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ABSTRACT 

Structural pounding occurs when a building dynamically sways during an 
earthquake, and collides with an adjacent building in close proximity to it. 
Observations on past earthquakes have revealed that pounding can be a severe 

problem during an earthquake. The extent of the significant damage which 

pounding can produce has never been demonstrated better than the 1985 Mexico 

earthquake where over 40% of the severely damaged buildings surveyed, 

experienced pounding. 

In analysing pounding two approaches have been used in the past, the finite 

element method and the displacement compatibility method. The finite element 

method can be used to analyse possible pounding at any location. In this approach, 

at all possible pounding locations Lagrange multipliers are used to represent the 

contact forces. These together with the initial separation will constrain the total 

potential of the system hence producing an enlarged matrix form of the equations 

of motion. 

The displacement compatibility method has been used with predetermined 

pounding location. This however has been restricted to aligned floor levels so that 

the two sets of matrices, non contact and contact, produced are not as large as for 

the finite element method. 

In this study the displacement compatibility method has been developed to analyse 

pounding contact at interstorey height. This has meant a change in the matrix 
formulation during the contact stage only. Therefore, the method can be considered 

to be as versatile as the finite element method. In the development of the model 

at each stage, the results obtained were verified by comparison with the results 

obtained with the Oasys DYNA3D computer package. 

The main stages in the development of the model were as follows. 

(a) Interstorey pounding of a structure, with axially rigid slabs, against a rigid 

structure. 
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(b) Interstorey pounding of a structure, with axially flexible slabs, against a 

rigid structure. 
(c) Interstorey pounding of a structure by another structure, with both 

structures having axially rigid slabs. 

In all three cases, pounding was induced by offsetting the structure and then 

releasing it. For the first case, the pounding of the structure due to an earthquake 
input motion was also analysed. The effect of damping on the behaviour of the 

structure was also considered. 

The results obtained show 
(a) the magnitude of the contact forces is dependent upon the contact point 

location. 

(b) the axial flexibility of the slabs has an effect on the magnitude of the 

contact force and the length of the contact time. 

(c) damping also has an effect on the contact force values. 
(d) the magnitude of the contact forces in some cases suggests the possibility 

of nonlinear behaviour occurring in the columns. Therefore the results 

obtained ought to be viewed with some caution. 
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NOTATION 

a generalized mode shapes 

ft participation factor =Q Tm r/M, i__i 

Sji distance between nodes j and 1 

6W, work of the nonpotential forces 

6 phase angle 

k. Lagrange multipliers 

p; eigenvalues 

v Poisson's ratio 
damping coefficient 

damping coefficient during contact stage 
L�c damping coefficient during no contact stage 

p density 

E summation sign 

ti time 

O; geometric constraints 

w, cu; undamped natural frequency 

wC , w; C undamped natural frequency during contact stage 

wnc undamped natural frequency during no contact stage 

wd damped natural frequency 

a, a, a pounding location that is a distance from the top floor 

A cross sectional area 

A. shear area 

b, b a distance of height of the column minus distance a 
b8 static preload force for SDOF system with flexible slab 

b column vector of static preload forces for MDOF systems with rigid 

slab 

b, column vector of static preload forces for MDOF systems with flexible 

slab 
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C, c state 1 and 2 damping matrices, respectively 

c damping constant 

c, critical damping ( 2mw ) 

C, modal damping matrix 

C1, C2 Rayleigh damping constants 

cp diagonal damping matrix corresponding to the impact elements 

cu, the damping coefficient of the dashpot working in parallel to the 

impact spring. 

c, diagonal damping matrix, with elements the damping constant cj 

dt time step 

dtc contact stage duration 

Di a vector including stiffness terms due to the impact elements 

e the coefficient of restitution 

E Young's Modulus 

EI column rigidity 

f the equivalent lateral forces 

(f, ) max the maximum floor force (response spectra) 

Fd (ii) the damping force-velocity relationship 

Fs spring force 

Fs (u) the spring force-displacement relationship 

F3, F2 top and middle floor acting forces, respectively 

g, generalized coordinates 

Gj generalized forces 

hi the height of the floor above the base of a structure 

H total height of the building 

i number of modes 

I identity matrix 

I torsional constant 

In,, IZZ moment of inertia about yy and zz axes, respectively. 

k, kc state 1 and 2 building stiffness, respectively (SDOF) with rigid slab 

k, k state 1 and 2 stiffness matrices, respectively (MDOF) with rigid slab 
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k' state 1 and 2 building stiffness, respectively (SDOF) with flexible 

slab 
k" , kC state 1 and 2 stiffness matrices, respectively (MDOF) with flexible 

slab 

k1 *, k2* equivalent top slab stiffness values for chapter 3 

k3, k2, k1 top, middle and bottom column stiffnesses, respectively 
k3*, k4* equivalent middle slab stiffness values for chapter 3 

ka*, kb* equivalent slab stiffness values (MDOF) with flexible slab 
kc* kd* equivalent slab stiffness values (MDOF) with flexible slab 
k, D expressed in term of a and L 

kD the determinant of the inverse matrix 

kf1 * equivalent slab stiffness values due to contact force (SDOF) with 
flexible slab 

k12* equivalent slab stiffness values due to axial deformation (SDOF) 

with flexibleslab 

kp coefficient of contact force, during contact stage 
ks slab stiffness 

ku8 the stiffness of the impact spring 

Ki modal stiffness matrix 

L interstorey height 

Lx Lagrange function 

m mass matrices for MDOF system 

m, ml building mass 

m3, m2, ml top, middle and bottom masses, respectively 

MM normalised modal mass matrix = QjTmQg =1 

M. the maximum overturning moment at the base (response spectra) 
M0 the moment at floor level 

Mon the total base moment of the structure 

n the total number of modes 

N total number of generalized coordinates 
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p the factor relate the 2nd (stiffer) branch to the 1st branch of Fs 

P contact forces 

PP applied forces that acting on the system 

PM equivalent force on an adjacent building 

P, * modal force vectors 

PT transpose of P 

Q modal matrix 

r Pseudo static vector or Earthquake Influence Coefficient 

R the rate of change of the ground acceleration 

Reif the effective force of the slab reactions (SDOF) 

R. a vector of structural resistances, functions of the displacement, ui 

Rk slab reactions due to slab flexibility 

RP slab reactions due to point load, P 

RW the response modification factor 

Rief. the effective forces of the middle floor reactions (2DOF) 

R2eff the effective forces of the top floor reactions (2DOF) 

S a stiffness matrix corresponding to the impact elements 

Sd, Sv, Sa Pseudo-displacement, Pseudo-velocity, Pseudo-acceleration, 

respectively 

t, tj time 

tI initial contact time 

tic time interval between two successive contacts 

T undamped natural period 

T kinetic energy 

TT undamped natural period during contact stage 

Td damped natural period 

Tfl. natural period for flexible slab case 

Tr gid natural period for rigid slab case 

udi flexibility slab displacement at the point of contact 

u12, uff the right hand side of column displacement in flexible slab case 

ü8 , Zig , Ug ground acceleration, velocity and displacement 
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ui , ui displacement at the contact point 

i, ü, uj acceleration, velocity and displacement of mode ith 

ü, ' , zit' uniform velocities of masses ml and m2 after impact 

uki axial displacement of the slab due to its flexibility 

Um deflection during contact stage for two flexible buildings 

up column displacement with stopper at the point of contact 

usi the static preload for SDOF system 

uet the static displacement at the top of building 

utop, umid, ubott the top, middle and bottom floor displacements, respectively 

ul, u first floor displacements 

u2, ü2 second floor displacements 

u2max maximum second floor displacement 

u3, ü3 third floor displacements 

Us, Us building separation 

U potential energy 

Usm; 
n the minimum separation distance between two buildings 

vtop, vmid, vbott the top, middle and bottom floor velocities, respectively 

VI 
Von 

Vmax 

w 
yi, yi, yL 
ysii 

an arbitrarily determined modal amplitude 

the shear at the base of a structure 

the maximum base shear (response spectra) 

work 

uncoupled acceleration, velocity and displacement of mode ith 

the normalized static preload for MDOF systems 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

A structural-dynamic problem differs from a static problem by the fact that the 

dynamic problem is time varying by nature. Because the load and the response 
both vary with time, it is evident that a dynamic problem does not have a single 

solution, as a static problem does; instead a succession of solutions corresponding 
to all times of interest within a response history is needed which is clearly more 

complex and time consuming than a static analysis. 

Almost any type of structural system may be subjected to one form or another of 
dynamic loading during its lifetime. There are two types of prescribed loadings, 

periodic and nonperiodic [1]. The simplest periodic loading is the sinusoidal 

variation which is termed simple harmonic. Nonperiodic loadings may be either 

short-duration impulsive loadings (a blast or explosion loading on building) or long 

duration loadings (an earthquake ). 

Although the dynamic loading acting on structural systems may result from any 

of several different source mechanisms, including wind or wave action and 

vehicular motions, the type of dynamic input which is of greatest importance to the 

structural engineer in some parts of the world is undoubtedly that produced by 

earthquakes. The earthquake loading is unique among other types of dynamic 

loadings because a great earthquake can cause high casualties and severe damage 

in major cities. 

1.2 NATURE OF EARTHQUAKES 

This section introduces the nature of earthquakes. Considering the significance of 

the earthquakes effect on human societies, scientists have tried to explain why 

they occur and what is the theory behind it. 
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1.2.1 Causes of Earthquakes 

Seismologists have defined two distinct mechanisms which directly result in 

earthquakes. The major seismic activity is due to Tectonic earthquakes which 

result from the disturbances (wave of distortion) from a rupture or sudden 

movement along the existing fault in the earth's crust (upper layer of the earth) 
[1,2,3]. The second one is due to volcanic earthquake. It is associated with volcanic 

eruptions or underground movements of magma. 

1.2.2 Plate Tectonics theory 

According to the plate tectonics theory, the earth's outer layer can be imagined as 

a lithosphere which consists of several crusts or plates. The lithosphere, the top 

100km or so of the earth, is made up of continental and oceanic crust plus rigid 

mantle rocks beneath, and covers an underlying softer layer. Earthquakes and 

volcanic activities are believed to be due to the interaction of these plates. Figure 

1.1 shows a map of recent earthquakes, volcanic eruptions and the plate 

boundaries. The various forms of plate boundaries, divergent (spreading), 

convergent (subduction) and transform (strike-slip) are also denoted. 

Almost all major earthquakes and approximately 95% of all earthquakes have 

occurred in two long and relatively narrow zones; 

a) The principal zone, which accounts for about 80% of all earthquakes, is called 

the Circum-Pacific Seismic Zone, which borders the Pacific ocean, running up the 

west coast of America through the Aleutians, and down the coast of Asia through 

Japan and the Philippines, to New Zealand (Figure 1.1) . Paralleling this zone, 

about a hundred or so miles to one side of it, is the chain of active volcanoes 

making up what has often been referred to as the Pacific circle of fire. The 

closeness of these two zones once led to the mistaken belief that earthquakes are 

due principally to volcanic activity [2]. 
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b) The second major seismic zone, called the Alpide Zone, accounts for about 15% 

of all earthquakes. This runs in a generally east-west direction across Europe, from 

Spain , Italy, Greece, Turkey and northern India, turning southeast through 

Burma and Sumatra to join the Circum-Pacific belt in New Guinea. 

The remaining 5% of recorded earthquakes, are located in a fairly narrow zone 
along the midoceanic rifts - particularly those in the Atlantic and Indian oceans. 

The elastic rebound model is the one most widely employed to explain the 

mechanism of earthquakes. According to this model, the moving plates of the earth 
in many places are being slowly displaced producing stress and strain within the 

rocks at the edge of the plates [1,31. If the developed stress exceeds its elastic 

strength, it will fracture along the line of a fault, and the plates regain or rebound 

to the original shape but in a new position. This sudden movement of the plates 

which is accompanied by the release of strain energy, produces the earthquakes 

that caused the damage to buildings. 

The point in the earth at which the earthquake occurs is called the hypocentre or 

focus. The point immediately above it on the earth's surface is called the epicentre. 

Earthquakes are associated with two types of waves, body waves and surface 

waves. The body waves are transmitted from the earthquake hypocentre to the 

surface and consist of P (primary) waves and S (secondary waves). 

The surface waves are produced by the transformation of the body waves once they 

reach the surface (Figure 1.2). Since P waves travel faster than S waves, 

earthquakes are usually felt in two successive shocks. The first one, a light jolt, 

indicates the arrival of P waves; the second one, a heavy rocking shock, is the 

result of the arrival of S waves. The passage of P waves is like repeated hammer 

blows on the blocks shown in Figure (1.2a) which generates a vertical motion. 

The two types of surface wave are called Love waves and Rayleigh waves. These 

waves move as shown in Figure 1.2b, causing the ground to move both vertically 

and horizontally, which in turn, damage the buildings. 
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b) 

Figure 1.2 : a) Body waves consist of P wave and S wave b) Surface waves consist 

of Love wave and Rayleigh wave. After Robinson (1993). 
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The effect of earthquakes on structures depends not only on their magnitude at the 

focus, but also on the distance of the structures from the focal distance. The size 

of an earthquake is calculated from the magnitude scale set up by C. Ritcher 

(1935). Richter expressed the magnitude of an earthquake (M) as the base 10 

logarithm of the maximum amplitude in micrometers (1 pm = 10*-4 cm). Since the 

record varies with distance, it is corrected for a standard distance of a 100 km. The 

magnitude of earthquake is related to the amount of strain energy released at the 

source. The following empirical formula shows the relationship 

LOGE=11.8+1.5M 

in which E is the energy in ergs and M is the magnitude on Ritcher scale. The 

above equation indicates a 32-fold increase in released energy for every unit 

increase in magnitude [1]. The largest earthquakes recorded have had a Richter 

magnitude of 8.9. One on the Columbia-Ecuador border in 1906 and another in 

Japan in 1933. There are eight scales of magnitude in the Richter classification. 
An earthquake of magnitude 8 releases approximately 10E25 ergs of energy, which 

is equivalent to the energy of 10,000 atomic bombs of the type used in Hiroshima. 

While magnitude is a measure of the energy released, intensity, depending on both 

magnitude and distance, is a measure of the destructiveness of an earthquake. 

Therefore, an earthquake has one magnitude, but its intensity varies from station 

to station. Intensity represents the severity of the ground motions and decreases 

with distance from the source. Observations of the effects of earthquakes on 

natural and man-made structures have been used to determine intensity. The 

Modified Mercalli intensity (MM scale) scale, with 12 grades ranging from I (not 

felt by man) to XII (total destructiveness), has been the standard intensity 

measure for many years. 

As a conclusion, it may be stated that the basic knowledge about the nature of 

earthquakes is important in order to relate the waves motion within the earth to 

the wave on the earth surface. 
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1.3 AREA OF INVESTIGATION 

During an earthquake, buildings will sway and lateral collisions can occur between 

adjacent structures. This phenomenon is commonly referred to as structural 

pounding. 

The phenomenon of pounding between closely spaced buildings during major 

earthquakes has only recently been fully appreciated by the engineering 

community. The interest in this problem is motivated by the fact that it is now 

considered to be responsible for a large amount of the damage caused by seismic 

events in the last 20 years. The magnitude of the pounding problem has never 

been better demonstrated than during the 1985 Mexico City earthquake. Of the 

buildings classified as severely damaged, 40% experienced pounding during this 

seismic event [4,5]. 

Structural pounding occurs mainly between adjacent structures which exhibit 

significant differences in mass, stiffness, and (or) strength. The different dynamic 

characteristics of the buildings will usually induce out-of-phase lateral vibrations 

under earthquake ground motions. Pounding will then occur if the spacing between 

the buildings is not sufficient to allow them to vibrate freely. Each time a collision 

occurs, the building is subjected to short lateral impact forces not specifically 

accounted for in the conventional design process. These impact forces produce high- 

amplitude, short-duration local accelerations which can induce damage to 

structural members or non-structural members of the building, depending on the 

position of the contact elevation. Furthermore, earthquake pounding can amplify 

the overall dynamic response of the building. 

Most analytical studies on pounding idealize the buildings as single degree of 

freedom (SDOF) system and (or) multi degree of freedom (MDOF) systems with 

degrees-of-freedoms and masses concentrated at each floor level. It is also assumed 

that the floor levels of adjacent structures are aligned and pounding will occur at 

one of the floor level. The present study is aimed at investigating structural 

pounding at interstorey locations, when the floor of adjacent buildings are 

unaligned. 
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So far, the existing analysis of pounding has been derived by neglecting the 
inplane or axial floor deformation. In this study, the effects of the axial floor 

deformation are also investigated. 

1.4 STRUCTURE OF THESIS 

The development of the two main approaches to structural pounding theory is 

presented in Chapter Two. Methods for formulating the equations of motion of 

structural pounding are also presented. 

Numerical examples for MDOF undamped free vibration pounding response for 

both aligned and unaligned floor elevations are discussed in Chapter Three where 

the analysis is based on the displacement compatibility method. This chapter 
begins with a brief introduction to the Mode Superposition technique, followed by 

the direct integration method to obtain the response of the system. The model 

assumes that the floors are rigid and strikes a rigid adjacent building. 

A MDOF damped free vibration pounding and undamped forced vibration pounding 

are considered at the end of this chapter. The forced vibration pounding is induced 

by the ground motion of the 1985, Mexico Earthquake. 

The assumption that a floor is always rigid will ease the analysis but this may not 

be a valid assumption in many cases. The effects of inplane or axial slab flexibility 

are investigated through parametric studies in terms of floor displacements and 

the contact forces in Chapter Four. 

The relative stiffness of the adjacent building is also considered in this study. The 

SDOF and MDOF systems are adopted and again, the aligned and unaligned floor 

elevation, which is governed by the position of the point of contact along the height 

of the top column are described in Chapter Five. 

Finally, all the analytical studies in Chapter Three to Five are verified using finite 

element packages namely, PATRAN and OASYS DYNA3D. The brief description 
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of the model set-up as well as data input are described in Chapter Six. 

The discussion of all the results is presented in Chapter Seven, and finally this 

chapter draws conclusions and makes recommendations for further studies. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter reviews the literature on methods of solving the system of equations 

arising from the pounding problem and several parameters that affect structural 

pounding such as separation distances, pounding locations and ground motion 

characteristics. This chapter also includes an overview of existing studies on 

structural pounding prevention. 

2.2 STRUCTURAL POUNDING PERFORMANCE 

Pounding has been noted regularly by earthquake investigators over the past 

several decades [6]. In the 1964 Alaska earthquake, the 14-storey Anchorage 

Westward Hotel pounded against its low rise ballroom and an adjoining six-storey 

wing. The pounding was severe enough to dislocate some of the hotel metal floor 

decking from its steel beam supports. In the 1972 Managua earthquake, the five- 

storey Grand Hotel suffered a complete collapse of its third floor when battered by 

the roof level of the adjacent two-storey building. 

This problem of earthquake induced pounding was initially studied but not to a 

great extent, in an analytical investigation (a case study) of the pounding between 

the Olive View Hospital main structure and its stairway tower in the United 

States that led to collapse in the 1971 San Fernando earthquake [6,71. Since then 

very little research was carried out in the area until two major earthquakes 

occurred; i. e the 1985 Mexico City earthquake and the 1989 Loma Prieta 

earthquake. 
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2.2.1 The 1985 Mexico City Earthquake. 

The extent of the significant damage which pounding can produce has never been 

demonstrated better than during the 1985 Mexico City earthquake. It has 

generated the current widespread attention on pounding hazards during seismic 

events. In this earthquake, over 40% of the 330 collapsed or severely damaged 

buildings surveyed experienced pounding. Furthermore, 15% of all the collapsed 
buildings were caused by severe pounding [5]. This was due to the long duration 

of shaking and the relative flexibility of the heavy reinforced-concrete frame 

buildings that were the major damage victims. Figure 2.1 illustrates pounding 

failure, Hotel de Carlo at Mexico City, in 1985 earthquake. 

Figure 2.1 : Pounding Failure, Hotel de Carlo, Mexico City, 1985. 

After Arnold (1989). 

This has created an awareness to evaluate existing building configurations and to 

provide guidance in future building designs to avoid such spectacular damage. 
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2.2.2 The 1989 Loma Prieta Earthquake. 

In 1989, the Loma Prieta earthquake, once again indicated the importance of 

understanding the characteristic behaviour and also the extent of seismic hazard 

caused by structural pounding. Like several other previous earthquakes, it 

occurred in a highly populated metropolitan city which includes both San Francisco 

and Oakland. Even though this event caused mainly architectural (i. e. 

cosmetic/appearance) and/or minor structural damage such as cracks of building 

exteriors above the pounding level (Figure 2.2), there were some cases where 

major structural damage caused by pounding was reported to have occurred [4]. 

CRACKS 

(a) (b) 

--- 
----, 

'i 

(c) 

Figure 2.2: (a) Structural damage due to pounding (b) increased shear above 

pounding level, causing large crack development (c) structural damage above 

pounding level of unreinforced masonry building during San Francisco, 1989 Loma 

Prieta Earthquake. After Kasai, et al. (1990). 
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2.3 TYPE OF STRUCTURAL POUNDING ANALYSIS 

A number of analytical studies have been conducted recently on the effect of 

structural pounding during earthquakes [4,7-19,22,24,28,30]. In general, these 

investigations can be classified into three main categories; studies on single degree 

of freedom systems (SDOF), multi degrees of freedom (MDOF) systems with 

contact occurs at floor to floor level (aligned floor case) and MDOF systems with 

contact occurs between two floor levels (unaligned floor case). This section 

summarizes the main assumptions and results of these various studies. 

2.3.1 SDOF systems 

Most of the past analytical studies on pounding idealize the buildings as a set of 

single degree of freedom (SDOF) systems [7-10]. One of the first investigations of 

earthquake pounding involved the seismic response of two adjacent SDOF systems 

as shown in Figure 2.3 [8]. In this study, the buildings were modelled as linear or 

bilinear SDOF systems with equivalent stiffness and concentrated mass. The 

pounding structure is presented by a mass, m and adjacent structure is 

represented by an impact spring-dashpot mechanism. 

Us 

CUs 

C 

(a) 
kus 

k 

ug 

_ 
+k_s 
k 

(b) U 

Figure 2.3: a) One-side impact of SDOF model, b) Force-displacement relationship 

of a spring, After Wolf, et al. (1980). 
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A linear compressive spring Fs(u)=k u, was activated between the systems when 
the relative displacement, u of the mass is smaller than the initial separation, Us. 

u<Us (2.1) 

The spring stiffness, k was established based on the axial stiffness of a typical 

composite steel-concrete floor. The damping force, Fd(ü) is defined analogously, 

merely by replacing k and ku3 by c and cu, and u by ii, where within linearly- 

elastic limits is given by Fd(ü) =cd. Where ku8 is the stiffness of the impact 

spring and cv8 is the damping coefficient of the dashpot, working parallel to the 

impact spring. 

For u> Us, a nonlinear hardening-spring behaviour (Figure 2.3b) with a 

relationship of Fs(u) = (k + ku, ) u. The stiffness for this range is related to the first 

(elastic) range by the factor p= (k + ku) 1k. That is Fs(u) = ph u. 

The displacement of the SDOF system mass was denoted by u relative to the 

ground displacement, ug and used dots to indicate differentiation with respect to 

time, then the equation of motion were obtained using Newton's law in a form of 

mü+ Fd(ti) + Fs(u) =-m üB (2.2) 

where m is the mass of the SDOF system, 
Fs( u) is the spring force from the relationship as in Figure 2.3b 

Fd( ii) is damping force-velocity 

The numerical integration was performed to find the displacement response 

spectrum. It was found that, for systems with significant differences in mass, the 

displacement amplification of the lighter system was greater than that experienced 

by the one with the larger mass. This could explain the collapse of an elevator 

shaft connected, by an expansion joint, to the main building of the Olive View 

Hospital during . the 1971 San Fernando earthquake [11). It was also shown that, 

for systems with significant differences in stiffness, the maximum displacement of 

the stiffer system is increased substantially when pounding occurs. This increase 

in displacement, coupled with gravity loads, enhances the possibility of a building 

overturning. 

Chapter 2: Literature Review 14 



Multiple collisions can occur between a series of adjacent buildings located on the 

same city block. To investigate this phenomenon, the study described above was 

expanded to a series of adjacent SDOF system [7], where pounding was simulated 
by means of linear viscoelastic impact elements known as spring-dashpots as 

shown in Figure 2.4. 

Us12 Us23 Ue34 

S12 S23 S34 

1 m2 34 

C12 C23 C34 
(u) 

kLc1 U, C2 k3, c3 k4, C4 

777 777777777 

Ri 

pk 

m) 
k 

p. 
k+S, 

1 
ui 

us 

Figure 2.4: a) Lumped mass model of several adjacent SDOF systems, b) Bilinear 

structural resistances R;, functions of displacements u;. 

After Anagnostopoulos, (1988). 

The modelling of the collision was enhanced by considering the energy dissipation 

through equivalent viscous damping at the moment impact between two adjacent 

masses. The dashpot constant, cp of the impact elements determined the amount 

of energy dissipated by relating it to the coefficient of restitution, e (e=1.0 is elastic 

impact and e=0.0 is plastic impact) as given in reference [7]. The equation of 

motion, for the i th modes, were expressed as : 

in 6i+Clli+Ri+Sui+Di =-mitg 
(2.3) 

where m is a diagonal mass matrix, with elements the masses m, 

S= (c, + cp) is a damping matrix, 

c, is a diagonal damping matrix, with elements the damping constant c; 

cp is a diagonal damping matrix corresponding to the impact elements 
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Ri is a vector of structural resistances, functions of the displacement u; 
S is a stiffness matrix corresponding to the impact elements 
D, is a vector including stiffness terms due to the impact elements. 
Üg is the ground acceleration. 

In these matrices, cp and S are equal to zero if the masses mi and m, +l are not at 
impact. i. e (uj- ui+) <_ Us,. 

These equation were solved numerically by direct integration using central 
differences method and a linear acceleration of the ground motion. Results were 

expressed in terms of displacement amplification factors i. e as ratio of peak 

displacements of pounding to the peak displacement of no-pounding case. 

It was found that the interior buildings are subjected to collisions from both sides. 

It was found that the dynamic response of interior systems can decrease or 

increase, depending on the properties of the adjacent systems and the 

characteristics of the ground motion. Exterior buildings, however, are subjected to 

collisions from one side only. These exterior systems experienced a significant 

increase in their dynamic response (i. e. displacement) when pounding occurred and 

this could explain the high percentages of corner buildings collapse during 

earthquakes. Again, it was observed that the effects of pounding were more 

damaging for light systems than for heavy ones. 

In reality, the impact phenomenon between adjacent buildings is highly nonlinear 

and mostly approximated by the use of linear springs and viscous dashpots. During 

an impact, the contact surfaces increase with the impact force. It was proposed to 

use Hertz's contact law to improve the modelling of the collision by an impact 

oscillator [121. The contact force, P, is proportional to the power 3/2 of the relative 

displacement. 

P=k(uti+i -u; - Usi, i, i)w 
(2.4) 

where u, and ui+l are the displacements of masses mi and mi. 1 respectively. Us, 
+l 

is the initial separation between mi and m, +l, and k is the spring stiffness of the 

impact element. Later, it was noted that the exponent in the above equation could 

deviate from 3/2 in real pounding situations [13]. 
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The above studies were based on the assumption that the adjacent buildings have 

different dynamic characteristics (natural periods, damping), since otherwise they 

would oscillate in phase and no pounding or other type of interaction would occur. 
However, in actual practical situation, pounding during an earthquake may also 

occur between adjacent buildings with similar dynamic characteristics. This has 

been studied by assuming the starting time of excitation was not the same for all 

adjacent structures, due to a phase difference which depends mainly on the 

propagation velocity of surface seismic waves, such as Rayleigh waves, as well as 

on the dimensions of the building layout [14]. Again, the analysis indicated an 
increased response of the end structures, as well as of the most rigid structures in 

the series. 

2.3.2 MDOF systems (aligned floor) 

In these studies, each building was considered as a MDOF system with degrees-of- 

freedoms and masses concentrated at each floor. This modelling considers the 

higher mode response of the structures and the collisions at various floor levels. 

One important limitation of this approach, however, is that all the buildings must 

have identical floor elevations. The first study on simplified MDOF systems 

considered a 15 storey flexible building, colliding elastically with an adjacent rigid 

building at a specified floor level, i. e. the upper floor level of the lower structure 

as shown in Figure 2.5 [151. 

z 
reden,. Sign Convention 

tI 
Shear D. n. cnoe 
OTM am 

-x 

a) Actual Condition b) Model Idealization 

Figure 2.5: Pounding problem a) Actual condition and b) Model idealization 

After Maison and Kasai 1990. 
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In this study, the pounding problem was considered as two uncoupled linear 

problems, depending if contact (state 2) is present or not (state 1). The equations 

of motion for the MDOF system in state 1 and 2 were expressed as: 

n7, üi +c Llf +k ui Ill. L 6g (no contact) (2.5) 

üj +cuj +ku1 _ -mr6g +b (contact) 

where u;, ii;, i2 is the floor displacement, velocity and acceleration at time t for ith 

mode shapes. 

m is the building diagonal mass matrix 

L, c are damping matrix assumed to be linear combination of the mass and 

stiffness matrix for state 1 (no contact) and state 2 (contact) respectively. 

k, k are building stiffness for state 1 (no contact) and state 2 (contact) 

respectively. 

r is the Pseudo static vector or earthquake influence coefficient. 

b is a column vector of static preload forces. 

The static preload forces in the contact stage are use the local flexibility spring 

stiffness, ks (Figure 2.5b) based on the in-plane axial stiffness of the concrete floor 

system at the pounding level only. Other floors were assumed very rigid in 

compared to the column which simplified into lumped mass model. The change 

from state 1 to state 2 and so on is based on the displacement, ui and velocity, iii 

at the floor of contact point given by: 

ui = Us but üi <0 (no contact) (2.6) 
ui = Us but ti>0 (contact) 

The solution is based on displacement compatibility method (chapter 3) using a 

modal superposition technique. Then, the procedure is programmed into a 

microcomputer to perform the pounding analysis of the building. The results of this 

study show that large shear forces are developed below and above the contact level. 

The levels above the contact point experience large amplifications of interstorey 

drifts (relative displacement between two adjacent floors), shear forces, and 

overturning moments. 
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The maximum responses of levels below the contact points are reduced, however, 

compared with the maximum responses when pounding does not occur. It is found 
that, the maximum base shear exists when pounding occurs at roof level. 

Later they improved the capabilities of their model by considering two flexible 
buildings colliding [16]. Again, it was shown that the effect of pounding is critical 
in a light building colliding against a heavy one and the point of contact is 

assumed at the floor to floor levels. 

Just a few pounding analyses involving a series of nonlinear MDOF systems have 
been performed [171. In this study, the same bilinear structural resistance 

characteristics as in Figure (2.4b) was adopted. It was demonstrated that exterior 
buildings are more vulnerable to damage from pounding than interior ones. For 

buildings of different heights, the largest increase in ductility demand occurs in the 

taller building above the roof of the smaller one. 

An experimental study has been conducted recently on two storey frames [18]. The 

experimental results confirmed that pounding increases the response (maximum 

displacement) of a stiffer building when colliding against a flexible one. 

2.3.3 MDOF systems (Unaligned floor) 

The study on the response of two or more adjacent buildings during earthquake 
for both aligned 'floor and the unaligned floor pounding has been studied recently 
[19]. The structures are modelled as MDOF systems with rigid slab response at 

each floor. The floors are assumed to have a frictionless contact without sliding. 
(Figure 2.6). 
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Figure 2.6 : Schematic representation of the contact problem. 
After Papadrakakis, et al. (1991) 

Zitw 
external forces 

contact forces 

The solution method was based on the Lagrange Multiplier approach which 
formulated from the scalar quantities of kinetic energy, T, potential energy, U and 

work, W. In this study, the Lagrange's equations are in terms of constraint 

equations of the two nodes j and Z in contact (Figure 2.6) is written as 

(i) (1) (2.7) u1 - ul = aýi 

where u1G) and ul(V are the nodal displacements in direction xl of nodes j and l 

respectively. The Lagrange's equations are differential equations of motion 

expressed in terms of N generalized coordinates, gi . 
(i = 1,... N). For a system 

subjected to nonpotential force, such as damping, the differential of the total 

energy (sum of the kinetic and potential energies) is 

d(T+U)=8Wnp (2.8) 

where SW,,, is the work of the nonpotential forces and can be expressed in terms 

of the generalized coordinates, g1, thus 
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N 

8 W,,, =EG 8g1 (2.9) 

The quantities Gi are known as the generalized forces and GG 6gj has the unit of 

work and when the system is influenced by viscous damping, it is equal to the 

negative change of G. Sgt , that is 

N 
Gi ci 8i (2.10) 

i=i 

The Lagrange's equation including damping forces is given by: 

d (aT) _a+ 
8L, 

= Gi cj=,... ý (2.11) 
dt cagy ag, 

The kinetic energy is the function of g1 and not a function of g,. In this study, gl 

becomes u and g2 becomes Xi 

N 
T= 

2? 
üiTm; üti (2.12) 

The partial derivatives of T are 

aT (2T) _ mi u .i 
05ü 

= mi uý .. 
d 
dt ý- (2.13) 

a0 
au 

And the total potential energy, U subject to the geometric constraints, Oi is 

transformed into Lagrangian function [20], Lx is given by 

(2.14) Lj, =+U Ii ei G=i... m 
i=1 

where U= total potential function of the system =1 12 u; T k; ui - P"T u; 

Xj = Lagrange multipliers 
Oj = all the geometric constraints i. e. kkui = Sj 
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The partial derivatives of L,, 
, 

DL;, /agi = 0. where gl becomes it and g2 becomes a; 

give 

aL 
= kiwi - P= +k? =0 au 

aL 
(2.15) 

kajui - bi =0 al 

When g, becomes u, the generalized force, Gi from Equation (2.10) becomes 

G. =- ci tip (2.16) 

Substituting all derivatives from Equations (2.13) and (2.15) into the Lagrange's 

equation in Equation (2.11) produces the equations of motion such as 

m, üj -0+k, ui - P; + kx X; ci tii (2.17) 
kAtiu; -3; =0 

Or in matrix form of 

mi 0 jus 
+I 

C1 0 Jul, 
+ 

ki kAT ui 
_ 

Pf (2.18) 
00000 kx1 0 'Xi 8ý 

The matrix equations were first condensed by Lagrange Function, LX and followed 

by solution of the equations using numerical iteration process (e. g. Newmark's 

constant acceleration method (ß =1/4) which mainly involving large computational 

works). Compared to a typical dynamic problem of equilibrium equations of motion 

m+üi+ci ui+kiui=P{ (2.19) 

The size of the above equation is increased to Equation (2.18) by a presence of 
Lagrange Multipliers, X ,. 

The dynamic aspects of post-contact conditions must fulfil the energy balance 

condition by introducing the coefficient of restitution e. This is usually defined in 

theory of impact [21] as 

-e (ü2 - ü1) _ (tie - u1) (2.20) 

where ü 1, ü2 are uniform velocities of two masses (ml, m2 ) before impact. 

ii 1, W2 are uniform velocities of two masses ( m1, m2 ) after impact. 
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Details of this method can be found in Reference [19]. The only drawback of this 

approach is that the size of the system equations (Equation 2.19 become Equation 

2.18) is increased because of the Lagrangian Multipliers. 

Recently, pounding between adjacent three and eight storey buildings has been 

studied using a shaking table [22]. Impact elements were represented by 
hammers and receivers were placed at first three floors of each building (Figure 

2.7). It was found that the acceleration for floor to column pounding (unaligned 

floor) was very large compared to floor to floor pounding (aligned floor). No direct 

measurement of acceleration (hence, impact force) was taken at the mid-height of 
the column where contact occurred. 

8-Storey 

Aluminum Load i 

125 

Aa damenaions are in mm 

hial Spacing 

3-Storey Frame 

Threaded Tops 

0 Hammer 
O Receiver 

Light Cable System 

Figure 2.7 : Impact elements. After Filiatrault, et al. (1995). 
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2.4 PARAMETRIC STUDIES 

Some parameters of pounding that affect the response behaviours of buildings have 

been studied by researchers mentioned in the previous section. These parametric 

studies are summarized into four main groups and discussed briefly in this section. 
They are, the relative building mass, the at-rest building separation, the building 

stiffness and the local slab stiffness. 

2.4.1 Relative Mass 

In general, the greater the magnitude of the mass that pounds against on the 

lighter structure, the more pronounced is the effect of pounding to the latter 

structure [7,14] . 

2.4.2 Building Separation (gap size) 

As the gap size increases, the number of impacts decrease and typically the 

structural response decreases [7,16]. It was shown that the peak response of the 

building above the pounding level increases significantly with a decreasing gap 

size. 

2.4.3 Building Stiffness 

Most of the studies carried out in section (2.3) have concluded that the effect of 

pounding is greatest on the more flexible of the two structures [7,14,16,18]. 

2.4.4 Local slab stiffness 

The local slab stiffness was based on the axial stiffness of slab floor. Two cases of 

slab stiffness of 3539370kN/m (200,000 kips/in) and 1751969 kN/m (10,000 kips/in) 

have been studied [15]. The stiffer slab results in larger peak responses. 
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The twentyfold increase in the slab stiffness has relatively minor effects on the 

peak displacements, interstorey drifts and overturning moments. However, it has 

considerable effect on the shear force value. 

2.4.5 Other parameters 

1) Dynamic characteristic. The effect of pounding is smaller when the adjacent 

structures have similar dynamic characteristics [14]. Pounding becomes more 

critical when the phase difference in the starting time of excitation of the first and 

the last structure in a row is relatively large. 

2) The pounding location elevation. The study assumed that the pounding occurs 

at different elevations and concluded that the peak roof deflection progressively 

decreases as the pounding location elevation increases [15]. 

3) Initial displacement amplitude. It is found that the peak responses are directly 

proportional to the initial condition amplitude. i. e scaling the initial displacement 

pattern by two leads to about doubling of the peak responses [15]. 
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2.5 SOLUTION METHODS FOR STRUCTURAL POUNDING 

There are two main approaches to formulating the pounding equations of motion. 
They are the displacement compatibility method and finite element method based 

on Lagrange Multiplier Approach. 

2.5.1 The Displacement Compatibility Method 

This is the most common method used in the analysis of dynamic problems, 

particularly in structural pounding [15,16,17]. 

The structural pounding equations of motion are derived and then transformed 
into a matrix form and these are solved using direct integration technique-[23]. 

2.5.2 The Finite Element and Lagrange Multipliers Approach 

In Finite Element applications, the contact problem was solved by the Lagrange 

Multipliers approach [19]. In this approach, pounding is viewed as a contact-impact 

problem. The geometric compatibility conditions due to contact is enforced with the 

presence of the Lagrange Multipliers. 

The conservation of momentum after and before contact is preserved by 

introducing the coefficient of restitution and this method is briefly mentioned in 

section (2.3.3). For the Lagrange Multipliers method, the size of the system 

equations is increased due to the Lagrangian Multipliers being used to represent 

the contact forces. This is considered as a major drawback of this approach. 
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2.6 POUNDING PREVENTION 

Prevention or mitigation of the pounding potential between adjacent structures 

can be achieved by either allowing an adequate separation between buildings or 
linking adjacent buildings to force inphase vibrations. Each of the above is 

discussed below. 

2.6.1 Separation between buildings 

The most obvious way to eliminate pounding is to allow sufficient separation 
between adjacent buildings. Although building codes prescribe a minimum 

separation between adjacent structures, nontechnical issues often govern the choice 

of distances. The reluctance from owners, engineers and architects to respect code 

requirements arises mainly from high land costs and limited land sizes. Owner 

responsibilities in the case of pounding damage have yet to be clearly defined [24]. 

For protection against pounding, some code of practice, such as Uniform Building 

Code - 1988 (UBC) specifies the required minimum separation distance between 

two buildings, Usmi� =E[ (3 R,,, /8) ugt ] 

where, R= the response modification factor, which represents the ductility of the 

structural system. For example, for the special steel moment frame, Rµ, = 12 and 
for the concrete shear walls, R,,, = 8. The values of RK, for various structural system 

can be found in Table 4.5 in Reference [251. The u8t is the static displacements at 

the top of building as defined in the CEB Model Code [141. 

Stricter requirements have been proposed for Eurocode No 8, where the minimum 

separation distance between two buildings [261 as shown in Figure 2.8, USmin 

should not be less than 
Usmin = 50 mm +H/ 200, where H= the total building height (mm). 

A number of comparative studies on pounding based on the code of practice have 

concluded that both codes are sufficient to reduce the effect of pounding [14,17]. 

Chapter 2: Literature Review 27 



u'_, 3. Lý 
u1_,., 

4ý J 
1 ' 1 

___ ý 

hIu In+2 i 

i 
u2n+3 u2n+3 

u3 

i u2nf2 
'Ih 

n+3 
hl 2 ulntl I 

HI a2 n+I h , i 
n+2 

H2 
hl I ý(n 

i i h2 42n 
, n+l 

hln i i ii h2 
n 

Us 

BUILDING A BUILDING BUILDING B 
SEPARATION 

OVERALL DRIFT- u(+3 OVERALLDRIFT-u2n+3 

INTERSTOREY DRIFT - uln+ 2- ul n+l INTERSTOREY DRIFT - u2n+2 - u2 n+1 

Figure 2.8 : Definition of drift and building separation. 

2.6.2 Linkage of adjacent buildings 

One of the first method to reduce the pounding effects was introduced, as in 

Reference [27]. In this approach, an energy-absorbing material was placed between 

the buildings, such as soft timber, where the contact could happened during 

pounding. Figure 2.9 illustrates a solution of this type. 
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soft limber 

structural 
prone steel 

Figure 2.9 : Protection against pounding. After Rosenblueth and Esteva (1962). 
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When adjoining structures have approximately the same natural modes and 
periods of vibration, it might be advisable to tie them together so as to force them 
to vibrate in phase. 

The elastic vibrational response of coupled buildings was investigated recently [28]. 

The structures are connected by a link and beam system which transmits the 

connection forces to the floors of the structures (Figure 2.10). 

(a) 

I-XrI 

EI Lt 1 

LT 

r, 
12 

(b) 17 

Figure 2.10 : (a) Schematic for the rigid interconnection of structures to eliminate 

pounding (b) Simply supported beam linkage schematic for connecting unaligned 
floors. After Westermo (1989). 

It was found that structural coupling reduces the pounding potential, but also 
increases the seismic forces on the structure which had the smallest base shear 

when uncoupled. 
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2.7 CONCLUSION 

As stated in this brief literature review, considerable analytical and numerical 

studies have been carried out on 3 main types of structural pounding (section 2.3). 

Most of these studies, however were based on the displacement compatibility 

method for the aligned floor case and the Finite Element and Lagrange Multiplier 

method for the unaligned floor case. 

In this study, a further application of the displacement compatibility method is 

applied to the unaligned floor case with a rigid slab and both aligned and 

unaligned floor cases with a flexible slab. This method has advantages over the 

Finite Element and Lagrange Multiplier methods in terms of its matrix simplicity. 
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CHAPTER 3 
POUNDING OF ADJACENT RIGID BUILDING WITH RIGID 
SLAB 

3.1 INTRODUCTION 

The importance of pounding during dynamic loading has only recently begun to be 

studied thoroughly. Observations of past earthquakes have revealed that pounding 

can be a severe problem [29,30]. The extent of pounding damage in Mexico City in 

1985 and during the 1989, Loma Prieta earthquake, has confirmed this as a major 

problem. 

In this chapter, the analysis of pounding is presented by deriving the differential 

equations of motion of Single Degree of Freedom (SDOF) systems and Multi 

Degree of Freedom (MDOF) systems. The chapter covers the pounding of buildings 

where the slabs are assumed to be rigid so that the axial deformations of the slab 

can be neglected. 

The initial section studies the free vibration response using the Mode 

Superposition techniques. Then the analysis of the pounding of adjacent rigid 
buildings is presented. This analysis is based on the displacement compatibility 

method which is an extension of the formulation method used in References 

[15,16]. The numerical examples are based on both undamped and damped free 

vibrations by means of a snap back analysis. Later the earthquake response 
analysis is presented and this analysis is illustrated by numerical examples at the 

end of the chapter. 

The usual analysis procedure is to use either an earthquake response spectrum or 
time history accelerograms as the basis of design. In either case, the Mode 

Superposition technique (including modal analysis ) has usually been adopted to 

solve the problem [31,32,33]. The time history can be conducted by direct 

integration of the general equation of motion. In this study, the response quantities 

of interest are the displacement, velocity and contact force time history. The 
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derivations of the general equations of motion for the case where pounding 
occurred between the adjacent building is explained in section (3.4). All these 

equation of motions are solved using the Mode Superposition technique where the 

symmetrical properties of the matrices are employed. 

Figure 3.1 below shows the summary of the procedure in solving the equation of 
motion for earthquake response analysis. 

EQUATION OF MOTION 

mü+cii+ku=P 

MODE SUPERPOSITION TECHNIQUE 

- Calculate natural frequencies and mode shapes 

- The Modal Matrix 

- Transform into generalized coordinates 
- Apply orthogonolity and normalizing 
- Compute Total Displacement 

- Compute the shear forces, moment, etc 

EARTHQUAKE RESPONSE ANALYSIS 

RESPONSE SPECTRA 

To find maximum value 
of response for example, 
displacement, velocity, shear force, etc 

DIRECT INTEGRATION METHOD 

To find the displacement, velocity, shear force 
time history. 

- Use the Response Spectrum 
of the earthquake record. 

- Use Duhamel Integral 

- Estimated using the Root Mean Square 
approach 

- Use time history accelerograms 

- Assumed a linear variation of ground 
acceleration over a small time step. 

- Compute total displacement, velocity, etc 
using summation of modal function. 

Figure 3.1 : Schematic diagram for solving the equation of motion 

This chapter introduces the basic concept of the mathematical formulation of the 

equation of motion using the direct integration method via Mode Superposition 
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technique. This method has the advantage over the response spectrum method as 
it gives the full structural response time history (for example displacement) for the 

specified time of analysis. This concept is important in order to develop a further 

understanding of the structural pounding analysis throughout this study. 

3.2 MODE SUPERPOSITION TECHNIQUES 

The dynamic response of any linear structure can be obtained after its vibration 

mode shapes and frequencies have been determined. One way of obtaining those 

results using mode superposition techniques. The use of the normal (modal) 

coordinates serves to transform the equations of motion from a set of n 

simultaneous differential equations, which are coupled by the off-diagonal terms 

in the mass and stiffness matrices, to a set of n independent normal coordinate 

equations. The dynamic response therefore can be obtained by solving separately 
for the response of each modal coordinate and then superimposing these into the 

generalized displacement coordinates. This section introduces the Mode 

Superposition techniques in the following order (section 3.2.1 - 3.2.6). 

3.2.1 Undamped Free Vibration 

The first step in a mode superposition techniques is to obtain the natural 

frequencies and mode shapes of the system. Consider the undamped free vibration 

of MDOF systems where the damping matrix and applied load vectors are omitted, 

hence the equation of motion becomes 

M ü; +k uj =0 (3.1) 

where m is the mass matrix, k is the stiffness matrix and a j, ui is the acceleration 

and displacement vectors for the ith number of modes, respectively. Free vibration 

occurs when for example, the mass is displaced and then suddenly released (snap 

back analysis). 
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By analogy with the behaviour of SDOF system, it is assumed that the free- 

vibration motion is simple harmonic, which can also be expressed for a MDOF 

systems as 

u1 = a, sin ( cost + A) (3.2) 

where u; = displacement vectors 

a; = amplitude (mode shape) vectors 
co = free vibration frequencies 
0= phase angle 

Second derivative of Equation (3.2) gives the acceleration vector as 

ii =-w? a1 sin(co t+A) (3.3) 
_ -w? u1 

Substituting Equation (3.3) and (3.2) into Equation (3.1) gives 

-w? ma, sin (wit+0)+ka+sin((o, t+0)=0 (3.4) 

Since the sine term is arbitrary and it may be omitted from Equation (3.4) which 

can be written as 

[k- (Di2 M a, =0 (3.5) 

Hence for a nontrivial solution, the determinant of the left hand side of Equation 

(3.5) can be obtained only under condition: 

Ik-0) I =0 (3.6) 

Equation (3.6) is called the frequency equation of the system and this is represent 
the eigenvalue problem, and can be written in the form: 

[k - pi m]ai=0 (3.7) 

where the eigenvalues, p, = co, ' The values of wl correspond to the natural 
frequencies of the structure. The eigenvectors a; corresponding to the eigenvalues 

p; , which can be obtained by the back substitution of p; into Equation (3.7), to 

obtain the mode shapes. In practice only the lowest frequencies and corresponding 

mode shapes are necessary to give actual deflection. 
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3.2.2 The Modal Matrix 

As mentioned in section (3.1), the dynamic-response analysis of linear systems can 
be obtained by using normal coordinates where the displaced position is defined 

by the i components of the displacement vector u;. Figure 3.2 for example 
illustrates the cantilever column for which the deflected shape is defined by 

translational displacement coordinates at three levels. Any displacement vector u, 
for this structure can be developed by superimposing the amplitudes of the three 

modes of vibration, as shown in Figure 3.2. For any modal component oc; , the 

displacements are given by the mode-shape vectors a, multiplied by the modal 

amplitudes y;. Thus, the total displacements, u, is equal to the sum of the modal 

components. 

u; = al y1 + a2 y2 + ..... + an yn 

=( 
n 
ai... an]yt 

1i) (3.8) (L=1... 

_ý aiyj 

ul ull u12 u13 

u2 u21 u22 u23 

0 u31 32 u33 

Ui =Eaiy; u1=a1 yl u2=a2 y2 u3=013 y3 
i=l 

Figure 3.2 : Representing deflections as sum of the modal components. 

or in matrix form, 
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ui =E Qi Yi (i=1... n) (3.9) 

where u; = actual displacements (function of time) 
Qi = modal matrix = [a; , a2 ...... an ] 

y1 = modal displacement vectors (function of time) 

The matrix Qi , the columns of which are the mode shape vectors a, , o: 2 ,..... Ocn 
is called the modal matrix. 

3.2.3 Forced Vibration 

The general equation of motion for a damped - forced vibration of MDOF systems 
is given by: 

müý+cüi+ku1=P (3.10) 

where m is the mass matrix, c is a damping matrix, k is the stiffness matrix and 
P. is any applied force that may be acting on the systems. P. is a function of the 

time t and usually in the form of simple harmonic motion or any other type of 
dynamic loading. ü; , is and u, is the acceleration, velocity and displacement vectors 
for the ith number of modes respectively. 

These set of Equations (3.10) are coupled i. e. each equation contains more than one 

unknown, which means the set of Equations (3.10) cannot be easily solved directly. 

Hence, in the following step of Mode Superposition technique (modal analysis) , 
these set of n coupled equations are transformed into a set of n uncoupled 

equations. Therefore, each transformed equation would contain only one unknown. 

For modal analysis, the first and second derivative of Equation (3.9) are in the 

form: 
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n 
UI =L Qi Yi 

i-1 
n 

i= Qi yj (i=1... n) (3.11) 
i-1 

üi = Qi yi 

i-1 

Substituting Equation (3.11) into Equation (3.10) gives: 

nnn 

Qjyj + Qjyt +k Qj ya = (3.12) 

The modal matrix makes it possible to include the orthogonolity condition by 

premultiplying each term by the transpose of Q;, which is QQT 
, 

Q. T m Qi yi + QjT Qi yi + QJT k Q. Y. = Q; T p (3.13) 

Since the stiffness matrix, k and the mass matrix, m are both symmetrical, the 

orthogonality condition can be used to simplify the above equation as below: 

Mi yj +Ciyj +K1y1 =Pi. 

where 

(3.14) 

MM = QQT m Qti = modal mass matrix 
Ci = Q, T C Qj = modal damping matrix (i=1... n) (3.15) 

= Q1T k Qj = modal stiffness matrix 
Pj* = QjT P= modal force vectors 

The orthogonolity conditions are: 

Qj Ti Qi =Qj 
TkQý 

_0 

Therefore, when i=j 

QjT in Qi = QjT k Qi =1 

Dividing throughout by 

ifi#j (3.16) 

if i =j 
(3.17) 
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M1=Q1TmQ; =1 ifi=j (3.18) 

and let 

Ki=w? M1 and Ci=2ý; wiM1 (3.19) 

produces, 

2Ej(i): i (3.20) 
Mi 

where Pj*/ MM is called the participation factor of the ith mode, where 

Pi* 
= 

QjT P 
(3.21) 

Mi QjT m Qi =1 

and 4; is the damping coefficient for ith mode. Normally, a damping coefficient, 
4; for each mode has to be assumed and for most of practical structures, the 

amount of damping is small, falling in the range of 0.01 to 0.10. The damping 

coefficient for the steel frame is usually assumed to be between 1% to 2 %. 

