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ABSTRACT

Changes in biomass are monitored as variations of body condition, which is usually a 

quantitative index based on empirical equations without a proper theoretical background. A 

review of the length-weight relationship and the commonly used condition factors from a 

morphometric point of view show that the analysis of the length-weight relationship as a 

consequence of an ellipsoid body shape gives insights on the real meaning of condition and the 

length-weight relationship itself, providing also elements to clarity serious misconceptions 

about its parameters and its general meaning. A generalised equation for the length-weight 

relationship is derived from an ellipsoid body shape. This equation explains other models for 

the length-weight relationship and condition indexes previously developed as especial cases of 

the generalised equation. An analysis of the different definitions of condition reveals that 

condition can be interpreted as heaviness and as an element for describing body fitness, but it 

do not have to be interpreted as well-being or goodness. For growth in size at age, in this study 

1 propose an alternative method for selection of the best model between the most widely used 

ones for fish stock assessment (Logistic, von Bertalanffy, and Richards, including their 

exponential expressions, and Gompertz). The method is based on two general models, one for 

single exponential and other for double exponential curves. The selection is done by exploring 

the stability and accuracy of each parameter during the fitting of the General Models, by the 

evaluation of the goodness of fit, interpretation of the statistical error distribution and the 

residuals’ distribution shape. The model worked well on data sets with known distributions and 

also on a real previously published data set. In some fish populations, the length-at-age 

equation can be a better fit if a power constant is introduced as a new parameter. This is the 

equivalent of considering that the power constant in the generalized von Bertalanffy length-at- 

age equation could be different from 1.0. There are no antecedents of the effect of a power 

constant different from 1.0 on the correct assessment of weight-at-age from length-at-age data, 

but in this study 1 show that a value different from 1.0 in the power constant may be the result 

of the body morphometric growth. The omission of the power constant may affect the 

estimation of parameters of the length-at-age equation by introducing a systematic deviation 

from the true value that increases as age decreases The propagation of the error introduced by 

such omission is particularly important when the equation growth parameters are used in 

further models. A corrected equation for evaluation of length-at-age based on the Bertalanffy 

model is derived by the inclusion of a power constant, and the method for the correct 

estimation of the parameters of the equation is given.
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1.1 IMPORTANCE OF THE DATA ANALYSIS

Fish stock assessment relies on strong mathematical background and 

mathematical models are the mainstay for the quantitative analysis of biological 

phenomena that determine the species population dynamics and potential exploitable 

biomass (Cushing 1981). “Accurate stock assessment is a key requirement for 

successfully implementing fisheries management policies” (Chen 2001, p. 2139). 

Reliable data must be gathered in order to undertake a scientific evaluation o f fisheries 

as renewable resources. Often the data are evaluated against model predictions, but in 

some cases there is a disagreement between data and models, which leads to 

undependable predictions (Rothschild 2000). The disagreement between data and 

models is especially important when these models are the basis for further calculations.

Data are some times forced to fit into proven and heavily supported models 

even when those models seem not to describe properly the data’s distribution pattern 

they should explain. The clearest example of this is the stock and recruitment 

relationship that despite been derived from robust assumptions and seeming to work 

well in some cases, is far from reality in others (Rothschild 2000). An example is the 

Cod of the Central Baltic Sea (Figure 1) where spawning-stock and recruitment data 

appear to be randomly distributed without a definite pattern.

CT'

Spawners (tonnes km 2)

Figure 1: The relationship between recruitment and spawning-stock biomass per km2 for 
Central Baltic Sea Cod. RSAnFM: resulting spawners assuming no fish mortality; Solid line- 
empirical Bayes estimate for the individual stock; dashed line: single stock maximum likelihood 
fit; dotted line: mixed model estimate of species mean; and straight dashed line: I t replacement 
line (Myers 2001). ’ ' F
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Some models are derived from pure empirical observations, for instance the 

length-weight relationship (Hecht 1916). In the power type length-weight relationship 

the exponent has been considered as having an ideal value of 3.0. This is a cubic law 

attributed to Fulton (1904), who clearly only stated the observation that if the linear 

body dimensions are doubled, the weight increases eight times, and above a certain 

point it increases at a greater rate than the cube of the length. In that work Fulton 

analysed data for different species and found that this relationship is not exact in many 

cases, but there is not a clear mention of the famous cubic law attributed to him (see 

also ponderal index in chapter 2), and even less a reference to a possible connection 

with the body’s volume as some authors cite (e.g. Hostings & Dickie 1972; King 

1995). The frequently cited work ‘The sovereignty of the sea’ (Fulton 1911) is “An 

historical account of the claims of England to the dominion of the British Seas and the 

evolution of the territorial waters: with special reference to the rights of fishing and the 

naval salute” (Fulton 1911), and has nothing to do with fish biology, cubic law, or 

condition. According to Hecht (1916), a notion o f a cubic factor between length and 

weight has been applied since 1899. Recent publications (e. g Morato et al. 2001) 

show that for many species and sometimes also for subpopulations the cubic law does 

not apply, even worse, the power constant may change at different times during the life 

span and during the reproductive cycle (Le Cren 1951; Bolger & Connolly 1989). 

Regardless of who published the cubic law or if the power parameter is related to the 

cube and to volume, the fact is that the length-weight relationship is an empirical 

model for which it’s parameters have not only not been properly understood, but 

frequently interpreted as descriptors of non-related properties.

The concept of condition is an example of a property of a fish that has no a 

clear meaning. Condition has been interpreted either as energetic contents, well-being, 

fitness, heaviness, robustness, and roundness (Bolger & Connolly 1989; Busacker et 

al. 1990; Ferron & Leggett 1994; Shulman & Love 1999; Ratz & Lloret 2002), and has 

been linked to the length-weight relationship (Le Cren 1951). At least four properties 

can be associated with such concepts: health, biomass, form, and volume, which lead 

to ambiguity because none of them is a proper indicator of all the others.

Ricker (1979) questioned the apparent lack of biological background in 

important models such as the size-at-age growth models of von Bertalanffy and
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Gompertz, and the lack of satisfactory evidence of the models been close to 

‘developmental realities’. When referring to the asymptotic growth curves, he argues, 

"‘neither theory nor data are available to indicate that any one of the asymptotic curves 

should be preferred to any other, except on pure empirical grounds”. Ricker also 

analyses and questions the experiments offered as evidence by von Bertalanffy 

(Bertalanffy 1957), finding them non-conclusive. Additionally, more uncertainty is 

added because von Bertalanffy derived the growth model mathematically using the 

cubic law as a basis, which as mentioned before, is not applicable to all fish species.

In practice, the previously mentioned models appear to be appropriate in many 

cases regardless of their drawbacks (Ricker 1979), so their application has been 

recommended on the condition of a proper assessment of their assumptions, properties, 

and limitations and the confirmation that uncontrollable factors have a minor impact 

on the end results. In practice, the models are oftenly applied routinely and interpreted 

without a proper knowledge of their underlying restrictions (Ratkowsky 1986). Often 

the influence of the assumptions on the interpretation of the result is ignored and often 

differs between analyses. As an example, few authors explore and support analytically 

why they chose a particular model in their papers; rather a short description of the 

models is usually presented. In most cases the selection o f a model is based merely on 

its popularity (because it has been used in many cited papers), simplicity, and for 

producing better data fit.

Different paths can be explored in order to contribute to the solution of the 

problem just described, but they can be summarized into two basic options: 

development of new conceptual and mathematical models, or the optimisation of the 

existing ones. The fact that the existing models work in some cases reveal that at least 

the basic assumptions are correct and that the misfit observed in other situations does 

not necessarily reflect the failure of the models or the fundamental assumptions, but 

that some thing else is influencing. For instance, it is possible that the influence of 

other variables or parameters not considered in the model or in the methodology 

(Ratkowsky 1986) is causing problems (as will be shown in chapter four). It is also 

possible that some current models are particular cases of more general ones (Schnute 

1981; Laslett et al. 2002), not necessarily any more complex, but more universal. It 

may occur that some methodological and computational sampling methods and
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calculation algorithms are not adequate (Vaughan & Kanciruk 1982; Castro & Lawing 

1995), that some assumptions are not conceptual, but mathematically wrong (i.e. 

multiplicative instead of additive error), or that data may be unknowingly biased due to 

deterministic or random noise (Schaalje et al. 2002). Finally, the natural variability of 

the phenomena may be so high that more predictive precision becomes impossible 

(Rothschild 2000). These situations are easy to miss when models and methods are 

routinely applied and when the nature of the research is purely descriptive or more 

technical rather than scientific. It is also easy to discard a model because of its apparent 

incongruence with our data. However it is difficult to explain if its inapplicability is 

due to limitations in our data or to a disagreement between the model assumptions and 

the properties o f the variables directly and indirectly involved, and the individual data. 

Other factors that could be involved include, the influence of other variables not 

considered (continuous and discrete), complexity, or the lack of a proper understanding 

of the problem. In fact, some models and even the relationship between variables have 

been rejected because people were unable to observe significant relationship, which 

does not mean that the relationship per se does no exist (Haddon 2001). This is often 

the case of the stock and recruitment relationship mentioned above.

Personally I am attracted to the optimisation o f existing models as a first step. 

The reason is that there is proof that the apparent inapplicability of some models is due 

to some of the errors previously mentioned, for example, in the stock and recruitment 

case Walters & Ludwig (1981) found that the error introduced by the measurement of 

the stock size makes the data pattern more scattered as the spawning stock size 

increases. This gives the impression of no relationship between both variables, 

something similar to the example given in Figure 1. Additionally, Walters (1990) 

proposed a partial bias correction factor for auto correlated environmental effects on 

the estimation of parameters of the stock and recruitment relationship, which reduces 

the error due to the measurement of stock size.

In order to properly support the selection or discarding of a particular model it 

is necessary to consider not only the information about its underlying assumptions but 

also the knowledge of its theoretical background. In addition one must apply the 

proper numeric and graphical tools for data processing. Surprisingly, even when stock 

assessment is very reliant on mathematical procedures not many individual researchers
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develop their own data processing tools, but look for existing computer programmes 

and generic commercial software. Despite the existence of a variety of computational 

tools for the estimation of fish population parameters, most of them are merely a 

collection of programmes designed to routinely repeat a series of calculations and to 

present results as numeric tables and plots. The majority do not have the analytical 

tools that explore the ‘what ifs’ of models. In many cases researchers do not know how 

the programs they use work nor what algorithms are implemented. The lack of 

knowledge of the functioning of a method or algorithm may result in errors due to 

misconception rather than a failure of a model (Ratkowsky 1986).

The first attempts to automate calculations for fish population research were 

initiated in the seventies with programmable calculators (Kato 1978; Pauly 1984). 

With the rapid increase in availability of personal computers in the late eighties, 

quantitative analytical tools were written in Fortran and BASIC software languages 

(Dahlberg 1978; Gaschuetz et al. 1980; Pauly & David 1980; Stauffer et al. 1980; 

Rivard 1982; Korver 1983; Akamine 1984b, a). Whilst most of these programs were 

developed to solve particular problems, Hesse (1977), Hall (1981) and Sims (1985), 

were the first to publish works that consisted of collections of computer routines. The 

first comprehensive packages of analytical routines appeared in the eighties (Sparre 

1987; Gayanilo & Pauly 1989). The work by Sparre (1987) was oriented to Apple 

computers and the others to the PC platform. A combined version of the two later 

programs appeared a few years ago (Gayanilo et al. 1996). Different authors and 

Institutions have been working with electronic data sheets, particularly Lotus 

(International Business machines, 2003) and Excel (Microsoft Corporation, 2003) 

(Garrod & Whitmarsh 1991; Holmes & Whitfield 1991; Sanders 1995). Several fully 

executable (independent of compiler software) institutional and commercial programs 

exist nowadays in this and related fields (Mesnil 1989; Sluczanowski et al. 1990; 

Coppola et al. 1992; Jarre 1992; Laval & Planes 1992; Stroemme 1992; Marschall 

1993; Coppola et al. 1994; Seijo et al. 1994; Punt & Hilbom 1996). Considering the 

difficulty in finding software that covers most of the processing needs, the use of 

statistical packages as SPSS (SPSS Inc. 2003), SAS (SAS Institute Inc. 2003), Systat 

(Systat software Inc. 2003), Statistica (StatSoft Inc. 2003), Minitab (Minitab Inc. 2003) 

and Stata (Stata Corporation, 2003), with built in programming capacity, has permitted
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the implementation of ad hoc algorithms for particular needs. Stata also distributes a 

bulletin where such user generated programmes and algorithms can be published.

The more recent specialised programs are designed to process information and 

obtain results quickly. Some of the well-known packages (e.g. FISAT: FAO- 

ICLARM) were early built to work within the old DOS environment, now Windows 

implementations are available. In certain cases data capture (file formats etc.) is 

specific for each program. In addition, because of the internal data formats, 

information exchange with other software can often be hard if not impossible. 

Different programs show distinct attributes and are designed for distinct purposes such 

as research, teaching, and data storage.

As new methods are developed and different approaches applied, controversy 

about validity and adequacy of methods and software requirements frequently arise 

(i.e. Mejer 1983; Pauly 1985, 1986a, b; Nagai & Miyabe 1987; Sparre & Garcia 1987; 

Millar 1989; McManus 1990; Campbell 1991; Hammers & Miranda 1991; Kell 1991; 

Landry & Melancon 1991; Pauly & Sparre 1991; Restrepo & Powers 1991; Terceiro et 

al. 1992; Stickney 1994; Endo & Zhang 1995). As opposed to spreadsheets and 

statistical software programming, the main disadvantage of stand-alone executable 

applications is that the user cannot modify them. However, the major advantages are 

that the user does not need to be skilled in programming, that commercially expensive 

spreadsheets are not necessary, and that the user does not have to verify particular 

parameters o f the program for every case and for every run. Software updates and 

corrections are relatively simple in non-executable files and programs such as 

spreadsheets, however, misuse by end users can frequently occur by over 

customisation.

Software for the analysis of fish populations and fisheries data involves the 

fusion of Biology, Mathematics (general Math and Statistic) and Computing. Because 

of the complexity of biological systems, models are simplified in different ways, 

particularly by considering them as black box systems (Sych 1974) and by minimising 

the number of variables via setting specific assumptions. Due to ecological and 

environmental variability can occur significantly over time, models need to be adapted 

to different situations by reviewing the relevant assumptions.
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Recent advances in statistics have resulted in a growing emphasis on 

exploratory data analyses, Bayesian and iterative and intensive calculation methods 

such as Bootstrap, Jack Knife and Monte Carlo, which have been developed alongside 

developments in computer hardware and software (Halfon 1989; Chen & Paloheimo 

1995; Endo & Zhang 1995; Restrepo & Powers 1995; Kinas 1996). These techniques 

have proved to be powerful tools for identifying departures from the models under 

consideration (i.e. model misfit) and violation of model assumptions. Some of these 

techniques have even been implemented as alternatives to traditional linear methods 

for estimation of statistical variability (Quinn & Deriso 1999; McCallum 2000), for 

instance Hinrichsen (2002) applied bootstrapping to estimate accuracy of alternative 

stochastic growth rate estimates for salmon populations.

1.2 AIMS OF THIS WORK

This work follows the premise that a review of the theoretical and empirical 

assumptions of basic models is necessary for analytically finding the sources of 

incongruence in data fitting, for the improvement of its predictive power, and for the 

choice of explanatory models over descriptive models. This review must be based on 

alternative approaches, on the use of improved tools: (technological, mathematical, and 

for data processing), and on the development of my tools, particularly in regard to 

mathematical and computing.

In this thesis I provide insights in to the misconceptions of three basic and 

widely known topics, whose implementation are in general routine: the length-weight 

relationship and the condition factor; the fitting o f size-at-age growth models; and the 

effects of an allometric factor on the von Bertalanffy length-at-age growth model. 

Misconceptions or error in model fits can be critical to the correct estimation of 

biomass in fish populations when assessing the size of a population. The analyses 

undertaken are supported by the implementation of the underlying assumptions in ad 

hoc software developed by myself for calculations and graphical representation o f data. 

This software is the main tool used for the quantitative and visual description 

undertaken in this study.
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1.3 ORGANISATION OF THIS THESIS

Chapter two is dedicated to the length-weight relationship as special case of 

morphometric growth. It includes a brief reference to the fundamentals of the length- 

weight relationship and condition factor, and a review of the meaning of condition. 

There is also a review of the theoretical length-weight relationship from a 

morphometric approach, its relationship with the body’s volume, the influence of the 

body density as a constant and as a variable, and an interpretation of the real meaning 

of its parameters based on the morphometric approach. An example of the application 

of the main statements is also included.

Chapter three contains a review of the size-at-age growth, a description of the 

Logistic, von Bertalanffy, Richards, and Gompertz size-at-age growth models plus the 

exponential expression of first three. An equation of a generalised expression that 

includes the previous models as special cases is developed, and a method for the 

selection of the best size-at-age individual growth model among the previously 

mentioned is formulated. The method is based on the assessment of the stability and 

accuracy of the parameters in the generalised equation through non-linear fitting, using 

an ad hoc implementation of the Levenberg-Marquardt method.

In Chapter four the presence of a morphometric factor due to allometric growth 

is identified, the influence of the morphometric factor on the von Bertalanffy length-at- 

age growth is evaluated, and its repercussions on the estimation of weight-at-age from 

length-at-age data is demonstrated. Guidelines for detecting existence of the 

morphometric factor are specified, and a method for the assessment of growth-at-age 

from length-at-age data is given.

Each chapter includes a summary of the general trends in the research on each

topic.
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2. Morphometry, Length - Weight relationship, and Condition Factor.

2.1 ABSTRACT

Evaluation of growth-at-age is important for the assessment of biomass. 

Changes in biomass are monitored as variations of body condition, which is usually a 

quantitative index based on empirical equations without a proper theoretical 

background. A review from a morphometric point of view of the length-weight 

relationship and the commonly used condition factors show that the analysis of the 

length-weight relationship as a consequence of an ellipsoid body shape gives insights 

on the real meaning of condition and the length-weight relationship itself, providing 

also elements to clarify serious misconceptions about its parameters and its general 

meaning. A generalised equation for the length-weight relationship is derived from an 

ellipsoid body shape. This equation explains other models for the length-weight 

relationship and condition indexes previously developed as special cases of the 

generalised equation. An analysis of the different definitions of condition reveals that 

condition estimated from the length-weight relationship can be interpreted only as 

heaviness and as an element for describing body fitness.

2.2 JUSTIFICATION

“The role of growth in population dynamics is subtle and complex, more than 

the mere increment in weight. Any animal eats and grows to avoid death, and the 

bigger fish are the survivors ... Hence, growth processes may be at the centre of the 

population regulatory mechanisms.” (Cushing 1981). Biomass is a function of the 

population growth (number of individuals), body growth (growth-at-age), and 

morphometric growth (change in shape). Population growth depends on fecundity and 

survival. Growth at age and morphometric growth depend principally on the 

availability of energy and natural physiological processes (Russell 1931; Liao et al. 

1995). Many other spatial and temporal factors affect the production of biomass in fish 

populations, for instance pollution, behavioural, genetic and evolutionary changes, 

environmental variables, interactions with other species, human impact, and changes in 

the structure and dynamics of the ecosystem’s equilibrium. Some of them are 

temporal, others unpredictable, and others are not quantifiable (Nykolsky 1963; 

Nikolskii 1969; Everhart & Youngs 1981; Liao et al. 1995).
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An holistic approach may be preferred in order to predict or at least assess the 

existing biomass, but the system’s complexity makes it impossible to monitor all 

related variables therefore relatively simplistic models must be developed. Simplistic 

models are based on the variables with the most predictive power. They are also based 

on variables that are generally related, even when there might not be a true 

dependency. A mathematical dependency does not necessarily mean a biological 

relationship and caution has to be taken when explaining or attributing biological 

properties based on mathematical relationships. The independent variables might also 

be a by-product of other complex biological and ecological processes.

The assessment of biomass gain due to body growth in a population is 

fundamental for the evaluation of yield and as a reference parameter to evaluate the 

population’s condition. Hence the correctness and evaluation power of models used for 

the assessment of morphometric growth and growth-at-age has to be assured 

(Blackwell et al. 2000).

Morphometric growth assessed from the relationship between weight, length, 

height, and width (breadth) has been used as an estimator of condition (Hecht 1916). 

Condition is usually quantified from indices that compare the present weight against a 

reference value in order to measure how different is the actual weight. Unfortunately 

there are different interpretations of the term condition and different ways to evaluate 

it, which makes its evaluation, interpretation and utilisation confusing (Blackwell et al. 

2000). Therefore the correct meaning of condition from these different mathematical 

approaches has to be determined as a first step and a method of measurement with a 

sound theoretical basis also needs to be developed (Ferron & Leggett 1994; Shulman 

& Love 1999; Blackwell et al. 2000).

The meaning, quantification and mathematical background of the influence of 

the morphometric growth on the estimation of biomass is a result of empirical work 

that has been disregarded due to its apparent mathematical simplicity, and because 

serious misconceptions about its background are taken as true without a theoretical 

evaluation.

In this chapter the concept of condition will be analysed from a morphometric 

point of view and the most appropriate definition will be derived. The main equations
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for evaluation of the length-weight relationship and the condition factor will be 

critically compared, and a generalised equation based on body shape will be proposed 

for both. An example of misconception of the meaning of condition and the length- 

weight relationship will be included.

2.3 ANTECEDENTS

2.3.1 MORPHOMETRY, SHAPE AND FORM

According to the Oxford Dictionary (TLC 1998), Morphometry is defined as 

“The process of measuring the external shape and dimensions of landforms, living 

organisms, or other objects”, and the term shape is intended as “The geometrical aspect 

of the body”. These are very general definitions of both terms, but are very close to the 

way they are used when related to condition and condition factor. There are diverse 

definitions of morphometry depending on the biology field they are used (mainly in 

genetics and evolution), and more elaborated definitions of shape primarily based on 

geometrical and mathematical properties of the living organisms. A good review of 

these concepts can be found in Bookstein 1989, Sumers 1989, and Sundberg 1989.

When the body shape and size change in specific patterns during the life span, 

the shape can be inferred from a basic morphometric growth model, based on the rate 

of change of the main growth axes (see Relationship between volume, biomass on 

page 24). For some authors, the shape inferred from a basic morphometric growth 

model based on the rate of change of the main growth axis can be more properly called 

form. While shape is an instantaneous characteristic that is affected by many factors in 

time, form is a stable attribute applicable to whole populations.

Temporal changes in shape are mainly caused by changes in soft body 

structures. The accumulation and lost of fat, and muscle size are product of complex 

biochemical changes in lipid and protein contents that produce temporal changes in 

body shape. Highly reversible changes in chemical composition of the fish body may 

be periodic and unsystematic (Shulman & Love 1999), and are mainly observed on 

soft structures, which are able to change quickly in relation with the lifespan. These 

changes are usually due to normal metabolic events such as the reproductive cycle, and 

can be seasonal as a product of food abundance and environmental conditions
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(Shulman & Love 1999). Some changes occur randomly as a function of multiple 

factors, for instance food availability, illness, and parasitic infestation.

Permanent changes of shape are the result of differential growth rates of the 

hard structures that integrate the different parts of the body. The effect of periodical 

and random factors on hard structures such as bones, otoliths, and scales is observed as 

periodic changes in their growth rate. The differential growth rates on average will 

help to define the morphometric and size-at-age growth patterns along the life span 

(Merret & Haedrich 1997: chapter 5). When the effects o f periodical and random 

factors are continuously positive or negative respect to the average, the magnitude of 

the growth parameters is changed (Law 2000). The most extreme effects are due to 

severe ecological conditions, especially during the early stages of development, and 

are observed as abnormal overall morphometric proportions in the body size. More 

subtle changes in shape occur in fish populations as a result of the continuous influence 

of ecological factors over time. These effects are noticeable when comparing 

populations from different generations or different geographical zones and usually may 

be associated with evolutionary factors (Law 2000).

According to Law 2000, periodical monitoring of morphometric parameters 

may be important for monitoring the condition of fish populations, and to understand 

the adaptations of populations to the environment.

2.3.2 ANTECEDENTS OF MORPHOMETRY

The existence of quantitative relationships between different dimensions of the 

body has been known for several centuries, and according to Thompson (1942), 

probably Spencer published the first discussion on this topic in 1871, with the title 

“Recent Discussions on Science,...” Thompson (1942) published an extensive treatise 

of growth and form in animals based on morphometric analysis. Gould (1966) 

analysed morphological, physiological, and chemical factors as variates of size. Gould 

(1966) suggests also that size differences are related to ontogeny and phylogeny. 

Morphometry has been employed as a tool for systematic studies with different levels 

of mathematical complexity (e.g. Kerby 1979; Chemoff & Miller 1982; Barbour & 

Chemoff 1984; Chemoff 1986; Creech 1992; Behnke 1995). It is also a tool in 

fisheries to discriminate between different populations and subpopulations (e.g.
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McGlade & Boulding 1986; Treer 1993; Colman 1995; Szlachciak 1996; Velasco et 

al. 1996; Hood & Heins 2000). It has been used for remote measurement of body 

dimensions (e. g. Winans & Nishioka 1987; Loy et al. 2000), to detect in the body as a 

whole or in particular structures the influence of different factors such as ecological 

interactions and fishing activity (e.g. Cohen & Fishman 1980; Webb 1986; Chauvelon 

& Bach 1993; Bublitz 1996; McEdward & Herrera 1999; Simoneau et al. 2000), and to 

estimate the body condition (e.g. Portia 2000; Carscadden & Frank 2002; Kurkilahti et 

al. 2002; Ratz & Lloret 2002).

2.3.3 CONDITION FACTOR (CF)

2.3.3.1 The concept of condition

There is not a unique definition of condition, but the term is used to identify 

different characteristics in fish biology. For instance, body condition has been intended 

as an index of energy reserves (Ratz & Lloret 2002), nutritional status (Ferron & 

Leggett 1994), goodness and fitness (Bolger & Connolly 1989), well-being (Anderson 

& Gutreuter 1983; Bolger & Connolly 1989; Busacker et al. 1990), and heaviness or 

plumpness of fishes.

Intended as an index of energy reserves and nutritional status, condition is 

mainly assessed by measuring the lipid and protein contents in the body tissue (e. g. 

Parker & Vanstone 1966; Adams & McLean 1985), by proximate analysis (Love 

1980), Calorimetric analysis of energy content (Warren & Davies 1967), and the RNA- 

DNA ratios (Bulow 1987).

Intended as fitness, goodness, well-being, and heaviness, condition is measured 

by the indices of well-being (Fitzgerald et al. 2002), which for the whole fish may be 

the Fulton-type condition factor, relative condition factor, and relative weight 

condition factor (Anderson & Gutreuter 1983). These three condition factors are 

mathematical functions of the body weight and length (Weatherley 1972; Anderson & 

Neumann 1996), with the assumption that the well-being of a fish is greater when it is 

heavier, rather than lighter, at a given length ((Weatherley 1972; Bolger & Connolly 

1989; Anderson & Neumann 1996).
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Fitness is a fundamental concept frequently used to mean condition, but also 

has not been properly defined, particularly in fisheries and fish biology fields. From 

the genetic point of view, fitness can be interpreted as “the representation of an 

individual’s genes -  or descendants -  far in the future” (Brommer et al. 2002), and it 

can be measured by quantifying the lifetime reproductive success (Brommer et al. 

2002). Lifetime reproductive success can be a better measure of fitness than any single 

component of fitness such as survival in a particular life-history stage (Endler 1986). 

From an evolutionary approach, natural selection can be defined as “the differential 

reproduction or survival arising from heritable variation in phenotypes” (Endler 1986), 

therefore fitness can also be measured by the heritability of morphological and 

behavioural traits (Sinervo & Zamudio 2001). Ecologically, “Fitness is the capacity of 

an individual or population to maximize reproductive success by the production of 

viable offspring” (Price 1975). And according to the Oxford Dictionary (TLC 1998), 

fitness is “(A numerical measure of) ability to survive and reproduce in a particular 

environment”, and also “The quality of having exactly the right measurements”.

