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Abstract 

The aim of this thesis is to apply the methods of singularity theory to gain 
results on the differential geometry of `geometric crosscaps' (sometimes referred 
to as Whitney Umbrellas). These are the surfaces parametrised by map germs 
R2,0 --> R3,0 that are in the A-orbit of the function with normal form (x, xy, y2). 

The first chapter contains background material from singularity theory and 
differential geometry. 

In Chapter 2 we consider differential topological aspects of the crosscap. We 
determine the tangent cone to the crosscap and the module of vector fields tangent 
to the Whitney Umbrella, the variety with equation v2 - u2w = 0. 

In the third chapter we determine a parametrisation of the family of geometric 
crosscaps. We are then in a position to study their differential geometry by 
composing the parametrisation with families of mappings on the ambient space 
R3. Chapters 4 and 5 are concerned with the flat geometry of the crosscap, that 
is those geometrical characteristics that can be measured by contact with lines 
and planes. In Chapter 4 we measure contact with planes by considering height 
functions on the crosscap. We obtain results on the dual of the crosscap and its 
parabolic set. In Chapter 5 we consider projections of the crosscap and give a 
partial result on the asymptotic curves of the crosscap. 

In Chapters 6 and 7 we investigate the singularities of the family of distance 
squared functions. This measures contact with spheres, and yields information 
on the focal set of the crosscap. 

Finally in Chapter 8 we present a different approach to studying the geome- 
try of the crosscap. We classify functions on R3 up to 7Z(X)-equivalence, where 
R(X) is the group of diffeomorphisms on R3 which preserve the Whitney Um- 
brella. Similarly we classify map germs R3,0 -º R2,2,0 up to R(X)-, C-equivalence. 
Analysing the geometry of these germs corroborates results obtained in previous 
chapters and gives information on the geometry of the double point set of the 
crosscap and how it interacts with the surface. 
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Prologue: the Crosscap 

The Whitney Umbrella is the variety defined by the equation v2 - u2w = 0. The 

variety intersects the plane w=0 in a repeated line, and the planes w-k=0 
in pairs of lines v2 = ku2 where k is a positive constant. If c is a constant the 
Whitney Umbrella intersects the planes u-c=0 in parabolas cw = v2. The 

only part of the Whitney Umbrella that lies in the region w<0 is the w-axis. 
The variety is depicted above. 

Let f: R2,0 --> R3,0 be the map germ defined by f (x, y) = (x, xy, y2). The 

image of f is the Whitney Umbrella without its `handle' (the half line u=v=0, 

w< 0). It can be shown that f is 2-A-determined (see [Mo]). The Jacobian 

matrix of f is 
y0 if 

0x 2y 

At the origin the rank of this matrix drops from two to one, and so f is a 
singularity. The tangent space to the image of f at this point is thus the u-axis. 
We define a crosscap to be the image of any germ g that is 

, 
4-equivalent to f. We 

say that g parametrises a crosscap. The cross cap point is the image under g of 
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(0,0). We call the crosscap parametrised by f the standard crosscap. It is clear 
that the image of the derivative at the origin of a germ parametrising a crosscap 
is always a line. We abuse terminology by calling this the tangent line to the 
crosscap. 

Surfaces in R3 can arise in various ways. They can be given implicitly, i. e. 
they can be defined by a single equation g(u, v, w) =0 for some smooth function 
g: R3,0 --+ R, 0. The Whitney Umbrella is an example of such a surface. Sard's 
Theorem implies that the set cER for which the set g(u, v, w) =c fails to 
be a manifold has Lebesgue measure zero. Thus we expect `almost all' surfaces 
defined implicitly to be manifolds. In particular the Whitney Umbrella surface 
is not `generic' in this sense. 

Surfaces can also be defined explicitly, or parametrised by a smooth mapping 
f: U --> R3, where U is an open subset of R2. The crosscap arises in this way. In 
this case, it is not true in general that such parametrisations will yield manifolds. 
The surface can intersect itself, but this problem is relatively unimportant. A 

more substantial problem is that such mappings may have crosscaps. Whitney 
([Wh]) proved that the crosscap is stable (that is we cannot remove the crosscap 
singularities by perturbing the map), and that a stable mapping R2 -º R3 

only admits local singularities of this type. 

Consequently, when studying the differential geometry of surfaces in 3-space 
there are good reasons for studying surfaces with crosscaps. It is this problem 
that we concern ourselves with in this thesis. 
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Chapter 1 

Background Results from 
Singularity Theory 

In this chapter, we review the results of singularity theory and differential geom- 
etry that will be needed in this thesis. For further reference we recommend the 
survey article of Wall [Wal], [GG], [Mar] for unfolding theory and [BduPW] for 
determinacy results. Our notation is drawn from these references. 

We denote by . 6� the R-algebra of smooth function germs R", 0 -º R and On 
the C-algebra of analytic function germs C", 0 -* C. Both E,, and O, a are local 

rings with maximal ideal M, which consists of the germs fE 6� (respectively 
O, j such that f (0) = 0. The set of map germs R", 0 -º RP (respectively, C", 0 --> 
Cr) is a free E71-module (respectively, On-module) and will be denoted 6(n, p) 
(respectively, O(n, p)). The manifolds R" and RP will be referred to as the source 
and target of a map-germ R, 0 -º RP, 0. Similarly in the complex case C" and 
C" will be referred to as the source and target of a map-germ C", 0 --+ C'', 0. 

Now suppose that fE e(n, p)(or O(n, p)) is infinitely differentiable. If we 
truncate the power series expansion of f at the origin by ignoring terms of degree 

greater than k, we obtain the k-jet of f, denoted by jk f. The set of all k-jets 
forms a vector space jk (n, p). Now if gE En, it is not hard to show that 

jý`g=OtagE, Mr'. 

Thus we can identify Jk(n, p) with the product of p copies of En/, Mn+l (or 
O(n, p)/Mn+l -0 (n, p)). 
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1.1 The Mather Groups 

In [MatIII], Mather defined the equivalence relations R, G, A, C and IC on 
M, a. E(n, p). These equivalence relations have since become standard. We define 
R to be the group of germs of diffeomorphisms R", 0 --' R", 0, G to be the 
group of germs of diffeomorphisms RP, 0 --> RP, 0 and A to be the direct product 
A=RxG. These groups act on fE Mn. e(n, p) in the following way: 

h. f=foh-I, hER, 

k. f =ko f, kEG, and 
(h, k). f= kofo h-1, (h, k) E A. 

We often call 1Z the group of smooth coordinate changes in the source, or the 

right group, and G the group of smooth coordinate changes in the target, or the 
left group. 

We define C to be the germs of diffeomorphisms R" x RP, O -* R" x Rp, 0 

which project to the identity on R" and preserve the subspace R" x {0}. Thus 

HEC can be written in the form 

H(x, y) = (x, H(x, y)), 

where H: R" x RP, 0 --> RP, 0 and H(x, 0) =0 for xE R" near zero. We define 

an action of C on M,,. S(n, p) by 

(x, H"f (x)) = H(x, f (x)), HEC, fE 
. 
M�. E(n, p). 

The group C can be thought of as the group of germs of diffeomorphisms RP, 0 --> 
RP, 0 parametrised by xE R". Define h.,, (y) = H(x, y), for x near zero; h., is the 

germ of a diffeomorphism. The previous formula can be written as 

H"f (x) = h--(f (x)). 

We define K to be the group of germs of diffeomorphisms Rn x RP, 0 -+ 
Rn x RP, 0 which can be written in the form 

H(x, y) = (h(x), H(x, y)) 

where h is a map-germ R, 0 --+ R, 0 (necessarily a diffeomorphism), ft a map- 
germ R" x R', 0 --' R1', 0 such that H(x, 0) =0 for xE R" near zero. We can 
define an action of 1C on M,,.. 6 (n, p) by 

(x, H" 
.f 

(x)) = H(h-1(x), f (h-i(x))), HEK, fE Mn. E(n, p). 
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The group 1C is often called the contact group. 

The group C is a normal subgroup of 1C, and R, £ and A can be identified 
with subgroups of K by identifying hE 7Z, h' EC with the map-germs 

(x, y) '-' (h(x), y), (x, y) '-' (x, he(y)), 

of K. With these identifications, we can see that K is the semi-direct product of 
R and C, as C is a normal subgroup of K and each element of K can be written 
uniquely in the form hoc where hE 7Z and cEC. 

The equivalence relations A, C, IC ('contact equivalence'), G ('left equivalence') 
and R ('right equivalence') are defined by the actions of the corresponding groups. 
In other words if g is a subgroup of IC, then two germs are G-equivalent if they 
lie in the same g orbit. 

1.2 Tangent Spaces 

One of the aims of singularity theory is to classify map germs up to G-equivalence, 
where 7 is some subgroup of K. This amounts to finding representatives f of the 
different g orbits. The study of these orbits has been based on an analogy between 

acting on the map germs, and a Lie group acting on a manifold. The analogue 
of the Lie group is G, which acts on E(n, p) (or 0(n, p)) and Jk(n, p); now we 
need to define our tangent spaces. 

We define the `tangent space', Of, to e(n, p) at f to be the 6,, -module of germs 
of smooth vector fields along f. So ýE Of if ý: R", 0 -º T (RP) and irP oý=f, 
where 7rp : T(RP) -+ RP is the natural projection from the tangent bundle T(RP) 
of RP, to R". We define On = 01Rf, 0p = 01,,, 

p where 1Rn and 1p denote the 
(germs at 0 of the) identity maps on R", R", respectively. 

We define the E,, -homomorphism 

tf: 0, --+ of 

0H dfo0 
and the er-homomorphism (via f*: Sp --) E, a º--º aof for aE £') 

wf: Op --ý of 
0H0 f, 
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The tangent spaces to the orbits of the standard Mather groups are then given 
by 

L1 "f= tf(M, l. O ), LC "f= wf(Mp. ep), LC "f= f*(Mp)"O1, 
LA"f =LR"f+LC. f, LK"f =L7?. f+LC" f. 

(Here we use the notation in [BduPW]; others use the notation T(9 " f)). 

We need a way to calculate the tangent spaces in practice, so we make the 
following observations. The tangent space Of is a free En-module of rank p, for if 
(yl, 

... 9 y, ) is a system of local coordinates on RP, 0 then the vector fields 

(al aye) o f, ... , (al ayp) 0f 
along f form a free basis for 9 j. We can therefore identify Of with 6(n, p) and 
the above tangent spaces can be written as 

LIZ -f= , Mn. {8f/öxl,..., of/ax, a} LG "f=f *(Mp). {el, 
... , ep} 

LC "f=f *(, Mp). E,,. {el, 
... , ep} 

where e1 ,.. ., ep are the standard basis vectors of RV (considered as elements of 

E(n, p))" 

1.3 Transversality 

Transversality is a central idea in singularity theory. In this section we give 
the definition of transversality and state a version of the fundamental Thom 
Transversality Lemma. For a detailed discussion we refer the reader to [GG], 
from which the following definition is taken. 

Definition 1.3.1 Let X and Y be smooth manifolds, and let f: X -º Y be a 
smooth mapping. Let W be a submanifold of Y and xa point in X. Then f 
intersects W transversely at x (or is transverse to W at x) if either 

f(x) ¢W, 

or 
f (x) EW and T f(x)Y =T f(. )W + dfx(TxX ). 
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If A is a subset of X, then f intersects W transversely on A if f intersects 
W transversely at x for all xEA. We say that f intersects W transversely 
if f intersects W transversely on X. If BCW we say that f intersects W 
transversely on B if f intersects W transversely at x for all x for which f (x) E B. 

Lemma 1.3.2 (Thom Transversality Lemma) Let XC R'' and YC Rm be 
smooth manifolds and U be an open set in Rt. Suppose that 

G: X xU-ºRt 

is a smooth map transverse to Y. Then for almost all aEU in the sense of 
Lebesgue measure (i. e. for all a outside a set of measure zero) the maps 

Ga, :X+ Rm 

given by G. (X) = G(x, a) are transverse to Y. 

Proof See [GG], page 54.0 

1.4 Finite Determinacy of Map Germs 

When classifying map germs, one of the key ideas of singularity theory has been 
that they are frequently determined (up to 9-equivalence, where CC 1C) by their 
k-jets. We shall say that they are k- g-determined. More formally, we have 

Definition 1.4.1 Let C be a subgroup of the contact group )C. We shall say 
that fE E(n, p) (or O(n, p)) is k -! 9-determined if f is g-equivalent to any other 
map germ gE E(n, p) (or O(n, p)) such that jkf = jkg. 

This notion is extremely useful, as in many situations once we know that a 
map germ is k-determined for some k, we can replace the ambient space of map 
germs M,,. S(n, p) with the finite dimensional vector space of k-jets JIC(n, p). 

The theorems in [BduPW] give excellent estimates for the determinacy degree 
(the least k for which a map germ is k-determined) in terms of the tangent space 
to the orbit of f. 

The following Lemma is useful in reducing determinacy criteria to finite prob- 
lems in linear algebra. We invoke it in Chapter 8. 
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Lemma 1.4.2 (Nakayama's Lemma) Let R be a commutative ring, M an 
ideal such that for xEM, 1+x is a unit. Let C be an R-module, A and B 
R-submodules of C with A finitely generated. If ACB+M. A then ACB. 

Proof See [AM], page 21. Q 

In singularity theory applications, R is taken to be the ring E, a (or O,, in the 
complex case), and M the maximal ideal M,,. 

1.5 Versal Unfoldings 

An s-parameter unfolding of a map-germ fo E M,,. S(n, p) is a map-germ 

F: Rn'xR°, 0 -º RpxR', 0 
(X, U) F-+ (f (x, u), u) 

such that fo(x) =f (x, 0). We often use the notation fu(x) =f (x, u). The map 
f,, can be thought of as a deformation of fo, parametrised smoothly by uER. 

In what follows we will consider the case =A. The definitions and results 
for other subgroups of C are analogous. 

Definition 1.5.1 Two unfoldings 

F, G: R" xR', O-ºR"xR', 0 

of fo E 8(n, p) are said to be isomorphic if there exist germs of diffeomorphisms 

R"xR', 0 --º R"xR', 0 

: R'xR8,0 --> BYxR3,0, 

which are s-parameter unfoldings of the identity maps on R' and R" respectively, 
and G= V) oFo 0-1. So for small u, ¢o = 1Rn, '0o = 1, and Ou, 0,, are germs 
of diffeomorphisms of R", RP respectively. Thus gu =, ou o fu o 0-1 for small u 
and gu is A-equivalent to fu via diffeomorphisms in the source and target which 
are parametrised smoothly by uER. 
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Note that for u; 0 the germs f,,, gu, 0u, 0,, cannot be considered as germs 
at 0 with target 0. The situation where the origin is not fixed is called Ae - 
equivalence. If we need to keep the origin fixed then the map-germs 0, '0 must 
satisfy in addition q(0, u) =0 and 0(0, u) =0 for all small u. The terms Ae- 

unfolding and A -unfolding are used to clarify which situation we are in. We then 

need to define the A, -tangent space. 

Definition 1.5.2 The . 
Ae-tangent space of fo E E(n, p) is defined by 

LAe ' fo =5 . 
(af0/Öx1, 

... , 
af0/(9xn) + Cp. je�..., ep}. 

We now define an equivalence relation on unfoldings of a map germ fo. 

Definition 1.5.3 Given h: Rt, 0 --; R', 0 we define the pull-back of F by h, 
denoted h*F, to be the t-parameter unfolding 

(h`F)(x, v) = (. f (x, h(v)), v). 

Let F and G be two s-parameter unfoldings of a map germ fo. Then F and G 

are said to be equivalent if there exists a diffeomorphism h: R3,0 --º R°, 0 such 
that G is isomorphic to h*F. 

If H is now some t-parameter unfolding of fo (so t does not necessarily equal s), 

we say H is induced from F if there exists a smooth map-germ h: Rt, 0 --> R8,0 

such that H is isomorphic to h*F. 

Definition 1.5.4 We define the A-codimension of fo E £(n, p) by 

A-codim(fo) = dimR (M, 
a. 

E(n, p)/LA - fo), 

and the Ae -codimension by 

, Ae-codim(fo) = dims (e(n, p)/LAe - fo)" 

If fE .6 (n, p) is a mapping of finite codimension, then f has a versal unfolding; 
that is a family of deformations which contains all deformations of f. 

Definition 1.5.5 Let F be an unfolding of fo E 6(n, p). Then F is versal if 

every unfolding of fo can be induced from F. 
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We say that F is trivial if it is isomorphic to the constant unfolding (in s 
parameters), (x, u) H (fa (x), u). 

The map germ fo is stable if all unfoldings of fo are trivial. 

Now we state a fundamental theorem on unfoldings. Given an unfolding 
F(x, u) = (f (x, u), u), the initial speeds, Ft E E(n, p), of F are defined by 

P (x)= a f/aui (x, 0), for i=1, ... , s. 

Theorem 1.5.6 An s-parameter unfolding F of fo is versal if and only if 

LAe " fo+R. {F1,..., F, } = 6(n, p). 

Proof For a proof of this and further discussion on unfoldings, see [Mar] and 

[Wal]. 0 

This theorem has the following useful corollaries. 

Corollary 1.5.7 Suppose that Ae codim(fo) is finite and g1,... , g, E e(n, p) 
form an R-spanning set for the complementary space to LAe " fo in 9(n, p). 
Defining the unfolding 

F(x, u) = 
(1(x) 

+E ujgi(x), u 

we find that Fs = gi. Then F(x, u) is a versal unfolding of fo. 

Corollary 1.5.8 The map germ fo has a versal unfolding if and only if its Ae 

codimension is finite. 

Corollary 1.5.9 The map germ fo is stable if and only if , Ae-codim(fo) = 0. 

Finally we state the following theorems, the proofs of which can be found in 
[Mar]. If we define c= Ae codim(fo), then the least number of parameters for 

a versal unfolding of fo is c. We call a c-parameter unfolding of fo a miniversal 
unfolding. 

Theorem 1.5.10 All miniversal unfoldings of fo are equivalent. 
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1.6 Discriminants and Bifurcation Sets 

We can associate to an unfolding its discriminant set and its bifurcation set. If 
the unfolding arises naturally in a geometric situation, then its discriminant and 
bifurcation set usually have some geometric significance. 

Definition 1.6.1 Let 

F: R"xR', 0 º RpxR', 0 
(x, u) i -' (f (x, u), u) = (fu (x), u) 

be an s-parameter unfolding of the map germ fo. Then the critical set is the set 

EF = {u E R8 : fu is singular at some point xE R"}. 

The discriminant of F, denoted D(F), is the image of EF under F. 

The bifurcation set of F is the set of points 

B(F) uE R' : fu is unstable at some point xE R" or 
determines an unstable multigerm at some points xl """x,. E R"}. 

For geometrical applications, the following proposition is useful. 

Proposition 1.6.2 Any two A-versal unfoldings with the same number of pa- 
rameters have diffeomorphic discriminants and bifurcation sets. 

Proof See [Mar]. 11 

1.7 Complete Transversals 

Let 9 be a subgroup of K. Complete transversals provide a useful tool for obtain- 
ing the orbits when C9 acts on 6(n, p). The method is due to Bruce and duPlessis 

and is a generalisation of the work of Dimca and Gibson in the K case (see [DG]). 
Our main reference for this section is [BduP], but since this is as yet unpublished, 
we review the relevant results. The proofs may be found in [Wi]. 

First we state a result due to Mather concerned with Lie group actions and 
the calculation of orbits. 
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Lemma 1.7.1 (Mather Lemma) Let G be a Lie group which acts smoothly 
on a finite dimensional manifold V. Let X be a connected submanifold of V. 
Then X is contained in a single orbit of G if and only if 

(i) for each xEX, TXCTý, (G"x)=LG "x; 

(ii) dim TX(G " x) remains constant for all xEX. 

Proof See [MatIV]. 11 

The following complete transversal theorem is a corollary to the Mather 
Lemma. 

Theorem 1.7.2 Let G be a Lie group acting smoothly on an affine space A, and 
let W be a subspace of the underlying vector space VA , with 

LG. (x+w)=LG"x (1.1) 

for all xEA and wEW. Then we have 

(i) for all xEA 

x+{LG"xnW} cG"xn{x+W}; 

(ii) if x0 EA and T is a vector subspace of W satisfying 

W CT+LG"xo 

then for any wEW there exist gEG and tET such that 

g" (x0+w)=xo+t. 

The vector subspace T is called a complete transversal. 

Proof See [BduP]. 13 

A classification result now follows. The basic idea is to find a complete list 
of k+ 1-jets with a given k-jet. We can then use an inductive process to classify 
map germs, using a relevant determinacy theorem to tell us when to stop. 
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Let C9 be a subgroup of K and Gk be the normal subgroup of C consisting 
of those germs whose k-jet is equal to the identity. The standard k-jet group is 
defined to be the quotient group c/ck and is denoted Jk9. This is a Lie group 
which acts on the affine space Jk(n, p); see [MatIII], section 7. Let He denote 
the image of Mn. £(n, p) in Jk(n, p). So Hk is the vector subspace of Jk(n, p) 
consisting of the homogeneous jets of degree k. 

Corollary 1.7.3 Let C be one of the standard Mather groups 7Z, G, A, C or K. 
Then given fEM,,. S(n, p), and TE H'+1 a vector subspace of Hk+l such that 

Hk+l C L(Jk+1g1) " jk+l1 + T, 

we have for every (k + 1)-jet jk+lg with jCg = jk f that jk+lg is in the same 
jk+1g1 orbit as jk+l f+t for some tET. 

Proof See [BduP]. 11 

1.8 Simple Germs and Moduli 

In any classification of map germs, the simple singularities are important. Often 

when we classify map germs, we only consider the simple singularities. This 
definition is due to Arnol'd, [AGV], page 184. 

Definition 1.8.1 Let X be a manifold and G be a Lie group which acts on X. 
The modality of a point xEX under the action of G on X is the least number 
m such that a sufficiently small neighbourhood of x may be covered by a finite 
number of m-parameter families of orbits. The point x is said to be simple, if its 
modality is 0, that is a sufficiently small neighbourhood intersects only a finite 
number of orbits. If 9 is one of the Mather groups, then the G-modality of a 
finitely determined map germ is defined to be the modality of a sufficient jet in 
the jet space under the action of the jet group. 

1.9 Some Differential Geometry 

A surface X is a two-dimensional manifold. In what follows we shall consider 
surfaces X embedded in R3 (via a smooth embedding g: X -+ R3), but abuse 
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notation by not distinguishing between X and g(X). In a neighbourhood V of a 
point x of a surface X in R3, there exists a parametrisation 

o: U-ºXnV, 

where 0 is a diffeomorphism and U is an open set of R. As usual we define 
the tangent space to X at x to be the image of do., where uE R2 is such that 
q(u) = X. 

One approach to studying the geometry of surfaces is to look at the properties 
of curves that lie on the surface. We recall the following definition. 

Definition 1.9.1 Suppose that the map a: R --- R" parametrises the curve C, 

which is unit speed, i. e. 11a'(t)II =1 for all tER. The vector T(t) = a(t) is 

called the unit tangent vector to C. 

The curvature K(t) of C at the point a(t) is given by 

K(t) = IIT'(t)II" 

Now in the case of plane curves, we can give the curvature a sign. 

Definition 1.9.2 Let a: R --* RZ parametrise a unit speed plane curve C. Then 

at a point a(t) EC we can define a unit normal vector N(t) by rotating the unit 
tangent vector T (t) anticlockwise through Z. . Now since T (t) is a unit vector, 
T'(t) is perpendicular to T(t) for all t. Thus there is a real number K(t) such that 

T'(t) = r, (t)N(t). 

We define the curvature of C at the point a(t) to be i(t). 

For more details on the properties of plane and space curves, we refer the 

reader to any of the standard texts on Differential Geometry, such as [0'N] or 
[L]. 

Now suppose that x is a smooth point of a surface X. If we intersect the 
family of planes containing the normal direction to X at x with X, we obtain a 
family of plane curves. We call these curves the sectional curves to X at x, and 
their curvatures the sectional curvatures of X at x. 
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Definition 1.9.3 Let 0: U --+ X f1 V be a parametrisation of a surface X, where 
U and V are open sets of R2 and R3 respectively. We can construct a unit normal 
function N on U 

N= 
O' x oy 

IIOzx0ý, ll* 
Then the coefficients of the first fundamental form are 

and G= Oy. Oy, 

and the coefficients of the second fundamental form are 

1=N. cxy and n=N. ¢yy. 

Proposition 1.9.4 Suppose X and 0 are as before, and that p is a point on X. 
Let Np be the normal to X at p and a= alcx + a20Y be a vector in TpX. Then 
the sectional curvature of the curve determined by the plane spanned by Np and 
a is 

la? + 2mala2 + nag 
ý" _ Eai + 2Fala2 + Gat 

Proof See [0'N]. 13 

The extreme values of the sectional curvatures at a point pEX are called 
the principal curvatures. The corresponding directions are called the principal 
directions. 

Proposition 1.9.5 The principal curvatures are given by the roots of 

det 
1nm- 

A(E FG= o' 

Proof See [O'N]. 0 

Definition 1.9.6 Let ic1i rc2 be the principal curvatures at a point pEX. We 
define the Gaussian curvature of X at p to be 

6= NlK2. 

Note that the signs of the principal curvatures depend on the choice of unit 
normal to the surface; the sign of their product does not. A hyperbolic point is 
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one at which the two principal curvatures have opposite signs, and hence tc is 
negative. At an elliptic point, . is positive, and the principal curvatures have 
the same sign. At a parabolic point, at least one of the principal curvatures is 

zero, so that n is zero. A special type of elliptic point is an umbilic, where all the 
sectional curvatures are equal, and at a flat umbilic, the sectional curvatures are 
all zero. 

The Gaussian curvature is a smooth function on X. Thus in general we expect 
parabolic points to lie on curves which separate elliptic and hyperbolic regions. 

Gauss's theorema egregium shows that the Gaussian curvature is an intrinsic 

quantity associated to a surface, that is it depends only on the notion of distance 

within the surface. For a more precise formulation and proof of this, see [0'N]. 

Definition 1.9.7 If a surface is parametrised by the map 

c(x, y) = (x, y, f (x, y)), 

with fE M2 2, then it is said to be in Monge form. 

Notice that at the origin, 

1(0, o) = fx(o, o) = fy(o, o) = 0. 
Thus the tangent plane to the surface at the origin is the (x, y)-plane. The 
function f measures the contact between the surface and its tangent plane. We 
discuss this in more detail later on. 

Definition 1.9.8 The centres of curvature above a point pEX are given by 

p+ (1/t )N, where N is the unit normal at p. The inverses of the principal 

curvatures, 1/r. l and 1/rc2 are called the principal radii of curvature. Note that 

although N is defined only up to sign, the curvatures change sign with the normal. 
If p is an umbilic, then there is only one centre of curvature above p. We define 

the focal set of X to be the locus of the centres of curvature. The focal set has 

two sheets; one corresponding to each centre of curvature. 
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Chapter 2 

Differential Topological Aspects of 
the Crosscap 

In this chapter we give some preliminary results on the crosscap and the Whitney 
Umbrella. We determine an important invariant of the crosscap: its tangent 
cone. The tangent cone turns out to have great significance when considering the 
geometry of the crosscap. We also determine the module of vector fields that are 
tangent to the Whitney Umbrella. This is used in Chapter 8 when we classify 
function and map germs on the crosscap. 

Before considering these features of the crosscap, we need the following re- 
sult. Let X be the standard crosscap, given by the image of the germ f (x, y) = 
(x, xy, y2). The image does not determine the parametrisation: it is clear that we 
can make an arbitrary change of coordinates in the source and retain the same 
image. The following result, the proof of which is due to J. W. Bruce, shows that 
two map germs which parametrise the same crosscap are R-equivalent. 

Proposition 2.0.1 Let g: C2,0 -º C3,0 be an immersion away from the 
origin, with image set the standard crosscap parametrised by f: C2,0 -º 
C3,0, (x, y) ' --+ (x, xy, y2). Then g is 1Z-equivalent to f. Moreover, the right- 
equivalence preserves the double point set. 

Proof It is enough to check that f and g are normalisations of X and hence 
1Z-equivalent to any other normalisation (see [Gu], page 34). Alternatively, we 
can use the fact that f is an immersion to see that there is a well defined map 
from the complement of the double point set of f to that of g which is a local 
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diffeomorphism at each point. Using the fact that away from the pinch points we 
have transversely intersecting sheets along the double point curve, we can extend 
this map to the complement of the origins. By Hartog's theorem (see [F], page 
53) this extends to a smooth map between sources, which is invertible (we can 
use the same construction to get the inverse map). 0 

2.1 The Tangent Cone at the Crosscap Point 

In this section, K is always R or C. We define the difference between smooth and 
singular points of an affine variety V. Since the Whitney Umbrella is a hyper- 

surface, we restrict our attention to this case. Suppose that f is an irreducible 

polynomial in n variables xl, """, xn, and let V= V(< f >) C K". Let p be a 
point on V. Then p is a smooth point of V if and only if o 9f läx; (p) ;0 for some 
i. Otherwise p is a singular point of V. If p is a smooth point of V, the tangent 

space TpV is defined to be the kernel of dfp. In general, in order to distinguish 

a singular point of a variety from smooth points, we look at the dimension of 
the tangent space at the point (for more details, see [Har] or [S]). However the 
tangent space at a singular point does not tell us much about the local geometry 
at that point. We define the tangent cone, a construction which gives us more 
information about the local structure of a variety at a singular point. 

Let X be an irreducible affine variety in n-dimensional affine space K", defined 
by the ideal I, and let xEX. The tangent cone to X at x consists of a collection 
of lines through x, which we define in a way which turns out to be equivalent 
to the limiting position of secants in differential geometry. As such, the tangent 

cone can be considered to be a refinement of the notion of tangent space. 

Following Shafarevich ([S]), we make K" into a vector space by choosing 
x= (0, """, 0) as the origin of coordinates. Now let 

X={(a, t): aEK', tEK1, a. tEX}CK' '=K" xK' 

and let 0:., k 
-+ K' and 0: X 

-º K' be the natural projection maps. It is clear 
that X is a closed subset of K`1, and if X; Kn, it is reducible, and consists 
of two components, Xl and XZ. The set Xl is the closure of c-'(Kl\(0)) in X 

and X2 = {(a, 0); aE K"}. We denote by ¢1 and eil the restrictions of 0 and 
V) to Xl. If a line L is a secant of X that passes through x= (0, """, 0), then 
L= {at :tE K}, where a is a fixed point in K" and at' EX for some t' E K. 
Thus 01(X1) is the closure of the set of points on all secants of X that pass 
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through x. Finally we define the set T _ b1(01-1(0)) to be the tangent cone to 
X at x. 

Now if (a, 0) E 01 1(0), then there exists a sequence ((ai, ti)) Ck such that 
lirri--.,,. ai = a, lirrm,,,,. ti =0. For each i, 01(ai, ti) = ai is a point on a secant of 
X that passes through x. Thus 01((a, 0)) =a is a point on a line that is a limit 
of secants of X that pass through x. Conversely suppose that L is a line that is 
a limit of secants of X that pass through x= (0, """, 0). Then 

L=fat: tEK}, 

where a is a fixed point in Kn such that there exists a sequence (a; ) CX for 
which limi-.,,. ai =0 and 

lim a; 
= a. '-'°° IlatII 

Thus for each i, 

Ilai , Ilaill E Xl. 
Since )j is a closed set, (a, 0) E kj, and for any t#0E. K, 

lim a't 
, 
L'a'-") 

= (at, 0) E Xi. 
i+OO (hill t 

So L is indeed contained in 01(c1-1(0)), the tangent cone to X at x. 

In fact this construction works for any set in K", but when the set is an affine 
variety, we can derive the equations of the tangent cone. The equations defining 
X are of the form f (at) = 0, where fEI. For each fEI write f as a sum of 
its homogeneous parts, i. e. f= fk + fk+l +"""+ f�a, where fj is a homogeneous 

polynomial of degree j for k<j<m and fk 0. Then we can write 

.f 
(at) = tkfk (a) + ... + tmfm (a) 

Since x= (0, """, 0) E X, f (0) = 0. Thus the equation defining X2 is t=0. It is 

clear that the equations of TT are the lowest degree terms of the polynomials in 
1. Since Tx is determined by homogeneous equations, it is a cone with vertex at 
X. 

The tangent cone to the Whitney umbrella is thus the repeated plane given 
by the equation v2 = 0. We want to know what the tangent cone to any crosscap 
point is. In the case of the standard crosscap, we have the following. 
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Lemma 2.1.1 Let X be the standard crosscap parametrised by 

f (x, y) = (x, xy, y2) " 
Then the tangent cone to X at the origin TOX is the (u, w)-plane. 

Proof The set X is a subset of the Whitney Umbrella, so TOX must be contained 
in the plane defined by v2 = 0. So we just need to show that any line in the (u, w)- 
plane can be achieved as the limiting position of secants. Let y: R, 0 -º R2,0 be 
the map germ defined by ry(s) = (as2, s). Then the secant line passing through 
the point f (ry(s)) and the crosscap point is the set 

L, = {t(as2, as3's 2) :sE R}. 

To find the limiting position of Le as s -º 0, we need to find 

lim 
(as2, as3's 2) 

e-4° 11 (as2, as3, s2) 

(as2, as3, s2) 
= tim 

e-40 s2 a2+1+a2s2 

_ 
(a, 0,1) 

1 -+a 2ý 

So by varying a we have any unit direction in the (u, w)-plane except for (1,0,0). 
The line in this direction is the u-axis. However it is clear that this is also 
contained in TOX, since the standard crosscap contains the u-axis. Q 

Proposition 2.1.2 Let X be a surface in R3 with a singularity at the origin. 
Suppose that 

R3,0 --º R3,0 

is the germ of a diffeomorphism and that Y is the image of X under 0. 

