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Abstract 

This thesis is an investigation into the types of singularities which can appear on 
trajectories of rigid motions of the plane and space. By a rigid motion of p-space 
we mean a mapping from some manifold M to the Lie group SE(p). We consider 
general n-dimensional motions of the plane and 3-dimensional motions of space. 

We obtain several classifications. The first is a complete list of local models for 

planar motions with 3 degrees of freedom. That is, a classification of map-germs 
(R3,0) -; (R2,0) of `codimension' <5 under A-equivalence. This classification 
is then extended to general n-dimensional motions, using a splitting lemma. We 

also consider the classification of map-germs (R3,0) -+ (R3,0) of `codimension' 

<6 under A-equivalence using the computer package TRANSVERSAL. 

The geometry of the singularities (R3,0) -> (R2,0) and (R3,0) --º (R3,0) is 

studied. Several geometrical invariants are calculated and the bifurcation curves 
are found. 
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Chapter 1 

Introduction 

1.1 An Example 

In mechanical design one mechanism which is commonly used is the four-bar 
linkage. An example of this can be seen in Fig. 1.1, [Haul. 

Conveyer Belt 

'\ 

---Z 

B 

1 
Up 

-Dolly 

Figure 1.1: A material-handling mechanism 
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The purpose of this material-handling mechanism is to permit a counterclock- 
wise rotation B of the crank to lower the material-handling arm to a position that 

enables loading of cargo from a dolly. Subsequent clockwise rotation of the crank 
raises the cargo so that it can be transmitted to a conveyer belt. It is geometri- 
cally clear that the dimensions of the components have to be carefully chosen so 
that the mechanism is able to travel the required trajectory. 

In order to realize the necessary dimensions of the components needed to 
follow a given trajectory we need to study the geometry of the planar 4-bar, see 
Fig 1.2. 

Figure 1.2: The planar 4-bar 

One bar is fixed, allowing the others to move in the plane. The mechanism 
has one degree of freedom, i. e. the point C, known as the coupler point will trace 

out a curve, called the coupler curve in the plane, as the motion progresses. This 

coupler curve is generally of degree 6 and can be quite complex. An example of 

such a curve is shown in Fig 1.3. The geometry of such coupler curves is studied 
in [GN]. 
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-- --- --ýýýä 

Frame 

-- --- - -- --'--1 

-ý -- D 

Figure 1.3: Four-bar coupler curves: The transparent grid is part of the coupler 
plane, link 3. The curves are traced on the plane of link 1. 

The 4-bar linkage was first used by James Watt to obtain approximate rec- 
tilinear motion from rotations. Although more sophisticated mechanisms can 
be found nowadays, 4-bar linkagqs are still used for axle suspension in various 
high performance cars, [HD] and windscreen wipers, [Hau] and a number of other 
applications. 

1.2 Generalities 

We require a formal definition of a rigid motion of the plane. A movement of a 
rigid body in ]R2 can be achieved by an orthogonal transformation (i. e. a rigid 
rotation about the origin) followed by a translation, see Fig. 1.4. Such a rotation 
must be a proper one, preserving orientation. Thus the orthogonal transformation 
is represented by an 2x2 matrix belonging to SO(2). A translation is given by 

a 2-vector. So a rigid body motion of the plane is given by a pair (M, v) where 
ME SO(2) and vER. 2. The set of all possible motions is denoted SE(2). 
Formally, a motion of the plane can be thought of as a smooth curve in the Lie 
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group SE(2) of proper rigid motions of the plane. The one-parameter motion 
can be represented by a smooth mapping p: It -º SE(2). 

Now one-parameter motions of the plane are relatively well understood geo- 
metric objects, forming the core of classical kinematics, but little is known about 
multi-parameter motions of the plane and spatial motions. So in general, we 
consider SE(p), the Lie group of proper rigid motions of R' and the map 

R, --ý SE(p) 

t '--p µ(t) 

where n is the number of degrees of freedom of the motion. Given aE 11, we can 
apply µ(t) to it. 

translate 

Figure 1.4: Motion of a rigid body in R. 2 
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One should visualize this as follows: 

R° 

So 

ýu 

SE(p) 

-75 

Rp 

0a: W -) fP 
tH µ(t)(a). 

This map is the trajectory. So we have a p-parameter family of trajectories 

since a is a p-vector. There are two geometric objects to study: 

A How does the image of the mapping sit in SE(p)? 

B What singularities do these trajectories exhibit? 

Now A has been studied by many authors (Grassman/Clifford/... ), the first 

order information giving rise to the screw theory of engineering kinematics, but B 
is less understood as in principle the singularities can be of arbitrary complexity. 
We wish to describe the local structure and bifurcations for a "generic" motion. 
The idea of studying a "generic" motion extends from the work of Rene Thom. 
This idea can be pictured as follows: 

00 C (N, SE(p)) 

of 

bifurcation 

set 
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If we take fE C°°(N, SE(p)) where N is a smooth manifold of dimension n, 
away from some bifurcation set (i. e. away from special cases) we should be able 
to prove general results. In our case, this should lead to a finite list of singularity 
types. This work was first studied by Donelan [Dol, Do2]. He showed that the 
only possible local models of trajectories arising from general one-parameter mo- 
tions of the plane are simple points, ordinary cusps and ramphoid cusps. Hobbs 
[Hob] extended these studies via the following results. 

Definition 1.2.1 Let X and Y be smooth manifolds. 

1. Denote by C°°(X, Y) the set of smooth mappings from X to Y. 

2. Fix a non-negative integer K. Let U be a subset of Jk(X, Y). Then we 
denote by M(U) the set 

{fE C°°(X, y) : jk f(X) C U} . 
3. The family of sets {M(U)} where U is an open subset of Jk(X, y) form a 

basis for the Whitney Ck topology on C°(X, Y). Denote by Wk the set of 

open subsets of C°O(X, Y) in the Whitney Ck topology. 

4. The Whitney C°° topology on C°(X, Y) is the topology whose basis is 

00 
W= UWk. 

k=1 

Now let E(p) denote the Lie group of proper rigid motions of R. By an 
n-dimensional motion of Rp we mean a smooth mapping IL: N ---> E(p), where 
N is a smooth manifold of dimension n. That yields a smooth mapping 0µ : 
Nx Rp -+ R' defined by (t, a) H p(t)(a), and for a fixed choice of a this 

yields the smooth mapping ßµ, a :N -) Rp defined by tH µ(t) (a), i. e. the 

trajectory of a under µ. So we can think of qµ as a p-parameter family of 
trajectories. Given positive integers r and k this induces a multijet extension 

r7ko, u, a : N('') --I rJk(N, ]RP) 

and since ßµ, Q depends smoothly on a this yields the mapping 

tjkoµ : N() xPº rjk(N, HP). 
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Theorem 1.2.2 Let X be a smooth submanifold of rjk(N, gyp), where N is a 
smooth manifold of dimension n. The set of n-dimensional motions µ: N -º 
E(p) such that the multi jet extension ,. jk is transverse to X is open and dense 
in C°°(N, E(p)), endowed with the Whitney topology. 

Proof. [Hob] 1 

The theorem tells us that if we find a smooth submanifold of Jk(N, 1R) then 

generically the mapping rjkoµ, 
for a given µ, will be transverse to it. So if we 

stratify r Jk (N, ]R) into A-orbits (which are necessarily smooth submanifolds) we 

get an induced stratification via (,. jkJu)-1 So to classify singularity types which 

occur on trajectories upto A-equivalence, it is enough to stratify rJC(N, 
Ri') into 

A-orbits. 

We need to look a little closer at the codimensions of the singularities which 

can appear on trajectories. Let N, P, Q be smooth manifolds having dimensions 

n, p, q respectively. By aq parameter family of mappings we mean a smooth 

mapping F: QxN -) P, where we think of F as the family of mappings f,, : 
N -> P parametrized by the elements zEQ. For each parameter z, and positive 
integers r and k, we have the multijet extension ,. jk fZ : N('') º rjk(N, 

P) giving 

a mapping 

rikF :Qx N(T) ---ý rJk(N, P) 

We have the following lemma. 

Lemma 1.2.3 Let X be an A-invariant submanifold of ,. 
J''(n, p) giving rise to 

another A-invariant submanifold Y in rJk(n, p). Assume that X has modality 

m, i. e. the codimension of any A-orbit in X takes a constant value m. If 
,. 
j kF 

is transverse to Y, then for any zEQ with ,. jk fz EY the Ae-codimension of fz 

is <q+m. 

Proof. [Hob] 0 

So when considering motions of the plane we have q=2 and therefore are 
looking for singularities with Ae-codimension less than or equal to 2. For 1- 

parameter motions of the plane Hobbs obtained the following list. 
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Theorem 1.2.4 On the trajectory of a generic motion of the plane with one de- 

gree of freedom we only see germs and multi-germs A equivalent to the following: 

Normal form Ae-codim 
(t, 0) 0 
(t2, t3) 1 

(t2, t5) 2 

(t, 0; 0, s) 0 
(t, 0; s, s2) 1 
(t, 0; S, S3) 2 

(t, 0; S3, S2) 2 

(t, 0; 0, s; u, u) 1 
(t, 0; 0, s; u, u2) 2 
(t, 0; 0, s; u, u; v, Av) 3 

Table 1.1: Map-germs : (R, 0) -º (R2,0) 

1.3 Multi-parameter Motions of the Plane 

If we move from classical kinematics, i. e. 1-parameter motions of the plane to 

multi-parameter motions the story is less clear. Even though multi-parameter 

motions are closer to the concern of the working kinematician, little is known 

about them. Whereas for 1-parameter motions we have trajectories represented 
by curves in SE(2), for 2-parameter motions the trajectories are, in general, 2- 

dimensional subsets of the plane and the singular sets include the "boundaries" 

of these sets. 

For 2-parameter motions of the plane we have the two simplest engineering 

examples of the double 4-bar, shown in Fig. 1.5 and the planar 5-bar, shown in 

Fig. 1.6. 
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Figure 1.5: Double 4-bar linkage 

A special case of the double 4-bar is used in engineering; the following appears 
in an unpublished article by Donelan. 

A Remote Centre Compliance Device 

Many constraints apply to practical robots. These include avoidance of ob- 
stacles and minimising forces on components and joints. Where the robot task 
imposes such constraints the robot is required to be compliant. This may be 

achieved by use of sensing devices and control of joints by servo-motors (active 

compliance), or alternatively the careful choice of robot geometry can frequently 

assist (passive compliance). 

We describe a planar device designed to insert a shaft in a hole. This requires 
the shaft to be well aligned with the hole at the point of entry in order to avoid 
jamming, which would put undue stress on the components or damage them. 

Figure 1.6: 5-bar linkage 
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The device is designed to give some tolerance on the exact point and the angle 
of entry, see Fig. 1.7. 

(a) (b) (ý) 

Figure 1.7: Insertion of peg in a hole 

While a full analysis of the constraints that apply would require consideration 
of the forces that impinge on the peg as it enters the hole, it is the underlying 
geometry which determines its effectiveness. Observe that when one point of the 

peg contacts the hole there is a force on the peg perpendicular to it, Fig. 1.7(b). 
At this stage the robot should have the freedom to move laterally in the direction 

of the force. 

A simple device with lateral motion is a 4-bar in the shape of a parallelogram, 
Fig. 1.8(a). However this would not in itself achieve alignment of the peg as a 
whole, simply appropriate placement of the tip. As the peg enters the hole it 

will soon achieve two-point contact and now there is a moment or turning force 

on the peg about its end-point, Fig. 1.7(c). The geometry of the robot will be 

compliant, that is to say, responsive to the task constraints, if the tip of the peg 
is designed to be at (or near) a centre of rotation of the component holding the 

arm. 

10 



(a) 

C) 

Figure 1.8: Components for the remote centre compliance device 

This too can be achieved with the 4-bar, though this one is not a paral- 
lelogram, Fig. 1.8(b). A combination of two 4-bars provides a device which is 

compliant for both the one and two point contact, Fig. 1.8(c). To be effective 
this device must be mounted on an arm which provides motion towards the hole. 
This general type of device is known as a remote centre compliance device. 

Hobbs, [Hob] classified both the monogerm and multigerm singularity types 
for 2-parameter motions of the plane and these are given by the following result. 
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Theorem 1.3.1 For a generic motion of the plane with two degrees of freedom, 

any germ or multi-germ of a trajectory is A-equivalent to one of the following 

normal forms. 

Type Normal Form A-codim 

1 (x, y) 0 
2 (x, y2) 1 
3 (x, xy + y3) 2 
4z (x, y3 ± x2y) 3 
5 (x, xy + y4) 3 
43 (x, y3 + x3y) 4 

6 (x, xy+y5+y7) 4 
115 (x, xy2 + y4 + y5) 4 
il 1 (x2+y3, x3+y2) 4 

12 1,2 (x2 
- y2 + x3, xy) 4 

(x, y ; X2, y) 2 
(x, y2; X, XY + Y2) 3 
(x, y2; X, XY + Y3) 4 
(x, y2; XY + X3, y) 3 
(x, y2; X, y2 +X 3) 

(x, y2; X y2 f X3, y) 4 

(x, y2; Xy+ X4, y) 4 

(x, xy+y3; XY+X3, Y) 4 
(x, y ;X , Y; x, x+y) 3 

X2, A 

(x, y2; X2, Y; x, x+iy+y3) 4 
(x, y2; X2, Y; x, x+y2; X"\X +Y2) 5 

Table 1.2: Map-germs : (R2,0) ---0 (112,0) 

where A 0,1. 0 
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1.4 Spatial Motions 

For 3-parameter motions of the space we have Manheim motion, see Fig. 1.9. 

Figure 1.9: Manheim motion 

If we take 3 points on a rigid body, and insist that they move on respective 

planes in 3-space then we have a 3-dimensional motion. 

Spatial mechanisms are of great interest, although their motions are much 
harder to visualize than the motions of planar mechanisms. When we think of a 

robotic arm we generally think of the following figure, Fig. 1.10, [Hau). 
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44 

Figure 1.10: Robotic Arm 

For complete versatility such an arm must have six degrees of freedom. 

It is easier to obtain local models for general 1-parameter motions of space 
than those of the plane, since there is less opportunity for self-intersection and 
therefore fewer singularities. Hobbs obtained the following list, [Hob]. 

Theorem 1.4.1 On the trajectory of a generic motion of space with one degree 

of freedom we see only multi-germs A-equivalent to the following. 

Norval Form Ae-codim 
(t, 0,0) 0 
(t2, t3,0) 2 
(t, 0,0; 0, s, 0) 1 
(t, 0,0, ; s, s2,0) 3 
(t, 0,0; 0, s, 0; 0,0, u) 2 

Table 1.3: Map-germs : (R, 0) -1 (R3,0) 

0 

We also have the following local models for 2-parameter motions of space. 
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Theorem 1.4.2 For a generic motion of space with two degrees of freedom, any 
multi-germ of a trajectory is A-equivalent to one of those given in Table 1.4. 

Proof. We refer to [Hob] 

1.5 Bifurcations 

0 

For a family of smooth mappings a key role is provided by the bifurcation set, i. e. 
the set of parameters for which the corresponding mapping exhibits non-stable 
singularities. This bifurcation set represents the boundary between different types 

of kinematic behaviour, and is therefore of great interest in engineering robotics. 
By unfolding theory we have that any versal unfolding of a normal form is iso- 

morphic to an unfolding given by varying the parameters of the motion. This 

means that the pictures given in the unfolding are diffeomorphic to the actual 
kinematic behaviour exhibited in the different regions of the bifurcation set. 

Now the bifurcation curves for 1-parameter motions of R2 are classical and 
are the cusp transition, which in engineering is known as the moving centrode, 
the tacnode transition, which is known in engineering as the transition curve and 
the triplepoint transition curve. The bifurcations are unknown for motions of 
R3 and the bifurcations for >2 parameter motions are new to kinematics. To 

study these bifurcations we need to employ computer algebra packages, namely 
MAPLE, MACAULAY and SINGULAR, all of which were used on a UNIX mainframe. 
Also the classification of singularity types : (R3,0) -> (R3,0) was done using a 
MAPLE program called TRANSVERSAL written by N. P. Kirk. All the computer 
graphics were rendered using programs written by R. J. Morris and GEOMVIEW 

on a SILICON GRAPHICS INDIGO workstation. I am grateful to Neil Kirk, Richard 
Morris and Farid Tari for the technical support given in using these computer 
packages. I would also like to thank Dave Hodgkinson, Gerhard Pfister, Daniel 
Lazard, Barry Trager and James Davenport for their attention to problems in 

elimination theory which were uncovered by this work. 
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Name Normal Form Ae-codim 
So (x, y, xy) 0 
Si (x, y2, y3 f x2y) 1 
S2 (x, y2, y3 + x3y) 2 
S3 

lx, y2, y3 ± x3 y) 3 
B2 (x) y2, x2y ± y5) 2 
B3 (x, y2, x2y±y7) 3 

c3 (x, y2, xy3 + x3 y) 3 
H2 

(x, y3, xy+y5) 2 

H3 (x, y3, xy+y8) 3 

P3 (x, xy + y3, xy2 + cy4) 

(x) y, 0; (, X, Y) 0 
[At] (x, y, O; X, Y X2 ± Y2) 1 
[A2] (x, y, 0; X, Y, X2 + Y3) 2 
[Ar] (x) y, 0; X, Y, X2 ± Y4) 3 

(x, y, 0; Y2, Xy+ Y3, X) 1 
(x, y, 0; Y2, XY+Y5, X) 2 
(x, y, 0; Y2, XY+Y7, X) 3 

[Sr] (x, y, 0; Y3±X2Y, Y2, X) 2 
[S2] (x, y, 0; Y3+X3Y, Y2, X) 3 

(x, y, 0; X, XY, Y2+X3) 3 
(x) y, 0; X, Y2, XY+Y4) 3 
(x, y, 0; 2,0,0, X, Y) 0 
(x, y, 0; x, 0, X, Y, Y+X2) 1 
(x, y, 0; x, 0, X, Y, Y+X3) 2 
(x, y, 0; x, 0, y; X, Y, X2±Y2) 2 
(x, y, 0; x'X, Y, Y+X4) 3 
(x, y, X, Y, XY+X3) 3 
(x, y, X, Y, X2+Y3) 3 
(x, y, 0; x, 0, y; 0, X, Y; X, Y, X +Y) 1 
(x, y, 0; x, 0,0, X, Y; X, Y, X +, \Y; x, y, x+ µy) 2 
(x, y, 0; x, 0,0, X, Y; X, Y, X+ \Y; x +µy, X, y; 2, p2 + ryy, y) 2 

Table 1.4: Map-germs : (R2,0) -> (R3,0) 
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1.6 Review of contents 

In Chapter 2 we give a brief overview of the definitions and results of singularity 
theory which are used in the thesis. We introduce complete transversals, the 
main technical tool employed in the classifications of Chapters 3&6. 

In Chapter 3 we consider the classification of map-germs : (R3,0) -p (R2,0) 

of Ae-codimension < 2, under A-equivalence. This involves the proof of a split- 
ting lemma from [RR] and includes a list of local models for 3-parameter motions 
of the plane. We give the calculations involved in finding the discriminants for 

all the A-simple map-germs : (]R3,0) --> (R2,0) listed in [RR]. We also list the 

unfoldings of the local models. 

In Chapter 4 we study the geometry and bifurcations of planar motions. This 
includes analysis of the work of Hobbs, [Hob] on the sharksfin and deltoid sin- 
gularities. The second section of the chapter involves calculating the bifurcation 

curves and obtaining computer graphics for the singularities listed in Chapter 3. 

The work of Chapter 3 is extended to general n-parameter motions of the 

plane in Chapter 5. 

In Chapter 6 we consider 3-parameter motions of space. This involves the 

work of Kirk, [K] on `nilpotent' classification methods, introduced by Bruce & du 

Plessis and which- appears in [BduPW], using the MAPLE program TRANSVER- 

SAL, written by Kirk. The full classification is given in detail. 

Finally we discuss the geometry of the singularities of Chapter 6 in Chapter 

7. We calculate several geometric invariants for those singularities with a smooth 

critical set and give sketches of the bifurcations which occur. 

(Part of the thesis appears in print or in preprints. The discussion of the bi- 

furcations for 2-parameter motions of the plane, of Chapter 4, appears in [GHH], 

the results from Chapters 3&4 are included in [GH1] and those of Chapters 6 

&7 in [GH2]. ) 
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Chapter 2 

Definitions 

2.1 Basic Notation 

We will consider smooth map-germs f: (IR', 0) -º (RP, 0) (or germs of analytic 
maps F: (C", 0) -> (C", 0) as needed). Our notation is drawn from [Wal, 
BduPW, Mart, G]. 

Let . 6n denote the 

R- algebra of smooth function-germs (IR. ", 0) -º R. 

and B,, denote the 

C- algebra of analytic function-germs (C", 0) -) C. 

For each of these we denote the maximal ideal by M,,. 

Now the set of map-germs (Ii, ", 0) -> (RP, 0) is an £, a-module and is denoted 
e(n, p) (similarly for the complex case). 

2.2 Standard Mather Groups 

There are 5 standard Mather groups: 1Z, G, A, C and K. 
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R denotes the group of germs of diffeomorphisms (R', 0) -, (Re, 0); 
G denotes the group of germs of diffeomorphisms (R7', 0) --> (RP, 0); 

and A is defined as the direct product 

A=RxG. 

The actions of the above groups on , 
M,, " 6(n, p) are as follows: 

h- f=f oh-' hE7Z 
h' "f= h' of h' EC 

(h, h'). f = h'ofoh-' (h, h')EA. 

(1Z is often defined as the group of smooth changes of coordinates in the source, 

and G as the group of smooth changes of coordinates in the target. ) 

C denotes the group of germs of diffeomorphisms 

(R" x RP, 0) -' (R x RP, 0) 

which project to the identity on R' and leave the subspace Wx {0} fixed. 

So ifHECthen 

H(x, y) = (x, H(x, y)) 

where H: (R" x gip, 0) --> (Rv, 0) with H(x, 0) =0 Vx E Ili. " close to the 

origin. The action of C on , 
M,, " E(n, p) is defined by 

ýx, Hf (x)) = H(x, f (x)) 

forHEC, f EM,, "E(n, P). 

Finally, 1C denotes the group of germs of diffeomorphisms 

(IR' x ]R 
, 

O) ---) (It" x IR P, O) 

which can be written in the form 
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H(x, y) = (h(x), O(x, y)) 

with h: (R 
, 0) - -* (R", 0) and O: (Lt's x JRp, 0) ) (RP, 0) with 19 (x, 0) = 

0 Vx E 1R close to the origin. 

The action of k on , 
M, l " ((n, p) is defined by 

(x, H"f (x)) = H(h-'(x), f (h-l(x))) 

for HEK, fE Mn " E(n, p). 

1C is known as the contact group. 

We will use the standard Mather groups to define the standard equivalences on 
Mn - E(n, p)" 

2.3 Tangent Spaces and Equivalence 

We will be classifying singularities of smooth map-germs f: (R", 0) -) (Rn, 0) 

up to A-equivalence. By this we mean, f is A-equivalent to g if there exists 
diffeomorphisms h: (R", 0) --> (R", 0) and k: (Rn, 0) -º (ß. p, 0) for which the 
following diagram commutes. 

(R", 0) _' (gyp, o) 
Ih lk 

(R", 0) 9' (RP, 0) 

We then say that f-g. 

We formally define A as 

A= {Difeomorphisms : (R", 0) --p (R", 0) }x {Difeomorphisms : (Rp, 0) -º (RP, 0)} 

We can also define a subgroup Al of A by 
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Al = {Diffeomorphisms : (R", 0) --> (R", 0) whose 1- jet is the identity} 

x {Difeomorphisms : (Ri', 0) -+ (RP, 0) whose 1- jet is the identity} 

We write jkf for the k -jet of f. The vector space of such k-jets is denoted by 
Jk(n, p). This can be identified with the IR-vector space of polynomial mappings 
(R", 0) -> (IR P, 0), whose components have degree < k. This vector space is 

acted upon smoothly by the Lie group Ak which is the set of k-jets of elements of 
A. Two k-jets are said to be A-equivalent if they lie in the same Ak-orbit. The 

group Ai is similarly defined. 

Using the usual notation, 

E, a = ring of function germs : (W, 0) )I 

& £p = ring of function germs : (IR P, 0) ---f H 

with M,,, MP denoting their corresponding maximal ideals. Then let Of denote 

the E,, -module of germs of C°°-vector fields over f and define Can = O(1Rn 
o) 

and 
(gyp = O(1 

o). 
Now we define the following homomorphisms: 

tf: Can -' (7 f 
0A) df"q5 

wf : Cep -' Of 
vjHeOf 

(where df if the differential of f ). 

Then the tangent space of the A-orbit of f is given by 

TA" f =tf(Mn"O ) +wf(MP"Op) 

and to the Al-orbit 
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7'fll f =tf /ý/in"On) +Wf(M2"0p). 

We also need the `extended' tangent space 

TAe 
"f=t. 

f (On) + w. f (OP). 

So the tangent spaces, given in terms of the Jacobian ideal of f, (ä ä- % 

are: 

TA-I=M. ö ß..., äx 
)+f*Mp{e1,..., 

e }. 
i 

Similarly, 

2 
of of \ 

*M2 TA, f= Mn 
ax1 , ..., axn I+f p{el,..., ep}, 

and 

of of \ 
1n 

2.4 Multigerms 

We will be mostly concerned with classifying mono-germ singularities, although 
in analysing the unfoldings of these singularities we will need to consider multi- 
germ singularities. By a multigerm of multiplicity m we mean m monogerms with 
distinct sources and a common target. For m=1,2,3, .. we refer to monogerms, 
bigerms, trigerms, and so on. The concept of a multigerm allows us to discuss the 
local behaviour which arises from several distinct points on a parameter surface. 

To calculate the tangent spaces for multigerms we introduce the following 

notation for a multigerm. Given a m-germ f: (R", S) --> (RP, 0) where S= 
{s1, 

..., sm}, we take local coordinates at each si. When we act on f with A we 

can change coordinates, via diffeomorphism, independently in the source around 

each s;, but in the target the same vector field applies to each set of coordinates. 
So if we have a multigerm with coordinates (x1, 

..., xn; X1, 
..., 

Xn; 
...; xl, ..., xn) we 

calculate the tangent space as follows: 

22 



f= if- -. 2L af TA '-M,, öxl ... ' 8x� + Mn 
8X1' ..., 8X� + 

... 
+ Mn äx1 

... ý 
äf* 

/ýPlelý 
... ý ePý 

Similarly for TAl "f and TAe " f. 

As in the case of monogerms we write , Jk f for the k -jet of the m-germ f. 

2.5 Determinacy 

One of the main ideas within Singularity Theory is to replace the space of map- 
germs M,, " 9(n, p) with the space of k jets Jk(n, p) = , 

Mn - E(n, P)lMn+l 
E(n, p), for some k (discussed above). This then allows us to work with a finite 
dimensional vector space. 

We say that f is k-A-determined if any map-germ g with jkf = jkg is A- 

equivalent to f. Once we know a map-germ is k-determined for some k, it is 

sufficient to work with the k -jet space to classify the A-orbits. The degree of 
determinacy of f is the smallest value of k for f. 

For monogerms we have the following results from [BduPW]. 

Theorem 2.5.1 Let C be a finitely generated E�-module, BCCa finitely gen- 
erated E,, -submodule, ACf *(Mp) "Ca finitely generated Ep-submodule (via f *) 

and Ma proper, finitely generated ideal in E� such that for xEM, 1+x is a 
unit. If 

M"CCA+B+M"(f*(Mp)+M)"C 

then 

M-CcA+B. 

Corollary 2.5.2 A C' map-germ f is k Al -determined if and only if 

23 



Mý+i .pC TAl f+ Mn+l " (f*1V1ý En + Mn+iý . En 

2.6 Codimension and Unfoldings 

In order to distinguish between singularities of map-germs we need invariants. 
One such invariant is the codimension of a map-germ. 

Definition 2.6.1 1. The A-codimension of a map-germ f is given by 

A- codim(f) = dimR 
TA" 

f 
TA- 

2. The Ae-codimension of a map-germ f is given by 

Ae - codim(f) = dimR, 
TA0f e-f 

In most cases it is more useful to have the Ae-codimension but simpler to 

calculate the A-codimension. We have the following result which relates the two: 

Theorem 2.6.2 Given a non-stable map-germ f: (R", S) -f (RP, 0) where 
S= (sl, 

..., s,,, ) we have 

. Ae-codim(f) =A- codim(f )+ m(p - n) - p. 

Proof. The case m=l is noted in Wall [Wall. 

A more formal proof can be found in Wilson, [Wil. 

r-l 
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Lemma 2.6.3 Suppose f is A -finite and that the codimension of the Ak-orbit 
off = n, for some k. Then the A-codimension off > n. 

Proof. We have the following mental picture 

IC 

Ak 

k 
A. f 

where it is a projection and therefore a submersion. Now the dimension of the 
AI+1-orbit is < the dimension of the A''-orbit and therefore the codimension is 
> the codimension of AIc-orbit. Now f is A-finite so f is r-A-determined for 

some r and 

A-codimension of f= codimension Ar-orbit > codimension A'-orbit of f. 

