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A B ST R A C T

This thesis is a study of the braid index of satellite links. Let V  C S 3 be 
a solid, possibly knotted torus. Through the work of Birman and Menasco, the 
observation has been made that a satellite link L C V  (with companion C, 
pattern P  and essential torus T  — dV) falls into one of two broad categories: 
reverse string or non-reverse string. These are distinguished by the existence of, 
or lack of, a meridional disc D C V  with an orientation, whose intersections with 
the oriented satellite L are all similarly oriented. If no such D  exists, then L is a 
reverse string satellite.

For non-reverse string satellites L it is shown that the braid index b(L) is 
dependent only on b(C) and certain specified properties of the pattern. Birman 
and Menasco conjectured that, for reverse string satellites L, the braid index b(L) 
depends on the arc index a(C), and properties of the pattern. Here, we study 
this further via established upper and lower bounds for braid index. The upper 
bound comes from explicit closed braid diagrams of L, for which constructions 
are shown. The lower bound comes from the Homily polynomial, via the Morton- 
Franks-Williams inequality. It is conjectured that for all reverse string satellites 
L, this lower bound grows linearly with framing, hence emulating the relationship 
between the upper bound and the framing.

The arc index of a link L is investigated in its own right, taking advantage 
of the work of Cromwell. Relationships are found between arc index and other 
standard link invariants. A computer algorithm is described, which is enough to 
identify all knots of low arc index, via computation of their Homfly polynomials.

The work of Rudolph on quasipositive annuli is employed to deduce the fol
lowing inequality:

a(K )  > 2 +  spra (GK(a, x )),

where Gk (cl, x ) is the Kauffman polynomial with coefficients reduced modulo 2. 
It is conjectured that this relation yields equality if, and only if, K  is alternating.
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Introduction

This thesis presents a study of satellite links, and in particular of a geometric 
invariant of links which is intrinsic in the presentation of certain satellites as 
closed braids.

As part of their comprehensive study of links via closed braids, Birman and 
Menasco studied the effect of the knot operations of distant union and connect 
sum on the braid index. Let A C  S 3 denote the braid axis; the complement S 3—A 
admits an open book fibration, where the fibres are open halfplanes Hg. Let L 
be a closed braid relative to A, so L intersects each of the Hg transversely in 
the same number of points. Let S  denote the 2-sphere which defines the distant 
union/connect sum; then S  is foliated by the leaves SC\Hg. Birman and Menasco 
examined the foliation of S, and showed that S  could be placed in nice position 
relative to the open book fibration, so that the distant union/connect sum was 
apparent from the presenting braid.

The behaviour of braid index with respect to the more complicated satellite 
construction could be studied using this work as a foundation. Let T  be a hollow 
torus in S 3: it is known by a theorem of Alexander that T  bounds a solid torus 
V  on at least one side. Suppose a link L  is completely contained in the interior 
of V. If V  is knotted then L  is called a satellite link. We assume that L is a 
proper satellite: that is, T  is essential (incompressible in S 3 — L).

The methods of Birman and Menasco, described above, could be applied 
to the satellite construction to develop formulae for braid index of satellites; 
comparable (independent) results are found here and in a further paper of Birman 
and Menasco. It is established that satellites, broadly speaking, fall into one of 
two types: reverse string, and non-reverse string. Braid index of the latter is 
dependent on the braid index of the companion knot. Birman and Menasco 
conjectured that braid index of the former is dependent on the arc index of the 
companion knot. The apparent dependence is not trivial, and we discuss this 
here, giving examples and illustrations.

IV



A special class of reverse string satellite was a subject of study in the work 
of Rudolph. The boundary of an oriented knotted annulus (with core knot C, 
say) is an oriented link: its two components are oppositely oriented copies of C, 
running parallel to each other. We call this satellite link an antiparallel of C.

Rudolph studied the modulus of quasipositivity q{C) of a knot C (introduced 
in the knot theory of complex plane curves) as it applies to ordinary knot the
ory: q{C) can be characterized in terms of the framing of the antiparallel of C. 
Rudolph found upper and lower bounds for q(C), and gave a relationship between 
the Kauffman polynomial of C and the Homfly polynomial of the antiparallel of 
C. We bring together the theory of general satellites, and the work of Rudolph 
through quasipositive surfaces, to make a number of deductions.

The contents of this thesis can be summarized as follows.

Chapter 1 covers some of the definitions of classical and modern knot theory, 
which are relevant to this thesis. Further definitions appear throughout the thesis.

Chapter 2 is an introduction to the arc index: we describe the underlying 
construction, and a two-dimensional method of representing the construction, the 
grid diagram. We define the arc index. Cromwell formalized a set of combinatorial 
moves, similar to the Reidemeister moves or the Markov moves, which relate a 
pair of grid diagrams of a link; these moves are covered in some detail in section 
2.3. We include observations on how arc index relates to other link invariants, and 
a discussion on the behaviour of arc index under the knot operations of distant 
union and connect sum.

Chapter 3 can be regarded in two parts. The first part (sections 3.1 and 
3.2) introduces and proves a result concerning braid index of non-reverse string 
satellites. The second part (sections 3.3-3.7) begins by stating the more complete 
result of Birman and Menasco, which recognizes the reverse string pattern types. 
The work continues by employing this result to develop explicit closed braid 
diagrams (and hence explicit words in the braid group) for reverse string satellites; 
this algorithm provides an upper bound for braid index of a reverse string satellite. 
We see how the framing of the satellite is a factor in determining braid index of 
reverse string satellites, and in section 3.7 we prove a relationship between fram ing  
of the satellite, and the size of its Homfly polynomial. This leads directly to a 
lower bound for braid index of the reverse string satellite, via the well-known 
Morton-Franks-Williams inequality; it is observed that, at least in special cases, 
the upper and lower bounds developed here behave identically with respect to 
framing.
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In chapter 4 we bring in the work of Rudolph on quasipositive annuli. We 
review some of the necessary definitions and observations of Rudolph, and add 
some new observations. Section 4.4 brings together the work on quasipositivity, 
and the work on satellites, with the result that a lower bound for arc index can 
be deduced from the Kauffman polynomial. Moreover, this lower bound is re
markably similar, on face value at least, to a result (proved, independently, by 
Murasugi and by Thistlethwaite) relating crossing index and the Jones polyno
mial: in particular, both inequalities seem to be strict if, and only if, the link is 
non-alternating.

Chapter 5 returns to the arc index itself. We include a discussion of a com
puter algorithm which is enough to identify all knots of small arc index, via cal
culation of their Homfly polynomials. The algorithm is illustrated by inclusion 
of a pseudocode, and a number of corollaries are deduced.

Finally, a note on the organization of this thesis. Titles and labels are abun
dant, and usually they are numbered. For example, 3.7 is the seventh section of 
chapter 3, and 3.7.II is the second subsection of section 3.7. Theorems, proposi
tions, lemmas, corollaries and conjectures are all covered under the same indexing 
system: 3.7.2 is the second such to be included in section 3.7 (irrespective of which 
subsection it appears in). Figure 3.5 is the fifth figure of chapter 3: figures are 
numbered consecutively. References are included at the end of the thesis; in the 
main body of the thesis, they are referred to within square brackets, e.g. [Ro]. 
The symbol □ indicates the end of a proof or, if it appears immediately after a 
statement, that no proof is given.
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C hapter 1

Basic definitions

Throughout the thesis, N, Z and R  denote the natural numbers, the integers and 
the reals, respectively.

1.1 Knots and links

A knot (usually denoted K ) is an embedding of S'1 into S'3, i : S 1 —> S3. A link, L, 
of \L\ components is an embedding of \L\ copies of S 1 into S3, i : -Ŝ U. . .US1 —> S3.

In this work, we refer to smooth or piecewise linear knots and links. Also, 
we make the distinction between knots and links, since, in some circumstances, 
terminology for a 1-component link is valuable. Where the number of components 
is immaterial we refer to a link.

A link is said to be oriented if it comes with a choice of orientation for each 
component.

Let L  be a link. A diagram of L is the image D(L) of a projection map, 
D : S3 —► S 2 or R 2, such that there are finitely many singular points, and each 
singular point is a transverse double point with its under- and over-crossings 
distinguished.

The unknot, denoted U\, is the only knot (1-component link) which can be 
represented by a non-singular diagram. Figure 1.1 shows some examples of dia
grams of knots.

In a link diagram D, suppose we have p parallel, similarly oriented strings, 
running alongside each other without intertwining. We can replace this with

1



Figure 1.1: Diagrams of unknot, trefoil and figure-eight

Figure 1.2: Weighted string represents p parallel strings in link diagram D

a weighted string of weight p, as illustrated in figure 1.2. This diagrammatic 
shorthand will be of use in later chapters.

Given a link L, its obverse L is given by reflecting L  in some mirror plane in
S3.

1.2 Equivalence of links

Let D, D' be diagrams of links L, V . By a theorem of Reidemeister [Re], the 
links L  and L' are equivalent up to ambient isotopy if, and only if, D  and D' are 
related by a sequence

D — Dq —► D\ —►... —> Dr — D1,

where each D, is related to Di_1 by one of the Reidemeister moves (illustrated in 
figure 1.3).

Two link diagrams are said to be equivalent up to regular isotopy if they are 
related by a sequence D  =  D0 Dr =  D' where each Di is related to Dj_i
by either the second or third Reidemeister moves.

2



Figure 1.3: The Reidemeister moves
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1.3 Braids

Let {(x ,y ,z ) : z = z0}, {(x ,y ,z ) : z — zxj  (with z0 < zx) be parallel planes in 
R 3. Choose m  pairs of points (xx, yx, z0), (x,, y i,zx),i =  1 , . . . ,  m  on the planes. 
An m-braid is a collection of m  disjoint strings, each of which joins one of the 
points on {(a;, y ,z) : z — z0} to one on {(x, y ,z) : z — zx} such that (a) each point 
is at the end of exactly one string, and (b) each string has transverse intersection 
with every plane {(x ,y ,z) : z — z'}, for z0 < z' < zx. An example is shown in 
figure 1.4. We study braids, as we study links, via diagrams with finitely many 
double points and no higher singularities.

z=z0

Z=Z\

Figure 1.4: A 4-braid /?

Braids are represented algebraically by Artin’s braid group [Ar], B m:

Bm
aiajai = ajaiaj, |*-j| = l;
aiaj=ajai, |z-j|>2. ?

where the generator represents the crossing of the zth braidstring and (i + l)th  
braidstring, in the sense of figure 1.5.

Figure 1.5: Elementary braid e  B n

A closed m-braid ¡3 is a union of closed curves in S 3, given by joining the 
points (Xi,yi,z0), (2̂ , yx, zx),^ i  of an m-braid /3, as shown in figure 1 .6.
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T heorem  1.3.1 [Al] Every link can be presented as a closed braid, and every 
closed braid is a link. □

Markov [Ma] described deformations which relate any pair of closed braid 
representations of the same link L. The Markov moves are illustrated in figure 
1.7, where links are assumed to be piecewise linear. The dotted component is 
replaced by the full component, or vice versa.

Figure 1.7: Markov moves

The Markov moves relate the link representations via the following theorem.

T heorem  1.3.2 [Ma] Let ¡3 and (3' be two closed braids in S 3, which are com- 
binatorially equivalent1. Then there exists a finite sequence

P — Po Pi -*■■■-* Ps =  P'

of closed braids in S 3 such that for each i =  1 , . . . ,  s, pi is obtained from ¡3̂  
by a single application of a deformation of type TZ or type W. (The converse is 
trivially true.) □

In algebraic terms, this is equivalent to the following. A Markov move replaces 
a braid P € B n by

(71) p' G B n, where (3' is conjugate to (3 in Bn\ or 

(W) p a t 1 e  B n+1; or

1The combinatorial equivalence class of a link is its link isotopy type ([Bi] p.39). Two 
piecewise linear links L and L' are said to be combinatorially equivalent if they are related by 
a finite sequence of links, such that each link is obtained from its predecessor by a deformation 
of type TZ. Since the Reidemeister moves can easily be generated from repeated application 
of move 71, then Reidemeister equivalence implies combinatorial equivalence. More trivially, 
combinatorial equivalence is just ambient isotopy, and so implies Reidemeister equivalence.
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(W *) p' e Bn_x, where p = e Bn.

Then the algebraic version of theorem 1.3.2 is as follows.

T heorem  1.3.3 [Ma] Let p  and P' be two closed braids in S 3, with braid rep
resentations P and P'. Then ¡3 is combinatorially equivalent to p' if, and only if, 
there exists a finite sequence

P = P0-+Pl->...^Ps = P'

of braids, with each Pi 6 B n., such that for each i — 1 , . . . ,  s, the braid Pi is ob
tained from Pi_i by a single application of one of the algebraic moves TZ, W, W _1 
described above. □

Detailed proofs of Markov’s theorem can be found in [Bi, Mo3, Tr], and out
lined proofs in [Ma, Ha],

Finally in this section, we define a special braid. We let An € B n denote a 
positive half-twist of n strings, defined inductively by

A2 =  <ti;
An =  AB_1.(ffB_i<7B_2 .. .ffi), n >  2.

1.4 Some standard knot and link invariants

There are many invariants of links. Here are some of the standard invariants used 
in this thesis.

Let L  be a link, and D  a diagram of L. Define c(D) to be the number of 
(double point) singularities of D. The (geometric) crossing index of L, denoted 
c(L), is defined as

c(L) =  min ic(.D)} .

Choose an orientation for L. Then the sign of a crossing p of D, denoted e(p) 
is defined as being ±1, according to the convention in figure 1.8. The convention 
comes from the right-hand twist rule. The sign of a crossing coincides with the 
sign of an elementary braid generator and is preserved by reversal of orientation 
of all the components of L.
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X X
Figure 1.8: Sign of a crossing

The algebraic crossing number (or writhe) of D  is the sum of the signs of the 
crossings:

w(D) = Z £(p)-
pC D

Let fd be a braid whose closure is the link L. Write m(/3) for the number of 
braidstrings of /3, so that /3 lives naturally in B m. The braid index b(L) of L is 
the least number of braidstrings over all such braids ¡3:

b(L) = min {m(/3)}.
¡3 s.t. 0=L

There are finitely many inequivalent links of a given (geometric) crossing 
index; they are listed, for small c(L), in [Ro, Thl], and elsewhere. There are 
infinitely many inequivalent links of a given braid index. Note that algebraic 
crossing number is defined on the diagram of a link, not the link itself.

1.5 Polynomial invariants

In this section we define a number of polynomial invariants of links. The Jones 
polynomial was discovered in the mid-1980s, and was soon found to generalize in 
two different ways, giving the Homfly and Kauffman polynomials. All of these 
generalize the older invariants of Conway and Alexander, and also provide more 
information about links.

1.5.1 The Homfly polynom ial

For each oriented link L there is a Laurent polynomial V iiy ,z )  in two variables 
v ,z . The polynomial is uniquely determined by the linear skein rule

v~lVD+ -  vVD_ = zVDo,
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where D+, D _,D 0 are diagrams of links, which are identical except in the neigh
bourhood of a single crossing of D+, where they appear as in figure 1.9. A normal
ization is required: the original versions of V  use the normalization Vux (v,z) = 1, 
where U\ is the unknot. For the purposes of this thesis, we use this normalization.2 
These relations ensure that VL(v ,z ) is invariant under the three Reidemeister 
moves.

Figure 1.9: D+, D_, D0 differ as shown

The polynomial Vl (v, z) is commonly referred to as the Homfly or two- 
variable Jones polynomial. There exist several slightly different versions of it, 
involving different variables and normalization. The version used here follows 
[Mo2] and [Ru4]. The Lickorish-Millett version is obtained by the substitution 
v = —il, z — im, where i =  \ /~ i-  The Thistlethwaite tabulations [Th4] of 
the Homfly polynomial, for knots of up to 13 crossings, require the substitution 
v = a, z = x 2 — x_ 2.

The polynomial V i  is unchanged by reversal of the orientation of all the 
components of L. There are specializations of the two-variable polynomial. The 
Jones polynomial Vi{t) is given by

vL(t) = vL{t,£-t-\),
and was the inspiration for the two-variable version [F-Y-H-L-M-O, P-T]. The 
Alexander polynomial AL(t) is retrieved by the substitution

AL(i) =  P L( M " ~ H ) ,

and in Conway’s version by

V*(*) =  VL(l,z ) .

2In some contexts, it is more convenient to use V$(v, z) =  1, Vux {v i z) =  6 (=  -  where 
0 denotes the ‘empty link’ -  the link with zero components.
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1.5.II The Kauffman polynomial

A polynomial invariant for unoriented links was discovered by Kauffman [Kaul], 
(This definition follows [Th2], and coincides with the version given in [Oc].) First 
define the regular isotopy invariant A(a,:r) G Z[a±x,x ±l] by the relations

h-D+ +  — x (ADq +  ADoo),

A ds — ah-Dt

where Ad+, AD_, ADo, ADoo are polynomials of links with diagrams D+, £>_, D0, 
Doq which are identical except in the neighbourhood of a double point, where they 
appear as in figure 1.10, and A^,, ADt are polynomials of links with diagrams 
Ds, Dt, which are identical except as described in figure 1.11.

Figure 1.10: D+, D_, D0, D ^  differ as shown

Figure 1.11: Ds, Dt differ as shown

Now write FL(a,x) = a~kA(a,x), where k = w(D) is the writhe (algebraic 
crossing number) of the oriented diagram D. The invariant FL is an invariant 
of links up to ambient isotopy; A is an invariant up to regular isotopy. The 
polynomial invariant FL is known as the Kauffman polynomial.

The Kauffman polynomial also specializes to the Jones polynomial, by the 
substitution

FL ( r i , - ^  + t - i ) ) = V L(t).
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1.5.I l l  Comments

Observation of extreme powers of these polynomials is sometimes useful, and so 
an appropriate notation is required. Let H (x ) be a Laurent polynomial in .Rfz*1], 
for some ring R. Then write

mindegj.L/'^) =  sup{n G Z : x~nH (x ) G R[x] C R ^ 1]}, 
maxdegI i/(a;) =  inf{n G Z : xnH{x) G R[x~l) C

These formal definitions follow those of Rudolph, [Ru4], where they are called 
ordj. and deg.,. respectively. Less formally, mindegxH{x) and maxdegI i/(:r) are 
respectively the least and greatest powers of x  with non-zero ^-coefficient in 
H (x).

These polynomials are known to predict geometrical properties of knots. The 
following theorem will be useful to us.

T heorem  1.5.1 Let V i(v ,z ) be the Homfly polynomial of the link L. Let b(L) 
denote the braid index of L, and \L\ denote the number of components of L. Then

(i) b{L) > 1 +  ^(maxdeg^'Pi -  m in d eg ,^ );

(ii) \L\ = 1 — mindeg^TV □

The first part of this theorem is known as the Morton-Franks-Williams (MFW) 
inequality [Mo2, F-W]. The second part is proposition 22 of [L-M],

1.6 Composite links

There are natural ways to construct more complicated links from simpler ones. 
Some definitions and examples follow.

Some general topological definitions: if space Y  is a subspace of space Z, and 
Y  is homotopic to a point z G Z, then Y  is called contractible in Z.

Let F  be a surface embedded into some 3-manifold M. Then F  is compressible 
if either

(i) there exists a 2-disc D  C M  such that D  fl F  = dD  and dD  is non- 
contractible in F ;
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(ii) F  is a 2-sphere in M  and F  bounds a 3-cell in M.

Let L be a link, and S' be a 2-dimensional sphere, embedded smoothly or 
piecewise linearly, in S 3 — L. Then S  bounds two 3-balls B x, B 2 in S 3. The 
sphere S  is incompressible in S 3 — L if, and only if, each of the 3-balls has non
empty intersection with L. In this case we say that L is a distant union of the 
sub-links Li = L D B x and L2 = L fl B 2. We write L — Lx U L2. Sometimes, 
Lx U L2 is also said to be split. See the example in figure 1.12.

In particular, we define the unlink of n components, denoted Un, to be the 
union of n mutually distant unknots.

Figure 1.12: Distant union of trefoil and figure-eight, with separating 2-sphere

Suppose that L is not a distant union. Let S' be a 2-sphere, embedded 
smoothly or piecewise linearly in S3, such that SC\L consists of exactly two trans
verse intersections, at the points px, p2. Join px to p2 by an arc 7 C S. Again S 
bounds two 3-balls Bx, B 2 in S3. If, for i = 1, 2, the link Lj =  (L D Bj) U 7  is 
not ambient isotopic to the unknot then we say that L is a connected sum with 
summands Lx and L2. We write L = L X# L 2. If no such S exists then L is called 
a prime link, otherwise it is composite. The terminology is based on the fact that 
there exists a prime decomposition theorem for links: this was first proved by 
Schubert, and a good account is given in [B-Z]. Figure 1.13 gives an example of 
a connected sum.

Figure 1.13: Connected sum of trefoil and figure-eight, with decomposing 2-sphere
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Let T  be a smooth or piecewise linear hollow torus in £ 3. It is known, by a 
theorem of Alexander (cited in [B-M7]), that T  bounds a solid torus V  on at least 
one side. Suppose a link L is completely contained in the interior of V. Say that 
T  is essential if it is incompressible in S 3 — L. (Then, there does not exist any 
meridional disc D of V  with D fl L — 0; also, V  is a knotted torus, with its core 
ambient isotopic to the knot C, say.) Say that T  is peripheral if it is parallel to the 
boundary of a tubular neighbourhood of L. If T  is essential and non-peripheral 
then L  is called a satellite link; C is its companion. A homeomorphism h : V  —♦ VP 
maps V  to an unknotted torus VP; the decoration (or pattern) P  is the inclusion 
of h(L ) in VP. Figure 1.14 clarifies this definition.

It should be noted that this is not well-defined: one is also required to control 
meridional twisting of Vc  =  V  by specifying a framing f .  This is discussed in 
chapters 3 and 4.

Notation for satellites is as follows. The satellite with companion C , pattern 
P  and unspecified framing is denoted C * P; we specify a framing /  by using the 
notation C  */ P.

Figure 1.14: Satellite construction with essential torus, companion and pattern
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As a final remark, we say that the pattern P  C VP is not proper if, and only if, 
there exists some meridional disc D C VP which has empty intersection with P. 
If no such disc exists then we say that P  is a proper pattern. Note that a ‘non
proper satellite’ C * P  constructed from a non-proper pattern P  is independent 
of the choice of companion and framing; in this case the torus T  is inessential in 
S 3 -  (C * P ).
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C hapter 2

Embeddings of links in a book of 
halfplanes

This chapter begins with the definition of a presentation of links which we find is 
central to the study of certain satellites as closed braids. We go on to investigate 
some of the properties of this new presentation.

2.1 Basic definition and initial remarks

Our medium is the space S 3. Let the axis A =  S 1 be an (unknotted) loop in 
S 3. The complement of A  in S 3 admits a fibration H , whose fibres are open discs 
{Hg -. 0 < 0 < 2tt}.

If we consider S 3 with cylindrical polar coordinate system {r,9,z) then we 
may take A  to be the axis r — 0, and the fibres Ho to be the half-planes 6 = 
constant. We call H  the open-book decomposition of S 3 — A; the fibres are called 
pages. The axis A  is also called the binding circle of H.

Let a > 2 be a natural number. Choose an orientation for A  and a  points 
Po, Pi, • • ■ ,Pa-i which appear in order with the orientation of A. Choose also 
pages {He : 9 = 2(Q~/c)7r) A; =  0 , . . . ,  a  — 1}, and label these {/i0, . . . ,  ha_i}.

Now join pairs of points (pm,pn) by simple arcs aj in the hj such that

(i) each hj contains exactly one arc a,-;

(ii) each p̂  is incident to exactly two arcs aj.

15



3 0

Figure 2.1: 4-arc presentation of a Hopf link

The union U“Jo aj IS called an arc presentation. An arc presentation with 
a  arcs is called an a-arc presentation. Figure 2.1 gives an example of a 4-arc 
presentation.

It should be noted that an arc presentation of a link is itself a link, and lies 
in S 3.

P ro p o s itio n  2.1.1 Every arc presentation is a link, and every link has an arc 
presentation.

P roo f. Let L  be an arc presentation. Choose an arc aJn say. Follow ajl to one 
of its end points, pmi. By hypothesis, pmi is incident to exactly one other arc, 
aj2, say. Continue by following aj2 to its conclusion, at pm2, say, and so on. Since 
there are finitely many arcs, then one must eventually return to ajx. Since there 
are exactly two points incident to each arc, it is impossible to return to any of 
the aj., i > 2, before we return to a^. Hence the arcs traversed in this path form 
a loop, which is a one-component link (i.e. a knot).

16



If there are arcs which were not reached in this loop then choose one of them 
and repeat the process. If the process needs to be repeated \L\ times then the 
arc presentation is a |L|-component link.

To show that every link has an arc presentation it suffices to give an algorithm 
to generate one. Methods for this are described in [Cr, C-N]. For example, given a 
link L C S 3, let ir(L) = D C S 2 be a link diagram. Then D  decomposes S 2 into a 
number of disjoint regions {R{}, whose boundaries are sections of D, and whose 
vertices are double points of D. Let A be a simple closed curve, superposed 
onto D, such that A has non-empty intersection with each Ri, intersecting D 
transversely, away from the double points of D, at every point of D  Pi A. Then 
one can use a colouring argument (described in detail in the proof of proposition 
2.5.2) to show that A forms a binding circle for D. The inverse image 7r_1(DU A) 
(where the intersection points D fl A are preserved) gives an arc-presentation for 
L, with binding circle 7t- 1(A). □

Birman and Menasco observed that the arc presentation of a link is central 
to the study of certain types of satellite as closed braids. They introduce it into 
their work in [B-M7], and suggest that it is a previously unnoticed manifestation 
of links. In fact, in 1897, Brunn [Br] used this presentation of a link to establish 
that any link has a diagram with a single singular point of high multiplicity.3

2.2 The arc index, a(L)

From this presentation of a link comes a link invariant: the arc index ct(L) of a 
link L  is the least number of arcs over all arc presentations of L.

There is an easy way to translate the arc presentation to a special diagram
matic form for a link L, which has a number of applications. The diagram is 
called a grid diagram4, because it is constructed on an q x a  grid, and made up 
of parts of loops and lines from the arc presentation. Its construction is described 
below.

Given an arc-presentation L, the first step is to isotop the link L  away from A 
slightly. Choose a solid torus neighbourhood N (A ) of A  such that each component 
of LC\N(A) is a small arc /3j containing exactly one point of LC\A. So L n N (A ) — 
{/3j : 1 < j  < a}. Apply an isotopy of L  by projecting the /3j radially onto d N (A ): 
denote the image of this projection by ¡3/. There are two ways to do this; they 
are demonstrated in figure 2.2. The ¡3'/ are referred to as semi-loops.

3I am grateful to Jozef Przytycki for introducing me to this work.
4In [Cr], Cromwell calls this a loops & lines diagram.
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Figure 2.2: Isotopy /3j —► /?'■ C dN(A)

Now another isotopy takes each of the (slightly trimmed) arcs onto the bound
ary dN(A): there will be a number of double point singularities. If we now cut 
along the length of dN(A), we can lay the hollow tube out on a plane, hence 
giving a 2-dimensional presentation for the 3-dimensional embedding of L. The 
semi-loops appear as horizontal lines on the grid, and the (trimmed) arcs ap
pear as vertical lines. The double point singularities on dN (A) are resolved as 
crossings in the usual way, with one strand under-crossing the other. In fact, to 
preserve the link we must have the vertical line over-crossing the horizontal line 
at each double point.

The choice of semi-loops gives us different possible diagrams for L. For ex
ample, it is always possible to choose them to give an ordinary knot diagram of 
L, or a braid presentation of L. See figure 2.3.

R em ark . Recall theorem 1.3.1 (Alexander’s theorem), which states that every 
link can be represented as a closed braid. The existence of a braided format for 
each grid diagram really provides us with an alternative proof of theorem 1.3.1, 
since it gives us an alternative algorithm for constructing a braid representative 
for a given link L. The proof works as follows: given L, we know that L  has an arc 
presentation (proposition 2.1.1). Then it is enough to take the grid diagram G(L) 
corresponding to that arc presentation, with one of the two choices of semi-loops 
which present G (L) as a braid.

We will also make use of the following notation. The set of links of arc index 
a  is denoted C{a). The set of knots of arc index a  is denoted IC(a). Thus 
IC(a) C C(a). The set of (a x a) grid diagrams of links is denoted V c {a)\ the
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\ /
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0 1 2  3

Figure 2.3: Closed diagram and braided diagram of Hopf link from the grid 
diagram (compare with figure 2.1)

set of (a  x a) grid diagrams of knots is denoted V K(a). (It is true that V c (a) 
contains diagrams of every L € C(i), for all i < a. The corresponding fact is true 
regarding V K{a). )

Finally in this section, let M a be the set of a  x a  matrices with exactly 
one 1 and one —1 in each row and column. It is sometimes helpful to view the 
(oriented) grid diagram G by a matrix, M (G ) e  M a. We define M (G ) by

Mij(G) =
1

- 1
0

if arc a, begins at point py 
if arc (ii ends at point py  
otherwise.

This gives a bijection between the sets M a and T>c (a). The example in figure 
2.4 should clarify the definition.

2.3 Equivalence of arc diagrams

A given link has infinitely many arc-presentations; even if we restrict to only 
those diagrams which use the minimum number of arcs, it is not clear whether 
there will be a unique presentation. An example is the (2, 4)-torus link, cited in 
[Cr] and reproduced in figure 2.5.

When considering equivalence of link diagrams, we refer to the Reidemeister 
moves. Similarly, equivalence of closed braids is formulated by the Markov moves. 
In each case, two representations of a link are related by applying a finite sequence 
of combinatorial moves. Cromwell constructed a similar solution for the problem
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- 1 0 0 1 0 0
l  0 - 1 0 0 0 1 )

Figure 2.4: One possible G and M(G) for the figure-eight knot
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Figure 2.5: Two arc-diagrams of T(2,4)
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of equivalent arc-diagrams (i.e. arc-diagrams of the same link). First we need a 
number of definitions.

Let L be a link, and A  be a binding circle. Say that two arcs interleave if 
the endpoints of one alternate with the endpoints of the other. Similarly, two 
points of L fl A interleave if the pages which contain the arcs incident to one of 
the points alternate with the pages which contain the arcs incident to the other. 
Figure 2.6 should clarify the definition.