The modal damping matrix can also be expressed in term of mass and stiffness as 

Ci=C1M; +C2Ki (3.22) 

where C1 and C2 are constants. This is usually termed Rayleigh damping. If Ci is 

proportional to M, and K; which are symmetrical and diagonal matrix, therefore 

the modal damping matrix, C1 can also be diagonal. 

Substituting the Rayleigh damping into Equation (3.13) and also using 

orthogonality properties of Equation (3.17) produces : 

M1 §+[ClM1+C2K1] +K1y1---- Pi (3.23) 

Dividing throughout by Equation (3.18) and also using Equation (3.19) for K+ gives 
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y; +[cl+c202yi° P` (3.24) 
M, 

Comparing the coefficient of y in the above equation with Equation (3.20), the 
modal damping can be defined by the equation: 

2ti w; =Cl +C2w2 

ý` =2 
w- 

+ C2 wf -1 
S11- (3.25) 

This definition of 4; will further simplify Equation (3.24) to the Equation (3.20). 

Thus, instead of n coupled equations (Equation 3.10), now Equations (3.20) have 

n uncoupled equations similar to that of a SDOF system. This equation can be 

solved using the Duhamel's integral response spectrum (section 3.3.1) or Direct 

Integration method (section 3.3.2). 

3.2.4 The total displacement, velocity and acceleration 

After the determination of y, for each mode (section 3.3), the total displacement, 

velocity and acceleration is given by Equation (3.11) respectively. For example the 

total displacement, u, is the sum of the a; yi (the contribution from the Ist mode) 
to a� yn (the contribution from the n th mode). 

3.2.5 The Lateral Forces, Base Shear And Moments 

For a particular mode, the equivalent lateral forces, f can be calculated using 

fi =kuti 
n 

_ Qi yti (3.26) 
n 

2 
= wi m1 a; y; (i=1... n) 

ti=i 

The shear at the base of a structure, V.,, , is simply obtained by addition of all the 
lateral forces at floor levels, 
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n 
Von fi (3.27) 

If the height of the floor above the base of a structure is known ( hi) , then, the 

moment at floor level, Mo1 is calculated by : 

n 

Moi=Ef; hi 
n 

Mon = Moi (i=1... n) 
i=1 

where M 
on 

is the total base moment of the structure. 

3.2.6 Normalizing (Scaling) 

(3.28) 

It was noted earlier that the vibration mode amplitude will satisfy the basic 
frequency Equation (3.5), and only the resulting shapes are uniquely defined. This 

is called normalizing the mode shapes with respect to the specified reference. 

It is frequently adopted in many computer programs that the shapes are 

normalized to the maximum displacement value in each mode rather than with 

respect to any particular coordinate. Thus the maximum value in each modal 

vector is unity, which provides convenient numbers for use in subsequent 

calculations. However, the normalizing procedure most often used in computer 

programs for structural-vibration analysis, involves adjusting each modal 

amplitude a; which satisfies the condition ; 

Qi TJ Qj = Mi =1 (i=1... n) if ij (3.29) 

This can be accomplished by computing the scalar factor : 

VAT 121 Vj =1 (j=1... n) (3.30) 

where Vf represent an arbitrarily determined modal amplitude, Let consider a 

structure with three masses (ml, m2, m3) and three mode shapes ( al a2 a3). 
Substituting these values into Equation (3.29) produces 
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ml 00 ai 
( al a2 a3) 0 m2 0 a2 = Mi (3.31) 

00 m3 a3 

Or in summation form of 

n 
M; _ mj a? (3.32) 

Consider first mode, where i=1, thus Equation (3.32) becomes 

Mi=m1ai+m2a2+m3a3 (3.33) 

Then computing the normalized mode shapes as follows 

m1 00 Vi 

( Vi V2 V3) 0 m2 0 V2 =1 
(3.34) 

00 m3 V3 

To satisfies the condition of Equation (3.29) 

1 =m1 Vl +m2V2 +m3 Vs (3.35) 

Multiply Equation (3.35) by MI, hence 

Ml =MimiV1 +M1m2VV +M1m3V3 
(3.36) 

Subtract Equation (3.33) from Equation (3.36) gives 

0= M1 m1 V1 -m1 CC2 

0= Ml m2 V2 - m2 a2 
(3.37) 

0=M1 M3V2 
2 

3 m3 a3 

Rearrange above Equation ; 

0=(M1VI -ai)ml 
0= (Ml V2 - a2) m2 

(3.38) 

0=(MlV3 -a3)m3 

The solution is when 
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(M1V1 -ai)=0 =>V1= 
ai 
M1 

(M az a2 
l 

V2 -a2)=0 => V2= (3.39) 

M1 
3 (M1V3 -a3 )=O =>V3=-'--- 

M1 

This is normalizing for the first mode shape only. For the second and third mode 
shapes, the same procedure applies but with the multiplication of Equation (3.29) 
by M2 and M. respectively. In general, this is in the form of 

Vj= (j=1... n) (3.40) 

where Qj is the modal matrix. A consequence of this type of normalizing, together 

with the modal orthogonality relationships relative to mass matrix is that , 

VATm. VV= I (3.41) 

where I is the identity matrix. 
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3.3 EARTHQUAKE RESPONSE ANALYSIS 

The uncoupled equations of motion (Equation 3.20) can be analyzed using the time 

history analysis of the ground acceleration motion or response spectrum for a given 

earthquake record. Both methods use the mode superposition technique as 

mentioned in section (3.2). 

3.3.1 Response Spectra 

The problem that is frequently encountered in preliminary design, is to know the 

maximum absolute displacement or maximum stress, when the system is subjected 

to a given dynamic loading. Response spectra have been employed for this purpose. 

Basically it consists a series of plots of maximum "response" (for example 

displacement, velocity and acceleration) of SDOF systems to a given input versus 

some system parameter, generally the undamped natural frequency. 

The SDOF example below is illustrates the method of Response Spectra in finding 

the displacement, velocity and acceleration earthquake spectra. Or in other words, 

the Pseudo - displacement, Sd, the Pseudo - velocity, Sv and the Pseudo - 

acceleration, Sa . 

3.3.2.1 Single Degree of Freedom System 

Consider a SDOF system as an example for the earthquake response illustrated 

in Figure 3.3 below; 
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Fixed reference 
Total displacement, u= u+u g 

axis u Total acceleration ,ü= ü+üe 
m 

i 

k ; k 
2 ,' ý 2 

Ug 
üg 

I 

/ 
/ 

m= mass of the rigid slab 

Figure 3.3 : Influence of support excitation on SDOF system. 

It is frequently desirable to formulate the equation of motion in terms of the 

relative displacement (u=u- ug) since the forces applied to the mass are directly 

related to this relative displacement. Therefore, in this section, all the symbols of 

u, ii, and ü, represent the relative displacement, velocity and acceleration 

respectively. 

The general equation of motion for earthquake response is written in the form of 

mü+cü+ku=-müg 

where : 
k /2 = massless column with elastic stiffness. 

(3.42) 

c= the damper provides a velocity-proportional resistance to the motion. 

ug = known ground motion displacement 

dg = known ground acceleration 

u= the relative displacement of mass m, move only in simple translation. 

ü= the relative acceleration of mass m 

Equation (3.42) can be treated in the same way as in section(3.2.3) where the right 

hand side is equal to a known earthquake force P. 

- müg=P (3.43) 

Assuming that the system is initially at rest, then the Duhamel's Integral solution 
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is of the form: 

u(t) =1 otP(z)eEsnwd(t - T)dz m Wd o 

=1 
ft-m 1g (t)et0(1-t)sinwd(t-ti)dz (3.44) 

M wd o 

ft 
- üg(t)eEýt-S)sinwd(t-t)dt 

wd o 

where 

wd =w (1 - 2) and w= 
2T (3.45) 

That is Wd is the damped natural frequency 

co is the undamped natural frequency 

T is the undamped natural period. 

It is further assumed that the cod- o when the damping coefficient 4 is very much 

smaller than 1 %. 

U(t)-_ 
1f 

lig(r)ef(t-t>sin(o (t-s)ds (3.46) 
wJ 

For a complete earthquake record of displacement as shown in Figure 3.4 below, 

the maximum value of absolute displacement can be found. 

time (t) 

Figure 3.4 : Complete earthquake record 
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The maximum absolute displacement 
, um. is usually designated as Sd 

. Recall 
Equation (3.46) and this will gives 

Um= =wý Jo`ug(t)ef. (t-t)sinw(t-t)dr (3.47) 

By definition 

Sv=l ju (t)esin ca (t-z)dr I (3.48) 

Thus, Pseudo-velocity, Sv : 

um. = Sd =1 Sv (3.49) 
w 

Sv=w Sd 

The Pseudo-acceleration , Sa is defined by 

Sa=wSv 
=w (wSd) (3.50) 

=w2Sd 

In other words, Sd is um. i. e maximum absolute displacement 

Sv is the maximum absolute velocity 
Sa is the maximum total acceleration. 

Figure 3.5a shows the spectrum of the El-Centro May 18,1940 record plotted 

against maximum velocity. The sharp peaks and valleys in Figure 3.5a are result 

of local resonances and antiresonances of the ground motion. For design purposes, 

these irregularities can be smoothed out as shown in Figure 3.5b by averaging the 

response as proposed by Housner in Reference [321. 
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Figure 3.5a : Pseudo-velocity response spectra for the N-S component of the 1940 

El Centro earthquake, California. (After Housner, 1970) 
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Figure 3.5b : Averaged velocity response spectrum, 1940 El Centro Intensity. 

(After Housner, 1970) 

Because of the simple relationships between the three response spectra 
(displacement, velocity and acceleration) it is possible to present them all in a 

single graph plotted with log scales on each axis as shown in Figure 3.5c. 
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Figure 3.5c : Tripartite plot of design spectrum subjected to 1940, El Centro 

earthquake (N-S Component). (After Housner, 1970). 

This plots show values for 0,0.5,1.0,2.0,5.0 and 10.0% of damping coefficient. 
This indicates the large reduction in the response resulting from damping. As can 

be seen, even the small amount of 2% of critical damping produces a significant 

reduction in the level of the response. 

It is of interest to determine the maximum base shear, Vmax and the maximum 

overturning moment, Mmax, due to earthquake. The maximum base shear can be 

obtained by multiplying the stiffness of the column , k, by the spectral pseudo- 
displacement , where : 

Vmax =ku (3.51) 
=kSd 
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This leads to the fact that the maximum floor force is also given by k Sd and 
thus : 

(f) max =kSd 
=k Sa (3.52) 

w2 
=mSa 

that is the maximum floor force which is obtained by multiplying the pseudo- 

acceleration, Sa by the mass, m. Hence , the maximum overturning moment , 
Mmax at the base can be determined by : 

Mmax=(f, )max*L (3.53) 
=mSaL 

where L is the interstorey height. 
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3.3.1.2 Multi Degree Of Freedom Systems 

In the previous chapter, although SDOF models may adequately describe the 

dynamic behaviour of some systems, in most cases, it is necessary to employ more 
"realistic" models, for example MDOF model. To illustrate this, consider a three 

story shear building subjected to earthquake motion, as shown in Figure 3.6 below. 

The motion of the building is to be simplified using the lumped mass methods of 
discretization as shown in Figure 3.6 (b). 

--m3 
k3 k3 

L 

m 

L 
k2 k2 

m 

L ki kl 

(a) 7; r7 
Ug 

m3 

2k3 

m2 

2 k2 

ml 

2k1 

ro) 
Ug 

Figure 3.6 : (a) Multistorey building subjected to earthquake excitation (b) Lumped 

masses idealization 

The response of MDOF systems can be determined by using mode superposition 

technique or direct integration of the equations of motion . However, some of the 

simplifications made for SDOF systems, as described in a previous section by the 

introduction of a response spectra, can be extended to MDOF systems. The general 

equation for a MDOF system is in the form, 

m uj +cüti +kui _ in rüg (3.54) 
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where dg is the ground acceleration. 

r is Pseudo static vector . 
mr üe is the earthquake force, or termed as P. 
ith number of modes 

The Pseudo static vector or the Earthquake Influence coefficient, is a vector 

composed of displacement produced by unit rigid translation in earthquake 
direction. Figure 3.7 shows how these static vectors are derived for a particular 

structure. 
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Figure 3.7 : Pseudo Static vector. 
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Solving Equation (3.54) using the mode superposition technique as described in 

previous section of this chapter, gives 

Z Qj in rüe yý+ý2Eiwjy; +wjyi= M. 

Let the right hand side of Equation (3.55) equal to 

QQT n, r ßti = Mi 

(3.55) 

(3.56) 
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The term ß; is called the Participation Factor. In most computer programs for 

structural vibrations, the value of MM is made equal to unity using a normalizing 

procedure which is explained in section (3.2.6). Substitute Equation (3.56) into 

Equation (3.55) gives; 

y= +[2ýjwi]j +W2yi=ßiua 
(3.57) 

This can be solve using Duhamel's Integral solution and the maximum response 

can be found using the Response Spectra for a complete earthquake record. The 

procedure is the same as for SDOF except the term the Participation Factor is 

associated with MDOF system. 

Therefore, the modified solutions as in Equation (3.47) is in the form of. 

y` = 
Pý I 

J' 
üg (r) eE' sin(ji (t-t) dT I (3.58) 

max 1 C, 

Thus, the Pseudo-displacement, Sd; , Pseudo-velocity, Sv; and Pseudo-acceleration, 

Sa;, are : 

Yj = Pi Sdi 
Pi 

svi 

wi (3.59) 

= 
a2 

Sa, 
wi 

The total displacement, velocity and acceleration is given by Equation (3.11). As 

not all the modes maximised at the same time, the overall value is estimated using 

the Root Mean Square approach or sometimes called the Square Root of Sum of 

the Squares (SRSS) method. 

ul _, (ai yi. )' 

i=1 
l (i=1... n) 

(3.60) 
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3.3.1.3 Summary on Response Spectra for SDOF and MDOF systems. 

SDOF SYSTEM 

Governing Equation: 

MDOF SYSTEMS 

Governing Equation: 

m6 +cit+ku=-mü8 

Rearrange : 

ü+2ý (J + w2 U= 119 

displacement: u 

natural frequency: 

damping coefficient: 

participation factor: 1 

Maximum displacement: 

u =Sd(&, T) 
Sv 

Sa 
w2 

in 61 +C41 +huti = -nLrlg 

Transform to uncoupled equation: 

Pi yj +2tj wi yj + w2y{ = Pi z! 

yi 
w; 

R; 

Maximum displacement for ith mode: 

Y; mý=PiSd(ýj, 
T1, ) 

= Pi Sd4 
Sv1 

Wi 
Sal 

2 
Wi 

Total maximum displacement: 

In 
usm 'E (a1 y, m)2 

(i=l n) 
i-i 
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3.3.2 Direct Integration Method by Time History Analysis 

It is has been mentioned previously, that the response of structures can be 
determined by using either the mode superposition technique which leads to the 

Duhamel's Integral in conjunction with the response spectrum, or by direct 

integration of the equations of motion, for a specified ground motion history. 

In the case of pounding under dynamic ground motion, the direct integration 

method by means of the time history analysis is most commonly used. The 

maximum response such as displacement or contact force of the structure for a 

very short period of "contact" stage during pounding can be calculated by specifying 

a small time step so that maximum response will not be missed. Two basic 

assumptions of this method are: 

1. The ground acceleration record must be subdivided into small time steps, 

with the maximum of 1/100 th of the basic period of the ground motion. 
2. During this time interval, an approximation can be made about the 

variation of the structures acceleration. It is assumed that the time step, 

(dt) is very small and a linear variation of acceleration can be assumed. 

Knowing this variation and the initial conditions of displacement, velocity and 

acceleration at the beginning of the time step, the values of velocity and 

displacement can be obtained at the end of the time step. 

A computation method has been developed, which based on the exact solution to 

the governing differential equation for the successive linear variations of the 

ground acceleration [23]. This solution is to compute the response at equal discrete 

time steps in a purely arithmetical way. 

First, consider a SDOF system as in section (3.3.2.1). Then, a MDOF system can 

be developed by analogy to SDOF system. 
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3.3.2.1 Formulation for SDOF system 

The general equation of motion for the SDOF system is given in Equation (3.42). 

Rearranging this equation gives : 

ü+2 wti+w2U=-ßjig (3.61) 

where ß is the participation factor, and equal to 1 for SDOF system as described 

in Equation (3.56). Assumed the variation of the ground motion is linear over a 

small time step, as shown in Figure 3.8 below: 

GROUND 
MOTION 

2 9 
If i 

U91 

TIME 

Figure 3.8 : Idealized ground acceleration. 

where R is the rate of change of the ground acceleration. 

R= ug2 - üer 

t2 - ti (3.62) 

dt 

Rearrange Equation (3.62) : 

üez = üei +R dt (3.63) 

Substituting Equation (3.63) into Equation (3.61): 
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6 +2twti+W2u=-ß(üg1+Rdt) (3.64) 

The solution for the equation (3.64), consists of the Complementary Function (C. F) 

and the Particular Integral (P. I). The general solution = C. F + P. I. The derivation 
for the solution is shown fully in Appendix A. 

The general equation for displacement at the end of the time step is 

u2=e-[zil+ýca ul+ u1 
_ 

(2E22-1)ßR] 
sin wddt 

d CA) W 

+ e- eW ac [ u1 +ß 
6) 

g2 p (2 

(a3R) 
cos cad dt 

Rdt_ß 6g+2R 

w2 w2 w3 

(3.65) 

The general equation of velocity at the end of time step is given by: 

u2 
= e-todt 1ul +R] cos wd dt +e dt 1(- 

w2 ul 
w2 wd 

äB1-Ew 
l+ ]sin wddt (3.66) 

w 

_ß 
R 

w 

And the solution for the acceleration is given by Equation (3.64) 

3.3.2.2 Formulation for MDOF systems 

The equation of motion for a MDOF systems is given by Equation (3.54). These 

coupled equations are then transformed into a set of ith uncoupled equations which 

contains only one unknown. Each equation can then be treated in the same way 

a SDOF system. Recall Equation (3.57) 

yz+[2ýj(*) ] +(i) =ßiüB 

where ß; is the Participation Factor. The linear variation of the ground motion over 

a small time step, as shown in Figure 3.8 is also assumed for the MDOF systems. 
The equations of displacement and velocity, at the end of the time step are based 
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on Equations (3.65) and (3.66) respectively, where u term is replaced by y term. 

yiz °e-E, w, ac 1üI_ (2ý -1) [y; i+t; w; y; s+EA& ß; R]sinwiddt 
(aid w; 2 w 

Hgl (2 ý; R) (3.67) 

+e [ Yu + P; 23] cos w; ý dt 
wi wi 

_ß 
Rdt_ ßuB+ß 

(2 &i) 
R s 

w2 w2 wi 

and velocity, 

yil 
_ e- 

ticai dt [yil + ßi 
A] 

coswiidt + g-("Id' 
1- 

w2 yil 
wi (a id 

ß. -i+ 
ßi ýi RI 

sin wid di 
(3.68) 

wi 

R 
wi 

Also the acceleration is 

yi2=-2tj(iy2-wzyj2-pi üg (3.69) 

The total displacement, velocity and acceleration at the end of the time step is the 

sum of these response of each mode which is given by Equation (3.11). 

The application' of these equations (3.67 - 3.69) using the mode superposition 
technique and direct integration method will be shown in various analysis of 

pounding for the next section and chapters. 
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3.4 POUNDING OF ADJACENT RIGID BUILDING WITH RIGID SLAB 

The analysis of the pounding is considered to be an impact (contact) problem. It 

can be idealized as having two states, buildings not in contact and buildings in 

contact. A complete response (for example displacement) time history can be 

achieved as the response continue to change from one state to another. Three cases 

of pounding are studied in this section, i. e undamped free vibration, damped free 

vibration and undamped forced-vibration. The slab is assumed rigid in all cases. 

First, a study of pounding occurring at a single floor level (aligned floor case) is 

presented. The displacement compatibility method is used to formulate the 

equation of motion. Then this method is extended to a study of floor to column 

pounding (unaligned floor case), occurring at any location on a laterally 

unsupported building element such as column. 

3.4.1 Undamped Free Vibration 

In this section, the free vibration analysis is performed using a snap back analysis. 

Consider a shear frame as shown in Figure 3.9. 

m3 

L 

L 

Rigid b S{opper 

L 

Figure 3.9 : Shear frame model idealization. 
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Two states of contact problem; no contact and contact are presented. The adjacent 
rigid building is represented by the rigid stopper at a distance Us from the 
building of interest and at the distance a from the top of the building. 

3.4.1.1 State 1 (No Contact) 

The equations of motion for undamped free vibration of MDOF systems as in 

Equation (3.54) can be written as 

m3 003 2k3 -2k3 03 
0 m2 0 1ü2 + -2k3 2k3 + 2k2 -2k2 u2 =0 

(3.70a) 

00 mi q1 0 -2k2 2k2 + 2k1 1 

Or in matrix form 

in ü; +k uj =0 (3.70b) 

These equations are uncoupled using the mode superposition technique (section 

3.2) produces 

+ yi 0 (3.71) yýwý= 
The solutions for the generalized displacement and velocity at the end of time step 

are given by Equations (3.67 - 3.68) respectively. For the undamped free vibration, 

these equations are simplified as 

y`t 
sin wdt + cos wdt yý- --ý yet ý (3.72) wti 

yj = ytit cos w; dt - wi yit sin w; dt 

The solution for the generalized acceleration is given by rearranging Equation 

(3.71) produces 

yi =- CO) i2 yi 
(3.73a) 

If the initial total displacement and velocity vectors are u; and ü;, then the modal 
initial displacement (y; t) and velocity (yjt) vectors at time (t=0) can be normalized 

as described in Equation (3.40), that is 
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in. ui (3.73b) J'io = QT 

Yo= QjT 1n ui 

The solution process can be carried out by taking a series of time steps using these 

equations, where the generalized displacement, velocity and ground acceleration 

at the end of current time step become the starting values for the next time step, 

and so forth. The total displacement, velocity and acceleration responses are the 

sum of the modal contributions as in Equation (3.11). 

The displacement and velocity at the point of contact, are given by 

Ui = (1 - kAB) u3 + kiss u2 
üi=(1-k, B)U3+k1ä2 (3.74) 

2 

where kAB =3(G)2-2(L)3= a [a+3b] 
L 

The basic derivation of ui and kAB can be seen in Appendix B 

3.4.1.2 State 2( Contact) 

The use of displacement compatibility method in deriving the MDOF equations 

of motion is illustrated in Figure 3.10. 

In general, there are 3 basic stages in performing the overall time history analysis 

for the contact problem. In Figure 3.10a , the lateral displacements of the frame 

are u3, u2 and ul for the top, middle and bottom floors respectively. 

When the building hits the rigid stopper at a distance a from the top of the floor, 

the u3 and u2 on the right hand side of the top column are now termed us3 and us2 

(Figure 3.10b). The us3 and us2 values are constant throughout a particular 

contact stage. 

The only parameters that vary throughout the contact stage are the ud3 and ud2 

terms which are called flexibility displacements. These are shown in Figure (3.10c). 
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Figure 3.10 : Displacement Compatibility Stages a) no contact, b) contact just 

starting and c) into contact. 

Assuming that the floor slab is rigid compared to the column, then 

U3 = us3 + ud3 (3.75) 
u2 = us2 + ud2 

Now consider the right hand side of the column behaviour, which hits the stopper. 
For simplicity, it can be split into two parts (Figure 3.11) where the displacement 

of the column without the presence of the rigid stopper, termed udi (Figure 3.11(i)) 

and the column displacement at the contact point, up due to the point load P 

created during contact (Figure 3.11(ii)) can be expressed in the following equations: 

ui=(1 -kAB )u3+kAB u2 
udi =(1- kAB) ud3 + kAB ud2 (3.76) 

__ 
Pb3a3 

up 
3 L3EI 

where 
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kAB = a2 2 [a + 3b] (3.77) 

The udi is defined by analogy to ui. The basic derivation of udi and up can be seen 
in Appendix B. 

us3 ud3 F3 ud3 
T 

L 
udi ups 

P 
ii Rigid b 

Stopper 

us2 ud2 F2 ud2 

(i) (ii) 

Figure 3.11 : Contact stage on the right hand side column behaviour 

The contact forces, P acting at the contact point, is derived from the displacement 

compatibility where : 

udi + up =0 (3.78) 

Hence, 

P= 3bs3EI[(1-k, 
B)ud3+kAB ud2] (3.79) 

Let the column rigidity, kp=3L3EI /bsa3. The equivalent forces acting on the top and 

middle floor, termed F3 and F2 respectively are expressed in term of P where; 

F3 = 
Pb 

+ 
(M3 + M2) 

LL 

_ 
Pb 

+ 
Pa b2 

_ 
Pa2b 

L L3 L3 (3.80) 

Pb2(3a+b) 

Ls 
) =P(1-k, B 
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Using the assumption in Equation (3.75) and direct substitution of the value P, 

from Equation (3.79) into above expression of F3 will gives: 

F3=kl*(u3-us3)+k2`(u2-us2) (3.81) 

Also, 

F2 = 
Pa 

- 
(M3 +M2) 

LL 
Pa 

_ 
Pa b2 

+ 
Pa2 b 

L L3 L3 (3.82) 

= 
Pat ( a+3b) 

=P(k, B) 

And, 

F2 = k3* ( u3 - us3 )+ k4* ( u2 - us2 ) (3.83) 

where, ` 

k1*= 3EI(3a+b)(1-kt) 
b a3 

=3EIb2 (3a+b)2 
L3 b a3 

k2' = 
3EI (3a+b)kAB 
b a3 

_ 
3E1 (3a+b)(a+3b) (3.84) 

k3. _ 
3E(a+3b)1-kA 
b3 a 

_ 
ý3 bä(a+3b)(3a+b) 

W ._ 3EI(a+3b)k, 
B b3 a 

z a (a +3b )2 _ 
ýE 

3bl3a 
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The shear forces diagram on the frame are illustrated in Figure 3.12 below. It is 

performed using the snap back analysis (ü 
Bt =0) and no damping case. 

M3 

k3 (u3-u2) k3 (us -us2) F3=k1*(u3-us3)+ k2*(u2-us2) 

k3 (u3-u2) k3 (us -us2) F2=k3*(u3-us3)+ k4*(u2-us2) 
m2 

k2 (u2-ul) k2 (u2 

k2 (u2-ul) k2 (u2 
M1 - 

kl ul I kl ul 

Figure 3.12: Shear forces diagram 

The equations of motion for a contact stage can be written in the matrix form as: 

m3 00 "3 k3 + kl ' -k3 + k2 *03 
0 m2 0 162, + -k3 + k3 * k3 + k4 '+ 2k2 -2k2 u2 
00 mi ul 0 -2k2 2k2 + 2k1 

(3.85) 

-k3 + kl ' k3 + k2' 0 
s3 

= k3 + k3 * -k3 + k4.0 us2 
000 sl 

These matrices are always symmetrical at any contact position (a =0 to L) along 
the height of the column, as k2* = k3*. In matrix form 

m. ü1+kuj=b (3.86) 

where m is the mass matrix as in State 1; k, is the stiffness matrix and bis a 

column vector of static preload forces. These equations are uncoupled using the 

modal analysis. 
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Since the stiffness matrix, k, is symmetrical, similarly, the mass matrix m is 

diagonal, the orthogonality properties (if i =j QjTmQi=1) described in the mode 

superposition technique are employed (section 3.2). Hence the uncoupled equations 

are 

yi+0; y1=QjTb (3.87) 

The solution for displacement and velocity at the initial time (t) are: 

b 
y; =Asin car 0t+Bcos w«t+ 2 (3.88) 

w« 
y; =Aw; c cos w«t -Bw; c sin ca«t 

where w;, is the natural frequencies during the contact stage. The constant A and 

B can be found by knowing the modal initial conditions, y; and j' at time (t): 

at t=o Yi = Y1t Yet = Yie 

A= y" B_ (yic _ 
Q'T b (3.89) 

Wic w9c 

Substituting Equation (3.89) into Equation (3.88) produces 

Tb Tb 
yt = 

y`t 
sin wti, t + (y; 

t -- ) cos (ýict +Q2 
Wie (2 wie 

(3.90) 

yi = yit cos Wi,, t - (yit - W« sin Wi, t 

w« 

For simplicity, let 

ysii = 
QýT b (3.91) 

w2 

Therefore, at the end of the time step (t = dt), the generalized displacement and 

velocity equations become 

yi = yet sin wi, dt + (y, t - ysii) cos wi, dt + ysii (3.92) 
wig 

yj = ytit cos wi, dt - w« (yit - ysii) sin wi, dt 
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The total displacement and velocity responses are the sum of the modal 

contributions defined in Equations (3.11). 

3.4.1.3 Change of State Rules 

The process of changing from state 1 (no contact) to state 2 (contact) and so on 
is continued until the required time of analysis is reached. Often, the solution 
difficulties are associated with contact problems which are due to the large change 
in stiffness upon impact or contact, resulting in large forces which caused a 

problem to the dynamic equilibrium. This can be overcome by the automatic 

adjustment of the time step, thereby negating any adverse effects on dynamic 

equilibrium caused by over or under shooting. 

The no contact stage starts when the displacement and velocity at the point of 

contact are such: 

ui = Us but üi z0 (3.93a) 

And the contact stage is finished when the displacement and velocity at the point 

of contact are such: 

ui = Us but üi s0 
(3.93b) 
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3.4.1.4 Fortran Program 

The program called "CAL89" (Computer Assisted Learning of Structural Analysis) 

was used to evaluate the natural frequencies with the corresponding mode shapes. 

The FORTRAN program which is summarised in the following flow chart (Figure 

3.13) was used to evaluate the displacement and the contact forces. All results are 

presented in plot form using the ready made software namely "UNIGRAPH 2000" 

version 1.4 on the UNIX - Sun workstation in the Civil Engineering department 

of Liverpool University. 
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START 

READ DATA t NATURAL FREQUENCIES AND MODE 

SHAPES FOR "NO CONTACT" AND "' CONTACT" 

STAGES 

NORMALISED INITIAL DISPLACEMENTS AND VELOCITIES 

"NO CONTACT STAGE" 
LOOP ON ITERATION PROCESS 

DT - 0.0001 SECONDS 

CALCULATE DISPLACEMENTS AND VELOCITIES OF TOP. 
MIDDLE, BOTTOM MASSESS AND UI 

PROCEED WITH 

NEXT TIME STEP 

TT - TT . DT 

PRINT RESULTS 

IS TIME TT GREATER OR EQUAL 

TO 1.0 SECOND T 

NO 

NO 
IS UI GREATER OR EQUAL 

TO O. $INCH T 

V ES 

NORMALISED INITIAL DISPLACEMENTS AND VELOCITIES 

"CONTACT STAGE" 

LOOP ON ITERATION PROCESS 
DT - 0.00001 SECONDS 

I 
CALCULATE DISPLACEMENTS AND VELOCITIES OF TOP. 

MIDDLE, BOTTOM MASSESS AND UI 

PROCEED WITH I PRINT RESULTS 
NEXT TIME STEP 
Ti' - TT * DT 

IS TIME TT GREATER OR EQUAL 

TO 1. O SECOND ? 

NO 

NO 
IS UI LESS OR EQUAL 

TO O. 5 INCH ! 

YES 

CONTINUE 

STOP 

YES 

YES 

Figure 3.13: Flow chart of Snap Back Analysis Using Iteration Process 

Chapter 3: Pounding of adjacent rigid building with rigid slab 68 



3.4.1.5 Numerical Examples 

3.4.1.5.1 SDOF system, contact at floor level (aligned floor case) 

In this section, the SDOF undamped free vibration pounding response induced by 

a snap back analysis is presented. The purpose is to illustrate the basic problem 

characteristics, and it is important because the results can be extended to treat 

MDOF system in later section of this chapter. Consider a frame shown in Figure 

3.14 below, having the physical properties in Table 3.1 [15]. 

iLL. 
RIGID 
STOPPER 

(a) 

u 

ks Us 
RIGID 
STOPPER 

k 

(b) 

Figure 3.14: (a) Pounding of SDOF problem and (b) Model idealization. 

m= building mass of 39 kips-sect/in. (6.83*103 kN-sec2/m) 

k= building stiffness of 1200 kips/in. (210.24*103 kN/m) 

ks = slab stiffness of 50,000 kips/in. ( 8.76*106 kN/m) 

Us = building separation of 0.4 in. (0.01016 m) 

Initial displacement =-0.81 in. (-0.020574 m) 

Ground acceleration, (ü 
gt =0) 

Undamped free vibration, c=0 

Table 3.1 : Physical properties of SDOF building. 
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a) State 1- No Contact Stage 

The equation of the motion is represented by Equation (3.1) i. e. 

mü = -ku 

Rearranged and- it gives 

mü+ku=0 
ü+(, )2u=0 

The value of free vibration frequency, co and free vibration period, T are : 

m= 13ý 
= 5.547 read/sec 

T= 2n 
= 1.133 sec 

The solution for displacement and velocity are : 

u=Asinwt+Bcoscat 
zi=Awcoswt -Bwsinwt 

The boundary conditions are: 

at t=0u= -0.81" .. B= -0.8111 
att=0 ü=0 

.. A=0 

Hence, the displacement and velocity of no contact stage are given by: 

u= -0.81 cos ca dt 

ti = 0.81 w sin w dt 

These equations also represent the no pounding case. 

b) State 2- Contact Stage 

The contact stage starts when the change of state rules (3.4.1.3) are satisfied, i. e 

u =0.4" but ü iO 

Chapter 3: Pounding of adjacent rigid building with rigid slab 70 



The shear force diagram is illustrated in Figure 3.15 below: 

u 

ks 

STOPP 
Tk RIGID 

ER 
P= ks (u - Us) 

Figure 3.15 : Shear force diagram of SDOF system (contact stage). 

The equation of motion becomes: 

mü=-ku-ks(u-Us) 

Rearranged 

mü+(k+ks)u=ksUs 
mü+kcu=b8 
ü+ k`u be 

mm 
ü+wcu= b' 

m 

where co, ' is the contact stage vibration frequency, be is the static preload force and 

the vibration period T. are: 

kC=(k+ks) 
b8 = ks Us 

WC = 
mC 

=53 
00 

= 36.23 radsec 

TT = -9-" = 0.1734 sec 
WC 

The solution for displacement and velocity at time (t) is given by: 
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u=A sin wct +B cos wit + 
b8 

we m 
ti =A cwc cos wit -B we sin wct 

att=0 u=u= 

.A= 
uc 

wC 

üt = üt 

h 
B=(ut- 28 ) 

c)c m 

where for simplicity, let : 

usi = 
b" 

we m 

at the end of the time step (t = dt), 

u= 
ü-` 

sin wcdt + (u, - usi) cos wcdt + usi 
we 

ti = tit cos wcdt - we (ut - usi) sin wcdt 

The acceleration, is given by 

ü=-w2U+ b8 

m 
(k+ks)u+ bs 

mm 
ku 

_ 
ks (u - Us) 

mm 

These equations are valid as long as the condition u= Us and üz0 are satisfied 

and when d: 5 0, the equation of state 1 (section b) is used. The changing of states 
from no contact to contact and so on is continue until the required time is reached. 
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3.4.1.5.2 MDOF systems, contact at floor level (aligned floor case) 

In this section, the MDOF undamped free vibration pounding response induced by 

a snap back analysis is presented. There are two examples for the aligned floor 

case of pounding which are when it hits at the top floor (a=0) and when it hits 

at the second floor level (a =L). Consider a shear frame (Figure 3.9) having the 

physical properties as in Table 3.2 below : 

m3, m2, ml = building masses of 1.0,1.5,2.0 kips-sec2/in. 
= 175197,262795 , and 350394 kg (N-sect/m) 

2k3,2k2,2k1 = building stiffness of 600,1200,1800 kips/in. 

= 105.12*103,210.24*103, and 315.35*103 (kN/m) 

ks = slab stiffness of 50,000 kips/in. ( 8.76*106 kN/m) 

Initial displacement for top, middle and bottom floor = -1.0 in. (-0.0254 m), 

-0.505 in. (-0.0128m) and - 0.144 in. (-0.00366m) respectively. 

Building separation, Us = 0.5 in. (0.0127 m) 

Ground acceleration, (ü 
gt =0) 

Undamped free vibration, c=0 

Height between floors, L= 72 in. (1.8288 m) 

Young Modulus of steel, E= 30* 103 kip/in2 (205*106 kN/m2) 

Table 3.2 : Physical properties of the building. (**1 kip = 4450N, 1 in = 0.0254m) 

1) Example 1 (a = 0) 

The first case where pounding occurs at the top floor level is illustrated in Figure 

3.16a below. The displacement of the contact point, ui is equal to the top 

displacement, u3. The shear forces diagram are shown in Figure 3.16b. 
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eT 
k3 

L 

k2 

LI k1 

RIGID 
STOPPER 

k3 

a 

rl 

(a) 

ks FP- 
ks (u3-Us) 

u3-s. m3 
RIGID Eý 

2k3 (u3-u2) STOPPER 

2 k3 
2k3 (u3-u2) 

u2-s" m2 
2k2 (u2-uI) 

2 k2 
2k2 (u2-uI) 

u1-- ml 
2k1 (ul) 

2k1 

(b) 

Figure 3.16: (a) Pounding of MDOF system and (b) The shear forces diagram. 

a) No Contact Stage 

Substituting the physical properties given in Table 3.2 into Equation (3.70a) gives 

1.0 00 "3 600 -600 03 
0 1.5 02+ -600 1800 -1200 U2 =0 
002.0 61 0 -1200 3000 It1 

This can be represented by Equation (3.70b) with the value of free vibration 
frequencies 

cal = 14.522 rad/sec 
w2 = 31.048 rad/sec 
w3 = 46.099 rad/sec 

with the associate normalized mode shapes of 
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1st modes 2nd modes 3rd modes 
0.74265 -0.63577 0.21037 
0.48164 0.38566 -0.53475 0.22417 0.43168 0.51323 

The displacement and velocity solutions are defined by Equation (3.72). The total 

displacement and velocity responses are the sum of the modal contributions 
defined in Equation (3.11). 

b) Contact Stage. 

When the condition of Equation (3.93a) is satisfied, then the change from no 

contact stage to contact stage takes placed. The equation of motions are such 

m3 003 2k3 +ks -2k3 03 

0 m2 0 ü2 +- 2k3 2k3 + 2k2 -2k2 u2 =0 Us 

00 m1 a, 0 -2k2 2k2+2k1 10 

Substituting the values from Table 3.2 gives 

1.0 003 150600 -600 03 0000 
0 1.5 0 Iü2 + -600 1800 -1200 u2 =0 (0.5) 

002.11 0 -1200 3000 10 

The general mätrix equation is in the form of Equation (3.86). The natural 

frequencies during contact stage are given by 

wlc = 25.263 rad/sec 
w2c = 45.353 rad/sec 
w3c = 224.96 rad/sec 

with the associate normalized mode shapes of 

1st modes 2nd modes 3rd modes 
0.0076419 -0.0063228 0.99995 

0.63633 -0.51155 -0.0080976 
0.44303 0.55111 0.000098942 

The general matrix equation is in Equation (3.86) and the displacement and 

velocity solutions are defined by Equation (3.88) where the value of 
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ysii=QTb= "i b 

2z wsc W&C 

as defined in Equation (3.91). Again, the total displacement and velocity responses 

are the sum of the modal contributions given in Equation (3.11). The total contact 
force, P is given by 

P= ks (u3 - Us) 
= 50,000 (u3 - 0.5) kips 

2) Example 2 (a = L) 

In this section, the contact point occurs at the second floor level. The displacement 

at the contact point, ui is equal to u2. The same physical properties of the three 

multistorey shear frames as in Example 1 is adopted. This is illustrated in Figure 

3.17 below. 

ei 
k3 

L 

L k2 

LI ki 

RIGID 
STOPPER 

(a) 

u3--3- m3 
2k3 (u3-u2) 

2 k3 
k F 

2k3 (u3-u2) s RIGID Pa ks (u2-Us) 
u2---ý, - m2 ale 

2k2 (u2-uI) STOPPER 

2 k2 
2k2 (u2-uI) 

ul-31- ml 
2k1 (ul) 

2k1 

(b) 

Figure 3.17: (a) Pounding of MDOF system and (b) The shear forces diagram. 
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a) No Contact Stage 

The derivation of the equations of motion are the same as in Example 1(a =0 ) 

and therefore, the natural frequencies, the associate normalized mode shapes and 

the solutions for the equations of motion are similar to Example 1. The only 

difference is in the contact stage as described below. 

b) Contact Stage. 

The contact stage starts when the condition of Equation (3.93a) is satisfied, then 

the change from no contact stage to contact stage takes placed. The equation of 

motions are such 

m3 003 2k3 -2k3 0 u3 0 
0 m2 0 1ü2 + -2k3 2k3+2k2+ks -2k2 u2 =s Us 

00 ml a1 0 -2k2 2k2+2kl 10 

Substituting the values from Table 3.2 gives : 

1.0 00 63 600 -600 030 

0 1.5 0 hü2 + -600 51800 -1200 1u2 = (0.5) 
002. ý1 0 -1200 3000 10 

The general matrix equation is in the form of Equation (3.86). The natural 

frequencies during contact stage are given by 

wlc = 24.348 rad/sec 
6)2c = 38.543 read/sec 
w3c = 185.89 rad/sec 

with the associate normalized mode shapes of 

1st modes 2nd modes 3rd modes 
0.99983 -0.011500 -0.014423 

0.011970 0.016973 0.81623 
0.0079168 0.70691 -0.014816 

Thus the solution are the same as described in Equation (3.92) except the term 

ysii is expressed as: 
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ysii=Q_T- 2i b_ Cb 
zz 

wie Wio 

The total displacement and velocity response are given by Equation (3.11). The 

total contact force, P is given by 

P=ks(u2-Us) 
= 50,000 (u2 - 0.5) kips 
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3.4.1.5.3 MDOF systems, contact between floor levels (unaligned floor case) 

As mentioned earlier, previous studies of pounding assumed that the point of 

contact occurred at a floor level. Pounding occurring at any location on a column 

of height, (0 <a<L) is presented in this section. The same shear frame model of 
Figure 3.9 is adopted. 

There are four different values of a are considered in this study, they are a=L/4, 
113,112 and 3L/4. Only two cases ( a=L/3 and a=IJ2) are shown as numerical 

examples in this section. The summary of the parameters calculated for other 

values of a are listed in Table 3.3. 

It is convenient to idealise the model as a lumped mass model as shown in Figure 

3.18 below: 

CL 

ý>I ks 
ms a 

aV RIGID 
L k3 ks k3 STOPPER 

m2 

L k2 k2 

ks 

ml 

L kl kl 

-, 
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7A77 7277 (a) 

' Us 

F3=k1*(u3-us3)+ k2*(u2-us2) all- 
u3ý m3 ý 

k3 (u3-u2) k3 (us3-us2) P= F3 + F2 

B ui k3 F RIGID STOPPER 
k3 (u3-u2) k3 (us3-us2) 

u2- ýiF2=k3*(u3-us3) 
+ k4*(u2-us2) 

2k2 (u2-ul) 
m2 

2k2 
2k2 (u2-ul) 

ul-> 
2k1 (ul) 

2 k1 
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Figure 3.18: (a) Pounding of MDOF system and (b) The shear forces diagram. 
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1)Example 1 (a=L/3) 

For this case, the k, B term from Equation (3.77) and the column displacement at 
the contact point (a = 113) are expressed in Equation (3.76) : 

k`LI = 
27 (1- k` B) = 

270 
2 

ui= 
20ua+ 7 

ua 27 27 

udi = 
20 

ud3 +? ud2 27 27 

The lateral stiffness of the top column is given by 

12E1 
= 300 kips/in. 

L3 
EI = 9331200 kips in 2 

a) No Contact Stage. 

Again, the equations of motion for the no contact stage for unaligned floor case are 
the same as for aligned floor case in section (3.4.1.5.2). The main concern of this 

study is the contact stage. 

b) Contact Stage. 

The boundary condition for this stage is given by Equation (3.93a) that is when the 

total displacement at the point of contact, ui = Us where 

ui= 
20 

u3+? u2=Us 27 27 
and ti ii0 

The displacements of us3 and us2, when it just into the contact stage are: 

u3 = us3 u2 = us2 

Different contact stages, will have different values of us3 and us2. During the 

contact stage the only parameters that vary throughout the contact stage are the 

ud3 and ud2 terms. The relationship between the us3, us2 and the ud3, ud2 are 
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defined by Equation (3.75). Substituting values of k, B, a=L/3, b= 2113 and EI into 

Equation (3.84) produces 

k1 *=1 50 EI 
= 3750 kips/in. 

k2* = k. 3* = 
105EI 

= 31312.5 kips/in. 
2L3 

W. = 
147EI 

= 459.375 kips/in. 
8L3 

Substituting into Equation (3.85) gives 

1.0 00 u3 
0 1.5 0 62 + ' 

002.0 61, 

3450 

= 1612.5 

0 

4050 1012.5 0 u3 
1012.5 1959.375 -1200 U2 

0 -1200 3000 ul 

1612.5 0 
us3 

159.375 0 us2 
00 us1 

The natural frequencies are 

c)ic = 24.179 rad/sec 
6)2c = 44.484 rad/sec 
W3c = 65.520 rad/sec 

The general equation are in the matrix form as in Equation (3.86). Thus the same 

solutions are applied as in Equation (3.92) where the term ysii is expressed as : 

T 

ysii= 
2 

Wie 

Q, T[(3450us3 +1612.5 us2) + (1612.5 us3 + 159.375 us2)] 
2 

Oic 

a (3450us3+1612.5us2)+a2 (1612.5us3+159.375us2) 
2 

Wie 

The total contact forces, P can be calculated by adding up the floor forces , F3 and 
F2 or direct substitution into Equation (3.79) where 

P= 6834.375 [2-0- ud3 +? ud2] kips 
27 27 
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2) Example 2 (a =L/ 2) 

For this case, the k, term from Equation (3.77) and the column displacement at 
the contact point (a = 1J2) are defined in Equation (3.76) becomes 

km =2 (1-kam) =2 

ui = 
u3 

+ 
u2 

22 

udi=ud3+ud2 22 

The lateral stiffness of the top column is the same as in Example 1 (a=1�3), that 

is EI = 9331200 kips int. 

a) No Contact Stage. 

The equations of motion for the no contact stage is the same as in section 

(3.4.1.5.2). The total displacement and velocity at the point of contact are given by 

Equation (3.74). 

b) Contact Stage. 

The contact stage starts when the boundary conditions in Equation (3.93a) are 

satisfied. 

Ui= 
u3 

+ 
U2 

= Us 
22 

ui z0 

During the contact stage the ud3 and ud2 vary as in Equation (3.75) 

U3 = us3 + ud3 
U2 = us2 + ud2 

Substituting values of k, B, a=b=L/2 and EI into Equation (3.84) produces 
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kl *= k2 *= k3 hi «= 48E1 
= 1200 kips/in. 

L 

Substituting into Equation (3.85) gives 

1.0 00 ü3 1500 900 0 us 
0 1.5 0 62 + 900 2700 -1200 U2 
002.0 ül 0 -1200 3000 ul 

900 1500 0 
us3 

= 1500 900 0 us2 
000 1us1 

The natural frequencies during the contact stage are 

wie = 25.079 rad/sec 
W2c = 38.730 rad/sec 
w3c = 51.682 rad/sec 

Since the equations of motion are also in the matrix form: 

ln. üi+kui=b 

the same solutions are applied as in Equation (3.92) except the term ysii is 

expressed as: 

ysii= -1 
Q. 

zb wie 

QQT [( 900 us3 + 1500 us2) +( 1500 us3 +900 us2) ] 
2 

(aic 

a (900us3+1500us2) + a2 ( 1500 us3 + 900 us2 ) 
F wie 

The total displacement and velocity responses are the sum of the sum of the modal 

contributions defined in Equation (3.11). The total contact forces, P can be 

calculated using Equation (3.79) where 

P= 4800 [2 ud3 +2 ud2 ] kips 
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The summary of the parameters calculated for all six cases of a (0, L/4, L/3, U2, 

3L/4 and L) are listed in Table 3.3. The FORTRAN programs called MDOFI. FOR, 

MDOF2. FOR, MDOF3. FOR, MDOF4. FOR, MDOF5. FOR and MDOF6. FOR for a=0, 
L/4, L13,112,3114 and L respectively, are written in Appendix C. 

3.4.1.6 Results and discussions 

A free vibration is performed by a snap back analysis. The displacement and 

velocity time history curves are shown in Figure 3.19a and 3.19b respectively. 
This is also known as no pounding case where the displacement response curves 

are moving in-phase and dominated by the fundamental modes. These can then be 

compared with the pounding case. 

An analysis for various value of a (0, L14, L/3, L/2,3L/4 and L) are performed and 
shown in Figure 3.20 - Figure 3.25. The displacement and velocity of the top floor 

(utop , vtop), middle floor (umid, vmid), bottom floor (ubott, vbott) and the point 

of contact (ui) are presented. 

It shows that the maximum top floor displacement increases as the pounding 
location elevation increases from a=0 to a=L. The velocity curves, during the 

contact stage suddenly decreases until it reaches a zero velocity (maximum ui 
displacement) and then becomes negative within this contact region. This is one 

of the characteristic of a contact problem where the velocity at the contact point 

is positive when it is going into the contact stage and negative when it is leaving 

the contact stage. 

Figure 3.26a) shows the ui displacement curves for various value of a. As one 

would expect, these curves do not exceed 0.5 in. (0.0127m) which is the building 

separation. 

Overall results of the contact forces and the contact times are tabulated in Table 

3.4 and shown in Figure 3.27a) and b) respectively. Figure 3.27a) shows that the 

maximum first contact forces, P decrease from a=0 to L/2 and then increase 
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again until a=L. This is because of the different value of slab flexibility, ks for 

aligned floor case and both ks and column rigidity, kp for unaligned floor case 
(Table 3.3). Thus, the contact forces, P for the aligned floor are always higher than 

the unaligned floor due to high value of ks, which is assumed rigid. The lower 

value of P for unaligned floor case at a=L12 are due to the lower value of column 
rigidity, kp compared to other values of a=IJ3, L/4 and 3L/4. 

In general, the second stage contact forces are less than the first stage contact 
forces. They follow the same pattern as in the first contact for L/2 <a<L. Figure 
3.27a shows a sudden decrease of P at a= 114. 

This is also associated with a short duration of second contact at a=L14 as shown 
in Figure (3.27b). As expected, the contact duration for a=L/2 is longer than other 

values of a due to the minimum value of column rigidity, kp (Table 3.3). 

All the iteration processes are solved using computer language programme 
(FORTRAN). The results are verified using standard dynamic software OASYS 

DYNA3D as shown in Figure 3.21b - Figure 3.26b. The results from theoretical 

analysis (FORTRAN) and DYNA3D agree very well. 
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Figure 3.19a) : Displacement curves for no pounding free vibration (FORTRAN) 
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Figure 3.19b) : Velocity curves for no pounding free vibration (FORTRAN) 

I It 
I 
Is 

I It 
I 

Chapter 3: Pounding of adjacent rigid building with rigid slab 88 
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Figure 3.20a) : Displacement curves for pounding case at a=0 (FORTRAN) 
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Figure 3.20b) : Velocity curves for pounding case at a= 0 (FORTRAN) 
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Figure 3.21a) : Displacement curves for pounding case at a= L/4 (FORTRAN) 
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Figure 3.21b) : Displacement curves for pounding case at a= L/4 (DYNA3D) 

T 
............ 