0 

Now, an r-parameter unfolding of a map-germ fo E . 
Mn " £(n, p) is a map- 

germ 

F: (R" x W, 0) --ý (Rp x Rr, 0) 
(x, u) i --* (f(x, u), u) 

such that fo(x) = F(x, 0). fu = F(x, u) can be thought of as a deformation of 
fo, parametrized by uEW. 

Two unfoldings F, G: (R" x W, 0) ----> (RP x R, 0) of fo are isomorphic if 
there exist germs of diffeomorphisms 

0: (nn X nr, 0) _+ (J' X Rr, 0), 
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0: (Lt xRr, 0)-*(R, PxR O), 

which are r-parameter unfoldings of the identity maps on R" and RF respectively, 
andG=ioFoc-1. 

Given h: (R, t, 0) -º (tt, 0) we define the pull-back of F by h, h* F to be the 
t-parameter unfolding 

(h*F)(x, u) = (f (x, h(u)), u). 

F, G are said to be equivalent if there exists a diffeomorphism h: (fy, 0) -º 
(RT, 0) such that G is isomorphic to h*F. Pictorially, we get from F to G by 
sliding smoothly down the orbits. 

F 

0 

G 

orbits 

F(u) 

G(u) 

If G is now some t-parameter unfolding of fo (t not necessarily equal to r), we 
say G is induced from F if there exists a smooth map-germ h: (Rt, 0) -* (fly, '', 0) 

such that G is isomorphic to h*F. 

Definition 2.6.4 1. F is versal if every unfolding of fo is induced from F. 

2. F is trivial if it is isomorphic to the constant unfolding (x, u) @--* (fo(x), u). 

3. F is stable if all unfoldings of fo are trivial. 

2.7 Complete Transversals 

The main method used in the classifications is the method of complete transver- 

sals. This was first developed by Gibson & Dimca, [DG] for contact equivalence. 
Bruce & du Plessis, [BduP] have subsequently shown that the same method works 
for Al-equivalence. 
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We start with a result due to Mather. 

Lemma 2.7.1 (Mather Lemma) 

Let G be a Lie group acting smoothly )n a finite dimensional manifold V. Let 
X be a connected submanifold of V. Then X is contained in a single orbit of G 
if and only if., 

1. foreach xEX, T. X CTx(G"x)=LG "x; 

2. dim T., (G " x) is constant Vx E X. 

Proof. We refer to [MaIV] 0 

The basic complete tranversal theorem is a corollary of the Mather Lemma. 

Theorem 2.7.2 Let G be a Lie group acting smoothly on an aline space A, and 
let W be a subspace of A with 

LG"(x+w)=LG"x, 

Vx EA and Vw E W. Then 

1. Vx EA we have 

x+{LG"xnW} cG"xn{x+W}; 

2. If x0 EA and T is a vector subspace of W satisfying 

W CT+LG - xo 

then for any wEW there exists gEG and tET such that 
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g (xo+w)=x0+t. 

Proof. We refer to [BduP] 

T is referred to as a complete transversal. 

0 

Corollary 2.7.3 Let 9 be one of the standard Mather groups R, L, A, C or 1C, 

and consider 91. Let fE 
. 
Mn E(n, p) and let TC Hk+l a vector subspace of 

Hk+l such that 

Hk+l C L(Jk+lgi). jk+lf + T. 

Then for every (k + 1) jet jk+lg (g EM" E(n, p)) with jkg = jk f that jk+lg 
belongs to the same 1' orbit as jk+1 +t for some tET. 

Proof. We refer to [BduP] 

2.8 Miscellaneous Results 

D 

The standard filtration by degree, which we use in the classification is given in 
[MaIII]. We filter Mn. E(n, p) by a chain of submodules Mk = . 

Mn+l £(n, p) and 
filter K by the normal subgroups Kk consisting of all HEK whose (standard) 
k -jet at 0ER. n x RP is equal to the k -jet at 0 of the identity, i. e. Kk = 
(1n+p + Mn+p"e(n + p, n+ p)) fl K. If we use a subgroup C9 of K this generalises 
by setting ck = Kk nC. So J' is a Lie group and this acts smoothly on Jk(n, p). 

A classification using the above standard filtration is achieved using the fol- 
lowing inductive step. If at the k-jet-level we have that jk f " jkg then at 
the (k + l)-jet-level jk+l f, jk+lg +h for some hE Hk+l. Working with a 
representative for each orbit at the k-level we can obtain a list of the possible 
representatives at the (k + 1)-level. This procedure stops when we reach a de- 

termined germ. So if we have a jet-filtration F= ({Mk}, {C9k}) then we have 

that a map-germ fEM, £(n, p) is k-determined if j. f= jk g=f-g for 

all gE Mn. £(n, p). So the classification of a certain class of finitely determined 

germs up to a given codimension is equivalent to the classification of the associ- 
ated orbits in the jet-spaces. This reduces the problem to a finite dimensional 

problem. 
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Finally, we need to introduce an important numerical invariant. 

Definition 2.8.1 Let f: (R", 0) -) (R, 0) be a finitely determined function- 

germ. The R-algebra M(f) = E,, IJf (where Jf is the ideal generated by the 

partial derivatives of f) is called the Minor algebra of f. Its dimension 

µ(f) = dimRM(f ) 

is known as the Milnor number of f. 
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Chapter 3 

3-Parameter Motions of the Plane 

3.1 Classification 

We wish to study motions of the plane with three degrees of freedom and to 
find local models for the singularities which we would expect to find on trajecto- 

ries of such motions. 3-parameter motions of the plane were studied as part of 
Rieger and Ruas' paper on the classification of A-simple germs from W to R2, 
[RR]. In our classification we take this one step further and consider germs with 

positive modality which can occur on trajectories of such motions. Thm. 1.2.1. 

reduces ýllý problem to one of classifying singularities from (R, 3,0) to (R. 2,0) with 
`codimension' < 5. 

Theorem 3.1.1 For a generic motion of the plane with three degrees of freedom 

any mono-germ of a trajectory is A-equivalent to one of the normal forms given 
in Table 3.1: 
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Normal Form Ae codim 
(x, y) 0 
(x, y2 f z2) 0 
(x, xy + y3 f z2) 0 
(x, y x2 2) 1 
(x, xy+y4±z2) 1 
(x, y +x Z2 2 
(x, xy2+y4+y5+z2) 2 

(x, xy+y5±y7+z2) 2 
(x, xy+z3±y2z+ay3+y5) 2 

Table 3.1: Local models for 3-parameter planar motions 

The rest of the chapter is devoted to the proof of Thm. 3.1.1. 

3.1.1 Jet-space computations 

We classify the k -jets : (R. 3,0) 
-i (1R, 2,0) using Al- complete transversals (or 

some nilpotent subgroup of A) of Ak-codimension < 5. 

Consider f: (]R3,0) -> (R2,0). 

"f has rank 1 so we can assume that its 1-jet is given by (x, 0). (We do not 
need to consider the 1-jet given by (0,0) as this has A'-codimension= 6 

already). 

" So we have jl f= (x, 0). We find the complete 2-transversal using the 
following result from Rieger and Ruas, [RR]. 

Theorem 3.1.2 Every A -finite map-germ f: k", 0 --ý k2,0, n>1, of corank 
1 is A-equivalent to a germ of the form 

n-m-1 
h(x, y, z) = 

(xg(xYi... 
Yrn)+ E Eiza 

i=1 

where g(0, yl, ..., ym) E Mn and Ei = f1; and cod(A, h) = cod(A, (x, g)) +n-m-1. 
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Proof. The proof proceeds via complete transversals. We need 

n-m-1 1 
jk. f 9k(X I Y" ..., Ymý Eizi J i=1 

We proceed by induction on k. 

" Base step k=2. 

f has the form (x, f2 (x, y)) 

where f2 (x, y) = axe + 2x (E b, yi) + of (yl, 
..., yn_1) + H. O. T. 

By a linear change of coordinates the quadratic form can be found to be 

q 

of (yl, 
""yn-1 ý ^' {sum of squares} ->E "yj2 

j=1 

where e, = ±1, depending on the rank of the quadratic form. 

So j2 f- (x, axe + 2x (E biy=) + F-j=1 Ejyj )" 

We can now annihilate the x2-term using a change of coordinates in the 
target. 

So j2f ' (x, 2x (Ei. 1 biyi) + Ej-1 E3yj ). 

For these q terms we can apply a change of coordinates of the form yj '--p 
y= b=x depending on whether C3 = ±1. This gives us the following for each 
term: 

2xbiyi ± y1 = 2xbi(yi bix) ± (yi bix)2 

= 2xbiyi 2x2bi2 ± yi ± b12x2 - 2bixyi 

_ 
ýy T- bi2x2. 

Again annihilating the x2-terms using a coordinate change in the target we 

obtain 

n-q-1 q 
7Zfx, xZ bi yi +E Ei yj 

i=1 j=1 

giving us the required form with n-q-1=m. 
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" Inductive step 

We assume that 

n-m-1 

. 
7k. f , x, 9k(x, y1, ..., ym) +Z Ejzj 

j=1 

for some k. We now need the complete transversal in jk+1. We have 

TAk "f= MnJ1 +f*, M2{el, e2} 

where Jf = 
"e1, ä) 

, 
ý0, ä), (0, zi)). 

Now (1, 
ä) gives us (0,0) with degree(q) =k+1. Also (0, zj) yields all 

(0,0) with a factor of zj. Finally (0, xk+l) comes directly from the fact that 
xk+1 E I*(MZ). This means that the complete transversal is spanned by 
(0,0) where 0 are monomials in yl, ..., y�, only, so 

jk+l f_ jkf + (0,, Cp) 

where 1 is a linear combination of monomials in yl, ..., y,,,,, which is of the 
required form. 

Now the map-germ f is A-finite so at some point we have a k-determined 

germ and therefore we have our f A-equivalent to the required form. 

We provide a proof for the codimension result for our case of m=1, n=3; 
thus we have variables x, y, z. We know that any germ of corank 1 is A-equivalent 
to a germ of the form 

ý(x, y, z) = (x, 9(x, y)±z2) 

where g(0, y) has no constant, linear or quadratic terms. 

It is enough to work in some jet-space J(3,2) in which h is A-sufficient. We 
then look at the tangent space to the A00-orbits of h and (x, g). The tangent 

space to h is given by 

TA. h = M3((1, -9y), (0, gy), (0, +2z)) +h* , 
M2{el, e2}. 

With computation we find that the tangent space defined above contains all 
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monomials (0, xiy)zk) with factor z, except (0, z) and all monomials (xiyizk, 0) 
with factor z. We can therefore work modulo such vectors when computing 
codimensions. Thus for the tf part of the tangent space we need only consider 
the subspace arising from the expressions not involving z, i. e. 

(X y3, xty)9x), 

(0, xty, gy). 

In other words the tf part to the A('>-orbit for the germ (x, g(x, y)). Finally, 

we observe that for any polynomial p(X, Y) we have 

p(x, g(x, y) ± z2) = p(x, g(x, y)) + (terms in z2) 

= p(x, g(x, y)) modulo terms in z. 

Also, for the wf part we need only consider the subspace arising from expressions 
(q(X, Y), b(X, Y)) where 0,0 are polynomials, and X=x, Y=g, i. e. the wf 
part of the tangent space to the A(-)-orbit for the germ (x, g(x, y)). The formula 

is immediate, the +1 corresponding to the monomial (0, z). Q 
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Thus we have the following possibilities for the 2 -jet: 

1. j2f = (x, xy±z2) 

2. j2 f= (x, z2) 

3. j2f = (x, y2 ± z2) which is 2-. A1-determined. 

4. j2 f= (x, xy) 

5.3 2f= (x, 0) 

where (*) means that the germ is finitely determined. 

(*) 

Now if we look at the codimensions of these jets in J2(3,2) we obtain the 
following: 

, 
A-codimension 

(x, xy±z2) 3 
(x, z2) 4 
(x, y2 ± z2) 3 
(x, xy) 5 
(x, 0) 7 (#) 

where (#) indicates that the codimension is too high and so we can forget germs 
whose k -jet is equivalent the form #. For the full calculations of the codimensions 
see Section 3.3. 

(3) Firstly we look at j2 f= (x, xy f z2) 

We want the complete-3-transversal so we look at 

T, 41. f= M3«1, y), (0, x), (0, ±2z)) +f *M2 {el, e2}. 

We find that the only vector missing is (0, y3), so our complete transversal is 
? 3(x, y, z) = (x, xy+ay3+z2)" 

1. If a#0 we can scale using the following argument to obtain j3f = 
(x, xy + y3 + z2) which we can prove to be 3-A1-determined and has 

codimension =3. 
See Appendix B. (*) 
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If we apply the following changes of co-ordinates, (x, y, z) . ---ý (Ax, µy, vz) 
to f we obtain the following: 

(x, xy f z2 + ay3) &--' (. Ax, \pxy ± v2z2 + aft 3y3). 

Now wewant . Aµ=v2=ap3, i. eifa<0weneed p<0andA<0; but 
if a>0 we need µ>0 and A>0. Since we can assign any values to 
A, p, v this means that we can scale (x, xy + z2 + ay3) to (x, xy ± z2 + y3) 
by applying a change of co-ordinates to the target. 

2. If a=0 then we have j3f = (x, xy ± z2) and this has codimension 4. 

Next we need to look at j2 f= (x, z2). 

The complete-3-transversal is given by j3 f= (x, ay3 + bxy2 + cx2y + z2). 

1. If a, b, c0 we can apply a change of coordinates to obtain (x, uy3 + vx2 Y+ 
z2). So by scaling we have j3f = (x, y3 ± x2y ± z2) which we can prove to 
be 3-Al-determined and have codimension 4. 

See Appendix B. (*) 

2. If we have v=0 we get j3f = (X, y3 ± z2) and this has codimension 5. 

3. If a=0 we can apply a change of co-ordinates to obtain j3f = (x, xy2 ± z2) 
and this has codimension 5. 

Lastly we need to consider j2 f= (x, xy). 

The complete-3-transversal is given by j3f = (x, xy+ay3+by2z+cyz2+dz3). 

" Suppose d00, then by the change of coordinates zHz- c/over3dy, we 
can annihilate the yz2 term to give us j3f = (x, xy + a'y3 + b'y2z + dz3). 
Now assuming a', b' and d00 we can scale this to give j3f= (x, xy + z3 f 

y2z + ay3) where a is a modulus and the stratum has codimension 5. 
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If a' =0 then we have j3 f= (x, xy + b'y2z + dz3) which we can scale to 
give (x, xy + z3 f y2z) which has codimension 6. If b' =0 then we have 
j-3 f= (x, xy + a'y3 + dz3) which we can scale to give (x, xy + z3 + y3) which 
again has codimension 6. 

" If d=0 then we have j3f = (x, xy+ay3+by2z+cyz2) which by the change 
of coordinates zz-2y reduces to j3 f= (x, xy + a'y3cyz2) assuming 
that c 0. If a' #0 then we can scale this to give us (x, xy + y3 ± yz2) 
which has codinsion 6. If a' =0 then we have J-3 f= (x, xy + cyz2) which 
scales to give (x, xy + yz2) which has codimension 7. 

Finally, if c=0 then we have j3 f= (x, xy + ay3 + by2z) which reduces to 
j3f = (x, xy + y2z) which has codimension 7. 

So we only need consider the orbit: 

j3f = (x, xy+z3 fy2z+ay3). 

(4) So now we consider j3 f= (x, xy ± z2) 

The complete-4-transversal is given by j4f = (x, xy + ay4 ± z2). 

1. If a00 we can scale to obtain j4f = (: 1, xy + y4 ± z2) which we can prove 
to be 4-A-determined and have codimension 4. 

See Appendix B. (*) 

2. If a=0 then we have j4f = (x, xy ± z2) and this has codimension 5. 

Next we need to consider j3f= (x, y3 ± z2 ) 

The complete-4-transversal is given by j4f = (x, y3 + ax3y ± z2)" 

1. If a00 we can scale to obtain j4 f= (x, y3 + x3y ± z2) which we can prove 
to be 4-A1-determined and have codimension 5. 
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See Appendix B. (*) 
2. If a=0 then we have j4 f= (x, y3 ± z2) and this has codimension 6. (0) 

Next we need to consider j3f= (x, xy= f z2) . 

The complete-4-transversal is given by j4 f= (x, xy2 + ay4 ± z2). 

1. If a0 then we can scale to obtain j4f = (x, xy2 + y4 ± z2). 

2. If a=0 then we have j4f = (x, xyz ± z2) and this has codimension 6. (#) 

Finally in the 3-jet we need to consider j3f = (x, xy + z3 + ay3 ± y2z). 

If we use the nilpotent group containing the element (, 0,0) where f (x, y, z) = 
(q 

, 
0) then the complete-4-transversal is empty so we have j4f = (x, xy + z3 + 

ay3 ±Y 2 Z). 

(5) Firstly we consider j4 f= (x, xy±z2). The complete-5-transversal is given 

by j5f = (x, xy+ay5±z2). 

1. If a00 we can scale to obtain j5f = (x, xy + y5 ± z2) . 

2. If a=0 then we have j5f = (x, xy ± z2) and this has codimension 6. (ý) 

Next we need to consider j4f = (x, xy2 + y4 ± z2). 

The complete-5-transversal is given by j5f = (x, xy2 + y4 + ay5 ± z2) 

1. If a 54 0 then we can scale to obtain j5 f= (x, xy2 + y4 + y5 ± z2) which can 
be proved to be 5-A1-determined and have codimension 5. 
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See Appendix B. (*) 

2. If a=0 then we have j5f = (x, xy2 + y4 ± z2) and this has codimension 6. 
() 

Lastly we look at j4 f= (x, xy + z3 + ay3 ± y2z). 

This has complete-5-transversal j5f = (x, xy + z3 + ay3 ± y2z + by5). 

1. If b#0 then we can scale this to j5 f= (x, xy + z3 + ay3 ± y2z + y5) which 
we can prove is 5-A-determined with the stratum having codimension 5. 

See Appendix B. (*) 

2. If b=0 we have j5 f= (x, xy + z3 + ay3 + y2z) and this has codimension G. 
() 

(6) So now we consider j5f = (x, xy + y5 ± z2) 

The complete-6-transversal is empty if we use one of the nilpotent subgroups 
of Al so we have js f= (x, xy + y5 ± z2). 

(7) So now we consider j6f = (x, xy + y5 ± z2) 

The complete-7-transversal is j7f = (x, xy + y5 + ay7 ± z2) 

1. If a0 we can scale to obtain j' f= (x, xy + y5 f y7 ± z2) which we can 
prove to be 7-A-determined and have codimension 5. 

See Appendix B. (*) 

2. If a=0 then we have j7f = (x, xy + y5 ± z2) and this has codimension 6. 
() 
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3.2 Discriminants 

Definition 3.2.1 1. Given a map-germ f: (ffL, 0) ) (1? ', 0), the critical 
set of f, E f, is the set of points in R" where df is not surjective (i. e. when 
the Jacobian off has less than maximal rank). 

2. With f as above, the discriminant of f is the image of the critical set, 
f(Ef)" 

We are considering A-finite map-germs : (R3,0) -º (R2,0), so our critical 
set >f is a curve in 3-space, and the A-class of (f IEf, 0) -; (It2,0) is an A- 
invariant of f. Now Bruce and Gaffney, in [BG], proved that the A-equivalence 

classes of the germs : (R, 0) --0 (R. 2,0) correspond to IC-equivalence classes of 
germs : (R2,0) -p (R, 0), i. e. their defining equations. So the )C-class of the 
defining equations is an invariant, and we wish to find the IC-classes of the germs 
in question. 

Lemma 3.2.2 Critical sets and discriminants are preserved by equivalences, i. e. 
if we have two germs fo, fl : (if, 0) -> (1? ', 0) we have 

r (> fo) =Z fi 

l (fo (Z fo)) = fi (Z fl) . 

Rieger and Ruas provided us with a list of simple map-germs and we have 
the following proposition. 

Proposition 3.2.3 The IC-classes of the A-simple map-germs : (Ii3,0) -> (R2,0) 

are given in the following table. 
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Normal Form K-class 
of defining equation 

(x, y) 
(x, y2+z2) 
(x, xy+y3±z2) A2 
(x, y3±xky±z2) AU-1 

(x, xy+y4±z2) E6 
(x, xy+y5±z2) W12 

(x, xy + y5 + y7 + z2) W12 

(x, xy2+y5+y6± z2) W17 

(x, xy2+y5±y9±z2) W17 
(x, xy2 + y5 ± z2) W17 

(x, x2y+y4±y5±z2) K14 
(x, x2y+y4±z2) K14 

(x, xy2 + y4 + y2k+1 ± z2) A2k 

Table 3.2: A-simple planar map-germs 

Proof. The proof is given in the remainder of this section. 

So we now need to work out the discriminants of the map-germs . 

3.2.1 Discriminants of the A-simple map-germs 

" f(x, y, z) _ (x, y2 f z2) 
The critical set for f is given by 

Ef= 
{(xYz) 

: rank 
(0 

2y 02z) <2} 
( 

JJJ 

= {(x, y) z): y=z=0} 

= {(t, 0,0): tE]R}. 

So the discriminant of f is the x-axis 
i. e. fl>f ={(t, 0): tEII}. 

0 f(x, y, z) = (x, xy+y3±z2) 

11 
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The critical set for f is given by 

Ef= 
{(xYz) 

: rank 
y x+3y2 

0)< 
2 

_ {(x, y, z): x+3y2=0&z=0} 

_ {(-3t2, t, 0) :tE ]R}. 

and the discriminant is given by 

fIEf ={(-3t2, -2t3): t ER}. 

This is /C-equivalent to x3 + y2 =0& is therefore of type A2. 

" f(x, y, z) = (x, y3±xIy±z2) 
The critical set for f is given by 

f= (x, y, z) rank 
100 

kxk-ly ±xk +3 y2 ±2z <2 

= {(x, y, z) : fxk + 3y2 =0 &Z = 0}. 

Now the parametrization depends upon the parity of k. 

If k is odd, then 3y2 ± xk =0 defines a single branch curve (since 3y2 + 
xk - 3y2 - xC via the change of coordinates x ý-º -x). So we can 
parametrize by 

(ýý y) _ (-t2, 
k 

). 

This gives Ef= {(-t2, 
, 0) :tE 1R}, and the discriminant as 

-2t3k f1> f= {(-t2,3V ): tE R}. 

This is K-equivalent to y2 + x3k =0& is therefore of the type A3k_1. 

If k is even, k= 2m say, then 3y2 ± X2i` =0 defines a double branched 
curve, i. e. a multigerm. If we take the + case, we have 3y2 +X 2m =0 
which has no real solutions except for the origin. 
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If we take the - case, we have 3y2 - x" =0 which has two branches, 
e. g. for k=4 we have the following picture, 

In this case this defines a tacnode. We must parametrize each branch 

separately. For the positive branch (branch our example) we 
parametrize by 

k 

We have the critical set given by 

tk 
={(t2,3,0): tER}, 

and the discriminant given by 

k 

fl y-f= {(t2, -3) :tEý. }. 

For the negative branch (branch B in our diagram) we parametrize by 

(x, Y) _ (t2, 
k- 

k), 

giving the critical set as 

k 
Zf={(t2, _ , 0): tEIII, 
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and the discriminant as 

c)f k 

3 43- 

These are K-equivalent to X3k - y2 =0& is therefore of type A3k_l. 

" f(x, y, z) = (x, xy + y4 ± z2) 
The critical set for f is given by 

Ef=S (x, y, z) : rank 
(1030)} 

<2 
ly x+4y ±2z) J 

_ {(x, y, z) : x+4y3=0 & z=0} 

_ {(-4t3, t, 0) :te R}. 

So 
fI f= {(-4t3, -3t4) :tE. }. 

This is IC-equivalent to x4 + y3 =0 and is therefore of type E6. 

" .f 
(x, y, z) = (x, xy + y5 ± z2) 

The critical set for f is given by 

Ef= 
{(xz) 

: rank( 
1 

x+0 5y4 
0)<2} 

JJJ 

= {(x, y, z): x+5y4=0& z=O} 

= {(-5t4, t, 0) :tE Ili, }. 

This gives the discriminant parametrized as 

ff= {(-5t4, -4t5) :tER. }. 

This is K-equivalent to y4 + x5 =0& is therefore of type W12. 
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" f(x, y, z)= (x, xy+y5+y7+z2) 

The critical set for f is given by 

So 

Ef= {(xYz) 
rank 1yx+ 

5y4 
0± 

7y6 
0 

+2z <2 

= {(x, y, z): x+ 5y4 ±7 y6 =0&z= 0} 

= {(-5t4 T- 7t6, t, 0) :tEß. }. 

f1>f= {(-5t4 7t6, -4t5 F 6t7) :tE III, }. 

In this case we have two polynomials in t. We need to find out if they have 

any common factors. We do this by looking at the resultant of 

X= -5t4 Its, &Y= -4t5 6t7. 
i. e. X+ 5t4 + 7t6 = 0, &Y+4,5 f 6t7 = 0. 

The resultant is equal to the determinant of the following matrix: 

X00050 ±7 000000 
0X00050 +-7 00000 
00X00050 ±7 0000 
000X00050 ±7 000 
0000X00050 ±7 00 
00000X00050 ±7 0 
000000X00050 ±7 
Y000040 ±6 00000 
0Y000040 ±6 0000 
00Y000040 ±6 000 
000Y000040 ±6 00 
0000Y000040 ±6 0 
00000Y000040 ±6 

Using the MAPLE computer algebra package the determinant was found to 
be 

46656x7+13824x6+1024x5 -21168y2x4 -1600y2x3+605052y4x2 +171500y4x+ 
823543y6 + 12500y4. 
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Observe that this germ has the form Ax5 + By' + HOT relative to the 
weights weight(x) = 4, weight(y) = 5. We now use Arnold's results found 
in Appendix A. 

Firstly, we create the Newton diagram for the resultant by plotting the 

points for which the monomial appears. So in this case we have the points 
(0,4) corresponding to y4, (1,4) corresponding to xy4, etc. We have the 
following Newton diagram, Figure 3.1. 

y 

Figure 3.1: Newton diagram 

By Cor. A. 0.3. we need to look at the local ring for the homogeneous part 

of f, fo. In this case, fo = Ax' + By4, so we need to look at 

(f f)= (x4, y3). 

From Lemma A. M. we need to look for which monomials on the diagram 

are not contained in this ring. The only one missing in this case is x3y2. 
This is the only super-diagonal element, and by Theorem A. 0.12. we have 
that fý x5 + y4 + Ax3y2. Scaling ) we get f- x5 + y4 ± x3y2, which is of 

type W12. 

0 f(x, y, z) = (x, xy2+y5+y6±z2) 

The critical set for f is given by 
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Ef= (x, y, z) : rank 

_ {(x, y, z) : 2xy + 

_ {(t, 0,0) ® (-2t3 

100 
<2 

y2 2xy + 5y4 +6 y5 ±2z 

5y4+6y5=0&z=0} 

- 3t4, t, 0) :tE R}. 

So 
flEf= {(t, 0) ®(-2t3 - 3t4, -2t5 - 2t6) :tE IR}. 

In this case we have two polynomials in t as well as the axis. We need to 
find out if they have common factors. We do this by looking at the resultant 
of 

X=-Z t3 - 
3t4, &Y=-2 t5 - 

2t6. 

i. e. 2X + 5t3 + 6t4 = 0, & 2Y + 3t5 + 4t7 = 0. 

The resultant is equal to the determinant of the following matrix multiplied 
by y: 

2X 0 0 5 6 0 0 0 0 0 
0 2X 0 0 5 6 0 0 0 0 
0 0 2X 0 0 5 6 0 0 0 
0 0 0 2X 0 0 5 6 0 0 
0 0 0 0 2X 0 0 5 6 0 
0 0 0 0 0 2X 0 0 5 6 

2Y 0 0 0 0 3 4 0 0 0 
0 2Y 0 0 0 0 3 4 0 0 
0 0 2Y 0 0 0 0 3 4 0 
0 0 0 2Y 0 0 0 0 3 4 

Using the MAPLE computer algebra package the determinant was found to 
be 

16384x6_ 1728X5 - 3072yx4+221184yzx3 - 24000y2x2 -518400y3x+746496y4+ 
50000y3. 

So that gives fI Ef " 16384xsy - 1728x5y - 3072y2x4 + 221184y3x3 - 
24000y3x2 - 518400y4x + 746496y5 + 50000y4. 
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Observe that this germ has the form Ax5y + By4 + HOT relative to the 
weights weight(x) = 3, weight(y) = 5. We now use Arnold's results found 
in Appendix A. 

We have the following Newton diagram, Figure 3.2. 

Y 

6 

5 

4 

3 

2 

Figure 3.2: Newton diagram 

We need to look at the ideal generated by (fx, fy), namely 

(fx, fv) = (x4y, 4y3 + x5) 

and we find that the only super-diagonal elements of the regular basis is 

x2y3 and x3y3 So f, y4 + x5 +. Ax2y3 + µx3y3 and is of type W17- 

0 f(x, y, z) = (x, xy2+y5±y9±z2) 
The critical set for f is given by 

Ef= 
{(xYz) 

: rank 200 
G1 

y 2xy + 5y4 f 9y8 ±2z <2 
G 

(x, y, z) : 2xy + 5y4 ± 9y8 =0 &Z= 0} 

_{ (t, 0,0) ®(- 2 
t3 9- 

2 
t7, t, 0) :tE R}. 
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So 

fý f= {(t, 0) ® (-2t3 T 
2t7, 

-2t5 T7 t9)}. 