Interleaved points Non-interleaved points

Figure 2.6: Interleaving and non-interleaving arcs and points

Two points of L fl A  are adjacent if there is a section of A  which is bounded 
by the two points, and whose interior contains no intersection with L. Two 
arcs, contained in the pages H01, Hg2 are adjacent if there is an interval /  C S’1, 
bounded by 9X and 92, such that for all 9 e int(/), (H0 — A) fl L  =  0.

Two points o i L n A  are consecutive if they are at opposite ends of the same 
arc. Two arcs of L are consecutive if they are incident to the same point.

We are now in a position to describe the four moves on arc-diagrams. They 
are also illustrated in figure 2.7 and described as follows.
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Figure 2.7: Moves I-IV relating equivalent arc-diagrams
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I. If two adjacent points of Lf)A  do not interleave then they may be interchanged.

II. If two adjacent arcs do not interleave then they may be interchanged.

III. If two consecutive points of L fi A are also adjacent then the intervening 
arc can be removed and the points amalgamated. Conversely, an arc can 
be inserted between two consecutive arcs by separating the two arcs (thus 
creating a new point of L fl A) and joining the split point by a new arc.

IV . If two consecutive arcs are also adjacent then they can be amalgamated,
removing the intervening point of L fl A. Conversely, an arc can be split 
into two adjacent arcs by the addition of a new intersection point of the arc 
with A.

R em ark . Moves III and IV can both be done in two distinct ways, one of which 
preserves framing. In fact, move IV is redundant: it can be obtained by repeated 
application of moves I and II until move III can be applied.

R em ark . There is an easy way to see that these four moves are in fact two dual 
pairs, by considering the matrix M (G ) of the grid diagram G. The columns are 
indexed by arcs, and the rows by points of L D A. Then move I says that two 
adjacent rows can be interchanged if their non-zero entries are separated. Move 
II is the same statement applied to adjacent columns. Move III says that a 1 
and a -1  in the same column and adjacent rows can be inserted or deleted by 
expanding or contracting the matrix. Move IV is the same statement applied to 
a 1, —1 pair in the same row and adjacent columns.

T heo rem  2.3.1 [Cr] Any two arc-diagrams of a link L can be related by a finite 
sequence of moves I, I I  and III.

P roo f. The Markov moves can be described in terms of moves I, II and III; then 
Markov’s theorem can be applied. See [Cr]. □

We continue with some observations on arc index of torus links.

P ro p o s itio n  2.3.2 Let L be the torus link T(p,q). We have cx(L) < p + q.

P roo f. A closed braid presentation for L is L — fi, where (3 =  (&p- \ . . .  e 
Bp. The braid (3 can be generated by a grid diagram on p +  q arcs; the first 
q generate the crossings, and the remaining p provide a vertical ‘shift’ of the 
braidstrings, necessary in the grid diagram construction. The top picture in 
figure 2.5 illustrates this in the case p =  2, q = 4. □
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T heorem  2.3.3 Let L be the torus link T(2,q), q>  2. We have a(L) > 2 +  q.

The proof of this is deferred until section 4.6. However, we can deduce the 
following.

C oro llary  2.3.4 Let L be the torus link T{2,q), q > 2. We have a(L) =  2 + q. 

P roo f. Obvious from the statements of proposition 2.3.2 and theorem 2.3.3. □

There is a natural comparison here to the stabilization index5, as discussed 
in [B-M5]. The question arises when relating two arc-presentations by moves I, 
II, III: can we relate them without increasing the arc number? The following 
theorem answers this question in the case of some torus links.

T heorem  2.3.5 Let L be the torus link T{2,q), q > 4. Then there exist arc- 
diagrams Go(L),Gs(L) of L with a(L) arcs, such that any sequence relating the 
two diagrams by moves I, II, III must contain at least one diagram with cv(L) 4-1 
arcs.

P roof. By corollary 2.3.4, a(L) — 2 +  q. The diagrams can be constructed by 
choosing different binding circles as in the example in figure 2.8. The binding 
circle connects the ‘beads’ of the diagram in order in one case, and not in the 
other. The grid diagrams G0, Gs are easily deduced from these. Notice that, by 
the definition of the moves, it is impossible to apply either move I or move II to 
G0. An arc-reducing type III move is also impossible, by definition of arc index, 
since G0 has only a(L) arcs. □

5This refers to two closed braid presentations 0, 0' of a link L, where 0' is a minimal closed 
braid presentation of L (i.e. on b(L) braidstrings) and 0  is a closed braid presentation on 
n > b(L) braidstrings. The closed braids 0  and 0' are related by the sequence

0 = 0o 0i -* .. • -  0, = 0',

where each 0i is obtained from 0 i- i  by a Markov move. It may be necessary to increase the 
number of braid strings during the sequence. The stabilization index s(L,n)  is the minimum, 
over all possible sequences, of the number of braid strings added in the sequence. In [B-M5] it 
is shown that for all unlinks Ur, for n > r, we have s(Ur,n) =  1.
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Figure 2.8: Different binding circles for the link L = T (2,5)

2.4 Behaviour of a(L) under knot operations

The following results describe the behaviour cf arc index under the operations of 
distant union and connect sum.

T heorem  2.4.1 Let L 1} L2 be links. Then

q (L i \JL2) = ct(Li) +  a(L2)] 

a (L i# L2) — a(Li) + a(L2) -  2 .

These results are the conclusions of the following set of propositions.

P ro p o s itio n  2.4.2 Let L — L x U L2. Then a(L) < o(Tj) +  a(L 2).

P roo f. Construct an arc presentation for L by juxtaposing the presentations of 
Li and L2 on the same axis A, as in figure 2.9.

This is an («(Zq) +  a(L 2))-arc presentation for L, and by definition of arc 
index, a(L) is bounded above by a(L i) +  a(L 2). □
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Figure 2.9: Arc presentation of L x U L2 

P ro p o s itio n  2.4.3 Let L =  L x U L2. Then a(L) > a (L x) +  oc(L2).

P roof. We have an arc presentation of L on a(L) arcs. By a theorem of Birman 
and Menasco [B-M4], there exists a 2-sphere S  which separates S 3 into two 3- 
balls B l ,B 2, such that Lt = L n B i.  We reconstruct the arc presentation of L x by 
taking ((L U A) n  B X)\J(A  D B 2). By definition of arc index, this is a presentation 
of L x on at least a (L x) arcs. Reconstruct L2 in a similar way. Therefore the total 
number of arcs in the presentation is at least a (L x) + cx{L2). □

P ro p o s itio n  2.4.4 Let L =  LX# L 2. Then a(L) < a (L x) +  a(L 2) -  2.

P roo f. Start with arc presentations for L x and L2. With each presentation, 
swivel all the arcs but one, so that they lie in a half-space; delete the remaining 
arc. Then a presentation of L  is obtained by identifying the axes of the two 
presentations, so that the loose ends of each link are identified and the other 
points of (Lx U L2) D A  remain distinct. See figure 2.10 for illustration.

The number of arcs of this presentation of L  is

(a(Lx) — 1) +  {oi(L2) — 1) =  a (L x) -I- a(L2) — 2,

which is an upper bound for a(L). □

P ro p o s itio n  2.4.5 [Cr] Let L  =  L X# L 2. Then a(L) > a (L x) +  a(L 2) -  2.
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Figure 2.10: Constructing an arc presentation of L ^ L 2

Proof. The proof is adapted from a result of [B-M4] (part of theorem 3.1.1), and 
the reader is referred to that paper and to [Cr] for details. □

2.5 Relating a(L) to other link invariants

It should be noted that there are finitely many links L  with given arc index a(L). 
In this sense, arc index behaves like crossing index, but not like braid index.

The main results of this section concern the relationship between arc index 
a(L) and crossing index c(L) of a link L: these are covered in subsection 2.5.II. 
We also include observations on how arc index relates to braid index (subsection 
2.5.1) and Homfly polynomial (subsection 2.5.III).

2.5.1 Braid index

The ‘braided’ grid diagram (figure 2.3) leads us to the following result.

Proposition 2.5.1 Let L be a link, a(L) its arc index and b(L) its braid index. 
Then b(L) < \a (L ).

Proof. Let G(L) be a grid diagram of L with a  = a(L) arcs. There are precisely 
two choices of semi-loops which make G{L) into a braid: they have &i and b2 
braidstrings respectively. Now bx +  b2 = a, so necessarily one of the (61; say) 
is bounded above by ¿a. Then we have b{L) < b i<  ^a(L), as required. □
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2.5.II Crossing index

In what follows, a twistbox is a sequence of halftwists contained in a rectangular 
box, as in figure 2.11. Recall also the local operation on link diagrams known as 
a flype, which was introduced by Tait [Ta] and is illustrated in figure 2.12.

COCO

Figure 2.11: A twistbox with 5 halftwists

Figure 2.12: Tait’s flype move

P ro p o s itio n  2.5.2 [C-N] Let L be a link, a(L) its arc index and c(L) its (geo
metric) crossing index. Suppose that L has a diagram D{L) which is drawn with 
minimal crossing number c(L). Suppose further that D can be decomposed into a 
diagram with n twistboxes, and that this number cannot be reduced by application 
of flypes. Then the inequality ct(L) < 2 +  c(L) holds in the following cases:

(i) n < 8;

(ii) 7i > 9 and D (L ) cannot be decomposed into the f-tangle or 6-tangle structures
of figure 2.13.

P roo f. In order to establish this result we will need some graph theory, and so 
we begin by recapping some definitions, which also provide our notation.

All our graphs will be planar graphs embedded in R 2. Let V  be the set of 
vertices of a graph G. An edge of G is a simple curve which joins a pair of vertices 
[m, v]. A loop is an edge [v, v] which has the same vertex at both ends. An edge 
e such that G — e is disconnected is called an isthmus. If U C V  then span(U) is 
the subgraph of G whose edges connect vertices in U:

span([/) =  : for all pairs tq, Uj in U}.
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Figure 2.13: 4- and 6-tangle structures

If U C V  then G -  U denotes the subgraph of G spanned by V  -  U. Say G -  U 
is obtained by deleting the vertices in U. The graph is said to be r-connected if 
r < |Vj and at least r  vertices must be deleted from G to disconnect it. A cycle is 
a simple closed curve which follows the edges of G. An n-cycle contains n edges. 
A Hamiltonian circuit of G is a simple closed curve which follows the edges of 
the graph and passes through every vertex in V  exactly once.

Let D  be a diagram of a prime link L. A sequence of half-twists in the 
diagram can be replaced by a rectangular twist-box as shown in figure 2.14(b). 
The diagram now consists of a collection of twist-boxes connected by a set of 
disjoint simple arcs. We form a graph G from this diagram as follows. If a twist- 
box contains only one crossing we replace it by a 4-valent vertex, otherwise we 
replace the twist-box by the graph shown in figure 2.14(c). Thus all vertices in 
G are 3-valent or 4-valent. The edges of G can be divided into two sets: D-type 
edges which contain part of the original diagram, and T-type edges which are 
contained in a twist-box.

To describe the embedding of L in an open book it suffices to indicate the 
path of the binding circle in the diagram. In order to find such a path we take a 
Hamiltonian circuit of the dual graph of G and then deform it so that it touches 
each twist-box once. The existence of such circuits is discussed later in the proof.

Let G* denote the topological dual graph of G and let A be a Hamiltonian 
circuit of G*. This produces a simple closed curve which passes through every 
region of G exactly once. We convert A into the desired binding circle as follows: 
if A crosses a T-type edge of G then it passes through a twist-box. The circle 
A and the m  half-twists represented by the box can be arranged as shown in 
figures 2.15(a) and (b). Any twist-box that does not meet A is treated as shown
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Figure 2.14: Transforming a twistbox of D  into 3-valent vertices of G

Figure 2.15: Placing the binding circle A  on D

in figures 2.15(c) and (d). This is always possible since A passes through every 
region of G and hence can be deformed to lie along one side of the twist-box.

The proof continues with a sequence of lemmas.

L em m a 2.5.3 The loop A just constructed represents a binding circle for L.

P roof. We can isotop D U A in the plane so, without loss of generality, we can 
assume that A is a circle. In particular we can take A to be a straight line together 
with a point {oo}. The link L can be embedded in R 3 so that there is a projection 
7r which carries L onto D. The faces of the 4-valent graph 7r(L) are called the 
regions of D. Notice that all the regions of D  have contact with A: either A passes 
through the region or A has point-contact with its boundary.

Let P  =  {p i,. . .  ,pr} be the set of points where A meets D. The points n~1(pi) 
divide L  into a set of arcs A = {a i,. . .  ,ar} each of which starts and ends at points 
in 7r-1(P) and contains no such points in its interior. Each of these arcs will be 
embedded in a half-plane. To each arc a* in L there is a corresponding segment 
7r(aj) of the diagram D  which we will also refer to as an arc.
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We will colour the arcs, and the order in which they are coloured will deter
mine the position of the half-planes in which they are embedded. The plane is 
separated by A into two regions which we will refer to as inside and outside. We 
will colour the arcs in D by taking each region separately. We start with the 
inside.

The colouring process proceeds under the following rules: an uncoloured arc 
can be coloured if

(a) any arc crossing over it is coloured; and

(b) any arc crossing under it is uncoloured.

The first arc to be coloured is labelled 1. Successive arcs are numbered in the 
order they are coloured. Repeatedly apply this colouring rule until it cannot be 
applied any more. The process stops when all the inside arcs have been coloured 
or when the conditions are not satisfied.

An arc cannot be coloured if either

(c) some arc crossing over it is uncoloured; or

(d) some arc crossing under it is coloured.

Because of the way the colouring is performed, the second case is impossible. 
Therefore, if the colouring is unfinished but cannot continue every uncoloured arc 
must fail on condition (c). Consequently, every uncoloured arc must cross under 
an uncoloured arc. This implies that some subset of arcs in D  form a sequence 
in which each passes under the next making a pattern like that shown in figure
2.16. One could compare the loop formed by these arcs to the ‘ever-descending’ 
staircase in a sketch of M.C. Escher. This sketch has been reproduced in figure
2.17.

We now concentrate on the polygonal region formed from this ‘ever-descending’ 
set of arcs. Its corners are at crossings in D  and its sides lie in arcs. There are 
regions of D  which lie on both sides of the polygon and, by construction, A has 
contact with every region of D. However, A does not meet the sides of the poly
gon so it cannot touch regions on both sides. This contradiction shows that the 
colouring process stops only when all the arcs on the inside of A are coloured.

The arcs on the outside of A are coloured using the same process except that 
the first arc to be coloured is labelled r, the next r -  1, and so on until every arc 
has been labelled.
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Figure 2.16: A region bounded by an ‘ever-descending’ set of arcs

Figure 2.17: Reproduction of M.C. Escher’s sketch, Descending and Ascending
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If we now arrange r half-planes around A at angles of (360/r)° and label them 
from 1 to r in order, the arc labelled i can be embedded in the corresponding 
half-plane. □

Lemma 2.5.4 The number of half-planes used in the construction is 2 plus the 
number of crossings in D.

Proof. Suppose that D required n tangle-boxes of which r contain a single cross
ing. Then G has (2n -  r) vertices, 2n D^type edges and (n -  r) T-type edges. 
From Euler’s formula we deduce that it has n +  2 regions (including the un
bounded one). A Hamiltonian circuit of G* passes through n +  2 vertices and 
therefore contains n + 2 edges. Thus A crosses n + 2 edges of G. When a T-type 
edge is replaced by m  half-twists as in figures 2.15(a)-(b), a single intersection 
of the axis and the diagram is increased to m  intersections. (Recall that m > 1 
for the existence of a T-type edge.) Running A alongside a twist-box containing 
m  twists as in figures 2.15(c)-(d) increases the number of intersections of A with 
D  by m  — 1. Therefore the total number of intersections, and hence the number 
of half-planes required, is

n n
n + 2 + Y s(mi “  1) =  2 +  £  mi

i—1 i= 1
= 2 +  the number of crossings in D.

□

We must now answer the question, when is the construction applicable? The 
existence of Hamiltonian circuits in planar graphs was studied by Barnette and 
Jukovic, and by Tutte. We make use of the following results.

L em m a 2.5.5 [Tu] A f-connected planar graph has a Hamiltonian circuit. □

L em m a 2.5.6 [B-J] A 3-connected planar graph with at most 10 vertices has a 
Hamiltonian circuit. □

We now investigate how the connectedness of G* is related to the diagram D.

1. Suppose that G* is 1-connected. This means that there is a vertex v E V  
such that G* — v is disconnected. Every region of G* is bounded by three or 
four edges, including the infinite region. This means that G* has one of the
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forms illustrated in figures 2.18(a)-(f). In the first five cases G* contains a 
loop c and the corresponding edge e in G is an isthmus. If e were a D-type 
edge then the diagram D  would cross the closed curve c once but this is 
not possible because any loop meeting D transversely must cross it an even 
number of times. So e must be a T-type edge giving D  the form shown 
in figure 2.18(g). The twist-box is clearly redundant and the diagram does 
not have minimal crossing number. When G* has the form shown in figure 
2.18(f) the diagram D again has the form of figure 2.18(g); the infinite 
region of G* corresponds to a (redundant) twist-box in D, containing a 
single crossing. 2

Figure 2.18: 1-connected graphs G* with 3- or 4-sided infinite region

2. Suppose that G* is 2-connected. Let u, v be two vertices such that G* — 
{u, u} is disconnected, and let [/* be the sets of vertices of the resulting 
components. Let Ai be the subgraph of G* spanned by Ui, u and v defined 
as

Ai =  span (Ui U u) U s p a n ^  U v ).

Note that Ai and Aj have no edges in common when i =£ j ,  and that edges 
[u, v] do not belong to any A {.
Let Fi denote the interior of the infinite face of the graph A {. We say that 
Ai and Aj are adjacent if one of the two regions of i7) n  Fj does not contain 
a vertex of G*.
Now consider a pair of adjacent subgraphs A A j  and let R  be the region 
between them. Suppose for the moment that all the twist-boxes contain at
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V

(a)

(b)

Figure 2.19: 2-connected graph G* and corresponding link diagram

least two crossings. This means that all faces of G* are triangles. Because 
R  does not contain any vertices of G*, R  must have the form shown in 
figure 2.19(a). That is, R  must be composed of two triangles bounded by 
an edge [n,u] and two edges from each of A* and Aj. Therefore, each pair 
of adjacent subgraphs are separated by an edge [n, nj. Let c be a 2-cycle 
composed of two of these edges.

The original graph G  meets c in two points. Again, a parity argument shows 
that the 2-cycle crosses either two D-type edges or two T-type edges. In the 
first case, the diagram is decomposed into a connected sum of two factors. 
Since L  is prime, one of the factors must be trivial but this contradicts the 
assumption that the number of crossings in D  is minimal. In the second 
case the diagram D  has the form shown in figure 2.19(b) and the number 
of twist-boxes can be reduced by a sequence of flypes.
We now consider what happens when some twist-boxes in D  may contain 
only one crossing. In this case G* can contain four-sided faces and it may 
be that R  has empty intersection with G*. This is equivalent to the pre
vious case in which the edge [u, n] is dual to a T-type edge except that 
the corresponding twist-box contains a single crossing; again the diagram 
admits a flype that reduces the number of twist-boxes. 3

3. Suppose that G* is 3-connected. Let u, v and w be three vertices such 
that G* — { m , v, w} is disconnected, and let f/j be the sets of vertices of the
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resulting components. Each Ui is joined by an edge to u, v and w, and vice 
versa, otherwise G* would be 2-connected. Therefore the graph obtained 
from G* by shrinking each Ui to a vertex contains the complete bipartite 
graph K 3tS. Since G* is planar, and K 3<s is non-planar for s > 3, then 
there must be only two components Ui and U2. For i =  1,2, let 4̂̂  be the 
subgraph of G* defined as

A{ =  span(f/j U m) U  span (Ui U v) U span(f/j U w).

Again A x and A 2 have no edges in common, and do not contain edges [u, u], 
[v,w\ or [w,u].

Let Fi denote the interior of the infinite face of the graph A*. Now ^  n  F2 
consists of three regions none of which contain any vertices of G* (otherwise 
G* would be 2-connected). As in the case of 2-connected graphs, each of 
these regions has an empty intersection with G* or is composed of two 
triangles. If all the twist-boxes contain at least two crossings then there 
must be edges [u,v], [v,w] and [w,u] which form a 3-cycle in G*. The 
three edges in G crossed by this 3-cycle must be all T-type edges, or be 
one T-type and two D-type. The two possibilities for D are shown in figure 
2.13. If some twist-boxes contain a single crossing it is possible that some of 
the edges in the 3-cycle may be missing. As in the 2-connected case, these 
missing edges are equivalent to T-type edges except that the corresponding 
twist-box contains a single crossing.

We are now in a position to complete the proof. If n <  8 then the dual 
graph ha° at most 10 vertices. The hypotheses on the diagram mean that it 
is 3-connected and hence a Hamiltonian circuit must exist [B-J]. When n > 8 
we must exclude the diagrams which give rise to 3-connected graphs. These are 
precisely those in figure 2.13. □

C oro llary  2.5.7 [C-N] Let L  =  L x# L 2# .. .# L r be a connected sum of prime 
alternating links L\, L2, . . . ,  Lr, each of which satisfies the inequality a(Li) < 
2 + c(Li). Thena(L) < 2 + c(L).

Remark. As an example, corollary 2.5.7 applies when each of the L{ satisfies 
the hypotheses of proposition 2.5.2.

Proof of corollary 2.5.7. For alternating links, c(Lx#L2) =  c(Lx)+c(L2) [Kau2, 
Mu, Th3]. Also, from theorem 2.4.1, we have that a{Lx#L2) — a(Lx)+ a(L2) - 2 .
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Hence

a(L) -  2

<

£  ( o ( L i )  -  2 )
1=1

£ c (L j)
¿=1
c(L).

□

C orollary  2.5.8 [C-N] (i) Let K  be a prime knot with c(K ) < 10. Then 
ft(if) < 2 +  c(K).
(ii) Let L be a prime link with c(L) < 9. Then a (L ) < 2 +  c(L).

Proof. The diagrams of these knots and links in [Ro] satisfy the hypotheses of 
proposition 2.5.2. □

C oro llary  2.5.9 [C-N] I f L is a 2-bridge link then a(L) < 2 +  c(L).

P roof. The curve shown in figure 2.20 can be made into a binding circle. □

Figure 2.20: Schematic diagram of a 2-bridge link, with binding circle

The above discussion provides us with an upper bound for a (L ) from c(L), 
for ‘most’ links L. In section 4.5 we conjecture that this inequality holds for all 
knots K  with equality if, and only if, K  is an alternating knot. In the meantime 
we go on to explore a lower bound.

P ro p o s itio n  2.5.10 [C-N] Let L be a link; let a(L) be its arc index and c(L) 
be its minimal crossing number. Then

a (L )>
1 +  ^ /1+  4 c(L), a(L) even 
1 +  yJic(L), a(L) odd.

38



Proof. Suppose that we have a minimal arc-presentation of L. Construct a grid 
diagram from this presentation.

We now consider how many times each of the horizontal lines can meet a 
vertical line. That is, how many arcs (vertical lines) cross over each loop. The 
topmost loop cannot cross any arcs but two arcs terminate here and these can 
cross other loops. The next loop down can be crossed by at most two arcs and 
is the source of at most two more. Continuing in this way we obtain the pattern 
shown in figure 2.21: the numbers by each loop indicate the maximum number of 
arcs which the loop can cross. The total is clearly a function of triangle numbers.

. . . I. . . . . . .[. . . . . . j. . . . . . . . . . . . . i. . . . . . . . . . 0

...I...............................1............2

................................................................. 4

................................................................. 4

. . . 1. . . . . . . . . . . . . . . . . . . . . . . . . . {. . . . . . . . . . 2

. . . 1. . . . . . I. . . . . . i. . . . . . . . . . . . . i. . . . . . . . . . 0

Figure 2.21: Counting the number of possible crossings in a grid diagram

The grid diagram is now converted into a conventional link diagram. To do 
this notice that each loop is divided naturally into two parts by the endpoints 
of two arcs. Choosing one part of each loop produces a diagram of L. We can 
choose the parts which minimise the number of crossings. So if a loop meets n 
arcs we can ensure that the loop contributes at most j crossings to the diagram.

Let A(n) =  \n{n  + 1) denote the nth triangle number. If a(L) is even, 
let m  _  I ( q:(Z,) — 2). Then we see that c(L) can be at most 2 A(m). If, on 
the other hand, a(L) is odd then let m = \{ot{L) -  1): in this case we obtain 
c(L) < A(m) +  A(m -  1). Substituting for m  in each case gives the desired
inequalities. a
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Remark. This lower bound is achieved for the non-trivial (p,p+  l)-torus knots. 
For suppose we have a(L) > 2 +  yJ^c(L), where L =  T(p,p + 1), and hence 
c(L) =  p2 -  l and a (L ) < 2\p\ +  1. Then we can deduce 2|p| - 1  > 2y/p2 -  1, and 
so after some computation, |p| < §. Hence |p| < 1, and L must be trivial.

2.5.I l l  Homfiy polynomial

Finally in this section, we make an observation on possible pairs of knots with 
identical Homfiy polynomial. We employ the following result of Kanenobu.

Theorem 2.5.11 [Kan] There exist infinitely many examples of infinitely many 
knots in S 3 (which are hyperbolic, fibred, ribbon, of genus 2 and 3-bridge), with the 
same Homfiy polynomial and, therefore, the same Jones polynomial, but distinct 
Alexander module structures.

Proof. The reader is referred to [Kan]. □

Corollary 2.5.12 There exist infinitely many pairs of knots with the same Hom- 
fly polynomial and distinct arc indices.

Proof. There exist only finitely many knots of a given arc index; therefore an 
infinite set of knots with a given Homfiy polynomial cannot have a constant arc 
index. □

In chapter 5, we exhibit a pair of knots K \, K 2 with P/Cj ^Ki which can 
be distinguished by arc index; we also show that a famous pair of mutant knots, 
which necessarily have identical Homfiy polynomial, also have identical arc index. 
The questions should then be posed of whether arc index is related to Alexander 
module structure, and whether there exist any pairs of mutant links with distinct 
arc index. As Kanenobu’s result suggests, examination of the Alexander module 
structure may be a useful starting point in attacking this problem.

There is also a question of whether any similar result relating to the Kauffman 
polynomial is realistic.
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C hapter 3

Satellite links as closed braids

3.1 Motivation

In their series of papers [B-Ml, B-M7], Birman and Menasco study links 
through the medium of closed braids. In particular in [B-M4], they consider the 
effects on braid index of the geometric operations of distant union and connect 
sum. They define a split braid and a composite braid to be one which is ‘obviously’ 
split or composite. Figure 3.1 illustrates what is meant.

Figure 3.1: A split braid and a composite braid 

Then Birman and Menasco’s results from [B-M4] are summarized as follows.
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T heorem  3.1.1 [B-M4] Let L be a split (resp. composite) link, and let ¡3 be 
an arbitrary closed n-braid representative of L. Then there exists a split (resp. 
composite) n-braid ¡3' which represents L and a finite sequence of closed n-braids

such that each /3j+1 is obtained from (3i by either isotopy in the complement of the 
axis or an exchange move (figure 3.2). n

Figure 3.2: Exchange move

C oro llary  3.1.2 [B-M4] Braid index is additive (resp. additive minus one) 
under the operation of distant union (resp. connected sum). □

Central to proving these results is an operation on closed braids which they 
call the exchange move. This is demonstrated in figure 3.2. It should be noted 
that the exchange move preserves the link type, and the number of braidstrings of 
the braid presentation, but generally alters the conjugacy class of the presented 
braid in the braid group.

It is natural then to explore the possibility of a similar result for satellite links. 
W hat follows is a discussion of this.

3.2 Braid index of satellites: types 0 and 1

In [B-M7], Birman and Menasco attempted to find a formula for braid index of a 
general satellite L, from geometric features of the pattern and companion. Their 
approach, comparable with their work of [B-M4], is to examine the position of an 
essential torus T  =  dV  which lives in S 3 — L. Before stating this result we first
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prove a lesser result, based on the same idea, which was proved independently of 
[B-M7].

It turns out that an important property of the pattern is the existence of, or 
lack of, a meridional disc D of V  whose intersections with the oriented satellite 
are all identically oriented. If such a disc D  exists then the pattern P  fits into one 
of two types (illustrated in figure 3.3), according as to whether or not it winds 
monotonically around the longitude of VP.

Figure 3.3: Standard patterns, type 0 and type 1

Type 0 has this ‘longitudinal braiding’ property, type 1 does not. The fol
lowing theorem is a discussion of the position of the essential torus T  =  dVc  in 
S 3 -  L  when L is a satellite with a type 0 or type 1 pattern.

T heorem  3.2.1 Let L be an oriented satellite link, and f3 be an n-braid pre
sentation of L (relative to braid axis A). Suppose that T  =  dV  is an essential 
non-peripheral torus in S 3 — fi, such that fi is contained in the solid torus V. Sup
pose also that there exists a meridional disc D of V  such that each intersection 
point of f i n  D has the same sign, i.e. fi intersects D transversely always from 
the same side of D. Then there exist

(i) a closed n-braid fi* which represents L;

(ii) a finite sequence of closed n-braids

fi = fio fii —*•••—* fir = P*

such that each fii is obtained from fii_\ by isotopy in S 3 — A, or by an 
exchange move; and

(in) an essential non-peripheral torus T* C S 3 — fi* such that \T* fl A\ = 0  or 2. 
Further, the pattern of L is a type 0 or type 1 pattern, respectively.
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Proof. The proof is adapted from the proof of theorem 3.1.1, the main result 
of [B-M4]. The four lemmas that form part of this proof are analogous with the 
lemmas of the [B-M4] proof.

We have a satellite link L, which is the closure of a braid (3, braided with 
respect to a braid axis A in S3. We are also given an essential torus T  which 
realizes the satellite construction: T  bounds a solid torus V  on one side, with 
L completely contained in the interior of V . There is an orientation on L; we 
assign an orientation to A  so that L is oriented in the positive sense about A. We 
also assign an orientation to T, so that at each point of T  there is a well-defined 
outward normal to T. In the most general case TTl A consists of many points; the 
aim, as in [B-M4], is to adjust L, so reducing the number of intersection points 
o f T n A ,  until the pattern is recognizable as one of our standard forms.

We use the standard open-book fibration H  of S 3 -  A, with fibres {Ht : 0 < 
t < 27r}. This induces a (possibly singular) foliation on T: its leaves are the 
components of T D Ht, 0 < t < 2tt. Standard position arguments allow T to be 
placed in a nice position relative to H. Thus we may assume:

(1) The intersections of A  with T  are finite in number, and transverse.