Goodness (as “excellence in respect of some quality”, TLC 1998), well-being 

(as “in a satisfactory state”, TLC 1998), and good health are informal terms to 

designate an state of good or satisfactory appearance, quality, size, and shape of the 

fish body.

Heaviness intended as body plumpness is the concept that more directly points 

to something that can be directly and unambiguously measured: the amount of 

biomass. Because weight and length are estimators of size (biomass size, and 

geometric size), the assessment of condition by the condition indices that calculate 

biomass relative to a given geometric size can be more appropriate (see Blackstone 

1987; Sundberg 1989). In this context, condition may be more properly defined as 

heaviness (as it will be discussed in 2.4.2.2).

Due to condition is mainly assessed in fisheries, and fish biology by the indices 

of well-being, I will concentrate in this document on the interpretation of condition as 

measured by the indices of well-being, omitting any reference to the index of energy 

reserves and nutritional status. Because several concepts of condition are still involved 

behind the indices of well-being, a discussion of the right meaning of condition as a
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consequence of the mathematical analysis usually involved in the assessment of 

condition by the indices of well-being will be discussed later (see 2.4.2, p. 34).

Basically, the condition factor as an index of well-being is conceived as an 

index of biomass to detect departures either from a reference weight, from an ideal 

weight, or from the natural weight at a particular length. The concept of ideal can be 

related to the organisms and species best fitted, while the concept of normal (normal 

weight, length, condition, etc.) can be associated to representative average values for 

populations and subpopulations with good or satisfactory body appearance, body 

quality, body size, and body shape.

Bolger & Connolly (1989), identified eight forms of the index and 17 different 

procedures to estimate body condition from the length -  weight relationship that were 

used in different studies published in two main journals from 1969 to 1986. They also 

mention other indices that consider other parts of the fish’s body.

The different indices reported by Bolger & Connolly (1989), are all variations 

o f the length -  weight relationship. They mainly differ in the particular considerations 

taken to select individuals with common characteristics, for instance, sexual maturity, 

age group, season, and sex. Some indices measure the condition of individuals while 

others the condition of subpopulations.

2.3.4 MATHEMATICAL DESCRIPTION OF THE LENGTH - WEIGHT

RELATIONSHIP

The dimensions of different parts of an animal’s body have been described by 

simple mathematical equations. A simple relationship could be linear if their 

relationship is isometric during the life span, otherwise, polynomial, logarithmic and 

trigonometric functions may be more appropriate.

As a first approach, it is noticeable that there is a power relationship between 

the length and weight of fishes (Hecht 1916). Equation (1) is the basic function that 

relates body length with weight.

W = aLh (1)

W\ Weight
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L: Length 

a, b : Constants

b: Constant (allometric factor)

For many species the value of b is near 3.0, and a  about 2x102. In the 

centimetre-gram-second system (cgs), weight is measured in grams and length in 

centimetres, b is dimensionless and a has a unit of (Xiao 1998), which is 

equivalent to g*cm * . Only when b = 3.0, a has units of density (g*cirr ).

2.3.4.1 Ponderal index

Thompson (1942) suggested that if b=  3.0, a might be considered as an index 

to monitor the fish condition by finding the body heaviness with respect to a particular 

length. He called this the Ponderal Index (equation (2)).

ki : Ponderal index

Sparre & Venema (1995), employ “q” to identify k, = a, calling it just 

condition factor.

Livi, 1987 (cited by Thompson 1942) possibly was the first to employed a 

linear index derived from the length-weight relationship as a cubic root transformation 

of a, and assuming isometry. That index was also called the ponderal index (equation 

(3)), and the cubic root transformation was used as a parameter to obtain an index with 

a linear distribution.

(3)
L

Pf. Ponderal index
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Pi is used here to represent the ponderal index, but probably some authors 

might prefer to call it K, as Livi, R (1897) in “L’indice ponderale, o ropporto tra la 

statura e il peso. Atti Soc. Romana Antropologica, V” (cited by Thompson 1942). 

There has been some discussion about terminology and the mathematical expression of 

equations (2) and (3) in the past, but in this document, I prefer to use Pi for the linear 

index and emphasize the biological and quantitative meaning rather than 

conventionally accepted terminology.

The weight increases in relation to the volume and relates to the length through 

a mathematical power function (King 1995). If the equation’s exponent is statistically 

equal to 3.0 the body growth is considered isometric, otherwise growth is considered 

allometric. There is negative allometry when the equation’s exponent is lower than 3.0, 

and positive allometry when higher than 3.0. There is not a unique definition for 

allometry (See Blackstone 1987 for a review of the concept and definition of 

allometry), but it is basically interpreted as meaning unequal morphometric growth; 

Isometry is the opposite to allometry (equal morphometric growth).

There was a common perception, primarily stemming from Fulton (1904), that 

a value o f 3.0 for b, should be the ideal for all fishes, and departures from that value 

could reflect special events or even abnormalities. As a consequence, this perception 

strengthened the value of the length-weight relationship as a monitor of fish condition 

assuming the power constant to be equal to 3.0 in equation (2). Actually Fulton never 

suggested a value o f 3.0 for b in his 1904 publication; nor proposed equation (2) in that 

publication, however equation (2) is erroneously known today as the Fulton condition 

factor and referenced to Fulton 1904. He expressed under the title “A Law of Growth” 

that “fishes approximately double their size and increase their weight about eight times 

after they have reached sexual maturity, or that fishes attain sexual maturity when they 

reach about half their maximum length and about one-eight o f  their maximum weight', 

which has nothing to do with the cubic law attributed to him.

These two expressions of the condition factor rely on the following two 

assumptions: the ideal value of exponent b should be 3.0 (isometric growth), and such 

value should be applicable to all species.
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2.3.4.2 Relative condition factor

The main problem with calculating a proper condition factor is the definition of 

the ideal weight. Empirically the next two options have been followed to find a 

suitable definition of the ideal weight:

1) To use reference values and constant expressions, i.e.: theoretical values, 

parameters and data values historically recorded, experimental results, and theoretical 

expressions such as the Fulton condition factor.

2) To consider, not reference values and constant expressions but the 

magnitude of the equation’s parameters derived from the length -  weight relationship.

If the only purpose o f the CF is to monitor variations in the total weight for 

individual fishes or subpopulations, regardless of the other variables, the first option is 

good enough. Actually, reference values have been used in the past: particularly the 

ratio of weights, and the Fulton theoretical expression.

To detect changes in condition in individual fishes, the ratio between the 

measured weight (Observed), and either the reference or the ideal weight can be used 

(equation (4)). In this case, the expected weight is derived from the Length -Weight 

relationship for a specific length (equation (1)). The expected weight is also called 

theoretical weight and it is considered an estimator of the ideal weight at a particular 

length.

W . (4)
RCF  = ——; W = aLh K )

We

RCF: Relative Condition Factor 

Wo: Observed weight (measured)

We: Expected weight (estimated, theoretical or ideal)

Lo: Observed length

The advantages of the relative condition factor are:

a) The expected weight is a result of the influence of all individual data.
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b) Unless the presence of serious outliers in the data set, or data 

misrepresentation, the expected weight will be closer to the geometric mean of the 

weight at the particular length if more than one fish with the same size exists.

c) According to the central limit theorem (Sokal & Rohlf 1969), the expected 

weight will be closer to the average (in this case the geometric mean because of the 

power relationship between length and weight), which is most likely to be the ideal as 

the number of data increase, and if the data are truly representative of the individual 

weights in the population. If survivors are the most fit and the ones with the optimum 

shape, then the estimated length-weight relationship will be representative of the most 

fit.

d) Statistical data variability in terms of standard deviation can be calculated.

The most important limitations to the advantages are the presence of serious 

outliers and data misrepresentation. Their occurrence is a result of incorrect or difficult 

measurement, defective measurement techniques, inadequate sampling, and improper 

data processing tools. They could all be improved with experience, technology and 

advances in the mathematical field over time.

The main problems with the relative condition factor are:

1) The choosing of appropriate data sets to estimate the ideal parameters of the 

length-weight relationship.

2) Different subgroups may have different average morphometric proportions, 

which may be temporal (random and seasonal), so advantage a) can become a 

disadvantage.

3) To know when to change the data set in order to adjust for changes in the 

populations’ average morphometric proportions over time.

Problem 1) is difficult to solve. One approach is to use large data sets from 

different populations covering long periods of time. However, there are no antecedents 

on how to assess changes introduced by exploitation and natural evolutionary changes 

of condition.
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Problems 2) and 3) have been confronted by the use of categorical variables, 

restricting comparisons to groups and individuals with common characteristics (same 

sex, maturity index, age, etc.).

2.4 PROPOSED APPROACH FOR THE LENGTH -  WEIGHT 

RELATIONSHIP AND CONDITION FACTOR

As can be inferred from the introduction, there are two main approaches to 

evaluate condition regardless of its conceptual meaning: comparisons with respect to 

standard values or expressions, and taking the value of the constant a of the length- 

weight relationship as a reference. Both are empirically based on the length-weight 

relationship.

The pondéral index kj is a special index widely used even when is based on 

assumptions difficult to find in most species, particularly because many species do not 

have isometric growth. The importance of considering at least the two parameters of 

the empirical length-weight relationship (as in equation (4)) can be based on the fact 

that both parameters a and b of the equation for the length-weight relationship 

(equation (1)) are highly variable (Cone 1989). The following study highlights this 

observation.

In research on fish populations in the Azores archipelago, Morato et al. (2001) 

found that from 15 species, two showed significant differences for b between female 

and male and of 21 species, one had significant differences between populations from 

different islands. From Table 1, only 3 species were non significant from 3.0 (P> 0.05) 

for fishes with non-differentiated sex, females and males. For the other species 

juveniles, females, or males as particular groups were not significantly different from 

3.0. For some species the high statistical variability (standard deviation >0.01) makes 

the results non-conclusive while for other species there is not enough evidence.

Because the parameters a, and b of the length -  weight relationship (equation 

(1)) can be statistically different by sexes, geographic location, and morphometric 

growth pattern for different species, for populations and subpopulations of the same 

species, and even for a same group of individuals at different times, neither the Fulton
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condition factor nor the ponderal index can be standard reliable estimators of the actual 

condition factor.

Table 1: Significance levels for 19 coastal fish species of the Azores. Hu: b — 3.0; N D = no 
differentiated sex; F= female; M= Male; All data= ND + F + M; <—► — not reliable but possible, 
y = yes, n = no. Missing values (no registered sex) were not considered.

SPP N D F M All data Significance

A b u d efd u f luridus 0.1507 0.0177 < 0.001 < 0.001 n > y> y
Bothus podas 0.4300 0.2883 0.4472 < 0.001 n, n, n
C hotisju lis 0.0031 0.7038 < 0.001 < 0.001 . y. n> y ...
Chromis lim bata 0.0606 0.6508 < 0.001 0.0041 n, n ,y
D iplodus sargas 0.0132 0.0353 0.4344 < 0.001 y> y?n
Gaidropsarus guttatus 0.6666 0.0164 0.4912 0.0279 n, y, n
Cabras bergylta 0.2988 < 0.001 0.2511 0.0249 n ,y , n
M ullas surmaletus < 0.001 < 0.001 0.9835 < 0.001 ..I?. n
Phycisphyds 1 D atum 0.8349 N o  data 0.0037 ? ,n , ?
Pomatomus saltator 1 D atum 0.0033 0.1793 0.5330 ? ,y ,n
Sarda sarda N o  data 0.7002 0.1289 0.1520 ?, n, n
Scorpaena maderensis 0.0012 0.0114 0.8217 0.0069 y, y>n
Scorpaena notata 0.6011 0.9368 0.5293 0.0646 <->, n, n, n
Serranas atricauda 0.0388 < 0.001 0.0199 < 0.001 ? 5 ?*) D ‘
Serióla rivoliana 1 D atum 0.1905 0.5384 0.1457 6  n >n
Sparís orna cretense 0.2936 < 0.001 < 0.001 < 0.001 n> y> y
Sphyraena viridensis 0.1470 0.6709 0.1506 0.7133 <->, n, n, n
Thalassoma pavo < 0.001 0.3516 0.0085 < 0.001 y» n > y
Trachinotus ovatus N o data 1 D atum N o data < 0.001 ? ? ?

In order to assess the real meaning, usefulness of and the best way to evaluate 

the condition factor it is necessary to know how each parameter is interrelated, both 

mathematically and biologically and not just empirically. Before attempting any 

definition of condition based on the variables measured to estimate the condition 

indices (length and weight), I will develop next a mathematical expression for the 

condition factor not based on the empirical length-weight relationship, but on a basic 

morphometric fish-like shape (ellipsoid shape: see 2.4.1.1 bellow), which as we will 

see, includes the length-weight relationship and practically all indices of condition 

previously mentioned. I also will show that the mathematical expression based on the 

morphometric fish-like shape agrees more with the concept of condition as an 

estimator of heaviness and fitness (see 2.4.2.1). This approach will also explain a 

model reported as new for the length-weight relationship (Jones et al. 1999) and a 

condition factor (Richter et al. 2000) recently reported as new (see 2.4.2.3 and 5.1.1). 

Actually, equations for the relationship between different parts o f the fish body as the
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proposed by Jones et al. and Richter et al. were used since the beginning of the 

previous century by Heinke, 1907, and Crozier and Hetch, 1915 (both cited in Hecht 

1916).

Once a quantitative expression for condition based on sound principles is 

constructed, a description of the meaning of the parameters will be undertaken to 

reveal how condition can be properly interpreted (see 2.4.2.1).

2.4.1 LENGTH -  WEIGHT RELATIONSHIP, DENSITY, AND A 

GENERALIZED RELATIVE CONDITION FACTOR

2.4.1.1 Relationship between volume, biomass and length for a fish-like shape

The relationship between weight as an estimator of the biomass, and length 

(length from head to tail) as an estimator of the size can be better explained from a 

theoretical approach, assuming a tri-dimensional, pisciform body shape. This 

assumption implies that fish volume must be basically a function of one point of 

growth based in three longitudinal axes: length, width and height.

The term length (L) refers to the distance on the line from snout to tail that can 

be explained within the pisciform shape. Because fishes are not totally elliptical, in 

practice this length is closer to the standard length (length of the body of a fish from 

the tip of the snout with the mouth closed to the end of the vertebral column; the base 

of caudal fin to be precise). Fork length (length of the fish from tip o f snout with the 

mouth closed to tip of the shortest ray of the caudal fin, or to the centre of the fin if the 

tail is not forked), and total length (the overall length of a fish, measured from the tip 

of the jaw with the mouth closed and extending to the tip of caudal fin) should give 

proportional results if their mathematical relationship with respect to the standard 

length is linear.

The volume of a pisciform shape can be calculated from equation (5), which 

corresponds to an ellipsoid (Hockaday et al. 2000).

V = — LHD (5)
3

V: Fish Volume
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H: Height 

D: Width

2. Morphometry, Length - Weight relationship, and Condition Factor.

Accordingly to the definition of density (specific gravity) = p, Volume and 

Weight as an estimator of Mass are related as follows:

p =  W /V ; therefore, W = p V , and V = W / p

By substituting volume in equation (5), the factor density is added, obtaining 

the equation for the length weight relationship of an ellipsoid like shape as a function 

of its orthogonal dimensions:

Air
W = p — LHD 

3
(6)

The three orthogonal axes are mathematically related in a proportional scale; 

such relationship may be linear or non-linear. If shape is not constant with time, the 

relationship between dimensions of the axes of growth in respect to L will tend toward 

a power relationship as follows,

H  = aHLh" ; D = aDl b0

When substituting H  and D in equation (5), the equation of weight as a function 

of a particular longitudinal dimension is obtained (equation (7)). This is the length -  

weight relationship for an ellipsoid like shape in terms of a single longitudinal 

dimension (in this case L).

W = p ~ - L a HLh"aDLb°= p — aHaDLLb"Lhl>

W = ~ p a HaDL'+h"+h° W
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The length-weight relationship as a product of the body shape (equation (7)) is 

comprised of three components: a morphometric, a geometric, and a structural 

component. The power of L in equation (7) is the sum of the morphometric constants 

(SAC); this is equal to \+bn+bD. Notice that the morphometric constants are 

complementary to the one of the reference dimension L, in this case b]_. SAC is 

properly a morphometric factor, which is not related to the volume, contrary to the 

suggestion by a number of authors (e.g. Hostings & Dickie 1972; King 1995), but to 

the body’s morphometry. Actually, SAC, volume, and weight depend on the body 

morphometry.

The product of all coefficients (PC) in equation (7) has three components built 

into it: density (p), a geometric constant 4jt/3, and the length-weight proportion 

constants ( aHan ). However, as stated previously, there are really two components, a 

geometric one that is associated with the ellipsoid geometry (a//*a0*4*ji/3), and a 

structural one {p), determined basically by its chemical composition; the morphometric 

coefficients in PC are also complementary to the one of the reference length L (a i).

When morphometric body growth is isometric, the mathematical relationship 

between the axes of growth is linear (shape does not change with size), &//=&d= 1-0, 

then the SAC =3.0. It is important to note that a SAC = 3.0 does not necessarily mean 

isometry: 1+6h+6d can still be equal to 3.0 for bn * bD.

All parameters of equation (7) are expected to be unique for a single individual, 

while different subgroups in a cohort can statistically have particular values. For 

populations the SAC tends to become asymptotic to a specific value and for the species 

is expected to be statistically distinctive. If the morphometric factor (SAC) tends to be 

asymptotic for a species, the only source of temporal variability of weight accordingly 

to equation (7) is the variable part of PC.

Both the volume and weight are dependent on the morphometric component, 

which should be unique to the population (with small variability between individuals) 

and its magnitude and variability should be species specific. The PC is expected to be 

highly variable, random and vary seasonally. Density and the length-weight 

coefficients are not actually constants, but can be highly dynamic due to temporal and 

continuous changes in chemical composition in the proportion of lipids, protein, etc. (e.
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g. Kora et al. 2000), and shape. In fact their variability is the main source of variability 

in weight with respect to length.

2.4.1.2 Agreement with the length-weight relationship

Actual data for density, height, and width, for a particular species are generally 

hard to find because they are not routinely measured for practical reasons. In order to 

show the agreement at least in data distribution between the classical empiric length- 

weight relationship (equation (1)) and equation (7) that is derived assuming that fish 

shape can be represented by an ellipsoid, a data set with the following attributes was 

created (Table 2): values for height (H) and width (D) are given up to one decimal 

place to resemble the normal precision at which those dimensions are measured; H  = 

L/3, D = LI5, density (/>) = 0.07, volume (V) is estimated from equation (5), and weight 

(W) from equation (6). Table 2 also contains results of regressions of L, H, D, and W 

respect to each other.

Table 2: Parameters of the length-weight relationships between length (L ,), height (H) ,  
width (£J), weight ( W) and volume ( V) for data generated from equations (5) and (6). L -
W\ length-weight relationship, H-W : height-weight relationship, D-W : width-weight relationship, 
a and b\ parameters of each relationship.

L H D V W

1 0.3 0.2 0.251327 0.017593
2 0.6 0.4 2.010619 0.140743
3 0.9 0.6 6.78584 0.475009
4 1.2 0.8 16.08495 1.125947
5 1.5 1.0 31.41593 2.199115
6 1.8 1.2 54.28672 3.80007
7 2.1 1.4 86.2053 6.034371
8 2.4 1.6 128.6796 9.007574
9 2.7 1.8 183.2177 12.82524
10 3.0 2.0 251.3274 17.59292

a b
L -W 0.0175929 3.0
H -W 0.65158968 3.0
D -W 2.19911484 3.0
L -H 0.30000003 1.0
L -D 0.20000004 1.0

If the length-weight relationship can be explained assuming an ellipsoid shape, 

the following is expected: power relationships between length and weight, height and
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weight, width and weight, and length and volume; isometric growth because shape 

does not change with respect to length (power constant in the length-weight 

relationship should be equal to 3.0); and, the calculation of density by equation (7) 

after evaluating the parameters of the relationships L-H  and L-D should equal the a 

priori value given to density. The results are as follows.

As predicted, data for H-D, D-W, L-W, and L-V distribute accordingly to a 

power distribution (Figure 2) and W-V is linear with slope 1/p (Figure 3). Notice that a 

linear relationship between weight and volume is possible only for an isometric 

morphometric factor, otherwise a power relationship is expected; this lends weight to 

the hypothesis that weight does not depend linearly on volume, but on the 

morphometric factor.

It can be observed in Table 2 that the morphometric constant (b) is equal to 3.0, 

confirming isometric growth for weight against each length and between lengths. 

Parameter a for each regression is close to the initial values assumed: a for L-H= 

0.30000003 agrees with the value expected (0.3) after rounding 0.33 up to one decimal 

place; a for L-D = 0.20000002 agrees with the value assumed (0.2). Finally, from 

equation (7), density reaches the following value:

ai-w anaiD P = 4 “'~W =0.069999
~ ^ ~ a H a n

Which is the value assumed for p  (0.07). These results confirm the agreement 

between the empirical length-weight relationship and the generalised length-weight 

relationship derived assuming an ellipsoid shape.
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L  (cm) L  (cm)

Figure 2: Distribution of H-W, D-W, L-W, L-V, and W-V. H-W: height-weight relationship 
(a), D-W: width-weight relationship (b), L-W: length-weight relationship (c), and L-V: length- 
volume relationship (d).
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Figure 3: Distribution of Volume with respect to Weight.

2.4.1.3 A generalized relative condition factor

When length (I), height (H), and width (D) are the main axes of growth, W 

from equation (7) can be used as expected weight (We) in equation (4) to calculate a 

generalized relative condition factor (equation (8)).
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GRCF =
W______  o_______

t ]+/),, +bD
P Y a"a»L

GRCF: Generalised relative condition factor

(8)

If density remains constant with size in equation (7), the final expression 

W = SC Lsm turns out to be the length-weight relationship (SC = a and SAC = b \  and 

the generalized relative condition factor becomes equal to the relative condition factor. 

In this way the relative condition factor can be considered as a special case o f the 

generalized relative condition factor.

Geometric Mean of L and Wo must be used to guarantee the keeping of the 

same scale when working with groups of fishes (populations and subpopulations) for 

the following reason: only in the linearised equation of the Length-Weight relationship, 

the average (arithmetic mean) of the logarithms of weight corresponds to the average 

(arithmetic mean) of the logarithms of length, this is,

L°g(Wc) = Log(a) + b(Log(L0))

The average of the logarithms is equal to the logarithm of the nth root o f the 

individual products:

n Y JL°g (xi) = L°g o W = Log(GM (x))

Therefore, the antilogarithm of the arithmetic mean of the logarithms 

(antilogarithm of left term in the previous equation) is equal to the geometric mean 

(antilogarithm of the right term).

For the Length-Weight relationship:

GM(We) = a (GM(La))h

This is why GM(W0)  should be used in order to keep the same scale. Working 

with the logarithmic expressions is an option that produces the same result.
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The generalized relative condition factor has basically the same advantages and 

same problems as the relative condition factor, in fact, the generalized relative 

condition factor is harder to estimate and impractical to implement because a lot of 

extra effort is required. The advantage of this expression is in the meaning of the 

relative condition factor and the possibility to understand its changes in magnitude by 

tracking the changes o f its components, particularly in the morphometries and 

geometries. An understanding of the meaning also helps to better understanding 

different author’s findings with respect to the association of condition with other 

biological factors such as size-at-age, fat composition, energy storage, and prey density 

(Brown & Murphy 1991; Childress 1991; Neumann & Murphy 1992; Liao et al. 

1995).

2.4.1.4 Influence of density on the generalized relative condition factor

As seen mathematically in 2.4.1.1 (p. 24), density is expected not to keep 

constant but to be a highly variable parameter (not including spontaneous changes in 

shape such as those related to buoyancy or defence, but mainly physiological, 

biochemical, and ecological changes such as gonad growth, energy storage, and food 

availability). An idea of the magnitude of the effect of physiological, biochemical, and 

ecological changes on body weight can be obtained from the following example 

(Shulman & Love 1999):

Cod is not considered a fatty fish, and from 60 to 80 % of the cod fresh body 

muscle is normally water (70% in average). In laboratory experiments with juvenile 

cod during starvation periods (protein depletion) the water content increased up to 

86%, after that level the fish died. In adult fishes that had spawned several times the 

water content in the muscle reached up to 95%, and at the end of the experiments 

survivors looked thinner, but due to part of the protein was substituted by water (from 

70 to 95%). Even when Shulman & Love (1999) do not report any figures for density, 

it can be inferred that an important change not only in weight, but also in density 

occurred.

To date there has been no systematic investigation in to how much the 

assumption of constant density can affect the length-weight relationship, even though 

more than 50 years ago Kesteven (1947) warned about its relationship with respect to
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weight and volume, suggesting that a failure in the understanding of the phenomenon 

can arise in the development of formulae that do not properly represent the intended 

assumptions.

There is no information on the mathematical nature of the influence of density 

on the length-weight relationship, but some insights can be attained by the quantitative 

evaluation of linear (e. g. Kora et al. 2000) and multiplicative effects on weight. A 

linear effect is expected if there is a change in density in proportion to length: for 

instance, a variation o f 10% of lipids in the total weight (this is equivalent to: 0.1 * 

density). A multiplicative change is expected when the change is size-dependent and 

non-linear, for instance when sexually mature females increase their gonad maturity 

index with their age or length (for example p  = p+  0.001* L).

A linear effect is expected when all individuals in a population appear to 

achieve a comparative change in condition (heavier or lighter than the average). This is 

shown by a change in the product of constants (PC) without affecting sum of 

morphometric constants (SAC) in equation (7). A multiplicative consequence will be 

seen when just part of the population changes its condition affecting SAC; actually this 

change may follow a cyclical trend.

Table 3: Hypothetical data set. Data generated from an ellipsoid fish-like shape (Figure 4). L: 
length; H: height = L /3 , D : width = L /5, and p. density = 0.07; V  (volume) is estimated from 
equation (5), and W — p V ; W 1%  and W2%: weights obtained after a linear increase of 1% and 
2% in density” and W Allom  : weight after a non-linear increase on density (p  = p  + 0.001* L).

L H P  V  W  W1% W2% WAllom
1 0.3 0.2 0.2513274 0.0175929 0.017769 0.0179448 0.0178442
2 0.6 0.4 2.0106193 0.1407434 0.142151 0.1435582 0.1447646
3 0.9 0.6 6.7858401 0.4750088 0.479759 0.484509 0.4953663
4 1.2 0.8 16.084954 1.1259468 1.137206 1.1484657 1.1902866
5 1.5 1 31.415927 2.1991149 2.221106 2.2430972 2.3561945
6 1.8 1.2 54.286721 3.8000705 3.838071 3.8760719 4.1257908
7 2.1 1.4 86.205302 6.0343712 6.094715 6.1550586 6.6378083
8 2.4 1.6 128.67964 9.0075745 9.09765 9.1877259 10.037012
9 2.7 1.8 183.2177 12.82524 12.95349 13.081743 14.474197
10 3 2 251.3274 17.59292 17.76885 17.944777 20.106193

Table 3 contains the data for the exploration of the effects of density on weight. 

The data are based on the assumption of an ellipsoidal shape and isometric
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morphometric growth. A linear change on density of 1% and 2% is tested (Wl%  and 

W2%), also a non-linear factor (WAllom) on all data instead of just part of the 

population to simplify the analysis {p = p  + 0.001 * L).

The main assumption in this example is that there is a linear relationship 

between the axes of growth, therefore isometric growth. From equation (6) a is 

expected to be close to 0.0175. The corresponding shape is shown in Figure 4.