In this case we have two polynomials in t plus the axis. We need to find 
out if they have common factors. We do this by looking at the resultant of 

X= -2t3 zt7, 
&Y= -2t5 i 2t5. 

i. e. 2X + 5t3 ± 9t7 = 0, & 2Y + 3t5 ± 7t9 = 0. 

The resultant is equal to the determinant of the following matrix multiplied 
by y: 

2X 0 0 5 0 0 0 ±9 0 0 0 0 0 0 0 0 
0 2X 0 0 5 0 0 0 ±9 0 0 0 0 0 0 0 
0 0 2X 0 0 5 0 0 0 ±9 0 0 0 0 0 0 
0 0 0 2X 0 0 5 0 0 0 ±9 0 0 0 0 0 
0 0 0 0 2X 0 0 5 0 0 0 ±9 0 0 0 0 
0 0 0 0 0 2X 0 0 5 0 0 0 ±9 0 0 0 
0 0 0 0 0 0 2X 0 0 5 0 0 0 ±9 0 0 
0 0 0 0 0 0 0 2X 0 0 5 0 0 0 ±9 0 
0 0 0 0 0 0 0 0 2X 0 0 5 0 0 0 ±9 

2Y 0 0 0 0 3 0 0 0 ±7 0 0 0 0 0 0 
0 2Y 0 0 0 0 3 0 0 0 ±7 0 0 0 0 0 
0 0 2Y 0 0 0 0 3 0 0 0 ±7 0 0 0 0 
0 0 0 2Y 0 0 0 0 3 0 0 0 ±7 0 0 0 
0 0 0 0 2Y 0 0 0 0 3 0 0 0 ±7 0 0 
0 0 0 0 0 2Y 0 0 0 0 3 0 0 0 ±7 0 
0 0 0 0 0 0 2Y 0 0 0 0 3 0 0 0 ±7 

Using the MAPLE computer algebra package the determinant was found to 
be 

±421654016x9+236027904yx6+3538944x5 13538544768y3x4f19660800y2x3- 
59997563136y5x2 - 6718464000y4x 49589822592y7 - 102400000y3. 

LI 
So that gives fI Ef %j"1654016xly + 236027904y2xs + 3538944x5y 

13538544768y4x4 196& td x3 -`5Q997563136ysx2 - 6718464000y5x F 
49589822592y - 102± pQoy4. 8 



Observe that this germ has the form Axsy + By4 + HOT relative to the 
weights weight(x) = 3, weight(y) = 5. We now use Arnold's results found 
in Appendix A. 

We have the following Newton diagram, Figure 3.3. 

Figure 3.3: Newton diagram 

We need to look at the ideal generated by (fy, fy), namely 

(f� fy) = (x4y, 4y3 - X5) 

and we find that the only super-diagonal elements of the regular basis is 
x2y3 and x3y3 So f 

ti y4 + x5 + \x2y3 + µx3y3 and is of type W17. 
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"Px, y, z) = (x, xy2 + y5 ± z2) 
The critical set for f is given by 

Ef= (x, y, z) : rank 
( 

y2 
1 

2xy + 5y4 02z 
)<2 

_ {(x, y, z) : 2xy + 5y4 =0&z= 0} 

_ {(t, 0,0) ®(-5t3, t, 0) :tE1. }. 

So 
f f= {ýt, 0) ®(-2t3, -2t5) :tE R}. 

This is 1C-equivalent to x5y + y4 =0& therefore has type W17. 

So now we have three germs with /C-type tiW17. How do we distinguish 
between them? 

Definition 3.2.4 Given 6>0 the semiquasihomogeneous function f is 
6 right (respectively contact) determined with respect to the weights a= 
(al, 

..., a, ) if for any polynomial ¢ of weight >6 the function f+¢ is right 
(respectively contact) equivalent to f. 

We are looking at contact equivalence so we let f be of the form f= fo + 
fl + f2, where fo is the principal part , 

fl is quasihomogeneous of weight 
1+c and f2 has weight >1+c. 

We now have the following result from Bruce, [B3] 

Theorem 3.2.5 If 6 
_> 

1+c is chosen so that weight >6 implies that 
E (ä ?, fl), then f is 6 contact determined with respect to a. 

So for our case we chose a= (3 5) 
20 20 

So we have 

fo = x5y + ya 
fl = Ax2y3 

f2 = µ23y3 

and I= (5x4, x5 + 4y3, Ax2y3) 
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So we have fo with weight 1, fl with weight 2Ö and f2 with weight 2Ö which 
is > 20. 

So if we take q_E ¢p, gxPy9 with weight ¢> 20 this gives 3P+51 > Zö ý--º 20 
3p+5q>21. 

p= 0 q>5 y5EI 
p= 1 q>4 xy4EI 
p= 2 q>4 x2y4EI 
p= 3 q> 3 x3y3 EI 
p= 4 q>2 x4y2EI 
p= 5 q>2 x5y2EI 
p= 6 q>1 x6yEI 
p= 7 q>1 x7yEI 
p=8 q>0 x8EI 

So by the previous result f- x5y + y4 + Ax2y3 if A 54 0. 

By applying a change of co-ordinates we can scale to obtain - x5y + y4 + 

x2y3 =0 which corresponds to f (x, y, z) = (x, xy2 + y5 + y6 ± z2). 

If A=0, p0 we can scale to obtain x5y+y4±x3y3 =0 which corresponds 
to f(x, y, z) = (x, xy2+y5±y9±z2). 

If A=p=0 then we have x5y + y4 =0 which corresponds to f (x, y, z) = 
(x, xy2 + y5 + z2)" 

" f(x, y, z) = (x, x2y+y4±y5±z2) 

The critical set for f is given by 

{(xYz) 
f= rank 100 

2xy x2 + 4y3 f 5y4 ±2z) <2 

_ {(x, y, z) : x2+4y33±5y4 =0 & z=0}. 

=1( (-4t3 5t4), t, 0) :tE R} 

So 
ff= {( -4t, : t4, -3t4 4t5) :tE R}. 

In this case we have two functions in t. We need to find out if they have 

common factors. We do this by looking at the resultant of 
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X= -4t3 + 5t4, &Y= -3t4 T- 4t5. 
i. e. X2+4t3±5t4=0, & Y+3t4+4t5=0. 

The resultant is equal to the determinant of the following matrix : OB 

X2 004 ±5 0000 
0 X2 004 ±5 000 
00 X2 004 f5 00 
000 X2 004 ±5 0 
0000 X2 004 ±5 
Y0003 ±4 000 
0Y0003 ±4 00 
00Y0003 ±4 0 
000Y0003 ±4 

Using the MAPLE computer algebra package the determinant was found to 
be 

256x1° - 27x8 +36 VX6 - 50y2x4 + 2500xzy3 + 3125y4 - 256y3. 

So that gives 

ff 256x1° - 27x8 + 36 yx6 - 50y2x4 + 2500x2y3 + 3125y4 - 256y3. 

Observe that this germ has the form Ax8 + By' + HOT relative to the 

weights weight(x) = 3, weight(y) = 8. We now use Arnold's results found 
in Appendix A. 
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We have the following Newton diagram, Figure 3.4. 

r 
8 

7 

6 

5 

4 

3 

2 

Figure 3.4: Newton diagram 

We need to look at the ideal generated by (f 
y, fy), namely 

(fx, A') = (x7, y2) 

and we find that the only super-diagonal element of the regular basis is 

xy6. So f- x8 + y3 + Axy6 where .A0 and therefore we can scale to give 
f -x 8+ y3 + xy6 and is of type K14. 

0 . 
f(x, y, z) _ (x, x2y+y4±z2) 

{(xYz) 
: rank 1\ 

2xy x2 
0 

+ 4y3 
0 

±2z) <2 

= {(x, y, z) : x2 + 4y3 =0 &Z = 0} 

= {(2t3, -t2,0) :tE It} 

and the discriminant is given by 
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fýýf ={(-2t3, -3t8): tEIR }. 

This is K-equivalent to x8 + y3 =0 and is therefore of type K14. 

"f (x, y, Z) = (x, xya + y4 + y2k+i ± z2 ) 

l 
f={ (x, y, z rank 

1 
y2 2xy + 4y3 +o (2k + 1)y2k 

0 
±2z) <2} 

_ {l(x, y, z): 2xy+4y3+(2k+1)y2k=0&z=0} 
JJJ 

2k +1 
_ {(t, 0,0) ® (-2t2 -(2 y2k-1, y, 0) :tER. }. 

and the discriminant is given by 

ff= {(t, 0) ® (-2t2 - 
(2k2 1)y 2k-1 

i _y4 _ 
(2k2 1)y2k+1) 

:tE R}. 

This is K-equivalent to x2k+1 + y2 =0 and is therefore of type A2k. 
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3.3 Codimensions and Unfoldings 

Lemma 3.3.1 The versal unfoldings for our list of map-germs are given in Ta- 
ble 3.3. 

Normal form Unfolding 
(x, y) (x, y) 
(x, y2 ± z2) (x, y2 ± z2) 
(x, xy+y3±z2) A2 (x, xy+y3±z2) 
(x, y3±x2y±z2) A5 (x)y3±x2y+ay±z2) 
(x, xy+y4±z2) E6 (x, xy+y4+aye±z2) 
(x, y3 ± x3y ± z2) A8 (x, y3 ± x3y + ay + bxy ± z2) 
(x, xy2+y4 +y5±z2) A4 (x, xy2+y4 +y5+ay+by3±z2) 
(x, xy + y5 : y7 ± z2) W17 (x, xy + y5 ± y7 + ay2 + by3 ± z2) 
(x, xy+z3+ay3±y2z+y5) (x, xy+z3±y2z+ay3+y5+bz+cy2) 

Table 3.3: Versal unfoldings of map-germs : (R. 3,0) -º (R2,0) 

1. f(x, y, z) = (x, y). 

TAe "f= S3((1,0), X0,1)) +. f*ez{el, e2} 

from which we can see that Ae-codimension =0 and therefore f has a trivial 

unfolding. 

2. f(x, y, z) = (X, y2 4- z2). 

TAe -f= E3«1,0), (0, y), (0, z)) +f tE2{el, e2} 

from which again we see that , 
Ae-codimension =0 and therefore f has a 

trivial unfolding. 

3. f(x, y, z) = (x, xy+y3±z2). 
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T. Ae 'f= £3«1, y), «), x+ 3y2), (0, z» +I *e2{ei, e2}" 

This is 3-A-determined so we work in J3(3,2). 

The following table gives a list of the vectors which we are looking for, a 
Vindicates a vector which is contained in the tangent space, whereas ax 
indicates that it is missing. 

ei e2 ei e2 

x � � x3 � � 
y � � Y, � � 
z � � z3 � � 

x2 � � X2y � � 
y2 � � x2z � � 

z2 � � xy2 � � 

xy � � xyz � � 

xz � � xz2 � � 

yz � � y2z � � 

yz2 � � 

We can see that T.. 4e "f contains (xi, 0), (0, x=) for all i, (0, xO) from (0, x+ 
3y2) and (0, y) gives (¢, 0) since yo E M3 and we are working in J3(3,2). 
We have (zi, 0), (0, zi) for all i and (z¢, 0), (0, zq). 

This means we are looking for (0, y2) and (0, y3). We have (0, x) so we have 
(0, y2) and we have (0, xy) so this gives (0, y3). 
So f has A, -codimension =0 and therefore has a trivial unfolding. 

4. f(x, y, z) = (x, y3±x2y±z2). 
This has 

, 
Ae-tangent space 

TAe "f= e3«1,2xy), (0,3y2 ± x2), (0, z)) + f`e2{el, e2}. 

This is 3-A1-determined so we work in J3(3,2). 
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el e2 ei e2 

x � x3 � � 
y � x y3 � � 
z � � z3 � � 

x2 � � x2y � � 

y2 � � x2z � � 
z2 � � xy2 � � 

xy � J xyz � � 

xz � J xz2 � � 
yz � J yzz J J 

yz2 � � 

We can see that T, Ae "f contains (x1,0), (0, xt) for all i, (0, y2) and (0,0) 

since (0, xy¢) E M. We have (0, xy), (zi, 0), (0, zi), (zc, 0) and (0, zo). 
Since we have (0,0) we have (0, x2y), (0, xy2). So we are missing (0, y). 

So f has Ae-codimension =1 and has unfolding 

fa x, y, z) = (x, y3+x2y+ay±z2). 

5. f(x, y, z) = (x, xy+y4±z2. ) 

This has Ae-tangent space 

TAe "f= S3((1, y), (0, x+ 4y3), (0, z)) + 
.f 

`E2{el, e2}. 

This is 4-A-determined so we work in J4(3,2). 

We know that TAe f contains any vector divisible by z so we are looking 
for 
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ei e2 ei e2 
x � � x4 � � 

y * � X3y � � 
X2 � � x2y2 � � 

3 xy � � xy � � 
2 4 y � * y � � 

x3 � � 

x2y � � 
2 xy � � 

3 y � � 

We have (xi, 0), (0, xi). Also since we have (0, b) for E . 
M3 we have (ý, 0) 

forq5E. M3. 
(0, y6) () (0, xy3) `-' (xy2,0) `-' (0, xy4) '-' (0, y7) which we have. 

This also gives (y5,0), (xy3,0). 

(0, xy5) <--> (0, y8) which we have. This also gives (xy4,0). 

(0, x2y4) E--> (0, xy7) which we have. This also gives (x2y3,0). 

(0, x3y3) H (0, x2y6) which we have. This also gives (x3y2, A. 

(0, x4y2) <--> (0, x3y5) which we have. This also gives (x4y, 0). 

Have (0, x5y) since we have (x5,0). 

(0, y5) () (0, xy2) ( (xy, 0) '' (y4,0) 
- 

We have (0, xy2 + 4y5), (xy, xy2), (xy + y4,0), (y4, y5) so (0, xy2 + 4y5) - 
4(y4, y5) + 4(xy + y4,0) - 4(xy, xy2) = (0, -3xy2) so we have all these 

vectors. 
(0, xy4) H (0, y7) which we have. This also gives (xy3,0). 

Similarly for (0, x2y3), (0, x3y2), (0, x4y). 

(0, y4) () (0, xy) which we have. This also gives (y3,0). 

(0, x2y2) E--* (0, xy5) which we have. This also gives (x2y, 0). 

(0, x3y). This comes directly from (x3, x3y) 

(0, y3) () (0, x) which we have. This also gives (y2,0). 

(0, x2y). This comes directly from (x2, x2y). 
(0, y2) ý' (y, 0). 
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(0, y) () (1,0) which we have. 

So f has 
, 
Ae-codimension =1 and has versal unfolding 

fa(x, y, z) = (x, xy+ y4 +aye ± z2). 

6. f(x, y, z) = (x, y3fx3y±z2). 

This has At-tangent space 

TAe "f= 93((1,3x2y), (0,3y2 ± x3), (0, z)) + 
.f 

`e2{el, e2}. 

This is 4-Ai-determined so we work in J4(3,2). 

ei e2 ei e2 

x � � xz2 � � 
y J � y2z � J 

z J x yz2 � � 

x2 � � x4 � 

y2 � � y4 � � 

z2 J � x3y � � 

xy � X x3z � � 
xz V/ V/ x2 y2 J � 
yz � � x2yz J J 

x3 � � x2z2 � � 

y3 � J xy3 � J 

z3 � � xy2z � � 

x2y � � xyz2 � J 

x2z V' xz3 ,l � 
xy2 � � y3z � � 

xyz � � y2z2 � � 

yz3 � � 
We can see that T. Ae "f contains (xi, 0), (0, x') for all i, (0, y2), (0,0) since 
(0, x2yo) E M. Have (0, x2y), (zi, 0), (0, zi), (zo, 0), (0, z¢). Since we have 

(¢, 0) we have (0, xy2), (0, x3y), (0, x2y2), (0, xy3). So we are missing (0, y) 

and (0, xy). 

So f has Ae-codimension =2 and has unfolding 

fa, b(x, y, z) = (x, y3±x2y+ay+bxy±z2) 
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7. f(X, y, z) = (x, xy2+y4+y5+z2). 

This has As-tangent space 

TAe "f= 93«l, y2), (0,2xy + 4y3 +5 y4), (0, z»» +f *E2{el, e2}. 

This is 5-Al-determined so we work in J5(3,2). 

We know that TAe f contains any vector divisible by z so we are looking 

for 

ei e2 
x�� xy2 
V*X y3 
x2 �� x4 
xy �*x3y 

y2 ��x2y2 

x3 �� Xy3 

x2y �� y4 

ei 

� 
� 

� 
� 

e2 

� 
� 
� 

ei e2 
x5 �� 

x4y �� 
32 xy�� 

x2y3 �� 

xy4 �� 

y5 �� 

where * indicates dependent vectors. We have (x_, 0), (0, xi). Also since we 

have (0,0) for 0E M3 we have (0,0) for E M. 

(0, y5) 4) (0, xy3) () (xy, 0) ( (0, y4) which we have from (0,2xy2 + 

4y4 + 5y5) and (0, xy2 + y4 + y5) as we have (C, xy2). 

This also gives (y3,0), (y2,0). 

(0, xy4) i) (0, x2y2) which we have. This also gives (xy2,0). (0, x2y3) i--º 
(0, xy5) which we have. This also gives (x2y, 0). (0, x3y2) i--+ (0, x2 y4) 

which we have. (0, x4 y) ( (0, x3 y3) which we have. 

(0, x3y) <---ý (0,2x3y+4x2y3) and we have (0, x2y3). (0, y3) i--º (0, xy) i- + 
(0, Y) - 
(0, xy2) we have from (x, 0). (0, x2y) 4 --* (0, xy3) which we have. (0, y2) 

we have from (1, y2). 

(0, y) 
So we are missing (0, y) and (0, y3) 

So f has , 
Ae-codimension =2 and has unfolding 
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fa, b(X, y, z) = (x, xy2+y4+y5+ay+by3±z2). 

8. f(x, y, z) = (x, xy+y5±y` ±z2) 

This has A, -tangent space 

TAe "f= 93«1,2J), (0, x+ 5y4 + 7y6), (0, z»l + f*E2. 

This is 7-A-determined so we work in J7(3,2). 

We know that TAJ f contains any vector divisible by z so we are looking 
for 

ei e2 ei e2 ei e2 
x � � xy3 � � x2y4 � � 

4 5 y * � y � � xy � � 

x2 � � x5 � � y6 � � 
xy � � x4y � � x7 � � 
y2 t * x3y2 � � xsy � � 
x3 � � x2y3 � � x5y2 � � 

x2y � � xy4 � � x4y3 � � 

xy2 � � y5 � � x3y4 � � 

y3 � t x6 � � x2y5 � � 

x4 � � x5y � � xy6 � � 

x3y � � x4y2 � � y7 � � 

x2y2 � � x3y3 � � 

where * and t indicate dependent vectors. We have (x`, 0), (0, x`). Also 

since we have (0, ¢) for 0E M3 we have (¢, 0) for OEM. 

(0, y7) E---º (0, y5) ý----ý (0, xy) which we have. This also gives (y4,0), (y6,0). 

(0, xy6) ý--º (0,5y'° f 7y12) which we have. This also gives (xy5,0). 

(0, x2y5), (0, x3y4) etc. follow from arguments similar to the above. 
(0, ys) 4-' (0, y4) +' (0, xy2) `' (xy, 0) - 
So we have (y5, y6) - (xy + y5,0) + (xy, xy2) - (0, xy2 + 5y6) = (0, -4y6) 
(0, xy5) (--) (0, y9) which we have. This also gives (xy4,0). 
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(0, x2y4), (0, x3y3) etc. follow from arguments similar to the above. 
(0, xy4) F----ý (0, x2) which we have. This also gives (xy3,0). 

(0, x2y3) F-* (0, xy7) which we have 
. 

This also gives (x2y2,0). 

(0, x3y2) etc. follow from arguments similar to the above. 
(0, xy3) F---ý (0, y7) which we have. This also gives (xy2,0). 

(0, x2y2) <--* (0, xys) which we have. This also gives (x2y, 0). 

(0, x3y) comes directly from (x3,0). 

(0, y3) E--* (y2,0). 

(0, x2y) comes directly from (x2,0). 

(0, y2) ,' (y, 0). 

(0, y) comes directly from (1,0). 

So we are missing (0, y2), (0, y3). 
So f has AQ-codimension =2 and has unfolding 

fa, b(X, Y, Z) = (X, xy+y5±y7+aye+by3±z2) 

9. f(x, y, z) = (x, xy+z3+ay3±y2z+y5)" 

This has Ae-tangent space 

TAe "f= E3«1, y), (0, x+ 3ay2 + 2yz + 5y4), (0,3z2 ± y2)) + f'C2. 

This is 5-A-determined so we work in J5(3,2). 

Using the MAPLE program TRANSVERSAL we are able to work out the 

unfolding. It is found to be 

fb, 
c 
(x, y, z) _ (x, xy+z3+ay3±y2z+y5+bz+cy2), 

where a is a modulus. 
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Chapter 4 

Bifurcations of Planar Motions 

We recall that the bifurcations of one parameter motions of the plane were dis- 

cussed in depth in Gibson & Hobbs, [GHo1]. For two parameter motions the 
corank one mono-germs are well understood in the literature. For multi-germs 
the bifurcations appear in [GHo2]. The bifurcations for the corank two mono- 
germs, i. e. the sharksfin and the deltoid, are not so well understood, but are 
mentioned in [Hob]. We now present formal arguments establishing the results in 
[Hob] and present renderings of the bifurcations sets of these corank two mono- 
germs and for the mono-germs for 3-parameter motions of the plane. 

4.1 The sharksfin and the deltoid 

We wish to study the bifurcations for the sharksfin and the deltoid as they give us 
a graphical link between the mathematics and the kinematics. We are particularly 
interested in the codimension 1 (multi-)germs as these are the ones which give 
rise to changes in kinematic behaviour. For planar motions there are six such 
bifurcations: lips, beaks, swallowtail, tacnodefold, triplepoint and cusp-plus-fold. 
So we can associate to any motion six bifurcation curves. 

The only reference to the unfoldings of the corank 2 planar germs is given in 
[B2]. Bruce considered any A-finite planar germ in the same 1C-class as (x2, y2), 
and also noted that neither the cusp-plus-fold stratum, nor the triplepoint stra- 
tum, can appear for the sharksfin due to the fact that (x2, y2) has multipicity 
4 and therefore all nearby types must have multiplicity <4 which excludes the 
above mentioned strata. 
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The sharksfin has versal unfolding fa, b - (x2 + y3 + ay, x3 + y2 + bx) and its 
critical set is given by 

Zf=1 (x, y, z) : 4xy - (3x2 + b)(3 y2 + a) =0}. 

To find the lips/beaks stratum we need to find the points (a, b) for which the 
critical set Ef fails to be smooth at some point close to the origin. Now E is 
singular when 

Ef= 4xy - (3x2 + b) (3y2 + a) =0 
E. f= 4y - 18xy2 - 6ax =0 
Eyf= 4x - 18x2y - 6by =0 

This gives 36xy(3x2 + b)(3y2 + a) = 4(3x2 + b)(3y2 + a) = 16xy so either 
3y2 +a=0 or 3x2 +b=0 or 9xy = 1. We ignore the solutions to 9xy =1 since 
we are working locally at the origin. If 3x2 +b = 0, either x=0 or y=0 so either 
b=0 or a=0. If 3y2 +a=0 then either x=0 or y=0 giving either a=0 
or b=0. So our lips/beaks stratum is given by {a = 0} U {b = 0} and since the 
critical set is given by two transverse curves the transition is a beaks transition 
and not a lips. 

For the tacnode stratum we take two points (x1, yl), (x2, Y2) in the domain 

of fa, b(x, y) = (x2 + y3 + ay, x3 + y2 + bx), distinct from each other and from 
the orig::!. These two points need to be singular and to give rise to tangent fold 

curves. The condition for this to happen is given by the rank of the following 
matrix to be < 1. 

2x1 3y? +a 2x2 3y2 +a 
3x +b 2y1 3x2 +b 2Y2 

This gives us four equations in 111 yl, 12 , y2. 

4x1y1 - (3x1 + b)(3yi + a) =0 (4.1) 

4x2y2 - (3x2 + b)(3y2 + a) =0 (4.2) 22 
(xl - x2)(3x1x2 - b) =0 (4.3) 

(Yi - Y2)(3ylY2 - a) =0 (4.4) 
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We also need the two points (x1, yl) and (x2, y2) to map to the same point in 
the target, i. e. 

x1 + y1 + ay1 = xz + y2 + aye (4.5) 

x1 + y1 + bx1 = x2 + y2 + bx2 (4.6) 

So we have six equations, one of which is redundant as the rank condition 
should be given by three conditions, not four. This gives five equations in six vari- 
ables, x1, y1, x2, y2, a, b. In principle we should be able to eliminate xl, y1, x2, y2 
to obtain a single polynomial in a and b. It is easy to see that neither xl = x2 
nor yl = Y2 leads to a solution of this system of equations, so from Eqns. 4.3 & 
4.4 we can say that b= 3x1x2 and a= 3y1y2. This yields the following equations 
from Eqns. 4.1 & 4.2: 

xlyl{4 - 9(x1 + x2)(yl + y2)} =0 

x2y2{4 - 9(x1 + x2)(yi + y2)} =0 

We are working locally so we can discard the solution given by the brackets, 

so x1y1 =0 and x2y2 = 0. We consider the various possibilities: 

" xl = 0, X2 = 0. 

Eqn. 4.6 yields yi = y2 which gives us yl = ±Y2. If yl = Y2 then we 
contradict the hypothesis that the points are distinct. If yl = -Y2 then 
Eqn. 4.5 gives yl =0 and y2 = 0, again contradicting the hypothesis. 

" xl = 0, Y2 = 0. Eqns. 4.5 & 4.6 yield y1 = x2 and yi = x2, the only 
solutions to which are x2 = yl =0 or x2 = y1 = 1. If x2 = yl =0 then 
both points are the origin which contradicts our hypothesis. X2 = yl =1 is 

excluded as x1, Yi, x2, Y2 are assumed to be small. 

The remaining two cases yl = 0, Y2 =0 and yl = 0, x2 =0 can be dis- 

carded by symmetry. Therefore there are no tacnode folds in the unfolding of the 

sharksfin. 
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For the swallowtail stratum, we look for solutions of the equation f (x, y) _ 
(a, , ß) of multiplicity> 4. So we want solutions of 

x2 + y3 + ay =a (4.7) 

x3 + y2 + bx =0 (4.8) 

Re-arranging Eqn. 4.8 we have y2 =ß- g(x, b), where g(x, b) = x3 + bx. Now 
re-arranging Eqn. 4.7 we have 

(x2 - a)2 = (y3 + ay)2 = y2(y2 + a)2 = (i3 - g(x, b))(/3 +a- g(x, b))2 = 
(ß-x3-bx)(, ß+a-x3-bx)2. 

If we set a=0=0 we get x4 = x9 which has a quadruple root at the origin, 
so we set 

P= (x2 - a)2 + (x3 + bx - ß)(x3 + bx -a- Q)2. 

The condition that this has a quadruple root is that P=P= P" = P"' = 0. 
This yields four equations in five unknowns x, a, b, a, /3 and in principle we should 
be able to eliminate x, a and ,ß to give a single polynomial in a and b. This 

elimination has been found to be impossible to attempt without use of computer 
algebra. Even attempts with standard computer algebra packages have been 

unsuccessful, due to restrictions on cpu time, even on an intensive machine. 
Several experts in the field of computer algebra have been interested in this 
problem and have obtained the following result. Prof. Pfister has shown that 
the polynomial has the form b5(a5b + HOT). The picture of the unfolding of the 
sharksfin is given in Fig. 4.1. 
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Figure 4.1: The sharksfin unfolding 

Now the study of the bifurcations of the deltoid singularity is not covered by 
[B2] but the same principles apply. Again neither triplepoints nor cusp-plus-fold 
strata can appear in the unfolding as (x2 - y2, xy) has multiplicity 4. The deltoid 
has versal unfolding fa, b = (x2 - y2 + x3 + ax, xy + bx) and its critical set is given 
by 

f= {(x, y, z) : ax + 2by + 2x2 +2 y2 + 3x3 =0}. 

To find the lips/beaks stratum we need to find the points (a, b) for which the 

critical set Ef fails to be smooth at some point close to the origin. Now E is 

singular when 

Ef= ax + 2by + 2x2 + 2y2 + 3x3 =0 
Zxf = a+4x+9x2 =0 
Eyf = 2b+4y = 0. 

We can eliminate y to give 9x2 + 4x +a=0 and 12x3 + 4x2 + b2 = 0. We 

now find the resultant of these two polynomials with respect to x to give us a 
polynomial of the form P= µ(a2+4b2)+HOT for some p00. The only solution 
to which is the origin so neither lips nor beaks strata can occur. 
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For the tacnode stratum we take two points (xl, yl), (x2, Y2) in the domain 
of fa, b(x, y) = (x2 - y2 + x3 + ax, xy + bx), distinct from each other and from 
the origin. These two points need to be singular and to give rise to tangent fold 
curves. The condition for this to happen is given by the rank of the following 
matrix to be < 1. 