(2) There is a solid torus neighbourhood N (A) of A  in S 3 -  L such that each
component of T  D N (A) is a disc.

(3) The foliation of each component of TC\N(A) is the standard radial foliation.

(4) All but finitely many of the fibres Ht meet the torus T  transversely, and
those which do not (the singular fibres) are tangent to T  at exactly one 
point in the interior of Ht.

(5) The tangencies mentioned in (4) are local maxima or minima or saddle
points.

A singular leaf in the foliation is one which contains a singular point; the 
other leaves are non-singular. The following observations can be made from (4) 
and (5 ):

(i) Each non-singular leaf is either an arc with its endpoints on A  =  dHt, or a 
simple closed curve (hereafter abbreviated to SCC).

(ii) A singular fibre He contains exactly one singularity.

(iii) Each singularity pg is either a centre or a saddle.
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As in [B-Ml, B-M4], given a surface F, a complexity function on the pair 
(F, H ) is defined as follows. Let |F  fl A\ be the number of point intersections of 
F  with A. Let |H ■ F\ be the number of singular points in the foliation of F. The 
complexity c(F,H) is the pair ( |F  fl A\, |H  • F |), with a standard lexicographic 
ordering on the function. We follow [B-M4] by saying that (F, H) is equivalent 
to (F ', H ) if there is an isotopy taking F  to F' which takes (F  n Ht, F  n  dHt) 
to (F ' n  Ht, F ' n  dHt), for each t E [0, 27t]. This definition of equivalence ensures 
that each representative of an equivalence class has the same complexity.

A non-singular leaf (a component of T  D Ht) naturally splits the fibre Ht into 
two components A and A'. At least one of these components A, A' is a 2-disc. 
If A (or A') is a 2-disc component of Ht, and also has empty intersection with 
L, then we say that the leaf T  n  Ht is inessential, otherwise we say that T  D Ht is 
essential. See figures 3.4 and 3.5. This definition is the first real departure from 
[B-M4],

Figure 3.4: Possible occurrences of A and A' on Ht

Now we investigate the presence and nature of SCCs in T  D H. Say that the 
Pair T n H  has SCCs if there exists a non-singular fibre Ht such that a component 
of T  n  Ht is a SCC.

Lemma 3.2.2 Suppose that (T , H) satisfies the general position assumptions 
(l)-(5 ) and has inessential SCCs. Then there exists a torus V  such that (T ',H ) 
also satisfies (1 )-(5 ) and has no inessential SCCs; moreover, c(T', H) < c(T, H ).

Proof. The proof of this lemma is exactly the same as the proof given in [B-M4], 
and applies to a disc which is contained in the surface.

Suppose there is an inessential SCC 7 (t) in T  fl Ht, for some non-singular 
H f  Follow 7 (t) as it evolves in the fibration; eventually we arrive at some closed 
curve 7(0) which contains a singularity in the foliation. The curve 7 (9) lies on
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the fibre Hg, and bounds a disc A in Hg. The loop 7 (6») is inessential, since 7 (t) 
is inessential and L is braided around A = dHt.

If 7 (i) winds meridionally around T  then 7 (i) is necessarily essential, since T 
is an essential torus. If 7 (t) winds longitudinally around T  then Hi must split 
V longitudinally into two tori Vj and V2', since L is braided around A then L 
intersects Ht always from the same side, so any component of L is completely 
contained either in Vx or V2. The link L is hence a distant union of the sublinks 
Lx = L n Vi and L2 = L n V2. By corollary 3.1.2 (braid index under distant 
union) we consider each of these sublinks separately. Therefore, we can assume 
that 7 (t) is null-homotopic on T, and hence dA  is null-homotopic on T.

If (intA) n T  = 0 then we can surger T  along A, giving an essential torus V  
and a 2-sphere S'. The sphere S' splits S3 into two 3-balls BX,B2: if V  C Bx 
then L C Bx so that L n B2 = 0. Therefore, we can remove S' without loss. 
Moreover, the complexity has not been increased. If (intA) D T  ^  0 then we find 
an innermost subdisc <5 of A whose boundary is a component of T  D Hg and we 
surger T along <5. Ultimately we will acquire an essential torus T* whose induced 
foliation has no inessential closed curves, and c(T , H) < c(T, H). □

By lemma 3.2.2, each component of the intersection of a non-singular Ht with 
T  is either an essential SCC or a simple arc with both ends on A = dHt. In the 
latter case, T  n  Ht bounds exactly two discs A, A' on Ht. At most one of these 
discs, say A, is completely contained in V . If, in that case, A D L = 0 then we 
can push T  inward along a 3-space neighbourhood of A to remove two points of 
A n T .  (See figure 4 of [B-M4], reproduced in figure 3.5.) Any added SCCs are 
removed by lemma 3.2.2.

Our definition of essential leaves allows an adjustment in our general position 
assumptions, as follows:

(5a) The tangencies in (4) are saddle points.

(6) If Ht is non-singular then each component of T  D Ht is essential.

We continue to follow the proof of [B-M4]. The torus T  is a closed surface, 
and A  pierces T  transversely each time, so A n T  must consist of an even number 
of pierce-points, say 2/x of them.

If 2/x =  0 then AC\T =  0. By hypothesis, there exists a meridional disc D  of T  
whose intersections with L have identical sign. By a small isotopy we can assume 
that D  lies in a fibre of Ht. This is enough to show that the core of T  is braided 
around A; for otherwise there exists a fibre Ht which is tangent to T  yielding a
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Figure 3.5: Fig. 4 of [B-M4]

centre tangency on the foliation of T, because A n T  =  0: this contradicts general 
position assumption (5a).

Since, in this case, T  is braided around A, each Ht has the same number of 
(SCC) intersections with T. Each SCC is essential, by lemma 3.2.2. Since L is 
braided around A, each SCC bounds a disc D  such that D D L  consists of w0 
points, for some constant w0 > 0. Each disc is a meridional disc of T, and T  has 
a non-singular foliation in which each leaf is a meridional loop. Therefore, P  has 
the form of a type 0 pattern, as in figure 3.3.

Now suppose that 2/x > 0. Each non-singular leaf of T  n  Ht is either an 
arc which joins two of the 2/i points of A fl T, or an essential SCC. By general 
position assumption (3), and the fact that 2/x > 2, there must be singularities in 
the foliation of T. Each singularity is assumed to be a saddle. See figure 3.6.

There are two kinds of singularity. The first are those caused by an SCC 
surgered with an arc, which we call «-singularities, because the singular leaf has 
the topology of an la \  The second are caused by surgering an arc with another 
arc: these are called X-singularities, because the singular leaf has the topology 
of an ‘X’. A third possibility, that of surgering two SCCs, cannot occur. (If an 
SCC surgers into two SCCs, both of which are essential, then either one of them 
is not meridional, and leads to a centre singularity, or both are meridional, which 
contradicts the topology of the torus.)

Let p lf p2, . . . ,  p2fi be the points of A  ft T. Let 6U 02, . . . ,  be the t-values
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Figure 3.6: Saddle singularities

at which the singularities of the foliation occur. A singular leaf is then one of the 
components of T n  H0, for 9 € {9X, . . . ,  0q}. The proof now leans towards the 
case in [B-M4] in which they consider a connected sum of two links. We adapt 
the situation slightly to fit our context. The idea is to reduce the number of
intersections of A  with T.

Choose a pair of «-singularities which are consecutive in the foliation of the 
torus. Either these singular leaves are separated only by leaves which are SCCs, 
or else there is a more complicated foliation involving points of A  n  T  and arc- 
leaves. Let our pair of «-singularities satisfy the second description. We surger T  
along the discs bounded by our «-singularities, to give two 2-spheres, S  and S'. 
See figure 3.7. One of them, S' say, is now foliated, near the surgeries, by SCCs, 
leading to local centre singularities. The other, S, is foliated, near its surgeries, 
by arcs with ends on A. In what follows we will work with the foliation of S.

The 2-sphere S  has an even number of point intersections with A, say 2/ /  <  2/z 
of them. The foliation is one of arcs only, and each saddle singularity is an X- 
singularity. Then the complement in S  of the singular leaves is a union of regions 
fy , each with 4 edges belonging to singular leaves.

Choose one (non-singular) leaf e* from each The union of all these leaves 
i e»} gives a cell decomposition of S; the 0-cells are the point intersections A n S, 
the 1-cells are the subset { e j  of the non-singular leaves, and each 2-cell con
tains exactly one singularity of the foliation. Every 2-cell has four vertices and 
four edges (see figure 3.8, for example). We call our 2-cells tiles, and the cell
decomposition a tiling.

We can choose the tiling so that all the point intersections of L  with S  occur 
in two tiles, the so-called ‘end’ tiles that were constructed from the surgery of T.
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Figure 3.7: Surgering along an SCC
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Moreover, the intersections of L with one of these tiles are derived from a number 
of parallel strings which are all travelling together, in an arbitrarily tight bunch, 
around A. They can therefore be treated as a single weighted string.

Following [B-M4], we define the sign of a tile. Each tile contains exactly 
one singularity of the foliation, at which T  is tangent to a fibre Hg. At such a 
tangency the normals of T  and Hg coincide. The orientations of these normals 
will either agree or disagree; the sign of the tile is accordingly positive or negative.

A vertex in the tiling is r-valent if it has exactly r  tile-edges meeting at the 
vertex. Notice that an r-valent vertex is adjacent to exactly r regions and r  tiles: 
this point will be of use later.

We show that there is always a 2- or 3-valent vertex in the tiling of S.

Lemma 3.2.3 A tiling of S  with more than 2 tiles always contains a 2- or 3- 
valent vertex.

P roof. Let V , E  and F  denote the number of vertices, edges and tiles in the 
tiling of S. The Euler characteristic formula of S  is V -  E  +  F  = 2.

Each tile has exactly four edges, and each edge is an edge of exactly two tiles, 
so 2F  =  E, and hence 2V -  E  =  4. Now if V* denotes the number of ¿-valent 
vertices in the tiling, we have V  =  £ “ 2 V{. The fact that each edge has two 
vertices in its boundary means that 2E  =  so

2V<i + V3 = 8 + V5 + 2 V6 + 3V7 + . . . .

The terms on each side of this equation are non-negative, and hence there is a 2- 
or 3-valent vertex. □

We can assume that S  has non-null intersection with L, for otherwise T  would 
be an inessential torus. Call a tile of S  good if it is not pierced by L.

Now we can assume (a small isotopy will oblige us) that the points of L r \S  lie 
in the complement of the set of singular leaves, that is in regions ft*. Call a region 
of S  bad if it is pierced by L. We can isotop parallel strings as a single weighted 
string, to conclude that there exist at most two bad regions of S  (namely the 
‘end’ regions of S.) We can assume that the pierce-points also inhabit the same 
tile: a different choice of tile edge (as in figure 3.8) will ensure this.

Call a vertex good if it is adjacent only to good regions.6 A region is adjacent 
to exactly two vertices, so there are at most four bad vertices.

6 This is another departure from [B-M4], which defines good vertices in terms of good tiles.
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of S with L

Figure 3.8: Redefining the tile edges

The next lemma discusses the existence of (possibly good) 2-valent vertices.

L em m a 3.2.4 Either the tiling of S  has a 2-valent vertex, or else there is an 
isotopy of S  to a new 2-sphere S*, such that the tiling of S* has a good 2-valent 
vertex. Moreover, the tiles which intersect L are undisturbed by the isotopy, and 
the torus T* obtained by replacing S  with S* has c(T*,H ) < c(T ,H ).

P roo f. Suppose there is no 2-valent vertex in the tiling of S. Then by lemma 
3.2.3 there exists a 3-valent vertex, p, which is adjacent to exactly 3 tiles. Each 
tile contains exactly one saddle singularity; necessarily, at least two of the three 
singularities (say s and s') have the same sign. We show that there is an isotopy 
of S  which swaps the order of the two singularities s and s' in the foliation: the 
result reduces p to a 2-valent vertex.

We assume, to begin, that the tiles adjacent to p are all good tiles: they are 
not pierced by L. The argument for this runs as follows. Recall that a region 
(bounded by singular leaves, and foliated by non-singular leaves) is said to be 
bad if it is pierced by L. By construction there are at most two bad regions; 
since each region is adjacent to two vertices then there can be no more than four 
vertices which are adjacent to a bad region. Since there are no 2-valent vertices, 
then (from the proof of lemma 3.2.3) =  0 implies V3 > 8, so we can find a
3-valent vertex p which is not adjacent to a bad region. If a tile adjacent to p has 
intersection with L then it belongs to a region which is not adjacent to p. The 
tile can be redefined by choosing a different edge for the tile, which excludes the 
intersection from the tile, though not the region. See figure 3.8.
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The proof of the lemma continues as in [B-M4], and we present only a sum
mary here.

The three good tiles adjacent to p are as in figure 3.9.

(a) Vertex p is 3-valent; (b) Flow of the tiles; 
(c) Proposed change to tiling

Figure 3.9: Fig. 8 of [B-M4]

Birman and Menasco reconstruct the surface around the singularities s and 
s', from analysis of the foliation. They show that the surface can be isotoped so 
that the singularities appear in the opposite order in the foliation. The resulting 
change in the foliation gives the required end.

The final observation is that the change of foliation occurs only in two tiles, 
and the foliation in the remainder of S  is unchanged. In particular this means 
that we can reconstruct T  from the refoliated 2-sphere because the isotopy occurs 
away from the bad tiles: we simply undo the surgery that created S  in the first 
place. The foliation of T  is as it was, except that it inherits the change in the two 
tiles performed on S. Since (by [B-M4]) the complexity of S  was not increased, 
the complexity of T  is also not increased. □

Lemma 3.2.5 I f  the tiling of S  contains more than two tiles, and also contains 
a 2-valent vertex p, then L admits an exchange. Further, after the exchange we 
can remove points of A f )T,  thus reducing the complexity.
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Proof. We consider first the case when p is not good. Recall that denotes the 
number of z-valent vertices in the tiling. There are at most four bad vertices, so 
if V2 _)_ y3 > 5 then we can always find a good 2- or 3-valent vertex (and hence a 
good 2-valent vertex, via lemma 3.2.4). Assume V2 + V3 < 4, and hence V2 < 4. 
We know V2 +  (V2 + V3) > 8, and so V2 > 4; so the only case when we might not 
be able to find a good 2- or 3-valent vertex is when V2 — 4, V3 — 0.

In this case we know that VJ =  0 for i > 5, but V4 is undetermined. [B-M4] 
discusses only the case U4 =  0, although examples of tilings with V4 > 0 are easily 
constructed.7 The case V4 > 0 is covered here.

We consider all possible eventualities, by examining a typical tile t, and in 
particular the number of 2-valent vertices adjacent to that tile. We show that 
either we can find a good 2-valent vertex, or a bad 2-valent vertex which admits a 
complexity-reducing exchange move. Note that each tile has exactly four vertices.

If t has four 2-valent vertices, then there are only two tiles (and the Euler 
characteristic very quickly gives us V4 =  0). In this case, 5  has a very special 
position which is described in [B-M4]; it is discussed in the closing section of the
proof of theorem 3.2.1.

Suppose there is a tile t with three 2-valent vertices. Then t must be as in 
figure 3.10.

eii//
1--
ex

Figure 3.10: Tile with three 2-valent vertices

Necessarily there is another tile t' which has the same three 2-valent vertices. 
By assumption, t' has only four vertices; the fourth is the r-valent vertex (r > 2) 
adjacent to t. Using the notation of lemma 3.2.3, we have 2U2 +  U3 =  8 +  U5 +  
2V6 +  3Vr + . . . ,  and since V2 =  4, U3 =  0 we can deduce that V; =  0, i > 5 
and so r =  4. Then ei, e2 are different edges, and therefore t! has at least six 
edges. This contradicts the assumption that every tile has exactly four edges and 
vertices.

Suppose every tile has at most one 2-valent vertex. Each of the 2-valent

7I am grateful to Joan Birman and Bill Menasco for private communications concerning this 
point.
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vertices is adjacent to exactly two regions, each of which is adjacent to an r- 
valent vertex (r > 2) at its other end (because each tile, and therefore each 
region, is adjacent to at most one 2-valent vertex). Since there are at most two 
bad regions, there are at most two bad 2-valent vertices, and hence at least two 
good 2-valent vertices.

We are left with the case when there is at least one tile t with two 2-valent 
vertices. There are two possibilities for such a tile; these are illustrated in figure 
3.11.

Figure 3.11: Tiles t with two 2-valent vertices

(Note: If a vertex is adjacent to a bad region then it is necessarily adjacent 
to a bad tile. The reverse is not true.)

There are two cases.

1. If px and p2 are both adjacent to a bad region, then choose tile edges in the 
bad regions so that the pierce-points are contained in t. This is enough to 
ensure that the other two 2-valent vertices are both good.
Otherwise, pi (say) is not adjacent to a bad region, and so by definition, px 
is a good 2-valent vertex.

2. By hypothesis, each leaf in the foliation of S  is essential, so L  is an obstruc
tion to its removal. Figure 3.12, illustrating the embedding of part of 5, 
may be compared with figure 21 of [B-M4].
Since the leaves are essential, L encircles the axis n > 1 times between px 
and p2, and also m  > 1 times between p3 and p4, inside S; also j  > 1 times 
between p2 and p3, outside S. There is also the possibility of L  piercing S  
in one or more places of the regions adjacent to px, . . .  ,p 4. See figure 3.13.
Clearly, an exchange move is applicable, moving the n strings across the j  
strings, down so that they encircle A  between p3 and p4. Then the leaves
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A

Figure 3.12: Embedding of S  near the 2-valent vertices

A

Figure 3.13: Embedding of part of L, relative to S
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joining pi to p2 are inessential, and can be removed, reducing the complexity 
by removing two points of A fl S.

If p is good then the proof is as in lemma 4 of [B-M4]. (In this they explicitly 
describe the position of the sphere S  relative to L, and show that an exchange 
move is applicable.) In this case, the only extra point to note is that, because p 
is good, all the action occurs away from the bad tiles of S: we can assume that 
the relevant tiles are all good by redefining some tile edges (as in figure 3.8) if 
necessary. Therefore, we can reconstruct T  after application of lemma 3.2.5. The 
reduction in complexity of the foliation of S  implies a reduction in c(T, H). □

Now we can complete the proof of theorem 3.2.1. The essential torus T  
has complexity c(T ,H ) > (0,0). The case when the complexity is (0,0) was 
considered at the beginning of this proof, so assume c(T, H) > (0,0). Therefore, 
A  D T  > 2, so necessarily there are singularities in the foliation.

We take pairs of a-singularities as described, surgering to form a sphere S, and 
repeatedly applying lemmas 3.2.3, 3.2.4 and 3.2.5 until S  has just four 2-valent 
vertices in its foliation. Then S  is the union of exactly two tiles, each of which 
has a saddle singularity. At least one of them is bad. Following the observation 
of [B-M4], the sphere has the form of figure 3.14.

Figure 3.14: Fig. 21 of [B-M4]

If there is a good vertex, then a complexity-reducing exchange move is appli
cable, as described in [B-M4]. If there is no good vertex then all four 2-valent
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vertices are bad, and we know that S  is pierced by L in two ‘opposite’ regions, 
Ri and R 3 say. This case is covered in pages 135-137 of [B-M4], The position 
of S  relative to A  and L is deduced, and it is shown that an exchange move is 
possible, and that two more points of A n S  can be removed. This is done, in 
their words, by ‘sliding’ strings of L so that the pierce-points L D R 3 slide into 
R 3, and a good 2-valent vertex is created.

The 2-sphere S  now has a non-singular (North-South) foliation whose leaves 
are simple arcs with both ends on A. We can reconstruct T  from S  by recon
structing the «-singularities at either ‘end’ of S  from some choice of non-singular 
arcs of S, and performing the inverse surgery. See figure 3.15.

Figure 3.15: Reconstructing T

So we can assume that there are exactly two intersection points of A  with T  
for each sphere S. We write |Tn^4| =  2m, where m is the number of 2-spheres S. 
Recall that each singularity in the foliation of T  was either an «-singularity or an 
X-singularity: at this stage we have removed all the X-singularities, so there are 
only «-singularities remaining. Each «-singularity corresponds to the surgering 
of an SCC with an arc-leaf in the foliation; the only arc-leaves remaining are 
those inherited from the foliations of the S, and so the «-singularities correspond 
to the fusing of an SCC-foliated tube with a 2-sphere S. They must occur as in 
figure 3.15, and so we can deduce that there are 2m singularities: the complexity 
is c(T, H) -  (2m, 2m).

If m =  1 then the fact that each leaf is essential allows us to see that the 
pattern has a type 1 foliation, and is as claimed. If m > 1 then the essentiality

57



of the leaves allows us to construct part of the torus, together with four points 
of A n T ,  as in figure 3.16.

In particular, note that by assumption, the leaf boundary of the shaded disc is 
essential, and so the disc itself has non-empty intersection with L . An exchange 
move will remove that intersection (as illustrated in figure 3.16), and so we can 
isotop T  in a 3-space neighbourhood of the disc to remove two intersections of A  
with T, hence reducing the value of m  and the complexity c(T, H). This step is 
repeated until m = 1, and the proof of theorem 3.2.1 is complete. □

Corollary 3.2.6 L e t C  * P  be a typ e  0 o r  typ e  1 sa te lli te , c o n s tru c te d  by  e m 
beddin g  a  typ e  0 o r  typ e  1 p a tte r n  P  C Vp in to  the to ru s  n eigh bou rh ood  Vc  o f  
co m p a n io n  k n o t C . T h en  C  * P  h as b ra id  in d ex

w h ere  w 0, w j are the m in im u m  w eig h ts  o f  the s tr in g s  as sh o w n  in  th e  p a tte r n  P  
(figu re  3 .1 7 ) , a n d  b (C ) is  the  b ra id  in d ex  o f  th e  com p a n io n .

Remark. The significance of w 0, w x in the diagrams is as follows. The integer 
w Q is the least number of intersections P  n D , over all meridional discs D  C V p.

Figure 3.16: Part of the torus relative to L  and A

( ty p e  0) 
( ty p e  1)
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Figure 3.17: Standard patterns, type 0 and type 1

The integer Wi, in the type 1 case, is the least number of extra strings needed to 
present the pattern in this braided format.

Proof of corollary 3.2.6. Take a closed braid presentation /3 of C  * P, of min
imal braid number. If C  * P  is a type 0 satellite, then by theorem 3.2.1 we can 
move Tc =  dVc to intersect the fibration of S 3 — A  in the standard way. Thus Tc  
has no intersection with A. Since C  * P  is braided around A, then so is Vc, and 
so the core of Vc is a closed braid representing C , on b' braidstrings. Therefore, 
each page Hg of the fibration H  has exactly b'.w 0 intersections with C * P .  By the 
minimality of b [C ) , we have b' > b (C ) . If b' > b (C )  then an isotopy of the core 
of Vc in S 3 gives a presentation of C  on fewer braidstrings. The same isotopy 
applied to Vc preserves both C  * P  and its braidedness about A, and so gives a 
presentation of C  * P  on fewer braidstrings. Thus, we can assume b' =  b {C ) . A 
diagram for a braid presentation of C  * P  is shown in figure 3.18.

If C * P  is a type 1 satellite, then by theorem 3.2.1 we may assume A  inter
sects Tc in precisely two points. Then a typical fibre Hq has b' clusters of w0 
intersections, along with one cluster of Wi intersections. The two ways that this 
can happen in a non-singular fibre are illustrated in figure 3.19. Then, by the 
same argument, b' =  b(C). □

3.3 Reverse string satellites

In fact, Birman and Menasco have provided a more complete result than theorem 
3.2.1, by identifying another class of patterns. The same method of proof is 
employed.
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He D C  * P  
(a)

Hen  T

V  V P,T
(b)

Figure 3.18: (a) A typical fibre He with C*P-intersections; (b) Braid presentation 
for C  * P  from C  and P

H0 C \C *P  He DT 
(a)

w 0|  Wol W0I w ,

(b)

Figure 3.19: (a) Typical fibres Hg with C+P-intersections; (b) Braid presentation 
for C  * P  from C  and P
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T heorem  3.3.1 [B-M7] Let T  be an essential, non-peripheral torus in S 3 — L, 
where L is a link which is represented as a closed braid relative to the braid axis 
A and fibration H. Assume that T  has type 0, 1 or k foliation. Let V  be the 
solid torus which T  bounds, where in the situation of type 0, if T  bounds on both 
sides we choose V  so that A  fl V is empty. Then the inclusion of (L u  A) C\V in 
V in the three cases is as depicted in figure 3.20. Here, each component of AC\V  
is an arc, illustrated in these projections as a point. In particular, the number of 
such arcs is 0, 1 and k in the three cases. □

Figure 3.20: Standard positions of pattern P  c  VP when essential torus T  = dV  
has foliation type 0, 1 , k {k > 2)

R em ark . The formal definitions of foliation types 0, 1 and k of theorem 3.3.1 
are found in [B-M7]. In fact, the type 0 and 1 foliations are the torus foliations 
deduced by theorem 3.2.1: a type 0 foliation of a torus is a foliation by meridional 
circles (SCCs), and a type 1 foliation is the mixed foliation with SCCs and 
essential arcs, two saddle singularities and two points of TC\A. These correspond 
to the type 0 and type 1 patterns respectively.

The type k foliation occurs in the case when every meridional disc of T  in
tersects the satellite link L, with both positively and negatively oriented inter
sections. The foliation is a singular foliation in which each nonsingular leaf is a 
simple arc with its endpoints on A. In their proof of theorem 3.3.1, Birman and 
Menasco show that the foliation on T  in this case induces a tiling of T, in which 
each 2-cell consists of four edges and contains exactly one saddle singularity; the
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O-cells are the points of Tc  D A and the 1-cells are some choice of non-singular 
leaves. They go further, deducing from restrictions on the signs of the singulari
ties that there is a ‘fundamental domain’ for T, consisting of (2 x k) tiles, with 
opposite sides identified.

The patterns corresponding to the type k foliations have the property that 
every meridional disc D of the essential torus V  has both positive and negative 
intersections with L. Accordingly, we have dubbed them reverse string patterns 
(or rs patterns).

T heo rem  3.3.2 [B-M7] With the above notation, the pattern P  having strings 
of weight Wi as shown in figure 3.20, and b(L) denoting braid index of L, then

b(L) =  w0.b(C) i f T  has type 0 foliation;

b(L) =  w0.b(C) + Wi i fT  has type 1 foliation;

b(L) =  w1 +  w2 +  . . .  +  wk i f T  has type k foliation, k > 2. □

R em ark . The equations of theorem 3.3.2 are stated exactly as they appear in 
[B-M7]. It is of some importance to draw the reader’s attention to the addendum 
to [B-M7], regarding the type k case, as well as to the following discussion.

In order to deduce the next corollary, we define the special braid

n(n ̂p - j + k  ) • • • i ^ n - O ’ A ^ n + l *  • • • > ¿ b i+ p - l ) »
j = 1 \ k = l  J

where A(cr1, . . . ,  an_x) = A  (al , , an- 2)-crn-i • • • 0\, the whole braid is as shown 
in figure 3.21.

The significance of this is that if we have an antiparallel pair of weighted 
strings of weights p, n, a halftwist on them can be represented as a braid T£ 
in a pattern. Schematically, this is illustrated in figure 3.22. So we can control 
framing via the $  in the pattern.
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Figure 3.22: Using the pattern to control framing

Corollary 3.3.3 (A classification of reverse string patterns) L e t L  be a
s a te l l i te  lin k  w ith  a r e ve rse  s tr in g  p a tte rn . T h en  th e  p a tte rn , up to  s o m e  ch o ice  
o f  fra m in g , is  o f  th e  fo r m  o f  the  typ e  ‘ k ’ d ia g ra m  above ( th e  b o tto m  d ia g ra m  o f  

fig u re  3 .2 0 ) , w h ere

( i )  k  is  e ven  a n d  n o n -n eg a tive  (b u t cou ld  be z e r o f ;

( i i )  each  b ra id ce ll Pi c o n s is ts  o f  a bra idw ord;

( in )  a t m o s t  on e  o f  th e  p i, w ith  w e ig h ted  in p u t s tr in g s  P i ,n i  is  co n ju g a te  to  r£*. 
o r  i ts  in v erse .

Proof. Let A  be the axis which realizes L  as a closed braid, and H  be the 
fibration of S 3 — A  by halfplanes. Let T  C S'3 — L  be the essential torus which 
realizes the satellite construction of L . By theorem 3.3.1, we can assume that the 
foliation of T  induced by H  is the standard type k foliation, and the pattern is 
as in figure 3.20. Notice that k  must be even: a choice of orientation forces that. 
Further, suppose that Pi, pj were congugate to r£*., r%. By a series of flypes 
(see figure 3.23, and [Ta] for more detail), we can assume that |i -  j \  =  1. 8

8See the remark following this proof.
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Figure 3.23: Tait’s flype move

Then, if fa =  /?~\ the half twists cancel out (see figure 3.24). Otherwise, the 
pair contribute a full twist to the satellite, and an extra ±1 to the framing. Since 
we are working up to framing, they can both be removed (see figure 3.25). □

Figure 3.24: fa =  fa 1

Figure 3.25: fa = fa

R em ark . It is important to make a clear distinction between ‘foliation type’ (of 
an essential torus T  C S 3 — L) and ‘pattern type’ (of a satellite C  * P). The 
foliation type, the chief tool of theorem 3.3.1, will tell us what pattern type we 
are working with, as described in the caption accompanying figure 3.20. Pattern 
types resulting from a type 0 or type 1 foliation are precisely the non-reverse 
string type 0 and 1 patterns respectively. Pattern types resulting from a type k 
foliation (k  e  N, k > 2) are the reverse string type k' patterns, where k' is the 
number of braidboxes in a planar diagram of P, and is not unique. In particular, 
k' E 2N. The particular case k' =  4 is illustrated in figure 3.20, and the case 
k' =  0 (hereafter called the ( x ,y ) -a n tip a r a lle l  pattern) has x  and y  strings running 
in an antiparallel fashion around the longitude of V, as shown in figure 3.27. If 
P  is an antiparallel then C * P  is an antiparallel satellite.
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One problem with their statement of theorem 3.3.1 is that, for a reverse string 
satellite L , it seems to rule out the possibility that any essential torus T  in S 3 -  L  
has foliation type k with k odd. The fact that Birman and Menasco’s example 
(figure 7 of [B-M7], reproduced in figure 3.26) has essential torus with foliation 
type 5 presents an apparent conflict.