Figure 4: Hypothetical fish-like shape. Hypothetical fish like shape used to generate the 
simulated data on Table 3. L: length; H: height = L /3; D: width = L /5.

Parameters obtained by least square fits by each weight as function of L are 

summarised in Table 4. The morphometric factor shows this to be isometric as 

expected (.P>0.9999), and for all cases a and b obtained are also as expected, but not 

for the non-linear factor {WAllom).

Table 4: Parameters of length-weight relationship for the hypothetical data set in Table 3. 
a : coefficient, and b : power of the length-weight relationship; p  density; Ho: b -  3.0 (test for 
isometry); IF : weight; IF/% and W2%\ weight obtained after a linear increase of 1% and 2% in 
density; and W Allom  : weight after a non-linear increase on density (p  = p  + 0.001* L ).

a b Ho', b—3 .0 P
w 0.017593 3.0000 P > 0.9999 0.07
IF / % 0.017769 3.0000 P > 0.9999 0.07 * 1.01
W 2% 0.017945 3.0000 P > 0.9999 0.07 * 1.02
W A llom 0.017519 3.0523 P =  6.7919E-6 p  + 0.001* L

Notice that a linear change in density {Wl%  and W2%) appears as a change in 

a only, and a non-linear change results in a modification of b. In this case the 

difference between expected and observed parameter a for the non-linear factor 

{Wallow) ought to be caused by calculation rounding error, but with actual organisms a 

change on a may be also observed. It can be concluded from this theoretical analysis
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that a non-linear change in density can cause a modification of the parameters of the 

length-weight relationship, which can be wrongly assessed as a morphometric change.

Some fish species suffer drastic seasonal changes in their body’s biochemical 

composition, for example Whiting (Jacobsen et al. 2002). Strauss & Bond (1990) 

provide a warning about the influence of water and lipid content, development of 

gonads and fullness of the stomach on the density of a fish. Lipid content, for example, 

can reach more than 10% of the total weight in capelin (Yaragina & Marshall 2000). 

Added to a change in shape and gonad growth, a seasonal accumulation of lipids also 

implies a change in density. In our example, an increment of 0.001 units in density per 

unit of length will increase b in 0.05 units (50 times), erroneously suggesting a change 

in morphometry rather than density.

2.4.2 THE MEANING OF CONDITION AND CONDITION FACTOR

As mentioned before (see 2.3.3.1), condition has been interpreted mainly as 

well-being, good health, goodness, fitness, and heaviness. This section is dedicated to 

explore each of the previous definitions and try to clarify the meaning of condition and 

condition factor by taking as the main reference the equations used in the field to 

quantitatively evaluate both parameters. In this section the following questions will be 

analysed: What is condition and how can it be measured? Is the weight a reliable 

estimator of condition? Are the length-weight relationship and the length-weight 

relationship of ellipsoid-like shape reliable estimators of the optimal weight? Is it 

better to include as many variables as possible in the estimation of weight to make it 

more reliable?

2.4.2.1 The concept of condition and its measurement

Bolger & Connolly 1989 pointed out that the study of condition in fisheries 

ecology “is usually based on the analysis of length-weight data and assumes that the 

heavier fish of a given length are, the better their condition. It is believed to be a good 

indicator of the general ‘well-being or fitness’ of the population under consideration”. 

Because condition as index of energy reserves and nutritional status is not commonly 

used in the field, it can be inferred that the most appropriate meaning o f condition 

should be associated to the indices of well-being (Fitzgerald et al. 2002). Condition is
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usually associated to the indices of well-being as goodness, well-being, good health, 

heaviness, and fitness (see The concept of condition: 2.3.3.1, page 15).

As we saw in 2.3.3.1, goodness (intended as excellence in respect of some 

quality, TLC 1998), well-being (as in a satisfactory state, TLC 1998), are informal 

terms related to a reference quality or satisfactory state. Both quality and satisfactory 

state are not tangible entities; therefore these concepts should not be taken as valid.

Condition and condition factor as an index of condition, can not be interpreted 

as good health due to a degree of condition different from the average (relative 

condition factor * 1), can either reflect abnormalities like tumours, tissue swelling, 

infestation by parasites, etc., or just normal variable factors, for instance a well 

exercised body (Yogata & Oku 2000), maturity or hepato-somatic index. Similarly, 

different groups or individuals may show statistically the same relative condition factor 

to normal ones, which means that total weight, and even less, the condition factor that 

depends on weight, cannot be the only factor to define good health.

Good quality cannot be measured in terms of weight for biological phenomena. 

A continuous tendency to increase weight may be good for some organisms but not for 

others, and even for the same organisms this quality may not always be beneficial. 

Goodness as intended here is more a utilitarian than a biological concept. It is desirable 

that the biological concept of condition is not based on an abstract notion, but on a 

measurable parameter useful to track more or less magnitude rather than good or bad 

quality, the term goodness is not considered adequate to identity the condition.

The term fitness when the quality of having exactly the right measurements 

(TLC 1998) seems to agree with the genetic and evolutionary concept of fitness if we 

consider that the living organisms (the survivors) are the most fit and the ones with the 

right measurements. From this point of view the term fitness appears more objective 

than well-being and good health, but it is still abstract because a better morphometric 

reference point than the indices of well-being is needed to define the right 

measurements.

Due to the response variable in the indices of well-being is weight (as an 

estimator of biomass) relative to length (as an estimator of geometric size), The
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concept of condition can be approached in measurable terms from two different points 

of view, one is associated with heaviness and it is related to the total biomass, 

meanwhile the other is linked to fitness as having the right measurements. Weight is 

biologically the right parameter to quantify heaviness, but is not enough for fitness 

because as seen in equations (7) and (8), morphometry and density have to be also 

considered.

2.4.2.2 Weight as a reliable estimator of condition

Heaviness is more important from a fisheries approach in order to assess yield, 

and fitness is a property especially important from the fish biology’s point of view. 

Heaviness is intrinsically the amount of biomass, and total weight is undoubtedly its 

best and reliable estimator.

Nowadays the assessment of fitness is been mainly approached in two ways: by 

increasing the number of parameters, and by focusing comparisons on particular cases 

with as many factors in common as possible to minimize unwanted influences. A third 

way much used in the past is by considering a priori known magnitudes and 

mathematical expressions as reference parameters (for example historical and 

published data, plain averages, and the Fulton equation). For practical purposes the 

monitoring of individual body structures such as liver, muscle, and gonad size, as 

indicators of energetic contents have been more important than finding the optimal 

dimensions. Eviscerated weight and other measures such as the gonadosomatic and 

hepatosomatic indices have been monitored for such purposes.

In order to quantify fitness it is not only necessary to identify the adequate 

response and descriptor variables, but also their optimal magnitudes for individuals, 

populations, and species. Total weight is the proper response variable and length from 

head to tail the best descriptor (standard length shows less variability than other 

dimensions). Because size and biomass are both visible manifestations of metabolism, 

which is not a one-way process, but a reversible function of anabolism and catabolism, 

biomass as weight is a highly variable parameter over time, and can show negative and 

positive changes. Even when not noticeable reversible, size as length, particularly head 

to tail, is also highly variable between individuals. Because of this variability, 

individuals and sub-populations with the same body size are not necessarily equal, for
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instance, a poorly nourished adult may present the same size and weight as a healthy 

juvenile. Because of biological complexity, metabolic changes during the life cycle, 

and evolutionary processes, the analysis of particular cases and situations by 

categorical variables such as age, sex, and maturity index will give simpler and more 

direct results than general and complex models.

2.4.23 The number of variables involved

The number of parameters to measure is an important factor, particularly for 

fieldwork where a large number of measurements per individual can compromise the 

complete sampling campaign. While no new more efficient methodologies are 

developed, practical needs have to be considered against accuracy and precision of 

results. If weight can be reliably estimated from morphometric parameters, it is 

possible to reduce the number o f linear dimensions as possible at a low loss of 

accuracy and precision, depending on the reversibility and variability o f the 

longitudinal predictor variables as described below.

Jones et al. (1999) found more accuracy (based on the coefficient of 

determination of linear regressions) in the estimation of biomass for chinook salmon 

(<Oncorhynchus tshawytscha) and Atlantic salmon (Salmo salar) by using the following 

equation,

M  = B l}H  M  biomass
L: fork length (Length of the fish from tip of snout with 

the mouth closed to tip of the shortest ray of the 
caudal fin, or to the centre of the fin if the tail is not 
forked).

H: Height 
B: Constant

This is a particular case of equation (6) for SAC = 3.0 due to constant density 

and isometry (bD = 1.0 and bn = 1.0). It is not expected that this equation will work 

with shapes with allometric width because L*D approximates to L2 only if the 

relationship between length and width is isometric, nor when density is variable as 

seen in 2.4.1.4.

In practical work the previous equation may lead to higher accuracy than the 

length-weight relationship only if H  has low variability, and there is isometry and
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constant density because it includes the actual values of H  instead of relying on only 

one variable (L); Even better accuracy might be expected when considering also the 

width as in the length-weight relationship of an ellipsoid-like shape. In both cases, the 

gain in accuracy must be evaluated against the effort needed to take extra 

measurements over and above weight and length, and against the variability introduced 

by including redundant variables with a loss of precision. Also, the implementation of 

the length-weight relationship of an ellipsoid-like shape and the generalized relative 

condition factor may be impractical due to the difficulty in the estimation of fish 

density.

For species whose shape deviates from the basic 3-axes of growth (shapes 

different from ellipsoid or with more than one 3-D coordinated system), equation (7) 

will produce inexact results, detectable as deterministic error. In those cases one of the 

most recent approaches for biomass estimation, based on the analysis of body truss 

(geometric framework o f the body) must be considered (McGlade & Boulding 1986; 

Creech 1992; Beddow & Ross 1996; Beddow et al. 1996; Hockaday et al. 2000).

It can be demonstrated that equation (7) keeps the same form regardless of the 

position of the orthogonal axis of growth. The same applies for changes in the 

geometric constants (allometric length-length growth), and for cylindrical and 

rectangular prism shapes.

2.4.3 A PARTICULAR EXAMPLE

Equations (2) and (3) are not reliable estimators as condition factors for all 

species because they are based on very particular assumptions. However, they are 

special cases of the length-weight relationship, and the length-weight relationship is a 

special case of length-weight relationship derived from the ellipsoid form (in the same 

way, the relative condition factor is a particular case of the generalised condition 

factor).

If there are not important departures from the ellipsoid shape, the body 

dimensions are accurately measured, and appropriate statistical tests are applied, the 

length-weight relationship of an ellipsoid-like shape fulfils with the three criteria 

suggested by Hurlbert (1978) for the selection of reliable indices: appropriateness,
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simplicity, and statistical correctness. Therefore, the equation for the length-weight 

relationship of an ellipsoid-like shape and the generalized relative condition factor can 

be considered as adequate descriptors of the relationship between weight and length, 

and the condition factor intended as heaviness.

Once the adequate equations to describe the length-weight relationship and the 

relative condition factor are identified, the challenge is finding the optimal weight if 

the condition factor is intended to evaluate heaviness, and also the right morphometric 

dimensions if intended to measure fitness (fitness in shape). For heaviness the first 

option is the weight with respect to length of a particular group. Additionally other 

categorical variables must be considered for fitness because there is not an absolute set 

of right measurements for the full life span and all temporal, geographical, ecological 

and environmental conditions. By common sense the spatial and temporal dimensions, 

sex, age, and maturity index are expected to be part of the main categorical variables.

The analysis of the length-weight relationship of a sub-sample of North Sea 

plaice, Pleuronectes platessa L. (458 females from 10 to 15 years of age from several 

samples taken in 1985 in the North Sea) will help to highlight some misconceptions 

about the length-weight relationship, the importance of categorical variables and the 

importance of an objective theoretical approach over empirical assumptions.

The objective is to evaluate the influence of gonad maturity on condition by the 

analysis of the length-weight relationship in female plaice, combining ages 10 to 15 

years. In order to do so parameters of the length-weight relationship were obtained by 

least squares for three groups of female plaice: with maturity index 2, maturity indices 

4 and 5, and maturity index 7. Maturity index (GI) was categorised as: juvenile (1), 

ripening (2), spawning (3,4,5), and spent (6,7) (Wimpenny 1953).

Age group 10-15 was considered because they present dramatic changes in 

gonad size, and to exclude fishes that were too young and too old (to decrease the 

influence of outliers). It is expected that total weight of organisms with maturity 

indices lower than 3 will not be influenced by gonad growth. Maturity index 7 will 

contain fishes post gonad growth i.e. spents, and maturity indices 3 to 5 will fully show 

the effect of the gonad factor. Maturity indices 3 and 6 were excluded in order to avoid 

the influence of boundaries.
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In this case, the categorical variables are age and maturity index. Maturity 

index is the main grouping variable associated to gonad size. And age is a narrowing 

factor to avoid unwanted noise introduced when including too young or too old 

individuals. A selection of 1-year classes may be preferred for a finer study, but for this 

example the interval of ages selected is reasonable due to the apparent high variability 

o f growth at the selected ages.

According to Anderson & Gutreuter (1983) “6 < 3, represents fish that become 

less rotund as length increases, whereas when b  > 3 fish become more rotund as length 

increases”. Common sense also suggests that for a same length and a same a, a b  < 3 

will produce a lower weight than a b  > 3 in the length-weight relationship. Based on 

the these premises, an increase on b  for organisms with maturity indices 4 and 5 

respect to organisms with maturity index 2 and maturity index 7 (Table 5) might be 

interpreted as a potential higher condition attributable to bigger gonad size (organisms 

with maturity indices 3 to 5 might be ‘more rotund’ than organisms with maturity 

indices lower than 3 and organisms with maturity index 7).

Table 5: Parameters of the length-weight relationship for three categories of maturity 
index in females of P le u ro n e c te s  p la te ssa . GI: gonad index; a. coefficient, and b\ power of 
the length-weight relationship; SD: standard deviation; p(=0): significance level of the null 
hypothesis Ho: b -  0 (test for relationship between length and weight); and p(=3.0): significance 
level of the null hypothesis Ho: b = 3.0 (test for isometry).

G I Parameter SD P (= 0) p(=3.0)
AU La -2.41814 0.12870973 2.2503E-58 4.229E-157

b 3.2453407 7.68027E-2 1.100E-157 1.50089E-3
2 La -2.01516 0.18685353 9.1939E-20 7.2572E-55

b 3.03557946 0.11098899 9.0433E-56 0.74905291
4 & 5 La -2.25838 0.28654131 5.2148E-11 3.4586E-27

b 3.14654473 0.17194837 4.0286E-27 0.39724785
7 La -2.17383 0.14784577 2.4784E-32 1.1509E-80

b 3.07327912 8.84154E-2 3.2161E-80 0.40835048

The regression for all females generates the biggest b , suggesting that on 

average all individuals are ‘more rotund’ than for particular levels of maturity index; 

this is a contradiction of the previous reasoning that can lead to different speculations 

about the equality of a, presence of outliers and influential cases, insufficient data, etc.
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Scatter plots for all data and for each of the three groups show no apparent 

anomalies such as presence of outliers, or lack of data (Figure 5). Even the group with 

less data shows a linearly congruent distribution.

Login (Length)

Figure 5: Length-weight least square fits for North Sea Plaice females from 10 to 15 years 
of age, all of them and at three levels of gonad maturity. All individuals (a), with maturity 
index 2 (b), with maturity indices 4 and 5 (c), and maturity index 7 (d).

If females with maturity indices 4 and 5 are ‘more rotund’ and less heavy than 

the rest, then in this case either weight is not an exclusive function of the volume, or 

the volume has nothing to do with b, or b is inversely proportional to volume. From

2.4.1.4 (Influence of density on the generalized relative condition factor), we know that 

b is an exclusive result of the morphometric growth, and an apparent variation of b can 

mask the effect of density when density behaves as a variable and not as a constant. In 

this case the difference in b for each group is not a result of changes in morphometric 

growth, but of changes in density in the product of coefficients. In living organisms the 

geometric proportion between total length and height of female plaice does not change, 

and the width does not vary appreciably, in fact, the gonads are visible as a sausage
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like longitudinal protuberance in the lower side of the body, which produces an slight 

increment in volume.

In the plot of fitted curves (Figure 6), the heavier group is the one with maturity 

index 2 (open circles), and the lighter is the one with maturity index 7 (filled circles); 

fishes with maturity indices 4 and 5 (open diamonds) are in between and very close to 

the three groups pooled together (line). In this case heaviness is the reference property 

and its estimator the total weight as a function of total length and the parameters of the 

length-weight relationship. Females with gonad index 2 are heavier than spawning 

females, and after they are spent their weight becomes lower than before the 

reproductive stage. Unfortunately data for other longitudinal dimensions (height and 

width) are not available in order to check variations in volume and assess the influence 

of density, but assuming no decrease of volume for spawning females with respect to 

females with maturity index 2, their lightness suggest a change in density (see 2.4.1.4: 

Influence of density on the generalized relative condition factor, p. 31).

Figure 6: Fitted Length-weight curves for North Sea Plaice females from 10 to 15 years of 
age and three levels of gonad maturity. Line: all females pooled together, open circles: 
maturity index 2, open diamonds: maturity indices 4 and 5, and filled circles: maturity index 7.

Once spent (maturity index 7), a further decrease in weight is observed and 

also a possibly reduction in volume may happen. Shulman & Love 1999 point to a 

heavy increase of protein in fishes before the spawning season and during the juvenile 

stage with an increase in weight, a change in the body chemical composition (protein
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and lipids) during the spawning season, and a depletion of protein after spawning. 

These authors also say that protein is removed from the musculature and substituted by 

liquid in the post-spawning period, and “the length/weight ratio therefore 

underestimates the loss of nutritional ‘condition’”. Those changes described by 

Shulman & Love 1999 are clearly evidence of body density change.

By taking the length-weight relationship for all females from 10 to 15 years of 

age as reference regardless of their maturity index and their average length, the 

generalised relative condition factor can be estimated as an indicator of condition 

intended as heaviness.

Consequently with the length-weight relationship of an ellipsoid-like shape 

(equation (7)), density and the orthogonal dimensions must be measured in order to 

assess condition in terms of fitness. An alternative option is to construct categorical 

tables and plots, or plots of percentile curves (Murphy et al. 1990; Childress 1991) and 

carry out comparative evaluations.

2.5 CONCLUSIONS

Some of the following conclusions have been reported previously by others as 

observations while working with fish populations, but not as a result of a theoretical 

analysis as undertaken in this study. Conclusions 3, 5, 8, 9, and 13 refute the validity of 

many conclusions based on the allometric constants, published to date. Conclusion 7 

clarifies an important source of misunderstanding when changes in the sum of 

allometric constants (SAC) of the equation for the length-weight relationship of an 

ellipsoid-like shape (equation (7)) are attributed exclusively to morphometric changes, 

particularly to ‘rotundness’ without considering the density factor.

1) The employment of reference values (i.e. theoretical values, historically 

recorded parameters and data values, and experimental results) and constant 

expressions (i.e. the Fulton condition factor) will induce deterministic error if the 

analysed data do not follow the original assumptions on which the reference values and 

expressions were based.
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2) Total weight does not depend exclusively on volume, but also on the 

morphometric growth factor and specific Gravity (density).

3) SAC is always a constant parameter in the length-weight relationship and its 

magnitude is exclusively a product of the morphometric growth.

4) A SAC = 3.0 does not mean that weight is exclusively related to the body 

volume.

5) A SAC * 3.0 will always mean allometry, if no other variables than L, H, 

and D (for instance p) are involved.

6) The influence of density should be evaluated before considering the 

estimation of the expected weight.

7) In the length-weight relationship of an ellipsoid-like shape, and length- 

weight relationship, a linear variation of p  will only affect the sum of coefficients 

(SC), and if non-linear will alter mainly the sum of allometric constants (SAC).

8) The concept of isometry that is based on the magnitude of b in the length- 

weight relationship of an ellipsoid-like shape (equation (7)), and length-weight 

relationship (equation (1)), must be reconsidered in the fact that SAC = \+bw+bD can 

still be equal to 3.0 for bn bo, and may be the product of a non-constant density.

9) Condition has been erroneously viewed as only one property. It has to be 

separated at least into two different concepts: heaviness and fitness.

10) For the determination of condition as heaviness, total weight is the best 

response variable and length from head to tail the best predictor.

11) For determination of condition as fitness, total weight must be evaluated by 

considering different categorical variables.

12) There is no ideal or optimal biomass and size, therefore, the weight 

estimated from the length-weight relationship and the length-weight relationship of an 

ellipsoid-like shape does not have to be considered as that, but as the one that is the 

product o f the average population distribution.
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13) Departures from 1.0 in the condition factor may reflect departures from an 

average condition, but also the presence o f other variables that have not been 

considered as predictors, for instance density.

2.6 ADDITIONAL COMMENTARIES ON CONDITION ASSESSMENT 

FROM THE MORPHOMETRIC APPROACH

As mentioned previously, the length-weight relationship is the result of the 

empirical description of the distribution of weight with respect to length. Effort has 

been expended to find an empirical association between biological properties (such as 

nutritional status, feeding success, fitness, energy storage, maturity etc.) and 

morphometry (particularly the length-weight relationship). Most of the results were 

only useful for the particular cases for which they were developed because many of the 

biological properties are difficult to score (Ferron & Leggett 1994), and because clear 

empirical relationships are usually not based on theory, particularly when they seem 

too obvious (such is the case of the length-weight relationship).

Sometimes results depend on the approach used to assess the biological 

properties, for example, muscular fitness (as protein production) can be better 

monitored by the DNA/RNA ratio rather than the relative condition factor (Shulman & 

Love 1999). This emphasises the importance of the knowledge of the theoretical 

background for even the simpler models, and the correct meaning of the parameters 

involved, as it was done in this study for the length-weight relationship and the 

condition factor.

Regarding the morphometric approach, there are two main avenues for relating 

shape and condition: the 3-D modelling of shape, and the construction of a geometric 

framework of the body known as body truss. Here the 3-D modelling of a pisciform 

shape was approximated to a tri-dimensional ellipsoid (Figure 7).

More complex shapes with more than one three-dimensional Cartesian axis of 

growth in the same longitudinal axis can be built from a combination of simpler 

geometric solids as truncated ellipsoids, cylinders and truncated cones. For most fish 

species the simple ellipsoid form with one tri-dimensional point of growth (three 

orthogonal linear dimensions: length, height and width) is enough to describe the
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relationship between biomass (weight) and size. This is why the length-weight 

relationship is so simple.

Figure 7: Example of 3-D modelling. Fish like shape with 1 set o f 3 orthogonal axis of growth 
approximated by 2 truncated ellipsoids.

The truss approach is oriented to finding the most influential body dimensions 

(principal shape components) that can describe the body form regardless of size (the 

morphometric growth is considered), and their association to the body biomass. In the 

following example of body truss (Figure 8) the shape components are shown as linear 

dimensions taken from several control points (landmarks) in a 2-D view of the body 

(Busacker et al. 1990).

Figure 8: Example of body truss. 10 control points and 21 shape components (1-2, 1-3, 2-4, ... 
9-10).
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The number of landmarks, linear dimensions and mathematical relationships 

are different for each shape. Equations (9) and (10) are examples of models for 

estimation of biomass based on the truss approach for x, shape components. The first 

equation describes a linear function and the second a polynomial function between 

components.

LogcM  = {C0 + CjLoge (x, )} (Hockaday et al. 2000)
n (9)

M : Weight.

Co to C ,: Constants 

x , : i Shape component

n
(Hockaday et al. 2000)

( 10)

/=!

p i : Positive integer
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3. Age and Growth: Size at Age.

3.1 ABSTRACT

Growth, defined as increases in size at age, is basically the result of the 

organisms’ metabolic activity. Morphological, physiological, ethological and 

ecological factors determine the growth process. A common problem found when 

estimating growth in size at age for populations is to decide which model to choose. 

The choice of the best model mainly depends on the trend in complexity of the 

response variable (size), growth characteristics, objective pursued, and the availability 

of data. Other recommendations concentrate mainly on statistical population attributes, 

particularly shape and distribution of residuals, structure of the statistical error, and 

power of fit. For growth in size at age, in this study I consider the earlier 

recommendations and propose an alternative method for selection of the best model 

between the most widely used ones for fish stock assessment (Logistic, von 

Bertalanffy, and Richards, including their exponential expressions, and Gompertz). 

The method is based on two general models, one for single exponential and other for 

double exponential curves. The selection is done by exploring the stability and 

accuracy of each parameter during the fitting of the general models, by the evaluation 

o f the goodness of fit, interpretation of the statistical error distribution and the 

residuals’ distribution shape. The model worked well on data sets with known 

distributions and also on a real previously published data set.

3.2 JUSTIFICATION

Length and weight are the most common dimensions measured to indicate fish 

size. Weight is the most direct indicator of biomass, but because it is highly variable 

with respect to age, a more uniform longitudinal dimension is preferred when a good 

length -  weight relationship exists. The increase in size with respect to age is the result 

of the organisms’ metabolic activity; this phenomenon is known as somatic growth. 

Morphological, physiological, ethological and ecological factors not only determine 

the growth process, but when extreme they also affect the survival success.

Despite the multitude of factors that influence growth, the relationships 

between size and age follow distinctive patterns in most fishes that can be acceptably
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described by simple mathematical expressions. For the adult stanza (Le Cren 1951; 

Ricker 1979) of the life cycle, the most widely used equations to describe somatic 

growth are derivations of a rate of increase in size. The basic equation template (Ricker 

1979) from which most of the growth models are derived is:

T r a y - f { y )

dy ,
T r f ( y ) - o y

when /(>>) < a y , and 

when / (_y) > ay

y: size (length or weight)

a: constant

f(y): function of size

( 11)

( 12)

The Logistic equation is a single exponential derivation in linear scale1 of 

equation (11), The Gompertz equation is derived from a multiplicative scale version of 

equation (11), the von Bertalanfiy equation is the best known derivation of equation 

(12), and the Richards equation is a derivation of equation (11) that includes an 

allometric factor. All these equations are frequently used in fish biology and stock 

assessment, and for some authors (West et al. 2001) most of their parameters have a 

biological meaning, but at least for Ricker (1979), these are practically useful, even 

without a proven biological basis.

A common problem found when estimating growth is to decide which growth 

model to choose. There are different approaches to find an acceptable answer, 

depending principally on the following four factors:

1) The trend in complexity of the response variable (shaped by the number of 

variables involved, data variability, cohorts’ diversity).

1 The term Linear scale refers to mathematical linear scales, while Multiplicative scale denotes non-linear trend, but 
can be linearized by logarithmic transformation. The central tendency estimator for Linear scales is the average, 
and the statistical error is variance related (additive error); The central tendency estimator for multiplicative or 
logarithmic scales is the arithmetic average of the logarithmic data, whose antilogarithm equals the geometric 
mean, and the error is related to the variance of the logarithmic data (non-additive error).
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2) The growth characteristics (longevity, seasonal changes in metabolism, 

morphometry, differential growth due to precocity, dwarfism or 

polymorphism).

3) The objective pursued (estimation of key parameters such as growth rate and 

asymptotic size, data estimation, hypothesis testing, pattern recognition, 

identification of important events as periods of rapid growth, inflection points, 

strength of seasonal trends).

4) The availability of data (gear efficiency, sample representativeness, distribution 

and aggregation patterns, missing values).

In most cases the selection of specific models has been primarily for practical 

reasons, such as compatibility o f the output with previous results, reduction of effort, 

time and costs, and methodological resemblance to similar studies; secondarily from 

the objective pursued; thirdly from the data availability, and lastly from the need to 

emphasize the fundamental attributes of the population.

