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Abstract

The fractional calculus is a generalisation of the calculus of Newton and

Leibniz. The substitution of fractional differential operators in ordinary dif-

ferential equations substantially increases their modelling power.

Fractional differential operators set exciting new challenges to the com-

putational mathematician because the computational cost of approximating

fractional differential operators is of a much higher order than that necessary

for approximating the operators of classical calculus.

1. We present a new formulation of the fractional integral.

2. We use this to develop a new method for reducing the computational

cost of approximating the solution of a fractional differential equation.

3. This method can be implemented with two levels of sophistication.

We compare their rates of convergence, their algorithmic complexity,

and their weight set sizes so that an optimal choice, for a particular

application, can be made.

4. We show how linear multiterm fractional differential equations can be

approximated as systems of fractional differential equations of order at

most 1.
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Introduction

0.1 Aim

The aim of this thesis is to demonstrate that numerical approximations to

the solutions of fractional differential equations can be obtained with consid-

erably less computational cost than was thought feasible with the algorithms

previously available.

0.2 Results

We give a new formulation of the fractional integral as an infinite sum of

integrals. From this we develop, as original work, an algorithm, which uses

a modification of time valuation, which enables approximate solutions to

fractional differential equations to be calculated with a significant saving in

computational cost.

We give two versions of our algorithm: firstly one that can be imple-

mented with little programming sophistication but at the sacrifice of some

rapidity of convergence, and secondly one that requires more sophisticated

programming. These alternatives have different compromises between, accu-

racy, rates of convergence, and weight set size. The optimal choice therefore

depending on the particular application and the end user's objectives.

x
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We show, for the first time, how a multiterm fractional differential equa-

tion can be solved as a system of fractional differential equations, of order

at most 1, in such a way that the dimensionality of the system is kept to a

rmmmum.

0.3 Content

The theory of calculus presents many problems, particularly in the fields

of integral equations and differential equations, whose solution can only be

obtain in the form of a numerical approximation. Indeed numerical quadra-

ture, numerical differentiation, and approximation theory have developed

conjointly with the abstract theory of the calculus.

The fractional calculus is a generalisation of the calculus of Newton and

Leibniz. The substitution of fractional differential operators in ordinary dif-

ferential equations considerably extends their expressive power and therefore

the range of physical, social and economic situations they can or could be

used to model.

The increased complexity of fractional differential operators presents ex-

citing new challenges for the computational mathematician to overcome. In

particular a considerable penalty, in computational cost, occurs in obtaining

an approximate solution when a classical model is generalised to a fractional

model since the cost of the problem changes from being linear in time to

quadratic in time. This makes it is essential that we develop algorithms that

are as efficient as possible.

To keep this thesis self contained we give sufficient abstract theory of

the fractional calculus to both enable an understanding of the origin of the
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computational cost we need to reduce and to help identify the features of the

fractional calculus we can exploit to obtain a reduction in cost.

Traditionally mathematicians have derived their methods for approxi-

mating fractional differential operators from consideration of the Riemann-

Liouville fractional derivative. More recent papers [12] give their analysis

based on the Caputo fractional derivative. The Caputo fractional derivative

being the fractional derivative of choice amongst mathematical modellers.

This is because a fractional differential equation, formulated in terms of the

Caputo fractional derivative, utilises the same starting conditions as for an

ordinary differential equation of the same bounding integer order.

The methods we will use in numerically approximating the solutions of

fractional differential equations are derived from the methods used for solving

ordinary differential equations. For this reason we include sufficient theory

about the numerics of ordinary differential equations to enable the fraction-

alised methods to be rigorously derived.

We summarise the standard methods for numerically approximating the

solutions of fractional differential equations. We analyse some previously

suggested modifications for reducing the cost of implementing these methods

and give a new modification, which obtains a substantial reduction in cost

without compromising the stability and ultimate convergence of the original

method.

We show how the general linear multi term fractional differential equation

can be approximated by using a system of fractional differential equations of

order at most 1 and implement this method for several fractional differential

equations which have now become standard models.
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Chapter 1

We briefly survey the history of the fractional calculus and the mathematical

problems it was originally developed to solve.

Chapter 2

We survey some of the modern applications of fractional calculus. This en-

ables us to understand why modelling applications require the use of the frac-

tional derivative as defined by Caputo as opposed to the Riemann-Liouville

fractional derivative.

Chapter 3

We give such classical theory of the fractional calculus as we need to un-

derstand the cause of the increase of computational effort when calculating

numerical approximations. This is the theory most of the existing numerical

methods for approximating fractional differential operators are based upon.

Chapter 4

Just as the fractional calculus is a development of the calculus so the nu-

merical methods for fractional differential equations are a development of

the numerical methods of ordinary differential equations. We give a selective

exposition of numerical ODE theory to establish the concepts we will later

use in the numerics of fractional differential equations.

Chapter 5

The truncation of the sum in the Griinwald-Letnikov fractional derivative

is the simplest method for approximating a fractional differential operator.
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We demonstrate that its convergence properties are insufficient to use it to

approximate the solution to the simplest fractional differential equation.

Chapter 6

We give a full exposition of the fractional trapezium rule. We have found this

to be the simplest method to implement and its good behaviour has made it

suitable to use for prototyping and testing the algorithmic modifications we

propose later.

Chapter 7

We give a presentation of the fractional linear multistep method [40, 41, 42,

43] .

Chapter 8

We give our analysis of Podlubny's Finite Memory Principle and an exposi-

tion of Sloane and Thomee's Sparse Quadrature Method.

Chapter 9

We give an exposition of the extension of Richardson extrapolation for the

trapezium rule to the fractional trapezium rule [17].

Chapter 10

We present a new method of writing the fractional integral as an infinite sum

of integrals over the same interval. This enables us to develop a new approach

to the distribution of step length in the approximation of the convolution

integral in the fractional differential operator.
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We do this in two ways which we have chosen to call the nested mesh

implementation and the fractal sum implementation respectively.

In the nested mesh implementation we use a set of nested meshes, similar

in concept to the nested subspaces of wavelets, to reduce the computation ef-

fort required to approximate the fractional derivative whilst accurately main-

taining its history. We show that this reduces the total cost of approximating

the fractional derivative to O(nlogn) with a set of weights of size O(1ogn).

This algorithm is simple to implement but this simplicity is achieved at the

cost of a slight truncation of the integral and a slight offset in the weights.

In the fractal sum implementation we correct the compromises made in

the nested mesh implementation by eliminating the truncation and the offset

of the weights. This increases the size of the set of weights to O( n) but

without losing the O(nlogn) cost of approximating the fractional derivative,

however it implementation requires a much more sophisticated computer pro-

gram.

Chapter11

We give a summary of an extension of fractional linear multistep methods

[16J to solving linear multiterm fractional differential equations.

Chapter 12

We show how the standard method used for solving high order ODE's as

a system of first order ODE's can by adapted to solve a linear multiterm

fractional differential equation and compare this with the approach given in

the previous chapter.
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Chapter 13

XVI

We make some final observations and indicate some future areas of research.



Chapter 1

Fractional Calculus: Its History

1.1 A Brief History of the Calculus

1.1.1 Ancient Greece

The first mention of mathematical ideas that a modern mathematician would

identify with the calculus are to be found in the work of Archimedes [9]. In his

method of exhaustion Archimedes developed a method for estimating areas

and volumes of regular geometric objects. In the method of exhaustion the

area or volume of a regular geometric is shown to be bounded by, what we

would regard as, upper and lower Riemann sums which converge to the same

limit.

An example of this is that we may estimate the area of a circle by con-

structing a regular polygon of n sides inside the circle, where the vertices of

the polygon lie on the circumference of the circle, and obtain a lower bound

for the area of the circle by calculating the area of the polygon by summing

the areas of the n isosceles triangles obtained by drawing a line from each

vertex of the polygon to the centre of the circle, similarly an upper bound

can be obtained by constructing a regular polygon outside the circle whose

1
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sides are tangent to the circumference of the circle.

Therefore we see that Archimedes' method of exhaustion is a precursor

of definite integration. Due to an inadequate theory of dynamics the Greeks

did not have a framework for developing the notion of a derivative.

1.1.2 Newton and Leibniz

With the invention of gunpowder, growing astronomical awareness through

the work of Copernicus and Kepler, and the increase of maritime trade it

became necessary that mathematicians develop methods for accurately de-

scribing and predicting the trajectories of moving objects, to facilitate the

accurate targeting of cannons and the prediction of tidal movement.

The differential calculus, as we know it, makes its first appearance in the

parallel works of Newton and Leibniz. This calculus is developed through the

use of infinitesimal quantities. The use of infinitesimal quantities continued

up to the time of Cauchy before being replaced with the rigorous {-o method

of Weierstrass. Using non-standard models of arithmetic Robinson [52] gave

a rigorous development of calculus using infinitesimals.

Developed to meet the needs of problems in dynamics, which can be

expressed as differential equations, the Newton Leibniz version of calculus

places primary significance on the operation of differentiation. Integration

theory then playing a secondary role of finding the indefinite integral of a

given function. This led to the indefinite integral being interpreted as the

anti-derivative, the definite integral taking a subsidiary role, the converse

of the early Greek model. Not until the work of Cauchy does the definite

integral regain primacy.
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1.1.3 Early History - Fractional Calculus

The fractional calculus arises out of a generalisation of the operations of

standard calculus. The first suggestion that mathematicians might enquire

into the existence of fractional differential operators was by Leibniz who

asked what kind of mathematics would statements such as D!, acting on a

function, imply [53].

Euler noted that the formula

dnxm m! m-n
dx» (m _ n)!x , (1.1)

could be generalised to

r(p + 1) v-«
r(p_Q+1)x. (1.2)

This expression interpolates fractional orders of the derivative between inte-

ger orders of the derivative but gives no mathematical rationale for so doing.

Laplace and Fourier suggested methods whereby their integral transforms

could be extended to provide a definition of a fractional derivative.

1.1.4 Abel and the Tautochrone

The solution to the tautochrone problem is reproduced from [45] in Appendix

A for ease of reference.

In the problem of the tautochrone we ask what is the shape of a curve C

such that the time taken for a frictionless bead to slide down it is independent

of the beads starting point, see figure A.I.

In his solution to the problem of the tautochrone Abel [1] was the first

person to give a mathematical formulation which would be understood as a
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fractional differential operator by later mathematicians. However the frac-

tional differential operator occurs as a mathematical technique not intention-

ally as part of the mathematical model describing the tautochrone problem.

1.1.5 Abel's Integral Equation and its Solution

When the square root in the denominator of the integral in the tautochrone

problem (A.7) is replaced by a root of power u, where 0 < J-t < 1, the resulting

equation is a known as Abel's integral equation (1.3).

it f(s)
( ) ds = 9 (t), 0 < t :::;,0 < J-t < 1.a t - s J.L

(1.3)

In theorem 1.1 the existence of a unique solution to Abel's integral equation

is established. Whilst fractional differential operators are not explicitly men-

tioned the techniques used in the proof of the theorem , in particular the use

of Fubini's theorem [53] to change the order of integration, are fundamental

in the development of the fractional calculus.

Theorem 1.1 ([37J, 73)

If g(t) is continuous in 0 < t :::;T and

where C =f. 0 and 0 < a < u, then the simple Abel equation has the solution

sin /-l7r d it g( s)
f(t) = ---d ( )1- ds,0 < t :::;T.

7r t a t-s J.L
(1.4)

This solution is continuous in 0 < t :::;T, and satisfies

f( ) - (C ()) r(l - a) j.L-a-l

t - + 0 1 r(l- /-l)r(/-l-a)t , (1.5)

as t ~ O. Furthermore, this solution is unique in the class of functions of

the form f(t) = t{3F(t), where f3 > -1 and F(t) is continuous.
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Proof Suppose Abel's integral equation (1.3) has a solution in the class

of functions stated then multiply (1.3) by (x - t)IJ.-1 and integrate from 0 to

x. Then

(X r f(8) dsdt = (X g(t) dt. (1.6)
lo lo (x - t)1-IJ.(t - 8)IJ. lo (x - t)1-IJ.

Since f(s) is assumed to be of the form sf3F(s), with f3 > -1 and F(s)

continuous, we can apply Fubini's theorem, Theorem 3.1, to (1.6) to obtain

lx IX dt lx g(t)8 ds = dt.o s (x - t)1-p.(t - s)p.f( ) 0 (x - t)1-IJ. (1. 7)

But

{X dt
ls (x - t)1-IJ.(t - s)IJ.

7r
sm J1,7r

(1.8)

Thus we have

_7r_ {X f(s)ds = (X g(t) dt.
sinJ1,7rlo lo (x - t)l-IJ.

Now when x --t 0 so also must t --t 0, therefore as x --t 0 we have

(1.9)

(X g(t) dt --t C {X dt
lo (x - t)l-p. lo (x - t)l-IJ.to

Cf(J1,)f(l - a) IJ.-O (1.10)
f(l+J1,-a)x.

Hence the integral can be differentiated everywhere except at x = O. The

results (1.4) and (1.5) then follow immediately. Existence is proved by sub-

stituting the expression for f(t) into Abel's equation and verifying that it

solves (1.3).
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1.1.6 The Fractional Integral

Credit for the first mathematically satisfactory formulation of a fractional

differential operator goes to Liouville [53]. Liouville considered defining frac-

tional differential operators in several different ways. These were integral

formulations, difference equations, and expansions in exponential functions.

We will rely primarily on integral formulation in our exposition.

The first person to use the Abel integral to define the fractional integral

was Riemann [51], who gives the same definition as we will use, namely:

F!t¢__ I_it ¢(s) d
- r(a) 0 (t - s)1-O s. (1.11)

Grunwald and Letnikov [53] defined a fractional derivative by means of a

fractional difference quotient

DQf( ) - 1· (LlhJ) (x)x - 1m h 'h~O 0
(1.12)

and Letnikov was able to show, with an appropriate interpretation of the frac-

tional difference, that this definition was equivalent to Riemann's definition

of the fractional integral.

Various alternative forms of fractional integrals and derivatives have been

proposed. In this thesis we are interested in calculating numerical approxi-

mations to the solutions of those fractional differential equations which occur

in mathematical models arising out of material science. For this reason we

limit our survey of fractional differential operators to the Riemann-Liouville

fractional integral and its extension to a Riemann-Liouville fractional deriva-

tive and the Caputo fractional derivative by combination with the operation

of integer order differentiation.



Chapter 2

Fractional Calculus: Some
Applications

2.1 Introduction

The application of the fractional calculus has two main branches mathemat-

ical and modelling.

In mathematical applications the fractional calculus is used to obtain the

solution to various kinds of integral equations. We give a very brief survey

of such applications since problems of this kind have been known for a long

time.

In modelling applications the fractional derivative of a function is used

to specify the rate of propagation of some aspect of an evolving system.

Usually how some parameter of the system varies in time. This is largely

a modern development and meeting the computational challenges that this

mathematical activity produces is the motivation behind the new results

presented in this thesis.

7
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2.2 Mathematical Applications

The fractional calculus can be used for the solution of dual integral equations

of the form

100 r2Q[1 + R(t)]w(t)JIl(xt)dt = F(x), 0 < c < 1

100 r2f3w(t)Jv(xt)dt = G(x), 1< x < 00,

where R(x), F(x) and G(x) are given functions and w(t) is an unknown one.

Equations of this form may occur in mixed boundary value problems in

mathematical physics when using the Hankel transform. Extensive examples

of the application of fractional calculus to the solution of integral equations

are given in [53].

Many special functions of mathematical analysis can by expressed in

terms of fractional integrals or derivatives of a smaller set of special functions

[46].

2.3 Modelling Applications

The fractional integral arises in a number of nineteenth century mathemat-

ical models. In these models a square root of the form (L - r) 1/2 occurs

somewhere in the formulation, or reformulation, of the problem. Here L is

a fixed distance and r varies between 0 and L. When this kind of formula-

tion can be expressed in terms of a fractional integral, its solution can then

be found by fractionally differentiating both sides of a relationship. An ex-

ample of this technique was given in the solution to the tautochrone. This

technique also occurs in such problems as Liouville's potential problem (on
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the relative attraction of two wires to a charged mass), and the weir notch

problem (where we require the shape of the notch in a dam such that the

rate of flow of water through the notch is a specified function of height) [45].

More recently fractional derivatives have been used to generalise stan-

dard differential equations and to produce new equations to model physical

processes not adequately described by models using integer order derivatives.

In the next three subsections we give examples of situations where fractional

differential equations, whose solutions we may wish to approximate, occur.

2.3.1 Linear Viscoelasticity

A material which exhibits elastic and viscous properties is called viscoelastic.

There are various standard models of viscoelastic materials. A brief review

of the basic elements of classical viscoelastic theory is given in Appendix B.

To construct a model of viscoelasticity springs (ideal elastic elements) and

dashpots (ideal viscous elements) are combined in series or parallel. Several

such elements may be further combined together, in a network, to produce

more sophisticated models.

In an ideal elastic element, or spring, the stress a(t) is proportional to

the strain K(t) thus

a(t) = mK(t). (2.1)

In an ideal viscous element, or dashpot, the stress is proportional to the rate

of extension thus
dK

a(t) = b dt (2.2)

The two simplest models of viscoelasticity are firstly the Voigt model, which

comprises a spring and dashpot in parallel, its stress strain relation is given
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by

(2.3)

where T", = b/m is called the retardation time, and secondly the Maxwell

model, which comprises a spring and dashpot in series, its stress strain rela-

tion is given by
da

a(t) + a dt = m/\,(t), (2.4)

where Tu = a is called the relaxation time.

More complicated models, which either add a spring in series to the Voigt

model or in parallel to the Maxwell model were introduced by Zener. Such

a model is referred to as a standard linear solid or S.L.S.. The stress strain

relationship for more complicated models of viscoelasticity take the form of

[
P d

k 1 [ q d
k 11+£; ak dtk a(t) = m +£; bk dtk /\'(t),

where p = q or p = q + 1.

(2.5)

Following experimental work, which exhibited power-law like creep as

opposed to exponential-law creep of the standard models of viscoelasticity,

Scott-Blair [54]proposed that the Newtonian dashpot be replaced by an ele-

rnent whose stress stain relationship is modelled by the fractional differential

equation

( )
_ bdO;/\'(t)at - .dtO;

Caputo and Mainardi [44]used this suggestion to generalise the S.L.S. model

(2.6)

to produce the fractional S.L.S. with stress-strain relationship
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The long term behaviour of solutions to equations of the form (2.7) exhibit

the same power-law characteristics as observed by Scott-Blair. This power-

law decay is slower than the exponential decay seen in such phenomena as

the half-life of radioactive isotopes. Processes exhibiting this power-law be-

haviour are sometimes referred to as ultraslow processes.

2.3.2 The Basset Force

Here we are concerned with the dynamics of a sphere immersed in an in-

compressible viscous fluid where the low Reynolds number limit is assumed

so that the Navier-Stokes equations describing the fluid motion may be lin-

earised. In this case we assume that the fluid is quiescent and that the sphere

begins to move under the action of gravity as may occur when a pea sinks in

a glass of creme de menthe. The equation of motion of the sphere can then

be expressed in the form

dV 1 [ o dO 1 1-=-- 1+70 - V+-Vs,dt C7f 0 dt» C7f
(2.8)

the fractional derivative arising out of the effects of viscous drag [44].

If the fractional derivative in (2.8) were absent we would obtain the clas-

sical Stokes solution

V(t) = Vs + (Yo - VS)e-t/CT" (2.9)

where C7e is the characteristic time of the motion, and Vs the final value of

the velocity. The solution to equation (2.8) exhibits the same convergence

as the classical Stokes solution this time with power-law rate convergence

instead of exponential convergence of the solution to equation (2.9).
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By the Basset equation we will mean a fractional differential equation of

the form

Dy + aDOy + by = I, ab =1= 0, 0 < Q < 1.

2.3.3 The Bagley- Torvik Equation

(2.10)

When modelling the motion of a rigid plate in a Newtonian fluid a fractional

differential equation of the form

D2y + aD1+0y + by = [, ab =1= 0, 0 < Q < 1, (2.11)

occurs [4]. By the Bagley-Torvik equation we will mean any fractional dif-

ferential equation of the form give by (2.11).



Chapter 3

Fractional Calculus: Modern
Theory

3.1 Motivation

In this chapter we give enough of the abstract theory of the fractional calculus

to understand the origin of its computational challenges. Our development

largely follows that found in [53].

We define fractional differential operators as they are understood in con-

temporary mathematics. The important difference between the Caputo and

Riemann-Liouville version of the fractional derivative is fully explained.