This is explained by the observation that the fo lia tio n  type and the p a tte r n  
type are, to some extent, independent of each other. More accurately, the foliation 
type is controlled by four factors:

(i) the pattern (and in particular the pattern type, which in the reverse string 
case must be even);

(ii) the writhe w ( C );

(iii) the arc index, a((7); and

(iv) the choice of framing, / .

The last three factors between them force the foliation type to have either 
odd or even parity, as we shall see.

Some of these factors are interrelated; for example, an arc diagram of a com
panion comes with an implicit ‘meridional twisting’ (the writhe), which influences 
the framing. A good way to see this is to consider the most simple of reverse 
string patterns, namely the (1, l)-antiparallel. The discussion in the following 
paragraphs, in particular taking P  =  (1, l)-antiparallel, makes the meridional 
twisting quite apparent. (The (l,l)-antiparallel has also been referred to as the 
‘British Rail’ parallel, after the British Rail logo .)

Before closing this section, we make some observations on the braid index of 
reverse string satellites, which will be built on in later sections.

P ro p o s itio n  3.3.4 L e t C  be a k n o t w ith  arc in d e x  a  =  a ( C ) .  L e t L be a  s a te l l i te  
w h ich  h a s C  a s a co m p a n io n , the p a tte r n  being re ve rse  s tr in g ;  le t  L be b ra id ed  in  
a p o s i t iv e  s e n se  a ro u n d  bra id  ax is A . T h en  an  e s se n tia l  to ru s  T  C S'3 — L  has  
fo l ia t io n  typ e  a t lea s t a ,  w ith  resp ec t to  the open-book f ib ra tio n  o f  S 3 — A .

P roo f. Suppose T c  is such an essential torus: its core is C , and T c  bounds a 
solid torus Vc  with L  C V c ■ Let H  =  {H g  : 0 e  [0, 27t]} be the open book 
decomposition of S 3 — A  by half-planes; this induces the foliation of T c , of type 
k, with leaves {H g  D Tc}- We show that a ( C )  < k.
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Figure 3.26: Whitehead double of a trefoil with its essential torus, from [B-M7]

Figure 3.27: The (x, ?/)-antiparallel pattern
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Since L  is a reverse string satellite, it does not have a type 0 or type 1 pattern, 
and we may deduce by general position arguments and using theorem 3.2.1 that 
no leaf of the foliation is a simple closed curve. The general position assumptions 
also tell us that every non-singular leaf must be a simple arc, which joins two 
points of Tc  H A . By the proof of theorem 3.3.1, the foliation on Tc  induces a 
tiling of Tc : the tiling comes from a fundamental domain of (2 x k ) tiles, where 
each tile is 4-valent, and opposite sides of the fundamental domain are identified.9

We choose a path 7 on Tc , which traverses the longitude of Tc  exactly once, 
constructed by following some tile-edges. We can see by examination of the 
fundamental domain of Tc  that such a path exists, and consists of exactly k 
edges.

It follows that 7  is ambient isotopic to the core of T c , and hence to C  itself. 
Moreover, 7  is an arc presentation of C ,  since it is constructed of non-singular 
leaves, each of which is a simple arc contained in some fibre H e. There are k  arcs 
in this arc presentation. Then, by definition of arc index, we have a ( C ) < k . □

Corollary 3.3.5 L e t C *  P  be a reve rse  s tr in g  s a te l l i te  o f  a co m p a n io n  C .  T h en  
th e  b ra id  in d e x  o f  C  * P  is  a t lea s t a ( C ) .

Proof. Most easily seen by considering the grid diagram, given by projecting 
C  * P  onto the boundary of a cylindrical neighbourhood of A . There is at least 
one braidstring for each of the point intersections A  fl C  of the arc presentation 
of C . Further discussion of this construction follows in section 3.5. □

It is a fact that for any knot C , there exist infinitely many inequivalent satel
lites C  * P  of C  with braid index b (C  * P )  =  a ( C ) .  For example, an infinite 
family of patterns {Pk} is given in figure 3.28; for a given companion C , these 
patterns give rise to an infinite family of satellites C  * P k, each with the same 
framing and the same braid index. Explicit braid presentations of these satellites 
can be constructed as in the example at the end of section 3.4.

There also exist (probably finitely many) satellites of C  with pattern the 
(1 , l)-antiparallel, and braid index a ( C ) .  These differ by virtue of a choice of 
framing. A discussion of this will follow in sections 3.5 and 3.6.

9See the remark following theorem 3.3.1, and also [B-M7],
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Figure 3.28: An infinite family of patterns, {Pfc}, constructed by setting /?i =  
£ B 2 and fd2 =  &ik+1 £ B 2, k e  Z

3.4 Braid presentations of reverse string satellites

We have already considered presenting braids of type 0 and type 1 (non-reverse 
string) satellites in section 3.2. The following proposition, and its proof, are of 
some help in understanding the embedding of a reverse string satellite and its 
essential torus in S 3, relative to A.

Proposition 3.4.1 Let G  = G { C )  be an arc presentation of a knot C with a' > 
Oi{C) arcs. Let Vq be a tubular neighbourhood of C with type a' foliation. Let P  
be a reverse string pattern of type k, with k < a!, as described in corollary 3.3.3, 
P  living in an unknotted solid torus Vp. Then there exists an embedding

e :V P ->Vc c S 3

such that the inclusion of P  in S 3 -  A induced by the embedding is a closed braid 
with braid axis A.

P roo f. The a ' arcs are embedded in half-planes

f « 2n7r.H  = \H e -.0 = —  ,n  =  l , .  .

Vc  has type a' foliation, so the set {V c  fl A }  consists of precisely a' subarcs 
a i,a 2, . . . ,  aat of A . If we think of Vc as homeomorphic to S 1 x D 2, then we can 
fibre Vc  by discs D 2 such that the subarcs a, bisect a' of the fibres (denoted D f)  
as shown in figure 3.29. The D f  dissect Vc  into a! solid tubes Z i , bounded in V c  
by D, U D,+v

The torus VP containing P  is dissected into a' solid tubes Yj by considering 
a similar fibration of Vp. For j  =  1, . . .  ,k , each Yj will contain a braidcell and
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Figure 3.29: Dissecting disc D f

four weighted strings. For j  = k +  1 , . . . ,  a, each Y3 carries two parallel weighted 
strings as in figure 3.31. The dissecting discs Dj3 are positioned as shown in figure 
3.30; they will be bisected by the preimages e_1(aj), which separate the points 
of P  fl D? into algebraically positive and negative intersections. The embedding 
will be such that e(Yj) = Zj. Let Pj = P  r I Yj.

Figure 3.30: Dissecting discs D f  of VP

Figure 3.31: Completion tube Yj, j  =  k +  1 , . . . ,  a'
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Notice that if Zn n  Zn ^  0, j x /  j 2 (say j x < j 2 without loss of generality), 
then necessarily \j2 — j\\ =  l(mod a'), so Z ^  f lZj2 =  Df2\ the intersection of e(P) 
with the disc consists of point intersections only. Therefore e(PJ1) and e(Pj2) do 
not interweave, so we need only show that we can choose e so that the inclusion 
e(Pj) in S3 — A  is transverse to the pages of the open book decomposition, for 
each j  =  1 , . . . ,  k.

The exact position of the D f  are as follows. The arc contained in H0> £ H  has 
a tubular neighbourhood, which we call Zx. The Z{ appear in numerical order 
as we traverse Vc, so the arcs of C  corresponding to Zi+X meet at a point 
Xj 6 C flA . Tubular neighbourhoods Z{ and Zi+X themselves intersect in the disc 
Df+i', we choose this disc to lie in a plane P j+1 that bisects the angle between 
Hg. and Hgi+1. See figure 3.32.

Figure 3.32: Dissecting disc Df+X lies in the plane P j+1

Arcs (in particular, consecutive arcs) must lie in distinct half-planes, by 
construction of arc presentation. Therefore, Pj and Ri+i can coincide only if 
6i_i = 9i — ir =  9i+1- (In this case, strictly, and Ri+x differ by an angle 7T.) 
Then, if fa is the angle between Ri and Ri+i, we can say 0 < fa < 2n.

So Zi is as shown in figure 3.33, with the planes R P l+1 indicating the bound
aries of Zi.

We embed the pattern transversely into the pages of the open-book decom
position as shown in figures 3.34 and 3.35. The set P  n  D f  consists of point 
intersections only, and so is transverse to the pages of the decomposition. □

The proof of proposition 3.4.1 leads to a direct approach for constructing a 
presenting braid for a reverse string satellite C  * P. We place the companion C , 
and then dress it with P , in such a way that a braid whose closure represents 
C  * P  becomes apparent. The ‘sizes’ of the pattern and companion diagrams 
should be compatible: the number of arcs on which the companion is presented 
should be at least as big as the pattern type.
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Figure 3.33: Position of tube

Figure 3.34: Embedding of Pj, for 1 < j  < k
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Figure 3.35: Embedding of Pj, for k +  1 < j  < a'

The algorithm begins with an arc presentation D (C ) for C, and a diagram of 
the pattern P  in standard form in the torus, as in corollary 3.3.3.

We must recall some terminology and definitions. A pair of arcs in a diagram 
are said to be consecutive if they meet at a point of A. The a' arcs of D (C ) 
are embedded in fibres H01, . . . ,  H0a, of S 3 — A. Each joins two of the a' points 
X i , x ai of A. The x{ are indexed in ascending order around A. We have an 
a'-cycle 7r € 5a<, such that 7r(l) =  1, and 7r(j) = i o  He. is the j th  plane visited 
if we traverse C following its orientation.

The arc presentation D (C ) leads (as described in section 2.2) to a grid diagram 
G{C) for C, which may be chosen to be a closed braid diagram of C. Essentially, 
this is given by choosing a cylindrical neighbourhood N (A ) of A  such that no arc 
of C  is completely contained in N(A)\ then projecting C D N{A) radially onto 
dN (A ). Then, if we slice along the length of dN (A) we can lay it flat on the 
plane.

We may assume that D(C), and therefore the grid diagram G(C), each has 
at least k arcs. If not, then G(C) forms the basis from which we can generate a 
new grid diagram G'{C) which satisfies this property: this is discussed in more 
detail in the sections on framing (sections 3.5 and 3.6).

(In the grid diagram G(C), we can assume that the Xi are represented by the 
horizontal lines, with Xi highest, and xa> lowest. Also we have the halfplanes 
represented by the vertical lines with Hgl left-most, and Hga, right-most.)
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At any rate, in G(C) we get a number of vertical and horizontal lines. The 
vertical lines are the (slightly trimmed) arcs, with both ends on the plane, and 
bridging out over the plane. The horizontal lines lie in the plane, and simply 
identify the appropriate ends of consecutive arcs, as they would have met at A. 
See figure 3.36.

Figure 3.36: Two consecutive arcs bridging over the plane

From G{C) we can construct a diagram of how Vq lies relative to dN(A). 
Each arc is thickened into a solid cylinder; its endpoints thicken into the discs 
D f.  Figure 3.37 helps to illustrate this. These discs lie embedded in dN (A), and 
there are two copies of each D f.  The pair have oppositely oriented boundaries 
as they appear on dN (A) (one clockwise, one counter-clockwise, inherited from 
the orientation of Vc )', identification of corresponding pairs will reconstruct Vc .

Figure 3.37: A thickened arc bridging over the plane

Meanwhile, the pattern is dissected as in the proof, using dissecting discs D f,  
to give tubes Yj containing sections of the pattern. The first k of the Yj each 
contain a braid cell Bj, 1 < j  < k, and the remainder carry a pair of oppositely 
oriented parallel weighted strings p,- and n». The reader is referred to figure 3.31 
in the proof of proposition 3.4.1.

The first k of the Yj are embedded into the cylindrical neighbourhoods of the 
first k consecutive arcs, as shown. The choice of ‘first arc’ is not unique, but 
the satellite is independent of this choice. The horizontal ‘identifying’ semi-loops 
of G(C) are replaced by weighted parallel strings p,, and the opposite choice of 
semi-loops replaced by weighted parallel strings nj. If we declare that the Pi 
follow the chosen orientation of C in order of their indices, then there is only one 
way to embed each of the following Yj, j  < k. See figure 3.38.
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V

/V V

/  V

Figure 3.38: The embedding Yj C Z ^ ) ,  1 < j  < k

The remaining Zj, k + 1 < j  < a each have embedded a completion tube 
Yj, carrying the two antiparallel weighted strings. They project onto dN (A ) as 
in figure 3.39.

Figure 3.39: The embedding Yj C Z ^ , k +  1 <  j  < a'

There are two choices for this embedding: the crossing of p, with n, ensures 
braidedness, but the braidedness is independent of the choice of crossing. This 
choice is discussed further under consideration of framing (sections 3.5 and 3.6).
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E xam ple. Figure 3.40 shows a reverse string satellite of a trefoil, with a ‘type 4 ’ 
reverse string pattern as shown. Note that the framing has been chosen implicitly 
so that the number of braidstrings of the satellite is equal to the arc index of the 
companion. The essential non-peripheral torus in the complement of this satellite 
has foliation type 5.

\ /

\ /

\ /

0 1 2 3 4

Figure 3.40: Reverse string satellite presented as a closed braid
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3.5 Concerning the framing of satellite links

So far in this discussion of satellites as closed braids we have consciously chosen 
to ignore one vital concept, namely that of framing. In this section we discuss 
how the framing fits into our theory.

Recall that the satellite C * P  is constructed by an embedding

e : VP -> Vc  C S3

of an unknotted torus Vp into the toroidal neighbourhood Vq of a companion 
knot C. The satellite C * P  itself is the image e(P) C S 3. The embedding is 
not unique: e may introduce any whole number of meridional full-twists into 
the torus, and still be a continuous embedding. Therefore, there is a bijection 
between the set of possible embeddings e :Vp —> Vc and the set Z of integers.

The following examples illustrate how this non-uniqueness is manifested in 
braid presentations of e(P).

Exam ple. Let C * P  be a satellite link with companion C — 3l5 and a type 1 
pattern. To construct a braid for C * P, begin with a closed braid presentation 
of C, as in figure 3.41.

Figure 3.41: Closed braid presenting C — 3X 

Closed braid presentations of C * P  are then easily constructed, as in figure 3.42.

Both are equally good satellites, in so far as they satisfy the definition of a 
satellite. They are, however, different links, distingishable by comparing Homily
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Figure 3.42: Closed braids presenting two possible satellites C * jP  and C P

or Jones polynomials. As an example, consider the case where each string is of 
weight 1, and ¡3 is the trivial braid on three strings10:

Vc*f p(v i z ) — z 2 (v 16 — 6^ 14 +  13?; 12 — 12?; 10 +  4?; 8) 
+  (—5?;-14 4- 26?;~12 — 40?;-10 4- 19?;-8)
+ z2 (—?;~14 4- 22?r12 -  57?T10 4- 36?r8)
+zA (8?;-12 -  36?;“10 +  28?;-8)
+z6 (v~12 — 10?;-10 +  9?;~8)
+ z 8 ( - ? ; -10  +  ? ; ~ 8 ) ,

'P c *f - i p (v i z ) ~  z~2 -  6w-12 +  13?;-10 -  12?;-8 4- 4? ;- 6 )

4- (?;-14 -  46?;-12 4- 19?;-10 -  26?;~8 4- 12? ;“ 6 ) 

4- 2:2 (-?;-12 4-  8?;-10 -  22?;-8 4- 15? ;- 6 )

+z4 (v~10 -  8v~8 + 7v~6)
+z6 ( - v ~ 8 + v~ 6).

Exam ple. Let us construct two satellites C P, C *f+1 P, for some / ,  where 
C  is the knot 3i, and P  is the (l,l)-antiparallel pattern. Construct each satellite 
as a closed braid, via the algorithm of section 3.4.

Begin with a grid presentation G(C) of C with 5 arcs, as in figure 3.43.

This is then dressed with the pattern, as described in the previous section, and 
illustrated in figure 3.44.

10In this case, both links are both distant unions, and so have Conway polynomial 0.
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\ /

\ /

\ /

0 1 2  3 4

Figure 3.43: Grid presentation G(C), C — 3i

Figure 3.44: Closed braid presentation for C *f P
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0 1 2  3 4

Figure 3.45: Closed braid presentation for C */+1 P

There is no unique way to do this. A full twist of the torus manifests itself as 
a full twist of a cylindrical neighbourhood Yj of one of the arcs. This induces in 
the presentation a change of sign of a crossing, located in the projection of that 
Yj. See figure 3.45. This change of framing is discussed further in section 3.6.

Again, each of these links satisfies the definition of ‘satellite link’, but they 
are inequivalent links, as their Homfly polynomials confirm:

'Pc*f p{v, z) =  z~x (4u~3 -  8u_1 +  5u -  v3)
+z (4v~3 — 15u-1 + 10w — v3 — v5)
+z3 (v~3 -  7v~l -f 6v)
+z5 ( - u -1 +  u),

Vc *f+1p(v , z) = z~ l (4u-5 -  8v~3 + 5u_1 -  v)
+z (4u~5 -  15u-3 +  9u-1 -  v -  v3)
+z3 (v~h -  7v~3 + 6w-1)
+z5 (~v~3 + v~x).

The first of these examples illustrates how, for a type 0 or type 1 satellite 
C * P, the braid index b(C * P ) is independent of framing.

For a reverse string satellite C * P, the dependence of b(C * P) on framing 
was conjectured by Birman and Menasco in [B-M7]. This dependence is analysed 
below. Observations, based on the explicit braid presentations of C * P, provide 
us with an upper bound for b(C * P). Analysis of the Homfly polynomial gives 
us a lower bound for b(C * P), via the MFW inequality.
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3.6 A formal definition for framing

Since we are working via our 2-dimensional representations of links, our definition 
of framing is also based on these diagrams.

Recall the definition of the writhe wr(D(C)) of a link diagram D (C ): it is 
the algebraic crossing number of the diagram. More explicitly, we first assign an 
orientation to C, and hence to D(C). Then each crossing c of D (C ) has a sign 
e(c), according to figure 3.46. The writhe of the diagram is

wr(D(C)) = £  e(c).
cCD(C)

e(c) = +1 e(c) =  -1

Figure 3.46: Sign of a crossing

Given a diagram D (C ) of a link C, there is a natural way to draw a diagram 
of the (l,l)-antiparallel satellite, based on D{C). Simply, one draws in another 
strand which runs along the side of D(C). This is known as the blackboard 
antiparallel, for obvious reasons, and its framing is called the blackboard framing.

Generally, we can define the framing of such a satellite as being the writhe of 
the underlying companion diagram. Equally, this is given by finding the winding 
number of one component around the other (this is counted by summing the signs 
of all crossings in which one component of the link crosses over the other), and 
taking the negative of this result.

As an example of this, consider figure 3.47. Here, the diagram of the trefoil 
has writhe 3. Constructing its blackboard (l,l)-antiparallel, we find that the 
blackboard framing is 3.

P ro p o s itio n  3.6.1 In this case, the framing of the (1,1)-antiparallel of D(C) 
with blackboard framing is wr(D(C)).

P roof. The only crossings that can possibly contribute to the winding number 
of the two components occur near the crossings of D(C). A positive crossing
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Figure 3.47: Trefoil and its blackboard antiparallel

of D (C ) contributes -1  to the winding number; a negative crossing of D (C ) 
contributes +1. □

In particular, if the diagram D (C ) of C is a grid diagram G(C), then propo
sition 3.6.1 still holds.

Example.

\ /

\ /

\ f

) 1 2 L1
wr(G(C)) = 3

Figure 3.48: Grid diagram G(C)

0 1 2  3 4
Blackboard antiparallel 

with framing 3

and its blackboard antiparallel

The (l,l)-antiparallel of C * P  (P  is the (l,l)-antiparallel) has two oppositely 
oriented components, L\ and L 2, say. Suppose that the orientation of L\ agrees 
with that of C. Each of these components, when considered alone, is a braided 
grid diagram for C. If we take the opposite choice of semi-loops for one of them, 
then they are braided in the same direction. This is equivalent to pushing the 
existing semi-loops of this component down, through a point at infinity, and 
back up into their alternative positions. Compare figures 3.48 and 3.49. Since 
the horizontal lines in the grid never over-cross another part of the link, this move 
is an ambient isotopy of C  * P  in S 3 and the link type is preserved. Since the 
link type of C * P  is preserved, the framing of the companion is also preserved.
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Figure 3.49: Braided diagram of the blackboard antiparallel

We conclude that at each embedded tube Yj, the components L x and L2 cross; 
and if Li crosses over L2 at each of these singularities, then the framing is equal 
to wr(G(C)).

We can preserve the satellite form of the diagram, and yet change the framing, 
by altering one of the crossings, as previously described. It is equivalent to a full 
twist (in an appropriate meridional direction) of the cylindrical neighbourhood 
of the corresponding arc. For example, the operation illustrated in figure 3.50 
will increase the framing by 1. The reverse operation will decrease the framing 
by 1.

We can construct a braided diagram of a reverse string satellite C  */ P  with 
companion C, pattern P  C VP and framing /  € Z, in the following way. First 
construct some grid diagram G(C) of C  with writhe wr(G(C)). In order to 
achieve the correct framing, we will need a number of ‘completion tubes’ of the 
appropriate type: they should number at least | /  -  wr(G(C))\. To ensure that 
G(C) has sufficiently many arcs, we can apply Cromwell’s moves III and IV if 
necessary. See section 2.3.

Dress the diagram G(C) as described in section 3.5. Finally, alter the sign of 
the crossing of sufficiently many of the completion tubes, so that the framing is 
correct.

In the example of figures 3.48 and 3.49, there is sufficient possibility to easily 
produce braidwords for framings 1 < /  < 6. If <7 */ P  were a satellite with 
framing /  outside this range, then we would need to start with an alternative 
grid diagram G(C). For example, see figure 3.51.

So for a certain grid diagram G(C), we can construct satellites with framing
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Figure 3.50: Changing the framing

\ /

\ /

\ /
.....

0 1 2 3 4 5
allows framings

l < / < 7
allows framings 

0 < /  < 6

Figure 3.51: Some other grid diagrams for C
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/  inside a certain range. Outside that range, a different choice of grid diagram 
for C will suffice.

Hence, more extreme framings give us a larger upper bound for b(C *y P). In 
the case of the example cited, we have

/  € [1,6] =* b(C*f P ) <  5

f  = 1 -  k 
or , 

/ = 6 + k j
k > 1 => b(C *f P)  < 5 +  k.pi,

where pi is the weight of one of the weighted strings in the diagram of P  (figure 
3.53). In fact, we can choose px to be the minimum, over all i , of the weights of 
the weighted strings pt in the diagram.

Therefore the upper bound is linear in /  for /  outside a special range, with 
coefficient px. Figure 3.52 describes the relationship.

Figure 3.52: Upper bound for b{L) grows linearly with /

Figure 3.53: General diagram of a reverse string pattern
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3.7 A linear relation between framing and Homily 
polynomial

For a lower bound for b(C */ P) we can turn to the Homfly polynomial, and in 
particular to the MFW inequality (see theorem 1.5.1(i)). It would be satisfying to 
find that the upper bounds (from the explicit diagrams of the previous section) 
and the lower bounds (from MFW) are sufficiently close that the braid index 
of a given satellite can be accurately deduced from either of these methods. 
There is certainly evidence to support this, in some cases: section 3.8 discusses 
a preliminary result.

In this section, we see how the linear dependence of the upper bound on 
framing is also exhibited in the lower bound, at least for an infinite subclass of 
reverse string satellites.

Recall that for a general link L, we define sprv (VL(v,z)) to be the difference 
between the greatest and least powers of v in VL(v,z). We study a subclass of 
reverse string satellites C *j P  whose patterns have geometric winding number 2 
around the longitude of V (C ).n  That is to say, there exists a meridional disc 
D  of Vp which intersects P  exactly twice (and those intersections have opposite 
signs).

Let us project VP to an annulus, and examine the resulting diagram of P  (see 
figure 3.53). The above paragraph is then equivalent to saying that, for some i, 
we have Pi +  n* =  2, and so Pi =  n* =  1. We say that P  has geometric intersection 
number p{ +  n* =  2 with D, and algebraic intersection number p{ -  n{ =  0 with 
D. An application of skein theory allows us to deduce the linear dependence of 
spr„ (Vc*f p(v i z )) on the framing /  of C *f P. This leads to a conjecture that 
such linear behaviour extends to all reverse string satellites.

In order to state the first theorem, we need the following definition. Let the 
pattern P  C Vp, and the disc D  C VP be as described in the previous paragraph. 
Let D  be a cylindrical neighbourhood of D, as in figure 3.54 (top). We construct 
Poo by removing D  from VP, and replacing it with a cylindrical neighbourhood 
of D  in VP as in figure 3.54 (bottom), such that the orientations of strings on the 
disc boundaries are coincident. Notice that P ^  is not a ‘proper’ pattern.

There are two results here: the first is a general result relating the Homfly 
polynomials of two satellites that differ only by a choice of framing. The second 
result employs this relation, to make an observation about how sprvVc *fP (v, z) 
relates to framing.

11 So in particular, this applies when P  is the (l,l)-antiparallel: the first result is therefore a 
generalization of proposition 4.3.1, which is a theorem of Lee Rudolph.
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mm
Figure 3.54: Replacing D to give

T heorem  3.7.1 Let C be a knot, and P  C VP be a reverse string pattern. Sup
pose there exists a meridional disc D ofVp such that DC\P consists of two points, 
of opposite signs. Also, for f  G Z, let C P  be the satellite with companion C, 
pattern P  and framing f .  Let C *OQP  be the satellite with companion C and pat
tern P ^  (notice that is independent of framing, since P ^  is not proper).
Then for any / ,  s £ Z,

b'PC*f p(v>z ) ~ 'Vc*ooPiv>z) =  y2s (t>'Pc*f+,p(v, z) -  'Pc ,ooP(u, 2)) .

T heo rem  3.7.2 With the hypotheses of theorem 3.7.1, suppose also that the two 
points of D i l P  belong to different components of P. Then there exist integers 
m, M  and d with m  < M  and d > 0, independent of f ,  such that

f  < m  =» spr„ (Vc ,fP(v, z)) = d  + 2|m -  f  | 
m < f  < M  => spr„ [Vc *f p(v, z)j  =  d

M  < f  => spr^ (Pc *f p (v ,z)) = d +  2|M -  f\.

3.7.1 Developm ent of the tools

Skein theory is the key to these results, and some important definitions are cov
ered now. The reader is also referred to chapter 1, and to Morton’s NATO lecture 
notes [Mol].

We study the links involved via their projections onto planar surfaces. Let F  
be a planar surface, with a finite (possibly empty) set of specified points on its 
boundary, if it has one. In this section, our discussion deals first with general F, 
and then specializes to the cases F  — S 2, and F  = 71% (to be defined below).

A diagram in F  is a number of closed curves on F, together with arcs joining 
the specified points of dF, such that
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(i) there are finitely many singular points, and that they are double points;

(ii) the double points are crossings with an under- and over-crossing;

(iii) every one of the specified points of dF  is at the end of some arc.

Let A denote the ring Z [t^1, z ±l]\ then define T>(F) to be the set of A-linear 
combinations of diagrams in F.

Let Rn denote a rectangular disc with m  specified points on the top edge, 
and n on the bottom. A diagram in R™ is an (m, n)-tangle. Let 71\ denote the 
set of diagrams in R\, with the extra structure that for any D  G 71%, the curves 
of D  have the choice of orientation at the boundary as illustrated in figure 3.55.

i t

FT
Figure 3.55: Orientation in 7Z\

In particular, we define special tangles in 7Z\ as in figure 3.56.

Figure 3.56: Special tangles / ,  H, E e  V \

There is a natural multiplication in 71], given by juxtaposition of the tangles, 
as in figure 3.57.

Note that X . I  = X ,  for all X  E 71^ an<t also that E has a natural multiplicative 
inverse E _1 € 7Z$.
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Figure 3.57: Multiplication in 7Z2

The Homfly skein S ( F ) of F  is the quotient of V(F)  by the Homfly relations

D+ = v 2D _  +  v zD q (3.1)

D U O  = 6D (3.2)

where U denotes distant union, 6 — v- j r-v-, and D+, £L , D0 E V(F)  are diagrams 
which are identical except in the neighbourhood of a double point, in which they 
appear as in figure 3.58.

Figure 3.58: The three diagrams of the Homfly skein relation

We need one more definition. Given a diagram D e V(F),  let each component 
have a unique label s», 1 < i < \D\. Let each s* have a base point p* C s*; the 
Si are oriented, so if s* has intersection with the boundary of F, we let p, be the 
initial point of s* on the boundary. We follow a path along . . . ,  S|£>| in order, 
following each s* in the direction of its orientation starting from pj.

Now say that the diagram D  is descending if there exists a choice of Sj, p* such 
that, as one travels the path described, each crossing of D  is first encountered as 
an overpass.

Remark. It is well-known (for example, [L-M] p.113) that any descending dia
gram in V {S 2) is a diagram of an unlink.



We continue with a sequence of lemmas.

Lemma 3.7.3 S(F) is spanned, as a A-module, by descending diagrams with no 
null-homotopic closed curves.

Proof. By induction, first on the number of crossings in a diagram, and second 
on the number of null-homotopic closed curves.

Let D  be a non-descending diagram in V ( F ); so every choice of labels {s*} of 
the components gives a crossing (c, say) of D  which is first met as an underpass. 
We use the Homily skein relation to write D as a linear combination (over A) 
of diagrams D D " ,  which are identical to D  except in a neighbourhood of 
c. In D ' , the sign of c is negated, and so is first met as an overpass. In D", 
the crossing is smoothed over. Therefore, D  is expressible in S(F)  as a linear 
combination of descending diagrams and diagrams with fewer crossings. When 
there are no crossings, a null-homotopic closed curve is removable at the expense 
of multiplying by 6. □

The following two lemmas can then be deduced.

Lemma 3.7.4 S ( S 2) is spanned, as a A-module, by the empty diagram. □

Lemma 3.7.5 S(Hl) is spanned, as a A-module, by the diagrams / ,  H.  □

Now, we are studying diagrams of satellites in V ( S 2) via (2, 2)-tangles in 
V(Hl),  as will become apparent. The following (general) definition describes 
how we relate V(Hl)  to V {S 2).

For planar surfaces F, F', we define a wiring W  of F  into F' to be a choice 
of inclusion of F  in F', together with a fixed diagram of closed curves and arcs 
in F' — F  whose endpoints are the specified points of OF and dF ' . The wiring 
W  then determines a linear map

V w : V(F)  -+ V(F')

by the inclusion D ^  W  U D.