Let TOX be the tangent cone to X at the origin. Then we have 

ToY = dco(ToX)" 

Proof Suppose that (xi) EX is a sequence of points such that x; =0 
and 1imi,,,. ýti exists. Then we consider 

dco lim xi 

i-+OO I 12i l) 
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Since duo is a continuous linear map this is equal to 

1* 
dq5o(xs) 

1-400 Il 
x{ 

I) 

Since 0 is invertible, 

lim 
dOo(xi) 

i-roo 1141 

and so d5o(xi) IIxiII 

-'°° 11x=Il . im i-'°° lldio(xs)ll 
is a unit vector that is in the same direction as 

dqo lim X' 
i-4OO 1Ixs'l 

Now we have 

lim 
doo(xi) 

lim 
11xsl 

=l im 
ýs)ýý i-ý°° IIx; lt t-0° IIdoo( 

i)II 

Finally we claim that 
dOo(xi) 

__ 
Oo(xi) 

ýlm 
'°° IIc5o(xi)II 1-'°° lIdco(xi)II S- 

For by the definition of the derivative, 

lim 
O(xi) - doo(xi) 

_ 
i oo (l(xi)11 ýý 

and therefore 

lim 
O(xi) - dq5o(xs). 

lim 
IIxiII 

= lim 
O(xi) - dqSo(xi) 

_ 0. (2.1) 
i-i00 II(xi)II =-+°° Ild0o(x1)II i--'°° Ildoo(xi)II 

Thus we have 
O(xi) 

= jim 
do(xi) 

lim 
i°° Ildoo(xi)II i-oo Ildc5o(xi)I) ' 

and 
lim 

I10(xi)II - ! Id0o(xi)ll 
_0 i'000 II 

dc'o 
(xi) II 

Since 

is a unit vector, we have 

O(xi) 

1! 0(x )II 

lim 
O(xi) 

_ 
c(xi) 

0. (2) 
i-"°° II0o(xi)II IIdOo(xi)II .2 

Adding Equations (2.1) and (2.2) proves the claim. So dq5o(TOX) c TO(Y), and 
since 0 is a diffeomorphism, doo(TOX) = TOY. Q 
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Applying Proposition 2.1.2 we have 

Corollary 2.1.3 The tangent cone to a crosscap point is always a plane. 

and 

Corollary 2.1.4 The tangent line to any crosscap Y is contained in its tangent 
cone TOY. 

Proof If f: R2,0 -º R3,0 defined by f (x, y) = (x, xy, y2) parametrises the 
crosscap X, then the tangent cone TOX is the plane with equation v=0. The 
tangent line to X is the u-axis, which is contained in TOX. The result then follows 
from the chain rule and Proposition 2.1.2.1 

Now we make the following observation. Let Y be a crosscap, parametrised 
by the map g: R2,0 -+ R3,0, with double point curve C. The unit normal 
function 

__ 
gx x gy N Ilex x gyII 

assigns two normal vectors to each point of C. These determine the tangent 

planes to the two patches of surface going through the point. Both of these 

planes have the same limiting position as we approach the crosscap point along 
C. This is in fact the same position as the tangent cone TOY. More precisely we 
have 

Lemma 2.1.5 Let Y, g, C, and N be as above. Let C' E R2 be the preimage of 
C. Then C' is smooth, since it is the image of the y-axis under some diffeomor- 

phism 0: R2,2,0 -º R2,0. We choose a parametrisation of C', ry : It, 0 -º R2,0. 
Then N(y(t)) is the normal vector to the crosscap surface at the point ry(t). Let 
T(t) be the plane defined by the unit vector N(-I(t)). Then we have 

timT(t) = TOY. 

Proof First we show that the result is true in the case where X is the standard 
crosscap parametrised by the map f (x, y) = (x, xy, y2). In this case the preimage 
of the double point curve is the y-axis. We choose 'y(t) = (0, t) so that 

.f 
('r(t)) = 
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Now at any point f (x, y), the normal to the surface is given by 

(2y2, -2y, x) N(x, y) - ß/(4y4 + 4y2 + x2)' 
so 

N(ry(t)) = 
(2t2,4 -2t, 0) 

_ 
(t, 1,0) 

ß/(4t + 4t2) \/(t2 + 1) ' 

We will denote the tangent plane to X at (0,0, t2) defined by N(y(t)) by 
Tx (t). Now it is clear that 

limN('Y(t)) = (0, -1,0). 

This limiting normal defines the plane v=0. So in this case we have 

liýmTx(t) = ToX. 

Let 0: R3,0 --' R3,0 be the germ of a diffeomorphism, and let Y be the crosscap 
parametrised by g=0of. Then the double point curve C of Y is parametrised 
by the map germ : R, 0 --- R3,0 defined by b(t) = 0(0,0, t2). At any point 
b(t) of C, with t 0, the tangent plane is given by 

T (t) = dO(o, o, t2) (Tx (t)) 

Thus the limiting position of the tangent plane as we approach the crosscap point 
along C is given by 

1ö dO(o, o, e2) (Tx (t)) = duo (ToX) = TOY. 

13 

Remark 2.1.6 Lemma 2.1.5 gives some geometrical insight into the multiplicity 
of the defining equation of the tangent cone to the Whitney Umbrella and leads 
us to think intuitively of the tangent cone to the crosscap as a repeated plane. 

2.2 The Vector Fields Tangent to the Crosscap 

In what follows, O,, = O(xl, """, x,, ) will denote the set of smooth function germs 
Kn ,0 -º K, where K is either R or C. A vector field on a manifold X in K" is 
a smooth map ý: X --+ K" such that for each xEX 

ý(ý) E T. X. 
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A germ of a vector field at xo EX is a germ 77 : X, xo --+ K' with the same 
property. If V is a germ of an analytic variety in Kn, a germ of a vector field ý 

on Kn is tangent to V if for each regular point vEV, e(v) E T�V. The set of 
such vector fields forms an Can module. 

Let h be an irreducible polynomial in K[xl, """, x,, ] defining a hypersurface 
XCK. If 6 is an analytic vector field on K" that is tangent to X, then at any 
smooth point xEX, 

eh(x) = dhx(e(x)) = 0. 

Thus ýh vanishes at all smooth points of X. Since the set of smooth points of X 
is dense in X, 6h vanishes on all of X. So if 6 is tangent to X then 

ýh E I(V <h >). 

Conversely if ýh E I(V <h >) then ýh vanishes on X. Hence h vanishes 
at the regular points of X and so ý is tangent to X. In the complex case the 
Nullstellensatz says that 

I(V<h>)= <h>=<h>, 

and so ýh = ah for some function A. In the case of the Whitney Umbrella, where 
h= v2 - u2w then this is also true over the reals. 

Lemma 2.2.1 Let h be an irreducible polynomial in R[xl, """, x,, ]. Denote the 

sets 
{(xj, ... , xn) E Rn : h(xl, ... , xn) = Q} 

and 
{(xl, ... , xn) E Cn : h(xl, ... , xn) =0 

by V(h)R and V(h)c respectively. If h= v2 - u2w then the ideal 

I (V (h)R. ) C R[x1, ... ' 2n] 

is generated by h. 

Proof If 0: RZ -º R3 is the map defined by f (x, y) = (x, xy, y2), then ¢(R2) C 
V (h)R,. Thus if g is a polynomial with real coefficients that vanishes on V (h)R, 
then the function go0: R2 -º R is identically zero. Hence go0: C2 -º C is 
identically zero. So g vanishes on q(C2). Consequently g vanishes on the Zariski 
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closure of ß(C2) which is V(h)c. So gE I(V(h)c). Hence by the Nullstellensatz 
g= ah, aEC [Xl, """, X, a] and since g and h are real, 

(a 2 a) hE R[xl, """, x�] h>. 

11 

It will be useful later on to know which germs of vector fields on K3,0 are 
tangent to the Whitney Umbrella. To determine these we will need the following 

result. 

Lemma 2.2.2 Consider the linear map 

0' 
--+ 

defined by 
n 

L(a) = L(al, az, ... ' an) _E Fixt, 

i=O 
where al, """, a, a are the components of a. Then kerL is spanned as an 0,, 

module by the set of maps 

lryij : ryij(xls ... ' xn) = xiej - xjei, 1 <i<j< n}, 

where ek is the vector in K" with a1 in the kth position and zeros elsewhere. 

Proof It is clear that the 'y lie in kerL. We show that they generate kerL by 
induction on n. 

First suppose that n=2, and that 

a= (al, a2) E kerL. 

Then there exists AEQ,, such that 

a2(zi, x2) _ -xi)(x1, x2) +a'2 (X2) 
- 

Let 
a, (x1, x2) _ -x2)(xi, x2) + ai (xi, x2) " 

Then we have 

L((ai, äa)) = L((a1, a2) +A712) = L((ai, aa)) = 0. 
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Thus we have 

xiai(x1, x2) + x2a2(x2) =0 

and consequently 
ä2(i2) =0 and a', (xl, x2) = 0, 

SO ry12 does indeed span kerL. 

Now in general suppose that (al, """, an) E kerL. Then by subtracting suit- 
able multiples of the rytj from the functions ak we can obtain functions ak such 
that for 2<k<n, a' is independent of x1. Then we have 

xlal(xl, x2, ... xn) + x2a2Gx2, ... xn) . +..... +. xnan(x2) ... i xn) _0 

and so 01 (xl, X2) """, xn) =0 and the inductive step is complete. 11 

Proposition 2.2.3 The 03-module of germs at the origin of vector fields on C3 
that are tangent to the Whitney Umbrella is generated by 

uau+va-, 

ýs=väv+2w-w, 

e3=u2äv+2va and 

e4 = yr +UW . 

Proof Let h(u, v, w) = v2 - u2w be the defining equation of the Whitney Um- 
brella. Then 

elh=2h, ß'2h=2h, e3h=0 and C4h=0, 

so 4e1,62, ý3 and C4 are certainly tangent to the Whitney Umbrella. 

Now if rq is a germ at the origin of a vector field on C3 that is tangent to the 
Whitney Umbrella, then rah = ah for some polynomial A. Then 

(rl- 
2Ael)h=rih- 

2Aelh 
= 77h - Ah =. 0, 

so we need only check that ý1, ý2, ý3 and e4 generate all germs of vector fields 77 
such that 

rah=0. 
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Writing 
aaa rl = 771 Yu + 7)2 

('U 
+ 773 Ö2U 

we have rah =0 if and only if 

(-2uw)7j1 + (2v)i72 + (-u2)i 3=0. 

Clearly 772 = u7j2 for some q' , so (rýl, 2773) lies in the kernel of the linear map 

M: 03 --* O3 

defined by 
M(f1, f2, f3) = (-f3)u + (2f2)v + (-2fi)w. 

Now Lemma 2.2.2 implies that kerM is spanned by the maps 

a(u, v, w) = (v, w, 0), 

b(u, v, w) = (0, u, 2v) and 

c(u, v, w) = (u, 0, -2w). 
Substituting each of a, b and c for (771,172,773) we see that a germ at the origin 
of a vector field on C3 that is tangent to the Whitney Umbrella can indeed be 
written in terms of e1, C2, C3 and Cq. 13 
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Chapter 3 

The Parametrisation of the 
Crosscap 

We wish to look at the local differential geometry of the crosscap. By the crosscap, 
we mean the image of any map germ which is in the A-orbit of f: R2,0 -º R3,3,0 
given by f (x, y) = (x, xy, y2). We will arrive at a family of map germs, all of 
which are A-equivalent to f, but whose images may have differing local differential 
geometry. We then consider the geometrical properties of the family, and show 
that in a certain sense, this family cannot be reduced any further. If we consider 
the flat geometry of the crosscap, that is those properties which can be measured 
in terms of contact with planes and lines, we have more coordinate changes at our 
disposal. In the second half of this chapter, we derive a parametrisation which 
makes use of these coordinate changes. 

3.1 The Parametrisation 

The coordinate changes in the target which preserve the local differential geom- 
etry of the image of a map germ are those isometrics which fix the origin (the 

orthogonal transformations). We will consider the differential geometry of an 
object in terms of its contact with various `model' submanifolds of R3, such as 
spheres, planes and lines. As we shall be looking in particular at degenerate con- 
tact with these submanifolds, we also allow dilations which are centred on the 
origin. These coordinate changes correspond to an action of 0(3) x R+ on 6(2,3) 
which we define in the following way. If we have the function gE E(2,3), the 
matrix LE 0(3), and AE R+, then (L, A). g = )tL(g). This is as far as we can go 
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when considering the `flat' geometry, that is the geometry measured by contact 
with planes and lines. Diffeomorphic changes of coordinates in the source will 
not affect the local differential geometry of the image of a map germ. 

Proposition 3.1.1 Let f: R2,2,0 -º R3,0 be the map germ defined by f (x, y) = 
(X, xy, y2). Let g be a map germ that is A-equivalent to f. Then using the 
coordinate changes described above, we can reduce g to the form 

9'(x, y) = (x, xy + p(y), y2 + axe + bxy + q(x, y)), 

where a and b are constants, pE Mi and qEM. 

Proof Since g is A-equivalent to f, it must have rank one. So we can choose a 
rotation pl E 0(3) such that 

Pi 0 9(x, y) _ 91(x, y), 9a(x, A 93x, y)), 

where g2, g3 E . 
M2, and gl(x, y) = 11x +12Y+ """, with l1, l2 E R, and not both 

zero. 
Now we choose a diffeomorphism ¢1 : R2,2,0 -º R2,0 such that gl o 01(x, y) = x. 
Then 

Pi °9° 0i (x, y) = (x, g (x, y), g (x, y))" 

Next we choose a rotation p2 E 0(3) through an angle 0 about the u-axis. Then 

P2 0 pl 090 01(x) y) -' (x, cosOg'z (x, y) + sinOg3 (x, y), -sinOgz (x, y) + cosOg3 (x, y)) 

We write the 2-jets of g'2 and g3 as 

alx2 + a2xy + a3y2 and 

blx2 + b2xy + b3y2 respectively, 
withal, a2 i a3, bl, b2, b3 E R. Since pl ogo qS1 is A-equivalent to f, a2b3 - b2a3 0. 

Thus we can choose 0 so that 

P2 o Pi o9o 01(x, y) _ fix, cixy + cax2 + pi (x, y), dix2 + d2xy + d3y2 + qi (x, y)), 

with cl, c2, dl, d2, d3 ER and pl, ql E M. 

To complete the proof, we must show that a map germ g: R2,0 --+ R3,0 
defined by 

9(x, y) _ (x, cixy + czx2 + p1 (x, y), dlx2 + d2xy + d3y2 + qi (x, y)) 
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can be reduced to the form of g'. Making the coordinate change y' = ciy + c2x 
we have 

9 (x, /) = (x, xy'+p2 xi y'), d'y12 + d'xy'+ d' X2 + Qz x' 23(y ))ý 

with di ER- {0}, d2, d3 ER and p2, q2 E M. Then we need the following 
lemma. 

Lemma 3.1.2 Let f: R2,0 --º R2,0 be defined by f (x, y) = (x, xy + r(x, y)), 
with rEM. Then by a change of coordinates in the source, we can reduce f to 
the normal form 

(x, y) =(x, xy+r'(y», r'E M. 

Proof The proof is an adaptation of the second half of the proof of Lemma 2 
from [B2]. 

Let x' =x+ Or/ft and write ar/ay as a sum Ro(y) + x'Ri(x', y). Then 

x+ Roy) = x'(l - R1) 

which belongs to the Jacobian ideal J(f) of f (this is the ideal of partial deriva- 
tives of f- see [Wal]). Now let x" =x+ Ro and write 

r(x, y) = ri(y) + x"r2(y) + (xII)2r3(x""2 y)2 

where ri E M2"i for 1<i<3. The last component of f is now 

xy + ri(y) + x"r2(y) + (x")2r3(xit, y) 

= x(y + r2(y)) + ri (y) + Ro (y)r2(y) + (xI")2r3 (x", y) 

Next we use the following result, which we quote from [duPW], Corollary 2.8. 

Lemma 3.1.3 Let f: (N, x0) -+ (P, yo) be a non-submersive smooth map germ. 
Then f is MNJ(f )2 -1ZJ(f)-determined. 

Lemma 3.1.3 says that if we add elements of the ideal MNJ(f )2 to a non- 
submersive smooth map germ f, the result is 1Z J(f) equivalent to f. The group 
Re(f) is the subgroup of the Mather group 1Z whose elements preserve the ideal 
J(f ). Now (x")2r3(x, y) E M2J(f )2 so by Lemma 3.1.3 f is 1Z-equivalent to the 

map germ 
(x, x(y + r2(y)) + ri(y) + Ro(y)r2(y))" 

Replacing y+ r2 (y) by y' gives a change of coordinates yielding a germ of the 
required type. Q 
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Returning to the proof of Proposition 3.1.1, we apply the change of coordinates 
constructed in the proof of Lemma 3.1.2 to the source. This reduces g to the form 

(x, xy + p(y), diy2 + d'ixy + dsx2 + 4(x) y)), 

with di ER- {0}, d"2 2 , d3 ER and p, qE M'. Finally we `scale' in the source 
(replace x by . lx and y by )'2y, where Al, A2 ER- {0}), and apply a dilation in 
the target to complete the reduction of g to the required form. Q 

Parametrising a smooth surface in a neighbourhood of the origin in Monge 
form has the effect of fixing the position of the tangent plane at the origin. In the 
case of the crosscap, there is no tangent plane at the origin. However the rotations 
pl and p2 and the diffeomorphism ¢1 do have some geometrical significance. 

Lemma 3.1.4 The effect of pl is to rotate in the target so that the tangent line 
to the crosscap is the u-axis. 

Proof The tangent line is the image of the linear map dgo : R2 -+ R3 . 
It is 

clear that the image of d(pl o g)o is the u-axis. 11 

Lemma 3.1.5 The diffeomorphism ¢1 makes the preimage of the double point 
curve tangent to the y-axis at the origin. 

Proof Write g' instead of pl ogo 01. Let CC R2 be the preimage of the double 

point curve of the crosscap parametrised by g'. Since g' is A-equivalent to f, C is 

a smooth curve. A parametrisation for the preimage of the double point curve of 
the standard crosscap is y(t) = (0, t). Then f (0, t) =f (0, -t). So we can choose 
a local parametrisation ry : R, 0 -º R2,2,0 of C such that g'(y(t)) = g'(ry(-t)). 
Then we write 7(t) = (71(t), 72(t)). By inspecting the first component of g', we 
see that yl (t) = ryl (-t) for all t. Hence ryl can be written as a function of t2, and 
the result follows. 11 

Lemma 3.1.6 The rotation P2 fixes the tangent cone to be the plane v=0. 

Proof Recall that the tangent cone to any crosscap at the crosscap point is a 
plane. By considering the secants joining the origin to g(t, 0) and g(0, t), we see 
that the tangent cone at the origin of the image of 

g(x, y) = (x, aix2 + a2xy + a3y2 + 0(3), blx2 + b2xy + b3y2 + 0(3)) 
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Figure 3.1: The effect of the rotations pl and p2 on the crosscap. 

contains (1,0,0) and (0, a3, b3). It is now clear that by rotating so as to kill off 
the a3 term we have fixed the tangent cone to be the plane v=0. Q 

Figure 3.1 shows the effect of pl and p2 on the crosscap. The direction of the 
tangent line (D) and the normal direction to the tangent cone (T) are indicated. 
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3.2 The Isotropy Subgroup 

The question of whether we can reduce the normal form any further now arises. 
To answer this question, we consider the isotropy subgroup of 0(3) x R+ xR 
of the family of crosscap maps determined in Proposition 3.1.1. We have defined 
an action of 0(3) x R+ xR on S(2,3), and those map germs with normal form 

g' determined in Proposition 3.1.1 define an affine subspace W of £(2,3). The 
isotropy subgroup of 0(3) x R+ x R. with respect to W consists of those elements 
(M,. A, 0) E 0(3) x R+ xR which leave W invariant. 

Proposition 3.2.1 The isotropy subgroup of 0(3) x R+ xR with respect to W 
is isomorphic to Z. 

Proof We show that the isotropy subgroup is generated by 

I (I, 1, id), (Ri, 1, -id), (R2,1, ri), (R3) -1, r2)}, 

where I is the identity matrix and R1, R2 and R3 are the matrices 

-1 0 0 1 0 0 1 0 0 
0 1 0 0 -1 0 and 0 1 0 
0 0 1 

, 
0 0 1 0 0 -1 

respectively, id : R2,0 -º R2,0 is the identity map and rl, r2 : R2,0 --º R2,0 are 
the maps defined by 

ri (x, y) =(x, -y) and r2 (x, y) = (-x)y) 

respectively. The generators commute and (R1,1, -id), (R2) 1, ri) and (R3, -1, r2) 
are each of order two, and so the result follows. 

We have seen (Lemmas 3.1.4 and 3.1.6) that any element A of 0(3) which 
leaves W invariant under the group action must be an isometry which leaves the 

configuration of the u-axis (the tangent line) and the (u, w)-plane (the tangent 

cone) invariant. Thus A must be in the subgroup generated by the identity, a 
reflection in the (v, w)-plane, a reflection in the (u, w)-plane or a reflection in 
the (u, v)-plane. These isometrics correspond to the matrices I, R1, R2 and R3 

respectively. So we just need to determine those pairs (A, 0) E R+ x R. such that 
(M, A, 0) leaves W invariant under the group action for M=I, R1, R2 and R3. 
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First consider the case where M=I. Let 0(x, y) = (01(x, y), 02(x) y)). Then 
foralla, bER, pEJV13 andgE. M2i 

)t (O1(x, y)º 01(x, y)02(x) y) +P(02(xi y))) 

(02(xi y))2 + a(01 (x, y))2 + b01(x, y)02 (x, y) +q(01 (X) y), 02 (x, y)) 

= (x, xy + p'(y), y2 + a'x2 + b'xy + 4'(x, y)), 
for some a', b'ER, p'EM3and q'EM2. 

Comparing the first component implies that 

O1(x, y) = A-1x. 

Substituting this in the second component then gives 

X02 (X) y) +P(02(x9 y)) = xy +P(y) 

This implies that 
02 (x, y) =y+O (X, y), E , /ý12. 

Suppose that «(x, y) = a0y2 + alxy + a2x2 + 0(3). Comparing the coefficients of 
x3 on either side of the equation 

xy + xv)(x, y) + Ay +')(x, y)) = xy + P(y) 

shows that a2 = 0. From this it follows that al =0 and ao = 0. Then by 
induction on the degree of x in each of the homogeneous parts of z0, using the 
facts that pEA and 02 contains no terms linear in x, it can be shown that 
b(x, y) - 0. Looking at the third component, we see that A must be 1. Similar 

considerations for the cases where M= R1, R2 and R3 complete the result. Q 

The small size of the isotropy subgroup in this case indicates that we cannot 
significantly reduce the normal form any further when considering Euclidean 

properties of the crosscap. 

3.3 Geometrical Properties of the Family of Cross- 

caps 

We now determine some more geometrical information about the crosscaps 
parametrised by the family of normal forms of Proposition 3.1.1. In what follows 
we are considering the family of crosscaps parametrised by 

f (x, y) = (x, xy + p(y), y2 + axe + bxy + Q(x, y)), pE M1,4 E M. 
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Lemma 3.3.1 Let CE R2 be the preimage of the double point curve, and write 
j3p = p3y3. Then C can be written x= -p3y2+0(y) where E Mi M. Hence the 
limiting tangent to the double point curve in R3 at 0 is spanned by (-p31 0) 1)- 

Proof From Lemma 3.1.5 we know that C is a smooth curve that is tangent to 
the y-axis. Thus C can be written x= a(y), aEM. 

Now suppose g'(x, y) = g'(X, Y). Then X=x and we have 

xy + p(y) = xY + p(Y) 

and 
ax 2+ bxy + y2 + q(x, y) = axe + bxY + Y2 + q(x, Y). 

So 

x(Y - y) = -(P(Y) - r(y)) 

x= -P3(YZ + Yy + y2) + 0(3), 

by the implicit function theorem. We also have 

Y2 -y2 = -bx(Y-y)-4(x, Y)+9'(x, y)" 

This implies that 

Y+y= -bx - 
(4(x, Y) - g(x, y)) 

(Y - y) 
The right hand side of this equation is of order 2 in Y and y after substitution. 
So Y= -y to first order and the result now follows. 0 

Lemma 3.3.2 If a>0, then there are two transverse curves in the source which 
are the preimages of curves of parabolic points on the crosscap. The gradients 
to these curves at the origin are ±f . In the case where a<0, there are no 
parabolic points on the crosscap. 

Proof A point is parabolic when the Gaussian curvature is zero at that point. 
We calculate the conditions for this to occur. Now away from a singular point, 
the Gaussian curvature at the point p=f (x, y), K(x, y) is given by 

K(x, y) = 
In - m2 
EG - F2 
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where E, F and G are the coefficients of the first fundamental form, and 1, m and 
n are the coefficients of the second fundamental form. So 

K(x, y)=0aln-m2=0 

L(x, y) = 
(Jf xf 

.f 
)(�X x fy. fvy) 

- 
(! 

Z 
X 

JI"JXb)Z = 0. 

In our case we can calculate the Gaussian curvature away from the origin. Now 

ff = (1, y, 2ax+by+gy) and fy = (0, x+ pv, 2y + bx + qy). 

The second derivatives of f are 

f2x = (0,0,2a + qxx), f., v = (0,1, b+ qýy) and fyy = (0, pyy, 2+ qvv). 

So 

fý x f, = (2y2 - 2ax2 + yqy - xqx - pygx, -(2y + bx + qy), x+ py)" 

Then we have 
j2(L(x, y)) = 4ax2 - 4y2. 

So if a; 0, L(x, y) has a Morse singularity at the origin and the result follows. 

13 

Lemma 3.3.2 leads us to make, the following definition: 

Definition 3.3.3 Let g'(x, y) be the normal form obtained in Proposition 3.1.1. 
Then we define the parabolic crosscap to be any crosscap where a>0 in g', 
and the hyperbolic crosscap to be any crosscap where a<0 in g'. Examples of 
the parabolic crosscap (with parabolic set indicated) and the hyperbolic crosscap 
that were drawn with the Liverpool Surfaces package are shown in Figures 3.2 

and 3.3 respectively. 

Lemma 3.3.4 Suppose that C is a non-singular curve in the source that passes 
through the origin, parametrised by -y (t) = (at +""" �ßt +"" "), with a and ß not 
both zero. Then the limiting tangent plane to the crosscap as we approach the 
crosscap point along the curve parametrised by foy is given by the equation 

-(ab + 2ß)v + aw = 0. 
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elliptic regions 

Figure 3.2: The parabolic crosscap parametrised by (x, y) H (x, xy, y2 + x2) 

Figure 3.3: The hyperbolic crosscap parametrised by (x, y) '-4 (x, xy, y' - x2). 
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Proof At any point p=f (x, y) on the crosscap away from the crosscap point, 
the tangent plane is given by (f 

xx 
fa, ) " (u, v, w) + K(21y) = 0, where K(x, 

y) is a 
constant determined by the fact that the plane goes through the point p. From 
the proof of Lemma 3.3.2, this equation is 

(2y2-2ax2+""", -2y-bx+"" ", x+""")"(u, v, w)+K(x, y)=0. 

So at any point f (7(t)) on f (C), the tangent plane is given by 

(2ß2t2-2a2at2+""", (-2ß-ab)t+""", at+"""). (u, v, w)+K(,, b) =0. 

Since we are away from the origin, we can divide through by t, getting 

(2ß2t-2a2at+""", -2ß-ab+""", a+"""). (u, v, w)+K(�y)/t=0. 

Letting t tend to zero gives us the desired result. 13 

Now we calculate the contact of planes with the crosscap at the crosscap point. 
This is measured by composing the equation of the plane with the parametrisation 
of the surface, and seeing what types of singularities arise. If the function obtained 
in this way is a submersion, the plane is said to be transverse to the surface. When 

the plane is tangent to the surface, the function has a singularity and we label 

the contact with the type of this singularity. For more details, see Chapter 4. In 

the case of the crosscap, we might expect all those planes containing the tangent 
line to have Al contact with the crosscap at the crosscap point, with the limiting 

tangent planes to the parabolic curves having higher contact. In fact this is what 
happens. 

Lemma 3.3.5 Let P(u,, u2, u3) be the plane given by the equation 

(ui, u2, u3)"(u, v, w) = 0, 

where (ul, u2) u3) E S2 is a unit vector. Then all the planes P(u,, U2, u3) are trans- 

verse to the crosscap at the crosscap point unless ui = 0. 

The planes P(o,,,,,,, 3) 
have Al contact with the crosscap parametrised by f, 

except in the case of the parabolic crosscap (a > 0) when the limiting tangent 
planes to the parabolic curves have A2 contact with the crosscap. The equations 
for these planes are w+ (-b + 2Vqa v=0 and w+ (-b - 2/a)v = 0. 
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Proof Composing the equation of the plane P(112,3) with the parametrisation 
of the crosscap, we obtain the height function 

(Xi Y) = u1x+u2(xy+p(y)) +u3(y2 +axe +bxy+9(x, y))" 

This is a submersion unless ui = 0, proving the first part of the lemma. 

If ul = 0, we consider the 2-jet of H(x, y). This is 

u3y2 + (u2 + bu3)xy + au3x2. 

The singularity of H is of type A9,, for if not, the 2-jet would be identically zero 
giving u2 = u3 = 0: a contradiction. For H to have an A>2 singularity, the 
discriminant of this quadratic form must vanish. So we need 

(u2+bu3)2-4au3=0 

U2 + 2bu2u3 + (b2 - 4a)u3 = 0. 

This has solutions if and only if 4b2 - 4(b2 - 4a) = 16a > 0. So if a>0, then 
uZ = (-b ±2/ )u3. By Lemma 3.3.4 the planes defined by these values of u2 
and u3 are the limiting tangent planes to the parabolic curve. 11 

Remark 3.3.6 It follows from Lemma 3.3.5 that a plane is transverse to the 

crosscap at the crosscap point if and only if it does not contain the tangent line 
to the crosscap. 

3.4 The Flat Geometry of the Crosscap 

When we restrict our attention to the flat geometry of the crosscap, the normal 
form can be reduced further. Flat geometrical properties (those properties which 
can be measured in terms of contact with planes and lines) of the image of a map 
germ are preserved by all affine changes of coordinates in the target which fix the 
origin. These coordinate changes correspond to the subgroup GL(3, R) of L. 

Proposition 3.4.1 Let f: R2,2,0 -º R3,0 be the map germ defined by f (x, y) = 
(x, xy, y2). Let g be a map germ that is A-equivalent to f. Then using affine 
changes in the target and diffeomorphisms in the source, we can reduce g to the 
form 

9l (x, y) = (x, xy + p(y), y2 + axe + 4(x, y», 
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where pE Mi and qEM. When a 54- 0, we can fix the coefficient of z2 in the 
third component to be 1 if a>0 and -1 if a<0. If we write p(y) = p4y4 +""", 
and p4 54 0, we can fix the coefficient of y4 in the second component to be 1 if 
p4 >0 and -1 if p4 < 0. Note that the conditions p4 0 and a; 0 are both 
generic in the sense that they hold for an open dense set of map germs with 
normal form g'. 

Proof By Proposition 3.1.1 , we can reduce such a map germ g to the form 

9'(x, y) = (x, xy + P(y), y2 + axe + bxy + 9(x, y)), 

where a and b are constants, pEM, and qE M2. Assuming a#0 (this is the 
generic case), it is not hard to see that g'(x, y) can now be reduced to the form 

(x, xy + P(y), y2 ± x2 + 4'(x, y)), 

where pE Mi and qE M3. The coefficient of x2 in the third component is 1 
if a>0 and -1 if a<0. Suppose that p(y) = p3y3 + p4y4 +""". Replace x by 

x- p3y2 to obtain 

(x -p3y2, xy+P4y4 +..., y2 ±x2 +9' (x, y)), 

for some q' E M. Next replace u by u+ paw in the target to obtain x± 
P3 X2 + p3q'(x, y) in the first component. We set this equal to x', so that x= 
x' T p3x'2 + r(x', y), with rEA. Reverting to x our parametrisation is 

(x, xy T- p3x2y + yr(x, y) +p(y)9 y2 f x2 + 9'(x, y)), 

with pENl1. 

Now we can apply Lemma 3.1.2 in the same way as in the proof of Proposition 
3.1.1 to obtain the result. The crucial point is that if we replace y by yT Pixy, 
then we can reduce the second component to xy + ys(x, y), with sE .M2, and 
the reduction of Lemma 3.1.2 will not reintroduce any y3 terms. 

We have reduced our normal form to 

(XI xy +p(y), y2 + axe + 4(x, y)). 

Let p(y) = p4y4 +""", and A be such that A2 = Ip41. Then by applying the 
coordinate changes 

(x, y) '' (Ax, Ay) 

in the source and 
(u, v, w) H (u/. \, v/A2, w/)2) 

in the target, we can reduce the parametrisation to the required form. Q 
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We now determine some of the geometrical properties of the crosscap that are 
fixed by the affine coordinate changes. 

Lemma 3.4.2 In the family of crosscaps parametrised by the normal form de- 
termined in Proposition 3.4.1 the limiting tangent to the double point curve is 
the w-axis. The preimage of the double point curve in the (x, y)-plane can be 
written x= (±2q3 - p5)y4 +, 0 where 

V) E M, and p(y) _ßy4 psy5 -I- ... 4(x7 y) = q3y3 -I- ..., 

Proof The first part follows from Lemma 3.3.1 and Proposition 3.4.1. 

For the second part we note that the g'(x, y) = g'(X, Y) implies that x=X 
and 

y __ 
-(p MY) - P(y)) 

and Y -}- y -_ 
-(q(x, Y) - 4(x, y)) 

(YY) (Y-y) 

Then 

x_ F(y3 + y2Y + yY2 + Y3) - p5 (y4 + y3Y + y2Y2 + yY3 + Y4) +... 

from the first equation; the second gives Y= -y - g3y2 +""". It follows that 

x= (±2q3 - p5)y4 + ... . 
13 

Remark 3.4.3 It follows from the proof of Lemma 3.1.5 that the preimage 
of the double point curve can always be written x=f (y) with fE Mi. 
Moreover the Taylor series expansion of f must start with an even power of 
y. For we have shown (Lemma 3.1.5) that a parametrisation for this curve is 

('yl(t2), ry2(t)). Writing s= ryZ 1(t), the parametrisation becomes -Y(s) _ 
(72(ryi 1(t)), t). We can also show this by considering the power series in the proof 
of Lemma 3.4.2. 

Lemma 3.4.4 The crosscap parametrised by the normal form determined in 
Proposition 3.4.1 has two parabolic curves if and only if a>0. In this case we 
can fix a to be 1. 

Then the curves which are the preimages of the parabolic curves have gradients 
1 and -1 at the origin and there are two planes with A2 contact at the crosscap 
point given by the equations w- 2v =0 and w+ 2v = 0. 

41 



Proof The first part follows from Lemma 3.3.2 and Proposition 3.4.1. Lemma 
3.3.2 then tells us that the gradients at the origin of the preimages of the parabolic 
curves are 1 and -1. Eliminating the xy term in the third component using affine 
coordinate changes fixes the coefficient b=0. Substituting the values a=1, b=0 
into the equations for the planes with A2 contact given in Lemma 3.3.5 completes 
the proof. Q 

Definition 3.3.3 can now be reduced to the following. 