2x1 + 3xi +a -2y1 2x2 + 3x2 +a -2y2 1 

yl +b xl y2 +b x2 /f 

Since we have one redundant condition (x1, yl) and (x2, Y2) must be linearly 
dependent, i. e. there exists a scalar A#0,1 such that x2 = Axt and Y2 = AY1. 
So the rank condition gives 

axl + 2by1 - 3)4 =0 
2(x3 +yi)+3(1+A)xi = 0. 

We also need the two points (x1, yl) and (x2, Y2) to map to the same point in 
the target, i. e. 

xi - yi + xi + axl = )2x1 - AZy1 + . \3xi + a)xl 

xiyl + bxl = A2xiy1 + b)xl. 

The only solution to these four equations is x1 = yl =0 which contradicts 
our hypothesis, so no tacnode folds occur in the unfolding of the deltoid. 
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As for the sharksfin, looking for the swallowtail stratum involves looking for 
the solutions of the equation f (x, y) = (a, 

, 
ß) of multiplicity > 4. This gives us 

the equations 

x2 - y2 + x3 + ax =a (4.9) 

xy + bx = 0. (4.10) 

Solving Egn. 4.10 for y we have y=- and substituting into Egn. 4.9 we 
have a polynomial p= x4 - (, ß - bx)2 + x5 + ax3 - axe =0 of degree 5 and the 

condition for the root to have multiplicity 4 is that P=P= P" = P"' = 0, 

giving us the following equations: 

x4 - (, ß - bx)2 + x5 + ax3 - axe =0 (4.11) 

4x3 + 2(, ß - bx)b + 5x4 + 3ax2 - 2ax =0 (4.12) 

12x2 - 2b2 + 20x3 + 6ax - 2a =0 (4.13) 

24x + 60x2 + 6a = 0. (4.14) 

So from Eqn. 4.14 we have a= -4x - lOx 2, so substituting into Eqns. 4.11, 

4.12,4.13 we have 

x4-(ß-bx)2+x5+(-4x-10x2)x3-axe =0 (4.15) 

4x3 + 2(/3 - bx)b + 5x4 + 3(-4x - 10x2)x2 - 2ax =0 (4.16) 

12x2 - 2b2 + 20x3 + 6(-4x - 10x2)x - 2a = 0. (4.17) 

From Eqn. 4.17 we have a+b2= 6x2 + 10x3 +3(-4x -10x2)x = -6x2 - 20x3. 

Again substituting into Eqns. 4.15 & 4.16 we have 

x4 - ß2 + 2bßx - (-6x2 - 20x3)x2 + x5 + (-4x - 10x2)x3 =0 (4.18) 

4x3 + 2ßb + 5x4 + 3(-4x - 10x2)x2 - 2(-6x2 - 20x3)x = 0. (4.19) 

From Eqn. 4.19 we have 20b = -4x3 - 5x4 - 3(-4x - 10x2)x2 + 2(-6x2 - 
20x3)x = -4x3 - 15x4. Finally substituting into Eqn. 4.18 we can solve the 
following equation for 02: 
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x4 - , 
Q2 

- 
4x4 

- 15x5 + 6x4 + 15x5 + x5 - 
4x4 

- 10x5 = -x4 - 9x5 
- , 

32 = 0. 

This gives us that 02 = -x4 - 9x5 and substituting these values fora + b2,20b 
and 02 in the equations we obtain the following parametrization for a, b2. 

a= -4x - 10x2 

b2 _ 
x2(15x - 4)2 

4(4x + 1) 

The resultant of these two polynomials in x gives us a polynomial in a, b2, namely 

50625a4 + 180000a3 + 996000a2b2 + 160000a2 - 1920000ab2 + 256000ab4 + 
640000b2 - 96000b4. 

So the lowest order terms are given by )(a2 + 4b2) where A 54 0. From this we 
can see that no swallowtail stratum appears in the unfolding of the deltoid. 

The picture of the unfolding of the deltoid is given in Fig. 4.2. 
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Figure 4.2: The deltoid unfolding 
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4.2 The bifurcations of 3-dimensional planar mo- 
tions 

Again we wish to study the bifurcations of these motions to find the curves on 
which the type of kinematic behaviour changes. We have the following list of 
versal unfoldings: 

K-type Ae -Cod Versal unfolding 
0 (x, y) 
0 (x, y2±z2) 

A2 0 (x) xy+y3±z2) 

A5 1 (x, y ±x Z2 +ay) 
E6 1 (x, xy+y4±z2+aye) 
A8 2 (x, y+ x 3y f z+ ay + bxy) 

W17 2 (x, xy+y5+y7±z2+ay2+by3) 

A4 2 (x, xy2+y4+y5±z2+ay+by3) 
2 (x, xy+z ±y z+ay 3 +y5 +bz+cy ) 

Table 4.1: Map-germs from R3,0 -+ ]R2,0 

"f (x, y, z) = (x, y) - 
This is a submersion ; it has . 

Ae-codimension =0 (i. e. it is stable) and 
therefore its unfolding is trivial. 

" f(x, y, z) = (x, yz±z2) 

This has Ae-codimension =0 and therefore its unfolding is trivial. 

" A2: f(x, y, z) = (x, xy+y3±z2). 

This is a cusp, which is stable. It has Ae-codimension =0 and therefore 

its unfolding is trivial. 
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" A5 :f (x, y, z) = (x, y3 f x2y ± z2). 

This has Ae-codimension=1 and 

TAe., f = (e3, e3 - 
{y1) 

" 

So the versal unfolding is (x, y3 ±x2 y± z2 + ay). 

We now look at the critical set of this unfolding. We find the critical set in 

the following way 

fa = (x, y, z) rank i0( 
±2xy 3y2 ± x2 +a ±2z) <2 

= 
{(x, y, z) : 3y2 + x2 +a=0; z= 0} . 

We have two cases for this germ: 

1. f(x, y, z) = (x, y3 + x2y ± z2) 
Versal unfolding is fa = (x, y3 + x2y ± z2 + ay) 

and critical set is defined by 3y2 + x2 +a=0 and z=0. 

This defines an ellipse in 1R, 2 when a<0. For a=0 we have the origin 
and for a>0 we have the empty set. See Figure 4.3. 

This has discriminant (/-3y2 - a, -2y3). 
Now the algebraic curve is given by 

X= -a --37, Y= -2y3, 
X, = -a - 3y2, Y2 = 4y6. 

X2 +a = -3y2, 
(X2 + a)3 = -27y6. 

= 27Y2 +4 (X2 + a)3 = 0. 

The bifurcation set is given by a=0 and the unfoldings are shown in 
Figure 4.4. 

73 



ED 
0a 

Figure 4.3: Critical Set of fa(x, y, z) _ (x, y3 + x2y ± z2 + ay) 
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Figure 4.4: Unfolding of fa(x, y, z) = (x, y3 + x2y ± z2 + ay) 

2. f(x, y, z) = (x, y3 - x2y ± z2) 
Versal unfolding is fn = (x, y3 - x`y ± z2 + ay) 

and critical set is defined by 3y2 - x2 +a=0 and z=0. This defines 

a hyperbola in ]R2 with 2 branches given by: - 

- Fora<0 

3y2 = x2 -a 

y=± ý(xz - a)2" 

- Fora=O 
3y2 = a2. 
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- Fora>0 

x2 = 3y2 +a 
2 x= ±(3y + a) 2. 

See Figure 4.5 

This has discriminant ( 3y - a, 2y3). 

Now the algebraic expression is given by 

27Y2-4(X2-a)3=0. 

The bifurcation set is given by a=0 and the unfoldings are shown in 

Figure 4.6. 

\! \/ ý-ý i 'ý /\ ý 
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Figure 4.5: Critical Set of f (x, y, z) = (x, y3 - x2y ± z2 + ay) 
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Figure 4.6: Unfolding of f (x, y, z) = (x, y3 - x2y ± z2 + ay) 

75 



" E6 : J(x, y, z) = (x, xy+y4±z2). 

This has A, -codimension=l and 

TAe. f= (E3) E3 - 
{y2}). 

So the versal unfolding is (x, xy+y4±z2+ay2) and the critical set is defined 
by x+ 4y3 + 2ay =0 and z=0. See Figure 4.7 

oa 

Figure 4.7: Critical Set of f (x, y, z) = (x, xy + y4 ± z2 + ay2) 

This has discriminant (-4y3 - 2ay, -3y4 - ay2). 
To find the algebraic equation of the curve we put X= -4y3 - 2ay ,Y= 
-3y4 - ay2 and work out the resultant using a computer algebra package 
thus eliminating the parameter y. The result is: - 

16a4Y + 4X2 a2 + 128Y2a2 + 144aX2Y + 27X4 + 256Y3 = 0. 

The bifurcation set is given by a=0 and the unfoldings are shown in 
Figure 4.8. 
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0 

Figure 4.8: Unfolding of f (x, y, z) = (x, xy + y4 ± z2 + ay 2) 

" As: f(x, y, z) = (x, y3+x3y±z2). 

This has AQ-codimension=2 and 

TAe. f = 631E3 - ly, xy})" 

a 

So the versal unfolding is (x, y3 ±x3 Y± z2 + ay + bxy), and the critical set 
is E fa = {(x, y, z) : 3y2 + x3 +a+ bx =0; z= 0}. This defines the 
following curves, see Figure 4.9. 

This has discriminant (x, 
-2 

(-x3 3bx-a) 
3/2\ 

To obtain the algebraic expression: 

1 

2 
X=x, Y= -2 

(-x3-bx-a) 2' 

3 
X=x, y2 =4 

(-x3-6x-a) 
ý 3 

X=x. 27Y2 =4 (-x3 - bx - a)3. 

27Y2-4(-X3-bl'-a)3=0. 
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To find the lips/beaks bifurcation set we examine when E fob is singular. 
This happens when ay =ääy =0. This gives 3y2+x3+a+bx = 0,6y =0 
and 3x2 +b=0 respectively. Solving these three equations for a and b gives 

a= 2x3 and b= -3x2. So we can parametrize the lips/beaks stratum by 

(2x3, -3x2). See Figure 4.10 for the picture of the unfolding space. 

Figure 4.9: Critical set of fa, b = (x, y3 + x3y ± z2 + ay + bxy) 
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Figure 4.10: Unfolding of fa, b = (x, y3 + x3y ± z2 + ay + bxy) 

0 W17 : f(x, y, z) = (x, xy+y5±y7±z2)" 

This has Ae-codimension=2 and 

TAe. f= 
\e3, 

e3 - Ly2, YID. 

So the versal unfolding is (x, xy + y5 ± y7 ± z2 + ay' + by3) and the critical 

set is given by x+ 5y4 + 7ys + 2ay + 3b y2 =0 and z=0. 

See Figure 4.11. 

This has discriminant given by 

-2ay - 3b y2 - 5y4 7y6, -aye - 2b y3 - 4y5 6y7) . 
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The swallowtail stratum is found when 
aft a2! 

2 
a3 f2 

= o. 
äy äy2 äy3 

This gives 

+7y6+5y4+3by2+2ay+x =0 
±42y5 + 20y3 + 6by + 2a =0 

±210y4+60y2+6b = 0. 

So solving for a and b we get a= 20y3 ± 84y5 and b= 10y2 F 35y4. So the 
swallowtail stratum is parametrized by (20y3 ± 84y5,10y2 T 35y4), which is 
locally a cusp. 

The cusp-and-fold stratum occurs when f has a cusp at (x1, yl, z1) and a 
fold at (x2i y2) z2) and f (xl, yl, zl) =f (x2) y2, z2) Assuming (xi, y1, zl) 34 
(x2, Y2, z2). ) In this case f (xl, yl, z1) =f 

(x2, y2, z2) b xl = x2 and 

f2(x1, yl, z1) = f2(x2, y2, z2) (that is (yl, zl) (y2i z2)). For a fold at 

(x1, y2, z2) we need j (xl, y2, zz) =0 and ä (xl, y,, zl) =0= zl = 0. 

l,, 
192f2 y z) = (x y z) =0 and For a cusp at (xi, yi, z) we need y 

ä (xz, y2, z2) =0= z2 = 0. So thinking of f2 as a function of y for a 
given xl = x2 = x, say, there exists a real w such that f2(x, y, 0) -w has 

one real repeated root and one triple root. Therefore we have 

fax, y, 0) -w= (y - yi)2(y - Y2)3(±y2 + ay + , ß). 

Comparing coefficients of this with f2 (x, y, 0) gives us a=- 27 y2 +... and 
b=-3 y2 + .... So the cusp-and-fold stratum is a cusp, parametrized by 

(-2o7y2 
+..., -3yä +... I. 

The tacnode stratum is found by looking for two points (x1, yi, z1) 54 
(x2, y2, z2) with f (xl, yl, zl) =f (x2, y2, z2) where both are folds and are 
tangential. This gives us the following equations: 
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S 
Figure 4.11: Critical Set of fa, b(X, y, z) = (x, zy + y5 ± y7 ± z2 + ay2 + by3) 

xyi + yi f yi ± zi + ayi + byi = xy2 + y2 y2 t z2 + aye + bye 7 
x+ 5yi ± 7y6 + 2ay1 + 3byi = 0, 

x+ 5y2 ± 7y2 + 2ay2 + 3by2 = 0, 

zl = 0, 

Z2 = 0. 

Now the two folds are tangent so ä (x, yl, z1) =ä (x, Y27 z2) which gives 
Yi = Y2 and since both are folds zl = z2 =0 then this contradicts the 
hypothesis, i. e. we have no tacnode stratum. 
See Fig. 4.12. 
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Figure 4.12: Unfolding of fa, b(x, y, z) = (x, xy + y5 ± y7 ± z2 + aye + by3) 

" A4: f(x, y, z) _ (x, xy2+y4+y5±z2). 

This has Ae-codimension=2 and 

TAe"f 
- 

V3,63 
- 

IYIY3}). 

So the versal unfolding is (x, xy2 + y4 + y5 ± z2 + ay + by3). 

We now look at the critical set of this unfolding. We find the critical set in 
the following way: 

fa, b = 
{(xYz) 

rank 
(y2 1+ 

by 2xy + 4y3 
0 

+ 5y4 +a+ 3by2 
0 

±2z <2 

={ (x, y, z) : 2xy +\4y3 +5 y4 +a+ 3b y2 =0; z= o} 

(_4Y3_5Y4_a_3bY2 `11 

= 
2y 1y, 

o 

1 

See Figure 4.13. 

We can now find the discriminant of fn as follows: 
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f bI i fa, b =(-4y3 - 5y4 -a- 3by2) 435abs 
2y -y -2y + j-2y/ 

Now the swallowtail stratum is found when 

afý a2f2 a3f2 
ýy + aye = ay3 = o, 

giving 

2xy + 4y 3+ 5y 4+a+ 3by 2=0 

2x + 12y2 + 20y3 + 6by =0 

24y + 60y2 + 6b = 0. 

Solving these three equations for a and b we find that the swallowtail stra- 
tum is parametrized by 

-4y3 -15 Y4, -4y - 10y2) , 

which is a cubic through the origin. 

The lips/beaks stratum is found when E fa, b is singular, i. e. when 

aft aft a2 f2 a2f2 
=o äy -az -aye=axay 

giving 

2xy + 4y3 + 5y4 + 3by2 +a =0 

z=0 
2y =0 

2x + 12y2 + 20y3 + 6by = 0. 

The only solution to these equations is x=y=z=0 and this gives 
us that a=0, so the lips/beaks stratum is the b-axis. Now the tacnode 
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Figure 4.13: Critical Set of fa, b(x, y, z) _ (x, xy2 + y4 + y5 ± z2 + ay + bxy) 

stratum occurs when we have f (x1, yl, z1) =f (x2, Y2) z2) with (x1, yl, z1) 0 
(x2, y2, z2), where both f (xl, yl, z1) and f (x2, y2) z2) are folds and the folds 

are tangential. Now the tangent to a fold is given by the image of the 
tangent of the critical set, E fa, b, by the Jacobian, Df. Now E fa, b is 

f2 f., given by ä=ä=0 and the tangent is given by (e 
,- 

a) since 
ä=0=z=0. So the tangent to the fold is given by 

1108 02 f2 ( 
1, 

aft 

2A 2L 
ay a)-ý ayZ ax 

) 

y axay 

Now note that the tangent direction at both (x1, yl, z1) and (x2, y2, z2) is 
given by ä ), i. e. it is given by (1, y2). So these two tangents are 
parallel if and only if yi = y2 i i. e. yl = ±y2. Now yl = Y2 would contradict 
the hypothesis so yl must equal -y2. Now f2(xl, yt, 0) = f2(xl, -yl, 0) 

and ay (xi, yi, 0) =L (xi, -yi, 0) =0 so f2(xi, y, 0) - f2(xi, yi, 0) has two 
repeated roots, namely, yl and -yl. Hence 

f2(X1, y, 0) - f2(x1, yi) 0) _ (y - yi)2(y + yi)2(y - y3)" 

Again comparing coefficients of y we find that a= yi and b= -2y2, . 
So 

our tacnode stratum is parametrized by (Vi, -2y? ). The bifurcation set is 

shown in Fig. 4.14. 
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Figure 4.14: Unfolding of fa, b(x, y, z) _ (x, xy2 + y4 + y5 ± z2 + ay + bxy) 

"f (x, y, z) = (x, xy + z3 ± y2z + ay3 + y5). 

This has , Ae-codimension=2 and 

TAe 
e" ,f= 

e3 
, 

E3 -l yz+ zI 

So the versal unfolding is given by fb, C(x, y, z) = (x, xy + z3 ± y2z + ay3 + 
y5 + bz + cy2). Now this has critical set, Ef, given by 

fb, 
c _100 (x, y, z) : rank 

(yx± 
2yz + 3ay2 + 5y4 + 2cy 3z2 ± y2 +b J<2 

_ 
{(x, y, z) : x±2yz+3ay2+5y4+2cy =0 & 3z2±y2+b=0} 

We will consider the + and - cases separately. 

1. f(x, y, z) = (x, xy + z3 +y2z+ ay3 + y5 + bz + cy2). 
To parametrize the critical set we need b<0, say b= -w2. We 

substitute y=w cos(t) and z= sin(t). This gives 

-2 73- sin(t) cos(t) - 3aw2 cos2(t) - 5w4 cos4(t) - 2cw cos (t), E A, 
_{w 

cos (t), 
T sin(t) 
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Now we map this over to get the following parametrization for the 
discriminant: 

- 
273 sin(t) cos(t) - 

3aw2 cos2(t) 

_ff 
-5w4 cos4 (t) - 2cw cos(t), 

73- sin (t) cos2(t) - 2aw3 cos3(t) -4 W5 cos5(t)+ - 
33 

sin3(t) - Cwt COS2(t) - sin(t) 

The bifurcations are given in Fig. 4.15. 

I 
ýI 

I 

Figure 4.15: Bifurcations for f (x, y, z) = (x, y, z3 + y2z + ay3 + y5 + bz + cy2) 
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Now we want to find where the tangent to this map lies in the kernel, 

and the tangent to the critical set is given by the minors of the following 

matrix. 

1 2z + bay + 20y3 + 2c 2y 
0 2y 6z ' 

So our tangent is given by (1222+36ayz+120y3z+12cz-4y2, -6z, 2y) _ 
(u, v, w) say, and this lies in the kernel if 

100 
y +bl 

u_( 00 
2+5y4 +2cy 3z2+y2 x+2yz+3ay / 

This gives the following two equations: 

12z2 + 36ayz + 120y3z + 12cz - 4y2 = 0, (4.20) 

6yz2 + 18ay2z + 90y4z - 2y3 - 6xz + 2by = 0. (4.21) 

From the conditions for a point to lie on the critical set we know that 

x= -2yz - 3ay2 -5 y4 - 2cy, so Equation 4.21 can be written as 

18 yz2 + 36ay2z + 120y4z - 2y3 + 2by + 12cyz = 0. (4.22) 

We need to solve equations 4.20 and 4.22. We do this using MAPLE, 

giving the following result. 

b= -3z2 - y2, 
9ayz = y2 - 3z2 - 30y3z - 3cz. 

So we have a function f= 3z2+30y3z+3cz-y2+9ayz = 0. Rewriting 

this as 

y2 - 3z2 - 3cz = 3yz(10y2 + 3a), 

and squaring both sides we have 
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(y2 - 3z2 - 3cz)2 = 9y2z2(10y2 + 3a)2. 

But y2 = -3z2 -b so substituting we obtain 

F= (6z2 + 3cz + b)2 + 9z2(3z2 + b)(3a - 10b - 30x2)2 = 0. 

So we now have a function of one variable z so we can find its discrim- 
inant, again using MAPLE. 

OF = b3(50b2 + 150c2b - 60ab - 45c2a + 18a2)2G 

where G is a polynomial in a, b, c. 
Now this gives us the local structure of the bifurcation set at the origin. 
We need to find any exceptional values for the modulus a. To do this 
we need to find the points for where the discriminant is singular. We 

can write G as 

Alba + A2b2c2 + A3bc4 + A4 C6 + H. O. T. 

where Ai are polynomials in a and the Newton diagram of G gives 
the above equation as quasihomogeneous of the above form. So we 
consider the lowest order terms and differentiate w. r. t. b and c to get 
the two equations: 

3Alb2 + 2A2bc2 + A3 C4 =0 

c(2A2b2 + 4A3bc2 + 6A4c4 = 0. 

Dividing the equations by c4 and substituting w =-°2, we obtain: 

3A, W2 + 2A2w + A3 =0 
2A2w2 + 4A3w + 6A4 = 0. 

We now solve these equations by taking resultants using MAPLE and 
factorising to obtain the following conditions on a: 
82944(27a2+4)12a2 (2287680209a'0-508373271954a8+131800418865a6+ 
114366526020a4 + 18596183472a2 + 918330048) = 0. 
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This gives the exceptional values of a to be approximately 

± 1.299274747 
±0.9693086208 

0 

Now if a0 any of these exceptional values then our bifurcation set is 
diffeomorphic to J10. 

The other two factors of our discriminant give us the c-axis. 
For multi-germ transitions we expect triplepoints, tacnodes and cusp- 
and-folds. 
For the cusp-and-fold transitions we need (x1, yl, z1) (x2, Y2, z2) 
with f (xl, yl, zl) =f (x2, y2, z2)A I1I(X1iYIiZ1) 

=ä 
(xl, yl )zl) =0 

and 
äy (x2, y2, z2) =ä (x2, y2, z2) = 

ay (x2, y2, z2) = 0. This gives us 

the following six equations: 

xyl + z1 + yizl + ay1 + y1 + bz1 + cy1 = xy2 + z2 + y2z2 + aye + y2 
+bz2 + cy2 

x+ 2y1z1 + 3ay2 l+ 5yi + 2cy1 =0 

x+ 2y2z2 + 3ay2 + 5y2 + 2cy2 =0 
2z2 + 6ay2 + 20y2 + 2c =0 

=0 3zi + yi +b 

3z2 + y2 +b=0. 

To solve this system of equations we need to employ computer algebra. 
Whilst attempting to solve this problem we have come across various 
problems in elimination theory for which the standard computer alge- 
bra packages fail. This has led to collaboration with various experts in 
the field of computer algebra. These people are still working on trying 
to find a solution to this problem and the others which follow. 
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For the triplepoint transitions we need (x1, yl, z1) 0 (x2, Y2, z2) 
(x3, y3, z3) with f (x1, yl, zl) =f (x2) y2, z2) =f (x3, y3, z3)" This gives 
us that x1 = x2 = x3 = x, say. Now they are all folds so we need 
ay (x, y2, zi) =ä (x, yi, zi) =0 for i=1,2,3. This gives us the follow- 
ing system of nine equations: 

xyi + zi + yi zi + ayi + yi + bzi + cyi = 

xy2 + z2 + Y2 2Z2 + ay2 + y2 + bz2 + cy2 = 

xy13z3 + y3z3 + ay3 + y3 + bz3 + Cy3 = 

-77Y2 
+ z2 + y2 z2 + ay2 + y2 

+bz2 + cy2 

3235 xy3 + z3 + y3 z3 + ay3 + y3 

+bz3 + Cy3 

xyi + zi + yi zi + ayi + y5 

+bzl + cyi 

x+ 2y, z1 + 3ayi + 5yi + 2cyt =0 

x+ 2y2z2 + 3ay2 + 5y2 + 2cy2 =0 

x+ 2y3z3 + 3ay3 + 5y3 + 2cy3 =0 
3zi+yi+b =0 
3z2 + y2 +b=0 

3z3 + y3 +b = 0. 

Again we need to employ computer algebra to eliminate the variables 
x, Yl, Y2, y3, zl, z2i z3 from the above system of equations. This problem 
is still unsolved. 
For the tacnode stratum we need to consider the images of the tangents 

of the critical set, >f, by Df. Now our critical set is given by the 
two equations 

x+2yz+3ay2+5y4+2cy =0 
3z2+y2+b = 0. 

We can form the Jacobian of these: 

1 2z + 6ay + 20y3 + 2c 2y 
0 2y 6z 

U 
We wish to find the kernel vectors of this matrix, i. e. v such that 

W 
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I 2z + 6ay + 20y3 + 2c 2y u_0 
0 2y 6z 

)v-0 

C) w 
So we have 

u+ v(2z + 6ay + 20y3 + 2c) + 2wy =0 
2vy + 6wz = 0. 

This gives us the following form for a kernel vector: 
6y2 (+18az+6OY2z+! _2Y) 

3z 
y 

1 

So we take two kernel vectors, given by substituting for (x, yl, z1) and 
(x, y2i z2) where (x, yl, z1) (x, Y2, z2) as before, and applying Df to 
them, where Df is given by: 

100 
y x+2yz+3ay2+5y4+2cy 3z2+y2+b 

Now we need a common tangent so this means that our vectors must 
be linearly dependent giving: 

y+ 
18az1 + 6Oy1 zl + sy - 2y1) (3z2 + 9a! /2Z2 + 45y2 z2 - yl -3+ b) - 

(sy + 18az2 + 6Oy2z2 + sy - 2y2) (3zi + 9aylz1 + 45yiz1 - yi - 3y + bý 

So we have this equation and five others describing the fact that both 
branches of the multi-germ are folds: 

xyl + zi + y2zl + ayi + y5 + bzl + cyi = xy2 + z2 + y2z2 + aye + y2 

+bz2 + cy2 

x+ 2y1z1 + 3ay2 i+ 5yi + 2cy1 =0 

x+ 2y2z2 + 3ay2 + 5y2 + 2cy2 =0 
3zi+yi+b =0 
3z2 + y2 +b=0. 

Again computer algebra is employed to eliminate the variables x, yl, Y2, Z1, Z2. 
This problem is still unsolved. 
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2. f(x, y, z)=(x, xy+z3-y2z+ay3+y5+bz+cy2) 

The parametrization of the critical set depends on the sign of b: 

-b<0. Again we say that b= -w2 and since 3z2 - y2 - w2 =0 is 
a hyperbola we look at each branch separately. 

(a) For branch A we have 

y=w sinh(t) 

z== cosh(t). 

This gives 

2"' sinh(t) cosh(t) - 3aw2 sinh2(t) fb'ý - -5w4 sinh4(t) - 2cw sinh(t), w sink(t), 7' cosh(t) 

Now we map this over to get the following parametrization for 

the discriminant: 

I2 sinh(t) cosh(t) 

-5u ff= 
sinh2(t) cosh(t) 

W3 , 
33 

cosh3(t 

- 3aw2 sinh2(t) 

r4 sinh4 (t) - 2cw sinh(t), 
- 2aw3 sinh3(t) - 4w5 sinh5(t)+ 

- cwt sinh2(t) - cosh(t) 
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(b) For branch B we have 

y=w sinh(t) 

z=-= cosh(t). 

This gives 

-2 sinh(t) cosh(t) - 3aw2 sinh2(t) f b'ý - -5w4 sinh4(t) - 2cw sieh(t), w sinh(t), 7 cosh(t) 

Now we map this over to get the following parametrization for 
the discriminant: 

sinh(t) cosh(t) -2 73 

fIEf= -5w4 
- sinh2(t) cosh(t) 73- 

33 cosh3 (t) 

- 3aw2 sinh2(t) 
sinh4 (t) - 2cw sinh(t), 
- 2aw3 sinh3 (t) 

- 4w5 sinh5 (t 

- cwt sinh2(t) + cosh(t) 73 

The bifurcation sets are given in Fig. 4.16 and Fig. 4.17. 

Figure 4.16: Bifurcations for b<0 and branch A 
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Figure 4.17: Bifurcations for b<0 and branch B 

-b=0. Here we have two lines through the origin. 
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Again we parametrize each line separately 
(a) For branch A we have z= giving us the following parametriza- 

tion for the critical set: 

2ýf=2- 
3ay2 -5 Y4 - 2cy, y, 

Now we map this over to get the following parametrization for 

the discriminant: 

2y2/ - 3ay2 -5 y4 - 2cy, 
flEf= 

y3r i+1- 2¢l - 4y4 - cy2. 

}. 

\73 3-73 / 

(b) For branch B we have z=-- giving us the following parametriza- 
tion for the critical set: 

2 
3ay2 -5 Y4 - 2cy, y, -y fc = 

2y 
73 , r3 

Now we map this over to get the following parametrization for 

the discriminant: 

-2y2v - 3ay2 - 5y4 - 2cy, 
flf- 

-y3 
(ý + 

313 
+ 2a) - 4y4 - cy2. 