ý1 11 i 

i 

f 

if 
ff 

, 

ýi 3 
l 

l 

1M 
ýLý ff % °" .. 

" .t 

i 

Chapter 3: Pounding of adjacent rigid building with rigid slab 90 
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Figure 3.22a) : Displacement curves for pounding case at a= L/3 (FORTRAN) 
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Figure 3.22b) : Displacement curves for pounding case at a= L/3 (DYNA3D) 
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a= V2 (FORTRAN) 
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Figure 3.23a) : Displacement curves for pounding case at a= L/2 (FORTRAN) 
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Figure 3.23b) : Displacement curves for pounding case at a= IJ2 (DYNA3D) 
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Figure 3.24a) : Displacement curves for pounding case at a=3L/4 (FORTRAN) 
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Figure 3.24b) : Displacement curves for pounding case at a=31/4 (DYNA3D) 
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a=L (FORTRAN) 
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Figure 3.25a) : Displacement curves for pounding case at a= L (FORTRAN) 

a =L (DYN A3D ) 
02 0 . 

0 01- r, 
. 

0 0- . c r 
Q) 

0 01 Cl- - . 

02 -0. 

-0.03 
0.0 0. 1 0. 2 0. 3 0. 4 0.5 0. 6 0. 7 0. 8 0. 9 1.0 

time (sec) 

Figure 3.25b) : Displacement curves for pounding case at a= L (DYNA3D) 
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Figure 3.26a) : Displacement curves of ui for different "a" values (FORTRAN) 
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Figure 3.26b) : Displacement curves of ui for different "a" values (DYNA3D) 
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contact forces vs value of a 
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Figure 3.27a) : Maximum contact forces against variation of "a" (FORTRAN) 
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3.4.2 Damped Free Vibration 

The effect of damping always exists in real dynamic problems. In actuality, all 

systems have some damping that dissipates energy and causes the motion to die 

out eventually. These are called damping mechanisms. The most common 

analytical model of damping employed in structural dynamics analyses is the 

linear viscous dashpot model. The damping constant, c is expressed as force per 
displacement rate, and its units are Newtons second per metre (N-s/m). 

Normally a damping coefficient/factor/ratio ,4 can be used to distinguish three 

cases : underdamped (0<4< 1), critically damped (l; = 1), and overdamped (t > 
1). Figure 3.28 illustrates these three cases. For the underdamped case, the motion 
is oscillatory with a decaying amplitude. For the overdamped case, there is no 

oscillation, and the amplitude slowly decays. For the critically damped system, 
there is no oscillation, and the amplitude decays more rapidly than in either the 

undamped or overdamped cases. 

4=0.20 

Figure 3.28: Response of viscous-damped SDOF system with various damping 

levels (After Roy et al. , 1981) 

Since the underdamped case is the most important case for structural dynamics 

applications, it is the only case treated in this study. For the steel frame 

structures, the value of 4 usually falls in the range of 1% to 2 %. 
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The pounding analysis for damped free vibration is presented in this section. The 

equations of motion for the pounding of undamped free vibration using the 

displacement compatibility method as described in previous section, is extend to 

this section with the presence of damping coefficient, 4. 

The numerical examples are based on value of ý=0.005 and 0.02 and then the 

results are compared when 4=0 (undamped case). Two examples are selected from 

one SDOF system (aligned floor) and one MDOF system (unaligned floor at a=L12). 

3.4.2.1 Free Vibration of Linear - Viscous Damped SDOF system 

Consider a SDOF system as shown in Figure 3.3 of section (3.3.2.1). The equation 

of motion for the free vibration system (fig =O) is defined by Equation (3.42) 

produces : 

mü+cui+ku=0 
(3.94) 

The above equation can be rearranged as 

+2 wd ü+ wä U0 (3.95) 

The damped natural frequency, cod is given by Equation (3.45) where: 

Wd =W (l-: 2) 

Where co is the undamped natural frequency. The damped natural period, Td is 

given by: 

Td =2n (3.96) 
wd 

The damping coefficient, ý is expressed as: 

_c 
(3.97) 

2mw 

Where the c is a damping constant. In most practical structures in which ý is 

very small, the damped and undamped frequencies are considered to be identical. 
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3.4.2.1.1 No contact Stage 

Using the direct integration method over a small time step, the solution for the 
displacement and velocity of Equation (3.95) at the end of time step is equal to 
Equation (3.65) and (3.66) respectively. Since üe 0, the equations are simplified 
to become 

U2 = e- Ew dt 1[u, 
+&w ul I sin wd dt (3.98) 

wd 

+e'Ew cu [ul]COS wddt 

And 

2. e-E' [ü1 ] cos cad dt 

-ew dt 1[ 
cil2 LLi +Ew ül ] sin c)d dt 

(3.99) 

wa 

The damping coefficient, 4 as expressed in Equation (3.97) where the subscrip. t n,, 
represent the no contact stage. Usually 4 is very small, therefore 0d co becomes 
cone 

c= Ew 2m w�c (3.100) 

3.4.2.1.2 Contact Stage 

In order to keep the value of c constant through out the analysis (no contact stage 

and contact stage) the value of 4 must be changed accordingly in the contact stage. 
The relationship are derived from above equation where the subscript . represents 
the contact stage. 

(3.101) ze 
2mwe = "° 

w 
we 

The general equation for the contact stage is expressed as 

ü zi U= 
bs (3.102) +2 wd + wä 
m 

where b, is the static preload forces and is equal to (ks Us). 
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The solution of the displacement is expressed as 

u2 = e- 
e w, dt 1[i+Ew, 

(ui - 
b8 

)] sin wd dt 

Od wem (3.103) 

+ e- t o, dt [ui - 
b8 

] cos wddt + 
b8 

22 c)c m c)c m 

And the velocity at the end of the time step is given by: 

1L2 = e-Ew, 
dt [ul ] COS wd dt 

-eE "ý at wd [ (ul - 
b8 )+ ü1 ] sin wd dt (3.104) 

wem we 

Usually, t is very small and 0d- co, 

3.4.2.1.3 Numerical example 

A numerical example described in Table 3.1 (section 3.4.1.5.1) is used except that 

the building separation Us = 0.01m and 4=0.02 and 0.005. 

3.4.2.1.4 Results and discussions 

The displacement and the velocity graphs are plotted in Figure 3.29a and 3.29b 

respectively, for. three values of 4 (0,0.005 and 0.02). The results are shown in 

Table 3.5. It is clearly shown that the presence of the damping as small as 0.005 

in the pounding analysis will reduces the contact force. The general trend is that 

the contact forces reduce as the damping value increases. The starting time for the 

contact stage is increased as the damping value increases. 
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SDOF system (FORTRAN) 
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Figure 3.29a : Displacement curves for pounding case (FORTRAN) 
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Figure 3.29b : Velocity curves for pounding case (FORTRAN) 
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3.4.2.2 Free Vibration of Linear - Viscous Damped MDOF systems 

The same approach is adopted as in damped SDOF system where the physical 

properties of Table 3.2 are used. Again the MDOF systems in Figure 3.18 is chosen 

specifically refer to Example 2 (Case a= L/2) with the presence of damping. 

3.4.2.2.1 No Contact Stalle 

The equation of motion in the no contact stage is given by Equation (3.54) where 

121 üti+CLii+kU1=0 (3.105) 

Since damping matrix, c is proportional to k and m, these equations can be 

transformed into uncoupled equations using the orthogonality conditions (if ij, 

QýTmQ; = 1) produces the displacement solution of 

y12 =e 
dt 1[ yjl + E, wf yil] sin w; l dt (3.106) 

w; d 
+ e- 

Ej wi dt [yil ] cos wid dt 

And the velocity solution at the end of the time step as 

yi2 =6[z] cos (adt 

_e1 6)2 yi, +iwi yjj I sin ca, "d dt 
(3.107) 

[ is wid 

where void -o for small value of ý; and the total displacement and velocity 

responses are being the sum of the modal contributions of ith modes as defined in 

Equation (3.11). 
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3.4.2.2.2 Contact Stage 

The contact stage starts when the boundary condition as in section (3.4.1.3) is 

satisfied. The equations of motion for this stage are expressed as 

üi+ciii+kut=b (3.108) 

where cis the damping matrix; k, is the stiffness matrix and bis a column vector 

of static preload forces (section 3.4.1.2). Hence, the displacement solution for these 

equations are 

y2 = e- 
{i w1Q 1 

w; d 

[ yil + ýti wie (y11 
-ysii)] sin w; g dt (3.109) 

+ e- Eý "ý° dt [u11-ysii I cos ca; d dt + ysii 

And the velocity at the end of the time step is given by: 

ui2 = e- t`o"dt [Yji ] cos w; d dt 

-e{`"`°CU W; d[ytii - ysii +` yjjI sin w; ddt 
(3.110) 

w, c 

where c0id - w;, for small value of 4; and 

ysii = 
QT b 
ý 
w2 

as in Equation (3.91). The total displacement and velocity responses are given by 

Equation (3.11). 

3.4.2.2.3 Numerical Example 

A numerical examples as defined in Table 3.2 is used and values of 4; is equal to 

0.005 and 0.02. The FORTRAN programs namely DAMI. FOR and DAM2. FOR 

are written to assist the iteration process for a damped SDOF and MDOF systems 

respectively (Appendix D). 
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3.4.2.2.4 Results and discussions 

The displacements of the MDOF systems, are plotted in Figure 3.30a - 3.30c, for 

various value of ý (0,0.005 and 0.02) respectively. The results are shown in Table 

3.6. Again, similar to the SDOF system, the contact forces reduce as the damping 

value is increased. 
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a=U2 MDOF system ý=0.0 (FORTRAN) 
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Figure 3.30a : Displacement curves for pounding case 4=0 (FORTRAN). 
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Figure 3.30b : Displacement curves for pounding case 4=0.005 (FORTRAN). 
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a=U2 MDOF system 4=0.02 (FORTRAN) 
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Figure 3.30c : Displacement curves for pounding case 4=0.02 (FORTRAN). 
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3.4.3 Undamped Forced Vibration 

So far the analysis of pounding are initiated by the snap back analysis where the 

value of as =0 is assumed. Dynamic response can be induced in a structure not 

only by a time-varying applied load or initiated by a snap-back analysis, but also 
by motions of its support. In this section, an example of such excitation is studied 

on the earthquake-induced pounding analysis using the horizontal ground 

acceleration recorded for the Mexico earthquake, 1985, N90-W component (Figure 

3.31). 

Two examples of MDOF systems are selected from one aligned floor case (a=0) and 

one from unaligned floor case (a=IJ2). Consider a shear frame in Figure (3.6) 

having the physical properties as in Table 3.7 below: 

m3, m2, ml = building masses of 1.0,1.5,2. Okips-sec=/in. 
= 175197,262795 , and 350394 kg (N-sect/m) 

2k3,2k2,2k1 = building stiffness of 150,300,450 kips/in. 
- 26.279*10', 51.559* 10% and 78.839* 10' (kN/m) 

ks - slab stiffness of 50,000 kips/in. ( 8.76*10' kN/m) 

Building separation, Us = 0.02 m 

The acceleration of gravity, g=9.81 m/s2 

Undamped vibration, c"0 

sleight between floors, L= 72 in. (1.8288 m) 

Young Modulus of steel, Es 30*10' kip/in' (205*106 kN/m') 

Tablo 3.7 : Physical properties of the building. (** 1 kip = 4450N, 1 in. = 0.0254 m) 
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3.4.3.1111DOF systems, contact at floor level (aligned floor) 

In this section, the earthquake-induced pounding analysis of AIDOF systems is 

presented. One case of a=O for the aligned floor is taken as a numerical example. 

3.4.3.1.1 No Contact Stage 

The equations of motion for undamped force vibration in the no contact stage are: 

mcii+&ui --mrüa (3.111) 

where r is Pseudo static vector as described in section (3.3.1.2). These coupled 

equations are then transformed into a set of ith uncoupled equations which can 
then be treated in the same way of SDOF system. Assumed the variation of the 

ground motion is linear over a small time step, as shown in Figure 3.8 (section 

3.3.2.1) produces 

4. Wý yi - Pr ü, (3.112) 

where, ßi is the participation factor as defined in Equation (3.56). The solution for 

displacement and velocity at the end of time step are given by substituting value 
F, =0(.. cad = w, ) into Equation (3.67) and (3.68) produces 

yI, Ull" PIPIsinw, dt +[y, - Pi Effl' ] cos wi dt 
wr W2 w' (3.113) 

RdtP 
ss wd wd 

And 

Yu "(Ytt ' ßt AI 
coo widt '(- w2 Yu - ß4; 1t 

J sin ut dt 
ýi "t (3.114) 

w, 

respectively. Total relative displacement and velocity responses are given by 

Equation (3.11). 
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3.4.3.1.2 Contact Stage 

The contact stage starts when the boundary conditions as in section (3.4.1.3) are 
satisfied. The equations of motion for this stage are expressed as 

m ü1 +k ui - -= r üe +b (3.115) 

where k is the stiffness matrix as in Example 1 b) of section (3.4.1.5.2) and bis the 

column vector of static preload force , 

k8 
b=U U8 (3.116) 

These equations are transform using mode superposition technique gives 

Yi + CJi Yt -- 
QT mr üý +Qrb (3.11? ) 

Q/T m Qi Q/T = Qi 

Applying the orthogonolity properties (if i =j, Qjrm Q, =1) produces 

yt + (0i Y, "_ß, ui + Qj, (3.118) 

The generalized solution for displacement and velocity at the end of time step are 

YLI -I LYu + 
PiR 

j- J sin widt +( yi, + pi - ya ii] cos wi, dt 
1e wte (3.119) 

R cu üz 
p, -p -+yaii z hic wIV 

And 

'[Yu " P, ý] 
cosw dt "1 (-' yu - P, ä11 +y8iiw it ] sin cri, dt 

W, a Wit (3.120) 
-ßý 

Is 

Oje 

respectively. Where co. are the natural frequencies for ith modes during contact 

stage and 
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T- 

ysii =2 (3.121) 

Total relative displacement and velocity responses are given by Equation (3.11). 

. 3.4.3.1.3 Numerical Example 

a) No Contact Stage 

The equations of motion for this stage is defined by Equation (3.111). Substituting 

values from Table 3.7 into Equation (3.111) gives the natural frequencies 

c. )1 - 7.26Q8 md/sec 
cJz - 15.524 rnd/sec 
"3 - 23.050 rodlsec 

The solutions for displacement and velocity are defined by Equation (3.113) and 
(3.114) respectively. Total relative displacement and velocity responses are given 
by Equation (3.11). 

a) Contact Stage 

The equations of motion for this stage is defined by Equation (3.115). Substituting 

values from Table 3.7 into Equation (3.111) gives the natural frequencies during 

the contact stage 

w1c - 12.653 nad/soc 
6)2e - 22.685 rmVsoc 
mac - 223.9.1 md/soc 

The solutions for displacement and velocity are defined by Equation (3.119) and 
(3.120) respectively. Total relative displacement and velocity responses are given 
by Equation (3.11). 
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The contact force is given by 

P=ks(u3-Us) 
= 50,000 ( u3 - Us) kips 

3.4.3.2 MDOF systems, contact between floor levels (unaligned floor) 

In this section, the contact point occurs at the mid-height of the top column (a=L/2) 

as in Figure (3.18). The displacement at the point of contact, ui is given by 
Equation (3.74) in such 

(1 -kam)=kA= 
1 
2 (3.122) 

ui=Zug+2U 

3.4.3.2.1 No Contact Stage 

The equations of motion are the same as in the no contact stage for the aligned 
floor case as described in section (3.4.3.1.1). 

3.4.3.2.2 Contact Stage 

The boundary condition for this stage is given by Equation (3.93a) that is when the 
displacement at the point of contact, ui = Us and the velocity , iii >_ 0. The 

equations of motion are 

in ui +ku1=-uarüg+b (3.123) 

where k is the stiffness matrix and bis the column vector of static preload forces. 
Both matrices are derived as in Equation (3.85) of section (3.4.1.2) using the 

displacement compatibility method. The solutions are similar to Equation (3.119) 

and (3.120). The contact forces are defined in Equation (3.79). 
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3.4.3.2.3 Numerical Example 

a) No Contact 

The equations of motion for this stage is defined by Equation (3.111) as in 

previous example of a=0. Substituting values from Table 3.7 into Equation (3.111) 

gives the same natural frequencies as for the aligned floor case (section 3.4.3.1.3). 

Thus, the solutions for displacement and velocity are also the same as defined in 

Equation (3.113) and (3.114) respectively. Total relative displacement and velocity 

responses are given by Equation (3.11). 

a) Contact Stage 

The equations of motion for this stage is defined by Equation (3.123). The lateral 

stiffness of the top column is given by 

12 EI 
=75 L3 

EI = 2332800 

Substituting values of kAB and EI into Equation (3.84) produces 

kl *= k2 *= k3 *= k4 *_ 48 I= 300 kips/i n. Z-3- 

Substituting values from Table 3.7 into Equation (3.123) gives the natural 

frequencies during the contact stage of 

w1c = 12.540 rad/sec 
6)2c = 19.365 rad/sec 
03c = 25.841 rad/sec 

The solutions for displacement and velocity are defined by Equation (3.119) and 

(3.120) respectively. The ysii term is 
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Tb 
ysii = 

Q- 
2 

way 
225 375 0 

= 
aT 375 225 0 
w 000 
a( 225 us3 + 375 us2) + a2 ( 375 us3 + 225 us2 ) 

_z 
wtic 

Total relative displacement and velocity responses are given by Equation (3.11). 

The contact force is given by Equation (3.79) where 

P= 1200 [2 ud3 +2 ud2 ] kips 

where ud3 = u3 - us3 and ud2 = u2 - us3 

The FORTRAN programs EQAI. FOR and EQA2. FOR are written in Appendix E 
for case of a=0 and a=L/2 respectively. 

3.4.3.3 Results and discussions 

Two cases of a=0 and a=L/2 are selected as the numerical examples for the 

earthquake-induced pounding analysis. The Mexico earthquake, 1985, N90-W 

component is used. The analysis is run for 30 seconds. The response quantities of 
interest are the displacement and the contact forces time histories. These results 

are tabulated in Table 3.8 and compared to the no pounding case. 

Figure 3.32a) and 3.32b) show the total displacement (u; + ug) and the relative 
displacement (ui) time history, respectively, for no pounding case and these 

results are then compared to the pounding case as follow: 

Figure 3.33a and 3.34a show the total displacements time histories when pounding 

occurs at the roof level (a=0) and (a= L/2) respectively. Figure 3.33b and 3.34b 

represent the contact force time history for a=0 and a=L/2 respectively. When 
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contact occurs between the floor levels at a=L/2, the number of contacts is 14 with 

the maximum value of 2398 kN at t= 27.60 seconds. When contact occurs at the 

top floor, the number of contacts reduces to only 9 with the maximum value of 

10,350 kN at t= 19.87 seconds (Table 3.8). These forces are related directly to the 

impact spring stiffness or slab stiffness, ks=50,000 kips/in. for a=0 and both ks 

and column rigidity, kp of 1200 kips/in for a= 112. As the fundamental modes 

dominate the overall response before they are in contact, the number of contact 

forces at a=0 is expected to be less than at a=I�2 (i. e 9 <14 ). 

In general pounding reduces the maximum relative displacement compared to the 

no pounding case (Figure 3.35a) but adverse response at a=L/2 (Figure 3.35b). 

Figure 3.36 shöws the relative displacement curves for the period of t=22.5sec 

until t=25 sec. It shows that the pounding occurs at the top floor level, a=0 produce 

short contact compared to the pounding at mid height column (a=I�2). Again, 

these behaviour are related to the very rigid slab, ks and low column rigidity for 

the case of a=I�2. 

Figure 3.36 also shows that the displacement at the point of contact, ui for a=IJ2 

and ui=utop for a=0 during pounding, do not exceed 0.02 m, which is the building 

separation. These trends are consistent with those obtained from the snap back 

analysis as in previous section (3.4.1) which indicates that the snap-back analysis 

is capable enough of capturing the important response behaviour trends resulting 

from earthquake-induced pounding. Therefore, in the following chapters, only the 

snap back analysis is performed to study the dynamic behaviour of a building 

during pounding. 
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Value of a a=0 a= L12 

Number of contact 9 14 

forces 

Maximum contact 10,349.647 2397.718 

forces (kN) 

Contact forces, P P= ks (u3 - Us) P= 1200 (ud3 + ud2)/2 

= 50,000 (u3 - Us) 

Table 3.8 : Overall results for earthquake induced pounding analysis. 
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Figure 3.32a) : Total displacement curves for earthquake induced-pounding. 
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Figure 3.32b) : Relative displacement curves for earthquake induced-pounding. 
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Figure 3.33a) : Total displacement curves for pounding case at a=0 (FORTRAN) 
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Figure 3.33b) : Contact forces time history for pounding case at a=0 (FORTRAN) 
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Figure 3.34a) : Total displacement curves for pounding case at a= L/2 (FORTRAN) 
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Figure 3.34b) : Contact forces time history for pounding case at a=112 (FORTRAN) 
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Figure 3.35a) : Relative displacement curves for a=0 (FORTRAN) 
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CHAPTER 4 

POUNDING OF ADJACENT RIGID BUILDING WITH 
FLEXIBLE SLAB 

4.1 INTRODUCTION 

The analysis of pounding usually assumes that the slab is rigid and this in turn 

simplifies the analysis procedure. But this assumption during the seismic analysis 

of building structures may not be valid in many cases. The validity of this 

assumption has been discussed recently [34]. 

In this study, this axial deformations of a flexible (non rigid) slab, are considered 

and the analysis of pounding under dynamic loading which were covered in 

previous chapter are thus extended to this section. To illustrate this condition, both 

for SDOF and MDOF systems are employed in determining its solution. 

Like previous analysis of pounding of rigid slab (section 3.4), the analysis of 

pounding of flexible slab is also considered to be an impact (contact) problem. Two 

states, i. e. building not in contact and building in contact are considered. 

4.2 SDOF SYSTEM 

The importance of considering the effect of the flexible slab is illustrated by using 
the SDOF system model (Figure 4.1) for the basic derivation of the equation of 

motion. The rigid stopper is to represent the adjacent rigid building and the slab 

stiffness is termed ks. It is convenient to use ul and ufl, to represent the 

displacement of the left hand side of the slab and the right hand side of the slab 

respectively. The system is assumed undamped with a free vibration analysis. 
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kul kufl 

kk 

(b) 7777 7777 

Figure 4.1 : (a) SDOF system and (b) free body diagram 

4.2.1 No Contact Stage 

The relationship of the displacement for the rigid slab in previous chapter during 

no contact stage is simply uff = ul. But in the case of flexible slab, a new 

relationship is derived: Referring to Figure 4.1(b), the free body forces of the 

SDOF system: 

For the top left hand joint (LHS JOINT) : 

From overall equilibrium, 

P=k ul + ks (ul - ufl) (4.1) 
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P=kul +kufl (4.2) 

Combining Equation (4.1) with Equation (4.2) 

ks (ul -uff) =kuf1 
ufl = 

ks 
ul 

(4.3) 
(k+ks) 

To check this Equation (4.3), consider the equilibrium of forces on the top right 
hand side joint (RHS JOINT): 

ks (ul - ufl) -k ufl =0 
ks ul = (k + ks) ufl (4.4) 

ufl = 
ks 

ul (k + ks) 

This relationship is always true for both the no contact and the contact stage of the 

pounding of a flexible slab. The shear forces produced at this stage are shown in 

Figure 4.2 below: 

ksUs 

ul m ufl 

ku1 kufl 

ui RIGID 

kk STOPPER 

Figure 4.2 : Shear forces diagram for SDOF system (no contact stage) 

The equation of motion for the no contact stage is simply: 

mill =-k ul -k ufl (4.5) 

Rearranged and substituting Equation (4.4) : 
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mül +kul +k 
ks 

ul =0 (k + ks) (4.6) 
m ül + [k +k (k 

ksks)l 
ul =0 

In general it is in the form of 

mül+k*ul =0 
where k* = [k +k 

ks 
(k + ks) (4.7) 

and w= 
FLM* 

The displacement and velocity solutions for above equation are: 

u= A sin w t+ B cos cat (4.8) 
ii=Awcoswt -Bwsinwt 

These equations can also be derived from Equation (3.65) and (3.66) of chapter 3 

for the undamped system (4 =0) and free vibration by a snap back analysis 
(üg=0). The constant A and B can be calculated if the initial boundary condition are 
known. The displacement at the point of contact is given by: 

ufl = 
ks 

ul (k + ks) (4.9) 
U' = (1-kam) ufl 
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4.2.2 Contact Stage 

Before deriving the equation of motion for the contact stage, the intermediate 

displacement at the point of contact, ui must satisfy the condition: 

ui i Us (4.10) 

In the rigid slab case previously discussed in chapter 3, the only terms that vary 

throughout the contact stage are the udi terms (flexible displacements). For the 

flexible slab, as well as the udi terms, there are also, uki terms which are the axial 
deformations of the slab. (Figure 4.3). Consider the behaviour of the right hand 

side column, which hits the rigid stopper. There are three main stages occurred 

during the contact stage. (Figure 4.3 (c) ). First, the column displacement without 

the rigid stopper, termed udi and secondly, the column displacement, up due to 

point (contact) load P and the associated end reaction of Rp, and finally, the axial 

deformation of slab, uki due to force Rk. 

ks 

L 

(a) 

(b) 

(c) 

ul 6 
r 

i 

i 
1 

7777 

ul 
Ir r 

7777 

s 

uf( 

I ax 

ui RIGID 

L 
STOPPER 

usl 

RIGID 
STOPPER 

ust udt 
m 

Rp ý 
--a Reff =s uk l 

J5 
ui EP 

udi' up uki 

Figure 4.3 : Displacement Compatibility Stages (a) no contact (b) just contact 

(c) into contact stage of the right hand side column behaviour. 
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All these terms can be expressed as : 

. udi = ud1 (1 - kam) 

up 
3L3EI 

(4.11) 

uki = ukl (1 - kAB) 

where 

kA. B 
a)3 

(4.12) 
when a=2 thus kA =2 

and like rigid slab, 

uf1 = usl + udl (4.13) 

The derivation of these terms (udi, up and k, B) are same as in Appendix B. 

The contact forces, P acting at the contact point is derived from the displacement 

compatibility where: 

udi = up + uki (4.14) 

Substituting Equation (4.11) into the above relationship: 

udl (1 - kam) = 
Pa3b3 

+ ukl (1 - kAB) (4.15) 
3L3EI 

Because the uk1 term is unknown, thus using the slab reactions 

Reff = (Rp - Rk) = ks uk1 (4.16) 

where Reif is the effective forces of the slab reactions. 

Rp =P (1-kam) Rk =k (uki - 0) =k ukl (4.17) 

The derivation of these forces can be referred to Equation (3.80) in Chapter 3. 

Substituting into Equation (4.16) gives: 
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P (1 -kam) -kukl =ksukl 

ukl = 
(1 - k, B) P 

(4.18) 
(k + ks) 

For the value of the effective force, Rey) the Equation (4.16) can be used to explain 
the relationship between the rigid and flexible case of a SDOF system. 
Substituting the expression of uk1 from Equation (4.18) into Equation (4.16) gives 

Reff = ks ukl 

=ks 
(1 -k, B) p 
(k + ks) (4.19) 

= 
(1 -k, `B)P 
(ks +1) 

If ks is very high as in rigid case, k/ks -0 and therefore, Reif = (1-k, B) P. This is 

equivalent to the force F3 of Equation (3.80) of Chapter 3 for a rigid slab case. 

Substituting Equation (4.18) into Equation (4.15): 

a3b3 
udl (1 -kAB) =p[ + 

3L3EI 

V_ 
(1- kAB) 

L 

(1 - kAB)2 
(k + ks) 

[a 
3b3 (1 - kAB)2 

3L3EI + (k + ks) 

udl 
(4.20) 

Again this equation can represent the rigid case when ks is very high, the term 

(1 - kAB)z 
-0 (k + ks) ~ 

For simplicity, let the coefficient kp equals to : 

kp = 
(1 - k, B) 

alb3 
+ 

(1 - kAB )2 

3L3EI (k + ks) 

so that Equation (4.20) becomes: 

P=kpudl 

Now the slab reactions, Rp and Rk are calculated in terms of udl: 

(4.21) 

(4.22) 
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Rp=P(1-kam) 
= kp (1 -kAB)ud1 
= kfl * udl 

Rk =k ukl 

=k kp 
(1 - k` B) udi (k + ks) 

= kf2 * udl 

The shear forces produced, are illustrated in Figure 4.4 below: 

ks 

ul ... ..... -, m:.:.. 

kul 

kk 

Us 

uf 

k usl Rp=kfl*udl Rk=kf2*udl 

ui F 
RIGID 
STOPPER 

Figure 4.4 : Shear forces diagram of SDOF system (contact stage). 

The equation of motion for the contact stage can be written as: 

m üi = -k ul -k usl - kf1 ' udl + kf2 * udi 

But from Equation (4.13) and (4.4), substituting those values: 

m ül +k ul + (kfl * -kf2 `) ud1 = -k usl 
in ül +k ul + (kfl *- f2 *) (uff -us1) = -k usl 

m ül+k u1 +(kf1 *-kf2*) (ufl) =(-k+kfl *-kf2*) usl 

m ü1+k ul +[ 
(kf1 *-kf2*)ks] 

ul =(-k+kfl *-kf2*) usl (k+ks) 

m üi+[k+ (kfl *-kf2*)ks] 
ul =(-k+kf1 *-kf2*) usl (k+ks) 

Or in general form of : 

(4.23) 

(4.24) 

(4.25) 
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m ül + k: ul = b8 

ul + 
k` 

ul = 
b' 

(4.26) 
mm 

üi+wcul= b' 

m 

And 

k" _ [k + 
(kf1'-kf2`)ks ] 

(k +ks) 
( 4.27) 

CL) = 

FLý 

b, = [-k + (kfl *-kf2*)] usl 

where wc2 is the contact stage vibration frequency and b, is the static preload. 
The solution for displacement and velocity are given by: 

ul = 
ut 

sin wcdt + (ui - usi) cos wcdt + usi (4.28) we 

cil = tit coswcdt - cac (ut - usi) sin wcdt 

where: 

usi = 
be 

(4.29) 
we m 

The displacement at the contact point is 

ui = (1 - kam) uff (4.30) 
new ufl = ufl - ukl 

where k, B , uff and ukl are expressed in Equation (4.12) , 
(4.4) and (4.18) 

respectively. 

The contact forces, P is calculated using the Equation (4.22) where, 

P= kp udl (4.31) 
= kp (ufl - us1) 

Chapter 4: Pounding of adjacent rigid building with flexible slab 132 



4.2.3 Change of state rules 

The contact stage starts when the displacement and velocity are such 

ui = Us but üi i0 (4.32a) 

And the contact stage is finished when the displacement and velocity are such 

ui = Us but iii s0 (4.32b) 

4.2.4 Numerical Examples of SDOF System 

Consider the SDOF system as described in Chapter 3 and shown in Figure 4.1 

which has the building mass, m of 39 kips-sect/in. (6.83* 10' kN-sec2/m), a building 

stiffness, k of 600 kips/in. (105.12*10' kN/m) and the slab stiffness, ks of 10,000 

kips/in. (1.752*106 kN/m). The snap back analysis is performed with the initial 

displacement of -0.81 in. (-0.020574 m). The rigid stopper is at a distance of a=L/2 

from the top floor and 0.008m away from the building (Us). The system is assumed 

to be undamped. 

4.2.4.1 No Contact stage 

Using Equation (4.12), the value of kAB is equal to 1/2 and therefore, the 

intermediate displacement for the point of contact is given by: 

Ui = (1-kAl) uf1 

ui = ul 
2 

The final equation of motion as described in Equation (4.7) is : 

m ül + k'ul =0 

where k* = [600 + 600(0.943397186)] 
= 1166.038312kips/ i n. 

and w=5.46794 rad/sec 

The solution for Equation (4.8) is: 
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ul = -0.81 cos w dt 
61 = 0.81 w sin w dt 

The right hand side displacement are given by Equation (4.4) where: 

ufl = 
ks 

ul (k + ks) 

= 0.943397186 ul 

4.2.4.2 Contact stage 

When the state of change rule is satisfied, (section 4.2.3), the response is in the 

contact stage. The term kp from Equation (4.21) is constant throughout this 

contact stage: 

kp = 3913.858409 

where EI = 18662400kips. in2 

Also the axial deformation of the slab, uki in Equation (4.18) becomes : 

uk1 = 
(1 - k`'B) 

kp ud1 (10600) 

= 0.184612831 udl 

The kf1 * and k/2* values are given by Equation (4.23) where: 

kfl *= kp(1-kam) = 1956.929204 

kf2 "=k kp 
(1- k`B) 

= 110.7676989 
(k + ks) 

so that Rp = kfl * udi = 1956.929204 udl 
Rk = kf2 ` udi = 110.7676989 udi 

Thus the equation of motion (Equation 4.26) becomes: 
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mü, +k: ul = 

where k: = [600 + (kf1 *- kf2') 0.943397186] 
= 2341.66357kips/ i n. 

b, = [-600 + (kfl' - kf2')]usl 
= 1246.161505 us1 

The natural frequency, o during contact stage is 

w= 
ký 
39 

= 7.748719612 rad/sec. 

The solution is described in Equation (4.28) and the right hand side displacement 

of the column is 

ufl = 0.43397186 ul 

new ufl = uff - uki 

The maximum contact force is calculated using Equation (4.31) where 

Pes, 
« = kp (uf1. - usl ) 

Other examples for unaligned floor cases of a=L/3 and a=L/4 and are summarised 
in Table 4.1 as well as the aligned floor case where a=0. FORTRAN programs 

called SFLEX1. FOR, SFLEX2. FOR, SFLEX3. FOR and SFLEX4. FOR are written 

in Appendix F, for case a=0, IJ4,113 and 112 respectively. 

These results are then compared to those obtained with DYNA3D. 
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4.2.5 Results and discussions 

A free vibration snap-back analysis was performed with the initial displacement 

at the top floor is equal to -0.81 inch (0.020574m) for duration of 1 sec. The 

displacement time history curves are shown in Figure 4.6 to 4.9 for cases a=0, Iß/4, 

L13 and 112, respectively. The corresponding contact time and forces are tabulated 

in Table 4.2. 

Figure 4.5a shows the no pounding case for the value a=1J2, so that a comparison 

can be made between flexible and rigid slabs. It clearly shown that, the floor 

flexibility produces a longer vibration period (Tae. ) than a rigid case (T; 
g; d). 

To clarify this, only the first contact is shown in Figure 4.5b, for the pounding case 

of a= U2. It shows that the top displacement on the right hand side column (ufl) 

is always factored by (ks / (k+ks)) of the left hand side column as derived in 

Equation (4.4) throughout both the no contact and the contact stages. The same 

factor is applied to other case of a (a=O, IA and LJ3) as shown in Figure 4.6 to 4.8. 

It also shows that the contact time starts later in the flexible case than in the rigid 

case (Table 4.3). As expected, the contact forces for the flexible case are lower than 

the rigid case due to the different in slab stiffness. 

All the displacement curves at the contact point, ui (Figure 4.6 - 4.10) are as 

expected not exceeding 0.008m which is equivalent to the building separation. 
Figure 4.10a shows a displacement curves at the contact point (ui) for a various 

value of a along the height of the column. It is found that, the value of the 

maximum contact forces, P decreases as the value of a increases from 0 to 1J2. 

(Table 4.2). The starting time of the contact stage also increases as the value of a 

increases from 0 to L12 according to the dominant first mode shapes. 

All results are verified using DYNA3D (finite element package) and are shown in 

Figures (4.6b - 4.10b). It shows that a good agreement is achieved by this study to 

those results obtained by DYNA3D. 
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1st CONTACT 
" " DISTANCE a 

FORTRAN DYNA3D 

0 Contact 0.36500-0.54000 0.36700-0.53900 
time (sec) (0.17500) (0.17200) 

Contact 9,599.598 9,345.770 
forces (kN) 

1/4 Contact 0.38100-0.59120 0.38400-0.58500 
time (sec) (0.21020) (0.20100) 

Contact 7,616.785 7,376.370 

forces (kN) 
I13 Contact 0.39600-0.62741 0.39600-0.61897 

time (sec) (0.23141) (0.22297) 

Contact 6,061.672 5,807.470 

forces (kN) 
112 Contact 0.46500-0.66400 0.46600-0.65797 

time (sec) (0.19900) (0.19197) 

Contact 2,142.123 2,070.510 

forces (kN) 11 1 11 

Table 4.2 : Overall results for the contact stages of flexible slab of SDOF system 

" " 
FLEXIBLE (1st contact) RIGID (1st contact) 

DISTANCE a 
FORTRAN DYNA3D FORTRAN DYNA3D 

112 Contact 0.46500-0.66400 0.46600-0.65797 0.44400-0.65081 0.44958-0.64860 
time (sec) (0.19900) (0.19197) (0.20681) (0.19902) 

Contact ' 2,142.123 2,070.510 3,343.157 
, 
2,932.260 

forces 
(kN) 

Table 4.3 : Results for the contact stage of flexible and rigid slab of SDOF system 
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a= U2 (no pounding) 
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Figure 4.5a) : Displacement curves for free vibration (no pounding) (FORTRAN) 
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Figure 4.5b) : Displacement curves for pounding case of flexible and rigid slab. 
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a=0 (FORTRAN) 
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Figure 4.6a) : Displacement curves for pounding case at a=0 (FORTRAN) 

a=0 (DYNA3D) 
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Figure 4.6b) : Displacement curves for pounding case at a=0 (DYNA3D) 
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a= U4 (FORTRAN) 
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Figure 4.7a) : Displacement curves for pounding case at a= L/4 (FORTRAN) 
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Figure 4.7b) : Displacement curves for pounding case at a=114 (DYNA3D) 
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a= V3 (FORTRAN) 
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Figure 4.8a) : Displacement curves for pounding case at a= U3 (FORTRAN) 

a= V3 (DYNA3D) 
0.03 

0.02 

0.01 

0.0 

ä ý" 

'0.01 

-0.02 

W1 

-0.03 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

time (sec) 

Figure 4.8b) : Displacement curves for pounding case at a= 113 (DYNA3D) 
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a= U2 (FORTRAN) 
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Figure 4.9a) : Displacement curves for pounding case at a= IJ2 (FORTRAN) 
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Figure 4.9b) : Displacement curves for pounding case at a= L/2 (DYNA3D) 
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Figure 4.10a) : Displacement curves of ui for different "a" values (FORTRAN) 
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4.3 MDOF SYSTEMS 

To find the effect of the slab flexibility, ks during pounding on MDOF systems, 
consider a two degree of freedom system as shown in Figure 4.11 below. Again, the 

rigid stopper represents the adjacent rigid building. 

P2 

LI 

P1 

L 

(a) 

ks2 
uf2 

ax 

ui RIGID 
STOPPER 

ofl 

LHS JOINT A RHS JOINT A 

ks2 (u2-uf2) 
P2-go OE 

-ý F-O 

k2 (u2-uI) JJ k2 (uf2-uf1) 

ui 
k2 k2 

LHS JOINT B RHS JOINT B 

ksl (ul-ufl) E 

kI ul kI ufl 

kl k1 

(b) 7777 'I,, 

Figure 4.11: (a) MDOF system and (b) free body diagram 
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4.3.1 No contact stage 

The relationships for the displacements of a rigid slab during the no contact stage 

is uff = ul and u/2 = u2. For the case of a flexible slab, new relationships are 

derived. Referring to Figure 4.11( b), the free body forces of the MDOF system: 

For the top right hand joint (RHS JOINT A) : 

ks2 (u2 - uf2) - k2 (uf2 - ufl) =0 
(4.33) 

From the bottom right hand joint B (RHS JOINT B), 

ksl(ul - uff) + k2(uf2-uff) - k1 ufl =0 
(4.34) 

Rearranging the above equations into a matrix form; 

ks2 +k2 -k2 !u f2l 
= 

Iks2 0f u21 (4.35) 

-k2 k2+ksl +kl 
1uf1 J0 ksl 1u1 J 

Thus, the ufl and uf2 can be found by rearranging the above matrices: 

Lj, l 
a Hfl 1 

kD 
I(' 2 +ks1 +kl) k2 ks2 0 

k2 (ks2+k2) 

11 

0 ksl 

1u21 
WJ 

(4.36) 
I f2l 

flj = 
1 (k2+ksl +kl)ks2 k2ks1 

kD k2ks2 (ks2+k2)ks1 

fug 
tulj 

where 

kD = (ks2 + k2) (k2 + ksl + kL) - k22 (4.37) 

This relationship is true throughout both the no contact and the contact stages. 

The shear forces diagram at this stage is illustrated in Figure 4.12 below: 
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k2 (uf2-uff) 

Fl 

kl ufl 

Figure 4.12 : Shear forces diagram of MDOF system (no contact stage) 

The equations of motion for the no contact stage are : 

m2 ü2 =- k2 (u2-ul) - k2 (uf2-ufl) (4.38) 
ml 61 = k2 (u2 -ul) + k2 (uf2 -ufl) - kl ul - kl ufl 

Rearranged into a matrix form: 
0 

m2 02+ k2 -k2 f u21 + 
k2 -k2 Ju f2l 

=0 
(4.39) 

0 ml 12I1 -k2 k2+kl ýl J 
-k2 k2 +k1 f1 

Substituting Equation (4.36) into the third term of the above equation becomes: 

I k2 42 1p-1 k2(ksl +kl)ks2 -k2ks2ksl f u21 (4.40) 
-k2 k2+kll f1J kD -k2ks2ksl ksl[(k2+k1)ks2+klk2] IJ 

Back substitution into Equation (4.39) 
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1k2+ k2(ksl +kl )ks2 
_k2_ 

k2ks2ksl 
m2 0 -2 kn kD 

u2 0 
(4.41) 

0 m1 l _k2 _ 
k2ks2ksl 

+ 
ks1((k2+k1)ks2+kl k2] 1ý 

kD 
(+ kl) 

kn 

These matrices are always symmetrical at any contact position (a=0 to L) along the 
height of the top column. 

In general these can be represented by : 

in üi+k*uj=0 (4.42) 

where m is the mass matrix and k is the stiffness matrix. Since these matrices 
(m and k `) are always symmetrical at any contact position (a=0 to L) along the 
height of the column, the orthogonality properties (if i =j QjTmQ; =1) described in 

the Mode Superposition techniques can be employed (section 3.2 of chapter 3). 

Using the modal analysis, uncoupling of the equations produces: 

yi + w? yi 0 (4.43) 

where displacement and velocity solutions are given by: 

Y" sin wdt + cos wdt yý _ yý: (4.44) wi 
= yjt cosw; dt - wi ytit sin w1dt 

where uo; is the no contact stage vibration frequencies. The total displacement, u; 

and velocity, üj during the no contact stage and the displacement at the contact 
point, ui are : 

nn 

uj _ a; ys and ü; _ aj yj 

ui = (1-k, B) uf2 + kAB ufl 
(4.45) 

where kAB = 3(-a)2 - 2(L )s 
L 

where nth is the number of mode shapes. 
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4.3.2 Contact Stage 

At the beginning of the contact stage, the condition of ui >_ Us must be satisfied, 

where ui is the point of contact. Similar to the SDOF system (section 4.2.2), an 

expression for variable uki (the axial deformation of the slab) must be found first. 

The same concepts are adopted for the MDOF shear frame as described in section 
(4.2.2), except that the effective forces on each floor change, these are shown in 

Figure 4.13 below. 
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L 
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(b) 
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k2 ui RIGID 
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W 7777 

u2 i m2 us2 

ul 

u2 

k2 / 

ul 

kl 

(i) 

Al 

FRIGID 

r STOPPER 

usl 

us2 ,, ýý 

ui 
/udl 

kl. 

ý' 

udi 

Rp2 

FP 

Rpl 

up 

7277 

uk2 
E-R2eg"=ks2uk2 

k2 (uk2-ukl) 

! ukl: 
k2(uk2-ukl) 

. e- R1efkslukl 

k1 uki 

uki 

(ii) (iii) 

Figure 4.13: Displacement Compatibility Stages (a) no contact (b) initial contact 

(c) into contact stage of the right hand side column behaviour. 
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Before the contact stage (i. e during the no contact stage), the masses are moved 
horizontally until the point of contact, ui, reaches the rigid stopper (Figure 4.13b). 
At this stage, the displacements of the top and bottom slab on the right hand side 

of the top column are equal to us2 and us1 where: 

uf2 = us2 + ud2 (4.46) 
ufl = usl + udi 

Without the presence of the rigid stopper, the masses actually move further 
distances ud2 and udl at the top and bottom slab respectively (Figure 4.13c (i)). 

The presence of the rigid stopper, produces the displacement up creating a force 
P as shown in Figure 4.13c (ii). Thus it produces a slab reactions Rp2 and Rpl. 

Finally, the axial deformation of the slab, uki at the point of contact is added 

which in turn produces the slab reactions of Rk2 and Rk1 (Figure 4.13c (iii)). 

All these terms are expressed below: 

udi = (1 - kam) ud2 + kAB ud1 

_ 
Pb3a3 

up 
3L3EI 

uki = (1 - k, B) uk2 + kAB uki (4.47) 
ui=(1-kAB)uf2+kAB uf1 

Rk2 = (1 - k, B) P and Rkl = kAB P 
kAB =3(L)a-2(L)3 

There are three unknowns in the above equations, i. e uk2 , ukl and P. To derive 

the variable uk2 and uk1, consider the equilibrium of slab forces in Figure 4.13c 

(iii) : 

Rk2 - k2(uk2 - uk1) = ks2uk2 (4.48) 
Rkl + k2(uk2 - ukl) - kl uk1 = kslukl 

Or in matrix form : 

ýR2j= (ks2 +k2) -k2 ful (4.49) 
-k2 (ksl +k1 +k2) kl j 

Rearranging Equation (4.49) by inverting the above stiffness matrix gives : 
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futill 
_1 

(ks1 ý +k2) 
ks2 

? 
k2 

fRk2j 
JD() 

where 

kD = (ks2 + k2) (ksl + k1 + k2) - k22 

(4.50) 

(4.51) 

At the point of contact, the axial deformation of the slab, uki from Equation (4.47) 
becomes 

uki = (1 - kAB)uk2 + k, Buk1 

uki = 
(1 - kAB)(ks1 +k1 +k2) p+ 

(1-kAB)k, Bk2 P (4.52) kD kD 

+ 
kAB(1 - kAa) k2 

p+ 
kAa2 (ks2 +k2) P 

kD kD 

Rearranging the above equation produces the following : 

uki =k [ksl (1-kß)2 + kl (1-kß)2 + k2 +k 2ks2] (4.53) 
D 

Using the displacement compatibility at point of contact ui, (Figure 4.13c) the 

contact force P can be found, that is : 

udi = up + uki (4.54) 

Substituting terms from Equations (4.47) and (4.53) into above equation gives, 

P- kp udi (4.55) 
= kp (1-kAB)ud2 + kpkmud1 

where 

kp =1 33 (4.56) 

3L EI 
+1 [(1-kAB)2(ks1+k1)+k2+kAB2ks2] 

Substituting the above equation for P into Equation (4.50) produces the following 

expressions for uk2 and ukl. 
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uk2 = 
kp (1-k, B) [(ks1 +k1 +k2)(1-kam) + k2k, B] ud2 

D 

+k (k, B) [(ks1 +k1 +k2)(1-k, B) + k2kAB] ud1 
D (4.57) 

uk1 =k (1-kam) [k2(1-k, B) + (ks2+k2)ký] ud2 
D 

+ k, B [k2(1-k, B) + (ks2+k2)kAB] udl 
D 

where ud2 and udl are defined in Equation (4.46). The expressions for the effective 
forces in the slabs shown in Figure 4.13c are: 

Ruff = ks2 uk2 
=ka'ud2+kb`udl 

Rl. = ksl ukl 
= kc' ud2 + kd' udl 

where 
ka' =2 (1-k, B)ks2[(ks1 +k1 +k2)(1-kAB) + k2ký] 

D 

kb' =kk,, Bks2[(ks1 +k1 +k2)(1-kam) + k2k, B] 
D 

kc' - (1-kAB)ks1 [k2(1-kam) + (ks2+k2)kAB] 
D 

kd` = 
2kýks1[k2(1-kam) 

+ (ks2+k2)kAB] 
D 

(4.58) 

(4.59) 

These forces are shown in the shear force diagram (Figure 4.14) below in order to 

assist the derivation of the equation of motion in this contact stage. 

k2 (u2-L 

k2 (u2-u 

klI 1 usl 

Figure 4.14: Shear force diagram of MDOF system (contact stage). 
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(us2-usl) R1 eff = kc* ud2 + kd* udl 
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The equation of motions for the contact stage can be written as: 

m2ä2 = -k2(u2-ul)-k2(us2-usl)-ka*ud2+kb*udl (4.60) 
mlüi = k2(u2-u1)+k2(us2-us1)-kc`ud2-kd*ud1 

-kl ul -kl us1 

Substituting the value of ud2 and ud1 from Equation (4.46) and rearranging into 

a matrix form; 

m2 0 uu2 
+ 

k2 -k2 f u2j + 
ka * kb* fu f2 

0 ml ül -k2 k2+k1 ul ke. kd. lufl J 

-k2+ka* k2+kb* fus21 

k2+kc* -k2+kd*-kl usl J 

Substituting Equation (4.36) into the third term of the above equation 

ka* kb' fuf2l 

kc* kd' ýfl 

(4.61) 

1 ka'(k2+ks1 +k1)ks2+kb"(k2ks2) ka*k2ksl +kb*(ks2+k2)ksl f 2l 
kD kc'(k2+ksl +kl)ks2+kd'k2ks2 kc*k2ksl +kd*(ks2+k2) 1141J 

ks22[(1-k, B)(ks1 +kl) +k2]2 

= 
kp 
kD [(1-k, B)(ks1 +kl) +k2] 

(ks2ksl) (k2 +ks2k") 

[(1-kAB)(ks1 +kl) +k2] 
(ks2ksl)(k2+ks2k, B) u2 11 

ksl2(k2 +kAB ks2)2 

Substituting back into Equation (4.61) 

(4.62) 
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. ks22[(1-k, ý)(ks1 +kl) +k2]2 
kD 

I m2 0I ü2 + k2 

0 m1 ül 

2 ([(1-ký)(ksl+kl)+k2] * 
k 
(. s2ks1)(k2+ks2k, B)) - k2 

2 
([(1-kAB)(ksl+kl)+k2) 

k 

(ks2ksl)(k2+ks2k, )) - k2 
u2 {ul } 

i2ks12(k2+k, ks2)2 
kD 

+ (k2+k1) 

k2+ku" k2+kb" fus2l 

k2+kc* -k2+kd"-kl 
lusl J 

(4.63) 

In general, the equation of the motion for the contact stage can be written as: 

in üi + kC ui = b8 (4.64) 

where m is the mass matrix, kC is the stiffness matrix and b, is a column vector 

of static preload forces. Since these matrices (m and ke') are always symmetrical 

at any contact position (a=0 to L) along the height of the column, the orthogonality 

properties (if i =j Q. TmQ; =1) can be employed, whilst the static preload forces, b, 

don't have to be symmetrical, where in this case (ka* :# kb* # kc* # kd"). 