Definition 3.4.5 When we are dealing with the flat geometry of the crosscap, 
we define the parabolic crosscap to be any crosscap parametrised by 

9'(x, y) = (x, xy + p(y), y2 + x2 + q(x, y», 

and the hyperbolic crosscap to be any crosscap parametrised by 

9'(x, y) = (x, xy + P(y), y2 - x2 + 4(x, y)), 

where pE Mi, qE M2 and p(y) = ±y4 +... in both cases. 

Now let Vl and V2 be the affine subspaces of E(2,3) of map germs with normal 
forms 

f(x, y) = (x, xy+P(y), y2+x2 +q(x, y)) 

and 
f ýxý y) = (x, xy + P(y), y2 - x2 + q(x, y)), 

in both cases. So Vl is respectively, with pE Mi, qE M2 and p(y) = ±y4 +... 
the space of parabolic crosscaps, and V2 is the space of hyperbolic crosscaps. 

Proposition 3.4.6 The isotropy subgroups of GL(3, R) xR. with respect to Vl 

and V2 are both isomorphic to Z. 

Proof We show that the isotropy subgroups of GL(3, R) xR with respect to Vl 

and V2 both consist of the elements (I, id) and (-I, -id) where I is the identity 

matrix, and id : R2,2,0 -º R2,0 is the identity map. The generators commute and 
(-I, -id) is of order two, and so the result follows. 

We first consider V1. Then by Lemmas 3.4.4 and 3.1.5, any right coordinate 
change 0 which leaves Vl invariant must fix the tangent lines at the origin to 
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three curves in the source: the preimages of the double point curve and the two 

parabolic curves. Thus the derivative dq5o must be a multiple of the identity map. 
So we write 

q5(x, y) _ (Ax -I- b1, Ay +b2), 

for some AE R/{0} and functions t1i /2 E M. 

Lemmas 3.1.4,3.1.6,3.4.2 and 3.4.4 imply that any element A of GL(3, R) 

which leaves Vi invariant must leave the configuration of the u-axis, the plane 
v=0, the w-axis, and the planes given by the equations w± 2v =0 fixed. These 

restrictions mean that the matrix must be of the form 

al a2 0 
A= 0b0 

00c 

Now suppose that (A, ¢) is in the isotropy subgroup of GL(3, R) xR with 
respect to V1, then A and can be written as above, and we have 

x= al(. Xx+ýi)+a2(A2xy+ay 1 +)x02+ iý)z 
+Wy + 02)) (3.1) 

xy + p'(y) = b(A2xy + \yIP, + Axiba +'01'02 

+p(7y +'02)) and (3.2) 

y2 + x2 +q 1(X, y) _ c((Ax +, 01)2 + (. y +, o 2)2 

+4(('\x + 3bi), (Ay + 2))), (3.3) 

for some p'(y) = ±y4 +""" and q' E M. Now Equation (3.1) implies that 

al = 1/A, and gives us the identity 

1) 
ý0i + a2 (, \2_, y + \y, 01 + Ax'ý1ý2 +'011P2 + P(Ay + )a)) = 0,3.4 

for all functions pE Mi such that p(y) = ±y4 +.... If we take p(y) = y4, then 
Equation (3.4) implies that 

1 
ýO1 + a2(A2xy + \y, 01 + Ax02 +0102 + (AY + 024) = 0. 

Choosing p(y) = y4 + p5y5 +""", Equation (3.4) implies that 

a2U'5(Y + ý)2)5 + ... 
) = ýý 

so that a2 =0 and Vil = 0. From equations (3.2) and (3.3), we see that b=c= 

1/. \2. Now we consider the equation 

T2 (AX (4 +'P2) +p(Ay +'02)) _ xy +p'(y)3 
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for some p' E Mi such that p(y) = ±y4 +.... We can apply a similar inductive 

argument to that at the end of Proposition 3.2.1 to show that '02 must be iden- 
tically zero. So far we have shown that if (A, 0) is in the isotropy subgroup of 
GL(3, R) xR with respect to V1, then A and 0 can be written 

1/a0 00 
A= 1/A2 0 

00 1/A2 

and 
O(x, y) = (Ax, AY)" 

Equation (3.2) now implies that 

xy t y4 +... =1 (A2Xy f \4y4 + ... ýý 

so that A must be ±1. 

When calculating the isotropy subgroup for the space V2, we only know that 
the right coordinate change 0 fixes the tangent to the preimage of the double 

point curve, that is the y-axis. This means that 

«(x, y) = (ax+O(2), ßlx+, 32y+O(2)). 

The matrix A must fix the u-axis, the w-axis and the plane v=0. This means 
it must be of the form 

al a2 0 
A= 0 b2 0 

0 C2 C3 

So for the hyperbolic crosscaps, the coordinate changes that we can choose are 
less restricted by geometrical considerations. However the result still follows by 

comparing coefficients in a similar way to that above. 11 
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Chapter 4 

Height Functions on the Crosscap 
and the Dual of the Crosscap 

A common approach when studying the flat geometry of smooth surfaces is to 
consider the composite of a parametrisation of the surface (usually in Monge 
form) with the 2 parameter families of projections to lines and planes. Now that 
we have obtained a normal form for the parametrisation of the crosscap, we are 
in a position to imitate this approach. In this chapter we consider singularities 
of height functions on the crosscap. This enables us to describe the parabolic set 
and the dual of the crosscap. We then use techniques from singularity theory to 
determine further information on the dual of the crosscap. 

4.1 Height Functions and Duals of Smooth Sur- 
faces 

Information about the geometry of a surface can be obtained by considering its 
dual surface, which can be defined in the following way. Recall that the set of 
hyperplanes in real projective space RP" forms a projective space, called the dual 
projective space and denoted RP"*. Now if X is a surface in R3, we can embed 
X in RP3 via a natural inclusion of R3 in RP3. At smooth points of X each 
tangent plane corresponds to a point in RP3*. The dual surface to X, denoted by 
X* is the closure of the locus of these points. A fuller discussion of dual varieties 
can be found in [Har], page 196. In particular this reference contains a proof that 
the dual of the dual of a variety is the variety itself. So it is certainly the case 
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that the dual of the dual of a smooth parametrised surface M is M itself. 

Let S2 be the unit sphere and X be a smooth surface in R3. We consider the 
family of height functions 

H: XxS2xR -º R 
(x, u, c) Hx"u-c. 

Taking coordinates (xl, x2) x3) on R3, we can associate to each point 
(ul, u2, u3)c) E S2 xR 

the plane with the equation (xl, x2i x3) " (ul, u27 u3) =c (note that (u, c) and 
(-u, -c) give the same plane). Thus if H(x, u, c) =0 then the function 

H��: X, x-->R, 0 

measures the contact between the surface X and the plane 

(11, x2, x3) (u1, U2, U3) = C. 

Now we consider the function hu :X --+ R defined by 

hu (x) = Hu, o (x) =x"u, 

and the map 

XxS2 -º RxS2 
(x, u) ý--º (hu(x), u). 

The discriminant or set of critical values of this map can be thought of as an 
affine dual to X. For c=h,, (x) is the height of the point x above the origin in 
the direction u, and hu is singular at x if and only if u is normal to the surface X 
at x. This is exactly the information required to reconstruct the tangent plane to 
X at x; this plane is given by the equation x"u=c. This approach to studying 
the geometry of the dual surface was first used in [B1]. Note that the map 

7: S2 xR -º RP3* 
(ul, u2)u3, C) H [u1 : 262: 263 : -C] 

is at each point a local diffeomorphism, and that 7r doubly covers X*. 

In the case where X is a smooth surface, we have the following: 
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Proposition 4.1.1 Let X be a generic smooth surface. Let (x, u) EXx S2 with 
u normal to X at x. Then the height function hu (x) can only have one of the 
following types of singularity (up to K-equivalence): 

Ai f (x, y) = x2 ± y2, 

A2 f (xi y) = x2 +y37 

A3 f (x, y) _ x2 ± y4" 

Moreover h., (x) will be versally unfolded by the family of height functions. 

Proof For the first part see [BGM], or [B4] for a discussion of an argument 
which uses Monge Taylor expansions. The second part is due to Looijenga, and 
the proof can be found in [Wa2]. Q 

The height function has an At singularity at an elliptic point, an AT singular- 
ity at a hyperbolic point, and a more degenerate singularity at a parabolic point. 
We expect curves of points where this singularity is A2, and isolated points on 
these curves where the height function has an A3 singularity, which are called 
cusps of Gauss. The advantage of these singularities being versally unfolded by 
the family of height functions is that we already know what their discriminants 
are, and thus have local models for the duals of the surface. So the dual is locally 

smooth in the Al case, 

it has a cuspidal edge corresponding to the curves of parabolic points where the 
height function has an A2 singularity, 
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and swallowtail points corresponding to the cusps of Gauss. 

Height functions can also be used to study the set of planes which are tangent 
to a surface at more than one point. These correspond to multi-local singularities 
of the height function (singularities at all of which the height function has the 
same value). In general, if the plane P is bitangent to a smooth surface X at 
points x1 and x2, we expect that there will be other bitangent planes whose points 
of contact will be close to x1 and x2. So we have curves of pairs of points, along 
which certain planes will be bitangent. Intuitively, think of rolling the plane 
along the surface. 

More precisely, we have 

Proposition 4.1.2 Let X be a generic smooth surface. Then the possible multi- 
local singularities of the height function are 
(i) Type A. 
The height function hu has two Al singularities, at x= x1, x= x2, for which 
hu(xl) = hu(x2) . Geometrically, there is a single plane perpendicular to u and 
tangent to X at xl and x2. These singularities occur in curves. The family of 
height functions always versally unfolds such a singularity. 
(ii) Type A1A2. 
The height function hu has an Al singularity at xl and an A2 singularity at x2, 
with h,, (xl) = h,, (X2). There is a single plane perpendicular to u and tangent to X 
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at the non-parabolic point xl and at the parabolic point x2. These singularities 
occur at isolated points on the curves of Ai singularities. This singularity is 
generically versally unfolded by the family of height functions as long as the 
single asymptotic direction at x2 does not pass through x1. 
(iii) Type A. 
The height function hv, has three Al singularities, at x= x1ix = x2 and x= x3 
for which hu(xl) = h,, (x2) = hu(x3). There is a single plane perpendicular to u 
which is tangent to X at three non-parabolic points. These singularities occur 
at isolated points. This singularity is versally unfolded by the family of height 
functions as long as x1, x2 and x3 are not collinear. 

Proof See [B1] for a proof that the types of multilocal singularities that can 
occur are those listed above. The proof of the geometrical discussion is in [BGT]. 

O 

Notice that the conditions for the singularities to be versally unfolded are 
generic, so we have local models for the duals of generic surfaces when the height 
function has a multi-local singularity. If the height function has a versally un- 
folded Ai singularity, the dual has a transverse crossing of two smooth sheets. 

.................................... 

In the case of a versally unfolded A1A2 singularity, the dual has a crossing of a 
smooth sheet and a cuspidal edge. 

7r 
In the case of an Ai 

UARV 
pthe, dual: has a triple point. 

lp. F 
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Finally we note the following result 

Proposition 4.1.3 Let X be a smooth surface in RP3. Let x be a point on X, 

and x* be the corresponding point on the dual surface to X, which we denote X*. 
Then x is elliptic (respectively hyperbolic) if and only if x* is elliptic (respectively 
hyperbolic). 

Proof See [B3], Theorem 4.11 

Note that in Proposition 4.1.3 by the term elliptic (respectively hyperbolic) 

we mean that the projective plane tangent to X at x has At (respectively Ai 

contact) with the surface. 

4.2 Height Functions on the Crosscap 

We have already discussed the contact of planes with the crosscap at the crosscap 
point (Lemma 3.3.5). Now we look at the singularities of the height functions in 

more detail. Since the height functions measure contact with planes (an aspect 
of flat geometry), we use the normal form 

.f 
(x, y) = (x, xy + p(y), y2 + axe + 4(x, y», pE M4, qE Mi 

in what follows. We have seen (Proposition 3.4.1) that a could have been taken 
to be ±1, but we shall be interested in the transition as a changes from positive 
to negative. Note also that we can suppose that p(y) = ±y4 +""", but that this 
will not affect the geometry investigated in this chapter. 

The family of height functions we shall consider is then 

H(x, y, ui) u2, c) = axe + y2 + q(x, y) + ulx + u2 (xy + p(y)) + c. 
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Of course this only includes the directions in the `hemisphere' u3 > 0. We shall 
consider the directions this omits separately. 

Proposition 4.2.1 The function H,,, has a singularity at (x, y) = (0,0) if and 
only if ul = 0. This is of type Al if and only if u2 - 4a # 0. In particular the 
singularities are all of type Al if and only if a<0. Otherwise we expect A2 
singularities precisely when u2 = ±2/a and these will be versally unfolded. 

Proof The first part of this follows from Lemma 3.3.5. For the second part, note 
that we have the function 

H(0, ±2-, fa-, 1), 0 (X, y) = ax 2+ y2 + 9(x, y) ± 2'(xy +P(y)) 

= (J x± y)2 + q(x, y) ± 2�a-P(y)" 

Writing x' = ý, fa-x ±y and y' = y, this becomes 

x'2 +q( (x' y'), y') t ZýP(y')" 

For an A2 singularity, we need the coefficient of y'3 to be non-zero. This coefficient 
is q3(=Fý, 1), where q3 is the homogeneous cubic part of q. The condition that 
this is zero is not generic. 

Finally we show that these A2 singularities will be versally unfolded. Since 

we have an A2 singularity at (x, y) = (0,0), its Jacobian ideal J contains M. It 
is straightforward to check that the partial derivatives 8H/öui and äH/au2 span 
the quotient , 

M2/J when evaluated at ul = 0, u2 = f2ý, Fa, so that the standard 
criterion for versality is satisfied. Q 

Now the family of height functions H misses out those functions corresponding 
to the directions (ul, (1 - 01) 1/', 0). In the latter case, the corresponding height 
function is a submersion. For the directions near to (0,1,0) we need to consider 
the following family: 

G(x, y, u1, u2, c) = uix + u2 (ax2 + y2 + q(x, y)) + (xy + P(y)) + c. 

Now the function G has a singularity at (x, y) = (0,0) if and only if ul = 0. 
This is of type Al unless 1- 4au2 = 0. In particular we see that to get a more 
degenerate singularity, u2 0. This case is covered by Proposition 4.2.1, since if 
u2 0, G(x, y, u1, u2, C) = ti2H(x, y, ul, l /u2, C/u2)" 

51 



From Lemma 3.3.2, we know that the parabolic set in the source is empty 
when a<0 and consists of two smooth curves of gradient ±2/ when a>0. 
The transition between these two cases is of some interest. When a=0, the 
family of height functions is now 

H(x, y, ui7 u2) c) = y2 + 4(x, y) + ulx + u2(xy +p(y)) + c. 

Proposition 4.2.2 The function H,,,, has a singularity at (x, y) = (0,0) if and 
only if ul = 0, and is of type Al unless u2 = 0. When ul = u2 =0 we expect an 
A2 singularity, which will be versally unfolded. 

Proof The first part of this is clear. In the case where ui = u2 = 0, then for the 
singularity to be more degenerate than A2, the coefficient of x3 in q(x, y) would 
have to be zero. This is not a generic condition. A calculation similar to that in 
the proof of proposition 4.2.1 shows that this A2 singularity is generically versally 
unfolded. Q 

As before, we need to check the height functions in the directions missed out 
by the family H. It is clear that the height function corresponding to the direction 
(1,0,0) is a submersion. For the directions near to (0,1,0) we must consider the 
family 

G(x, y, Ills u2) c) _ ulx+u2(y2+q(x, y))+(xy+P(y))+c. 

The function G has an Al singularity at (x, y) = (0,0) if and only if ul = 0. 

We can use the height functions to determine the parabolic set in the source. 
From Lemma 3.3.2 we know that this consists of two transverse curves intersecting 

at the origin when a>0 and a single point (the origin) when a<0. Now we 
consider the transition between these two cases. 

Proposition 4.2.3 When a=0, the parabolic set in the source is a cusp. More- 
over the parametrisation of this set is versally unfolded by a. 

Proof Let 

H(x, y, ui, u2, c, a) = y2 +axe +4(x, y) +uix+u2(xy+p(y)) +c. 

The parabolic set can be obtained by projecting the set given by Hx = Hy _ 
H,,, ýHyy -Hey =0 in (x, y, ul, u2) c, a)-space into (x, y)-space. Now we have 

Hý = 2ax+q., +uzy+ui, Hy = 2y+u2(x+p'(y)) +qp 
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Hx_, = 2a + qx.,, Hyy = u2 + qxy and Hey =2+q., y + p"(y)" 
Considering H. = 0, we see that ul = -(2ax+qx+u2y). Since ul only appears in 
this equation, we need only consider Hy = H,, 

_-Hyy - 
Hx2y = 0. Writing u instead 

of u2, we get 
2y + u(x + p'(y)) + qy =0 (4.1) 

and 
(2a + qýý, )(2 + qyy + p"(y)) - (u + q. ", 

)2 = 0. (4.2) 

Now by the implicit function theorem, Equation (4.1) implies that we can write 
y as a function of x and u. Writing 

q(x, y) = QOy3 'i.. ' g1xy2 '+" g2x2y '+' g3x3 '+' 44x4 +... 
1 

we see that the lowest order terms of its Taylor expansion are given by 

y= -1/2(ux + g2x2) + ..., (4.3) 

Expanding Equation (4.2), we get 

4a + 12g3x + 4g2y + x2(24Q4 + 12glq3 - 4q2) + 4giax - 4q2ux - u2 

+yoi(x, y, u, a) + 02(x, a, u) = 0,01 E M4,02 E . 
A'is. 

Substituting for y gives 

4a + 12g3x + x2(24g4 + 12giq3 - 6q2) + 4glax - 6Q2ux - u2 + 03(x, a, u) = 0, 

where 03 E , /Vt3. By the implicit function theorem, we can now write x as a 
function of u and a, and the lowest order terms are given by 

x= -1/12g3(4a-u2 -24g2au+16(g1+24q4+12glq3-6g2)a2)+""". (4.4) 

Substituting Equation (4.4) for x in Equation (4.3), we obtain the following 

parametrisation of the parabolic set in the source; 

(u, a) _ (-1/12g3(4a - u2 - 24q2au) +""" , 1/24g3(4au - u3 - 24g2au2) +"" "). 

When a=0, this is generically a cusp. 

Now for the second part, we note that if g(t) = (t2, t3) then LA,. g D Mi. E(1,2). 
Since zoo ='(u, 0) is A-equivalent to g, we just need to check that 

R. äa 1+ LA,. oD E(1,2)/Mi. E(1,2). 
a=0 

It is clear that this is the case. 11 
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Proposition 4.2.3 gives us a picture of how the parabolic set behaves away 
from the crosscap point. The versal unfolding of the cusp is shown below, with 
the origin marked in each case. 

a>0 

0 

a=o a<o 
So in the case of the parabolic crosscap (a > 0), rather than having two distinct 

parabolic curves in the source, we can think of having one, which self intersects 

at the origin. As a tends to zero, this crossing becomes a cusp, and then when 
a<0 (the hyperbolic crosscap) the parabolic set moves away from the crosscap 
point altogether. Of course, as we are working locally, we cannot really say what 
happens to the parabolic set away from the crosscap point. 

4.3 The Dual of the Crosscap 

What can we say about the dual of a surface with a crosscap point? Since we are 
dealing with height functions, we use the normal form that corresponds to flat 

geometry in what follows. Recall that this is given by 

.f 
(x, y) = (x, xy + p(y), y2 + axe + q(x, y)), 

where pE Mi and qEM. In this case, we have seen (Proposition 4.2.1) that 
there is a pencil of planes with higher order contact with the crosscap at the 

crosscap point. So there is a projective line l corresponding to these planes which 
lies on the dual. 

Proposition 4.3.1 In the case where the crosscap has no parabolic points in a 
neighbourhood of the crosscap point (a <0 in the normal form f) the dual is 

smooth in a neighbourhood of 1. When a>0, and there are two parabolic lines 

which pass through the crosscap point, the dual is smooth in a neighbourhood of 
1 except at the two points which are dual to the two planes with A2 contact at 
the crosscap point. At these points the line 1 meets one of the cuspidal edges of 
the dual surface which correspond to the parabolic lines at the crosscap point. 
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Proof This result follows from Proposition 4.2.1. As we know that the singular- 
ities of the family of height functions are versally unfolded, we can use the local 

models for the dual discussed above. 13 

Remark 4.3.2 We can deduce from Proposition 4.3.1 that the dual has no self 
intersections, and thus there are no bitangent planes in a neighbourhood of the 
crosscap point. 

Note that along the double point curve of the crosscap, the surface consists of 
a transverse crossing of two smooth sheets. So there will always be a family of 
bitangent planes to the dual of the crosscap, corresponding to the double point 
curve. We have shown that the limiting position of the tangent planes to the 

crosscap along the double point curve as we approach the crosscap point is the 
tangent cone (Lemma 2.1.5). So there will be curves of pairs of points on the 
dual, along which we have bitangency. The curve will pass through the point 
on the projective line l which corresponds to the tangent cone, where we have 

tangency. It turns out that this point is a flat umbilic. We prove this later on. 

4.4 The Local Structure of the Dual 

We are interested in the structure of the dual in a neighbourhood of the line 1. 

We have seen that the dual arises naturally as the discriminant of the family 

of height functions. Previously, we have considered families of height functions 

in certain neighbourhoods of the directions (1,0,0), (0,1,0) and (0,0,1) which 
cover the 2-sphere. Lemma 3.3.5 tells us that the height functions in directions 

close to (1,0,0) are all submersions, and so we only need to consider the other 
two families when considering the geometry of the dual. 

More formally, the crosscap is defined as a parametrised surface in R3. We 

can embed R3 in RP3 by (u, v, w) -º [u :v: w: 1]. This embedding takes 

planes to planes. The point [a :0: y: 6] E RP3* represents the projective plane 

au+ßv+"yw+St=0. 

We can take the affine chart t=1 on RP3 because of the way we have embedded 
the crosscap in projective space. This gives us the equation 

au +ßv +ryw+6=0. 
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Now we can choose various affine charts on RP3* to get the equation of a plane 
in R3. However we know from Lemma 3.3.5 that if the crosscap is parametrised 
by the normal form f then 1 is the set {[0 :Q: y: 0] : ß,, y E R}. Thus to look 
at the structure of the dual in a neighbourhood of 1, we need only use the affine 
charts 3=1 and ry = 1. These give rise to the equations 

au+v+ryw+6 =0 and 

au+ßv+w+S=0. 
Composing these equations with the parametrisation of the crosscap f, we see 
that we can work in R3 with the two families of height functions 

G(x, y, ul, u2i c) = xy + p(y) + ulx + u2(ax2 + y2 + q(x, y)) +c and 

H(x, y, ui) U2) c) = ax 2+ y2 + 9(x, y) + uix + u2(xy + P(y)) + c. 

We can get local models for the dual by considering the discriminants of these two 
families. In more down to earth terms, they are obtained from the solution sets 
of the equations G=G.:, = Gy =0 and H= HH = Hy =0 in (x, y, u1i u2, c)-space 
by projecting into (u1, u2, c)-space by eliminating the x and y variables. Working 
this way, the projective line corresponds to the u2-axis in both cases. In what 
follows, we work mainly with the family H. We start with a preliminary result. 

Proposition 4.4.1 The tangent space to the dual of the crosscap is constant 
along the line l and is given by 6=0 (the plane c=0 in (u1, u2, c)- space). 

Proof We would expect this to be the case by a duality argument. Consider the 
case where X is a smooth surface in RP3. Then at a point xEX, the dual point 
x* E X* corresponds to the tangent plane TAX . So the tangent plane in the dual 
space Te. X* corresponds to the point x. Thus a point p* E Tx. X* corresponds to 
a plane in RP3 which contains x. So Tx. X* consists of all planes in RP3 which 
pass through x. Now in the case of the crosscap, each point on the projective line 
l corresponds to a plane which is tangent to the crosscap at the crosscap point. 
It follows that we expect that the tangent plane to d to remain constant, and to 
correspond to the crosscap point, that is it should consist of all planes that pass 
through the origin. This plane is in fact given by 6=0. 

Now we show that this is indeed the case by working with the family of height 
functions H. We evaluate the matrix 

HX Hy Hul HH2 He 
HHX HXb Heul Hsu2 HXC 
HHX Huy Hvu1 H2 HvC 
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at all points along the u2 axis, given by (0,0,0, t, 0). This matrix is 

10 0001 
M= 2a t100, 

t2000 

which has maximal rank unless 4a - t2 = 0. It follows that away from the points 
(0,0,0, f2., Fa, 0) when a>0 (the cuspidal edges in the case of the parabolic 
crosscap), every point on the u2 axis is a regular point of the map R5 -º R3 
given by (x, y, u1i u2) c) = (H, Hy, Hr). Thus the equations H= HH = Hy =0 
determine a smooth surface at each point (0,0,0, t, 0). Now kerM is contained in 
the set c=0 in (x, y, u1, u2, c)-space, so projecting into (u1, u2, c)-space it is clear 
that the tangent plane to the u2-axis is the plane c=0. The same considerations 
for the family of height functions G complete the result. 0 

From the results already established, we know that in the case where the 
crosscap has two parabolic curves passing through the crosscap point, there are 
two points (u1, u2i c) = (0, fVa-, 0) on the dual where the line l meets the corre- 
sponding cuspidal edges. We wish to understand how these cuspidal edges meet 
l and the tangent plane (c = 0) to the dual along 1. 

First we consider general smooth curves on cuspidal edges. In what follows, 

we choose coordinates t, (x, y), and (u, v, w) for R, R2, and R3 respectively. We 

shall say that f: R2,0 --ý R3,0 parametrises a cuspidal edge if it is A-equivalent 
to the map germ 

h: R2,0 -º R3,0 
(x, y) -' (x, y2, y3), 

and that the standard cuspidal edge is the surface with defining equation v3 = w2. 
Associated to any parametrisation of a cuspidal edge, f, there are two distin- 
guished directions through the origin in R2; the kernel of the derivative dfo, and 
the tangent to the preimage of the cuspidal edge (the critical set of f). 

Lemma 4.4.2 Let f: R2,0 -+ R3,0 parametrise a cuspidal surface, and a: 
R, 0 -) R2,2,0 parametrise a smooth curve C. Suppose that C is transverse to 
kerdfo, and has k-point contact with the critical set of f. Then we can choose 
smooth coordinate changes in R, R2 and R3 taking the cuspidal edge to the 
standard cuspidal edge and such that foa is reduced to the map tH (t, t2k, t3k). 
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................................................. 
C 

k=1 

.............................................. 
C 

k=2 

Figure 4.1: The configuration of the curve C' and a cuspidal edge when k=1 
andk=2. 

Proof Since f is A-equivalent to h we may suppose that we are dealing with the 

standard parametrisation h(x, y) = (x, y2, y3) without affecting the hypotheses. 
Now kerdho is the y-axis and the preimage of the cuspidal edge is the x-axis, so 
we can choose coordinate changes in R and R2 so that a is of the form (t, td f3(t)) 

where ß(O) 0 0. Then we have 

ho a(t) = (t, t2kß2(t), t3kß3(t)). 

Finally consider the coordinate change 

(: R. 3,0 
-) R. 3,0 

(u, v, w) -'ý 
(u, vß2('u), wß(u)3)" 

This is a diffeomorphism and an automorphism of the standard cuspidal edge, and 
if we compose 0 with the map t ý--º (t, t2k, t3k), we get t i-º (t, t2k82(t), t3k#3(t)) 

So applying 0-1 to hoa gives us the result. 
I0 

Lemma 4.4.2 shows that the configuration of the curve C' parametrised by 
foa and the cuspidal surface is determined (up to diffeomorphism) by the con- 
figuration in the source of the curve C and kerdfo, and the degree of contact of 
C with the preimage of the cuspidal edge. In the cases k=1 and k=2, the 
configuration is shown in Figure 4.1. 
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Returning to the dual of the parabolic crosscap, since this surface is locally 

smooth at all points of 1 away from where l meets the cuspidal edges, we would 
expect the configuration of 1 and the cuspidal edges to be diffeomorphic to that 
of Figure 4.1, where k=1. We now show that this is indeed the case. We work 
with the height function H, and since we are working with the parabolic crosscap, 
we can set a=1 to get 

H(x, y) ui7 uz, c) = x2 + y2 + q(x, y) + ulx + u2(xy +P(y)) + c. 

Proposition 4.4.3 Take an affine chart on projective space close to where each 
cuspidal edge meets the line l. Then locally (close to the points (0, ±2/, 0) in 
(Uli u2, c)-space) there exist smooth coordinate changes taking the cuspidal edge 
on the dual to the standard cuspidal edge, and so that the projective line is taken 
to the curve parametrised by the map t ý-º (t, t2, t3). 

Proof To see how 1 meets the cuspidal edges we apply Lemma 4.4.2 in the 

case where k=1. To do this we need to be able to locate the the cuspidal 
surface and the cuspidal edge. Again we work in (X, y, ul, u2i c)-space. The set 
of points corresponding to the cuspidal surface, say S, is given by H=H. = 
Hy = 0, with the cuspidal edge points corresponding to the subset given by 
0= Hx.,,, Hyy-W. xy = 0. It follows from the versality of the unfolding (Proposition 

4.2.1) that S is a smooth surface (and so diffeomorphic to R2) and that the 

projection it :S -º R3 to the (Uli u2i c)-space is a parametrisation of a cuspidal 
edge. The conditions of Lemma 4.4.2 are diffeomorphism invariant, so we just 

need to ensure that at the points (0,0,0, ±2J, 0) the u2-axis which lies inside S 
does not coincide with the kernel of dir and has 1-point contact with the preimage 
of the cuspidal edge. The first condition holds trivially. For the second we need 
to check that 801 äu2 is non zero at the relevant points. Now we have 

Hy = 2x + qx + u2y + ul, Hy = 2y + u2(x +p'(y)) + 4v+ 

Hxx=2+gxx, Hx =u2+qx , Hvv =2+ Qvv + P" vv 
(y) 

so that 
A= (2 + 4x,, )(2 + qyy + p"(y)) - (u2 + gxy)2. 

It follows that 00/Ou2 = 2(u2 + qxy) 5A 0 at the points (0,0,0, ±2/, 0). 11 

Thus we have the following picture of how 1 meets the cuspidal edge. The 
plane (given by c= 0) that is tangent to the dual along l is also depicted. 
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projective plane 

:.... 
.......................................... 

dual 
surface 

Now we consider the transition between the case of the parabolic crosscap 
(where there are two cuspidal edges passing through the line 1) and the hyperbolic 

crosscap (where there are no cuspidal edges passing through 1). When a=0, so 
that the crosscap is parametrised by 

f (x, y) = (x, xy + p(y), y2 + x2 + 9(x, y)), PE Mi, 4E M2, 

the height function H becomes 

H(x, y, ul, u2, c) = y2 + q(x, y) + ulx + u2 (xy + p(y)) + c. 

In this case Proposition 4.2.2 tells us that there is just one cuspidal edge passing 
through the line l at the point (0,0,0) in (u1, u2i c)-space. 

Proposition 4.4.4 Close to the point (0,0,0) in (ul, u2, c)-space, there exist 
smooth coordinate changes taking the cuspidal edge on the dual to the standard 
cuspidal edge, and so that the projective line is taken to the curve parametrised 
by the map t i-- (t, t4, t6). 

Proof This time we check the hypotheses of Lemma 4.4.2 for the case k= 
2. The set of points corresponding to the cuspidal surface, say S, is given by 
H=H., = HH = 0, with the cuspidal edge points corresponding to the subset 
given by 0= H_-yHyy - H., y = 0. It follows from the versality of the unfolding 
(Proposition 4.2.2) that S is a smooth surface (and so diffeomorphic to R2) and 
that the projection ir :S -º R3 to the (ul, u2i c)-space is a parametrisation 
of a cuspidal edge. This time we need to ensure that at the points (0,0,0,0,0) 
the u2-axis which lies inside S does not coincide with the kernel of dir and has 
2-point contact with the preimage of the cuspidal edge. The first condition holds 
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trivially. For the second we need to check that 490/au2 = 0, and ö20/äu2 qE 0 
at (x, y) ul, u2, c) = (0,0,0,0,0) 

. 
Now we have 

Hx = qz+u2y+ui, Hy = 2y+u2(x+P'(y))+4y, 

Hxx = qxx, Hwy = u2 + qzy, Hvv =2+ qyy + p"(y), 

which implies that 

A= (q,., ) (2 + qyy + p" (y)) - (u2 + qxy)2. 

It follows that 19L/öu2 = 2(u2 + q, ) = 0, and ä2A/öu2 =2 at (0,0,0,0,0), as 
required. Q 

Bearing in mind the result of Proposition 4.2.3, we depict the dual of the 
parabolic crosscap with one cuspidal edge, which meets l at the two points 
(0, fß, 0). 

dual surface 
projective 
plane .... 

.. 

a>0 

As a tends to zero, these two points tend towards (0,0,0). 

Q 
ýý 

O 
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By Proposition 4.4.4, when a=0,1 remains on one sheet of the cuspidal surface. 

Finally, when a<0, we have the hyperbolic crosscap, and 1 does not meet the 

cuspidal edge at all; there are no parabolic points in a neighbourhood of the 
crosscap point. 

""rr 

........................................................... rr 
rr 

r ý' 
rý rr 

r" 

a<0 

4.5 The Global Structure of the Dual 

The next question to arise concerns the global structure of the dual in a neigh- 
bourhood of the projective line 1. Intuitively, we wish to see how'many twists the 
dual has in a neighbourhood of this line. Is the dual topologically equivalent to 
a cylinder or a Mobius band? Now from Proposition 4.1.3, we know that away 
from the cuspidal edge and the line 1, all the points on the dual are hyperbolic or 
elliptic, since this is the case on the crosscap away from the crosscap point and 
the possible cuspidal edges. What sort of contact does the tangent plane to the 
dual have with the dual surface along 1? We shall see that the answer to this 
question will help us to determine the global structure of the dual. 
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Since the tangent plane to the dual is constant along the line 1, the function 

obtained by composing a parametrisation of the dual with the equation of the 

plane will not be one of the standard finitely determined germs. We shall relate 
the tangency to a different classification, where the relevant germs are finitely 
determined. To do this we need to introduce a new equivalence relation. For the 
time being we shall revert to (x, y, z) coordinates. We denote by Ra the subgroup 
of the group of diffeomorphisms R2,0 -º R2,0 of the (x, y)-plane which preserve 
the y-axis. Using this in place of the usual group R we obtain a subgroup of the 

contact group K denoted by K. We refer the reader to [A3] for a discussion 

of the group 1Z5. We note here that 0E Ra is a diffeomorphism of the form 
q(x, y) = (xO1(x, y), 02(x, y)), where 01 and 02 are smooth functions. Next we 

note that for functions, the notion of IC-equivalence reduces to the following. Let 

fl: R", 0i R, 0 and f2: R", 0 ---p R, 0 be two smooth functions. Then f, and 
f2 are AC-equivalent if and only if there exist a smooth function A: R", 0 -º R, 

with A(0) : 510 and a diffeomorphism ¢: R, 0 --º R", 0 such that fl o0= "ßf2. 
For Kb-equivalence, we ask further that 0 must be an element of Ra. 