In general, modem recommendations for the selection of the best model 

concentrate mostly on the population attributes due to the development of powerful 

tools for sampling and data processing, particularly mathematical and statistical 

methods, and hardware and computing algorithms. Quinn & Deriso (1999) recommend 

taking the shape of the data distribution and the structure of the statistical error 

distribution as the main criteria. For Hilbom & Mangel (1997), the choice of the best 

model is the result of the confrontation of the results against the original data (power of 

fit) from different approaches; they mention the following three approaches: Classical 

hypothesis testing, likelihood approach (McCallum 2000), and bayesian approach 

(Quinn & Deriso 1999; McCallum 2000).

Specifically for growth (size at age), in this study I consider these 

recommendations and propose a method for the selection of the best model between 

Logistic, von Bertalanffy, Richards, and Gompertz. The proposed method is based on 

two general models, one for single exponential (general model 1) and other for double 

exponential patterns (general model 2). The problem is tackled by exploring the 

stability and accuracy of each parameter during the fitting of either of the General 

Models (see Properties to analyse, p. 62), by the evaluation of the goodness of fit 

(Sokal & Rohlf 1969), the interpretation of the distribution of the statistical error and
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the shape of the distribution of residuals, the value of the sum of squared residuals 

(RSS: Hoaglin et al. 1983; Quinn & Deriso 1999; McCallum 2000), the value o f the 

maximum log likelihood (MLL: Cerrato 1990; Quinn & Deriso 1999; McCallum 

2000), and the Schnute’s F statistic (Schnute 1981; Quinn & Deriso 1999). The 

General Models also include the potential to explore the exponential expression of 

Logistic, Bertalanffy, and Richards curves, different parameterisations of Gompertz, 

and simple exponential functions.

For fitting purposes I developed a computer programme based on the 

Levenberg- Marquardt method (Marquardt 1963), which is an iterative routine (Press 

et al. 1989), and followed a likelihood approach for confrontation between observed 

and predicted values by using goodness of fit. I support the numerical analysis with 

graphical representation of the outputs, including scatter plots of observed data, fitted 

results, and distribution of residuals.

3.3 OBJECTIVE

The objective is to develop a method for selection of the best size-at-age 

growth model from the most commonly used methods in fish stock assessment: 

Logistic, von Bertalanffy, Richards, and Gompertz, and exponential variants of the 

Logistic, von Bertalanffy, and Richards.

The main size-at-age growth models can be pooled in two general models: 

single and double exponential. The capacity of each individual model as part of any 

generalised model to fit a particular data set will depend on the following properties: 

trend compatibility of the data distribution respect to the curve shape of the model, 

power of fit, fit convergence and stability (tendency to reach a single solution), and 

compared accuracy between models (capacity to output sound values) of each 

parameter and each particular model in a generalised model.

3.4 ANTECEDENTS

3.4.1 IMPORTANCE OF AGE AND GROWTH IN FISHERY SCIENCE

For Hilbom & Walters (1992) p. 21, “The essential biological feature of any 

fishery is the dynamics of the fish population; the analysis of population dynamics
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involves trying to make predictions about the birth, death, growth, and movement 

processes of the fish”. In practical terms, the biological background of fishery science 

relies on three parameters: recruitment, mortality, and growth (Brander 1994). In 

ecological terms, recruitment is the main input and mortality the main output of 

individual units to the fishery, while individual growth is the main source of biomass 

gain, and size-at-age is considered as the main factor of body size growth (Cushing 

1981).

3.4.2 ANTECEDENTS OF SIZE AT AGE GROWTH

Growth is a highly complex process in fish and is influenced by numerous 

biotic and abiotic factors (Brett 1979). Abiotic factors such as salinity and dietary 

carbohydrate levels (Rosas et al. 2001), oxygen consumption and metabolism 

(Pichavant et al. 2000), light, survival, metabolism and behaviour (Appelbaum & 

Kamler 2000), and temperature and metabolism (Burel et al. 1996), are examples of 

environmental variables affecting growth. Biotic factors may be physiologic, for 

example the metamorphic process from larval to juvenile stages and its effect on 

protein production (Christensen & Korsgaard 1999); ethologic, for instance the 

strategy of early seaward migration and the minimisation rate of protein turnover 

(Morgan et al. 2000); or purely metabolic as feeding time and ration with relation to 

nitrogen metabolism (Verbeeten et al. 1999).

Growth is an extensively studied phenomenon and has been investigated in 

deep from different approaches. There are many publications concerning growth in 

fish biology, fish stock assessment, and fisheries, but perhaps the most complete and 

widely known are those by Bagenal & Tesh 1978, Summerfelt & Hall 1978, Ursin 

1979, Weatherley & Gill 1987, and Busacker et al. 1990.

The first attempts to quantitatively model body growth for populations of fish 

were oriented to separately describe different stanza2 (Le Cren 1951; Ricker 1979) of 

the life cycle by using exponential, power, and logarithmically linearised power 

functions. According to Ricker (1979), the Gompertz equation is perhaps the oldest

2 Stanza is a term that means stage and refers to the different anatomic-morphologic-physiologic phases of the body 
development. According to Ricker 1979, the term stanza was introduced by Vastenov 1953 (I doubt it because Le 
Cren, 1951 already utilized it in the same way) and it is used in the late history life stages of fishes in order to 
differentiate from the early developmental stages.
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growth curve for older stanza originally developed in 1825 for the distribution of age 

in human populations. Verhulst (in Ricker 1979) proposed the logistic curve in 1838, 

and Putter (in Ricker 1979) introduced an equation for growth in length at age in 1920 

that according to Ricker (1979) was reparameterizated by von Bertalanffy in 1934 (see 

3.4.3.1, p. 55). Different researchers have developed versions of these equations either 

independently or by reparameterizing them. Most applications of these models in fish 

biology, stock assessment, and fisheries are reparameterizations of the original 

differential forms.

The word ‘time’ is taken in this thesis as a synonym of age because age is a 

measurement of time relative to an initial event in life history.

3.4.3 MATHEMATICAL DESCRIPTION OF GROWTH

The absolute rate of growth is defined as —  = ——— , with w\ as the weight
dt 12 t j

at time t\ and m>2 as weight at time ¡2, while the relative rate of growth (also known as

the specific or intrinsic growth rate) is: dw
wdt g wx(t2 - t x)

By setting f ( y )  = by2, y  = w , a/b = Wx , and b = g  in equation (11), the 

absolute rate of growth in the logistic equation for weight (equation (13)) is obtained 

(Ricker 1979)

dw g  2 gw(Wx - w )  (13)
dt * Wm WK

w: Weight at time = t 

Wx : Asymptotic weight

g: Instantaneous rate of growth when w approaches to 0

The absolute rate of growth for the Gompertz equation (equation (14)) is 

derived also from equation (11) by defining / (y ) = by(ln(y) ) , y  = w , = Wx , and 

b = g  (Gregg et al. 1964; Ricker 1979)
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(14)

The absolute rate of growth for Putter and von Bertalanffy equations (equation 

(15)) is obtained by setting a = k and b/a -  Lx for length in equation (12):

~  = K L x - l )
dt

k : Putter growth coefficient or Brody coefficient 

Lx : asymptotic length

(15)

The absolute rate of growth for Richards equation is (Ricker 1979; McCallum

2000):

—  = C ,W  +  C - ,W n
dt 1 2

cx,c2,n  constant

(16)

3.4.3.1 Models

There are two general attributes shared by these growth models: a similar trend, 

and an asymptotic tendency. The trend, typically positive for fishes, can be evaluated 

according to its rate of change, and the asymptotic tendency in relation to an 

asymptotic value (asymptotic size). These two parameters, rate of change and 

asymptotic size, appear in the integrated forms of the absolute growth rates of 

equations (13) to (15). The integrated equations used for this work are parameterised 

versions of the original integrations.

Mathematically, parameterisation means any transformation from a 

substitution, addition, or elimination of parameters of the basic integrated form by 

considering special or general situations. For example, for the Putter equation, the 

integrated form
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l = L „ -c e -k'

Can be parameterisated to the von Bertalanffy model by considering the special 

case when / = 0. At / = 0 the value of t will be equal to to, and c will be:

0 = A» -  ce~K ; ce~K = LX; c = Lxek,° .

Assuming the increment of length from lo -  0 to /, (the length at age = /):

/, = /, - 0  = 1, = L , - ce~h -  (L.-<*-*'•) = c(e-“-

and substituting c by Lxek<" (when / = 0):

/, = L j '" ( e ~ kl° - e~kl) = LX( \ - e K ) = Lx (1 - eklh~,)) = L J \ - e k(- ^ )  .

Which is the length-at-age von Bertalanffy model.

Analogous procedures are followed for this and other growth models, thus 

creating different variants of the original models. In this study the term versions is also 

used to refer to those different variants of the original model.

The Logistic model for growth (Equation (17)), has three parameters (Meyer et 

at. 1999).

5 = i 00(l + e’i(' '

sx : Asymptotic Size

k: Growth Rate constant (steepness of the sigmoidal curve) 

tf. Time at the inflection point (kJ2)

(17)

The generalised von Bertalanffy model, equation (18), includes four parameters 

(McCallum 2000).

J As reaffirmed in 3.4.3.2, p. 59, k is not the actual growth rate, but a constant contained in the root differential 
equation from where these equations are derived (actual growth rate function), k is mainly known as the "Intrinsic 
rate of growth”).
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* = »„(i-< r*< '-«y (18)

sx : Asymptotic Size

k: Growth rate constant (steepness o f the curve) 

b: Allometric constant (b ~  1 when s = length; b ~  3 when s = weight) 

to- Time at which 5 = 0

The Richards model, equation (19), includes also four parameters (Sit & Poulin 

1994; Gille 1998).

sK: Asymptotic Size

k: Growth rate constant (steepness of the curve) 

c: Constant 

b : Allometric constant

There are at least three different equations derived from the Gompertz model as 

a result of different parameterisation strategies. Gompertz 1 (equation (20)) has four 

parameters and is hard to fit considering the four parameters, because k appears twice 

in it. By considering X/k as a single constant the fitting is easier. Gompertz 2 has three 

different parameters and is also difficult to fit because one of the k's is associated with 

1 Ik. Gompertz 3 is the basic integration of equation (14) with three parameters.

(19)

o

(Quinn & Deriso 1999) (20)

Yo'- Theoretical Initial Size 

X, k: Constants

(Quinn & Deriso 1999) (21)

Ym: Asymptotic Size

X, k: Constants

to: Time at which the Yt = 0
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Y  = Y  e~e±t 1 00 ̂
-k (l-l,)

f  k, and t,: Constants

Transformed from (Sit & Poulin (22) 

1994)

Gompertz 1, 2 and 3 are the most commonly used parameterised versions of 

the Gompertz model. In the following description the symbol Y, is used instead of 3 in 

order to differentiate them from the previous single exponential models.

A version of the Gompertz model (Gompertz 4) developed by Jorgensen in 

1994 (in Gamito 1998) has three parameters only (equation (23)). This is a variant of 

equation (20) for weight, with ¡j.0 = X/k. Fewer parameters speed up the fitting process 

and introduce less quantitative noise to the model, but too few parameters make the 

fitting by non-linear methods unstable.

wt\ Size (weight) at time = t 

wo'. Theoretical Initial Size (initial weight) 

/no: X/k 

t: time (age)

(23)

Equations (24) to (26) are exponential versions of equations (17) to (19) where 

a multiplicative scale of size is assumed. These are the equivalent of the natural 

logarithm transformation of size (F(t) = Ln(,s’)), and keep the same relationship between 

its parameters as the originals in equations (17) to (19), but their actual magnitudes are 

different (for example, sx in equation (18) equals es* in equation (24)). Equation (24) 

is the exponential form of the generalised von Bertalanffy curve, equation (25) is the 

Generalised Richards exponential, and equation (26) the Generalised Logistic 

exponential.
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r  = ¿ - 1 ' - ' '  """’F 

Y =  '" '" f

Y  =  ( « “  ""“f

(24)

(25)

(26)

3.43.2 Characteristics of the growth models: asymptotic behaviour, k, to, and 

error distribution scale

All the equations previously presented include an upper asymptotic trend with 

Lx and WK as the factors defining the asymptotic size in all cases, with exception of 

equations (20) and (23).

The constant k denotes the rate of change of the actual growth rate, which is the 

original differential expression from where the different equations where derived. This 

is not the actual growth rate, but the growth rates for each model are their first 

derivatives with respect to time (/) of the parameterised expressions: Growth rate = 

ds/dt. to is a product of the parameterisation in different equations and stands for the 

theoretical initial time where 5 = 0.

Equations (17) to (19) work well when sizes are distributed normally for each 

age class. When this is not the case, handling of non-normality can be managed by 

changing the scale of the response variable in three ways: by using the Gompertz 

model (which is based on the assumption of a logarithmic growth rate in their 

differential expressions), by using the exponential expressions of equations (17) to 

(19), and by transforming the response and predictor variables (usually by log- 

transformation).

3.4.33 Comparison of parameters

Asymptotic parameters for different equations are statistically comparable as 

long as their error distribution is the same (normal or normally transformed). For 

models fitted by non-linear methods as the Levenberg-Marquardt, direct comparison of 

individual parameters is not recommended (Quinn & Deriso 1999; McCallum 2000). 

Cerrato 1990 found that the maximum log likelihood statistics is the best parameter for
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comparisons between models considering their full set of parameters at once. The 

Schnute’s F statistics (Schnute 1981) is recommended when a particular model with 

fewer parameters is confronted against a general one. Growth rate for a particular age- 

class can be estimated by solving the first derivative (see 3.4.3.2, above).

3.5 METHOD

The method developed in this thesis consists of iteratively checking several 

properties described below during and after the sequential fit of each individual model 

contained in two general models. The fit of each model begins with the setting of all 

parameters but one as constant. If the fit successfully converges, the parameter is 

considered stable, a new parameter will be set as variable and the process is repeated 

until all parameters in the model become estimated or until no fit is possible. From the 

successfully fitted models, other properties also described bellow will be further 

considered to select the best model among them. The Levenberg-Marquardt method 

(Marquardt 1963) was chosen for data fitting and an ad hoc computer programme for 

its application was constructed.

Sample pre-processing is recommended before the implementation of the 

method. The general models, the criteria for selection of parameters and models, and 

the procedure of pre-processing are described as I follow.

3.5.1 GENERAL MODELS

I propose two general models that will contain the growth models to explore: a 

single exponential model (equation (27)), and a double exponential model (equation 

(28)).

The single exponential model (general model 1) is the generalised model for 

the Logistic, von Bertalanffy, and Richards models. All these growth models share the 

same parameters and can be considered as special cases of the Richards model. 

General model 1 incorporates two more parameters a, and c, which make it possible to 

convert between models.
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( a - c e ^ J (27)

s: Size

/: Time (age)

sx : Asymptotic Size

a: Constant (utility constant)

c: Constant (switch for the logistic model)

k: Constant (steepness of the curve)

to- Constant (parameterised age at s — 0)

b: Allometric constant

The double exponential model (general model 2) is the generalised model for 

the Gompertz model and related parameterised equations, and for the exponential 

Logistic, von Bertalanffy, and Richards models (see exponentials below). Some 

parameters in the general model 2 have a different meaning, depending on the model 

analysed, for instance, cx = wo in general model 2 (G2) when exploring equations (20) 

and (23), and ca = T. (asymptotic size) for equations (21) and (22) for Gompertz 1

S : Size 

t: Time (age)

K G » Gw 7 Gj, cb, cc, and ct0\ Constants

Parameters a and ca have a value of 1.0 in all models included in the general 

models 1 and 2. a and ca are not substituted by the unit constant value and are 

maintained as parameters in order to provide further compatibility with single 

exponential equations, for example the following equation can be derived from 

equation (27) after setting a = 0, c = -1, and m= sx .

(28)

s = m eM> o - 0
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3.5.2 PROPERTIES TO ANALYSE: CRITERIA FOR SELECTING THE

BEST MODEL

The trend compatibility of the data distribution with respect to the model shape 

will be evaluated in two ways: assessing the visual concordance between data and 

fitted curve (analysis of scatter plots of residuals), and assessing the visual and 

quantitative concordance between data and the fitted curve by using averages, 

medians, or geometric means (statistics of location: Sokal & Rohlf 1969) as central 

tendency estimators of size at each age value. An alternative to the second method is 

the visual examination of the trend followed by box and whisker plots (Velleman & 

Hoaglin 1981; Hoaglin et al. 1983) of size per each age group.

The power of fit is measured by the value of the sum of squared residuals 

(RSS: Hoaglin et al. 1983), and the value of the maximum log likelihood (MLL: 

Schnute 1981, 1982; Cerrato 1990; Quinn & Deriso 1999; Haddon 2001). The 

significance of individual models with respect to the general models is assessed with 

the Schnute’s F test (SF: Schnute 1981; Quinn & Deriso 1999). Individual models with 

the lowest RSS and highest MLL are preferred; and stable individual models with non

significant Schnute F statistics are regarded as highly stable.

When referring to models or parameters, the term stability will be used in this 

thesis to indicate if a fit trial converges to a single solution when estimating 

parameters. An individual growth model will be stable as part of a general model 

(general models 1 or 2) if  the magnitude of its parameters does not change after the 

remaining constant parameters in the general model are set as variables. When data are 

fitted equally well by more than one model, the most stable parameters will be the ones 

that show similar magnitudes in all models.

The term accuracy will be related to the capacity to output exact values (those 

closer to the actual ones). The best model will therefore be the more accurate among 

the stable models. Because the actual values for each parameter are unknown and 

assuming that data are non-skewed and representative of the population, a particular 

model will be considered accurate when its sum of squared residuals becomes 

minimum (the lowest RSS), its residuals distribute normally along the predictor and 

response variables without characteristic patterns, and when the particular model 

results non-significant with respect to the general model it belongs. When data are
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fitted equally well by more than two models, the most accurate parameters will be the 

ones with higher maximum log likelihood (MLL), lowest Schnute’s F statistics (FS), 

and lowest RSS.

Stability and accuracy depend on the model equation (trend shape, presence 

and number of parameters, maximums, minimums, discontinuities, singularities), 

fitting method (initial guess for each parameter, fit direction, stability, parameters and 

acceptance threshold, number of iterations), rounding error, and data sampling 

properties (sample size, sample representativeness, outliers, precision, distribution of 

residuals, error scale -arithmetic or geometric).

When no fit, no stability or poor accuracy is found in a general or particular 

model, it indicates that the model is not appropriate to describe the data.

All the analyses will be undertaken using individual data for size and age. 

Statistics of location (Sokal & Rohlf 1969) will only be used in the pre-processing 

stage because they are helpful for visualising the central tendency of size at each age 

by considering their means, medians, or geometrical means instead individual values. 

Statistics of location will not be used in the main part of the methodological process 

because their application would ignore the standard error product of individual 

measurements, which is one of the criteria used to assess the power of fit.

3.5.3 SAMPLE PRE-PROCESSING

In order to evaluate the criteria in practice it must be remembered that the 

distribution of the statistical error, the non-additivity of the error, and the presence of 

outliers are three factors that strongly affect the fitting efficiency and predictability, 

influencing the selection of the best model, particularly for small samples4. A prior 

exploration of the size distribution at each age class by box and whisker plots 

(Velleman & Hoaglin 1981; Hoaglin et al. 1983) is recommended to provide visual

4 With respect to this issue, there is no real consensus as to how small a sample must be to be considered small 
(n<10?< 10,000?). Based on statistical distributions (basically gaussian distribution), statisticians have set 30 as the 
limit for small data samples normally distributed (Sokal & Rohlf 1969); nevertheless, the point here is that the 
effect of outliers increases as the sample size decreases independently of its distribution, a non-additive error will 
skew the parameters if considered as additive, and a non-normal distribution of error goes against the parametrical 
assumptions. As an example, the fit from a sample of 10 individuals with a uniform residual error of 0.1 and no 
outliers can be more reliable than a sample of 2000 with residual error of 1.0 and one outlier 10 times bigger than 
the residual variance, if both are representative samples.
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elements to identify the distribution of the statistical error, the non-additivity of the 

error, and the presence of outliers; the table of their non-parametrical boundaries can 

be numerically helpful. A posterior tracking of the source and meaning of the 

inconsistencies will help in deciding the significance of each alternative model and 

how to cope with the outliers. Stem and leaf plots (Velleman & Hoaglin 1981; Hoaglin 

et al. 1983) and normality tests are more powerful tools than box plots to visualise and 

quantify these factors, but unless enough data are available, these strict criteria are 

irrelevant. The use of statistics of location (Sokal & Rohlf 1969) is also recommended.

3.5.4 THE LEVENBERG - MARQUARDT METHOD (LMM)

The Levenberg -  Marquardt method (Marquardt 1963) is a minimization 

method used for non-linear curve fitting. It switches between the inverse-Hessian 

method (Chapra & Canale 1999) when far from the minimum, and the steepest descent 

method when near the minimum (Marquardt 1963). It uses the first derivative to 

calculate new parameter values iteratively, and is considered as a good minimization 

method (Press et al. 1989). This method is widely used in science and engineering and 

is contained in most commercial computer mathematical packages.

A limitation found when using commercial computer packages is in that 

usually commercial computer packages do not give complete customisation, and in 

addition full control over calculations is not possible. This is because the makers of 

commercial computer packages usually do not publish the basic algorithms they 

implement, and their manuals describe the theory and mathematical backgrounds only, 

but not the actual code. In order to sort out this limitation, I made the implementation 

of the Levenberg-Marquardt Method (LMM) in a computer programme written in 

Pascal language (Delphi 5, INPRISE 1999). Part of the code was adapted from free 

code (Press et al. 1989; Burton et al. 1996; Mikulik 1998; Debord 2001, 2002; Pronin 

2002). The building of the ad hoc programme was also necessary because the main 

purpose of the method proposed in this report is to explore and analyse rather than 

simply fit growth data.

Earlier computer implementations of the LMM were not stable or accurate 

enough (different output was obtained for different initial values and sometimes the fit 

was not achieved). The efficiency and accuracy depended on an appropriate initial
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guess of each parameter and the direction of the initial approximation. Finding more 

than one solution was common, and some programmes included a contour plot of the 

iterative output in order to help identify the potential solutions. Haddon (2001) 

suggests the Simplex Algorithm (Nelder & Mead 1965) as an accurate alternative.

The version of the LMM employed here was mainly adapted from the free 

code “Data Master 2000” (Pronin 2002). The compiled programme proved to be stable 

and accurate in all tests done. Even when some unstable behaviour was detected while 

fitting two of the equations in the general models, a reliable solution was found by 

selecting different combinations of variables, which is an indication of the power of the 

programme developed.

3.5.4.1 Partial derivatives

The partial derivatives to solve the inverse Hessian matrixes of the Levenberg- 

Marquardt method (Table 6 and Table 7) with the computer programme developed to 

fit the general models 1 and 2 were derived and verified against the commercial 

computer programme Mathematica (Wolfram Research, 2002. Web Mathematica: 

http://www.calcl01.com/webMathematica/MSP/Calcl01/WalkD).

Table 6 and Table 7 include the equations for the actual instantaneous rates of 

growth of the general models 1 and 2. Both growth rates are not constant, but a 

function of Age, which means that they are dependent on age.
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Table 6: Partial derivatives for General Model 1. s : Size; t : Time (age); Sx  : Asymptotic Size; 
a: Constant (utility constant); c  : Constant (switch for the logistic model); k  : Constant (steepness 
of the curve); t0 : Constant (parameterised age at s  = 0); b : Allometric constant.
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Table 7: Partial derivatives for General Model 2. 5 : Size; t : Time (age); k  : Constant 
(steepness of the curve); Cx  , to Q ,: Constants.

General model 2

Instantaneous rate 
of growth

s = c w e c **{Ca 6
c( f k(t~cto) ĉb

as , *-— = ̂ c mchcck e 
at

ca-cce h+k (%-<) ca - c cek{%~'\ r

Derivatives

dc„
= e

dS = c e
dc„

a s

as
ac„

,c” (c" Ce<; (,° *) +* '^c _ c e k {c«>-,)y

a s

dk
— c c ckc

cq' - 'sec'-'b ■
■c{ t - 1) e c^ ~ c /  (c'° ' * ) +* (Cq _ c/  (s-oy-

as
dc,

= ~cxc.mchc,.k e '"""T (Ca _ c/  _ v * («.-<))

f -  = r  k  -  v * (c* -  c /  ->)
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3.5.4.2 Control of parameters

When a parameter is set as constant, its derivative becomes equal to zero and 

the programme uses the constant value given by the user instead the value of the 

derivative (0), which is a practical way to convert a parameter to a constant in order to 

differentiate between models. For example, in the Richards model c is set as variable 

and to as a constant equal to zero, and for the von Bertalanffy model, to is set as 

variable and c as a constant equal to one. This is equivalent to a conversion of the 

general model into a particular model by reducing the number of variables. Default 

values for each parameter are set automatically accordingly to the particular model 

chosen, but manual settings may be required depending on each data set when stability 

and accuracy of particular parameters or models is assessed. All parameters in both 

general models can be evaluated if the model results are stable for the data set in 

question, but a guess close to their actual value is necessary. To overcome this problem 

it is recommended to set all parameters as constant with average or expected values 

and make them a variable one at a time.

3.5.5 EVALUATION SEQUENCE

General model 1 was explored as the first option, followed by general model 2. 

When non-normal distribution of the residuals is detected, general model 1 may be 

discarded and a log transformation of the variables can be performed. The simpler 

equations in each proposed model have to be fitted first, followed by the complex ones 

in order to detect hard to fit and unstable variables. The following protocol for fitting 

the models was developed:

First: select the initial values for each parameter. Because the actual values for 

each parameter are unknown, I suggest the initial guesses displayed in Table 8 for the 

general model 1: this is because k oscillates between 0 and 3 for many species, the 

allometric constant b is usually close to 1.0 for length and 3.0 for weight, and in most 

cases to is close to 0.0. Table 16 contains initial values suggested for parameters of the 

general model 2.
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Table 8: Initial settings for fitting von Bertalanffy (vBL for length and vBW for weight), 
Richards (R), and Logistic (L) for the fish species Smooth Oreo (Pseudocyttus
maculatus). Sm (Asymptotic size), k (Slope steepness), b (Allometric constant), and c and a 
(Constants) are the growth parameters contained in the General Model 1.

vBL vBW R L
1000 1000 1000 1000

k 0.5 0.5 0.5 0.5

to 0 0 0 0
b 1 1 3 1 -1
c 1 1 1 -1
a 1 1 1 1

Table 9: Initial settings for fitting models in General Model 2 for Smooth Oreo 
{Pseudocyttus maculatus). Sx (Asymptotic size), k (Slope steepness), b (Allometric constant), 
and c and a (Constants) are growth parameters for Gompertz 1 (Gl), Gompertz 2 (G2), 
Gompertz 3 (G3), Gompertz 4 (G4), Exponential of von Bertalanffy (vBE), exponential o f 
Richards (RE), and Exponential o f Logistic (LE).

k
G

Ca

Cc

C,0
Cb

Gl G2 G3 G4 vBE RE_______LE
1 1 1 1 1 1 1

0.5 0.5 0.5 0.5 0.5 0.5 0.5
0 0 0 0 0 0 0
1 1 1 1 1 1 -1
1 1 1 1 1 1 -1
1 0 0 1 1 1 1
1 100 1 1 1 1 1

Second: The first fit trial will consider all parameters as constant, except the 

asymptote (it is expected that the estimation of the asymptotic parameters becomes 

powerfully consistent because of the accuracy of the LMM).

Third: the processes of fitting will continue with the sequential change of the 

other parameters from constants to variables with the less stable parameters been 

converted last (to for example).

3.5.6 CHOOSING THE BEST MODEL

The algorithm implemented in my computer programme forces calculations to 

run at least once. This is particularly useful to overcome intermediate solutions that 

may be unstable or rough approximations of the final value. By forcing calculations
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until the parameters do not change, a better fit can be achieved with more, reliable 

significant digits. There is also a tendency to keep new fits close to the previous one, as 

long as the new one becomes better than the previous. This behaviour is an advantage 

if the more stable and accurate parameters are introduced first, otherwise differences in 

the order of the selection of parameters may lead to different results.