We choose a wiring W  of Hi  into S 2 by wiring a (2 ,2)-tangle into a link.

Lemma 3.7.6 A wiring W  of Hi into S 2 induces a linear map

S w : S(Ul)  -+ <S(S2),

defined on a diagram T  in Hi by T  v-*W U T.
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Proof. Specialization of theorem 1.5 of [Mol], using a different skein relation. □

Composition X i .X 2.......X n in induces a multilinear map

s(yi\) x s(nl) x... x s{ji\) -»s(n22),
via a wiring.

Given a reverse string satellite C *f P, let us begin with a diagram D(C *f 
P ) G V ( S 2) which has the property that the companion and the pattern are 
easily discernible: for example, if L was a Whitehead double of the trefoil, then 
D{C */ P) might be as in figure 3.59.

Since C  */ P  has pattern P  which has geometric winding number 2, there 
exists a rectangle T in S 2 which decomposes S 2 into two planar areas Fx and F2, 
in such a way that the part of D(C *f P) in Fj, say, is the (2, 2)-tangle /  € 7l2- 
Such a rectangle T is illustrated in figure 3.59.

Figure 3.59: Diagram D{C */ P) of satellite C *f P

We study framing via <S(P 2), since a change in framing (which is induced 
by meridional full-twists of the essential torus Vc ) is represented in D(L) by 
replacing I  C Fx by some power of S. The sub-diagram D(L)  fl F2 gives us a 
wiring W  of the (2, 2)-tangle into S'2; results in <S(TZ2) are extended to results in 
S ( S 2) via the linear map «S  ̂ : ^ ( ^ 2) ~ !" $ ( S 2).

The Homfly relations in S(1Z\) quickly give us the following relations:

S =  v2I  +  vzH  

E-1 =  v~2I  — v~1zH.
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The first thing to check in S(IZ2) is the effect of multiplying E by the basis 
elements 7 and 77.

Lemma 3.7.7 In S(JZ2), we have E7 =  E and E77 = 77.

Proof. Multiplication of pure tangles is by juxtaposition; the lemma is obvious 
from the diagrams. □

By equation 3.3 and lemma 3.7.7, we can say that multiplication by E in 
S(IZ\) has a 2 x 2 matrix

with respect to basis {7,77} of S(TZ2). That is, if X  — a\I  4- a277 G <S(1Z2) is 

written as a column vector I 1, thenV °2 )

The matrix is diagonalized by choosing the basis {¿>- 1/7 ,1 -  8~XH).

Lemma 3.7.8 In S(IZl), 8~XH  and I  — 6~XH  are idempotent and mutually or
thogonal. Therefore {6~XH , I  — 6~XH )  is an orthogonal basis for

P roo f. Diagrams confirm that H 2 =  H.H = 6H, and hence 6~2H 2 = 6~XH. 
Now write g =  6~XH  and h = I  — 6~XH  =  I  — g 6 S(TZl). Then

h2 = (I  — g)2 = I 2 — 21 .g + g2 = I  — 2g + g = I  — g = h.

Also, gh = g(I -  g) = g -  g2 = g -  g = 0. Similarly, hg = 0.

Since S(IZ2) is a 2-dimensional module (by lemma 3.7.5), {g, h} forms an 
orthogonal basis for S(IZ\). □

We retain the notation g and h for 8~XH, I  — 6~lH  in what follows. We can 
now write the composite tangles E.7, E.77, E -1.7 and E -1.77 in terms of the 
orthogonal basis. For example,

E.7 =  v2I  + v z H  
=  v2I  + ± ^ H  
=  6~XH  + v2 (I -  6~XH)
— g + v2h.
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Similarly, E l .I = g +  v 2h. Also, E±X.H =  H — 8.8~XH  =  8g. The following 
lemma now comes easily.

Lemma 3.7.9 In 5(711), we have En = g + v2nh.

Proof. By induction. This is certainly true for |n| < 1 , by the above. Further, 
if we assume the result for indices m  and n then

£jm+n EmE"
(g +  v2mh)(g +  v2nh) 
g +  u2(m+n)/i.

□

It is easy to check that Eg = g, and Eh =  v2h. We can interpret this as saying 
that multiplication by E has been diagonalized. Now writing X  =  axg +  a2h €

5 (7̂ 2) as a column vector ^ we get

E ( s ) - ( ; i ) U )
with respect to basis [g, h}.

Now we apply lemma 3.7.9, via the linear map V w : V(7l\) —> V ( S 2), where 
W  is the wiring defined (as previously described) by the diagram of C *f  P. If 
C*f P  = V W(I) has framing / ,  then the satellite V w (En) =  C*f _nP  has framing 
f  - n .

The linear map V w induces a linear skein map sw: s(nl) - » s y i 2), so that 
5 w ( ^ n) gives us the Homfly polynomial of the framing ( /  -  n) satellite. From 
lemma 3.7.9, and the linearity of S w , we have for n  G Z,

¿Hv(£n) =  Sw(g) +  v2nSw(h).

3.T.II P roof of theorem s 3.7.1 and 3.7.2

P roof o f theorem  3.7.1. We choose a diagram Dj  of C *f P  in T>(S2), such 
that we can pick out a rectangle T as described; T bounds two rectangular discs 
Fl and F2 on S 2. The wiring diagram W  is Df  D F2, and Df  n  Fi =  /  G 1 l 2.
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Therefore, by the work in the previous subsection,

¿hv(£n) =  Sw(g) +  v2nSw(h).

By the linearity of the skein map, we deduce

S w (Yn) = S w (8~lH) + v2nS w ( I - 8 ~ lH)
=  8- lS w (H )-¥ v2n(Sw { I ) - 6 - lS w (H j) .

The theorem follows easily from the observation that, in S ( S 2), the term S W(I) 
equally represents the satellite link C *f P, and also its Homily polynomial 
Vc*f p (v ,z )- Notice that ¿>ty(£n) corresponds to C */_n P, and S W{H) corre
sponds to C  *oo P. □

P roof of theorem  3.7.2. Assume for the moment that S w { g )  and S w ( h )  are 
both non-zero. Write

S\v(g) = J 2 v'Zi(z )
i= r

Sw(h) =
i—s

such that Zi(z), Yi(z) G Z[z±x], and Zr(z), ZR(z), Ys(z) and Ys (z) are all non
zero. Then we can deduce

spr^ (<Svy(En)) =  max(i2, S  +  2n) — min(r, s +  2n).

Then there are two cases to consider.

1 . R  — r > S  -  s. Then

R  — (s + 2n) if n <
spr„ («Sw(En)) =  < R - r if R -S

r —s
2

> n >
(2n + S) — r if n  >

In this case, d — R  — r, m = Lj 1 , M  = &y *-. 

2. R  — r < S  — s. Then

spr„ (<V (£n)) =
R  — (s + 2n) if n <
S  — s if £=£
(2n +  S) — r if n >  Eÿâ.

if ^  < n <

In this case, d =  S  — s, m  =  M  = r —s 
2 •
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One can easily check that these equations are then those of the theorem.

We only have to check that S w (g) and S w (h) are both non-zero in S ( S 2). 
Since F2 n Dj  is another (2 ,2)-tangle in IZ2, then W  E V(1Z2), and so within the 
skein module S(IZ2) we may write

W  = ax.g + a2.h

with flj, a2 E A, since S(7Z2) is a 2-dimensional module spanned by g, h. Now 
use the bilinear map

S { n l )  x S { n l )  -  S i j i l )
W  X E n h-* W .S n

=  (a1.<7 +  a2.h)(g +  n2n./i)
=  ax.g + v2na2.h.

Finally we wire them together into S ( S 2) using the wiring Wj as in figure 
3.60. The corresponding linear map «S(W/) : S(TZ2) —> S ( S 2) gives

SWl(W.Zn) — Swj(ai.g +  v2na2.h)
=  ax Swi(g) +  v2na2Sw,{h).

Figure 3.60: Wirings Wj and WH

Now 5w/ (W.Sn) =  S w ( ^ n), so the triviality of Sw(g) and Sw(h)  comes down 
to the triviality of ax, a2, S Wl(g) and Swj(h). We discuss three of them in the 
following lemma.

Lemma 3.7.10 In S ( S 2), we have Swr(g) and Swj(h) are all non-zero.

Proof. Let Un denote the unlink of n  components. Then working in S ( S 2),
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Sw^y)  — <5 lS Wl(H)
= 6~1.Ui
=  r 1 
/  o

and
¿Wr(h) =  5 ^ (7 )  - 6 ~ 1S Wl(H)

=  U2 — <5—1 .C/i 
=  ¿ - ¿ - 1 
i  0.

Also, PF =  5 +  a2./i =  (aj — a2).<? +  d2(g + h) = (ax — d2)6~1.H +  a2./, so
using the wiring W #,

((°i — d2)6~l .H +  a2./)
=  (a! — a2)6~lSw„(H)  +  a2Sw„(I)
= (dx — a2)6 1.U2 +  a2Ui
=  (oj — d 2)6 .̂6 -+■ cl2 
=  oi-

So we see that dx is the Homily polynomial of a link, and hence is non-zero. □

Finally, we must deal with a2. Note that in S(Tl2),

and therefore in S ( S 2),

W.h =  (dig +  d2h).h 
=  d2h,

Sw,(W.h) S Wl(d2h)
a2 S\Vi(h) 
aiSwi(I  ~ 6~lH)  
a?.Swi(I) — ^  1SwI (H) 
d2.U2 — d2S \ U X 
d2( 6 - S ~ 1).

Now 6 — 6 1 ^  0, so

d2 — 0 S Wl(W.h) =  0
^  S Wr( W . ( I - 6 ~ 1H)) = 0 
^  S Wl(W.I) -  6~1S Wl(W.H) =  0 
<=> 6SWl(W) -  S W[(W.H) =  0 
<s> SWl(W.I U Ux) = S Wl(W.H).
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FT

FT
Figure 3.61: Orientation of W  at boundary

Now recall that as a (2 ,2)-tangle, W  e V{TZ\) has orientation at the boundary 
as in figure 3.61.

Consider the component Wx (say) of W  which enters the rectangle T at the 
top-right corner. Now by consideration of orientation, Wx must exit T at either 
the bottom-right or top-left corner, but not the bottom-left corner. Since the 
two point intersections of P  with D  come from different components of P, W x 
must exit R\  at the bottom-right corner. In this case, V Wl(W.I) has one more 
component than V Wl(W.H). See figure 3.62.

Figure 3.62: V W[{W.I) and V Wl(W.H)

Therefore, V Wl(W.I U Ux) has two more components than V Wl(W.H). By 
theorem 1.5.1(ii), mindegz'Pi  =  1 -  \L[, and therefore, the Homily polynomials 
of these links cannot be equal. Hence, for patterns which satisfy the hypotheses, 
a2 7̂  0.

The proof of theorem 3.7.2 is now complete. □

There are in fact many patterns for which the result of theorem 3.7.2 holds, 
although they do not satisfy the hypotheses of the theorem; the Whitehead dou
bles are an example of such. The only problem is in asserting that a2 is non-zero,
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as in the proof of theorem 3.7.2. There may be a number of ways around this: 
for example, a positive assertion that (for a general link L) 8n divides V L{v, z) if, 
and only if, L = Un U L \  for some other link L', would be enough. In fact, we 
take the conjecture one step further.

C on jec tu re  3.7.11 Let P  be a general reverse string pattern, and let D be a 
meridional disc which intersects P in pi positive intersections and ni negative 
intersections. We may suppose without loss of generality that px < Pi,nt for all 
i. Then I  conjecture that the coefficient of linearity in the theorem in the cases 
f  < m and f  > M  is equal to 2pi. In other words, there exist integers m, M  
and d with m < M , independent of f ,  such that

/  < m spr„ |/Pc*f p(v, z)) = d  + 2pi |m -- / I
m < f  < M spr„ |J ’c ^ p i v ^ ) )  = d

M  < f spr„ |(Pc*f p(v,z)\  = d  + 2py\M -- / I

Such a conjecture is supported by theorem 3.7.2, which shows it to be true in 
a special case; also from the fact that spr„ (Vc*f p{v, 2)) provides a lower bound 
for the braid index b(C */ P), from the MFW inequality, and its upper bound 
(from construction of explicit braids, in sections 3.5 and 3.6) behaves similarly.

3.8 Comparing upper and lower bounds for braid 
index of reverse string satellites

We have upper and lower bounds of the braid index of a reverse string satellite 
C *f P.  W hat is more, we know about the linear behaviour of the upper bound 
(from explicit braid representations of C * jP )  and of the lower bound (for certain 
patterns, from examination of the Homily polynomial) as the framing /  varies in 
Z.

The question remains as to how well these bounds compare: is it possible 
for the upper and lower bounds to be equal, and hence give a precise value for 
b{C *f P )? Preliminary experimentation has produced the following result.

T heo rem  3.8.1 Let K  be a knot with a(K)  < 9, and K  ^  10132. Let P  be the 
(l,l)-antiparallel pattern. Then there exists f +, /_  e  Z such that f + — /_  =  
a(K) ,  and

/ € [ / _ , / + ]  1 +  ^spr* ( v {K. fP)(v ,z )) =  a(K).
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R em ark . In the case K  = 10132, we find that there exists /+, /_  £ Z such that 
/ + - / -  =  Oi(K) -  1, and

/ € [ / _ , / + ]  <S> 1 +  ^spr„ (V(K, fP)(v, z)) =  a(K)  -  1.

It may be of some interest to note that K  = 10132 is the only knot with arc index 
a(K)  < 9 which shares its Homily polynomial with a knot of smaller arc index.

P ro o f  o f th eo rem  3.8.1. By observation, following the computation of explicit 
Homily polynomials. All knots K  of arc index a(K) < 9 are positively identified 
by the computer algorithm in chapter 5. Arc presentations are also generated 
by the algorithm, and so braid presentations of K  */ P  (as in the example in 
figures 3.44 and 3.45), for variable / ,  can be easily generated using a simple 
PASCAL algorithm. Then Short’s polynomial program [M-S] is employed to 
compute V(K*fP)- D

R em ark . It remains unknown whether there exists a family { K  *f P  : f  £ Z} of 
reverse string satellites, and a constant k for which b(K *f P) < k, for all f  £ Z.
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C hapter 4

The modulus of quasipositivity

4.1 Introduction

The work of Rudolph [Ru2, Ru3, Ru4] provides us with material which compares 
well with the constructions seen so far in this thesis. Some of his ideas can be 
exploited here.

The property of quasipositivity of a knot K , and an associated knot invariant, 
the modulus of quasipositivity q(K), were used as tools in the study of complex 
plane curves. Rudolph studies quasipositivity, as it occurs in ordinary knot the
ory, via a certain type of satellite, the (l,l)-antiparallel.

In section 4.2 we make a number of important definitions, and a connection 
is made between the (l,l)-antiparallels of chapter 3 and Rudolph’s quasipositive 
annuli [Ru4]. In section 4.3 we state some results relating to polynomial invariants 
from the context of Rudolph’s work: in section 4.4 these are used to deduce a 
lower bound for arc index from the Kauffman polynomial FL(a, x), which bears a 
striking similarity to a result relating crossing index to Jones’ polynomial V^t) .  
Further comments and observations serve to reinforce this similarity.

4.2 Quasipositivity and arc index

Rudolph defines the (l,l)-antiparallel satellite of a knot C  with framing /  as 
follows. Let A ( C , f ) be an oriented annulus in S 3 with C  C dA (C , f ) ,  and 
lk (C,dA(C, f )  — C) = - / .  It should be noted that the orientation on A ( C , f ) 
induces an orientation on its boundary, so that d A ( C , f ) is the (l,l)-antiparallel
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satellite of C  with framing / .  Rudolph’s notation for this will be of use throughout 
this chapter.

A positive embedded band G B n is a braid

o 'i j  • • • G j —2 ) ^ 7 — 1 i p 'j — 2 • • • a i + i a i )> 1  — i  ^  j  ^  n .

A negative embedded band is the inverse of a positive embedded band:

a i,j  —  ( <7i a i + i  ■ ■ ■ ■ • • a i + i <Ji 1)-

This is illustrated in figure 4.1.

Figure 4.1: A positive embedded band aitj G Bn

In particular, every elementary braid generator is a positive embedded band 
ai i+1, so every link has an embedded band representation.

We say that a braid representation (3 — J]j=i is positive if each e(s) =  1;
similarly we say that an embedded band representation (3 = n£=i ai(s),j(s) 
quasipositive if each e(s) =  1. Naturally, [3 is quasinegative if each £(s) =  — 1. So 
(3 positive =» ¡3 quasipositive, but the reverse is not true.

A link L is quasipositive if there exists a quasipositive braid (3 whose closure 
¡3 is ambient isotopic to L.

At this point, we make the observation that the braid representations of (1,1)- 
antiparallel satellites generated in section 3.5 were all embedded band represen
tations. For example, the trefoil antiparallel was presented as the closure of the 
braid given in figure 4.2.

This braid can be written in B5 as (3 =  <T3)4<72l30ril2<T2i4oT3- The ‘change of 
framing’ description of figure 3.50, section 3.6 (and also illustrated in figures 3.44 
and 3.45) amounts to reversing the sign of an embedded band a f j .  By changing
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0 1 2  3 4

Figure 4.2: Braid representing trefoil antiparallel

the signs of the last two factors of 0  we get 0 = 3, which is a braid
representing a quasipositive antiparallel of the trefoil. Similarly, a quasinegative
framed antiparallel of the trefoil is given by the closure of 0  =
Both are shown in figure 4.3. ’

The modulus of quasipositivity q{K) of a knot K  is

9(^0 — SUP { / £ Z : dA(K,  / )  is quasipositive} .

Similarly, the modulus of quasinegativity r{K)  is defined as 

r(K)  =  inf{/ e Z : dA(K, f )  is quasinegative}.

T h eo rem  4.2.1 [Ru2, Ru4] For any knot K ,  00 >  q(K ) > - 00.

The first of these inequalities is deduced from an observation of the Homfly 
polynomial (see theorem 4.2.6). The second is a corollary of the following.

T h eo rem  4.2.2 [Ru2] Let 0  e B„ be a braid on n strings, with exponent sum 
e, and closure (3 =  K . Then q(K) > e -  n. □

Using the braid diagrams of sections 3.5 and 3.6, we can now make a direct 
relation between arc index and modulus of quasipositivity.

P ro p o s itio n  4.2.3 For any knot K ,  a (K)  > r(K) — q(K).
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(a) quasipositive; (b) quasinegative

Figure 4.3: Quasipositive and quasinegative antiparallels of the trefoil
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R em ark . In theorem 4.2.7 we shall see that for all knots K,  the value of r(K)  -  
q(K), and hence of a(K),  is at least 2.

P ro o f  o f p roposition  4.2.3. Let G(K)  be a grid diagram of K,  based on an 
arc presentation of K  using a(K)  arcs. By the description in section 3.6 (figures 
3.48 and 3.49), we can use G (K ) to construct an embedded band presentation of 
d A ( K , f )  (for some / ) ,  similar to figure 4.2. Prom this, we can easily construct 
a quasipositive-framed antiparallel (call it dA(K, f +)) and also a quasinegative
framed antiparallel, d A (K , f_ )  (compare to figure 4.3). From the construction, 
a ( K ) =  /_  — /+. By the definitions of q(K) and r(K)  we know that /+  < q(K) 
and /_  > r(K).  The result follows easily. □

The following proposition allows us to write this inequality using the modulus 
of quasipositivity only. It highlights the influence of mirror images in comparing 
quasipositive and quasinegative links.

P ro p o s itio n  4.2.4 Let K  denote the obverse (mirror image) of K . Then we 
have q(K)  =  —r(K).

C oro llary  4.2.5 Let K  be any knot. Then a(K) > -  (q(K ) +  ?(/f))-

P roo f. Combining propositions 4.2.3 and 4.2.4,

a(K) > r ( K ) - q ( K )  = - q ( K )  -  q(K)
=  ~ ( q ( K )  + q(K)) .

□

P ro o f  of p ro p o sitio n  4.2.4. It suffices to show that

(i) the obverse of a quasipositive link is quasinegative;

(ii) the framing is negated by reflection.

Then d A ( K ,q ( K )) is quasinegative by (i), and has framing -q ( K )  by (ii). So 
we can write dA (K ,q (K ))  = dA (R ,  - q ( K ) y

Now if —q(K) /  r ( K ) then we must have r ( K ) < -q (K ) ,  because r(K)  is 
the least value of /  which ensures that dA(K, f ) is quasinegative. In particu
lar, we can deduce that dA  (K , —q(K)  — l)  is quasinegative. This implies that 
dA(K,q(K)  +  1) is quasipositive; but we have that

q(K) +  1 > sup { / : dA(K, f ) is quasipositive} ,
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giving a contradiction.

To prove (i): let L  be a quasipositive link, and (3 be a quasipositive embedded 
band representation of L .  Then ¡3  — Tls=i a i(s),j(s)- Now the obverse of a positive 
embedded band is a negative embedded band:

° i , j  =  & n - j , n - i  ^  -®n-

A quick sketch will convince the reader of this. The obverse, L, is represented by 
/?, which is given by

_ k k
P  ~  I I  a i(s),j(s) ~  I I  a n - j ( s ) , n - i ( s ) ’

S=1 S=1

and hence L  is quasinegative.

To prove (ii): note that the framing is extracted by a count of the signs of 
certain crossings. By reflecting, the signs of all the crossings, and in particular 
those relevant to the framing, are negated. We deduce that framing is negated 
by reflection. □

R em ark . Using theorem 4.2.2, we can quickly deduce that the inequality of 
proposition 4.2.3 (and corollary 4.2.5) is sometimes strict. Writing /3 = n iL i a i(s) £ 
B n, and K  = ¡3 , we have by theorem 4.2.2

q ( K ) > ^£e(s) l - n>

and

q (i< ) >  (jb(-e(s))j -

> - ( s  « ( • ) ) - » •

Putting these together we get

- { q ( K ) + q ( K ) ) < 2 n .

Now let us suppose that the inequality is never strict, i.e. for any knot K,  we 
have a(K )  =  -  (q(K) +  g(A')). This implies a(K) < 2b(K). We already know 
(by proposition 2.5.1) that a(K) > 2b(K), and so we conclude that for all knots,

a(K) = 2 b(K).

This we know not to be true. A rich source of counter-examples are the (l, m ) 
torus links, for l ^  m.
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Rudolph’s study of upper bound for q(K) allows us to relate q{K) and r(K).  
We define the polynomial R k (v) £ Z[v±l] by

R k ( v) = z\K\~lVK(v,z)  |z=0.

Since mindeg*?°k (v , z ) =  1 -  \K\, we know R k (v) must be non-zero, and so 
sprvr k (v) > 0.

T heorem  4.2.6 [Ru4] For any knot K ,  we have q(K) < -1  +  mindeg^i?^. □ 

We can deduce the following.

T heorem  

P roo f. By

Also,

4.2.7 For any knot K, we have r(K) > g(K) + 1. 

theorem 4.2.6,

q(K) <  - 1  +  mindeg„i2/<-.

q(K) < -1  +  mindeg vR r  
= >  q ( K )  <  - 1  -  m axdeg,,^.

Therefore

q(K)  +  q{K) < - 2 -  (maxdegVR K -  mindeg„RK)
< —2 — spxvR K
<  - 2 .

So q(K) -  r(K) < -2 ,  by proposition 4.2.4.

C o ro lla ry  4.2.8 Let K  be any knot. Then

□

(i) there exists f  £ Z, oo > f  > — oo such that dA(K, f )  is quasipositive;

(ii) there exists f  £ Z, oo > /  > —oo such that dA(K, f ) is quasinegative;

(iii) there does not exist any f  £ Z such that d A (K , / )  is both quasipositive and 
quasinegative; further,

(iv) there exists f  £ Z such that dA(K, f )  is neither quasipositive nor quasineg
ative.

P ro o f. These statements are deduced directly from theorems 4.2.1 and 4.2.7. □
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4.3 The framed polynomial

In this section we meet a polynomial which is an invariant of links up to regular 
isotopy, introduced into the work of Rudolph in [Ru5]. We also state a couple of 
results of Rudolph, pertaining to this polynomial invariant, which are of use in 
the following section.

Recall the definition d A ( C , f ) for the (l,l)-antiparallel of C. We extend it 
slightly, so that for a general link L, A(L, f ) is a choice of disjoint annuli, such 
that L C dA(L, / ) ,  and also lk (Lj, dA(Li, /¿)) =  fi, where are the components 
of L. So A (L , / )  defines a choice of parallel to each component of L, which is 
completely determined by the fi.

Since both Kauffman and Homily polynomials are used here, it is useful to 
adopt the notation SF(a,x) = FU2(a,x) = a~1~x+a, SP(v,z) = V U2(v,z) =

The framed polynomial is defined to be

z ) =  ^ d A (L ' , f \L ' ) j

where L ' runs through the non-empty sublinks of L.

Proposition 4.3.1 [Ru4] Given an antiparallel satellite dA(L, / ) ,  define its to
tal framing <p(L, f )  to be (¡){L, / )  =  J2i f i ■ Then

■AlA v ’z ) =  v~24>{LJ)̂ Lfi(v ^z )-

□

In the case \L\ = 1, then A L<f(v,z) = SvVaMLJ)(v,z) -  1, and (¡>{L,f) =  / .  
So the case \L\ =  1 is a corollary of theorem 3 .7 .1 .

The second proposition is a rather curious result which relates the Homfly 
and Kauffman polynomials via the framed polynomial.

Proposition 4.3.2 [Ru5] Given a link L  with components Li, i = 1, . . . , |L| ,  
define its total linking number r(L) to be t (L) = E ^ l k ^ ,  Lj). Then

6f (v~2, z2)Fl (v~2, z2) =  v4T{L)A Lfi(v, z), mod 2.

□
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The apparent complexity of this congruence is reduced if it is rewritten in 
terms of Kauffman and Homfly polynomials with the alternative normalizations 
F0 (a,x ) =  6F(a,x), Vo(v,z) — 6-p(v,z). However, for reasons of continuity we 
will stay with Rudolph’s version, corresponding to the normalization Fo(a,x) = 
1 =  V0 (v,z).

When \L\ — l  this reads

6f (v~2, z2)Fl (v~2, z2) = SvFdA(Lj)(v,z) -  1, mod 2.

4.4 A lower bound for arc index from the Kauff
man polynomial

In this section we discuss and prove a relationship between Kauffman’s polyno
mial FL(a,x) and the arc index a(L). The proof draws together a number of 
results already presented in this thesis. In section 4.5 we make a conjecture, 
based on this bound and also on strong observational evidence, linking arc index 
and crossing number as an extension of theorem 2.5.2.

Define Gi(a,x)  — FF{a,x) mod 2, i.e. Kauffman polynomial with coefficients 
reduced modulo 2. Note that Rudolph uses the notation G to denote something 
else in [Ru4].

Theorem  4.4.1 Let K  be a knot. Then a(K)  > 2 +  spraG!̂ (a, x).

Proof. Let G(K)  be a grid diagram of K,  based on an arc-presentation of K  on 
a(K )  arcs. From G(K),  we can construct, for some /*, an embedded band dia
gram of dA(K,  /*) on exactly a(K)  braidstrings: we deduce that b (d A (K , /*)) < 
a(K).  By the MFW inequality (theorem 1.5.1(i)),

a(K) > b(dA(K, f*)) > 1 +  £spr„ (VdA{K)f.)(v,z)) .

Notice that 2 +  sprv /•)(«, z)) =  spr„ (bv'PdA(K,f*)(v, z)), since 6V =
v~\~v. Therefore,

a(K)  > b(dA(K,  /*)) > i Spr„ (bv 'PdA(K,r ) (V i z j ) . (4.1)

By proposition 4.3.1, we have b-pVdÂ Ky0) -  1 =  v2i (b-pVgA^K,f) ~  l )  f°r 
f  e  Z. In particular this is true when /  =  m, the ‘least framing’ of theorem
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3.7.2. We write
D

0v'PdA{K,m) = Y l Z i ( z )v\
i —d

where Z ^ z )  G Z [z± l ] and Z d ^  0 ^  Z D.

We show that d =  0, and also that Zd(z) ^  1, and hence

spr„ (àVVaA(K,m) -  l)  =  spr„ (&v'PdA(K,m)) = D — d. 

Then we deduce, using proposition 4.3.1, that for all /  G Z,

spr„ (<̂ V̂ PdA{K,f) ~ l)  =  D -  d.

In particular, we deduce

sprv (<̂ p'P8A(K,0) — l)  — D — d. (4.2)

By theorem 3.7.2, for all / , we have

spr„ (àv'PdA(Klf)) > D -  d, (4.3)

and then it follows from equations 4.1, 4.3 and 4.2 respectively that

a (K)  > ~SP Tv (¿>v'PdA(K,f)(v,z)'j 

> \ ( D - d )

^  2SPrv ~  0  • (4.4)

Using equation 4.4, and then the ‘mod 2’ congruence of proposition 4.3.2, we 
have

Oi{K) > 2Spr” i^'P^>dA(Kfl) ~  l)

^  2SPru ~ 1) m°d 2)

=  ^sprv (6FGK(v-2,z2) ) .

The final step is to note that

a(K)  > ¿sprv (6fGk (v~ \ z2)) =  Ispr,, ( v~2~gW  GK(y~2, z 2))
= spra ^ - ^ x+aGK(a,x))
=  2 +  spra x ) ) .
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It remains to show that, if 0-pVgA(K,m) =  H?=d Yi{z)vl> then (i) d =  0, and (ii) 
Zd(z) ^  1. The arguments for these run as follows.

To prove (ii), we assume that (i) is true, i.e. d = 0. From theorem 4.3.1, we 
have

^v"PdA{K,m) — 1 =  V26-pVgA(K,m+l) ~  ^ >

and hence
D

Y ,  Z i ( z )v l — 1 +  v 2 =  V26-pVdA(K,m+l)-
i=d

Suppose, for a contradiction, that Zd(z) =  1. Since d =  0, we can quickly deduce 
that the polynomial on the left has spread at most D — d — 2 in the u-variable, 
and hence the same is true of the polynomial on the right. That is,

spr„ [d-pVgA(K,m+1)) < D  — d — 2.

But by theorem 3.7.2, we know that for all f  e  Z,

spr„ (S-pVdA(K,f)) > spr„ (SpVdA{K,m)) = D -  d,

and so we have a contradiction.