Fo"r bifurcations see Fig. 4.18 and Fig. 4.19. 

0C 

Figure 4.18: Bifurcations for b=0 and branch A 
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0 

Figure 4.19: Bifurcations for b=0 and branch B 

- b> 0. Here we say that b= w2 and since 3z2 - y2 + w2 =0 is a 
hyperbola we look at each branch separately. 

(a) For branch A we have 

y=w cosh(t) 
w 

z== sinh(t). 

This gives 

22 sinh(t) cosh(t) - 3aw2 cosh2(t) fb, - -5w4 cosh4(t) - 2cw cosh(t), w cosh(t), 73 sinn(t) 
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Now we map this over to get the following parametrization for 
the discriminant: 

2 73. sinh(t) cosh(t) - 3aw2 cosh2(t) 

fl f _ -5w4 cosh4(t) - 2cw cosh(t), 
73. sinh(j' cosh2(t) - 2aw3 cosh3(t) - 4w5 cosh5(t)+ 

33- sinh3(t) - cwt cosh2(t) -W sinh(t) 

(b) For branch B we have 

y= -w cosh(t) 
w 

z== sink(t). 

This gives 

-2 sinh(t) cosh(t) - 3aw2 cosh2(t) fb, 
c - -5w4 cosh4(t) + 2cw cosh(t), -w cosh(t), sinh(t) 

Now we map this over to get the following parametrization for 
the discriminant: 

-2 sinh(t) cosh (t) - 3aw2 cosh2(t) 

-5w4 cosh 4(t) + 2cw cosh(t), fl f 
73- sinh(t) cosh2(t) + 2aw3 cosh3(t) + 4w5 cosh5(t)+ 

W3 
- srnh3(t) - Cwt cosh 2(t) + sinh(t) 33 7 73 

For bifurcations see Fig. 4.20 and Fig. 4.21. 
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Figure 4.20: Bifurcations for b>0 and branch A 

-t7 

"ýý} . 

C 

i 

ýý 

W 

Figure 4.21: Bifurcations for b>0 and branch B 
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Now the bifurcations for the negative case follow directly from that of 
the positive: 
We want to find where the tangent to this map lies in the kernel, and 
the tangent to the critical set is given by the minors of the following 
matrix. 

1 -2z + 6ay + 20y3 + 2c -2y 
0 -2y 6z 

So our tangent is given by (-12z2+36ayz+120y3z+l2cz-4y2, -6z, -2y) _ 
(u, v, w) say, and this lies in the kernel if 

100u_0 )v 

y x-2yz+3ay2+5y4+2cy 3z2-y2+b 
w 

( 
0) 

This gives the following two equations: 

- 12z2 + 36ayz + 120y3z + 12cz - 4y2 = 0, (4.23) 

-6 YZ2 + 18ay2z + 90y4z - 2y3 - 6xz - 2by = 0. (4.24) 

But from the conditions for a point to lie on the critical set we know 

that x= 2yz - 3ay2 -5 y4 - 2cy so equation 4.24 can be written as 

-18 YZ2 + 36ay2z + 120y4z - 2y3 - 2by + 12cyz = 0. (4.25) 

We need to solve equations 4.23 and 4.25. We do this using MAPLE 

giving the following result. 

b= -3z2 + y2, 
9ayz = y2 + 3z2 - 30y3z - 3cz. 

So we have a function f= 3z2 - 30y3z - 3cz +y2 - 9ayz = 0. Rewriting 

this as 

y2 + 3z2 - 3cz = 3yz(10y2 + 3a), 

and squaring both sides we have 
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(y2 + 3z2 - 3cz)2 = 9y2z2(10y2 + 3a)2. 

But y2 = 3z2 +b so substituting we obtain 

F= -(6z2 - 3cz + b)2 + 9z2(3z2 + b)(3a + 10b + 30z2)2 = 0. 

So we now have a function of one variable z so we can find its discrim- 

inant, again using MAPLE. 

AF = b3(50b2 + 150c2b + 60ab + 45c2a + 18a2)2G, 

where G is a polynomial in a, b, c. 
Now this gives us the local structure of the bifurcation set at the origin. 
We need to find any exceptional values for the modulus a. To do this 

we need to find the points for where the discriminant is singular. We 

can write G as 

Alba + A2b2c2 + A3bc4 + A4 C6 + H. O. T. 

where Ai are polynomials in a and the newton diagram of G gives 
the above equation as quasi-homogeneous of the above form. So we 
consider the lowest order terms and differentiate w. r. t. b and c to get 
the two equations. 

3A1b2 + 2A2bc2 + A3c4 =0 

c(2A2b2 + 4A3bc2 + 6A4c4 = 0. 

Dividing the equations by c4 and substituting w= we obtain: 

3A1w2+2A2w+A3 =0 
2A2w2 + 4A3w + 6A4 = 0. 

We now solve these equations by taking resultants using MAPLE and 
factorising to obtain the following conditions on a: 
82944(27a 2 -4) 12 a2 (2287680209a'0+508373271954a8+131800418865a6- 
114366526020a4 + 18596183472a2 - 918330048) = 0. 
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This gives the exceptional values of a to be approximately 

2 
3 73 

±0.2660974049 
0 

Now if a# any of these exceptional values then our bifurcation set is 
diffeomorphic to J10. 

The other two factors of our discriminant give us the c-axis. 
For multi-germ transitions we expect triplepoints, tacnodes and cusp- 
and-folds. 
For the cusp-and-fold transitions we need (x1, yl, z1) 0 (x2, Y2, z2) 
with f (xl, yl, z1) =f (x2, y2, z2), 

'(xl, 
yl, zl) =ä 

(xl, yl, zl) =0 

192 and 
äy (x2, y2, z2) =ä (x2, y2, z2) = ayZ 

(x2, y2, z2) = 0. This gives us 

the following 6 equations. 

xyi + zi - yi2 3523 zi + ay, + yi + bzl + cyi = xy2 + z2 - y2z2 +a ye + y2 

+bz + 2 
z cyz 

x- 2y1z1 + 3ayi + 5yi + 2cy1 =0 

x- 2y2z2 + 3ay2 + 5y2 + 2cy2 =0 

-2z2 + 6ay2 + 20y2 + 2c =0 
3zi - yi +b =0 
3z2 - yi 2+b = 0. 

To solve this system of equations we need to employ computer algebra. 
This problem is still unsolved. 
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For the triplepoint transitions we need (xl, yl, zl) (x2, Y2, z2) 0 

(x3, y3) z3) with 
,f 

(xl, yl, zl) =f (x2) y2, z2) =f (x3, y3, z3)" This gives 
us that xi = x2 = x3 = x, say. Now they are all folds so we need 
ay (x, y27 zi) =ä (x, yti, zi) =0 for i=1,2,3. This gives us the follow- 
ing system of nine equations: 

xyl + zi - yi zl + ayi + yi + bzl + cyi 

xy2 + zz - y2z2 + aye + y2 + bz2 + cy2 

xy13z3 - y32 
352 

z3 + ay3 + y3 + bZ3 + Cy3 

= xy2+zz -y2z2+aye+y2 
+bz2 + Cy2 

= 27Y3 + z3 - y3 z3 + ay3 + y3 
+bz3 + Cy3 

= xyi + zi - yi zi + ay, +y 

+bz1 + cyl 

x- 2y1z1 + 3ay2 i+ 5yi + 2cy1 =0 

x- 2y2z2 + 3ay2 + 5y2 + 2cy2 =0 

x- +2y3z3 + 3ay3 + 5y3 + 2cy3 =0 
3zi - yi +b=0 

- y2 +b=0 3z2 22 
3z3 - +y3 +b=0. 

Again we need to employ computer algebra to eliminate the variables 
x, Yi, y2, y3, z1 i z2, z3 from the above system of equations. This problem 
is still unsolved. 
For the tacnode stratum we need to consider the images of the tangents 

of the critical set, Ef, by Df. Now our critical set is given by the 
two equations: 

x- 2yz + 3ay2 + 5y4 + 2cy =0 
3z2 - y2 +b=0. 

We can form the Jacobian of these: 

1 -2z + 6ay + 20y3 + 2c -2y 
0 -2y 6z ' 

U 
We wish to find the kernel vectors of this matrix, i. e. v such that 

W 
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1 -2z + 6ay + 20y3 + 2c -2y =p 0 -2y 6z 
)v- (°) 

w 
So we have 

u+ v(-2z + 6ay + 20y3 + 2c) - 2wy = 0, 

-2vy + 6wz = 0. 

This gives us the following form for a kernel vector: 

y2 - 18az - 60y2z - syz + 2y 
3z 
y 

1 

So we take two kernel vectors, given by substituting for (x, yl, z1) and 
(x, Y2) z2) where (x, yl, zl) 54 (x, Y21 z2) as before, and applying Df to 
them, where Df is given by: 

100 
yx- 2yz + 3ay2 + 5y4 + 2cy 3z2 - y2 +b 

Now we need a common tangent so this means that our vectors must 
be linearly dependent giving: 
(6Yz 

- 18az1 - 60yiz1 - 6cylz1 + 2y1) (3z2 
- 9ay2z2 - 45y2z2 + y2 2 Y2 +3+ b) _ 

sy 
- 18az2 - 60y2 z2 - sy + 2y2ý (3zi 

- 9aylz1 - 45yiz1 + yi + 3y + b) 
0. 

So we have this equation and five others describing the fact that both 
branches of the multi-germ are folds: 

XYJ + zi - yi zl + ay3 5 -I' yi + bzl + cyi = xy2 + z2 - y2 z2 + ay2 + y2 
+bz2 + cy2 

x- 2y1z1 + 3ay2 i+ 5yi + 2cy1 =0 

x- 2y2z2 + 3ay2 +5 y2 + 2cy2 =0 
3Z2 - yi +b =0 
3z2 - y2 +b=0. 

Again computer algebra is employed to eliminate the variables x, yt, Y2 z1, z2. 
This problem is still unsolved. 
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Chapter 5 

n-Dimensional Planar Motions 

We now wish to consider map-germs: (IR', 0) -º (R2,0), for general n. 

Lemma 5.0.1 Any A -finite map-germ f: (Ir, 0) (R2,0) with n>3 of 
A-codimension <n+2 has corank < 1. 

Proof. Suppose f has corank 2, i. e. rank 0. In J1(n, 2) the jets of rank 0 are those 
with no linear terms, so they form a subspace of codimension 2n, containing the 
A'-orbit through j1f. Therefore the A-orbit has codimension > 2n in J' (n, 2), 

so by Lemma 2.6.3 of section 2.6, the A-codimension of f is > 2n. 

Now the A-codimension is <n+2. We deduce that 2n <n+2, i. e. n<2, 
contradicting the hypothesis. 

0 

So we only need consider corank 0 and corank 1 map-germs: (R", 0) -º 
(]R2,0). Now by Theorem 3.1.2 we know all such map-germs have the form 

n-m-1 
h(x, y, z) ^' (x, 9(x, yl, ..., ym) +E cz4) 

j=1 

where 9(O, Yi, ..., yr) E M. 
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Now by considering the restriction to the codimension of our map-germs we 
have the following theorem. 

Theorem 5.0.2 For map-germs h(x, y, z) " (x, g(x, yl,.., ym)+En -m-1 E; z, 2) we 

need only consider the cases m=0,1 anal 2. 

Proof. By the proof of Theorem 3.1.2 we know that m depends on the rank of the 

quadratic form qf (yl, 
... ) Yn-1), and the 2-jet has the form j2h = (x, x(E, '"_1 a; yi)+ 

ý -m-1 Ejzý) since g(0, yl, ..., y�ý) E A43 M. This gives us the following cases for the 
2-jet: 

1. If we assume that at least one of the ai's # 0, say yl by reordering, then 

we have j2h = (x, xyl + E7_1i-1 Ejzj2 ) by the change of coordinates yl ý--º 
m yi - Ei=j aiy2. 

2. If all the ai's= 0 then we have j2h = (x, E, 
=m, 

-1 Ej. Zý ). 

3. If we have no quadratic terms we have j2h = (x, 0). 

We will compute the codimension of the orbits in J2(n, 2) for each of the 

above cases. 

1. j2h =(x, xyl + ý. 
7_1"-i f3Z ). 

TA2 
-h= 

Mn«1, yl), (O, x), (0, z1), ..., 
(0, zn-m-1 )/ + h*M2. 

So we have 

(0, x4') eEM� 
(0, Z, Zk) 

(x, 0) 
(0, x) 
(0, x2) 

and we are missing 
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(0, yi) 
(0, zi) 

(0, yi yt)" 

So our codimension is given by 

cod j2h=n-1+2m(m+l) 

since the number of yj's and zj's is n-1 and the number of y; 's is in. 

2. j2h = (x ' 7= 

TA2 "h= Mn«1,0), (0, zi),... ' 
(0, zn-m-1)i + h"M2. 

So we have 
(0,0) 0EM 

(O, 
Wzj) WE 

Mn 

(0, x) 
(0, x2) 

and we are missing 

Giving our codimension as 

(0, yi) 
(0, zj) 

(0, xyi) 
(0, x2). 

cod jzh=n- 1+ 
1m(m+1)+m=n- 

1+I22 

3. j2h = (x, 0). 

TA2 "h= , 
M�((1,0)) + h`M2. 

So we have 
('O) qE Mn 
(0, x') i=1,2 

and we are missing 
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(0, yi) 
(O, zi) 

(0, xyi) 
(0, xzj) 
(0, YiYk) 
(0, yizi) 
(0, zi z1). 

Giving our codimension as 

cod j2h=n-1+2n(n+l)-1= 
2n(n+3)-2. 

Recall that we need cod <n+2. We have the following table of codimensions. 

Case m codim in J (n, 2) 
Z? ) 

7= 37 0 n- 1 
1 n 
2 n+2 
3 n+5 

(x, E1 ejzj) 0 n-1 
1 n+1 
2 n+4 

(x, 0) -n(n + 3) -2 

So we can see that for Case 1 we only need consider m=0,1 or 2. For Case 
2, only m=0 and 1, and finally for Case 3, we need Zn(n + 3) -2<n+2 which 
is only true for n=1 or n=2 which contradicts our hypothesis. Giving us that 
in general we only need consider the cases m=0,1 or 2.0 
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Chapter 6 

3-Parameter Motions of Space 

In this chapter we are concerned with the problem of finding a complete list of 
local models for 3-parameter motions of space. This involves the classification 
of singularities (R3,0) -º (]R3,0) under A-equivalence. We use the `nilpotent' 

classification methods described below, the majority of calculations were done 
by a computer program called TRANSVERSAL written by N. P. Kirk. Various 

parts of this classification have been considered by authors [B5, T]. Bruce, [B5] 

classified germs of Ae-codimension < 1, whereas Marar and Tari, [NIT] classified 
the simple germs of corank 1 mappings. Our classification provides a complete 
list of singularities upto and including Ae-codimension 2. Some jets for the 

codimension 3 cases give rise to extremely complicated orbits at a higher jet-level 

- such jets are excluded from further consideration as studying their geometry 
and bifurcation would be impossible with the computer software which we have 

available at present. 

6.1 Nilpotent Filtration 

We have the standard filtration as described in Chapter 2 but for this classification 
we will use the non-standard filtration used in Kirk, [K]. Firstly some notation. 
A filtration of a module M is a strictly decreasing chain of submodules 

M=MoDMl DM2D 

and a filtration of a group G is a strictly decreasing chain of subgroups 

G=Go GIDG23.... 
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Definition 6.1.1 Given a subgroup G of /C acting on M,,. E(n, p) by a jet- 
filtration we mean a filtration {Mk} of the module . 

M,,. E(n, p) together with 
a filtration {Gk} of the group 9 by normal subgroups Gk such that the following 
hold: 

1. Each Mk has finite codimension in M,,. E(n, p). 

2. Each quotient group g/Gk is a Lie group and there is a Lie group action 

Cc/Gk x Mn. E(n, p)/M,, ---> Mn. g(n, p)/Mk 

induced from the action of on M,,. E(n, p). 

Notation. Given a jet-filtration F= ({Mk}, {Gk}), we define the k -jet space 
to be the finite-dimensional vector space M,,. E(n, p)/Mk and denote this by 
JF (n, p). 

We now have a generalisation of the complete transversal theorem from Kirk, 
[K] 

Theorem 6.1.2 Let G be a subgroup of 1C, LC LC9, and ({ M1 }, {G; }) a jet- 
filtration such that for all s>0 

1. J'L (a subset of J'(LG)) is a Lie subalgebra of L(J'C); 

2. for all fE 
. 
M,,. e(n, p), hc M9 and 1EL we have l. (f + h) -1. fE Mst1. 

Then for fE Mn. E(n. p), k >_ 1 and Ta subspace of Hk+l C Jk+l (n, p) (where 
Hk+1 denotes the image of Mn. E(n, p) in Jk(n, p)) such that 

Jk+'L . jk+lf +TD Hk+l, 

we have any k -jet jkg with jkg Jkg jk f has (k + 1) jet jk+lg �-Jkj; jk+l f +t for 

some tET. Such a space T will be referred to as a complete transversal. 
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6.1.1 Nilpotent Lie Algebras 

Definition 6.1.3 Let V be a finite-dimensional vector space over R. An en- 
domorphism aE End(V) is called nilpotent if an =0 for some n. If L is a 
Lie algebra , with V an L-module, and Sa subset of L, then we say that S is 
nilpotent on V if SnV =0 for some n. 

We have the following Proposition from Kirk, [K]. 

Proposition 6.1.4 Let LC Lk be such that J'L is a Lie subalgebra of L(J'IC) 

which is nilpotent on lln+P. Then given an integer r>1 there is an integer 
k,. >1 such that 

Lkr (M . E(n, P)) C . Mn+' E(n, p)" 

Definition 6.1.5 (Nilpotent Filtration) Let LC LIC be as above. We define 
for integers r>1&s>0 the nilpotent filtration 

Mr, s(L) _> L'. (M . E(n, P)) + M,, +i E(n, p)" 
1>8 

For r=0 we just define Mo, o to be M,,. E(n, p) for consistency. The associated 
jet-space Jr, s(n, p) is then defined to be M,,. E(n, p)/Mr.,, (L), and we denote the 
homogeneous terms of degree (r, s) by H'', s. 

Note that Mr, s is just the standard filtration by degree with the added addition 
of the > Li (Mn. 9(n, p)) terms. 

Example 6.1.6 We shall give an example by listing the generators for the space 
Hr, s rather than describing the modules Mr,, (L). Each (r, s)-jet-space is just a 
sharper format of the standard r-jet-space (by degree), the generators for H" 

giving the extra monomials which arise from passing from the (r, s -1)-jet-space 
to the (r, s)-jet-space. 

If we take map-germs (H2,0) ) (IR2,0) with coordinates (x, y) in the source 
and (u, v) in the target and the nilpotent Lie sublagebra of LA given by 
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Sp{xa/ay} ® Sp{va/au} ® LAI 

then we obtain the following filtration: 

(r, s) Basis for H''"s 
(1,0) {(0,0)} 
(1,1) {(0, y)} 
(1,2) {(y, 0), (0, x)} 
(1,3) or (2,0) {(x, 0)} 
(2,1) {(0, y )} 
(2,2) {(y2,0), (0, xy)} 
(2,3) {(xy, 0), (0, x2)} 
(2,4) or (3,0) {(x2,0)} 
(3,1) {(0, y )} 
(3,2) {(y3,0), (0, xy2)} 
(3,3) {(xy2,0), (0, x2y)} 
(3,4) {(x2y, 0), (0, x3)} 
(3,5) or (4,0) {(x3,0)} 

As we can see an obvious pattern emerges. 
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We have the following two lemmas from [BduPW]. 

Lemma 6.1.7 Let G be a connected Lie group acting smoothly on an of ne space 
A; let B be a vector subspace of A. Then the action of G on A induces an action 
on A/B if and only if for all aEA, bEB and 1E LG 

1. (a+b)-1. aEB. 

Lemma 6.1.8 Let Lc LKC be such that J'L is a Lie subalgebra of L(J'K) 

which is nilpotent on RnIp, so that the nilpotent filtration Mr,, (L) is defined. Let 
fE Mn. E(n, p), hE Mr, 9(L) 

&1EL. Then 

1- (f+h)-l- f EMr, s+I(L). 

Finally we have the complete transversal result and the determinacy result 
for these nilpotent Lie algebras, [K]. 

Theorem 6.1.9 Let 9 be a subgroup of IC and LC Lg such that 

1. J''L is a Lie subalgebra of L(J''G) for all r>0; 

2. the subalgebra J'L of L(J' C) is nilpotent on Rn+p 

Then the following complete transversal result holds. For fEJ n-C(n, p) and T 

a subspace of H''°'+1 C J', 9+1(n, p) such that 

jrL. ßr, 9+1 f+TD Hr''+1, 

we have any (r, s) jet jr, 9g - j, ' f has (r, s+ 1) jet j''. '+lg ,,, jr, 3+l f+t for some 
tET. T is known as the (r, s+ 1) complete transversal. 
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Example 6.1.10 To illustrate the technique of obtaining nilpotent complete- 
transversals we will use an example from Kirk, [K]. 

Consider the 1 -jet (x, 0,0,0) from (R2,0) -º (R4,0); we will show that there 
exist four possible JA2-orbits over this 1 -jet; 

Firstly we consider the jet as a (2,2) jet; then the (2,3) -transversal gives us 
the family (x, aye, bxy, 0). Scaling this we find that we have four possibilities, 
namely; 

(1) (x, y2, xy, 0) 
(ii) (x, y2,0,0) 
(iii) (x, 0, xy, 0) 
(iv) (x, 0,0,0) 

depending on whether a and b are non-zero. 

The (2, s)-transversals, for s>3, are empty for (i), (ii) and (iii) and we can 
now consider these as 3 -jets. In (iv), the (2,4)-transversal is { (0, xy, 0,0) } giving 
(x, axy, 0,0) and scaling gives the following orbits: 

(v) (X, xy, 0,0) 
(vi) (x, o, o, o); 

again the higher (2, s)-transversals are empty. Clearly (iii) and (v) are in the 
same orbit and we need only consider (i), (ii), (v) and (vi) as 3-jets. 

Corollary 6.1.11 Let CG be a subgroup of 1C and LC LG satisfying the two 

conditions in the above theorem. Suppose G satisfies the Mather condition, that 
is the following conditions are equivalent for fEM,,. E(n, p): 

1. f is finitely-Q-deterrnined; 

2. dimR(M,,. e(n, p)/Lg. f) < oo; 

3. there exists N< oo such that LG "fD JVtn . 
E(n, p). 

Then a map-germ fEM,,.. 6(n, p) is k-Q-determined if 
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. 
A4n+l E(n, p) cL' f" 

Example 6.1.12 Again we will take our example to illustrate the nilpotent de- 
terminacy result from Kirk, [K]. 

We consider the 5 -jet (x, y2, x2y ± y5,0) from (R2,0) -º (It4,0). The only 
non-empty (7, s)-transversal is {(0,0,0, y7)} giving two JA'-orbits: 

(x, y2, x2 ± y5, y7) 7-determined, 
(X, y, x2y±y5,0) (A). 2 

Continuing to find (r, s)-transversals for (A) gives the following series: 

(x, y2, x2y ± y5) xyak+i + ay2k+s) (i), 
(x, y2, x2y ± y5, xy2k+l + aysk+3 ± y23+3) (ii), 
(X, y2, x2y ± y5 yak+i) (iii), 

where 

(i) (2k + 3)-determined, k >_ 2, a2±1 00; 
(ii) (2j + 3)-determined, k >_ 2, j>k+1, a2 ±10; 
(iii) (2k + 1)-determined, k>3. 

To see this we consider f= (x, y2, x2y f y5,0) as a (2k + 1)-jet fork >_ 2. In 
this example we can always obtain {xaybe; :a> 2} (modulo higher order terms) 
using the Gl-tangent space. So in this case we are only looking for vectors of the 
form {xybei} and {ybet}. Now 

äx = (1, O, 2xy, 0), 
öy = (O, 2y' x2 ± 5y4, O), 

and we can obtain xy2k+lel from 9.1 and xy2k+le2 from g. Also, 
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2zk+l 2kaf 
_k 

of 
xye3 _ U2 

X 

where (ul, u2i u3, u4) are the target coWmates. 

So we have xy2'+lej for i=1,2,3 and y2k+2ei E LG1 " f. This give us the 
(2k + 2)-transversal 1 (0,0,0, xy2k+1)} and the JA2k+2-orbits are : 

(x, yap x2y ± y5, xysk+i), 
(x, y2, x2y±y5,0). 

We will consider these separately. 

0 (x, y2, x2y + y5, xy2k+l). Now 

ax = (1,0,2xy, y2k+1), of = (0,2y, x2 ± 5y4, (2k + 1)xy2k), 
y 

which gives us y2k+3el and y2k+3e2. Also modulo terms in M2k+4. e(2,4) 

we have 

f4y2k+3E3 - y2k-1 

a! 

- 2u2 
of 

- uk-lu3 

of 

ay au2 au3 

and we also have xy2k+2ei E LG1 " f. So in this jet-space we cannot obtain 
y21c+3e4 giving us the one-parameter family of JA2k+3-orbits: 

(x, y2, x2y ± y5, xy2k+1 + ay 2k+3) (2k+3)-determined, 

a2±1#0. 

For the determinacy calculations we must check that 

M2k+4. E(2,4) C L9 f+ Jý/I2k+4 f"(. M4). e(2,4) + 
, 
MZk+8. e(2,4). 

Now f *(M4). E2 = {x, y2} E2 and . 
M2»+4 f`(M4) e2 M2k+s so we can 

work modulo terms in 
, 
M2k+s; we know we have all vectors of the form 

xaybet for a >_ 2, so we are only looking for {y2k+4e; }, {xy2k+3e; } and 
{y2k+5e; }. The first is trivial and the second we obtain by: 
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xy2k+3 ei = u2 u4 

of 

- ay2k+5ei, a7li 

we need only check {y2k+5et}. Now 

Uu 
of 

= (x2y2k+i + ay2k+3)eß, ia 0u2 

uku 
of 

= (x2y2k+i ± y2k+5)et, 2 3auf 

so 

(axy2k+3 T y2k+5)ei c LG1 " f. 

But we also have that 

U2U4 au = 
(xy2k+3 + ay2k+5)ei 

t 

which gives us 

(a2 ± 1)y2k+5ei E LG1 " f. 

So f is (2k + 3)-determined for a2 ± 10 0. 

If a2 ±1=0 then a (2k + 5)-transversal is { (0,0,0, y2k+5) }. Generally, if 
(x, y2, x2y ± y5, xy2k+1 + ayzk+s) is a (2j + 1)-jet for j>k+1, then from 
the above calculations we can see that the (2j + 2)-transversal is empty. 
At the (2j + 3)-level we get the (2j + 3)-transversal to be {(0,0,0, y2'+3} 
and find the two JAZj+3-orbits to be : 

(x7 y21 x2 ± y5, xy2k+i + ay2k+3 ± y2)+3) 
(x, y2, x2y ± y5, xy2k+i + ay2k+3). 

The first of these is (2j + 3)-determined. We can show this by working 
through a similar determinacy argument to the one above. 
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" (x, y2, x2y f y5,0). Now 

ýf 
= (1,0,2xy, 0), of = (0,2y, x2 ± 5y4) 

y 

and from these we get y2k+3e1 and y2k+3e2i y2k+3e3 as in the above calcula- 

tion. The only vector which we cannot obtain being y2k+3e4 giving us the 
(2k + 3)-transversal and the following two JA2k+3-orbits: 

(x, y2, x2 ± y5, y2k+3) (2k + 3)-determined, 
(x, y2, x2y±y5,0). 

Again the determinacy calculation follows as above. 

117 



6.2 Classification Techniques 

Consider map-germs : (H3,0) --> (R. 3,0), where we shall denote the source co- 
ordinates by (x, y, z) and the target coordinates by (u, v, w). Throughout the 
classification we will use the subgroup Q of A with Lie algebra 

LA, ® Sp{xa/ay, xa/az, ya/az} ® Sp{va/au, wa/au, wa/av}, 

which we shall denote L. This Lie algebra is nilpotent and we may use the 
complete transversal techniques and determinacy criterion of Section 6.1. 

Theorem 6.2.1 A map-germ f: (R3,0) -+ (1? 3,0) is kam-determined if 

M3 +i e(3,3) c LQ .f+ . M3+1. f* (M3). E(3,3) + ýl3k+2. ((3,3). 

Proof. This is just Lemma (2.6) applied to Theorem (2.1) of [BduPW]. 11 

Although most of the determinacy calculations can be done using the com- 
puter the above result was used as a check in some cases. 

For the complete transversal techniques we apply Theorem 6.1.9 using the 
above Lie algebra L9 in the calculations. 
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6.3 Classification 

We will use the following notation: 

"f will denote a germ (R3,0) --> (ßi. 3,0); 

" (x, y, z) will denote the source coordinates; 

" J'(3,3) will denote the space of all triples of polynomials in It[x, y, z] trun- 
cated at degree r. 

In the notation of [MaIII] we have the following tangent spaces 

LA "f=t. l 
(M3.03) +wf (M3.03), 

LA, -f=tf 
(M2 

. 
03) +Wf (M3. B3), 

where M3 is the maximal ideal of the local ring 63 and 03 denotes the space ©1R3 

of vector fields along the identity map. In coordinate form our tangent spaces 
become the following subspaces of E(3,3). 