Hence, the solution for these equations are found by using modal analysis and 

uncoupling the equations produces 

+wjyi =Q9Tbj (4.65) 

The solution of the above equations are 

y; ytb sin w«dt + (y; t - ysii) cos wi, dt + ysii 
wie 

(4.66) 

yt = y, t cos widt - ca;, (yit - ysii) sin w«dt 

Where w;, is the natural frequencies during the contact stage and 

ysii =QT_ 
"1 b8 (4.67) 

wý w 

The total displacements and velocities responses are the sum of the modal 

contributions defined in Equations (4.45). 
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The right hand side displacements during the contact stage are also equal to 
Equation (4.36) of the no contact stage. Considering the effects of slab flexibility, 

that is the uk2 and ukl terms in Equation (4.57), the final right hand side 
displacements are given by 

new uf2 = uf2 - uk2 (4.68) 
new ufl = ufl - uk1 

The maximum contact force is given by Equation (4.55) and the displacement of 

point of contact, ui is given by Equation (4.45) 

4.3.3 Change of state rules 

The contact stage starts when the displacement and velocity are such: 

ui = Us but 6i i0 
(4.69a) 

And the contact stage is finishing when the displacement and velocity are such: 

ui = Us but 6i s0 
(4.69b) 
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4.3.4 Numerical Examples of MDOF Systems 

The MDOF undamped free vibration pounding response induced by a snap back 

analysis is presented. As for the rigid slab (section 3.4.1.5.2 and 3.4.1.5.3 of 
chapter 3), two examples for the aligned floor (a =0 and a= L) and four examples 
for the unaligned floor (a = L/4 , L13 

, L/2,3L14) are considered. In this section, 
a two storey shear frame as shown in Figure 4.11(a) and having the physical 
properties as in Table 4.4 below is studied. 

m2, ml = building masses of 1.0,1.5 kips-sec2/in. 
= 175197,262795 kg (N-sect/m) 

k2, k1 =building stiffness of 600,900 kips/in. 
= 105.12*103,157.68*103 (kN/m) 

ks2 = ks1 = top and middle slab stiffness of 5,000 kips/in. ( 8.76*105 kN/m), 
respectively 

Initial u2, ul displacements = -1.0 in. (-0.0254 m) and -0.5 in (-0.0127m) 

Building separation, Us = 0.008 m 

Ground acceleration, (ü 
gt =0) 

Undamped free vibration, c=0 

Height between floors, L= 72 in. (1.8288 m) 

Young Modulus of steel, E= 30* 10' kip/in2 (205* 106 kN/m2) 

.. EI = 18662400 kips. in2 

Table 4.4 : Physical properties of the building. (** 1 kip = 4450N ) 

4.3.4.1 No Contact stage 

As this is the flexible slab cases, even during the no contact stage, the relationship 
between the right and left hand side of the column displacement is always given 
by Equation (4.36) for all cases (0 5a <_ L ). Substituting the physical properties 

given in Table 4.4 into Equation (4.36) gives : 
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600 juf21 
= 

5000 1(6500) 

600 C 
LU121 

600 f J> 
D 

where kD = 36040000 kips/in. 

Thus the final equation of motion, as in Equation (4.41), becomes: 

1.0 0 ü2 
+ 

1091.120977 -1016.204218 u2 =0 0 1.5 1 -1016.204218 2615.427303 1 

These matrices are always symmetrical at any contact position (a=0 to L) along the 
height of the top column. Solving these equations give the vibration frequencies of 

cal = 22.930 radsec 
02 = 48.051 radsec 

with the associate normalized mode shapes of : 

1st mode 2nd mode 
0.82642 -0.56306 0.45974 0.67477 

In general these can be represented by Equation (4.42). The displacements and 

velocities response are the sum of the modal contributions defined in Equations 

(4.45). 

The final displacement at the contact point ui, is given by Equation (4.45) where 
for example, a=IJ2 , 

k, B=(1-kAB)= 2 

ui =2 uf2 +1 ufl 
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4.3.4.2 Contact Stage 

When the condition (ui = Us and ü, > 0) is satisfied, then the change from the no 

contact stage to the contact stage takes place. In this section, a typical unaligned 

pounding case of a= L/2 is taken as a numerical example. Therefore, Equation 

(4.47) becomes: 

1 
kAB =(1-kAB)=2 

udi = 2u 
d2 + (2) udl 

uki = (2) uk2 + (2) ukl 

ui= (2)uf2+(Z)ufl 

Rk2 = Rkl = 2P 

At the beginning of the contact, the right hand side displacements are equal to 

us2 = uf2 , usl = ufl 

The following constants from Equations (4.51) , (4.56) and (4.59) 

kD = 336040000 kips/in. 
kp = 5090.994703 kips/in. 
ka *= 1253.678634 kips/in. 

kb* = 1253.678634 kips/in. 
kc* = 1094.761624 kips/in. 
kd* = 1094.761624 kips/in. 

are substituted into the equation of motion (Equation 4.63) giving 

1.0 0 ü12 1834.894326 478.358426 u2 - 
653.678634 1853.678634 us2 

0 1.5I - +I 478.358426 2441.665104 1J -I 1694.761624 -405.23837 
1l 

The general equation are in the form of Equation (4.64). The natural frequencies 

for the contact stage (a= L/2) are calculated as 

w 1c = 34.572 radsec 
w2ý, = 56.226 rad/sec 

with the associate normalized mode shapes of : 
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1st mode 2nd mode 
-0.15126 0.98849 
0.80710 0.12351 

The displacement and velocity solutions are defined by Equation (4.66). The total 
displacement and velocity responses are the sum of the modal contributions 
defined in Equations (4.45) respectively. 

Considering the effects of slab flexibility, that is uk2 and ukl terms as in Equation 

(4.57), where for a= L/2 case: 

uk2 = 0.250735726(uf2 - us2) + 0.250735726(ufl - usl) 
uk1 = 0.218952324(uf2 -us2) + 0.218952324(ufl -usl ) 

The final right hand side displacements are given by 

new uf2 = uf2 - uk2 
new uff = ufl - ukl 

The maximum contact forces are given in Equation (4.55) 

P= 5090.994703(2)[(uf2-us2) + (ufl -usl)] 

and the displacement of point of contact, ui is given by Equation (4.47). 

This process of changing from one stage to another continues until the required 

time of analysis is reached. The summary of the parameters calculated for other 

cases of a (0, L/3, L/4,3114, and 3114) are listed in Table 4.5. 

To assist the iteration process, a FORTRAN program called MFLEXI. FOR and 

MFLEX2. FOR, MFLEX3. FOR, MLFLEX4. FOR, MFLEX5. FOR and MFLEX6. FOR 

are written in Appendix G for case ( a=0, L/3, U4, L/2,3114, and L) respectively. 

Again, all these results are verified using DYNA3D. 
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4.3.5 Results and discussions 

Analyses for various values of a (0, L/4, L13, U2,3114 and L) are performed and 

the results are shown in Figure 4.15 - 4.21. The full results are tabulated in Table 

4.6. Results for a comparison study of rigid and flexible slab are tabulated in Table 

4.7. Figure 4.15 shows a typical case of pounding of flexible slab at a=L/2 against 

the rigid slab case. 

In the contact stage, the top (u2) and middle (ul) displacements are moved further 

than the rigid slab case. This caused a longer contact time (0.0577 sec and 0.05500 

sec) than a rigid case (0.04250 sec and 0.04350 sec) for the first and second contact 

respectively as shown in Table 4.7. 

Figure 4.15b shows the displacements on the right hand side of the shear frame, 

termed uf2 and ufl for the top and middle displacements respectively. It is found 

that these displacements of a flexible slab case are always less by the factor 

described in Equation (4.36) than a rigid slab case. This is true for both the no 

contact and the contact stages. It also shows that, during the contact stage, due to 

the floor flexibility, the uf2 and uff are further reduced by the axial deformation 

of slab namely, uk2 and uk1 as in Equation (4.57). As a result, the maximum 

contact force for the flexible slab is lower than the rigid case (Table 4.7). This is 

also applied to other value of a (0, Iß/4,113,31/4, L) as shown in Figures 4.16 to 

4.21. 

As expected, all the displacements curves at the contact point , ui, are not exceed 

0.008 m which is the building separation of a rigid adjacent building as shown in 

Figure 4.22. 

Figure 4.23a shows the value of the maximum contact force for various value of 

a from Table 4.6. In general, the value of the maximum contact force P decreases 

as the value of a increases. Also the value of the starting time of the contact stage 

also increases as the value of a increases (Figure 4.15b). 

All the results obtained are verified by results obtained with DYNA3D as shown 

in Figure (4.16b - 4.22b) 
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" " 
1st CONTACT 2nd CONTACT 

DISTANCE a 
FORTRAN DYNA3D FORTRAN DYNA3D 

0 Contact time 0.08300-0.12550 0.08300-0.12501 0.31100-0.34959 0.30901-0.34600 
(sec) (0.04250) (0.04201) (0.03859) (0.03699) 

Contact 5,869.711 5,767.690 6,878.545 6,265.340 
forces (kN) 

1J4 Contact time 0.08450-0.13170 0.08400-0.13100 0.31270-0.35699 0.31100-0.35399 
(sec) (0.04720) (0.04700) (0.04429) (0.04299) 

Contact 6,028.951 5,867.500 6,782.760 6,249.790 
forces (kN) 

JJ3 Contact time 0.08600-0.13740 0.08600-0.13600 0.31590-0.36509 0.31300-0.36000 
(sec) (0.05140) (0.05000) (0.04919) (0.04700) 

Contact 5,871.608 5,709.840 6,348.909 5,881.250 
forces (kN) 

112 Contact time 0.08900-0.14670 0.08900-0.14400 0.32420-0.38209 0.32200-0.37800 
(sec) (0.05770) (0.05500) (0.05789) (0.05600) 

Contact 5,550.488 5,316.260 5,539.060 5,325.780 
forces (kN) 

3114 Contact time 0.09500-0.14840 0.09500-0.14800 0.34190-0.39089 0.34200-0.39000 
(sec) (0.05340) (0.05300) (0.04899) (0.04800) 

Contact 4,787.283 4,545.070 4,875.177 4,517.500 
forces (W) 

L Contact time 0.09850-0.14630 0.09801-0.14500 0.34930-0.39009 0.34801-0.38901 
(sec) (0.04780) (0.04699) (0.04079) (0.04100) 

Contact 3,928.172 3,809.890 3,643.063 3,437.520 
forces (kN) 

Table 4.6 : Overall results for the contact stages of flexible slab of MDOF systems 

FLEXIBLE SLAB RIGID SLAB 
DISTANCE "a" 

FORTRAN DYNA3D FORTRAN DYNA3D 

Contact 0.08900-0.14670 0.08900-0.14400 0.08650-0.12900 0.08650-0.13000 
time (sec) (0.05770) (0.05500) (0.04250) (0.04350) 

1st contact 5,550.488 5,316.260 8,651.723 7,989.020 
forces (kN) 

L/2 
Contact 0.32420-0.38209 0.32200-0.37800 0.30150-0.34379 0.30400-0.34800 
time (sec) (0.05789) (0.05600) (0.04229) (0.04400) 

2 nd contact 5,539.060 
1 

5,325.780 
1 

8,652.834 
11 

8,109.940 
1 

forces (kN) 
. 

Table 4.7 : Results for the contact stage of flexible and rigid slab of MDOF systems 
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a= U2 (FORTRAN) 
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Figure 4.15a) : Displacement curves for pounding case of flexible and rigid slab. 
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Figure 4.15b) : Displacement curves for pounding case of flexible and rigid slab. 
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a=0 (FORTRAN) 
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Figure 4.16a) : Displacement curves for pounding case at a=0 (FORTRAN) 
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Figure 4.16b) : Displacement curves for pounding case at a=0 (DYNA3D) 
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a= U4 (FORTRAN) 
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Figure 4.17a) : Displacement curves for pounding case at a= L/4 (FORTRAN) 
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Figure 4.17b) : Displacement curves for pounding case at a= 1�4 (DYNA3D) 
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a= V3 (FORTRAN) 
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Figure 4.18a) : Displacement curves for pounding case at a= L13 (FORTRAN) 
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Figure 4.18b) : Displacement curves for pounding case at a= L/3 (DYNA3D) 
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a= V2 (FORTRAN) 
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Figure 4.19a) : Displacement curves for pounding case at a= 1J2 (FORTRAN) 
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Figure 4.19b) : Displacement curves for pounding case at a= 112 (DYNA3D) 
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Figure 4.20a) : Displacement curves for pounding case at a= 31/4 (FORTRAN) 
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Figure 4.20b) : Displacement curves for pounding case at a= 31)4 (DYNA3D) 
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a=L (FORTRAN) 
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Figure 4.21a) : Displacement curves for pounding case at a= L (FORTRAN) 
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Figure 4.21b) : Displacement curves for pounding case at a= L (DYNA3D) 
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displacement at contact point (ui) 
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Figure 4.22a) : Displacement curves of ui for different "a" values (FORTRAN) 
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Figure 4.22b) : Displacement curves of ui for different "a" values (DYNA3D) 
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contact forces vs value of a 
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Figure 4.23a) : Maximum contact forces against variation of "a" (FORTRAN) 
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CHAPTER 5 

POUNDING OF TWO FLEXIBLE BUILDINGS WITH RIGID SLABS 

5.1 INTRODUCTION 

In previous chapters, pounding is considered between a flexible building and a 

rigid adjacent building. In this chapter, further applications of the displacement 

compatibility method for the more realistic case of pounding, in an urban area, is 

presented between two flexible buildings due to a small gap, between them. Two 

such buildings usually do not have the same physical or dynamic properties. 

Two cases of pounding of two flexible buildings, both aligned and unaligned floor 

cases of a single degree of freedom (SDOF) system and multi degree of freedom 

(MDOF) systems are considered. 

5.2 SDOF SYSTEM 

The basic derivation of the equation of motions for pounding between two flexible 

buildings is best illustrated as a SDOF system where both aligned and unaligned 

floor cases are considered. The solution for the no contact stage will be the same 
for both cases. 

5.2.1 No Contact Stage 

Two SDOF system buildings considered in this study are shown in Figure 5.1 

below. The buildings on the left hand side and right hand side of Figure 5.1 are 

labelled Building A and B respectively. Building A and B have masses and column 

stiffness of ml, m2, k1 and k2 respectively. The slab stiffness are ksl and ks2 for 

building A and B. The buildings are separated at a distance Us. 
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Q 

I ksl ks2 
-... m1" ,m 

L kI kI k2 k2 

(a) 7277 71= 7= 7777 

BUILDING A BUILDING B 

F1 F2 

ksl -<-Lj; - ks2 
ul -- ml m2 u2 
2k1 (ul) 2k2 (u2) 

2k1 2k2 

(b) 

Figure 5.1 : (a) Pounding of two SDOF systems and (b) The shear forces diagram 

(Aligned floor case). 

The derivation of the equation of motions are 

BUILDING A ml ül = -2k1 ui (5.1) 
BUILDING B m2 ü2 = -2k2 u2 

Rearrange in matrix form: 

ml 0 U- ü 
3l + 

2k1 0 ul 
_0 

(5.2) 

0m U2 0 2k u2 

In general these can be written in the form of : 

m. ü; +kuj=0 (5.3) 

These equations are transformed into a set of uncoupled equations through modes 

shapes generalized displacement, orthogonality and normalising with respect to 

mass, m i. e. (if j=i, QJTmQj=1) and become: 
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+ ca? yi =0 (5.4) 

The solutions of these equation are same as in previous chapter where: 

yj = w° sin w; dt + yt cos w; dt (5.5) 

ya = yt cos w; dt - wj yt sin widt 

The total displacements and velocities response are being the sum of the modal 

contributions of the nth mode shapes: 

nn 
ui =E ai yi and Lii =E ai yi (5.6) 

i-1 i=1 

These equations are applied to both aligned and unaligned cases of the SDOF 

system in the no contact stage. 

5.2.2 Contact stage 

The derivation of the equation of the motion, during the contact stage for the 

aligned and unaligned cases are treated separately. This is because for the aligned 

case, it is simply a direct calculation of the forces on the floor and for the 

unaligned case, the displacement compatibility method derived in Chapter 3 is 

adopted. 

5.2.2.1 Contact Stage (Aligned floor case) 

To find the contact forces, first the forces F1 and F2 at the floor level for building 

A and B, are calculated using the Newton's law of equilibrium i. e. the application 

of external force or action, will results in an equal and opposite reaction. The 

schematic diagram of the two buildings during the contact stage are shown in 

Figure 5.2 below: 
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Building A&B 
contact 
position 

Building B 
no contact 
position 

A2i 01 

MI m2 
u2 

. :. 
ul i Building A 

no contact 
1 

I 

I! ' 

H 

Um i 

A1=- (ul-Um) 

. '. F1 =-ksl (ul-Um) 

A2= (Um-Us-u2) 

. '. F2 = ks2 (Um-Us-u2) 

Figure 5.2 : Schematic diagram of Building A and B during contact stage. 

During the contact, let Um equal the deflection at the floor level for both building 

A and B. For equilibrium at contact: 

F1+F2=0 (5.7) 

Therefore, 

ks2 (Um - Us - u2) = ksl (ul - Um) 

Um - 
ksl ul + ks2 Us + ks2 u2 (5.8) 

(ks2 + ksl) 

Substituting Equation (5.8) into Fl ; 

F1 =- ksl (ui - Um) 
(5 9) ksl ks2 (ul - u2 - Us) 

(ksl + ks2) 

Similarly, for F2: 

Yvaiuvii 
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F2= ks2 (Um - Us - u2) 

= 
ksl ks2 (ui - u2 - Us) (5.10) 

(ksl + ks2) 
=k (ul - u2 - Us) 

Where, 

k_ ksl ks2 (5.11) 
(ksl + ks2) 

Thus the equations of motion for the contact stage can be written as below, (refer 

to shear force diagram in Figure 5.1b) 

BUILDINGA ml ü1=-2k1u1 -k(ui-u2- Us) (5.12) 
BUILDING B m2 ü2 = -2k2 u2 + k(ui - u2- Us) 

In matrix form these can be written as: 

ml 0 üi 
+ 

-2k1k 

+k -k+ üa Ji 
= 

IUs 

0 
(5.13) 

m t2c 2k2 

In general this can be written in the form of : 

in ü{ +k uj =b 
(5.14) 

where m is the mass matrix, k is the stiffness matrix and bis a column vector of 

static preload forces. Since these matrices (m and k) are symmetrical, the 

orthogonality properties (if j=i, Q1TmQ; =1) are employed. The solution of these 

equations are same as in Equation (5.5) except some additional term, that is after 

taken into account of the static preload, b 

yj = yý sin wkdt + (yzt - ysii) cos wkdt + ysii (5.15) 
w; c yý = yet cos wicdt - w; c (yit - ysii) sin w; cdt 

where 

b 
ysii 

QT 
' 
2 (5.16) 

=a 
kUs -a2kUs 
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The total displacements and velocities response are defined in Equation (5.6) and 
the maximum contact force, P is equal to F1 as in Equation (5.9). 

5.2.2.2 Contact Stage (Unaligned floor case) 

In this section, the derivation of the equation of motion uses the displacement 

compatibility method which is an extension of the method used in Chapter 3. The 

same buildings as in section (5.2.1) are used except in order to show the unaligned 
floor cases, where building B is assumed shorter than building A by a distance of 

a. This is illustrated in Figure 5.3a below. Building A remains a shear frame 

building and building B is simplified to a lumped mass model. (Figure 5.3b). 

ks. 

ml 

CL 
a 

ks2 
I 

ui 
L1 m2 

kl kl 
b 1k2 I 

k2 
1c2L2 

771' 7777 
1 

7,77 (a) 

BUILDING A BUILDING B 

ksl 

-- ul 

ui u2 
" j2k2 

ki kl 

(b) 
7*7 

Figure 5.3 : (a) Pounding of two SDOF systems and (b) The model idealization. 

(Unaligned floor). 

Assume the floor is rigid compared to the column, then 
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ul = usi + udl 
U2 = us2 + ud2 

(5.17) 

The derivation of the equation of motion for this system is illustrated in Figure 5.4 

below: 

udl Fl 

ud2 
ui FP P* -ý 1 

kl k1 ! 
2 k2 

1 

77,7 Fo- 

udi up ud2' ud2 

BUILDING A BUILDING B 

Figure 5.4 : Displacement compatibility stage of building A and B. 

First, consider building A where the contact force, P acting at the contact point, ui 
is derived from the displacement compatibility method where ; 

udi + up =0 
(5.18) 

All these terms can be expressed as: 

udi = (1 - kam) udl 
ui= (1 - kam) U1 (5.19) 

Pb3as 
up =- 

3L3EI 

where 

k, B=3(a)2-2(1)3 
(5.20) 

The derivation of these terms (ui, udi, up) are same as in Appendix B. 

Substituting Equation (5.19) into Equation (5.18) gives: 
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(1 - k, B) udl = 
Pa3b3 
3L3EI 

(5.21) 

p_ 
(1 -k s) udi 3L3EI 

a3b3 

Now consider Building B where there must be equal an opposite force acting at the 
floor level, namely P*. This force caused a displacement of ud2 and can be 

expressed as: 

ud2 
p* a3 b3 

= 3L3E1 
(5.22) 

p. = ud23L3EI 
a3 b3 

The net forces, at point of contact is given by: 

P- P* = 
(1 - kAB) udl - ud2 

(5.23) 
a3 b3 

3L3 EI 

Further simplified into: 

P- P`= kp(1 - kam) udl - kpud2 (5.24) 

where 

kp = (3L3E7) (5.25) 
asb3 

Thus the slab reaction of building A is given by: 

Fl = (1-kAB) (P -P') Fo =0 (5.26) 

Substituting Equation (5.24) into (5.26) gives: 

FI = kp(1 - kAB)2 udl - kp(1 - kAB)ud2 (5.27) 

The shear forces diagram are illustrated in Figure 5.5 below: 
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ml` F1= kp (1-kAB) udl - kp (1-k AB) ud2 

kl ul kl usl 
Us 

ui 
(P-P*)= kp (1-k Ao udl - kp ud2 

m2 > 

kl kl 2k2 u2 
2k2 

BUILDING A BUILDING B 

Figure 5.5 : Shear forces diagram of two SDOF systems (contact stage). 

Thus the equations of motion for the contact stage can be written as below: 

BUILDING A ml ül = -k1ul -k1 us1-kp(1-k, 5)2ud1 + kp (1 - kW)2 ud2 (5.28) 
BUILDING B m2 ü2 =- 2k 2 u2 + kp (1 - kAB)2 udl - kpud2 

where ud2=u2-us2 and udl=ul-usl from Equation (5.17). In matrix form these can 
be written as: 

ml 0 ül kl+kp(1-k, B)2 -kp(1-kA w ul 
- 

kl+kp(1-kß)2 -kp(1-k, B 
Its2 

sl + (5.29) 
0 m2l u2 

I 

-kp(1-k, ») 2k2+kp 

1uz1I 

-kp(1-k, B) kp 

In general these can be written in the form of : 

in 6i+kui =b (5.30) 

where m is the mass matrix, k is the stiffness matrix and b is a column vector of 

static preload forces. The solutions of these equations are the same as in Equation 

(5.15). 

The total displacements and velocities response are given by Equation (5.6) and 
the maximum contact force, (P-P) is equal to Equation (5.24). The displacement 

at point of contact, ui is equal to Equation (5.19). 
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5.2.3 Change of state rules 

The general rule or conditions for switching from one state to another state are 
dependent on the displacement of contact point, ui and the corresponding velocity. 
The contact stage starts when the relative displacements and velocities are such: 

Aligned floor case: (u1 - u2) = Us and (iil - ü2) Z0 (5.31) 
Unaligned floor case: (ui - u2) = Us and (üi - ü2) z0 

And the contact stage is finished when the relative displacements and velocities 

are such: 

Aligned floor case: (u1 - u2) = Us and (UI - u2) s0 (5.32) 
Unaligned floor case: (ui - u2) = Us and (üi - ü2) s0 
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5.3 MDOF SYSTEMS 

In this section, two multi storey buildings are studied to represent a case of 

pounding of two adjacent flexible buildings. Like previous analysis of pounding, it 

is considered to be an impact (contact) problem, where it can be idealized as having 

two states, buildings not contact and buildings in contact. Both cases of aligned 

and unaligned floor are presented. 

The analysis of the no contact stage for both aligned and unaligned floor are the 

same, but as mentioned in section 5.2 (SDOF system), the analysis of the contact 

stage for aligned and unaligned floor cases are treated separately. 

5.3.1 No Contact Stage 

Two MDOF system buildings are shown in Figure 5.6 below. The buildings on the 

left hand side and right hand side of Figure 5.6 are called building A and B 

respectively. They have masses and column stiffness of m2, ml, m4, m3, and k2, 

k1, k4, k3 respectively. The local slab stiffness are ks2, ksl, and ks4, ks3 for 

building A and B respectively. The buildings are separated by a distance Us. 

It is assumed that the point of contact occurred at the top of the buildings due to 

the dominant effect of the first modal shapes. The second floors are assumed not 

in contact throughout the analysis. 
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2k1 21(3 
(b) 

Figure 5.6: (a) Pounding of two MDOF systems and (b) The shear forces diagram 

(Aligned floor). 

The derivation of the equations of motion can be assessed by considering the two 

models separately, i. e 

BUILDING A 

m2 ü2 =- 2k2(u2-ul) (5.33) 
ml ül = 2k2(u2 -ui) - 2k1(ul) 

BUILDING B 

m4 ü4 = -2k4(u4-u3) (5.34) 
m3 ü3 = 2k3(u4-u3) - 2k3(u3) 

In matrix form these can be combined as: 
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m2 0 0 0 2k2 -2k2 2 
0 ml 0 0 "1 -2k2 2k2+2k1 
0 0 m4 0 24 + 0 0 
0 0 0 m 3 0 0 

In general these can be written in the form of : 

in. üi+huj =0 

o0 
00 4=o (5.35) 

2k4 -2k4 4 

-2k4 2k4 +2k 3 

(5.36) 

The solutions of these equations are the same as in Equation (5.5). The total 
displacements and velocities response are defined in Equation (5.6). 

5.3.2 Contact stage 

To illustrate the derivation of the equation of motion in the contact stage of these 

model, the aligned and unaligned cases are treated separately. This is because, the 

contact force for the aligned case is simply the direct application of the Newton's 

law of equilibrium and for the unaligned case, the displacement compatibility 

method is applied first in order to find the contact force. 

5.3.2.1 Contact Stage (Aligned floor case) 

The contact forces F2 and F4 at the top floor level of building A and B, are 

calculated using the Newton's law of equilibrium of forces as in section (5.2.2.1). 

The schematic diagram of the two buildings in the contact stage is shown in Figure 

5.7 below: 
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Figure 5.7 : Schematic diagram of building A and B during contact stage. 

Again, let Um equal to the deflection at the top floor of building A and B. The 

equilibrium of forces at contact are given by 

F4 + F2 = 0' (5.37) 

Therefore, 

ks4(Um - Us - u4) = ks2(u2 - Um) 

Um = 
ks2u2 + ks4 Us + ks4u4 (5.38) 

(ks4 + ks2) 

Substituting Equation (5.38) into equation for F2 ; 

F2 =- ks2(u2 - Um) (5.39) 
=-k (u2 - Us - u4) 

Similarly, substituting into equation for F5 : 

F4 = ks4(Um - Us - u4) (5.40) 
=k(u2-Us-u4) 

Where, 
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ks2ks4 (5.41) k= 
(ks4 + ks2) 

So the equations of motion for the contact stage can be written as below: 

BUILDING A 

m2 ü2 =- 2k2(u2-ui) - k(u2-u4-Us) (5.42) 
ml ül = 2k2(u2-ul) - 2k1(ul) 

BUILDING B 

m4 ü4 = -2k4(u4-u3) + k(u2-u4-US) (5.43) 
m3 ü3 = 2k3(u4-u3) - 2k3(u3) 

In matrix form these can be combined as: 

2000 " k2+k -2k2 -k 0 Z 2k 0 ml 00 l -2k2 2k2+2k1 00 1 44) (5 0 
M + = . Us 

00 m4 0 4 -k 0 2k4 +k -2k4 4 
" 0 

000m g 00 -2k4 2k4 +2k3 3 

In general these can be written in standard form of the equations of motion as: 

mü; +ku; =b 
(5.45) 

The solution of these equations are same as in Equation (5.15) except the termysii 

is expressed: 

ysii = 
QT b 

`z 
`d« (5.46) 

akUs-a3kUs 
=2 (i = 1,2,3,4) -il 

Esc 

The total displacements and velocities response are being the sum of the modal 

contributions of nth mode shapes as in Equation (5.6). The maximum contact force, 

P is equal to F2 as in Equation (5.39). 

Chapter 5: Pounding of two flexible buildings with rigid slabs 186 



5.3.2.2 Contact Stage (Unaligned floor case) 

In this section, building B is assumed to be shorter than building A at a distance 

a from the top of building A. The location of contact point during pounding is 

assumed to occur at the top floor level of the shorter building. This is illustrated 
in Figure 5.8 below. 

CL 

LI 
k2 

L1 k1 

(a) T 

ks2 'EU ä: 

m c. 

a 
ks4 

ui 
m 

ksI b 
m 

k4 k4 L2 
ks3 

m3 

kl k3 k3 L2 

II BUILDING A BUILDING B 
I 

m u2 

Us 
ks4 

k2 ui m4 -a- u4 

m 
2k4 

-ý- ul 

m3 -Bi- u3 

kI kl 

2k3 
(b) 

7777 7277 

Figure 5.8 : (a) Pounding of two MDOF systems and (b) The model idealization. 
(Unaligned floor). 

Assuming the floor is rigid compared to the column as in Equation (5.17), the 
derivation of the equation of motion for this system is illustrated in Figure 5.9 

below: 
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up 

BUILDING A 

P*ýI 

k21 

ud4 

ud4 

2k4 

ud4 

BUILDING B 

Figure 5.9 : Displacement compatibility stage of building A and. B. 

Consider building A only, where the contact force, P acting at the contact point, ui 
is derived from the displacement compatibility method where ; 

udi + up =0 (5.47) 

All these terms can be expressed as : 

udi = (1 - kam) ud2 + ka udi 
ui = (1 - kam) u2 + kAB ul (5.48) 

Pb3a3 
up =- 

3L3EI 

where k, B is defined by Equation (5.20). Substituting Equation (5.48) into Equation 

(5.47) gives: 

(1 - kam) ud2 + k, B udl = 
Pa 3b3 
3L3EI 

(5.49) 

P= [(1 - k, ) ud2 + kAB udi] 
3L3EI 

a3b3 

When in contact with building B, there must be equal an opposite force acting at 

this point, ui, namely P*. This force caused a displacement of ud4 and can be 

expressed as: 

Chapter 5: Pounding of two flexible buildings with rigid slabs 188 



ud4 = 
P* a3 b3 
3 L3EI 

P. ud43L3EI 
a3 b3 

Thus the net force, at point of contact is given by: 

(5.50) 

P-I,, - 
(1 - kAB) ud2 + k, B ud1 - ud4 

as b3 ) 
(5.51) 

3L3EI 

Further simplified into: 

P-P*=kp(1 -kAB)ud2+kpkAB udi - kpud4 (5.52) 

where 

kp = (3L3E 
1) 

(5.53) 
a 

Thus the net floor reactions of building A are given by: 

F2 = (1-k, B) (P -P') (5.54) 
Fl = k, B (P -P') 

Substituting Equation (5.52) into the above equations give: 

F2 = kp(1 - k, B)2 ud2 + kpkAB(1 - k, B)ud1 - kp(1 - kAB)ud4 (5,55) 
F2 = kpk, B(1 - k, B) ud2 + kpkAB2ud1 - kpk, Bud4 

The shear forces diagram are illustrated in Figure 5.10 below: 
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Us 
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Figure 5.10: Shear forces diagram of two MDOF systems (contact stage). 

Thus the equations of motion for the contact stage can be written as below: 

BUILDING A 

m2ä2=-k2(u2-ul)-k2(us2-usl)-kp(1-k, B)2ud2-kpk, B(1-k, B)udl+kp(1-k. 48)ud4 (5.56) 
m1ü1=k2(u2-ul)+k2(us2-us1)-kpk, B(1-k, B)ud2-kpk 2udl +kpk, Bud4-2k1ul 

BUILDING B 

m4 üd = -2k4(ud-u3)+kp(1-k, B)ud2+kpk, Bud1-kpud4 (5.57) 
m3 ü3 = 2k4(u4-u3)-2k3u3 

In matrix form these can be written as: 

m2 000 k2+kp(1-kg)a -k2+kpku(1-kam) -kp(1-kam) 0 
uz 

0 ml 00 IJül 
-k2+kpka(1-k, B) k2+kpk, 2+2k1 -kpk, B 0 u. ý 

00 m4 0 74 + 
-kp(1-1e ) -kpk, J3 kp+2k4 -2k4 4 

l0 00 m3 üa 
00 -2k4 2k4 +2k 

ua 
(5.58) 

I -k2+kp(1-kAB)a k2+kpk, IB(1-k, B) -kp(1-k, B) 0 
us2 2+kpki (1-kAB) -k2+kpk, BE -kp kU 0 

ilual 
-kp(1-kAR) -kpks kp 0 us4 

us3 
0000 

In general these can be written in the form of : 
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m. ü; +kuj=b (5.59) 

The solutions of these equations are the same as in Equation (5.15), where 

QTb 
ysii = 2 

w2c (5.60) 
(a+a2+a3)b 

=2 (i = 1,2,3,4) 
(, )sc 

The total displacements and velocities response are given by Equation (5.6) and 
the maximum contact force, (P-P') is equal to Equation (5.52). The displacement 

at the point of contact, ui is given by Equation (5.48). 

5.3.1 Change of state rules 

The contact stage starts when the relative displacements and velocities are such: 

Aligned floor case: (u2 - u4) =Us and U 26 40 (5.61) 
Unaligned floor case: (ui - u4) = Us and ( iii - ui4) z0 

And the contact stage is finished when the relative displacements and velocities 

are such: 

Aligned floor case: (u2 - u4) = Us and (u2 - u4) S0 (5.62) 
Unaligned floor case: (ui - u4) = Us and (zii - ü4) s0 
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5.3.4 Numerical Examples of MDOF systems 

The analysis of two flexible buildings in contact at floor level (aligned case) and 
between floor levels (unaligned case) induced by a snap back analysis are 

presented. Two examples for the aligned floor (a=0 and a= Ll ) and four 

examples for the unaligned floor (a= L1/4, Ll/3, L1/2 and 3L1/4 ) are 

considered in this research. In this section, only two cases (a=L1) and ( a=L1/3 ) 

are shown as numerical examples. 

Consider two storey shear frame as shown in Figure (5.8) and having the 

physical properties as in Table 5.1 below: 

BUILDING A(2 storey building) 
-T -BUILDING 

B(2 storey building) 

m2, m1 = building masses 1.0,1.5, m4, m3 = building masses 1.5,2.0 

kips-sec2/in. kips-sec2/in. 

(175197 and 262795 kg) (262795 and 350394 kg ) 

2k2,2k1 = building stiffness of 2k4,2k3 = building stiffness of 
1200 and 1800 kips/in. (210.24*103 1200,1800 kips/in. 

and 315.35*103 kN/m) (210.24*103 and 315.35*103 kN/m) 

ks2 = ksl = 50,000 kips/in. ks4 = ks3 = 50,000 kips/in. 

(8.76*106 kN/m) (8.76*106 kN/m) 

Initial u2 and u1 displacements : not applicable 
( -0.0254 m and -0.0127 m) 

Building separation, Us = 0.008 m 

Ground acceleration, (ü gt =0) 

Undamped free vibration, c=0 

Height between floors, LI = 72 in. Height between floors, 

(1.8288 m) L2 = 36 in. (0.9144 m) for (a=L1) 
L2 = 60 in. (1.524 m) for (a=L1/3) 

Young Modulus of steel, E= 30* 10' kip/in2 (205* 106 kN/m2) 

Table 5.1 : Physical properties of the building A and B. 

Chapter 5: Pounding of two flexible buildings with rigid slabs 192 



5.3.4.1 Aligned floor case (a = LI) 

The first case where pounding occurs at the second floor level of Building A is 

illustrated in Figure 5.11 below: 

kR2 

LI 

Lt 

(e) 

L2 

3 

BUI DING A BUILDING B 

m2 

2k2 (u2"uq 

2k2 
PI P{ 

-IIE- 4. 
2k2 (u2-nl) 

lul kx{ 
ml m< 

2k1 (ul) i 2k{ (u{-u3) 

Us 
2k4 04-0) 

m3 2 kl 
2k3 (u3) 

J 
2k3 

(h) 7; 17 

Figure 5.11: (a) Pounding of two MDOF systems at (a=L1) (b) The model 
idealization. 

5.3.4.1.1 No contact stage 

The equations of motion during the no contact stage is given by Equation (5.35). 

Substituting the physical properties given in Table 5.1 into Equation (5.35) gives: 

1.0 0 0 0 ü2 1200 -1200 0 0 U2 
0 1.5 0 0 ül -1200 3000 0 0 ul 

=0 
0 0 1.5 0 u4 

+ 0 0 1200 -1200 ua 

0 0 0 2.0 1 ü3 0 0 -1200 3000 43 

In general, these can be represented by Equation (5.36) and the solutions are the 
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same as in Equation (5.5). Total displacements and velocities response are defined 

in Equation (5.6). 

3.5.4.1.2 Contact stage 

The contact stage starts when the conditions of relative displacements and 

velocities are such: 

(ul-u4)=Us and (ül-z4)i0 

Then, the change from the no contact stage to the contact stage takes place. The 

contact forces F1 and F4 (Equation 5.39 and 5.40) at the floor level becomes: 

Fl =-k(ul-Us-u4) and F4=k(ul-Us-u4) 

where constant k is defined by Equation (5.41). In this example, ks2=ks1=ks4=ks3, 

thus: 

k= k21 
= 25 000 kips/in. 

And substitutes into the equations of motion (Equation 5.44) giving 

1.0 000 "Z 1200 -1200 00 
2 0 

0 1.5 00 61 
+ -1200 28000 -25000 0 ul Us _ 

25000 
001.5 0 64 0 -25000 26200 -1200 4 -25 

" 0 
0002.0 3 ,j 00 -1200 3000 3 

In general, these equations are in the form of Equation (5.45). The solution of 

these equation are same as in Equation (5.15) where the ysii term is expressed: 

ysii 
9-7-E 

2 wie 

- 
(a z-a 

T) (25000 Us) 
(i = 1,2,3,4) 

The total displacements and velocities response are given by Equation (5.6) and 

the contact force, P is equal to Fl. 
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5.3.4.2 Unaligned floor case (a = L113) 

For this case, consider a buildings illustrated in Figure 5.8 where the contact 

occurs at a=L1/3 from the top of building A. 

5.3.4.2.1 No contact stage 

The same equations derived for the aligned floor as in section (5.3.4.1.1). The 

displacement at the point of contact is given by Equation (5.48) where: 

ui= 
20 

U2 +7 ui 27 27 

5.3.4.2.2 Contact stage 

The contact stage starts when the relative displacements and velocities given by 

Equation (5.61) for the unaligned floor case, are satisfied. The k, B term from 

Equation (5.20) and the column displacement at the contact point (Equation 5.48), 

are become: 

kA, lr =27 (1- kAB) = 
20 

:. ui= 
20u2 

+7 ui 27 20 

udi = 
20 

ud2 +7 udl 27 20 

The lateral stiffness of the top columns are given by: 

12 EI= 600 kips/in. 
L13 

EI= 18662400 kips in. 

The net force, at point of contact is defined by Equation (5.52) 

P- P' =kp27 ud2 +kpi ud1 - kp ud4 27 

where kp is calculated using Equation (5.53). 
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kp = 13668.75 kips/in. 

Substituting the physical properties given in Table 5.1 into Equation (5.58) gives: 

1.0 000 - 8100 2025 -10125 0 6900 3225 -10125 
0 1.5 00 2025 3318.75 -3543.75 0 3225 318.75 -3543.75 
001.5 0 + 

-10125 -3543.75 14868.75 -1200 a 
- 

-10125 -3543.75 13688.75 
0002. a 00 -1200 3000 s 000 

3 

In general these can be represented by Equation (5.59). The solutions are given by 
Equation (5.15) where ysii as in Equation (5.60). 

The summary of the parameters calculated for other cases of a (0, L1/4, L1/2, 

3L1/4, ) are listed in Table 5.2. 

PARAMETERS k, B , ks, slab stiffness natural 
(units) (1-k, B) kp, column rigidity frequencies, o 

(kips/in) (rad/sec) 

Aligned floor 0,1 ks = 50,000 21.007,40.584, 
a=0 48.496,206.70 

Unaligned floor 5/32, kp = 22755.56 19.611,40.500, 
a= L1/4 27/32 42.819,179.95 

Unaligned floor 7/27, kp = 13668.75 19.637,40.844, 

a= L1/3 20/27 42.522,133.65 

Unaligned floor 1/2, kp = 9600.0 19.708,39.415, 

a= L112 1/2 42.739,105.51 

Unaligned floor 27/32, kp = 22755.56 19.831,34.224, 

a= 3L1/4 5/32 43.408,166.06 

Aligned floor 1,0 ks = 50,000 22.090,37.096, 

a= Ll 46.940,186.46 

Table 5.2: Summary of parameters during contact stage of MDOF systems. 

The FORTRAN programs called TFLEXI. FOR, TFLEX2. FOR, TFLEX3. FOR, 

TFLEX4. FOR, TFLEX5. FOR and TFLEX6. FOR respectively, are written in 

Appendix H. 
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5.4 RESULTS AND DISCUSSIONS 

Analyses for various values of a (0, L114, L113, L1/21,3L1/4 and L1) are performed 
and the results are shown in Figure 5.12 - 5.20. A snap back analysis is performed 

at building A for 1.0 second. Within this time, it produces four or more contact 

stages, but for discussion, only the first three contact forces are tabulated in Table 

5.3. 

Figure 5.12 shows the displacements curves and velocity curves for a free vibration 

analysis. Figure 5.19 shows that when pounding occurs, the displacement at point 

of contact ui, of Building A, moves beyond the building separation, Us. This is 

because there is no restriction on this building to move compared to the one that 

hits a rigid adjacent building (chapter 3), where ui forms a plateau which is equal 

to the building separation value, Us. 

Figures (5.13 - 5.18 ) show that Building B start to move when it is hit by building 

A at the first contact. Then both buildings move in or out of phase towards each 

other, which produces the consecutive contacts. The velocity curves, during the 

contact stage suddenly decrease until they reach a zero velocity (maximum ui 

displacement) and then become negative within this contact region. 

Figure 5.20a shows the value of the maximum contact force for various value of 

a. It is found that the first and the second contacts behave in similar trends where 

the value of this force decreases from (a=0 to L1/2) and increases from (a=L1/2 to 

Ll). This is due to the lower column rigidity, kp at ( a=L1/2) than other positions 

of a (Table 5.2). The value of the starting time of the contact stage increases as the 

value of a increases as shown in Figure 5.20b. The duration of the contact stage 

is longer at a=L1/2 than other positions of a. 

The results are verified using DYNA3D as shown in Figure 5.14b - 5.19b. 
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free vibration 
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Figure 5.12a) : Displacement curves for free vibration of two flexible buildings. 
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Figure 5.12b) : Velocity curves for free vibration of two flexible buildings. 
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a= 0 (FORTRAN) 
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Figure 5.13a) : Displacement curves for pounding case at a=0 (FORTRAN) 
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Figure 5.13b) : Velocity curves for pounding case at a=0 (FORTRAN) 
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a= L1 /4 (FORTRAN) 
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Figure 5.14a) : Displacement curves for pounding case at a= L1/4 (FORTRAN) 

a= L1 /4 (DYNA3D) 
0.03 

0.02 

0.01 

0.0 
klA 

C r i 

. 0.01- 

-0.02- U2 
..., 4 

-0.03 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

time (sec) 

Figure 5.14b) : Displacement curves for pounding case at a= L1/4 (DYNA3D) 
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a= L1 /3 (FORTRAN) 
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Figure 5.15a) : Displacement curves for pounding case at a= LV3 (FORTRAN) 
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Figure 5.15b) : Displacement curves for pounding case at a= L113 (DYNA3D) 
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a= L1 /2 (FORTRAN) 
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Figure 5.16a) : Displacement curves for pounding case at a= L1/2 (FORTRAN) 

a= L1/2 (DYNA3D) 
0.03 

0.02 

0.01- k 

E 0 0- . 
.. if 

CL 
ýk..: 

N 

-0.01 ii 

-0.02 W2 
.. w 

-0.03 
0.0 0.1 0. 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

time (sec) 

Figure 5.16b) : Displacement curves for pounding case at a= L1/2 (DYNA3D) 
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a= 3L1/4 (FORTRAN) 
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Figure 5.17a) : Displacement curves for pounding case at a= 3L1/4 (FORTRAN) 
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Figure 5.17b) : Displacement curves for pounding case at a= 3L1/4 (DYNA3D) 
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a= L1 (FORTRAN) 
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Figure 5.18a) : Displacement curves for pounding case at a= L1 (FORTRAN) 
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Figure 5.18b) : Displacement curves for pounding case at a= L1 (DYNA3D) 
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displacement at contact point (ui) 
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Figure 5.19a) : Displacement curves of ui for different "a" values (FORTRAN) 
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Figure 5.19b) : Displacement curves of ui for different "a" values (DYNA3D) 
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contact forces vs value of a 
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Figure 5.20a) : Maximum contact force against variation of "a" (FORTRAN) 

contact time vs value of a 
0.6 

0.5 

0.4- 

-X 0.3 .. " -- --x- 
-- -------------- --------------- 

E 

0.2 

-*- stars of lit coot 

................... ............................... End of let contact 0.1 
-3i- Start of 2nd cant. 

End of 2nd contac 
-i3- Start of 3rd oonto 
-a- End of 3rd conuo 

0.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

value of a (L1) 
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CHAPTER 6 
COMPUTER MODELLING (DYNA3D) 

6.1 IN MODUC ION 

Nowadays, computer packages for finite elements modelling and analysis of 

structural systems are widely available. In this research, the models are created 

and analyzed using two main packages, namely PATRAN Release 2.3 and OASYS- 

DYNA3D Version 5.1 (35,361. 

The computer analysis was carried out in the Department of Civil Engineering of 
University of Liverpool, using UNIX System V Release 3 as the operating system, 

available on a wide range of computer systems, including personal computers and 
SUN 4/490 workstations. 

I'ATRAN is a pre-processing graphical program and is designed to generate a mesh 

of finite elements for a model or a structure. Its advantages are, that it gives an 
option for adjusting, editing the mesh and can be used repeatedly with minimum 
modifications where nt1uuary. 

OASYS"DYNAJI) Is a thrre-dimensional finite element package for analysing the 
dynamic response of the model, where sufficiently accurate boundary conditions 
can be applied to the structure and hence produce sufficiently accurate results. It 

also offerer a plots program which is very user friendly in the graphical form of the 

prc rntntion. 

Thrro are Uhraa main stages Involved in this computer modelling, which are pro- 

procesAing, computer analysis and post-processing as shown in Figure 6.1 below. 

Figure ß. I :; quence of computer analysis. 
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NO. OF STAGE SEQUECE OF COMPUTER ANALYSIS OUTPUT FILE 

STAGE I patran. dat. 1 
PATRAI patran. out. 1 Pre-processor 

--------------------- ------------------------ -- 
xxxx. inf 

STAGE 2 DE [co] 
Analysis -------------------------- 

xxxx. thf 
Data Input Oasys S xxxx. xtf 
Boundary Conditions DYNA3D DYNA3D xxxx. ptf 

xxxx. otf 

--------------------- -------------------------- 
disp. cur 

STAGE 3 D3PLOT or THIS force. cur 
Post-processor postOol. out 

thisOOl. psc 
-------------------------- 

xx. UNIGRAPH fol xx. old 
xx. plot 

6.1.1 Pre-processing using PATRAN 

PATRAN is a pre-processor which is designed to take the drudgery out of the 

process of a finite element mesh generation. There are three main stages to 

generate the finite element model. First, the geometry stage, where the model is 

generated using lines and coordinates position. The next stage is analysis model 

where the nodal numbers and element numbers are assigned to the model. In this 

stage the boundary conditions, restraints, loads and forces are introduced at the 

nodal points. Finally, the interface stage, where a "neutral file", namely 
(patran. out. 1) file is created that can be used later in section (6.1.2). The data file 

is called (patran. dat. 1). This data file can be re-opened and edited when necessary. 
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ý. 

6.1.2 Computer Analysis using OASYS-DYNA3D 

N/CODE is a sub-package of the OASYS-DYNA3D computer program. At this 

stage, N/CODE reads a "neutral file" (patran. out. 1) by changing PATRAN to a 

finite element code and creating a DYNA3D input file namely (xxxx. inf). All file 

names are made up of a four characters, followed by a three characters extension 

as the output file (Figure 6.1). 

Data such as termination times, material properties, displacements boundary 

condition curves, spring and lumped mass properties must be prepared prior to the 

creation of (xxxx. inf) file. In the first analysis, these values are keyed in and this 

existing file can be used as the material data file in the next analysis. 

After the N/CODE session is finished, the (xxxx. inf) file is submitted for the 

computer analysis using DYNA3D and it produces `loads' of files for post processing 

and (xxxx. otf) is the only output file in which details of the calculations at each 

time step is shown. By default the time step is 1/100 of the time of analysis as in 

time history file (xxxx. thf) and the complete state file (xxxx. ptf) store 10 states of 

images. More frequent time intervals can be obtained during the contact stage in 

the pounding analysis by restarting the complete analysis at the occurrence of the 

contact. The (xxxx. xtf) file stores all the contact forces data. 

6.1.3 Post-processing using D3PLOT, THIS and UNIGRAPH 

Most existing post-processor only to produce one image at a time. D3PLOT is used 

in transient analyses and is capable of producing a set of results at a time . This 

make much more sense so that one is able to see how the results change with time 

using (xxxx. ptf) file. Results in an animated form can be displayed from this file. 

OASYS THIS is an x-y plotting program, specifically designed to produce time- 

history plots from transient analyses, such as those performed using OASYS 

DYNA3D and to plot any form of x-y data produced either by a program or by 

directly typing the values into the computer. The response quantities of interest 

are the lateral displacement, velocity and contact force. The time history file 
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(xxxx. thf) produces a displacement curve (disp. cur), velocity curve (vel. cur) and 

acceleration curve (acce. cur). The contact force value against time (force. cur) for 

the discrete elements can be obtained from the (xxxx. xtf) via THIS. 

To produce a standard hardcopy of the results, UNIGRAPH package is used to 

plots all the time history results from DYNA3D using the (disp. cur) and theoretical 

analysis from FORTRAN program. 

6.2 ELEMENT TYPE 

6.2.1 Introduction 

DYNA3D offers a wide range of element types. There are solids, shells and beams. 

Modelling can be with solid elements only, or with shell elements only, or either 

both of these along with beam elements. In addition there are discrete elements 

like masses, springs and dampers which are available. 

In this research, the combination of beam and discrete elements are found to be 

the most simplest and efficient way to analyze the shear frame and the simple 

lumped mass model idealization. Some of the elements used in this modelling are 

shown in Figure 6.2. 

The consistency of units used through out the computer modelling is very 

important. The units are N, m, sec, and kg. The elements personal identification 

(PID) and configuration (CONFIG) numbers will determine the material and 

element type, respectively. For example, from Figure 6.2, the damper element is 

assigned by PID number 2 and Configuration number 20. This is done in the pre- 

processor stage (PATRAN). The input data and the material type are assigned in 

the computer analysis stage. 
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ELEMENT TYPE SYMBOLS ELEMENT ID INPUT DATA MATERIAL TYPE 

Density, (kg/m3) 
BEAMS PID =I Young's Modulus, E Material Type I 

CONFIG =0 Poisson's ratio, v (Elastic) 
Cross-sectional area, A 
Iyy, Izz, Ixx. 