To prove (i), we make some very careful observations of the restrictions on 
mindeg„ (SpPdA(Kj)) and maxdeg,, (&pPaA(K,f) ) , for /  =  m - 1 ,  m, m + 1. From 
theorem 3.7.2 we know

spr„ (ôp'PdAiK,™-1)) =  D -  d  +  2,

sPrt) (ôv'PdA(K,m)) =  D - d ,

spr„ {ô-p'PdA(K,m+1)) = D — d ot D — d + 2.

To compare the least and greatest powers of v in these polynomials, we write

bv1:>d A (K ,m -l)  =  V26-pVdA(K,m) ~  V2 +  \
D

=  v2 y  Zj(z)vl -  v2 +  1
i=d

= y z i ( z ) v i+2- v 2 +1
i=d
E

=  y Yi(z )v j ’ say. (4-5)
j - e

and

Ô r'P dA (K ,m + l)  — V 2b V V dA {K ,m ) ~  V 2 +  l
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=  v - ^ Z i i z W  - v - 2 +  1
i —d 

D
=  Z i ( z )v l~2 -  v~2 4-1

i —d

=  J 2 x j(z )v^  say-
j=g

By comparison of the last two lines of equation 4.5,

i? < max{D +  2,2,0} =  max{D +  2,2} 
e > min{d + 2,2,0} =  min{d +  2,0}.

In fact, we have

E  =  max{D +  2,2} or D =  0, 1
e =  min{d +  2,0} or d — -2 . J

A similar comparison in equation 4.6 gives

G < max{D — 2, —2,0} =  m ax{£)-2 ,0}  
g > min{d -  2, -2 ,0 }  =  min{d -  2, -2} .

Again this simplifies to

G =  max{D -  2,0} or D  =  2, 1
g = min{d -  2, -2}  or d = 0. J

We consider the four possible combinations for E  and e in equations 4.7, 
for different values of d, generating contradictions. Some cases are excluded by 
further considering the four possible combinations for G and g in equations 4.8, 
as we will see.

Suppose firstly that d > 0. Therefore d > —2, and since D > d we have D > 0. 
Referring to equations 4.7, there is only one case to consider: E  =  max{£> +  2,2}, 
e = min{d +  2,0}. Now D > 0 implies D  +  2 > 2, and d > — 2 implies d + 2 > 0, 
and so

E  = D + 2, 
e =  0.

Therefore E  — e = D + 2. By theorem 3.7.2, we have E  — e = D — d + 2, and 
equating these we have Z) +  2 =  D -  d +  2. This gives us d =  0, contradicting 
the assumption that d is strictly positive.

Now suppose that d < 0. The four cases of equations 4.7 are considered 
separately below.

(4.6)

(4.7)

(4.8)
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1. D = 0 and d =  —2. Therefore

E  < max{.D +  2,2}, 
e > m in{d-f2,0}.

Therefore, E  — e < 2 — 0 =  2, implying D — d + 2 < 2 and hence D — d < 0. 
But D — d =  2 > 0, so we have a contradiction.

2. D  =  0 and e =  min{d +  2,0}. Therefore, E  < 2, so

D — d + 2 = E  — e < 2  — min{d +  2,0}.

(i) If e =  0 then Z) — d +  2 < 2, so D — d < 0, so D < d. We know D > d, 
so we conclude D = d = 0, which is a contradiction since d < 0.

(ii) If e =  d +  2 then D — d -f 2 < — d, so D < —2 which contradicts D = 0.

3. E  =  max{Z) +  2,2} and d =  —2. Therefore, e > 0, so

D — d + 2 = E  — e < max{D +  2,2}.

(i) l î E  = D + 2 then D — d+2 < D + 2, so d > 0  which contradicts d =  —2.

(ii) If E  = 2 then D — d + 2 < 2, so D — d < 0, and so D < d. Again, we 
know D > d, so we conclude D  =  d =  — 2. In this case, recall equations 
4.8. We deduce

G =  max{D — 2,0} =  0, g = min{d — 2, —2} =  —4.

We know G -  g < D -  d + 2. Therefore D - d > G  — g -  2 =  4 -  2 =  2, 
which contradicts D = d — 2).

4. £7 =  max{D + 2,2} and e =  min{d 4- 2,0}. There are four subcases here.

• E  — e — (D + 2) — Q = D + 2 = ^D  — d + 2 — D + 2=+d — 0, which is 
a contradiction since d < 0.

•  E  — e = (D + 2) — (d + 2) =  D  — d which is a contradiction, since 
E  — e = D  — d + 2.

•  E  — e = 2 — (d + 2) = —d => D — d + 2 = —d => D = —2. This gives 
us D /  2; also d < D, so d ^  0. Recalling equations 4.8,

G =  max{D — 2,0} =  0, g =  min{d — 2, —2} = d — 2.

Therefore G — g — —(d — 2); we know G — g < D — d + 2, and so we 
have D - d  + 2 > G  — g — —d + 2 = + D  — d + 2 >  —d + 2 = + D > 0 ,  
which contradicts D = —2.
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• E - e  — 2 - 0 - 2 = > D - d  + 2 = 2 = > D - d  = 0=>D = d. We have 
d > -2 , D < 0, and therefore d =  - 1  or -2 . Recalling equations 4.8, 
we know D ^  2, d ^  0, and so
(i) d = D  =  — 2 =» G = 0, g =  4 =$■ G — <7 =  4; or
(ii) d = D — —1 => (7 =  0, g — — 3 => G — g — 3.
In each case we have G - g  < D - d + 2 ,  so D - d  > G - g - 2  > 3 -2  =  1, 
which contradicts D — d.

Thus we conclude that d =  0, and the proof of theorem 4.4.1 is complete. □

4.5 A conjecture for alternating knots

We see from the discussion so far that Rudolph’s work fits quite neatly into 
the study of arc index. Theorem 4.4.1 adds to a list of similar results relating 
geometric properties of knots to features of polynomial invariants.

We can analyse the inequality of theorem 4.4.1, to see just how tight a bound 
it is. Calculation of Fi(a ,x ) is possible via Ochiai’s rather nice polynomials 
program [Oc]: from this it is possible to extract spra (GK(a,x)) using a simple 
PASCAL procedure.

Having generated all knots of arc index at most 9 (see chapter 5), we test our 
inequality on this set. We discover that for all knots K  with a(K)  <  9,

spra (GK(a, x)) + 2 = a (K) &  K  is an alternating knot.

Also available [Thl] is a complete table of FK(a, x) for all knots K  with c(K) < 
13.12 We recall theorem 2.5.2, which says that for certain knots K, a (K )  < c(K)+  
2. Again we extract spra (GK(a,x)), using another simple PASCAL procedure. 
We find that for K  with c(K ) < 13,

spra (GK(a,x)) =  c(K ) ^  K  is an alternating knot.

So for knots satisfying the hypothesis of theorem 2.5.2, and with at most 13 
crossings,

spra (GK(a, x)) + 2 >  a (K )  <& K  is an alternating knot,

and hence theorem 4.4.1 yields equality for these alternating knots.

12Thanks are due to Morwen Thistlethwaite for making these tables available.
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We can also make observations on the alternating knots which do not sat
isfy the hypothesis of theorem 2.5.2. The existence of such a knot K  with 
spra (Gk (o,,x )) 7̂  c(K) would be quite revealing. On one hand,

spra(GK(a,x)) > c(K) => a(K)  > c(K)  -f 2,

via theorem 4.4.1. Therefore, K  would be a counter-example to the conjecture of 
[C-N], namely, that for all non-trivial links, a(L) < c(L) -f 2. On the other hand,

spra (GK(a, x)) < c(K) => spra (GK( a ,x ) ) + 2 <  c(K ) +  2.

Then if we suppose that the inequality a(K) > spra (GK(a,x)) +  2 (theorem 
4.4.1) yields equality for all alternating links, we would have a(K)  < c(K) -f 2. 
There is no alternating knot for which this is known to be true, and indeed the 
opposite has been conjectured for alternating knots.

In view of the partial results found here, we make the following conjectures.

Conjecture 4.5.1 Let K  be a knot. Then

a { K ) >  spra (GK{a,x)) +  2, 

with equality if, and only if, K  is an alternating knot.

This is an extension of theorem 4.4.1, and should be compared (on face value 
at least) with the following result, proved independently by Murasugi and by 
Thistlethwaite.

Theorem  4.5.2 [Mu, Th3] Let K  be a knot. Then

c{K) > sprf (VK(t) ) ,

with equality if, and only if, K  is an alternating knot. □

The second conjecture is intended as a generalization of theorem 2.5.2.

Conjecture 4.5.3 Let K  be a knot. Then

oc(K) < 2 +  c(K),

with equality if, and only if, K  is an alternating knot.
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4.6 Proof of theorem 2.3.3

We are now in a position to prove theorem 2.3.3, which stated that, for a (2, q) 
torus link L, q > 2, we have a(L) > 2  + q.

P roof of theorem  2.3.3. Let L be the torus knot T(2,q). We show that

spra(GL(a,a:)) = 9;

then by theorem 4.4.1,

a(L) > 2 +  spra(GL(a, x ) )  = 2 +  q,

and the result follows.

So what follows is a proof that spra(GL(a,a:)) =  q. We use an inductive 
technique, developed from application of the Kauffman skein relation (subsection 
1.5.II). The relation quickly gives us, for q > 2,

Ar(2l9) — x  (Ar(2)9_i) +  a 1 -  AT(2,g- 2),
and so

a9FT(2,g) = x (aq~lFn2tq_x) +  a 1’ 9)  “  0/9 2F T(2,q~2)
which we simplify to

F T(2,q) = X  (a~1F1T(2i9_i) +  a 1-29) -  a 2Fr(2,9- 2)-
Now note that

FT( 2,0) =  FU2 =
Ft{ 2,1) =  Fu1 =  1,

and so

Fn  2,2) =  a,~l { x - x - l ) + a~2 + a - * ( x - x ~ x),
Ft (2,3) = a 2(x2 — 2) + a 3x  +  a~4(x2 -  1) +  a~5x,
FT{2,4) =  a~3(x3 - Z x  +  x - ^  +  a - ^ x 2 - l )  +  a- 5(x3 - 2 X  +  X - 1)

+a~6x 2 — a~7x.

First, we show that mindega ( ^ ( 2,,)) =  1 - 2 ? ,  maxdega (Fr(2,9)) =  1 -  9, 
and then we show that the coefficients of these extreme powers of a are non-zero 
when reduced modulo 2. We can then deduce that

spra(GL(a,:r)) =  maxdega (Pr(2,g)) -  mindega (Ft ( 2,ç))
=  ( l - q ) ~ ( l - 2 q )
= q-
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To see that mindega (Ft(2)9)) = 1 - 2 q, notice that this is true in the cases 
q — 2, 3, 4. For q > 4, we use tne inductive relation:

Ft(2,9) =  x  (a_1^T(2,g-l) +  a}~2q} -  0-2FT(2)9_2)
=  a; (a2~2?a: +  0 (a3-2<7)) +  al~2qx — a~2 (a5~2qx + 0 (a 6~2q))
= (a2~2qx 2 +  0(a3~2q) +  al~2qx — (a3~2qx  +  0 { a x~2q))
=  (a1" 2% +  0 (a 2- 2«)).

Further, the coefficient of ax~2q in Ft(2,9) is x, which is non-zero when reduced 
modulo 2.

We deduce that maxdega (Fr(2,g)) =  1 — q, in a similar way. Notice that this 
is true in the cases q — 2, 3, 4, and accordingly for these cases we can write

Fn2,„) = 5Z z K x )a\  (4-9)
¿=1—2q

where Z £ x )  6 Z[x±x]. For q > 4, the inductive relation gives

F T(2,q) =  X ( a ~ l F T(2,q - l )  +  01_2?)  -  a 2F T (2,q - 2)

=  xa~l + x a 1~2q -  a~2 (E?=5- 2g z f 2(x)aj)
=  x ^ _ 2qz r 1(x)ai-x) + xa}-2q -  Z]~2( x ) a ^ 2).

Then maxdega (-£7x2,9)) is seen by observing that, on the right-hand side, the 
highest possible a-power with non-zero coefficient is al~q. Therefore, we can write 
Fn2,?) =  Z'!(x)a‘, for all q >  2; and further,

Z!_g(x) =  x z r i W  -  Zi:l(x) .

Finally, we note that

Z l x(x) =  a : - a : -1,
Z i2(x) =  x 2 - 2 ,
Z t 3{x) = x 3 -  3x +  a;-1.

So, for q — 2, 3, 4, we have Z9_9(a;) =  a;5-1 +  L.O.T.. For general q,

Z\_q[x) =  x Z £ ]{x )  -  Z £ 2q(x)

= X (xq~2 +  L.O.T.) -  (x q- 3 +  L.O.T.)

=  (a:9" 1 +  L.O.T.) -  (xq~3 +  L.O.T.)
=  x q~x + L.O.T.,

which is non-zero when reduced modulo 2. □



C hapter 5

Extended com putations for knots 
w ith small arc index

5.1 Introduction

Let a  be a natural number. Recall, from section 2.2, that IC(a) denotes the set 
of knots K  with arc index a(K)  =  a. By considering the construction of arc- 
presentations, it is easy to see that |/C(a)|, the number of knots in IC(a), is finite; 
for there are only a finite number of ways of connecting a finite set of points 
pairwise by simple planar arcs, as our construction allows. When a  is sufficiently 
small, we can apply computational techniques to help generate an exhaustive list 
of the elements of /C(a).

Recall that T>ic(a) denotes the set of all a-arc diagrams of knots. As a  grows 
we find

a  <  |/C(a)| <  \VK(a)\.

We generate knots of arc index at most a  by numerical representation of all 
possible diagrams. Due to the relative sizes of \V/c(a)\ and a , the number of 
such diagrams under consideration soon gets very large. Since there are many 
diagrams generated which represent a given knot, we employ a number of sieves 
to detect some of this repetition, and remove redundant examples.

With the final ‘sieved’ list of diagrams, the following occurs. The diagrams 
have been represented in such a way that a representing braidword is easily com
puted. The braidword forms the input to a procedure (adapted from a program 
of Short, [M-S]) which calculates the Homily polynomial invariant. These poly
nomials are sorted modulo mirror image, and listed in a well-defined order.
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Each polynomial in turn can then be referred, by hand, to Thistlethwaite’s 
tabulations of Homily polynomials, [Th4] (subject to a change of variable which 
can be implemented with a simple Maple program13). The tabulations are 
restricted to knots of crossing number at most 13; our code includes a device to 
calculate an upper bound for crossing number for each knot, thus warning when 
a candidate knot may be too large for the tabulation.

Reference to [Th4] gives us a number of candidate knots for each polynomial. 
In the event of there being more than one candidate, observation of crossing 
number or other invariants will usually resolve the ambiguity.

Of the final list of knots, each one has arc index at most a. Comparison of 
this list with the results of experiments for smaller values of a  will give the list 
of elements of IC(a).

5.2 Constructing the knot

First, we briefly recall that a link can be constructed from the union of a fixed 
number of simple arcs in a controlled way.

Let A  =  S 1 C S 3 be a binding circle in S'3; the complement S 3 -  A  admits a 
fibration H  =  {Ho : 0 < 6 < 2n} by open half-planes He with dHo = A. Choose 
half-planes j Ho : 6 =  2(Q~fc)7r; A: =  0 , . . . ,  a  — 1 j ,  and denote these {h0, . . . ,  /iQ_ i}. 
Note that for reasons of convenience in later definitions, the indices are ordered 
in the direction of decreasing 6.

Choose an orientation for A, and a  distinct points {po,Pi,. • • ,pa- i }  on A  
which appear in order of their indices as we follow the orientation of A.

Now perform the following construction: join pairs of points {p*} by simple 
arcs {aj} in the {hj} such that

(i) each hj contains exactly one arc a3\

(ii) each Pi is incident to exactly two arcs a3.

The union Uj=o aj 1S a knot or link, denoted L.

13Maple will also detect the incidence of polynomials that factorize, allowing us to identify 
possible connected sums.
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5.3 Representing the knot

Write Sn for the set of permutations of n elements {0,1, . . . ,  n -  1}. Let m < n; 
an m-cycle p (E Sn has the obvious definition, i.e. for all i, pk{i) =  i &  m \k. We 
write an m-cycle in the form p = (iu i2, . . . ,  im), so that p(ij) = ij+1, p(im) = ix. 
Suppose we have a diagram D  of a link L  which has the form of the construction 
described above. The diagram D can be reduced to a pair of permutations of Sa 
in the following way.

For some component Lr of L, choose an orientation. Choose one of the points 
of Lr D A: this is the starting point of a path round Lr. Let rjr be the cycle 
given by the subscripts of the hj encountered as we follow the orientation of 
Lr. Let Tr be the cycle of the subscripts of the p{ encountered as we follow the 
orientation of Lr. Perform this for each of the components of L in turn. Then 
define the permutations 77 =  UVr, r  =  n  rT. Note that the pr are distinct, the r r 
are distinct, and tj, t e Sa] also, for i = 0 , . . . ,  n -  1 , p(i) ±  i and r(i) ^  *•

In general, we write (77, r)  for the knot or link L constructed in this way.

L em m a 5.3.1 Let L be an arc presentation of a link on a arcs. Then L is a 
knot (i.e. a 1-component link) &  r  is an a-cycle is an a-cycle.

P ro o f. If L is a knot then each of the p̂  is encountered exactly once as L is 
traversed, so that t is a product of one cycle of length a. Conversely, if t is 
an a-cycle then all the points p, must lie on the same component of the link; 
since each component is composed of at least 2 arcs then there can be only one 
component.

A similar argument holds for rj. □

E xam ple . In figure 5.1, with starting point and orientation as indicated, one 
can easily verify that 77 =(4, 0, 3, 1, 5, 2), r  =(0, 3, 1, 5, 2, 4).

Our classification is of knots (i.e. 1-component links). For a given a, the first 
task is to generate all relevant a-cycles; knot diagrams are then formed by taking 
pairs of a-cycles in an ordered way, and using the construction just described.

5.4 Preliminary sieves on the list of ct-cycles

As mentioned at the beginning of the chapter, the number of possible diagrams 
grows very quickly with a , so a number of sieves are employed to keep the work
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Figure 5.1: r/=(4, 0, 3, 1, 5, 2), r = ( 0, 3, 1, 5, 2, 4) 

down to a minimum. We describe these in sections 5.4 and 5.5.

5.4.1 Base points and arc-reducing moves

By the use of a couple of simple observations we can greatly reduce the number 
of ct-cycles relevant to the experiment.

P r o p o s i t i o n  5 .4.1  Let K  be a knot, andrj,T G S a the permutations giving K . I f  
there is an i G [0, a  — 1] such that \r](i) - i \  = 1 (mod a) or |r(*') - i \  =  1 (mod «) 
then the arc index of K  is strictly less than a.

P r o o f .  We use Cromwell’s moves (section 2.3), which relate two arc-presentations 
of the same link. If \g(i) — i| =  1 (mod a) then a pair of consecutive arcs are also 
adjacent, and an arc-reducing type IV move is applicable. If | r ( i ) - i |  =  1 (mod «) 
then a pair of consecutive points p,, pj are adjacent, and the diagram admits an 
arc-reducing type III move. □

Let ho be the base page of the fibration H\ let po be the base point of A. 
Collectively they are called the base pair, and they define the starting point of 
our path around K . We make the following observation.

P r o p o s i t i o n  5 .4.2  A knot is independent of the choice of base page and base 
point. □
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Proposition 5.4.1 means that we can ignore any a-cycle for which two adjacent 
entries differ by 1 (modulo a). Proposition 5.4.2 means that we can choose our 
starting point to be p0, meeting the arc a0 on fibre h0 first, and so our a-cycles 
have 0 as their first entry. Proposition 5.4.2 reduces the number of relevant 
cr-cycles by a factor of a.

As an illustration of the use of proposition 5.4.2, consider the pair of permu
tations as a a  x  a  matrix M,  as described in section 2.2. There is exactly one 1 
and one -1  in each row and column. By choosing different base pairs there are 
a 2 possibilities for M , given by cycling the rows and columns. Proposition 5.4.2 
says that we can assume M00, the top-left entry of M, is + 1; the a(a  — 1) cases 
where M00 =  0 or — 1 can be rejected. (The remaining a  cases have a +1 in the 
top-left corner.) In the previous example, we change 77 to (0, 2, 5, 3, 1, 4) by 
adding 2 to each entry, modulo a  (where in this example a = 6). Then the new 
diagram representing the knot is the one in figure 5.2.

Figure 5.2: t/= (0, 2, 5, 3, 1, 4), r = ( 0, 3, 1, 5, 2, 4)

5.4.II Sieving mirror images

Given an a-cycle p, define its reflection p by replacing each entry in the cycle by 
its additive inverse modulo a: thus, for example, if p =  (0, 3, 1, 5, 2, 4) then 
p  =  (0, 6-3, 6-1, 6-5, 6-2, 6-4) =  (0, 3, 5, 1, 4, 2).

L e m m a  5 .4.3  Let K  —  (77, r ) .  Then (rj,r) =  (77, r )  =  K , where K  denotes the 
obverse of K . Also (77, t) =  K .

P r o o f .  We show that (77, r )  =  K: the approaches for the other two claims are 
similar.
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Consider the grid diagram G of K  in R2 generated by (77, r), where the arcs are 
all drawn parallel to the y-axis, and the semiloops parallel to the x-axis. Suppose 
that G lies entirely in the half-plane {(x,y) : y < 0}. Let G' denote the image 
of G when reflected in the line y — 0; so G' is a diagram of K . The reflection 
preserves the and so preserves r; it sends arc a,j to arc and so sends 77
to a new a-cycle 7/ ,  where the ith entries of 77 and r¡ are additive inverses modulo 
a — 1. We have (77' , r)  =  K . Now by proposition 5.4.2 we can change the labels of 
the hj without altering the knot: we use the labels h'j,, where h'^+V) mod Q =  hj. 
This has the effect of adding 1 to each entry of 77' modulo a , giving 77". Hence, 
(77", r)  =  /T. Now we have that the 7th entries of 77 and 77" are additive inverses 
modulo cr; so 77" =  rj. □

By lemma 5.4.3, if K  = (77, r )  then there are four pairs of a-cycles which are 
related by reflections, and represent either K  or K . They are (77, r), (77, r) , (77, r)  
and (77, r) . They correspond to the four quadrants of R2 when dissected by the 
axes; figure 5.3 demonstrates this.

Up to mirror image, we need only consider one of these four diagrams. The 
following definition and proposition allow us to do that.

Let p be an a-cycle. We say that p is proper if p(0) <  f , with p(p(0)) < f  if
p( 0) =  f ■

P r o p o s i t i o n  5.4.4 I f  K  can be represented by a pair (77, r)  of a-cycles, then it 
can be represented (modulo mirror image) by a pair of proper a-cycles.

Proof. From the definition of p, we have that p is proper ^  p is not proper 
It follows that exactly one of the four diagrams (77, r) , (rj, r ) , (77, r )  and (rj, r)  has 
the property that both defining a-cycles are proper. □

Since a (K ) =  ol(K), and we can easily establish the presence of K  in a list by 
its Homily polynomial or the Homfly polynomial of K ,u  then we opt to search for 
knots modulo mirror image. We therefore employ a sieve to remove all non-proper 
a-cycles. 14

14This is because V k (v , z ) = V ^ v -1 ,z).
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Example. Consider K  =  (77, r)  when 77 =  (0, 3, 5, 1, 4, 2), r  =  (0, 4, 2, 5, 1, 3). 
In this case, a — 6. The matrix M  (as defined in section 2.2) is

/ 1 0 - 1 0 0 0 ^
0 - 1 0 0 1 0
0 0 0 - 1 0 1
0 0 1 0 - 1 0

- 1 0 0 1 0 0
0 1 0 0 0 - 1 )

Now, 77(0) =  3 =  § and 77(77(0)) =  5 > f , so 77 is not proper. We choose to 
replace 77 by its reflection, 77 =  (0, 3, 1, 5, 2, 4). Now we have a new grid diagram 
of K , represented (up to mirror image) by (77, r), and the corresponding matrix 
M  is

/ 1 0 0 0 -1 0 \0 0 1 0 0 -1
0 1 0 -1 0 0
0 0 -1 0 1 0

-1 0 0 1 0 0
V 0 -1 0 0 0 1 /

Next, note that r(0) =  4 > | ,  so r  is not proper. We take the proper cycle 
t  =  (0, 2, 4, 1 , 5, 3) in place of r. Then K  is represented by (77, r) , and M 
becomes

/ 1 0 0 0 - 1 0  \
0 - 1 0 0 0 1

- 1 0 0 1 0 0
0 0 - 1 0 1 0
0 1 0 - 1 0 0

V 0 0 1 0 0 - 1  /

5.4.III R otating the grid diagram

In proposition 5.4.2 we stated that given an grid diagram G, the knot K  thus 
presented is independent of the the choice of labels of the points Pi C  A  and the 
half-planes hj. We can rotate the indices, i h  j +  s mod a, j  1—► j  -f t mod a  
without affecting the resulting knot or link. In terms of the matrix M , these 
changes of base pair correspond to cyclic permutations of the rows and columns 
of M.
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Consider such a matrix M ,  given by (77, r), with M 00 =  1 and 77, r both proper 
cycles. We can, by such a cyclic permutation of rows and columns, generate a 
new matrix M '  from M  such that Mq0 =  1 . There are a  matrices M '  which 
can be generated in this way, one for each column (some of them may be equal). 
Consider one such M ' ,  and let the defining a-cycles of M '  be 77', r'; they are not 
necessarily proper cycles.

We obtain 77' from 77 by adding (modulo a) a ro ta t io n  index  x ,,, say, to each 
entry of 77, then cyclically rotating the entries until the first entry is 0. We obtain 
r '  from r in a similar way: the rotation index is x T, say. The rotation indices x v 
and x T are not necessarily equal. We denote 77' by cyc(r i,  x v ) and t ' by cyc(r, x T).

Given an a-cycle p , define its class [p] to be the set

{cyc(p, x) : 2; = 0,1,..., a — 1} .

Lemma 5.4.5 L e t  p , p '  be a - c y c l e s .  T h en  p' G [p\ p  G [p'].

Proof. From the definition of [p], we have that p' is obtained from p  by adding 
a rotation index x p to each entry of p , and then cycling the entries until the 
first entry is 0 ; that is, p' =  eye( p , x p). Now define the rotation index x p> as 
x pi =  a -  x p. One can easily check that c y c ( p ' , x pl) =  p. □

Lemma 5.4.6 L e t  K  be a knot .  Then

K  G { W , t ') : 77' €  [77],7-' G [r]} & K  e  { ( 7 7 ' , r )  : 77' e [r?]}.

Proof. ‘If’ is trivial. ‘Only if’: suppose K  =  ( r i ^ r 1) with r j e  [77],7-' G [r]. Since 
r '  G [r] then r G [r'], so (77', r ')  =  (77", r )  for some 77" G [77'], and hence 77" G [77] 

since it merely means adding the same integer to each entry and rotating. □

This means that each knot obtainable by pairing a cycle of [77] with a cycle of 
[r] is also presentable by pairing a cycle of [77] with r itself.

The next step is to check that we can still assume that the defining cycles are 
proper. Given a cycle p, define its bi-c lass  as the union of classes [p\ U [p].

Lemma 5.4.7 L e t  p ,p '  be a - c y c l e s .  T h en  p' G [p] <=> ~j3 G [p].
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P r o o f .  We claim that for each x ,  there exists y  such that cyc(p, x )  =  eye( p , y ) .  
For if we write p  =  (ft), Pu , P 2 • • •, P a - 2 , ft*-i), then

eye( p , x )  =  (0 , p i + i - p i ,  P i - i - P i )

=> eye(p, rr) =  (0 , a -  (pi + 1  -  ft), . . . ,  a  -  (ft_! -  ft))
(0, CX pi_|_i +  Pi, . . . , Q! Pi— 1 T Pi)

where pi +  x  =  0  mod a, while

p  =  (0, a - p i ,  a  — pQ_ i)

=► cyc(p,y) =  ( a -  ft +  y, a  -  pi+1 + y ,  a  -  ft_! +  y )  

where y  =  p t mod a .

Then we deduce that for some x ,  y ,

P' e  \p] => P1 =  eye(p, x) 

=> 7  =  cyc(p,x)
=► Pi =  cyc(p, y)

□

P r o p o s i t i o n  5.4.8 Tei p, r 6 e proper a-cycles. Let K  be a knot such that 
K  e {(w'jT') : rj G [p] U [77], r' G [r] U [r]}. Then K  can be represented, modulo 
mirror image, by {rf ,r) with r)" G [77] U [r?] and 77" proper.

P r o o f .  Write i f  =  (77', r'), with 77' G [77] U [77], r' G [r] U [rj. There are four cases 
to consider.

1. 77' G [77], r' G [r]. By lemma 5.4.6, K  =  (77", r) for some 77" G [77]. If 77" is 
proper then we have no more to prove. If 77" is not proper then K  =  (77", r); 
t/ 7 is proper by proposition 5.4.4, and r f  G [77] by lemma 5.4.7.

2. 77' G [77], t1 [r]. In this case r '  G [r]; write K  — {r(,t '). By lemma 5.4.6, 
K  =  (77", r) for some 77" G [77]. If 77" is proper then there is no more to prove. 
If 77" is not proper write K  — (77", r), with 77" proper by proposition 5.4.4, 
and 77" G [77] by lemma 5.4.7.

3. r}' $  [77], t ' G [t]. In this case rf G [77]; write K  =  By lemma 5.4.6,
K  =  (77", r) for some rj" G [77]. If 77" is proper then there is no more to prove; 
else write K  =  with 77" proper by proposition 5.4.4, and 77" G [77] by
lemma 5.4.7.
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4. rf & [rj\, t' & [t\. In this case 7/  e  [77], t ' e  [r]; write K  =  (7/ ,  r7). By- 
lemma 5.4 .6 , K  =  (7]",t) for some 7/ "  G [7/ ] .  If 7/ "  is proper then there is no 
more to prove; else write K  =  (77", r), with 77" proper by proposition 5.4.4, 

and 77" e  [77] by lemma 5.4. 7.

□

Proposition 5.4.8 means that all knots that can be presented by a pair of 
proper a-cycles can also be presented by pairing a cycle from the list of proper 
cycles with a cycle from the list of proper bi-class representatives.

5.4.IV  Initial discussion o f the pseudocode

The algorithm is implemented in SUN PASCAL. This allows for ready use and 
adaptation of Short’s package [M-S], which was written in the same language.

For the reasons of ordering, speed and storage space, we store the permuta
tions as integers /,, and I T: in the example in subsection 5.4.1, /  =  403152 and 
I j  =  31524.