LA f= M3" 
\ 

öx, y-, äz +f #M3. {el, e2, e3}, 

f*M3"{e1, e2, e3}, LA1 "f= . 
M3" 

(Ox, 

Öy, C7zý 
+ 

where {el, e2, e3} denotes the standard basis vectors in R3. 

Now the tangent space LC9 is an extension of the LA1 f tangent space by 

vectors from LA " f. 
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The following theorem summarises the classification. 

Theorem 6.3.1 The following tables give, for each k, a list of A-invariant strata 
for the jet-space Jk(3,3). Determined jets are indicated by the appearance of the 
determinacy degree in the column marked det. For each JAk -orbit we state the 
JAk-codimension. The coefficients a, b, c,.. appearing in some jets are moduli. 
In such cases the JAS` -codimension is the codimension of the stratum. A0 in the 
first column indicates that the codimension has exceeded the limit which we are 
studying, and where b means we do not carry this computation any further. 

The following tables give a list of the singularities of codimension less than or 
equal to 3. 

det stratum codim label 
1 (x, y, z) 0 - 
- (x, y, 0) 1 A 

- (x, 0,0) 4 B 

- (0,0,0) 9 (() 

Table 6.1: 1-Jets 

120 



det stratum codim label 
A 2 (x, y, z) 1 - 

- (x, y, yz) 2 A 

- (x, y, 0) 4 B 
B 2 (x, yz, y +z +xy) 4 - 

2 (x, yz, y2 - z2 + xy) 4 - 
- (x, yz, y2 + z2 + xy + xz) 5 C 

- (x, yz, y2 + z2) 6 D 

- (x, yz, y2 - z2) 6 D' 

- (x, yz, y2 + xy + xz) 5 E 

- (x, yz, y2 + xy) 6 F 

- (x, yz, y2 + xz) 5 G 

- (x, y, y2) 7 () 

- (x, y2 + z2, xy) 6 H 

- (x, y2 + z2,0) 8 () 

- (x, yz, xy + xz) 6 I 

- (x, yz, xy) 7 

- (x, yz, 0) 8 (#) 

Table 6.2: 2-Jets 

121 



det stratum codim label 
A 3 (x, y, yz+z) 2 - 

- (x, y, yz + xz2) 3 A 

- (x, y, yz) 4 B 
B 3 (x, y, z (y2 +x )z) 4 - 

3 (x, y, z3 + (y2 - x2)z) 4 - 
- (x, y, z3 + y2z) 5 C 

- (x, y, z3) 7 (() 

- (x, y, z3 - x2z) 5 C' 
3 (x, y, z3 - (y2 - x2)z) 4 - 
3 (x, y, z3 - (y2 + x2)z) 4 - 

- (x, y, yz2 + x2z) 5 D 

- (x, y, yz2) 6 E 

- (x, y, y2z + xyz + x2z) 7 (#) 

- (x, y, y2z + xyz) 7 () 

- (x, y, y2z + xyz - x2z) 7 (J 

- (x, y, y2z + x2z) 7 

- (x, y, y2z) 8 ( 

- (x, y, y2z - x2z) 7 (#) 

- (x, y, xyz) 7 () 

- (x) y, 0) 10 () 

C 3 (x, yz+y ,y +z +xy+xz) 5 - 
3 (x, yz+y3-x2y, y2+z2+xy+xz) 5 - 

(x, yz + y3 - 
lsx2y, y2 + =2 + xy + "z) 6 F 

- (x, yz + x2y, y2 + z2 + xy + xz) 6 G 

- (x, yz, y2 + z2 + xy + xz) 7 (#) 

D/D' 3 (x, yzfy +ax 2 y, y fz +y 3 +x y) 6 - 
al 

- (x, yz±y3±x2y, y2fz2+y3) 7 () 

- (x, yz±y3, y2±z2+y3) 8 (() 
3 (x, yz ± y3 + ax2y, y2 f z2 + y3 - x2y) 6 - 
- (x, yz f2 y3 f _, 

2y, y2 f z2 + y3 + x2y) 7 () 

- (x, yz ± 2y3 ± Ix2y, y2 ± z2 + y3 + x2y) 8 (i 

- (x, yz ±1 y3, y2 ± z2 + y3 + x2y) 7 

- (x, yz±Zy3±x2y, y2±z2+y3) 8 ( 

- (x, yz t Zy3, y2 f z2 + y3) 8 ( 

- (x, yz±2y3±x2y, y2±z2+y3-x2y) 7 (#) 

- (x, yz ± 2y3 ± 2x2y, y2 ± z2 + y3 - x2y) 8 () 

- (x, yz 1 y3, y2 ± z2 + y3 - x2y) 7 (#) 

Table 6.3: 3-Jets 
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det stratum codim label 
3 (x, yz+ax y, y ±z +y 3 +x y) 6 - 
- (x, yz ± x2y, y2 ± z2 + y3) 7 () 

- (x, yz, y2 z2+y) 8 
3 (x, yz+aw2y, y2±z2+y3-x2y) 6 - 
- (x, yz + y3, y2 ± z2 + x2y) 7 () 

- (x, yz+y3+2x2y, y2±z2+x2y) 8 () 

- (x, yz+y3, y2±z2+x2y) 7 

- (x, yz + y3 + x2y, y2 ± z2) 7 (#) 

- 
(x, yz+y3, y2±z2) 8 (ý+) 

- (x, yz+y3-x2y, y2±z2) 7 

- (x, yz±x2y, y2±z2+x2y) 8 () 
- 

(x, yz ± 2x2y, y2 ± z2 + x2y) 9 () 

- (x) yz, y2 ± z2 + x2y) 8 () 

- (x, yz±x2y, y2fz2) 8 () 

- (x, yz, y2±z2) 9 

- (x, yz±x2y, y2±z2 -x2y) 8 

- (x, yz ± 2x2y, y2 ± z2 - x2y) 9 

- (x, yz, y2 f z2 - x2y) 8 

E - (x, yz, y +xy+xz+z) 5 H 

- (x, yz, y2 + xy + xz) 6 I 
F (x, yz, y+xy+z+xz+axz) 6 J 

- (x, yz, y2 + xy + z3 + x2z) 7 () 

- 
(x, yz, y2 + xy + z3) 8 (N) 

- (x, yz, y2 + xy + z3 - x2z) 7 (#) 

- (x, yz, y2 + xy + x2z) 8 (#) 

- (x, yz, y2 + xy + x2z) 9 (#) 

- (x, yz, y2+xy) 10 
G - (x, yz, y+ xz + z) 5 K 

- (x, yz, y2 + xz) 6 L 
H - y2 +z , xy+z +ay z+by) 6 M 

- (x, y2 + z2, xy + y2z + ay3) 7 () 

- (x, y2 + z2, xy + ay3) 8 (4) 

- (x, y2 + z2, xy) 9 (#i 
I - (x, yz, xy + xz +z+ ay 2Z + by) 6 N 

- (x, yz, xy + xz + y2z + ay3) 7 (4J 

- (x, yz, xy + xz + ay3) 8 (8) 

- (x, yz, xy + xz) 9 () 

Table 6.4: 3-Jets continued 
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det stratum codim label 
A 4 XZ2 +z) 3 - 

- (x, y, yz + xz2) 4 A 
B 4 (x, y, yz+z +x z) 4 - 

- (x, y, yz+z4) 5 B 
4 (x, y, yz+z4-x222) 4 - 
- (x, y, yz + xz3) 5 C 

- (x, y, yz+x222) 6 D 

- (x, y, yz) 7 (() 
C 4 (x, y, z+ (y +X 3)Z) 5 - 

- (x, y, z3 + y2z) 6 E 
C' 4 (x, y, z +(x- y)z) 5 - 

- (x, y, z3 - x2z) 6 E' 
D - (x, y, yz +x z+z) 5 F 

- (x, y, yz2 + x2z + xz3) 6 G 

- (x, y, yz2 + x2z) 7 
E - (x, y, yz ± z4 + xz + ax z) 6 H 

- (x, y, yz2 + z4 + xz3) 7 
- (x, y, yz2+z4+x3z) 7 

- (x, y, yz2+z4) 8 () 

- (x, y, yz2 + xz3 + x3z) 7 () 

- (x, y, yz2 + xz3 - x3z) 7 () 

- (x, y, yz2 + xz3) 8 () 

- (x, y, yz2 + x3z) 8 () 

- (x, y, yz2) 9 (f) 
F 4 33 (x, yz+y - 16x y+x y, 6 

y2 + z2 + xy + xz) 

- (x, yz + y3 -3 x2y, y2 + z2 + xy + xz) 1-6 7 (j) 
4 x, z+ 3-3 

16x y-x y, 
6 

- 

y2+z2+xy+xz) 
G - (x, yz+x y, y +z +xy+xz) 6 I 

H y2 +xy+xz+z +ayz) 5 - 
I - (x, yz, y+ xy + xz +z+ yz) 6 J 

- (x, yz, y2 + xy + xz + z4) 7 (#) 

- (x, yz, y2 + xy + xz + z4 - yz3) 6 J' 

- (x, yz, y2 + xy + xz + yz3) 7 

- (x, yz, y2 + xy + xz) 8 (#) 

- (x, yz, y2 + xy + xz - yz3) 7 

Table 6.5: 4-Jets 
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det stratum codim label 
J - (x, yz, y +xy+z 3 +xz +ax z) 6 K 

K 4 (x, yz, y +xz+z +z +ayz) 5 - 
(x, yz, y2 + xz + z3 + yz3) 6 - 

- (x, yz, y2+xz+z3) 7 () 

L - (x, yz, y+ xz +z+ yz) 6 L 

- (x, yz, y2 + xz + z4) 7 (#) 

- (x, yz, y2 + xz + yz3) 7 i#) 

- (x, yz, y2 + xz) 8 (1) 

- (x, yz, y2 + xz - z4 + yz3) 6 L 

- (x, yz, y2+xz-z4) 7 (1) 

M - (x, y +z Z3 + ay z 6 M 

+by3 + y3z + cy4) 

- (x, y2+z2, xy+z3+ay2z+by3+cy4) 7 (#) 

- (x, y2 + z2, xy + z3 + ay2z 6 M 
+by3 - y3z + cy4) 

N - (x, yz, xy+xz+z +ay z 6 N 

+by3 + y3z + cy4) 

- (x, yz, xy + xz + z3 + ay2z + by3 + cy4) 7 () 

- (x, yz, xy + xz + z3 + ay2z 6 M 

+by3 - y3z + cy4) 

Table 6.6: 4-Jets continued 
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det stratum codim label 
A 5 (x, y, yz+xz +z) 4 - 

- (x, y, yz + xz2) 5 A 
B 5 (x, y, yz+z +x z) 5 - 

- (x, y, yz +Z 4) 6 B 
C - (x, y, yz+xz +z) 5 C 

- (x, y, yz + xz3) 6 D 
D - (x, y, yz+x z +z) 6 E 

- (x, y, yz+x222+xz4) 7 () 

- (x, y, yz+x222) 8 () 
E 5 (x, y, z+ (y +X 4)Z) 6 - 

- (x, y, z3+y2z) 7 (() 
5 (x, y, z3 + (y2 - x4)z) 6 - 

E' 5 (x, y, z- (X2 -y 4)Z) 6 - 
- (x, y, z3 - x2z) 7 i 
5 (x, y, z3 - (x2 + y4)z) 6 - 

F 5 (x, y, yz +x z+z +z) 5 - 
- (x, y, yz2 + x2z + z4) 6 F 
5 (x, y, yz2+x2z+z4-z5) 5 - 
- (x, y, yz +x z+xz + az+xz) 6 G 

- (x, y, yz2 + x2z + xz3 + az5) 7 () 

- (x, y, yz2 + x2z + xz3 + az5 - xz4) 6 G' 
H - yZ2 +z +xz- xz +z) 7 

- 
(x, y, yz2+z4+x23+10x32+z5) 7 (U 

- 
(x, y, yz2+z4+xz3+x32+Z5) 7 (#) 

- 
(x, y, yz2+z4+x23+z5) 7 (u) 

- 
(x, y, yz2+z4+x23+sx3z+z5) 7 (N) 

(x, y, yz2 + z4 + xz3 + x32 + z5) 7 (#J 

" (x, y, yz2 + z4 + x23 + sx3z) 
8 

l i+) 

- (x, y, yz2 + z4 + x23) 8 

Table 6.7: 5-Jets 
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det stratum codim label 
5 (x, yz+x 2y 

,y +z +xy+xz) 6 - 
- (x, yz + x2y, y2 + z2 + xy + xz) 7 
5 (x, yz + x2y - y5, y2 + z2 + xy + xz) 6 - 
- (x, yz, y2+ xy + xz +z4+ yz 6 H 

+az5 + byz4) 
J' - (x, yz, y+ xy + xz + Z4 - yz 6 H 

+az5 + byz4) 
K 5 (x, yz, y 2 +xy+z +xz +ax z+bz) 6 - 

a*a 
L - (x, yz, y+ xz + Z4 + yz + az + byz) 6 1 

M - 
22323 (x, y +z xy+z +ay z+by 6 J 

+y3z + cy4 + dy2z3 + ey4z + fy5) 
N - (x, yz, xy+xz+z +ay z+by 6 K 

+y3z + cy4 + dy2z3 + ey4z + fy5) 

Table 6.8: 5-Jets continued 
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det stratum codim label 
A - (x, y, yz+xz 6) 5 A 

- (x, y, yz + xz2 + xz5) 6 B 

- (x, y, yz + xz2) 7 (4) 
B 6 (x, y, yz+z 4 +x z) 6 - 

- (x, y, yz + z4) 7 (8) 
6 (x, y, yz+z4 -x422) 6 - 

C 6 (x, y, yz+xz +z + 5- 5 - 
- (x, y, yz+xz3+z5) 6 C 

D - (x, y, yz+xz 3 +z) 6 D 

- (x, y, yz+xz3) 7 (1) 
E - (x, y, yz+x z +z +z) 6 E 

- (x, y, yz+x222+z5) 7 (1) 

- (x, y, yz+x222+z5-z6) 6 E' 
F - (x, y, yz +x z±z) 6 F 
G - (x, y, yz +X 2Z + xz - 2z + XZ4 + z) 7 (4) 

- 
(x, y, yz2 + x2z + xz3 - 2z5 + xz4 - z6) 7 (N) 

- (x, y, yz2 + x2z + xz3 - z5 + xz4 + z6) 7 (8) 

- (x, y, yz2 + x2z + xz3 - z5 + xz4 - z6) 7 (#ý 

- (x, y, yz2 + x2z + xz3 -5 z5 + xz4 + z6) 7 

- (x, y, yz2 +x2z+xz3 - 5z5 +xz4 - z6) 7 (4) 

- 
(x, y, yz2 + x2z + xz3 + z5 + xz4 + z6) 7 (8) 

- (x, y, yz2 + x2z + xz3 + z5 + xz4 - z6) 7 (4ý 

- (x, y, yz2 + x2z + xz3 -4 z5 + xz4 + z6) 8 (4) 

- 
(x, y, yz2 + x2z + xz3 - 2z5 + xz4 + z6) 8 (8) 

- (x, y, yz2+x2z+xz3- lÖz5+xz4+z6) 8 (8) 
- 

(x, y, yz2+x2z+xz3+z5+xz4) 8 d) 

- 
(x, y, yz2 + x2z + xz3 -äz5 + xz4) 9 (8) 

- 
(x, y, yz2 + x2 z+ xz3 -2 z5 + xz4) 9 (8) 

- (x, y, yz2 +x2Z+ xz3 -3 z5 + xz4) 10 
9 (N) 

G' (x, y, yz +xz+ xz - 22 - xz + z) 7 (8) 

- (x, y, yz2 + x2z + xz3 - 2z5 - xz4 - z6) 7 (4) 

- (x, y, yz2 + x2z + xz3 - z5 - xz4 + z6) 7 (8ý 

- (x, y, yz2 + x2z + xz3 - z5 - xz4 - z6) 7 (4ý 

- (x, y, yz2 + x2z + xz3 - 
5z5 

- xz4 + z6) 7 (4) 

- 
(xsy, yz2+x2z+xz3-2z5-xz4-z6) 7 (8) 

- (x, y, yz2 + x2z + xz3 + z5 - xz4 + z6) 7 (#ý 

- (x, y, yz2+x2z+xz3+z5-xz4-z6) 7 (e) 

Table 6.9: 6-Jets 
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det stratum codim label 
2235 (x, y, yz +x z+xz - 4z -xz +z) 8 (#) 

" (x, y, yz2 + x2z + xz3 -2 z5 - xz4 + z6) 8 (4) 

- 
(x, y, yz2+x2z+xz3 - 

lo z5 -xz4+z6) 
8 (4) 

" 
(x, y, yz2+x2z+xz3+z5-xz4) 8 (#/ 

- (x, y, yz2 + x2z + xz3 -4 z5 - xz4) 9 (4) 

- lxs y, yz2+x2z+xz3 - 2z5 -xz4) 9 (4) 

- 
2+x2z+xz3- 3z5-xz4) 

lxs Y, 
10 

9 (4) 

H 6 (x, yz, y +xy+xz+z +yz 6 - 
+az5 + byz4 + cz6) 

H' 6 (x, yz, y +Xy+XZ+Z4 _yZ3 6 - 
+az5 + byz4 + cz6) 

1 6 (x, yz, y+ xz + Z4 + yz 6 - 
+az5 + byz4 + cz6) 

1' 6 (x, yz, y+ xz +z4- yz 6 - 
+az5 + byz4 + cz6) 

1 - (x, y +z , xy+z +ay z+by 6 b 
+y3z + cy4 + dy2z3 + ey4z + fy5) 

1' - (x, y +z , xy+z 3 +ay z+by 6 b 

-y3z + cy4 + dy2z3 + ey4z +f y5) 
K - (x, yz, xy+xz+z +ay z+by 3 6 

+y3z + cy4 + dy2Z3 + ey4z + fy5) 

K' - (x, yz, xy+xz+z + ayz+by 6 

-y3z + cy4 + dy2z3 + ey4z +f y5) 

Table 6.10: 6-Jets continued 
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det stratum codim label 
A - XZ2 +z) 5 A 
B - (x, y, yz+xz +xz +z) 6 B 

- (x, y, yz + xz2 + xz5) 7 () 
C 7 (x, y, yz+xz +z) 6 - 
D - (x, y, yz+xz +z +z) 6 C 

- (x, y, yz + xz3 + z6) 7 (9) 
E 7 (x, y, yz+x z +z +z +az) 6 - 

arh 0 
E' 7 (x, y, yz+x z +z- z+ az) 6 - 

a0 
F 7 (x, y, yz +x Z4 +z) 6 - 

- (x, y, yz2+x2z+z4) 7 (() 
7 (x, y, yz2 + x2z + z4 - z7) 6 - 

Table 6.11: 7-Jets 

det stratum codim label 

- 

- 

(x, y, yz+xz +z +z) 
(x, y, yz + xz2 + z6) 
(x, y, yz+xz2+zs-z8) 

5 
6 

5 

A 
B 

A' 

B - (x, y, yz+xz +xz +z) 6 C 
C - (x, y, yz + xz +z+z+ az) 6 D 

Table 6.12: 8-Jets 
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det stratum codim label 
A 9 (x, y, yz+xz +z +z 8 +az) 5 - 

A' 9 (x, y, yz+xz +z- z+ az) 5 - 
B 9 

- 

(x, y, yz+xz +z +z) 
(x, y, yz + xz2 + z6) 

6 
7 

- 
(#) 

C - (x, y, yz+xz +xz +z +az) 6 A 
D - (x, y, yz+xz +z +z +az) 6 B 

Table 6.13: 9-Jets 

det stratum codim label 
A - (x, y, yz+xz ±xz +z 

+az9 + bzlo) 
6 A 

B - (x, y, yz+xz ±z +z +az8 ) 6 B 

Table 6.14: 10-Jets 

det stratum codim label 
(x, y, yz+xz ± xz+z 6 b 

+az9 + bz1° + cz") 
B - (x, y, yz+xz ±z +z 6 b 

+az8 + bz") 

Table 6.15: 11-Jets 
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So we have the following list of finite map-germs of Ae-codim < 3: 

Singularity A D 
(x, y, z) 0 1 
(x, y, z2) 0 2 
(x, y, yz + z3) 0 3 
(x, y, yz + xz2 + z4) 0 4 
(x, yz, y +z +xy) 1 2 
(x, yz, y2 - z2 + xy) 1 2 
(x, y, z3 + (y2 + x2)z) 1 3 
(x, y, z3 + (y2 - x2)z) 1 3 
(x, y, z3 - (y2 - x2)z) 1 3 
(x, y, z3 - (y2 + x2)z) 1 3 
(x, y, yz+z4+x222) 1 4 
(x, y, yz+z4 -x222) 1 4 
(x, y, yz + xz2 + z5) 1 5 
(x, yz+y ,y +z +xy+xz) 2 3 
(x, yz+y3 -x2y, y2+z2 +xy+xz) 2 3 
(x, y, z3 + (y2 + x3)z) 2 4 
(x, yz) y2+xy+xz+z3+ayz3) 2 4 
(x, yz, y2 + xz + z3 + z4 + ayz3) 2 4 
(x, y, yz+24+x322) 2 5 
(x, y, yz2+x22+z4+z5) 2 5 
(x, y, yz2 + x2 z+ z4 - z5) 2 5 
(x, y, yz+x23+z5+z6) 2 6 
(x, y, yz+xz2+z6+z8+az9) 2 9 
(x, y, yz + xz2 + z6 - z8 + az9) 2 9 

Table 6.16: Singularities from (R. 3,0) --1 (R3,0) 
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Singularity A D 
(x, yz ±y+ ax y, y ± Z2 +y+X 2y) 3 3 

a zi 
(x, yz f y3 + axzy, yz ± zz + y3 - xzy) 3 3 

a z 
(x, yz + axzy, yz ± zz + y3 + xzy) 3 3 

a2 
(x, yz + axzy, yz + zz + y3 - x2y) 3 3 

a54 2 
(x, yz + y3 - 

lsxzy + x3y, yz + zz + xy + xz) 3 4 
(x, yz+y3- 

3x2 

y-x3y, y2+z2 +xy+xz) 3 4 
(x, yz, yz+xz+z3+yz3) 3 4 
(x, y, z3 + (yz + x4)z) 3 5 
(x, y, z3 + (yz - x4)z) 3 5 
(x, y, z3 - (xz - y4)z) 3 5 
(x, y) z3 - (xz + y4)z) 3 5 
(x, yz+xzy+y5, yz+zz+xy+xz) 3 5 
(x, yz + xzy - y5, y2 + zz + xy + xz) 3 5 
(x, yz, yz+xy+z3+xzz+axzz+bz5) 3 5 

a#8 
(x, y, yz + z4 + x4zz) 3 6 
(x, y, yz + z4 - x4zz) 3 6 

Table 6.17: Table 6.16 continued 
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Singularity A D 
(x, yz, y +xy+xz+z +yz +az +byz 6) 3 6 
(x, yz, y2+xy+xz+z4 -yz3+az5+byz4+cz6) 3 6 
(x, yz, y2 + xz + z4 + yz3 + az5 + byz4 + cz6) 3 6 

(x, yz, y2 + xz + z4 - yz3 + az5 + byz4 + cz6) 3 6 
(x, y, yz+xz3+z5) 3 6 

(x, y, yz + x222 + z5 + z6 + az7) 3 7 
a54 0 

(x, y, yz + x222 + z5 - z6 + az7) 3 7 
azyý 0 

(x, y, yz2 + x2z + z4 + z7) 3 7 
(x, y, yz2 + x2z + z4 - z7) 3 7 
(x, y, yz+xz2+z6+z9) 3 9 

Table 6.18: Table 6.16 continued 

where A is the AQ-codimension and D is the degree of determinacy. 

In the remainder of this chapter we will describe the proof. First we make the 
following observation on bounds on the codimension. For a map-germ f consider 
the map 

7r : (. I. Ak+I jk+1 f) (JAk 
' jkf) 

jk+l9 i, ßk9 

from the JAS+1-orbit of f to the JAk-orbit of f. Any jkg E (JAk " 3k1) may be 

written in the form jO" jk f for some 0EA. But 

7r(jk+l . jk+l f) _ jk(o.. f) _ jkc, . jkf 

so it is surjective and 7r-1((JAk) " jk f) is a submanifold of Jk+' (n, p) with codimen- 
sion equal to the codimension of (JAk) " jkf in Jk(n, p). But 7r-1((JAk) . jk f) 
(Jk+1A) . jk+l f and it follows that JAk-codim(f) < Jk+IA-codim(f ). Now if a 
map-germ f is k-A- determined then, 
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M3+i. E(3,3) C LA " . 
f, 

hence, JkA-codim(f) = A-codim(f). This last results allows us to use the 
computer to calculate the A-codim(f). 

6.3.1 The 1-Jets 

Assuming f is of corank 0,1,2 or 3 and using linear algebra, we see that upto 
A-equivalence the JA1-orbits of f are 

(x, y, z) 1-determined, 
(x) y, 0) (A), 
(x, 0,0) (B), 
(01010) (), 

where ý indicates that we have exceeded our codimension limit. 

We now consider the corank 1 case (A). 

6.3.2 The 2-Jets 

There are three JAI-orbits over (x, y, 0). 

(x, y, z2) 2-determined, 
(x, y, yz) (A), 

(x, y, 0) (B). 

Remark. This is easy to show using the computer and A1-complete transversal 
methods, the resulting transversal giving the JA2-orbits to be of the form 
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(x, y, az2 + byz + cxz). 

If we then look at the nilpotent filtration, at the (2,1)-level we obtain (x, y, az2) 
which we can scale to (x, y, z2) if a 0. We find that the (2, s)-transversals, for 

s>1 are empty and working further we find that this is actually 2-determined. If 

a=0 then at the (2,2)-level we obtain (x, y, byz) which we can scale to (x, y, yz) 
if b 54 0. Again we find that the higher (2, s)-transversals are empty. This leaves 
the case when a=b=0 which gives (x, y, 0). 

The numbering system of the classification will be as follows. Each of the jets 
(A) and (B) above will be considered in the section below. The jets which arise 
from the higher jet-levels will be numbered with respect to that section. Each 
branch will be studied until the germ is found to be determined or the complexity 
suggests a natural stopping point. 
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6.3.3 The 3-Jets 

A (3,1)-transversal for (x, y, yz) is {(0,0, z3)} giving two orbits to consider as 
(x, y, yz+z3) 'A (x, y, yz-z3) by the change of coordinates (x, y, z) '-º (x, y, -z): 

" (x, y, yz + z3). All higher (3, s)-transversals are empty. 

" (x, y, yz). This has (3,3)-transversal { (0,0, xz2) } again giving only two 

orbits as (x, y, yz + xz2) 'A (x, y, yz - xz2) by the change of coordinates 
x '-p -x. 

So there are three JA3-orbits over (x, y, yz): 

(x, y, yz + z3) 3-determined, 
(x, y, yz + xz2) (A), 
(x, y, yz) (B). 

A (3,1)-transversal for (x, y, 0) is {(0,0, z3)}; giving two orbits to consider as 
(x, y, z3) A 

(x, y, -z3); 

" (x, y, z3). This has (3,3)-transversal {(0,0, y2z) } giving three orbits to 

consider; 

(x, y, z3 + y2z) (i), 
(x, y, z3) (ii), 
(x, y, z3 - y2z) (iii). 

(i) has (3,5)-transversal { (0,0, x2 z) } giving three orbits; 

(x, y, z3 + y2z + x2z) 

(x, y, z3 + y2z) 
(x, y, z3 + y2z - x2z) 

3-determined, 

(C), 
3-determined. 
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(ii) has (3,4)-transversal 1 (0,0, xyz)} giving us two orbits to consider; 

(x, y, z3 + xyz) (a), 
(x) y, z3) (b). 

(a) has (3,5)-transversal 1 (0,0, x2z)} giving the A-trivial family: 

(x) y, z3 + xyz + ax2z). 

giving us one orbit (x, y, z3 + xyz) which is 3-determined and equivalent to 
(x, y, z3+x2z-y2z) via the change of coordinates (x, y, z) H (x+y, x-y, z). 
(b) has (3,5) -transversal {(0,0, x2z)} giving three orbits; 

(x, y, z3 + x2z) A-equivalent to (C), 
(x, y, z3) (u), 
(x, y, z3 - x2z) (C'). 

(iii) has (3,5)-transversal 1 (0,0, x2z)} giving three orbits; 

(x, y, z3 - y2z + xzz) 
(x, y, z3 - y2z) 
(x, y, z3 - y2z - x2z) 

3-determined, 
A-equivalent to (C'), 
3--deterniiu. ed. 

" (x, y, 0) 
. 

This has (3,2)-transversal {(0,0, yz2)} giving two orbits as (x, y, yz2) 'A 
(z. x, y, -yz ); 

(X, y, yz2) (i), 
(x, y, 0) (ii). 

(i) has (3,5)-transversal {(0,0, x2z)} giving two orbits as (x, y, yz2+x2z) 'A 
(x, y, yz2 - x2z) via the change of coordinates z º---º -z); 

(x, y, yz2 + x2z) (D), 
(X, y, yz2) (E). 