In this section Abel's equation supplies the inspiration for the definition

of the fractional integral operator. We begin with a number of definitions

and a reassessment of Abel's integral. This enables us to give the basic ideas

underlying the fractional calculus.

There are two ways in which the fractional calculus can be derived: firstly

there is the fractional integration and integer order differentiation approach

which we use here, and secondly there is a limit of the fractional difference ap-

proach, preferred by some authors particularly mathematical physicists [30].

13
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3.2 Fubini's Theorem and Special Functions

Fubini's theorem is frequently appealed to in the fractional calculus to jus-

tify changing the order of integration in a multiple integral. Several special

functions frequently occur in the study of the fractional calculus either in the

definition of fractional differential operators, in the evaluation of fractional

integrals, or as the solution to fractional differential equations.

3.2.1 Fubini's Theorem

The following Theorem, known as Fubini's Theorem, is used frequently in

the fractional calculus.

Theorem 3.1 ([53} 9)

Let 01 = [a, b], O2 = [c, d], -00 ::; a < b ::; 00, -00 ::; c < d ::; 00, and let

f(x, y) be a measurable function defined on 01 x O2. If at least one of the

integrals

{ dx { f(x, y)dy, { dy { f(x, y)dx, { f(x, y)dxdy, (3.1)i; 1n2 1n2 i: i;Xn2

is absolutely convergent then they coincide.

The case of Fubini's Theorem known as Dirchlet's formula is particularly

useful. In this case we have

[ dx [ f(x, y)dy =II f(x, y)dx, (3.2)

assuming one of the integrals is absolutely convergent.
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3.2.2 Special Functions

The gamma function occurs in the definition of fractional differential op-

erators and the beta function may occur in evaluating fractional integrals.

The Mittag-Leffler function and its generalisations occur as the solutions of

fractional differential equations.

Definition 3.1 ([53) 15}

The Euler integral of the second kind

r{z) = 100 xz-1e-Xdx, Re z > 0,

is called the gamma-function. The gamma-function is extended to the half-

(3.3)

plane Re ::; 0, z =1= 0, -1, ... , by analytic continuation of the integral. The

reduction formula

r{z) = zr{z), Re z > 0, (3.4)

is obtained from (3.3) through integration by parts. From (3.4) we can deduce

that

I'(a) r(z + n) Rez> -n,= z{z + 1) ... (z + n - 1)'
(3.5)

where n = 1,2, ... , and z =1= 0, -1, -2, ....

Definition 3.2 ([53) 17)

The Euler integral of the first kind

B{z, w) = 11e:' (I - t)W-1dt, Re z > 0, Re w > 0, (3.6)

is called the beta-function. The beta-function can also be written in terms of

gamma-functions

B( ) = r(z)r(w)
z,W I'(z + w)· (3.7)
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Definition 3.3 ([53) 21)

The Mittag-Leffler function is an entire function defined by the series

00 tk
Ea(t) =L r{ak + 1)' a > O.

k=O

(3.8)

In [2] the Laplace-transform of the Mittag-Leffier function Ea W') is shown

to be given by

(3.9)

Definition 3.4 ([53) 21)

The generalised Mittag-Leffler function is given by

00 tk
Ea,p(t) = {; r{ak + (3)' a > 0, (3 > O. (3.10)

We can regard the generalised Mittag-Leffler function as the fractional gen-

eralisation of the exponential function. It occurs as the solution to the au-

tonomous fractional differential equation.

Definition 3.5 ([25) 219)

00

E(al,,,.,an),b(t1, ... , tn) =L
k=O 'l+"+'n'l~O""'ln~O

Where
k!

(kj h, ... , In) = n~=l(!li)'
are the multinomial coefficients.

(3.12)

The multivariate Mittag-Leffler function occurs in the solution to multiterm

fractional differential equations.
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3.3 Abel's Integral Equation

Definition 3.6 ([53] 29)

In this section we define Abel's equation as

1 (X cp(t)
r(Q) 10 (x _ t)1-a = f(x), x > 0, (3.13)

where 0 < a < 1.

The factor l/r(Q) is introduced so that fractional differential operators

produce the same results, when a E Il, as the classical operations of integra-

tion and differentiation.

To solve the equation (3.13) [53] now takes the following approach: let

a > -00 and suppose the equation is considered on the finite interval [a, b].

Substitute s for t and t for x and multiply both sides of the equation by

(x - t) -a and then integrating we have

ix dt it cp(s) ix f(t)ds = r a dt.
a (x - t)a a (t - s)1-a ( ) a (x - t)a (3.14)

Interchanging the order of integration in the left-hand side, by means of

Dirchlet's formula, we arrive at

ix ix dt ix f(t)cp(s)ds ( ) ( )1 = r(Q) ( ) dt.a a X - tal - s -a a X - t a
(3.15)

The inner integral can be evaluated with the change of variable t = s+r(x-s)

and an application of the Beta function thus:

lX

(x - t)-a(t - s)a-1dt 11ra-1 (1 - r)-adr

- B(Q,l - Q)

r(Q)r(l - a). (3.16)
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Therefore

Ix 1 IX f(t)
a ¢(s)ds = f(1- ex) a (X _ t)Qdt. (3.17)

Which after differentiation gives

_ 1 d IX f(t) d
¢(x) - f(l _ ex) dx a (X _ t)Q t. (3.18)

We conclude that if Abel's equation has a solution it is necessarily given by

the above and is unique.

3.3.1 Absolute Continuity

The concept of absolute continuity is fundamental to determining the classes

of functions that have fractional integrals and derivatives.

Definition 3.7 ([53} 2)

A real valued function f defined on [a, b] is said to be absolutely continuous

on [a, b] if for every e > 0 there exists a 8 > 0 such that for every n disjoint

open subintervals (ak' bk) of [a, b], n = 1,2, ...

n n

I)bk - ak) < 8 -+ L If(bk - f(ak)1 < €. (3.19)
k=l k=l

The space of such functions is denoted AC([a, b]).

It is known [34] that the space of functions AC(O) coincides with the space

of primitives of Lebesgue sum mabie functions:

f(x) E AC {:} f(x) = c + lx ¢(t)dt, lb I¢(t) Idt < 00. (3.20)

Therefore absolutely continuous functions have a summable derivative J'(x)

a.e ..
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Definition 3.8 ([53) 3}

We denote by Acn(o), where n = 1,2, ... and 0 is an interval, the space

of functions f(x) which have continuous derivatives up to order n - 1 on 0

with fen-I) E AC(O).

3.3.2 The Solvability of the Abel Equation in £1 [a, b)

In this subsection we present a theorem which provides more information

about the conditions we must place on f such that Abel's equation is solvable.

First we observe that if

1 re f(t)
fl-a(x) = r(l _a) la (x _ t)a dt,

then if we integrate over [a, b] and change the order of integration we obtain

rb 1 rbla 1!I-a(x)ldx::; r(2 _ a) la If(t)l(b - t)l-adt.

Therefore f(x) E Ll(a,b) implies h-a(x) E Ll(a,b) as well.

Theorem 3.2 ([53) 31}

Abel's integral equation for a E [0,1] is solvable in Ll(a, b) if and only if

fl-a E AC([a, b]) and h-a(a) = O. (3.21)

Absolute continuity is an essential assumption since it is known that there

are non-constant continuous functions which have zero derivative a.e ..

Lemma 3.1 ([53) 32}

If f(x) E AC([a, b]), then !I-a E AC([a, b]) and

t.: = r(2 ~ a) [f(a)(x - a)l-a +lx !,(t)(x - t)l-adtj.
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The next Corollary gives the form of the solution to Abel's integral equa-

tion.

Corollary 3.1 ([53) 32}

If f(x) E AC([a, bD, then Abel's equation with ° < a < 1 is solvable in

L1 (a, b) and its solution may be represented in the form

¢ x = 1 [f(a) + (X 1'(s) dS]
() r(l - a) (x - a)a la (x - s)a .

3.4 Fractional Integrals and Derivatives

An n-fold integral can be written as

{X {X {X 1 {X
la dx la dx ... la ¢(t)dt = (n _ I)! la (x - tt-1¢(t)dt. (3.22)

This formulation is generalised in the definition of the fractional integral.

Definition 3.9 ([53) 33)

Let ¢ E £1 (a, b) . The integrals

a 1 (X ¢(t)
(Ia+¢) = r(a) la (x _ t)1-adt, x » a, (3.23)

and aIr ¢(t)
(Ib-¢) = r(a) lx (x _ t)1-a dt, X < b, (3.24)

where a > 0, are called fractional integrals of order a. These integrals are

known as the Riemann-Liouville fractional integrals.

The next theorem shows that fractional integral operators form a semi-

group.
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Theorem 3.3 ([53]34)

Fractional integration has the property

Jar all points Jar ¢(t) E C([a, bj and iJ ¢ E Ll (a, b) then Jar all points iJ

a + f3 ~ 1 and almost every point otherwise.

We now give two definitions of the fractional derivative: firstly the Riemann-

Liouville fractional derivative, and secondly the Caputo fractional derivative.

Definition 3.10 ({53)33)

For Junctions J(x) given in the interval [a, b] with 0 < a < 1, the left-handed

Riemann-Liouville fractional derivative, of order a, is given by

a 1 d lx
J(t)

(Da+J) (x) = I'(I _ a) dx a (t _ x)adt,

and the right-handed Riemann-Liouville fractional derivative, of order a, is

given by

aId r J(t)
(Db_J) (x) = r(1_ a) dx Jx (t _ x)a dt.

In the Caputo fractional derivative the order of the fractional integration

and differentiation is reversed

Definition 3.11 ([11]530)

For functions J(x) given in the interval [a,bj with 0 < a < 1, the left-handed

Caputo fractional derivative, of order a, is given by

1 lx J'(t)
(D~+J)(x) = r(1_ a) a (t _ x)adt,
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and the right-handed Caputo fractional derivative, of order a, is given by

Q 1 Ib f'(t)
(Db_J) (x) = r( ) ( ) dt.I-a x t-xCi

We will be in approximating the solutions of fractional differential equa-

tions defined on an interval [0, t] therefore we will be using the left-handed

versions of the Riemann-Liouville and the Caputo fractional derivative with

a = 0.

The next theorem shows how the two derivatives are related.

Theorem 3.4 ([25} 220)

Let fELl (0,00) and be m-time continuously differentiable for some m E

N and let m-I < J-l < m. Then the Riemann-Liouville and the Caputo

fractional derivatives are connected by the relation:

(3.26)

Where the fractional derivative on the left hand side of equation (3.26) is

understood to be a Riemann-Liouville fractional derivative and the fractional

derivative on the right hand side is understood to be a Caputo fractional

derivative.

Historical Note

The Riemann-Liouville fractional derivative has historical precedent over the

Caputo fractional derivative and it is the fractional derivative used in the first

definitions of fractional differential equations and in the attendant existence

and uniqueness theory. Unless otherwise stated fractional derivatives in this

chapter should be understood in the Riemann-Liouville sense. However the
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use of the Riemann-Liouville fractional derivative limits the practical appli-

cation of fractional differential equations to models with either homogenous

initial conditions, i.e. 1(0) = 0, ... , 1(m) = 0, to eliminate singularities at

t = 0, or to initial conditions specified in terms of fractional integrals, which

lack a physical interpretation. Clearly this is an undesirable feature from the

perspective of the mathematical modeller.

Following the spirit of Hadamard [26] 'The question, as set by most appli-

cations, does not consist in finding any solution of the differential equation,

but in choosing, amongst all those possible solutions, a particular one defined

by properly given accessory conditions.' we are led to consider the ambiguity

in the expression offractional differential equations,which has no consequence

in the classical case but is of the greatest moment in the fractional theory,

arrising from the alternative sets of starting conditions.

The Caputo fractional derivative is better suited to the purposes of the

mathematical modeller and therefore in subsequent chapters we will develop

our numerical methods for approximating the solutions of fractional differ-

ential equations exclusively for fractional differential equations based on the

Caputo fractional derivative.

The next lemma establishes a useful property of the Caputo fractional

derivative at t = 0.

Lemma 3.2 ([21] 102)

Let y E Ck[O, t] for some kEN, and let a fJ. N such that ° < a < k. Then

for the Caputo fractional derivative we have

(3.27)
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The next lemma gives us more information on the difference between the

Riemann-Liouville fractional derivative and the Caputo fractional derivative.

Lemma 3.3 ([53) 35}

Let f(x) E AC([a, bD, then D~+f and D'b_f exist a.e. for 0 < a < 1.

Moreover D~+f, D'b_f E Lr(a, b), 1~ r < 11a and we have

ir: f _ 1 [f(a) (X f'(t) -
a+ - r(l - a) (x - a)a + la (x - t)a '

ir: f - 1 [f(b) t f'(t) dt]
b- - r(1 - a) (b - x) a + 1X (x - t) a .

(3.28)

(3.29)

We see that for the Riemann-Liouville fractional derivative the function

(x - a)a-l plays the same role as the constant function does for the ordinary

derivative and for the Caputo fractional derivative.

This is because both the ordinary derivative and the Caputo derivative,

irrespective of its order, map constant functions on to o. The Riemann-

Liouville derivative of order a maps functions of the form cxa-1 on to o.
The next set of definitions extends the range of Q, the order of the frac-

tional derivative, to all Q > o.

Definition 3.12 ([53) 37)

Leta = a-la], then/ora> 1, the Riemann-Liouville fractional derivative 28

defined by

D" / = (!!...)[a1D{a}/ = (!!...)[a1/1-{a}fa+ dx a+ dx a+ , (3.30)

and

D" / = (!!___)[a1D{a}/ = (!!___)[a1/1-{a}fa+ dx a+ dx a+ , (3.31)
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So, equivalently

DO: f 1 ( d )n (X f(t) d [ ]
a+ = r(n _ a) dn la (x _ t)o:-n+1 t, n = a + 1, (3.32)

DO: f 1 ( d )n t f (t) d [ ]
b- = I'(n _ a) dn lx (x _ t)o:-n+l t, n = a + l.

For the Caputo fractional derivative we have

(3.33)

0: 1 lx f(n)(t)
Da+f = r( ) ( ) dt, n = [a] + 1,n-a a x-to:

(3.34)

0: 1 lb f(n){t)
Db-f = ( ) ( ) dt, n = [a] + l.rn-a x x-to: (3.35)

The next lemma gives the form an absolutely continuous function must

take for a given level of differentiability.

Lemma 3.4 ([53) 39)

The space ACn([a, bJ) consists of those and only those functions f(x), which

are represented in the form

x n-l

f(x) = ( ~ )' { (x - tt-l¢(t)dt +LCk{X - a)k (3.36)
n 1. I, k=O

where ¢(t) E Ll(a, b), Ck being arbitrary constants.

This follows from the definition of the space ACn([a, bJ) and from (3.20) and

(3.22).

Theorem 3.5 ([53) 39)

Let Rea ~ 0 and f(x) E ACn([a, bj), n = [Rea] + 1. Then D~+f exists a.e.

and may be represented in the form

n-l f(k)(a) 1 jX f(n)(t)
D~+f = f; f(l + k - a) (x - a)k-O: + f(n _ a) a (x _ t)o:-n+l dt (3.37)
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Lemma 3.5 ([53] 40)

Let ¢(t) E L1(a, b). The homogeneous Abel integral equation 1::+¢ = 0 has

only the trivial solution ¢(x) _ 0 a.e. for all 0:, Reo: > O.

3.5 Fractional Integration and Differentiation
as Reciprocal Operators

As we have already seen the Riemann-Liouville fractional derivative and the

Caputo fractional derivative differ simply in the order in which fractional

integration and ordinary differentiation occur but that this results in a sig-

nificant difference in their properties. In this section we explore more fully

the combination properties of fractional differential operators.

Definition 3.13 ([53] 43)

Let 1::+(V), Reo: > 0, denote the space of functions f(x), represented by the

left-side fractional integral of order 0: of a summable function: f = 1::+¢, ¢ E

LP, 1:::; P < 00.

Theorem 3.6 ((53] 43)

For f(x) E 1::+(L1), Reo: > 0, it is necessary and sufficient that

(3.38)

where n = Re 0: + 1 and that

f~k_}_o(a) = 0, k = 0,1,2, ... ,n - 1. (3.39)

Definition 3.14 ([53] 44)
Let Re 0: > O. A function f (x) ELI (a, b) is said to have a summable frac-

tional derivative D~+, if 1:;0f E ACn ([a, bJ), n = [Re 0:1+ 1.
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In the next theorem we determine the consequences of altering the order

of fractional differential operators.

Theorem 3.7 {[53} 44)

Let Re a > O. Then the equality

(3.40)

is valid for any summable function ¢(x) while

(3.41)

is satisfied for

(3.42)

If we assume that instead of (3.42) a function f(x) E Ll(a, b) has a summable

derivative D~+, in the sense of definition 3.14, then {3.41} is not true in

general and must be replaced by the result

t: o: f = f( ) _ ~ (x - a)a.-k-l j(n-k-l)( )
a+ a+ X L- r(a _ k) n= o a ,

k=O
(3.43)

where n = [Re a] + 1 and fn-a.(x) = I:.+a.f. In particular we have

i: tr: f = f( ) _ fl-a.(a) ( _ )a.-l
a+ a+ X r (a) x a , (3.44)

for 0 < Re a < 1.

Corollary 3.2 {[53}46}

The following analogue of Taylor's Theorem

f(x) ~ ;~n ifa~::~al) (x - a)n+; + R,.(x), Rea > 0, (3.45)

is valid, where Rn(x) = ozro:: f)(x) and f(x) is assumed to have a

summable derivative D~taf in the sense of definition 3.14.
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Equation (3.45) is a reformulation of the property given in equation (3.43).

Corollary 3.3 ([53)46)

The formula

lb f(x)(D~+g)(x)dx = lb g(x)(Db_f)(x)dx, 0 < Rea < 1, (3.46)

is valid under the assumption that f(x) E It:- (LP), g(x) E I::r (Lq), p-l+q-l :::;

1+0.

3.6 The Laplace Transform and Fractional Dif-
ferential Operators

The Laplace transform is a useful tool for solving some classes of integro-

differential equations. The Laplace transform has a particularly useful prop-

erty with respect to convolution integrals. The fractional differential opera-

tors we have defined are examples of convolution integrals. Indeed as we will

see later one method for obtaining an approximate solution to a fractional

differential equation is derived by means of Laplace transform theory.

We review some well known but important properties of the Laplace

transform here.

Definition 3.15 ([53)27)

Let f be a function defined on the interval (0,00) if the integral

exists for some sEC where Re s > 0 then C{fHs) = l(s) is called the

Laplace transform of f.
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Theorem 3.8 ([53] 27)

Let f be a function defined on [0, (0) then if its Laplace transform J exists

then

- 1 11+ioo -f(x) = C-1{f(s)}(x) = -. e'" f(s)ds, "I = Re s > so.
27rZ 1-ioo

(3.47)

As an example of the Laplace transform in action the Laplace transform

of a power function is

Theorem 3.9 ([53] 28)

Let f E en [0,(0) then the Laplace transform of fen) is given by

n-l

C{f(n)}(s) = sn.c{f} - Lpn-k-l fk(O).
k=O

(3.48)

Let the convolution integral be represented by

f * g = lx f(x - t)g(t)dt.

Theorem 3.10 ([53] 28)

The Laplace transform has the following convolution properly

.c{f * g}(s) = C{f}(s)C{g}(s) = jg. (3.49)

We can write the fractional integral as a convolution of the form

1 lx f(t) 1 1
ID-tf(x) = f(Q) 0 (x _ t)l-adt = f(Q) (x1-a * f(x)),

where Re Q > O. Thus we can write the Laplace transform of the fractional

integral Io+f as

.c{Ig f}(s) = 2_C{f}(s) = J.sa sa



CHAPTER 3. FRACTIONAL CALCULUS: MODERN THEORY 30

This enables us to write the fractional integral in terms of the Laplace trans-

form operator and its inverse

(3.50)

The next theorem shows how the generalised Mittag-Leffler function,

given in definition 3.3, occurs as the inverse Laplace transform of a simple

algebraic expression.

Theorem 3.11 ([53] 21)

(3.51)

3.7 Fractional Differential Equations

In this section we use the Caputo fractional derivative exclusively.

Definition 3.16 ((53] 829)

The most general form of a fractional differential equation is an initial value

problem of the form

F(t, y(t), DOly(t), D0
2y(t), ... , DOny(t)) = g(t), (3.52)

where y(t) is an unknown function and 0 < al < ... < am and y(k)(O) = y~k)

for k = 0, ... , n - 1.