Proposition 4.5.1 Suppose that we have a smooth germ h: R2,0 -º R, 0 and 
that the surface z= h(x, y) is tangent to the plane z=0 along the y-axis. 

(a) Under the above hypotheses the function h can be written h= x2 f (x, y) for 

some smooth f. 

(b) Given two such functions hi = x2 fi(x, y), for i=1,2, let Xl and X2 be the 

surfaces given by z= hi(x, y) and z= h2(x, y) respectively. Then the functions 
f, and f2 are K 5-equivalent if and only if there is a diffeomorphism R3,0 -º R3,0 
taking Xl to X2 and preserving the plane z=0 and the y-axis. 

Proof (a) From the hypothesis, we know that h(0, y) =0 (since the surface 
contains the y-axis), and h., (0, y) = hy(0, y) =0 (since the plane z=0 is tangent 
to the surface along the y-axis). We apply Hadamard's Lemma (see [BG2], page 
86) to the first of these equations to show that h can be written xg(x, y). The 

equation hy(0, y) then shows that g(0, y) = 0; we apply Hadamard's Lemma again 
to get the result. 

(b) For the second part suppose that there is a diffeomorphism 0= (01) 'ßz, 03) : 
R3,0 -+ R3,0 with the required properties. Then since 0 preserves the plane 
z=0 we can write '03(x, y, z) = zA(x, y, z). It also preserves the line x=z=0 so 
we can write eil (x, y, z) = xB(x, y, z) + zC(x, y, z). Note also that A(0)B(0) 0. 
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Now we compose 0 with the parametrisation of Xl to get 
(zB(x, y, x2fl) + x2fiC(x, y) x2f1), 02(x, y, x2f1), x2fI(x, y)A(x, y, x2f1))" 

We can rewrite this as 

(xA'(x, y), B(x, y), x2fi(x, y)C'(x, y)), 

with A'(0)C'(0) 54 0. Now since 0 takes Xl to X2 we have 

(xA'(x, y), B(x, y), x2fi (x, y) C'(x, y)) 

= (xý, y', xºzf2 (x', y')) 

for some (x', y') E R2, and it is clear that fl and f2 are Ka-equivalent. 

Conversely if f, and f2 are K6-equivalent then we can find a diffeomorphism 
q5(x) y) _ (xq5l(x) y), 02(x, y)) and a germ of a non zero function A: R2,2,0 --ý 
R with f2 o (xq1,02) = (Afl) (x, y). Then the diffeomorphism (x, y, z) º-º 
(x&, 02) Z, \02) preserves the plane z=0, the y-axis and takes the surface Xl 
to the surface X2.1 

We now need to determine what type of contact the tangent plane to the 
dual has with the dual surface along the line 1. The two simplest types of germs 
(up to Kb-equivalence) are those equivalent to the constant function 1 and y. 
Any function which does not vanish at the origin (respectively is a submersion 
restricted to the y-axis) is equivalent to the first (respectively second) of these. 
The surfaces given by z= x2 and z= x2y are depicted in Figure 4.2. Notice 
that the second of these surfaces is written as the graph of a function with no 
quadratic terms. Thus both its principal curvatures are zero and it has a flat 
umbilic at the origin. Moreover the function is of type D. For general smooth 
surfaces in R3, this is very degenerate. 

Proposition 4.5.2 We consider the dual of the crosscap by taking the two affine 
charts on RP3 which correspond to the families of height functions G and H. 
The affine chart corresponding to H misses out the point [0: 1: 0: 0] on the line 1. 
This point corresponds to the tangent cone. Along this part of 1, a local model for 
the dual is diffeomorphic to z= x2. The affine chart corresponding to G misses 
out the point [0: 0: 1: 0]. The origin in (u1, u2, c)-space corresponds to the tangent 
cone. Close to the origin on this part of 1, a local model for the dual is given by 
x= x2y. Consequently the point on 1 corresponding to the tangent cone is a flat 
umbilic. 
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z=x2 

=x-Y 

Figure 4.2: The surfaces z= x2 and z= x2y, 
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Proof First we work with the family H. The dual is given by the equations 
H=H., = Hy = 0. This gives the following equations: 

y2 + ax 2+ q(x, y) + u1x + u2 (xy + p(y)) +c=0, (4.5) 

2ax+qq+u1+u2y=0 (4.6) 

and 
2y + qy + u2x + u2p'(y) = 0. (4.7) 

We wish to look close to each point (0, to, 0) on the u2-axis, and so we make 
the substitution u2 = to + t. By the implicit function theorem, we can write x 
and y as functions of ul and t as long as tö - 4a ,E0, i. e. to is away from the 
cuspidal edges in the case of the parabolic crosscap. Now suppose x ='01(ul, t) 

and y ='02(ul, t). We claim that 1P1 and'0Z are divisible by ul. To see this, we 
set ul =0 in Equations (4.6) and (4.7) to get 

2a'1(0, t) + qx ('i (0, t), ßi2 (0) t)) + (t0 + t) '2 (0) t) =0 (4.8) 

and 

22'2(0)t) + gy(V)1(0)t), '112(o)t)) + (t0 + t)'1/1(0)t) + (t0 + t)p'(02(o, t)) =0 (4.9) 

We assume 01 and 12 are analytic and we compare the orders of 01(0, t) and 
''2(0) t), denoted O(, 01(0, t)) and O('2(0, t). These cannot be equal. For suppose 

O(01(0, t)) = O(i2(0, t) = k. 

Then we could write 

''1(0, t) = bktk + ... and 1'2(0, t) = Cktk +""". 

Substituting into Equations (4.8) and (4.9) gives 

2abk + tuck =0 
24 + tobk = 0, 

and we have a contradiction. If 0('01(0)t)) < O('2(0, t)), then Equation (4.8) 
implies that 01(0, t) -0 and thus '2 (0) t) -=O. 

Alternatively, if 0 (02 (0, t)) < 
O (01(0, t) ), then Equation (4.9) implies that '02 (0) t) =0 and thus V)1(0, t) = 0. 
So we deduce that 

x= , Oi (ul, t) = ui (bo + ... ) and y= 7P2 (u1, t) = ui (co + ... ) i 
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where bo and co are constants. 

Substituting back into Equations (4.6) and (4.7), we see that 

2ab°+1+t°c°=0 and 

2c° + t°b° = 0, 

so that 

_2- 
to bÖ (tö -4a) 

and co = (t0 - 4a)* 
Finally Equation (4.5) gives us an expression for c in terms of x, y, ul and u2. We 
substitute for x and y in this expression and it follows that the dual surface near 
the point (0, to, 0) is given by the equation 

c=ui(K+"""), 

where K is a non-zero constant. Then we can apply Proposition 4.5.1 to show 
that there is a diffeomorphism which fixes the plane c=0 and the u2 axis so that 
the dual surface can be written c= ui (away from the cuspidal edges). 

Now we can make the same considerations for the affine chart that includes 
the tangent cone. We work with the family of height functions G. The equations 
G=G,, =Gy=O give 

xy + p(y) + q(x, y) +'ulx + u2(y2 + ax 2) +c=0, (4.10) 

y+ ul + u2(2ax 

and 
x+ p'(y) + u2 (2y + qy) =0 (4.12) 

This time we are just interested in what happens close to the point (u1i n2) c) = 
(0,0,0). Equations 4.11 and 4.12 imply that we can write x and y as functions 
'1 and 02 respectively of ul and u2. From Equations (4.11) and (4.12) we have 

Y= -(u1 + u2(2ax + qq)) and 

x= -(PI (y) + u2(2y + 4v)). 
It is clear from this that the functions 01 and biz are divisible by ul. Thus we 
have 

y= -ui + &1(x, y, u1, U2) c), 01 E M, and 

x= 2u1u2+02(x, y, ui)u2, c), 42 E M35- 

67 



ll 

'ace 

ctive 
Flaum, 

Figure 4.3: The dual surface away from the flat umbilic. 

We substitute back into Equation (4.10) to get 

c= 5u2 lu2 + a(ul, u2, c), aE JV13, 

with a divisible by ui. Applying Proposition 4.5.1, we see that there is a diffeo- 

morphism which fixes the plane c=0 and the u2 axis so that the dual surface 
can be written c= u1u2 at the tangent cone point. 0 

On generic smooth surfaces, we do not expect flat umbilic points at all. They 

are not stable; that is they can always be removed by perturbing the surface. 
However we have seen that we cannot perturb the crosscap to remove the flat 

umbilic point on the dual, so that within this context, the flat umbilic on the dual 

of the crosscap is a stable phenomenon. As we mentioned before the statement 
of Proposition 4.5.2, these flat umbilic points are very degenerate. The consid- 
erations of this section allow us to determine some more information about the 
global structure of the dual. Taking a neighbourhood of the line 1 and intersecting 
it with the projective plane 6=0 gives a Mobius band. Proposition 4.5.2 shows 
us how the dual lies with respect to this Mobius band. Taking the affine chart 
that does not include the flat umbilic (corresponding to the height function H), 
the dual surface is as shown in Figure 4.3. 

Taking the other affine chart (corresponding to the height function G), the 
dual surface is as shown in Figure 4.4. In this diagram, we have indicated possible 
curves of points where there are bitangent planes. These correspond to the double 
point curve. Notice that we have not included the possible cuspidal edges in 
these diagrams. In the case of the parabolic crosscap, these can be inserted at 
the relevant points. Considering how the dual lies with respect to the plane b=0 
that is tangent to the dual along the line 1 gives 
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Figure 4.4: The dual in a neighbourhood of the flat umbilic. 

Proposition 4.5.3 In a neighbourhood of the line 1, the dual to the crosscap is 
topologically equivalent to a Mobius band. 
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Chapter 5 

Projections of the Crosscap and 
Asymptotic Curves on the 
Crosscap 

In this chapter we consider projections of the crosscap to planes by composing the 
parametrisation of the crosscap with the family of projections to planes. We also 
apply some work of Bruce and Tari ([BT]) to obtain a result on the asymptotic 
curves of the hyperbolic crosscap. We begin with a discussion of projections of 
smooth surfaces. 

5.1 Projections of Smooth Surfaces to Planes 

Let 11 : R3 -º R2 be a linear surjection, so that the kernel of II is a line. If M 
is a fixed surface in R3 and pEM, then the A-type of P= HIM : (M, p) --º 
R2 depends on the direction of the kernel line of H. Now consider orthogonal 
projections in directions (1, a, ß), so that we are certainly including all directions 
close to (1,0,0). Instead of projecting to a plane perpendicular to the direction 
(1, a, 0) we can, without altering the A-type of the projection, project always to 
the plane u=0. Thus II(,,, p) : R3 --º R2 is given by the formula II(ý, QI (u, v, w) = 
(v - au, w- ßu). Composing this with a parametrisation of our surface M gives 
a map P(a, p) : R2,2,0 -º R2,0. Map germs of this type have been classified (see 
[Re]), and the set of critical values of this map is called the outline or profile of 
the surface. We recall here the connection between the A type of the projection 
and the geometry of M, when M is a generic smooth surface. These results can 
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be found in [B4]. They are drawn from [Ke], [Ga] and [McC]. 

Theorem 5.1.1 The following normal forms arise in the orthogonal projections 
of a generic smooth surface M in R3: 

Submersion : (x, y) ý-º (y, x) 
Fold : (x, y) i-º (y, x2 ) 

Cusp : (x, y) i-; (y, xy + x3) 
Lips/Beaks : (x, y) ý--º (y, x3 ± xy2) 

Goose : (x, y) '-' (y, x3 + xy3) 

Swallowtail : (x, y) 1) (y, xy + x4) 
Gulls : (x, y) -' (y, x2y + x4 + x5) 

Butterfly : (x, y) 1--º (y, xy + x5 ± x7). 

Each of the cases in Theorem 5.1.1 has a geometric interpretation on the surface. 
The normal forms correspond to projecting a surface z=f (x, y) along the x-axis 
to the (y, z)-plane (sending (x, y) to (y, z)). The lowest power of x in the second 
component measures the K-contact between M and the direction of projection. 
Moreover, for a generic smooth surface M written in Monge form, the singular- 
ity will be A-versally unfolded as part of the family of projections in directions 
(1, a, 0) for a and ß close to 0. Following [B4], we give the geometric interpreta- 
tions (which come from [Ga]) of these results in the form of a table (Figure 5.1). 
Here v stands for the direction (1,0,0) through the origin. 

5.2 Projections of the Crosscap 

Theorem 5.2.1 When considering projections of crosscaps near the crosscap 
point, the following cases occur: 
(i) When projecting in a direction that is transverse to the tangent cone, we 
obtain a fold map. 
(ii) When projecting in a direction that is parallel to the tangent cone, we get a 
cusp except when the direction is either the same as that of the tangent line at 
the crosscap point, or the limiting tangent to the double point curve. 
(iii) When the direction of projection is that of the tangent line, the map is of 
corank 2. 
(iv) When the direction of projection is that of the limiting tangent to the double 
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Name Geometry 
submersion v not tangent 
fold v has 2-point contact with M 
cusp v is an asymptotic direction (3-point contact 

with M), 0 is a hyperbolic point 
lips/beaks v is asymptotic, 0 parabolic 
goose v is asymptotic, 0 hyperbolic, image of 

parabolic curve under the Gauss map has 
an inflection 

swallowtail v asymptotic, 0 hyperbolic, v has 4-point 
contact with M 

gulls cusp of the Gauss map 
butterfly v asymptotic, 0 hyperbolic, v has 5-point 

contact with M 

Figure 5.1: The geometry of projection maps. 

point curve, we get a swallowtail map, which is versally unfolded by the family 

of orthogonal projections. 

Proof We can suppose that M is one of the family of crosscaps parametrised by 

(x, xy+p(y), y2+axe+4'(x, y)), p E M41, qE M23 

with a= ±1 and p(y) = ±y4 +""". Lemmas 3.1.4,3.1.6 and 3.4.2 imply that 
the tangent line at the crosscap point of M is the is-axis, the tangent cone is the 

plane v=0 and the limiting tangent to the double point curve at the crosscap 
point is the w-axis. So 

P(a, ß) (x, y) = (-ax + xy + p(y), -ßx + ax 2+ y2 + q(x, y)) 

First consider the case where a#0. Then the line we are projecting along is 
transverse to the tangent cone (the plane v= 0). Subtracting ß/a times the first 

component from the second component, we get 

(-ax + xy + p(y), Q/axy - Q/ap(y) + ax 2+ y2 + 4(x, y)) 

Now making the substitution x' = a-' (x + xy + p(y)), we see that our map is 
A-equivalent to the map germ with normal form (x, y2) which is the fold map. 

The next case to consider is a=0, /3 # 0. Then we are projecting along a 
line which lies in the tangent cone, but which is not the limiting tangent line to 
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the double point curve (the w-axis) or the tangent line (the u-axis). Then the 
map is of the form 

P(o, ß)(x, y) = (xy +P(y), -ßx + ax 2+ y2 + 9(x, y)). 

Writing x' =x+ Q-1(ax2 + y2 + q(x, y)), it is clear that we have a map germ 
which is A-equivalent to (x, xy+y3), which is 3-A-determined. This is the cusp. 

Now we consider the case where a=0 and Q=0. We are projecting along 
the tangent line. This time we get 

P(o, o)(x, y) = (xy +p(y), ax 2+ y2 + 4(x, y))" 

This has corank 2, and we examine this case in more detail in Proposition 5.2.3. 

The directions we have missed in our family of projections are of the form 
(0, a�ß) or equivalently (0,1, a) and (0,0,1). The first of these corresponds to 
the linear surjection (u, v, w) -+ (u, w- cxv). The corresponding projection map 
is 

(x, y) - (x, axe + y2 + 9(x, y) - a(xy + p(y))) 

It is not hard to see that this is A-equivalent to the fold map. 

Finally, projecting along the w-axis (the limiting tangent to the double point 
curve) gives us the map 

(x, y) - (x, xy + p(y)) = (x, xy ± y4 + ... ). 

This is 4- A-determined and generically is a swallowtail (with normal form 
(x, xy + y4)). The family of linear surjections 11(a, g) : R3 -º R2 close to the 
direction (0,0,1) is given by II(a, p) (u, v, w) = (u - aw, v- ßw). Applying this to 
the crosscap gives 

P(ß, ß) (x, y) = (x - a(ax2 + y2 + q(x, y)), xy + p(y) - ß(ax2 + y2 + 9(x, y))). 

It can be checked that for a swallowtail map f: (R2,0) -º (R2,0) we have 
L Ae. f M2. E(2,2). The same inclusion holds for LAe. P(a, p), so it is easy to see 
that the family P(,,, Q) is versally unfolded near (a, #) = (0,0). 1 

Theorem 5.2.1 part (iv) implies that as the view direction passes along a generic 
curve through that of the limiting tangent to the double point curve, we see a 
swallowtail transition, which is shown in Figure 5.2. 
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Figure 5.2: The swallowtail transition. 

Now we analyse the corank 2 map germ in more detail. We expect this 
map germ to have low 

, 
Ae codimension for a generic crosscap. The two lowest 

codimension corank 2 map germs R2,2,0 -> R2,0 are 

f (X, y) = (x2 + y3, y2 + x3) and 

9ýxy) _ (xy, x2 _ y2 + y3). 

A calculation shows that their A, -tangent spaces contain , 
M2. ß(2,2). 

Lemma 5.2.2 Let f, g: R2,0 -º R2,0 be defined as above. Then the tangent 
spaces LA,. f and LA,. g both contain , 

M2. ß(2,2). 

Proof First we consider f (x, y) = (x2 + y3, y2 +x3 ). We have 

= (2x, 3x2) and 
f= 

(3y2,2y). TX y 

Since LA, 
- 
fD M2 S(2,2), it is clear that LA,. f contains (xo, 0) and (0, y¢), 

where 0EM. The tangent space LA,. f also contains (x2 + y3,0), (0, y2 + x3), 
(2x2,3x3) and (3y3,2y2). It can easily be checked that these four vectors are 
linearly independent. Now we consider terms of degree two. Again we have 
(xq5,0) and (0, ycs), with 0E M2. Using the vectors (y2 + x3,0), and (0, x2 + y3) 
the result follows for LAe. f. 

In the other case, we have 

ax = (y, 2x) and 
Lg 

= (x, -2y + 3y2). 
y 

Then LA,. g contains (y3,2xy2), (xy2,2x2y), (x2y, 2x3), (x3, -2x2y), (x2y, -2xy2) 
and (xy2, -2y3). It also contains xyei, for i=1,2, and thus (0, x2) and (y2,0). 
Thus we have (0,2x2-2y2-F-3y3). Adding this to a multiple of (0, x2-y2+y3) gives 
(0, y3), and hence (xy2,0), (0, x2y) and (x3,0). We also have (x2,3xy2). With 
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(y2,0) and (x2 - y2 + y3) this gives (y3,3xy2) and so we have (y3,0), (x2y, 0), 
(0, xy2) and (0, x3). So LAe. g D MZ. E(2,2), and it is now not hard to see that 
LAe. g D . 

M2.6(2,2). Q 

Lemma 5.2.2 makes it easier to determine whether the corank 2 map germ 
obtained from the projection of the crosscap is versally unfolded or not. 

Proposition 5.2.3 In the case where the crosscap has two parabolic curves, 
the corank 2 map germ is A-equivalent to f (x, y) = (x2 + y3, y2 + x3). When 
there are no parabolic points near the crosscap point, the corank 2 map germ is 
A-equivalent to g(x, y) = (xy, x2 - y2 + y3). 

In both these cases the singularity is A-versally unfolded by the family of 
projections in directions close to (1,0,0) 

. 

Proof By Lemma 3.4.4, if the crosscap has two parabolic curves passing through 
it, it can be parametrised by 

(X, xy + P(y), y2 -I- x2 -I- 4(xß y)), pE M41,4 E M. 

In this case the family of projection maps is given by 

P(c, ß)(x, y) = (-ax + xy + p(y), -ßx + x2 + y2 + 9(x, y)). 

Now the projection map P(o, o) is given by 

P(o, o) (x, y) = (xy + P(y), x2 + y2 + q(x, y)) 

Making the substitutions x= x' + y' and y= x' - y', and reverting to x and y, 
we see that P(o, o) (x, y) is A-equivalent to 

(x2 - y2 + pi (x) y), 2x2 + 2y2 + qi (x) y)), P1 E M4,9'i E M. 

As long as the coefficients of y3 and x3 in the Taylor expansion of ql are non-zero, 
this is A-equivalent to f (x, y) = (x2 + y3, y2 + x3). It is quite easy to see that 
P(,, ß) is versally unfolded near (a, ß) _ (0,0) once we note that by Lemma 5.2.2, 
the space LAe. P(o, O) D Mz"S(2,2). 

If the crosscap has no parabolic points near the crosscap point, then it can 
be parametrised by 

(x, xy + P(y), y2 - x2 + q(x, y)), pEM, q E M. 
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Then the family of projection maps is 

P(Q, ß)(x, y) = (-cax + xy + p(y), -, 3x - x2 + y2 + 4(x, y))" 

Now 
P(o, o) (x, y) = (xy +X y), -x2 + y2 + 4(x, y)), 

and it is clear that as long as the coefficient of y3 in the Taylor expansion of q is 
non-zero, P(o, o)(x, y) is A-equivalent to g(x, y) = (xy, x2 - y2 + y3). Again it is 
straightforward to see that P(a, ß) is versally unfolded near (a, (0,0), using 
the inclusion LAe. P(O, O) D M2"&(2,2). 13 

Results on the bifurcations of the unfoldings of these two corank 2 singularities 
were obtained in [B5]. They have also been discussed in detail in [Hob], and 
[Haw]. We reproduce the diagrams found in [Haw] in Figures 5.3 and 5.4. These 
diagrams show how the critical values of the function fa, b change as we vary 
the unfolding parameters a and b. The bifurcation set of the unfolding fa, b = 
(x2 + y3 + ay, x3 + y2 + bx) is discussed in [Haw]. Note that the bifurcation set 
of the other unfolding consists of a single point; the origin. 

5.3 Critical Values of the Projection Maps 

Now we consider the configuration of the critical values of the projections of 
the crosscap with the image of the double point curve of the crosscap under the 
projection. 

Proposition 5.3.1 We can describe the configuration of the outlines of the 
crosscap with the image of the double point curve as follows: 

(i) The fold case: the limiting tangent to the double point curve and the tangent 
to the profile of the crosscap at the origin are transverse. 

(ii) The cusp case: the limiting tangent to the double point curve and the 
limiting tangent to the profile of the crosscap at the origin coincide. 

(iii) The swallowtail case: the limiting tangent to the double point curve is 
transverse to the tangent cone of the profile of the crosscap. 

(iv) The corank 2 case: 
(a) The parabolic crosscap: the critical values consist of two cusps and the 
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Figure 5.3: Bifurcations of the unfolding fa, b = (x2 + y3 + ay, x3 + y2 + bx). 
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Figure 5.4: Bifurcations of the unfolding fa, b = (x2 - y2 + x3 + ax, xy + bx). 
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E 

(i) 

E 

(iii) 

E 

T 

(ii) 

2T 

(iv) 

Figure 5.5: Configurations of the outlines of the crosscap (E) with the limiting 
tangent to the double point curve (T), (i) the fold case, (ii) the cusp case, (iii) 
the swallowtail case and (iv) The corank 2 case for the parabolic crosscap. 

limiting tangent to the image of the double point curve under the projection is 
transverse to the two cuspidal tangents. 
(b) The hyperbolic crosscap: The critical value of the mapping is the origin 
in this case. 

These configurations are shown in Figure 5.5. 

Proof (i) The fold case: 
We have 

P(a, ß) (x, y) = (-ax + xy + p(y), -ßx + axe + y2 + 9(x, y)), 

with a00. It follows that 

a a( 
, Q) 

_ ý_a -i- y, -, ß -{- 2aß -}- 9x) and 

_P(a, Q) 
_ (x + P'(y), 2y + Qv) ey 

Now the critical set E is given by 

det 
aP(«, ß)/ax _0 aP(a, Q)/ay 
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so the initial terms of this equation are 

-2ay+, ßx+"""=0. 

Thus we can write 
x=#/2at+""" and y=t. 

Thus the critical values are given by (-ß/2t+" "", -ß2/2at+" " ") and the gradient 
of the tangent at the origin to the critical set is ß/a. The limiting tangent to the 
double point curve in (u, v, w)-space is the w-axis. Since we are not projecting 
along the w-axis, the limiting tangent to the image of the double point curve 
coincides with the image of the limiting tangent, and is thus the y-axis. Thus the 
limiting tangent to the double point curve and the tangent to the profile of the 

crosscap at the origin are transverse in this case. 
(ii) The cusp case: 
We have 

P(o, Q)(x, y) = (xy + p(y), -, Qx + ax 2+ y2 + 4(x, y)), 

with /#0. It follows that 

OP(o, ß) _ aý 
(y, -, ß + 2ax + qx) and 

öP(o, ß) = (x + p'(y), 2y + 4y). ay 
So E is given by 

/3x+2y2-2ax2+"""=0. 

So we can write 
x= -2/ßt2 +""" and y=t. 

Thus the critical values are given by (-2/ßt3 +""", 3t2 +"" "). This is a cusp at 
the origin with cuspidal tangent the y-axis. The limiting tangent to the image 

of the double point curve is the image of the w-axis under the projection; that is 
the y-axis. Thus the limiting tangent to the double point curve and the limiting 
tangent to the profile of the crosscap at the origin coincide in this case. 
(iii) The swallowtail case: 
We have 

P(x, y) = (x, xy + P(V)) " 
Then 

aP _ (l, y) and 
19y 

= (0, x +P'(Y))" 
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So E is given by x+ p'(y) = 0, which can be parametrised by 

x= -P'(t), y=t. 

Thus the critical values are given by (-p'(t), p(t) - tp'(t)). Since pEM, the 
tangent cone to this set at the origin is the x-axis. In this case, we are projecting 
along the limiting tangent to the double point curve, so to determine the limiting 

tangent to the image under the projection of the double point curve we need to do 

some calculations. Recall from Lemma 3.4.2 that generically the preimage of the 
double point curve is parametrised by (kt' +---, t), for some non-zero constant 
k. The image of this under the projection map is then (kt4 +. .", ±t4 +"" "), since 
p(y) = ±y4 +""". So generically the limiting tangent to this curve is the line 

x=y, which is transverse to the tangent cone of the profile of the crosscap in 

this case. 
(iv) The corank 2 case: 
We have 

P(x, y) = (xy + p(y), ax2 + y2 + 4(x, y)). 
Then 

aP 
ax = (y, 2ax + q,, ) and 

op 
= (x + p'(y), 2y + qv). 

The critical set E is then given by 

2y2-2ax2+"""=0. 

When a00, this is a Morse singularity. 
(a) The parabolic crosscap: 
In this case, we can fix a=1. Then the two branches of the critical set can be 

parametrised by (t +""", t) and (t +""", -t). So the images of the two branches 

under the mapping are parametrised by 

(t2 + p(t), 2t2 + q((t +""", t)) 

and 
(-t2 + p(t), 2t2 + q((t + ... , -t)). 

So the critical values consist of two cusps, with cuspidal tangents given by the 

equations 2x -y=0 and 2x +y=0. The limiting tangent to the image of the 
double point curve under the projection is the y-axis. This is transverse to the 
two cuspidal tangents. 
(b) The hyperbolic crosscap: 
In this case we can fix a= -1, so the critical set is the origin. The limiting 
tangent to the image of the double point curve is, as before, the y-axis. 11 
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5.4 Binary Differential Equations 

In this section, we consider binary differential equations of the form 

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0, (5.1) 

where a, b and c are smooth functions vanishing at (0,0). We are motivated by 
the problem of determining the principal and asymptotic curves on a surface 
near a crosscap point. At each point of a surface the principal directions, and on 
the hyperbolic part of the surface, the asymptotic directions determine bivalued 
line fields on the surface, corresponding to a binary differential equation on the 

parametrising space. For the principal curves, this equation is 

(Em -1F)dx2 + (En - 1G)dxdy + (Fn - Gm)dy2 = 0, 

and for the asymptotic curves, the equation is 

ldx2 + 2mdxdy + ndy2 = 0, 

where E, F and G and 1, m and n are the coefficients of the first and second 
fundamental forms of the surface. 

A natural way to study these equations is to lift the bivalued direction fields 
to a single field on an associated double cover of the surface. This approach is 
followed by Bruce and Tari ([BT]) in order to study integral curves of binary 
differential equations. We employ their methods in what follows. Working with 
binary differential equations of the form given by Equation (5.1), we consider 
in RI x RPl the set M of points (x, y, q) with b2 - ac =0 and qa direction 
determined by Equation (5.1) at (x, y). By taking an affine chart of RP', we 
can consider this double cover surface locally in R3. So we set p= dy/dx and 
consider the surface M in (x, y, p)-space given by 

M= {(x, y, p) : ape+2bp+c=0}. 

We shall denote by F the function ap 2+ 2bp + c. The discriminant of the binary 
differential equation is the set 

A= {(x, y) : b2 -ac=0}. 

Proposition 5.4.1 The surface M is smooth in a neighbourhood of 0x RP' if 
and only if the discriminant function b2 - ac has a Morse singularity. The natural 
projection ir :M --> R2 given by (x, y, p) ý-º (x, y) is a local diffeomorphism 
away from -1(0). 
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Proof See [BT]. 0 

If M is smooth, Bruce and Tari determine a suitable lift ý of the bivalued 
fields in R2 defined by Equation 5.1. They then analyse the type of the zeros 
of the vector field ý in order to obtain the different topological normal forms of 
the binary differential equation. A list of these together with diagrams of their 
integral curves is given in [BT]. In the next section, we see how far these results 
can be applied to the crosscap. 

5.5 Integral Curves on the Crosscap 

We first consider the principal curves near the crosscap point. We suppose that 
we have a crosscap parametrised by the normal form 

f(x) y) _ (x, xy+P(y), y2+axe +bxy+9'(x, y)), 

where a and b are constants, pE Mi and qEM. As mentioned above, the 
binary differential equation which gives rise to the principal curves is 

(Em -1F)dx2 + (En -1G)dxdy + (Fn - Gm)dy2 = 0. (5.2) 

When working with the crosscap, we run into problems, as there is no well defined 

normal to the crosscap at the crosscap point. The coefficients 1, m and n are 
defined as fix " N, ffy "N and fyy " N, respectively, where N is the unit normal 
to the surface given by 

N_ ffxfb 
I I. ff x fb 11 

Note that Equation (5.2) is homogeneous in 1, m and n, so we can replace them 
by ll = fý-- " (fx x fy), ml = fry " (fx x fy) and nj = fyy " (ff x fy) respectively. 
At (x, y) = (0,0), we have ll = ml = nl = 0, so that every direction is a solution 
of the binary differential equation 

H(x, y, dx, dy) = (Eml-l1F)dx2+(Enl-l1G)dxdy+(Fnl-Gml)dy2 = 0. (5.3) 

Now we consider the surface M given by 

M= {((x, y), [a : ß]) E RZ x RPl : H(x, y, a, ß) = 0}. 

Proposition 5.5.1 The surface M is not smooth. 
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Proof We apply the criteria of Proposition 5.4.1 to the Equation (5.3). From 
the proof of Proposition 6.3.1, we know that 

E= 1+y2+(2ax+by+gx)2, 
F= xy + yp + (2ax + by + gx)(2y + bx + q,, ) and 
G= (x+p )2+(2y+bx+qy)2, 

and 

Zl = (2a+gxy)(x+py) =2ax+..., 

ml = -(2y+bx+qq)+(x+p)(b+qýy)=-2y+.. " and 

nl = -pyy(2y + bx + qy) + (x + p)(2 + qyy) = 2x + """. 

Now writing 

Ern, -11 F= 

En, -l1G = 
Fnl - Gm, = 

a(x, y) 
2b(x, y) and 

c(x, y), 

we see that the 2-jet of the discriminant function b2 - ac is 4x2. Thus the dis- 

criminant function is not Morse, so that by Proposition 5.4.1, the surface M is 

not smooth. Q 

Unfortunately the techniques available do not cover the case where M is not 
smooth. However, for the asymptotic curves, we can obtain a result in the case 
of the hyperbolic crosscap. This time we work with the normal form 

f (x) y) = (x, xy + p(y), y2 + axe + 9(X, y)), 

where a= ±1, pE Mi and qE , M2, since the asymptotic curves are invariant 
under affine changes of coordinates. As there is no well defined unit normal at 
the crosscap point, we work with the binary differential equation 

H(x, y, dx, dy) =11dx2 + 2mldxdy + nldy2 = 0, (5.4) 

where 11 = ff. ý " 
(fa, x ff), ml = .,, y " 

(fx x fa, ) and nl = fey " (f., x fr). As before, 

at (x, y) = (0,0), we have 11 = ml = nj = 0, so that every direction is a solution 
of this binary differential equation. Notice that the discriminant of this equation 
is mi -11n1, which is positive on the hyperbolic part of the surface. This time we 
take an affine chart on RP' by setting q= dx/dy, so that we study the surface 

M= {(x, y, q) : F(x, y, q) = 11g2 + 2mlq + nl = 0}. 
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Now 

11 = 2ax+""", 

ml =-2y+... and 
nl = 2x+«., 

so that the discriminant is Morse on the hyperbolic part of the crosscap surface. 
Proposition 5.4.1 then implies that the double cover surface M is smooth. 

Now we give the result from [BT] which determines a suitable lift of the 
bivalued fields onto M. 

Lemma 5.5.2 A suitable lift on M of the bivalued fields defined by equation 
(5.4) is 

aaa = 4Fq ax + F'Q ay (4'F'= + Fv) 
Q 

Proof ([BT], Proposition 5.4.2) Suppose that 

C=AT +B 
y+caq 

is such a lift. Then if it is the projection map from M back to R2, we have 

dir(6) = Aa + Eby, 

so that A= qB. We must ensure that the lifted field is tangent to M, so that 
6F = 0. This gives 

gBFF + BF, + CFQ = 0, 

sowesetB=F9andC=-qFx-Fy. Q 

Next we must determine where the zeros of C lie on M. To use the methods 
of [BT], we need only consider those terms of F of degree 1 in x and y. This 

gives us 
F(x, y, q) = 2axg2 - 4yq + 2x. 

