117]) then estimates 

the frequency w of the fundamental mode as: 

fg El [f"(x)]2 dx 
w2 -- Jg ~A [f(x)]2 dx 

by symmetry. 

(A3.7) 

Substituting equation (A3.5) in (A3.7) and comparing 

with equation (A3.3) results in the determination of the 

equivalent mass as: 

17 
m' = 35m = 0.49m (A3.B) 

where m .,. eASe 

A3.2. Simply supported cracked beam. 

Nash [110,111] has applied a normal mode technique to 

a cracked beam to derive the following expression for the 

deflection of the beam at any point xiS: 

Y (!) Y (1) 
( ! ) _ i S i 2 ft F( ) 

uy s,t 0 ? 
w-W-l. l. 

for initial conditions uy(x/s,t) - uy(x/S,t) - 0. Yi(x/S) 

is a shape function and Wi a distributed mass function, 
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both of which are defined in [110]. wi is the frequency of 

the i'th mode. Considering, then, only the first mode the 

deflection becomes: 

(
X ) Yl(~) Yl(!) f(t) 

u y s,t = 
wlWl 

(A3.10) 

and the distributed particle velocity is: 

Comparing the kinetic energy of the equivalent point mass 

m' with the kinetic energy of the full beam gives: 

whence: 

which can be computed to give: 

m' ,. 0.38m 

where m "" ~AS. 

A3.3. Simply supported uncracked beam with midspan 

constraint. 

(A3.12) 

(A3.13) 

(A3.14) 

The equation of motion for the transverse vibration 

of an Euler-Bernoulli beam (equation 4.11) is: 
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Assuming harmonic solutions of the form: 

u == f(x)e iwt 

equation (A3.1S) becomes: 

d4f A _ e ° w2 f(x) = ° 
~x4 El 

Equation (A3.17) has solutions of the form: 

f(x) == Asin~x + BCOSAX + Csinh~x + Dcosh~x 

where: 

(A3.1S) 

(A3.16) 

(A3.17) 

(A3.18) 

(A3.19) 

For a beam constrained at midspan (see figure 4.2) 

the boundary conditions are: 

(i) at x ~ 0, displacement u - 0, 
d2u 

(ii) at x == 0, bending moment El - - ° 
~x2 

(iii) at x = S/2, slope ~~ - 0 

~3u kl 
(iv) at x - S/2, shear force El --- - -- u 

dx3 2 

(A3.20) 

Substituting these boundary conditions (A3.20) in (A3.1S) 

produces the frequency equation: 

~l [tan(Nm) - tanh(Nm)] + 2El r ~J 3 - ° 
L(S/2) 

where Nm = AS/2. From equation (A3.19): 

El [N J 4 m 
~- --

{>AO (S/2) 
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(A3.21) 

(A3.22) 



Solutions to equation (A3.21) have been computed 

numerically for various values of constraint stiffness k1 

and the corresponding values of natural frequency 

calculated from equation (A3.22). 

The stiffness of the unnotched beam is given by 

equation (A3.2) and then the equivalent mass (equation 

4.14) is: 

m' = (A3.23) 

Values of m' and the first natural frequency are given in 

table 4.1 for various values of the ratio k1/k2 and the 

limiting solutions and their consequences discussed in 

section 4.3. 
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