For the purpose of this thesis we restrict ourselves to the two subclasses,

simple non-linear fractional differential equations, given in definition 3.17,

and the linear multiterm fractional differential equations, given in definition

3.18, since both these classes have a well-developed theory.



CHAPTER 3. FRACTIONAL CALCULUS: MODERN THEORY 31

Definition 3.17 ([20},1)

By a simple non-linear fractional differential equation we mean an initial

values problem of the form

DQy(t) = f(t, y(t)), (3.53)

where n - 1 < a < n for some n E N, where y(k)(O) y~k) for k =

0,1, ... ,m-I.

Definition 3.18 ([25} 220)

Let ° ::;(Jo < ... < (Jr < (Jr+l < ... < (Jp, where for each i, m, - 1< (3i ::; m;

with m; a non-negative integer, and let c, E lR and for convenience cp = 1. By

a multiterm fractional differential equation we mean an initial value problem

of the form
pL csDf3·y = i. y(i)(O) = y~i)for i = 0, ... ,mp - 1 (3.54)

s=o
where t e i: [0,00) and if (Jp is not an integer f has a continuous derivative.

The simplest form of fractional differential equation is the autonomous

fractional differential equation

DQy = -(3y + f, y(O) = yo· (3.55)

The next theorem gives the form of the solution to the initial value prob-

lem given in definition 3.18.

Theorem 3.12 ([25} 220)

The initial value problem given in definition 3.18 has a unique solution in

the space of functions £1 [0,00) n Cm[O, 00) of the form
mp-l

y(t) = Yf(t) + L y~k)Uk(t), t ~ 0,
k=O

(3.56)
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where the function y f has the Jorm

(3.57)

this being the solution to the initial value problem given in 3.18 for y(O) =

... = y(mp-l)(o) = 0, and the system oj functions

tk n
Uk(t) = k! - l: Cjtk+{3P-{3i Ek+1+{3P-{3i (t), k = 0, ... ,mp - 1, (3.58)

i=lk+1

fulfils the initial conditions u~l)= 6k1 Jar k = 0, ... ,mp-1 and I = 0, ... ,mp-

1.

The function

is a particular case of the multivariate Mittag-Leffler function and the natural

numbers lk' k = 0, ... ,mp - 1 are determined from the condition

mlk ~ k + 1,
mlk + 1~ k.

In the case tri, ~ k for i = 0, ... ,mp - 1, we let lk = 0, and iJ m, ~ k + 1 for

i = 0, ... ,mp - 1, we let lk = P - 1.

The next theorem establishes conditions for the simple non-linear frac-

tional differential equation to have a unique solution.

Theorem 3.13 ([20), 2)

Assume that'D = [0, T"] x [y(O) - T, y(O) + T] Jar some T" > ° and some

T > 0, and let the function f : 'D ~ R be continuous in both variables,

and let T = min{T*, (Tr(a + 1)/llflloo)~}. Then there exists a function

y : [0, T] ~ R solving the initial value problem given in definition 3.17.
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The next theorem establishes conditions for the function y in Theorem

3.13 to be unique.

Theorem 3.14 ([20j, 3)

Let V, T' and T be as before. Let the function f : V ----t lR be bounded on

V, continuous in the first variable and satisfy a Lipschitz condition in the

second variable, with Lipschitz constant L > 0,

If(x, y) - f(x, z)1 ~ Lly - z]

independent of x, y, and z.

3.7.1 Dependence on Parameters

The dependence of the analytic solution, to the simple non-linear equation,

to small perturbations of the parameters a, the initial conditions y~k) for

i = 0, ... , m - 1, and the function L, in the Loo norm, is considered in [20].

We give one of the theorems from [20] to make the nature of this result

clear. We choose to quote the theorem which deals with small perturbations

in the order of the fractional derivative.

Theorem 3.15 ([20J)

Assuming the condition of theorem 3.14 and let 6 > 0 be such that m - 1 <

a - 6 < a < m. Assume that y and z are the uniquely determined solutions

of the initial value problems

DOy(t) = f(t, y(t)), y(O) = y~O), ... ,y(m-l) (0) = y~m-l), (3.59)

and

DOz(t) = f(t, z(t)), z(O) = z~O), ... , z(m-l)(o) = z~m-l), (3.60)
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respectively. Then we have the relation

Ily - zlloo = 0(6), (3.61)

over any compact interval where both y and z exist.

The theorems relating to small perturbations of the initial conditions or

the function f have the same format and reach the same conclusion, i.e. that

the perturbation has linear consequences.

From this we concluded that fractional differential equations have unique

solutions which are analytically well behaved and that the development of

methods for obtaining numerical approximations to their solutions should be

a feasible task for the computational mathematician given that such methods

exist for ordinary differential equations.



Chapter 4

Approximate Solution of ODE's

4.1 Motivation

In this chapter we present some well established theory on the approxima-

tion of the solution of ordinary differential equations, our exposition largely

follows that given in [32]and [36].

We start by defining various kinds of stability that a numerical method

for approximating the solution of an ordinary differential equation may pos-

sess. We consider what implications the stiffness of a system of differential

equations may have for the choice of a particular numerical method.

We then consider two classes of methods used for approximating the solu-

tions of ordinary differential equations, these being linear multistep methods

(LMM) and Runge-Kutta methods (RK). Methods for approximating the so-

lution of a fractional differential equation have been derived from both LMM

methods and RK methods.

In each case only a subclass of the methods used for ordinary differential

equations can be used to approximate the solution of fractional differential

equations. This is because of the intrinsic stiffness of fractional differential

35
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equations.

4.2 General Concepts

We are interested in approximating solutions to ordinary differential equa-

tions of the form

Y' = f(t, y), t ~ to, y(to) = Yo· (4.1)

We assume f satisfies a Lipschitz condition in y since this is sufficient to

guarantee the existence of a unique solution y to (4.1).

The numerical methods for approximating the solution of ordinary differ-

ential equations that we consider can all be written in the form

k

LCtjYn+j = h¢,(Yn+k,"" Yn, t-; h).
j=O

(4.2)

We assume that the functional ¢, satisfies a Lipschitz condition in y and

that if f - 0 then ¢, == 0, [36].

4.2.1 Stability

A necessary requirement of any numerical method is that it should converge

to the true solution in a reasonable way. In this section we give some defini-

tions that a method must satisfy to be usable.

Definition 4.1 ({32J 5)

A method is said to be convergent if for everyOnE of the form of equation

(4,1) and every t > 0

lim max II Yn,h - y{tn) 11= 0 tn = nh.
h--+O n=o,l, ... ,k
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Definition 4.2 ([32) 7}

A time-stepping method of the form

Yn+l = YnU,h,YO,Yl, .. ·,Yn), n = 1,2,3, ... , (4.3)

is said to be of order p if

Definition 4.3 ([36) 27}

A method is said to be consistent if, for all initial value problems of the form

(4.1), the residual Rn+k given by
k

Rn+k =L ajy(tn+j) - h¢>/(y(tn+k), ... , y(tn), tn, h) (4.5)
j=O

satisfies

lim -hI Rn+k = O.
h-+O

x=to+nh

(4.6)

By a perturbation of the initial value problem (4.1) we mean (8t,8yo)

such that

z' = f(t, z) + 8t, z(to) = Yo + 8yo· (4.7)

Definition 4.4 ([36) 31}

Let (M,8yo) and (8t*, 8yo) be any two perturbation of (4.1) and let z and z*

be the resulting solutions. If there exists S > 0 such that for all t* E [to, tJ,

and all e > 0

Iz(t*) - z*(t*)1 < Sf (4.8)

whenever

1M - 8t*1 :S f and 18 - 8*1 :S e, (4.9)

then the initial value problem (4.1) is said to be totally stable.
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Definition 4.5 ([36) 32}

Let {on' n = 0,1, ... , N} and {o~, n = 0,1, ... ,N} be any two perturbations

of (4.1), and let {zn' n = 0,1, ... ,N} and {z*n, ti = 0,1, ... , N} be the

38

resulting perturbed solutions. Then iJ there exist constants S > 0 and ho > 0

such that for all h E (0, hol and for all f > 0

IZn - z~I < Sf, 0 < n :::;N (4.10)

whenever

IOn - O~ I :::; e, ° :::;n :::;N

we say that the method (4.2) is zero-stable.

(4.11)

Definition 4.6 ([32) 24)

A polynomial p(t) satisfies the root condition iJ all the roots of p lie in the

closed unit disc in C and those on the boundary oj the unit disc are simple.

Definition 4.7 ([36) 13)

A polynomial p(t) is a Schur polynomial iff all the roots oj p lie in the closed

unit disc in C.

Theorem 4.1 ([36) 35}

A necessary and sufficient condition for the method given by (4.2) to be zero

stable is that it satisfies the root condition.

Theorem 4.2 ([36) 36}

A necessary and sufficient condition Jor the method given by (4.2) to be con-

vergent is that it be both consistent and zero stable.
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4.2.2 Stiffness

Stiffness is a property that affects systems of ordinary differential equations

which can lead to a rapid divergence between the approximate solution and

the true solution. It is likely to occur if the system of ordinary differential

equations models processes with vastly different rates of evolution, [32J. A

long discussion in [36Jconcludes that stiffness is difficult to give an exact

definition to.

Ifwe consider a process such as viscoelasticity, which fractional differential

equations may be used to model, we can see that two different physical

processes with different time scales are involved; elasticity being a fast process

and viscosity being a slow process. The Mittag-Leffler functions, which

are the fractional counterpart of the exponential function, exhibit an initial

transient which decays faster than any exponential function together with

a tail which decays slower than any exponential function, i.e. we have a

situation which exhibits vastly different rates of time evolution. Therefore

we can only expect numerical methods for ordinary differential equations

which work well with stiff systems to be candidate methods for generalising

to numerical methods for fractional differential equations.

4.3 Linear Multistep Methods

Definition 4.8 ([36) 45)

An s-step linear multistep method (LMM), for approximating the solution of

an ordinary differential equation, is a relationship of the form
8 8

I: (}jYn+j =hI:!3jfn+il
j=O j=O

{4.12}
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where as = 1 and a5 + /3'5 #- O. When bs = 0 the method is said to be explicit

otherwise it is said to be implicit.

Definition 4.9 ([36)45)

We define the first and second characteristic polynomials p and a of a LMM

to be
s s

p(w) =L amwm and a(w) = L bmwm. (4.13)
m=O m=O

4.3.1 A-stability of LMM

In treating the A-stability of a given LMM we consider how it performs on

the vector valued test system

y' = Ay, y(O) = Yo, (4.14)

where the eigenvalues of A Ai, i = 1,2, ... ,rn, satisfy the condition

and for all i, Ai = Aj -+ i = j.

Then for the general solution of equation (4.14) we have ly(t)1 -+ 0 as

t -+ 00. For a linear multistep method we must certainly require that the

approximate solution has the property that Yn -+ 0 as n -+ 00.

If we apply the LMM

k k

LajYn+j = h L!3jfn+j
j=O j=O

(4.15)

to (4.14) we have for {Yn} the difference system

k

L(ajI - h/3jA)Yn+j = O.
j=O

(4.16)
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Assume, without loss of generality, that A is diagonal, perhaps with conjugate

complex elements, then we can rewrite the above as a set of tri independent

equations
k

L(aj - (3jA.t)tYn+j = 0, t = 1,2, ... ,m,
j=O

where Yn = ( 1yn, "v«, ... , myn). The general solution of each of the difference

(4.17)

equations takes the form

m

tYn = L Ctsr~, t = 1,2, ... ,m,
s=1

{4.18}

where the Cts are arbitrary complex numbers and rs, s = 1,2, ... ,rn are the

distinct roots of the characteristic polynomials

k

I)aj - h(3jA.t)rj.
j=O

(4.19)

These polynomials can be written in terms of the characteristic polynomials

a and p of the LMM

7I"(r,A.th) = p(r) - hA.ta(r), t = 1,2, ... , rn. (4.20)

The polynomial 71"( r, A.th) is called the stability polynomial of the method.

The LMM will have the required convergence if all the roots rs, s = 1,2, ... , k

satisfy Irsl < 1.

Definition 4.10 ([36) 70)

A LMM is absolutely stable for A.th if all the roots of the stability polynomial

satisfy Irsl < 1, s = 1,2, ... , k and absolutely unstable for A.th otherwise.

Definition 4.11 ([36) 70)

A LMM is said to have a region of absolute stability RA, where RA C C,
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and for all a E RA ~ Re a < 0, if it is stable for all Ath E RA. The segment

of the negative real axis given by RA n lR is called the interval of absolute

stability.

4.3.2 Adam's Methods

We now consider a class of methods called Adams type methods. By an

Adams type method we mean a LMM where

(4.21)

When an Adams type method has the maximum possible accuracy it is

known as an Adams-Bashforth method if it is explicit and an Adams-Moulton

method if it is implicit.

To derive Adams type methods we integrate (4.1) over the interval [tn+s-l, tn+s].

Then by the fundamental theorem of calculus we have

t: t:y(tn+s) = y(tn+s-d + tn+s-l y'(t)dt = y(tn+8-1) + t
n
+

8

-1 f(t, y(t))dt. (4.22)

We now approximate the integral by interpolating for f with a polynomial

approximation based on previously calculated values of the solution. Let

8-1
p(t) = L Pm(t)f(tn+m, Yn+m),

m=O

(4.23)

where the Lagrange interpolation polynomials

s-1 ( )8 1 m 8-1
Pm(t) = II t - tn+l = -1 - - IT(t - tn -I), (4.24)

1=0 tn+m - tn+l m!(s - 1- m)! 1=0 h
l'Fm I#m

are chosen such that

Pm(t) = 1 for t = tn+m
Pm(t) = 0 for t E {tn, ... , tn+8-1} - {tn+m}.

(4.25)
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Clearly p is the unique polynomial of degree s which has this property

because of the number of constraints.

Theorem 4.3 ([32]362)

Suppose that fl = f((I), l = 0, 1, ... ,1/, where f is a 1/+ 1 times differentiable

function. Let a = minO,I,...,v (i and b = maXO,I,....u (i' Then for every x E [a, bJ

there exists 'T}= 'T}(x) E [a, bJ such that

1 v

p(x) - f(x) = (1/+ 1)!r+1('T}) g(x - (k). (4.26)

By Theorem 4.3 if f is s + 1 times differentiable for h sufficiently small

we have

Substituting (4.23) in (4.3), replacingy(tn+s-1) by Yn+s-l, and integrating

along an interval oflength h incurs an error of O(hs+l). Therefore the method
s-1

Yn+8 = Yn+s-l + hL bmf(tn+m, Yt+m)
m=O

(4.27)

where

t: lhbm = h-1 Pm(t)dt = h-1 Pm(t + tn+s-ddt, m = 0,1, ... , (4.28)
tn+s-l 0

is of order 8. For 8 = 1 this reduces to the Euler method.

4.3.3 Order and Convergence of LMM

Let the general s-step method be written in the form
s s

L amYn+m = hL bmf(tn+m, Yn+m), n = 0,1, ... ,
m=O m=O

(4.29)

where am, bm, m = 0,1, ... ,8, are given constants independent of h, nand

the underlying differential equation. We will take as = 1.
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Theorem 4.4 ([32) 22)

Let y be analytic and its radius of convergence exceed sh then the multistep

method (4.29) is of order p ~ 1 if and only if there exists c ~ 0 such that

44

p(w) - a(w) lnw = c(w - l)P+l + O(lw - IIp+2), w -+ 1. (4.30)

Theorem 4.5 Dahlquist's equivalence theorem ([32) 24)

Suppose that the error in the starting values Yl, Y2, ... ,Ys-l tends to zero as

h -+ 0+. The multistep method (4.30) is convergent iff it is of order p ~ 1

and the polynomial p is Schur.

The next theorem is known as The First Dahlquist Barrier. It establishes

the maximum order possible for a LMM which also possesses zero-stability.

Theorem 4.6 ([36) 55)

No zero-stable linear k-step method can have order exceeding k + 1 when k is

odd and k + 2 when k is even.

To further describe the properties of LMM we need some more definitions

concerning stability.

Definition 4.12 ([36) 224)

A method is said to be A-stable if'RA :2 {Athl ReAth < o}.

Definition 4.13 ([36) 225)

A method is said to be A(a)-stable if for some 0(0,71'/2) we have 'RA ::)

{Athl - a < 71'- Ath < a}.

Definition 4.14 ([36) 225)

A method is said to be Ao-stable if'RA :2 {Athl ReAth < 0 ImAth = o},
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The next theorem is known as The Second Dahlquist Barrier. It estab-

lishes the maximum order possible for a LMM which also possesses absolute

stability.

Theorem 4.7 ([36} 233)

(i) An explicit LMM cannot be A-stable.

(ii) The order oj an A-stable LMM cannot exceed 2.

(iii) The second order A-stable linear multistep method with smallest error

constant is the Trapezoidal Rule.

4.3.4 Backward Differentiation Formulae

The backward differentiation formulae (BDF) are the best known LMM that

can be developed into fractional linear multistep methods.

Definition 4.15 ({32} 27)

An s-order, s-step method is said to be a BDF iJ a(w)

,B E lR - {O}.

,BwS Jar some

Lemma 4.1 ([32} 27)

For a BDF we have

4.4 Runge-Kutta Methods

We can rewrite the differential system

y' = J(t), t 2: to, y(to) = Yo (4.32)
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k a6 a5 a4 a3 a2 a1 ao (3k p
1 1 -1 1 1

2 1 4 1 2 2-3 3 3

3 1 18 9 2 6 3
U U 11 B4 1 48 3 4-25 25 25 25 25

5 1 300 300 200 75 12 60 5-137 137 -137 137 -137 137

6 1 360 450 400 225 72 10 60 6-147 147 -147 147 -147 147 147

Table 4.1: Coefficients of the BDF

in integral form

y(t) = Yo + it f(t)dt, (4.33)
to

and obtain an approximate solution by applying a quadrature method to

estimate the integral on the right hand side of equation (4.33). In Runge-

Kutta methods we apply this methodology to systems of the form

yt = f(t, y), t ~ to, y(to) = Yo. (4.34)

A weight function is a nonnegative function w defined on the interval

(a, b), such that

o < lb w(t)dt < 00, 10 < lb tiw(t)dt 1<00, j = 1,2,.... (4.35)

We make the approximation

(4.36)

where b, and Ci are independent of the function f and are called the quadra-

ture weights and nodes respectively.

The next theorem is known as the Peano kernel theorem.
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Theorem 4.8 ([50] 43)

Let f E CP[a, b] and let the linear functional F(J) be approximated by the

linear functional G (J) such that the error

E(J) = F(J) - G(J) (4.37)

vanishes for all polynomials of degree p - 1 or less. Then

(4.38)

where

K(t) = ~Ex[(x - t)~]n.
(4.39)

and

( _ t)n = { (x - r}" x ~ t
x + 0 x<t· (4.40)

The function K (t) is called called the Peano kernel for the linear functional

E.

It can be shown, by use of the Peano kernel theorem, that if a quadrature

method is exact for polynomials of degree p - 1 then for all f E CP[a, b]

1 [ f(t)w(t)dt - tb;f(C;) 1:'0 C ~i't.1 f(Pl(t) 1 (4.41)

where c is a constant independent of f. Denoting the set of all real polyno-

mials of degree m by lPp-1 then (4.35) is of order p if it is exact for every

f E lPp-l.

We give the proof of the following lemma since some of its equations are

referred to latter in this section.
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Lemma 4.2 ([32) 34)

Given a set of distinct nodes Cl, C2, ... , Cv, it is possible to find a unique set

of weights bi, b2, ••• , bv, such that (4- 36) is exact for some p 2: 1/.

Proof The set Tv-l = {I, tl, t2, •.• ,tV-I} is a linearly independent basis for

the space JPv-1 thus, since the quadrature formula is a linear operator, if it

is exact for each element of Tv-1 it will be exact for all elements of JPv-I.

Integrating for each element of Tv-1 gives

v bLbjcT =1tmw(t)dr, m = 0,1, ... ,1/ - 1,
j=1 a

(4.42)

which is a system of 1/ equations in the unknowns b1, b2, ••• .b.; which form

a non-singular Vandermond matrix.

Using the nodes Cl, C2, •.• , c; as the interpolating points of Lagrange poly-

nomials the weights b1, b2, ••• , b; can be calculated exactly.