Exploration of the simplest models should be the starting point. All parameters 

must be kept constant, except the more stable ones (usually the asymptotic parameter). 

Once an output is obtained, a new iteration has to be forced until the maximum number 

of iterations is reached, or until the output does not differ. If the output reaches a stable 

value, this output will be considered as a stable fit for that parameter.

After a stable parameter is fitted, a new parameter has to be converted to a 

variable, repeating the process until a stable fit occurs or stability is discarded. 

Complex models (with more parameters) should be explored at the end until the 

complete general model is ascertained.

From the mathematical point of view, the best individual model will be the 

most stable one. If more than one individual model is stable, accuracy has to be 

considered as a deciding criterion (see 3.5.2, p. 62).

With the purpose o f considering if a fit is acceptable, the following must be 

accomplished.

a) Residuals have to be distributed without an identifiable pattern.

b) Residuals have to be distributed normally for each value of the predictor

variable along the range of distribution of the response variable.

c) A low RSS and a high MLL will be preferred.

In order to have an independent estimation of the curve trend, it is also 

recommended to fit the same model by using the statistics of location average, 

geometric mean, and median size at each individual length. Regardless of the scale of 

the error distribution, the median should always be closer to the arithmetic and 

geometric means. This fit does not have any statistical value, but will help to visualise 

the general trend by reducing the effects of scale and outliers. When the distribution of 

the error is normal and outliers are absent, more accurate results will be achieved.
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During the application of the method, empirical and biological explanations for 

the model parameters must be secondary to the mathematical reasoning.

3.6 RESULTS

3.6.1 PERFORMANCE ON A THEORETICAL DATA SET

3.6.1.1 The data

The ability to estimate the actual parameters of a model depends, among other 

factors, on the data precision. To assess the power of the proposed programme to find 

the actual values for each parameter, the programme output was tested with different 

data sets with known parameters and different precisions (different parameters were 

tested for each individual model). The following is the result of a test applied to the 

von Bertalanffy model.

A set of 50 data for theoretical ages 1 to 50 was created for the von Bertalanffy 

model with Lx = 35, ¿ = 0.085, and to = 0.1666.

Theoretical lengths were estimated by rounding to 1, 2, 3, and 4 decimal places 

in order to assess the influence of data precision on the fit. Table 10 contains the 

estimated lengths. vBLl is the length estimated with precision of one digit, vBL2 is the 

length estimated with precision of two digits, and so on.

Theoretical weights were calculated assuming the following parameters for the 

length -  weight relationship.

W = 0.0065L31

Ten decimal places as is shown in Table 11 were maintained for the estimated 

weights to reduce extra noise due to its multiplicative scale. vBWl is the weight 

calculated from vBLl, vBW2 the weight calculated from vBL2, and so on.
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Table 10: Hypothetical data sets with four levels of precision. vBLl: length rounded to one 
decimal place, vBL2: length rounded to two decimal places, and so on.

Age vBLl vBL2 vBL3 vBL4
1 2.4 2.39 2.394 2.3936
2 5.1 5.05 5.051 5.0506
3 7.5 7.49 7.491 7.4911
4 9.7 9.73 9.733 9.7328
5 11.8 11.79 11.792 11.7917
6 13.7 13.68 13.683 13.6829
7 15.4 15.42 15.42 15.42
8 17 17.02 17.016 17.0155
9 18.5 18.48 18.481 18.481
10 19.8 19.83 19.827 19.8271
11 21.1 21.06 21.064 21.0635
12 22.2 22.2 22.199 22.1992
13 23.2 23.24 23.242 23.2423
14 24.2 24.2 24.2 24.2004
15 25.1 25.08 25.08 25.0804
16 25.9 25.89 25.889 25.8888
17 26.6 26.63 26.631 26.6312
18 27.3 27.31 27.313 27.3132
19 27.9 27.94 27.94 27.9395
20 28.5 28.51 28.515 28.5149
21 29 29.04 29.043 29.0433
22 29.5 29.53 29.529 29.5287
23 30 29.97 29.975 29.9746
24 30.4 30.38 30.384 30.3841
25 30.8 30.76 30.76 30.7602

Age vBLl vBL2 vBL3 vBL4
26 31.1 31.11 31.106 31.1057
27 31.4 31.42 31.423 31.4231
28 31.7 31.71 31.715 31.7145
29 32 31.98 31.982 31.9823
30 32.2 32.23 32.228 32.2282
31 32.5 32.45 32.454 32.454
32 32.7 32.66 32.662 32.6615
33 32.9 32.85 32.852 32.8521
34 33 33.03 33.027 33.0271
35 33.2 33.19 33.188 33.1879
36 33.3 33.34 33.336 33.3355
37 33.5 33.47 33.471 33.4712
38 33.6 33.6 33.596 33.5957
39 33.7 33.71 33.71 33.7102
40 33.8 33.82 33.815 33.8153
41 33.9 33.91 33.912 33.9118
42 34 34 34 34.0005
43 34.1 34.08 34.082 34.0819
44 34.2 34.16 34.157 34.1567
45 34.2 34.23 34.225 34.2255
46 34.3 34.29 34.289 34.2886
47 34.3 34.35 34.347 34.3466
48 34.4 34.4 34.4 34.3998
49 34.4 34.45 34.449 34.4487
50 34.5 34.49 34.494 34.4936
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11: Estimated weights up to 10 decimal places calculated from Table 10. vBWl 
3onds to vBLl; vBW2 corresponds to vBL2, and so on.

vBWl vBW2 vBW3 vBW4

0.098077233 0.096815936 i 0.097319128 0.097268729
1.014801037 0.984275395 ; 0.98487973 0.984637966
3.354310589 3.340465506 3.341848269 3.341986566
7.445703413 7.51732214 7.524509574 7.524030267
13.66934105 13.63346201 13.64063271 13.63955694
21.71436406 21.61624522 21.63094386 21.6304538
31.20524461 31.33104751 31.33104751 31.33104751
42.39406027 42.54886498 42.51787345 42.51400059
55.09925347 54.91480604 54.92401846 54.92401846
68.01041837 68.33036973 68.29832881 68.29939668
82.83024922 82.34444256 82.39293613 82.38687338
96.96334238 96.96334238 96.94980309 96.95251085
111.1542595 111.7494361 111.7792514 111.7837242
126.6896077 126.6896077 126.6896077 126.6960993
141.8736994 141.5235475 141.5235475 141.5305448
156.3661075 156.1790271 156.1603274 156.1565876
169.8425221 170.4370359 170.4568772 170.460845'?
184.0846442 184.2937585 184.3565241 184.360709
196.9184401 197.7949513 197.7949513 197.7839787
210.3451112 210.5739919 210.6884955 210.6862051
221.9970228 222.9476269 223.0190331 223.0261746
234.0785433 234.8172741 234.7926244 234.7852298
246.5978275 245.8341767 245.9613404 245.9511657
256.9339336 256.4102855 256.5149572 256.5175744
267.5596245 266.4839046 266.4839046 266.4892759
275.7214556 275.9963833 : 275.88639 275.8781417
284.0503087 284.6115476 284.6957982 284.6986068
292.547957 292.8341396 292.9773021 292.9629837
301.2161751 300.6329516 300.6912395 300.6999834
307.0906254 307.9784321 307.919191 307.9251148
316.0470753 314.5422073 314.6624178 314.6624178
322.1153269 320.895418 320.956339 320.941108
328.262022 326.7179653 326.7796329 326.7827165
331.3649508 332.2996892 332.2061351 332.2092533
337.6303011 337.3151436 337.2521361 337.2489859
340.7928547 342.0634744 341.9362683 341.9203698
347.1780492 346.2151474 346.2472149 346.2536287
350.4008222 350.4008222 350.2715238 350.2618277
353.6438007 353.9692123 353.9692123 353.9757226
356.9070507 357.5621391 357.3982907 357.4081202
360.1906384 360.5201183 360.5860388 360.5794464
363.4946301 363.4946301 363.4946301 363.5112015
366.819092 366.1525588 366.2191752 366.2158442
370.1640903 368.8236224 368.72322 368.7131808
370.1640903 371.1716042 371.0035564 371.0203589
373.5296912 373.1922021 373.1584645 373.1449701
373.5296912 375.2202383 375.1186596 375.1051172
376.915961 376.915961 376.915961 376.9091678
376.915961 378.6168675 378.5827985 378.5725782
380.3229661 379.9813306 380.1179598 380.1042954
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3.6.1.2 The application of the method

It can be seen from the magnitude of the fitted parameters in Figure 9 that the 

resemblance to the original parameters increases for length with the data precision 

level. The fit improves generating smaller residuals squares sum (RSS), bigger 

maximum log likelihood (MLL), and lower orders of magnitude for residuals (10‘2, 10' 

3, and 10-4 cm).

Comparable results are obtained for weights (Table 12). In this case k is the 

more accurate parameter, followed by Wmf and b. to is the less accurate parameter 

(more distant to the actual value, i.e. less exact).

The capacity to assess the best model depends on the power to get a good fit 

(goodness of fit) and the confirmation that the model appropriately describes the data 

pattern. The tools employed here to measure the goodness of fit are the square sum of 

residuals (RSS) and the maximum log likelihood (MLL). A high MLL and a low RSS 

for a particular model indicates that such model should be preferred over the other 

alternatives. Plots of residuals are the tools to visually reveal whether the model is an 

adequate descriptor of the data. The visual analysis reveals patterns in the distribution 

of residuals if any, and models with residuals showing no systematic patterns are 

preferred.

To assess the ability of the programme to find the actual model, the programme 

output was tested with different data sets belonging to different classical growth 

models. Lengths were calculated for 50 hypothetical ages from 1 to 50 ages units, 

using theoretical parameters chosen in order to make the lengths at each age as close as 

possible between different models (Table 10). All lengths were rounded up to one 

significant digit to keep the maximum noise produced by rounding to the nearest when 

taking real measurements. The measurement of the degree of tolerance to data 

variability is not a target in this test; therefore, in order to avoid the effect o f other 

sources of error (e.g. Cerrato 1991; Pilling et al. 2002), perfect data sets were 

simulated for the testing of each model.

Both plots for residuals and fitted curve for the Logistical model are shown in 

Figure 10. As expected, the RSS and plot of residuals are powerful criteria for 

selection of the best model that describes the data when the model is stable. The best
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model has the lowest RSS, highest MLL, and its plot of residuals shows to the eye a 

more homogeneous distribution of residuals around 0.0 without particular distribution 

patterns.

vBLl

vBL2
n 50
Lmf 35.000980 rj
k 0.084989 60
to 0.166878 G<L>
RSS 0.000356
MLL 225.3395

C/D
3T3

&

0.006 -H •
SS 0.004- _I

“ •• *•0 002- • . - • *
-0 004- #

■ |l I II | Ml l| III l|l I II | I | 'III |l 1 I l| ' II I | II I I |l I I l| I I II |

0 10 20 30 40 50
Age

n 50
Linf
k

35.000181
0.084998 *560

to 0.166447 QJ
RSS 3.9045 xlO-6 i-l

MLL 338.1876

vBL3

n 50
L„f
k

35.000009
0.084999 *560

t0 0.166597 G<D
RSS 4.3955 xlO-8
MLL 450.3559

vBL4

Age

<33
r2" C/4 <L>

Age

Figure 9: Fit of a same data set at different levels of precision achieved by rounding 
individual lengths to one, two, three, and four decimal places. vBLl: length rounded to 1 
significant digit, vBL2: length rounded to 2 decimal places, and so on; L,:;/, k, and t,;. parameters 
of the von Bertalanffy model; RSS: square sum of residuals; MIA.: maximum log likelihood.
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Table 12: Parameters estimated for weights fitted from Table 11. vBWl corresponds to 
vBLl; vBW2 corresponds to vBL2, and so on.

Wmf
k
U)
b
RSS
M LL

vB W l vBW 2 vBW 3 vBW 4

396.9271 397.7707 397.6775 397.6711

0.0858 0.0849 0.0849 0.0850

-0.0629 0.1664 0.1665 0.1665

3.2209 3.0982 3.0999 3.1000

23.5610 0.2382 0.0027 3.1759

0.2195 62.7108 174.2553 285.7868

Richards von Bertalanffy

33 5 33.5105 34.2410 34.5829

0 18 0.1801 0.1062 0.0927

8 8 8.8079 0.7903

4 1.3094

1 Unstable

\
0.044962 20.6379 27.6255

99.2461 -47.8514 -54.8499

Sinf
k
to
b
c
a
RSS
M LL

ÜCc<u

von Bertalanffy

Age

o33
rs’ c/o

tí

2.51
2.0-1
1.5-1
1.0
0.5
0.0
-0.5
-1.0
-1.5 il |i il i |i i i  i| i n
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|l 1111 II II J ! I ! I J

40 50
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Figure 10: Results of the test for the ability of the programme to properly identify the 
logistic distribution from other single exponential models. Sinf. asymptotic length, k: 
intrinsic growth rate, t,;. time at which length is equal to zero, f and constants to differentiate 
between models, RSS: square sum o f residuals, MLL: maximum log likelihood.
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The data generated with the Richards model were a better fit with the Richards 

curve as shown in Figure 11 (lower RSS and higher MLL). Scatter plots and fitted 

curves no longer will be displayed for most of the remaining cases of this test because 

the residuals plots are more informative for revealing distribution patterns than the Age 

-  length plots and their fitted curves.

Original (Richards) Logistic Richards von Bertalanffy
Sinf 35 34.3073 35.0015 35.3164
k 0.12 0.1986 0.1196 0.1026
U) 0 8.8877 1.6166
b 1.55 1.5402
c 1 1.0012
a 1
RSS 22.5768 0.0363 2.3544
M LL -50.0064 104.3250 4.2486

Logistic Richards

02
-g
<L)

von Bertalanffy
0.8 O

0.6-i

0.4 -
0 .2 -

-0.2-E

-0.4-1

o o 

aS**ll|MI 1 |l II r| Ml l|'TTTTM ll|l lll|l IM| ■ lll|lll!]
0 10 20 30 40 50

Age

Figure 11: Results of the test for the ability of the programme to properly identify the 
Richards distribution from other single exponential models. Sinf: asymptotic length, k: 
intrinsic growth rate, time at which length is equal to zero, c and a-, constants to differentiate 
between models, RSS: square sum of residuals, MLL: maximum log likelihood.

In respect to RSS and MLL, the parameters shown in Table 13 suggest that the 

Richards model can equally fit a data set that distributes as the von Bertalanffy model. 

In this case RSS is virtually equal in both models. From a non-conservative approach 

the lower values of RSS and the higher MLL in the Richards model make it slightly 

better than von Bertalanffy. This can become important when calculating k and Sin f 

from lengths because they have to be equal in both fits regardless of the value of to, any 

departure of b in Richards from 1.0 means an allometric misfit masked in the von 

Bertalanffy to (as analysed more in deep in the next chapter).
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Original (von 
Bertalanffy)

Logistic Richards von Bertalanffy

S i n f 35 34.2194 34.9934 34.9966
k 0.12 0.2266 0.1201 0.11997
t() 2 8.2964 1.9925
b 1 1.0039
c 1 1.2689
a 1
R S S 40.5277 0.0423 0.0427
M LL -64.0478 100.6704 100.4465

Logistic Richards von Bertalanffy

Figure 12: Results of the test for the ability of the programme to properly identify the von 
Bertalanffy distribution from other single exponential models. Sinf: asymptotic length, k: 
intrinsic growth rate, l,;. time at which length is equal to zero, c and cr. constants to differentiate 
between models, RSS: square sum of residuals, MLL: maximum log likelihood.

With exception of the Gompertz 3 data, the models the data came from fitted 

the rest of the data sets better. Gompertz 3 data set was not fitted by the exponential of 

Richards, Gompertz 1 and 2 models at all. Gompertz 3 model was highly unstable even 

with its own data set.

Table 13: Results of the test for the ability of the programme to properly identify double 
exponential distributions from other double exponential models. Csinf. asymptotic length, 
k: intrinsic growth rate, CiO: time at which length is equal to zero, Ca, Cb, and Cc. constants to 
differentiate between models, RSS: square sum of residuals, MLL: maximum log likelihood.

S i n f
k

to
b
c
a

Cinf
RSS
M LL

Elo EvB Eri G1 G 2 G 4
-3.5501 3.5499 3.5470 2.2762 2.2845 2.2762
0.1199 0.1200 0.1201 0.1197 0.1201 0.1197
-0.7489 -4.7000 0 0 -3.2 x lO 19 0

0.5017 1 1 1
1.0016 1 1 1

1 1 1
3.5644 3.5623 3.5644

0.0380 0.0396 0.0451 0.0365 0.0349 0.0365
103.2692 102.2492 99.1251 104.1953 105.2739 104.1953
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Double exponential models resulted harder to fit than single exponential ones. 

The data sets used for testing the ability of the method to properly identify the double 

exponential distributions from other double exponential models where generated from 

the parameters listed in Table 14. Those parameters were selected in order to make 

individual lengths as similar as possible at each age in each model. Common 

parameters in all models were also kept as similar as possible; actually, k  is the same 

for all models while S in f is for most of them. Elo is the set o f parameters according 

with the exponential logistic model, EvB is the set with the exponential von 

Bertalanffy model, Eri the set with the exponential Richards model, G1 the set with the 

Gompertz 1 model, G2 with the Gompertz 2 model, G3 with the Gompertz 3 model, 

and G4 with the Gompertz 4 equation.

Table 14: Parameters used to simulate the data sets used for testing the ability of the 
method to properly identify the double exponential distributions from other double 
exponential models. Elo is the set o f parameters accordingly with the exponential logistic 
model, EvB with the exponential von Bertalanffy model, Eri for the exponential Richards 
model, G1 for the Gompertz 1 model, G2 for the Gompertz 2 model, G3 for the Gompertz 3 
model, and G4 for the Gompertz 4 equation.

Elo EvB Eri G1 G2 G3 G 4
S i n f -3.55 3.55 3.55 2.28 2.28 1 2.28
k 0.12 0.12 0.12 0.12 0.12 0.12 0.12
U) -0.75 -4.7 0 0 0 6.5 0
b -1 1 0.5 1 1 i 1
c -1 1 1 1 1 i 1
a 1 1 1 1 0 0 1
Cinf 1 1 1 3.55 3.5 35 3.55

3.6.1.3 Analysis of results

Precision is not a problem for the calculation of asymptotic size (in this case 

asymptotic length). The calculated value is 0.0089% units of length apart from the 

actual value, and 3 xlO'2 units away from the precision level used to register size (1 

xlO'1).

The calculated value is 0.1% units of length different from the actual value, but 

because the magnitude of k is in 1 xlO'3 unit, the magnitude of this parameter is more 

affected than the asymptotic length at the same precision level used to register size (1 

xlO '1).
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to is the parameter calculated with the lowest precision (0.5% units). The 

estimation of to will always be uncertain because size and age cannot be registered at 

higher precision levels. Fortunately, this parameter is usually not used for different 

purposes other than the growth equations.

A similar behaviour is observed for weight, but with a general level of 

precision 10 times lower than for length (asymptotic weight== 0.2%, k=  1%, to — 38%). 

This difference is quite high when considering that the variability (statistical error 

respect to the true value) depends on the precision o f the data (number of significant 

digits).

Stability was not important for excluding parameters and models in this 

theoretical case. Because the data sets for different models were designed to lay as 

close as possible to the others, the differences appear only when comparing the 

distribution o f residuals.

The lack o f stability for the Gompertz 3 model emphasises the need to set 

limits to the upper and lower values for models, by introducing both the asymptotic 

size (upper limit) and t0 (lower limit) as parameters: Gompertz 3 model does not 

include to. This is why it is hard to get a good fit when young or old individuals are 

absent in data sets. Based on the patterns in the distribution of residuals, the method 

was efficient for discarding the inappropriate models in such a way that with the 

exception of Gompertz 3 model all departures from the model where easily detected.

It is expected that the Richards model can fit data distributed accordingly to the 

generalised von Bertalanffy model because the later can be considered as a special case 

of the first as seen in the equations below. In practice the Richards model occasionally 

produces similar values for the parameters of the von Bertalanffy distribution and 

sometimes constitutes a better fit (smaller RSS, and bigger MLL).

5 = s„ ( l- = sK(1 - ce~kl) J  for c = eK

As a general conclusion, the method is effective in identifying the right model 

if  data are distributed according to any of the models the method is designed for. Other
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properties such as accuracy, and the ones suggested as part of pre-processing could not 

have been tested with this data set, but they will be applied in the following section.

3.6.2 APPLICATION ON A KNOWN CASE

The evaluation of the threshold data variability at which the method can find 

the best model is a task that goes beyond the original objectives o f this thesis; therefore 

no further attempt will be made for testing the method and the programme 

implemented on data sets with different levels of data variability. The application of 

the method on the following case is intended only to show the performance of the 

method on real data sets.

3.6.2.1 Problem

Smooth Oreo (Pseudocyttus maculatus Gilchrist, 1906) is a species exploited 

commercially for Australian local markets, including the Sydney Fish Market. The 

species belongs to the family Oreostomidae (Oreos), Order Zeiformes, and Class 

Actinopterygii (ray-finned fishes), and is distributed in the Southwest Atlantic 

(Heemstra 1990). Smith & Stewart (1994) estimated the von Bertalanffy parameters 

for this species from samples o f commercial catches off Tasmania (Table 22). They 

selected the von Bertalanffy model due to its wide usage in the field (it is useful for 

data comparisons) and made their estimations using a non-linear method of the SAS 

statistics computer package (SAS Institute Inc., Cary, NC).

The same data set used by Smith & Stewart (1994) is analysed in this review 

with the proposed method. The data set contains measurements o f age and standard 

length for 131 individuals of mixed sexes. Age is expressed in years and length in 

centimetres. Age was read to the closest year and length to the closest millimetre.

The objective is to assess if the von Bertalanffy model is the best model to 

describe this data set. Also to verily that the results obtained by the method proposed 

and the computer programme developed agree with those generated by other means.
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3.6.2.2 The application of the method

3.6.2.2.1 Pre-processing

Visual and semi-quantitative analysis of the data distribution with box and 

whisker plots (Hoaglin et al. 1983) and statistics of location (Sokal & Rohlf 1969) is 

considered as a purely qualitative tool. In the box & whisker plots for length at each 

age (Figure 13) most boxes look symmetrical around the median and the skewed ones 

are randomly positioned on the plot. The box H-Spread (distance between the upper 

and lower hinges) is shorter for younger ages. Although when not enough older fishes 

are available, this may suggest that a multiplicative error can be expected (non-additive 

error: multiplicative scale). A closer look to the scatter plots of the fit of the different 

models and their plots of residuals (Figure 14 to Figure 16) reveals that there is not a 

clear tendency for the residuals to increase with respect to length; therefore an additive 

error can be assumed and additive error based tests can be used for comparisons 

between models (maximum log likelihood: MLL and Schnute’s F test: SF).

As estimators of central tendency, the average and median values for length at 

each age class with more than two individuals per class (n>2) were similar at each age 

class (Table 16), which suggests that any skewness was not important.

The location at the mid distance between the two hinges of a box plot (MD) is 

a resistant parameter that indicates symmetry when equal to the median (for example, 

if median M = 3.5 and for upper hinge = 5.0 and lower hinge = 2.0, MD = (5+2)/2= 

3.5). For this sample (Table 16), both median and MD where similar in most age 

classes with n > 2; even so, they were very close to the average in most cases (a 

parametric non-resistant estimator of central tendency). The difference between 

median and MD was always smaller than the standard deviation in each age class, 

which implies that the variations fall within an acceptable level of statistical error. In 

50% of the age groups MD was higher than the median, in 45% it was lower and in 5% 

the values were equal. The pattern of the difference between MD and median was not 

length or age dependant and therefore not asymmetrical (i.e. is randomly distributed).
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Table 15: von Bertalanffy growth parameters for Smooth Oreo (P s e u d o c y t tu s  m a c u la tu s ) 
from average, geometric mean, and median length at each age class (46 age classes).
Average (A), Geometric Mean (GM), Median (M), and the parameters estimated (S&S) by Smith 
& Stewart (1994); RSS: residuals square sum, MLL: maximum log likelihood.

k U) L in f RSS MLL lNo. or 
Iterations

A 0.0336 -3.1818 57.2625 4.8215 -13.3933 4038
G M 0.0334 -3.1997 57.3130 4.8862 -13.6999 4179
M 0.0332 -3.2624 57.3794 5.2573 -15.3836 4147
S&S 0.051 1.05 50.94

In order to examine the general trend without the influence of many points, the 

von Bertalanfly model was fitted as a first step using average lengths at each age (year 

classes), using geometric mean lengths at each age, and using median lengths at each 

age (Table 15). Differences between the parameters were small, all curve fittings were 

achieved at similar number o f iterations, and RSS and MLL results were similar for the 

average and geometric mean. For medians this parameter was slightly higher.

A light s-shape trend can be noticed from the box & whisker plot (Figure 13). 

This s-shape trend is revealed clearer in the scatter plots of the statistics o f location 

(average, median, and geometric mean) with respect to age (Figure 18, p. 101).
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Length (cm)
Figure 13: Length at age distribution for Smooth Oreo (P se u d o c y ttu s  m acula tus).
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Table 16: Central tendency of Length at each age class for Smooth Oreo (Pseudocyttus m a cu la tu s). MD is the locarion at the mtd distance between 
upper and lower box plot hmges (for example, for upper hinge = 5.0 and lower hinge = 2.0, MD = (5+2)/2= 3.5).

Age Class 7 8 9 10 12 13 14 15 16 18 19 20
Average 18.6 18.95 17.3 19.75 21.8125 22.4833 22.4333 24.4625 27.5333 29.8666 32 29.7
Median 18.6 18.95 17.4 19.75 21.65 22.15 22.5 24.25 27.3 31 32 29.7
M D 18.6 18.95 17.325 19.75 21.725 21.95 22.85 23.7 27.7 30.15 32 29.7
n 2 2 3 2 8 6 9 8 6 3 1 2
Age Class 23 24 26 27 28 29 30 32 33 35 36 37
Average 37.4 37.25 38.1666 37.55 37.5 42 38.6 38.1333 39 41 43.95 38.7
Median 37.4 37.25 38.5 37.55 37 42 38.7 37.4 39 41 43.95 38.7
M D 37.4 37.25 38.25 37.55 37.5 42 38.6 37.95 39 41 43.95 38.7
n 1 2 3 2 4 1 4 3 2 3 2 2
Age Class 38 40 42 43 45 46 47 48 50 52 53 54
Average 43.3666 43.52 43.8 42 44.5428 42.8 45 48.0666 46.7428 46.3666 51.2333 49
Median 43 43 43.8 42 44 42.8 45 47.1 47 45.6 50.4 49
M D 43.275 44 43.8 42 43.9 42.8 45 47.825 46.825 46.175 51.025 49
n 3 5 1 1 7 1 1 3 7 3 3 1
Age Class 55 56 58 63 65 66 68 70 75 78
Average 48.8333 47.45 50 52.3 53 50 50.5 53 55.6 54
Median 50 47.45 50 52.3 53 50 50.5 53 55.6 54
M D 49.125 47.45 50 52.3 53 50 50.5 53 55.6 54
n 3 2 1 1 1 1 2 1 1 1
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3.62.2.2 Stability of single exponential models contained in general model 1

All models were tested using individual length and age data and not the central 

tendency estimators used previously in the pre-processing stage.

The logistic model fitted with no problems and resulted in stable parameters. 

The general model did not stabilise for all parameters set as variables. After 3xl06 

iterations, b and c increased, to decreased, and all of them varied without approaching 

to a particular value (Table 17). Because no clear tendency toward a constant result 

was detected, the process was stopped. The low maximum log likelihood for the fit of 

the logistic equation (just above of the one for the length-at-age von Bertalanffy which 

is the lowest: see Table 22), indicates that this is not the best fit. The unstable fit of the 

general model has a lower RSS and shows to be significant with respect of the logistic 

model according with the Schnute’s F test (SF). A non-significant SF for a stable 

particular model with respect to a general model indicates a highly stable particular 

model.