Proposition 5.5.3 In the case of the hyperbolic crosscap (a = -1), the lifted 

vector field 6 has one zero, which lies at the point [0 : 1] (q = 0) on the exceptional 
fibre. In the case of the parabolic crosscap (a = 1), the lifted vector field 6 has 

three zeros, which lie at the points [0 : 1], [1 : 1] and [-1 : 1] (q = 0,1 and -1) 
on the exceptional fibre. 
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Proof The zeros of ý are given by the equations 

F=Fq=(gFi+FF)=0. 

We can assume that the zeros of the field that lie on the exceptional fibre are 
isolated (for a discussion of this see [BT]), and so the first two of these equations 
imply that x=y=0. The third equation gives 

q(ag2+ 1) - 2q = 0, 

i. e. q(ag2 - 1) = 0. 
This implies that q=0, and q= ±1//, and the result follows. O 

In the case of the parabolic crosscap, this result is unfortunate. Notice that 
the discriminant of Equation (5.4) corresponds to the parabolic set in the source. 
Proposition 3.4.4 tells us that this set consists of two transverse curves with 
gradient f1. So when we construct the double cover surface M, the zeros of C are 
in the same position on the exceptional fibre as the branches of the discriminant. 
This means that the methods of [BT] cannot be used. However we do have a 
result in the case of the hyperbolic crosscap. We need to determine whether the 
zero of the lifted field is a saddle or a node. 

Proposition 5.5.4 For the hyperbolic crosscap, the zero of e is a saddle. We 
can deduce that the configuration of the asymptotic curves in the source is topo- 
logically equivalent to the Lemon, which first arose as one of the configurations 
of lines of curvature near an umbilic point. The Lemon is depicted in Figure 5.6. 

Proof Note that in this case, the lower order terms of F are given by 

F(x, y, q) = -2xg2 - 4yq + 2x. 

At the zeros of 6, q=0 and H.,, = -2q2 +2 3k 0, so we write M locally as the 
graph of a function 

x=u(y, q) = 
2gq2 

-I-..., 

Now we project the lifted field 6 onto the (y, q)-plane to obtain 

a ý'a(12qg2 +..., y, q)ýy 

-(gFu(12Q12 +... 'y, 9')+F'v(12''2 +... 'y, 9)) q 

= A(y, 4) y+ B(y, 4) q. 
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Figure 5.6: The Lemon 

The vector field ý will have the same type of zero at x=y=q=0 as , so we 
just need to evaluate the eigenvalues of . Now in this case, uy = u9 =0 when 

=y= 0, so 
OA 

= FQy + Fquuy = -4 and 
(9y 
OA 

_Fqq+Fquuq=-2x=0. äq 

Thus one of the eigenvalues of is -4, and the other is OB/0q. Now 

aB _ -(F�(12q 
qz + ... Y q) 

+qFuq(12qy +..., y, q)'+Fvy(12gq2 +..., y, q) 

_ -(2(1 - q2) + q(-4q) - 4) =2 

when q=0. So the eigenvalues have opposite signs, and the zero is indeed 

a saddle. The deduction about the topological type of the asymptotic curves 
follows from [BT], Section 4. Q 
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Chapter 6 

The Focal Set of the Crosscap 

Having obtained information on the flat geometry of the crosscap, we move onto 
an aspect of the spherical geometry: the focal set. For smooth surfaces this has 
been studied by considering the singularities of the distance squared function. 
We use this method to obtain a description of the focal set of the crosscap. This 
is more complicated than the usual focal surface due to the fact that the crosscap 
does not have a unique normal direction at the crosscap point. The limiting 
principal radii of curvature at the crosscap point are of interest when considering 
the focal set, and we calculate these in the last part of this chapter. 

First we review some results on focal sets of smooth surfaces. 

6.1 Focal Sets of Smooth Surfaces 

In [P1] and [P2] Porteous studied the focal set by considering the singularities of 
the distance squared function. 

Definition 6.1.1 Let XC R3 be a surface. We define the distance squared 
function by 

d: X xR3 -º R 
(p, u) '-' lip-uIl2 

It is well known (see for example [Mi]) that the focal set can be modelled 
locally by the bifurcation set of d. Choosing a parametrisation 0 of a neigh- 
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bourhood of p we consider the singularity type (the ? Z- equivalence class) of the 
function germ 

R2,0 --> R, 0 
(x, y) '-' du(x, y) = d(«(x, y), u) 

for each uE R3. 

Following Porteous and Looijenga's unpublished thesis (for an account of this, 
see [Wa2J), we have 

Theorem 6.1.2 Let Xc R3 be a generic smooth surface. Then the dis- 
tance squared function d. can only have singularities of types Al, A2, A3, A4 and 
D4, where the Ak singularities are the singularities R2,0 --+ R, 0 that are R- 

equivalent to 
(x, y) -+ ±x2 ± yk+i, k>1, 

and the D4 singularity is one of the Dk singularities that are R-equivalent to 

x2y ± yk-iý k>4. 

In each case the singularity is versally unfolded by the u parameters. 

Proof See [BG1]. 11 

It is not difficult to prove (see [Mi]) that the distance squared function d� has 
a singularity of type A>2 or is of corank 2 if and only if v is a point of the focal 
set of X. Since the family of distance squared functions is a versal unfolding 
of each of its singularities, we have local models (up to diffeomorphism) for the 
focal set, i. e. the bifurcation sets of the standard unfoldings of A2, A3, A4 and D4 
singularities (see for example [B4]). In the case of an A2 singularity, the focal set 
is locally smooth, 
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and for an A3 singularity it is locally diffeomorphic to a cuspidal edge. 

These points are known as ridges. The corresponding points on the focal surface 
are called ribs. When the distance squared function has a singularity of type A4, 
the focal set has a swallowtail point, 

and when the singularity is of type D4, the focal set has one of the two umbilic 
types. 

....:, 
.ýý: 

.. 
ý 

6.2 The Focal Set of the Crosscap 

We use the methods described above to study the focal set of the crosscap. In 

what follows, we work with the normal form 

f (x, y) `= fix, xy + P(Y), y2 + axe + bxy + q(x, y)), p E Mi, 4E X23 

since we are dealing with contact with spheres so can only use the action of the 
group 0(3) x R+ (defined in chapter 3) in the target. 

Proposition 6.2.1 The part of the focal set corresponding to the crosscap point 
is a conic section in the plane orthogonal to the tangent line (the (u2i n3)- plane) 
with equation 

2u3(1 - 2au3) + (bu3 + u2)2 = 0. 
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For the hyperbolic crosscap (a < 0), this conic section is an ellipse, for the 
parabolic crosscap (a > 0) we have a hyperbola and in the case where a=0, the 
conic is a parabola. 

Proof The distance squared function on the crosscap is given by 

F(x, y)ui, u2, u3) - (x - u1)2 
+(xy + p(y) - u2)2 + (y2 + axe + bxy + q(x, y) - u3)2. 

We look for the singularities of F(-, ul, u2i u3) at (x, y) = (0,0). The partial 
derivatives of F are given by 

FF = 2(x - ui) + 2y(xy +p(y) - u2) 

+2(2ax+by +qý)(y2+ax e+bxy+q(x, y) -u3). 

and 

Fy = 2(x +p (y))(xy + P(y) - u2) 
+2(2y + bx + gy)(y2 + ax 2+ bxy + q(x, y) - u3). 

From these expressions, it is clear that 

F (O, O, ulº u2r u3) = F'U(Q) 02 u1, u2, u3) =0 

if and only if ul = 0, so that the part of the focal surface corresponding to the 

crosscap point lies in the plane uz = 0, i. e. the plane normal to the tangent 
line. We consider the set in the (42, U3)-plane for which F has a degenerate 

singularity at (x, y) = (0,0). This is given by the condition F., xFyy -- Fy=0 at 
(x, y) = (0,0). We have 

Fix =2+ 2y2 + (4a + 2gx_ý)(y2 + axe + bxy + q(x, y) - u3) 
+2(2ax + by + q, )2, 

Fxy = 2(xy + P(y) -u2) + 2y(x + P'(y)) 
+2(b + qqy) (y2 + axe + bxy + q(x, y) - us) 
+2(2ax+by+q,, )(2y+bx+gy), and 

F'yv = 2p, º(y)(xy +P(y) - u2) + 2(x +p'(y))2 

+2(2 + qyy) (y2 + ax 2+ bxy + q(x, y) - u3) + 2(2y + bx + qy)2, 

so when (x, y) = (0,0), 

Fey =2- 4au3, Fx, y = -2bu3 - 2U2 and Fyy = --4u3. 

91 



Thus we have 

-4u3(2 - 4au3) - 4(bu3 + u2)2 = 0, 
i. e. 2u3(1 - 2au3) + (bu3 + u2)2 =0 

or equivalently (bu3 + u2)2 - 4a(u3 - 1/4a)2 + 1/4a = 0, a00. 

This is the equation of a conic section in the (n2i u3)-plane. In the case of the 
parabolic crosscap, a>0, so the conic is a hyperbola. For the hyperbolic crosscap, 
a<0, so the conic is an ellipse. When a=0, the conic is a parabola. Q 

Corollary 6.2.2 In the case of the parabolic crosscap, the asymptotes to the 
hyperbola are the lines in the (u2, u3)-plane with equations 

u2 + u3(b f 2�7a-) :: F 2ý. 

Proof This is immediate from considering the equation of the hyperbola given 
in Proposition 6.2.1.13 

For the parabolic crosscap, we expect the asymptotes of the hyperbola to 

correspond to the planes with A2 contact at the crosscap point. These planes can 
be thought of as spheres of infinite radius, whose centres lie on the asymptotes 
to the hyperbola. More precisely, if we consider points p on either branch of the 
hyperbola, and the sphere centred at p which passes through the origin, then as 
p tends to infinity, the sphere tends to the plane orthogonal to the line joining 
the origin and p. In the limit, this line tends to a line through the origin parallel 
to one of the asymptotes. Corollary 6.2.2 shows that this is the case. Recall 
(Lemma 3.3.5) that the planes with A2 contact at the crosscap point are given 
by 

u3+(-b±2 -)u2=0. 

It is clear that each of these planes is orthogonal to an asymptote of the hyperbola. 

We consider the nature of the singularity of the distance squared function 

when (x, y) = (0,0). The case (u27 u3) = (0) 0) is dealt with separately. 

Proposition 6.2.3 When ul = 0, and (u2i u3) lies on the conic specified in 
Proposition 6.2.1, but away from (0,0), the distance squared function has a corank 
1 singularity when (x, y) = 0. These are of type A2 at all except for 0,2 or 4 
points on the conic (generically), where they are of type A3. 

These singularities are versally unfolded by the distance squared functions. 
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Proof Let F(x, y, u1i u2, u3) be the distance squared function defined in the proof 
of Proposition 6.2.1. The condition for a corank 2 singularity (F, 

x =Fey = 
Fyy = 0) clearly cannot be satisfied when (x, y) = 0, so F must have a corank 
one singularity when x=y= ul = 0, and U2, u3 satisfy 

2u3(1 
-- 2au3) + (bu3 + u2)2 = 0. 

This means that the quadratic part of F(x, y, 0, u2, u3) in the variables x and y, 
that is 

(1 - 2au3)x2 - 2(u2 + bu3)xy - 2u3y2, (6.1) 

is the square of a linear form for the appropriate values of u2 and u3. We determine 
this linear form for the cases of the parabolic crosscap (a > 0) and the hyperbolic 
crosscap (a < 0) separately. 

(i) The parabolic crosscap (a > 0) 

In this case, we write a= A2, so that the part of the focal set corresponding 
to the crosscap point is the hyperbola lying in the plane ul =0 with equation 

(bu3 + u2)2 -4 \2 (U3- 1/4. \2)2 +1/4 \2 =0 
that is 16\4(u3 - 1/4. \2)2 - 4A2(bu3 + u2)2 = 1. 

We parametrise the hyperbola by setting 

16A4(u3 - 1/4A2)2 

4A2(bu3 + u2)2 
= cosh2 9 and 

= sinh2 8, 

so we have 

t (u3 - 1/4A2 cosh a 
4a2 and (bu3 + u2) = 

sinh 9 
2A 

that is u3 
± cosh 0 

4\2 
sinh 0 

and U2 = 2A - bug. 

Each choice of sign corresponds to a branch of the hyperbola. Now we substitute 
for u2 and u3 in Expression (6.1) to get 

1± cosh B sieh 81± cosh 0 
1-2a2 

4» xZ-2 2A --bu3+bu3 xy-2 4, \ y2 2 

= 
(1coshO)2 sinh 01f cosh B2 

2A xy 2A2 ' 
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Now let 
t=ee, t>O and t=-ee, t <0, 

so that we can make the substitution 

1, 
sinh 0= t2 

2t 
1 

and f cosh 0=t 
2t 

giving 

_1+ 
cosh 0 (t + 1)2 

U3 4»2 8»2t 

and u 
sieh 0- 

bu _ 
(t + 1)((2A - b)t - (2a + b)) 

2 _- 2A 3- 8A2t 
Note that t=0 corresponds to the asymptotes to the hyperbola, and t= -1 
gives the origin. Then we have 

2t - (t2 + 1) 
x 2_ t2-1 2t+(t2 +1) 2 y' 4t 2At xy - 4, \2t 

This gives us the quadratic form 

2 (t - 1)(t+ 1) (t+ 1)2 Z 
t4+ 2A Xy + 4A2 y 

__1 
(t-1)x+ (t+l) 2 

t2 2A y (6.2) 

(ii) The hyperbolic crosscap (a < 0) 

In this case we write a= _A2, so the part of the focal set corresponding to 
the crosscap point is the ellipse lying in the plane ul =0 with equation 

(bu3 + u2)2 + 4)2(u3 + 1/4A2)2 + 1/4. X2 =0 
that is 16A4(u3 + 1/4A2)2 +4 A2 OU3 + u2)2 = 1. 

We parametrise the ellipse by setting 

(u3 + 1/4.2) = 
sin 8 cos 0 

ý2 and (bu3 + u2) = 2a ' 

so we have 

u= 
sin o -1 and u= 

cos o- 
bu 3 4)2 2 2A 3 

Now we substitute for a, u2 and u3 in Expression (6.1) to get 

(sin9_ 1 (cosO sin 9- 1 1+ 2A2 
))( 

2A 
( 

x2 -2- bu3 + bu3 zy -2 4A2 y2 
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1- sin BZ cos B Sin o -- 12 
=2 x- A 

)x- 
2» y, 

Let t= tan 9/2. Then 

sin B=1 
2t 

tz and cos B=_2 
1+12' 

and 
(1- t) 2 (1 - t)((2A - b) + (2A + b)t) 

U3 4A2(1 + t2) and u2 = 4A2(1 + t2) 
Note that t=1 gives the origin. Then we have the quadratic form 

(1 + t)2 2 
((l - t)(1 + t) (1- t2) 

2(1 + t2) \(1 + t2) )xY+22(l+t2))v2 

_ 
)2. 

2(1 + t2) 
((1 

+ t)x - 
(1 

A 
t)y (6.3) 

The cubic part of F is 

C(x, Yi u2) u3) = -2uap3y3 - 2u3(gbx3 + gix2y + g2xy2 + g3y3)I 

where p3y3 and gox3+q1x2y+g2xy2+g3y3 are the cubic parts of p and q respec- 
tively. Now F has an A2 singularity when (u2i u3) lies on the conic unless C is 
divisible by the linear form. To determine whether F has an A>3 singularity, we 
first substitute the parametrisation of the relevant conic for u2 and u3. Suppose 
that L(x, y, t) is the linear form. We rearrange L(x, y, t) =0 to get an expression 
for y in terms of x and t. We substitute this into C, and arrive at a polynomial 
P(x, t) that is homogeneous and of degree 3 in x. The condition for L to divide 
C is equivalent to the condition P(x, t) =0 for all x, i. e. P(x, t)/x3 = 0. 

(i) The parabolic crosscap 

The hyperbola is parametrised by 

U2 _ 
(t + 1)((2A - b)t - (2a + b)) 

and u3 _ 
(t + 1)2 

8A2t 8A2t 

and the linear form is 

L(x, y, t) _ 
(t 

2 
1) 

x+ 
ýt Aý) 

y. 

Substituting 

__A(t-1) (t + 1) 
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into C, we get 

P x, t) _2 
(t + 1)((2)º - b)t - (2. \ + b)) A(t - 1) 3 (t + 1)2 3 (4ox ( 

8)ý2t p3 (t + 1) x-28, \2t 
A(t - 1) a(t -- 1) 

+glx2 (t -i-1) 
x+ q2x - (t -f-1) 

x+ q3 - (t + 1) x 

4ý23 
t 

(�\3ý3 ((2A - b)t - (2A 
2 

b))(t - 1)3 
_ 4b(t+ 1)2 (t + 1) 

+Agl(t - 1)(t + 1) - A2g2(t - 1)2 + A3q3 
(t 

- 1)3 

Now when t0 or -1 (so we are away from the asymptotes and the origin), the 
condition that P(x, t)lx3 =0 is equivalent to 

p3((2A - b)t -(2X + b))(t - 1)3 - qo(t + 1)4 + )qi(t - 1)(t + 1)3 

-%2g2(t - 1)2(t + 1)2 + X3g3(t - 1)3(t + 1) = 0. 

Expanding, we get 

A3p3 ((2A-b)t4+(-8A+2b)t3+12At2+(-8A-2b)t+(2A+b))-go(t4+4t3+6t2+4t+1) 

+? q1 (t4 + 2t3 - 2t - 1) - )2q2 (t4 
-- 2t2 + 1) + A3q3(t4 - 2t3 + 2t -- 1) = 0. 

It is clear that the coefficients of t4, t3, t2, t and the constant term are linearly 
independent. Thus we have a general quartic, which has 0,2 or 4 real roots 
generically. 

(ii) The hyperbolic crosscap 

In this case, we have the parametrisation 

_ 
(1 - t)2 

U3 4A2(1 + t2) and u2 = 

and the linear form 

Substituting 

into C, we get 

(1 -- t) ((2A - b) + (2A + b)t) 
4A2(1 + t2) 

L(x, y, t) = (1 +t)x - 
ý1 

A Y. 

_ 
a(1 + t) y (1-t)x 

96 



= 
(1-t)((2. \-b)+(2a+b)t) a(1+t) 3 

P(x't) -2 4A2(1 + t2) ý3 (1 - t) x 

(1't)2 
32 

. \(1+t) )(1+t) 2 

+24A2(1 
+ t2) qox + qlx (1 - t) x -I- q2x (1- t) x 

+q3 
)(l+t)x 3 

(1 t) 

2x2(1 + t2) -\3p3 
((2A - b) 

((2A 
j b)t)(1 + t)3 

+ qo(1 - t)2 

t) +Ag1(1 +t)(1- t) +A2g2(1 + t)2 + A3g3( 
(1+tt3 

Now the condition that P(x, t)/x3 =0 is equivalent to 

-\3p3((2A - b) +(2.1 + b)t)(1 + t)3 + qo(1- t)4 + Agl(1 + t)(1 - t)3 
+A2g2(1 + t)2(1 - t)2 + '\3g3(1 + t)3(1 - t) = 0, 

when t01 (which corresponds to (u2) u3) = (0,0)). Expanding, we get 

-A3P3((2A-b)+(8A-2b)t3+12At2+(8A+2b)t+(2A+b)4)+go(t4-4t3+6t2-4t+1) 
+Aq1(-t4 - 2t3 - 2t + 1) - 

A2q2(t4 - 2t2 + 1) + 
. 
\3q3(-t4 

- 2t3 + 2t + 1) = 0. 

It is clear that the coefficients of t4, t3, t2, t and the constant term are linearly 
independent. Thus we have a general quartic, which has 0,2 or 4 real roots 
generically. 

In each case, each of the roots of the quartic we obtain gives a point on 
the conic where the contact of a sphere centred at that point with the crosscap 
at the crosscap point is of type A>3. To complete the proof, we note that the 
transversality results in Appendix A, Section A. 1 show that the singularity is of 
type A3, and that the singularities are indeed versally unfolded by the family of 
distance squared functions. 11 

Proposition 6.2.4 When (u1i u2, u3) _ (0,0,0), the distance squared function 
has an A3 singularity at (x, y) = (0,0). It is not versally unfolded by the 
(Uli U2, u3)-parameters. 

To prove this we need to use the notion of weighted homogeneous functions. 
A fuller treatment of these can be found in [Al]. 
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Definition 6.2.5 A function f: R, 0 -º It, 0 is said to be quasihomogeneous 
of degree d with weights al, ... ,o if 

.f(. 
V 1xi, ... ' ), 

°`"Xn) = Adf (xis ... , xn) for all AER. 

A quasihomogeneous function f is said to be non-degenerate if 0 is an isolated 
critical point. 

We say that the monomial xk = xi ... xn^ has degree d with respect to a= 
(a,, """, an) if <a, k>=alk1+"""ankn=d. 

A polynomial has filtration d if all its monomials are of degree d or higher. 

A polynomial f is said to be semiquasihomogeneous of degree d with weights 
a,, ... , a,,, if it is of the form f= fo+f', where fo is a non-degenerate quasihomo- 
geneous polynomial of degree d with exponents al, ... , a, and f' is a polynomial 
of filtration greater than d. 

Theorem 6.2.6 Suppose that f= fo+f' is a semiquasihomogeneous polynomial 
of degree d with weights ai, " .., a,,. 

If fo is finitely R-determined and simple, then f is finitely R-determined, and 
is 1Z-equivalent to fv. 

Proof A theorem of Arnol'd ([Al), Theorem 3.1) says that the multiplicity of 
the critical point 0 of a semiquasihomogeneous function f is that of its quasiho- 
mogeneous part. Now we define ft = fo +tf. The function ft then has the same 
multiplicity as its quasihomogeneous part. It follows from Lemma 6.2.7 that the 
ft are all R. -equivalent. Q 

Lemma 6.2.7 Let 

g: R' x [0,1], 0x [0,1] -º R, 0 

be a family of functions, each with an isolated singularity. Suppose that go is 

simple and that p(gt), the Milnor number of gt, is the same for all tE [0,1]. Then 
the functions gt are all R-equivalent. 

Proof Let 
A= It E [0,11 : gt is R-equivalent to go}. 
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We show that the set A is open and closed, and hence equal to [0,1). 

To prove that A is open, note that if gto is simple then there is a neighbourhood 
UC [0,11 of to such that all tE U\{to}, say t> to (respectively t< to) yield 
R-equivalent germs. Since µ(gt) = µ(gto), these are all equivalent to go. 

To see that A is closed, let (tn) EA be a sequence such that 

slim 
to = to ¢ A. 

Then gto is a function in the closure of the simple singularity go and p(gt(, ) = µ(9o)" 
This would imply that go and gt0 have the same local topology, which is not 
possible by the various topological characterisations of simple singularities. Q 

Proof (of Proposition 6.2.4). The distance squared function on the crosscap 
is given by 

F'(x, y, ui, U22 U3) _ (x - ul)2 
+(xy +p(y) - u2)2 + (y2 + ax2 + bxy + q(x, y) - u3)2. 

Substituting (ul, U27 u3) = (0,0,0) we get 

f (x, y) = F(x, y, 0,0,0) = x2 + (xy + P(y))2 + (y2 + axe + bxy `F' q(x, y))2 

=x2+x2y2(1+2a+b2)+2bxy3+2abx3y+y4+a2x4+..., 

Assigning weight 1/2 to x and weight 1/4 to y, we see that F(x, y, 0,0,0) is 

a semiquasihomogeneous polynomial of degree 1, with quasihomogeneous part 
fo = x2 + y4. Now fo is an A3 singularity, which is 4- R-determined, so by 
Theorem 6.2.6, F(x, y, 0,0,0) has an A3 singularity at (x, y) = (0,0). Now the 
initial speeds of F (äF/äu1, cýF/öu2) aF/äu3 evaluated at (ul, u2, u3) = (0,0,0)) 
are 

-2x, -2(xy + p(y)) and - 2(y2 + axe + bxy + q(x, y)). 
It is clear that 

J(f) + R. {aF/8ul, aF/au2,49F/öu3} 0 EZ, 

so that f -is not versally unfolded by the parameters u1i u2 and u3.11 

The result of Proposition 6.2.4 makes more work for us. As the distance 

squared function is not versally unfolded when (x, y, ul1712 1 u3) _ (0,0,0,0,0) we 
cannot use the standard models of the bifurcation set of an A3 singularity to 
describe the focal set near (ul, u2i u3) _ (0,0,0). In fact we devote Chapter 7 to 
determining a local model for this part of the focal set of the crosscap. 
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6.3 The Limiting Principal Curvatures at the Cross- 
cap Point 

To gain more information on the stucture of the focal set at the crosscap point, 
we revert to more elementary techniques. Recall from Definition 1.9.8 that the 
focal set is the locus of the centres of curvature and that the focal set has two 
sheets; one for each centre of curvature. Thus it is of interest to calculate the 
limiting principal curvatures as we approach the crosscap point along curves lying 

on the crosscap. The crosscap is parametrised by the normal form 

f (x, y) = (x, xy + p(y), y2 + axe + bxy + q(x, y)), 

where a and b are constants, pE Mi and qEM. 

Proposition 6.3.1 Suppose that C is a non-singular curve in the source that 

passes through the origin, parametrised by -y (t) = (at +---, Qt +". "), with a 
and ,ß not both zero. Then as we approach the crosscap point along the curve 
parametrised by foy one principal curvature tends to 

2aa2 - 2,32 

a(a2 + (2,3 + ab)2)1/2 

and the other tends to infinity. 

Proof Recall (Proposition 1.9.5) that the principal curvatures are given by the 

roots of 
det FG- ý' 

where E, F and G are the coefficients of the first fundamental form and 1, m and 
n are the coefficients of the second fundamental form. Expanding this equation, 
we get 

(1 - AE) (n - AG) - (m - AF)2 =0 which gives 
(EG - F2)A2 + (2mF - nE -1G)A + (In - m2) = 0. 

Writing 

A=EG-F2, B=2mF-nE-IG and C=In-m2, 

the two principal curvatures are 

-B ± (B2 - 4AC)1_2 
_B 

(-l 
± 1- 

4AC 1/2 
(6.4) 

2A A- B2 
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To prove the result, we substitute 

x=at+""" and y=ßt+"". 

and determine the limiting values of A, B and C as t tends to zero. In our case, 
the unit normal vector N is given by 

N^ 
f-, x fy 

Ilf. x fill' 
Now we have 

f2 = (1, y, 2ax+by +q., ) and f,, = (0, x+py, 2y+bx+gy). 

It follows that 

_ N(x, y) 
(2y2 - 2ax2 + yqy - xqý -pvq:,, -(2y + bx +%), x+py) 

II (2y2 - 2ax2 + yqy - xqx - pygq, - (2y + bx + qy), x+ Py) II 

E= ff "fx = 1+y2+(2ax+by+q,, )2, 

F= ff " fy = xy+ypy+ (2ax+by+gx)(2y+bx+qy) and 
G= ff . fy = (x + py)2 + (2y + bx + qv)2. 

The second derivatives of f are 
fxa = (O, 0,2a + qx, ), . 

fy = (0,1, b+ Qxy) and fly = (0, pyy, 2+ Qyy), 

so we have 

I 
(2a + gxx)(x + py) 

11f, x fb1) 

-(2y+bx+q, ) + (x+py)(b+ggv) 
and m= N. fey= II. f. xfvII 

n=N. fvy = -p (2y + bx + qy) + (x+py)(2 + qyy) 
11f, x fv1I 

Taking the lowest order terms of E, F, G, 1, m and n, we have 

E= 1+y2+(2ax+by)2+""", 
F= xy + (tax + by)(2y + bx) + """, 
G= x2+(2y+bx)2+""", 

_ 
2ax+""" 
lIfT xfyI)' 
-2y+. ". m I)f, x fill' 
2x+""" 

n I)ff, x fyll 
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and 
Il f, x ff II = (x2 + (2y + bx)2 + ... 

)1/2. 

Then we have 

A= EG - FZ = Ilfx x ffII2 = (x2 + (2y + bx)2 + ... 
)1/2, 

B= 2mF--nE-IG= Il f. 
xx +fyII 

and 

. 
4ax2-4y2+ 

C= ln-m2 """ 
fz x . fy 112 

Writing B' = -2x +""" and C' = 4ax2 - 4y2 +""", we have 

B' C' 
B= and C= -x . VA-f 

Then from Equation (6.4), the two principal curvatures are 

B' 4AC' 1/2 
2A3/2 -1 ± 1- B'2 

))- 

Expanding 
4AC' 1/2 

1- B, 2 gives 

1- 1/2 4AC 
+ 

1/2 4AC2 
+ 

1/2 4AC' n+... 
1 B'2 2 B'2 n B12 

where 

n n"(n-1)... 1 
(i/2\1/2"(-1/2)".. (i/2-n+i) 

So the two principal curvatures are 

B' 1/2 4AC' 11/2 4AC' 2 

2A3/2 -2 +1 B12 2 B'2 . }... . 

1/2 'n 

and 
B' 1/2 4AC' 1/2 4AC' 2 

2A3/2 1 B'2 +2 -B -12 + 

+(-1)" 
1/2 4AC n+... 

, n) 

(B12 
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Now 
B' 4AC n 

22n-1 
An-3/2C'n 

= 202 B'2 B'2n-1 

Substituting x= at +""" and y= , ßt +""" into the expressions for A, B' and C, 
we see that A is order two in t, B' is order one in t and C' is order two in t, so 
that as t tends to zero, 

An-3/2C' 

B12n_1 
tends to zero, 

unless 
2n-1>2n+2n-3=4n-3, 

i. e. n<1. 

So to get the limiting principal curvatures, we need to evaluate the limits of 

B' C' C' 
A3/2 

+ 
B'A1/2 

and - B'A1/2 

as t tends to zero. The first of these is clearly infinite. The second is given by 

lim 
(4aa2t2-4ß2t2+""") 

t-0 (-2at+""")(a2t2+(2ßt+abt)2+""")1/2 

_ 
2aa2 - 2ß2 

a(a2 + (2ß + ab)2)1/2 
13 

Now from the definition of the focal set (Definition 1.9.8), we can deduce the 
following 

Proposition 6.3.2 As we approach the crosscap point along curves on the cross- 
cap, one sheet of the focal set goes through the origin. The other sheet blows up 
to the conic section described in Proposition 6.2.1. 

Proof The focal set is the locus of centres of curvature. These are given by p+ 
1/ijN, where N is the unit normal at p. It follows from the proof of Proposition 
6.3.1 that one of the radii of curvature (the inverses of the principal curvatures) 
is always zero, thus one sheet of the focal surface passes through the origin. 

In the other case, the radius of curvature depends upon the direction in which 
we approach the crosscap point. It follows from Proposition 6.3.1 that the limiting 
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radius of curvature as we approach the crosscap along the curve parametrised by 
f ory, where y(t) = (at+""", ßt+"""), is 

a(a2 + (2$ + ab)2)1/2 
2aa2 - 202 

From Proposition 3.3.4, we know that the limiting unit normal to the crosscap 
as we approach the crosscap point along foy is 

(0, - (20 + ab), a) 
(a2 + (2$ + ab)2)1/2 

Thus the limiting centre of curvature is 

(0, -a(2ß + ab), a2) 
2aa2 - 2ß2 

We write 
-a(2ß + ab) a2 

U_- 2aa2 - 202 and v= 2aa2 - 202' 

Now let s a/p, so that 

-2s - bs 2s2 
u -- 2as2 -2 

and v= 2as2 - 2' 

Thus u and v satisfy 

s2 (2au + b) - 2u + 2s =0 and 

8 2(2av - 1) - 2v = 0. 

We use Maple to eliminates from these two equations (by taking the resultant 
of the two equations) to get 

4v2b2 + 8vbu + 4u2 + 8v - 16av2 = 0. 

This gives 
v2b2 + 2vbu + U2 + 2v - 4av2 = 0, 

and we can factorise this to obtain 

(bv + u)2 + 2v(1 - 2av) = 0, 

which is (not surprisingly) precisely the equation of the conic section of Proposi- 
tion 6.2.1. Q 
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Chapter 7 

Non-versal Unfoldings of Functions 

and the Focal Set of the Crosscap 

The main problem in trying to construct local models of the focal surface of the 

crosscap is that the A3 singularity of the distance squared function that occurs 
at the origin is not versally unfolded. It would be useful to find, up to some finite 

order, the mapping which takes the bifurcation set that arises in this example to 
the bifurcation set of the standard unfolding of an A3 singularity. To this end, we 
implement an algorithm described by Bruce and Giblin in [BG3] to calculate the 

mappings needed to induce a general unfolding from the universal unfolding of 

a singularity. The algorithm is described in the case of functions of one variable 
in [BG2]. We note that a similar algorithm has been described by Cowell and 
Wright in [CW-I] and [CW-II] and implemented in the computer algebra package 
REDUCE 3.2. We adapt a certain part of their algorithm to generalise that of 
[BG2]. We can use the algorithm to determine a local model for the focal set of 
the crosscap near the origin. 

7.1 Unfoldings of Functions 

We are dealing here with functions, and so the definitions of Section 1.5 can be 

restricted to the following. For more information, we refer the reader to [Mar]. 

Definition 7.1.1 Let fEE,, be a germ of a function. A p-parameter unfolding 
of f is a germ F of a smooth function at the origin of R" x RP (given coordinates 
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(x, t)) such that 
Fo(x) = F(x, 0) =f (x). 

Two p-parameter unfoldings, F and G of the same germ fEE,, are isomorphic 
if there exists a local diffeomorphism q at the origin such that 

1.0(x, t) = (, 0(x, t), t) and 0(x, 0) = x, i. e. ¢ is a p-parameter unfolding of 
the identity map on R; 

2. G=Focß. 

An unfolding is called trivial if it is isomorphic to the constant unfolding 
(x, t) '-* f W. 

As before we say that two p-parameter unfoldings F and G of a function germ 
f are equivalent if there exists a diffeomorphism h: R1', 0 -º Ri', 0 such that 
G is isomorphic to h*F, the pullback of F by h. If H is now some q-parameter 
unfolding of f, we say that H can be induced from F if there exists a smooth 
map germ h: Rq, 0 --+ RP, 0 such that H is isomorphic to h*F. 

We say that an unfolding F of fEE is a versal unfolding of f if any other 
unfolding G of f can be induced from f. 

Finally we can state the fundamental theorem on unfoldings of function germs. 
Given a p-parameter unfolding F(x, t) of the function germ fE en, the initial 
speeds, Pi E En, of F are defined by 

F; (x) = äF/att (x, 0), for i=1, """, p. 