Let
v

IT t - Ck
pj(t) = , j = 1,2, ... ,1/

k=l Cj - Ck
ki-i

(4.43)

then since for all g (t) E JPv-I

v

LPj(t)g(Cj) = g(t)
j=1

(4.44)

we have

t[p;(t)w(t)dtt!j = [tfp)(t)CjjW(t)dt = [tjW(t)dt (4.45)

for every m = 0, 1, ... ,1/ - 1. Therefore

bj = 101 Pj(t)w(t)dt, j = 1,2, ... ,1/. (4.46)
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4.4.1 Quadrature and Orthogonal Polynomials
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Quadrature methods which use equally spaced nodes in the interval of in-

tegration are called Newton-Cotes methods. Higher order methods can be

achieved by the use of orthogonal polynomials.

Let L2 (w) be the set of functions such that

lb 1 f(t) 12 w(t)dt < 00 (4.47)

then w defines an inner product

< f, g >w= lb f(t)g(t)w(t)dt (4.48)

Definition 4.16 ([32) 35)

Let Pm E (P)m, Pm =I 0 then Pm is an m-th order polynomial with respect to

w if

< Pm,P >= 0, V pE IPm-1 (4.49)

We call a polynomial monic if the coefficient of its highest power is equal to

1.

If we let b = -a = 1, and et, (3 > -1, the sets of underlying orthogonal

polynomials with respect to the weight function w(t) = (1 - t)Q(1 + t)/3 are

know as Jacobi polynomials.

Lemma 4.3 ([32) 36)

All m zeros of an orthogonal polynomial Pm reside in the interval (a, b) and

they are simple.
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Theorem 4.9 ([32) 36)

Let Cl, C2,"" CII be the zeros of PII and let b1, b2, ... , b; be the solutions of

the Vandermond system (4.46). Then

(i) The quadrature method (4.36) is of order 2v;

(ii) No other quadrature can exceed this order.

Methods which achieve the conditions of the above theorem are known

as Gauss methods.

4.4.2 Explicit Runge-Kutta Methods

To apply a quadrature formula to the ODE (4.1) we begin by integrating

between tn and tn+1 to obtain

l.tn+1 11y(tn+l) = y(tn) + f(t, y(t))dt = y(tn) + h f(tn + ht, y(tn + ht)dt.
tn 0

If we replace the integral with a quadrature such as

II

Yn+1= Yn + hL bjf(tn + cjh, y(tn + cjh)), n = 0,1, ... , (4.51)
j=l

and if we knew y at the nodes tn + Cl, t; + C2, •.• , tn + CII we would have a

solution.

To effect a viable Runge-Kutta method we must approximate y(tn + cjh)

for j = 1,2, ... u, Let ~j ~ y(tn + cjh) for j = 1,2, ... t/, For an explicit
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method we set Cl = O. Then we have

6 =u«

v-I

~v = Yn + hLav,d(tn + c.h, ~i)
(4.52)

i=l
v

Yn+l = Yn + hLbjf(tn + cjh, ~j).
j=l

Let A be a IJ x v real matrix, called the RK matrix or Butcher array, with

elements equal to (aj,i)j,i=1,2, ...,v as defined above and zero otherwise. And let

bl Cl

b=
b2

and c =
C2

bv Cv

(4.53)

The vector b is called the RK weights, and the vector c is called the RK

nodes and we say that (4.52) has IJ stages or alternatively is a IJ stage method.

RK-methods are commonly written as RK-tableaux which have the following

form

+'.
I bT

(4.54)

Examples of explicit two-stage RK-methods are

(4.55)

The coefficients of some RK-methods, of up to order four, can be obtained

by Taylor series expansions. For more general and higher order methods we
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need to use techniques derived from graph theory to keep track of all the

combinations of derivatives that occur.

The following condition must be fulfilled so that the explicit RK-method

has order one
j-l

L aj,i = Cj, j = 2, 3, ... , V,
i=l

otherwise we would not be able to approximate the solution of y' 1.

Explicit RK-methods of fourth-order, and below, require the same num-

(4.56)

ber of stages as the order of the method. Fifth order ERK-methods require

six-stages. Higher order methods also suffer from stage inflation.

4.4.3 Implicit Runge-Kutta Methods

In explicit RK methods the vector functions (j are only allowed to depended

upon (1,... ,(j-l. In implicit Runge-Kutta methods the vector function (j

may depend upon all the (i for i = 1, ... , t/, Thus the scheme (4.52) is

generalised to

"
!;,j = Yn + hL aj,d(tn + c.h, !;,i),

i=l (4.57)II

Yn+l = Yn + h L bj/(tn + cjh, !;,j),
j=l

where A = (aj,i)j,i=1,2,...,11 is now an arbitrary square matrix.

The convention
"

Laj,i = Cj, j = 1,2, ... .u,
i=l

(4.58)

is required to ensure that the method is of nontrivial order. For a general

RK matrix A (4.57) yields a system of ud coupled algebraic equations where

YElRd.
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4.4.4 Realisation of Implicit RK Through Collocation

There exists a particular class of IRK-methods which are particularly suitable

for generalisation to the numerical approximation of fractional differential

equations. We describe these methods in this section.

Recollect that in explicit RK-methods the vector functions (j are only

allowed to depend upon (1, ... , (j-1. In the implicit RK methods we consider

here the vector functions (j which are only allowed to depend upon (1, ... , (j

for j = 1, 2, ... , u,

Suppose the solution to equation (4.1) has been calculated up to (tn, Yn)

and we wish to calculate (tn+1, Yn+d , where tn+1 = tn + h. In a collocation

method we choose collocation parameters {Cl, C2, ..• , Cv} C [0, 1] such that

i < j -t Ci < Cj and calculate a z--th degree polynomial such that

u(tn) = Yn,

u'(t + n + cjh) = f(tn + cjh, u(tn +Cjh)), j = 1,2, ... , v
(4.59)

and then make the approximation

(4.60)

Such a scheme is equivalent to an implicit Runge-Kutta method.

Lemma 4.4 ({32} 43)

Set

q(t) = IIv(t - Cj), ql(t) = q(t) ,
t - Cl

1 = 1,2, ... .u, (4.61)
j=l

and let

lCi qi(t)
aj,i = ~( .)dt, i.i = 1,2, ... , u,

o q, Cl
(4.62)
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11qi(t) d .
bj,i = -:--(.) t, J = 1,2, ... , t/.

o q~ c,
(4.63)

Then the collocation method (4.59) is identical to the IRK-method

.~JIT. (4.64)

Definition 4.17 ([32] 45)

Suppose we have a smoothly differentiable function v as a candidate solution

for (4.1) and that v(to) = Yo. Then the defect is given by

d(t, v) = v'(t) - f(t, v(t)). (4.65)

Clearly d(t, y) = 0 thus we expect a small value of II d(t, v) II to imply a

small error when we interpret v(t) as the solution to (4.1).

For a system of linear equations we have

y' = Ay, y(to) = Yo, (4.66)

and for any candidate solution v the associated system

v' = Av + d(t), t ~ to, v(to) = Vo. (4.67)

These have as their exact solutions

y(t) = e(t-to)Ayo. t ~ to,

v(t) = e(t-to)A(vo - Yo) + r e(t-x)Ad(x)dx, i > to.i.
(4.68)

The difference in these gives

v(t) - y(t) = e(t-to)A(vo - Yo) + (e(t-X)Ad(x)dx, t ~ to, (4.69)i,
hence the error can be expressed entirely in terms of Vo - Yo and d.
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Theorem 4.10 (The Alekseev-Grobner lemma) ([32] 45)

Let v be a smoothly differentiable function that obeys the initial condition

v(to) = Yo. Then

v(t) - y(t) = it <I>(t,x, v(x))d(x, v)dx, t ~ to, (4.70)
to

where <I> is the matrix of partial derivatives of the solution of the ODE w' =

f(t, w), w(t) = v(t), with respect to v(t).

Theorem 4.11 ([32] 46)

Suppose that

11 q(t)tidt = 0, j = 1,2, ... ,m - 1, (4.71 )

for some m E {O, 1, ... .v - I} with q as in lemma 4.4. Then the collocation

method (4.59) is of order v + m.

Corollary 4.1 ([32) 46)

Let Cl, C2, .•• ,cv be the zeros of the polynomial?v E JPv that is orthogonal with

the weight function w(t) = 1, ° ~ t ~ 1. Then the underlying collocation

method (4.59) has order 2v.



Chapter 5

Griinwald-Letnikov Fractional
Derivative

5.1 Motivation

In this chapter we present the simplest method for approximating a fractional

integral. This method is based on using the Griinwald-Letnikov version of

the fractional derivative. We see that is insufficient to provided a method for

approximating the solution to a fractional differential equation.

5.2 The Griinwald-Letnikov Fractional Deriva-
tive

Definition 5.1 {[18} 449)

The Griimuald-Letnikou fractional derivative, based on backward differences,

is given by

N
o • b - a -0,,", f(k - a) (b - a)

D y(t)lt=b = J~ (t:l) c: f( -a)f(k + 1) y(b - k N ).
k=O

(5.1)

this can be shown to be equivalent to the Riemann-Liouville fractional deriva-

tive [46].
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The simplest method for approximating the fractional derivative is to

replace the infinite sum in the Griinwald-Letnikov fractional derivative with

a finite sum for some integer N. For the function y(t) defined on the interval

[a, b) the approximate fractional derivative KO at b is given by

N
KO ()I- =(b-a)_o,,", r(k-a) (b_k(b-a))

y t t-b N L..., r(-a)r(k + 1)Y N'
k=O

(5.2)

Without loss of generality we let a = 0, b = j/N, and discretise [0,1] as

0, N' ... , t, ...,1. Putting t = j/N, in equation (5.2), we have

(5.3)

So writing y(j /N) as Yj this is

KO ( 1)_0 ~ r (k - a)
Yj = N L..., r(-a)r(k + 1) Yj-k·

k=O

(5.4)

Theorem 5.1 {[18} 453)

Let f E L1[0, tD U C1[0, tj and let h = liN then as h ~ °
(5.5)

In figures 5.1 and 5.2 the upper curve is the fractional derivative of t at

the interpolation points and the lower curve is the approximate fractional

derivative of t at the interpolation points. It can be seen that equation (5.1)

produces an approximation of the fractional derivative which converges to

the true value.



CHAPTER 5. GRUNWALD-LETNIKOV FRACTIONAL DERIVATIVE58
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Figure 5.1: Approximate fractional derivative of y = t for step length of 1/4
where Q' = 0.5.
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Figure 5.2: Approximate fractional derivative of y = t for step length of 1/16
where Q' = 0.5.
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5.2.1 The Autonomous Fractional Differential Equa-
tion

The above suggests that to approximate the linear autonomous fractional

differential equation

DCty = -AY, y(O) = Yo, A > 0, (5.6)

we might try

(5.7)

Solving for Yj gives

_NCt j r(k - a)
Yj = (A + NCt) {; r(-a)r(k + 1) Yj-k· (5.8)

For the forced system

DCty = -AX + I, y(O) = Yo, A > 0, (5.9)

we have
1 Ct~ r(k - a)

Yj = (A + N°) (lj - N '8 I'( -a)r(k + 1)Yj-k).

Attempts to use (5.10) to approximate the system

(5.1O)

to.5
DCty(t) = -y(t) + t + r(1.5)' y(O) = 0, (5.11)

are plotted in figures 5.3 and 5.4. As we can see, since (5.11) has as its

solution y(t) = t there is no evidence of the approximation converging to the

straight line. Therefore we conclude that equation (5.10) does not produce a

good approximation to the true solution of (5.11). This is because we require

several of the initial terms in the sum in equation (5.1) if it is to be a good

approximation of the fractional derivative.
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16

14

14 16

Figure 5.3: Approximate solution to 5.11 with a step length of 1/4 where
ex == 0.5.

16

14

Figure 5.4: Approximate solution to 5.11 with a step length of 1/16 where
ex == 0.5.



Chapter 6

Fractional Trapezium Rule

6.1 Motivation

In this chapter we give a full exposition of a method for numerically ap-

proximating the solution to a fractional differential equation which was first

presented in [12]. By fully developing the method here we can easily extend

it to fit the more sophisticated approach to mesh point distribution which

we will present later.

Two principal techniques are used in this method, firstly the trapezium

rule is extended to estimate the fractional integral by interpreting it as a

product quadrature and secondly the singularity at the origin is dealt with

by treating the fractional integral as a Hadamard finite part integral [18],

[13]. For a step length of h = lin, n E N the fractional trapezium rule has

O(h2-Ct) convergence and requires O{{nt)2) computational effort to calculate

an approximate solution over an interval [0,t].

Throughout this chapter we will use (6.1) as our test equation

DQy(t) = -Ay(t) + !(t), y(O) = Yo E R, A > 0, (6.1)

where 0 < Cl! < 1.
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6.2 Trapezium Rule

In the trapezium rule [50]we make the approximation

Ib 1 1a f(x)dx ~ h('2/o + h+h+ ... + fn-2 + fn-l + 2/n),

where

(
b- a)fj = f(a + j -:;;- ).

We could rewrite the trapezium rule as

l
b n

f(x)dx ~ hLwdi'
a i=O

and obtain the weights Wi by integrating the interpolating functions

PI(t) = h;;t for t E [0,h],
Pk(t) = t-(kh-l)h for t E [(k - l)h, kh),
Pk(t) = 1 for t = k,
Pk(t) = (k+~h-t for t E [kh, (k + l)h),
Pn(t) = t-(~-l) for t E [(n - l)h, nh].

(6.2)

6.3 Fractional Trapezium Rule

In [12]the quadrature weights are obtained by integrating the product of the

interpolating functions (6.2) and the kernel of the fractional integral with the

exception of the starting weight where the notion of a Hadamard finite part

integral is additionally invoked to obtain the correct starting weight.

If in the integral
t' f(s)

It = lo (t _ s)1+erds,

we make the substitution s = ut we obtain

(6.3)

-er t' f(ut)
It = t 10 (1 _ u)1+erdu, (6.4)
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we may therefore, without loss of generality, derive the weights required for

the unit interval divided in to j intervals of equal length h such that h = 1/ j.

Interior Weights

To derive the interior weights for the fractional trapezium rule consider the

integral Ik, 0 < k < j, where

l1kh (s - (k - l)h) 11(k+1)h ((k + l)h - s)
Ik = - ds + - ds

h (k-l}h (jh - 8)1+0 h kh (jh - s)1+o
(6.5)

let 8 = (j - u)h then we have ds = -hdu and so

_a t: (j - (k - 1)) - u _ac:U - (j - (k + 1))h = -h 1+0 du - h 1+0 du
j-(k-l} u j-k u

h-a ri-(k-l) (j - (k ; 1)) - u du _ h-o r: (j - (k ~ 1)) - u du
ii-k U +0 ij-(Hl) u +0

h-O[_ (j - (k -1)) _ u1-a ]~-(k-l) _ h-a[_ (j - (k + 1)) __ ul-a]~_k
aua 1- a J-k aua 1- a ]-(Hl)

which gives

h-O(_ (j - (k - 1))1-0 _ (j - (k _1))1-0
a I-a

+ (j - (k - 1)) (j - k))I-a
a(j - k)a + 1- a

+ (j - (k + 1)) (j - k) 1-0
a(j - k)o + 1- a
(j - (k + 1))(1-0) (j - (k + 1))1-0

- a - I-a )

hence

a(1 - a)hO Ik = 2(j - k))1-0 - (j - (k - 1))1-0 - (j - (k + 1))(1-0). (6.6)
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End Weights

The singularity in the kernel occurs when k = J. However, for the test

equation (6.1), we also know that the limit of the integral is finite, thus

. If y(s)hm ( ) ds = -Ayo.
t-+O 0 E - S 0

(6.7)

Consider the integral

1 Ijh-t s - (j - l)h
If = - ds

h (j-I)h (jh - s)1+O

let s = (j - u)h then we have ds = -hdu and so

halt = [1~::du

[
_u-o _ UI-o]I

a 1-a e

1 1 El-a
- +-+--.a(1 - a) atO 1- a

We now appeal to the Hadamard finite part integral to conclude that the

(6.8)

contribution of the convergent term to the weight is

(6.9)

and that the contribution of the divergent term to the required weight, when

solving the test equation, will be Yo/a. This conclusion is justified by the

assumption of a finite value for y(O) in the test system.

For k = 0 we have

I1h h-1
10 = h 0 (jh _ s)1+0ds

let s = (j - u)h then we have ds = -hdu and sor u - (j - 1)halo = 1+0 du
)-1 U

uI-o (j - l)u-O j
[-1-+ ]j-ll-a a

(6.10)
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hence

The Convolution Weights

Writing the convolution weights as

-1 fork = 0,
a(l - a)hOwkj = 2k1-0 - (k - 1)1-0 - (k + 1)1-0 for k = 1, ... , j - 1,

(a - l)k-O - (k - 1)1-a + k1-0 for k = j.
(6.12)

To approximate the test system (6.1) t = []»; j, nE N, we have

(6.13)

solving for Yj gives

j

(WOj+ tOr( -a)A)Yj = tar( -a)h - LWkjYj-k - :. (6.14)
k=1

Theorem 6.1 ([12] 2)

Assuming that the functions involved are sufficiently smooth, the exists a

constant 'rJ depending on a and Y (and therefore on f and A) such that the

error in (6.14) is bounded by

(6.15)

Corollary 6.1 ([12] 3)

If the functions involved are sufficiently smooth, we have the following global

error estimate for (6.14):

(6.16)
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Figure 6.1: Approximate solution to (6.17).

Approximating the Test Equation

In Figure 6.1 we have plotted the approximate solution, calculated using the

fractional trapezium rule, to the test equation with the specific representation

DO.Sy = -y, y(O) = 1, (6.17)

with step length h = 1/8 over the interval [0,64]. The number of Mflops used,

by our MATLAB program, to produce this approximation was 0.40942.

In Figure 6.2 we have plotted the percentage error in the approximate

solution, calculated using the fractional trapezium rule, to the test equation

to.S
DO.5y = -y + t + r(1.5)' y(O) = 0, (6.18)

with step length h = 1/8 over the interval [0,64]. The exact solution to

(6.18) is y(t) = t.
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Figure 6.2: Percentage error in the approximate solution to (6.18).
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Chapter 7

Fractional Linear Multistep
Methods

7.1 Motivation

Lubich, in a sequence of papers [40, 41, 42, 43], develops a method for numer-

ically approximating a convolution integral that combines the 19th Century

integration theory of Laplace and Cauchy with the theory of linear multi-

step methods we gave in Chapter 5. These methods are sometimes called

convolution quadrature methods (CQM). The fractional integral is a type of

convolution integral, and therefore CQM are candidate methods for numeri-

cally approximating the solutions of fractional differential equations.

In this chapter we review the application of CQM to the fractional calcu-

lus. CQM gives the appearance that the quadrature weights emanate directly

from the convolution integral, as opposed to the more normal method of ob-

taining the quadrature weights by integrating a set of interpolating functions.

This makes CQM seem the practical method of the greatest theoretical in-

terest. However linear multistep methods play an essential part in obtaining

the CQM quadrature weights, so a set of interpolating functions still ex-
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ists in the background. In contradistinction to the fractional trapezium rule

where we fractionally integrated a set of interpolating functions to obtain the

weighs in CQM we use algebraic operations on characteristic polynomials of

the backward differentiation formulae to generate our weights.

7.2 Convolution Integral and Inverse Laplace
Transform Integrals

Consider the convolution integral

f * g(x) = lx f(x - t)g(t)dt, x ~ o. (7.1 )

Let the kernel f be a function that is analytic and exponentially bounded, on

a sector containing the positive real half line, as t --t 00 and f(t) = O(tll-1),

where J.l > 0, as t --t O. Equivalently, we could require that the Laplace

transform of l, written F(s), exists and is analytic in a sector I arg(s - c)1 <
n - ¢ with ¢ < ~, c E lRand

IF(s)1 s M·lsl-ll, M < 00, J.l > O. (7.2)

Then, by using the Laplace inversion integral, we can write f as

f(t) = -2
1
. r F()..)e>'td)", t > 0,

7rZ ir (7.3)

where r is a contour running from oo.e-i(7r-t/» to oo.ei(7r-t/» within a sector

where F(s) is analytic and enclosing all the poles of F (s ), see [41].

Substituting this representation for f into (7.1) gives

Ix f(x - t)g(t)dt = ~ r F()..) IX e>.tg(x - t)dt. (7.4)o 27rZ ir 0
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Now the differential equation

Y' = )..Y + g, y(O) = Yo,

has as its solution

(7.6)

We set Yo = 0 and then use a LMM to solve for y in (7.6) and substitute this

in (7.4).