Table 17: Growth parameters for Smooth Oreo (P s e u d o c y ttu s  m a c u la tu s ) . Testing 
stability of the Logistic equation. Final values for all parameters (general model 1) contrasted 
with those in the Logistic model, a, c, and b  are kept constant in the logistic m odel (a— 1;
C=  -1; b =  -1); SF: Schnute’s F; Iter: number of iterations.

Linf
k

b

c
a

RSS
M LL

SF
Iter.

Logistic (a=  1; e= -1; b= -1)_____________General model 1
51.2376 52.8665
0.0754 0.0556

15.6210 -25.5039
-282.4160
-0.0250
1

775.1771 725.6616

-302.3330 -298.0095

SF= 4.2988 > (Fiui5(2, i26)= 3.07)
P) 3,000,001
(') Value of the constant parameter after set as variable. 
P> Not relevant.

The von Bertalanffy model fits the data well. Parameters a and c were very 

close to the a priori constant values (the difference was in the sixth significant digit, 

that is one less than the limit for the Pentium III processor that can be considered free 

from rounding error at its standard default settings), which according to the definition
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of stability previously given, means that parameters a and c were stable at their a priori 

constant values (Table 18, C and D), and b resulted an influencing parameter that 

modified the other parameters, particularly to after setting it as variable (Table 18, A 

and B). All von Bertalanffy parameters were in agreement with all parameters in 

general model 1 after setting b as variable (Table 18, B and E). The general model is 

no significant with respect to the von Bertalanffy length-at-age model (Table 18-A) 

and the generalised von Bertalanffy equation (Table 18-B). The generalised von 

Bertalanffy equation shows a better fit than the von Bertalanffy length-at-age model.

Table 18: Growth parameters for Smooth Oreo (P s e u d o c y ttu s  m a c u la tu s ) . Testing 
stability of the von Bertalanffy model. Parameters of the Bertalanffy model (A) contrasted 
with those of the general model 1 after setting each constant one by one as variable (B, C, D), 
and final values for all parameters set as variables (E); SF: Schnute’s F.

A) a= 1; c= 1; b= 1 B) a= 1; c= 1 C ) a=  1

Linf 56.2693 55.5782 55.5782
k 0.0355 0.0384 0.0384

to -1.9935 -3.6572 -3.6572
b 1.1660 1.1660
c 1.0000000000046
a

RSS 708.07270 707.4447 707.4447
M LL -296.4023 -296.3442 -296.3442

SF SF= 0.055< (F0.05(2,126)-- 3.07) SF< lTO -“  < (Fo.o5(i,i26)= 3.92)

D) c= 1 E ) General model 1
Linf 55.5782 55.5782

k 0.0384 0.0384

to -3.6572 -3.6572
b 1.1660 1.16600)
c 0.999999951280)

a 1.000000000156 0.99999999893 (»
RSS 707.4447 707.4447

(t) Value of the constant parameter after set as variable.

The Richards Model was successfully fitted to the data (Table 19). By keeping 

t0 = 0 as the Richards model states, the fitting variation concentrates on c. When a is 

set as variable there is redundancy in c and L inf that introduces unnecessary noise to 

the model (Table 19, B), due to c/a in Table 19-B equals c in Table 19-A. k and b stay 

as the most stable parameters in all situations (to the sixth and fifth significant decimal 

respectively), and L inf and k remain as the more accurate parameters after both to and a 

are set as a constant (Table 19, A and C). Richards Model is no significant with respect
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to general model 1, and RSS is smaller than the one for the von Bertalanffy length-at- 

age equation (see Table 18-A and Table 19-A), but comparable with the generalised 

von Bertalanffy when added with the morphometric power constant b (Table 18-B and 

Table 19-A). MLL is bigger than the one for the von Bertalanffy length-at-age 

equation (see Table 18-A and Table 19-A), and similar to the generalised von 

Bertalanffy.

Table 19: Growth parameters for Smooth Oreo (Pseudocyttus Caculates). Testing 
stability of the Richards model. Parameters of the Richards model (A), a set as variable (B), 
and final values for all parameters set as variables (C); SF: Schnute’s F; SF1: Fo.osp, i26)i SF2:
F o.05(1, 126)-

A) t(f= 0; a= \

oIIm

C) General model 1
L i n f 55.5782 51.1488 55.5782

k 0.0384 0.0384 0.0384

to -1.8122 xlO-60)
b 1.1660 1.1660 1.1660
c 0.8689 0.9330 0.8689
a 1.0738 707.4447(9

RSS 707.4447 707.4447 -296.3442
M LL -296.3442 -296.3442

SF SF= 9.1*1014 <  (Foos= 3.07) SF< 1.0*10* < ( F q,q5 =  3.92)

(9 Value of the constant parameter after been set as variable.

3.6.2.2.3 Stability of double exponential versions of models contained in 

general model 2

The exponential version of the logistic model resulted unstable. The best fit 

showed strong residual heteroscedasticity and inaccurate values (cTO =-3.8670, k= 

0.1073, and fo= 0.5474).

The exponential version of the Richards model showed a stable fit with lower 

RSS and higher MLL than those for the other double exponential models. All 

parameters were accurate and stable (Table 20). RSS for the exponential version of the 

von Bertalanffy length-at-age model is similar to the Gompertz 1, and Gompertz 2 

models (Table 20 and Table 21). MLL is also comparable to the Gompertz 1, and 

Gompertz 2 models (Table 20 and Table 21). The exponential of the Richards model is 

the best double exponential model in general group 2 for describing this data set (lower 

RSS and higher MLL: Table 22).
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Table 20: Growth parameters for Smooth Oreo (P s e u d o c y ttu s  m a c u la tu s ) . Testing 
stability of the von Bertalanffy and Richards Exponential models (general model 2). von
Bertalanffy (A) with all parameters set as variables after setting ch — 1, c. — 1 and c =  1 as initial 
defaults; Richards (B) with all parameters beginning with 0, ct — 1, and c= 1 as default; RSS: 
Residuals square root; MLL: Maximum log likelihood; SF: Scnute’s F statistics.

A) vB c a= \\C h =  1; c c = 1 B) Ri ca=  1; cc = 1
L i n f V) 52.8738 55.3570

GcO 3.9679 4.0138
Ca

Cc 1.0000
Cm -15.1738
Cb 0.2703
k 0.0555 0.0399

RSS 725.5268 710.6233
MLL -297.9973 -296.6378

SF SF= 6.9 xl0 4<  (Fo.o5(i,i25)= 3.05) SF=3.0 xl0'6< (F(u)5(i, i25)= 3.9)

(0) Calculated from CJ0O (In(L in f =  Cm ).

3.6.2.2.4 Stability of the Gompertz type models

Gompertz type functions (parameterisations of the Gompertz model) were 

fitted by setting parameters as variables in the following sequence: c k ,  c sx , c ,0. 

Gompertz 1, Gompertz 2 and Gompertz 4 models were fitted successfully and all the 

parameters were accurate and stable, and comparable to general model 2 after 

converting all parameters to variables (Table 21). Gompertz 3 was unstable for all 

parameters but for Linf and h, which were lower than for the other double exponential 

models.

As was said before, all Gompertz variants are the same model with different 

parameterisations. Actually Gompertz 4 and Gompertz 2 are identical for fitting 

purposes; therefore both fits show exactly the same values for each parameter. The 

small differences in c¿, cc, and cto between the three models are likely to be due to 

computing error. The difference between them is two significant digits smaller than the 

data precision (1 mm). RSS is the highest for Gompertz 1, Gompertz 2 and Gompertz 

4 equations with respect to the other fitted models (Table 21 and Table 22). Gompertz 

models 1, 2, and 4 have virtually the same MLL. Their MLL is the lowest with respect 

to the other models (Table 21 and Table 22).
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Table 21: Growth parameters for Smooth Oreo (P s e u d o c y ttu s  m a c u la tu s ) . Testing 
stability of the Gompertz 1, 2, and 4 models (general model 2). Gompertz 1 (A) after setting 
cb — 1, cc =  1, c =  1, and ¡rrt=  0 as defaults; Gompertz 2 (B) after setting c =  1, c)= 0, and c. =  1 as 
defaults; full General model 2 (C); RSS: Residuals square sum; MLL: maximum log likelihood; 
SF: Schnute’s F statistics.

A) Gompertz 1 B) Gompertz 2 C) All parameters but ca
C , 9.5900 « 52.8743 7.0865 0)

C.s* 1.7071 1.7071 2.74522
k 0.0555 0.0555 0.0516

Ca

Cc
1.0000

C,() -1.8742 xlO 8 -8.2507
Ch

0.7884
RSS 725.5268 725.5268 719.7128

MLL -297.9973 -297.9973 -297.4703
SF SF= 0.5048< F„,iso, i25>= 3.05 SF= 0.3365< Fo.o5(3, 125)= 3.04

(') C, is equivalent to the length at age — 0.0.

Smith & Stewart (1994) did not present any plot of residuals, so I made one 

from their data and the parameters of the model reported by them (F-SS in Table 22). I 

also calculated the RSS within the same procedure in order to compare the goodness of 

fit against my results. The fit of the Smith & Stewart (1994) data was undertaken with 

their calculated k and t0 to estimate the RSS. The resulting Linf was 0.1 cm higher than 

that reported, and comparing with a plot of their residuals (Figure 14) the plot was 

found acceptably similar to the one originally published. The RSS calculated directly 

from the data and the equation given by Smith & Stewart resulted similar to the 

estimated by the fit (834.1429> 832.9531). The difference lies in the level of precision 

used in reporting individual parameters.

Plots of the von Bertalanffy, Logistic, and Richards curves (Figure 15), 

exponential versions of these (Figure 16), and of the Gompertz type (Figure 17) were 

obtained except for Gompertz 3 and the exponential of the logistic model. Growth 

parameters for all equations except for Gompertz 3 and the exponential of the logistic 

were successfully calculated (Table 22). Gompertz 3 model was non-stable for cl0. 

Only k and L inf were obtained for Gompertz 3.

The logistic model produced results different to the von Bertalanfiy and 

Richards (Table 22): lower to and ¿/«/flattened the curve, despite the bigger value of k
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(0.07 > 0.03). This resulted in a slightly bigger concavity of the curve to the left, under 

estimating length at younger ages and also under estimating length at older ages.

The plots of residuals in all cases looked similar. The number of iterations is 

not included because it depends on the threshold selected for the calculation of 

parameters and RSS, and on the initial guess of the parameters; those settings differ in 

different cases.

k was the most consistent parameter (stable and accurate), particularly for 

double exponential equations, and lower values were found for von Bertalanffy and 

Richards models. L in f was similar in Gompertz type curves, and smaller for general 

model 1 equations, to and c,o presented different values between general models (it was 

highly variable).
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Table 22: Growth parameters for Smooth Oreo (P s e u d o c y t tu s  m a c u la tu s ) . von Bertalanffy 
model (vBSS) estimated with SAS by Smith & Stewart (1994); von Bertalanffy model (F-SS) 
estimated with the authors data, k  and /,; Logistic (Lo), von Bertalanffy (vB), and Richards (Ri) 
for general model 1; Exponential versions of Logistic (E-Lo), von Bertalanffy (E-vB), and 
Richards (E-Ri) for group 2 in general model 2; Gompertz 1 and Gompertz 2 (Quinn & Deriso 
1999), Gompertz 3 (Sit & Poulin 1994), and Gompertz 4 (Gamito 1998) as derivations o f the 
Gompertz model (Gol, Go2, Go3, and Go4) in group 3 for general model 2.

General Model 1 
Group 1

vBSS F-SS Lo vB Ri
L in f 50.94 51.0697 51.2376 56.2693 55.5782
k 0.051 0.051 0.0754 0.0355 0.0384
to 1.05 1.05 15.6210 -1.9935
b 1.1660
c 0.8689
RSS 832.9531 775.1771 708.07270 707.4447
M LL -307.0415 -302.3330 | -296.4023 -296.3442
S F o.025 >3.07 >3.07 <3.07 <3.07

General Model 2
Group 2 Group 3

E-Lo E-vB E-Ri Gol Go2 Go3 Go4
L in f 52.8738 ' 55.3570 “ 52.8743 52.4751 52.8743
k 0.0555 0.0399 0.0555 0.0555 0.0363 0.0555
Cm -15.1738 -1.8710-« xxxx -1.87 10«
Cb

JJ
3 0.2705

C x
c3
C/5 9.5900 b 52.8743 ----- 52.8743

Cs x
cp 3.9679 4.0138 1.7071 1.7071 1.7071

RSS 725.5268 710.6233 725.5268 725.5768 ----- 725.5268
M LL -297.9973 -296.6378 -297.9973 -297.9973 -297.9973
S F q.025 < 3.05 < 3.05 <3.05 <3.04 <3.04

¿/«/Asymptotic size = s„ in general model 1 
k: Intrinsic rate of growth 
t0 : Theoretical age (years) at length = 0 
b: Allometric constant 
c: Constant

RSS: Calculated Residual Sum of Squares 
n: sample size = 131.
MLL: maximum log likelihood.

C ,„ : Constant homologous t0 

Co, c ,  , and C „ :  constant
-------- Could not be calculated
xxxx: with no approximation to a 

particular value 
a C„  =  ]n (L in f)
b “initial instantaneous size” (Quinn & 

Deriso 1999): Theoretical size 
(length) at age = 0
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Figure 14: Growth parameters for Smooth Oreo (P s e u d o c y ttu s  m a c u la tu s ) . Calculated by 
Smith & Stewart (1994). a) Fitted von Bertalanffy curve and observed data; b) Residuals - fitted 
model; c) Fitted curve with the programme developed.
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Figure 15: Growth parameters for Smooth Oreo (P s e u d o c y ttu s  m a cu la tu s):  general model
1. a) Fitted von Bertalanffy curve, b) Residuals — fitted von Bertalanffy model, c) Fitted Logistic 
curve, d) Fitted Richards curve.
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Figure 16: Growth parameters for Smooth Oreo (P se u d o c y ttu s  m a c u la tu s):  general model 
2 (exponential versions), a) Fitted exponential von Bertalanffy curve; b) Residuals (exponential 
von Bertalanffy) - fitted model; c) Fitted exponential Logistic curve; c) Fitted exponential 
Richards curve.
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Figure 17: Growth parameters for Smooth Oreo (P seudocy ttu s  m aculatus): general model 
2 (Gompertz type), a) Fitted Gompertz 4; b) fitted Gompertz 1; c) Fitted Gompertz 2.
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3.6.2.3 Analysis of results

3.6.2.3.1 Pre-processing

There is no evidence o f non-normal distribution of residual error (fits with 

arithmetic and geometrical mean are identical, and length visually appears to distribute 

normally at each age class). The statistical error can be assumed to be additive (length 

spread does not increase with age); therefore additive error based parameters and 

statistical tests such as MLL and the Schnute’s F statistics are suitable for model 

comparisons.

The distribution of length against age data follows an s-shape trend, so the von 

Bertalanffy model for length-at-age data is discarded as an appropriate model for this 

data set. All the remaining models match s-shape distributions; consequently their 

goodness of fit, accuracy, and stability will decide which of them is the most adequate.

3.6.2.3.2 Fitting

All models with the exception of Gompertz 3 and the exponential version of 

the logistic model fitted acceptably the data set. The good fit of the logistic curve 

suggests an s-shaped function.

a is redundant and useless as a meaningful variable in all models analysed (it 

resorts to a value of 1.0 when is set as variable), consequently it should to be kept 

constant as equal to 1.0 in all models.

Fits for von Bertalanfiy and Richards equations resulted better than the original 

estimated by Smith & Stewart (S&S) using SAS because of their higher MLL and 

lower RSS. This results indicate that the implementation of the Levenberg-marquardt 

method for fitting done here gives better result than the one in SAS at the time the 

calculations by Smith & Stewart (1994) were done.

The Schnute’s F test (SF) for S&S resulted significant when comparing the 

parameters obtained with SAS against general model 1, suggesting that such fit may 

not be considered as acceptable. Surely the model rejection is influenced by the low 

level of precision used by Smith & Stewart in reporting individual measurements, but 

the extent of the influence may not be enough to explain such high MLL.
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Despite the good fit of the double exponential models, Richards and von 

Bertalanffy better fitted the data set (lower RSS and higher MLL). From all models the 

Richards equation seems to be the best model because it shows the lowest RSS and the 

highest MLL, and matches with the perception of an s-shape trend.

3.6.2.3.3 Stability

All single exponential models contained in general model 1 with exception of 

the logistic showed to be highly stable (with non-significant SF when compared with 

the general model they belong). The logistic model is therefore discarded as a potential 

option, nevertheless the logistic function may be considered as a reference to evaluate 

the magnitude o f the estimated parameters and the general data trend just because it 

presented a good fit (based on RSS).

The most stable parameters were the asymptotic length (Linf) and k in all 

models; therefore, the model to choose should include at least one o f these parameters.

The effect of b over to, k  and Linf when introduced into the von Bertalanffy 

model (which makes k and L in f similar to those in the Richards equation) suggests that 

either an allometric factor could be masked in the original von Bertalanffy equation, 

producing apparent senseless values of to (see next chapter), or that the von Bertalanffy 

model is not adequate to describe the data set. As mentioned at the end of 3.6.1.3, 

Richards and the length-at-age von Bertalanffy model are mathematically the same 

when b equals to 1.0. Different values for to, k  and L in f between both models strength 

the possibility that an allometric factor may be influencing the von Bertalanffy model 

(b * 1). Such influence may also explain the higher von Bertalanffy SF (0.005> 9 

10'14), but it does not result big enough to become significant in comparison with 

general model 1. Regardless of the magnitude of the allometric factor, both Richards 

and von Bertalaffy result the most stable models. The stability o f the Richards model 

and the exponential versions of the functions o f group 1, Gompertz 1, Gompertz 2, and 

Gompertz 4 curves also imply the best model possibility should be s-shaped.

3.6.2.3.4 Accuracy

Accuracy cannot be properly assessed for the logistic model because b and c 

are not likely to change to positive values without a change of model. Even when the
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logistic model follows an s-shape trend and is well fitted, its parameters are less 

reliable because it has a higher RSS and it under estimates the length of fishes that are 

too young and too old.

The exponential of Richards is the most accurate of the double exponential 

models (SF= 3.0 1 O'6), followed by the exponential of the von Bertalanffy (SF= 6.9 

1 O'4). Actually the magnitude of the parameters of the exponential of Richards is close 

to the von Bertalanffy and Richards models.

Gompertz 3 was hard to fit, reducing the possibility of a good assessment of the 

accuracy for each parameter in the double exponential curves. This behaviour was 

previously detected with the theoretical data set.

Parameters in general model 1 are more accurate than those in general model 2 

(higher MLL and lower SF), and the differences in magnitude between the curves in 

general model 2 can be considered unacceptable even if we take into account that the 

differences fall within the level of precision used when recording individual 

measurements. This result does not contradict the idea that an s-shaped model is the 

most likely to best describe the data set.

Because the true value of each parameter is unknown, the most accurate 

models are expected to be the ones in which their parameters converge to the same 

value regardless if  new constant parameters are converted into variables (those with the 

lowest SF when compared to their general models), so their parameters can be 

considered the most accurate and expected to be the closer to the real value. In this 

case the models with lowest SF were Richards and von Bertalanffy.

3.6.2.3.5 General evaluation

Based on stability and accuracy, the best model is expected to be s-shaped. 

Among the single exponential models available, the classic von Bertalanffy length-at 

age curve does not follow an s-shape trend (therefore is discarded).

Up to this point a double exponential curve do not match with the parameters 

and model fitted with SAS by Smith & Stewart (1994). Observing the following, sheds 

light on this discrepancy:
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1) The fit obtained by S AS slightly under estimates length of older and younger 

fishes (see Figure 14-A compared with Figure 15-A and notice the upper comers of the 

plot in Figure 14-B compared with Figure 15-B). This can be also seen in the residuals 

plot (Figure 14-B), which followed a linear pattern for individuals older than 35 years 

(bottom left to top right), which is more obvious than the one for the fitted von 

Bertalanffy (Figure 15-B).

2) Residuals for the exponential von Bertalanffy (Figure 16-B) are more 

homogeneous to the eye (around 0.0) than the ones in the original fit (Figure 14-B). 

The under estimation for old and very small fishes is lower (notice the upper left and 

right comers of the plot in Figure 14-B compared with Figure 16-B). This lends more 

weight to the suggestion of an s-shape model.

3) Average, geometric mean and median size at each age class (Figure 18 and 

Figure 19) show that an s-shape is more likely, and that the growth pattern may be 

made up of several stanza (Le Cren 1951). As stated before, the work with location 

statistics (means, medians, and geometrical means) has no statistical importance 

because it neglects the individual spread error, but is valuable in identifying trends.

4) The parameters and model fitted with SAS show the biggest RSS, the lowest 

MLL and SF results significant, which means that such fit is not the best to describe 

the data set.

Applying the previous findings to the original data set, the Richards function is 

expected to be the best descriptor of the growth (length at age) of Smooth Oreo 

Pseudocyttus maculatus if there is no influence of a morphometric factor (see next 

chapter).
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Figure 18: Distribution of Location statistics (Length at each Age) for Smooth Oreo 
(P s e u d o c y t tu s  m a c u la tu i) . A) Average length at age; B) Geometric mean at age; C) Median at
age.
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3.7 CONCLUSIONS

3.7.1 THE MODEL

As the data follow an s-shape trend; the best model to describe them must be an 

S-Shaped function. This discards the von Bertalanffy model.

k, and Linf, are the only quantitatively significant parameters in all equations 

because they are the most stable and accurate, to may have no place in the model (it is 

not stable or accurate).

Richards model results the best descriptor of the Oreo data distribution.

3.7.2 THE DATA

Statistically speaking, a high quality data set was explored: no influential and 

no aberrant residuals (Hoaglin et al. 1983), no influential data, and most ages 

represented. However, more younger and older fishes would improve the fit.

More analysis with complementary information sources is necessary in order to 

explore the apparent exponential stages, which may be indicative of stanza with a non

annual periodicity. Sex, cohort identification, allometry, reproductive cycle, and 

migratory behaviour are examples o f such complementary information.

3.7.3 THE METHOD

Even when simple, this method showed its power for discarding severe cases 

o f instability and lack of accuracy of parameters and models between the two proposed 

general models, and it was helpful in identifying the best model based on the 

distribution of the data, and the goodness of fit.

The Levenberg-Marquardt method implemented for data fitting generated a 

better fit than the one included in SAS when Smith & Stewart (1994) originally fitted 

their data with the von Bertalanffy model.

Some improvements are necessary, particularly developing rules to define the 

initial guess based on intrinsic properties of each data set with respect to each model.
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3.8 COMMENTARIES

Different fitting methods and different commercially available computer 

programmes may produce different outputs as happened with the fit by Smith & 

Stewart (1994) using SAS compared with the computer programme developed during 

this study. For data interpolation purposes and gross pattern description, any of the 

well fitted models are equally as good as that estimated with SAS. However, more 

specialist tools are required for a greater assessment of key parameters such as growth 

rate and asymptotic size, pattern recognition, inflection points, and identification of 

important events such as periods of rapid growth, strength of seasonal trends, etc.

The efficiency o f the method described, strongly relies on the computer 

programme developed, with the advantage that any part of the algorithm can be 

checked and optimised. This is not as easy with commercial packages were there may 

be no access to the basic algorithm. The main matter is not to discuss which 

programme is better, but to emphasise the importance of knowing what is inside the 

tool and how it works (not just the fundamentals) in order to totally understand and 

make the analysis o f data interactive.

The analysis undertaken was based on a data set, which was assumed to be 

unbiased and to be representative of the population sampled. Whether the results 

reflect the true species biology, or whether there exists a biological meaning of 

parameters and models, or a biological reason for any particular trend, has to be proven 

by other means. The quantitative and qualitative approach suggested here (based on the 

exploratory analysis of data, power of fit, and the stability and accuracy of models and 

parameters) just reflects and emphasises data characteristics, and contrasts the data 

against the models intrinsic theory, but does not demonstrate any biological 

assumptions.

3.9 OTHER ALTERNATIVES

Other approaches have been suggested to improve the estimation of parameters 

in growth models, one is the further parameterisation of the well known growth 

models, particularly that of von Bertalanffy (Ross 1970; Gallucci & Quinn 1979; 

Schnute & Fournier 1980; Schnute 1985; Cerrato 1990).

103



3. Age and Growth: Size at Age.

Linear methods are now considered obsolete, but are valuable for testing data 

properties when can be implemented (Gregg et al. 1964; Sparre & Venema 1995). 

Nowadays, non-linear methods are preferred, particularly the Simplex method which 

was suggested earlier by Schnute (1982) and Newton related methods (used by SAS 

and other commercially available programmes). The availability of non-linear methods 

contained in prominent commercial packages is risky when blindly used just because 

they were applied in previous publications without a fair knowledge of the algorithms 

employed.

The generation o f ad hoc models as simple polynomials (Roff 1980) and 

exponentials for specific stages of the life history, and the usage of generic methods for 

data fitting can be sufficient when interpolation is the main goal, but it will become 

useless when comparison of results is needed.

The von Bertalanffy growth curve is still the most widely used model to 

describe growth with previous studies for compatibility reasons and because its 

parameters are used as part of other models such as the Beverton -  Holt yield-per- 

recruit for size-structured analysis (Haddon 2001).

3.10 NEWER APPROACHES IN MODELLING GROWTH

Research on growth at age follows three main lines: revisiting biological and 

ecological fundamentals with new knowledge and technological tools, optimising the 

classical methods with new mathematical and computational tools and methodologies, 

and incorporating newer models from other fields.

Newer approaches for the estimation of body growth are potential keys to 

finding parameters with real biological meaning in growth equations that become a 

step beyond the empirical and descriptive parameters in the growth models now used.

Some of the physiological factors recently analysed in search of the biological 

meaning o f the growth parameters are the pattern of cell growth (Mombach et al. 

2002), individual body and environmental energy dynamics (Lika & Nisbet 2000), 

physio-anatomical facts such as muscular hyperplasia and hypertrophy in post-juvenile 

stages (Mommsen 2001), the requirements for maintenance of body energy contents
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and maintenance o f body weight (Watanabe et al. 2000), the effects of swimming 

exercise on the developing of body biomass (Yogata & Oku 2000), and the changes in 

the body tissue composition respect with time (Moltschaniwskyj & Jackson 2000).

Ecological factors such as temperature on larval and juvenile size-dependent 

growth (Otterlei et al. 1999), salinity on osmoregulation, food intake and growth 

regulation (Boeuf & Payan 2001), and growth rate on survival (Ottersen & Loeng 

2000) among others, can also provide elements for more complex models that consider 

the environmental influence.

Optimisation of classical models and methodologies such as done in this study, 

evaluation of sampling strategies for estimation of growth parameters (Castro & 

Lawing 1995; Jones 2000), and evaluation of bias introduced by models assumptions 

(Bowker 1996; Wang & Somers 1996; Pilling et al. 2002) are a few examples of the 

tendency toward optimisation of classical methods by improving the data sampling and 

data analysis.

Development of variants of classical methods and models (Birch 1999; Porch 

2002), and new and generalised fitting methods from other disciplines, particularly 

from the Economics field (Islam & Craven 2001; Le Van & Morhaim 2002) can be a 

good reference that may result on improvements of the current models and even in 

different approaches to the understanding and assessment of growth.