SPRING PID =1 Elastic stiffness , ks (N/m) Property Type 1 
VVVV CONFIG =6 (force/disp. ) (Linear Elastic) 

GAP SPRING /ý ^n 
r `ý PID =I Elastic stiffness, ks (N/m) Property Type I 1r' Ir' CONFIG =6 (force/disp. ) (Linear Elastic) 

Clearance / gap (m) 

DAMPER 
ý PID =2 Damping constant, c Property Type 2 

CONFIG = 20 (force/disp. rate) (Linear Viscous) 

LUMPED MASS PID =1 mass (kg) - 
1E 

CONFIG =7 

NOTE :0 REPRESENT NODAL POINT 

Figure 6.2 : Element and Material types of DYNA3D 

6.2.2 Beam Element 

In this research , the columns of the shear frame model are represented by beam 

elements of a circular cross section. DYNA3D provide beams with two formulations 

they are; Hughes-Liu (H-I) and Belytschko-Schwer (B-S). Using Hughes-Liu beam, 

requires the actual cross-section dimensions, whilst for the Belytschko-Schwer 

beam, the moment of inertia and shear area are required. In this research, later 

beam is used. The floor of the frame is represent by the spring element as 

discussed in next section. 
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6.2.3 Discrete Element 

Spring, damper and lumped mass are categorised as discrete elements in 
DYNA3D. The spring elements and lumped masses represent the slab stiffness, ks 

and mass of the floor, respectively. In DYNA3D, spring elements generate a force 

which depends on displacement (i. e. change of length of the element). This force 

is applied along the element axis. The stiffness of the spring is given by: 

ks =EA (6.1) 
L 

where ks = spring stiffness 
E= floor stiffness 

A= cross sectional area of the floor 

L= the length of the floor. 

To allow only the horizontal motion of the floor, the translational spring with 
linear elastic properties is selected in this research. In addition to that, the 

"clearance or gap " option gives a required property to represent the building 

separation. This spring works in compression only and is very useful in modelling 

a building hitting an adjacent building for the aligned floor case. 

The same concept is applied to the damper element except the damping constant, 

c is required instead of the spring stiffness, ks. The lumped mass is defined in 

PATRAN using a bar element with configuration number 7. 
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6.3 MATERIAL TYPE 

Not all the 28 available materials in DYNA3D can be used for analysis with a 
beam element, because certain material types, are only suitable for certain 

element. In this research, the steel shear frame structure is represented by 

material type no 1 (elastic). 

Material data in OASYS DYNA3D has certain preset values. However, these can 
be altered to values required for a particular model. 

6.3.1 Beam Element - Material Type No. 1 (elastic) 

For material type No. 1 in beam element, data input of the following properties 

are required: 

a. Density, p (kg/m3) 

b. Young's Modulus, E (N/m2) 

c. Poisson's Ratio, v (0.3) 

Additional data are required for Belytschko-Schwer beams such as: 

a. Cross-sectional area ,A= 7t d2 /4 

b. Iyy=nd4/64 

c. Izz=nd4/64 

d. Torsion Constant, Ixx = is d4/ 32 

e. Shear area, As (default same as A) 

6.3.2 Spring Element - Property Type No. 1 (Linear Elastic) 

In DYNA3D, the property type numbers must be consecutive, starting from 1 if 

more than one springs stiffness is required. The only data input needed for this 

property is the spring stiffness (floor), ks in term of (force/disp. ) . The gap-spring 

element can be achieved by assigning the clearance value in the N/CODE to 

represent the building separation. 
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6.3.3 Damper Element - Property Type No. 2 (Linear Viscous) 

In the previous chapters, the solution of the equation of the motion, for damping 

analysis requires the value of the damping coefficient, 4. This value can be 

assigned directly. In DYNA3D, it requires the value of the damping constant, c 
instead of the damping coefficient, 4. Therefore, in this section, a value of c is 

derived separately for SDOF and MDOF damping systems. 

6.3.3.1 SDOF damping system 

For a damped SDOF system in Figure 6.3, the value of c can directly be expressed 

as: 

c= C 

m 

Figure 6.3 : SDOF damping system 

4 

I 

where 4= damping coefficient (eg. for steel say 2%) 

c, = critical damping (2 mw) 

m= floor mass (N. sect/m) 

co= natural frequency ( rad/sec) 

(6.2) 
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6.3.3.2 MDOF damping system 

For a damped MDOF system, Rayleigh damping is usually assumed. Consider the 
2DOF system in Figure 6.4 below. 

c22 

-{ m2 u2 

cl 
7L 

Figure 6.4 : MDOF damped system 

ul 

For a damped system, the basic equations of motion are : 

m2 02+ c12+c22 -c12 + 
2k2 -2k2 20 (6.3) 

0 ml 

I 

-c12 c11 +c01 +cl21 

I-2k2 

W+ 2k1 

I 

i} i 

In general 

in ü, +cu; +k ui =0 (6.4) 

where i is the number of modes. Rearrange this equation will gives: 

üi +2 ýj W{ 
ui 

+w2 ui =0 (6.5) 

Introduce the Rayleigh damping, 

c=C1 [r. ] +C2[k] (6.6) 

where C1 and C2 are constant. Equation (6.6) can be expressed in usual notation 

as : 
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2ýj wj=C1 +C2wi (6.7) 

To find the values of C1 and C2, consider two modes of MDOF system: 

1st mode 2ý1cal =C1+C2ca i 
(6.8) 

2nd mode 2ý2w2=C1 +C2w2 

Equating values of Cl gives : 

C2 = 
2&2 w2-2&1 w1 (6.9) 

(w2-wi) 

And 

C1 =2 
cal w2 (Ei 6 )2 - &2 wi) (6.10) 

iw2 - (01) 

But some damping is always associated with mass, m and stiffness k of the model 

as in Equation (6.6). where for a system in Figure 6.4 above, 

m2 0 2k2 -2k2 (6.11) n2, =0 
m1 

and k° 
_2k2 2k2+2k1 

Substituting these values into Equation (6.6) gives: 

c=C1 [m. ] +C2[k] 

(Cl m2 + C2 2k2) -C2 2k2 (6.12) 
c= 

-C2 2k2 (Cl ml + C2 2k1 + C2 2k2) 

Equating damping terms in Equation (6.3) and (6.12) gives: 

c22 = Cl m2 
c12 = C2 2k2 (6.13) 
C11 = Cl MI 
c01 = C2 2k1 

These terms are required as data input in the N/CODE stage. 
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6.4 EXAMPLES OF COMPUTER MODELLING 

Two examples of the computer modelling from the previous chapter are illustrated 

in this section. First, the pounding of undamped MDOF system at aligned floor 

which hits at the top floor (a = 0) as in section (3.5.2) and secondly the pounding 

of damped MDOF system of unaligned floors, which hits at the column level 

(a=L12) as in section (3.5.4.2). 

In both analyses, some assumptions are made about the behaviours of the shear 
frame models: 

a. The horizontal members (floors) are assumed to be infinitely rigid compared 

with the vertical members (columns) which are assumed to be massless. 
b. Rotation of joints is assumed not to occur and the structure is assumed to 

sway only on its plane. 

6.4.1 Undamped MDOF system hits a rigid body (aligned floor, a=0) 

To show how the computer modelling is performed using PATRAN and OASYS- 

DYNA3D, the same model and physical properties of section (3.4.1.5.2) as in Table 

3.2 and shown in Table 6.1 below: 

m3, m2, ml = building masses of 1.0,1.5,2.0 kips-sec2/in. 
= 175197,262795, and 350394 kg (N-sect/m) 

2k3,2k2,2k1 = building stiffness of 600,1200,1800 kips/in. 

= 105.12*103,210.24*103, and 315.35*103 (kN/m) 

ks = slab stiffness of 50,000 kips/in. ( 8.76*106 kN/m) 

Initial top displacement = -1.0 in. (-0.0254 m) 

Building separation, Us = 0.5 in. (0.0127 m) 

Ground acceleration, (ü t=0) 
Undamped free vibration, c=0 

Height between floors, L= 72 in. (1.8288 m) 

Young Modulus of steel, E= 30*103 kip/in2 (205* 106 kN/m2) 

Table 6.1 : Physical properties of the building. (** 1 kip = 4450N, 1 in=0.0254m) 
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The lumped mass model consists of 6 nodes, 3 beam elements, 3 lumped mass 

elements and 1 gap-spring element. In the pre-processor stage (using PATRAN) the 

following lines, nodal points and elements and boundary conditions are generated 
(Figure 6.5). The list of commands used in PATRAN to generate the model is in 

Appendix I. The node number 6 is referred as the initial orientation of the beam. 

eT U L 

L k2 

RIGID 
STOPPER 

k3 

k2 

Ll kl kl 

(a) 

ks 

tn3 
RIGID 
STOPPER 

2U 

M2 

2k2 

ml 

2kI 

(b) 

Figure 6.5: (a) Pounding of MDOF system (b) The lumped mass model. 

From the Figure 6.5 above, the explanation of the pre-processor stage are 

summarised in Table 6.2 below: 
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Table 6.3a and 6.3b lists the data required along with the default N/CODE values 
which represent a mild steel material and the boundary condition values. 

BEAM PROPERTY VALUE 

Density 7890 kg/m3 
Young's Modulus 205 E+9 N/m2 
Poisson's Ratio 0.3 

Belytschko-Schwer Beam E4 E5 E6 

Cross-sectional Area, A=ird2/4 5.704E-2 m2 8.070E-2 m2 9.875E-2 m2 
Iyy = nd4/64 2.589E-4 m4 5.179E-4 m4 7.768E-4 m4 
Izz = nd4/64 2.589E-4 m4 5.179E-4 m4 7.768E-4 m4 
Torsion Constant, Ixx=nd4/32 5.178E-4 m4 1.037E-3 m4 1.552E-3 m4 
Shear Area, As (default same 
as A) 

Table 6.3a : Beam Elements properties 

DISPLACEMENT CURVES 3 POINT VALUES 

BC_DISP 1 (at N1) (0,0), (0.001, -0.02540), (1.0, -0.02540) 
BC_DISP 2 (at N2) (0,0), (0.001, -0.01283), (1.0, -0.01283) 
BC_DISP 3 (at N3) (0,0), (0.001, -0.00366), (1.0, -0.00366) 

GAP - SPRING ELEMENT E7 

Spring stiffness, ks 8.76 E9 NI m 
Clearance / gap, Us 0.0127 m 

LUMPED MASS VALUE 

Mass for element El 175197 kg 
Mass for element E2 262795 kg 
Mass for element E3 350394 kg 

Table 6.3b : Load curves and discrete element properties. 

The displacement curves at three nodal points are described by 3 points curve 

where their values are listed in the above table. These values ( -0.0254, -0.01283 

and -0.00366) are taken from the free vibration mode shapes, and the coordinate 

of the second point (0.001) is introduced in order to avoid sudden changes in the 

displacement value. This is explained in Figure 6.6 below. 
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disp (m) 

(0.001, -0.0254) (1.0, -0.0254) 

(0,0) 0.001 1.0 

disp (m) 

(sec) 

(a) BC_DISP 1 (3 points) (b) BC DISP_1 (2 points) 

1,0254) 

(sec) 

Figure 6.6 : Displacement curves (a) 3 points - correct (b) 2 points - wrong. 

It is important to remember that in DYNA3D the displacement curve must be 

smoothed in describing the points along the curve. Figures 6.6a) and b) above 

show the correct "smooth" displacement curve and incorrect displacement curve 

respectively. This is not necessarily needed for force/load , velocity or acceleration 

curve, because DYNA3D will read the load curve data at each nodal point of the 

finite element mesh and then it calculates the acceleration, velocity and finally 

displacement. On the other hand, when the displacement curve is assigned, 

DYNA3D will read the displacement data and convert them into the forces at each 

nodal point before start calculating the acceleration, velocity and displacement 

values. This 'conversion' will cause an error if input data not entered properly . 
Details of command used in N/CODE, to submit job, restart a job, display output 

using D3PLOT and read time history file using THIS are listed in Appendix I. 
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6.4.2 Damped MDOF system hits a rigid body (unaligned floor, a= L/2) 

The pounding of damped MDOF systems of unaligned floor (a=L/2) from section 
(3.4.2.2) is used in this analysis which is the second example of the computer 
modelling. The reason of choosing this example is to illustrate the use of the 

damper elements and the stone wall elements (representing the rigid adjacent 
building). 

All the physical properties are the same as in previous section (Table 6.1) except 
the building separation is now 0.0126 m. The lumped mass model is shown in 

Figure 6.7 below. There are 11 nodes, 5 beams elements, 2 springs, 6 damper 

elements and 3 lumped mass elements in the model. 
Us 

ks 
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k3 + RIGID 

m 
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k3V 

STOPPER 

m2 

L k2 k2 

ks 

m 

L ki kI 

n77 7777 (a) 

Us 

m3 
RIGID 

U STOPPER 

m2 

2k2 

m1 
J2 

k1 

(b) 

Figure 6.7: (a) Pounding of MDOF system (b) The lumped mass model. 

Table 6.4 below contains all the data required for the pre-processor stage. 
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The properties of the beam are the same as in Table 6.3a except for material 

number 1 (PID=1) where the Belytschko-Schewer Beam data is different due to the 

stiffness of the single top column (k3) only and not (2k3) as previous. Table 6.5a 

and 6.5b lists the data required along with the default N/CODE values to 

represent a mild steel material and the boundary condition values required. 

BEAM PROPERTY VALUE 

Density 7890 kg/m9 
Young's Modulus 205 E+9 N/m2 
Poisson's Ratio 0.3 

Belytschko-Schwer Beam E4, E7, E8 E5 E6 

Cross-sectional Area, A=itd2/4 4.033E-2 m2 8.070E-2 mZ 9.875E-2 m2 
Iyy = nd4/64 1.295E-4 m4 5.179E-4 m4 7.768E-4 m4 
Izz = itd4/64 1.295E-4 m4 5.179E-4 m4 7.768E-4 m4 
Torsion Constant, Ixx=itd4/32 2.589E-4 m4 1.037E-3 m4 1.552E-3 m4 
Shear Area, As (default same as 
A) 

Table 6.5a : Beam Elements properties 

DISPLACEMENT CURVES 3 POINT VALUES 

BC_DISP_l (at Nl) (0,0), (0.001, -0.02540), (1.0, -0.02540) 
BC_DISP_2 (at N2) (0,0), (0.001, -0.01283), (1.0, -0.01283) 
BC_DISP_3 (at N3) (0,0), (0.001, -0.00366), (1.0, -0.00366) 

STONE WALL RIGID ELEMENT (STONE-1) at N6 

Tail Co-ordinates (x, y, z) (2.0126, -0.25, -2.1644) 
Head Co-ordinates (x, y, z) (0, -0.25, -2.1644) 
X` Vector (x, y, z) (2.0126, -0.25, -1.6644) 

SPRING ELEMENT E7 

Spring stiffness, ks 8.76 E9 N/ m 

DAMPER DAMPING CONSTANT c (N seelm) 

Cl = 0.395768 , C2 = 0.0008777 
( Ell c23 = C2 2k3 0.92269 E5 
(E12c12=C22k2 1.84539 E5 
(E13c01=C22k1 2.76808 E5 
(E14), c33=C1m3 0.69337 E5 
(E15c22=C1m2 1.04005 E5 
(E16c11=C1ml 1.38674 E5 

LUMPED MASS VALUE 

Mass for element El 175197 kg 
Mass for element E2 262795 kg 
Mass for element E3 350394 kg 

Table 6.5b : Load curves, stone wall and discrete element properties. 
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The stonewall element is used to model the adjacent rigid building with a gap or 
building separation, Us. The gap is assigned by the position (co-ordinates) of the 

tail, head and X' vector of the stone wall. These values are taken from the co- 

ordinates as explained in Figure 6.8 below. 

+z (m) 

N8 
-1.0000 ......... 

-1.6644 ......... 

-1.9144 
-2.1644 

-2.8288 
N9 

0.0 1.0 

Us = 0.0126m 

N5:: STONE 

--i , WALL 

2.0 2.0126 

Figure 6.8 : Coordinates of stone wall element. 

The damping constants are calculated from Equation (6.13). 

10. 

s 
Y' 

+x (m) 

Chapter 6: Computer Modelling (DYNA3D) 226 



6.5 DISCUSSIONS 

A finite element package, such as DYNA3D which is used in this study is a very 

powerful and modern computational tool in solving structural dynamics problem. 
From the previous chapters, DYNA3D is able to verify all the results from the 

theoretical formulation using the FORTRAN program. 

However, in this chapter it is shown that DYNA3D is not a straight forward finite 

element package in solving the structural pounding analysis. Some knowledge such 

as computing system, finite element mesh generation, type of element and 
boundary conditions are pre-requisite. 

On the other hand, by considering the basic formulation and solving the equations 

of motion using the direct integration method as in previous chapters, produces 

very good results. 
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CHAPTER 7 

DISCUSSIONS AND CONCLUSIONS 

7.1 INTRODUCTION 

The work presented in this thesis represents a comprehensive formulation of the 

equations of motion on structural pounding using a displacement compatibility 
method for both aligned and unaligned floor cases. First, this chapter gives an 

overview of several types of pounding analysis as mentioned in previous chapters 

and it summarises the results. The final section of the chapter covers suggestions 
for future work. 

7.2 DISCUSSIONS 

The study derives a formulation for the equations of motion using the displacement 

compatibility method for the analysis of structural pounding. The solutions of the 

equations of motion are uncoupled using the mode superposition technique and 
direct integration method over a linear variation time step. 

The formulations are idealized as having two linear states, buildings not in contact 

and buildings in contact. A complete response time history is achieved as the 

response continues to change from one state to another. In this study, the 

application of the formulation of the equations of motion is applied to three main 

cases: 

Case 1: Pounding of adjacent rigid building with rigid slab 
As explained in Chapter 3. 

Case 2: Pounding of adjacent rigid building with flexible slab 
As explained in Chapter 4. 

Case 3: Pounding of two flexible buildings with rigid slabs 
As explained in Chapter 5. 
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All the results are verified by finite element package PATRAN and DYNA3D as 
mentioned in Chapter 6. To illustrate each case, a typical two storey frame as 
shown in Figure (4.11) is taken as a numerical example having the same physical 

properties as in Table (4.4) for case 1 and 2 and additional properties for Building 

B as in Table (5.1) for case 3. Two aligned floor cases ( a=0, a=L ) and four 

unaligned cases ( a=L/4, L/3, L12,3114 ) are considered in this study. 

Only the results for Case 1 are summarised in this section and shown in Table 7.1. 

Detailed results can be found in chapters 4 (Table 4.6) and 5 (Table 5.3) for case 
2 and 3 respectively. 

Overall variation of the contact force, P over a range of (0 <_ aS L) is due to the 

slab stiffness, ks for aligned floor case and both ks and column rigidity, kp, for the 

unaligned floor case. This variation is summarized in Table 7.2. A typical 

displacement at the contact point, ui and contact forces, P time histories for 

various value of a are shown in Table 7.3 and Table 7.4 respectively. 

This section compares and discusses the effect of the following parameters on the 

contact forces, initial time of contact, the duration of contact, time interval between 

two successive contacts, top floor displacement, damping factor, number of contacts 

and number of Degree of Freedom system by referring to Case 1,2 and 3. 

7.2.1 Effect of pounding location, a on contact forces, P 

The pounding location, a is measured from the floor above the point of contact. 
That is (0 Sa5 L) and (a+b= L). For all three cases shown in Table 7.4, the 

contact force, P decreases as the pounding location increases for a range of ( 

0 _< aS L/2 ). Then P increases as the value of a increases from ( L/2: 5 aSL) for 

Case 1 (first contact) and Case 3. The contact forces P continue decreases for Case 

1 (second contact) and Case 2. In general, the lowest value of P occurs at a= L/2 

and is due to the relative effects of the column rigidity, kp and slab stiffness, ks 

which is explained in section (7.2.8). 
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CASE 1 1st CONTACT 2nd CONTACT 
" " DISTANCE a 

FORTRAN FORTRAN 
0 Contact time (sec) 0.08110-0.09480 0.28280-0.29579 

(0.01370) (0.01290) 

Contact 19,391.138 19,632.356 
forces (kN) 

L/4 Contact time (sec) 0.08240-0.10580 0.28480-0.30750 
(0.02340) (0.02270) 

Contact 13,687.077 14,544.884 
forces (kN) 

L/3 Contact time (sec) 0.08340-0.11550 0.28900-0.32069 
(0.03210) (0.03169) 

Contact 10,709.496 11,325.491 
forces (kN) 

L/2 Contact time (sec) 0.08610-0.12900 0.30150-0.34379 
(0.04290) (0.04229) 

Contact 8,651.723 8,652.834 
forces (kN) 

3L/4 Contact time (sec) 0.09120-0.11860 0.31560-0.33790 
(0.02740) (0.02230) 

Contact 10,695.105 7,794.655 
forces (kN) 

L Contact time (sec) 0.09420-0.11050 0.32600-0.33500 
(0.01630) (0.00900) 

Contact 13,133.550 1,764.129 
forces (kN) 

.1 
L 

- 

Table 7.1 : Overall results for the contact stages of flexible slab of 2DOF systems. 
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CASE 1 
P= ks2 (u2 - Us) (1) 

ks2 
mz 

L Ui.. 1........ P kp[(1-k, B)ud2+kAB udi] 
ksl RIGm kp = 

3L3EI (2) 
MI BUILDING b3 a3 

Us 
L 

P= ksl (ul - Us) (3) 

ksl - ks2 = 50,000 kips/in (rigid) Equation (1), (2) and (3) represent a=0,0<a<L 

and a=L respectively. 

CASE 2 
ks2 

m2 P= kp [(1- k, B) ud2 + kAB udl ] (4) J 

........ L ui 

ksl RIGID kp 1 

ml BUILDING a3b3 12Z [(1-k, B) (ksl+kl)+k2+kABks2] + 
kD 3LSEI 

Us 

This equation valid for 0: 5 a: 5 L ). 
ksl = ks2 5,000 kipstin (flexible) 

CASE 3 
p ks2ks4 (u2 - u4 - Us) (5) 

m2ks2 ks2 + ks4 
a 

LI ui 
ks4 

m4 

kst L2 
(P-P') - kp I(1-k, B) ud2 + kAD udi - ud4] 

m 
ks3 k- 3L3EI (6) p 

m3 b3 a3 
Us 

LI L2 

ksI ks2 - ks3 = ks4.50,000 kips/in (rigid) P= ks2ks4 (ul - u4 - Us) (7) 
ks2 + ks4 

Equation (5), (6) and (7) represent a=0, O<a<L1 

and a= L1 respectively. 

Table 7.2 : Overall contact forces, P for case 1,2 and 3 respectively. 
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CASE 1 
displacement at contact point (ui) ks2 

m2 0 oa 1-1 

...... L °1 0.0z 

ksl RIGID o01 
771 ml ' BUILDING ' 

0.0 

Us 
L ° a. o1 

-0o2 

ksl - ks2 - 50,000 kips/in (rigid) -0'oa 
0.0 0.05 0.1 0.15 02 025 0.3 0.35 OA 0.45 0.5 

1Yn. No 

CASE 2 
displacement at contact point (ui) ks2 

m2 0.03 

a 
L Vi "-" -........ o. 02 

ksl RIGID E 0.01 - 

MI BUILDING I 
.o 

L 
us -001 , 

. oz 

V/ 

ksl - ks2.5,000 kipsfin (flexible) -0.03 
0.0 0.05 0.1 0.15 02 025 0.3 035 04 0.45 0.5 

CASE 3 
displacement at contact point (ui) 

ks 
m2 o. oa 

k94 i .......... LI u 
' ' m4 o. oz 

ksl 1,2 _ 0.01 - - 41 
m ks3 

E 

m3 0.0 

Us 
LI L2 -0.01 

-0. oz 
ks l= ka2 = ks3 = ks4 =50,000 kipsfin (rigid) 

-0oa 
0.0 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0.46 0.5 

I" s. o 

Table 7.3 : Displacement at contact point, ui for case 1,2 and 3 respectively. 
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CASE 1 
contact forces vs value of a ks2 

m2 "10 
so. o 

a ns 

15.0 
ksl RIGID 1125 

11 ml ' BUILDING 
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Table 7.4 : Contact forces against variation of a for case 1,2 and 3 respectively. 

Chapter 7: Discussions and Conclusions 233 



DISTANCE "a" 

C a=0 
A 
S a=L/4 E 

a=L/3 

a=IJ2 

a=3114 

a=L 

C 
A 

a=0 

S 
E a=L/4 

2 a=L/3 

a=U2 

a=3L/4 

a=L 

C 
A 

a=0 

S 
E a=L/4 

3 a=L/3 

a L/2 

a=3114 

a=L 

1st CONTACT 

u2 (m) u2m�� (m) 

0.00800 0.00800 
t=0.08780 sec t=0.08780 sec 

0.01220 0.01221 
t=0.09400 sec t=0.09350 sec 

0.01383 0.01385 
t=0.09940 sec t=0.09840 sec 

0.01688 0.01688 
t=0.10750 sec t=0.10770 sec 

0.01798 
t=0.10460 sec 

0.01752 
t=0.10230 sec 

0.00800 0.00800 
t=0.10380 sec t=0.10320 sec 

0.01574 0.01577 
t=0.10770 sec t=0.10630 sec 

0.01675 0.01680 
t=0.11110 sec t=0.10940 sec 

0.01886 0.01888 
t=0.11770 sec t=0.11630 sec 

0.02150 0.02184 
t=0.12120 sec t=0.12800 sec 

0.02224 0.02329 
t=0.12180 sec t=0.13480 sec 

0.01091 0.01119 
t=0.08845 sec t=0.09155 sec 

0.01200 0.01237 
t=0.09088 sec t=0.09475 sec 

0.01355 0.01409 
t=0.09470 sec t=0.10034 sec 

0.01598 0.01728 
t=0.10019 sec t=0.11241 sec 

0.01655 
t=0.10023 sec 

0.01749 
t=0.10222 sec 

2nd CONTACT 

u2 (m) u2max (m) 

0.00800 0.00800 
t=0.28920 sec t=0.28920 sec 

0.01390 0.01390 
t=0.29590 sec t=0.29620 sec 

0.01632 0.01632 
t=0.30460 sec t=0.30490 sec 

0.01653 0.01653 
t=0.32250 sec t=0.32260 sec 

0.00478 - 
t=0.32640 sec 

0.00252 - 
t=0.33040 sec 

0.00800 0.00800 
t=0.33030 sec t=0.33030 sec 

0.01901 0.01901 
t=0.33480 sec t=0.33490 sec 

0.02034 0.02034 
t=0.34030 sec t=0.34030 sec 

0.02082 0.02082 
t=0.35289 sec t=0.35220 sec 

0.01658 0.01942 
t=0.36590 sec t=0.39059 sec 

0.01503 - 
t=0.36880 sec 

0.00053 0.00054 
t=0.29940 sec t=0.29903 sec 

0.00085 0.00086 
t=0.30238 sec t=0.30201 sec 

0.00161 0.00161 
t=0.30957 sec t=0.30957 sec 

0.00146 0.00183 
t=0.32065 sec t=0.32613 sec 

-0.00372 - 
t=0.32061 sec 

-0.00359 - 
t=0.32502 sec 

Table 7.5 : Overall top displacements during contact stages for case 1,2 and 3 

respectively. (-) means the u2,,, ß 
does not occur in the contact stage. 
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The effect of kp for case 1 and 3 is inversely proportional to the cube of a and b as 
defined in Equation (2) in Table 7.2. Any increment in a produces a reduction in 
kp and therefore, value of P is decreased. 

In addition to the factor kp, the constants (1 - k, B) and kABalso affect the value of 
P. These constants, the coefficient of ud2 and ud1 respectively, affect the value of 
P because the amplitude of ud2 is usually greater than udl as shown in Figure 7.1 
below. As a increases, value of kABalso increases but (1-k, B) decreases. Thus 

at a=L/2 the value of contact forces P is the lowest compared to other values of a. 

i 

ud2 and ud1(1st contact) ud2 and ud1( 2nd contact) 
C. 

oj 

os 

a+ 

OA)- 

41 
0.01 as 000 0.1 all al: all aN 

IM(m) 

i 
431 o2 au aw aye 

Figure 7.1 : The ud2 and udl values during the contact stage for case 1. 

For example, case 1, at a=0, the contact forces P is equal to 19391 kN and at 

a=L12, the contact forces P is equal to 8652 M. A 50% increment in a produces 

55.38% reduction in P. (Table 7.1) 

7.2.2 Effect of pounding location, a on initial contact time, tI 

The initial time for pounding to occur, tI increases as the value of a increases for 

all three cases. The results can be found in Tables 7.1,4.6 and 5.3 for case 1,2 and 
3 respectively. For examples, case 1, at a=0, initial contact time is equal to 

0.08110 sec and at a=L, the initial contact time is 0.09420 sec. Increased a by 

100%, resulting a 16.15% increased in the initial contact time. 
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7.2.3 Effect of pounding location, a on contact stage duration, dtc 

The duration of contact stage, dtc increases as the value of a is increased from a=0 

to a=L/2 and it decreases from a=L/2 to a=L. The maximum duration of contact 

stage occurs when pounding location at a=L/2 as shown in Tables 7.1,4.6 and 5.3 

for case 1,2 and 3 respectively. For example, in case 2, the duration of contact 

stage for a=0 is 0.04250 sec , and at a=L/2, it is equal to 0.05770 sec. It means, 

50% in a produces 35.76% increased in the contact stage duration. 

7.2.4 Effect of pounding location, a on u2 and u2m8Z displacement 

In general, the u2 (top floor displacement) increases as the pounding location a 

increases as tabulated in Table 7.5. This is governed by the fundamental mode 

shapes, as shown in Figure 7.2 below: 

u2=Us=0.008m u2=0.01752m 
HII 

RIGID u2 "'0 ý STOPPER 
j 

u2 

L a=L 

RIGID 
I ul STOPPER 

Us=0.008m 

Figure 7.2 : u2 displacements for a=0 and a=L of case 1. 

The value of u2 is corresponding to the maximum value of contact forces, P. Table 

7.5 shows that the value of u2m. may occurs at different time of the maximum 

contact forces, and it is not necessarily occurs during the contact stage. The 

variation of u2max is following the same pattern as for u2. That is u2m,,. increases 

as the value of a increases. 
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7.2.5 Effect of pounding location, a on number of contacts 

Table 3.4 shows the overall results for the analysis of case 1 with 3DOF systems 
for a duration of 1.0 second. The number of contacts for a=0, L/2,3114 and L is 3, 

whereas for a=L/4 and L/3, the number of contacts is only 2. This shows that, there 
is no general pattern on how many times the pounding will occurs and each case 
must be evaluated individually. 

This becomes more obvious in the earthquake induced pounding analysis (section 

3.4.3) where the Mexico earthquake, 1985 N90-W component is used in the 

analysis and is run for 30 secs. When pounding occurs at a=L/2, the number of 
contacts is 14 and when pounding occurs at a=0, the number of contacts reduces 
to only 9. This means, increased a by 50% results an increment of 55.55% in 

number of contacts. 

7.2.6 Effect of damping on contact forces, P 

The contact force, P is reduced as the damping value is increased as tabulated in 
Table 3.6. For the case of a=I�2, with the damping coefficient, 4=0.02 

, the value 

of P is equal to 1947 kN compared to those obtained without damping, P= 2337 

kN. This means that, increased 4 as small as 2% produces a reduction of P by 

16.69%. 

7.2.7 Effect of number of Degree of Freedom on contact forces, P 

Two studies on 2DOF systems and 3DOF systems for case 1 (rigid slab) are 

compared. Table 7.4 and Figure (3.27a) shows that the general pattern of the first 

contact force reduces for a range of (O<a<L/2) and it increases for a range of 

(L/2<a<L) as the value of a increases. For the second contact force, there are no 

similarities for 2DOF and 3DOF systems which is due to their differences in 

physical properties. 
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The magnitude of contact forces in the 2DOF systems (Table 7.1) is higher than 
in the 3DOF systems (Table 3.4) . For example, at a=I�2 the contact forces P for 
2DOF systems is equal to 8652 kN and for 3DOF systems, the value of P is 

reduced by 73.3 % (2307 kN). 

7.2.8 Effect of slab stiffness, ks on contact forces, P 

The effect of slab stiffness, ks on P is best illustrated by comparing Case 1 and 
Case 2. In case 1, the slab is assumed rigid in plane, with ks=50,000 kips/in. and 
in case 2, the slab is assumed not rigid in plane with ks=5,000 kips/in. Table 7.4 

clearly shows that value of P decreases as ks deceases. 

For example, at a=0, in case 1 (rigid slab), the value of contact force P is equal to 
19391 kN and in case 2 (non rigid slab), the value of P= 5870 kN. This shows that 

the slab stiffness reduced by a factor of 10, reduces the contact force by a factor of 
3.3. 

7.2.9 Effect of slab stiffness, ks on initial contact time, ti 

The initial contact time, tI increases as the value of ks decreases. From Table 7.1 

for case 1 (rigid slab) , at a=L, the initial contact time is 0.09420 sec and from 

Table 4.6 for case 2 (non rigid slab), at a=L, the initial contact time is 0.09850 sec. 
A reduction of ks by a factor of 10, resulting in an increment of 0.0043 sec to the 

initial contact time, tI. 

7.2.10 Effect of slab stiffness, ks on contact stage duration, dtc 

The duration of contact stage, dtc increases as the value of ks decreases. Again, the 

longest duration occurs at a=L/2 and for example, in case 1(rigid slab), Table 7.1 

shows that at a=L/2 the duration of contact stage is 0.04290 sec and for case 2 (non 

rigid slab) , at a=IJ2 the duration of contact stage is 0.05770 sec (Table 4.6). 
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This shows that, a reduction by a factor of 10 in ks, produces a longer contact stage 
by 0.0148 sec. 

7.2.11 Effect of slab stiffness, ks on u2 and u2max displacement 

The top displacement (u2) at the time of the maximum contact forces, is higher for 

case 2 (non rigid slab) than in case 1 (rigid slab). The reduction in slab stiffness, 
ks produces an increase in the top displacement. This is associated with the 

presence of the axial slab displacements due to its flexibility, uk2 and uk1 as 
defined in Equation (4.57). The u2 displacement in this case represents the left 

hand. side of the frame. The right hand side displacements are defined by up, 

which is always less by a factor given by Equation (4.36) than the value of u2. 

Hence, the u2max value in case 2 also increases compared to those obtained in case 
1. For example, in Table 7.5, for case 1, at a=IJ2, the u2ma. = 0.01688m and for 

case 2, at a=L/2 the u2m. = 0.02082m . That means, a reduction by a factor of 10 

in the value of ks results in an increase of 0.00394m in the u2max value. Again, 

the u2m value does not necessarily occur during the contact stage. 

7.2.12 Effect of slab stiffness, ks on number of contacts 

The analysis for both case 1 (rigid) and case 2 (non rigid) was run for 1.0 sec. The 

results are tabulated in Table 7.6 below at a=L/2. 

CASE No. of contacts Maximum contact forces (kN) 

CASE 1 5 P=8661.778 
occurs at 3rd contact, at t=0.53730 sec 

CASE 2 4 P=5583.941 
occurs at 3rd contact, at t=0.58790 sec 

CASE 3 5 P=9583.362 
occurs at 2nd contact, at t=0.32065 sec 

Table 7.6 : Number of contacts for case 1,2 and 3. 
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It shows that, for the case 1 (rigid slab), the number of contacts is 5 with 

maximum contact force of 8662 kN occurs in the third contact, and when the slab 

stiffness is reduced in case 2, the number of contacts reduces to 4 with the 

maximum contact force of 5584 M. Case 3 will be discussed in section (7.2.17). 

7.2.13 Effect of adjacent building rigidity on contact forces, P 

In this study, the shear frames having the same slab stiffness, ks = 50,000 kips/in 

but the adjacent building is assumed rigid in case 1 and not rigid (flexible) as in 

case 3. Table 5.3 (case 3) and Table 7.1 (case 1) show that the adjacent rigid 
building (case 1) produces higher contact forces than those obtained in case 3. 

This is because, from (Table 7.3), for case 3, the contact forces, P is not only 
dependent on u2 (since u2=us2+ud2), but it also depends on the relative 
displacement at point of contact, for example, at a=0, the relative displacement of 
(u2-u4) is used in case 3 instead of only u2 is used in case 1. The contact forces, 

P_ is equal to 10,508 kN compared to P= 19,391 kN in case 1. 

7.2.14 Effect of adjacent building rigidity on time interval between two 

successive contacts, tic 

The time interval between two successive contacts, t1 is higher for case 3 than in 

case 1. For example, at a=0, the time interval between two successive contacts for 

case 1 is 0.20170 sec and for case 3 it is 0.21106 sec. 

7.2.15 Effect of adjacent building rigidity on contact stage duration, dtc 

In general, the duration of contact stage, dtc is longer in case 1 than in case 3 

(Tables 7.1 and 5.3). For example, at a=L/2, for case 1, the contact stage duration 

is 0.0429 sec and in case 3 it is only 0.02831 sec. That is almost 1.5 times of case 

3 compared to case 1 (adjacent rigid building). 
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7.2.16 Effect of adjacent building rigidity on u2 and u2m8Z displacement 

Table 7.5 shows that, in general, the u2 displacement of the building of interest 

for case 3 is less than those obtained in case 1 (adjacent rigid building). On the 

other hand, the u21, al 
displacement for the first contact for case 3 is higher than 

those obtained in case 1. For example when pounding occurs at a=L/2, 
Case 1: u2 = u2max = 0.01688 m 
Case 3: u2 = 0.01598 m, and u2max = 0.01728 m 
The difference in u2 is 0.0009m but almost half in u2mý,, ( 0.0004 m). 

7.2.17 Effect of adjacent building rigidity on number of contacts 

From Table 7.6 in section (7.2.12), it shows that the number of contacts for case 
1 and case 3 are the same, that is equal to 5. The maximum contact forces for 1.0 

sec analysis in case 1 (adjacent rigid building) is obtained from the third contact 

with a value of 8662 kN and in case 3, it is obtained from the second contact with 
higher value of 9583 kN. 
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7.3 CONCLUSIONS 

This study has developed the use of the displacement compatibility method for the 

analysis of structural pounding, for both the aligned floor and the unaligned floor 

case. The analyses consider both rigid slabs and flexible slabs as well as variation 
of adjacent building rigidity. Initially, a snap back analysis was performed to 
investigate the response behaviour of the structure, such as lateral displacement, 

velocity and contact forces. Later, the Mexico, 1985 earthquake was applied to the 
base of the building. The theoretical analyses are compared with the results using 
the DYNA3D computer system. From the results obtained, the following general 

conclusions can be drawn: 

1) An essential step towards the solution of a dynamic problem, especially in 

structural pounding analysis is the establishment of the equations of the motion. 
In. this study, the formulation of the equations of motion is presented in a very 

simple and straight forward manner, using the displacement compatibility method 

which considered both aligned and unaligned floor cases. This simplicity is an 

advantage over the Finite Element (DYNA3D) and Lagrange multiplier method. 

The effects of pounding location, a, slab stiffness, ks and adjacent building rigidity 
discussed in previous section can be concluded as : 

2) The magnitude of the contact force, P over a range of (0 5a5 L) is dependent 

on the position of contact, a, the slab stiffness, ks for aligned floor case and both 

ks and column rigidity, kp for the unaligned floor case as listed in Table 7.2. The 

value of P decreases as the pounding location increases for a range of (0<a<L/2) 

and it is increases as a increases for a range of (U2<a<L) in case 1 and 3. 

The lowest value of P occurs at a=L/2 which is associated to the lowest value of kp 

which is inversely proportional to the cube of a as defined in Equation (2) of Table 

7.2. The contact force, P decreases as the slab stiffness, ks decreases. 

In addition, the adjacent building rigidity will also affect the value of P. That is the 

value of P decreases as the adjacent building rigidity reduces. For example, in 

cases 1,2 and 3, the normalised value of P are shown in Table 7.7 below: 
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a= L/2 Contact Forces, P (kN) Normalised P 

CASE 1 8652 1.0 

CASE 2 5550 0.64 

CASE 3 5937 0.69 

Table 7.7 : Contact forces for case 1,2 and 3 at a=1J2. 

It clearly shows that the contact force, P is reduced by a factor of 0.64 as the slab 

stiffness, ks is reduced by a factor of 10 (case 2) and the same contact force is 

reduced by a factor of 0.69 if the adjacent building rigidity is decreased (case 3). 

3) The initial time, tI for the first pounding increases as the value of a is increased. 

This is because, in the dynamic response analysis, the first mode is the 

predominant vibration. Although the second and higher modes are also present, 

particularly on deflection, their effect is very small compared with the first mode, 
hence they are neglected. 

The initial contact time, ti also increases as the value of ks decreases as shown in 

Table 7.8 below: 

a= 112 Initial contact time, tI (sec) Normalised tI 

CASE 1 0.08610 1.0 

CASE 2 0.08900 1.03 

Table 7.8 : Initial contact time, tI for case 1,2 and 3 at a=L/2. 

4) The duration of the contact stage, dtc increases as the value of a increases for 

a range of (O<a<L/2) and it decreases from a=L/2 to L. The maximum duration of 

contact stage occurs when a=L/2. Comparing the results for three cases, 1,2 and 

3, the longest duration of contact stage is when the slab stiffness ks is reduced as 
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in case 2 (Table 7.9). The duration of contact, dtc is increased by a factor of 1.34 

when the slab stiffness is reduced by a factor of 10. 

a= U2 Contact stage duration, dtc (sec) Normalised dtc 

CASE 1 0.04290 1.0 

CASE 2 0.05770 1.34 

CASE 3 0.02831 0.66 

Table 7.9 : Contact stage duration for case 1,2 and 3 at a=L/2. 

The reduction of adjacent building rigidity as in Case 3, produces a reduction by 

a factor of 0.66 in the duration of the contact stage. 

5) The time interval, t1 between two successive contacts is the highest for case 2 

than in case 3 with respect to Case 1 as shown in Table 7.10 below. 

a= L/2 Time interval between two 

successive contacts, t1 (sec) 

Normalised tIc 

CASE 1 0.20170 1.0 

CASE 2 0.22800 1.13 

CASE 3 0.21106 1.05 

Table 7.10 : Contact stage duration for case 1,2 and 3 at a=I�2. 

6) The top floor lateral displacement, u2 and the maximum lateral top floor 

displacement, u2m. , both increase as the pounding location, a increases. This is 

due to the predominant first mode shapes but still less than the no pounding case. 

The u2 displacement also increases as the slab stiffness decreases (case 2) and the 

adjacent building rigidity decreases (case 3) as shown in Table 7.11 below: 
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a= IJ2 u2 (m) Normalised u2 u2mý (m) Normalised u2max 

CASE 1 0.01688 1.0 0.01688 1.0 

CASE 2 0.01886 1.12 0.02082 1.23 

CASE 3 0.01598 0.95 0.01728 1.02 

Table 7.11: u2 and u2max for case 1,2 and 3 at a=L/2. 

The reduction in slab stiffness, ks is more pronounced than a reduction in adjacent 
building rigidity to the u2 and u2m,,.. 

7) The number of contacts is dependent on pounding location, a. For example, in 

the earthquake induced pounding analysis (section 3.4.3) where the Mexico 

earthquake, 1985 N90-W component is used for 30.0 sec, the number of contacts 
is 14 at a=L/2 and at a=0, the number of contacts reduces to only 9. This means, 
increased a by 50% results an increment of 55.55% in number of contacts. 

8) The contact force, P decreases as the damping coefficient, 4 increases. Table 3.6 

shows the case of a=L/2, with the damping coefficient, 4=0.02 
, the value of P is 

equal to 1947 kN compared to those obtained without damping, P= 2337 kN. This 

means that, increased 4 as small as 2% produces a reduction of P by 16.69%. 

9) The contact force, P decreases as the number of degree of freedom increases. 
For examples, at a=L/2 the contact force is 8652 kN for 2DOF systems (Table 7.1) 

and decreases by 73.3 % for 3DOF systems (Table 3.4) with P equal to 2307 M. 

The variation of P in the first contact is similar in both systems, with a minimum 

contact forces at a=L/2. For the second contact forces, there no similarities for 

2DOF and 3DOF systems and as expected, this is due to their differences in 

physical properties or in other words, their flexibility. 

10) All the results obtained are based on linear elastic behaviour. However, the 

pounding forces on the column could produce inelastic behaviour, and this 

possibility needs to be considered when looking at the results. 

Chapter 7: Discussions and Conclusions 245 



Finally, the present study on pounding of adjacent building, for both aligned and 
unaligned floor cases, gives better understanding of pounding failure such as 
Hotel de Carlo during the 1985 Mexico City earthquake as shown in Figure 2.1. 

7.4 FUTURE WORK 

The present study has provided simple solutions to the formulation of the 

equations of motion for structural pounding, for both aligned floor and unaligned 
floor cases. However, many aspects have not been explored herein and therefore 
further suggestions are put forward for the continuation of this study: - 

1) The variation of other parameters such as the building separation, could be 

carried out based on the present study. 

2) The two-dimensional structures analysed in this study can be expanded to cover 
three dimensional structures. However it could possibly introduce eccentric 
pounding with one structure hitting another eccentric to its centre of mass and 
stiffness. Therefore the equations developed in this study would have to be 

expanded to cover any torsional deformations and forces. 

3) The present study assumed only the lateral movement of the floor without any 
rotation of the column. Therefore, more complex analysis could be done by 

considering the column rotation in each interstorey column. 

4) The analysis of structural pounding which has been undertaken in this study 

are based on linear dynamic response analysis. Further work on non-linear 

variation of the damping and stiffness of structure could be employed. 

5) Similar analysis mentioned in (1) to (3) could be done using the flexible slab. 

6) Steel frame models could be tested for further verification of the results. 

Chapter 7: Discussions and Conclusions 246 



REFERENCES 

[1] Clough, R. and Penzien, P., (1975). Dynamics of Structures, McGraw-Hill 
Book Co., New York. 

[2] Fintel, M., (1985). "Earthquake - Resistant Structures", Handbook of 
Concrete Engineering , 2nd Edition , New York , Van Nostrand Reinhold. 

[3] Robinson, A., (1993). "Earth Shock", Climate, Complexity and the forces of 
Nature, London, Thames and Hudson Ltd. 

[41 Kasai, K., Maison, B. F. and Patel, D. J., (1990). "An earthquake analysis for 

- building subjected to a type of pounding", Proc. 7th World Conf on 
Earthquake Eng. , Palm Springs, CA, 2,289-298. 

[5] Rosenblueth, E. and Meli, R., (1986), "The 1985 earthquake : Causes and 
effects in Mexico City. " Concrete International, 8,23-34. 

[61 Arnold, C., (1989). "Architectual Considerations" The Seismic Design 

Handbook, Van Nostrand Reinhold, New York. 

[7] Anagnostopoulos, S. A., (1988). "Pounding of building in series during 

earthquakes", Earthquake Eng. & Structural Dynamics 
, 16,443-456. 

[8) Wolf, J. P. and Skrikerud, P. E., (1980), "Mutual pounding of adjacent 
structures during earthquakes", Journal Nuclear Eng. Design, 57,253-275. 

[9] Miller, R. K., (1980). "Steady vibroimpact at a seismic joint between adjacent 

structures", Proc. 7th World Conf on earthquake Eng., International 

Association of Earthquake Eng. Istanbul, Turkey, 6,57-64. 

References 247 



[10] Iwan, W. D., (1977). "Predicting the Earthquake Response of Resiliently 

Mounted Equipment with Motion Limiting Constraints", Proc. 6th World 

Conference Earthquake Engineering International Assoc. of Earthquake 

Engineering ,3,3292-3297. 

[11] Mahin, S. A. et al., (1976). "Response of the Olive View Hospital Main 

Building During the San Fernando earthquake", Earthquake Engineering 

Research Centre, Report No EERC 76-22, California , Berkeley. 

[12] Jing, H. A. and Young, M., (1990). "Random Response of a single-degree-of- 

freedom vibro-impact System With Clearance". Earthquake Engineering and 

Structural Dynamics , 19 , 789-798. 

[13] Davis, R. O., (1992). "Pounding of Buildings Modelled By An Impact 

Oscillator", Earthquake Engineering and Structural Dynamics, 21,253-274. 

[141 Athanassiadou, C. J. , Penelis, G. G. and Kappos, A. J., (1994), "Seismic 

Response of Adjacent Buildings with Similiar or Different Dynamic 

Characteristics". Earthquake Spectra , 10(2), 293-317. 

[15] Maison, B. F. and Kasai, K., (1990). "Analysis for type of structural 

pounding", Journal of Structural Eng., ASCE 116,957-977. 

[16] Maison, B. F. and Kasai, K., (1992). "Dynamics of pounding when two 

buildings collide", Earthquake Eng. & Structural Dynamics , 21,771-786. 

[17] Anagnostopoulos, S. A., (1992). "An investigation of earthquake induced 

pounding between adjacent building", Earthquake Eng. & Structural 

Dynamics, 21,239-302. 

[181 Papadrakakis, M. and Mouzakis, H. P., (1995). "Earthquake Simulator 

Testing of Pounding Between Adjacent Building", Earthquake Engineering 

and Structural Dynamics , 24(6) , 811-834. 

References 248 



[19] Papadrakakis, M. , Mouzakis, H., Plevris, N. and Bitzarakis, S. (1991), "A 
Lagrange Multiplier Solution method for pounding of buildings during 

earthquakes" , Earthquake Engineering and Structural Dynamics, Vol 20, 

981-998. 

[20] Sokolnikoff, I. V. and Redheffer, R. M., (1966), Mathematics of Physics and 
Modern Engineering , 

Chapter 12 and 13,2nd Edition 
, McGraw-Hill 

[21] Hoppmann II, W., (1961). "Effects of Impact on Structures", Shock and 
Vibration Handbook , chapter 9, Mc Graw-Hill. 

[22] Filiatrault, A. and Wagner, P. and Cherry, S., (1995). "Analytical Prediction 

of Experimental Building Pounding", Earthquake Engineering and 
Structural Dynamics, 24(8), 1131-1154 

[231 Nigam, N. C. and Jennings, P. C., (1969). "Calculation of response spectra 
from strong-motion earthquake records", Bulletin of the Seismological Soc. 

of America, 59,909-922. 

[24] Filiatrault, A. and Cervantes, M. and Folz, B. and Prion, H., (1994). 

"Pounding of Building During Earthquakes :A Canadian Perspective". 

Canadian Journal Civil Engineering (Canada) , 21(2) , 251-265. 

[25] Naeim, F., (1989), The Seismic Design Handbook, Van Nostrand Reinhold, 

New York. 130-141. 

[26] Eurocode No. 8,1989, " Structures in Seismic Regions Design - Part 1, 

General and Building", Report EUR 12266EN, Commision of the European 

Communities, Brussels. 

[271 Newmark, N. M. and Rosenblueth, E., (1971). "Earthquake - Resistant 

Design of Buildings", Fundamentals of Earthquake Engineering, 507-514. 

Prentice-Hall, Inc. 

References 249 



[28]' Westermo, B. D., (1989), "The Dynamics of Interstructural Connection To 

Prevent Pounding", Earthquake Engineering and Structural Dynamics 
, 18, 

687-699. 

[29] Bertero, V. V., (1986). "Lessons Learned From Recent Earthquakes and 
Research and Implications for Earthquake-Resistant Design of Building 

Structures in the United states", Earthquake Spectra, 2(4). 

[30] Bertero, V. V., (1987). "Observation of structural pounding", Proc. 

International Conf.: the Mexico earthquake - 1985, ASCE, New York, 264- 

278. 

[31] Boswell, L. F. and D'Mello, C., (1993). Dynamics of Structural Systems 
, 

London , Blackwell Scientific Publications. 

[321 Roy, R. Craig Jr., (1981), Structural Dynamics : An Introduction to 

Computer Methods, John Wiley & Sons. 

[33] Thomson, W. T., (1993), Theory of Vibration with Applications, 4th Edition, 

Chapman & Hall. 

[341 Moon, S. K. and Lee, D. G., (1994). "Effects of Inplane Floor Slab Flexibility 

On the Seismic Behaviour of Building Structures", Engineering Structures, 

16(2) , 129-144. 

(35] OASYS DYNA3D, version 5.1 (1992), Oasys Limited, 13 Fitzroy Street, 

London, W1P 6BQ. 