Thus we have

k k

L ajYn+j-k = hL {3j()..Yn+j-k + g((n + j - k)h)), n ~ 0, (7.7)
j=O j=O

with starting values Y-k = ... Y-l = 0, and with 9 E e[O, 00) extended by 0

to the negative real axis, Le. g(t) == for t < 0 . Multiplying (7.7) by (n and

summing over n from 0 to 00 we obtain

(ao(k + ... + ak).Y(() = ({3o(k + ... + 13k)' (h)".y(() + h.g(()), (7.8)

where y(() = E:o Yn(n, and g(() = E~=og(nh)(n are formal generating

power series.

Let 6(() = (ao(k + ... + ak-l( + ak)/({3(k + ... + {3k-l( + 13k) then Yn is

the nth coefficient of the formal power series (6(()/h _ )..)-lg(().

So (7.4) can be approximated at x = nh by the nth coefficient of

~ ( F()..) (6(() _ )..)-lg(()d)" = F(6(())g(() (7.9)
27rZ Jr h h

with equality holding by virtue of Cauchy's integral formula [3]. Writing

(7.10)
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then the coefficients of the right hand side of (7.9) are the Cauchy product

of the two sequences {wj(h)} and {g(jh)}.

We assume that the LMM is A(a) stable with a > <p with <p as in (7.2),

stable in a neighbourhood of infinity, strongly zero-stable and consistent of

order p. Equivalently as conditions on 8(() we require that 8(() is analytic

and without zeros in a neighbourhood of the closed unit disc 1(12 0, with

the exception of a zero at ( = 1,

I arg8(()1 ::; 7r - a, 1(1< 1, for some a> <p, (7.11)

1h8(e-h) = 1+O(hP), for some p 2 1. (7.12)

Now the fractional integral is given by

a 1 lx <p(t)
(Io+<P) = r() ( )1 dt, X > a,a 0 X - t -0

(7.13)

which has as kernel, up to an arbitrary multiplicative factor,

xa-1
f(x) = I'(o}' O<a<1. (7.14)

The Laplace transform of f is s-a consequently the weights we require

{wn(h)} are the coefficients of en in the expansion of has(()-0.

Starting Weights

Using the notation in [42] for the fractional quadrature at t = nh we have
n

n~f(x) = haLWn-jf(jh).
j=O

(7.15)

We write the convolution quadrature error operator as Eh so for a suitably

integrable function y we have

(7.16)
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To obtain the order p convergence of the underlying multistep method we

choose a set of polynomials qi(t), i = 1, ... ,p, such as tf3, tf3+ 1, ... , tf3+p-1,

and calculate a set of starting weights Wnj so that the E'hqi(nh) = 0, Z =

1, ... .p.

The particular set of polynomials that we should require the quadrature

method to be exact for depends upon which fractional differential operator we

wish to approximate. E'hy = E;=o wnjy(jh) is called the starting quadrature.

Theorem 7.1 ([40J 139) Under the assumptions (7.2) for a LMM satisfying

the conditions given above, the method in (7.16), for yE CP[O, t], has O(hP)

convergence, i. e.

(7.17)

with C > 0 independent of h > 0 and t« ~ h.

To approximate the Caputo fractional derivative we have

f,Wj(h)(j = <5~) (<5~()yl-1 = (6~))G.
j=O

To obtain the O(hP) convergence of the underlying LMM we calculate the

starting weights so that the quadrature is exact for the set of power functions

1, t, ... tp-I.

For other fractional differential operators the starting quadrature weights

Wnj can be determined (by theorem 2.4 in [42] see also [7]) as follows: fix

(3 i=- -1, -2, -3, ... , let m be an integer such that Re(m + (3 - 1) < p ::;

Re( m + (3) and put

m

hGLwnj(jh)q+fJ-1 + (E1:tq+fJ-1») (I) = o.
j=1

(7.18)
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Then multiplying by nq+o+,B-1 and rearranging with respect to (7.16) gives

m ( (3) nL Wnjjq+,B-1 = r q + nQ+o+,B-1 - L Wn_jjq+,B-1, (7.19)
j=l f(q + (3 + a) j=l

where q = 0, ... ,m - 1. This ensures that the starting approximation is

exact for polynomials up to degree p - 1.

7.2.1 Determination of {wn}

The reciprocal, logarithm and exponential of a polynomial or formal power

series can be calculated by using fast Fourier transforms (FFT) [29]. This is

because the convolution properties of FFT's provide a relatively economical

algorithm for performing calculations of this kind. A method for calculating

the {wn} required for fractional linear multistep methods is given in [5, 6, 7].

To obtain the coefficients of o((to FFT transforms are used to calculate the

coefficients in the expansion of exp(alog(l/o(()).

The mathematics in the presentation in [5, 6, 7] is entangled with FOR-

TAN programming. MATLAB frees us from the obfuscation engendered by

programming considerations we can therefore present the method in [5, 6, 7]

concentrating purely on the mathematics.

Calculation of the Reciprocal of p(x)

Let p(x) = ao + ... + anxn where ao =1= 0 and let l/p(x) = r(x). To calculate

r(x) we use Newton-Raphson iteration. Let

1
/=--p

r
(7.20)
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wewish to find the zero of I. To do this we use the Newton-Raphson iteration

rn+l = rn - In/ I~. SO with

I
I'

we therefore have the recurrence

(7.21)

The use of FFTs doubles the number of correct coefficients with each itera-

tion.

Calculation of the Log of p(x)

Let q(x) = (alx + ... + anxn)/ao where 0'1 i=- 0 (such a polynomial is called

a non-unit in the terminology of [5, 6, 7]) then

log(p(x)) = log(ao + aoq(x)) = log(ao) + log(l + q(x)). (7.22)

We calculate the log of p(x) by using the integral equality

log(p(x)) = log(ao) + (X ql(Xl) dx = log(ao) + (X pl((X))dx. (7.23)10 1+ q x 10 p x

Therefore by calculating the reciprocal of p then multiplying it by p' and

integrating the resulting product we can obtain log(p(x)) in three steps.

Calculation of the Exponential of p(x)

Using the notation above

exp(p(x)) = exp(ao + q(x)) (7.24)

where
q(X)2 q(X)3

exp(q(x)) = 1+ q(x) +2! +3! +.... (7.25)



CHAPTER 7. FRACTIONAL LINEAR MULTISTEP METHODS 75

If €(x) = exp(q(x)) -1 then €(x) is a non-unit and since log(l + €(x)) = q(x)

we can solve this equation, by mean of the Newton-Raphson iteration, for

€(x) and then exp{p{x)) = exp{ao)(l - €(x)).

7.2.2 The FLMM Approximation of the Caputo Frac-
tional Derivative

We have used fractionalised BDF1 and BDF2 to approximate the 0.9 order

derivative of the power function t and plotted the function values in Figure

7.1 and the percentage error in Figure 7.2. In Figure 7.1 the lower curve is the

approximation calculated with BOF1 and the upper curve is the calculation

calculated with BDF2 the circles being the exact values of the derivative. In

Figure 7.2 the upper curve is the error for BOF1 and the lower curve is for

BOF2. In fact the lower curve is identically zero since the starting weights

are constructed to make the approximation exact for linear functions.

Approximating the Test Equation

When using fractionalised BOF1 the starting weight required at each step is

just the additive inverse of the sum of the fractional linear multistep weights

used up to and including that step. This makes the method easy to implement

as can be seen from the program listing.

% LOLOlfull
~.LubI'ch's method C t'd . t'h on apu 0 s erlva Ive
clear;
p=[l,-l] ; % defines Euler's method or BOFl
% set the order of derivative, time step, integration interval etc.
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Figure 7.1: DO.9t using BDFI and BDF2.

Figure 7.2: The percentage error in the DO.9t using BDF1 and BDF2.
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LDL_set_parameters
LDL_do_weights % calculates the weights
% do the integration
start_weightl=-weights(l);
for i=2:1:steps

start_weightl(i)=start_weightl(i-l)-weights(i);
end
for i=2:1:steps

y_sum=start_weightl(i)*y(1)+weights(2:i)*y(i-l:-l:l)';
y(i)=front*(f(i)-y_sum);

end
LDL_plot % plot the result

In Figure 7.3 we have plotted the approximate solution, calculated using

fractionalised BDFl, to the test equation

DO.5 = -y, y(O) = 1, (7.26)

with step length h = 1/8 over the interval [0,64].

The number of Mftops used to produce this approximation, by our pro-

gram in MATLAB, was 34.42021. The difference in computational effort

between FLMM and fractional trapezium rule is due to the computation of

the weights. The weights for fractional BDFI were calculated using the pro-

cedure outlined above which is mathematical overkill in this particular case

but does suggest a difficulty when using a LMM with more terms.
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Figure 7.3: Approximate solution to (7.26).

In Figure 7.4 we have plotted the percentage error in the approximate

solution, calculated using the fractionalised BDFl, to the test equation

r»
nO.

5 = -y + t + r(1.5)' y(O) = 0, (7.27)

with step length h = 1/8 over the interval [0,64J.
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10

Figure 7.4: Percentage error in the approximate solution to (7.27).



Chapter 8

Finite Memory and Sparse
Quadrature

8.1 Motivation

In this chapter we describe Podlubny's Finite Memory Principle [48, 49] and

Sloan and Thomee's Sparse Quadrature [56]. These are both attempts to

reduce the computational effort required to calculate an approximate solution

to a fractional differential equation.

The methods for approximating the solution of fractional differential

equations, given in the previous chapters were concerned with accurately

approximating the singularity at the origin in the kernel function. This is es-

sentially a mathematical problem. The second computational problem posed

in the approximation of the solution of a fractional differential equation, the

O(n2) computational cost of approximating the convolution integral of two

arbitrary functions, remains.

In the classical calculus time is valued linearly and therefore when ap-

proximating the solution of an ordinary differential equation the relation of

each past moment of time to the present remains the same. Due to the non-

80
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linear valuation of time in the fractional calculus at each iteration we have

to re-evaluate the relation of each past moment in time to the present to

determine the behaviour of the solution.

When approximating the solution of an ordinary differential equation at

time t = ih the calculation takes 0(1) flops. For a fractional differential

equation the equivalent calculation takes O( i) flops when using the frac-

tional trapezium rule or a FLMM. Thus the computational effort required to

approximate the solution to an ordinary differential equation over an inter-

val [0, ih] grows linearly with i, whilst the computational effort required to

approximated the solution to a fractional differential equation grows quadrat-

ically with i. Here we examine two attempts to reduce the computational

cost of approximating the solutions to fractional differential equations.

8.2 Podlubny's Finite Memory Principle

Podlubny [48, 49] suggests that the computational effort required to approx-

imate the solution to a fractional differential equation may be reduced to

linear growth by limiting the interval of integration, in the convolution inte-

gral, to a window of length T > o. Therefore instead of integrating over the

whole of [0, t] we integrate over a moving window of fixed length, Le. over

the interval [t - T, t].

This introduces into the approximation of the fractional derivative an

error Et given by

1 r-T y'(s)
Et = Ir(l- a) lo (t _ s)ndsl. (8.1)
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Let M = maxt~O ly(t)1 then integrating by parts gives

1 y(s) t T t-T y(s)
Et ::; r(l _ a) (i[(t _ s)o]o- 1+ al lo (t _ 8)1+0 dsl (8.2)

and therefore

E
2M

t< .- Tor(l - a)
(8.3)

As we can see this error bound is independent of the step length h therefore

the error due to the finite memory principle can not be controlled by altering

the step length.

The usefulness of the finite memory principle depends critically on the

behaviour of the solution y. If y is unbounded then the error may become

unbounded. This is clearer if we rewrite the upper limit in the truncation

formula (8.1) as t(l - Tit) then as t ---t 00 the truncation becomes almost

the whole of the fractional derivative since Tit ---t O.

As an example consider the integral occurring in the beta function. For

p > 0 and q > 0 the beta function is given by

t xP-1(1 _ X)q-l = r(p)r(q) .
lo r(p+q)

(8.4)

Substituting st = x and writing 1 - q = a and p = (3 gives

t sfJ-1 d r((3)r(l - a) fJ-o
lo (t - 8)0 s = r((3 _ a + 1) t .

Clearly unless y(t) is a rapidly decreasing function, Le. O(t.B-l) where 0 <

(8.5)

(3 < 1, we would expect an increasing error to occur.

If y is not rapidly decreasing then to reduce the error we will need to in-

crease the interval of integration to such an extent that no practical reduction

in the amount of computational effort required to calculate the approximate

solution is obtained.
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8.2.1 Computational Assays

We have applied the finite memory principle to the fractional trapezium rule

to assess its affect on the approximate solution. The effect of applying the

finite memory principle, in comparison with the solution calculated over the

full interval to the system,

DQy(t) = -y(t) + f(t), 0 < a < 1, (8.6)

is shown in figures 8.1 and 8.2. Here we have used a step length of 0.125. In

both cases the solid curve is the solution calculated by integrating over the

full interval [0, t] and the dotted curve is the approximate solution calculated

by integrating over a finite window of fixed length [t - 8, t], for t > 8.

In figure 8.1 for f(t) = 0 and y(O) = 1 the computation required for

the finite memory calculation was 0(0.073) Mflops compared to 0(0.285)

Mflops required for the full memory. This confirms that the reduction in

computational effort takes place however as we can see a divergence between

the solutions rapidly occurs.

In Figure 8.2 we have used f = t + to.5/r(1.5) and y(O) = 0, the exact

solution in this case is y = t Le. a straight line. We see again the immediate

onset of an increasing error.

8.3 Sparse Quadrature

In [56]Sloan and Thomee suggest reducing the computational effort required

to approximate the solution to an integro-differential equation, of which frac-

tional differential equations form a subclass, by dividing the interval of in-

tegration, into two intervals, and using approximation methods of different
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Figure 8.1: Comparison for f(t) - 0 and y(O) = 1.
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Figure 8.2: Comparison for f(t) = t + to.s /f(1.5) and y(O) = O.
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orders in each of the intervals to obtain an approximate solution. We attempt

to describe this method in terms appropriate to our problem.

Let the step length h be given. Choose some m > 0, let T = mh and

let l be the largest integer strictly less than n/m. Then at time t = nh > T

let T, = [lmh, nh] and T2 = [0,lmh] we can then divide the integral of

integration thus

(8.7)

In sparse quadrature we calculate an approximate solution by using step

length h in T, and mh in T2•

In [56] it is suggested that we chose m = h-1/2 and for Tl we use an

approximation method of order p and in T2 we use an approximation method

of order 2p. Thus the order of the approximation calculated using the sparse

quadrature method will remain p.

Clearly whilst this method could reduce the computational effort required

it will still exhibit quadratic growth in computational effort at the rate of

the second method, i.e. we replace O(i2) with O((i/m)2) which is the same

as O(i2) since m is a constant.



Chapter 9

Acceleration by Extrapolation

9.1 Motivation

In Richardson extrapolation two or more approximations are exploited to pro-

duce a more accurate approximation. The use of Richardson extrapolation

with the trapezium rule is know as Romberg integration [50]. Application

of extrapolation to the trapezium rule enables a more accurate approximate

solution to be obtained from the previously calculated values of the approx-

imate solution for little additional computational effort. In this chapter we

present Diethelm and Walz's [17]application of Richardson extrapolation to

the fractional trapezium rule to produce a fractionalised version of Romberg

integration. Here also the application of Richardson extrapolation enables a

more accurate approximation of the true solution to be obtained with little

further computational effort.

9.2 Richardson Extrapolation

We use the definition of Richardson extrapolation given in [50]. Suppose we

have an approximating functional ¢ = ¢(J(t)) of the function f. We can

86
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generate a set of approximations <Pi

<Pi(J(t)) = <p(J(t) : hi), i = 1,2, ... ,

where the step length hi is such that i > j +---+ hi < hj and hi ---+ 0 as

i ---+ 00. If the error has the asymptotic form

00

~ 'Y'E = L..J aj hi J, 0 < II < 12 < ... ,
j=I

(9.1)

where the constants aj are independent of the step length hi. we can write

the true value of <P as

(9.2)

Let i = 1 in (9.2) and multiply by h~l and similarly let i = 2 and multiply

by hIl and then subtract the resulting equations and solve for <Pwe obtain

Now let h2 = pli«, 0 < P < 1 in (9.3), by cancellation of powers of hI, we

obtain

(9.4)

If we let

<P2 - p'Yl <PI p'Yj - p'Yl
<P12 = 1 _ p"'l and bJ· = aJ'

I 1- p'Yl

we can rewrite (9.4) as
00

~ 'Y<P= <PI2 + L..J bjh/.
j=2

Similarly if we were to repeat the operation given above with h3 = ph2 we

(9.5)

could compute a <P23 and then eliminate the j = 2 term in (9.5) to obtain
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1>123· Continuing this process recursively we can generate an array of the

form
1>1

1>12
1>2 1>123

1>23 1>1234 . (9.6)
1>3 1>234

1>34
1>4

9.2.1 Romberg Integration

The trapezium rule is a particular case where the functional 1> possesses a

suitable asymptotic error expansion. By the Euler-Maclaurin sum formula

[50], for an integrable function j, we have

m

Lf(a+jh)
j=O

1 t' 1h l, j(y)dy(y) + 2(J(a) + f(b))

+~ B2k (J(2k-1)(b) _ f(2k-1)(a)) + Ez: (2k)! m
k=l

where the B2k are Bernoulli numbers, the error has the form

h2m+2BE = n 2m+2 j(2m+2) (()
m (2m + 2)! '

(9.7)

and h = (b - a)/m. From this we can write the trapezium rule as

(9.8)

Therefore the trapezium rule has an asymptotic expansion of a form which

is suitable for the use of Richardson extrapolation.
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9.3 Extrapolation and Fractional Differential
Equations

In [17] it is shown that the fractional trapezium rule possesses an asymptotic

error expansion such that we can apply Richardson extrapolation to obtain

a sequence of improved approximate solutions.

Suppose we have used the fractional trapezium rule on the fractional

differential equation

Day = >.y+ I, y(O) = Yo >. < 0, 0 < a < 1, (9.9)

to generate the approximate solution {Xi: i = 0, ... , n}.

Theorem 9.1 (fl'll231)

There exist coefficients cJi. = cJi. (a) and c~ = c~ (a) such that the sequence

{Yn} possess an asymptotic expansion of the form

u, M2

Yn = y(tn) +L cJi.na-Ji.+L c~n-2Ji.+ o(n-M3) for n -+ 00, (9.10)
Ji.=2 Ji.=1

where M; and M2 depend on the smoothness of x and f, and

M3 = min{a - M1, 2M2}.

9.3.1 Implementation

To develop an algorithm it is convenient to rewrite (9.10) as

M

Yn = y(tn) +L 'Yp.n-AmU + o(n->"M)
Ji.=1

(9.11)

for n -+ 00 where j = 1,2, ... , we have

>'3j = 2j + 1 - a, >'3j-l = 2j, >'3j-2 = 2j - a. (9.12)
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Choose integers no > 0, b > 1 (usually we let b = 2), and ° < K S M

such that for i = 0,1,2, ... , we have t; = nihi where hi = 1/(nobi). Next

compute the sequence of approximations x~o) = Yn; at tn.

We are now in a position to apply Richardson extrapolation as given

above using the formula

(9.13)

for k = 1,2, ... ,K and i = 0,1, ....

Theorem 9.2 ({17} 231}

For arbitrary K the use of (9.13) with the fractional trapezium rule is stable.

We now give an example which illustrates the convergence of the extrap-

olation scheme. We will use an initial step length of 0.5 and we let b = 2 and

K=5.

Firstly, in table 9.1, we give the fractional Romberg tableau for the system

2t1.5
DO.5y(t) = -y(t) + e + r(2.5)' y(o) = 0, (9.14)

at t = 16.

The total number of flops used to calculate the approximate solutions

and the consequent Richardson extrapolation was 489192. To calculate an

approximation to x(16) using a step length of half the shortest length used

in the Romberg scheme requires 1.1941 Mflops and has an error of 7.85

(-4). Therefore the extrapolation scheme compares very favourably with

'brute' force computation.
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Step flops error error error error error
o(nQ-2) o(n-2) o(nQ-3) o(nQ-4) o(n-4)

0.5 5556 -1.37(-1)
-9.37(-4)

0.25 13140 -4.91(-2) 2.56(-6)
-2.32( -4) -5.70(-8)

0.125 34452 -1.75(-2) 4.07(-7) -1.20( -9)
-5.77( -5) -6.13( -9)

0.0625 101652 -6.23(-3) 6.69(-8)
-1.43(-5)

0.03125 334356 -2.21(-3)

Table 9.1: Fractional Romberg tableau for system (9.14).