Special emphasis has to be given to the use o f more complicated models such 

as those developed for human growth, which are based on polynomial chains and 

chains of exponentials that allow the description of different stanza along the life span 

(Sumiya 1999).
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4.1 ABSTRACT

Length-at-age growth models are preferred over weight-at-age growth models 

for the assessment o f population size-at-age growth because o f the ease of measuring 

length as opposed to weight and the problems associated with seasonal changes in 

weight due to condition and or spawning state. The generalised von Bertalanffy size- 

at-age growth model is the most widely used for fish populations. The length-weight 

power constant is part o f the von Bertalanffy equation for weight-at-age growth but 

there is not an equivalent parameter in the Bertalanffy length-at-age equation.

In some fish populations, the length-at-age equation can be a better fit if  a 

power constant is introduced as a new parameter. This is the equivalent o f considering 

that the power constant in the generalized von Bertalanffy length-at-age equation could 

be different from 1.0. There are no antecedents of the effect of a power constant 

different from 1.0 on the correct assessment of weight-at-age from length-at-age data, 

but in this study I show that a value different from 1.0 in the power constant may be the 

result of the body morphometric growth. The omission of the power constant may 

affect the estimation of parameters o f the length-at-age equation by introducing a 

systematic deviation from the true value that increases as age decreases The 

propagation of the error introduced by such omission is particularly important when 

the equation growth parameters are used in further models. A corrected equation for 

evaluation of length-at-age based on the Bertalanffy model is derived by the inclusion 

of a power constant, and the method for the correct estimation of the equation 

parameters is given.

4.2 JUSTIFICATION

The analysis of growth is usually directed to the examination of growth rates 

and the parameters of the length and weight at-age equations, particularly asymptotic 

length and weight. Standard length and total weight are the principal response 

variables, and time (age) the only predictor when dealing with growth at age equations. 

Historically, length-at-age models were preferred over weight-at-age models due to the 

ease of measuring length as opposed to weight, especially in the field. Also, there are 

seasonal positive and negative changes in weight due to changes in condition and/or 

spawning state. The inclusion of for example, stomachs in the weight introduces a
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source o f variability in any model utilising weight due to variability in stomach 

contents.

The Generalised von Bertalanffy growth model (equation (29)) is the model 

most widely used in the field (Haddon 2001), and particularly in the case of weight 

probably is the best model for describing growth at age for many species. Regardless 

of the efficiency of this model to describe fish growth, it is also used in other models in 

fisheries, particularly for predictive models (Hilbom & Walters 1992; Castro & 

Lawing 1995; Sparre & Venema 1995).

S = Sx ( \ - e ~ k{'~'o))h (29)

t: Age

S: Size at age t 

S-r;. Asymptotic Size 

k: Intrinsic growth rate 

to'- Time at which S = 0.0

The equation for length-at-age given by von Bertalanffy does not include the 

term b present in the generalised equation, and Sx is substituted by Lx (equation 

(30)). When size refers to biomass (weight), b takes the value of the power constant of 

the length-weight relationship (a value close to 3.0 for many species) and Sx is 

substituted by Wn (equation (31)).

L = L S  (30)

L: Length at age t 

Lx : Asymptotic Length

W = W J  \ - e ~ k(,~‘o))b (31)

W: Weight at age t 

Wx : Asymptotic Weight

When a power constant analogous to b is introduced in equation (30), the value 

o f the power constant is 1.0 for some cases as stated by the model, but for others (e.g.
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Smooth Oreo (Pseudocyttus maculatus) and Blue-spotted rock cod (Cephalopholis 

cyanostigma), see 4.4.3, page 112), the power constant differs from 1.0. A value of the 

power constant * 1.0 implies that the parameters in the equation are insufficient to 

describe the growth in length of the fish over time. Therefore the equation needs 

modification.

There are no biological antecedents for why the power constant should differ 

from 1.0 when calculating the parameters of the von Bertalanffy length-at-age growth 

equation. A value of the power constant > 1 .0  mathematically implies a curve s-shape, 

which can be consistent with some populations, but when an s-shape is detected a 

different growth model is assumed, usually the Gompertz model (Moreau 1987).

If the von Bertalanffy length-at-age growth model is forced on to the data 

(which is usually done), I found that this difference could bias the estimation o f length 

in young individuals. The bias depended on how different the power constant is from 

1.0, and if the difference is positive or negative. Therefore, I think it is important to 

determine the origin of the bias, constmct a method to quantify it, and finally the way 

to correct it.

I deduce that the rate in which length approaches Lx as age increases does not 

follow the rate of the classical von Bertalanffy length-at-age relationship, but it does it 

in a power relationship with respect to the von Bertalanffy length-at-age model:

L * L „ (  1 - e " ^ )  but T = T00( l - e - A('-'«))c

This corrected rate o f change produces an s-shape trend of the distribution of 

lengths respect to age, which has been observed previously for young individuals in 

some populations.

I also infer that this power constant may be the product of an allometric 

relationship between length and one of the other orthogonal dimensions (height or 

width), when the other orthogonal dimension distributes accordingly to the classical 

von Bertalanffy length-at-age growth equation.
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4.3 OBJECTIVE

The main objectives are to identity the origin of the bias, to develop a method 

to quantify the bias, and correct the von Bertalanffy length-at-age growth equation if 

necessary.

4.4 ANTECEDENTS

4.4.1 BIOMASS, DENSITY, MORPHOMETRY, AND GROWTH

As mentioned in Chapter 1, morphometry and density are related to biomass by 

the length-weight relationship, and biomass is related to time by the size-at-age growth 

functions. The power constant b in the length-weight relationship and the von 

Bertalanfiy weight-at-age model is the only mathematical parameter used in fish 

biology, fish stock assessment, and fisheries to link morphometry directly to size-at- 

age growth. Even when one might intuitively expect some relationship between both 

phenomena for length-at-age growth, nothing is included in the length-at-age von 

Bertalanffy model (equation (41)), in spite of the fact that theoretically, this model is 

derived from assumptions based on metabolism.

There are many publications concerning the length-weight relationship and the 

usage of its power constant in the von Bertalanfiy weight-at-age equation, but in 

respect to the length-at-age equation there are no antecedents of a homologous power 

constant. An application of the power constant of the length-weight relationship for 

assessment of length-at-age growth was undertaken to overcome the high 

interdependency of parameters of the von Bertalanffy growth model (Jobling 2002), 

which affects the power of fit of traditional methods employed to estimate them. 

Bayley (1977) used the morphometric constant of the length-weight relationship in the 

von Bertalanffy model in order to develop a method that could avoid the dependency 

between parameters by independently estimating the instantaneous growth rate in 

terms of length, and the morphometric factor of the length-weight relationship. The 

influence of the allometric relationship between width or height, in respect to length on 

the von Bertalanffy length-at-age equation, was not explored by Bayley (1977) and 

Jobling 2002, neither was the possibility of a better fit in the relationship age-length 

implemented by considering the introduction of a power constant to the von 

Bertalanffy length-at-age equation.

110



4. Morphometric Growth and Growth at Age.

4.4.2 TRADITIONAL FITTING OF MODELS TO SIZE-AT-AGE DATA

Linear methods are the traditional means for fitting growth-at-age models (von 

Bertalanffy, Logistic, and Gompertz), and were based on least square fits of linearized 

forms of such models. Because there are more parameters than predictor variables, 

some parameters were obtained using secondary methods, also based on least square 

fits of linearized equations, derived from the growth models.

The main secondary methods for estimating asymptotic length and intrinsic 

growth rate as the first step on the calculation of the other parameters in the von 

Bertalanffy length-at-age equation are the ones developed by Chapman (1961), 

Gulland-Holt (1959), and Ford-Walford (1933 and 1946). The parameter to is obtained 

later by re-fitting the linearized von Bertalanffy equation as a function of age and 

including the values of the parameters previously calculated. Adding the power 

constant b from the length-weight relationship and substituting Lx by Wx calculated 

with the length-weight relationship, the weight-at-age equation is further obtained.

Algorithms for linear methods are widely known and abundantly documented 

in the literature. Jobling (2002) presents a brief and updated review, but perhaps the 

most in-depth presentation of such methods is given by Sparre & Venema (1995).

Non-linear methods (particularly Newton related iterative methods) produce in 

some cases better results than the classic methods when all age classes are well 

represented. However, they generate skewed results when just portions of the 

population are available, particularly for only young and only old individuals 

(Vaughan & Kanciruk 1982; Cerrato 1991; Haddon 2001).

Simplex and Levenberg-Marquardt methods are well known examples of non

linear methods. The extensive implementation of the Levenberg-Marquardt method is 

relatively recent (1963) and its application requires intensive calculations that can only 

be done by computers. Algorithms for these and other Newton related methods used to 

fit length-at-age growth are usually embedded into commercial statistical packages and 

are not fully documented. Regardless of the selection of the method for fitting the von 

Bertalanffy length-at-age growth model (linear or non-linear), by not including the 

power constant in the equation to fit (which is the equivalent to assume the power
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constant to be equal to 1) there is no chance of noticing any departure from 1.0, even 

when it exists.

4.4.3 THE VALUE OF THE POWER CONSTANT

The following species show a different level of divergence than 1.0 for the 

power constant. These species have a different longevity, their age was measured to 

different levels of precision (e.g. assigned to year class irrespective of time of capture, 

retained age to the nearest month relative to either spawning or assigned birth date etc), 

and the data sets were of different sizes. The natural variability of length with respect 

to age (standard deviation) also differs between species and sometimes also for 

different groups o f age. Age-length data for smooth oreo (Smith & Stewart 1994), rock 

cod (Stewart 1998), and great scallops (Pecten maximus -  Mollusca) were measured 

and provided by Dr B. D. Stewart. The data for an unexploited population o f scallops 

belong to his current research program in the Port Erin Marine Laboratory, University 

of Liverpool, Port Erin, Isle of Man.

In order to assess the influence of the power constant in the von Bertalanfiy 

length-at-age growth model for the three species, equation 8 was fitted with and 

without including the parameters bab by the Levenberg-Marquardt method. The same 

computer programme I developed for finding the best growth model in the previous 

chapter (section 3.5.4) was used here for the fitting process.

The smooth Oreo (Pseudocyttus maculatus) is a long-lived fish species with a 

low intrinsic growth rate (Figure 20), and fitted power constant greater than 1.16. The 

fit improves just a little for the power constant different from 1.0. Age is given at 

integer intervals of one year.
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pc —1.0 pc ^  1.0

T/n/ 56.2693 55.5782
k 0.0355 0.0384
to -1.9935 -3.6572
pc 1 1.1660
R S S 708.0727 707.4447
MLL -296.4023 -296.3442
n 131 131

pc = 1.0 pc ^  1.0

Figure 20: von Bertalanffy Length-at-age equation for Smooth Oreo (P s e u d o c y t tu s  
m a c u la tu s )  with and without the power constant (pc). L.ki  asymptotic length, k: intrinsic 
growth rate, age when length = 0.0, RJX- residuals square sum, MLL: maximum log 
likelihood, n\ sample size.

Blue-spotted rock cod (Cephalopholis cyanostigmd) is a medium, lived fish 

species with average intrinsic growth rate (Figure 21) and a fitted power constant 

lower than 1.0. The fit slightly improves for the power constant different from 1.0. Age 

is given at fractional intervals of 0.25 of a year.

pc = 1.0 pc ^  1.0

Linf 288.8879 290.1829
k 0.1351 0.1272
to -1.6653 -1.0342
pc 1 0.8389
R S S 31516.0975 31502.4175
MLL -566.9162 -566.8865
n 137 137

pc — 1.0 pc ^  1.0

Age (years) Age (years)

Figure 21: von Bertalanffy Length-at-age equation for Blue-spotted rock cod 
( C ep h a lo p h o lis  c y a n o s tig m a )  with and without the power constant (pc). L y  asymptotic 
length, k : intrinsic growth rate, age when length = 0.0, RSS: residuals square sum, MLL: 
maximum log likelihood, n: sample size.

The scallop (Pecten maximus) is a comparatively short-lived shellfish species, 

with respect to the previous species (Figure 22), and has a higher intrinsic growth rate. 

The von Bertalanffy growth model can describe its growth-at-age relationship well, 

and the fitted power constant was slightly greater than 1.0 (power constant equal to 

1.0567). This difference is so small that it can be considered null for practical 

purposes. The fit slightly improves for the power constant different from 1.0. Age is 

given at integer intervals of 1 year.
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pc = 1.0 pc ^ 1.0

Li„f 154.7449 154.5781
k 0.4638 0.4722
to 0.2035 0.1491
pc 1 1.0567
RSS 8723.6976 8722.6053
MLL -575.9495 -575.9389
n 170 170

pc = 1.0 pc ^ 1.0

Age (years) Age (years)
Figure 22: von Bertalanffy Length-at-age equation for scallops (P e c te n  m a x im u s )  with 
and without the power constant (pc). LinJ: asymptotic length, k\ intrinsic growth rate, t,;. age 
when length = 0.0, RSS: residuals square sum, AD A: maximum log likelihood, n: sample size.

The degree of divergence of the power constant from 1.0 is different for each 

species. In all cases the inclusion of the power constant as an extra parameter 

contributed minimally to improve the fit, and because of a high variability o f length at 

each age (as normally occur in natural fish and shellfish populations), it is not possible 

to estimate accurately the discrepancy between both fits (with and without the 

inclusion of the power constant).

Up to this point there are two questions concerning the discrepancy of the 

magnitude of the power constant. First, what is the origin of such divergence? Second, 

if a power constant different from 1.0 implies that the von Bertalanffy length-at-age 

model is not adequate, should a different model be preferred, or a proper correction be 

implemented?.

4.5 NEED OF A POWER CONSTANT ON THE VON BERTALANFFY

GROWTH EQUATION

Multiple factors affect the fit of any model, but from a practical point of view 

the problem can be considered under four basic headings: the model is not the right 

one; the model is correct but one variable not considered might be affecting the 

phenomenon; the data are defective (systematic or random deviation); or the natural 

variability is so high that it is not possible to achieve better data precision.

Assuming that the choice of model is correct, I found that the second heading 

may be the most plausible, and that the origin of the divergence on the value of the 

power constant can be explained as a result of the morphometric relationship between
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length and the other basic three-dimensional morphometric dimensions (height and 

width). This finding is based on the reasoning below.

4.5.1 ALGEBRAIC DEMONSTRATION

The basic hypothesis is that in some cases length might not be related to age in 

a simple manner, but the relationship may be complex i.e. in conjunction with another 

morphometric variable (height or weight). The other morphometric variable may be 

related to age in a simpler manner. This relationship might change the scale in which 

length and age are related in the length-age equation. The morphometric relationship 

between length and the other dimension will be reflected in the value o f the power 

constant (morphometric factor) of the power function that links them. I suggest that the 

influence of the morphometric factor can be demonstrated by the parameterisation of 

the von Bertalanffy weight-at-age equation (equation (31)) in terms of an allometric 

variable to length as follows.

In order to develop the equation o f length-at-age growth with the morphometric 

factor it is necessary to initially obtain two equations: the first one is for the calculation 

of weight as a function of an allometric variable (length) from an isometric one (which 

is directly related to age accordingly to the von Bertalanffy equation), and the second 

for the asymptotic length as a function o f the asymptotic weight. The procedure is as 

follow.

From the power relationship between length (LB) and another linear dimension

( L a ),

L b  ~  a ah L a  5 L a — Le
\ aa„

And the length-weight relationship for LA:

WA = aa LAb° (32)
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The equation for the calculation of weight as a function of an allometric 

variable (Equation (33)) is obtained by introducing LA in the previous equation,

WA = at

-iK
f  \ XL
— L*

\ aah

Solving equation (33) for Lb’.

Lb — aah
\ aoJ

(33)

And substituting WA with the asymptotic weight ( WxA ), the equation for the 

calculation of asymptotic length LxB is obtained:

L x,b  —  a ah

W_oo A
V Qa J

(34)

Equation (35) is the von Bertalanffy expression for calculation of weight from 

age (t) for the isometric variable (height or width). The morphometric factor (Jba), 

product of the length-weight relationship between LA and WA is part of this equation. 

Notice that weight and asymptotic weight are not directly dependent from any length, 

but from t , to, k, and the morphometric constant ba, which is the rate of morphometric 

growth o f La respect to the body biomass WA. WA, WxA, and ba are associated with the 

isometric variable.

WA =WxA( (35)

WA: weight

WxA : Asymptotic weight 

k: Intrinsic growth rate 

t : Age

to'. Time at which LA = 0.0

ba: Morphometric factor in the LA-WA relationship
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Replacing WA in equation (35) with the right term in equation (33):

-iA„
( i A

\ a oh J

And solving for Lb\

( 1 . V- W.
\ aah a„

-La =
aab

»A ^
a„

a
Lb =

ab

oo/l

V  a a J

(1 — e~K̂ ~0 )
bgbgb 

* ( ' - ' o ) \  ba

LB

r _
J

“ ah
fw  }l Ua J (1- ) *■

The first right term is equal to LkH in equation (34) and ba is eliminated in the 

last term of the right, producing equation (36), which shows that the morphometric 

factor (bat,) must be part of the length-at-age equation of the von Bertalanffy model. 

Let us remember that bab is the power constant between two tri-dimensional 

longitudinal dimensions (one of them is length), and that bab equals 1.0 only when both 

are isometric. Only when this is true, the classic von Bertalanffy length-at-age is true.

b B — LxB (36)

For the position of bab as a power constant and not as a coefficient, bab 

influences directly the parameters k and to inside the parenthesis in equation (36), but
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not LxB. This is particularly important when bab is allometric and is not included in the 

model, making k and to deviate from the true value. This effect explains why LxB is 

more accurate than k  and to in all models analysed in this thesis.

The divergence of LxB from the true value is lower for non-linear methods 

because the fit depends on a differential approach toward iteratively finding new 

solutions, contrary to linear methods based on average distances. This explains why 

the stability during the fit process can be a good estimator of the adequacy of 

individual parameters and also of whole models (one of the main assumptions in the 

previous chapter).

The algebraic reasoning may be sound, but what about data sets? How much 

can the morphometric factor affect the calculation of weight from length-at-age fits? 

And how similar is this phenomenon to the cases previously presented? The following 

example, utilising theoretical data sets, is intended to clarify these questions.

4.5.2 ASSESSMENT OF WEIGHT-AT-AGE FROM LENGTH-AT-AGE

DATA

The equation for weight-at-age growth from length-at-age data, including the 

morphometric factor, is derived from equation (36) by the following procedure.

Similar to La in equation (32), the equation for calculation o f weight from an 

isometric dimension is

Wh = ahLBhb

Solving for LB,

La —

i (37)

For asymptotic LB,

118



4. Morphometric Growth and Growth at Age.

W - a  I byy <x>B u h
(38)

Substituting Ln from equation (37) in equation (36),

■W„
a. = L b ( l - e -*(<“< o)\N

Solving for Wb,

— Wb = L J ' {  \ - e-k(t- ^ ) b̂
ah

\ - e k̂ f h-

The first right term corresponds to the right side o f equation (42), so, by 

introducing WxB in the previous equation the following function for calculating 

weight-at-age from length-at-age is obtained:

Wb =WxB{ l - e-*('-'»))Â  (39)

For the direct weight-at-age estimation, the equation to fit is:

K = W xHQ -e ~ k('~'o))b'b (40)

where: bwh = bh bah

Notice that bWB is equal to bb only if bab is equal to 1.0, this is possible only if 

Lb distributes isometrically. The following example illustrate the application of these 

derivations.

In order to show numerically the influence of the morphometric factor 

(equations (39) and (40)) on the calculation of weight-at-age from length-at-age data,
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two simulated data sets for 10 age classes is used. A data variable equivalent to the fish 

body height (LA) is calculated according to equation (41). LA is a morphometric 

dimension that distributes in a simple manner to the classical von Bertalanffy length- 

at-age equation. The second data set equivalent to length (Lb) is the dimension taken as 

a reference to explain the influence of the morphometric factor between Lb and LA on 

the von Bertalanffy length-at-age model (Lb is allometric to LA).

<41>

La = 23.5(1-e"° '55(M) 1666)) 

t: Age

La'. Length at age t 

LxA : Asymptotic length for LA 

k: Intrinsic growth rate 

to: Time at which LA -  0.0

W-Lb is the weight calculated from the length-weight relationship between L b 

and W, by the following hypothetical equation, fitted by least squares:

W = 0.029554 Z / 60837

Table 23 contains the results of the fitting of weight-at-age from length-at-age 

data without and with the morphometric factor.

WG3B is the weight calculated from the standard von Bertalanffy weight-at-age 

equation with bb as the morphometric factor from the length-weight relationship, and 

Lx , k, and to from the von Bertalanffy length-at-age equation fitted with the 

Levenberg-Marquardt method from Age and Lb data.

MWG3b is the weight calculated from the von Bertalanffy weight-at-age 

equation, which includes the morphometric factor bwb (bwh = bab bb). bab is obtained by 

fitting the von Bertalanffy length-at-age expression that includes the morphometric 

factor (equation (36)) with the Levenberg-Marquardt method from Age and Lb data. bh 

comes from the length-weight relationship.
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Table 23: Estimation of weight-at-age growth from length-at-age data using the von 
Bertalanffy equations. L lt: length o f the positive allometric dimension; IV: original weight; W- 
L„: calculated weight from the length-weight relationship of weight and L B; lVGm: weight 
calculated from the L (J-at-age growth equation; % D if = {W L g /  IV G m * 100)-100: effect of the 
morphometric factor in 1V G 3fi as percentage of \V LB. M lV G jg and M % D if are the equivalent to 
%Dif, but considering the morphometric factor.

A g e L b W lV L b W G m % D if M W G m M % D if
1 17.81 54.06 54.05 80 48.0111 54.1 0.092507
2 33.52 281.18 281.3 337.4 119.94312 281.5 0.071098
3 43.25 546.96 546.85 596.6 9.097559 543.8 -0.55774
4 48.65 743.05 743.27 788.9 6.139088 750.8 1.013091
5 52.19 892.79 892.71 915 2.496891 890.5 -0.24756
6 54.11 981.17 980.93 993 1.230465 977.8 -0.31908
7 55.22 1034.2 1034.29 1039.7 0.523064 1030.4 -0.3761
8 55.77 1061.41 1061.37 1067.2 0.54929 1061.3 -0.0066
9 56.05 1075.19 1075.33 1083.2 0.731868 1079.2 0.35989
10 56.32 1089.1 1088.89 1092.5 0.33153 1089.6 0.065204

Plots of data in Table 23 appear in Figure 23. From Figure 23-A the actual 

predictions apparently do not differ much from the real data after considering the 

morphometric factor, but the systematic deviation between them can be high for key 

ages (Figure 23-B). Such divergence is important not only by its magnitude, but 

particularly for its systematic pattern.

The estimated weights are closer to 0.0 percent of difference after including the 

morphometric factor (open circles in Figure 23-B). The estimated weights follow a 

random pattern: some differences are positive while other negative, meaning that such 

differences are not systematic and are due to the fit (open circles in Figure 23-B).

Both fits with and without morphometric factor result non-significant from the 

general model, meaning that both are good fits of the data set (SF< F0.os). Because the 

fit including the morphometric factor shows lower RSS and higher MLL, the model 

that includes the morphometric factor as a power parameter has to be considered the 

best fit. Additionally, the Schnute’s F test shows that the model without the 

morphometric factor is significant from the one that includes it (SF= 8.3284 > 

Fo.o5(i,6)= 5.99).
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.of
I

A)

No morphometric factor With morphometric factor
Lin/ 56.7631956 56.609953
k 0.527518 0.558188
to 0.290331 0.142405
b 1.196417
RSS 0.1519 0.0636
MLL 6.7440 11.0964
n 10 10
SF SF= 3.4701 < F0.05(2, 5)= 5.79 SF= 4 x !0 44< F0.05(l, 5)= 6.61

Figure 23: Weight-at-age growth from length-at-age data with and without introducing 
the morphometric factor in the von Bertalanffy growth-at-age models. A) Estimated 
weight obtained with no morphometric factor (closed circles) and introducing the morphometric 
factor (open circles). B) Percentage o f over estimation without morphometric factor (closed 
circles), and with morphometric factor (open circles); horizontal dashed line denotes perfect 
prediction; SF: Schnute’s F statistics.

4.5.3 AN EXAMPLE OF THE INFLUENCE OF THE MORPHOMETRIC 

FACTOR ON THE ESTIMATION OF WEIGHT-AT-AGE GROWTH

Hypothetical data sets are chosen because the intrinsic variability in real age- 

length data is a factor that cannot be objectively controlled, and the use of real data 

would imply the setting of different assumptions that might make any conclusion 

uncertain.

The example is based on the data set generated in the previous section with a 

hypothetical length-at-age von Bertalanfiy model between LA (height) and age (/), and 

a hypothetical length-weight relationship (L b - W b ). Notice that LA (height) is directly 

related with t. Both hypothetical data sets are perfectly distributed accordingly to the 

classical length-at-age von Bertalanfiy model and the length-weight relationship (the

1 2 2



4. Morphometric Growth and Growth at Age.

distance between each data and the perfect value is purely due to the rounding factor); 

therefore there is no heteroscedasticity, nor a particular distribution of individual error. 

Each age datum is unique for each length value; therefore, there is no influence of any 

distribution of lengths on individual values of age. All age data are equally spaced; 

therefore each age value is statistically equally weighted (analogous to a stratified 

sample).

A data set with an allometric relationship between LA and Lb (Lb: length), and 

another set with an isometric relationship between LA and Lc (Lc: width) were derived. 

Lc is intentionally set to be longer than LB and LA in order to show that the 

phenomenon does not depend on the actual data size (or shape), but on the allometric 

relationship.

Age is expressed in integer units. The main set of lengths (Lb) is rounded up to 

one decimal digit, and the rest up to two decimal places in order to resemble the 

precision used when collecting data.

4.5.3.1 A hypothetical distribution

Data for this example are contained in Table 24. All data are derived from LA, 

which follows a von Bertalanffy age-length distribution (equation (41)). Lc is 

isometrically related to LA, and LB is allometrically related to LA. In this case LB is 

analogue to the standard length and LA is just a dimension allometrically related to 

such standard length (let us say that it may be the height). The main point is that LA 

directly follows the von Bertalanffy model and due to LB is not isometric with LA, so 

the von Bertalanffy length-at-age fit of Lb will produce incorrect estimates for its 

parameters if the morphometric factor is not considered. Consequently such behaviour 

will not occur with Lc that relates isometrically with respect to LA. Theoretically the 

morphometric factor will not affect the weight-at-age fit of LA, but it will influence the 

one for LB (which is not directly related with t).
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Table 24: Hypothetical data generated from a length-at-age von Bertalanffy equation. L.,:
hypothetical length derived from equation (41), L B: positive allometric length from equation (42), 
L(: isometric length from equation (43), iv2,: weight from equation (44) with ba = 2.9, w,,; same 
as before, but with b̂  = 3.0, and w, ,: weight with bin = 3.1.

Age L a U Lc 1V2.9 WiJ) JV3.1

1 8.6 17.81 19.18 43.6 54.06 67.04
2 14.9 33.52 33.23 214.61 281.18 368.38
3 18.6 43.25 41.48 408.33 546.96 732.67
4 20.6 48.65 45.94 549.08 743.05 1005.56
5 21.9 52.19 48.84 655.7 892.79 1215.61
6 22.6 54.11 50.4 718.35 981.17 1340.16
7 23 55.22 51.29 755.84 1034.2 1415.06
8 23.2 55.77 51.74 775.06 1061.41 1453.56
9 23.3 56.05 51.96 784.79 1075.19 1473.07
10 23.4 56.32 52.18 794.59 1089.1 1492.75

Age and La are related accordingly to equation (41), which is the classic von 

Bertalanffy expression for length. Any departures from the model are due to rounding 

error and the size o f the data set.

Lb is a positive allometric dimension related to La by equation (42).

Lb aab
T h
‘-A

Lb = 1.5

(42)

The isometric dimension Lc is related to LA by equation (43).