The Jacobian ideal J(f) is the ideal in En generated by the partial derivatives 
af /äx1, for i=1. " n. 

Theorem 7.1.2 The unfolding F is versal if and only if 

J(f) + R. (E1)... 
, Fs I= En. 

Proof For a proof of this see [Mar], Chapter 11. 13 

Notice that M,, " J(f) = LR- f so that Theorem 7.1.2 is analogous to Theorem 
1.5.6, for 1Z- and 7Ze-equivalence. 
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7.2 The Algorithm 

In implementing the algorithm, we restrict our attention to the case of an A3 
singularity, and assume that the crosscap parametrisation is analytic. We re- 
state and prove the relevant propositions from [BG3], as the proofs outline the 
construction that we shall implement. 

Let f: R4,0 --º R, 0 be a smooth function germ of finite codimension with 
Jacobian ideal J(f). We denote by £(x)(= £q) and £(u)(= £m) the rings of 
smooth function germs in q, respectively m variables, with maximal ideals M(x) 

and M (u) respectively. Also we denote the module of smooth function germs at 
the origin on R4 x Rm by £(x, u). Let 01, """, q5k be a basis for £(x)/J(f ). We 

write k 
G(x, s, t) =f (x) +E Si0i, 

i=1 

where t= (t1, """, tn) are redundant unfolding parameters. This is the standard 
versal unfolding of f. Let F(x, u), where uE RI, be any unfolding of f. We 

use ()i to refer to the ith component of a map. We remark now that we will 
be working with R+-equivalence (which ignores constant terms), so we are not 
interested in the terms of F involving only the unfolding parameters u. 

Proposition 7.2.1 ([BG3], 5.1) For all r>0 we can find mappings a' : Rm x 
R. q, 0 -p Rm, 0 and br : R4,0 -º Rk, 0, with (ar(x, u))i E S(x)[ul, ... , um], for 

i=1, """, m, and (b'(u))1 E R[ul, """, u,,,, ], for j=1, """, k such that 

F(x, u) - G(ar(x, u), br(u)) E , 
M*+i(u)ý(x, u) 

and öaä 

c? x 
(0,0) =Sze for 1<i, j<q. 

Proof It is enough to find a'(x, u), br(u) with 

F(a'(x, u), u) - G(x, br(u)) E , 
M+'(u)S(x, u) (7.1) 

and r 
äx; (°, °)=ßt1 

For if we then consider the map 

a' x id : R9 x R1,0 -º R9 x Rn, 0 
(x, u) -) 

(ar (x, u), u), 
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it is clear that ar x id is a local diffeomorphism. Thus we can define a map 
a71: R4xR', o-- ; R4 by 

an'xid=(a'xid)-': R4xR"'`, 0-) RIxR"`, 0. 

Thus if we have (7.1), then 

Fo (an x id) (a"" (x, u), u) -Go (are x id) (x, b'' (u) ) 

= F(x, u) - G(arF(x, b(u)), b'(u)) E Mr+l (U)S(xe u), 

as required. 

Now we set a°(x, u) =x and b°(u) = 0, and proceed by induction on r. 
Suppose that we have found ar and br; we may assume that they are of degree 

at most r in u. We seek polynomial maps a,. +1, Pr+1 that are homogeneous and 
degree r+1 in u so that 

F((ar + ar+i)(X, u), u) - G(x, (b' -I' Qr+i)(u)) E Mr+2(u)ß(2, u). (7.2) 

By Taylor's Theorem, we can write 

qý OF F(ar + ar+,, u) = r' (at 
, u) + E(ar+l) 

_ +'tb(x, u), 
i=1 i 

where 0E M(u)r+2e(x, U). Since (ar+l)z is a polynomial that is homogeneous 

of degree r+1 in u, we need only consider those terms in OF/Ox; which do not 
involve u. This gives 

q 
F(ar + ar+1, u) = F(ar, u) + 2., (ar+l)iaäý 

i=l 

where oE M(u)'+2E(x, u). Similarly, we can write 
m 

G(x, br + Qr+l) = G(x, br) 

i=1 au+ 

= G(x, br) + E(ßr+l)jc5j(x) + i1(x, u), 
j=1 

since G is the standard versal unfolding. It follows that we can rewrite (7.2) as 

(F(ar, u) - G(x, br)) + Eq (ar+i)i Of 
- E(ßr+i)7o1(x) E M(u)r+2e(x, u). 

i=1 j=1 
l 
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By the inductive hypothesis, 

(F(a', u) - G(x, br)) E M(u)r+1 e(x, u). 
The terms of degree r+1 in F(a', u) - G(x, bl) have the form 0,, (x)u" for some 
multi-index v, and 0�(x) can be written 

(x) 
ýx 

Of k 
+L Cj of (x), 

i=I j=1 

for ryz E E(x) and cj' E R, since 01 ,""" Ok is a basis for 9(x)/J(f ). To complete 
the inductive construction, we set 

(ar+, 
lx, u))i =E-4 (x)uv 

(Nr+l 
(t&))j => Cj n'. 

vv 

13 

Note that the induction process produces (Qr+i) j for j=1, """, k. The re- 
maining components of 6, +1 are arbitrary. 

Proposition 7.2.1 allows us to compute finite jets of the diffeomorphism b. 
There is one apparent problem: we appear to need arbitrarily high order terms 
of X. We can correct this with the following result. 

Proposition 7.2.2 ([BG3], (5.3)) Let kl be such that J(f) D Mkt (x) (since f 
has finite codimension) and let r>1. Then the same br(u) can be used for any 
two F with the same l= (k1r + kl + r)-jet. 

Proof See [BG3]. Q 

Now we state and prove a stronger version of 7.2.2 for the case where f: 
R2,0 ---) R, 0 is an Ak singularity. So f (x, y) = x2 + yk+' and the standard 
versal unfolding of f is given by 

f: R2 X Rk-1 -- iR 
k-1 

(X, y, u) --) x2 +y k+I ,,, F, E uiy, 
i-1 

Lemma 7.2.3 Suppose that we wish to determine b'" for some m. Then for each 
r, 1<r<m, b' is uniquely determined by the terms of 

F(at, u)-G(x, y, br) 

of degree less than or equal to (m - r)k -1 in y and m in u. 
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Proof It is clear that we need only consider the terms of degree less than or 
equal to m in u. 

Now we consider the algorithm described in Proposition 7.2.1 for the case 
where f is an Ak singularity. Suppose that we have determined a' (x, y, u), b''(u) 
with 

F(a"(x, y, u), u) - G(x, y, br(u)) E . Mr+l (u)E(y, u), 

where a' :Rx RQ --f R and Ii : R4 -) Rk-1. For each term o�(y)u' of degree 
r+1 in u in F(ar, u) - G(x, y, b") (where v is a multi-index), we write 

k-1 
(k + 1)yk'YL(y) +E 4yi, 

i=1 

where y" E S(y) and c= E R. We then set 

(a'r+l (y, u)) 
E' '(') uv (Nr+l (u))i =E Ci U'. 

vv 

So it is clear that we must determine the terms of degree m in u of 

F(am~l (x, y, u), u) - 
G(x, y, bm-l (u)) 

correctly up to degree k --1 in y, and thus the terms of degree greater than m-1 
in uof 

F(am-2(x, y, u), u) - G(x, y, bm-2(u)) 

correctly up to degree k+k-1= 2k -1 in y. Continuing in this way gives us 
the result. 13 

The following is now immediate. 

Corollary 7.2.4 Suppose that 

00 
F(x, y, u) - G(x, y, 0) =EE u'�, y p (y), (7.3) 

P=1 V, 

where vp is a multi index of degree p. Then to determine b' correctly, we need 
only know the following part of the power series (7.3) 

m 
EL uvpl7(k(m-p+l)-I) r'Yv' 

p=1 vp 
(7.4) 

where j(k(m-pß-1)-1)(, yvp(y)) is the (k(m -p+ 1) - 1)-jet of the function y P. 
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The results described so far provide us with an algorithm to determine, up 
to some finite order, the mappings which induce the standard versal unfolding 
of a map germ f from any unfolding of f. The next question is whether we can 
extend these methods to deal with unfoldings of map germs that are in the same 
R-orbit as f. This problem is dealt with in generality in [CW-I] and [CW-II], 
and we adapt their methods for our application, where g: R2,0 -+ R, 0 is the 
A3 singularity given by g(x, y) x2 + y4 with standard versal unfolding 

G(x, vi) va) = x2 +y4+viy+v2y2, 

and F(x, y, ui, u2) u3) is the family of distance squared functions for the crosscap, 
given by 

F(x, y, U1)U2 n3) = (x _' ui)2 

+(xy +p(y) -- u2)2 + (y2 + axe + bxy + 9(x, y) - u3)2. 

First we consider the case where we have an unfolding 

F(x, y, u) = x2 + 4)(y, u) = x2 + 0(y) + R(y, u), 

where 0(y) is R-equivalent to the normal form f (y) = y4 and 

R(y, U) E M(u) " i(y, u). 

There exists a diffeomorphism 
vH O(Y) 

such that 0o , (y) = y4 and 

'( '(y), u) = y4 + R'(y, u), 

where R'(y, u) E M(u) " 6(y, u). To what order do we need the power series 
expansions of 0 and 0 to apply the algorithm of Proposition 7.2.1 with accuracy? 

Lemma 7.2.5 Suppose that we wish to determine the map b' of Proposition 
7.2.1 for some m. Then we need the (3m -- 1)-jet of 0. It follows that we must 
know the (3m + 2)-jet of q.. 

Proof We write m 
R'(y, u) =EE %''(y)u"P, 

p=1 vp 
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where vp is a multi index of degree p. Substituting (y) into the unfolding 4, we 
get 

M 

P=1 "n 

By Corollary 7.2.4, it is clear that we can truncate 0(y) at degree 3m--1 without 
changing bm. If we write bo -1(y) = y, and consider the power series expansion 
of 0 o, 0-1, we see that the k-jet of 0 is determined by the k-jet of 0-1. Now 

writing Y= 0(y), 

y4 = ¢(y) = y4(oo + q1Y + 02Y2 + ... ýý 

so 
Y: --- Y(O0 + &lY + 02Y2 +... )1/4. 

Considering the Taylor series expansion of (0o + 01Y+ 02Y2 +... )1/4 we see that 
to determine the (3m - 1)-jet of 0`1, we must have the (3m + 2)-jet of 0. Since 
the (3m - 1)-jet of 0-1 determines that of zb, the result follows. 13 

We have shown (Proposition 6.2.4) that near (ui, u2, u3) = (0,0,0), the dis- 

tance squared function F is a non-versal unfolding of an A3 singularity. We write 
u for the vector (Uli u2) u3). We note that F is of the form 

00 00 00 
'(y, u)+x2+xEaiys+xZEyjo j(u)+11 x, y, u), 

i=2 p=1 j=0 

where Opi is homogeneous and degree p in u and RE M(x)2 " i(2, y, u). 

Lemma 7.2.6 (c. f. [CW-II], page 350). Suppose that we wish to determine the 

map bm of Proposition 7.2.1 for some m. Then we truncate F at degree m in u, 
and 1(y, u) at the levels specified by Corollary 7.2.4 in y. Then there exists a 
transformation x' =x-f (y, u) reducing F to the form 

ý'(y, u) + x2 + R(x, y, u), (7.5) 

where RE 
, 
M(X)2 " E(x, y, u). Thus all terms of F that are linear in x can be 

removed. 

Proof We first truncate F at degree m in u, and 4)(y, u) at the levels specified 
by Corollary 7.2.4 in y, and then separate the terms linear and non-linear in x so 
that the unfolding may be written as 

00 m 00 
F'(x, y, u) = (y, U)+x2+xEaiy`+xEEyjOpj(u)+R(x, y, u)e 

i=2 p=lj=O 
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where Opj is homogeneous and degree p in u and RE M(x)2 " e(x, y, u). For each 
i, we apply the transformation 

to remove the terms of 

x= xf -1 aiy', 

00 
xEasy` 

4=2 

from F. Then 1<p<m, we apply the transformation 

X=X- 
12y3op9 

(7.6) 

for each j. After applying the transformation, we have 

m oo 
F(x', y, u) = 4)(y, u) + (xý - 2VJOj) + (xý - yjopi) EE yjopi(u) 

P=I ]=O 

1 
+R(x'- 2 y'Opp Y, u) 

It is clear that at the (p, j)-th level, the transformation removes the term xy54pj(u). 
Those terms only involving y and u which are introduced are 

11 "' °° / 2ýýpj 
- 2Iljopj 

E F, y? opj(U)f 

P=lj=O 

which are of degree higher than p in u. So applying the transformation (7.6) 

successively gives the desired result. 11 

From the algorithm of Lemma 7.2.6, we see that we can ignore terms of 
00 m 00 

xE aiyt and xE yigp. (u) 
i=2 p=1 j=0 

higher than a certain degree. 

Corollary 7.2.7 We can change the terms of 
00 

E aiys 
i=3m-ß 1 

and the terms of m 00 
E: yjgpj (u}, 
p=1 j=Np 

where Np = 3(m -p+ 1) , without affecting äm , 
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Proof When we apply the transformation 

1ý 
y of 

2 Pi 

we remove the term xcb3 (u), and introduce the terms 

2i 21m °° 
4 

OPi 
2 

p=lj=O 

The result then follows from Corollary 7.2.4 and Lemma 7.2.5.0 

Finally we have 

Lemma 7.2.8 (c. f. [CW-II], page 351) A sequence of transformations can be 
constructed which removes the terms in R(x, y, u), but does not affect -cD(y, u) in 
Equation (7.5). 

Proof The construction is analogous to the one in Lemma 7.2.6. We write 

m 3(m-p-4-1)-1 00 
R(x, y, u) =xEE y' E xiopji(u), 

p=0 j=0 i=0 

where Opjz is homogeneous and of degree p in u. Then for each p, each j from 0 
to 3(m -p+ 1) - 1, and each i from 0 upwards, the transformation 

x= x1 - Zk(X ̀ y'0P, '(u)) 

removes the term x: +1yjO j; (u)) in R(x, y, u). It can easily be checked that each 
step removes unwanted terms without reintroducing terms already removed by 
previous transformations. 0 

These results can be implemented in a series of Maple routines. These are 
listed in Appendix B. Note that the final stage of the algorithm (Lemma 7.2.8) 
reduces the unfolding (7.5) to the form 

1(y, u) + x2, 

without altering (D (y, u). In our application, only the form of (P (y, u) is of interest. 
So when qb(y, u) has been determined using the algorithm of Lemma 7.2.3, the 
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terms in R(x, y, u) may be discarded. Thus the algorithm can be implemented 
to reduce a general unfolding of an A3 singularity to one of the form 

-(D (y, u) = x2 + 0(y) + R(y, u), 

where ci(y) is R-equivalent to the normal form f (y) = y4, and R(y, u) E . M(n) 
E(y, u). We can use the Maple library routine reversion to calculate the relevant 
terms of t up to the degree specified by Lemma 7.2.5. The procedure ourtruncm 
truncates the unfolding at the degrees specified by Corollary 7.2.4. Then the 
procedure remlinm reduces the unfolding to the form 

4) (y, u) + kx2 + R(x, y, u) 

using the algorithm of Lemma 7.2.6. As we have noted, we can now deal simply 
with the unfolding 4(y, u) = 0(y) + x2 + R(y, u), where 0(y) is an A3 singularity 
and R(y, u) E M(u) " £(y, u). The procedure revm calculates and applies the 
diffeomorphisms (up to the degree specified by Lemma 7.2.5) needed to take 
¢(y) to the normal form for an A3 singularity, f (y) = y4. Finally the procedure 
changem applies the algorithm of Lemma 7.2.1. 

7.3 The Focal Set of the Crosscap 

Our next step is to apply the algorithm of Section 7.2 to the problem of finding 

a local model for the focal set of the crosscap near the origin. We proceed in the 
following way. Let F(x, y) u1, u2, u3) be the family of distance squared functions 
for the crosscap, given by 

F(x, y)ui, u2, u3) _ (x-ul)2 

+(xy +p(y) - u2)2 + (y2 + axe + bxy + q(x, y) - u3)2, 

and let 
G(x, vi, v2) = x2 +y 4+ viy + v2y2, 

be the standard versal unfolding of an A3 singularity. Let the smooth mappings 
a: R2 x R3,0 º R2,0 and b: R3,3,0 ---) R2,0 be such that 

F(a(x, y, u1, u2, u3)) ul, U2, U3) = G(x, y, b(ul, u2, UA " 

Then the focal set of the crosscap is the bifurcation set of F, and is thus the 
pullback of the bifurcation set of G (the cusp with equation 27vi + 16v2 = 0) by 
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the mapping b. Section 7.2 describes a method of calculating the Taylor Series 

of b accurate to degree k. How large must k be for our application? It turns out 
that we only need the 2-jet of b. In the next two results we calculate this. 

Proposition 7.3.1 Let F, G, a and b be as above. Then we have 

jl(b(ul, u2, u3)J = (O, 
-2u3). 

Proof As we have noted, we can discard the terms of F not involving u. Then 

we truncate F at degree 1 in ul, u2 and u3. Consider the terms of F involving 

only y, u1i u2 and u3. Then by Corollary 7.2.4, we need these terms to degree 5 
in y only and the terms degree 1 in ui, u2 and u3 to degree 2 in y. 

Now consider the terms that are linear in x. By Corollary 7.2.7, we need 
terms that are linear in x that are degree 0 in ul, u2 and u3 to degree 2 in y, and 
those that are degree 1 in ui, u2 and u3 to degree 3 in y. Then we can discard all 
terms of degree greater than 2 in x except for x2 by Lemma 7.2.8. 

This leaves us with 

x2 + y4 + 2q3y5 - 2u3y2 + 2x(by3 - 1L1 - 7621, E - bu3y - u3g31y2), 

where q3 and q31 are the coefficients of y3 and xy2 in q(x, y) respectively. The 

substitution prescribed by Lemma 7.2.6 replaces x with 

x-(by3-261-212Y-bu3y-u3g31y2)" 

This rids us of the terms linear in x, and introduces the terms 

-(by3 - ul - u2y - bu3y - u3Q31y2)2. 

All of these terms are higher degree in y and u1i u2, and u3 than we need, so we 
can discard them, leaving 

x2+y4+2g3y5-2u3y2. 

The result now follows easily by considering the algorithm that we have described 

above. 0 

Next we calculate the 2-jet of b. This calculation requires some brute force. 
Fortunately, for the distance squared function on the crosscap, we can lower the 
degrees in y and u1i u2 and u3 that we need to look at the terms of our general 
unfolding to. The crucial fact is that there are no terms in our unfolding of the 
form uly, u2y or u3y. 
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Proposition 7.3.2 Let F, G, a and b be as in Proposition 7.3.1. Then 

j2(b(u1, u2, u3) = (-2(ulu2 + p3u2u3) -2u3 - 
2b2ui 

- (23 2 
p3 + 1)u2 +P3u3 

+(3p3b + g3)u1u2 + 2P3u1u3 

+(3P3g3 - 2P4)u2u3), 

where p(y) = p3y3 + p4y4 +""" and q(x, y) = q3y3 +... in the parametrisation of 
the crosscap. 

Proof Once we have truncated at the relevant degrees, our unfolding is of the 
form 

35 

x2 +j8(c5(y)) - 2u3y2 + y3 uj2(7a(y)) + uv'? 2('('2(V)) +XE ajya 
i-1 vz j=2 

2 8-3p 

+x EE y3cpj(u), (7.7) 
p=1 j=O 

where 0 is an A3 singularity, and the functions y; and y"2 are in 6(y). We show 
that for this situation, we need only the 6-jet of ¢5, the 1 -jet. of the functions y;, 
and linear terms in x. To see this, we first suppose that we have removed all linear 
terms in x, and applied the coordinate change y º--* (y), where 0o V) (y) = y4. It 
follows from proposition 7.3.2 that the unfolding is then of the form 

3 

x2 +y4 - 2u3y2 + y3 uj2(gz(y)) + Euv'j2(#v2ýy))º 
s=i v, 

where j2(ß) is the 2-jet of the function , 0, and Q;, 0"2 E E(y). Applying the 
algorithm of Proposition 7.2.1, we set 

bl(ui, u2, u3) = (0, -2u3) 

and 3 

al (x, y, ul, u2, u8) _ 
(X) y-4Z, uij2(Qi\y))" 

i=1 

We write A= -4 Es 1U j2(/3 (y)), and y' =y+A. Then we have 

3 
F(a1, u1, U2º u3) = x2 + y'4 - 2u3y'2 + yi3 uii'(Qi 

iýl 

+E uv2j2(Qv2 (y )) + ... , P2 
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We must see how this substitution affects V. The terms of 
3 

yi4.2u3y'2 + yes u1j2(ßi(y') 
iL=1 

that contribute to b2 are those of degree 2 in ul, u2i u3 and degree up to 2 in y. 
We see that y'4 contributes 

32 

6y2 
ý 

(u. 
jo(ß. (Y))) 

i=1 

the term -2u3y'2 contributes 
3 

U3y 
ý uaýilQilyýýý 

and y'3 E= 1 u=j2(, 6; (y')) contributes 
32 

-4y2 ýu17°ýpýýy)) 
i=i 

It follows that we need only know the 1-jets of the functions Qt. Thus we need 
only know the 1-jets of the functions yt in the unfolding (7.7). 

Now we determine the degree that we need c(y) correct to. Suppose that we 
have removed all the terms that are linear in x, so that our unfolding is of the 
form 

3 

x2 +ýýyý - 2u3y2 +y3 uajl(ßi(y)) + uv2j2(ßv2(y))" 
i=1 vz 

Now let the function R, 0 --> R, 0 be such that 0o 0(y) = y4. Substituting 
'(y) for y, we get 

3 

x2 + y4 - 2u34'(y)2 + 0(y)3 E u1.1`ßß(cb(y))) +E uh2j2(ova(4'(y)))" 

i=1 V2 
It is clear from considering this that we only need the 3-jet of -0. From similar 
considerations to those of Lemma 7.2.5, we see that we must determine the 6-jet 
of ¢. 

So far we have shown that we can truncate F so that it is of the form 
35 

x2 +j6(«(y)) -- 2u3y2 + y3 E uijl('Yy(y)) + u'2j2(7V2(y)) +xa? yj 
: _i v2 j=2 

2 8-3p 

+X EE yjopj(u)' 
p-1 j-0 
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Finally by considering the transformation (Lemma 7.2.6) that removes the terms 
that are linear in x, we see that we need only consider the following: 

442 

xEQjyj +xI: vjOlj(u)+x1: yj02j(U)- 
j=2 j=Q j=O 

Now we prove the Proposition, by applying the algorithm to our truncated 
unfolding, which is 

x2+y4+2g3y5'+'(p3'+'q3'+'2q4)y6-2u3y2 

+y3(-2(u2P3 + u3g3) - 2(u2p4 + u3g4)y) + 2x(by3 + (p3 + b93 + g31)y4 

-4L1 - 
(u2 + bu3)Y - u3(g31y2 + g41y3 + Q51y4)), 

where p(y) =P3y3-F-p4y4-+-... and q(x, y) = 4ay3+g31xy2+q4y4+q41xy3+9sy5+ 
g51xy4 +". " in the parametrisation of the crosscap. Our first step is to remove 
the terms linear in x, by making the substitution 

x, =x- (by3 + (p3 + bq3 + g31)y4 _ 1L1 - 212 + bu3)y - u3(g31y2 + g41y3 + g51y4)). 

After making this transformation and truncating at the required levels, our un- 
folding is 

x2 + y4 + 2q3y 5+ (p + q3 `i' 2q4 - 
b2)y6 - 2u3y2 + y3(-2(u2P3 + u3g3 - bul)) 

-2y4(u2p4 + u3g4 - b(u2 + bu3) - 
(p3 + bq3 + g31)u1) - 2u1(u2 + bu3)y 

-(2g31u1u3 + (u2 + bu3)2)y2. 

Next we must determine the substitution we have to make for y so that this 
unfolds a germ with normal form x2 + y4. Writing 

y' = «y) =y+ b2y2 + b3y3 + ..., 

then if 
y4 = y'4+a, y15+a2yr6, +.,,, 

considering the power series y'(1 + aly' + a2y'2 +... )1/4, we see that 

a1 7ai 
b24 and b3= 

32a24. 
In our case, 

al = 2q3, and a2 = (p3 + 43 + 2q4 - b2 ), 
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so we make the substitution 

yý= ýy)=y-2g3y2+ (-4(P3ý'2g4-b2)ý'843)y3)" 

After truncating, we get 

x2 + y4 - 2u3y2 + y3(-2p3u2 + 2bul) 

+y4(u1 (2p3 + 2g31 - bq3) `F 262 -2p4 + 2b + 3g3p3) + u3(b2 + p3ý) 

-2yit1(u2 + bu3) - y2(2u1u3g31 + (u2 + bu3)2 - g3u1(U2 + bu3))" 

We write the coefficients of y, y2, y3 and y4 that are homogeneous and degree 2 
in u in the above equation as A, B, C and D respectively. Then we set 

al (x> y)ui, u2,3) = (x, y-4 (C + yD)). 

The considerations at the beginning of this proof show that 

b2(ui, u2, u3) = (A + u3C, -2u3 +B- 16 C2 + u3D). 

Substituting 

A -2u1(u2 + bu3) 
B= -(2u1u3Q31 + (u2 '+' bu3)2 - g3ui(u2 + bu3)) 

C= -2P3u2 + 2bu1 and 
D= u1(2P3+2g31-bq3)+u2(-2p4+2b+343P3)+U3(b2"}'p3)), 

we find that 

j2(b(u1 
, u2, u3)) = (-2('u1u2 `}' p3u2u3) 

as required. 

-2u3 - 2b2ui - (2p3 + 1)u2 + p3u3 

+(3p3b + g3)u1u2 + 2P3U1U3 

"+' 
(3p3Q3 - 2p4)u2u3), 

Now that we have the 2-jet of b, we make the following definition. 

13 

Definition 7.3.3 A map germ f: R, 0 ---) RP, 0 (where p< n) is called a 
submersion with folds if it is A-equivalent to a map germ of the form 

(x1,... 
)xn) H (xl�.. 

yxp-1)Xp+-... 
±Xn). 

For a discussion of submersions with folds and their stability, see [GG], pages 
87-88. 
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Corollary 7.3.4 (to Proposition 7.3.1). Let F, G, a and b be as in Proposi- 
tion 7.3.1. Then the mapping b is a submersion with folds. 

As we have noted before, the bifurcation set of G, denoted B(G), is a cusp 
with equation 27vi +16V3 = 0. The critical values of b form a smooth curve 
tangent to the cuspidal tangent of B(G) at the origin. 

Proof The first part of this is clear from considering the definition of a submer- 
sion with folds and the 2-jet of b. Notice that in fact we only need the 1-jet of 
the second component of b, and the 2-jet of the first component of b. 

The cuspidal tangent to B(G) is the v2-axis. It is easy to see that the set of 
critical values of b is a smooth curve tangent to the v2-axis. Q 

The following result will be needed in determining the focal set of the crosscap. 
It is a special case of a result in [duPW]. 

Proposition 7.3.5 If f: R1, O -- o RP, 0 is a submersion with folds whose set 
of critical values is given by Vp = 0, then f is 1Z-equivalent to the germ 

(xl,... 
, xn) ý-+ \xle... ' xp_� tip ± ... ± x2 

Proof Since we have a submersion with folds the critical set is smooth and of 
dimension p-1. By a change of coordinates in the source, we may suppose that 
the critical set is given by xp ="""=x,, = 0, and that the first p --1 components 
off are x1, """, x, _1 respectively. It follows that the composition of the projection 

P: (yi,..., y)- yP 

with f has a Morse singularity. So we can make a change of coordinates in 
(xv, """5 x�) space so that 

Pof\ýý... ý0, Xp,..., x,, ) =±xpf... fxn. 

Now we think of the function Pof as an unfolding of 

ýp0 f)0 _ Po f(O,... 
)O, xP,..., xn) 

with unfolding parameters x1, """, x,, -,. 
A versal unfolding of (P of )O is given by 

±xp f"""± xn + k, where k is a constant. So by the theorem on versal unfoldings 
(Theorem 1.5.6), we can make a coordinate change so that 

P0. f (xi 
, ... , xp-l , xp) ... , xný ±X ý 

... xn + 91x1, ... , xP-, ) 
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Note that this coordinate change does not affect the first p-1 components of f, 
so that we have reduced f to the form 

(X1) 
... A xn H Xp-1 , 

±xp ±... ±xn 2+g (X1) 
... ) xp-1». 

Finally, if the set of critical values of f is given by yp = 0, then it follows that 
the function g is identically zero. Q 

To apply Proposition 7.3.5, we need to be able to apply a diffeomorphism to 
R2, which preserves the bifurcation set of G, and `straightens out' the curve of 
critical values of b. In [A2], Arnol'd lists the normal forms of orbits of functions 

on R2 which vanish at the origin under the action of the group of plane diffeo- 

morphisms preserving the cusp with cuspidal tangent the v2 axis. The two such 
normal forms with lowest codimension are 

f (vi) v2) = ful 

f (vi) v2) = fv2ý 

with codimension 0 and 1 respectively. Intuitively, this means that if we have a 
smooth curve which passes through the origin and is transverse to the cuspidal 
tangent then there is a diffeomorphism on R2 leaving the cusp invariant which 
`straightens out' the curve to the line orthogonal to the cuspidal tangent, 

and that a smooth curve which passes through the origin and is tangent to the 
cuspidal tangent there can similarly be `straightened out' to the cuspidal tangent 
whilst leaving the cusp invariant. 

We can write the critical values of b as the set with the equation h(vl, v2) = Of 
where h: R2,0 -º R, 0, as the set is a smooth curve. Then Arnol'd's results show 
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that h is in the second of these two orbits. Thus we can choose a diffeomorphism 
¢: R2,0 --+ R2,0 which leaves the cusp invariant with the property that the 
critical values of qob are the v2 axis; the cuspidal tangent to B(G). We are then 
able to apply 7.3.5 to get 

Theorem 7.3.6 The focal set of the crosscap near to the origin is diffeomorphic 
to the pullback of the bifurcation set of the standard A3 singularity (the cusp 
with equation x3 - y2 = 0) pulled back by the submersion with folds (u, v, w) H 
(u, v2 - w2). So the focal set near to the origin is locally diffeomorphic to the 
hypersurface with equation u3 - (v2 - w2)2 = 0. 

Proof This follows from 7.3.5 and the discussion above. 13 

Now we describe the surface with equation u3 - (v2 - w2)2 = 0. This variety is 

singular when u=0 and v= ±w. The intersection of the surface with the plane 
defined by u=k (where k is a constant) is empty when k<0, the two lines given 
by (v2 - w2)2 =0 when k=0 and the two hyperbolae given by (v2 - w2)2 = k3/2 

when k>0. These sets are shown below. 

u-0 u=k 
Intersections of the surface u 2- (v 2-w 2) 2=0 

with the planes u=0 and u=k (k > 0). 

The intersection of the surface with the plane defined by w=c is the curve 
defined by u3 = (v2 _ c2)2. This has two cusps at (u, v, w) = (0, ±c, c). When 
v=0, we have u= c"! 3. The cuspidal tangents are vertical. As c tends to zero, 
the cusps approach each other, and when c=0, the section is given by u3 = v4. 
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These cross-sections are depicted below. 

W= 0 w=c 
Intersections of the surface u2 - 

(v 2_W 2) 2=0 

with the planes w=0 and w=c. 

Figure 7.1 shows the surface viewed from different angles. The pictures on 
the right hand side were obtained using the Liverpool Surfaces package. We can 
deduce from this model of the focal surface that the crosscap has two transverse 
curves of ridge points passing through it. 
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Figure 7.1: The focal surface of the crosscap close to the origin. 
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Chapter 8 

Functions on the Crosscap 

A different approach to studying the geometry of the crosscap is to classify func- 
tion germs R3,0 -+ It, 0 allowing only those diffeomorphisms in the source 
which preserve the Whitney Umbrella. We call such function germs junctions on 
the crosscap. The aim is to gain more information on the crosscap by considering 
the geometry of these functions. This approach yields a more detailed picture, 
since, for example, the self intersection set is preserved by the changes of coor- 
dinate. Functions on analytic varieties have been considered in [BRI. We begin 

with some technical results. 

8.1 Vector Fields on Varieties 

In what follows K is either C or R. We denote the algebra of germs of smooth 
functions on K" at 0 by O. 

Let X, 0C Kp, 0 be the germ of a reduced analytic subvaricty of Kp at 0. We 
consider analytic function germs Kp, 0 -+ K, 0 and say two germs are equivalent 
if one can be obtained from the other by source coordinate changes which preserve 
X. As usual the theory works well when K=C. 

Definition 8.1.1 Let Z denote the ideal in Op of germs of functions that vanish 
on X. A diffeomorphism 0: Kp, 0 --i KP, 0 preserves X if qS(X) and X are equal 
as germs at 0, i. e. q(X), 0=X, 0. Over C this is equivalent to the assertion that 
the induced isomorphism : Op --> Op satisfies 0 *(I) =1. The group of such 
diffeomorphisms is a subgroup of R., and is denoted 1 (X). 
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Two function germs f, gE Cep are said to be R(X)-equivalent if there exists 
E R(X) such that go=f. 

Let S be the germ of an analytic vector field on K" at 0. Then 6 is said to be 
logarithmic for (X, 0) if, when considered as a derivation b: Op -º 0p, f ý-º 6. f, 
we have 6"fEI for all fE1, that is, S"f vanishes on X. The Op module of 
logarithmic vector fields is denoted 0(X). 

Intuitively, an infinitesimal approach is given by integrating vector fields tan- 
gent to X to yield diffeomorphisms which preserve X. This is confirmed by the 
following proposition, which shows that the logarithmic vector fields are precisely 
those vector fields tangent to X. 

Proposition 8.1.2 When K=C, the germ at 0 of a vector field lies in 8(X) 
if and only if at each smooth point x (sufficiently close to 0) of each irreducible 
component Xi of X the vector field b is tangent to X; at x. 

Now if K=C or R suppose that SE 0(X) vanishes at 0. Then the flow ¢1 
generated by 6 preserves X, 0. Thus Ot E R(X) for all t. 

Proof See [BR], section 1.13 

The basic tools for classifying analytic function germs K", 0 -+ K up to 
R(X)-equivalence are generalisations of the standard results concerning of func- 
tions under R-equivalence, for which X=0. The group 7Z(X) is one of Damon's 
`geometric subgroups' of A in [D], so his version of the unfolding and determinacy 
theorems apply. 