All higher (3, s)-transversals are empty. 
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(ii) has (3,3)-transversal {(0,0, y2z), (0,0, xz2)} giving four orbits to con- 
sider as (x, y, y2z + xz2) ^+A (x, y, 2y2z - xz2) 'A (x, y, -y2z + xz2) A 
(x, y, -y2z - xz2) etc. by changes of coordinates in the source and target; 

(x, y, y2z + xz2) A-equivalent to (D), 
(x, y, y2z) (a), 
(x, y, xz2) A-equivalent to (E), 
(x, y, 0) (b). 

(a) has (3,4)-transversal {(0,0, xyz)} giving two orbits ( by a change of 
coordinates x1 --) -x (x, y, y2z + xyz) A (x, y, y2z - xyz); 

(X, y) y2z + xyz) (a), 
(x, y, y2z) (Q). 

(ce) has (3,5)-transversal {(0,0, x2z)} giving three orbits; 

(x, y, y2z + xyz + x2z) (J+), 

(x, y, y2z + xyz) (Ii), 

(x, y, y2z + xyz - x2z) (J+). 

(0) has (3,5)-transversal {(0,0, x2z)} which gives three orbits; 

(x, y, y2z + x2z) (A), 

(x, y, y2z) (p), 
(x, y, y2z - x2Z) (p)" 

(b) has (3,4)-transversal {(0,0, xyz) which gives two orbits as (x, y, xyz) 
(x, y, -xyz); 

(x, y, xyz) (a), 
(X, y, 0) (Q). 

(ce) has (3,5)-transversal 1 (0,0, x2z)} giving two orbits; 

(x, y, xyz + x2z) A-equivalent to (x, y, y2z + xyz), 
(x, y, xyz) (p) 

" 

(ß) has (3,5)-transversal {(0,0, x2z)} which gives us two orbits; 

(x, y, x2z) A-equivalent to (E), 
(x, y, 0) (#)" 
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So we have seventeen JA'-orbits over (x, y, 0): 

(x, y, z3 + (y2 + x2)z) 3-determined, 
(x, y, z3 + (y2 - x2)z) 3-determined, 
(x, y, z3 + y2z) (C), 

(x, y, Z3) (p), 
(x, y, Z3 - x2z) (C 1), 

(x, y, z3 - yzz + x2z) 3-determined, 
(x, y, z3 - y2z - x2z) 3-determined, 
(x, y, yz2 + x2z) (D), 

(x, y, yz2) (E), 
(x, y, y2z + xyz + x2z) (#), 

(x, y, y2z + xyz) (p), 
(x, y, y2z + xyz - x2z) (#), 

(x, y, y2z + x2z) (p), 

(x, y, y2z) (u), 
(x, y, y2z - x2z) (p), 
(x, y, xyz) (#), 

(x, y, 0) (p)" 

6.3.4 The 4-Jets 

The (4,1)-transversal for (A) is given by {(0,0, z4)}; higher (4, s)- transversals 
being empty. This gives orbits: (x, y, yz+xz2+z4) and (x, y, yz+xz2) ((x, y, yz+ 
xz2 + z4) 'A (x, y, yz + xz2 - z4) via the change of coordinates (x, y, z) p--' 
(-x, -y, z) and (u, v, w) 1 (-u, -v, -w)). 

(x, y, yz + xz2 + z4) 4-determined, 
(X, y, yz+xz2) (A). 

The (4,1)-transversal for (B) is {(0,0, z4)} giving two orbits to consider, 
again (x, y, yz + z4) A (x, y, yz - z4) via the change of coordinates (x, y, z) l" 
(x, -y, z) and (u, v, w) a) (u, -v, -w); 

" (x, y, yz + z4) has (4,5)-transversal {(0,0, x222) } giving three orbits; all 
higher (4, s)-transversals are empty; 

(x, y, yz + z4 + x222) 4-determined, 
(x, y, yz + z4) (B), 
(x, y, yz + z4 - x222) 4-determined. 
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" (x, y, yz) has (4,3)-transversal {(0,0, xz3)} giving again two orbits to con- 
sider ((x, y, yz + xz3) 'A (x, y, yz - xz3) via the change of coordinates 
x ý-ý -x, 

- (x, y, yz + xz3) (C): all higher (4, s)-transversals are empty. 

- (x, y, yz) has (4,5)-transversal {(0,0, x2z2)} which gives two orbits 
since (x, y, yz+x2z2) A (x, y, yz-x2z2) via the change of coordinates 
y '--> -y and (u, v, w) H (u, -v, -w); 

(x, y, yz+x222) (D), 
(x, y, yz) (p)" 

This gives us seven JA4-orbits over (x, y, yz): 

(x, y, yz + z4 + x222) 4-determined, 
(x, y, yz + z4 - x222) 4-determined, 
(x, y, yz + z4) (B), 
(x, y, yz + xz3) (C), 
(x, y, yz+x222) (D), 
(x, y, yz) (j)" 

The (4,1)-transversal for (C) is empty, the only higher non-empty (4, s)- 
transversal being the (4,7)-transversal {(0,0, x3z)}; giving two orbits (x, y, z3 + 
(y2 + x3)z) (as this is equivalent to (x, y, z3 + y2z - x2z) via the change of coor- 
dinates x1) -x) and (x, y, z3 + y2z) to consider. All higher (4, s)-transversals 
in both cases are empty. 

(x, y, z3 + (y2 + x3)z) 4-determined, 
(x, y, z3 + y2z) (E)" 

The 4-transversals for (C') are the same as above, so we get the following 

two JA4-orbits over (x, y, z3 - x2z + y3z); 

(x, y, z3 - x2z + y3z) 4-determined, 
(x, y, z3 - x2z) (E'). 

But (x, y, z3 - x2z + y3Z) "A 
(x, y, Z3 + y2Z + 23Z). 
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The (4,1)-transversal for (D) is {(0,0, z4)} giving two orbits to consider (as 
(x, y, yz2 + x2z + z4) ýA (x, y, yz2 + x2z - z4) via the change of coordinates 
(x, y, z) º--º (x, -y, -z) and (u, v, w) &) (u, -v, -w)); 

" (x, y, yz2 + x2z + z4); whose higher (4, s)-transversals are all empty. 

" (x, y, yz2+x2z) which has (4,3)-transversal {(0,0, xz3)} which gives us two 
orbits ; all higher (4, s)-transversals being empty in both cases. 

So we have three JAI-orbits over (x, y, yz2 + x2z): 

(x, y, yz2 + x2z + z4) (F), 

(x, y, yz2 + x2z + xz3) (G), 
(x) y, yz2 + x2z) (#)" 

The (4,1)-transversal for (E) is {(0,0, z4)} which gives two orbits to consider 
(as (x, y, yz2 + z4) ^'A (x, y, yz2 - z4)); 

" (x, y, yz2 + z4). This has (4,3)-transversal {(0,0, xz3) } which gives us two 
orh, +c again as (x, y, yz2 + z4 + xz3) A (x, y, yz2 + z4 - xz3); 

(X, y, yz2 + z4 + xz3) (i), 
(x, y, yz2 + z4) (ii). 

(i) has (4,7)-transversal {(0,0, x3z)} which gives us the 1-parameter family 

(x, y, yz2 + z4 + xz3 + ax3z). 

(ii) has (4,7)-transversal {(0,0, x3z)} which gives us two orbits since (x, y, yz2+ 
z4 +x3z) 'A (x, y, yz2 + z4 - x3z) via the change of coordinates (x, y, z) && 
(-x, y, z)); 

(x, y, yz2 + Z4 + x3Z) (p), 
(x, y, yz2 + z4) (p)" 
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" (x, y, yz2). This has (4,3)-transversal {(0,0, xz3)} giving two orbits to con- 
sider ((x, y, yz2 + xz3) ,, q (x, y, yz2 - xz3)); 

(x, y, yz2 + xz3) (i), 

(x, y) yz2) (ii). 

(i) has (4,7)-transversal {(0,0, x3z)} which gives three orbits; 

(x, y, yz2 + xz3 + x3z) (p), 
(x, y, yz2 + xz3) (p), 
(x, y, yz2 + xz3 - x3z) (p)" 

(ii) has (4,7)-transversal 1 (0,0, x3z)} which gives two orbits; 

(x, y, yz2 + x3z) (p), 
(x, y, yz2) (p). 

So we have nine JA4-orbits over (x, y, yz2): 

(x, y) yz2 + z4 + xz3 + ax3z) ýH)ý 

(x, y, yz2 + z4 + xz3) (p), 
(x, y, yz2 + z4 + x3z) (p), 
(x, y, yz2 + z4) (p), 
(x, y, yz2 + xz3 + x3z) (1+), 

(x, y, yz2 + xz3 - x3z) (if), 
(x, y, yz2 + xz3) (if), 
(x, y, yz2 + x3z) (#), 

(x, y, yz2) (if )" 
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6.3.5 The 5-Jets 

The (5,1)-transversal for (A) is {(0,0, z5)}; all higher (5, s)-transversals are 
empty. This gives us two JA5-orbits over (x, y, yz + xz2) since (x, y, yz + xz2 + 
z5) A (x, y, yz+xz2 -z5) via the change of coordinates (x, y, z) fº (x, -y, -z): 

(x, y, yz + xz2 + z5) 5-determined, 
(x, y, yz + xz2) (A). 

The (5,1)-transversal for (B) is empty, the first non-empty (5, s)-transversal 
being the (5,7)-transversal {(0,0, x3z2)}; all higher (5, s)-transversals are empty. 
This gives us two JÄ5-orbits over (x, y, yz + z4) since (x, y, yz + z4 + x322) ''A 
(x, y, yz + z4 - x322) via the change of coordinates (x, y, z) º-º (-x, y, z): 

(x, y, yz + z4 + x322) 5-determined, 
(x, y, yz + z4) (B). 

The (5,1)-transversal for (C) is {(0,0, z5)} which gives us two orbits to con- 
sider (since (x, y, yz + xz3 + z5) 'A (x, y, yz + xz3 - z5) via the change of co- 
ordinates (x, y, z) i --* (-x, -y, -z) and (u, v, w) -+ (-u, v, -w); all the higher 
(5, s)-transversals being empty in both cases. Thus we have two JA5-orbits over 
(x, y, yz + xz3): 

(x, y, yz + xz3 + z5) (C), 
(X, y, yz + xz3) (D)" 

The (5,1)-transversal for (D) is {(0,0, z5)} giving us two orbits to consider, 
as (x, y, yz + x222 + z5) .- (x, y, yz + x222 - z5) via the change of coordinates 
(x, y, z) 1 -' (x, -y, -z). 

" (x, y, yz + x222 + z5). All higher (5, s)-transversals are empty. 

" (x, y, yz + x222). This has (5,3)-transversal {(0,0, xz4)} giving two orbits 
to consider as (x, y, yz+x2z2+xz4) "A (x, y, yz+x2z2 -xz4) via the change 
of coordinates (x, y, z) @- (-x, y, z); 

(x, y, yz + x222 + xz4) (p), 
(x) y, yz + x222) (p)" 
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So we have three JA5-orbits over (x, y, yz + x222): 

(x, y, yz + x222 + z5) (E), 
(x, y, yz+x222 +xz4) (p), 

(x, y, yz+x222) ( )" 

The (5,1)-transversal for (E) is empty; the first non -empty (5, s)-transversal 
being the (5,9)-transversal {(0,0, x4z)}; all higher (5, s)-transversals being empty. 
This gives three JA5-orbits over (x, y, z3 + y2z): 

(x, y, z3 + (y2 + x4)z) 5-determined, 
(x, y, z3 + y2z) (p), 

(x, y, z3 + (y2 - x4)z) 5-determined. 

The (5,1)-transversal for (E') is empty; the first non-empty (5, s)-transversal 
being the (5,9) -transversal {(0,0, y4z)}; all higher (5, s)-transversals being empty. 
This gives three JA5-orbits over (x, y, z3 - x2z): 

(x, y, z3 - (x2 - y4)z) 5-determined, 
(x, y, z3 - x2z) (9), 

(x, y, z3 - (x2 + y4)z) 5-determined. 

The (5,1)-transversal for (F) is {(0,0, z5)} giving three orbits to consider; 

" (x, y, yz2 + x2z + z4 + z5); all higher (5, s)-transversals being empty. 

" (x, y, yz2 + x2z + z4); all higher (5, s)-transversals being empty. 

" (x, y, yz2 + x2z + z4 - z5); all higher (5, s)-transversals being empty. 

So we have three JA'-orbits over (x, y, yz2 + x2Z + z4): 

(x, y, yz2 + x2z + z4 + z5) 
(x, y, yz2 + x2z + z4) 
(x, y, yz2 + x2z + z4 - z5) 

5-determined, 
(F), 
5-determined. 
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The (5,1)-transversal for (G) is {(0,0, z5)} giving us the orbit (x, y, yz2 + 
x2 z+ xz3 + az5) to consider. This has (5,3)-transversal { (0,0, xz9) } which gives 
us three JA5-orbits over (x, y, yz2 + x2z + xz3): 

(x, y, yz2 + x2z + xz3 + az5 + xz4) (G), 
(x, y, yz2 + x2z + xz3 + az5) (p), 
(x, y, yz2 + x2z + xz3 + az5 - xz4) (G'). 

The (5,1)-transversal for (H) is 1 (0,0, z5)} giving us the 2-parameter family 

fa, b = (x, y, yz2 + z4 + xz3 + ax3z + bz5). 

The tangent space contains the vectors (0,0, x3z) and (0,0, z5) except when 
ba + 9ba = 0. This gives us the following regions: -22 

(iii) 
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So we have eight regions of the (a, b)-plane to consider (as 1 is A-equivalent 
to 2 via the change of coordinates (x, y, z) ý--ý (-x, y, -z) . 

Similarly 3 -A 4 

and 5 -A 6. 

" 1. This is the region defined by a-0, b>0. This is a connected set and 
has constant codimension 7. So by the Mather Lemma all these orbits are 

contained in a single A-orbit. For its representative we take (x, y, yz2 + 

z4 + xz3 - x3z + z5). 

" 3. This is the region defined by 0<a<6, b>0. This is a connected 

set and has constant codimension 7. So by the Mather Lemma all these 

orbits are contained in a single A-orbit. For its representative we take 
(x, y, yz2 + z4 + xz3 + lox3z + z5). 

" 5. This is the region defined by a>s, b>0. This is a connected set and 
has constant codimension 7. So by the Mather Lemma all these orbits are 
contained in a single A-orbit. For its representative we take (x, y, yz2 + 
z4 + xz3 + x3z + z5). 

" (i). This is the line a=0. Along this line we have constant codimension 8. 

For our representative we take (x, y, yz2 + z4 + xz3 + z5). 

" (ii). This is the line a=s. Along this line we have constant codimension 
8. For our representative we take (x, y, yz2 + z4 + xz3 + sx3z + z5). 

" (iii). This is the line b=0. Along this line we have constant codimension 
8. For our representative we take (x, y, yz2 + z4 + xz3 + x3z). 

" (iv). This is the pont (a, b) _ (s, 0). At this point we have codimension 8. 

" (v). This is the pont (a, b) _ (0,0). At this point we have codimension 8. 

So we have the following eight orbits to consider: 

(x, y, yz2 + z4 + xz3 - x3z + z5) (p), 

\x, y, yZ2 + z4 + xz3 + 
lLx3z 

+ z5ý (p), 

(x, y, yz2 + z4 + xz3 + x3z + z5) 
(x, y, yz2 + z4 + xz3 + z5) ýiºý, 

ýx, y, yz2 + z4 + xz3 + sx3z + z5ý 
(x, y, yz2 + z4 + xz3 + x3z) 
ýx, 2f, yz2 + z4 + xz3 + sx3z) 
(x, y) yz2+z4+xz3) 

(bý" 
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All the above have exceeded the codimension limit so we need not consider any 
higher (5, s)-transversals. 

6.3.6 The 6-Jets 

The (6,1)-transversal for (A) is {(0,0, z6)} giving two orbits to consider (since 

(x, y, yz + xz2 + z6) -A (x, y, yz + xz2 - z6) via the change of coordinates 
(x, y, z) 1) (-x, -y, z) and (u, v, w) 1- + (-u, -v, -w)); 

" (x, y) yz + xz2 + z6); all higher (6, s)-transversals are empty. 

" (x, yz+xz2) has (6,3)-transversal {(0,0, xz5)}; all higher (6, s)-transversals 
being empty. 

This gives us three JA6-orbits (as (x, y, yz + xz2 + xz5) -A (x, y, yz + xz2 - xz5 ) 

via the change of coordinates (x, y, z) &) (x, -y, -z)) over (x, y, yz + xz2): 

(x, y, yz + xz2 + z6) (A), 

(x, y, yz + xz2 + xz5) (B), 
(x, y, yz + xz2) (#)" 

The (6,9)-transversal for (B) is {(0,0, x4z2)} which gives us three orbits to 

consider; 

(x, y, yz + z4 + x422) (i), 
(x, y, yz + z4) (ii), 
(x, y, yz +Z 4- x422) (iii). 

All higher (6, s)-transversals are empty in each case, giving three JA6-orbits over 
(x, y, yz+z4): 

(x, y, yz + z4 + x4z2) 6-determined, 
(x, y, yz + z4) (p), 
(x, y, yz + z4 - x422) 6-determined. 

The (6,1)-transversal over (C) is {(0,0, z6)} giving two orbits to consider as 
(x, y, yz + xz3 + z5 + z6) A (x, y, yz + xz3 + z5 - z6) via the change of coordinates 
(x, y, z) H (x, y, -z) and (u, v, w) &i (u, v, -w); 
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" (x, y, yz + xz3 + z5 + z6); all higher (6, s)-transversals are empty. 

" (x, y, yz + xz3 + z5); all higher (6, s)-transversals are empty. 

So we have two JA6-orbits over (x, ,, yz + xz3 + z5): 

(x, y, yz + xz3 + z5 + z6) 6-determined, 
(x, y, yz + xz3 + z5) (C) 

" 

The (6,1)-transversal over (D) is {(0,0, z6)}; this gives us two orbits to con- 
sider (since (x, y, yz + xz3 + z6) ý A(x, y, yz + xz3 - z6) via the change of coor- 
dinates (x, y, z) E---> (x, y, -z)); 

" (x, y, yz + xz3 + z6). All higher (6, s)-transversals are empty. 

" (x, y, yz+xz3). This has (6,3)-transversal {(0,0, xz5)} giving the 1 -parameter 
family 

(X, y, yz + xz3 + axz5). 

The tangent space contains the vector (0,0, xzs) for all values of a and 
therefore is an A-trivial family. 

So we have two JA-orbits over (x, y, yz + xz3): 

(x, y, yz+xz3+z6) (D), 
(x, y, yz + xz3) (#). 

The (6,1)-transversal over (E) is 1 (0,0, zs)} giving three orbits to consider; 

(x, y, yz + x222 + z5 + z6) (i), 
(x, y, yz + x222 + z5) (ii), 
(x, y, yz + x222 + z5 - z6) (iii). 

" (x, y, yz + x2z2 + z5 + z6). All higher transversals are empty. 

" (x, y, yz + x222 + z5). All higher (6, s)-transversals are empty. 

" (x, y, yz + x222 + z5 - z6). All higher (6, s)-transversals are empty. 
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This gives us three JA6-orbits over (x, y, yz + x222 + z5): 

(x, y, yz + x222 + z5 + z6) (E), 
(x, y, yz + x222 + z5) (b), 
(x, y, yz + x222 +Z 5- z6) (E'). 

All (6, s)-transversals over (F) are empty. So we have one JA'-orbit over 
(x, y, yz2 + x2z + z4): 

(x, y, yz2 + x2z + z4) (F). 

The (6,1)-transversal for (G) is {(0,0, z6)} giving the 2-parameter family 

fa, b = (x, y, yz2 + x2z + xz3 + az5 + xz4 + bz6) 

The tangent space contains the vectors (0,0, z5) and (0,0, zs) except when 
either b=0, a=-4, a=-2 or a=- lo giving the following regions: 

(1) (ii) (iii) b 

A 
O' 

i 
i 

i (v) (vi) ii (vii) 

0 0 

i -i 
ii 

i 

i 

i 

0 

a 
(iv) 
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So we have fifteen regions of the (a, b)-plane to consider 

" A. This is the region defined by a< -4, b>0. This is a connected 
set and has constant codimension 7. So by the Mather Lemma all these 
orbits are contained in a single A-orbit. For its representative we take 
(x, y, yz2 + x2z + xz3 - 2z5 + xz4 + z6). 

" B. This is the region defined by a<-4, b<0. This is a connected 
set and has constant codimension 7. So by the Mather Lemma all these 

orbits are contained in a single A-orbit. For its representative we take 
(x, y, yz2 + xzz + xz3 - 2z5 + xz4 - z6). 

" C. This is the region defined by -4<a<-2, b>0. This is a connected 
set and has constant codimension 7. So by the Mather Lemma all these 

orbits are contained in a single A-orbit. For its representative we take 
(x, y, yz2 + x2z + xz3 - z5 + xz4 + z6). 

" D. This is the region defined by -a <a<-Z, b<0. This is a connected 

set and has constant codimension 7. So by the Mather Lemma all these 

orbits are contained in a single A-orbit. For its representative we take 
(x, y, yz2 + x2z + xz3 - z5 + xz4 - z6). 

" E. This is the region defined by -Z<a<-1, b>0. This is a connected 10 
set and has constant codimension 7. So by the Mather Lemma all these 

orbits are contained in a single A-orbit. For its representative we take 

(x, y, yz2 + x2z + xz3 -5 z5 + xz4 + z6). 

" F. This is the region defined by -2 <a< -lo, b<0. This is a connected 

set and has constant codimension 7. So by the Mather Lemma all these 

orbits are contained in a single A-orbit. For its representative we take 
(x, y, yz2 + x2z + xz3 -5 z5 + xz4 - z6). 

" G. This is the region defined by a> --I, b>0. This is a connected 10 
set and has constant codimension 7. So by the Mather Lemma all these 

orbits are contained in a single A-orbit. For its representative we take 
(x, y, yz2 + x2z + xz3 + z5 + xz4 + z6). 

" H. This is the region defined by a>-ö, b<0. This is a connected 

set and has constant codimension 7. So by the Mather Lemma all these 

orbits are contained in a single A-orbit. For its representative we take 
(x, y, 'lz2 + x2z + xz3 + z5 + xz4 - z6). 
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" (i) This is the line a=-4. Along this line we have constant codimension 
7. For our representative we take (x, y, yz2 + x2z + xz3 - z5 + xz4 + z6). 

" (ii) This is the line a=-2. Along this line we have constant codimension 
7. For our representative we take (x, y, yz2 + x2z + xz3 - 

? 
z5 + xz4 + z6). 

" (iii) This is the line a=-ö. Along this line we have constant codimension 
7. For our representative we take (x, y, yz2 + x2z + xz3 - löz5 + xz4 + z6). 

" (iv) This is the line b=0. Along this line we have constant codimension 7. 
For our representative we take (x, y, yz2 + x2z + xz3 + z5 + xz4 ). 

" (v). This is the pont (a, b) = (-4,0). At this point we have codimension 7. 

" (vi). This is the pont (a, b) _ (-. 
, 0). At this point we have codimension 

7. 

" (vii). This is the pont (a, b) _ (- 
lo, 0). At this point we have codimension 

7. 

So we have the following fifteen orbits to consider: 

(x, y, yz2 + x2z + xz3 - 2z5 + xz4 + z6) (p), 

(x, y, yz2 + x2z + xz3 - 2z5 + xz4 - z6) (#), 
(x, y, yz2 + xzz + xz3 - z5 + xz4 + z6) 

(3), 

(x, y) yz2 + x2z + xz3 - z5 + xz4 - z6) (#), 
(x, y, yz2 + x2z + xz3 - 5z5 + xz4 + z6) (N), 

(x, y, yz2 +x2Z+ xz3 - 
5z5 + xz4 - z6) (p), 

(x, y, yz2 + x2z + xz3 + z5 + xz4 + Z6) (b), 

(x, y, yz2 + x2z + xz3 + z5 + xz4 - z6) (N), 

(x, y, yz2 + x2z + xz3 - 
4z5 + xz4 + z6) 

(N), 

(x, y, yz2 + x2z + xz3 - Zz5 + xz4 + z6) (b), 
(x, y, yz2 + x2z + xz3 - oz5 + xz4 + z6) (p), 
(x, y, yz2 + x2z + xz3 + z5 + xz4) (#), 
(x, 1J, ZI z2 + x2z + xz3 - 4z5 + xz4) (1+), 

(x, y, yz2 + x2z + xz3 - 2z5 + xz4) (ý+), 

(x, y, yz2 + x2z + xz3 -Ö z5 + xz4) (1+), 

All the above have exceeded the codimension limit so we need not consider any 
higher (6, s)-transversals. 
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The (6,1)-transversal over (G') is 1 (0,0, z6)} giving the 2-parameter family 

(x) y, yz2 + x2z + xz3 + az5 - xz4 + bzs). 

This follows a similar pattern as (G) and so we have the following fifteen 

orbits: 

(x, y, yz2 + x2z + xz3 - 2z5 - xz4 + z6) (#), 
(x, y, yz2 + x2z + xz3 - 2z5 - xz4 - z6) (p), 

(x, y, yz2 + x2z + xz3 - z5 - xz4 + z6) (1+), 

(x, y, yz2 + x2z + xz3 - z5 - xz4 - z6) (b), 
(x, y, yz2 + x2z + xz3 - Sz5 - xz4 + z6) (b), 

(x, y, yz2 + x2z + xz3 - 5z5 - xz4 - z6) (#), 

(x, y, yz2 + x2z + xz3 + z5 - xz4 + z6) (u), 

(x, y, yz2 + x2z + xz3 + z5 - xz4 - z6) ( ), 
(x, y, yz2 + x2z + xz3 - 4z5 - xz4 + z6) (e), 

(x, y, yz2 + x2z + xz3 - 2z5 - xz4 + z6) (J), 

(x, y, yz2 + x2z + xz3 -3 
Z5 

- xz4 + z6) (p), 

(x, y, yz2 + x2z + xz3 + z5 - xz4) (N), 

(x, y, yz2 + x2z + xz3 - 4z5 - xz4) (p), 

(x, y, yz2 + x2z + xz3 - 2z5 - xz4) (b), 
(x, y, yz2 + x2z + xz3 - 

lo z5 - xz4) (p), 

All the above have exceeded the codimension limit so we need not consider any 
higher (6, s)-transversals. 
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6.3.7 The 7-Jets 

All (7, s)-transversals over (A) are empty giving one JA7-orbit over (x, y, yz + 

xz2 + z6): 

(x, y, yz+xz2+z6) (A). 

The (7,1)-transversal over (B) is {(0,0, z7)} giving two orbits to consider 
as (x, y, yz + xz2 + xz5 + z7) NA (x, y, yz + xz2 + xz5 - z7) via the change of 
coordinates (x, y, z) a) (-x, -y, z) and (u, v, w) H (-u, -v, -w) 

" (x, y, yz + xz2 + xz5 + z7). All higher (7, s)-transversals are empty. 

" (x, y, yz + xz2 + xz5). All higher (7, s)-transversals are empty. 

So we have two JA7-orbits over (x, y, yz + xz2 ± xz5): 

(x, y, yz + xz2 + xz5 + z7) (B), 

(x, y, yz + xz2 + xz5) (f ý). 

The (7,1)-transversal over (C) is 1 (0,0, z')} giving us the 1-parameter family 

fn 
- 

(x, y, YZ + xz3 + z5 + aZ7). 

The tangent space contains the vector (0,0, z7) for all values of a so we have 

one orbit: 

(x, y, yz + xz3 + z5) 7-determined. 
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The (7,1)-transversal over (D) is {(0,0, z7)} giving two orbits to consider as 
(x, y, yz + xz3 + z6 + z7) A (x, y, yz + xz3 + z6 - z7) via the change of coordinates 
(x, y, z) 1 -' (-x, -y, -z); 

" (x, y, yz + xz3 + z6 + z7). All high, -r (7, s)-transversals are empty. 

" (x, y, yz + xz3 + z6). All higher (7, s)-transversals are empty. 

So we have two JA7-orbits over (x, y, yz + xz3 + z6): 

(x, y, yz+xz3+z6+z1) (C), 

(x, y, yz+xz3+z6) (#). 

The (7,1)-transversal over (E)((E') respectively) is {(0,0, z')} giving the 1-- 
parameter family 

(x) y, yz + x2z2 + xz5 ± z6 + az7). 

All higher (7, s)-transversals are empty. This gives one JA7-orbit over (x, y, yz + 

x2z2 + z5 + z6): 

(x, y, yz + x222 + z5 + z6 + az7) 7-determined. 

and one JA7-orbit over (x, y, yz + x222 + xz5 - z6): 

(x, y, yz + x222 + z5 - z6 + az7) 7-determined. 

The (7, l)-transversal for (F) is 1 (0,0, z7)} giving three orbits to consider; 

" (x, y, yz2 + x2z + z4 + z7). All higher (7, s)-transversals are empty. 

" (x, y, yz2 + x2z + z4). All higher (7, s)-transversals are empty. 

" (x, y, yz2 + x2z + z4 - z7). All higher (7, s)-transversals are empty. 
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This gives three JA7-orbits over (x, y, yz2 + x2z + z4): 

(x, y, yz2 + x2z + z4 + z7) 7-determined, 
(x, y) yz2 + x2z + z4) (b), 

(x, y, yz2 + x2z + z4 - z7) 7-determined. 