[36] PATRAN User Mannual, Release 2.3, PDA Engineering, PATRAN Division, 

2975 Redhill Avenue, Costa Mesa, California 92626. 

References 250 



APPENDIX A 

DIRECT INTEGRATION METHOD FOR SDOF SYSTEM 

The general equation of motion for the SDOF system is as below 

mü+cti+ku=-m6g (1) 

Rearranging this equation will gives : 
6+2w ti + w2 U=-ß üg (2) 

where ß is the participation factor, and equal to 1 for SDOF system and equal to 
L. / m1* for MDOF system. 

Assumed the variation of the ground motion is linear over a small time step, as 
shown in Figure 1 below: 

GROUND 
MOTION 

� 

ug2 
R 

I 
ugl 

TIME t1 t2 t3 t4 

dt T 
100 

Figure 1: Idealized ground acceleration. 

where R is the rate of change of the ground acceleration. 

R= u82 - ügi 
t2 - tl 

_ 
U52 - U51 

dt 

Re-arrange Equation (3) : 

(3) 
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Ug2 = üel + li dt 

Substituting Equation (4) into Equation (2) 

(4) 

6 +2 Ci +W2U=-ß(ügt+Rdt) (5) 

The solution for the above second order of differential equation (5), are consists of 
Complementary Function (C. F) and the Particular Integral (P. I). i. e The general 
solution = C. F + P. I 

a) Complementary Function 

The Complementary Function is the general solution of the Left hand side of 
'Equation (5). These are done by letting it equal to zero. 

ü+2ýwü+w2u=0 (6) 

And assumed the auxiliary equation in the form of : 

u =Ae°t 
ü =Aests 

(7) 

=Ae8ts2 

Substituting Equation (7) into Equation (6), 

Aelt[s2+2ý ws+w2] =p 
(8) 

Since A ee` can not equal to zero , then the only solution is when [] equal to zero. 

[s2+2 0 s+(a2]=0 

s -29 wf (2Z w)2-4(1)(w2) = 2(1) 

Zwt (2 0)2(42 - 1) (9) 
2 

42) L2 

=-0± Wdi 

where wd is the damped natural frequency and is equal to i(1- 2) and the 

complex root , i2 = -1. 

Since the roots of the auxiliary equation are two complex roots, thus the general 
equation for this Complementary Function is : 

u= e'E"d`[Clsin wddt+C2coswddt] 
(10) 

where Cl and C2 are constants. 
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b) Particular Integral 

The Particular Integral is depends on the function on the Right hand side of 
Equation (5). 

-ßüg1-PRdt 
(11) 

The general equation for above equation which consists of a constant - ßü., and 
- ßR varies with time, t are in the form : 

u=Idt+µ (12) 

Hence their derivatives are : 

ý_x (13) 
6 =0 

Substitute into Equation (5) gives: 

0+1(2Z ca )+(1dt+µ)w2=-ßüg1 - ßRdt (14) 

Comparing and equate both dt and a constant term together: 

( i) dt term : 

CO) 2R 
(15) 

w2 

(ii) constant term, and substitute value of ?.: 

A(2Zca )+w2µ=-ßüg1 

p=1 -ßüil-x(24ca )1 
w2 

üal_( ßR)(2fw) 
(16) 

µ-ß 
w2 W2 w2 

µ=-ß B2 +2 

The general equation of Particular Integral is 

u=-ß 
Rdt 

_ß +ß 
2R (17) 

GJ2 WZ Ws 
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c) General Solution 

General solution of Equation (5) will be in the form of : C. F + P. I. 

u=e-EW[ Cl sin wd dt + C2 cos wd dt ] 
Rdt_ßl+p (2E)R (18) 

(j2 w2 wg 

This represent the displacement's equation, and the velocity's equation is the 
derivatives of u: 

ü=e-{ "dt cad [Cl cos cad dt - C2 sin wd dt ] 

-w e' '' dl [ Cl sin wd dt + C2 COS od dt 

d) Calculation of constants Cl and C2 

To calculate the values of constants C1 and C2, it is important to know the initial 
conditions say at the beginning of the time step i. e at time t1 (refer to Figure 1). 
The displacement and the velocity at time t1 are : 

att=tl, dt=0 
U= ui (20) 
Ll = ill 

Substituting these initial conditions into Equations (18 - 19) give 

R) 
u1=C2-ß 

uel 
+ß 

(2R 
w3 (21) 

C2=ui+0 u9Z (2ý3R) 

Also 

tit=wdCl C2-ß R 
w2 (22) 

.. Cl =1 (ü1+4wC2+ß R) 
wd w2 

Substituting Equation (21) into Equation (22) : 
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Cl = [ü1+ w(u1+P - P 2R)+ P] 
a 02 w3 W2 

=1 [ 1+Zwu1+ P 
ÜArl 

-EP 
29R +P R] (23) 

wd w w2 w2 

_ [ ü1 + (J ul +P1 _ 
(2 Z2 .. PR] 

d 0 02 

The general equation of displacement at the beginning of time step is given by 
direct substitution of C1 (Equation 23) and C2 (Equation 21) into Equation (18): 

ul = e- EW [ül +t caul + tß uw' 
- 

(2 ýz 
1)ßR] sin wadi 

a 
+ e- e (oac [ ul +p 

Ws2 
-a(2 

w3R) ] cos wa dt (24) 

_ß 
Rdt_ß u8 

+ß 
(2ER 

w2 W2 w3 

The general equation of velocity at the beginning of time step is given by direct 

substitution of C1 (Equation 23) and C2 (Equation 21) into Equation (19): 

ül =e- cad 
1[ 

iii +w ui +ßI; gl 
Wd w 

_ 
(2 Z2-1) 

pR]COS wddt ... 
w2 

-e-Eý�uwd[u1+ß w2 
-ß 

(2G)3R) 
sin wddt 

-9ca e'9�ac 
1 [mal +9wul+Zß 

ugi (25) 

wd w 

- 
X242-1ý ßR1sinwddt 

... 
w2 

_. w e- E ý' [ ul +ß2-ß 
(2 w3R) ] cos lid dt 

R 

The equation of acceleration is given by rearranged of Equation (6) 

6 =-2ECa6-C02u 
(26) 
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e) At the end of time step 

The boundary conditions for displacement and velocity at the end of time step are 
at t= t2 , dt = t2 - t1 (27) dü=Ug2-UBr 

Substituting these values into Equation (24), i. e the general equation for 
displacement where ul becomes u2 : 

u2 =e- E"dt 1 [mal +ý 0ul +ß uwl 
- 

(2ý22 1) PR]snwddt 
dW 

+e'o dc [ ul +p2-p 
(2 w3R) ] cos cad dt (28) 

_ß 
Rdt_ß uB 

+ß 
(2R 

(j2 02 (L)3 

The equation of velocity at the end of time step is given by Equation (25) where 
the term iil becomes ü 2. 

ü2 
=e 

dt wd 
1[ 61 +w ul +ýß 

uI 

wd w 

... -ý2 
&2-1 >PRI 

cos wd dt 

w2 
- e-f"dtwdIUl+ 

w g2 -ß 
ý2w3Rsinc. 

)ddt 

-ewe -eW de 1[ mal +ýw ul + air (29) 
wa co 

(2 &2-1)ßR ] sin 6)d dt 
02 

-ewe-ui+ß 
w21 

-ß 
(2ý3R)]coswddt 

R 

These can be further simplified by rearrange above equation into two main parts 
which consists of sin cod dt and cos wd dt . 

(i) the cos co dt coefficients 
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u2 =e d' wd 
1[ ul +ýw ul +Eß 

qg, 

wa co) 
(2 E2-1) pRICOS wddt 

wz 

- (ae-d=[ui+ß -ß 
(2ý3R)]COB(I)ddt 

(a 2 (30) 

=e'E' [ü1+ wu1+ ß- (2&2-1)ßR 
w w2 

R)]COS 
wddt - GJul- wß 

SBZ 
+ß 

(2 

6)3 

= e' E ý' dt [ tul +ßR] cos wd dt 

(ii) the sin co, dt coefficients 

2e-acwd[ul+ß -ß 
2&Rsinwddt 

ww 

-&we'c1[i+&W ul +&ß 
u81 

Wd w 

- 
(2ý2-1) 1R]sin wddt (31) 

w2 

- e- eide 1[wdul+w2ß 

- wäß 
ý2 R) 

Wd GJ2 GJ3 

+ ýwül + &2w2u1 + &2wß w(2E2-1)PR]sinwddt 
CO) W2 

Further assumptions are made to simplified above equation where for a light 
damped system, the damping coefficient, 4 lies between 0.01 54S0.1 

wd=CO f(1-42) 
If 4=0.01,42 = 0.001 then cod = 0.99995 co 
If 4=0.1 , 

42 = 0.01 then wd = 0.99499 o 

For structural systems, we may assumed : 

20 wd (32) 

Thus Equation (31) becomes : 
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u2=-e-9adc [wäul+wäß 
w82 

-wdp 
(2 

3=1 
d 

+ Zwül + Z2w2u1 + 42wß 
ugl 

- Zw 
(2g2-1) 

pR]sinwddt 

w wz 

e dt 1[ 
w2 ui +pü 

wd el (33) 

-2ER +til 
w 

e- E vº dt 1[ 
w2 ui 

wd 

=e-EW& 
1[-weu 

i wd 

(iii) the constant term 

+0+0+-13 
R] 

sin cal dt 
CL) 

+ßR ü81 + wtil --PR]sinwddt 
w 

ügl w U1 + sin cad dt 
CA) 

This is referred to -ßR/ 02 from Equation (29) 

(iv) the final velocity's equation at the end of time step 

Collecting all the terms in Equation (30) and Equation (33) plus the constant term 

-ßR/w2, will give the equation of velocity at the end of time step, 

zi2 =e-E(. )ac[61+ß 
AI 

coswddt+e'1 
1 [-w2u1 

a 

ß ügl 
-Ew tit +] sin cad dt (34) 

w 

ßR 02 
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APPENDIX B 

DETERMINATION OF ui, udi, up AND kAn 

The basic analysis is by using the differential equations of the deflection curve for 
the statically indeterminate beams as shown below. 

u 

M3 Sign vnuxw 

0 
M2 

u2 

L 
.Ix 

F3 

Assumed the flexural rigidity of the beam is EI and for the small angle of rotation 
and the slope is equal to 

EId2 u= Mx 
dx2 

where 

(1) 

Mx=Fax-M3 
(2) 

= 
(M3 +M2) 

x -Mg L 

Substituting Equation (2) into (1) and two successive integrations give the slope 
du/dx and deflection, u: 

EI d2u 
-(M3 

+ M2) 
x-M L3 dx2 

EI du 
=(M3 

+ Mai 
x2 _ M3 X+A (3) 

dx 2L 
M2)x3- 3x2+Ax+B EIu=(M36L 2 

There are four unknown quantities in these equations (M3 , M2, A and B) and four 
boundary conditions: 
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at x=0 
dz 

=0 A =0 

at x=L 
du 

=0 M3=M2 
dx 

at x=0 u=u3 :. B=EIu3 

at x =L u =u2 . EIu2 =2 
sý 3 M2L2 

+EIu3 
(4) 

M3 L2 
EI(0 -u2) 

M3 = 
6EI (u3 -u2) L2 

To find the slope an 

El du 
dx 
du 
dx 

d deflection at say x=a : 

=1i2I (u3u2 2 
2L 

)6EI (u3-u2)a 
(5) 

=6[(L)2-(L)](u3-u2) 

Since (L=a+b) this equation can be further modify as 

du 62 
-) dx L[L2 - L]( u3 u2 

[a2-aLu3-u2) (6) 6 
13 

Gab (u3 -u2) 

and 
2 

EI u= 
12 EI (u3 - u2) a3 - 

6EI (u3 - u2) a= EIu3 
L2 6L L2 2 (7) 

u=u3[1 -3(a)2+2(L)3]+u2[3(G)2-2(L)3] 

If we let 

kA=[3(L)2-2(a)3] 

= a2 [3b+a] whereL=(a+b) 
L 

Thus the equation of deflection u can be expressed in term of kAB as: 

u=u3[1-kAB ]+u2[k,, B 1 (9) 

If u equal to ui , thus ui = u3 [1-kA] + u2 [ kABj and if u equal to udi, by analogy 
to Equation (9), the udi = ud3 [1-k1 + ud2 [ kam). 
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A beam with a fixed ends is loaded by a force P acting at the position shown in 
figure below: 

u 

fp 
M3 M2 

Sign Cunvenrw 

L 

ab 

xt 
F3 F2 

Assumed the flexural rigidity of the beam is EI and for the small angle of rotation 
and the slope is equal to Equation (1) 

EI d2u 
= Mx 

dx2 

where 

Mx=Fax-M3-P[x-a] (10) 

The reactions at the supports of a beam and their fixed end moments are given by: 

Pb M3 + M2 
F3 =L+L 

(11) 
Pa M3 + M2 

F2 =LL 

Substituting equation (11) into (10) and two successive integrations give the slope 
du/dx and deflection u: 

EI d2u 
-Pbx + 

(M3 + M2) xMP [x - a] 
dx2 LLg 

EI Au- 
=Pbx2 + 

(M3 + M2) 
x2 - M3 X-P 

[x - a]2 +A (12) 
dx 2L 2L 2 

EIu= Pbx3 
+ 

(Ms +M2) 
x3 _ 

Ma 
x2 _ 

P[x -a]3 + Ax +B 
6L 6L 26 

The boundary conditions are: 
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at x=0 
du 

=0 dx 
at x=0 u=0 
at x =L 

du 
=0 dx 

at x=L u=0 

M2Pba2 
L2 

Pab2 
. M3= 

L2 

.. A =0 

. B=O 

:. M3=M2+Pb-Pk 

M 
M2+Pbpbs 

322 2L2 

At position of load, (x =a) the slope , du/dx : 

EI du 
_ 

Pba2 
+ (Pab2 - 

Pba2) 92 - 
Pab2 

a dx 2L L2 L2 2L L2 
EI du 

=Pab [ alb - ab2] dx 2L3 
[ a2b - ab2] 

ý 
2L3 dx E 

And the deflection, u: 

EIu= Pba3 Pab2 
- 

Pba2 as 
_ 

Pab2 a2 
6L L2 L2 6L L2 2 

EIu=-Pb3a 3 

3L3 

u 
Pb3a3 

E 13L3 

(13) 

(14) 

(15) 

In this study, the displacement at the contact load is denoted as up, that is 

up 
Pb3a3 
E13L3 

(1G) 

Appendix B A-12 



APPENDIX C 

FORTRAN PROGRAMS FOR CHAPTER 3 

c MDOF1. FOR 
c CHAPTER 3: UNDAMPED FREE VIBRATION 
ca=0 (aligned floor case) 
c 
c All units are in kips, inch and convert to N, m at the end of programme 
c matrix an & ac are normalised mode shapes for no contact & contact 
c matrix ant & act are tranposed of an & ac 
c matrix b is a mass matrix 
c matrix cn & cc are the initial displacements & velocities 
C ......... ______, __... _................. _ M_____.... __... _................ _................. _.............. _.. 

dimension ul(20000), vl(20000), u2(20000), v2(20000), u3(20000), 
&v3(20000), a1(3), a2(3), a3(3), b l (3), b2(3), b3(3), b(3,3) 
dimension anl(3), bnl(3) 
dimension an(3,3), ant(3,3), cn(3,2), antb(3,3), antbcn(3,2) 
dimension ac(3,3), act(3,3), cc(3,2), actb(3,3), actbcc(3,2) 
dimension cm(3,2) 
open(6, file=' mdof 1. out', statu s='unformatted' ) 

c 
data an /0.74265,0.48164,0.22417, -0.63577,0.38566,0.43168, 

& 0.21037, -0.53475,0.51323/ 
data ac /0.0076419,0.63633,0.44303, -0.0063228, -0.51155, 

& 0.55111,0.99995, -0.0080976,0.000098942/ 
c 

data ant /0.74265, -0.63577,0.21037,0.48164,0.38566, 
& -0.53475,0.22417,0.43168,0.51323/ 
data act /0.0076419, -0.0063228,0.99995,0.63633, -0.51155, 

& -0.0080976,0.44303,0.55111,0.000098942/ 
c 

data b /1.0,0.0,0.0,0.0,1.5,0.0,0.0,0.0,2.0/ 
c 

U-0.0 
kn=2010 
pi=3.141592654 
cn(1,1)=-1.0000 
cn(2,1)=0.505106 
cn(3,1)-0.1440976 
cn(1,2)=0.0 
cn(2,2)=0.0 
cn(3,2)=0.0 
goto 7 

5 tt=tt-dt 
kn=6800 
cn(1,1)=a1(1) 
cn(2,1)=a1(2) 
cn(3,1 )=al (3) 
cn(I, 2)=bl(1) 
cn(2,2)=b1(2) 
cn(3,2)=b1(3) 
goto 7 

c 
c form a matrix ant*b(3,3) 
C 

7 do 10 j=1,3 
do 10 i=1,3 

antb(i j)ß. 0 
do 10 k=1,3 

10 antb(i j)=antb(i j)+ant(i, k)*b(kJ) 

c 
c forma matrix ant*b*cn(3,2) 
c 

do 20 j=1,2 
do 20 i=1,3 

antbcn(ij) 0.0 
do 20 k=1,3 
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20 antbcn(ij)=antbcn(ij)+antb(i, k)*cn(kj) 
c 
c form checking matrix cm - an*antbcn 

do 25j=1,2 
do 25 i=t, 3 
cm(i j)=0.0 
do 25 k=1,3 

25 cm(i j)=cm(i j)+an(i, k) antbcn(k j) 
c 
c print the final matrix antbcn(3,2) 
C -- °-----_ -- ------.,..... __ 

print", 'normalised disp vel checking init. disp vel' 
do 30 i=1,3 
write(6,40)(antbcn(i j) j=1,2), (cm(i j)J=1,2) 

40 format (2(5x, f9.5,3x, f9.5,5x)) 
30 continue 

wnl=14.522 
wn2=31.048 
wn3=46.099 
ul(1)=antbcn(l, l) 
u2(1)=antbcn(2,1) 
u3(1)=antbcn(3,1) 
vl(l)=antbcn(1,2) 
v2(1)=antbcn(2,2) 
v3(1)=antbcn(3,2) 
dt=. 0001 
odtl=(wn l *dt) 
odt2=(wn2*dt) 
odt3=(wn3*dt) 
print*; tt utop umid ubott vtop vmid 

$ vbott ui vi' 
do 100 n=l, kn 
write tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 
aal=(vl(n)/wnl)*sin(odtl) 
bbl=ul(n)*cos(odtl) 
ccl=vl(n)*cos(odtl) 
ddl=wnl*ul(n)*sin(odtl) 
aa2=(v2(n)/wn2)*si n(odt2) 
bb2=u2(n)*cos(odt2) 
cc2=v2(n)*cos(odt2) 
dd2=wn2*u2(n)*sin(odt2) 
aa3=(v3(n)/wn3)*sin(odt3) 
bb3=u3(n)*cos(odt3) 
cc3=v3(n)*cos(odt3) 
dd3=wn3*u3(n)*sin(odt3) 

u(n+l)=((v(n)/wn)*sin(odt))+(u(n)*cos(odt)) 
v(n+l)=(v(n)* cos(odt))-(wn*u(n)*sin(odt)) 

ul(n+l)=aal+bbl 
vl(n+1)=ccl-ddl 
u2(n+l)=aa2+bb2 
v2(n+l)=cc2-dd2 
u3(n+l)=aa3+bb3 
v3(n+l)=cc3-dd3 

now calculate the total mode displacement & velocity 
do 5001=1,3 
bl (1)=anO, 1)*v1(n) 
b2(l)=an(l, 2)*v2(n) 
b3(l)=an(l, 3)*v3(n) 
al(1)=an(1,1)*ul(n) 
a2(l)=an(1,2)*u2(n) 
a3(I)=an(1,3)*u3(n) 

500 continue 
do 600 m=1,3 
al(m)=al(m)+a2(m)+a3(m) 

600 bI (m)=b I (m)+b2(m)+b3(m) 

c 
c convert from inches to m 
c 

do 650 m=1,3 
anl(m)=al(m)"0.0254 

650 bn1(m) bl(m)*0.0254 
ui=anl(1) 
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vi=bnl(1) 
write (6,400)tt, anl(1), anl(2), and(3), bnl(1), bnl(2), bnl(3), ui, vi 

c write (6,400)tt, ui 
400 format(9(lx, f9.5)) 

c 400 formut(2(lx, f9.5)) 
tt=tt+dt 

c 
c arrtrrºrrºººarrºººrrºººarrrººr«ttttºatrrrºaa 

if (tt. ge. 1.0) goto 710 
c 
c aººººººººrrººaaaaaaaarrsººrrrrartrºrrarrrttf 

if (ui. ge. 0.0127) then 
goto 800 
else 
goto 100 
endif 

e ººrºººrrrºrrºflitºittrºººººarºrarttrºrrrrrrº 

C 

100 continue 
c 
c AAAMAMMAMAAMAAAAAAMAM/1MMAAAAA AAAMAMAMAMMIAMMAAMMM 

800 cc(1,1)=al(l) 

cc(2,1)=al(2) 
cc(3,1)=al(3) 
cc(1,2)=bl(1) 
cc(2,2)=b 1 (2) 
cc(3,2)=bl(3) 

c 
c forma matrix actºb(3,3) 
C ... _. r_.. _...... _ý_.......... » 

do lI j=1,3 

do lI i=1,3 

actb(i, j)=0.0 
do 11 k=1,3 

11 actb(i j)=actb(i j)+act(i, k)rb(k, j) 

c 
c forma matrix act*b*cc(3,2) 

do 21 j=1,2 
do 21 i=1,3 
actbcc(ij)=0.0 
do 21 k=1,3 

21 actbcc(i, j)=actbcc(ij)+actb(i, k)rcc(kj) 

c form checking matrix cm = ac*actbcc 
c .... ___..... _ ý__ .. _ _ýý .. _ 

do 26 j=1,2 
do 26 i=1,3 
cm(i j)ß. 0 
do 26 k=1,3 

26 cm(i j)=cm(i j)+ac(i, k)ºactbcc(k j) 

c 
c print the final matrix actbcc(3,2) 
c 

print*, 'normalised disp vel checking init. disp vel' 
do 31 i=1,3 

write(6,41)(actbcc(i j), j=1,2), (cm(i, j) j=1.2) 
41 format (2(5x, f9.5,3x, f9.5,5x)) 
31 continue 

c 
tt=tt-dt 
kn=4800 
pi=3.141592654 
wcl=25.263 
wc2=45.353 
wc3=224.96 
ul(1)=actbcc(1,1) 
u2(1)=actbcc(2,1) 
u3(1)=actbcc(3,1) 
v1(1)=actbcc(1,2) 
v2(1)=actbcc(2,2) 
v3(1)=actbcc(3,2) 
dt=. 00001 

odtl=(wcl'dt) 
odt2=(wc2'dt) 
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0d 3=(wc3*dt) 

c calculate the value of "static preload" uls, u2s & u3s 
c. _...... ý_.... . _.. _-_ _-__.... _ý_... _...... 

u1 sß. 299344659 
u2s=-0.076848857 
u3s=0.49397809 

print*, ' ------_------_ contact ---__-_------ 
c write (6,30)tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 

do 110 n=l, kn 
aal =(v I (n)/wcl)*sin(odtl) 
bbl=(ul(n)-uls)*cos(odtl) 
ccl=vl(n)*cos(odtl) 
dd 1=wc 1 *(u 1(n)-ul s)*sin(odtl) 
aa2=(v2(n)/wc2)*sin(odt2) 
bb2=(u2(n)-u2s)*cos(odt2) 
cc2=v2(n)*cos(odt2) 
dd2=wc2*(u2(n)-u2s)*sin(odt2) 
aa3=(v3(n)/wc3)*sin(odt3) 
bb3=(u3(n)-u3s)*cos(odt3) 
cc3=v3(n)*cos(odt3) 
dd3=wc3*(u3(n)-u3s)*sin(odt3) 

c u(n+1)=((v(n)/wn)*sin(odt))+(u(n)*cos(odt)) 
c v(n+1)=(v(n)*cos(odt)) (wn*u(n)*sin(odt)) 

ul(n+l)=aal+bbl+uls 
vl(n+1)=ccl-ddl 
u2(n+l)=aa2+bb2+u2s 
v2(n+1)=cc2-dd2 
u3(n+1)=aa3+bb3+u3s 
v3(n+l)=cc3-dd3 

c now calculate the total mode displacement 
do 510 1=1,3 
bi (1)=ac(1,1)*v l(n) 
b2(l)=äc(1,2)*v2(n) 
b3(I)=ac(l, 3)*v3(n) 
al (l)�ac(1,1)*u l (n) 
a2(1)=äc(1,2)*u2(n) 
a3(l)=ac(1,3)*u3(n) 

510 continue 
do 610 m=1,3 
al(m)=al(m)+a2(m)+a3(m) 

610 bI(m)=b1(m)+b2(m)+b3(m) 

c convert from inches to m 
c ... _- -- -- --------- 

do 615 m=1,3 
anl(m)=al(m)*0.0254 

615 bnl(m)=b1(m)*0.0254 
ui=anl(l) 
vi=bnl(1) 

c calculate contact force, P (kips), P2 (N) 
c ... ý___. _. _ .. _... __.... ..... ... 

P=50000.0*(a1(1 )-0.5) 
P2=P*4450.0 
write (6,410)tt, anl(1), anl(2), anl(3), bnt(1), bnl(2), bnl(3), ui, vi, P2 
tt=tt+dt 

c 
srsssttttssrsss++srttssrsrrtrsssssrtrssssss+s 

if (tt. ge. 1.0) goto 710 

rºaººsaretrººsºsssrssssssstrrsrsstrstrºsºtºtf 
if (ui. le. 0.0127) then 

goto 5 
else 
goto 110 
endif 

sººsºssrsrrºsºssssrssºsrssºrattºssatsssºsssst" 

C 

110 continue 
410 format(9(l x, f9.5), l x, fl 5.5) 
710 stop 

end 
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c MDOF2. FOR 
c CHAPTER 3: UNDAMPED FREE VIBRATION 
ca= L/4 (unaligned floor case) 

c Similar to MDOFI. FOR , except the following parameters are changed : 
C ---------------------------------------------------- __--___ 

open(6, file=' mdof2. out', status='unformatted' ) 

data an /0.74265,0.48164,0.22417, -0.63577,0.38566,0.43168, 
& 0.21037, -0.53475,0.51323/ 
data ac /-0.10022,0.65519,0.41596,0.089021, -0.47490, 

& 0.57174,0.99097,0.10892, -0.0092938/ 
C 

data ant /0.74265, -0.63577,0.21037,0.48164,0.38566, 
& -0.53475,0.22417,0.43168,0.51323/ 
data act /-0.10022,0.089021,0.99097,0.65519, -0.47490, 

& 0.10892,0.41596,0.57174, -0.0092938/ 
c 

wnl=14.522 
wn2=31.048 
wn3=46.099 

c 
ui=((27.0*an 1(1))+(5.0*an 1(2)))/32.0 
vi=((27.0*bn1(1))+(5.0*bn 1(2)))/32.0 

800 usl=al(1) 
us2=a 1(2) 

wc1=23.557 
wc2=44.703 
wc3=92.368 

C 

c calculate the value of "static preload" uls, u2s & u3s 

as1=ac(1,1)*((7800.0*us1)+(1800.0*us2)) 
bs 1=ac(2,1)*((1800.0*us 1)-(22.22*us2)) 
ul s=(as l+bs 1)/(wc l* *2.0) 
as2=ac(1,2)*((7800.0*us1)+(1800.0*us2)) 
bs2=ac(2,2)*((1800.0*us 1)-(22.22*us2)) 
u2s=(as2+bs2)/(wc2* *2.0) 
as3=ac(1,3)*((7800.0*us1)+(1800.0*us2)) 
bs3=ac(2,3) *((1800.0*us 1)-(22.22*us2)) 
u3s=(as3+bs3)/(wc3 * *2.0) 
write(6, *) 'uls=', uls, 'u2s=', u2s, 'u3s=', u3s 

C 

c calculate contact force, P (kips), P2 (N) 

ud3=al(1)-usl 
ud2=al(2)-us2 
P=11377.778*(27.0*ud3+5.0*ud2)/32.0 
P2=P*4450.0 
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c MDOF3. FOR 

c CHAPTER 3: UNDAMPED FREE VIBRATION 

ca= L/3 (unaligned floor case) 
c 
c Similar to MDOFI. FOR , except the following parameters are changed 
C ----------------------«---»~~-----«--------~--~---------------- 

open(6, file='mdof3. out', status='unformatted' ) 
c 

data an /0.74265,0.48164,0.22417, -0.63577,0.38566,0.43168, 
& 0.21037, -0.53475,0.51323/ 
data ac /-0.18687,0.63957,0.41923,0.22130, -0.45269, 

& 0.56729,0.95714,0.22953, -0.049312/ 
c 

data ant /0.74265, -0.63577,0.21037,0.48164,0.38566, 
& -0.53475,0.22417,0.43168,0.51323/ 
data act /-0.18687,0.22130,0.95714,0.63957, -0.45269, 

& 0.22953,0.41923,0.56729, -0.049312/ 

wn 1=14.522 
wn2=31.048 
wn3=46.099 

c 
ui=((20.0*an 1(1))+(7.0*an 1(2)))/27.0 

vi=((20.0*bn 1(1))+(7.0*bn 1(2)))/27.0 

800 usl=a1(1) 
us2=a 1(2) 

C 
we 1=24.179 
wc2=44.484 
wc3=65.520 

c 
c calculate the value of "static preload" uls, u2s & u3s 
c ---------. r. r... r. r__------- r----------------. r. r. r. r. r-... r. r...... - 

asl=ac(1,1)*((3450.0*usl)+(1612.5*us2)) 
bsl=ac(2,1)*((1612.5*usl)+(159.375*us2)) 
uls=(as1+bs1)/(wcI * *2.0) 
as2=ac(1,2)*((3450.0*us1)+(1612.0*us2)) 
bs2=ac(2,2)*((1612.5*us1)+(159.375*us2)) 
u2s=(as2+bs2)/(wc2* *2.0) 
as3=ac(1,3)*((3450.0*us1)+(1612.5*us2)) 
bs3=ac(2,3)*((1612.5*us 1)+(159.375*us2)) 

u3s=(as3+bs3)/(wc3 * *2.0) 

write(6, *) 'uls=', uls, 'u2s=', u2s, 'u3s=', u3s 
c 
c calculate contact force, P (kips), P2 (N) 

c --------. -----. r----. r. r... r------_- . ---__-- 
ud3=al(l)-usl 
ud2=al (2)-us2 
P=6834.375 *(20.0*ud3+7.0*ud2)/27.0 
P2=P*4450.0 
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c MDOF4. FOR 
c CHAPTER 3: UNDAMPED FREE VIBRATION 
ca= L/2 (unaligned floor case) 
C 

c Similar to MDOFI. FOR , except the following parameters are changed : 
c --------------------------------------- __-_-____ý_____.. _ 

open(6, file='mdof4. out', status='unformatted' ) 
C 

data an /0.74265,0.48164,0.22417, -0.63577,0.38566,0.43168, 
& 0.21037, -0.53475,0.51323/ 
data ac /0.55099, -0.53326, -0.36733,0.68599, -0.12760e-15, 

& 0.51450,0.47520,0.61831, -0.31680/ 
C 

C 

data ant /0.74265, -0.63577,0.21037,0.48164,0.38566, 
& -0.53475,0.22417,0.43168,0.51323/ 
data act /0.55099,0.68599,0.47520, -0.53326, -0.12760e-15, 

& 0.61831, -0.36733,0.51450, -0.31680/ 

ui=(an 1(1)+an 1(2))/2.0 
vi=(bn 1(1)+bn 1(2))/2.0 

C 

800 usl=al(1) 
us2=al(2) 

c 
we 1=25.079 
wc2=38.730 
wc3=51.682 

C 

c calculate the value of "static preload" uls, u2s & u3s 
c -__-___--______________________-------_--____-__-_--_ 

as 1=ac(1,1)*((900.0*us 1)+(1500.0*us2)) 
bs 1=ac(2,1)*((1500.0*us 1)+(900.0*us2)) 
ul s=(as 1+bs 1)/(wc l**2.0) 
as2=ac(1,2)*((900.0*us1)+(1500.0*us2)) 
bs2=ac(2,2)*((1500.0*usl)+(900.0*us2)) 
u2s=(as2+bs2)/(wc2* *2.0) 
as3=ac(1,3)*((900.0*usl)+(1500.0*us2)) 
bs3=ac(2,3)*((1500.0*us 1)+(900.0*us2)) 
u3 s=(as3+bs3)/(wc3 * *2.0) 
write(6, *) 'uls=', uls, 'u2s=', u2s, 'u3s=', u3s 

C 

c calculate contact force, P (kips), P2 (N) 

c ---------------------------------------- 
ud3=al(l)-usl 
ud2=a 1(2)-us2 
P=4800.0*(ud3+ud2)/2.0 
P2=P*4450.0 
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C MDOF5. FOR 
c CHAPTER 3: UNDAMPED FREE VIBRATION 
ca= 3L/4 (unaligned floor case) 
C 
c Similar to MDOFI. FOR , except the following parameters are changed : 
C ----------------------- ~~~---------------- 

open(6, file=' mdof5. out', status='unformatted' ) 

data an /0.74265,0.48164,0.22417, -0.63577,0.38566,0.43168, 
& 0.21037, -0.53475,0.51323/ 
data ac /0.97892, -. 14094, -0.077226,0.12960,0.091126, 

& 0.69669,0.15788,0.79906, -0.093072/ 
C 

data ant /0.74265, -0.63577,0.21037,0.48164,0.38566, 
& -0.53475,0.22417,0.43168,0.51323/ 
data act /0.97892,0.12960,0.15788, -. 14094,0.091126, 

& 0.79906, -0.077226,0.69669, -0.093072/ 
c 

wn1=14.522 
wn2=31.048 
wn3--46.099 

C 

ui=((5.0*an 1(1))+(27.0*an 1(2)))/32.0 
vi=((5.0*bn 1(1))+(27.0*bn 1(2)))/32.0 

c 
800 usl=al(1) 

us2=a 1(2) 

c 
wc1=20.125 
wc2=37.703 
wc3=81.555 

C 

c calculate the value of "static preload" uls, u2s & u3s 
C ----------------------- -------------------------- 

as 1=ac(1,1)*((-22.222*us1)+(1800.0*us2)) 
bs 1=ac(2,1)*((1800.0*us 1)+(7800.0*us2)) 
u1 s=(asl +bs 1)/(wc 1* *2.0) 
as2=ac(1,2)*((-22.222*us1)+(1800.0*us2)) 
bs2=ac(2,2)*((1800.0*us 1)+(7800.0*us2)) 
u2s=(as2+bs2)/(wc2* *2.0) 
as3=ac(1,3)*((-22.222*us1)+(1800.0*us2)) 
bs3=ac(2,3)*((1800.0*us1)+(7800.0*us2)) 
u3s=(as3+bs3)/(wc3 **2.0) 
write(6, *) 'uls=', uls, 'u2s=', u2s, 'u3s= , u3s 

C 

c calculate contact force, P (kips), P2 (N) 

ud3=al(1)-usl 
ud2=al(2)-us2 
P=11377.778 *(5.0*ud3+27.0*ud2)/32.0 
P2=P*4450.0 
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c MDOF6. FOR 
c CHAPTER 3: UNDAMPED FREE VIBRATION 
ca=L (aligned floor case) 
c 
c Similar to MDOFI. FOR , except the following parameters are changed : 
C _-_-------------------------------------------- -----_-__-___-_---.. __ 

open(6, file=' mdof6. out', status='unformatted' ) 
C 

data an /0.74265,0.48164,0.22417, -0.63577,0.38566,0.43168, 
& 0.21037, -0.53475,0.51323/ 
data ac /0.99983,0.011970,0.0079168, -0.011500,0.016973, 

& 0.70691, -0.014423,0.81623, -0.014816/ 
c 

data ant /0.74265, -0.63577,0.21037,0.48164,0.38566, 
& -0.53475,0.22417,0.43168,0.51323/ 
data act /0.99983, -0.011500, -0.014423,0.01197,0.016973, 

& 0.81623,0.0079168,0.70691, -0.014816/ 
c 

wnl=14.522 
wn2=31.048 
wn3=46.099 

C 

ui=an1(2) 
vi=bnl(2) 

c 
wc1=24.348 
wc2=38.543 
wc3=185.89 

C 

c calculate the value of "static preload" uls, u2s & u3s 
C -------------- _------- __----------------- ____-----____ 

u1s=0.504786316 
u2s=0.285632479 
u3s=0.590528017 

C 
c calculate contact force, P (kips), P2 (N) 

c _--____-__-___--__-___--_-__---___-__-- 
P=50000.0*(al (2)-0.5) 
P2=P*4450.0 
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APPENDIX D 

FORTRAN PROGRAMS FOR CHAPTER 3 

c DAMI. FOR 
c CHAPTER 3: DAMPED FREE VIBRATION-SDOF SYSTEM 
ca=0 (aligned floor case) 
C 
c All units are in N, m and sec 
c Damping coefficient, xi = 0.0,0.5% and 2% 
c __~---------------------- .. ------------------------- ...... ________...... ----- 

dimension ul(800000), vl(800000) 
open(6, file='dam l . out', status='unformatted') 

C 
tt=0.0 
kn=80000 
pi=3.141592654 
u1(1)=-0.020574 
vi(1)=0.00 
i=1 
goto 7 

5 tt=tt-dt 
kn=80000 
i=n 
goto 7 

7 w=5.547 
C 
c enter value of xi 
C ------------------ 

xi=0.0 
dt=. 001 
odt=(w*dt) 
wd=w * sgrt(1.0-x i**2.0) 
wodt=(wd*dt) 
print*, ' tt utop vtop' 
do 100 n=i, kn 

c write tt, u 1(n), v 1(n), u2(n), v2(n), u3(n), v3(n) 
as l=exp(-xi *odt)*(v 1(n)+(xi*w*u 1(n)))/wd*sin(wodt) 
bbl=exp(-xi*odt)*u 1(n)*cos(wodt) 
cc l =exp(-xi*odt)*v 1(n)*cos(wodt) 
dd 1=exp(-xi*odt)*(w**2*u 1(n)+(xi*w*v 1(n)))/wd*sin(wodt) 

c u(n+l)=((v(n)/wn)*sin(odt))+(u(n)*cos(odt)) 
c v(n+l)=(v(n)*cos(odt))-(wn*u(n)*sin(odt)) 

ul(n+l)=aal+bbl 
vl(n+l)=ccl-ddl 

c ui=(ul(n))/2.0 
c vi=(v 1(n))/2.0 

write (6,400)tt, u I (n), v l (n) 
400 format(3(lx, f9.5)) 

tt=tt+dt 
C 

if (tt. ge. 4.0) goto 710 

if (u l (n). ge. 0.01) then 
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goto 800 
else 
goto 100 
endif 

c ******************************************** 
100 continue 

c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

800 ul(n)=ul(n) 
usl=ul(n) 

c 
tt=tt-dt 
kn=80000 
pi=3.141592654 
wn=5.547 
wc=36.23286 
xi=0.0*(wn/wc) 
dt=. 0001 
odt=(wc*dt) 
wd=we*sgrt(1.0-xi**2.0) 
wodt=(wd*dt) 

c 
c Calculate the value of "static preload" uls, u2s & u3s 
c ------------------------- ...... -.... __.... ____________________ 

u1 s=(8.76e9*0.01)/(6832677.165 *wc* *2) 
c write(6, *) 'ul(n)=', ul(n), 'usl=', usl, 'uls=', uls 
c 

print* , 
'-----__-_-____-_____-_contact___-_-__-____---_---____-- 

c 
c write (6,30)tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 

do 110 n=n, kn 
as l=exp(-xi*odt)*(v I (n)+(xi*wc*(u 1(n)-u 1 s)))/wd*sin(wodt) 
bb 1=exp(-xi*odt)*(u 1(n)-u 1 s)*cos(wodt) 
ccl=exp(-xi*odt)*vl(n)*cos(wodt) 
dd 1=exp(-xi*odt)*wc*((u 1(n)-u 1 s)+(xi*v 1(n)/wc))*sin(wodt) 

c u(n+l)=((v(n)/wn)*sin(odt))+(u(n)*cos(odt)) 
c v(n+l)=(v(n)*cos(odt))-(wn*u(n)*sin(odt)) 

ul(n+l)=aal+bbl+uls 
vl(n+l)=ccl-ddl 

c 
c calculate contact force, P2 (N) 
c __-____--__--_.. _.. _____.. ______ 

P2=8.76e9*(u 1(n)-0.01) 
write (6,4 10)tt, u l (n), v l (n), P2 
tt=tt+dt 

c 
c ********************************************* 

if (tt. ge. 4.0) goto 710 

c 
c ********************************************* 

if (ul(n). le. 0.01) then 
goto 5 
else 
goto 110 
endif 

c 
c ********************************************** 
C 

110 continue 
c 410 format(3(1x, f9.5), lx, fl5.5) 

710 stop 
end 
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c DAM2. FOR 
c CHAPTER 3: DAMPED FREE VIBRATION-MDOF SYSTEMS 
ca= L2 (unaligned floor case) 

c All units are in kips, inch and covert to N, m at the end of programme 
c matrix an & ac are normalised mode shapes for no contact & contact 
c matrix ant & act are tranposed of an & ac 
c matrix b is a mass matrix 
c matrix cn & cc are the initial displacements & velocities 
c Damping coefficient, xi = 0.0,0.5% and 2% 
C 

dimension ul(20000), vl(20000), u2(20000), v2(20000), u3(20000), 
&v3(20000), a1(3), a2(3), a3(3), bl(3), b2(3), b3(3), b(3,3) 
dimension anl(3), bnl(3) 
dimension an(3,3), ant(3,3), cn(3,2), antb(3,3), antbcn(3,2) 
dimension ac(3,3), act(3,3), cc(3,2), actb(3,3), actbcc(3,2) 
dimension cm(3,2) 
open(6, file='dam2. out', status='unformatted') 

C 

data an /0.74265,0.48164,0.22417, -0.63577,0.38566,0.43168, 
& 0.21037, -0.53475,0.51323/ 
data ac /0.55099, -0.53326, -0.36733,0.68599, -0.12760e-15, 

& 0.51450,0.47520,0.61831, -0.31680/ 
c 

data ant /0.74265, -0.63577,0.21037,0.48164,0.38566, 
& -0.53475,0.22417,0.43168,0.51323/ 
data act /0.55099,0.68599,0.47520, -0.53326, -0.12760e-15, 

& 0.61831, -0.36733,0.51450, -0.31680/ 
C 

data b /1.0,0.0,0.0,0.0,1.5,0.0,0.0,0.0,2.0/ 

c 
tt=0.0 
kn=2010 
pi=3.141592654 
cn(1,1)=-1.0000 
cn(2,1)=-0.505106 
cn(3,1)~0.1440976 
cn(1,2)=0.0 
cn(2,2) 0.0 
cn(3,2)=O. 0 

goto 7 

tt=tt-dt 
kn=6800 
cn(1,1)=al(1) 
cn(2,1)=al(2) 
cn(3,1)�al(3) 
cn(1,2)=bl(1) 
cn(2,2)=b 1 (2) 
cn(3,2)=bl(3) 
goto 7 

c forma matrix ant*b(3,3) 
C 

7 do 10j=1,3 
do 10 i=1,3 

antb(i j)O. 0 
do 10 k=1,3 

10 antb(i j)=antb(i j)+ant(i, k)*b(k j) 

c forma matrix ant*b*cn(3,2) 

do 20 j=1,2 
do 20 i=1,3 

antbcn(ij)=0.0 
do 20 k=1,3 

20 antbcn(ij)=antbcn(ij)+antb(i, k)'cn(kj) 

form checking matrix cm = an"antbcn 

do 25 j=1,2 
do 25 i=1,3 

cm(i j)=0.0 
do 25 k=1,3 
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25 cm(i j)=cm(i j)+an(i, k)"antbcn(k j) 

print the final matrix antbcn(3,2) 

print", 'normalised disp vel checking init. disp vel' 
do 30 i=1,3 
write(6,40Xantbcn(ii j) j=1,2), (cm(i j)J=1,2) 

40 format (2(5x, f9.5,3x, f9.5,5x)) 
30 continue 

enter value of xi 
C 

Xi=0.0 
c assumed wdi=wni*sgrt(1-xi**2.0)=wni 

wnl=14.522 

wn2=31.048 
wn3=46.099 
ul(1)=untbcn(1,1) 
u2(1)=antbcn(2,1) 
u3(1)=antbcn(3,1) 
vl(1)=untbcn(1,2) 
v2(1)=antbcn(2,2) 
v3(1)=antbcn(3,2) 
dt=. 0001 
odtl=(wnl*dt) 
odt2=(wn2*dt) 
odt3=(wn3*dt) 
print*, ' tt utop umid ubott vtop vmid 

$ vbott ui vi' 
do 100 n=l, kn 

c write tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 
ual=exp(-xi*odtl)*(v1(n)+(xi*wnl*ul(n)))/wnl*sin(odtl) 
bbl=exp(-xi*odtl)*u1(n)*cos(odtl) 
ccl=exp(-xi*odtl)*v1(n)*cos(odtl) 
ddl=exp(-xi*odtl)*(wnl**2*ul(n)+(xi*wnl*vl(n)))/wnl*sin(odtl) 

c 
aa2=exp(-xi*odt2)*(v2(n)+(xi*wn2*u2(n)))/wn2*sin(odt2) 
bbl=exp(-xi*odt2)*u2(n)*cos(odt2) 
cc2=exp(-xi*odt2)*v2(n)*cos(odt2) 
dd2=exp(-xi*odt2)*(wn2**2*u2(n)*(xi*wn2*v2(n)))/wn2*sin(odt2) 

C 

aa3-exp(-xi *odt3)*(v3(n)+(xi *wn3*u3(n)))/wn3*sin(odt3) 
bb3=exp(-xi*odt3)*u3(n)*cos(odt3) 
cc3=exp(-xi "odt3)*v3(n)"cos(odt3) 
dd3=exp(-xi*odt3)*(wn3"2*u3(n)+(xi*wn3*v3(n)))/wn3*sin((dt3) 

C 
ul(n+l)=aal+bbl 
vl(n+l)=ccl-ddl 
u2(n+l)=aa2+bb2 
v2(n+l)=cc2-dd2 
u3(n+l)=aa3+bb3 
v3(n+l)=cc3-dd3 

c now calculate the total mode displacement & velocity 
do 500 1=1,3 
bl (I)=an(1,1)'vl (n) 
b2(1)=an(1,2)'v2(n) 
b3(1)=an(1,3)'v3(n) 
al(l)=an(I, 1)*ul(n) 

a2(1)=an(1,2)*u2(n) 
a3(I)=an(1,3)'u3(n) 

500 continue 
do 600 m=1,3 
al(m)=al(m)+a2(m)+a3(m) 

600 bI (m)=b I (m)+b2(m)+b3(m) 

c convert from inches to m 

c 
do 650 m=1,3 
anl(m)=al(m)*0.0254 

650 bn l (m)=b I (m)*0.0254 

ui=(an 1(1)+an 1(2))! 2.0 

vi=(bnI(I)+bnI(2))/2.0 
write (6,400)tt, anl(1), anl(2), and(3), bnl(I), bnl(2), bnl(3), ui, vi 

c write (6,400)tt, ui 
400 format(9(lx, t9.5)) 
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c 400 format(2(lx, f9.5)) 
tt=tt+dt 

e sfºsºsssrrrsrrrrtrrrfº*sts*tssfsstsssºrrsssr 
if (tt ge. 1.0) goto 710 

ºrsrsrrrrºrrrrrrrsfsººsºsfººsººtr*rrsrrrrrr" C 
if (ui. ge. 0.0126) then 
goto 800 
else 
goto 100 
endif 

`. ºrtrit*fºffiitttliºtfttftf*ºfifi*ttftifiºtºº 

100 continue 

e nnnnnnnnnnnnnnnnnnnnnnnnn ýnnnAnnnnnnn 
800 cc(l, l)=al(l) 

cc(2,1)=al(2) 
cc(3, l)=al(3) 
cc(1,2)=bl(l) 
cc(2,2)=b1 (2) 
cc(3,2)=b1 (3) 
usl=al(1) 
us2=al(2) 

c forma matrix act*b(3,3) 
C_... _ý____ ....... .... 

do 11 j=1,3 
do 11 i=1,3 

actb(i, j)=O. 0 
do 11 k=1,3 

11 actb(i j)=actb(i j)+act(i, k)*b(k, j) 

c 
c form a matrix act*b*cc(3,2) 
c --- 

do 21 j=1,2 
do 21 i=1,3 
actbcc(i j)=0.0 
do 21 k=1,3 

21 actbcc(ij)=actbcc(ij)+actb(i, k)*cc(kj) 

c form checking matrix cm = ac*actbcc 
c __. ___.. ýýý_... ý.. _ýý ....... 

do 26 j=1,2 
do 26 i=1,3 
cm(i j)ß. 0 
do 26 k=1,3 

26 cm(i j)=cm(i j)+ac(i, k)*actbcc(k j) 

C 
c print the final matrix actbcc(3,2) 

e -.. ___.. _.. 

print*, 'normalised disp vel checking init. disp vel' 
do 31 i=1,3 
write(6,41)(actbcc(i j) j=1,2), (cm(i j) j=1,2) 

41 format (2(5x, f9.5,3x, f9.5,5x)) 
31 continue 

c 
tt=tt-dt 
kn=7000 
pi=3.141592654 

c assumed wdi=wci*sgrt(1-xi"2.0)=wci 
wc1=25.079 
wc2=38.730 
wc3=51.682 
xil=0.0'(wnl/wcl) 
xi2=0.0'(wn2/wc2) 
xi3=0.0'(wn3/wc3) 
ul(l)=actbcc(l, l) 

u2(1)=actbcc(2,1) 
u3(1)=actbcc(3,1) 
vl(1)=actbcc(1,2) 
v2(1)=actbcc(2,2) 
v3(1)=actbcc(3,2) 
dt=. 00001 

odtl=(wcl'dt) 
odt2=(wc2*dt) 
odt3=(wc3'dt) 
write(6, *) 'xil= , xil, 'xi2=', xi2, 'xi3=', xi3 

c Calculate the value of "static preload" uls, u2s & u3s 
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-.... _........ .. _.... __.. --. -..... _ _... __...... r.. _ 
asl=ac(l, l)*((900.0*usl)+(1500.0*us2)) 

bsI=ac(2,1)*((1500.0*us1)+(900.0 us2)) 
ul s=(asl+bsl)/(wcl **2.0) 
as2=ac(1,2)*((900.0*us1)+(1500.0*us2)) 
bs2=ac(2,2)*((1500.0*usl)+(900.0*us2)) 
u2s=(as2+bs2)/(wc2**2.0) 
as3=ac(1,3)*((900.0*usl)+(1500.0*us2)) 
bs3=ac(2,3)*((1500.0*usl)+(900.0*us2)) 
u3 s=(as3+bs3)/(wc3 * *2.0) 

c write(6, *) 'uls=', uls, 'u2s=', u2s, 'u3s=', u3s 
contact 

do 110 n=1, kn 
aal=exp(-xi I*odtl)*(vl(n)+(xiI*wcl*(ul(n)-uls)))/wc1*sin(odtl) 
bbl=exp(-xil*odtl)*(u1(n)-uls)*cos(odtl) 
ccl=exp(-xi 1*odtl)*vl(n)*cos(odtl) 
ddl=exp(-xil*odtl)*wcl*((ul(n)-uls)+(xil*vl(n)/wcl))*sin(odtl) 

c 
aal=exp(-xi2*odt2)*(v2(n)+(xi2*wc2*(u2(n)-u2s)))/wc2*sin(odt2) 
bb2=exp(-xi2*odt2)*(u2(n)-u2s)*cos(odt2) 
cc2=exp(-xi2*odt2)*v2(n)*cos(odt2) 
dd2=exp(-xi2*odt2)*wc2*((u2(n)-u2s)+(xi2*v2(n)/wc2))*sin(odt2) 