Definition 8.1.3 A function germ f: KP, 0 -º K, O is k-7Z(X)-determined if 
all function germs with the same k-jet as f are R(X)-equivalent to f. 

Theorem 8.1.4 A function germ f: KP, 0 .-K, 0 is finitely 9Z(X)-determined 
if the ideal 

Jx(f)={S"f : 6EO(X)} 
in Op contains some power of the maximal ideal M. Moreover if Jx(f) D Mk 

p then f is (k + 1) -1Z(X)-determined. 

Proof See [D]. D 
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We prove a stronger version of Theorem 8.1.4 in the next section. 

The definition and fundamental theorem of R(X)-versality for unfoldings are 
analogous to those of R-versality; this time the diffeomorphisms must preserve 
the variety X. 

Definition 8.1.5 Let fE Qn be a germ of a function. A p-parameter unfolding 
of f is a germ F of a smooth function at the origin of K" x Kp (given coordinates 
(x, t)) such that 

Fo(x) = F(x, 0) =f (x). 

ý. We define the extended pseudo-group of diffeomorphisms preserving X, de- 

noted ? Ze(X) to be the pseudo-group obtained by integrating all vector fields 
6-E O(X) as in proposition 8.1.2, but dropping the condition that 5(0) = 0. 
Note that when X is the Whitney Umbrella, all the vector fields do vanish at the 

origin, so that in this case Re (X) = R(X ). 

Two p-parameter unfoldings, F and G of the same germ ,fE 
0n are isomorphic 

if there exists a local diffeomorphism q5 : K" X K', 0 -º K" x K', 0 at the origin 
such that 

1. q(x, t) = (, O(x, t), t) and O(x, 0) = x, i. e. 0 is a p-parameter unfolding 

of the identity map on K", this time with the property that the snapping 
Ot : K" --> K" defined by't(x) = 0(x, t) is in R. (X) for t near 0 in Kp; 

, 2. G=FoO. 

An unfolding is called trivial if it is isomorphic to the constant unfolding 
(x, t)'-' f W. 

As before we say that two p-parameter unfoldings F and G of a function germ 
f are equivalent if there exists a diffeomorphism h: Kp, 0 -º KP, O such that 
G is isomorphic to h*F, the pullback of F by h. If H is now some q-parameter 
unfolding of f, we say that H can be induced from F if there exists a smooth 
map germ h: K9,0 ---p KP, 0 such that h is isomorphic to h*F. 

We say that an unfolding F of fE O� is a versal unfolding of f if any other 
unfolding G of f can be induced from f. 
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Theorem 8.1.6 Ap parameter unfolding F(x, u) of f is 7Z(X)-versal if and only 
if the initial speeds 

au (x, ý))... 
,a up 

(x, 0) 

span (fin/Jx(f)" 

Proof See [DJ. 0 

We shall be considering the geometry of functions on the Whitney Umbrella, 
so, we need to use the notion of K(X)-equivalence. The subgroup K(X) of A: 
is defined by replacing 1Z by 1Z(X) in the definition of K. Thus K(X) can be 
thought of as the semi-direct product of R(X) and C, and IC(X) acts on M� " 
O(n, p) as a subgroup of K. In the case where p=1, the definition of K(X). 
equivalence reduces to the following. Two germs g1,92 : (K", 0) -º (K, 0) are 
K(X)-equivalent if there exists a map germ 0E 1Z(X) and a smooth function 
germ A: K", 0 --ý K, with A(0) ik 0 such that 

91(x) _ A(x)92(02(x))" 

If f is a smooth function germ, then the tangent space to the K(X)"orbit of f is 
given by 

LK(X)"f =LC "f+LR(X)f=<f >+JX(f). 

We can define K(X)-versal unfoldings in a similar way to 7Z(X)-vcrsal unfold- 
ings. The group K(X) is another of Damon's ̀ geometric subgroups' of K, and so 
we have the following theorem. 

Theorem 8.1.7 Ap parameter unfolding F(x, u) off is K(X)-versal if and only 
if the initial speeds 

au (x) o), ... ,a (x, °) 
span (9n/LK(X) " f. 

Proof See [D]. 13 
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8.2 R (X)-triviality and Complete ZSransversals 

To take advantage of the complete transversal methods, we need to imitate the 
discussion given in Chapter 11 of [BG2]. 

In what follows we shall be dealing with the germ of an analytic variety X, 0 
in R. We shall suppose that we have a module of vector fields 6(X) which are 
tangent to X. By Proposition 8.1.2, when we integrate such fields we obtain a 
flow which preserves the variety X. Note that the module 6(X) is not necessarily 
the collection of all vector fields tangent to X. We wish to classify functions 
f: R', O ----* R, 0 up to diffeomorphisms in the source preserving X. We shall 
as usual obtain these diffeomorphisms by integrating vector fields in 8(X). For 

simplicity we suppose that the vector fields all vanish at the origin. This is 

certainly the case in the application we have in mind, when X is the crosscap. 

Definition 8.2.1 Let F: R" x R, (0,0) --; R, 0 be a germ of a smooth 1- 

parameter family of functions with F(0, t) =0 for small t, and let k be an integer 
>_ 1. We say that F is 7Z(X) -trivial if we can find a germ of a 1-parameter family 

of diffeomorphisms H: Rn x R, (0,0) --+ R, O preserving X with H(x, 0) 

x, H(0, t) =0 (for small t) and F(H(x, t), t) = F(x, 0). 

We say that F is k-R(X )-trivial if we 'can find a germ of a 1-parameter family 

of diffeomorphisms H: R" x R, (0,0) -º R", 0 preserving X with II (x, 0) = 
x, H(0, t) =0 (for small t) and F(H(x, t), t) = F(x, 0) + «x, t) for some 10 E 
Mn+l c £n+l" 

The latter definition says that F is k-IZ(X)-trivial if F is ? Z(X)-trivial up to 
and including terms of degree k. Obviously an 1Z(X)-trivial family is k-T(X)- 
trivial for all k. We need criteria for a family to be R(X )-trivial and k-7Z(X)- 
trivial. 

Proposition 8.2.2 (i) Let 

F: R" x R, (0,0) ---* R, 0 

be a smooth function with F(0, t) =0 for t small. Let ei, ... , ýp be vector fields 
generating O(X). Then the family F is ' (X)-trivial if there is a smooth germ 

a: R" x R, (0,0) --> RP 
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satisfying 
p 

or equivalently 
OF 

E O(X). F C En+I. 

(ii) The family 
F: R" xR, (0,0)---iR, O 

defined as above is k-7Z(X )-trivial if 

OF 
E 0(X). F + Mk n+1 C En+l" 

More explicitly, the family 

F: R"` x R, (0,0) --+ R, 0 

is k-T (X)-trivial if there is a germ 

a: R" x R, (0,0) ºRP 

satisfying 
p OF 

aiiF +" ät E Jýný 1 

i=1 

(8.1) 

(8.2) 

Proof (i) Suppose that a exists as in the statement of the Proposition. By the 
fundamental theorem on the existence of solutions to partial differential equations 
(see [A41, page 56), if 

p 
rn 

a 
7 _ECYi6i=Lý77i(ýý 

i=1 i=1 = 

then the differential equation 

(x, t) = , 1(H(x, t), t), H(x, 0) =x (8.3) 

has a solution defined on some neighbourhood of (0,0) E R' x It. That is we 
can find H: R" x R, (0,0) --. R", 0 satisfying (8.3). The vector field 17 is tangent 
to X, so by Proposition 8.1.2, we obtain a diffeomorphism Ht : R", 0 --º R", 0 
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preserving X for each small t. Now define a new family G: R" x R, (0,0) -4 R, 0 
by G(x, t) = F(H(x, t), t). Differentiating with respect to t we obtain 

aG (x, t) =nE ax (H(x, t), t) at 
1(x, t) + at (H(x, t), t) 

_ 
aFt 

(H(x, t), t) 77i (H(x, t), t) + at 
OF 

(H(X, t), t) 
t-1 Ox 

n OF OF 
_ (ý qsTi + at) (H (X, t), t) _ o. 

Fixing x we see that G(x, t) is constant, i. e. G(x, t) = G(x, 0) for all t and x. 
In other words F(H(x, t), t) = F(H(x, 0), 0) = F(x, 0), as required. Note that 
OHl öt(0, t) = 77(H(0) t), t) has the unique solution H(0, t) = 0, since the vector 
fields & all vanish at the origin, so H does have the required properties. 

(ii) Suppose that the germ a exists as in the statement of the Proposition, 
and H: R" x R, (0,0) -+ Rn, 0 solves the differential equation 

OH 
(X) t) =i (H(x, t), t), H(x, 0) =x 

where rq = M1 as,. As before, since the vector fields ý are tangent to X, we 
know that Ht is a 1-parameter family of diffeomorphisms preserving X. Consider 
G(x, t) = F(H(x, t), t) and differentiate with respect to t. We find that 

n OF OF 
Ft (X, t) - ax 

(H(x, t), t) at 
all ' (X, t) + at (H(x, t), t) 

i-1 

n OF OF 
_ (ý 77a ax+at) (H(x, t), t) 

The term 
n OF OF 
ý'qiý7x, + at 

lies in Mn A'+', and hence so does OG/8t(x, t). In particular we can write äG/Ot (x, t) 
as a sum E GI (x, t)xl , where I is a multi-index with III =k+1. So 

G(x, t) - c(x, 0) =f` 
au (x, u)du = ý(f t as I (x, u)au)xl 

also lies in 
, flan+i, and since G(x, 0) = F(x, 0) the result follows. El 

Now we can use Proposition 8.2.2 to prove a complete transversal result for 
R(X)-equivalence. Before doing this we make the following definition. 
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Definition 8.2.3 If 0(X) is the set of vector fields tangent to the variety X 
then we write O1(X) for those fields with 1-jet zero. This is a module over the 
ring 6, 

Theorem 8.2.4 Let f: R", 0 --> R, 0 be a smooth germ (usually a polynomial 
of degree k) and let {hl, """, h,. } be a collection of homogeneous polynomials of 
degree k+1 with the property that 

61(X ). f+ sp{hl, ... , 
hr} + 

, 
Mn+2 

, 
ý, ikn+l. 

Then any germ g: R", 0 -º R, 0 with jkg(0) = jk f (0) is R(X)-equivalent to a 
germ of the form 

r 
1(x) + 1: u=h1(x) + O(x) 

i=l 
where O(x) E Mn}2. Moreover this R(X)-equivalence has 1 jet the identity. 

Proof Given a function germ g: R, 0 -º R, 0 with jcg(0) = jk f (0) consider the 
difference g-fE . 

Mn+l. We write this as 
r 

, q(f) + uihi '+' 
i=1 

where the vector field i_ 77Za/axq lies in 01(X), the u; are real numbers and 
lies in , 

Mn+2. Now set 
r 

Ft (x) = F(x, t) =f (x) +(1 -t) (g - f) (x) +tE u=G; (x). 
i_1 

Note that Fo =g and Fi =f+E uiG= so that it is enough to prove that for each 
to the family F(x, t+ to) is k-7Z(X)-trivial. To see this first note that 

DF 
(x, t) _ (f - g) (x) +E uiGi, while 

, qF = ? If +(x, t), where 's r , /4n+2 
So we have 

aF 
'xi + (. f ` g) +E uiGi + , qF + öt =E 11i 
Of 

= -O + V1 E A4n+2. 

It follows that the family F(x, t) (based at to = 0) is k-R(X)-trivial, by 
Proposition 8.2.2. 
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If we set 
f' =f+ (1 - to)(9 - f) + to E Gz(x), 

i=l 
then it can easily be checked that 

el(X)f' + Mn +2 = Q1(X)f +� +2i 

so that each hypothesis of the theorem applies if we replace f by f'. Consequently 

F(x, t+to) :WxR, 0 --* R, 0 

is k-R(X)-trivial for each to, and the result follows by the usual compactness 
arguments. Since the 77 lies in Ol (X) the diffeomorphisms Ht all have 1-jet the 
identity. 1 

Corollary 8.2.5 If 
E1(Xl A4k+l 

then f is k- R(X)-determined. 

We can weaken the hypothesis of Corollary 8.2.5 by applying Nakayama's Lemma. 

Corollary 8.2.6 (a) If 

81(x)+Mk+2 D Mn+li 

then f is k- 7(X)-determined. 

(b) In particular, if every vector field in O(X) vanishes at the origin, then if 

0(X) + Mri+2 Mn+l 

f is (k + 1) - 7Z(X)-determined. 

Proof (a) We apply Nakayama's Lemma 1.4.2 to Corollary 8.2.5. 

(b) Note that if every vector field in 0(X) vanishes at the origin then 

e1(x) D Mn " o(x). 
So if we have 

E)(X)+Mn+2 Mn+l 

then 
Mn , O(X) + Mka+3 D Mn+2I 

and f is (k + 1) - R(X)-determined. 1: 1 
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When X is the Whitney Umbrella, every vector field in 0(X) does vanish 
at the origin, and so we use the determinacy result of Corollary 8.2.6(b) for the 

classification that follows. 

8.3 Classifying Functions on the Crosscap 

We apply the results of the previous section to the case where X is the Whitney 
Umbrella; that is the hypersurface with defining equation v2 _ u2w = 0. Recall 
from Proposition 2.2.3 that O(X) is the 03 module of germs at the origin of 
vector fields on C3 generated by 

r_ aa 
S1-uau+vav' 

2=vDv+2wjw, 

19 19 
3= u2 T+ 2v 

w 
and 

4 =V 
a+ 

uw 
T?. 

To perform the classification, 
the coordinate changes in R(X). 

generating 0(X). These are 

we need to determine at least the 1-jets of 
Consider the linear parts of the vector fields 

aa uau + v8v, 

v8v + 2w 
Ow, 

19 2v and v 
w 

Uu 
. 

Integrating these, we get the 1-jets of coordinate changes 

(u) v, w) H (e\u, e'v, w), 
(u, v, w) H (u, el'v, e2µw), 
(u)v, w) º--ý (u, v, w+ av) and 
(u, v, w) ý--> (u+Div, v, w). 
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Theorem 8.3.1 Any germ f: R3, X, 0 --; R, 0 which is a submersion on the 
ambient space is R(X)-equivalent to one of the germs in the following three 
families. 

k+ ,k >0, (i) UWi: ufwk+i 
(ii) W Uk+l: w± uk+i, k>1, 

(iii) VWk+l: v± wk+l, k>1. 

Each of these germs is (k + 1) - 7Z(X)-determined. 

Proof We may suppose that we are starting with a 1-jet au + by + cw, with one 
of a, b, c non-zero. Now if ac ik 0, then using the linear changes of coordinates 
given above, we may reduce to 

(a) u±w. 

If on the other hand ac = 0, then using the linear changes given above, we 
may reduce to one of the following 1-jets 

(b) u 

(c) w 

(d) v. 

(a) Suppose that f (u, v, w) =uw. Then we have 

if =u C2f =±2w 
e3f = 2v 64f =v 

So Jx (f) D M3. Thus f satisfies the criteria of Corollary 8.2.6(b) and is 1-R. (X)- 
determined. 

(b) Suppose that f (u, v, w) = u. Then we have 

if= u 2f=0 
S3f =0 E4. f = v. 

Thus if we have a germ with k-jet u, then a complete transversal is given by 
u+ awk+i If A; 0, we can apply the coordinate changes described above to fix 
A= ±1. Now let f (u, v, w) =u± wk+l Then we have 

W=u e21 = ±2(k + 1)wk+i 

3f = ±2(k + 1)vwk 4f = v. 
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So Jx (f) J M3+' and we can see that f is k+ 1- 7Z(X)-determined. 

(c) If f (u, v, w) = w, then we have 

elf- 0 e2f=2w 
e3f = 2v e4f = O. 

Thus if we have a germ with k-jet w, then a complete transversal is given by 

w+ \uk+l If A rh 0, we can apply the coordinate changes described above to fix 
A, = ±1. Now let f (u, v, w) =w± uk+1. Then 

if = ±(k+1)u' ' 62f = 2w 
e3f = 2v 64f = ±(k -I- 1)ZJ26kr 

and again it is clear that f is k+1- R(X )-determined. 

(d) Finally we consider the case where f (u, v, w) = v. Then we have 

ei. f =Va. i =v 
S3f= u2 ý4f=UW 

So a complete 2-transversal is v+ Aue + puw + vw2. We think of this as a1 
parameter family FA. We show that this is 7Z(X)-trivial using Proposition 8.2.2. 
Now we have 

elF =v+ 2)tu2 + µuw e2F =v+ 2µuw + 4vw2 

ý3F = u2 + 2µuv + 4vvw 4F = uw + 2Auv + pvw. 

and (9F/öl = u2. It is clear that 

aF/5A E o(x). F +M3 , 
so that by Proposition 8.2.2, the family F, \ is 2- R(X)-trivial. Similarly we can 
show that the family F. =v+ µuw + vw2 is 2-7. (X )-trivial. We can then scale 
v to get the normal forms v and v± w2. 

Now if f (u, v, w) =v is a k-jet, then a complete (k + 1)-transversal is given 
by g(u, v, w) =V+ \wk+1 Then we have 

ßi9= v X29=vf2(k+1)wß+i 

69 =U2± 2(k + 1)vwk X49 = uw. 

Thus it is clear that g is k+1- R(X )-determined, for all k>1.11 
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Now we discuss our motivation for classifying functions on the Whitney Um- 
brella. In other sections of this thesis we have considered functions (height func- 
tions and distance squared functions) defined geometrically on crosscaps. Our 
approach has been to compose the parametrisation of the crosscap g: R2,2,0 -º 
R3,0 with the geometric function, say G: R3,0 --> R, 0 to obtain a germ 
Gog: R2,2,0 . -> R, 0. Proposition 2.0.1 shows that the result is well defined up 
to R-equivalence. 

The approach in this chapter is to consider functions on the crosscap itself. 
More precisely, we know that the parametrisation of the crosscap g is A-equivalent 
to the standard parametrisation f (x, y) _ (x, xy, y2). In other words, there are 
germs of diffeomorphisms 0: R2,0 --> R2,0 and 0: R3,3,0 --º R3,0 such 
that 0of=go0. Thus the geometric function G defined on the image of g 
can be thought of as a function on the Whitney Umbrella by replacing G by 
GoV. The composite Go is well defined up to R(X)-equivalence, for given 
any other diffeomorphisms 01 : R2,0 .) R2,0 and 01 : R3,0 -º R3,0 such 
that 01 of=go 01, we have h o, 01 =ho V) o (V)-1 o 1) and the diffeomorphism 

'0-10 , 01 preserves the Whitney Umbrella. 

Now we wish to distinguish the 1Z(X)-types of the functions on the crosscap. 
Proposition 2.0.1 shows that if H: R3,0 --) R, 0 is a function on the cross- 
cap, then we can associate with it two germs which are well defined up to T- 

equivalence. First we can choose any parametrisation of the crosscap g: RZ, 00 
R3,0 and compose it with H to obtain a function germ Hog: R. 2,0 ----p It, 0. 
Secondly, we can compose H with the parametrisation of the double point set 
a: R, 0 ---) R3,0 to obtain the germ Hoa: R, 0 --> R, 0. For the standard 
crosscap parametrised by (x, y) i-º (x, xy, y2), the parametrisation of the double 

point set is given by a(y) = (0,0, y2), so that a(y) = a(-y). Since any crosscap 
may be obtained from the standard crosscap by a diffeomorphism in the target, 
we may always suppose that the parametrisation of the double point set of a 
general crosscap, ,0: R, 0 -ý R3,3,0 satisfies , ß(y) = , Q(-y) (we used this in the 
proof of Lemma 3.1.5). So if H: R3,3,0 --) R, 0 is any function germ, then the 
composite Ho#: R, 0 -i R, 0 is Z2-equivariant with respect to the involution 

yý-+-y onR, 0. 

Theorem 8.3.2 The function germs UWE+1, WU +1 and VW 1 of Theorem 
8.3.1 are all T (X)-inequivalent. 

Proof In each case we compose the germ with the parametrisation of the stan- 
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dard crosscap ((x, y) H (x, xy, y2)) and the parametrisation of the double point 
curve (y H (0,0, y2)) to obtain 

(i) UWk+l: the germs x±y2k+2 and ±y2k+2, i. e. a submersion and a singularity 

of type A k+i; 

(ii) WU +1: the germs y2 ± xk+l and y2, i. e. an A, singularity and an Ai 

singularity; 

(iii) VW +1: the germs xy ± y2k+2 and ±y2k+2, i. e. an Al singularity and an 
Alk+1 singularity. 

The result then follows from the discussion above. Q 

Now we consider R(X)-versal unfoldings of these germs. 

Theorem 8.3.3 The following are 7Z(X)-versal unfoldings of the germs of The- 

orem 8.3.1 and are of minimal dimension. They are also 1C(X)-versal of minimal 
dimension. 

(i) UW 1: u± wk+l +0 ati'w', 

(ii)WUk+1 :w± uk+l +Eo a=u1, 

+1: v± wk+l +Eoa; w' + bu. (iii)VWk± 

Proof By Theorem 8.1.6, we need to find a complement to Jx (f) in 03 for each 

of the function germs. 

(i) Let f (u, v, w) =u± wk+l Then we have 

Slf =u e2f = ±2(k + 1)w" 

ýs f= ±2(k + 1)vwk S4f = V. 

So a complement to Jx(f) is given by 1, w, w2, """, wk, giving us the unfolding 
k 

F(u, v, w, a) =u± wk+l +Ea; wi. 

i=O 

(ii) When f (u, v, w) =w± uk+1, we have Jx(f) =< uk+1, v, w >, so we do 
indeed have the unfolding 

k 
F(u, v, w, a) =w ±u k+1 +E aiui. 

i_o 
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(iii) When f= vfwk+l we have Jx(f) =< v, wk+l, u2, uw > with complement 
spanned by 1, w, w2, ..., wk, u, giving the unfolding 

k 
F(u, v, w, a) = v±wk+i +Eaiw: +bu. 

i=O 

Note that in each case fE Jx(f) so the resulting unfoldings are K(X)-versal, 

and of minimal dimension. Q 

8.4 The Geometry of the Functions on the Cross- 

cap 

Now we analyse the discriminants of the singularities UWE+i, W Uk .1 and VWD+1. 
If f: R3, X, 0 -º R, 0 is a germ and F: R3 x RP, 0 --º R, 0 is an unfolding of f, 

we can identify a number of interesting subsets of the unfolding space RP. 

Definition 8.4.1 (i) The set V1(F) is defined by 

OF OF OF 

w=0 
at some point (u, v, w, a)}. Di (F) _ {a :F= au_a _ va_ 

Now set G= F(x, xy, y2, a). 

(ii) The set D2 (F) is defined by 

OGaG Dz (F) _ la: G= ax ay= 
0 at some point (x, y, a) }. 

Set H= F(0,0, y2, a) 

(iii) The set D3(F) is defined by 

D3(F) = la: H= 
jy 

=0 at some point (y, a)}. 

(iv) The set D4 (F) is defined by 

D4(F) = ja. F(0,0,0, a) = 0}. 
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So Dl (F) is the usual discriminant of F as a function on R3, D2 (F) is the dis- 
criminant of F when composed with the parametrisation of the standard crosscap, 
D3 (F) is the discriminant of F restricted to the double point set and D4 (F) corre- 
sponds to the fibres of F that go through the origin. These are clearly well defined 
subsets of the versal unfolding space. We now identify these discriminants for 
the families UWk+I, WU +1 and VWk+1. Since the germs are submersions on the 
ambient space, Dl (F) is empty in all cases. Also it is clear that D4 (F) is given 
by the equation ao = 0. Now we analyse the discriminants V2 (F) and D3 (F) for 
each of the unfoldings. 
(i) UW +1 : F(u, v, w, a) =u± wk+i + Ei o aiwt" 

We associate to F the unfoldings 
k 

G(x, y, a) =x± y2k+z , +, > aiy2i and 
i-0 

k 
H(y, a) = ±y2k+2 +E aiy2i" 

i=O 

The deformation G unfolds the germ x± y2k+2, which is a submersion at (0,0), 

S0 7)2(F) is empty in this case. 

Now H is a versal unfolding of a Bk+1 singularity in the terminology of [A3], 

and thus D3 (F) is the discriminant of such a singularity. For the cases k=1 and 
k=2, we calculate these discriminants explicitly; the pictures are well known, 

see for example, [AGV] or [Wi]. 

(a)k=1. 

The discriminant D3 (F) is defined in this case by the equations 

H(y, a) = ±y4+ao+aiy2 =0 and 
äH 

= ±4y3+2aly=0. äy 
So D3 (F) consists of the al-axis and the curve parametrised by 

(ao, al) = (y4, -2y2) for UW2 , 

and the al-axis and the curve parametrised by 

(ao, a, ) = (-y4,2y2) for UW2 . 
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The set D3(F) is shown below for UW2 . 

0 

D3 (F) for UW1 

(b) k=2. 

The discriminant V3 (F) is defined in this case by the equations 

H(y, a) = ±ys + ao + aly2 + a2y4 =0 and 
OH 

= ±6y5 + 2aly + 4a2y3 = 0. 
Oy 

So D3(F) contains the plane ao = 0. The surface also has a cuspidal edge given 
by the vanishing of H, äH/äy and 82H/öy2; this can be parametrised by y º-º 
(-y6,3y4, -3y2) for UW3 and yH (y6, -3y4,3y2) for UW3 . 

The set D3(F) is 

shown below for UW3 . 
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(ii)WUU+1 : F(u, v, w) =w± uk+l {_ Ei 
o aiu2" 

We associate to F the unfoldings 
k 

G(x, y, a) = y2±xk+l+Eaix: and 
i=o 

H(y, a) = ±y2 + ao. 

We see immediately that D3(F) is the hyperplane ao = 0. The deformation G 
is an 1Z-versal unfolding of an Ak singularity. The discriminant D2 (F) is the 
standard discriminant of an Ak singularity. We calculate D2 (F) more explicitly 
for the cases k=1 and k=2. 

(a) k=1. 

In this case D2 (F) is defined by the equations 

G(x, y, a) = y2 ± x2 + a0 + alx = 0, 
aG 
äx = ±2x + al =0 and 

äG 

19Y 
= 2y=0. 

So D2(F) consists of the curve parametrised by (ao, al) = (x2, -2x) in the case 
of W U2 

, and the curve parametrised by (ao, a1) = (--x2,2x) in the case of W UZ . 
The sets D2 (F) and D3 (F) are shown below for W U2 . 

0 

(b) k=2. 
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In this case D2 (F) consists of a cuspidal surface. The discriminant is defined 
by the equations 

G(x, y, a) = y2dx3+ao+alx+a2x2= 
OG 

= ±3x2 + al + 2a2x =0 and öx 
aG 

= 2y=0. 
äy 

The cuspidal edge is defined by G= äG/ax = ä2G/äx2 = 0. It is easy to see 
that this cuspidal edge is parametrised by (ao, al, a2) = (-x3,3x2, -3x) in the 

case of W U3 
, and (ao, al, a2) = (x3, -3x2,3x) in the case of W U3 

. The cuspidal 
surface meets the plane ao =0 along the a2-axis; looking at sections of the surface 

along this axis, we see that the plane ao =0 is tangential here. The cuspidal 
surface also meets the plane ao =0 transversely along the curve parametrised by 
(al, a2) = (x2, -2x) in the case of W U3 , and along the curve parametrised by 
(al, a2) = (-x2,2x) in the case of W U3 . The sets D2(F) and D3(F) are shown 
below for W U3+ 

(iii) VWD+1 : F(u, v, w, a, b) =v± wk+i + EJ= o aiw' + bu. 
We have 

k 
G (x, y, a, b) = xy ± y2k+2 +E aiy2z + bx. 

1=o 
This is an R-versal unfolding of an Al singularity, so D2 (F) is diffeomorphic to 

a hyperplane in (a, b)-space. Indeed by considering the equations G= OG/äx = 
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aG/ay = 0, we see that D2(F) is defined by the equation 
k 

±b 2k+2 +E aib2i = 0. 

i=O 
As usual the discriminant D4(F) is the hyperplane with equation ao = 0. The 
discriminant V2(F) meets D4(F) in the set defined by 

k 
b2(±b2k + [ý aib2i-2) = 0. 

ii=J1 

The unfolding H is given by 
k 

H(y, a, b) = ±y 2k+2 +, E ai y2i" 

1=0 
As in the case of the family UWk+l, H is a versal unfolding of a Bk+1 singularity. 

Now we consider the case where k=1 in more detail. Then we have 

F(u, v, w, a, b) = v±w2 +ao +a1w+bu, 

G(x, y, a, b) = xy±y4+ao+aly2+bx and 
H(y, a) = ±y4 + ao + aly2. 

The discriminant D3(F) is parametrised by (ao, al, b) _ (±y4, =F2y2, b). For VW2 
the configuration of D3(F) and D4(F) (the plane ao = 0) is given below. 

D4(F) 

The discriminants D2(F) and D4 (F) for VW2 . 
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In the case k=1, D4(F) meets D2(F) in the curve with equation 

b2(±b2 + al) = 0, 

and V3(F) meets D2(F) in the curve parametrised by 

(ao, ai, b) = (±y4, =F2y2, -y) 

The pictures look like this: 

)4(F) 

a0 

D3(F) -` 

r `. 

`J 

DZ (F) 

a1 

D4(F) 

The discriminants D2(F), D3(F) and D4(F) for VW2. 
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8.5 The Flat Geometry of the Crosscap 

We now wish to apply the results on the classification of functions on the crosscap 
to the flat geometry of the crosscap. This approach requires a transversality 
result and an understanding of the stratification of the jet-space given by our 
classification of germs. These results have been supplied by J. W. Bruce, and can 
be found in Appendix A. The approach we take is as follows. 

Let X, 0 denote the standard crosscap in R3, and let 0: R3,3,0 --º R3,0 be 
the germ of a diffeomorphism taking X to the geometric crosscap «X). Let 
f: R3 XZ --+ R be a family of functions parametrised by some manifold Z which 
we wish to apply to the geometric crosscap. Then we can consider the family 

f,: R3xZ -º R 

(x, z) i-' ,f 
(0(x), z) = . 

fez(x) 

By studying this family of mappings on the standard crosscap we can describe 
the interaction between the geometric crosscap and the fibres of the family of 
functions fz : R3 --+ It. We are interested in the family of height functions at the 

origin. Recall that this family is parametrised by the 2-sphere S2 and is given by 

h: R3xS2 -+ R 
(X, u) Hx"u. 

Thus the height functions hu are a family of submersions parametrised by the 2 
dimensional manifold 52. 

Proposition 8.5.1 Let f: R3 XZ --+ R be a family of functions parametrised 
by some manifold Z. Suppose that the function fZ is a submersion at the origin 
for each zEZ and the dimension of Z is at most 2. We define the family of 
functions ft, by 

ff: R3xZ -º R 

(x, z) i--* f (fi(x), z) = fýZ(x)" 
Then generically the function f o, at the origin must be R(X)-equivalent to a 
germ of one of the following types: 

(i) UWk+i, k=0,1,2, 

(ii) WUk+I, k=1,2 and 
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(iii) VW2. 
Generically the functions fez are IZ(X)-versally unfolded by the family f o. 

Proof See Appendix A, Proposition A. M. Q 

Now we can make some interesting deductions about the dual of the crosscap, 
and also the dual of the double point curve. 

Proposition 8.5.2 At the origin the family of height functions are 7R(X)- equiv- 
alent to the singularities listed in Proposition 8.5.1 and they are 1T(X)-versally 
unfolded. The singularities have the following geometric interpretations. 

(i) UWI: the plane is transverse to both the crosscap surface and its double 

point curve. 

(ii) UW2: the plane is transverse to the surface and is in the pencil of planes 
obtained as limiting tangents to the double point curve. 

(iii) UW3: the plane is transverse to the surface and is the limiting osculating 
plane to the double point curve. 

(iv) WU2: the plane is tangent to the surface and transverse to the double 

point curve. 

(v) W U3: the plane has parabolic tangency with the surface and is transverse 
to the double point curve. 

(vi) VW2: the plane is the tangent cone, i. e. is tangent to both the surface 
and the double point curve. 

Proof The geometrical results follow from composing the listed functions with 
the parametrisation of the standard crosscap. Note that we have changed coor- 
dinates so the fibres of these functions are no longer planes. However the fibres 
represent planes for our application, and the functions we obtain measure contact 
with planes in the usual way. 

For the UWk+I series, we get x± y2k and ±y21c when composing the function 
with the parametrisations of the standard crosscap and its double point curve 
respectively. It is clear that for k=0,1,2, the function UtiVk+i corresponds to 
a plane that is transverse to the surface. We remark that the self intersection 
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curve is `doubly parametrised' and is thus highly degenerate. Nevertheless we 
can consider contact of planes with this curve. If F is an unfolding of f, then 
the discriminant V3(F) discussed in Section 8.4 will give us a model for the dual 

of the double point curve. The plane ao =0 corresponds to the set of planes 
that pass through the crosscap point (the discriminant V4(F)). So the dual to 
the double point curve is obtained by removing the plane ao =0 that appears as 
part of the discriminants D3(F). Note that in general an osculating plane has A2 

contact with a smooth space curve, and so the dual of the space curve will have a 
cuspidal edge. Considering the discriminant D3(F) for UW2 and UW3 completes 
the proof of results (i)-(iii). 

For the W Uk+l-series we get y2 ± Xk and y2. It follows that the corresponding 
planes are transverse to the double point curve and have Al (for k= 1) and A2 
(for k= 2) contact with the surface at the crosscap point. This gives results (iv) 

and (v). 

Finally for VW2 the composites are xy t y4 and y4. Here we can see that the 

corresponding plane is tangent to the double point line (set x= 0) and is tangent 
to the surface. This corresponds to the tangent cone plane by Lemma 2.1.5.0 

We have seen that if F is an unfolding of one of the functions listed above then 
the discriminant D3(F) corresponds to the dual of the double point curve, so that 
this approach gives additional information on the double point curve. Similarly 

the discriminant D2(F) discussed in Section 8.4 will give us a model for the dual 

of the crosscap. Hence the discussion of these discriminants in Section 8.4 gives 
an alternative treatment of structure of the dual. Notice for example that when 
the discriminants D2 (F) and D3 (F) intersect at a point, the corresponding plane 
is tangent to both the double point curve and the surface. Since the results 
obtained correspond exactly to results in previous chapters, we omit the details. 

8.6 Map Germs on the Crosscap 

In the same way that we gained information on the height functions by classifying 
functions on the crosscap, we can consider the geometry of projections of the 

crosscap by carrying out a classification of mappings from 3-space to planes, 
up to diffeomorphisms in the target and changes of coordinate in the source 
preserving the crosscap. 
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In order to do this we need some refinements on the complete transversal 
methods outlined earlier. This time we need also to take into account the changes 
of coordinate in the target. 