This method of storage is convenient provided a  < 10. For larger experi
ments, we may write the permutation in 4base a ’, and store as an integer base 1 0 , 
recovering the permutation when necessary. As a grows, the size of the experi
ments (in terms of computer time and memory needed) may begin to outweigh 
the usefulness of the results, since Thistlethwaite’s polynomial tabulations are 
necessarily finite.

A self-calling procedure nextstep generates a-cycles by building up a cycle 
one entry at a time. It runs lexicographically through all the possibilities, build- 
ing up a list of a-cycles that are not sieved out by the sieves corresponding to 
propositions 5.4.1, 5.4.2 and 5.4.4. That is, p  appears in the list if, and only if,

(i) the first entry of p  is 0  (proposition 5 .4 .2 );

(ii) for each i  =  0 , . . . ,  a  — 1 , |p ( i )  — ¿| > 1  (proposition 5 .4 .1 ); and

(iii) p  is a proper a-cycle (proposition 5 .4 .4 ).

This list is denoted CQ in the pseudocode.

We use the result of proposition 5.4.8 to compile a second list, S C a, which is 
a subset of Ca . The list S C a contains exactly one proper representative p  of each
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bi-class; that is, for each bi-class we choose a proper element of the bi-class to 
represent it in SCa. Then proposition 5.4.8 can be interpreted as saying that

K  £  {(77, t) : 77 £  Ca, r  £ Ca}
K  £  {(??, r) : r) £  Ca, t £ 5 C a } .

This is performed as follows: once a complete a-cycle p has been successfully 
generated, it is first added to the list CQ. Then we use a function isnewperm to 
systematically check for the presence in SCa of the cycles eye(p ,xp) and their 
reflections as xp passes through the values 0 , . . . ,  a  -  1. If such a cycle is found 
then isnewperm returns the negative: the bi-class is already represented in SCa. 
Otherwise p is the first element of its bi-class to be generated, and it is added to 
the list SCa.

5.5 More sieves on the list of diagrams

We will now cover details of other sieves used in our computations.

5.5.1 The transpose of an arc-diagram

By this point, the sieves described in section 5.4 have been employed to produce 
the lists Ca and SCa of a-cycles. A grid diagram G composed of 77 £  Ca, r £  SCa 
has a  arcs, and so represents a knot K  of arc index at most a.

We now begin to compile the list of such diagrams G; they are stored in an 
array denoted Q. We examine each possible pair of a-cycles in turn. The following 
definition and propositions help us to detect reducibility of some diagrams.

Suppose p is an a-cycle. Let the reverse of p, denoted rev p, be given by 
reversing the entries entries of p, and cycling so that the first entry is 0 : so
p \ j )  =  (rev For example, if p =  (0 , 2 , 5 , 3 , 1 , 4 ) then rev p =
(0, 4, 1, 3, 5, 2).

Proposition 5.5.1 Let K  — (77, r). Then (rev r,rev 77) also represents K .

P roo f. Let G be the diagram of K  obtained from the cycle-pair (77, r). We 
assume that it lies in the plane 2  =  0 in R 3 and is viewed from the positive end 
of the z-axis. Recall that the arcs lie parallel to the 7/-axis, and the semi-loops 
parallel to the x-axis.
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Let G t  be the ‘transpose’ 1 5  of G obtained by rotating the plane z  =  0 through 
180° about the line x  +  y  =  0 =  z ,  and reversing the orientation. It is a fairly 
easy exercise to check that if this diagram is given by (77', t ') then, traversing the 
knot from the same starting point, the order of the planes encountered in GT 
is the opposite to the order of the points encountered when traversing G\ i.e., 
t ' — rev 77. By a similar observation, 77' =  rev r. □

It should be noted at this point that given a pair of o-cycles 77, r, the knots

(77, 7-), (77, rev r), (r, 77)

may be inequivalent knots. For example consider 77 =  (0 , 4, 2 , 5, 7, 1 , 3, 6 ), 
r  =  (0, 2, 5, 3, 7, 1, 4, 6 ), and hence rev r =  (0, 6 , 4, 1, 7, 3, 5, 2). Then 
these cycle-pairs represent the knots 6 2, 3i and U\  respectively, as seen in figure 
5.4.

We can define a natural total ordering on the set of at-cycles, by a lexographical 
method. Given two a-cycles plt p2, we write p i  >  p2 if there exists an m  such 
that

Pl(0) =  p2 (0) for i <  771,
p?( o) > p m -

For example, it is easy to see that (0, 3, 5, 1, 4, 2) > (0, 3, 1, 5, 2, 4).

The following lemma allows us to deduce proposition 5.5.3. This gives us 
another simple sieve, which is discussed in the opening paragraph of subsection 
5.5.II.

L em m a 5.5.2 The operations of reverse and reflection on an a-cycle p are com
mutative. That is,

rev p =  rev (p ) .

P roo f. Write p =  (p0, Pi, P2 , •••) Pa- 2 , Pa-1 )- Then by definition,

rev p = (PO) Pa—If Pa—2) • • > P2> Pi )
=3- rev p = (Poi O! Pa—ii rx — pa—2, . . ,  a - p 2, a - p i )
=> rev (rev p) — (po, Oi P i, o - p 2, . . . ,  a -  pQ_ 2, «  -  Pa- 1 )

Now note that p =  (p0, <x — P u  oe -  p2, . . . ,  o - p Q_2, a  -  pQ_ 1 ). □

15This is so-called because the matrices M  and M T corresponding to G and GT are mutually 
transpose.
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(a) (77, r) =  6 2; (b) (77, revr) =  3X; (c) ( r , r j )  =  Ui

Figure 5.4: Different compositions of a pair of a-cycles
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Proposition 5.5.3 L e t  i f  be a  k n o t .  W e  h a v e

i f  G {(77, r) : 77 G Ca, r  G SCa, rev 77 G <SCa} .
=>• i f  G {(77, r) : 77 G Ca, t  G <SCQ, r  < rev 7/} .

P roof. If i f  is written (77, r) with r  < rev r] then no work needs to be done. So 
suppose that i f  is written as the pair (77, r) with r > rev 77. We need to find an 
explicit pair r j', t '  such that (77', r') =  if, 77' G C Q, r' G <SCQ and r; <  rev 77'.

By proposition 5.5.1, we know that K  =  (rev r, rev 77). It may be that 
rev r  & Ca. We consider two distinct cases.

1. rev r G CQ. Write 77' =  rev r, r' =  rev 77, and K  =  (77' , / ) .  Now we have

rev 77 < r rev 77 < rev (rev r) &  r '  <  rev 77',

as required.

2. rev t  & Ca. We replace rev r by its reflection rev r; so r{ =  rev r, t ' =  rev 77 

and i f  =  { v ' , T')- Now notice that r < r because r is proper. Therefore, 
we have

lem m a

rev 77 <  r  => rev 77 < r H '2 rev 77 < rev (rev r) &  t ' <  rev 77'.

□

5.5.II Further discussion of the pseudocode

By proposition 5.5.3, J f  K  — (77, r)  with rev 77 G «SCa and r  > rev 77, then we can 
write i f  =  (77\ t ') or i f  =  (77' , r ') with r '  < rev 77'. Therefore, if rev 77 G <SCQ, we 
only need to check those pairs (77, r )  with r  < rev 77. This sieve is manifested in 
the lines

for V/J G Ca do beg in
77 :=  p;
if min(rev77, fevp) £ <SCQ th e n

VSCa(r]) := {7 g SCa : 7 < min(rev77,revp)} 
else

VSCa(rj) := SCa ; 
for V7  G VSCQ(r]) do begin...
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at lines 6-12 of the pseudocode. The set VSCQ(r7) is defined, for each 77, according 
to whether the proper cycle rev p (or rev p) is contained in SCa. Then we look 
at knots composed of the pair (77, r )  where p E Ca, t e VSCa(p).

First, the loop looks for ways of reducing the number of arcs in the diagram. 
Recall that two arcs of a knot which are joined by a point of the binding circle 
are called consecutive; and two arcs which lie on half-planes hi, hj with |z — j\ = 
1  mod a  are called adjacent.

A function canbeignored takes each pair of consecutive arcs in the diagram 
and judges whether type II moves can be applied to arrange the arcs to be 
adjacent: if so an arc-reducing type IV move can be applied, and the knot has 
arc index strictly less than a .  If such a reduction is discovered then the pair 
is discarded and the next pair is called. This is evident in lines 16-27 of the 
pseudocode.

Note that the procedure is performed twice: we can attempt to apply type I 
moves in order to find a diagram which allows a type III move. In fact, we do 
this by applying the function canbeignored to the pair (rev r, rev p). This is 
seen in lines 28-39 of the pseudocode.

If a pair (77, r )  does not fall through this sieve then it is stored in an array 
Q. For each p E Ca, when the pairs {(77, r) : r E SCa} have been checked by 
c a n b e ig n o r e d , a procedure f  in d d u p l ic a t e s  applies type II moves to the dia
gram (77, t), searching for pairs (77, r'), (77, t " )  which represent the same knot. It 
takes r' and applies type II moves, updating r' as it goes; then if r' =  r"  at any 
point, one of the representative pairs is deleted, for only one is needed. This is 
shown in lines 44-52.

The result is a list of pairs of cycles (77, r). A final sieve compares knots 
(77', r), (77", r) by applying type I moves and updating 77', deleting one of the 
pairs if 77' =  77". In practical terms this is done by compiling a second list QT =  
{(rev r,rev 77) : (77, r) E Q } ,  and applying canbeignored to that list (lines 59- 
71). The resulting list of pairs of cycles (77,r) is no bigger than before, and will 
usually be considerably smaller.

A procedure braidword takes a pair of cycles, and generates a braidword in 
the braid group

B 7
(JidjCTi (J j(7 i(J j ,

W j  (TjGi,
I* -  ¿I = ! ;  
I* -¿ I > 2- J

which closes to the knot K  =  (77, r ). By proposition 2.5.1, we can assume that 
the number of braidstrings is bounded above by ¿ a .  The method for obtaining a 
braid presentation from an arc presentation is described in section 2 .2 , and also
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covered independently in [Cr]. The resulting braidword is fed into the procedure 
polys, which is adapted from a program of Short [M-S] to produce the Homfly 
polynomial of a closed braid and some of its specializations from a braid input. 
Our version delivers only the Homfly polynomial. The resulting polynomials 
V K ( v , z )  are sorted and stored in an array Polys(a), and are eventually printed.

Knots can be identified from a combination of the Homfly polynomial (refer
ring to Thistlethwaite’s tables of polynomial invariants [Th4]), and bounds on 
crossing number.

5.6 Size of output

The following table gives an indication of the size of storage required to execute 
the program.

a | C „ I \sca\ \Q\
(largest)

\Q\
(final)

|Polys(a)|

5 1 1 1 1 1
6 3 1 1 1 1
7 23 5 15 1 1 3
8 177 27 292 196 13
9 1553 175 6594 4046 44

1 0 14963 1533

For the case a  =  10, the number of cycle-pairs generated exceeds the available 
storage space. For this reason, we split the entire set of cycle-pairs into smaller 
batches, by partitioning Ç into a number of smaller lists at the stage where we 
begin to search for duplicates of knots. A number of cycle-pairs which would 
normally be excluded as duplicating another cycle-pair then are included; more 
importantly, no knots are lost.

The pseudocode for this program is listed in appendix A.

5.7 Results

For arc index up to 9, we can completely classify all knots. For arc index 10, it 
is possible to list all Homfly polynomials of knots, but since the Thistlethwaite 
tables are limited to knots of 13 crossings or less, a complete classification of 
knots is harder. There are, however, some positive results. For example, we can
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deduce that both the Conway and Kinoshita-Teresaka knots have arc index 11 
(see corollary 5.8.4).

The classification is included below: complete for a  < 9, partial for a  =  10. 
The key to reading the tables is as follows. The integers represent the coefficients, 
and are bracketed into like powers of z. The least powers of v  are indicated in 
small numbers before each bracket. For example,

2 (0 2 0 — 1) (1 2 1 0) =  u2 ((u2 — v 6) +  z2(l +  2 v 2 +  u4)) .

Knots are sorted first into groups of like arc index, so knots appear in exactly one 
set JC(a). Within these sets, the polynomials are ordered, first by the breadth of 
the polynomial ( i . e . the difference between least and greatest powers of u), then 
in order of coefficients themselves, starting with the least, in lexicographic order. 
Since we are working up to mirror image, and we know V K ( v , z ) -  
the polynomials have been listed so that powers of v  are positively biased. The 
notation for the knots themselves comes from Thistlethwaite’s listing [Th4], and 
the Rolfsen [Ro] notation is also given where applicable.

Remark. Table 5.3 contains V K (v,  z )  for all K  with a ( K )  < 10. Some of the 
polynomials also appear in tables 5.1 and 5.2. The knots indicated in brackets in 
table 5.3 are known to have arc index 10: however, they are not necessarily the 
only knots of arc index 10 to have the given polynomial.

5.8 Comments

We can make the following observations.

Corollary 5.8.1 I f  K  is  an a l t e rn a t in g  k n o t  w i th  c ( K )  =  8, then  a ( K ) =  10. □

Corollary 5.8.2 I f  K  is an a l t e rn a t in g  k n o t  w i th  c ( K ) =  9, then  a ( K )  =  11.

Proof. By corollary 2.5.8, we have a ( K ) <11 for all these knots. Since for each 
K ,  P k (v > z ) n°f listed in tables 5.1, 5.2 or 5.3 then we deduce a ( K )  >  1 1 . □

Corollary 5.8.3 L e t  K  =  5.2 a n d  K '  =  10.136. Then  w e  have

V K ( v , z )  =  V KI( v , z ) ,

<*{K) =  7 ^ 9  =  a ( K ' ) .

□
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R em ark . The knots 5.2 and 10.136 are the smallest pair of knots to be distin
guishable by arc index, but not by Homfly polynomial. Compare with corol
lary 2.5.12.

C oro llary  5.8.4 The Conway and Kinoshita-Teresaka knots, denoted as 11.403 
and 11.411 respectively, each have arc index 11, and so can be distinguished nei
ther by Homfly polynomial nor by arc index.

P roo f. It is well known (for example, [L-M] p .l l l )  that these two knots, which 
are mutants, have identical Homfly polynomial, namely

v~2 ( (-2  +  7v2 -  Gv4 +  2v6) +  z2( - 3 +  l l v 2 -  l lu 4 +  3v6)
+z4(—1 +  Gv2 — Gv4 +  v6) -f z6(v2 — v4) ) .

Note that this polynomial does not appear in tables 5.1, 5.2 or 5.3, so we conclude 
that each knot has arc index at least 11. Figures 5.5 and 5.6 give presentations 
of each knot on 11 arcs, so we conclude that the arc index of each knot is exactly 
1 1 . □

134



Figure 5.5: An 11-arc presentation of the Conway knot 11.403

Figure 5.6: An 11-arc presentation of the Kinoshita-Teresaka knot 11.411
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a ( K ) vr VK {v, z) K  [Th4] K  [Ro]

5 2 (2 -  1)(1 0) 3.1 3i
6 -2 (1 -  1 1 )(0  -  1 0) 4.1 4 i
7 4 (3 — 2 ) ( 4  - 1 ) ( 1 0 ) 5.2 5i

2 ( 1 1  -  1) (1  1 0) 5.1 5 2
6 (5 -  5 1 ) (1 0  — 5 0 ) ( 6  -  1 0 )(1  0 0) 8.21 819

8 -2 ( - 2  5 — 2 ) ( —1 4 -  1 ) (0  1 0) 3 . 1 # 3 . 1 3 i # 3 x

-2 ( - 1  3 — 1 ) ( —1 3 - 1 ) ( 0  1 0) 6.1 63
0 ( - 1  4 — 2 ) ( —1 4 - 1 ) ( 0  1 0) 8 .19 820

-2 ( 2  - 3  2)(1  - 4  1 )(0  -  1 0) 9 .45 ^42
0 (2 - 2  1)(1  - 3  1 ) (0  -  1 0) 6.2 62
2 ( 3 — 3 1 )(2  -  3 1 ) (0  -  1 0) 8 .20 821
4 (4 — 4 1 )(4  — 2 0 ) (1  0 0) 3 . 1 # 3 . 1 3 i # 3 i
8 (7  — 8 2 ) (2 1  -  14 1 )(21 - 7  0) 10 .144 IO124

(8 -  1 0 )(1  0 0)

-2 ( 1 0 - 1  1 )(0  -  1 -  1 0) 6 .3 61
0 ( 2 - 1 - 1  1 )(0  -  1 -  1 0) 9 .46 §46

Table 5.1: Knots of arc index at most 8, listed by their Homfly polynomials
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a ( K ) vr VK ( v , z) K  [Th4] K  [Ro]

9 4 (3 — 2 )(4  -  1)(1 0) 10 .136 10l32
6 (4 — 3 ) (1 0  — 4 ) ( 6  — 1)(1 0) 7 .7 7i

4 (0 4 — 3 )(2  6 — 2)(1  2 0) 9 .49 949
4 (1 2 — 2 ) (3  3 -  1)(1 1 0) . 7.5 73
4 (2 0 -  1 ) (3  2 -  1)(1 1 0) 7.3 7 5
6 (3 -  1 -  1 ) (9  -  1 -  1 ) (6  0 0 )(1  0 0) 10 .155 10i6i
8 (6 — 6 1)(21 — 13 1)(21 — 7 0 ) ( 8  — 1 0 ) (1  0  0) 10 .150 IO139

10 (9 -  11 3 ) (3 9  -  31 4 ) ( 5 7  -  27  1) 12 .1530
(36 - 9  0 ) ( 1 0  -  1 0 )(1  0 0)

0 (0 0 3 -  2 ) (1  -  1 3 0 ) ( 0  -  1 0 0) 9 .4 7 948
-2 (0 2 - 2  1 ) ( - 1  2 -  2 0 ) ( 0  1 0  0) 7.1 77
2 (0 2 0 -  1) (1  2 1 0) 7.6 7 4

-2 (1 -  2 3 -  1 ) (0  -  2 3 -  1 ) (0  0 1 0) 9 .42 9 44
-2 (1 - 2  3 -  1) (1  - 3  2 0 ) ( 0  -  1 0 0) 10 .1 26 10l36
0 (1 - 2  4 — 2 ) (0  -  1 4 -  1 ) (0  0 1 0) 10 .152 10l40
0 (1 — 1 2 -  1) (1  -  2 2 0 ) ( 0  -  1 0 0) 7 .2 76
2 ( 1 0  1 — 1)(1  1 1 0) 7 .4 7 2
2 (1 0  1 -  1 ) (3  -  3 3 0 )(1  -  4 1 0 ) ( 0  -  1 0 0) 10 .154 10160

-2 (1 1 - 3  2 ) ( 0  0 - 4  1 )(0  0  -  1 0) 11 .405
0 (1 1 - 2  1 ) ( —2 4 - 3  0 ) ( —1 4 -  1 0 ) ( 0  1 0 0) 9 .4 8 9 47
6 (1 4 -  5 1 )(6  7  -  5 0 ) (5  5 -  1 0 ) (1  1 0 0) 10 .151 IO142
0 (2 - 3  3 -  1) (1  - 3  2 0 ) ( 0  -  1 0  0) 3 . 1 # 4 . 1 3 i # 4 i
2 (2 - 2  2 -  1 ) (2  - 2  2 0 ) ( 0  -  1 0 0) 9 .4 3 945
4 (2 — 1 1 — 1)(4  0 1 0 )(1  0  0  0) 10 .1 3 7 IO145
6 (2 2 - 4  1 )(6  6 - 5  0 ) (5  5 -  1 0 )(1  1 0  0) 10 .145 10l28
0 (3 -  5 4 -  1 ) (4  -  10 5 0 )(1  -  6  1 0 ) ( 0  -  1 0 0) 11 .386
2 (3 -  4 3 -  1 ) (4  -  7  4 0 )(1  -  5 1 0 ) ( 0  -  1 0  0) 9 .4 4 943
4 (3 -  3 2 -  1 ) (6  -  5 3 0 ) ( 2  -  4 1 0 ) ( 0  -  1 0 0) 11.461
4 (4 -  5 3 -  1 ) (7  -  8 4 0 ) ( 2  -  5 1 0 ) ( 0  -  1 0 0) 11 .486
8 (4 -  1 — 3 1 ) (1 7  - 3  — 4 0 ) ( 2 0  -  1 -  1 0) 12 .1 879

(8 0 0 0 )(1  0  0  0)
12 (14  -  21 9 — 1) (7 0  — 70 15 0 ) ( 1 3 3  - 8 4  7 0) T(4,5)

(121 - 4 5  1 0 ) ( 5 5  -  11 0  0)
(12 -  1 0 0 )(1  0 0  0)

Table 5.2: Knots of arc index 9, listed by their Homily polynomials
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sprvVK(v,z) vr VK{v,z) (K  [Ro])
1 0 (1)

2 2 (2 -  1)(1 0)
4 (3 -  2)(4 -  1)(1 0)
6 (4 — 3)(10 — 4)(6 -  1)(1 0)

3 -2 ( -5  11 — 5)(—7 19 — 7)(—2 11 — 2)(0 2 0)
-2 ( -3  7 -  3 )(-4  11 -  4)(—1 6 -  1)(0 1 0) (I0l25)
0 ( -3  8 -  4)(—6 16 -  6)(—2 10 -  2)(0 2 0)
0 ( -3  8 -  4)(—4 12 -  4)(—1 6 -  1)(0 1 0) (3 ,#5 ,)
2 ( -3  9 — 5)(—5 17 — 6)(—2 10 -  2)(0 2 0)
-2 ( -2  5 -  2)(—3 8 -  3)(—1 5 -  1)(0 1 0)
-2 ( -2  5 — 2)(—1 4 -1 ) (0  1 0)
0 ( -2  6 — 3)(—5 13 — 5)(—2 9 -  2)(0 2 0)
0 ( -2  6 -  3)(—3 9 -  3)(—1 5 -  1)(0 1 0) (8l0)
2 ( -2  7 -  4)(—3 12 -  4)(—1 6 -  1)(0 1 0) (I0l26)
-2 ( -1  3 -  l ) ( -3  7 -  3 ) ( - l  5 -  1)(0 1 0)
-2 ( -1  3 -  1)(-1 3 -  1)(0 1 0)
-2 ( -1  3 -1 ) (1  - 1  1)(1 - 3  1)(0 - 1 0 ) Bis)
0 ( -1  4 -  2)(—3 8 -  3)(—1 5 -  1)(0 1 0) (87)
0 ( -1  4 — 2)(—1 4 -1 ) (0  1 0)
2 ( -1  5 — 3)(—4 13 — 5)(—2 9 -  2)(0 2 0)
2 ( -1  5 -  3)(—2 9 -  3)(—1 5 -  1)(0 1 0) (10i48)
0 (0 2 -  1)(—2 5 -  2)(—1 4 -  1)(0 1 0) (I0l56> 816)
2 (0 3 -  2)(—2 8 -  3 ) ( - l  5 -  1)(0 1 0) (I0l43)
4 (0 4 -  3)(2 6 — 2)(1 2 0)
-2 (1 -  1 1)(0 - 1 0 )
-2 (1 - 1  1)(2 -  5 2)(1 -  4 1)(0 - 1 0 ) (B17)
0 (1 0 0)(2 — 4 2)(1 - 4  1)(0 -  1 0)
2 (1 1 -  1)(-1  5 -  2)(—1 4 -  1)(0 1 0) (I0l59)
2 ( 1 1  -  1)(1 1 0)
4 (1 2 — 2)(3 3 -  1)(1 1 0)
-2 (2 - 3  2)(1 - 4  1)(0 -  1 0)
-2 (2 -  3 2)(3 - 8  3)(1 -  5 1)(0 -  1 0) (89)
0 (2 — 2 1)(1 — 3 1)(0 - 1 0 )
0 ( 2 - 2  1)(3 - 7  3)(1 - 5  1)(0 -  1 0) (IO141)
2 (2 -  1 0)(3 - 4  2)(1 - 4  1)(0 -  1 0) (IO150)
4 (2 0 -  1)(3 2 -  1)(1 1 0)
4 (2 0 -  1)(5 -  2 1)(2 -  3 1)(0 -  1 0) (IO157)

Table 5.3: Table of V k (v , z) for all knots K  of arc index at most 10; (i)
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sp rvV K(v,z) vr V K(v,z) (K  [Rol)
3 0 (3 — 4 2)(3 - 8  3)(1 -  5 1)(0 -  1 0) (IO155)

2 ( 3 - 3  1)(2 - 3  1)(0 -  1 0)
2 ( 3 - 3  1)(4 — 7 3)(1 - 5  1)(0 - 1  0) (82)
4 (3 - 2  0)(6 - 5  2)(2 -  4 1)(0 -  1 0)
6 (3 -  1 -  1)(9 -  1 -  1)(6 0 0)(1 0 0)
-2 (4 -  7 4)(4 -  12 4)(1 -  6 1)(0 -  1 0)
0 ( 4 - 6  3)(4 -  11 4)(1 -  6 1)(0 -  1 0)
2 (4 -  5 2)(4 -  8 3)(1 -  5 1)(0 -  1 0) (85)
2 (4 — 5 2)(6 — 12 5)(2 -  9 2)(0 -  2 0)
4 (4 - 4  1)(4 -  2 0)(1 0 0)
4 ( 4 - 4  1)(6 - 6  2)(2 - 4  1)(0 -  1 0) (IO149)
4 (4 — 4 1)(8 — 10 4)(3 — 8 2)(0 -  2 0)
2 (5 — 7 3)(7 — 15 6)(2 -  10 2)(0 -  2 0)
4 (5 -  6 2)(7 -  9 3)(2 -  5 1)(0 -  1 0) (IO127)
6 (5 -  5 1)(10 -  5 0)(6 -  1 0)(1 0 0)
6 (5 — 5 1)(12 —9 2)(7 — 5 1)(1 - 1 0 )
2 (6 - 9  4)(7 -  16 6)(2 -  10 2)(0 -  2 0)
4 (6 -  8 3)(9 -  14 5)(3 -  9 2)(0 - 2  0)
6 (6 — 7 2)(11 - 8  1)(6 - 2  0)(1 0 0) (3 i#5 .)
6 (6 — 7 2)(13 — 12 3)(7 -  6 1)(1 -  1 0)
8 (6 - 6  1)(21 -  13 1)(21 -  7 0)

(8 -  1 0)(1 0 0)
4 (7 -  10 4)(10 -  17 6)(3 -  10 2)(0 -  2 0)
6 (7 -  9 3)(13 -  13 3)(7 -  6 1)(1 -  1 0)
8 (7 — 8 2)(21 -  14 1)(21 - 7  0)

(8 -  1 0)(1 0 0)
6 (8 -  11 4)(16 -  20 6)(8 — 11 2)(1 - 2  0)
8 (8 -  10 3)(22 — 17 2)(21 - 8  0) (IO152)

(8 -  1 0)(1 0 0)
10 (9 -  11 3)(39 -  31 4)(57 -  27 1)

(36 — 9 0)(10 -  1 0)(1 0 0)
10 (10 -  13 4)(39 -  32 4)(57 -  27 1)

(36 -  9 0)(10 -  1 0)(1 0 0)
10 (11 -  15 5)(40 -  35 5)(57 -  28 1)

(36 -  9 0)(10 -  1 0)(1 0 0)
12 (12 -  16 5)(66 -  60 10)(132 -  78 6)

(121 — 44 1)(55 — 11 0)(12 -  1 0)(1 0 0)

Table 5.3: (ii)
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spr„VK(v, z) vr V K(v,z) (K  [Ro|)
4 -2 ( -5  11 -  5 0)(-10 26 -  12 1)(—6 22 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
-2 ( -5  12 -  7 1)(—10 26 -  13 1)(—6 22 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
0 ( -5  13 -  8 1)(—10 27 -  13 1)(—6 22 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
2 ( -5  14 -  9 1)(—10 30 -  14 1)(—6 23 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
2 ( -5  15 -  11 2)(—10 30 -  15 l ) ( -6  23 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
-2 ( -4  9 -  4 0)(—7 17 -  5 -  1)(—2 11 -  1 0)

(0 2 0 0)
0 ( -4  9 - 3  — 1)(—7 18 - 4  — 1)(—2 11 - 1 0 )

(0 2 0 0)
0 ( -4  10 - 5  0)(—9 24 -  11 1)(—6 21 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
2 ( -4  1 2 - 8  l ) ( -9  27 -  13 l ) ( -6  22 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
4 ( -4  14 -  11 2 )(-8  31 -  16 l ) ( -5  24 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
-2 ( -3  6 -  1 -  1)(—4 10 -  1 -  1)(-1  6 0 0)(0 1 0 0) (10l53)
0 ( -3  7 -  2 -  1)(—5 14 - 4  0)(—2 9 - 2  0)(0 2 0 0)
0 ( -3  7 -  2 -  1)(—4 11 -  1 -  1)(-1  6 0 0)(0 1 0 0)
0 ( -3  9 -  6 l ) ( - 9  23 -  12 l ) ( - 6  21 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
2 ( -3  1 0 - 7  l ) ( - 9  26 -  13 l ) ( - 6  22 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
2 ( -3  1 0 - 7  l ) ( - 7  22 -  11 l ) ( - 5  18 -  6 0)

( - 1 7 - 1  0)(0 1 0 0)
4 ( -3  12 -  10 2 )(-7  28 -  15 l ) ( -5  23 -  7 0)

( - 1 8  -  1 0)(0 1 0 0)
-2 ( -2  2 4 — 3)(—3 5 6 -  3)(0 3 3 0)
-2 ( -2  2 4 -  3)(—2 2 9 -  4)(0 1 6 -  1)(0 0 1 0)
-2 ( -2  3 2 -  2)(—4 8 2 -  2 ) ( - l  6 1 0)(0 1 0 0)
-2 ( -2  3 2 — 2)(—2 4 4 -  2)(0 2 2 0)
-2 ( -2  4 0 -  1)(—3 8 - 2  0)(—1 5 -  1 0)(0 1 0 0)
-2 ( -2  4 0 -  1)(-2  5 1 — 1)(0 2 1 0) (I0l35)
-2 ( -2  5 -  2 0)(—4 9 -  2 -  1)(-1  6 0 0)(0 1 0 0)
0 ( -2  5 -  1 -  1)(—4 10 -  1 -  1)(-1  6 0 0)(0 1 0 0)
0 ( -2  5 -  1 -  1)(—3 9 -  2 0 ) ( - l  5 -  1 0)(0 1 0 0)
0 ( -2  5 -  1 -  1)(—2 6 1 -  1)(0 2 1 0)