C 

aa3=exp(-xi 3*odt3)*(v3(n)+(xi3*wc3*(u3(n)-u3s)))/wc3*sin(odt3) 
bb 3=exp(- xi 3 *odt3) *(u 3 (n)-u3 s)* cos(odt3) 
cc3=exp(-xi 3 *odt3)* v3(n)*cos(odt3) 
dd3=exp(-xi3*odt3)*wc3*((u3(n)-u3s)+(xi3*v3(n)/wc3))*sin(odt3) 

c 
ul(n+l)=aal+bbl+uls 
vl(n+l)=ccl-ddl 
u2(n+l)=aa2+bb2+u2s 
v2(n+l)=cc2-dd2 
u3(n+l)=aa3+bb3+u3s 
v3(n+l)=cc3-dd3 

c now calculate the total mode displacement 
do 5101=1,3 
bl (l)=ac(1,1)*v l (n) 
b2(l)=ac(1,2)*v2(n) 
b3(l)=ac(l, 3)*v3(n) 
al(l)=ac(I, l)*ul(n) 
a2(l)=ac(1,2)*u2(n) 
a3(l)=ac(l, 3)*u3(n) 

510 continue 
do 610 m=1,3 
al(m)=al(m)+a2(m)+a3(m) 

610 bl(m)=bl(m)+b2(m)+b3(m) 
c convert from inches to m 
c _------------... 

do 615 m=1,3 
anl(m)=al(m)*0.0254 

615 bnl(m)=bl(m)*0.0254 

ui=(an l (l)+an l (2))/2.0 

vi=(bnl(1)+bnl(2))/2.0 
c calculate contact force, P (kips), P2 (N) 

ud3=al(1)-usl 
ud2=al(2)-us2 
P=4800.0Y(ud3+ud2)/2.0 
P2=Ps4450.0 
write (6,410)tt, anl(1), anl(2), anl(3), bnl(1), bnl(2), bnl(3), ui, vi, P2 
tt=tt+dt 

ssstt»»rttr»stºrtttrrrtsrrtrºrtºrrtºttrsttrrt 

if (tt. ge. 1.0) goto 710 
tssrsrtrtt»rrºrtrtrr»rrrrtrsrtrºtrºttºrrttrss 

if (ui. le. 0.0126) then 

goto 5 

else 
goto 110 

endif 
ttºº4»ttºrrºtt»»ttºrtYttrt»rtttitttºtttrtttttr c 

110 continue 
410 format(9(lx, f9.5), Ix, f15.5) 
710 stop 

end 
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APPENDIX E 

FORTRAN PROGRAMS FOR CHAPTER 3 

c EQAI. FOR 
c CHAPTER 3: UNDAMPED FORCED VIBRATION 
ca=0 (aligned floor case) 
c- 
c USING THE MEXICO EARTHQUAKE, 1985, N90-W COMPONENT 
c 
c All units are in N, m, kg and sec 
e matrix an & ac are normalised mode shapes for no contact & contact 
c matrix ant & act are tranposed of an & ac (N/m) 
c matrix b is a mass matrix (N-sec2/m) 
c matrix cn & cc are the initial displacements & velocities 
cg originally is in 9.81 m/s2, ks=8.76e9 N/m 
c ug in (g), vg in (cads) and dg in (cm) 
c PF is the modal participant factor = phi trans' m*r 
cr is the Pseudo static vector i. e (1,1,1) 

dimension ul(90000), vl(90000), u2(90000), v2(90000), u3(90000), 
&v3(90000), al (3), a2(3), a3(3), bl (3), b2(3), b3(3), b(3,3) 
dimension axl(3), bxl(3) 
dimension an(3,3), ant(3,3), cn(3,2), antb(3,3), antbcn(3,2) 
dimension ac(3,3), act(3,3), cc(3,2), actb(3,3), actbcc(3,2) 
dimension cm(3,2) 
dimension time(20000), ug(20000), vg(20000), dg(20000) 

open(6, file='eqal. out', status='unformatted') 
open(l0, fi le='eq l . out' ) 

c 
data an /0.0017743,0.0011507,0.00053557, -0.0015189,0.00092139, 

& 0.0010313,0.00050260, -0.0012776,0.0012262/ 
c 

data ac /0.45572e-5, . 0015188,0.0010601, -0.36993e-5, -0.0012241, 
& 0.0013153,0.0023891, -0.47925e-5,0.14442e-7/ 

c 
data ant /0.0017743, -0.0015189,0.00050260,0.0011507,. 00092139, 

& -0.0012776,0.00053557,0.0010313,0.0012262/ 
c 

data act /0.45572c-5, -0.36993e-5,0.0023891, . 0015188, -. 0012241, 
& -0.47925e-5,0.0010601,0,0013153,0.14442e-7/ 

c 
data b /175197,0.0,0.0,0.0,262795,0.0,0.0,0.0,350394/ 

c 
k=15350 
do 1 i=1, k+1 

read(10, *)ti me(i), ug(i), vg(i), dg(i) 
I continue 

tt=0.0 
kn=80000 
pi=3.141592654 
xi=0.0 
g=9.81 
cn(1,1)=O. O 

cn(2,1)=O. 0 

cn(3,1)=0.0 
cn(1,2)=0.0 
cn(2,2)-0.0 
cn(3,2)=O. O 

n=1 
goto 7 

5 tt=tt-dt 
kn=40000 
n=n 
cn(1,1)=a1(1) 
cn(2,1)=a1(2) 
cn(3,1 )=al (3) 
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cn(1,2)=bl(1) 
cn(2,2)=b I (2) 
cn(3,2)`bl(3) 
goto 7 

c form a matrix ant*b(3,3) 
C ý.. ý. ý.. ,... r... ý 

7 do 10 j=1,3 

do 10 i=1,3 
antb(i, j)=O. 0 
do 10 k=1,3 

10 antb(i j)=antb(i j)+ant(i, k)*b(k j) 
c forma matrix ant*b*cn(3,2) 
C ----- 

do 20 j=1,2 
do 20 i=1,3 
antbcn(i j)ß. 0 
do 20 k=1,3 

20 antbcn(ij)=antbcn(ij)+antb(i, k)*cn(k, j) 
c form checking matrix cm - an*antbcn 
C -......... _ý..,..... ý 

do 25 j=1,2 
do 25 i=1,3 
cm(i j)=0.0 
do 25 k=1,3 

25 cm(i j)=cm(i j)+an(i, k)*antbcn(k j) 
c print the final matrix antbcn(3,2) 

print': normalised disp vel checking init. disp vel' 
do 30 i=1,3 
write(6,40)(antbcn(i j) j=1,2), (cm(ij)J=1,2) 

40 format (2(5x, P9.5,3x, f9.5,5x)) 
30 continue 

wn1=7.2608 
wn2=15.524 
wn3=23.050 
wd I=wn I *SQRT(I. 0-(xi**2)) 
wd2=wn2 *SQRT(1.0-(xi * *2)) 
wd3=wn3*SQRT(I. 0-(xi**2)) 
PFl=ant(1,1)*b(I, 1)+ant(1,2)*b(2,2)+ant(1,3)*b(3,3) 
PF2=ant(2,1)*b(1,1)+ant(2,2)*b(2,2)+ant(2,3)*b(3,3) 
PF3=ant(3,1)*b(I, 1)+ant(3,2)*b(2,2)+ant(3,3)*b(3,3) 
ul(n)=antbcn(1, I) 
u2(n)=antbcn(2,1) 
u3(n)=antbcn(3,1) 
vl(n)=antbcn(1,2) 
v2(n)=untbcn(2,2) 
v3(n)=antbcn(3,2) 
dt=. 002 
odtl=(wnl*dt) 
odt2=(wn2*dt) 
odt3=(wn3*dt) 

c write(6, *)'odtl-', odtl, ' odt2=', odt2, odt3=', odt3 
c write(6, *)'wdl=', wdl, ' wd2=', wd2, ' wd3=', wd3 
c write(6, *)'PFW, PFI, ' PF2=', PF2, PF3=', PF3 

print*, ' tt u' utop umid ubott vtop 
$ vmid vbott gdisp' 
do 100 n=n, kn 
R=(ug(n+1)-ug(n))*g/dt 

c write(6, *)'R=', R 
c write tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 
c ist mode 

aal=(exp(-xi*odtl)/wdl)*(v1(n)+xi*wnl*u1(n)+PFI*(xi*ug(n)*g/wnl 
$ -R*(2*xi**2-1.0)/wnl**2))*Sin(wdl*dt) 

bbl= exp(-xi*odtl)*(ul(n)+PF1*((ug(n)*g/wnl**2) 
$ -(2.0*xi*R/wnl**3)))*Cos(wd1*dt) 

cons 1=PFI *((-ug(n)*g/wnl **2)+(2.0*xi*R/wnl **3)-(R*dt/wnl **2)) 

cc l =exp(-xi*odt l)*((v l (n)+PFI *R/wn 1 **2))*cos(wd 1 *dt) 
dd 1=(exp(-xi*odtl)/wd l)*(-wnl * *2*u 1(n)-xi*wnl *vl (n)-PFI *ug(n)*g+ 

$ PFI*xi*R/wnl)*Sin(wdl*dt) 
conslI=-PFI*R/wn1**2 

c 2nd mode 
aa2=(exp(-xi*odt2)/wd2)*(v2(n)+xi*wn2*u2(n)+PF2*(xi*ug(n)*g/wn2 

$ -R*(2*xi**2-1.0)/wn2**2))*Sin(wd2*dt) 
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bb2=exp(-xi*odt2)*(u2(n)+PF2*((ug(n)*g/wn2**2) 
$ -(2.0*xi*R/wn2**3)))*Cos(wd2*dt) 

cons2=PF2*((-ug(n)*g/wn2**2)+(2.0*xi*R/wn2**3}(R*dtfwn2**2)) 
cc2=exp(-xi*odt2)*((v2(n)+PF2*R/wn2**2))*cos(wd2*dt) 
dd2=(exp(-xi *odt2ywd2)*(-wn2**2*u2(n)-xi*wn2*v2(n)-PF2*ug(n)*g+ 

$ PF2*xi*R/wn2)*Sin(wd2*dt) 
cons22=PF2*R/wn2**2 

3rd mode 
aa3=(exp(-xi*odt3)Ywd3)*(v3(n)+xi*wn3*u3(n)+PF3*(xi*ug(n)*g/wn3 

$ -R*(2*xi**2-1.0)/wn3**2))*Sin(wd3*dt) 
bb3= exp(-xi*odt3)*(u3(n)+PF3*((ug(n)*g/wn3**2) 

$ -(2.0*xi*R/wn3**3)))*Cos(wd3*dt) 
cons3=PF3*((-ug(n)*g/wn3**2)+(2.0*xi*R/wn3**3)-(R*dt/wn3**2)) 
cc3=exp(-xi *odt3)*((v3(n)+PF3 * R/wn3 * *2))*cos(wd3 $dt) 
dd3=(exp(-xi *odt3)/wd3)*(-wn3 * *2*u3(n)-xi*w n3 *v3(n)-PF3 *ug(n)*g+ 

$ PF3*xi*R/wn3)*Sin(wd3*dt) 
cons33=PF3*R/wn3**2 

ul(n+l)=aal+bbl+consl 
vl(n+l)=ccl+ddl+conslI 
u2(n+l)=aa2+bb2+cons2 
v2(n+l)=cc2+dd2+cons22 
u3(n+l)=aa3+bb3+cons3 
v3(n+l)=cc3+dd3+cons33 

c now calculate the total mode displacement & velocity 
do 500 1=1,3 
bl(1)=an(1,1)*vl(n) 
b2(1)=an(1,2)*v2(n) 
b3(1)=an(1,3)*v3(n) 
al (l)=an(1,1)*u 1(n) 
a2(1)=an(l, 2)*u2(n) 
a3(I)=an(1,3)*u3(n) 

500 continue 
do 600 m=1,3 
al(m)=al(m)+a2(m)+a3(m) 

600 bl(m)=bl(m)+b2(m)+b3(m) 
do 700 j=1,3 
ax](j)=al(j)+(dg(n)*0.01) 
bx 1(j)=b l (j)+(vg(n) *0.01) 

700 continue 
gdisp=dg(n)*0.01 
write (6,400)tt, al(1), axl(1), axl(2), axl(3), bxl(l), bxl(2), bxl(3), 

&gdisp 
400 format(9(lx, f9.5)) 

tt=tt+dt 
c rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 

if (tt. ge. 30.0) goto 710 

e rºrrrrrrrrrrrrrrrrrºrrrrrrrrrrrrrrrrssrrºrr" 
if (al(l). ge. 0.02) then 

goto 800 
else 
goto 100 

endif 
c rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr" 

100 continue 
c AMAMMAMAAAAMMAAAAMMMMMAMMAAMMAMMAMAMMMMAAAMA 

800 cc(1,1)=a1(1) 

cc(2,1)=al(2) 
cc(3,1)=al(3) 
cc(1,2)=bl(1) 
cc(2,2)=b1 (2) 
cc(3,2)=bl(3) 

c form a matrix act*b(3,3) 
c --- 

do I1 j=1,3 
do 11 i=1,3 

actb(i, j)=O. 0 
do 11 k=1,3 

11 actb(i j)=actb(i j)+act(i, k)*b(kj) 

c forma matrix act*b*cc(3,2) 

do 21 j=1,2 
do 21 i=1,3 
actbcc(i j)=0.0 
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do 21 k=1,3 
21 actbcc(i j)=actbcc(i j)+actb(i, k)*cc(k j) 

c 
c form checking matrix cm = ac*actbcc 
e --- 

do 26 j=1,2 
do 26 i=1,3 
cm(ij)=O. O 
do 26 k=1,3 

26 cm(i j)=cm(i j)+ac(i, k)*actbcc(k j) 
c 
c print the final matrix actbcc(3,2) 
C . ý..... ". ýý..... ý.. w......... ý.. 
c print; normalised disp vel checking init. disp vel' 
c do 31 i=1,3 
c write(6,4lXactbcc(ij)J=1,2), (cm(iij), j=1,2) 
c 41 format (2(5x, f9.5,3x, f9.5,5x)) 
c 31 continue 
C 

tt=tt-dt 
kn=40000 
pi=3.141592654 
xi-0.0 
g=9.81 
wcl=12.653 
wc2=22.685 
wc3=223.94 
wd l=wcl *SQRT(1.0-(xi*'2)) 
wd2=wc2*SQRT(1.0-(xi **2)) 
wd3=wc3 *SQ RT(1.0"(xi * *2)) 
PFI=act(1,1)*b(1,1)+act(1,2)*b(2,2)+act(1,3)*b(3,3) 
PF2=act(2,1)*b(1,1)+act(2,2)*b(2,2)+act(2,3)*b(3,3) 
PF3=act(3,1) b(1,1)+act(3,2)*b(2,2)+act(3,3)*b(3,3) 
ul(n)=actbcc(1,1) 
u2(n)=actbcc(2,1) 
u3(n)=actbcc(3,1) 
vl(n)=actbcc(1,2) 
v2(n)=actbcc(2,2) 
v3(n)=actbcc(3,2) 
dt=. 002 
odtl=(wcl*dt) 
odt2=(wc2*dt) 
odt3=(wc3*dt) 

c 
c calculate the value of "static preload"uls, u2s & u3s 
c_.. _... . __.... ý..... __.. - _.. _. ý.. ý.. _. 

uIs=ac(1,1)*8.76e9*0.02/wc1"2.0 
u2s=ac(1,2)*8.76e9*0.02/wc2**2.0 
u3s=ac(1,3)'8.76e9'0.02/wc3'*2.0 
write(6, ')'uls-', uls, u2s-', u2s, ' u3s=', u3s 
write(6, ')'odtl=', odtl, odt2=', odt2, odt3=', odt3 
write(6, *)'wdl=', wdl, ' wd2=', wd2, wd3=', wd3 
write(6, ')'PFI=', PFI, ' PF2=', PF2, PF3=', PF3 

print' ' _-________ contact .. _. ý.... ý_.... ---.. _ ý_. . _ý_ 
do 110 n=n, kn 
R=(ug(n+l)-ug(n))*g/dt 
write(6, ')'R=', R 

write tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 
Ist mode 

aal=(exp(-xi*odtl)/wdl)*(vl(n)+xi*wcl'ul(n)+PF1*(xi*ug(n)*g/wcl 
$ -R*(2*xi**2-I. 0)/wcl**2}(xi*wcl'uls))'Sin(wdl*dt) 

bbl= exp(-xi*odtl)*(ul(n)+PFI*((ug(n)*g/wcl*'2) 
$ -(2.0*xi*R/wcl**3))-uls)*Cos(wdl*dt) 

cons 1=PFI*((-ug(n)*g/wcl**2)+(2.0*xi'R/wcl**3)-(R*dt/wcl**2)) 
ccl=exp(-xi*odtl)'((vl(n)+PFI*R/wcl**2))*cos(wdl*dt) 
ddl=(exp(-xi*(dtl)/wdl)*(-wcl'*2*ul(n}xi*wcl*vl(n)-PF1*ug(n)*g+ 

$ PFI*xi*R/wcl+wcl**2*uls)*Sin(wdl*dt) 
conslI=-PF1*R/wcl**2 

2nd mode 
aa2=(exp(-xi*odt2ywd2)*(v2(n)+xi*wc2*u2(n)+PF2*(xi*ug(n)*g/wc2 

$ -R*(2*xi**2-I. 0)/wc2**2)-(xi*wc2*u2s))*Sin(wd2*dt) 
bb2=exp(-xi*odt2)*(u2(n)+PF2*((ug(n)*g/wc2**2) 

$ -(2.0*xi*R/wc2**3))-u2s)*Cos(wd2*dt) 
cons2=PF2*((-ug(n)*g/wc2* *2)+(2.0*xi *R/wc2**3)-(R*dt/wc2**2)) 
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cc2=exp(-xi»odt2)r((v2(n)+PF2*R/wc2r r2))rcos(wd2rdt) 
dd2=(exp(-xi»odt2)/wd2)r(-wc2»"2»u2(n)-xi»wc2»v2(n)-PF2»ug(n)»g+ 

$ PP2rxi*R/wc2+wc2rr2ru2s)*Sin(wd2*dt) 
cons22=PF2*R/wc2»»2 

c 3rd mode 
aa3=(exp(-xirodt3ywd3)» (v3(n)+xi»wc3 ru3(n)+PF3 r(xi»ug(n)rg/wc3 

$ -Rr(2*xi**2-1.0)/wc3»r2) (xirwc3ru3s))*Sin(wd3»dt) 
bb3= exp(-xirodt3)r(u3(n)+PF3*((ug(n)»g/wc3rr2) 

$ -(2.0rxi»R/wc3r»3))-u3s)*Cos(wd3»dt) 
cons3=PF3r((-ug(n)»g/wc3**2)+(2.0*xi»R/wc3a*3)-(Rrdt/wc3»»2)) 
cc3=exp(-xi»odt3)r((v3(n)+PF3*R/wc3rr2))"cos(wd3sdt) 
dd3=(exp(-xi»odt3)/wd3)*(-wc3»»2»u3(n)-xi»wc3sv3(n)-PF3rug(n)rg+ 

$ PF3»xi*R/wc3+wc3**2'u3s)*Sin(wd3rdt) 
cons33= PF3*R/wc3**2 

c 
ul(n+l)=aaI+bbI+consI+uls 
vl(n+1)=ccI+ddI+consII 
u2(n+l)=aa2+bb2+cons2+u2s 
v2(n+l)=cc2+dd2+cons22 
u3(n+l)=aa3+bb3+cons3+u3s 
v3(n+1)=cc3+dd3+cons33 

c write(6, »)n, u 1(n), v 1(n), u2(n), v2(n), u3(n), v3(n) 
c now calculate the total mode displacement 

do 5101=1,3 
bl (1)=ac(I, 1)»v 1(n) 
b2(I)=ac(1,2)'v2(n) 
b3(1)=ac(l, 3)»v3(n) 
al(1)=ac(bl)*ul(n) 
a2(1)=ac(1,2)»u2(n) 
a3(1)=ac(1,3)»u3(n) 

510 continue 
do 610 m=1,3 
al(m)=al(m)+a2(m)+a3(m) 

610 bI (m)=b I (m)+b2(m)+b3(m) 
do 705 j=1,3 
axl (j)=al (j)+(dg(n)r0.01) 
bxl(j)=bl(j)+(vg(n)r0.01) 

705 continue 
gdisp=dg(n)»0.01 

c 
c calculate contact force, P (N) 
C ýý.,........ ý.,... ýý...... 

P=8.76e9» (a l (I)- 0.02) 
c write (6,410)tt, al(1), axl(l), axl(2), axl(3), bxl(l), bxl(2), bxl(3), 
c &gdisp 

write (6,410)tt, al(l), axl(1), axl(2), axl(3), bxl(1), bxl(2), bxl(3), 
&gdisp, P 
tt=tt+dt 

c 
c "rºr»»»r»ºrrr"º"º"»"º». »»»»»»»». »»r»»»»»º. ». " 

if (tt. ge. 30.0) goto 710 

C 
c "rrrrrrº»"»r»u»»"""»»""r»"r»»"»»r»"rº»»rs»»" 

if (a I (1). Ie. 0.02) then 
goto 5 
else 
goto 110 

endif 
C 
c "»""»»"»»""r".. """"»»"»"""»»»"»"»"". ""»»""". »" 

c 
110 continue 

c 410 format(9(lx, f9.5)) 
410 format(9(l x, f9.5), 1 x, f 15.3) 
710 stop 

end 
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c EQA2. FOR 
c CHAPTER 3: UNDAMPED FORCED VIBRATION 
ca= IJ2 (unaligned floor case) 
C 
c USING THE MEXICO EARTHQUAKE, 1985, N90-W COMPONENT 
C 
c Similar to EQAI. FOR, except the following parameters are changed : 
C ___________ ------------ _---------------------------- ________-_--_- 

open(6, fil e=' ega2. out', status='unformatted' ) 
open(1 O, file='eq Lout') 

c 
data an /0.0017743,0.0011507,0.00053557, -0.0015189,0.00092139, 

& 0.0010313,0.00050260, -0.0012776,0.0012262/ 
c 

data ac /. 13164e-2, -. 12740e-2, -. 87759e-3, . 16389e-2, -. 53662e-20, 
& 0.12292e-2,0.11353e-2,0.14772e-2, -. 75687e-3/ 

C 
data ant /0.0017743, -0.0015189,0.00050260,0.0011507, . 00092139, 

& -0.0012776,0.00053557,0.0010313,0.0012262/ 
c 

data act /0.13164e-2, . 16389e-2, . 11353e-2, -. 1274e-2, -. 53662e-20, 
& 0.14772e-2, -. 87759e-3, . 12292e-2, -0.75687e-3/ 

c 
wn 1=7.2608 
wn2=15.524 
wn3=23.050 

c 
ui=(ax 1(1)+ax 1(2))/2.0 
vi=(bx 1(1)+bx 1(2))/2.0 

c 
800 usl=a1(1) 

us2=a1(2) 
c 

we 1=12.540 
wc2=19.365 
wc3=25.841 

c 
c Calculate the value of "static preload" uls, u2s & u3s 
c -------- ---____----_-_-_-_ 

as 1=ac(1,1)*((39419291.34*us 1)+(65698818.9*us2)) 
bs 1=ac(2,1)*((65698818.9*us 1)+(39419291.34*us2)) 
u1 s=(as 1+bs 1)/(wc 1* *2.0) 
as2=ac(1,2)*((39419291.34*us1)+(65698818.9*us2)) 
bs2=ac(2,2)*((65698818.9 *us 1)+(39419291.34*us2)) 
u2s=(as2+bs2)/(wc2* *2.0) 
as3=ac(1,3)*((39419291.34*us1)+(65698818.9*us2)) 
bs3=ac(2,3)*((65698818.9*us 1)+(39419291.34*us2)) 
u3s=(as3+bs3)/(wc3 * *2.0) 

C 

C 

c calculate the contact forces P (N) 

ud3=al(1)-usl 
ud2=a 1(2)-us2 
P=(1200.0*4450.0/0.0254)*(ud3+ud2)/2.0 
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APPENDIX F 

FORTRAN PROGRAMS FOR CHAPTER 4 

c SFLEX1. FOR 
c CHAPTER 4: UNDAMPED FREE VIBRATION-SDOF SYSTEM 
ca=0 (aligned floor case) 
c 
c All units are in kips, inch and convert to N. m at the end of programme 
c Building separation, Us = 0.008 m (0.314960629") 
c Slab flexibility, ks = 10,000 kips/in (1.752e9 N/m) 
c flexibility constant = (ks/kl+ks) 
C 

dimension ul(800000), vl(800000), u2(800000), ukl(800000) 
open(6, file='sfexl. out', status 'unformatted') 

C 
tt=0.0 
kn=800000 

pi=3.141592654 
cons 10000.0/(600.0+10000.0)) 
write(6, ") 'cons-', cons- 
u2(1)=cons*(-0.81) 
ul(1)=-0.81 
vl(1)=0.00 
i=1 
goto 7 

5 tt=tt-dt 
kn=800000 
i=n 
cons=(10000.0/(600.0+10000.0)) 
goto 7 

c 
7 w=5.4679446 

dt=. 001 
odt=(w*dt) 
print*, tt utop vtop u2 ui' 
do 100 n=i, kn 

c write tt, u I (n), v I (n), u2(n), v2(n), u3(n), v3(n) 
aal =(v I (n)/w)* si n(odt) 
bbl=ul(n)*cos(odt) 
ccl=vl(n)*cos(odt) 
dd 1=w*ul (n)*sin(odt) 

c u(n+1)=((v(n)/wn)*sin(odt))+(u(n)*cos(odt)) 
c v(n+1)=(v(n)*cos(odt))-(wn*u(n)*sin(odt)) 

ul(n+l)=aal+bbl 
vl(n+1)=ccl-ddl 
u2(n+1)=cons*uI(n+1) 

C 

c convert to m 

C ....................... 

al=ul(n)00.0254 
bl=vl(n)"0.0254 
a2=u2(n)r0.0254 
ui=a2 
write (6,400)tt, al, bl, ui 

c write (6,400)tt, ui 
400 format(4(Ix, f9.5)) 

c 400 format (2(lx, f9.5)) 
tt=tt+dt 

c rrrrººrrrrrrrrrrrrrrrººrrrrrrrrrrrrrrsrrsssº 
if (tt. ge. 1.0) goto 710 

c tsrrrrrrssºrºrrrrrrurrrrrrºrrrrrrrrrºrrrrrs 
if (ui. ge. 0.008) then 

goto 800 
else 
goto 100 

endif 
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sºsrrtsssqºssssrrºssrrºssrrssssssºsssssstsr 
100 continue 

cAAAAAAA&AMAAAAM 
800 uI(n)=uI(n) 

u2(n)=u2(n) 
usl=u2(n) 
uk1(1)= 1.0r(u2(n)-us 1) 
xlkab=l. 0 

c 
tt=tt-dt 
pi=3.141592654 
dt=0.001 
print*, '--- ----------contact-- 

c 
do 110 n=n, kn 

c 
xkp=10600.0 
uki=x I kab*xkp/(10600.0) 
xkfl=xlkab*xkp 
xkf2=600.0*uki 
xkl=xkfl-xkf2 
xk2=600.0+(xkl*cons) 
wc=sgrt(xk2/39.0) 
odt=(wcxdt) 
xk3=xkl-600.0 

C 

c Calculate the value of "static preload" uls 

ul s=(xk3*us l)/(39.0*wc"2) 

c 
nut=(vI(n)/wc)"sin(odt) 
bbl=(ul (n)-ui s)*cos(odt) 
ccl=v1(n)'cos(odt) 
dd 1=wc"(u I (n)-u I s)"si n(ods) 

c u(n+l)=((v(nywn)ºsin(odt))+(u(n)"cos(odt)) 
c v(n+l)=(v(n)*cos(odt))-(wn"u(n)"sin(odt)) 

ui(n+l)=nal+bbl+uis 
vl(n+l)=ccl-ddl 
u2(n+l)=cons'ul(n+I) 

c 
c convert ul, vl, u2, v2 to m 

a1=u1(n)"0.0254 
bl=v 1(n)*0.0254 

a2--u2(n)*0.0254 
ui=a2 

c 
uk1(n+1)=uki*(u2(n+I)-us 1) 
xu3=u2(n+t)-ukl(n+l) 

c convert ukl, xu3 to m 
C _________ 

c1=ukl(n+1)"0.0254 
c2=xu3*0.0254 

c calculate contact force, P2 (N) 
C 

P2=xkp'(u2(n+l)-usl)*4450.0 

write (6,410)tt, al, bl, ui, c2, cl, P2 
c write (6,410)tt, al, bl, c2 

tt=u+dt 
c .. rr.. r,... r.. r».... »........ r». r.. r.... «... r 

if (tt. ge. 1.0) goto 710 

c r«rrsssss«sr»»r»r»rr»r»rr»»rrrsr»«r»rrsr»r»«r 
if (ui. le. 0.008) then 
goto 5 

else 
goto 110 

endif 
c rrsr«»rsrr»rrrºrr«rrrtsrrr»srrr»rrsrrrr»»rr»rr 

110 continue 
410 format(6(lx, f9.5), I(Ix, f13.5)) 

c 410 format (4(lx, f9.5)) 
710 stop 

end 
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c SFLEX2. FOR 
c CHAPTER 4: UNDAMPED FREE VIBRATION-SDOF SYSTEM 
ca= L4 (unaligned floor case) 
C 
c Similar to SFLEXI. FOR , except the following parameters are changed : 
C ------------ -------- _-------------- _-______------_--_.. 

open(6, file='sflex2. out', status='unformatted' ) 
C 

7 w=5.4679446 
C 

ui=a2*27.0/32.0 
C 

800 uk1(1)=0.604473557*(u2(n)-us1) 
x1 kab=27.0/32.0 

C 
xkp=(72.0 * *3/4096.0) *27.0 
xkp=x 1 kab/(xkp/(3.0* 18662400.0)+(x lkab**2/10600.0)) 
uki=x 1 kab*xkp/(10600.0) 

C 
c Calculate the value of "static preload" uls 
c ----------- __----------- .-.... __---- .... __.. ---- 

u1 s=(xk3 *us l )/(39.0*wc**2) 
c 
c calculate contact force, P2 (N) 
C -__.. _.. -.. __------------ ~--__-- 

P2=xkp*(u2(n+l)-us 1)*4450.0 

c SFLEX3. FOR 
c CHAPTER 4: UNDAMPED FREE VIBRATION-SDOF SYSTEM 
ca= IJ3 (unaligned floor case) 
c 
c Similar to SFLEXI. FOR , except the following parameters are changed : 
C ..... r. r... r. r. r...... -~----------- ---. --- -_ 

open (6, fil e='s flex3. out', status='unformatted' ) 
c 

7 w=5.4679446 
C 

ui=a2*20.0/27.0 
c 

800 ukl(1)=0.414360525*(u2(n)-us1) 
x1 kab=20.0/27.0 

c 
xkp=(72.0* *3/729.0)*8.0 
xkp=x I kab/(xkp/(3.0* 18662400.0)+(x 1 kab**2/10600.0)) 

uki=x I kab*xkp/(10600.0) 
C 
c Calculate the value of "static preload" uls 

u1 s=(xk3 *us 1)/(39.0*wc**2) 
C 
c calculate contact force, P2 (N) 

P2=xkp*(u2(n+l)-us 1)*4450.0 
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c SFLEX4. FOR 
c CHAPTER 4: UNDAMPED FREE VIBRATION-SDOF SYSTEM 
ca= L/2 (unaligned floor case) 
c 
c Similar to SFLEXI. FOR , except the following parameters are changed : 
c ----------------------- _____---_-___________---__-__----_-__---- .. _.. - 

open(6, file='sflex4. out', status='unformatted' ) 
C 

7 w=5.4679446 
C 

ui=a2/2.0 
vi=b2/2.0 

C 
800 ukl(1)=0.184612831*(u2(n)-us1) 

xl kab=1.0/2.0 
c 

xkp=x 1 kab/((72.0* *3/64.0)/(3.0* 18662400.0)+(x 1 kab* *2/10600.1797 8)) 
uki=xlkab*xkp/(10600.17978) 

c 
c Calculate the value of "static preload" uls 
c ~------- ~------ ~--------------- ----------- 

u1 s=(xk3 *us 1)/(39.0*wc* *2) 
c 
c calculate contact force, P2 (N) 
c _-------- _--____--__-_- 

P2=xkp*(u2(n+1)-us1)*4450.0 
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APPENDIX G 

FORTRAN PROGRAMS FOR CHAPTER 4 

c MFLEX1. FOR 
c CHAPTER 4: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 
ca=0 (aligned floor case) 
c 
c All units are in kips, inch and convert to N, m at the end of programme 
c Building separation, Us = 0.008 m (0.314960629") 
c Slab flexibility, ks = 5,000 kipsPm (8.76e8 N/m) 
c flexibility constant = (ke/kl+ks) 
c matrix an & ac are normalised mode shapes for no contact & contact 
c matrix ant & act are tranposed of an & ac 
c matrix b is a mass matrix 
c matrix cn & cc are the initial displacements & velocities 
C _----------_----"__--_--_-------------------------------_-------"__-- 

dimension ul(800000), vl(800000), u2(800000), v2(800000) 
dimension a1(2), a2(2), b1(2), b2(2), b(2,2) 
dimension an(2,2), ant(2,2), cn(2,2), antb(2,2), antbcn(2,2) 
dimension ac(2,2), act(2,2), cc(2,2), actb(2,2), actbcc(2,2) 
dimension cm(2,2) 
open(6, flle='mflexl. out', status='unformatted') 

C 

data an /0.82642,0.45974, -0.56306,0.67477/ 
data ac /0.036678,0.81595,0.99933, -0.029947/ 

C 
data ant /0.82642, -0.56306,0.45974,0.67477/ 
data act /0.036678,0.99933,0.81595, -0.029947/ 

c 
data b /1.0,0.0,0.0,1.5/ 

c 
tt=0.0 
kn=80000 
pi=3.141592654 
cons=(5000.0/36040000.0) 
write (6! )'cons=', cons 
cn(1,1)=-1.0000 
cn(2,1)=-0.5000 
cn(1,2)=0.0 

cn(2,2)=0.0 
goto 7 

5 tt=tt-dt 
kn=80000 

cons=(5000.0/36040000.0) 
cn(1,1)=al(1) 
en(2,1)=al(2) 
cn(1,2)=b1(1) 
cn(2,2)=bl(2) 
goto 7 

c form a matrix ant*b(2,2) 
C --------------------------- 

7 do 10j=1,2 
do 10 i=1,2 
antb(i j)=0.0 
do 10 k=1,2 

10 antb(ij)=antb(ij)+ant(i, k)*b(kj) 

c forma matrix ant*b*cn(2,2) 

---------------------------- 
do 20 j=1,2 
do 20 i=1,2 
antbcn(i j)=0.0 
do 20 k=1,2 

20 antbcn(ij)=antbcn(ij)+antb(i, k)'cn(kj) 

c form checking matrix cm - an*antbcn 
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do 25 j=1,2 
do 25 i=1,2 
cm(i j)=0.0 
do 25 k=1,2 

25 cm(ij)=cm(ij)+an(i, k)*antbcn(kj) 
print the final matrix antbcn(2,2) 
---------------------------------- 

print*, normalised disp vel checking init. disp vel' 
do 30 i=1,2 
write(6,4OXantbcn(i j) j=1,2), (cm(ij)j=1,2) 

40 format (2(5x, f9.5,3z, f9.5,5a)) 
30 continue 

wnl=22.930 
wn2=48.051 
ul(1)=antbcn(1,1) 
u2(1)=antbcn(2,1) 
v1(1)=antbcn(1,2) 
v2(1)=antbcn(2,2) 
dt=. 0005 
odtl=(wnl*dt) 
odt2=(wn2*dt) 
print* '_---___-_--------_-----__----__--_-_-___-------_--------- 
print*, ' tt utop umid vtop vmid uf2 

$ ufl ui' 
do 100 n=1, kn 
write tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 
aal=(vl(n)/wn 1)*sin(odtl) 
bbl=ul(n)*cos(odtl) 

cc1=vl(n)*cos(odtl) 
ddl=wnl*u 1(n)*sin(odtl) 
aa2=(v2(n)/wn2)*sin(odt2) 
bb2=u2(n)*cos(odt2) 

cc2w2(n)*cos(odt2) 
dd2=wn2*u2(n)*sin(odt2) 

ul(n+1)=aal+bbl 
vl(n+1)=cc1-ddl 
u2(n+l)=aa2+bb2 
v2(n+1)=cc2-dd2 

c now calculate the total mode displacement & velocity 
do 500 1=1,2 
bl(l)=an(1,1)*v1(n) 
b2(1)=an(1,2)*v2(n) 
al(l)=an(1,1)*u1(n) 
a2(1)=an(1,2)*u2(n) 

500 continue 
do 600 m=1,2 
a1(m)=a1(m)+a2(m) 

600 b1(m)=b1(m)+b2(m) 

uf2=cons*(600.0*al(2)+6500.0*al(l)) 
ufl=cons*(600.0*a 1(1)+5600.0*al(2)) 

c convert to m 
C "___""_"'____ 

axl=al(1)*0.0254 
bxl=bl(1)*0.0254 

ax2=al(2)*0.0254 
bx2=bl(2)*0.0254 

af2=uf2*0.0254 
afl=ufl*0.0254 
ui=aft 

c vi=bl(1) 
write (6,400)tt, axl, ax2, bxl, bx2, af2, afl, ui 

c write (6,400) tt, ui 
400 format(8(1x, f . 5)) 

c 400 format (2(lx, f9.5)) 
tt=tt+dt 

L. ii#k#t#ºikiiiiiikiki#i#kkºi##iikiiiiºtkitkºº 

if (tt. ge. 0.5) goto 710 
L, i##ºkitºiºiiiiti##iiººi#iºi#ki#kiikikitiiiii 

if (ui. ge. 0.008) then 

goto 800 
else 
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goto 100 

endif 
C it##ºRº##RººtR#RRRitººiºiiºººRRR1f###ttttiiº 

100 continue 
c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

800 cc(1,1)=a1(1) 
cc(2,1)=al(2) 
cc(1,2)=bl(1) 
cc(2,2)=bl(2) 
usl=uf2 
us2=ufl 
ud2=uf2-usl 
udl=ufl-us2 
uk2=1.0*ud2 
ukl=0.092307692*ud2 

c write (6, *)'usl=, usl ; us2=, us2, ud2=, ud2, udl=, udl 
c form a matrix act*b(2,2) 
C --------------------------- 

do 11 j=1,2 

do 11 i=1,2 
actb(ij)=0.0 
do 11 k=1,2 

11 actb(ij)=actb(ij)+act(i, k)*b(kj) 
c forma matrix act*b*cc(2,2) 
C ---------------------------- 

do 21 j=1,2 

do 21 i=1,2 
actbcc(ij)=0.0 
do 21 k=1,2 

21 actbcc(ij)=actbcc(ij)+actb(i, k)*cc(kj) 
c form checking matrix cm = ac*actbcc 
C ----------------------------------- 

do 26 j=1,2 

do 26 i=1,2 
cm(ii)=O. 0 
do 26 k=1,2 

26 cm(ij)=cm(ij)+ac(i, k)*actbcc(kj) 

c 
c print the final matrix actbcc(2,2) 
c ----------------------------------- 
c print*, normalised disp vel checking init. disp vel' 
c do 31 i=1,2 
c write(6,41Xactbcc(ij)j=1,2), (cm(ij)j=1,2) 

c 41 format (2(5x, f9.5,3x, f9.5,5x)) 

c 31 continue 
c 

tt=tt-dt 
kn=80000 
pi=3.141592654 
wcl=31.939 
wc2=71.515 
ul(1)=actbcc(1,1) 
u2(1)=actbcc(2,1) 
vl(1)=actbcc(1,2) 
v2(1)=actbcc(2,2) 
dt=. 0001 
odtl=(wcl*dt) 
odt2__(wc2*dt) 

c 
c Calculate the value of "static preload" uls, u2s 
C ------------------------------------------------ 

asl=ac(1,1)*((4400.0*usl)+(600.0*us2)) 
bsl=ac(2,1)*((1061.538462*usl)+(-1500.0*us2)) 

uls=(asl+bsl)/(wcl**2.0) 
as2=ac(1,2)*((4400.0*usl)+(600.0*us2)) 
bs2=ac(2,2)*((1061.538462*us 1)+(-1500.0*us2)) 

u2s=(as2+bs2)/(wc2**2.0) 
c 
c write(6, *)'uls=, u1s, 'u2s=, u2s 

print*. -------------------- contact ----------------------- 
c write (6,30)tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 

do 110 n=1, kn 

aa1=(v 1(n)/wc1)*sin(odtl) 
bb l=(u 1(n)-u 1 s)*cos(odt l) 
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ccl=v1(n)*cos(odtl) 
ddl=wcl*(u1(n)-uls)*sin(odtl) 

aa2=(v2(n)/wc2)*sin(odt2) 
bbl=(u2(n)-u2s)*cos(odt2) 
cc2=v2(n)*cos(odt2) 
dd2=wc2*(u2(n)-u2s)*sin(odt2) 

C 
ul(n+l)=aal+bbl+uls 
vl(n+1)=ccl-dd1 
u2(n+1)=aa2+bb2+u2s 
v2(n+1)=cc2-dd2 

c now calculate the total mode displacement 
do 510 1=1,2 
bl(l)=ac(1,1)*v1(n) 
b2(1)=ac(1,2)*v2(n) 
al(l)=ac(1,1)*ul(n) 
a2(1)=ac(l, 2)*u2(n) 

510 continue 
do 610 m=1,2 
a1(m)=a1(m)+a2(m) 

610 bl(m)=bl(m)+b2(m) 

uf2=cons*(6500.0*al(1)+600.0*a1(2)) 
ufl=cons*(600.0*a1(1)+5600.0*a1(2)) 

c 
c convert ul, v1, u2, v2, uf2, ufl to m, m/s 
C _-__----_----__--_-_----__-_-_-_--__-_---_ 

axl=al(l)*0.0254 
bx1=bl(1)*0.0254 
ax2=al(2)*0.0254 
bx2=bl(2)*0.0254 

af2=uf2*0.0254 
afl=ufl*0.0254 

c 
ui=aft 

C 

ud2=uf2-usl 
udl=ufl-us2 
uk2=1.0*ud2 
uk1=0.092307692*ud2 
xu2=uf2-uk2 
xul=ufl-ukl 

c 
c convert xu2, xul to m 
C --------------------- 

cl=xu1*0.0254 
c2=xu2*0.0254 

C 

c calculate contact force, P2 (N) 
C ------------------------------ 

P=5544.615385*ud2 
P2=P*4450.0 

c write(6,410)tt, axl, ax2, bxl, bx2, af2, afl, ui, c2, cl, P2 

write(6,410)tt, axl, ax2, bxl, bx2, c2, cl, ui 
tt=tt+dt 

C i#i#######i######i####f###########M#i##iºii#i 

if (tt. ge. 0.5) goto 710 
c 
L. ii####i#####Mt###ii##Mi#ii####Mi######iiit#i# 

if (ui. le. 0.008) then 
goto 5 
else 
goto 110 

endif 
C 
L. 

110 continue 
c 410 format(10(1x, f9.5), 1x, f13.5) 

410 format(8(1x, fl3.5)) 
710 stop 

end 
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c MFLEX2. FOR 
C CHAPTER 4: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 
Ca =1J4 (unaligned floor case) 
c 
c Similar to MFLEX1. FOR, except the following parameters are changed : 
C ____________________________________________________________________ 

open(6, file='mflea2. out', status=unformatted') 
c 

data an /0.82642,0.45974, -0.56306,0.67477/ 
data ac /-0.064595,0.81479,0.99791,0.052742/ 

c 
data ant /0.82642, -0.56306,0.45974,0.67477/ 
data act /-0.064595,0.99791,0.81479,0.052742/ 

c 
wnl=22.930 
wn2=48.051 

c 
ui=(a12*27.0+afl*5.0)/32.0 
vi=(b 1(1)*27.0+b 1(2)*5.0)/32.0 

c 
800 uk2=(0.723398826*ud2+0.133962745*udl) 

ukl=(0.179127328*ud2+0.033171727*udl) 
C 

wcl=33.525 
wc2=62.683 

c 
c Calculate the value of "static preload" u1s, u2s 
c ----------------------------------------------- 

asl=ac(1,1)*((3016.994131*usl)+(1269.813728*us2)) 
bsl=ac(2,1)*((1495.636642*us 1)+(-1334.141363*us2)) 
uis=(asl+bsl)/(wcl**2.0) 
as2=ac(1,2)*((3016.994131*usl)+(1269.813728*us2)) 
bs2=ac(2,2)*((1495.636642 *us 1)+(-1334.141363 *us2)) 
u2s=(as2+bs2)/(wc2 * *2.0) 

C 

c calculate contact force, P2 (N) 
C ___-__-___________-_-___-__--_ 

P=5539.372289 *(ud2*27.0+ud 1*5.0)/32.0 
P2=P*4450.0 

c MFLEX3. FOR 
c CHAPTER 4: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 
ca =113 (unaligned floor case) 
c 
c Similar to MFLEX1. FOR , except the following parameters are changed : 
C --------------------------- _-------- _--------- _.... -____-__-__--------- 

open(6, file='mflex3. out', status='unformatted') 
c 

data an /0.82642,0.45974, -0.56306,0.67477/ 
data ac /-0.15126,0.80710,0.98849,0.12351/ 

c 
data ant /0.82642, -0.56306,0.45974,0.67477/ 
data act /-0.15126,0.98849,0.80710,0.12351/ 

c 
wnl=22.930 
wn2=48.051 

c 
ui=(af2 *20.0+af1*. 7.0)/27.0 
vi=(b 1(1)*20.0+b 1(2)*7.0)/27.0 

c 
800 uk2=(0.540634903*ud2+0.189222216*ud1) 

uk 1=(0.206263092*ud2+0.072192082*ud 1) 

c 
wcl=34.572 
wc2=56.226 

c Calculate the value of "static preload" uls, u2s 

Appendix G A-42 



C --- . -... _~ -------------------------- ~ -. -.... _. ý 
asl=ac(1,1)*((2103.174518*usl)+(1546.111081*us2)) 
bs 1=ac(2,1)*((1631.315464*usl)+(-1139.039588*us2)) 

ul s=(as l+bs l)/(wcl * *2.0) 
as2=ac(1,2)*((2103.174518*usl)+(1546.111081*us2)) 
bs2=ac(2,2)*((1631.315464*us 1)+(-1139.039588*us2)) 
u2s=(as2+bs 2)/(wc2 * *2.0) 

C 
c calculate contact force, P2 (N) 

C ------------------------------ 
P=5292.171134 *(ud2 *20.0+ud 1 *7.0)/27.0 
P2=P*4450.0 

c MFLEX4. FOR 

c CHAPTER 4: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 
ca =112 (unaligned floor case) 
c 
c Similar to MFLEXI. FOR , except the following parameters are changed : 
C --------------------------------------------- -----------------------_ 

open(6, file='mflex4. out', status-='unformatted') 
C 

data an /0.82642,0.45974, -0.56306,0.67477/ 
data ac /-0.60980,0.64712,0.79255,0.49790/ 

c 
data ant /0.82642, -0.56306,0.45974,0.67477/ 
data act /-0.60980,0.79255,0.64712,0.49790/ 

c 
wnl=22.930 
wn2=48.051 

C 
ui=(a12+afl)/2.0 

c 
800 uk2=0.250735726*(ud2+udl) 

ukl=0.218952324*(ud2+udl) 
c 

wcl=36.432 
wc2=46.210 

C 

c Calculate the value of "static preload" uls, u2s 
C ------------------------------------------------ 

asl=ac(1,1)*((653.678634*usl)+(1853.678634*us2)) 
bs 1=ac(2,1)*((1694.761624*us l)+(-405.238376*us2)) 

uls=(asl+bs l)/(wcl**2.0) 

as2=ac(1,2)*((653.678634*usl)+(1853.678634*us2)) 
bs2=ac(2,2)*((1694.761624*us 1)+(-405.238376*us2)) 
u2s=(as2+bs2)/(wc2**2.0) 

C 
c calculate contact force, P2 (N) 
C ------------------ ------- 

P=5090.994703 *0.5*(ud2+ud 1) 
P2=P*4450.0 

c MFLEX5. FOR 
c CHAPTER 4: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 

caa 31J4 (unaligned floor case) 
c 
c Similar to MFLEXI. FOR , except the following parameters are changed : 
C --------------------------------------------------------------------- 

open(6, file='mflex5. out', status=unformatted') 
c 

data an /0.82642,0.45974, -0.56306,0.67477/ 
data ac /0.99409, -0.088627,0.10855,0.81167/ 

c 
data ant /0.82642, -0.56306,0.45974,0.67477/ 
data act /0.99409,0.10855, -0.088627,0.81167/ 
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C 

wnl=22.930 
wn2=48.051 

c 
ui=(af2*5.0+afl*27.0)/32.0 

vi=(b 1(1)*5.0+b 1(2)*27.0)/32.0 
c 

800 uk2=(0.040390133*ud2+0.218106722*udl) 
ukl=(0.127888267*ud2+0.690596646*udl) 

c 
wcl=29.144 
wc2=53.362 

C 
c Calculate the value of "static preload" uls, u2s 

c ------------------------------------------------ 

as 1=ac(1,1)* ((-398.0493307 *us 1)+(1690.533614 *us2 )) 
bsl=ac(2,1)*((1239.4413389*usl)+(1952.98323*us2)) 
uls=(asl+bsl)/(wcl**2.0) 
as2=ac(1,2)*((-398.0493307*usl)+(1690.533614*us2)) 
bs2=ac(2,2)*((1239.4413389*usl)+(1952.98323*us2)) 
u2s=(as2+bs2)/(wc2**2.0) 

C 

c calculate contact force, P2 (N) 
C ------------------------------ 

P=6121.545275*(ud2*5.0+ud 1*27.0)/32.0 
P2=P*4450.0 

c MFLEX6. FOR 
c CHAPTER 4: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 
ca= Maligned floor case) 
C 
c Similar to MFLEX1. FOR , except the following parameters are changed : 
c --------------------------------------------------------------------- 

open(6, file-='mflex6. out', status='unformatted') 
C 

data an /0.82642,0.45974, -0.56306,0.67477/ 
data ac /0.99871,0.041444, -0.050758,0.81544/ 

c 
data ant /0.82642, -0.56306,0.45974,0.67477/ 
data act /0.99871, -0.050758,0.041444,0.81544/ 

c 
wnl=22.930 
wn2=48.051 

c 
ui=afl 
vi=bl(2) 

c 
800 uk2=0.107142857*udl 

ukl=1.0*udl 
c 

wcl=25.238 
wc2=59.978 

C 

c Calculate the value if "static preload" u1s, u2s 
C ---------- ____-_-__-_________-_________ 

asl=ac(1,1)*((-600.0*usl)+(1135.714286*us2)) 
bsl=ac(2,1)*((600.0*us 1)+(3500.0*us2)) 

uls=(asl+bsl)/(wcl**2.0) 
as2=ac(1,2)*((-600.0*us1)+(1135.714286*us2)) 
bs2=ac(2,2)*((600.0*us 1)+(3500.0*us2)) 

u2s=(as2+bs2)/(wc2* *2.0) 
C 

c calculate contact force, P2 (N) 
c ------- ----------------------- 

P=6435.71428*udl 
P2=P*4450.0 

Appendix G A-44 



APPENDIX H 

FORTRAN PROGRAMS FOR CHAPTER 5 

C TFLEX1. FOR 
c CHAPTER 5: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 
Ca=0 (aligned floor case) 
C 
c All units are in kips, inch and convert to N, m at the end of programme 
c Building separation, Us = 0.008 m (0.314960629") 
c Slab flexibility, ks = 50,000 kips/in (8.76e9 N/m) 

c matrix an & ac are normalised mode shapes for no contact & contact 
c matrix ant & act are tranposed of an & ac 
c matrix b is a mass matrix 
c matrix cn & cc are the initial displacements & velocities 

c 
dimension ul(800000), vl(800000), u2(800000), v2(800000) 
dimension u3(800000), v3(800000), u4(800000), v4(800000) 
dimension al(4), a2(4), a3(4), a4(4), bl(4), b2(4), b3(4), b4(4), b(4,4) 
dimension an(4,4), ant(4,4), cn(4,2), antb(4,4), antbcn(4,2) 
dimension ac(4,4), act(4,4), cc(4,2), actb(4,4), actbcc(4,2) 
dimension anl(4), bnl(4) 
dimension cm(4,2) 
open(6, file='tflex l. out', status='unformatted') 

c 
data an /0.83005.0.45535,0.0,0.0, -0.55769,0.67773,0.0,0.0, 

&0.0,0.0,0.69544,0.37050,0.0,0.0, -0.42782,0.60227/ 
c 

data ac /-0.16843, -. 38175, -0.14709,0.60024,0.77747. -0.015272, 
&-. 51322,0.0074692,0.52985,0.27194,0.53287,0.30199, -. 29401, 
&0.66839, -0.31254,0.22013/ 

c 
data ant /0.83005, -0.55769,0.0,0.0,0.45535,0.67773,0.0,0.0, 

&0.0,0.0,0.69544, -0.42782,0.0,0.0,0.37050,0.60227/ 
c 

data act /-0.16843,0.77747,0.52985, -. 29401, -. 38175, -0.015272, 
&0.27194,0.66839, -0.14709, -0.51322,0.53287, -0.31254,0.60024, 
&0.0074692,0.30199,0.22013/ 