We conclude that for good initial starting conditions the extrapolation

scheme in [17]can be used to obtain a considerable improvement in the con-

vergence of the approximate solution to the true solution at the interpolation

points of the first approximation.

We have truncated the reporting of the error in the table to three signif-

icant digits and we have rewritten the usual scientific notation for numbers

a x lO-b as a( -b) so that we can fit all the data on one page. Further

examples are given in [17].



Chapter 10

Acceleration by Recursive
Summation

10.1 Motivation

In this chapter we give a new interpretation of the fractional integral. We

use the scaling property of the fractional integral to express it as the sum of

integrals over the same interval. This enables us to implement the numer-

ical methods we have given for approximating the solution of a fractional

differential equation in such away that we require only O( n logn) arithmetic

operations as n increases.

We first give an algorithm with the least cost implementation of our

ideas, which we will call the Nested Mesh version, which, although it involves

a slight truncation of the integral, should have sufficient accuracy for enough

practical applications, such as embedded real time controllers, to justify its

presentation. Then we give an algorithm, which involves no truncation of the

integral, which we will call the Fractal Sum version. In both cases we demon-

strate the practicality of our method by showing how it can be implemented

using the fractional trapezium rule.

92
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In the fractional trapezium rule a fixed step length is used throughout

the whole of the interval of integration. We could increase the size of the

step length by using a polynomially graded mesh however it has been shown

that this approach can lead to stability problems [13].

Our approach will be to use a given step length for the most recent part

of the integral and then to use progressively longer step lengths in the earlier

parts of the integral in a systematic way.

10.2 The Fractional Derivative as an Infinite
Sum of Integrals

The fractional differential operator possesses a scaling property which gives

it a relation to the theory of fractals. This is also known as the homogeneity

property of the fractional integral by some authors [40], see also [30]. We

will now use this scaling property to express the fractional derivative as a

sum of integrals over the same interval. This interval then provides us with

an invariant scale.

Let Q E (0,1), for a differentiable function y the Caputo derivative at

t = 2n is:

(10.1)

We rewrite (10.1) as a sum of integrals over the intervals [2i-1, 2ij, i E Z, i :::;

n, which gives

(10.2)

We now rescale these integrals to be integrals over the same interval [0.5, 1j



CHAPTER 10. ACCELERATION BY RECURSIVE SUMMATION 94

by making the substitutions s ~ 2iu, ds ~ 2idu, y'(s) ~ y'(2iu)/2i, to give

DO. (t)!- n = 1 ~ J_ r y'(2
n

- 2
i
u) du = ~ D,.

Y t-2 I'(I _ a) .L 2io: J! uo. .L t
t=-oo 2 t=-oo

(10.3)

This gives an expression where the singularity at the origin is replaced by a

convergent infinite sum.

For negative i of large magnitude we will require values of y'(t) for values

of t far less than any practical step length, so we choose some initial 2io such

that

(10.4)

Let

(10.5)

then
n

DO:y(t)!t=2n = o; + L o;
j=io+l

We now conclude that if y and y' are sufficiently well behaved then we can

(10.6)

solve each of the integrals in (10.6) with the same step length, the convergence

following from the results for the underlying method used for obtaining the

approximate solution.

10.2.1 Writing the convolution the other way round

We can rewrite the previous as follows, let a E (0,1) then for a differentiable

function y we can write the Caputo derivative on [0,2n] as:

(10.7)
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Let

(10.8)

then we can write (10.7) as

(10.9)

We now make the substitution s = 2n - 2iu in the integrals in the sum to

obtain
n-l 1 ~l y'(2n _ 2ius)

DOy(t)!t=2n = Do + '" -. duoL...J 2Z0 1 UO

i=l 2

Clearly if we calculate the weights for one of the integrals in the sum, by the

(10.10)

methods previously given, then the weights for the next integral will be the

same weights scaled by a factor of 1/2° and the step length will be scaled

by a factor of 2. Different scaling factors are possible if we chose a different

fundamental interval.

In the next theorem we prove that combining the fractal sum interpre-

tation with any reasonable numerical method for obtaining an approximate

solution of a fractional differential equation does not introduce any problems.

Theorem 10.1 Suppose we have a convolution method for approximating a

fractional differential operator,

2m/h

DOy(2m) =L W2m/h-iYi + O(hP) = jjoy(2m) + O(hP), (10.11)
i=O

of order p as the step length h -+ O. Let mEN and 2m/ hEN and y be

a piecewise continuous function bounded on [0,00), which has only a finite

number of discontinuities on any finite interval. Then applying the fractal

sum decomposition to the numerical method does not degrade the convergence

or stability of the numerical method.
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Proof Define the function Yi(t) as follows

y~(t)
y(t), t E [0,0.5]
y(t), t E (0.5,1]

0, t E [0,0.5]
y(2it)/2io, t E (0.5,1]y;(t)

for i = 1, ... ,m. Then for each i, Yi is a piecewise continuous function

bounded on [0,1] with only a finite number of discontinuities. Therefore yt

satisfies the conditions required for the numerical method to have order p as

h ~ O. Now since
m

DCl(y)lt=2m =LDCly;lt=l,
i=l

(10.12)

we must also have

m

DCl(y)lt=2m + O(hP) = L(DCly;lt=l +O(hP)),

i=l
(10.13)

which is to say
m

DCl(y)lt=2m =LDCly;lt=l + O(hP). (10.14)
i=l

In the next section we implement the above idea as a simple algorithm

(Le. an algorithm that is simple to implement) which only partially meets

the requirements of Theorem 10.1. In the final section we will work out an

implementation which fully meets the requirements of Theorem 10.1.

10.3 Nested Mesh

In the Nested Mesh implementation our object is to minimise the computa-

tional effort and the size of the algorithm.

For convenience we take the most recent interval [t -1, t] of the fractional

derivative and choose a step length h such that nh = 1 for some n E N. To
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h = [t - 1, t] h
12 = [t - 2, t - 1] 2h
13 = I[t - 4, t - 2] 4h
14 = [t - 8, t - 4] 8h

Table 10.1: Intervals and associated step lengths.

approximate the fractional derivative over [t - 1, tJ we calculate the weights

required to approximate

1 it y'(u)D, = du,
I'(I - a) t-l (t - u)a

(10.15)

which are the same as for the fractional trapezium rule. Thus we calculate

the set of weights Wo, ,Wn, Wn+l," ., W2n based on a step length of h.

Now let 00 = (wo, , wn) and 01 = (Wn+l,' .. , W2n). From 01 we gener-

ate the weight sets Oi such that Oi = 0I/2a(i-l), i = 1, ... ,n - 1 together

with an associate step length of 2i-1h, see Table 10.1. Thus the total set of

convolution weights 0 can be generated by the recursive union

00 0
1

0= no u U 2et(i-l)'
i=1

In this implementation we have introduced two potential sources of ad-

ditional error. Firstly in the interval [0, t - 1) on iterations where j =I 0

mod 2m there will be an error because the weights are slightly offset and

secondly, for the same condition on j, an initial interval of, at most, length

(2m - l)h will be truncated.

We can bound the error introduced by the weight offset by considering

the difference ~ between two successive weights in Om for m > 1. Since
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the weights, in each set, are decreasing we need only consider the first two

weights in Om. Thus we have

1
8 = 2(m-l)a (Wn+l,j - Wn+2,j).

For the fractional trapezium rule, expanding by the binomial theorem,

gives a maximum error through weight offset of otr: /2(m-l)a), since n is

constant. Thus the error in the convolution sum caused by weight offset error

Ew can be bounded by

(1O.16)

since m = O(log2j). Combining this with Theorem 6.1 we find we have

reduced the order of the method to O(j-l).

10.3.1 Computational Assays

In Figure 10.1 we have plotted the approximate solution to the system

(10.17),

DO.5y = -y + t + to.5/f(1.5}, Yo= 0, (1O.17)

using the fractional trapezium rule in the Nested Mesh algorithm, with an

initial window of length 1 and a step length h = 1/4. The upper line is

the exact solution and the lower line is its approximation. Even under these

crude conditions we see that the Nested Mesh algorithm gives a much better

approximation than the finite memory principle. In Figure 10.2 the lower

curve is the error in the approximation, the upper curve is a plot of log t.

We have calculated the approximate solution to the system

DO.5y = -y, Yo= 1, (1O.18)
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Figure 10.1: Approximate solution to system (10.17).
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Figure 10.2: Error in the approximate solution to system (10.17).
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0.5

Figure 10.3: Percentage divergence in the approximate solution to system
(10.18) for h = 1/16.
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Figure 10.4: Percentage divergence in the approximate solution to system
(10.18) for h = 1/8.
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Figure 10.5: Percentage divergence in the approximate solution to system
(10.18) for h = 1/4.

produced by using the unmodified fractional trapezium rule and the modified

fractional trapezium rule using an initial window of length 1.

10.3.2 Effects of Scaling

To see the effects of using different scaling factors we have repeated calcu-

lations of the type given above for system (10.18) using scaling factors of 5,

where we reuse 80% of the weights and expand the step length by a factor

of 5, and 10 where we reuse 90% of the weights and expand the step length

by a factor of 10, as well as using a scaling factor of 2. We summarise the

computational effort in table 10.2.

In Figures 10.3, 10.4 and 10.5 we have plotted the percentage difference

between the approximations for step lengths of 2-4, 2-3 and 2-2 to the system

(10.18). As we can see as the step length is halved the difference between

the two approximations reduces 1/ yl2. This is as we would anticipate from
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OL-_L-_L-_L-_L-~~~L-~~~~~~~.
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Figure 10.6: Percentage difference in the approximation to system (10.18)
for three different scaling factors over the interval [0, 1000J with a step length
of 2-4.

the reduction in order due to weights being off grid, however in the limit the

approximation calculated using the Nested Mesh algorithm will converge to

the approximation calculated using the original algorithm.

In Figures 10.6, 10.7 and 10.8 we have plotted the difference between

the approximate solution to (10.18) with full integration and nested mesh

integration for three scaling factors using a step length of 2-4.

In Figures 10.9 and 10.10 we repeat the above calculations using a larger

step length of 2-2 and observe the expected consistency.
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o 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 10.7: Percentage difference in the approximation to system (10.18)
for three different scaling factors over the interval [0,2000] with a step length
of 2-4.

2.5,--.,...--,--_,----,---,---,----,---,----,----,

2

O~~~~~--~--~ __ ~--k--L--L __ ~-~
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 10.8: Percentage difference in the approximation to system (10.18)
for three different scaling factors over the interval [0,5000] with a step length
of 2-4.
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6

00 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 10.9: Percentage difference in the approximation to system (10.18)
for three different scaling factors over the interval [0,5000] with a step length
of 2-2.
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o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 10.10: Percentage difference in the approximation to system (10.18)
for three different scaling factors over the interval [0, 10000] with a step length
of 2-2.
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Scale Factor 125 250 500 1000 2000 5000

2 0.66 1.51 3.40 7.57 16.67 46.76
5 1.00 2.34 5.29 12.01 26.43 75.36
10 1.45 3.40 7.65 17.59 39.77 110.93
00 4.05 16.09 64.18 256.37 1024.74 6401.84

Table 10.2: Time and computational effort for a variety of dilation scaling
factors with a step length of 2-4•

10.4 Fractal Sum

In the Nested Mesh implementation errors are introduced by applying the

iterated weights off grid and by a small truncation. In each of theses cases the

error is under the control of the step length and vanishes as h -t O. However

as we have seen the weights being off grid affects the order of convergence. In

this section we will show how to calculate the on grid weights to implement

the fractional trapezium rule without any truncation.

Recollect we are approximating a fractional differential equation using a

step length of h. Now because of the scaling property of the fractional differ-

ential operator, using the sum of integrals over the same interval formulation,

we can interpret the problem as using the same step length in each of the

integrals since they are all over the same interval, then the convergence of

our modification follows from that of the unmodified method. However to

solve for an accurate approximation of the unknown function, in the frac-

tional differential equation, we need to calculate the weights with respect to

their position on the h-mesh throughout the interval of integration.

Therefore to eliminate the two sources of error we had in the Nested Mesh

implementation we need the exact weights for each Di, with concomitant step
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length 2i-1 h, for each of the cases j = 0 mod 2i-l, j = 1 mod 2i-I,

j == 2i-1 - 1 mod 2i-l.

Firstly we consider the weights required for Di when the whole of its

'" ,

interval of integration is included in [0,t], i.e. when t - 2i-1T 2: O. We then

consider the weights required for D, when only part of its potential interval

of integration is included in the interval covered by the fractional differential

Operator.

10.4.1 Calculation of the Weights

Let the weights calculated for Di-l be Oi-l then for j = 0 mod 2 we can

obtain the weights for OJ by the mapping Wj = Wj/2/2(\ however when j >

2i-1 and j = 1 mod 2 we will need to calculate some new weights. These

are of three kinds: weights at the beginning of the interval, weights in the

middle of the interval, and weights at the end of the interval.

Weights at the Beginning of the Interval

To deal with this case the interpolating function, at this point, takes the

form
Pk(t) = t_(~;-~i~l)h for t E [(k - 2i-1 )h, kh),
Pk(t) = 1 for t = kh.

(10.19)

In the actual calculation k will be of the form k = j _2i-1n, where j > 2i-1n.

Integrating, as before, to obtain the weight we have

1 lkh s - (k - 2i-l)h
Ik = -- ds.

2i-1h (k-2i-l)h (jh - s)1+0
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Making the substitution s = (j - u)h gives

h =

which gives

Weights in the Middle of the Interval

To calculate the new middle weights required for Oi we use the interpolating

functions

Pk(t) = t-(~:-21i~l)h for t E [(k - 2i-l)h, kh),
Pk(t) = 1 for t = kh,
Pk(t) = (k+;:-:lh-t for t E (kh, (k + 2i-l )).

(10.20)

Integrating the interpolating functions gives

For k = j and k odd we must carry out the integration to obtain the required

weights. Making the substitution s = (j - u)h as before we have

2i-1hal
k

= t: (j-(k-2i-1))-U ji-(k+2
i
-
1
)U_(j_(k+2i-1))

-. Ha du - Ha du
3-(k-2,-I) U i-k ur:: (j - (k - 2i-l)) - u li-k (j - (k + 2i-l)) - u

1 du - H du
3-k U +a i-(k+2i-1) u a

[_(j - (k - 2i-l)) _ U1-a )~_(k_2i-l) _ [_ (j - (k + 2i-l)) _ -ul-al~_k ._
aua 1 - a 3-k aua 1 - a 3-(k+2' 1)
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which gives

Hence

We see that for k = 2k' E Nand j even we have Ik, = h/2a as we would

expect.

Weights at the End of the Step Length = 2i-1h Region

To deal with this case the interpolating function, at this point, takes the

form
Pk(t) = 1 for t = kh.
Pk(t) = (k+;:-ah-t for t E (kh, (k + 2i-1 )hl·

Integrating, as before, to obtain the weight we have

1 r:(k + 2i-l)h - sh = -.- ds.2,-lh kh (jh - s)1+a

Making the substitution s = (j - u)h gives

1 t: u - (j - (k + 2i-l))
. 1 1 du,2'- ha . ( . 1) U +as : k+2'-

1 ul-a (j - (k + 2i-l) )u-a li-k
2i-lha [1 - a + a i-(k+2i-1),

(10.22)

which gives
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Weights For the End of the Interval

We need to calculate two weights to eliminate the truncation, which occurred

in the Nested Mesh implementation. When j 1= 0 mod 2i-l. Let 0 < d <

2i-1 then firstly we need

(10.23)

making the substitution s = jh - uh gives

~r: (j - u)h (-hdu)
dh l, (uh)1+a

h-a lj-d (j - d) - u- dud. u1+o
J

h-a [ ul-a ju-0
1
j-d---+--.

d I-a a J

tc= (j _ d)l-a j(j _ d)-a i':" jl-a
-[ + ----1d I-a a I-a a

which gives

(10.24)

Secondly we need

ldh dh - s
Id2 = 0 dh(jh _ s)1+ads,

making the substitution s = jh - uh gives

(10.25)

~li-d ((j - d) - u)h (hdu)
dh i (uh)1+a

h-a li-d U - (j - d)
d. u1+a du

J

h-o [ul-o (j - d)u-Oji_d---+ .d I-a a J

h-a (j _ d)l-a (j _ d)l-o r: (j _ d)j-a
-[ + --- j
d I-a a I-a a
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which gives

(10.26)



Chapter 11

Multiterm Equations and
FLMM

11.1 Motivation

In this chapter we discuss methods for approximating the solution of linear

multi term fractional differential equations of the form

pLcjD{3jy = j,
j=O

(11.1)

where 0 ~ (30 < ... < (3r < (3r+l < ... < (3p, c, E 1Rand cp = 1, which arise

out of the use of Laplace transform methods to obtain its analytical solution.

There are two approaches we can take to approximating the solution of

(11.1). Firstly we can take the one operator approach and collect each of the

fractional differential operators into one integral operator and attempt to

approximate its action. This is the approach that we discuss in this chapter.

Alternatively we can treat the fractional differential equation as being built

up by the application of many fractional differential operators and treat it

as a system of fractional differential equations each of order at most one, we

discuss this approach in chapter 12.

111
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11.2 Multiterm Equations and FLMM

In [25] a method for obtaining the analytic solution of a multi term fractional

differential equation of the form of equation (11.1) is developed which is

essentially based on using Laplace transform theory. The analytical solution

to equation (11.1) was given in Theorem 3.12.

We recollect that the CQM, given in Chapter 7 is also based on Laplace

transform theory. In [16] the feasibility of using CQM to give a method for

approximating the solution of a multiterm fractional differential equation of

the form of equation (11.1) is investigated. The following theorem is given

which shows that CQM maintain their convergence properties in this case.

Theorem 11.1 ([16) 7)

Let Eh, obtained by a CQM which satisfies the conditions of chapter 7, be

the approximate to multivariate Mittag-Leffler function E(t) which solves

the homogeneous version of the initial value problem given in (11.1) then at

tn = nh we have

(11.2)

An equivalent theorem is given for some cases of the inhomogeneous problem.

Theorem 11.2 ([16) 9)

Let Eh, obtained by a CQM which satisfies the conditions of chapter 7, be

the approximate inhomogeneous version of the initial value problem given in

(11.1), where f(t) = ti:' j(t) for some j E CP[O, tn], and let E(t) be the true

solution to (11.1), then at t; = nh we have
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In [16]extensive numerical examples are given which demonstrate that the

proven convergence does occur, at least for BDF2. The example equations

given contain only one fractional differential term so the kernel of the integral

equation, whose Laplace transform supplies the weights, is of a simple form.

No indication is give of the amount of computational effort involved.

From equation (9) in [16]we conclude that the Laplace transform of the

kernel K(s) of equation (11.1) will take the form

(11.4)

Therefore we will need to find the formal power series expansion of the

ratio of the characteristic polynomials of the LMM for each {3j, j = 0, ... ,p,

and for {3p - mp, sum these expansions for j = 0, ... ,p, find the reciprocal

of this sum and multiply it by the expansion for {3p - mp. As we saw in

the examples given in chapter 7 calculating just one expansion requires more

computational effort that actually calculating the sum of the convolution

integral.

Whilst this method undoubtedly has excellent theoretical properties it

may prove to be computationally inaccessible.



Chapter 12

Systems of Equations

12.1 Motivation

Miller and Ross [45] give a method for calculating the analytic solution to

multi term fractional differential equations of the form

The fractional operator Div is interpreted as the Riemann-Liouville fractional

derivative of order 1/ applied i-times. Under this interpretation they describe

the multiterm fractional differential equation as a sequential fractional dif-

ferential equation.

Ford and Diethelm [22] have shown that this interpretation arises natu-

rally when using the Caputo fractional derivative, and subsequently devel-

oped an algorithm for approximating the solution of a multiterm fractional

differential equation by treating it as a system of equations of fractional

differential order 1/.

Given the density of the rational numbers any fractional differential equa-

tion can be modelled arbitrarily well by this method, the finite precision

arithmetic of computers being a considerably more limiting constraint on
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accuracy than any number theoretic compromises. This approach, however,

may result in a very large system of equations.

12.2 Systems of Equations

In this section we develop a numerical method for solving fractional differ-

ential equations based on treating the fractional differential equation as a

mixed system of equations of orders in the interval (0,1]. This produces the

system of the lowest possible dimension under the constraint of the max-

imum permissible order being 1. This can be seen as an extension of the

method used for solving high order differential equations whilst avoiding the

problems of order blow up that can potentially occur with the method in

[22].