Since we are considering projection maps, we need only consider those map 
germs which are submersions on the ambient space. We have the following result. 

Theorem 8.6.1 Any map germ f: R3, X, 0 --* R2,0 which is a submersion on 
the ambient space is 7Z(X)-G equivalent to one of the following map germs. 

(a) fl (u, v, w) = (u, w), 

(b) f2(u, v, w) = (u+w, v), 

(c) f3(u, v, w) = (u+w2+aw3, v+w2), a 0, 

(d) f4(u, v, w) = (w ± u2 + aua, v +u 3), a2 -4 54 0. 

In cases (c) and (d), a is a modulus, and the conditions on a are necessary for 
the map germ to be determined. 

Proof The proof requires the use of a computer and Neil Kirk's Maple package 
Transversal. For a description of this package, see [Ki]. There are a great many 
calculations involved, most of which are not at all illuminating. What we do here 

is show how one normalises the 1-jets. 

This is essentially a problem in linear algebra: in the target we have the whole 
of the general linear group available, whereas in the source we have the subgroup 
generated by integrating the 1 -jets of the vector fields which we discussed earlier. 
Recall that this group is generated by the 1-parameter subgroups given by 

(u, v, w) H (e\u, eAv, w) 

(u, v, w) i-º (u, eav, e2'w) 

(u, v, w) H (u, v, w+ av) 

(u, v, w) º--> (u +, 3v, v, w). 

Now the initial 1 -jet is of the form 

(u, v, w) i-º (alu + a2v + a3w, blu + b2V + b3w). 

Since it is of rank 2 one of the 2x2 minors of the corresponding matrix is non-zero. 
We go through the 3 possibilities: 
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(i) If a1b3 - a3b1 00 then by a linear change of coordinates in the target we 
can reduce to the 1-jet (u + Av, w+ Bv) for some A and B. It is now clear that 
by allowable changes of coordinate in the target we can ensure that A and B are 
both zero, that is we have the normal form (u, w). 

(ii) If a, b2 - a2b1 #0 then by a linear change of coordinates in the target we 
can reduce to the 1-jet (u + Aw, v+ Bw) for some A and B. If B0 then we 
can reduce to case (i) again. So we have two new normal forms (u + w, v) and 
(u, v). 

(iii) Finally if a2b3 - a3b2 0 then by a linear change of coordinates in the 
target we can reduce to the 1-jet (v + Au, w+ Bu) for some A and B. If A or 
B , -- 0 then we can reduce to case (i) or (ii) again. So we have one new normal 
forms (v, w). 

Note that these linear forms all have geometric interpretations. Recall that the 
pencil of planes tangent to the crosscap at the base point is given by av+ßw = 0, 
the limit of the tangent line to the double point set is the w-axis, while the tangent 
cone is given by v=0. Clearly the condition that the kernel of the projection is 
contained in one of these subspaces is invariant under the changes of coordinates. 
(Indeed one can easily check that the linear changes of coordinates allowed in the 
source are precisely those which preserve this configuration. ) 

Now for the normal form (u, w) the kernel is clearly transverse to the tangent 
cone and does not coincide with either of the other geometric lines. For the 
normal form (u + w, v) the kernel lies in the tangent cone but does not coincide 
with the other two lines. For the normal form (u, v) the kernel is the limiting 
tangent line to the double point curve, and for the normal form (v, w) the kernel 
is the tangent direction to the crosscap point. 

The rest of the proof is technical, but does use the following determinacy 
result, which can be derived from [BduPW]. 0 

Theorem 8.6.2 Let 01 denote the submodule of the vector fields tangent to the 
crosscap spanned by {uý1, ve1, wC1, uC2, VC2, W4 2, C3, C4}. 

Given a map germ f: R3,0 --º R2 defined on the crosscap then it is k-R(X)- 
G-determined if the following inclusion holds 

C 3+ie(3,2) 
el- f+f *M2{el, e2} + sp{fle2} + . 

M3+1. (f *M2. S(3,1) + , 
M3+1). E(3,2). 
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The results obtained from using the Transversal package also lead us to make 
the following conjecture 

Conjecture 8.6.3 The family of map germs 

f (u, v, w) = (u + w2k+1, v+ w2) 

is (2k + 1)-1 (X)-G-determined. 

Remark 8.6.4 Using the Transversal package, we know that this is certainly 
the case for k=1,2,3,4. 

We can now use Transversal to calculate R(X)-L versal unfoldings of the map 
germs of Theorem 8.6.1. The existence of such unfoldings follows from the results 
of Damon in [D]. 

Theorem 8.6.5 The following are ? Z(X)-G versal unfoldings of the map germs 
of Theorem 8.6.1. They are of minimal dimension. 

(a) Fi(u, v, w) = (u, w): this map germ is stable. 

(b) F2 (u, v, w, a) = (u + w, v+ au), 

(c) F3(u, v, w, a, ß, y) = (u+w2+(a+a)w3+ßw, v+w2+w), a; 0, 

(d) F4 (u, v, w, a, #,, y) = (w ± u2 + (a + a) u3 + ßu, v+ u3 + yu), a2 -4360. 

Now we analyse the geometry of the map germs fl, f2, f3 and f4. First 
we compose these map germs with the parametrisation of the standard crosscap 
g(x, y) _ (x, xy, y2) to obtain a map germ fs og: R2,0 -º R3,0, for (i = 
1, "--, 4). We then calculate the critical values of this mapping, and the image 
of the double point curve (the positive w-axis parametrised by y --' (0,0, y2)) 
under the mapping fz. This is in fact `half' of the image of the w-axis under f;. 

Proposition 8.6.6 (a) For fl(u, v, w) = (u, w) the composite is (x, y) '-+ (x, y2). 
This is a fold map. The set of critical values is the x axis. The image of the 
double point curve is the half line y'--+ (0, y2). 

(b) For f2 (u, v, w) = (u + w, v), the composite is (x, y) i-* (x + y2, xy). This is 
A-equivalent to the cusp map (x, y) (x, y3 + xy). The set of critical values is 
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the cusp with cuspidal tangent the x-axis. The image of the double point curve 
is the half line yH (0, y2) and so coincides with the cuspidal tangent. 

(c) For f3 (u, v, w) = (u+w2+aw3, v+w2), a 0, the composite is (x, y) 
(x + y4 + ays, xy + y4). This is A-equivalent to the swallowtail map (x, y) i -* 
(x, xy + y4). The set of critical values is diffeomorphic to the image of the curve 
t i-4 (t3, t4). The image of the double point curve is a half branch of a cusp 
parametrised by y'-i (y4 + ays, y4) 

(d) For f4 (u, v, w) = (w ± u2 + aua, v+ u3), a2 -400, the composite is 
(x, y) H (y2 ± x2 + ax3, xy + x3). This is a corank 2 map germ. The set of 
critical values either consists of two cusps with cuspidal tangents given by the 

equations x- 2y =0 and x+ 2y =0 or is empty, depending on the sign of u2 in 

the first component. The image of the double point curve is the half line given by 

y'-* (y2,0). 

Proof We prove this by direct computation. 

(a) fi (u, v, w) = (u, w) " 

We have fl o g(x, y) _ (x, y2). Thus we have 

a(fi ° 9) 
_ (1,0) and 

"(fl 0 9) 
_ (0,2y)" 

ax ay 

Part (a) follows straightforwardly. 

(b) f2 (u, v, w) = (u + w, v). 

We have f2 o g(x, y) = (x + y2, xy). Note that replacing x+ y2 by X changes 
the second component to XY- y3 and we do obtain the cusp singularity. 

Now we find 

a(f2 0 9) 
y) and 

a(fz ° 9) 
_ (Zy, x)" öX ay 

Thus the critical set of this mapping is given by the equation x- 2y2 = 0. So 
the set of critical values is parametrised by t i--+ (3t2,2t3). This is a cusp with 
cuspidal tangent the x-axis. The image of the double point curve is given by 

yH (y2,0), and so coincides with the cuspidal tangent. 

(c) f3 (u, v, w) - (U+ w2 -}- aw3, v -I- w2), a#0. 

153 



Then we have f3 og (x, y) = (x + y4 + ay6, xy + y4). Here replacing x+ y4 + ays 
by X changes the second component to Xy+ y4 - y5 + ay6, and the germ is 
A-equivalent to (x, xy + y4) as asserted. 

Calculation yields 
OU3 9) 

_ (1, y) and 
a(fOy 9) 

- 
(4y3 + Gays, x+ 4y3). 

Thus the critical set in this case is given by the equation x+ 4y3 - 4y4 - 6ay6 = 0. 
So the set of critical values is given by 

tH (-4t3 + 5t4 + 7at6, -3t4 + 4t5 + 6at7). 

The image of this parametrisation is diffeomorphic to the image of the standard 
(t3, t4) curve. The image of the double point curve is a half cusp. We expect 
this, since f3 og is a Swallowtail map, and so corresponds to the case where we 
are projecting in a direction that is parallel to the limiting tangent to the double 

point curve. Considering these two curves we see why we must expect a modulus 
along with this germ. 

Claim As a changes, the configuration of double point set and set of critical 
values are not diffeomorphic to each other, at least over the complex numbers. 

The point is that we now have (over the complexes) a curve (t3, t4) with tan- 

gent y=0 and a cusp with tangent x=y. The product of the defining equations 
is a function with isolated singularity but which has modulus; deformations of a 
will result in distinct composite curves. 

(d) (i) f4 (u, v, w) = (w + u2 + aua, v+ u3), a2 -4 540. 

Then f4 o g(x, y) = (y2 + x2 + ax3, xy + x3). This is a corank 2 map germ. To 

compute the critical values, we proceed as follows: 

a(fýx 9) 
_ (2x + 3ax2, y+ 3x2), and 

49(. fý ° 9) 
^ (2y, x) 

y 

Thus the critical set of this mapping is given by the equation 

O(x, y) = 2x2 + 3ax3 - 2y2 - 6x2y = 0. 

Note that c5(x, y) is Morse, and so we can parametrise the two branches of the 
critical set by 

and tH 
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So we can get the lowest order terms of a parametrisation of the critical values 
by substituting into f4 o g(x, y). We get 

tý---> (2t2+at3+""", t2+t3+""") and tý--> (2t2+at3+""", -t2+t3+"""). 

So the set of critical values consists of two cusps with cuspidal tangents given by 
the equations x- 2y =0 and x+ 2y = 0. 

Claim As a changes, these configurations are not diffeomorphic to each other. 

Again a pair of cusps, together with a general line yields a composite curve 
with moduli. 

(d)(ii) f4 (u, v, w) = (w - u2 + aua) v+ u3), a2 -4i0. 

Then f4 o g(x, y) = (y2 - x2 + ax3, xy + x3). Again this is a corank 2 map 

germ. We have 

a(f49x g) 
= (-2x + 3ax2, y+ 3x2), and 

a(fýy g) 
= (2y, x) 

Thus the critical set of this mapping is given by the equation 

-2x2 + 3ax3 - 2y2 - 6x2y = 0. 

We note that in a neighbourhood of the origin, the only solution to this equation 
is (x, y) = (0,0). So for the critical values of this map we get an isolated point 
(the origin). The image of the double point curve is given by y º- º (y2,0), so it is 

the positive x-axis. 0 

We see that these results give information which corresponds precisely with the 

results in Chapter 5. Case (a) corresponds to projections in directions transverse 
to the tangent cone. Case (b) corresponds to the projections in directions lying in 

the tangent cone, but not the tangent line or the limiting tangent to the double 

point curve. We have already mentioned that case (c) corresponds to projecting 
along the limiting tangent to the double point curve. By considering the critical 
values of the mapping, we see that case (d) corresponds to projecting along the 
tangent line. 

Finally we make the same considerations for the conjectured family. 

Proposition 8.6.7 For the family of map germs given by 

f(u, v, w) = (u+wzk+i, v+w2)ß 
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the composite is (x, y) H (x + y4k+2, xy + y4). This is A-equivalent to the swal- 
lowtail map (x, y) H (x, xy + y4). The set of critical values is diffeomorphic to 
the image of the curve tH (t3, t4). The image of the double point curve is a half 
branch of a degenerate cusp parametrised by y Iº (y4k+2, y4) 

Proof On composing with g we get fo g(x, y) = (x + y4k+2, xy + y4). So 

19(f o 
äx 

9) 
= (1, y) and 

aý 
ay 

9) 
= ((4k + 2)y(4k+i) ,x+ 

4y3). 

Thus the critical set is given by the equation x+ 4y3 - (4k + 2)y(4 2) = 0. So 
the critical values are given by 

t F-º (-4t3 + (4k + 3) t(4k+2), -3t4 + (4k + 2) t(4k+3)), 

and the image of the double point curve is given by y --º (y(4k+Z), y4) We note 
that this family seems to pick out the degree of contact of the double point curve 
with its limiting tangent line. Q 

8.7 Ideas for Further Work 

It is clear that the work on the integral curves of the crosscap at the end of 
Chapter 5 is far from complete. We noted that the methods of [BT] could not 
be applied to the problems of determining the principal curves on the crosscap 
and the asymptotic curves on the parabolic crosscap. Thus we have motivation 
for trying to extend the work of [BT] to cover these cases. Note also that the 
model of asymptotic curves for the hyperbolic crosscap is a topological model of 
the asymptotic curves in the parametrising space. We cannot yet say what these 
curves look like on the crosscap or even where the preimage of the double point 
curve lies with respect to the configuration. Theorem 5.2.1 says that we have a 
circle of directions for which the outline of the surface is a cusp or worse. Does this 
mean that in some sense these directions are the limiting asymptotic directions? 
It would also be interesting to determine the asymptotic and principal curves on 
the dual surface to the crosscap. 

In Chapters 6 and 7 we have considered mainly the local aspects of the focal 

set. Some more work could be done on the global structure of the focal set. Also 

we could try to determine where the conic lies on the part of the focal surface near 
to the origin. There are several aspects of spherical geometry left to consider. We 
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have mentioned ridges, but we could investigate the condition for 0,2 or 4 ridges 
more thoroughly. In [Wi] the sub-parabolic lines of a surface are considered via 
folding maps. This work could be extended to surfaces with crosscaps. Also we 
have not considered the wavefronts (or parallels) of the crosscap. The focal surface 
is the union of the singular points of the family of wavefronts, so considering 
this family may deepen our understanding of the focal surface. We note here 
that a wavefront will have a `hole' corresponding to the circle of limiting normal 
directions at the crosscap point. Another approach to the geometry of the focal 

surface is to extend the work in this chapter to cover functions and mappings 
on the crosscap which are not submersions on the ambient space (the distance 

squared function is an example of such a function). 

Crosscaps are generic phenomena when a surface in n-space (where n> 3) is 

projected into 3-space. The geometry of the crosscap could be related to these 

surfaces in higher dimensional space and their projections. 

The techniques of Chapter 7 are very powerful and yet the `answer' they 

provide (Corollary 7.3.4) is relatively simple. David Mond has suggested that 
there may be a geometric reason behind this. He has also pointed out that 
Lemma 2.2.1 might be extended to cover other polynomials. We are grateful to 
him for these comments. 
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Appendix A 

Transversality Results for Chapters 
6 and 8 

A. 1 Distance Squared Functions on the Crosscap 

This section contains the transversality results necessary to complete the proof 
of Proposition 6.2.3. The proofs were supplied by J. W. Bruce. 

Let f: R2,0 --i R3,0 be a parametrisation of some ̀ geometric' crosscap. We 
choose an open neighbourhood of 0E R2 and a representative of f, which we 
also denote by f with f: U -+ R3. We may suppose that the image of f is 
contained in the closed unit ball B centred at the origin in R3. Let Pk denote the 
set of polynomial mappings R3 --+ R3 of degree <_ k which fix the origin. Clearly 
Pk is a finite dimensional vector space. An element of Pk consists of a triple of 
polynomials of degree <k with zero constant term. It is not hard to see that 
there is an open neighbourhood of the identity in Pk consisting of polynomial 
mappings which map the unit ball B diffeomorphically onto its image; denote 
such a set by Vk. 

The idea is to use the family of diffeomorphisms in Vk to deform the original 
parametrisation f. This gives us a family of parametrisations 

F: UxVk--*R3 

given by F(u, 0) = tb(f (u)). We now wish to show that this is a sufficiently large 
family to obtain good deformations of f with respect to the family of distance 

squared functions. Of course there is one problem: Proposition 6.2.4 tells us 
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that the distance squared function from the origin is not versally unfolded by the 
family of all distance squared functions. For this reason we will have to exclude 
this particular point in R. So we shall consider the family 

d: UxR3\{(0,0,0)}- *R 

given by d(u, z) = Ilf (u) - z112. To show that this has the required versality 
properties for generic f we consider the new mapping 

D: UxR3\{(0,0,0)}x V, oR 

given by D(u, z, 0) =I 10(f (u)) - zJ 12. As usual the versality properties are 
established using the corresponding jet-map 

j, D: Ux R3 \ {(0,0,0)} x Vk -+ Jk(U, R) 

given by considering D(-, z, ¢) as a function of u only and taking the k -jet. We 
would like to prove that this map is transverse to the relevant submanifolds of the 
jet-space. For we can then apply the Thom Transversality Lemma to deduce that 
for almost all 0 in the sense of Lebesgue measure (i. e. outside a set of measure 
zero) the same will remain true for the restriction 

ji Do :UX R3 \ {(0,0,0)} --* Jk(U, R) 

where Do denotes the mapping obtained from D by setting the third component 
equal to 0. We will have a little further work to do then, because of the non- 
compactness R3 \1 (0,0,0)}, but this is essentially the basic strategy. 

Before moving on we mention a couple of related results in the literature. 

Looijenga's Result 

In the case when we are considering the case of a smooth surface in R3 and 
its contact with spheres, the relevant transversality result is due to Looijenga 
(see [Wal]). We can use the above notation and simply suppose that f above is 
an immersion (as our function is away from a punctured neighbourhood of the 
origin). It is then true that the relevant map is transverse to submanifolds of 
the jet-space, provided that these submanifolds are invariant under addition of 
constants. In other words given any k-jet in the submanifold we must be able 
to alter the constant term in the jet and still stay in the manifold. The reason 
for this is that the distance squared functions give some problem when they are 
centred at a point on the surface. Basically they will have an Al singularity, and 
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changing the embedding will not yield any constant tangent vectors required for 
the transversality result. However this is no real problem as all of the natural 
submanifolds of the jet-space have this property. 

Montaldi's Result 

In [Mt] Montaldi proved a very fine generalisation of Looijenga's result. He 

replaced the family of distance squared functions by any family of mappings which 
are versally unfolded with respect to one of Mather's subgroups. The family of 
distance squared functions is a special case since each of them is actually A-stable. 
The conclusion is (roughly) that for a generic immersion the corresponding jet- 

extension map is transverse to g-invariant submanifolds of the jet-space. 

In our situation we no longer have an immersion, but we do know that our 
mapping f is stable. A little thought convinces one that we might hope for a 
transversality result here, and this is what we now establish. 

First a brief word about jet-spaces. If X and Y are manifolds of dimension n 
and p respectively then the jet-space Jk (X, y) is a fibre bundle over the product 
XxY, with fibre the space Jk(n, p) consisting of polynomial mappings R'ti --º BY 
of degree <k with no constant term. The jet extension associates to each smooth 
map f: X -+ Ya map jkf: X -º Jk (X, Y). Roughly speaking this assigns to 
a point xEX the points (x, f (x)) EXxY the base of the fibration, and the 
Taylor series of f at x truncated to degree k in the fibre. In the case when the 
target Y is the set of reals R then one can think of the jet bundle as a fibre 
bundle over X with fibre consisting of polynomial mappings BY -; RP of degree 
<p (so we allow a constant term). 

Theorem A. 1.1 Let XC Jk(2,1) be an Rk-invariant submanifold which is also 
invariant under addition of constants. Then the map 

jiD: UxR3\{(0,0,0)}xVk-ºJk(U, R) 

is transverse to the submanifolds UxRxXC J' (U, R). 

Proof We choose a point (x, z, ¢) in the domain of ji D and need to prove 
transversality there. In fact we may as well suppose that 0 is the identity, since 

we shall only use the fact that 0of is A-equivalent to a crosscap below. There 

are two cases to consider depending on whether f (x) =z or not as we shall see. 

We start by computing the image of the tangent vectors to Vk in Jk(2,1). Of 

course the tangent space at the identity to Vk is Pk, since Vk is an open subset of 
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this vector space. If pE Pk we use the path in this space given by -y(s) = id + sp 
and consider jiD(x, z, id + sp) - jzD(x, z, id) 

lim 
8-0 

This becomes 

tim ii (((f(--) + sp(ffx)) - zll2 - ll. f (x) - x112) 
3- 08 

- lim . 
ii (2s(f (x) - z) . p(f lx)) + S2p(f lx)) . p(f (x))) 

8-"o 8 

= 2ji (tf (x) - z) " p(f (x)))" 

We consider what this expression gives in each of the cases x00 and f (x) 0 z, 
x0 and f (x) =z and x=0. We show that each time we obtain all of the 

elements in the fibre space Jk(2,1), and hence transversality to the manifold. 

Now if x#0 and f (x) ;z then f is an immersion and it is easy to see that if 

we allow p to vary over Pk we obtain all of the elements in the fibre space Jc(2,1), 
and hence transversality to the manifold. 

If f (x) =z then since z0 the distance squared function I If (x) - zI j2 has an 
Al singularity at x, and the derivatives with respect to the x variables together 
with the tangent space to the orbit (which if it meets X is a subset of X by 
hypothesis) will give the required vectors. 

The remaining case to consider is when x=0, so that f (x) =0 also. Here 
we first note that since we have a crosscap the pullback f *Jý43 contains the ideal 
M. It follows that by a suitable choice of p we can obtain any polynomial triple 
of degree >2 and <k from j'(p(f))(x). Again using the fact that z#0 it is 
easy to see that we shall obtain all of the vectors in the fibre space satisfying the 
same restriction on the degree. So we are now looking for the linear terms in 
Jk(2,1). 

By a change of coordinates in the source and an orthogonal change of coordi- 
nates in the target we may suppose that the 2 -jet of f is in the form 

f (xl, x2) = (x1, aoxi + alxlx2 + a2x2, box, + blx1x2 + b2x2) 

so that f*, M2 also contains x1. Now consider the tangent vectors provided by 

the x variables. We only require a vector with a non-zero x2 coefficient, so we 
consider the 2-jet of the distance squared function Il f (x) - zjf 2. The conditions 
that this should fail are now easily determined to be zl =0 (for otherwise we 
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have a submersion anyway) and alz2+blz3 = a2z2+b2z3 = 0. In particular, since 
z00 we can deduce that alb2 - a2b1 =0 which contradicts the fact that f has 

a crosscap at the origin. Q 

As we have seen the normal plane at the crosscap point is of particular interest. 
We also need to check things are as we would expect them to be in this plane. 

As before we write the crosscap in the form (xl, f2(xl, x2))f3(xl, x2)) with 
fl, f2 E M2. We wish to deform the crosscap in such a way that the tangent line 
(the ui-axis) remains fixed, and the above form is retained. So we consider the 
polynomial mappings of the form (ul, u2) u3) H (Uli p2(u)) p3(u)) where the pj are 
polynomials in the ideal (u2i u3) ui). We denote the collection of polynomial maps 
of this form where the degree of pj is <k by Qk, and an open neighbourhood of 
the identity mapping the unit ball diffeomorphically onto its image by Wk. We 

now consider the map 

E: R2\{(0,0)} xWk -ºJk(2,1) 

defined by E(z, 0) = jk(I If (x) - zJ 1') (0), where z= (0, z2, z3). Note that the 
image of E is actually a subset of the singular jets, i. e. those with no linear 
terms, and which we denote by E(2,1). Using the same ideas as above we can 
prove the following. 

Proposition A. 1.2 The map 

E: R2\{(0,0}XWk - : (2,1) 

is a submersion. 

Proof Just use the fact, as above, that the pullback f *Jyf3 contains the ideal 
M, andz 0. Q 

We now use these transversality results to establish some geometric corollaries. 

Corollary A. 1.3 For almost all 0 in the sense of Lebesgue measure the family of 
distance squared functions at the origin can yield only A1i A2 and A3 singularities. 
Moreover the union of the A2 and A3 points in the normal plane is a smooth curve, 
with the A3 points isolated on that curve. 
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Corollary A. 1.4 For almost all 0 in the sense of Lebesgue measure the family 

of distance squared functions 

DO: UxR3\{(0,0,0)}-. R 

has only Ai, A2, A3, A4 and D4 singularities, and these are versally unfolded by 
the family. Moreover we can replace the parametrising set U by a smaller neigh- 
bourhood of the origin and ensure that we only have Al, A2 and A3 singularities, 
which are all versally unfolded. 

Proof We know (Proposition 6.2.4) that the distance squared function from the 
origin has an A3 singularity at the origin. There is always the possibility that 
there may be a collection of A4 and D4 points having the origin as an accumulation 
point. Denote these points by u,,, with z,,, the corresponding centres of curvature. 
If the z,, have some finite accumulation point say z then since the origin only 
yields Al, A2 and A3 points in the normal plane we obtain a contradiction. 
Otherwise we find that some subsequence of the z,, 's go off to infinity, and then 
the corresponding z,, /IJz,, Il have a limit point say a in the unit sphere. So the 
spheres centred at the z, 's and through the origin have limit the plane through 
the origin orthogonal to a. So we deduce that in this case there is a plane through 
the origin having contact more degenerate than A4 or D4 with the surface at the 
origin. However this contradicts our findings on the contact of planes with the 
crosscap in Lemma 3.3.5. Q 

A. 2 Functions on the Crosscap 

This section contains the results needed to prove Proposition 8.5.1. The proofs 
were supplied by J. W. Bruce. 

Let X, 0 denote the standard crosscap in R3, and let 0: R3,0 --+ R3,0 be 
the germ of a diffeomorphism taking X to the geometric crosscap O(X). Let 
f: R3 xZ --* R be a family of functions parametrised by some manifold Z which 
we wish to apply to the geometric crosscap. Then we can consider the family 

f%: R3xZ --; R 
(x, z) ý' f (fi(x), z) =fez. 

By studying this family of mappings on the standard crosscap we can describe 

the interaction between the geometric crosscap and the fibres of the family of 
functions f, : R3 --- R. 
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As usual we wish to prove a result concerning the generic cross-cap, so we 
need a suitably large family of cross-caps to consider. So we let Pk denote the set 
of polynomial mappings R3 --* R3 of degree at most k, with no constant terms, 

so that the elements of Pk preserve the origin. Let Vk denote a neighbourhood 
of the identity which maps the unit ball at the origin diffeomorphically onto its 
image. Consider the family 

F: R3 XZX V2 -º R, 
(u, z, P) '-' fz(P o cb(u))" 

As before we shall use the coordinates (x, y) in the parametrising space R2 and 
the coordinates (u, v, w) in the ambient space R3. 

Proposition A. 2.1 If the germs fz are all submersions then the jet-extension 
map 

jiF: ZxVk-4 Jk(3,1) 
obtained by evaluating the k-jet of F at (0,0,0) is a submersion. 

Proof Recall that Jk(3,1) is the vector space of polynomial functions with zero 
constant term of degree at most k. We shall see that we may as well suppose 
that the diffeomorphism 0 is the identity. As in the proof of Theorem A. 1.1 we 
consider for pE Pk the limit 

lim 
ii (fz(x + sp(x)) - fz(x)) 

s-+0 8 

= jk 
(au, 

zP1 +ää-p2 + 
cuxPs 

(o). 
23 

As fz is a submersion then we obtain the result as one of the 8 fx/äu; 0. Q 

We now wish to use the above result, and so we need to stratify the jet space. 
We do this using the above classification. In what follows we shall actually assume 
that each function in the family fz is a submersion. In fact we are really interested 
in the family of height functions, so the fz are indeed submersions and we have 

a 2-parameter family. 

Proposition A. 2.2 We can stratify J3(3,1) into strata consisting of the singular 
jets, submersions of type UWk+I, k=0,1,2; W Uk+l, k=1,2 and VW2, and the 

orbits of u, v and w. 
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Let f: R3 xZ -+ R be a family of functions parametrised by some manifold 
Z. Suppose that the function fx is a submersion at the origin for each zEZ and 
the dimension of Z is at most 2. We define the family of functions fo by 

f%: R3xZ -+ R 
(x, z) ý- .f 

(0(x), z) = ff, - 

Then generically, the function f o,, at the origin must be 7Z(X)-equivalent to a 

germ of one of the following types: 

(i) UWk+i, k=0,1,2, 

(ii) WUk+,, k=1,2 and 

(iii) VW2. 

Generically, the functions f O, are 1Z(X)-versally unfolded by the family f o. 

Proof The group 1Z(X) has well defined jet groups Jk7Z(X). For the orbits we 
consider those of the k-jets we have classified. We are only interested in those of 
codimension at most 2 since there are no problems with moduli. 

The relevant germs are UWk+I, k=0,1,2; W Uk+l, k=1,2 and VW2. The 
R(X)-codimension is k in each case. Now stratify J3(3,1) by the corresponding 
orbits and their complement, which consists of the singular germs (of codimension 
3) and the orbits of u, v and w. We now ask that the jet-extension map is 
transverse to these strata (it will be for a generic choice of polynomial mapping, 
in other words for a generic choice of cross-cap). 

The result about the versality follows because of the infinitesimal criterion we 
gave before. Note that our jet-extension map does not have a copy of the source 
space R3 present as is usual in these situations. On the other hand the groups 
1Z(X) and 7Ze(X) coincide, so the transversality criterion for versality does not 
involve tangent vectors from the source space. Q 
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Appendix B 

Maple Program Implementing the 
Algorithm of Chapter 7 

# maple file 
# fullcalcm 

readlib(mtaylor); 

read ourtruncm; 

read remlinm; 
# removes linear terms from general unfolding of an A3 

read revm; 
# reduces unfolding F so that F(y, 0)=y'4 

read changem; 
# change calculates the Njets of functions that 
# take any unfolding of 
# an A3 singularity to the universal unfolding 

fullcalcm := proc(unf, M) 
local SQ, SP, SR, ST, SV, ans; 

# unf is any unfolding of an A3 

#M is the degree we wish to calculate inducing mappings to 
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SP := remlinm(unf, M, {u, v, w}); 

SQ := coeff(SP, x, O); 

SR : revm(SQ, M); 
ST: = changem(SR, M); 
SV: = op(1, ST); 
ans: =[SP, SQ, SR, ST, SV] ; 
ans ; 
end; 

#ourtruncm 

# we wish to truncate a taylor series, TS, at degree M in the 
# variables in set L. 
#a degree i term (in L) will then have as coefft a taylor series 
# in the variables in set X. 
# We then truncate this series at degree 3*(M-i+1)-1. 

ourtruncm := proc(TS, L, X, M) 
local i, gl, g, p, q, h, J; 

i: =0; 
gl: =expand(mtaylor(TS, L, M+1)); 
J: =3*(M-i+1)-1; 
g: =expand(mtaylor(g1, X, J+1)); 

p: =0; 
q: =0; 
h: =0; 

while i<=M do 

# find degree i part of TS 

p: = expand(mtaylor(g, L, i+1)); 
# find coeffts of each term up to degree J=3*(M-i+1)-1 
J: =3*(M-i+1)-1; 
q: = expand(mtaylor(p, X, J+1)); 
h: =h+q; 
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g: = g-p; 
i: =i+i; 

od; 

h; 

end; 
# remlinm 

# removing linear terms in x from general unfolding poly 
# with unfolding parameters L={ul,..., un} to degree M 

# in unfolding parameters 

remlinm ;= proc(poly, M, L) 
local F, l, i, Ml, X, g, h; 

F: = ourtruncm(poly, L, y, M); 
F: = expand(F); 
F: = sort(F, x); 
X: =0; 
1: =0; 
while 1<=M do 

F: =expand(F); 
F: =sort(F, x); 
g: =coeff(F, x, 1); 
h: =expand(mtaylor(g, {u, v, w}, 1+1)); 
h: =sort(h, y); 
i: =0; 

Ml: = 3*(M-l+i)-1; 

while i<=M1 do 

p: =expand(mtaylor(h, y, i+1)); 
X: =x-(p/2); 
F: =subs(x=X, F); 

F: = ourtruncm(F, L, y, M); 
F: =expand(F) ; 
F: =sort(F, x); 
g: =coeff(F, x, i); 
h: =expand(mtaylor(g, L, l+1)); 
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h: =sort(h, y); 
i: =i+1; 

od; 
1: =1+1; 

od; 
F; 

end; 

# revm 

# after removing terms in x from our unfolding of an A3 
# we now use reversion to make sure that F(y, 0)=y'4 

revm: = proc(poly, M) 
local G, k, Y, F, H, g, h, f, a, fl, N; 

with(powseries): 
G: = expand(mtaylor(poly, {u, v, w}, 1)); 

g: =expand(G) ; 
h: =expand(g/y"4); 

h: =powpoly(h, y); 
f: =evalpow(h"(1/4)); 
a: =powpoly(y, y); 

f1: =multiply(a, f); 
Y: =reversion(f1); 

N: =3*(M+1)-1; 
Y: =tpsform(Y, y, N); 

Y: =convert(Y, polynom); 

F: =subs(y=Y, poly); 
H: =ourtruncm(F, {u, v, w}, y, M); 

H; 

end; 
# changem 

# changem calculates the Mjets of the diffeomorphisms (c1, c2) 
# which are such that F(a(y, u, v, w), u, v, w) = G(y, cl, c2) 
# where F is any unflding of an A3, and G is the standard 
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# versal unfolding of an A3 singularity. 
# before executing changem, we must make sure that all 
# linear terms in x have been removed(using remlin). 

changem := proc(F, M) 
local a, cl, c2, H, G, p, J1, m, ans; 

a: =y; 
c1: =0; 
c2: =0; 
p: =0; 
G: =y'4 + cl*y +c2*y"2; 

while p<=M do 
H: = subs(y=a, F)-G; 

m: = (M-p+1)*3 - 1; 
J: = expand(mtaylor(H, {u, v, w}, p+1)); 
J1: = expand(mtaylor(J, {y}, m+1)); 
c1: =c1+ coeff(J1, y, 1); 

c2: =c2+ coeff(J1, y, 2); 
G: =y"4 + c1*y +c2*y"2; 
a: =a-((J1-(coeff(J1, y, 1))*y -coeff((J1, y, 2))*y"2)/4); 
p: =p+1; 

od; 
ans: =[G, a] 
ans ; 

end; 
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