C 
data b/1.0,0.0,0.0.0.0.0.0,1.5,0.0,0.0,0.0,0.0,1.5,0.0, 

&0.0,0.0,0.0,2.0/ 

c 
tt=0.0 
kn=80000 
pi=3.141592654 
cn(1, I)=1.0000 
cn(2,1)=-0.5 
cn(3,1)-O. 0 
cn(4,1 )=0.0 
cn(1,2)=O. O 

cn(2,2)=O. O 
cn(3,2)=0.0 
cn(4,2)=O. O 

goto 7 

5 a---a-at 
kn=S0000 
cn(1,1)=al(1) 
cn(2,1)=a1(2) 
cn(3,1)=a1(3) 
cn(4,1)=a1(4) 
cn(1,2)`bl(1) 
cn(2,2)=bl(2) 
cn(3,2)=b1(3) 
cn(4,2)=b1(4) 
goto 7 

c 
c forma matrix ant*b(4,4) 
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C ý..... ý ..... ý...... ý...... -......... 
7 do 10j=1.4 

do 10 i=1,4 
antb(i j)ß. 0 
do 10 k=1,4 

10 antb(i j)=antb(i j)+ant(i, k)*b(k, j) 
C 
c form a matrix ant*b"cn(4,2) 
C ... _.. ___,... _____........ _........ 

do 20 j=1,2 

do 20 i=1,4 
antbcn(ij)O. 0 
do 20 k=1,4 

20 antbcn(ij)=antbcn(i, j)+antb(i, k)"cn(k, j) 
c 
c form checking matrix cm = an"antbcn 

do 25 j=1,2 
----------_-_- 

do 25 i=1,4 
cm(ij)=O. O 
do 25 k=1,4 

25 cm(i j)-cm(i j)+an(i, k)*antbcn(k j) 
C 
c print the final matrix antbcn(4,2) 
C 
c print*; normalised disp ve) checking init. disp vel' 
c do 30 i=1,4 
c write(6,40Xantbcn(i j) j=1,2), (cm(i j) j=1.2) 
c 40 format (2(5x, f9.5,3x, f9.5,5x)) 
c 30 continue 
c 

wnl=23.274 
wn2=51.559 
wn3=19.334 
wn4=43.889 
ul(1)tntbcn(1,1) 
u2(1)=antbcn(2, I) 
u3(1)=antbcn(3,1) 
u4(1)=antbcn(4, I) 
vl(l)=antbcn(1,2) 
v2(1)=antbcn(2,2) 
v3(1)=antbcn(3,2) 
v4(1)=antbcn(4,2) 
dt=. 000I 
odtl=(wnl*dt) 
odt2=(wn2*dt) 
odt3=(wn3*dt) 
odt4=(wn4*dt) 
print*, It u2 ul u4 u3 v2 

$vl v4 v3 cl c2 ui P(N)' 
do 100 n=l, kn 

c write tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) 
aal=(vl(n)/wnl)*sin(odtl) 
bbl=ul(n)*cos(odtl) 
cc1=vl(n)*cos(odtl) 
dd l =wn l *u l (n)*si n(odt l) 

c 
aa2=(v2(n)/wn2)*sin(odt2) 
bb2=u2(n)*cos(odt2) 

cc2=v2(n)*cos(odt2) 
dd2=wn2*u2(n)*sin(odt2) 

c 
aa3=(v3(n)/wn3)*sin(odt3) 
bb3=u3(n)*cos(odt3) 
cc3=v3(n)*cos((dt3) 
dd3=wn3*u3(n)*sin(odt3) 

c 
aa4=(v4(n)/wn4)*sin(odt4) 
bb4=u4(n)*cos(odt4) 
cc4=v4(n)*cos(odt4) 
dd4=wn4*u4(n)*sin(od(4) 

c 
ul(n+1)=aal+bbl 
vl(n+l)=ccl-ddl 
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u2(n+1)=aa2+bb2 
v2(n+1)=cc2-dd2 
u3(n+l)=aa3+bb3 
v3(n+1)=cc3-dd3 
u4(n+1)=aa4+bb4 
v4(n+l)=cc4-dd4 

c now calculate the total mode displacement & velocity 
do 500 1=1,4 
bl(l)=an(1,1) v1(n) 
b2(1)=an(l, 2)'v2(n) 
b3(1)=an(1,3)*v3(n) 
b4(l)=an(l, 4)*v4(n) 
al(l)=an(1, l)*u l (n) 
a2(I)=an(1,2)*u2(n) 
a3(l)=an(l, 3)*u3(n) 
a4(l)=an(l, 4)"u4(n) 

500 continue 
do 600 m=1,4 
al (m)=al(m)+a2(m)+a3(m)+a4(m) 

600 bI (m)=bI(m)+b2(m)+b3(m)+b4(m) 
c 
c convert from inches to m 
C 

do 650 m=1,4 
anl(m)=al(m)*0.0254 

650 bn 1(m)=b l (m)*0.0254 
ui=anl(l) 
cl=anl(1)-anl(3) 
c2=bnl(1)-bnl(3) 

c write (6,400)ttanl(1), anl(2), anl(3), anl(4), bnl(1), bnl(2), bnl(3), 

c &bnl(4), cl, c2, ui 
c write (6,400)tt, ui 
c 400 format(12(lx, f8.5)) " 
c 400 format (2(Ix, f8.5)) 

tt=u+dt 

L. #ttfRfrº#fffttf Rt/tººtt/t/rrttltrttrfttftrtf 

if (tt. ge. 1.0) goto 710 

C 
`. i#ifrftR#ftºRttttitºrtºttt/rººffttrftrrrftfi 

if (cl. ge. 0.008) then 

goto 800 
else 
goto 100 

endif 
e st#rnfsrftttftrrfrtrtºtfºrtrrrfrtrtrfrfrttt 

100 continue 
C 

800 cc(1,1)=al(1) 
cc(2,1)=al(2) 
cc(3,1)=al(3) 
cc(4,1)=al(4) 
cc(1,2)=bl(1) 
cc(2,2)=bl(2) 
cc(3,2)=b1(3) 
cc(4,2)=bl(4) 
usl=a1(i) 
us2=al(2) 
us3=al(3) 

C 

c forma matrix act*b(4,4) 

c 
do 11 j=1,4 
do 11 i=1,4 
actb(i, j)-O. 0 
do 11 k=1,4 

11 actb(i j)=actb(i j)+act(i, k)*b(k, j) 

c 
c forma matrix act*b*cc(4,2) 

do 21 j=1,2 
do 21 i=1,4 
actbcc(i, j)-0.0 
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do 21 k=1,4 
21 actbcc(ij)=actbcc(ij)+actb(i, k)"cc(kj) 

c form checking matrix cm = ac*actbcc 
c _ý ..... __ý. ». __. _.. . _. _.... ý .. 

do 26 j=1,2 
do 26 i=1,4 
cm(ij)=O. O 
do 26 k=1,4 

26 cm(i j)=cm(i j)+ac(i, k)*actbcc(k, j) 

c print the final matrix actbec(4,2) 
C_ -__-. ____. Mý ..., . ýý 
c print*, 'normalised disp vel checking init. disp vel' 
c do 31 i=1,4 
c write(6,41)(actbcc(ij)j=1,2), (cm(ij)j=1,2) 
c 41 format (2(5x, f9.5,3x, f9.5,5x)) 
c 31 continue 
c 

tt=tt-dt 
kn=80000 
pi=3.141592654 
wc1=40.584 
wc2=206.70 
wc3=21.007 
wc4=48.496 
ul(1)=actbcc(1,1) 
u2(I)=actbcc(2,1) 
u3(1)=actbcc(3, I) 
u4(1)=actbcc(4, I) 

vl(1)=actbcc(1,2) 
v2(1)=actbcc(2,2) 
v3(1)=actbcc(3,2) 
v4(1)=actbcc(4,2) 
dt=. 00001 
odtl=(wc l *dt) 
odt2=(wc2*dt) 
odt3=(wc3*dt) 
odt4=(wc4*dt) 

C 

c Calculate the value of "static preload" uls, u2s, u3s, u4s 
c __. _r 

asl=ac(l, 1)*(25000*0.314960629) 
bsl=ac(3,1)*(25000*0.314960629) 
uls=(asl-bsl)/(wcI**2. O) 

ac2=ac(1,2)*(25000*0.314960629) 
bs2=ac(3,2)*(25000*0.314960629) 
u2s=(as2-bs2)/(wc2**2.0) 
as3=ac(l, 3)*(25000*0.314960629) 
bs3=ac(3,3)*(25000*0.314960629) 
u3s=(as3-bs3)/(wc3**2.0) 
as4=ac(l, 4)*(25000*0.314960629) 
bs4=äc(3,4)*(25000*0.314960629) 
u4s=(as4-bs4)/(wc4**2.0) 

C 
print*, '-----------contact-------- 

c write (6,30)tt, ul(n), vl(n), u2(n), v2(n), u3(n), v3(n) c 
do 110 n=1, kn 

C 

aal=(v1(n)/wc1)*sin(odt1) 
bbl=(uI(n)-u Is) cos(odtl) 

ccl=vl(n)*cos(odtl) 
dd 1=wcl *(ul (n)-u 1 s)*sin(odtl) 

c 
aa2=(v2(n)/wc2)*sin(odt2) 
bb2=(u2(n) u2s)*cos(odt2) 
cc2=v2(n)*cos(odt2) 
dd2=wc2*(u2(n)-u2s)*sin(odt2) 

c 
aa3=(v3(n)/wc3)*sin(odt3) 
bb3=(u3(n)-u3s)*cos(odt3) 

cc3=v3(n)*cos(odt3) 
dd3=wc3*(u3(n)-u3s)*sin(odt3) 
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aa4=(v4(n)/wc4)*sin(odt4) 
bb4=(u4(n)-u4s)*cos(odt4) 
cc4=v4(n)*cos(odt4) 
dd4=wc4*(u4(n)-u4s)*sin(odt4) 

C 
c u(n+l)=((v(n)/wn)*sin(odt))+(u(n)*cos(odt)) 
c v(n+l)=(v(n)*cos(odt))-(wn*u(n)*sin(odt)) 

uI(n+l)=aal+bbl+uls 
vl(n+l)=ccl-ddl 
u2(n+l)=aa2+bb2+u2s 
v2(n+l)=cc2-dd2 
u3(n+l)=aa3+bb3+u3s 
v3(n+l)=cc3-dd3 
u4(n+l)=aa4+bb4+u4s 
v4(n+l)=cc4-dd4 

c now calculate the total mode displacement 
do 5101=1,4 
bl (I)=ac(1,1)*v l(n) 
b2(1)=ac(I, 2)*v2(n) 
b3(1)=ac(1,3)*v3(n) 
b4(I)=ac(1,4)*v4(n) 
al(1)=ac(1,1)*ul(n) 
a2(l)=ac(1,2)*u2(n) 
a3(I)=ac(1,3)*u3(n) 
a4(1)=ac(1,4)*u4(n) 

510 continue 
do 610 m=1,4 
al(m)=al(m)+a2(m)+a3(m)+a4(m) 

610 bl (m)=b I (m)+b2(m)+b3(m)+b4(m) 
c 
c convert from inches to m 
e ......,.................,..... ........ 

do 615 m=1,4 
anl(m)=al(m)*0.0254 

615 bnl(m)=bl(m)*0.0254 
cl=anl(1)-anl(3) 
c2=bnl(1)-bnl(3) 
ui i=0.008+an 1(3) 

c 
c calculate contact force, P (N) 
C 

P=(8.76e9/2.0)*(c1-0.008) 

c 
write (6,410)tt, anl(l), anl(2), anl(3), anl(4), bnl(1), bnl(2), 

&bn l (3), bn l (4), cl, c2, uii, P 
c write (6,410)tt, anl(1), anl(2), anl(3), anl(4), bnl(1), bnl(2), 
c &bnl (3), bnl (4), cl, c2, uii 
c write (6,410)tt, uii 

tt=tt+dt 
c 
C iºrºttsºtºrlssr! liriiººitiiirlrºrrrºtiisrrrq 

if (tt. ge. 1.0) goto 710 

c 
L. lrri!!! tf! ltiiitiit!! irltººtitirfiitriiltftºf 

if (cl. le. 0.008) then 

goto 5 
else 
goto 110 
endif 

c 
L. tittttttiiiitttº! ltiiftifittiifiºrtºitttiffiit 

C 

110 continu' 
410 format(12(1 x, f8.5), l x, f 13.2) 

c 410 format (12(lx, f8.5)) 

c 410 format (2(1x, f8.5)) 
710 stop 

end 
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TFLEX2. FOR 
CHAPTER S: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 

a= U4 (unaligned floor case) 

c Similar to TFLEXI. FOR , except the following parameters are changed 
c 

open(6, file='tflex2. out', status='unformatted' ) 
C 

data an /0.83005,0.45535,0.0,0.0, -0.55769,0.67773,0.0,0.0, 
&0.0,0.0,0.69544,0.37050,0.0,0.0, -0.42782,0.60227/ 

C 
data ac /-0.067354, -. 54120, -. 12083,0.51683,0.71182, 

&0.081680, -. 56749,0.011025,0.59400,0.19651,0.53241, 
&0.28639, -. 36871,0.57313, -. 21577,0.38826/ 

c 
data ant /0.83005, -0.55769,0.0,0.0,0.45535,0.67773,0.0,0.0, 

&0.0,0.0,0.69544, -0.42782,0.0,0.0,0.37050,0.60227/ 
c 

data act 1-0.067354,0.71182,0.59400, -. 36871, -0.54120, 
&0.081680,0.19651,0.57313, -0.12083, -0.56749,0.53241, 
&-0.21577,0.51683,0.011025,0.28639,0.38826/ 

c 
wnl=23.274 
wn2=51.559 
wn3=19.334 
wn4=43.889 

c 
ui=((anl(1)*27.0)+(anl(2)*5.0))/32.0 
vi=((bn 1(1)*27.0)+(bn 1(2)'5.0))/32.0 

c 
wcl=40.500 
wc2=179.95 
wc3=19.611 
wc4=42.819 

C 

c Calculate the value of "static preload" uls, u2s, u3s, u4s 
C _--"__....... .......... ___-... _..... _----°-........ _.... _..... ___................ 

asl=ac(I, 1)*((15600.0 us1)+(3600.0*us2)(19200.0*us3)) 
bsl=ac(2,1)*((3600.0*us1)-(44.44444445*us2)-(3555.555556*us3)) 
csl=ac(3,1)*((-19200.0*us1)-(3555.555556*us2)+(22755.55556*us3)) 
uls=(asl+bsl+csl)/(wcl**2.0) 
as2=ac(1,2)*((15600.0*usl)+(3600.0*us2)-(19200.0*us3)) 
bs2=uc(2,2)*((3600.0*usl)-(44.44444445*us2)-(3555.555556*us3)) 
cs2=ac(3,2)*((-19200.0*usl)-(3555.555556*us2)+(22755.55556*us3)) 
u2s=(as2+bs2+cs2)/(wc2*'2.0) 
as3=ac(1,3)*((15600.0*usl)+(3600.0*us2)-(19200.0*us3)) 
bs3=ac(2,3)'((3600.0'us1)-(44.44444445*us2)-(3555.555556'us3)) 
cs3=ac(3,3)*((-19200.0*usl)-(3555.555556*us2)+(22755.55556*us3)) 
u3s=(as3+bs3+cs3)/(wc3"2.0) 
as4=ac(1,4)*((15600.0*usl)+(3600.0*us2)-(19200.0*us3)) 
bs4=ac(2,4)*((3600.0*usl)-(44.44444445*us2)-(3555.555556*us3)) 
cs4=äc(3,4)*((-19200.0*usl)-(3555.555556*us2)+(22755.55556*us3)) 
u4s=(as4+bs4+cs4)1(wc4"2.0) 

C 

c calculate contact force, P (N) 

F2=(19200.0*(aI(1)-us 1))+(3555.555556*(a I (2)-us2)) 
F1=(22755.55556'(al(3)-us3)) 
P=(F2-Fl)"4450.0 

c TFLEX3. FOR 

c CHAPTER 5: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 

ca= L13 (unaligned floor case) 

c 
c Similar to TFLEXI. FOR , except the following parameters are changed : 
e ..... ýý........ ý...... ýý.. ý. ýý. _. __---_____- 

open(6, file= tflex3. out', status='unformatted') 

data an /0.83005,0.45535,0.0,0.0, -0.55769,0.67773,0.0,0.0, 
&0.0,0.0,0.69544,0.37050,0.0,0.0, -0.42782,0.60227/ 

c 
data ac /-0.16304, -. 3423Z -. 17204,0.61370, -0.65292, 

&-0.14692,0.60020, -. 022008,0.62104,0.20635,0.51445, 
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&0.27699, -. 40177,0.69665, -. 11034,0.21487/ 
c 

data ant /0.83005, -0.55769,0.0,0.0,0.45535,0.67773,0.0,0.0, 
&0.0,0.0,0.69544, -0.42782,0.0,0.0,0.37050,0.60227/ 

c 
data act /-0.16304, -. 65292,0.62104, -. 40177, -0.34232, 

&-0.14692,0.20635,0.69665, -0.17204,0.60020,0.51445, 
&-0.11034,0.61370, -. 022008,0.27699,0.21487/ 

c 
wnl=23.274 
wn2=51.559 
wn3=19.334 
wn4=43.889 

c 
ui=((an 1(1)*20.0)+(anl (2)'7.0))/27.0 
vi=((bnl(1)*20.0)+(bnl(2)"7.0))/27.0 

c 
wcl=40.844 
wc2=133.65 
wc3=19.637 
wc4=42.522 

C 

c Calculate the value of "static preload" u1s, u2s, u3s, u4s 
C _. _. _. __. __... __. _ . _.... _ ý_ , .. _ ... ý .. __ _.. 

asI=ac(1,1)*((6900.0*usl)+(3225.0*us2}(10125.0*us3)) 
bsI=ac(2,1)*((3225.0*usl)+(318.75*us2)-(3543.75*us3)) 
csl=ac(3,1)*((-10125.0*us1)-(3543.75*us2)+(13668.75*us3)) 
uls=(asI+bsI+csly(wc1**2.0) 
as2=ac(1,2)*((6900.0*us1)+(3225.0*us2)-(10125.0*us3)) 
bs2=ac(2,2)*((3225.0*usl)+(318.75*us2)-(3543.75*us3)) 
cs2=äc(3,2)*((-10125.0*usl)-(3543.75*us2)+(13668.75*us3)) 
u2s=(as2+bs2+cs2)/(wc2**2.0) 
as3=ac(1,3)*((6900.0*us1)+(3225.0*us2)-(10125.0*us3)) 
bs3=ac(2,3)*((3225.0*usl)+(3I8.75*us2)-(3543.75*us3)) 

cs3=äc(3,3)*((-10125.0*usl)-(3543.75*us2)+(13668.75*us3)) 
u3s=(as3+bs3+cs3)/(wc3**2.0) 
as4=uc(I, 4)*((6900.0*usl)+(3225.0*us2)-(10125.0*us3)) 
bs4=ac(2,4)*((3225.0*usl)+(318.75*us2)-(3543.75*us3)) 
cs4=äc(3,4)*((-10I25.0*usl)-(3543.75*us2)+(13668.75*us3)) 
u4s=(as4+bs4+cs4y(wc4**2.0) 

c calculate contact force, P (N) 

F2=(10125.0*(aI(1)-us1))+(3543.75*(aI(2)-us2)) 
F1=(13668.75*(al(3)-us3)) 
P=(F2-F1)*4450.0 

TFLEX4. FOR 
CHAPTER Si UNDAMPED FREE VIBRATION-MDOF SYSTEMS 

a- L/2 (unaligned floor case) 

Similar to TFLEXI. FOR , except the following parameters are changed : 

open(6,61e-_ tflex4. out', status='unformatted') 
c 

data an /0.83005,0.45535,0.0,0.0, -0.55769,0.67773,0.0,0.0, 
&0.0,0.0,0.69544,0.37050,0.0,0.0, -0.42782,0.60227/ 

c 
data ac /-0.49271,0.26010, -0.050938,0.57090, -0.45464, -0.32964, 

&0.64656, -0.040278,0.68942,0.23146,0.46190,0.24932,0.27431, 
&-0.66089, -0.18078,0.33209/ 

c 
data ant /0.83005, -0.55769,0.0,0.0,0.45535,0.67773,0.0,0.0, 

&0.0,0.0,0.69544, -0.42782,0.0,0.0,0.37050,0.60227/ 
c 

data act /-0.49271, -0.45464,0.68942,0.27431,0.26010, -0.32964, 
&0.23146, -0.66089, -0.050938,0.64656,0.46190, -0.18078,0.57090, 
&-0.040278,0.24932,0.33209/ 

c 
wn1-23.274 
wn2=51.559 
wn3=19.334 
wn4=43.889 
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ui=(anl(1)+an1(2))/2.0 
vi=(bnl(1)+bn1(2))/2.0 

wcl=39.415 
wc2=105.51 
wc3=19.708 
wc4=42.739 

c 
c Calculate the value of "static preload" uls, u2s, u3s, u4s 
C- 

asl=ac(l, 1)*((1800.0*us1)+(3000.0*us2)-(4800.0*us3)) 
bsl=ac(2,1)*((3000.0*usl)+(1800.0*us2)-(4800.0*us3)) 
csl=äc(3,1)*((-4800.0*usl)+(-4800.0*us2)+(9600.0*us3)) 
uls=(asl+bsl+csly(wcl**2.0) 
as2=ac(1,2)*((1800.0*usl)+(3000.0*us2)-(4800.0*us3)) 
bs2=ac(2,2)*((3000.0*us1)+(1800.0*us2)-(4800.0*us3)) 
cs2=ac(3,2)*((-4800.0*usl)+(-4800.0*us2)+(9600.0*us3)) 
u2s-(as2+bs2+cs2)/(wc2**2.0) 
as3=ac(1,3)*((1800.0*usl)+(3000.0*us2)-(4800.0*us3)) 
bs3=ac(2,3)*((3000.0*usl)+(1800.0*us2)-(4800.0*us3)) 
cs3=äc(3,3)*((-4800.0*usl)+(-4800.0*us2)+(9600.0*us3)) 
u3s=(as3+bs3+cs3y(wc3**2.0) 
as4=ac(1,4)*((1800.0*usl)+(3000.0*us2)-(4800.0*us3)) 
bs4=äc(2,4)*((3000.0*usl)+(1800.0*us2)-(4800.0*us3)) 
cs4=ac(3,4)*((-4800.0*usl)+(-4800.0*us2)+(9600.0*us3)) 
u4s=(as4+bs4+cs4)/(wc4* * 2.0) 

C 

c calculate contact force, P (N) 
C --ý........ .. 

F2=(4800.0*(a1(I) us1))+(4800.0*(aI(2)-us2)}(9600.0*(a1(3)-us3)) 
P=F2*4450.0 

c TFLEXS. FOR 

c CHAPTER S: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 
ca- 31J4 (unaligned floor case) 
c 
c Similar to TFLEXI. FOR , except the following parameters are changed : 
C ý... ..... ý ý...... __.. ý. _. _.. ý... - _r_ 

open(6, file='tflex5. out', status='unformatted') 
c 

data an 10.83005,0.45535,0.0,0.0, -0.55769,0.67773,0.0,0.0, 
&0.0,0.0,0.69544,0.37050,0.0,0.0, -0.42782,0.60227/ 

c 
data ac /-0.56176, . 

35949,. 24514,0.44745, -. 13046, -0.52979, 
&0.61187, -. 014078,0.79444,0.26999,0.35256,0.19114, 
&0.19044, -. 42879, -. 32846,0.51289/ 

c 
data ant /0.83005, -0.55769,0.0,0.0,0.45535,0.67773,0.0,0.0, 

&0.0,0.0,0.69544, -0.42782,0.0,0.0,0.37050,0.60227/ 
c 

data act /-0.56176, -. 13046,0.79444.0.19044,0.35949, 
&-. 52979,0.26299, -. 42879,0.24514,0.61187,0.35256, 
&-0.32846,0.44745, -. 014078,0.19114,0.51289/ 

c 
wn1-23.274 
wn2=51.559 
wn3=19.334 
wn4-43.889 

c 
ui=((an I (1)*5.0)+(an 1(2)'27.0))/32.0 
vi =((bn I (1)*5.0)+(bn 1 (2)*27.0))/32.0 

c 
wc1=34.224 
wc2=166.06 
wc3=19.831 
wc4-43.408 

c 
c Calculate the value of "static preload" uls, u2s, u3s, u4s 

c------___ý... _... ý... _.. ý.. _. _ ý....... ý__... ýý 
asl=ac(1,1)*((-44.44444445'usl)+(3600.0'us2)-(3555.555556*us3)) 
bsl=ac(2, I)"((3600.0'us1)+(15600.0'us2). (19200.0'us3)) 

csl=ac(3,1)*((-3555.555556*usl)-(19200.0*u52)+(22755.55556*us3)) 
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uls=(asl+bsl+csl)/(wcl**2.0) 
as2=ac(1,2)*((-44.44444445*us1)+(3600.0*us2)-(3555.555556*us3)) 
bs2=ac(2,2)*((3600.0*usl)4-(15600.0*us2)-(19200.0*us3)) 
cs2=ac(3,2)*((-3555.555556*usl)-(19200.0*us2)+(22755.55556*us3)) 
u2s=(as2+bs2+cs2)/(wc2**2.0) 
as3=ac(1,3)*((-44.44444445*usl)+(3600.0*us2)-(3555.555556*us3)) 
bs3=ac(2,3)*((3600.0*usl)+(15600.0*us2)-(19200.0*us3)) 
cs3=ac(3,3)*((-3555.555556*usl)-(19200.0*us2)+(22755.55556*us3)) 
u3s=(as3+bs3+cs3)/(wc3**2.0) 
as4=ac(1,4)*((-44.44444445*usl)+(3600.0*us2)-(3555.555556*us3)) 
bs4=ac(2,4)*((3600.0*usl)+(15600.0*us2)-(19200.0*us3)) 
cs4=ac(3,4)*((-3555.555556*usl)-(19200.0*us2)+(22755.55556*us3)) 
u4s=(as4+bs4+cs4)/(wc4**2.0) 

c calculate contact force, P (N) 

C ......... __ 
F2=(3555.555556*(al(1)-usl))+(19200.0*(al(2)-us2)) 
FI=(22755.55556"(al(3)-us3)) 
P=(F2-F1)*4450.0 

c TFLEX6. FOR 
c CHAPTER S: UNDAMPED FREE VIBRATION-MDOF SYSTEMS 
ca-L (aligned floor case) 
c 
c Similar to TFLEXI. FOR , except the following parameters are changed : 
C -ýý .... ýý . ý___________.. ............. _... _ý____ 

open(6, file='tflex6. out', status='unformatted') 
c 

data an /0.83005,0.45535,0.0,0.0, -0.55769,0.67773,0.0,0.0, 
&0.0,0.0,0.69544,0.37050,0.0,0.0, -0.42782,0.60227/ 

c 
data ac /0.57975, -. 085100, -0.11611, -. 56249, -. 021006,0.58757, 

&-. 56656,0.010219,0.65666,0.38964,0.39347,0.23327, . 48192, 
&-. 40294, -0.42115,0.35928/ 

c 
data ant /0.83005, -0.55769,0.0,0.0,0.45535,0.67773,0.0,0.0, 

&0.0,0.0,0.69544, -0.42782,0.0,0.0,0.37050,0.60227/ 
c 

data act /0.57975, -. 021006,0.65666,0.48192, -. 085100,0.58757, 
&0.38964, -. 40294, -0.11611, -0.56656,0.39347, -0.42115, -. 56249, 
&0.010219,0.23327,0.35928/ 

c 
wnl=23.274 
wn2=51.559 
wn3=19.334 
wn4=43.889 

c 
ui=anl(2) 

c 
wc1: 37.096 
wc2-186.46 
wc3=22.090 
wc4=46.940 

C 

c Calculate the value of "static preload" ula, u2s u3s, u4s 
c __ý_. _ýý.. _... _ý.... ... _........ _.. ýý... 

aal =ac(2, l )  (25000*0.314960629) 
bs I =ac(3,1)*(25000*0.314960629) 
uIs=(asl-bsl)/(wc1**2.0) 
ac2=ac(2,2)*(25000*0.314960629) 
bs2=ac(3,2)*(25000*0.314960629) 

u2s=(as2-bs2y(wc2**2.0) 
as3=ac(2,3)*(25000*0.314960629) 
bs3=ac(3,3)*(25000*0.3l4960629) 
u3s=(as3-bs3)/(wc3**2.0) 
as4=uc(2,4)*(25000*0.314960629) 
bs4=ac(3,4)*(25000*0.314960629) 

u4s=(as4-bs4)/(wc4**2.0) 
C 

c calculate contact force, P (N) 

c __, . ý_ . ____.. _ .... _.. __.... _ 
P=(8.76e9/2.0)"(ct-0.008) 
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APPENDIX I 

DATA INPUT FOR PATRAN AND DYNA3D 

THE LIST OF COMMANDS USED IN PATRAN 

LOGON INTO PATRAN 

DISPLAY=gum"10.0.0; export DISPLAY 
(gum-10 is the sun machine number) 

patran2 
xuxb (device mnemonic) 
GO 
Patran data file? I (New) 
( patran. dat. 1 written ) 
Mode ? SE'1, MENUON (now the cursor is active) 
PLOT (the origin axes display) 
VIEW > AXES ABSOLUTE 

> Input Axes Absolute theta x, y, z for screen 1 

> -90,0,0 

acEOMETRY 

MENU MOUE > LINE > MORE > MORE > MORE 
> BLANK 

CHOOSE ANY OrrION TO MODIFY OR l0' TO CREATE LINE 

a k"eth .0 0000 i on fin : 10.000 CO 

y 1., M 
.0 

0000 y origin : 0.000 Next Id -1 
a I. e . 100 00 a origin : 0.000 REJECT 

> GO 
> END > END > 

Zl ANAIMIS MODF. I, 

2.1 (: ENl: 1IATl: MESH > NODES ONLY 
> INDIVIDUAL SELECT 

END 

MCK A U\Z FOR NODE M1S11 USnlh OR ANY OM'1ON 

totdf a UsE M. ah 1.2 Zoom hot Xoptions)) 
(w fte s0 Nod* lot optional) 
N. da in* " (M Ratio : 1.00 REJECT 

ELEMENTS ONLY 
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PICK A LINE FOR ELEM MESH LIST(1), OR ANY OPTION 

Entity = LINE Elem Type= Bar Elem list : (optional) 
PID = 0" No, Nodes =2 Del list : (optional) 
Pattern = NA Config = 0* Assc Data : (optional) REJECT 

For Line (Bar) > PID=1 CONFIG=O 
For Line (Spring) > PID=1 CONFIG=6 

> INDIVIDUAL SELECT 
> CHOOSE MESH/LINE 

(if line, the following data is required: PROCEED > XY PLANE) 

DEFINE BEAM XY PLANE BY GRID, NODE OR VECTOR ? (G/N/V) N 

ENTER NODE ID(S) : <RETURN> 

> 

2.2 EQUIVALENT NODES 

END > END > END 

Tolerance = 0.005000 Do you wish to override ? (Y/N) N 

> GEOMETRIC 
> ALL 

Do you want the active set recreated to reflec these changes? (Y/N) Y 

2.3 GENERATE LOADSBCS 

> INDIVIDUAL SELECT 

PICK A LINE FOR NODE MESH LIST(1), OR ANY OPTION 

Entity = LINE B. C = DISPL INCL LIST : (optional) 
D (X, Y, Z) =// /' CID LIST : (optional) 
R (X, Y, Z) =// /' SET ID: 1 REJECT 

; 'ý INCL LIST : Ni (eg for node no 1 only) 
INCL LIST : N1T3 (eg for node no 1 to node no 3 only) 

* D(X, Y, Z) NO } these will allow the x displacement only. 
R(X, Y, Z) = 0/0/0 } 

D(X, Y, Z) = 0/0/0 1 these will restraint all displacements and 
R(X, Y, Z) = 0/0/0 } rotations. 
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> END 

2.4 VERIFY MODEL 
> LOADS/BC > DISP 

Plot or show ? (P/S) P 

2.5 OPTIMIZE MODEL 

> END 
PROPERTIES > AUTO >PLOT/FILL IIII)E/ET(' 

COMPACT NODE IDS 
OPTIMIZE NODE_IDS > BOTH >PROFILE 
END 

3) ADDITIONAL COMMANDS 

Click mouse into the COMMAND menu 
SET, ACTIVE, NONE 
NODE, I, PLOT 
NAME, BC_DISP_1 
SET, ACTIVE, NONE 
NODE, 2, PLOT 
NAME, BC_DISP_2 
SET, ACTIVE, NONE 
NODE, 3, PLOT 
NAME, BC_DISP_3 
SET, ACTIVE, ALL 
NAME, ELEMENTBLOCK 
NAME, NODE-BLOCK 
END 

4) INTERFACE 

CREATE OUTPUT 
ENTIRE MODEL 

5) STOP 

Input the title card for neutral output JOBI <RETURN> 

Do you wish to output phase -I data ? (Y/N) Y 

Do you wish to output GFEG/CFEG TABLES ? (Y/N) Y 

patran. out. 1 written 
patran. dat. 1 written 
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THE LIST OF COMMANDS USED IN NICODE 

1) LOGIN INTO N/CODE 

oa5l (enter to OASYS DYNA3D ) 

Enter command fh for help, m for menu I? m 

nc 

option 

su - submit OASYS DYNA3D job 
ne - OASYS N/CODE 
pt - OASYS D3PLOT 
th - OASYS THIS 
Me 
etc 

2) READING MODEL INFORMATION 

Pre-processor type (ideas/patran/nisa/pafec/femgen) ? patran 

Oasys N/CODE 
PATRAN to OASYS DYNA3D file translator 

(version 5.1a) 

Liverpool University (T. M) 
SUN SPARCstation 

Neutral File name (patran. out) ? patran. out. 1 
OASYS DYNA3D input file name ? jobl 
OK to open new file jobl. inf (YES) ? <return> 

Reading Neutral file 

Reading packet 25 
Reading packet 01 
Reading packet 02 
Reading packet 08 
Reading packet 21 

Neutral File read : 861 lines 

Title Card 
Node Data 
Element Data 
Node Displacements 
NAMEd Component Definition 

3) WRITING OASYS DYNA3D INPUT FILE 

Writing title ... JOB1 
Writing Control cards 
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Termination time for the analysis ? 1.0 

Timing 

id - desription ............................ default 

1 - termination time 1.0000E-01 
2 - time between writing time history files 1.0000E-02 

3 - time between writing complete state files 1.0000E-01 
4 - initial time step (0-chosen by code) 0.0000E+00 
5 - scale factor on time step 9.0000E-01 
6 - minimum time step factor 5.0000E-02 

7 - number of steps between restart dumps 5000 
8 - number of steps between auxilliary dumps1000 
9 - load curve limiting time step 0 

Timing ? <return> 

Loading 

1. Number of loads curves 0 
2. Base acceleration in x-direction no 
3. Base acceleration in y-direction no 
4. Base acceleration in z-direction no 
5. Angular velocity about x-axis no 
6. Angular velocity about y-axis no 
7. Angular velocity about z-axis no 
8. Thermal effects option 0 

n- temperature defined by load curve n 
0- no thermal effects 

-n - temperature option n (n=1 or 2) 

<-2 - TOPAZ3D temperature file 

Loading ?1 <return> 

... new value ?3 
Loading ? <return> 

Initialisation by dynamic relaxation (NO) ? <yes> 

Dynamic relaxation 

1. Dynamic relaxation for initialization yes 
2. Database written during relaxation 0 

0- database not written 
1- written at convergence check 
2- written at PTF interval 

3. Number of steps between convergence checks 250 
4. Convergence tolerance 1.0000E-03 
5. Relaxation factor 9.9500E-01 

Dynamic relaxation ? <return> 

Displacement control 
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1. Node for disp controlled termination 0 
a node 0 means this option is not set 

2. Degree of freedom of disp x 
3. Maximum limiting coordinate 0.0000E+00 
4. Minimum limiting coordinate 0.0000E 00 

Displacement control ? <return> 

General 

1. No. cycles for reports to standard output 100 
2. No, rigid body merges 0 
3. No. rigid body inertias 0 
4. No, rigid body velocities 0 
5. Compute hourglass energy no 
6. Compute stonewall energy dissipation yes 
7. Calculate accelerations from velocities no 
8. Energy imbalance termination 0 

0- not set 
1- check against initial kinetic energy 
2- as 2 but includes external work 

9. Maximum % energy imbalance 0.0000E+00 

General ? <return> 

Writing materials ... 
Please select the required type of material input 

sk - skip 
fi - read from another file 
in - read from another OASYS DYNA3D input file 
de - set material defaults, use pre-processor thickness 
dm - set material defaults, input thickness 
ky - input all material data from keyboard 

Enter choice (L for material list ): ky 

Dyna material :1 
Material 1 PATRAN Material Property 
Physical 1 PATRAN Beam Property :1 

Material type number or material id ? 13 

Elastic 
Density ? 7890 
Youngs Modulus ? 205e9 
Poissons ratio ? 0.3 

Material OK (YES) ? <return> 
Element formulation for beam (B-S) ? <return> 

Belytschko-Schwer Section data 
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1 Shear factor 
...................... 1.0000E+00 

2 cross sectional area ............. 1.0000E+00 
3 2nd moment of area, lyy 

.... .. 1.0000E+00 
4 2nd moment of area, Izz 

..... . 1.0000E+00 
5 2nd moment of area, lxx 

.... .. 1.0000E+00 
6 shear area, As 

..................... 1.0000E+00 

Belytschko-Schwer Section data ?2 

... new value ? 0.057041125 
Belytschko-Schwer Section data ?3 

... new value ? 2.58929e-4 
Belytschko-Schwer Section data ?4 

... new value ? 2.58929e-4 
Belytschko-Schwer Section data ?5 

... new value ? 5.17841e-4 
Belytschko-Schwer Section data ? <return> 

Dyna material :2 
Material 2 PATRAN Material Property :2 
Physical 2 PATRAN Beam Property 2 

Material type number or material id ?1 

Elastic 
Density ? 7.89 
Youngs Modulus ? 205e9 
Poissons ratio ? 0.3 

Material OK (YES) ? <return> 
Element formulation for shells (B-T) ? <return> 

< for example, enter data as in Table 7.3a for material type 1,2 and 3> 

Writing nodes ... 
Writing beam elements ... 

Node for orienting beam 1 (1) ?6 
Node for orienting beam 2 (6) ? <return> 
Node for orienting beam 3 (6) ? <return> 

Writing nodal time history blocks 
... 

Writing element time history blocks 
Writing load curves ... 

Select the required type of load input 

sk - skip 
fi - read all the curves from another file 
ky - input data for each curve separately (keyboard/file) 

Enter choice : ky 

Load curve no. 1 
No of points in load curve or file with points (2)? 3 
Stress initialization by dynamic relaxation 

0- load curve used only in transient analysis 
1- load curve used in stress initialization only 
2- load curve used in both 
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Load curve option (0) ?1 

Description of curve? disl 
Time, value ? 0,0 
Time, value ? 0.001, -0.0254 
Time, value ? 1.0, -0.0254 

Load curve no. 2 

< for example, enter data as in Table 7.3b for disp. curve no.!, 2 and 3> 

Writing velocity/acceleration/displacement specification 
Displacement boundary condition 

Load curve :1 
Number of nodes: 1 

DOF Specification (XT) ? <return> (i. e. x translation) 
Scale factor on load curve (1.0) ? <return> 

Displacement boundary condition 
Load curve :2 
Number of nodes: 1 

DOF Specification (XT) ? <return> (i. e. x translation) 
Scale factor on load curve (1.0) ? <return> 

Displacement boundary condition 
Load curve :3 
Number of nodes: 1 

DOF Specification (XT) ? <return> (i. e. x translation) 
Scale factor on load curve (1.0) ? <return> 

Rigid body velocity boundary conditions 
Writing Springs, dampers and masses ... 

Select the required type of spring property input 

5k - skip 
fi - read all the curves from another file 
ky - input data for each curve separately (keyboard/file) 

Enter choice : ky 

Number of orientation vectors (0) ?2 (i. e. orientation defined by 2 nodes) 

Spring material :1 
Type : Translational Spring 
PATRAN Material Property :1 

Spring property type [m for menu I? 1 (i. e. linear elastic) 

Properties 

Linear Elastic 
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1 Elastic Stiffness 
...................................... .... 1.0000E+00 

2 Dynamic magnification factor 
............... ..... 0.0000E+00 

3 Test velocity ........................................... .... 0.0000E+00 
4 Clearance 

............................................... ..... 0,0000E+00 
5 Failure deflection in tension .................. ... 0.0000E+00 
6 Deflection limit in compression ............. .... 

0.0000E+00 
7 Deflection limit in tension 

..................... ..... 
0,0000E+00 

Linear Elastic ?1 

... new value ? 8.76e9 
Linear Elastic ?4 

... new value ? 0.008 
Linear Elastic ? <return> 

.. orientation vectors 

Select the required type of orientation vector input 

sk - skip 
fi - read all the curves from another file 
ky - input data for each curve separately (keyboard/file) 

Enter choice : ky 

Define orientation vectors of one of the following types : 

0- orientation defined by vector 
1- orientation defined by plane normal to vector 
2- orientation defined by 2 nodes 

Orientation option for vector 1 (0) ?2 
Nodes for orientation ? 1,5 
Orientation option for vector 2 (2) ? <return> 
Nodes for orientation ? 1,5 

... springs and dampers 

Orienting option for spring/damper 7 (0) ?2 

... 
lumped masses 

Mass for element 1 at node 1 (0.000E+00)? 175197 
Mass for element 2 at node 2 (1.752E+05)? 262795 
Mass for element 3 at node 3 (2.628E+05)? 350394 

Data file written 
OK to delete session file (YES) ? <return> 

Normal termination of N/CODE 

Enter command [h for help, m for menu I? exit 
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THE LIST OF COMMAND TO SUBMIT A JOB 

LOGIN INTO SUBMIT JOB OASYS DYNA3D 

oa5l ( enter to OASYS DYNA3D ) 

Enter command [h for help, in for menu I? su (i. e. submit OASYS DYNA3I) job) 

OASYS DYNA3D 
Submission program 

(Version 5.1) 

Jobname Its for list] ? jobl 

SUBMISSION STATUS 

Job Name 
....................................................................... JOB1 

rs - restart ....................................................... . no 

cpu - CPU limit 
................................................... .- 

ctf - write contact force file 
............................... no 

asc - subdirectory for ASCII output .................. - 
tz - use OASYS TOPAZ 3D temperature file.. no 
sub - submission fbackground/foregroundl......... bg 

ast - analysis start time ..................................... now 
asd - analysis start day 

...................................... .- 

- means that the option is not set 

Submit ? ctf 
Write a ctf file [yes or no) ?y 
Submit ? go 

Writing control file and submitting to background 
[11 29329 

Enter command Ih for help, m for menu I? exit 
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THE LIST OF COMMAND TO RESTART A JOB 

1) CREATE THE. IN1 FILE 

It is necessary to create a restart input file ( inl) to obtain more frequent, intervals, before 
the occurance of the contact of the two building at jobl. d04 onward. For details of restart 
input deck, please refer to User Manual Version 5.1a rev 0 September 1992. The relevant. 
restart cards that have been used in this computer modelling are 'T'itle and Control. 
Other quantities suach as Displacement Termination, Deleted Contact Surfaces, Deleted 
Materials etc are irrelevant. 

restart file jobl 
$2345679901234567890123456789012345678901234567890 
0.0 2.8421E-07 00 

where 

Columns Quantity Format 
1-10 New termination time E10.0 

0.0: termination time remains unchanged 
11-20 New interval for writing time history data E10.0 

0.0: interval remains unchanged 
21-30 New interval for writing complete state data E10.0 

O. O: interval remains unchanged 
31-65 can be ignored as far as this research is concerned. 

2) LOGIN INTO RESTART JOB OASYS DYNA3D 

oa5l ( enter to OASYS DYNA3D ) 

Enter command [h for help, m for menu I? su (i. e. submit OASYS DYNA3D job) 

OASYS DYNA3D 

Submission program 

(Version 5.1( 

Jobname [Is for list] ? job] 
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SIIRMISSION STATUS 

Job Name 
........................................................................ JOB] 

rs - restart ......................................................... . 00 

cpu - CPU limit 
................................................... .- 

ctf - write contact force file .............................. . no 
asc - subdirectory for ASCII output .................. - 
tz - use OASYS TOPAZ 3D temperature tile.. no 
sub - submission Ibackground/foregroundl........ 

. bg 
ast - analysis start time .................................... . now 
asd - analysis start day 

...................................... .- 

means that the option is not set 

Submit ? rs 
Which dump to restart from (5) ? <return> where no 5 means job1. d04 
OK to use input file jobl. inl (YES) ? <return> 
Copying dump file jobl. d04 to restart file jobl. rtf ... 

Warning - contact force file found, write option switched to yes 

Submit ? go 

Writing control file and submitting to background 
[1] 29329 

Enter command [h for help, m for menu ]? exit 
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THE LIST OF COMMAND TO DISPLAY OUTPUT USING D3P1,01' 

1) LOGIN INTO D3PLOT DYNA3D 

oa5l ( enter to OASYS DYNA3D ) 

Enter command [h for help, m for menu I? p1 li. e. D3PLOT DYNA3I)) 

OASYS D3PLOT ( Version 5.1, September 1992 
Graphical post-processing for OASYS DYNA3D 
Compatible with OASYS DYNA3D 5.1 

OASYS DYNA3D 5.0 
OASYS DYNA3D 4.2 and before 

For support from OASYS Tel (+44) 71 465 2229 
Fax (+44) 71 465 2312 

Liverpool University (T. M) 
Sun SPARCstation 

Give terminal type (M for list) xw 

{ place cursor on D3PLOT window } 

Give input PTF filename ? jobl 

D3PLOT_MANAGER »> [H for help I rs 
Give angles in degrees : (0.0.0) -90,0,0 

D3PLOT_MANAGER »> [H for help I show 

D3PLOT_MANAGER »> [H for help I ct 

D3PLOT_MANAGER »> [H for help I mg 
Give magnification scale : 0.5 

D3PLOT_MANAGER »> [H for help I ct 

D3PLOT_MANAGER »> IH for help ] animation 
SEQUENCE_GENERATION [H for help I »> set 
Give start, interval, finish times or ALL : all 

D3PLOT_MANAGER »> [H for help I et 
OK to continue ? (No) Y 

SEQUENCE_GENERATION [H for help I »> play 
PLAY-IMAGES [H for help ]» animation 
Repeat ?y 
Repeat ?n 

SEQUENCE_GENERATION [H for help ] »> / 
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2) TO GET COLOUR PRINTOUT 

D3PLOT_MANAGER »> IH for help I display 
I type m for help I 

laser-option : on 
label-plot > colour mode : <return> 

> status 
>/ 

D3PLOT_MANAGER »> (H for help I re 1 

D3PLOTMANAGER »> [H for help I ct 
Give file title : jobl 
Give figure no :1 

create post001. out file 

D3PLOT_MANAGER »> IH for help I exit 

Enter command [h for help, m for menu I? exit 

3) SENT POSTSRIPT FILE TO QMS PRINTER 

$ lpr -Pqms -Fa4sb post001. out 
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THE LIST OF COMMAND TO DISPLAY OUTPUT USING T/llIS 

1) LOGIN INTO THIS DYNA3D 

oa5l ( enter to OASYS DYNA3D 

Enter command [h for help, m for menu I? th (i. e. THIS DYNA3D) 

Time history processing package 

Version 5.1 1 

Device type ? xw 

I place cursor on T/HIS window ) 

2) TO READ TIME HISTORY FILE 

T/HIS > read 

Read > th 

OASYS DYNA3D THE filename ? jobl 

JOB1 

Total In blocks 
Nodes : 6 6 
Solid elements: 0 0 
Beam elements: 3 3 
Shell elements: 0 0 
Thick shell elemnets: 0 0 
Number of materials: 3 
Number of times: 20680 
Final time : 9.9999E-1 

Strain tensor stored for shell elements 

Read THE > nodes 
Node number ?1 
Nodal component ? dx 
Output curve ? dxl 

Read THE > nodes 
Node number ?2 
Nodal component ? dx 

(i. e. displacement in x direction) 

(i. e. displacement in x direction) 
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Output curve ? dx2 

Read THE > nodes 
Node number ?3 
Nodal component ? dx 
Output curve ? dx3 

Read THE > nodes 
Node number ?1 
Nodal component ? vx 
Output curve ? vxl 

(i. e. displacement in x direction) 

(i. e. velocity in x direction) 

3) TO GET PRINT OUT OF TIME HISTORY FILE 

Read THE >/ 
THIS > read 
Read > curve 
Curve file Rs & lc for list ]? dxl 
Curve file Us & lc for list ]? dx2 
Curve file Rs & lc for list ]? <return> 

THIS > plot 
THIS > defaults 
Defaults > grid 
Grid lines (on) ? <return> 
Defaults >/ 

THIS > plot 
THIS > pf 

Picture formats (L) ? <return> 
Postscript file ? <return> 
[ Postscript file : this001. psc ] 
Plot title ? jobl 
Figure number (eg 2.1) ? 1.1 

Parked X driver 
Reactivated X driver 

4) TO READ EXTRA TIME HISTORY FILE 

T/HIS > read 

Read > xtf 

OASYS DYNA3D XTF filename ? jobi 

Read XTF > spring 
Spring/damper element ?7 
[ Translational spring 

Spring data component ?m 
FT - Force v time 
ET - Elongation v time 
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EF - Elongation v force 
EN - Energy v time 
/- Back up a level 

Spring data component ? et 
Output curve ? e7 

Read XTF > spring 
Spring/damper element ?7 
[ Translational spring ] 

Spring data component ?m 
FT - Force v time 
ET - Elongation v time 

EF - Elongation v force 
EN - Energy v time 
/- Back up a level 

Spring data component ? ft 
Output curve ? fl 

5) TO GET PRINT OUT OF EXTRA TIME HISTORY FILE 

same as in3)... 

Enter command [h for help, m for menu ]? exit 

6) SENT POSTSRIPT FILE TO LASER PRINTER 

$ lpr -Player this001. out 

k A p i ä. 
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