Discretisation of Derivatives

For the sake of clarity and simplicity we will discretise integer order differ-

ential equations using the trapezium rule:

and discretise the fractional differential equations using the fractional trapez-

ium rule:

(12.2)

where "Ii = (ih)°r( -a).

It should be noted that D and DO are operators, their appearance in

matrices is a notational device, therefore questions about the singularity of

matrices do not arise until after the derivatives have been discretised.
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12.2.1 Systems of Equations for Ordinary Differential
Equations

Recollect that to solve the equation

Dny + ... + b1y = I,

y(i)(O) = yai), i= 0, ... ,n -1,

as a system of first order equations we let

Hly Diy, i = 1, ... ,n.

Expressed in matrix notation this gives

n I) (I)
To obtain an approximate solution to the ordinary differential equations we

discretise the derivatives and then solve the resulting matrix system to obtain

the solution y.

12.2.2 Linear Fractional Differential Equations
Ordering of Fractional Derivatives

Consider the fractional differential equation

(12.3)

Our aim is to write the discrete approximation to (12.3) in the form
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where Hi is composed of combinations of elements of Yo, ... ,Yi-1 and

fo, ... ,fi-I, I; in such a way that the dimension of Y, is minimal.

There are two possible ways we can write this as a system where each sys-

tem has the same dimension. Firstly we can write the fractional differential

operator as acting on the first component of Y which gives:

ly y,

2y D02Iy ,
3y DOl Iy ,
4y - DIy ,

secondly we could write the system as a sequence of fractional derivatives

each acting on successive components of Y :

y,

We choose to develop the first alternative since it requires the weights for one

less fractional derivative to be calculated (and therefore one less convolution

sum per iteration) and has less propagation of rounding error.

12.2.3 The Five Term Second Order Fractional Differ-
ential Equation

We start by giving methods to obtain approximate numerical solutions to

multiterm fractional differential equations which have already appeared in
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the scientific literature. We then give a method sufficient for any multiterm

fractional differential equation.

By the five term second order fractional differential equation we mean an

equation of the form

(12.4)

y(O) = Yo, y'(O) = y~, o, f3 E (0,1), bo i= O.

Equation (12.4) includes, with some redundancy, the Bagley-Torvik equa-

tion as a special case.

We write equation (12.4) as the system

Iy _ Y ,

3y _ Dy,

4y Di3Dy,

In matrix form this gives

(

DO. 0
D 0
o 0
o 0

Discretising and collecting terms together gives:

P~.)
Ma
2
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where

With initial conditions y(O) = 1, y'(O) = 0, we have calculated the solu-

tions to the equations:

D2y + DO.5y + y = 0,

D2y + Dy + y = 0,

(12.5)

(12.6)

(12.7)

in Figures 12.1, 12.2, and 12.3 respectively.

This shows the variety of system behaviour fractional generalisations of

velocity damping may be used to model.

Theorem 12.1 The order of convergence of the resulting method is equal to

the lowest order of the methods that it comprises.

Proof We prove this by induction. Clearly this is the case for the first

iteration Y 1 since we are using exact function values. Now let the order of

the lowest order method be p then by hypothesis at the n-th iteration all

the components of Y n are of O(hP) Le. Yn = 1Yn + O(hP), therefore at the
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Figure 12.1: Approximate solution to equation (12.5).
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Figure 12.2: Approximate solution to equation (12.6).
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0.2

0.8

O.S

0.4

-0.2

-0.4

-0.SO'----'---1L-
O

--1L-
S

--2L-
O

----,2L-
S
----,3L-O ----,3L-S -_j40

Figure 12.3: Approximate solution to equation (12.7).

n + 1-iteration Y n-l-I will include the accumulated order O(hP) from the n

previous iterations plus the O(hP) error introduced at the n + 1-th iteration

the combination of which is O(hP).

12.2.4 Three Equations of Special Importance

We now show how our method can be applied to three fractional differential

equations which have found practical application.

The Bagley- Torvik Equation

As before by the Bagley-Torvik equation we mean any linear fractional dif-

ferential equation (12.8) of the form:

D2y + b2D1+ay + b1y = j,

y(O) = Yo, y'(O) = y~, a E (0,1), b1b2 =I- O.

(12.8)
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By the linearity of D and DO. we can rewrite this as

Iy y,
2y Dy,
3y DO.Dy,
4y D2y.

In matrix notation this is

Discretising as above this results in the matrix system

where F; = hi], + !i-d/2, 7'1 = hbI/2, and 7'2 = hb2/2.

We have calculated the solutions in Figures 12.4, 12.5, and 12.6 to the

example Bagley- Torvik equation:

D2y + Dl+Qy + y = 0, y(O) = 1, y'(O) = 0,

for Q = 0.25, 0.5, 0.75 respectively.

Fractional Oscillation Equation

We now apply the above techniques to the fractional oscillation equation

Dl+Qy(t) + by(t) = !(t), y(O) = Yo, y(I)(O) = y~I), (12.9)

where Q E (0,1), t E [0,00), and! satisfies a Lipschitz condition in t.
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Figure 12.4: Approximate solution to equation (12.9) for a = 0.5.
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Figure 12.5: Approximate solution to equation (12.9) for a = 0.25.
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O.B

0.6

Figure 12.6: Approximate solution to equation (12.9) for Cl: = 0.75.

By the linearity of D and DO. we have

2y Dy,

In matrix form this gives

Discretising the derivatives as previously we have

and for the second equation we have

1 1( 2 2-b li+ fi = - Wo i li+ Si),ri '
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Figure 12.7: Approximate solution to equation (12.10) for a = 0.3.

Rearranging gives

We give the approximate numerical solution to the example fractional

oscillation equation

(12.10)

for a = 0.3, 0.5, 0.8 and 0.95 in Figures 12.7, 12.8, 12.9, and 12.10 respec-

tively. Our results are consistent with those given in [8] and are consistent

with the known properties of Mittag-Leffler functions [19].
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Figure 12.8: Approximate solution to equation (12.10) for Cl: = 0.5.
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Figure 12.9: Approximate solution to equation (12.10) for Cl: = 0.8.

126



CHAPTER 12. SYSTEMS OF EQUATIONS 127

0.8

0.6

0.4

0.2

-0.2

-0.4

-o.s

-0.8

-10L--1":-0--:':-20--:':30--'40::---:50'-:---60:'c----=-70--:':80:---::00::----:-:100

Figure 12.10: Approximate solution to equation (12.10) for ex= 0.95.

The Basset Equation

As before by the Basset equation we mean any linear fractional differential

equation of the form:

(12.11)

y(O) = Yo, a E (0,1), b1bo =I- O.

By the linearity of D and DO we can rewrite this as

ly Y,

3y D y.

In matrix notation this gives
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On discretisation this results in the system

where F; = ~(Ii + fi-d, 71 = (1 + ~), 72

lSi = L:~=l Wk,i lYi_k + lYola.

To compare our work with that of a previous researcher we use the for-

(1 _!!:b.) T
2 ' 3 (~), and

mulation of the Basset equation given in [44]. Thus we rewrite the Basset

equation as

Dy + aDOy + y = 1, y(O) = 0, a = /30,

where /3 = 9/(1 + 2X) for some X > O.

Our calculated approximate solutions to the Basset equation, for X =
0.5, 2, 10, 100 respectively, are given in figures 12.11, 12.12, and 12.13. These

appear to agree, up to visual tolerance, with those given in [44] (obtained by

an unspecified method).

12.2.5 Numerical Solution of the General Linear Mul-
titerm Equation

For a general linear multiterm fractional equation we consider

p

LcsDf3·y = j,
s=O

(12.12)

where 0 ~ /30 < ... < /3r < /3r+l < ... < /3p, c, E Rand cp = 1. The

highest order /3p need not be an integer, however we need to regard every

integer order derivative as being present in our equation, if necessary with

coefficient 0, so as to use all the initial conditions. We choose to use a



CHAPTER 12. SYSTEMS OF EQUATIONS

0.9

0.8

0.7

0.6

0.5

0.'

0.3

0.2

0.1

0
10 12 14 16 18 200

Figure 12.11: Approximate solution to (12.12) for a = 0.5.
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Figure 12.12: Approximate solution to (12.12) for a = 0.25.
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Figure 12.13: Approximate solution to (12.12) for a = 0.75.

notation which emphasises this: we collect all the orders within each interval

(j, j + 1), j E Z and so shall use the form

m nj

bo,oY +L L br,jDJ+Qr,jy = j,
i=» r=1

(12.13)

where, for j = 1, 2, , m - 1, we have 0 < al,j < a2,j < ... < an,j = 1 and

o < a1,m < a2,m < anm,m ::; 1 and bi,j E R Also let no + ... + nm = P

and let Pk = L;:~nj.
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We write equation (12.13) as the system

Iy y,

l+noy Dy,

2+noy

p+1y DCtnm,m Dm-ly,

which in matrix form is

ly 2y

DY= Cl 0 lJ l+noy 2+noy

f - EP-1 C IHyPy
k=O k

where for k = 1, ... ,m-I Dk is a nk x nk matrix of differential operators of

the form

D 0 0

The corresponding expression holds for k = m if £l'nm,m = 1, which we

shall call case 1. If £l'nm,m =1= 1, which we shall call case 2, we have
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The Numerical Scheme

We discretise the derivatives in D to produce D. The matrix D will consist of

square matrix blocks b, along the diagonal which are the discrete analogues

of Dk for k = 1, ... ,m -1. The bottom horizontal band of the matrix consists

of the matrices bm,l, ... , bm,m'
This means we will write the discretised system as

(12.14)

Where
DI 0 0

0 D2 0
b= (12.15)

0 0 b2 0
Dm,l Dm,m

and
_1,kWO I,
_2,kWO I,

1,k'Yi 0
o 2,k'Yi 0

o
o

o
o

o

and consequently by implication we also have
l+PkYI
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and

where

for j = 1, ... , nk - 1 and

l+Pk v; 1+ ~ Pk+1 "to)". 1PHI Si = I i- 2 I i- .

Discretising for k = m and collecting terms together gives the first nm -1

rows of Dm,m as

_l,mWO' 1,m'Yi 0 0,~
_2,mwo' 0 2,m'Yi 0,t

nm-1,mw . 0 nm-1,m'Yi 0O,t

For the last row of D we have two cases to consider depending on whether

The last row of D is determined by the equation

P

ir-e- l+Pmli= f - ~ Cs-1 sli.

s=l

(12.16)

When anm,m =1= 1 on discretisation (12.16) becomes

1 (~i n m l+p v l+
pmYo) t ~P sx>

--- m, Wi k m 1i-k + = i - Cs-1 1i.
nm,m"V. ' anm,m

It k=O s=l
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Rearranging this

P

_nm,mWi,O l+PmYi + nm,m'Yi ~ sYi = nm,msi,

s=1

where

134

Then for k = 1, ... , m _ 1, Dm,k has all zero entries for the first nm _ 1

rows. The last row of Dm,1 is given by

(nm,m'V cIi 0 ••• nm,m'V·c )
11 no .

For k = 2, ... ,m _ 1 the last row of bm,k is given by

( nm,m'V CIi Pk+1 •.. nm,m'V C )
[i Pk+1 .

For o.; the last row is given by

When Qnm,m = 1 on discretisation (12.16) becomes

l+PmYi = l+PmYi_l + ~(fi + tc., _ tCs-1 (8Yi + 8Yi_d).
8=1

Rearranging this gives

1+Pm'V+ h ~ C Sl.)," _ nm,ms.,
Ii "2 L.....J 8-1 Ii - •

8=1

where

nm,ms. = 1+Pml./" + D h ~ C Sl.),"
• Ii-l q-"2L.....J 8-1 Ii-I'

s=1
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As before Dm,k, for k = 1, ... ,m-I, has all zero entries for the first

nm - 1 rows. For Dm,l the last row is given by

and for k = 2, ... ,m - 1 the last row of Dm,k is given by

and the last row of Dm,m is given by

12.2.6 Conclusion

In this section we have shown that linear multi term fractional differential

equations are as amenable to being solved as systems of equations as are

linear ordinary differential equations. The order of convergence of the un-

derlying numerical methods are conserved and the resulting algorithms are

easily programmable.
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Conclusions

13.0.7 Power-law Decay and Chaos

We have exploited the power-law properties of the kernel of the fractional

differential operator and the existence of an invariant scale to develop our

quicker algorithms. Fractals are another area where power-law properties

playa significant role and fractals are important in non-linear dynamics.

A question that this prompts is how would the long term behaviour of the

models, sets of coupled differential equations, of chaos alter if one, or some,

of the differential operators in the set of differential equations were to be

replaced with fractional differential operators

In a linear system a perturbation introduces a permanent set whereas non-

linear systems are dissipative. Fractional differential operators have some-

thing of a 'fading out' property'. For instance if we move the pepper pot one

square away from the salt pot, on a chequered table cloth, we expect it to

stay there, in linear space time, whereas in fractional space time we would

expect the pepperpot to 'shrink back' to its original position.
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13.0.8 Collocation
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We have used the fractional generalisations of the trapezium rule and linear

multistep methods. A fractional version of semi-implicit Runge-Kutta meth-

ods, or collocation, also exists. It was remarked, by the attending co-author

of [33], that collocation methods are regarded as being generally the most

accurate methods for approximating the solutions of second kind Volterra in-

tegral equations, although a satisfactory convergence has not yet been given.

The method given in [8] is a specialisation of collocation to fractional differ-

ential equations.

We have seen that our ideas work well with the fractional trapezium rule.

When applying these ideas, in the nested mesh variant, to the fractional lin-

ear multistep methods we obtained the right sort of convergence behaviour.

However a more violent reaction to the step length change occurred than was

the case for the fractional trapezium rule. We also had a problem of inter-

preting the starting weights for the 'off grid' iteration. In addition we have

the colossal cost of computing the weights for all but the simplest methods.

Collocation methods should allow us to obtain the same orders of conver-

gence as the FLMM but with other parts of the algorithm of the same order

as the fractional trapezium rule. That is we should be able to calculate the

weights for the fractal sum implementation with the same order of accuracy.

Additionally we may attempt to use collocation to approximate the kernel

of a linear multiterm fractional differential equation.

Reference is frequently made to the use of FFTs in calculating the weights

for FLMM. The usefulness of this depends on how much difference there is in
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the cost of doing multiplication's compared to doing additions. Using FFTs,

for two vectors of length n, we have 2n - 2 additions and 1 multiplication

where conventionally we would have n multiplications and n - 1 additions,

which in both cases is 2n - 1 floating point operations.

13.0.9 Special Functions

When considering the numerical approximation of the solution of the non-

linear fractional differential equation of the form

(13.1)

we found convergent behaviour for a E (0,1) and divergent behaviour for

a E (1,2).

For a = 1 we can calculate the exact solution to equation 13.1 and find

that we will have one pole in the complex plane. For a = 2 the differential

equation is then of the same form as the differential equation satisfied by

the Weierstrass elliptic function P and therefore the solution to (13.1) is

asymptotic to P [31] and the divergent behaviour observed in our attempts

at approximating (13.1) is to be expected.

This leads us to ask is there an interesting class of special functions, which

solves (13.1), waiting to be discovered.

13.0.10 Time Dilation

If we consider a planet Pc performing a circular orbit, of period T about a

point S, then its orbital velocity will be constant. If we consider a planet

P; in an elliptical orbit, again of period T about a point S, we know by

one of Kepler's laws (equal areas in equal times) that its velocity must vary.
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Therefore by special relativity the rate at which time passes, for one orbit, on

the two planets, relative to passage of time at the point S, will be different.

We therefore might expect asymmetry to affect how time propagates in a

system.

If we consider a long chain polymer we may regard it is an articulation

of a very large number of thin cylindrical elements of radius r and length l

where 1 » r. If a lump of material composed of long chain polymers has

been undisturbed, for a long period, we might expect the orientation of these

elements to be randomly distributed, that is that asymmetry is symmetrically

distributed. If we now deform it we would expect the distribution of the

elements to be in the direction of the deformation. Then the distribution of

asymmetry is no longer symmetrically distributed.

If we speculate that each element can be regarded as an infinitesimal

'time' element, like a magnetic element, summing over a symmetrical dis-

tribution would cause the asymmetries to cancel out, however if they had

a tendency to line up in the same direction a slowing down of time might

occur.

13.0.11 Non-standard Analysis

All the developments of the fractional calculus referred to in this thesis give

a development in terms of f.-I) methods. A development based on a non-

standard model of arithmetic may lead to some useful insights.

For instance the original motivation for the nested sum algorithm comes

from using a variation in step length size to model the behaviour of a T

shaped plate using partial differential equations. A smaller step length being
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used to model the diffusion of heat or the propagation of cracks in the 'arm

pits' of the T.

Let JR. be an extension of the real numbers containing infinitely large

and infinitely small elements. Let 6 > 0 E JR* be infinitely small. Then the

D5 derivative will have a kernel of the form (t - 8)5 which will retain its

scaling properties and will be infinitely close to 1 for all t E JR+. That is

in JR. the kernel will tend to zero whilst in JR its standard part will always

be unity. Thus using non-standard arithmetic we can model the features of

the T which inspired our results by the standard part of the numbers and

the fractional scaling property, which justifies our approach, by appealing to

features of the extended model of arithmetic.

13.0.12 Reaction of Bone to Violent Shock

A discovery of modern material science is that larger objects (composed of the

same material and of the same shape) are more brittle than smaller objects

due to the propagation of micro-cracks. Thus the bigger they are the harder

they fall is a faster than linear relationship.

Violence between individuals is a feature of human society. There are

many results in mathematical physics to the effect that maximum power

transfer occurs under symmetrical conditions. We might therefore speculate

that violence between symmetrical individuals is more destructive and that

the bigger the individuals are the more physically damaging that violence is.

One of the conclusions of material science is that for many applications

a hollow tube is just as strong as a solid tube and therefore using a hollow

tube saves on material. There is no point in telling this to the birds since
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they already know it. This suggests that the equivalent bone in a small scale

person could suffer a larger deflection (in terms of curvature) than for a large

person for two reasons: firstly the slower onset of tension in the opposite side

of the bone and secondly less intrinsic bone brittleness.



Appendix A

The Tautochrone

In the problem ofthe tautochrone we ask what is the shape of a curve C such

that the time taken for a frictionless bead to slide down it is independent of

the beads starting point, see figure A.I.

y

P(X,y)
c

g

x

Figure A.1: The tautochrone problem
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Solution of the Tautochrone

At the point Q the acceleration of the bead along the curve is

d2s
dt2 = -g cos et, (A.I)

and
d'f}

COSet = ds' (A.2)

which gives
~s dry
dt2 = -g ds'

We now multiply by ~~and integrate by parts to obtain

ds 2
(dt) = -2g'f}+ k.

(A.3)

(A.4)

Now since the bead starts from rest :~ = 0, at TJ= y we must have k = 2gy

and, taking the negative square root since s reduces as t increases, we have

ds r----,-----,-
dt = - y'2g(y - TJ)· (A.5)

Thus the time of descent T from P to 0 is given by

1 t" 1
T = - ..fi9 Jp Jy _ TJds. (A.6)

The arc length s is a function of TJso S = h(TJ) for some function h. Assuming

h is differentiable we can write the previous equation as

___ 1_1° h'(TJ)T - f'l');; ~ dn.v~g y vy - 'f}

Writing h'(y) as f(y) and generalising the differential operator notation to

(A.7)

the fractional case we can write this as

..fi9 _1
r(~)T = D 2 f(y)· (A.8)
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If we assume that f has bounded integrals and derivatives of all orders then

we can rewrite this as

D~ {!!-T = f(y), (A.9)

and since

(A.lO)

we have

f(y) = V29Ty-!.
7r

(A.11)

To find the equation of the curve C we have

(A.12)

so

dx = Jp -1,
dy

(A.13)

therefore

x = {' tg
; - ldry +C.10 n 'fJ

Setting x = 0 at y = 0 gives c = 0, let a = gT2/7r2 then

(A.14)

ly 2a 1
x = (- - 1)2d'fJ.

o 'rJ
(A.15)

Changing the variables of integration to 'rJ = 2a sin? 0 and dn] dO = 4a sin 0 cos 0

gives

x
. -1 . ff 2

lsm v 2B cos ()
(-.-2-) 4a sin ()cos (}d(),

o 8m ()

l
sin-1 . rs:V2B

o cos2 (}d(),

[
() 1 ] sin-1 v?i

4a 2 + 4: sin 20 0 . (A.16)
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Writing j3 = sin-1 .;:;J72O, we have

x = 2a(j3 + ~ sin 2j3), (A.17)

and

y = 2a sin2 j3. (A.I8)

If we now let 2j3 = f), and recall that cos f) = cos? f) - sin2 f) = 1 - 2 sin" f)/2,

gives the parametric representation of C as

x a(f) + sin f)),

y a(l - cos f)),

which is the parametric form of the equation for a cycloid.
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Classical Viscoelastic Theory

B.l Motivation

We give a very brief and basic survey of viscoelastic theory. The interpreta-

tion of viscoelasticity given here is a synthesis of [47]and [39]. For a review

of the basic physics of materials see Appendix C.