Table 5.3: (iii)

140



spr vVK{v,z) vr VK{v,z) (K  [Ro])
4 2 ( -2  7 -  4 0)(—4 15 - 7  1)(—4 13 -  5 0)

( - 1 6  -  1 0)(0 1 0 0)
2 ( -2  8 -  6 1)(—6 19 -  10 1)(—5 17 -  6 0)

( - 1 7  -  1 0)(0 1 0 0)
4 ( -2  9 -  7 1)(—4 21 -  11 1)(—4 18 -  6 0)

( - 1 7  -  1 0)(0 1 0 0)
-2 (-1  0 5 -  3)(—1 -  1 10 -  4)(0 0 6 -  1)(0 0 1 0)
-2 (-1  0 5 — 3)(—1 1 6 — 2)(0 1 2 0)
-2 (-1  1 3 — 2)(—2 3 4 — 2)(0 2 2 0)
-2 (-1  1 3 — 2)(—1 2 3 -  1)(0 1 1 0) (3 ,#5¡)
-2 ( - 1 2  1 -  l ) ( -3  6 0 -  1)(-1  5 0 0)(0 1 0 0)
-2 (-1  2 1 - 1 ) ( - 1  2 2 -1 ) (0  1 1 0) (I0i29, 88)
0 (-1  2 2 — 2)(—1 3 3 -  1)(0 1 1 0) (lOi3o)
-2 (-1  3 -  1 0)(—2 4 0 -  1)(0 2 1 0) (10165)
0 ( - 1 3  0 -  l ) ( - 3  7 0 -  1)(-1  5 0 0)(0 1 0 0)
0 ( - 1 3  0 -  l ) ( -2  6 -  1 0 ) ( - l  4 -  1 0)(0 1 0 0) (I0l5l)
-2 ( - 1 4  -  3 l ) ( - 3  7 - 4  0 ) ( - l  5 -  1 0)(0 1 0 0)
2 (-1  4 -  1 -  1)(—2 9 -  2 0 ) ( - l  5 -  1 0)(0 1 0 0)
2 ( - 1 6  -  5 l ) ( - 6  18 -  10 1)(—5 17 -  6 0)

( - 1 7  -  1 0)(0 1 0 0)
4 (-1  7 -  6 1)(—4 20 -  11 l ) ( - 4  18 -  6 0)

( - 1 7  -  1 0)(0 1 0 0)
6 (-1  9 -  9 2)(—1 24 -  15 1)(0 22 -  7 0)

(0 8 -  1 0)(0 1 0 0)
-2 (0 -  2 6 -  3 ) ( - l  -  2 10 -  4)(0 0 6 -  1)(0 0 1 0)
-2 (0 -  1 4 — 2)(—1 0 5 — 2)(0 1 2 0)
0 ( 0 - 1 5  -  3 ) ( - l  1 6 — 2)(0 1 2 0)
-2 (0 0 2 -  1)(-1  1 2 -  1)(0 1 1 0) (813)
0 (0 0 3 -  2)(1 -  1 3 0)(0 -  1 0 0)
-2 (0 1 0 0 ) ( - l  1 1 -  1)(0 1 1 0) (10l46)
0 ( O i l  -  1)(-1  2 2 -  1)(0 1 1 0)
-2 (0 2 - 2  1)(-1  2 -  2 0)(0 1 0 0)
2 (0 2 0 -  1)(-1  6 -  1 0 ) ( - l  4 -  1 0)(0 1 0 0)
2 (0 2 0 -  1)(1 2 1 0)
2 (0 3 -  2 0)(—3 11 -  6 1)(—4 12 -  5 0)

( - 1 6  - 1  0)(0 1 0 0)
4 (0 5 - 5  1)(—3 17 -  10 1)(—4 17 -  6 0)

( - 1 7  -  1 0)(0 1 0 0)
-2 (1 - 4  7 — 3)(0 - 5  11 — 4)(0 -  1 6 -  1)(0 0 1 0)

Table 5.3: (iv)
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spr vVK(v,z) vr Vk {v, z) (K  [Rol)
4 -2 (1 -  2 3 -  1)(0 -  2 3 -  1)(0 0 1 0)

-2 (1 -  2 3 -  1)(1 -  3 2 0)(0 -  1 0 0)
0 (1 — 2 4 — 2)(0 -  1 4 -  1)(0 0 1 0)
0 (1 — 2 4 — 2)(3 — 6 5 0)(1 — 5 1 0)(0 -  1 0 0)
-2 (1 - 1 1  0)(1 -  2 - 1  1)(0 -  1 -  1 0) (IO147)
0 (1 — 1 2 — 1)(-1 2 0 0 ) ( - l  3 -  1 0)(0 1 0 0) (IO164)
0 (1 — 1 2 — 1)(0 -  1 3 -  1)(0 0 1 0)
0 (1 — 1 2 -  1)(1 — 2 2 0)(0 -  1 0 0)
2 (1 — 1 3 — 2)(1 0 4 -  1)(0 0 1 0)

-2 (1 0 — 1 1)(0 -  1 - 1 0 )
-2 (1 0 — 1 1)(0 1 -  5 2)(0 1 -  4 1)(0 0 -  1 0)
-2 (1 0 — 1 1)(1 - 2 - 2  1)(0 - 1  - 1 0 )
-2 (1 0 — 1 1)(1 0 - 6  3)(0 0 -  5 1)(0 0 -  1 0)
0 (1 0 0 0)(1 -  1 -  1 1)(0 -  1 -  1 0) (814)
2 (10  1 — 1)(1 1 1 0)
2 (1 0 1 — 1)(3 -  3 3 0)(1 -  4 1 0)(0 -  1 0 0)
-2 (1 1 — 3 2)(0 0 -  4 1)(0 0 -  1 0)
-2 (1 1 —3 2)(0 2 - 8  3)(0 1 -  5 1)(0 0 -  1 0)
-2 (1 1 — 3  2 ) (1  -  1 - 5  2 ) ( 0  -  1 - 2  0)
0 (1 1 — 2 1 ) ( —2 4 - 3  0 ) ( - l  4 -  1 0 ) ( 0  1 0 0)
0 ( 1 1 — 2 1)(1  - 1 - 2  1 )(0  - 1  - 1 0 ) ( S i l )
0 (1 1 — 2 1)(1  1 -  6 3 ) ( 0  0 - 5  1 )(0  0 -  1 0)
2 (1 1 -  1 0 ) ( - 2  8 -  5 1 ) ( —4 11 -  5 0)

( - 1 6  -  1 0 ) ( 0  1 0 0)
2 ( 1 1 - 1  0 ) ( 2  0 -  1 1 )(0  -  1 -  1 0) (IO166)

-2 (1 2 - 5  3 )(1  1 -  10 4 ) ( 0  0 - 6  1 )(0  0 -  1 0)
0 (1 2 — 4  2 ) (0  3 - 8  3 ) ( 0  1 -  5 1 )(0  0 -  1 0)
0 (1 2 - 4  2 )(1  2 - 9  4 ) ( 0  0 - 6  1 ) (0  0 -  1 0)
2 (1 2 — 3  1 )(1  2 - 3  1 )(0  0  - 1  0) (IO133)
2 (1 2 - 3  1 )(2  -  1 0 0 )(1  -  3 1 0 ) ( 0  -  1 0 0)
2 (1 3 - 5  2 ) ( 2  3 - 9  4 ) ( 0  0  - 6  1 )(0  0  -  1 0)
4 (1 3 - 4  1 )(2  5 - 3  0 )(1  2 0 0) (815)
6 (1 4 — 5 1 )(6  7  — 5 0 ) ( 5  5 -  1 0 )(1  1 0  0)
6 (1 5  — 7  2 ) ( 3  13 - 9  0 ) ( 4  10 - 2  0 )(1  2 0 0)
0 (2 - 3  3 -  1)(1 — 3 2 0 ) ( 0  -  1 0 0)

-2 (2 -  2 0 1)(1  - 3  - 2  1 )(0  - 1  - 1 0 ) (84)
-2 (2 — 2 0 1 )(2  -  6 1 0 )(1  -  4 1 0 ) ( 0  -  1 0 0) (10i5g)
-2 (2 -  2 0 1 )(3  -  7  0 1)(1  -  5 0  0 ) ( 0  -  1 0  0)
0 ( 2 — 2 1  0 ) ( 2  -  4 0 1 )(0  -  2 -  1 0)
2 (2  — 2 2 -  1) (2  — 2 2 0 ) ( 0  -  1 0 0)

Table 5.3: (v)
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spr vVK (v, z) vT VK ( v, z) (K  [Ro])

4 -2 (2 - 1  — 2 2)(1  - 3  — 3 1 )(0  - 1  - 1 0 )
0 (2 -  1 -  1 1)(0  -  1 -  1 0)
0 (2 -  1 -  1 1)(1 -  2 -  2 1 )(0  -  1 -  1 0) (8s)
0 (2 -  1 -  1 1)(2  -  3 -  3 2 )(0  -  2 -  2 0)
2 ( 2 - 1 0  0 ) (2  -  1 -  1 1 )(0  -  1 -  1 0)
4 (2 -  1 1 -  1) (4  0 1 0 )(1  0 0 0)
2 (2 0 -  2 1)(2  - 1 - 2  1 )(0  -  1 -  1 0) (10 l3l )
4 (2 0 -  1 0 ) (6  -  5 4 -  1) (5  -  10 5 0)

( 1 - 6  1 0 ) ( 0  -  1 0 0)
4 (2 1 - 3  1 )(3  2 - 2  0 )(1  1 0 0) ( 3 i # 5 2)
4 (2 1 - 3  1 )(4  1 - 3  1)(1  0 - 1 0 )
6 (2 2 - 4  1 )(6  6 - 5  0 ) ( 5  5 -  1 0 )(1  1 0  0)
6 (2 2 - 4  1)(8  2 - 3  0 ) ( 6  1 0 0 )(1  0 0 0)
8 (2 4 -  7 2 )(11  12 -  13 1 )(15  15 -  7  0)

(7  7 -  1 0 )(1  1 0 0)
-2 (3 -  5 3 0 ) ( 4  -  10 2 1)(1  -  6 0 0 ) ( 0  -  1 0 0)
0 (3 -  5 4 -  1 ) (4  -  10 5 0 )(1  -  6 1 0 ) ( 0  -  1 0 0)

-2 ( 3 — 4 1  1)(2  -  6 - 1  1 )(0  - 2  - 1 0 )
-2 (3 — 4 1 1 )(3  -  9 2 0 )(1  -  5 1 0 ) ( 0  -  1 0  0)
0 (3 - 4  2 0 ) (2  -  5 0 1 )(0  -  2 -  1 0) (IO144)
0 (3  — 4 2 0 ) ( 4  -  9 2 1)(1  -  6 0  0 ) ( 0  -  1 0 0)
2 (3 -  4 3 -  1 ) (4  -  7 4 0 )(1  -  5 1 0 ) ( 0  -  1 0 0)
0 (3 -  3 0 1 )(2  -  5 -  1 1 )(0  -  2 -  1 0) (IO163)
0 (3 - 3  0 1 )(4  -  9 1 1)(1  -  6  0 0 ) ( 0  -  1 0 0)
2 (3  -  3 1 0 ) ( 3  -  4 0 1 )(0  -  2 -  1 0)
4 (3 -  3 2 -  1 ) (6  -  5 3 0 ) ( 2  -  4 1 0 ) ( 0  -  1 0 0)
0 (3 -  2 -  2 2 ) (2  -  4 -  4 2 ) ( 0  -  2 -  2 0)
2 ( 3 - 2  — 1 1 )(2  - 2  — 2 1 ) (0  - 1  - 1 0 )
2 (3 -  2 -  1 1 )(4  -  6 0  1)(1  -  5 0  0 ) ( 0  -  1 0 0)
4 (3 - 1  -  2 1 )(4  0 — 3 1)(1  0  — 1 0 )
4 (3 -  1 -  2 1 )(5  -  3 0  0 ) ( 2  -  3 1 0 ) ( 0  -  1 0 0)
6 (3 0 - 3  1 ) (7  3 - 4  0 ) ( 5  4  -  1 0 )(1  1 0 0) (IO134)
6 (3 1 - 5  2 ) ( 9  0 - 5  1 )(6  0 -  1 0 )(1  0  0 0)
8 (3  2 - 6  2 )(11  11 -  13 1 )(15  15 -  7  0)

(7  7 -  1 0 )(1  1 0 0)
2 (4 -  7 6 — 2 ) ( 1 0  - 2 1  13 — 1)(6  - 2 1  7  0)

( 1 - 8 1  0 ) ( 0  -  1 0  0)
0 (4 - 5  1 1)(3  -  7 -  2 2 ) ( 0  -  3 -  2 0)

Table 5.3: (vi)
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spr vVK ( v , z) vT (K  [Ro])

4 2 (4 -  5 2 0 )(5  -  9 2 1)(1  -  6 0 0 ) (0  -  1 0 0)
4 (4 -  5 3 -  1 ) (7  -  8 4 0 ) (2  -  5 1 0 ) ( 0  -  1 0 0)
4 (4 -  5 3 -  1) (10  -  15 9 — 1)(6  -  16 6 0)

( 1 - 7 1  0 ) ( 0  -  1 0 0)
0 ( 4 - 4  — 1 2 )(2  - 6  — 2 1 )(0  - 2  - 1 0 )
2 ( 4 - 4  0 1 )(3  -  5 - 1  1 )(0  - 2  -  1 0)
2 (4 -  4 0 1 )(4  - 6  — 2 2 ) ( 0  -  3 -  2 0)
4 (4 -  3 -  1 1)(5  -  3 -  2 1)(1  -  1 -  1 0)
4 (4 -  3 -  1 1 ) (7  -  7 0 1 )(2  -  5 0 0 ) ( 0  -  1 0 0)
6 (4 -  2 -  2 1 )(9  -  2 -  2 0 ) ( 6  0 0 0 )(1  0 0 0) (10l54)
8 (4 -  1 — 3 1 ) (1 7  - 3  — 4 0 ) ( 2 0  -  1 -  1 0)

(8 0  0 0 )(1  0 0  0)
0 (5 -  10 8 — 2 ) (1 0  -  25 14 -  1) (6  -  22 7 0)

( 1 - 8 1  0 ) ( 0  -  1 0 0)
2 (5 -  8 5 -  1 ) (7  -  15 7  0 ) ( 2  -  10 2 0 ) ( 0  -  2 0 0)
2 (5 -  8 5 -  1 ) (1 0  -  22 12 -  1 ) (6  -  21 7 0)

( 1 - 8 1  0 ) ( 0  -  1 0 0)
4 (5 -  7 4 -  1 ) (9  -  13 6 0 ) ( 3  -  9 2 0 ) ( 0  -  2 0 0)
4 (5 -  7 4 -  1 ) (10  -  16 9 -  1 ) (6  -  16 6 0)

( 1 - 7 1  0 ) ( 0  -  1 0 0)
2 (5 - 6  1 1)(5  -  10 1 1)(1  -  6 0 0 ) ( 0  -  1 0 0)
4 (5 - 6  2 0 ) ( 1 0  -  16 8 -  1 ) (6  -  16 6 0)

( 1 - 7 1  0 ) ( 0  -  1 0 0)
4 (5 - 5  0 1 ) (7  -  8 0 1 )(2  -  5 0 0 ) ( 0  -  1 0 0)
6 (5 — 5 1 0 ) ( 1 3  -  12 5 -  1 ) (1 0  -  12 5 0)

( 2 - 6  1 0 ) ( 0  -  1 0  0)
8 (5 -  3 -  2 1 ) (1 8  - 6  -  3 0 ) ( 2 0  - 2  -  1 0)

(8 0 0 0 )(1  0 0  0)
10 (5 -  1 - 5  2 ) ( 2 9  -  6 -  10 1)(51  -  5 -  6 0)

(35 -  1 -  1 0 ) ( 1 0  0  0  0 ) (1  0  0  0)
4 (6 - 9  5 -  1 ) (1 0  -  16 7  0 ) ( 3  -  10 2 0 ) ( 0  - 2  0  0)
4 (6 -  9 5 -  1) (11  -  19 10 -  1 ) (6  -  17 6 0)

( 1 - 7 1  0 ) ( 0  -  1 0  0)
6 (6  - 8  4 -  1 ) (1 6  -  19 9  -  1) (11 -  17 6  0)

( 2 - 7 1  0 ) ( 0  -  1 0 0)
6 (6 -  7  2 0 ) ( 1 4  -  15 6 -  1 ) (1 0  -  13 5 0)

( 2 - 6 1  0 ) ( 0  -  1 0 0)

Table 5.3: (vii)
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spr vVK(v,z) vr VK(v,z) ( K |Rol)
4 8

4

6

6

8

4

6

10

6

8

8

8

8

10

12

12

14

(6 -  5 -  1 1)(18 -  7 -  3 0)(20 -  2 -  1 0)
(8 0 0 0)(1 0 0 0)

(7 -  11 6 -  1)(13 -  24 12 -  1)(7 -  21 7 0)
(1 -  8 1 0)(0 -  1 0 0)

(7 -  10 5 — 1)(17 - 2 2  10 -  1)(11 -  18 6 0)
(2 -  7 1 0)(0 -  1 0 0) 

(7 —9 3 0)(16 - 2 0  8 -  1)(11 -  17 6 0)
( 2 - 7 1  0)(0 -  1 0 0) 

(7 -  7 0 1)(21 -  14 0 0)(21 -  7 0 0)
(8 -  1 0 0)(1 0 0 0)

(8 -  13 7 — 1)(12 - 2 3  11 — 1)(6 -  18 6 0)
(1 -  7 1 0)(0 -  1 0 0)

(8 -  12 6 — 1)(17 - 2 3  10 -  1)(11 -  18 6 0)
(2 -  7 1 0)(0 -  1 0 0) 

(8 -  8 0 1)(33 -  17 -  5 1)(52 -  11 -  5 0)
(35 - 2  -  1 0)(10 0 0 0)(1 0 0 0) 

(9 -  14 7 -  1)(18 - 2 6  11 -  1)(11 -  19 6 0)
(2 -  7 1 0)(0 -  1 0 0)

(9 -  13 6 — 1)(28 - 3 1  11 — 1)(26 - 2 4  6 0)
(9 -  8 1 0)(1 -  1 0 0) 

(10 -  15 7 -  1)(25 -  25 6 0)(22 -  13 1 0)
(8 - 2  0 0)(1 0 0 0)

(10 -  15 7 -  1)(28 - 3 2  11 — 1)(26 - 2 4  6 0)
( 9 - 8 1  0)(1 -  1 0 0)

(11 -  17 8 -  1)(29 -  35 12 -  1)(26 -  25 6 0)
( 9 - 8 1  0)(1 -  1 0 0) 

(12 -  18 8 -  1)(43 -  42 9 0)(58 -  33 2 0)
(36 -  10 0 0)(10 -  1 0 0)(1 0 0 0) 

(14 -  21 9 -  1)(70 -  70 15 0)(133 -  84 7 0)
(121 -  45 1 0)(55 -  11 0 0)(12 -  1 0 0)(1 0 0 0) 

(15 -  23 10 -  1)(70 -  71 15 0)(133 -  84 7 0)
(121 -  45 1 0)(55 -  11 0 0)(12 -  1 0 0)(1 0 0 0) 

(19 - 3 1  15 — 2)(115 -  130 35 -  1)(279 -2 1 1  28 0) 
(339 -  165 9 0)(221 -  66 1 0)(78 -  13 0 0)

(14 -  1 0 0)(1 0 0 0)

Table 5.3: (viii)
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spr vVK ( v, z) vr VK {v, z) (K  [Ro])

5 - 4 (1 -  2 3 — 2 1 )(0  -  2 2 — 2 0 ) ( 0  0 1 0 0) ( 4 i # 4 , )
-4 (1 -  2 6 -  8 4 ) ( 0  -  4 10 -  15 4)

(0 -  1 6 -  7 1 )(0  0 1 -  1 0)
-4 (1 -  1 1 -  1 1 )(0  -  2 1 -  2 0 ) (0  0 1 0 0) (8 12)
-4 (1 -  1 1 -  1 1 )(0  0 - 3  0 0 ) ( 0  1 -  3 1 0)

(0 0 -  1 0 0)
-4 (1 -  1 2 -  3 2 ) (0  -  1 0 -  4 1 )(0  0 0 -  1 0)
-2 (1 -  1 2 -  2 1 )(0  -  2 2 -  2 0 ) ( 0  0 1 0 0) (I0l37)
-4 ( 1 0  -  1 0 1 )(0  -  1 - 2  -  1 0) (83)
-4 (1 0 0 -  2 2 ) ( 0  -  1 -  1 -  4 1 )(0  0 0 -  1 0)
-2 ( 1 0  0 -  1 1 )(0  -  1 -  1 -  1 0) ( 8 l )
-2 (1 0  1 -  3 2 ) ( 0  -  1 0 -  4  1 )(0  0 0  -  1 0)
-4 (1 1 -  3 1 1 )(0  1 - 7  1 0 ) ( 0  1 - 4  1 0 ) ( 0  0 -  1 0 0)
-2 (1 1 -  2 0 1 )(0  1 - 6  1 0 ) ( 0  1 - 4  1 0 ) ( 0  0 -  1 0  0)
0 ( 1 1  -  1 -  1 1 ) (0  0 -  1 -  1 0)
0 (1 1 0 -  3 2 ) (0  0 0 - 4  1 )(0  0 0 -  1 0)
-4 (2 - 4  5 - 4  2 )(1  - 8  10 - 8  1)

(0 -  5 12 -  5 0 ) ( 0  -  1 6 -  1 0 ) ( 0  0 1 0 0)
-4 (2 -  3 2 -  1 1)(1  -  4  0 -  1 0 ) ( 0  -  1 0 0 0)
-4 (2 -  3 3 — 3 2 )(1  - 6  5 -  6 1)

(0 -  4 8 -  4 0 ) ( 0  -  1 5 -  1 0 ) ( 0  0 1 0 0)
-2 (2 - 3  3 — 2 1)(1  - 6  5 -  3 0 ) ( 0  -  2 4  -  1 0) (10i3s)

(0 0  1 0 0)
-4 (2 -  2 0 0  1)(1  -  4 -  1 -  1 0 ) ( 0  -  1 0 0 0)
-4 (2 -  2 1 -  2 2 ) ( 0  -  3 0 -  3 0 ) ( 0  0  1 0  0)
-2 (2 -  2 1 -  1 1 )(0  -  3 1 -  2 0 ) ( 0  0 1 0 0)
-2 (2 -  2 1 -  1 1)(1  -  4 0 -  1 0 ) ( 0  -  1 0 0  0)
0 (2 -  2 2 -  2 1 )(0  -  2 2 -  2 0 ) ( 0  0  1 0  0)
0 (2 -  2 2 -  2 1)(1  - 5  5 -  3 0 ) ( 0  -  2 4  -  1 0)

(0 0 1 0  0)
-4 (2 -  1 -  1 -  1 2 ) (0  -  3 -  1 -  3 0 ) ( 0  0 1 0  0)
-2 (2 -  1 -  1 0 1 )(0  -  2 -  2 -  1 0)
0 (2 -  1 0 -  1 1)(1  -  3 0 -  1 0 ) ( 0  -  1 0  0 0)
2 (2 0 -  1 -  1 1)(1  0 -  1 -  1 0)

Table 5.3: (ix)
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sp  t„Vk (v , z) vr Vk {v, z) (K  [Ro])

5 -2 (3 -  4 2 -  1 1)(2  -  8 3 -  2 0 )(0  -  3 3 -  1 0)
(0 0 1 0 0)

0 (3 - 4  3 — 2 1)(2  -  8 6 -  3 0 )(0  -  3 4 -  1 0)
(0 0 1 0 0)

-2 (3 - 3  0 0 1)(1 - 5  -  1 -  1 0 )(0  -  1 0 0 0)
0 (3 -  3 1 -  1 1)(1 -  4 0 -  1 0 )(0  -  1 0 0 0)
2 (3 -  2 0 -  1 1)(2  -  3 0 -  1 0 )(0  -  1 0 0 0)
-4 (4 - 8  6 -  2 1 )(4  -  15 10 -  4 0 )(1  - 7  6 -  1 0)

(0 -  1 1 0 0)
-2 (4 -  7 5 -  2 1)(4  -  14 8 -  3 0 )(1  -  7 5 -  1 0)

(0 -  1 1 0 0)
0 (4 - 6  4 — 2 1)(4  -  13 8 -  3 0)(1  - 7  5 -  1 0)

(0 -  1 1 0 0)
2 (4 -  5 3 -  2 1)(3  - 8  6 -  3 0 )(0  -  3 4 -  1 0)

(0 0 1 0 0)
0 (5 -  8 5 — 2 1)(5  -  16 9 - 3  0 )(1  - 8  5 -  1 0)

(0 -  1 1 0 0)
2 (5 - 7  4 — 2 1)(5  -  13 8 -  3 0 )(1  - 7  5 -  1 0)

(0 -  1 1 0 0)
4 (6 -  8 4 -  2 1)(8  -  14 8 -  3 0 )(2  -  7 5 -  1 0)

(0 -  1 1 0 0)

Table 5.3: (x)
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Appendix A

Pseudocode

In this pseudocode, there is certain notation, which is also used in chapter 5. Let 
Ca denote the set of «-cycles

i pk{i) = i
L |p(*)-*l

i O  a
# 1 .

The set SCa is the set of proper bi-class representatives of elements of Ca. 
The set VSCa(p), for each p e  CQ, is a subset of SCa, defined within the code. 
The set Q is defined as a set {(rj, r)} of pairs of «-cycles, and is updated as new 
pairs of «-cycles are found. The set Polys(«) is the set of Homily polynomials 
generated by the code.

It should be noted that the pseudocode is representative of a real computer 
algorithm: as such, the variables used (including those defined above) have a 
value at any given time during the execution of the algorithm, which is completely 
determined by all the preceding steps in the algorithm.

begin
readln(a);
if «  =  10 then readln (subcase)1; 
<initializations>;
<generate sets Ca and <SCQ> 2; 
for Vp G Ca do begin3 

V : =  p;

1See section 5.6.
2See section 5.4.
3 Goes through elements of Ca in a well-defined order.
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if min(rev77, revrj) ^  SCa then4
VSCa(rj) :=  {7 G SCa : 7 < min(rev77,fev7/)}5 

else
VSCa(rj) :=  SCa-, 

for V7 G VSCa(?]) do begin6 
r  :=  7 ;
<count number of crossings c((r;, r)) of grid diagram (77, r )> ; 
if c((?7, r))  < o  — 2 then <move to next 7  G VSCa(r])>', 
for i := 1 to a do begin

while <we can move arc a, to the right by a type II move> 7 do 
Ctype II move on (k> ;

while <we can move arc aT̂  to the left by a type II move> do 
<type II move on aT̂ >  ;

if <a,i or aT(i) is adjacent to a consecutive arc> then goto 100 8;
while <we can move arc a, to the left by a type II move> do 

Ctype II move on cii> ;
while <we can move arc dT̂  to the right by a type II move> do 

Ctype II move on dT̂ >  ;
if <d, or aT(t) is adjacent to a consecutive arc> then goto 100 8; 

end; {next i} 
for i 1 to a  do begin

while Cwe can move point x* upwards by a type I move> do 
Ctype I move on x,>  ;

while Cwe can move point x ^  downwards by a type I move> do 
Ctype I move on ^n(i)> ?

if <x, or xv(i) is adjacent to a consecutive point> then goto 100 9;
while Cwe can move point x t downwards by a type I move> do 

Ctype I move on x{> ;
while Cwe can move point x ^  upwards by a type I move> do 

Ctype I move on xv^ >  ;
if <x{ or x ^ i) is adjacent to a consecutive point> then goto 100 9; 

end; {next f}
Q :=  £ U  {(77, r)};

100: end; {next 7  € v s c m }

4Note that min(revT/, revr/) is necessarily proper.
5See proposition 5.5.3.
6Goes through elements of VSCa(r]) in a well-defined order.
7Recall the type I-IV moves of section 2.3.
8If two arcs are both consecutive and adjacent then an arc-reducing type IV move is 

applicable.
9If two points are both consecutive and adjacent then an arc-reducing type III move is 

applicable.
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Gv  ’• =  { ( v , l )  € Q  : 7  e  V<SCq (t/)};
for (77, r )  € do begin10

while < w e can m ove arc a* to  the right by a  ty p e  II m ove>  do begin 
< m ove Oj to  th e righ t b y  typ e  II m ove> ;

< reca lcu la te  r > ;
while < w e can m ove arc a T^  to  the left b y  a  typ e  II m o ve>  do begin 

C m ove aT(f) to  the left by typ e  II m ove> ;
< reca lcu la te  r > ;

if (77, r )  G Gr, t h e n  Gr, :=  Gr, ~  {(»/,r)}; 
end; {while} 

end; {while} 
end; {next (77,7-)} 

end; {next p }

G  : =  U n e c J G h

G T  == { ( p ,  7 )  : (rev 7 ,  rev  p) G £ } ;

G v  :=  { ( p >7 ) e  a T : p  =  77}; 
for < ea ch  > do begin 

for (77, r )  G do begin 
for i := 1 to a  do begin

while < w e  can  m ove arc a { to  th e righ t b y  a  ty p e  II m o ve>  do begin 
C m ove (ii to  the righ t b y  ty p e  II m o ve> ;

R e c a lc u la te  r > ;
while < w e  can  m ove arc a T^  to  th e left b y  a  ty p e  II m o ve>  do begin 

C m o ve  aT(j) to  th e left b y  ty p e  II m o ve> ;
C re ca lcu la te  r > ;

if (77, r )  e  then : =  Q J* -  {(77, r ) } ;  

end; {while} 
end; {while} 

end; {next i} 
end; {next (77, r )  G G^} 

end; {next Q%}
GT Utj: revT7eSCa{G%}',

10 Goes through elements of in a well-defined order.



f o r  (77, r)  e  QT d o  b e g i n 11

Ccalculate braidword for (77, r)  from grid diagram>; 
<calculate Vk (v, z) using [M-S]>;
<possibly replace Vk (v, z) with z)> 11 12; 
if Vk(v, z ) £ Polys(o!) then Polys(a) :=  Polys(a) U VK(v, z) ; 

end; {next (77, r)  G QT} 
for VK(v, z) e Polys(o:) do13 write(7V(7;, z)); 

end.

11 Goes through elements of QT in a well-defined order.
12We work up to mirror image. See section 5.4.
13Goes through elements of Polys(a) in a well-defined order.
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