LC ~ aac^A

Lc =2.3 La
i.o

(43)

Data sets for weight W2.9, W30 , and W3.1 are calculated from equation (44) with 

ba = 2.9, ba = 3.0, and ba = 3.1 respectively.

Wa = * .l ;

WA = 0.085 Lab‘

(44)
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4.5.3.2 The fit of the weight-at-age relationship

T able 25 contains the results of the weight-at-age fit. Asymptotic weight is the 

best-fitted parameter with values different from the expected ones in less than two 

thousandths of the parameters value, k is different within two significant digits and t0 is 

one significant digit adrift from the true value. In general, the fit is poor particularly for 

to and k. b is over-estimated in all cases and the divergence is bigger as the length- 

weight morphometric factor increases. The introduction of the theoretical allometric 

constant (Table 25-B) improves the fit. The low data precision and the small number of 

data (n = 10) are other factors that negatively affect the fit (see 4.5.3.5, p. 128).

Table 25: Fit of the weight-at-age von Bertalanffy equation for three different weight 
morphometric values, , is the asymptotic weight, k  the intrinsic rate o f growth, t0 the time at 
which length is equal to 0.0, and b the allometric constant. Capped symbols correspond to the 
theoretical (expected) values.

A) D irect fit

K K  k to b b

IV 2.9 804.4808 804.3144 0.5624 0.1023 3.1375 2.9
W yo 1103.1193 1102.8148 0.5628 0.0966 3.2624 3.0
\V>, 1512.6181 1512.0701 0.5634 0.0897 3.3920 3.1

B) Replacing b by its theoretical value

K K  k to
W z9 804.4808 805.3458 0.5542 0.1851
w M 1103.1193 1104.2893 0.5544 0.1861
W u 1512.6181 1514.1903 0.5546 0.1871

k -  0.55 *0“  0.1666

4.5.3.3 The fit of the length-at-age relationship

In general, all parameters are better estimated from the length-at-age 

relationship (LA in Table 26-A) than from the weight-at-age (Table 25-A); the 

asymptotic parameters fit well in both cases. This finding confirms that the fit of the 

age-length relationship is better over the age-weight relationship (even for perfect 

distributions as analysed here).
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Intrinsic growth rate (k) and to (Table 26-A) are the same up to three to four 

significant digits respectively for the isometrically related variables (LA and Lc). The 

asymptotic lengths are also similar to their theoretical values.

Asymptotic length fits well for the allometrically related variable Lb, but not k 

nor to. The intrinsic rate of growth is 4% overestimated and to is almost 75% higher 

than the real value. There is clearly more than a random error problem.

Table 26: Fit of the length-at-age von Bertalanffy equation with and without 
morphometric factor. L m is the asymptotic length, k  the intrinsic rate of growth, t„ the time at 
which length is equal to 0.0, and b the allometric constant. Capped symbols correspond to the 
expected values.

A) N orm al fit (with no m orphom etric factor bi. — 1.0)

L 4 k to h k
L a 23.5 : 23.51525 0.55161 0.17542 1 1.0
L b 56.600374 ! 56.76319 0.52751 0.29033 1 1.15
L c 52.405 52.43955 0.55169 0.17546 1 1.0

B) Adding the m orphom etric factor to  the model

L ¿00 k to h k
L a 23.5 23.50340 0.55833 0.14099 1.04179 1.0
L b 56.600374 56.60995 0.55818 0.14240 1.19641 1.15
L c 52.405 52.41273 0.55851 0.14047 1.04246 1.0

C) Introducing the theoretical value o f  the m orphom etric factor

K ¿oo k to h h i

L n 56.600374 i 56.6403 0.5518 0.1760 1.15 1.15

The estimation o f the asymptotic parameters improves by including the 

allometric factor as in the case of weight-at-age (Table 26-B): k  and to were similar up 

to three and two significant digits respectively for the three dimensions. The estimated 

allometric constants are close to the theoretical values.

The fact that the morphometric constant is close to 1.0 for the isometric 

variables reaffirms the power to detect the isometric relationship and indicates that a 

departure from 1.0 means allometry. This makes it possible to identify the influence of 

the morphometric factor on the length-at-age relationship.
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The estimation of k and to improves once the theoretical value of b is 

introduced in to the model as constant (Table 26-C).

4.53.4 Methods for fitting the growth curves

In order to show that the estimation of the parameters Lx and k  does not depend 

on the non-linear method selected for fitting (Levenberg-Marquardt method), these 

parameters were estimated through three classical methods without including the 

morphometric factor: Gulland -  Holt, Chapman and Ford -  Walford (see 4.4.2, p.

111). These fits produce comparable results to those previously analysed for Lx and k, 

but not for to (Table 27).

Table 27: Fit of the length-at-age von Bertalanffy equation by classical methods (Gulland- 
Holt, Chapman, and Ford-Walford). L x  is the asymptotic length, k  the intrinsic rate of 
growth, and t„ the time at which length is equal to 0.0.

A . k to
G ulland-Holt 23.51733 0.537088 0.087306

L a Chapm an 23.51687 | 0.550676 0.089175
Ford-W alford 23.51687 0.550676 0.089175

Theoretical 23.5 0.55 0.1666

k  t„

G ulland-Holt 56.80152 0.510819 0.083984
L n  Chapman 56.79931 0.522528 0.08638

Ford-W alford 56.79931 0.522528 0.08638
Theoretical 56.600374 0.55 0.1666

A . k to
G ulland-Holt 52.44359 0.537177 0.085156

L c  Chapman 52.44255 0.550772 0.087015
Ford-W alford 52.44255 0.550772 0.087015

Theoretical 52.405 0.55 0.1666

As shown in the previous chapter asymptotic size (in this case Lm) is the most 

accurate and most stable parameter, followed by k. This is why all methods including 

these are very reliable for the calculation of such parameters.
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As for the non-linear fit, Lb is also influenced by the morphometric factor {Lb 

in Table 27). In this case Lx deviates to a greater extent from the theoretical value than 

in the non-linear method.

4.5.3.5 Number of age categories

The number o f age categories is an important factor when fitting growth-at- 

age. In general, the fit for bigger numbers o f age classes improves with and without 

the morphometric constant (Table 28 compared to Table 26).

Table 28: Fit of the length-at-age von Bertalanffy equation with extended age categories.
4  is the asymptotic length, k the intrinsic rate of growth, t0 the time at which length is equal to 
0.0, and b the allometric constant. Capped symbols correspond to the expected values.

A) N orm al fit (with no m orphom etric factor bi. — 1.0)

L 4 k to h 4
L a 23.5 23.5127 0.5481 0.1649 1.0
L b 56.600374 56.9588 0.5058 0.2288 1.15
Lc 52.405 52.4330 0.5482 0.1649 1.0

B) Adding the m orphom etric factor to  the model

4 4 k to b , 4
L a 23.5 23.5077 0.5500 0.1622 1.0061 1.0
L « 56.600374 56.6238 0.5496 0.1632 1.1552 1.15
u 52.405 52.4226 0.5499 0.1623 1.0056 1.0

C) Introducing the theoretical value o f  the m orphom etric factor

4 4 k to h 4
L n 56.600374 56.6323 0.5484 0.1656 1.15 1.15

It can be assumed from this example that a morphometric factor may affect 

both length-at-age and weight-at-age equations. It can also be inferred that any 

estimation o f weight-at-age growth from length-at-age data may lead to wrong 

estimates. The formalisation of these assumptions is given below.
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4.6 IMPORTANCE OF THE MORPHOMETRIC FACTOR ON THE 

ASSESSMENT OF LENGTH-AT-AGE GROWTH

Once the possible influence of the morphometric factor on the length-at-age fit 

of the von Bertalanffy model is accepted, there are three basic questions about its 

importance on the assessment of growth: How to determine if a certain linear 

parameter is morphometrically problematic?, How much can this omission influence 

the assessment?, and how many species have been influenced in their assessment by 

this omission?. The first question has been addressed previously, but a short answer is 

by checking the difference between the parameters k  and Lx with and without the 

morphometric factor. There is not a single answer to question two, but I will highlight 

below some guidelines toward a solution; and finally, I do not have data to answer the 

last question, but will explore some starting points.

4.6.1 DETERMINING WHICH VARIABLES ARE AFFECTED BY THE

MORPHOMETRIC FACTOR

A linear variable is not affected by its morphometric factor if  it relates directly 

to age accordingly to the von Bertalanffy model, therefore the parameters obtained by 

fitting the length-at-age von Bertalanffy equation without the morphometric factor 

should give the same result as when it is included.

Plots of residuals of weight-at-age estimates with respect to observed weights 

against predictor, response, and fitted variables can show patterns on their distribution 

that may be product of the influence of the morphometric factor. Unfortunately such 

patterns can also be mistaken with pure departures from the model due to the 

morphometric effect been systematically bigger for young ages and reduced as the 

asymptotic length is approached.
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Estimated weight from Table 24

Estimated weight from Table 26-A 
(Asymptotic weight was obtained 
with the previous equation from 
asymptotic length = 56.76319):

Figure 24: Effect of the morphometric factor on a longitudinal dimension. W , 0 is the
weight estimated from the length-weight relationship, and \VC is the weight calculated from the 
fitted length-at-age von Bertalanffy model.

W30 = 0 .0295541 /60837

W,„ = 1 1 1 1.385(! -  g-°-5275.('-0.29033)) 2.60837

A more reliable visual approach is attained by comparing fitted weights from 

the von Bertalanffy model against the estimated weight from the length-weight 

relationship. Both distributions should fall over a straight line with slope = 1.0 if the 

morphometric factor does not affect the length-at-age growth (Figure 24).

4.6.2 INFLUENCE OF THE MORPHOMETRIC FACTOR ON THE 

ASSESSMENT OF WEIGHT-AT-LENGTH FROM LENGTH-AT- 

LENGTH FITS

The influence of a morphometric factor depends on whether the length-at-age 

distributes according to the von Bertalanffy model, otherwise a different model should 

be considered. If the length-at-age data set does not seem to conform to the von 

Bertalanffy model, the following factors ought to be considered.

There is strong possibility that departures will occur if the length-weight 

relationship is allometric, but temporal circumstances may mask a true morphometric
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factor, for instance reproductive seasons and starvation periods. The analysis of growth 

as a function of the main axis of growth length-width-height may be enough to reveal 

the isometric dimensions and assess the influence on the allometric variables.

Due to the high variability of weight in the weight-at-age data, comparisons of 

fits with and without the morphometric component may appear non-significant even 

when the morphometric component really exists. The same applies for the assessment 

of weight-at-age from length-at-age data. Other factors that can mask the existence of 

the morphometric factor are the degree of allometry, the natural variability of predictor 

and response variables, in precision or in accuracy when taking data, how well all ages 

are represented along the interval o f variation of each variable, and the number and 

periodicity of the age classes (for example, five yearly divisions are too few for the 

hypothetical population used here, quarterly or even bi-monthly units could produce 

better results).

A positive-allometric factor of 1.15 in the relationship La-Lb (Table 24), 

produced a negative-allometric value of 2.60837 (Table 29) in the Lg-W relationship. 

This value is a bit bigger than the lowest found by Morato et al. 2001 for some fish 

species in the Azores. In both cases Lc remained isometric. Assuming a reference age 

o f one third of the life span (in this case three years ~ 10/3), an over-estimation on 

weight between 9 and 1 percent is predicted for ages between three and six years 

(Table 29). For a fishery that would depend mostly on age classes close to the 

reference age this would produce an under estimation of at least 10% in weight.
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Table 29: Effect of the morphometric factor on weight-at-age growth estimation from the 
length-at-age von Bertalanffy equation. L n is the allometric longitudinal variable; Refli'Ts the 
reference weight; L /r lF  is the weight calculated from the fitted by least squares length-weight 
relationship o f L„ and Refit7 with a — 0.029553577, and b — 2.60836952; lV_vB  is the weight-at- 
age calculated from the length-at-age fit, and % D if is the effect o f the morphometric factor as 
percentage of weight over-estimation.

A8e L n R eflF u - w W j) B % D if

1 17.81 54.06 54.05 80 48.0111
2 33.52 281.18 281.3 337.4 19.94312
3 43.25 546.96 546.85 596.6 9.097559
4 48.65 743.05 743.27 788.9 6.139088
5 52.19 892.79 892.71 915 2.496891
6 54.11 981.17 980.93 993 1.230465
7 55.22 1034.2 1034.29 1039.7 0.523064
8 55.77 1061.41 1061.37 1067.2 0.54929
9 56.05 1075.19 1075.33 1083.2 0.731868
10 56.32 1089.1 1088.89 1092.5 0.33153

4.6.3 NUMBER OF SPECIES INFLUENCED BY THE OMISSION OF THE

MORPHOMETRIC FACTOR IN THE VON BERTALANFFY

GROWTH EQUATION

Because there is no antecedent of the inclusion of an allometric factor as a 

power constant in the von Bertalanfify length-at-age equation, there is no clue of how 

many species may be influenced by the omission of such a factor. Perhaps the most 

reliable indicator whether a species may be influenced by the omission of the 

morphometric factor is the presence of an s-shape pattern in the lower part of the plot 

of the length-at-age relationship. This pattern has been detected in “short-lived 

species” (Moreau 1987), and the over estimation of juvenile growth by using the von 

Bertalanfiy model has been detected for different species of abalone in California 

(Rogers et al. 2002). Yamaguchi 1975 (in Moreau 1987) reports that “the von 

Bertalanfiy growth function is unable to describe the sigmoid length-growth resulting 

from an inflection point early in the life of fishes”. Because the classical von 

Bertalanffy length-at-age equation does not predict an s-shape distribution for 

juveniles, any s-shape may be a case of a species influenced by the omission of the 

morphometric factor in the von Bertalanffy length-at-age equation. Moreau (1987) 

points out that the s-shape is characteristic of some anadromous and diadromous 

fishes, and short-lived species of tropical flood-plains, but it may not be exclusive to 

those species. The following are some guidelines to help identify this phenomenon.
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As a first step, an in-depth analysis of the power of the von Bertalanffy model 

to describe fish growth is necessary for those species that are assessed from length-at- 

age data. The power of description should be based on the contrasting of pure 

mathematical assumptions against the properties of the distribution of size-at-age 

variables under different biological conditions. Empirical considerations as ‘the 

biological meaning of to or ‘the incapability of explaining the age of fishes longer than 

Lx ’ should be avoided.

Secondly, for those species for which their growth-at-age relationship can be 

described throughout the von Bertalanffy model, a review based on a morphometric 

analysis against weight for large data sets, and separated from other seasonal variables 

such as maturity indices will be necessary.

The length-weight morphometric constant is not a good initial reference. On 

the one hand a length-weight morphometric constant close to isometry is not a 

guarantee of the low influence of the morphometric factor, because two allometric 

longitudinal variables one positive allometric and other negative allometric can 

attenuate the final result by producing a sum of allometric constants equal to 3.0, 

which can be erroneously interpreted as isometry. On the other hand it is more likely 

for height and width to become allometric than for standard length to do so.

Richter et al. (2000) found for milkfish (Chanos chanos) that height and width 

are isometric, but width and length are allometric. This is a potential case of the effect 

of the allometric factor on weight-at-age determination from length-at-age data. The 

authors noticed those relationships when trying to assess the condition using the Fulton 

condition factor. In the end they opted for an alternative condition factor that included 

the width instead height, as proposed by Jones et al. (1999).

4.7 CONCLUSIONS

The von Bertalanffy equation for length-at-age growth must include a 

morphometric factor.

The absence of the morphometric factor can be misleading as to why the model 

may not fit the data well.
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The morphometric factor is equal to 1.0 when the longitudinal variable that 

relates in a simple manner to the standard von Bertalanffy for length-at-age equation is 

isometric to length.

An allometric factor produces a change in the scale o f the longitudinal variable.

A positive allometric factor will cause under estimation of length and a 

negative allometric factor causes over estimation of length.

The effect of the morphometric factor on length is systematic - bigger for 

young ages, it becomes less as the asymptotic length is approached.

The morphometric factor directly influences the intrinsic rate o f growth and to, 

but not the asymptotic length.

Theoretically the morphometric factor can be very important for the accurate 

assessment of weight-at-age growth when calculated from length-at-age data.

All the classical methods of assessing fish growth need to be revisited and re

examined. The application o f new mathematical methods, computer algorithms and 

methodologies for data analysis has the power to fully examine the available data. This 

may lead to new insights into the growth in fishes and possibly improved data for stock 

assessments, and possibly generate new and improved models and methods.
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5. Summary and Critique.

5.1 THE LENGTH-WEIGHT RELATIONSHIP AND THE CONDITION

FACTOR

5.1.1 THE MEANING OF THE LENGTH-WEIGHT RELATIONSHIP AND

ITS PARAMETERS

The derivation o f the generalised length-weight relationship from an ellipsoid 

shape and the inclusion of the density factor is an easy and obvious task that may have 

been done before, and if so, it surprisingly has not acquired enough popularity to be 

published and taken as a basic reference to show the meaning of the parameters of the 

length-weight relationship. The lack of knowledge of the meaning of the parameters of 

the length-weight relationship leads not only to misinterpretations, but unknowingly to 

the proposal o f new models for the length-weight relationship and condition factor, 

which are simply special cases of the generalised model derived from the ellipsoid 

shape. For example, in recent publications (Jones et al. 1999; Richter et al. 2000) the 

authors propose new equations to obtain better fits for the estimation of the length- 

weight relationship and condition based on special assumptions as an isometric length- 

width relationship that may not apply to all species. Richter el al. (2000), who 

correctly mention the equation for the ellipsoid shape, misinterpret the meaning of 

density and the proportionality constants (geometric constants) in their equations five 

to seven, even when they are using the same equation published by Jones et al. (1999) 

as a reference for their new condition factor. The application of the models proposed 

by the authors without a proper evaluation of the intrinsic assumptions may result in 

the propagation of errors and wrong conclusions when applying the new empirical 

models, especially when the application is repetitive and without a proper review of the 

theoretical background.

5.1.2 CONDITION, HEAVINESS AND FITNESS

It is necessary to have a clear idea about the meaning o f condition before 

estimating and comparing indices. The most widely used condition indices seem to 

refer to heaviness, which is an important parameter from a utilitarian point of view, but 

it is clear that weight is not an objective estimator of fitness and that any attempt to 

interpret fitness from weight alone is risky. The assessment of condition as heaviness is 

important because many ecological and physiological factors have a feedback effect on
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the body weight. Even when the sources of an atypical weight may be unknown, the 

magnitude of weight by itself is an indicator that something is abnormal and its 

evaluation can become useful in the assessment of its potential ecological and 

economic impact.

Condition has not been properly exploited as a valuable parameter in fish stock 

assessment, perhaps for the ambiguity of its concept or for the lack of stable and 

comparable estimators. Nevertheless it is an important parameter in aquaculture and 

fish biology. Condition, considered as fitness (as the result of the relationship between 

biomass, geometric size and shape) could be applied in fisheries to assess the impact of 

the fishing activity on exploited populations. It is widely known that heavily exploited 

stocks have higher proportions of younger and smaller individuals than lightly 

exploited and undisturbed stocks mainly due to size selectivity, therefore the 

systematic monitoring of fitness might be considered This is not the place to discuss 

the relationships between size-survival and size-fecundity, nor the occurrence of 

precocity and dwarfism as responses to size selectivity. However, if the fishing activity 

severely affects size, all those aspects need to be studied in order to evaluate the 

critical condition below of which the impact of fishing becomes unacceptable.

5.1.3 A CATEGORICAL ANALYSIS FOR EVALUATION OF CONDITION

By reviewing the effect o f body density on the length-weight relationship, it 

became evident that a single equation for the full population describes just the average 

relationship and that portions of a same population may present different patterns at 

different times due to different causes, for example females during the reproductive 

season will show departures from the average trend, and possibly this departure may 

be size dependent. At that stage a departure from the average heaviness do not have to 

be considered as an abnormality and also its comparison against the value predicted 

from the equation alone may be senseless. In this case an equation or equations for 

average females at different maturity stage may be more valuable than the general 

single equation, which emphasize the need for categorical variables as a source of 

reference standards.

A more proper reference for comparison of condition may be a chart, a table or 

set of equations of percentile distribution of weight and size (Blackwell et al. 2000),
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similar to those used in humans, or plots of condition as a function o f feed as used for 

fish larvae (Ferron & Leggett 1994). Those resources should be constructed by 

considering different categorical variables such as geographic location, sex, age, and 

maturity stage among others, and ideally should be updated whenever there are natural 

and/or anthropogenic changes in the populations.

5.1.4 OTHER INDICES FOR THE EVALUATION OF CONDITION

The coefficients o f the length-weight relationship can be used as ad hoc 

condition indices similar to the pondéral index. Assuming that all coefficients are 

constant, the indices CFlhd and CFi (equations (45) and (46)) can be derived from the 

equations for the general length-weight relationship and general condition factor 

(chapter 2), and may be multiplied by a power of 10 to avoid working with decimal 

numbers (/. e. 100 or 1000). A normal condition factor {CFV = 1.0) will be equivalent 

to the value of a of the length-weight relationship multiplied by the power of 10.

CFy
W

LHD

An
CF,. ~ ~ r P  aHaD =

w
j\+ h H +bD

(45)

(46)

Other indices for size-independent density may be parameterised from equation

(46) in special cases when two or three of the longitudinal body dimensions are 

isometric. For example, the derivation for height (H) isometric to length (L) is:

\ n
CFW = — p a HaD =

Due to D - a DL D, an = —— . By substituting ap in the previous equation,
L

C F  - * 1  °  -  Wl.D 2 P l}+b" pD

An
Cp vD = Y PCIh

W
L'+h" D
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Following the same procedure than for height and length, the rest of the 

possible indices are the following:

_  4* W
C t . j ,  = ------- O Cln = --------- r-r-

3 HL'+b°

CF,
4n

VD P aH =
W

DL\+b„

_  4 nCFvHD ~ ^ P
W

HDL
= CFV (Same as equation (45) for the ellipsoid shape)

(47)

A

B

C

For isometry between longitudinal dimensions (for bn= 1, or bD= 1 or bn= bD= 

1), and size-independent density, the following equations result as special cases of the 

previous ones in a similar process than for (47)-A, (47)-B, and (47)-C:

rT7 An WC r ;„ = —  p  a„ — —— 
LH 3 H L D

r r  4 n  W
C F ,„ = y P

4n W
C F ,.HD = — P  a H a D = ~ ^

(Isometric height: bp= 1)

(Isometric width: bo= 1)

(Isometric height and width: bp= bo= 1)

(48)

A

B

C

The last index is the Fulton condition factor, which is true only for full 

isometric growth of the orthogonal axes.

Further research is necessary to derive indices for when density is size- 

dependent because its mathematical distribution is unknown, but I suspect that it may 

either be a power or a transcendental function (exponential, trigonometric or the 

inverses o f both).
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5.2 THE REALISM OF GENERAL SIZE-AT-AGE MODELS

The two general models to assess the best size-at-age growth model in chapter 

3 proved to be useful, but are they real? The general equations used as a reference to 

find the best fit among different models do not constitute a proper model, but just an 

abstract entity with absolutely no meaning either mathematically or biologically. There 

is no mathematical link between the logistic, the generalised von Bertalanffy and the 

double exponentials, such as Gompertz, because all of them are a consequence of 

different mathematical assumptions with respect to the specific growth rates from 

which they are derived. Changing from one model to another in the general equation 

by sign switching and reparameterisation does not mean that both models are 

equivalent or mathematically related due to their differential background is different, 

for example when shifting from von Bertalanffy to logistic model (equations (17) and 

(18)) the value o f b and c in general model 1 (equation (27)) changes from 1 to -1 , and 

to (the time at which the size is equal to zero) becomes the time at the inflection point 

instead. If the new equation fits the data better, it just means that it is more likely that 

the data are better explained by the assumptions of the new model. It does not signify 

that both models are mathematically related. Furthermore, it does not denote that the 

general equation is a generalised model that includes both individual models.

More research is necessary, not to find new models, but to understand the 

biological principles underlying the phenomenon of growth, to identify its best 

descriptor variables, and to find their mathematical relationship. Something similar 

but far more complicated than that presented for the length-weight relationship.

During the presentation of the method to assess the best size-at-age growth 

model no attempt was made to consider the estimated variance for each fitted 

parameter as a tool for comparison. The main reason is that direct comparison of 

individual parameters is not recommended (Quinn & Deriso 1999; Haddon 2001). 

However, complete functions can be statistically compared by different methods, such 

as the analysis of residual sum of squares (Chen et al. 1992), and the likelihood ratio 

test (Kimura 1980; Kimura 1990; Haddon 2001). These methods depend on the 

residual error and not on the individual variables’ error as in the linear methods.
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5.3 THE MORPHOMETRIC FACTOR

The von Bertalanfiy model works well for many species, but its mathematical 

origin is not fully known. I personally think that regardless of the biological 

assumptions, it is likely that the intrinsic growth rate of the von Bertalanfiy growth 

mode and the one in the Richards model are the same. Actually, both the Richards 

equation and the generalised von Bertalanffy equation are the same, but because the 

von Bertalanfiy equation has an analytical origin and its basic mathematical 

assumptions were not properly clear, both were perceived as different. For some 

authors (e. g. Schnute 1981; Laslett et al. 2002) the von Bertalanfiy model became 

considered as a special case of the Richards model. The only difference is the absence 

of the morphometric factor in the von Bertalanfiy age-length equation, which as was 

shown here, should be included (concordantly with the generalised von Bertalanfiy 

equation).

The equality of both models can be seen through the parameterisation o f the 

generalised von Bertalanfiy model as follows,

Y  = Yx (1 -  =Fm( l - e~kteK )h

If c = ekl° then,

= Y J l - c e - k') h

The right term is the Richards equation. In this case there is no change of 

assumptions but just a simplification of terms, which suggests that both models are the 

same.

5.4 GENERAL CONCLUSIONS

As a first step, more research on the bio-mathematical meaning and correct 

evaluation of growth must be undertaken, followed by a review of the methods and 

models that use its results. This will help to incorporate corrections and improvements 

to the models that depend on the evaluation of growth parameters. From the analysis 

undertaken here, it is clear that some figures for some species whose weight-at-age 

growth was calculated from length-at-age data may be over or under estimated and its
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repercussion must be evaluated, especially where these data are used for management 

purposes. It is also clear that some suppositions about morphometric growth should be 

reviewed.

Finally, this work could not have been done without the computer 

programming performed. The independence from commercial and existing computer 

packages helped to avoid mechanically following the same assumptions, and fitting 

models found in previous works. It also gave me the opportunity to question about 

some inconsistencies between my data and the fits. In the same way, the independent 

programming task permitted ad hoc exploration and evaluation of different 

perspectives. The algebraic demonstrations and quantitative exemplifications given 

here are the final result of a process initiated with the contrasting of individual 

programming algorithms against data sets with known properties as a product of 

specific assumptions from different models. The construction of algorithms was 

followed by the exploration o f properties o f real samples against the assumptions 

contemplated in the algorithms. In the end, the links between algorithms, mathematics, 

and models permitted the derivation of the algebraic explanations presented here. This 

approach also helped to keep away from the temptation of a priori attributing the 

inconsistencies found to ‘possible’ biological reasons without further analysis. Even 

when modest, I consider the programming effort highly valuable; despite it is not 

noticed in the final product. I categorically refuse to accept that programming is just 

for programmers, mathematics for mathematicians, and biology for biologist: I 

consider that the basic difference between a naturalist and a biologist as a scientist is 

the power to explain mathematically the biological phenomena, that mathematics is not 

just a tool, but the basic language of nature and building algorithms is one of the most 

powerful ways to develop explanations on how nature operates. If the work with fish 

populations can be considered as been done by an “ecological detective” (phrase 

attributed to Jon Schnute: in Hilbom & Mangel 1997), building mathematical and 

computer algorithms is equivalent to ‘reconstructing the story’.
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