B.2 Classical viscoelastic Theory

B.2.1 Basic Concepts

In classicallinearised elasticity

stress (in a sheared body) ex amount of shear (B.l)

The Navier-Stokes theory of viscosity asserts

shearing stress ex rate of shear (B.2)

If, in a material, these effects are not further complicated by behaviour that

is unlike either elasticity or viscosity the material is called viscoelastic. We

will denote stress by a(t) and strain by K(t).
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B.2.2 Stress Relaxation

We consider the behaviour of a slab of material in simple shearing motion,

see figure B.1 . The slab is to be regarded as so thin that inertial effects can

be ignored.

ott)
-----l>

Figure B.1: Slab of material subjected to a shearing stress.

Then the slab can be regarded as homogeneously deformed, with the amount

of shear strain K,(T) variable in time. Let CJ(t) be the shearing stress per unit

area on the slab. In the case of an elastic material the stress history has the

form

a(t) = aoH(t) (B.3)

where H(t) is the Heaviside step function. If the material were an ideal

viscous fluid the stress would be instantaneously infinite during the step, and

then zero for all time afterwards, like a Dirac delta function, 8(t) = H' (t),

figure B.2.

However the stress usually decreases from its initial value quite rapidly at

first, and later more gradually, approaching some limiting value CJ( (0), figure
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a(t)

t ,.

a(t)

elastic

viscous

t

Figure B.2: Ideal elastic and viscous behaviours.

a(t) a(t)

solid fluid

t t

Figure B.3: Behaviour of solids and fluids.
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B.3. If the limiting value is not zero we are likely to call the material a solid.

If the limiting value is zero, and the approach to zero sufficiently rapid, we

call the material a fluid. Let T be the relaxation time. We call materials

viscoelastic, and use appropriate mathematical models, when the relaxation

time and period of observation are not astronomically different.
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B.2.3 Creep

149

Now suppose that a slab is subjected to a one step stress history (J(t) =

(JoH(t). The response of an elastic solid would be I"\,(t) = l"\,oH(t), constant

shear for t > O. In a viscous fluid, the sheer would increase at a constant rate

X( t) = '!f!, the coefficient rt being the viscosity. Viscoelastic theory recognises

K(t) K(t) K(t)

?solid fluid

t t t

Figure B.4: Three models of shear response.

more refined observations which show departures from these idealisations.

The shear at first jumps, so far as anyone can tell, so that the instantaneous

response is elastic. The shear then continues to increase, but at lower and

lower rates, figure B.4.

B.2.4 Response Functions

Let R(I"\" t) be the stress relaxation function, the stress t units of time after

application of a shear step of size 1"\,. Let C((J, t) be the creep function, the

shear t units of time after application of a stress (J. Rand C are zero for

t < O. If the material is isotropic then by consideration of symmetry R is an

odd function of I"\, and C. Hence assuming smooth dependence and supposing
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that K, and a are small we have

(B.4)

and

Cia, t) = J(t)a + O(a3). (B.5)

The values of these functions at t = 0+ are denoted Gg and Jg (g for glass),

and the values at t = 00 are Ge and Je (e for equilibrium or elastic depending

on the author), provided that these values exist. If J(t) tends to increase

like t+T for large t, 7]0 is called the steady state shearing viscosity and T is
TJo

the mean relaxation time, figure B.5.

G(t) J(t) J
G. solid

G J~--------~ .

G(t) G fluid

J.
ll,

T t

Figure B.5: Response behaviour for solids and fluids.

Immediately after application of a step strain or stress, the response is inde-

pendent of whether it is the strain or stress which is to be held constant in
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the future. Hence at time 0+, a = GgK, and K, = Jga. Thus we find that the

initial values of G and J are reciprocal:

(B.6)

If the stress and strain approach limiting values after a long time for vis-

coelastic substances it is irrelevant which one was held absolutely constant

for all +ve time. Thus in the limit as t -t 00 both a = GeK, and K, = Jea are

valid. Hence

(B.7)

Apparently J(t) and G(t) are roughly reciprocal at all times, although exactly

so only in the limiting cases. The reciprocal relations for the limits can be

viewed as the assumptions that the instantaneous response and equilibrium

response are elastic.

B.2.5 Models

A spring is an ideal elastic element obeying the linear force-extension, Hooke's

law, a = GK" figure B.6. Its relaxation modulus is G(t) = GH(t), and its

creep compliance is J(t) = JH(t). Here J = b.
A dashpot is an ideal viscous element that extends at a rate proportional to

the applied force, k, = ~, figure B.7. Hence J(t) = tHJt) and G(t) = T]c5(t).

Springs and dash pots can be combined in different ways to produce alterna-

tive models of viscoelastic behaviour, figure B.S.

When two elements are combined in series, their compliances are additive.

Thus the Maxwell model consists of a spring and dashpot in series and has
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er

Figure B.6: Spring or Hooke's model of an ideal elastic element.

Figure B.7: Dashpot or Newton's model of an ideal viscous element.

creep compliance
t

J(t) = (Jg + - )H(t).
'T/

(B.8)

When two elements are combined in parallel, their moduli are additive. The

Kelvin- Voigt model consisting of a spring and dashpot in parallel has the

modulus

G(t) = GeH(t) + 'T/6(t). (B.9)
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Maxwell model Kelvin-Voigt model

Figure B.8: Simple dashpot and spring models of viscoelastic behaviour.
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Properties of Materials

C.O.6 Basic Concepts

Strength how great an applied force a material can withstand before break-

ing.

Stiffness the opposition of a material to being distorted by having its size

or shape changed.

Ductility (or workability) relates to the ability of the material to be ham-

mered, pressed, bent, rolled, cut or stretched into useful shapes.

Toughness does not crack readily, i.e. is not brittle.

At normal temperatures steel has all four of these basic properties whilst

custard has none. When acted on by a force the deformation produced in a

sample of material depends on

1. the nature of the material

2. the stretching force

3. the cross sectional area of the sample

154
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4. the original shape of the sample

Two important concepts necessary for understanding viscoelasticity are stress

and strain.

Stress is the force acting on the unit cross-section area and for a force F

and area A it equals ~. The units of stress are Newtons per square

metre (Nm-l)

Strain is the extension of unit length if e = extension and l = original length

then strain =f. Strain is a ratio and has no units.

A stress which causes an increase of length puts the sample in tension, thus

we talk about tensile stress and tensile strain. The stress strain graph de-

E

o

o 0' Strain

Figure C.l: Plot of stress against strain.

pends not only on the material but also on previous uses and methods of

manufacture.
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C.O.7 Elastic Deformation
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The first part of the graph, given in figure C.1 from OE is a straight line

through the origin and here strain is directly proportional to stress. Over

this range the material suffers elastic deformation, i.e. it returns to its original

length when the stress is removed and therefore none of the original extension

remains.

C.O.8 Plastic Deformation

As the stress increases the graph become non-linear but the deformation

remains elastic until at a certain stress corresponding to point P, called the

yield point, permanent or plastic deformation starts. The material retains

some of its extension if the stress is removed. On reducing the stress at A

the specimen recovers along AO' where AO' is almost parallel to OE. 00'

is the permanent plastic extension produced. If the stress is reapplied, the

curve 0' AD is followed, At D the specimen develops one or more 'waists' and

ductile fracture occurs at one of them. The stress at D is the greatest that

the material can bear and is called the breaking stress or ultimate tensile

stress. The specimen appears to 'give' at P, and over the plastic region a

given stress increase produces a greater increase of strain than previously.

Nonetheless it still opposes deformation and any increase of strain requires

increased stress. Beyond P the material is said to work harden or strain

harden.
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Material Young's mod. (x1010Nm-2)
steel 21
copper 13
glass 7
polythene 0.5
rubber 0.005

Table C.l: Approximate values of E

C.O.9 Young's Modulus

The stress-strain curve for the stretching of metals and some other materials

such as glass is linear over almost all the elastic region. This statement is

known as Hooke's law.

tensile stress
----- = const.
tensile strain

(C.l)

This constant, denoted by E, is called Young's modulus. Its value depends

on the nature of the material and not on the dimensions of the sample.

Materials with large E resist elastic deformations strongly and a large stress

is required to produce a small strain. If a stretching force F acting on a wire

of cross-sectional area A and original length l causes an extension e we can

write
E = tensile stress = ~ _ Fl

tensile strain T Ae
(C.2)

C.O.IO Fatigue

This may cause fractures, often with little or no warning, and happens when

a metal is subjected to a large number of cycles of varying stress even if the

maximum value of the stress could be applied steadily with complete safety.
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For many ferrous metals there is a safe stress variation below which failure

will not occur even for an infinite number of cycles. With other materials

'limited life' design only is possible.

C.O.II Creep

In general, for metals, this occurs at high temperature and results in the

metal continuing to deform as time passes, even under constant stress. Some

low melting point metals can creep at low temperatures, e.g. lead sheeting

on church roofs has to be replaced periodically. Creep is a particular feature

of viscoelastic substances.

C.O.I2 Elastic Moduli

All deformations of a body whether stretches, compressions, bends or twists

can be regarded as consisting of one or more of three basic types of strain.

For many materials experiment shows that provided the elastic limit is not

exceeded
tensile stress----- = const.
tensile strain

This is a more general statement of Hooke's law. The constant is called an

(C.3)

elastic modulus of the material for the type of strain under consideration.

There are three moduli, one for each kind of strain.

1. Young's Modulus (E) as previously explained.

2. Rigidity Modulus (G) in this case the strain involves a change of shape

without a change of volume.Thus if a tangential force F is applied along

the top surface, of area A, of a rectangular block of materials fixed to
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the bench, the block suffers a change of shape and is deformed so that

the front and rear faces become parallelograms. The shear stress is ~

and angle a taken as a measure of the strain produced. The rigidity

modulus is defined as

G = shear stress = .!_.
shear strain ax

When wire is twisted, a small square on the surface becomes a rhombus,

and an example of a shear strain. G can be found from experiments on

the twisting of wire. If a spiral spring is stretched, the wire itself is not

extended but it is twisted, i.e. sheared. The extension thus depends

on the rigidity modulus of the material as well as on the dimension of

the spring.

3. Bulk Modulus (K) if a body of volume V, as in Figure C.2, is subject

to an increase of external pressure op which changes its volume by OV,

the deformation is a change of volume without a change of shape. The

bulk modulus stress is op, i.e. an increase in u~~r::ea and the bulk strain

a change of . ~olfm~ . The bulk modulus K is defined byongma vo ume

K = bulk stress = -8p (C.4)
bulk strain 15;:

The - sign is introduced to make K +ve since 8V is -ve. Solids have all

r5V .V' i.e.

three moduli, liquids and gases only have K. All moduli have the same units

Nm-2.

C.O.13 Strain

This has two classifications dilation changes the volume but not the shape
deviatoric changes the shape but not the volume

External forces can be applied to a body in two ways: either, as with gravity
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bp

--- - ---- ---- ----- ------------ --- - - - -~ - ---- - - - - --- - - -- ----- - --- - - - - - - --- -----
bV~ l

~ /V

bp ~ bp
-----,., ~

!,,,,
j,
:
1, ', '

I I

i..----------------------:------------f------------------------------------J
bp

Figure C.2: Cross section of a body subject to an increase in external pres-
sure.

and inertia, as body forces which act directly on the particles of the body;

or as surface and contact forces which act directly on the particles at the

surface but only indirectly, through forces transmitted along the network of

bonds, on those inside the body.



Bibliography

[1] Abel N., Solution de Quelques Problemes a l'aide d'Integrals Definites,

Oeuvers Completes, Volume 1, 1881.

[2] Humbert P. and Agarwal R.P., Sur la fonction de Mittag-Leffler et

quelquesunes de ses generalisations, Bulletin des Sciences Mathema-

tiques, vol. 77, no. 10, 180-185, 1953.

[3] Apostol T.M., Mathematical Analysis Addison-Wesley, 1977.

[4] Bagley R.L. and Torvik P.J., On the appearance of the fractional deriva-

tive in the behaviour of real materials, J. Appl. Mech., 51, 294-298, 1984

[5] Baker C.T.H. and Derakhshan M.S., FFT Techniques in the Numeri-

cal Solution of Convolution Equations, Journal of Computational and

Applied Mathematics, 20, 1987.

[6] Baker C.T.H. and Derakhshan M.S., The Use of NAG FFT Routines in

the Construction of Power Series Used in Fractional Quadrature Rules,

Numerical Analysis Report No. 115, Manchester Centre for Computa-

tional Mathematics.

161



BIBLIOGRAPHY 162

[7] Baker C.T.H. and Derakhshan M.S., A Code for Fast Generation of

Quadrature Rules with some Special Properties, Numerical Analysis Re-

port No. 121, Manchester Centre for Computational Mathematics.

[8] Blank L., Numerical treatment of differential equations of fractional or-

der, Numerical Analysis Report No. 287, Manchester Centre for Com-

putational Mathematics, 1996.

[9] Bourbaki N., Elements of the History of Mathematics, Springer-Verlag,

1994.

[10] H. Brunner and P.J. van der Houwen, The numerical solution of Volterra

equations, North-Holland, 323-407, 1986.

[11] Caputo M., Linear Models of Dissipation whose Q is almost Frequency

Independent - II, Geophysical Journal Royal Astronomical Society, 13,

1967.

[12] Diethelm K. An Algorithm for the Numerical Solution of Differential

Equations of Fractional Order, Electronic Transactions on Numerical

Analysis, Kent State University, 5, 1-6, 1997.

[13] Diethelm K., Generalised Compound Quadrature Formulae for Finite-

part Integrals, IMA Journal of Numerical Analysis 17, 479-493, 1997.

[14] Diethelm K. and Freed A.D., On the solution of non-linear fractional

order differential equations used in the modelling of viscoplasticity, Sci-

entific Computing in Chemical Engineering II: Computational Fluid



BIBLIOGRAPHY 163

Dynamics, Reaction Engineering, and Molecular Properties, Springer-

Verlag, Heidelberg, 217-224, 1999.

[15] Diethelm K., Ford N.J. and Freed A.D., A Predictor-Corrector Approach

for the Numerical Solution of Fractional Differential Equations, to ap-

pear.2001.

[16J Diethelm K. and Luchko Y., Numerical Solution of Linear Multi-Term

Differential Equations of Fractional Order, J. Comput. Anal. Appl., to

appear.

[17J Diethelm K. and Walz G., Numerical Solution of Fractional Order Dif-

ferential Equations by Extrapolation, Numerical Algorithms 16, 231-253,

1997.

[18J Elliot D., An Asymptotic Analysis of Two Algorithm for Gertain

Hadamard Finite-part Integrals, IMA J. Numerical Analysis 13,445-462,

1993.

[19J Erdelyi A., Higher Transcendental Functions Volume 3, McGraw-Hill,

1954.

[20J Ford N.J. and Diethelm K., Analysis of Fractional Differential Equa-

tions, J. Math. Anal. Appl., to appear.

[21J Ford N.J. and Diethelm K., Numerical solution of the Bagley-Torvik

equation, BIT, 101-116, 2000.



BIBLIOGRAPHY 164

[22] Ford N.J. and Diethelm K, The numerical solution of linear and non-

linear fractional differential equations involving fractional derivatives of

several orders, to appear.

[23] Ford N.J. and Simpson A.C., The numerical solution of linear multi-

term fractional differential equations: systems of equations, submitted

to JCAM, 2001.

[24] Ford N.J. and Simpson A.C., The numerical solution of fractional dif-

ferential equations: Speed versus accuracy, Numerical Algorithms, 26,

333-346, 2001.

[25] Gorenflo R. and Luchko Y., The Initial Value Problem For Some Frac-

tional differential Equations, Acta Mathematica Vietnamica, 24, 207-

233, 1999.

[26] Hadamard J., Lectures on Cauchy's Problem in Linear Partial Differ-

ential Equations, Yale University Press, 1923.

[27] Hairer E., Norsett S.P. and Wanner G., Solving Ordinary Differential

Equations I, Springer-Verlag, 1991.

[28] Hairer E., Lubich Ch. and Schlichte M., Fast numerical solutions of

weakly singular Volterra integral equations, Journal of Computational

and Applied Mathematics 23, 87-98, 1988.

[29] Henrici P., Fast Fourier Methods in Computational Complex Analysis,

SIAM Review 21, 1979.



BIBLIOGRAPHY 165

[30] Hilfer R., Applications of Fractional Calculus in Physics, World Scien-

tific, 2000.

[31] Ince E.L. Ordinary Differential Equations, Dover Publications New

York, 1956.

[32] Iserles A., A First Course in the Numerical Analysis of Differential

Equations, Cambridge Texts in Applied Mathematics, 1997.

[33] Keinert F. and Makroglou A., On some recent numerical methods for

solving linear weak singular Volterra equations of the first kind; a com-

parative survey, HERCMA, Athens, 2001.

[34] Kolmogorov A. N. and Fomin S. V., Fundamentals of the Theory of

Functions and Functional Analysis, Nauka, Moscow, 1968.

[35] Krommer A.R. and Ueberhuber C.W., Computational Integration,

SIAM, 1998.

[36] Lambert J.D., Numerical Methods for Ordinary Differential Equations,

Wiley, 1991.

[37] Linz P., Analytical and Numerical Methods for Volterra Equations,

SIAM, 1985.

[38] Liouville J., Memoire sur quelques questions de geometrie et de

mecanique, et sur un nouveau genre de calcul pour resoudre ces ques-

tions, Journall'Ecole Royal Polytechnique, 13, Section 21, 1832.

[39] Locket F. J .. Non-linear Viscoelastic Solids Academic Press, 1972.



BIBLIOGRAPHY 166

[40] Lubich C., Discretised Fractional Calculus, SIAM Journal of Mathemat-

ical Analysis, Volume 17, No.3, 704-719, 1986.

[41] Lubich C., Fractional Linear Multistep Methods for Abel- Volterra Inte-

gral Equations of the First Kind, IMA Journal of Numerical Analysis,

97-106,7.

[42] Lubich c., Convolution Quadrature and Discretised Operational Calcu-

lus. I, Numerische Mathematik, 52, 129-145, 1988.

[43] Lubich C., Convolution Quadrature and Discretised Operational Calcu-

lus. II, Numerische Mathematik, 52, 413-425, 1988.

[44] Mainardi F., Fractals and Fractional Calculus, Springer-Verlag, 1997.

[45] Miller K.S. and Ross B., An Introduction to the Fractional Calculus and

Fractional Differential Equations, John Wiley, 1993.

[46] Oldham K.B. and Spanier J., The Fractional Calculus, Academic Press,

1974.

[47] Pipkin A.C., Lectures on Viscoelasticity Theory, George Allen & Unwin

Ltd., 1972.

[48] Podlubny I., Fractional Differential Equations, Academic Press, 1999.

[49] Podlubny I., Numerical Solution of Ordinary Fractional Differential

Equations by the Fractional Difference Method, Proceedings of the

Second International Conference in Difference Equations, Gordon and

Breach Scientific Publishers, 507-515, 1997.



BIBLIOGRAPHY 167

[50] Ralston A. and Rabinowitz P, A First Course In Numerical Analysis,

McGraw-Hill, 1978.

[51] Riemann B., Versuch emer allgemeinen Auffassung der Integration

und Differentiation, Gesammelte Mathematische Werke und Wis-

senschaftlicher, Dover, 1953

[52] Robinson A., Non-standard Analysis, North Holland, 1966.

[53] Samko S.G., Kilbas A.A., Marichev OJ., Fractional Integrals and

Derivatives Theory and Applications, Gordon and Breach, 1993

[54] Scott-Blair G.W., Survey of General and Applied Reology, Pitman, 1949.

[55] Simpson A.C., Linear Fractional Order Differential Equations and their

Solution, M.Sc. Thesis, University College Chester, 1996.

[56] Sloan I.H. and Thomee V., Time Discretisation of an Integro-

Differential Equation of Parabolic Type, SIAM Journal on Numerical

Analysis, 23, 1052-1061, 1986.