6.3.8 The 8-Jets 

The (8, l)-transversal for (A) is 1 (0,0, z8)} giving us three orbits to consider 

" (x, y, yz + xz2 + zs + z8); all higher (8, s)-transversals are empty. 

" (x, y, yz + xz2 + zs); all higher (8, s)-transversals are empty. 

" (x, y, yz + xz2 + zs - z8); all higher (8, s)-transversals are empty. 

So we have three JAB-orbits over (x, y, yz + xz2 + z6): 

(x, y, yz+xz2+z6+z8) (A), 

(x, y, yz+xz2+z6) (B), 

(x, y, yz+xz2+z6 -z8) 
(A'). 

All (8, s)-transversals over (B) are empty, giving us one JA-orbit over (x, y, yz+ 
xz2 + xz5 + z7): 

(x, y, yz + xz2 + xz5 + z7) (C). 

The (8,1)-transversal over (C) is {(0,0, z8)} giving the 1-parameter family 

(x, y, yz + xz3 + z6 + z7 + az8). 

All higher (8, s)-tranversals are empty. This gives one JA8-orbit over (x, y, yz + 

xz3 + z6 + z7): 

(x, y, yz + xz3 + z6 + z7 + az8) (D). 
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6.3.9 The 9-Jets 

The (9,1)-transversal over (A) ((A') respectively) is {(0,0, z9)} giving the 1- 
parameter family 

(x, y, yz + xz2 + z6 ± z8 + az9). 

All higher (9, s)-transversals are empty. This gives one JA9-orbit over (x, y, yz + 
xz2 + z6 + z8): 

(x, y, yz + xz2 + z6 + z$ + az9) 9-determined. 

and one JAI-orbit over (x, y, yz + xz2 + z6 - z8): 

(x) y, yz + xz2 + z6 - z8 + az9) 9-determined. 

The (9,1)-transversal over (B) is { (0,0, z9) } giving two orbits to consider 
since (x, y, yz + xz2 + z6 + z9) 0, A 

(x, y, yz + xz2 + zs - z9) via the change of 

coordinates (x, y, z) a---º (x, -y, -z); 

" (x, y, yz + xz2 + z6 + z9). All higher (9, s)-transversals are empty. 

" (x, y, yz + xz2 + z6). All higher (9, s)-transversals are empty. 

This gives two JA9-orbits over (x, y, yz + xz2 + z6): 

(x, y, yz + xz2 + z6 + z9) 
(x, y, yz+xz2+z6) 

9-determined, 
(p)" 
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The (9,1)-transversal over (C) is 1 (0,0, z9)} giving the 1-parameter family; 

(x, y, yz + xz2 + xz5 + z7 + az9). 

All higher (9, s)-transversals are empty. This gives one JA9-orbit over (x, y, yz + 
xz2 + xz5 + z7): 

(x, y, yz + xz2 + xz5 + z7 + az9) (A). 

All (9, s)-transversals over (D) are empty. This gives one JA9-orbit over 
(x, y, yz + xz3 + z6 + z7 + az8): 

(x, y, yz-+-xz3+z6+z7+az8) (B). 

6.3.10 The 10-Jets 

The (10,1)-transversal over (A) is {(0,0, z1°)}; all higher (10, s)-transversals are 

empty. This gives one JA"-orbit over (x, y, yz + xz2 ± XZ5 + z7 + az9): 

(x) y, yz + xz2 ± xz5 + z7 + az9 + bz10) (A). 

All (10, s)-transversals over (B) are empty. This gives one JA1°--orbit over 
(x, y, yz + xz3 ± zs + z7 + az8): 

(x, y, yz+xz3±z6+z7+az8) (B). 

6.3.11 The 11-Jets 

The (11,1)-transversal over (A) is {(0,0, z'1)}; all higher (11, s)-transversals are 

empty. This gives one JA"-orbit over (x, y, yz + xz2 ± xz5 + z7 + az9 + bz1°): 

(x, y, yz+xz2±xz5+z7+az9+bz1°+czll) (b). 
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The (11,1)-transversal over (B) is 1(0,0, z")1, all higher (11, s)-transversals 
are empty. This gives one JA"-orbit over (x, y, yz + xz3 ± z6 + z7 + az8): 

(x, y, yz+xz3±z6+z7+az8+bz11) (b). 

The 12-transversals for both of the above 11-jets are empty but to check the 
determinacy condition we would need to check transversals upto and including 
the 18-transversal. Unfortunately running these calculations we have found that 
we run out of CPU time even on an intensive machine. 
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We now consider the corank 2 case (B). 

6.3.12 The 2-Jets 

If we have a map-germ f: ]R3,0 -- k ]R3,0 with corank 2, i. e. f has rank 1 we 
can apply a change of coordinates so that j2 f has the following form 

f (x, y, z) = (x, 4'i (y, z) + 'pixy + naxz, q2 (y, Z)+ u3xy + u4xz), 

where q1, q2 are quadratic forms. Using the technique in [B5] we consider the 

pencil of quadratic forms (q1, q2) under the action of Gl(2, R) x G1(2, H). This 

gives us 7 orbits in the space of such pencils:. 

(yz, y2 + z2) 
(yz, y2 - z2) 

(yz, y2) 
(y2 + z2,0) 

(y Z, 0) 
(y2,0) 

(0,0) 

We will consider each of these as a separate cases. 

" (yz, y2 + z2) 
With this as our pencil we have the following 2-jet: 

(x, yz+axy+bxz, y2 fz2 +cxy+dxz). 

Using the change of coordinates 

y --º y+ ax 
z '--p z+ , ßx 

we get the following: 

(x, yz + x(az + ßy) + ä, ßx2 + axy + aax2 + bxz + b/3x2, 

y2 + 2axy + a2x2 + z2 + 2/3xz + /32x2 + cxy + cax2 + dxz + d/3x2) 

Now killing the x2-terms by a change of coordinates in the target and 
putting 0= -a and a= -b we get the following normal form 
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j2 f= (x, yz, y2 + z2 + Axy + Bxz). 

Firstly, consider the case A 54 0. In this case we can scale A to 1, giving us 
the 1-parameter family, fB: 

fig = (x, yz, yz + z2 + xy + Bxz). 

In J2(3,3) the tangent space to the A2-orbit of fa all have codimension 
4 and contain the vector (0,0, xz) except for B2 = 1. This gives us five 
JA2-orbits to consider: 

(x, yz, y2 + z2 + xy) 2-determined, 
(x, yz, y2 + z2 + xy + 2xz) 2-determined, 
(x, yz, y2 + z2 + xy - 2xz) 2-determined, 
(x, yz, y2 + z2 + xy + xz) (C), 
(x, yz, y2 + z2 + xy - xz) (C'). 

Now (C) and (C') are A-equivalent by the change of coordinates z' --i -z. 
Similarly, (x, yz, y2 + z2 + xy + 2xz) is A-equivalent to (x, yz, y2 + z2 + xy - 
2xz) for the same reason. So we have 3 JA2-orbits. 

(x, yz, y2 + z2 + xy) 2-determined, 
(x, yz, y2 + z2 + xy + 2xz) 2-determined, 
(x, yz, y2 + z2 + xy + xz) (C), 

We know that when B2 =1 the codimension increases by one but for B=0 

and B>1 the codimension is the same and we wish to show that these 
two orbits are in fact the same. We do this by considering the 2--parameter 
family, (x, yz, y2 + z2 + Axy + Bxz) in the (A, B)-plane. We can apply the 
following changes of coordinates: 

1. scaling x: this is invariant in the (A, B)-plane; 

2. (x, y, z) i---ý (x, z, y): this gives a reflection in the line A=B; 

3. (x, y, z) H (x, y, -z): this gives a reflection in the line A=0; 

4. (x, y, z) (x, -y, z): this gives a reflection in the line B=0; 

5. (x, y, z) "---* (x, -z, -y): this gives a reflection in the line A= -B. 
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So we have the following diagram: 

So using our changes of coordinates we find that all eight segments of the 

above are A-equivalent and therefore 

(x, yz, y2 + z2 + xy) 'A (x, yz, y2 + z2 + xy + 2xz). 

So we have two J2-orbits: 

(x, yz, y2 + z2 + xy) 2-determined, 
(x, yz, y2 + z2 + xy + xz) (C). 

If, on the other hand, A=0 then we have 

(x, yz, y2 ± z2 + Bxz). 

If B#0 we have (x, yz, y2 + z2 + xz) which is A-equivalent to (x, yz, y2 + 
z2 + xy); and if B=0 then we have 

(X, yz, y2 + z2) (D). 
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" (yz, y2 - z2). 

With this as our pencil we have the following 2-jet: 

(x, yz + axy + bxz, y2 - z2 + cxy + dxz). 

Using the change of coordinates 

y i--ý y+ax 
z '--p z+ox 

we get the following: 

(x, yz + x(az + ßy) + ä, ßx2 + axy + aax2 + bxz + b/. 3x2, 

y2 + 2axy +a2x2- z2 - 2,3xz - , 32x2 + cxy + cax2 + dxz + d/3x2) 

Now killing the x2-terms by a change of coordinates in the target and 
putting 0= -a and a= -b we get the following normal form 

j2f = (x, yz, y2 - z2 + Axy + Bxz). 

Firstly, consider the case A 0. In this case we can scale A to 1, giving us 
the 1-parameter family, fB: 

fa = (X, yz, y2 - z2 + xy + Bxz). 

In J2(3,3) the tangent space to the A2-orbit of fa all have codimension 4 

and contain the vector (0,0, xz). 

This gives us one orbit: 

(x) yz, y2 - z2 + xy) 2-determined. 

If on the other hand, A=0 then we have the 1-parameter family: 

(x, yz, y2 - z2 + Bxz). 
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If B0 then we have (x, yz, y2-z2+xz) (this is A-equivalent to (x, yz, y2- 
z2 - xz) via the change of coordinates x i--º -x), but this is A-equivalent 
to (x, yz, y2 - z2 + xy). If B=0 then we have 

(X, yz, y2 - z2) (D'). 

" (yz, y2) 

With this as our pencil we have the following 2-jet: 

(x, yz + axy + bxz, y2+ cxy + dxz). 

Using the change of coordinates 

y i--* y+ax 
z ý--* z+3x 

we get the following: 

(x, yz + x(az + , 
ßy) + a, Qx2 + axy + aax2 + bxz + b/3x2, 

y2+2axy+a2x2+cxy+cax2+dxz+d, Qx2) 

Now killing the x2-terms via a change of coordinates in the target and 
putting 0= -a and a= -b we get the following normal form 

j2f = (x, yz, y2 + Axy + dxz). 

Firstly, consider the case A 0. In this case we can scale A to 1, giving us 
the 1-parameter family, fd: 

fd = (x, yz, y2 + xy + dxz). 
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In j2 (3,3) the tangent space to the A2-orbit of fd all have codimension 5 

and contain the vector (0,0, xz) except for d=0. This gives us two JA2- 

orbits since (x, yz, y2 + xy + xz) 'A (x, yz, y2 + xy - xz) via a change of 

coordinates : 

(x, yz, y2 + xy + xz) (E), 
(x, 

yz, y2 + xy) (F). 

If, on the other hand, A=0 then we have 

(x, yz, y2 + dxz). 

We can scale this to give us: 

(x, yz, y2 + xz) (G). 

Finally if d=0 we get: 

(x, yz, y2) (p)" 

" (y2 + z2,0) 

With this as our pencil we have the following 2 -jet: 

(x, y2+z2+axy+bxz, cxy+dxz). 

Using the change of coordinates 

y '-9 y+ax 
z '--p z +, 3x 

we get the following: 

(x, y2 + 2axy + a2x2 + z2 + 20xz + 02x2 

+axy + aax2 + bxz + bßx2, cxy + cax2 + dxz + d/3x2) 
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Now killing the x2-terms via a change of coordinates in the target and 
putting, 3 = -a/2 and a= -b/2 we get the following form: 

j2f = (x, y2 + z2, cxy + dxz). 

Assuming c00 we get the 1-parameter family fd: 

fd = (x, Y2 + z2, xy + dxz). 

In J2(3,3) the tangent space to the A2-orbit of fd all have codimension 6 

and contain the vector (0,0, xz) so we have one JA2-orbit: 

(x, y2 + z2, xy) (H). 

If c=0 we get the 1-parameter family fd: 

fd = 
(x, y2 + z2, dxz). 

In J2(3,3) the tangent space th the A2-orbit of fd have codimension 6 and 

contain the vector (0,0, xz) except when d=0 giving two jA2 -orbits as 
(x, y2 + z2, xz) A 

(x, y2 + z2, -xz): 

(x, y2 + z2, xz) A-equivalent to (H), 
(x, y2 +Z 2,0) (#). 

" (yz, 0) 

With this as our pencil we have the following 2-jet: 

(x, yz + axy + bxz, cxy + dxz). 

Using the change of coordinates 

yH y+ax 
z ý----º z+ ßx 

we get the following: 
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(x, yz+x(az+ßy)+ca, ßx2+axy+aax2+bxz+bßx2, cxy+cax2+dxz+dßx2) 

Now killing the x2-terms via a change of coordinates in the target and 

putting 0= -a and a= -b we get the following normal form 

j2 f= (x, yz, cxy + dxz). 

Assuming c 54 0 we get the 1-parameter family fd: 

fd=(x, yz, xy+dxz). 

Again assuming d0 we can scale to get: 

(x, yz, xy + xz) (I). 

If d=0 we have 

(x, yz, xy) (p). 

If c=0 we have the 1-parameter family fd: 

(x, yz, dxz). 

Assuming d0 we can scale to get: 

(x, yz, xz) A-equivalent to (x, yz, xy). 

Finally if d=0 we have: 

(x, yz, 0) (u). 
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So there are fourteen JA'-orbits over (x, 0,0). 

(x, yz, y2 + z2 + xy) 2-determined, 
(x, yz, y2 - z2 + xy) 2-determined, 
(x, yz, y2 + z2 + xy + xz) (C), 
(x, yz, y2 + z2) (D), 
(x, yz, y2 - z2) (D'), 

(x, yz, y2 + xy + xz) (E), 
(x, yz, y2 + xy) (F), 
(x, yz, y2 + xz) (G), 
(x, yz, y2) (b), 
(x, y2 + z2, xy) (H), 

(x, y2 + z2,0) (N), 

(x, yz, xy + xz) (I), 
(x, yz, xy) O, 

(x, yz, 0) (#)" 
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6.3.13 The 3-Jets 

A (3,5)-transversal for (C) is {(0, y3,0)} giving us two orbits to consider since 
(x, yz + y3, y2 + z2 + xy + xz) A (x, yz - y3, y2 + z2 + xy + xz) via the change 
of coordinates (x, y, z) 1-- ' (-x, -y, -z): 

0 (x, yz + y3, y2 + z2 + xy + xz) 

This has (3,7)-transversal {(0, x2y, 0)}. The tangent space contains the 

vector (0, x2y, 0) except when a=-6 giving three orbits: 

(x, yz + y3, y2 + z2 + xy + xz) (i), 
(x, yz + y3 - x2y, y2 + z2 + xy + xz) (ii), 
(x, yz + y3 -3 x2y, y2 + z2 + xy + xz) (iii). 

All higher (3, s)-transversals are empty in each case. 

" (x, yz, y2 + z2 + xy + xz) 

This has (3,7) -transversal {(0, x2y, 0)} giving two orbits since (x, yz + 

x2y, y2 + z2 + xy + xz) 'A (x, yz - x2y, y2 + z2 + xy + xz) via the change 

of coordinates (x, y, z) 1) (-x, -y, -z): 

(x, yz + x2y) y2 + z2 + xy + xz) (iv), 
(x, yz, y2 + z2 + xy + xz) (v)" 

So we have five JA3-orbits over (x, yz, y2 + z2 + xy + xz): 

(x, yz + y3, y2 + z2 + xy + xz) 3-determined, 
(x, yz + y3 - x2y, y2 + z2 + xy + xz) 3-determined, 
(x, yz + y3 - sx2y, y2 + z2 + xy + xz) (F), 
(x, yz + x2y, y2 + z2 + xy + xz) (G), 
(x, yz, y2 + z2 + xy + xz) (#). 

A (3,4)-transversal for (D) is {(0,0, y3)} giving us two orbits to consider 

since (x, yz, y2 + z2 + y3) A (x, yz, y2 + z2 - y3) via the change of coordinates 
(x, y, z) 0 -' (x, -y, -z); 

" (x, yz, y2 + z2 + y3). This has (3,5) -transversal {(0, y3,0)} giving the 1-- 

parameter family 
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fQ = (x, yz + ay3, y2 + z2 + y3). 

The tangent space contains the vector (0, y3,0) except when a=f?. So 
we have five orbits; 

(x, yz + y3, y2 + z2 + y3) (i), 
(x, yz + 2y3, y2 + z2 + y3) (ii), 
(x, yz, y2 + z2 + y3) (iii), 
(x, yz - 2y3, y2 + z2 + y3) (iv), 
(x, yz - y3, y2 + z2 + y3) (v). 

(i) has (3,6) -transversal 1 (0,0, x2y)} giving the 1-parameter family 

f. = (x, yz+y3, y2+z2 +y3 +ax2y)" 

Now the tangent space contains the vector (0,0, x2y) except when a=0. 
So we have three orbits to consider; 

(x, yz+y3, y2+z2+y3+x2y) (a), 
(X, yz + y3, y2 + z2 + y3) (b), 
(x, yz + y, y2 +Z 2 +y 3-2 3 xy) (c)" 

Now (a) has (3,7) -transversal {(O, x2y, O)} giving the 1-parameter family 

fa = (x, yz + y3 + ax2y, y2 + z2 + y3 + x2y)" 

(b) has (3,7)-transversal {(0, x2y, 0)} giving the 1-parameter family 

fa = (x, yz + y3 + ax2y, y2 + z2 + y3). 

The tangent space contains the vector (0, x2 y, 0) except when a=0. So we 
have three orbits; 

(x, yz + y3 + x2y, y2 + z2 + y3), 
(x, yz + y3, y2 + z2 + y3), 
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(x, yz+y3 -x2y, y2+z2 +y3) 

(c) has (3,7)-transversal {(0, x2y, 0)} giving the 1-parameter family 

fa = (x, yz + y3 + ax2y, y2 + z2 + y3 - x2y)" 

(ii) has (3,6)-transversal 1 (0,0, x2y)} giving the 1-parameter family 

Ia = (x, yz +1y31 y2 + z2 + y3 + ax2y)" 

The tangent space contains the vector (0,0, x2y) except when a=0 giving 
three orbits to consider: 

(x, yz + Zy3, y2 + z2 + y3 + x2y) (a), 
(x, yz + Zy3, y2 + z2 + y3) (b), 
(x, yz + 2y3, y2 + z2 + y3 - x2y) (c)" 

Now (a) has (3,7) -transversal {(0, x2y, 0) } giving the following 1-parameter 
family 

fa = (x, yz +1 y3 + ax2y, y2 + z2 + y3 + x2y). 

The tangent space contains the vector (0, x2y, 0) except when a=±2 giving 
us five orbits: 

(x, yz + 2y3 + x2y, y2 + z2 -- y3 + x2y), 
(x, yz+ 2y3+ Zx2y, y2+z2+y3+x2y), 

(x, yz+ 2y3, y2+z2+y3+x2y), 
(X, yz + 2y3 - 

2x2y, y2 + z2 + y3 + x2y), 
(x, yz + 2y3 - x2y, y2 + z2 + y3 + x2y)" 

(b) has (3,7)-transversal { (0, x2 y, 0) } giving the 1-parameter family 

fa = (x, yz +2 y3 + ax2y, y2 + z2 + y3). 

The tangent space contains the vector (0, x2y, 0) except when a=0 giving 
three orbits: 

(X, yz +2 y3 + x2y, y2 + z2 + y3), 
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(X, yz +2 y3, y2 + z2 + y3), 
(x, yz + 2y3 - x2y, y2 + z2 + y3) 

(c) has (3,7)-transversal {(0, x2y, 0) } giving the 1-parameter family 

fa= (x, yz +1 y3 + ax2y, y2 + z2 + y3 - x2y)" 

Again the tangent space contains the vector (0, x2y, 0) except for when 
a= : El giving five orbits: 

(x, yz +2 y3 + x2y, y2 + z2 + y3 - x2y), 
(x, yz + 2y3 + 2x2y, y2 + z2 + y3 - x2y), 

(x, yz + zy3, y2 + z2 + y3 - x2y), 
(x, yz + 2y3 - 

ix2y, y2 + z2 + y3 - x2y), 
(x, yz + 2y3 

- x2y, y2 + z2 + y3 - x2y)" 

Now (iii) gives similar results to (i), as does (v) and (iv) gives similar results 
to (ii). 

(x, yz, y2+z2). This has (3,5)-transversal {(0, y3,0) } giving the 1-parameter 
family 

fa = (x, yz + ay3, y2 + z2). 

The tangent space contains the vector (0, y3,0) except when a=0 giving 
two orbits to consider as (x, yz + y3, y2 + z2) - (x, yz - y3, y2 + z2) via the 
change of coordinates (x, y, z) '--i (x, -y, -z); 

(x, yz + y3, y2 + z2) (i), 
(x, yz, y2 + z2) (ii). 

(i) has (3,6)-transversal 1 (0,0, x2y)} giving the 1-parameter family 
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fa = (x, yz + y3, y2 + z2 + ax2y) " 

The tangent space contains the vector (0,0, x2 y) except when a=0 giving 
two orbits to consider as (x, yz + y3, y2 + zz + x2y) -A (x, yz + y3, y2 + z2 - 
x2y) via the change of coordinates (x, y, z) '---º (x, -y, z) and (u, v, w) '--p 
(u, -v, w); 

(x, yz + y3, y2 + z2 + x2y) (a), 

(x, yz+y3, y2+z2) (b). 

(a) has (3,7)-transversal 1 (0, x2y, 0) } giving the 1-parameter family 

fa = (x, yz + y3 + ax2y, y2 + z2 + x2y). 

The tangent space contains the vector (0, x2y, 0) except when a=1 giving 
three orbits: 

(x, yz + y3, y2 + z2 + x2y), 

(x, yz + y3 + 2x2y, y2 + z2 + x2y), 

(x, yz + y3 + x2y, y2 + z2 + x2y). 

All higher (3, s)-transversals are empty. 

(b) has (3,7)-transversal {(0, x2y, 0) } giving the 1-parameter family 

fl = (x, yz + y3 + ax2y, y2 + z2) 

The tangent space contains the vector (0, x2y, 0) except when a=0 giving 
three orbits: 

(x, yz+y3+x2y, y2+z2), 
(x, yz + y3, y2 + z2), 
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(x, yz + y3 - x2y, y2 + z2) 

The transversals for (D') are the same as above, giving us the following JA3- 

orbits over (x, yz, y2 f z2): 

(x, yz ± y3 + ax2y, y2 ± z2 + y3 + x2y) 3-determined, 
(x, yz±y3Ax2y, y2fz2+y3) (1), 
(x, yz+y3, y2±z2+y3) (e), 
(x, yz + y3 + ax2y, y2 ± z2 + y3 - x2y) 3-determined, 

(x, yz ±2 y3 + x2y, y2 ± z2 + y3 + x2y) (p), 
(x, yz + 2y3 + 2x2y, y2 ± z2 + y3 + x2y) (p), 
(x, yz ±2 y3, y2 ± z2 + y3 + x2y) (p), 
(x, yz + y3 + x2y, y2 ± z2 + y3) (p), 
(x, yz ± 2y3, y2 ± z2 + y3) (p), 
(x, yz + 2y3 ± x2y, y2 ± z2 + y3 - x2y) (p), 
(x, yz±zy3±Zx2y, y2+z2+y3-x2y) (u), 
(x, yz ± äy3, y2 ± z2 + y3 - x2y) (e), 
(x, yz + ax2y, y2 + z2 + y3 + x2y) 3-determined, 
(x, yz ± x2y, y2 + z2 + y3) (p), 

(x, yz, y2 ± z2 + y3) (p), 

(x, yz + ax2y, y2 ± z2 + y3 - x2y) 3-determined, 
(x, yz+y3, y2±z2+x2y) (p), 
(x, yz + y3 + 2x2y, y2 + z2 + x2y) (b), 
(x, yz + y3 + x2y, y2 + z2 + x2y) (#), 
(x, yz+y3+x2y, y2±z2) (p), 
(x, yz + y3, y2 ± z2) (p), 

(x, yz+y3-x2y, y2±z2) (p), 

(x, yz + x2y, y2 ± z2 + x2y) (e), 

(x, yz 2x2y, yz ± z2 + x2y) (e), 
(x, yz, y2 + z2 + x2y) (b), 
(x, yz±x2y, y2±z2) (u), 

(x, yz, y2 ± z2) (p), 

(x, yz ± x2y, y2 f z2 - x2y) (p), 

(x, yz ix2y, y2 ± z2 - x2y) (p), 
(x, yz, y2 ± z2 - x2y) (b) 

" 
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A (3,1)-transversal for (E) is {(0,0, z3)} giving us two orbits to consider as 
(x, yz, y2+xy+xz+z3) 'A (x, yz, y2+xy+xz-z3) via the change of coordinates 
(x, y, z) 1) (-x, -y, -z): 

" (x, yz, y2 + xy + xz + z3). All higher (3, s)-transversals are empty. 

" (x, yz, y2 + xy + xz). All higher (3, s)-transversals are empty. 

So we have two JA3-orbits over (x, yz, y2 + xy + xz): 

(x, yz, y2 + xy + xz + z3) (H), 
(x, yz, y2 + xy + xz) (I). 

A (3,1)-transversal for (F) is {(0,0, z3)} giving two orbits to consider as 
(x, yz, y2 + xy + z3) 'A (x, yz, y2 + xy - z3) via the change of coordinates 
(x, y, z) '-' (x, y, -z) : 

" (x, yz, y2 + xy + z3); this has (3,3)-transversal 1 (0,0, xz2)} giving the 1- 

parameter family 
(x, yz, y2 + xy + z3 + axz2). 

The tangent space contains the vector (0,0, xz2) except when a=0 giving 
us two orbits to consider as (x, yz, y2 + xy + z3 + xz2) NA (x, yz, y2 + xy + 

z3 - xz2) via the change of coordinates (x, y, z) i-- 1 (-x, -y, z): 

(x, yz, y2 + xy + z3 + xz2) (i), 

(x, yz, y2 + xy + z3) (ii). 

(i) has (3,5)-transversal 1 (0,0, x2z)} giving the 1-parameter family 

(x, yz, y2 + xy + z3 + xz2 + ax2z). 

All higher (3, s)-transversals are empty. 

(ii) has (3,5)-transversal {(0,0, x2z)} giving the 1-parameter family 
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(x, yz, y2 + xy + z3 + ax2z). 

The tangent space contains the vector (0,0, x2z) except when a=0 giving 
three orbits: 

(x, yz, y2 + xy + z3 + x2z), 
(x, yz, y2 + xy + z3), 

(x, yz, y2 + xy + z3 - x2z). 

All higher (3, s)-transversals are empty. 

" (x, yz, y2+xy). This has (3,3)-transversal {(0,0, xz2)} giving the 1-parameter 
family 

(x, yz, y2 + xy + axz2) 

The tangent space contains the vector (0,0, xz2) except when a=0 giving 
two orbits to consider as (x, yz, y2 + xy + xz2) «A (x, yz, y2 + xy - xz2) via 
the change of coordinates (x, y, z) 1 --i (-x, -y, z): 

(x, yz, y2 + xy + xz2) 
(x, yz, y2 + xy) (ii). 

(i) has (3,5)-transversal {(0,0, x2z)} giving the 1-parameter family 

(x, yz, y2 +xy+xz2 +ax2z). 

This is an A-trivial family. All higher (3, s)-transversals are empty. 

(ii) has (3,5)-transversal {(0,0, x2z)} giving the 1-parameter family 

(x, yz, y2 + xy + ax2z). 

The tangent space contains the vector (0,0, x2z) except when a=0 giving 
two orbits (as (x, yz, y2 + xy + x2z) 'A (x, yz, y2 + xy - xlz) by the change 
of coordinates z i---) -z)): 

(x, yz, y2+xy+x2Z), 
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(X, yz, y2 + xy). 

In both cases, all higher (3, s)-transversals are empty. 

So we have seven JA3-orbits over (x, yz, y2 + xy): 

(x, yz, y2 + xy + z3 + xz2 + ax2z) (J), 
(x, yz, y2 + xy + z3 + x2z) (#), 
(x, yz, y2+xy +z3) (#), 
(x, yz, y2 + xy + z3 - x2z) (#), 
(x, yz, y2 + xy + xz2) (#), 
(x, yz, y2 + xy + x2z) (#), 
(x, yz, y2 + xy) (#)" 

A (3,1)-transversal over (G) is {(0,0, z3)} giving us two orbits to consider: 

" (x, yz, y2+xz+z3) (this is A-equivalent to (x, yz, y2+xz-z3) via the change 
of coordinates (x, y, z) H (-x, -y, -z)); all higher (3, s)-transversals are 
empty. 

" (x, yz, y2 + xz); all higher (3, s)-transversals are empty. 

So we have two JA3-orbits over (x, yz, y2 + xz): 

(x) yz, y2 + xz + z3) (K), 
(x, yz, y2 + xz) (L). 

A (3,1)-transversal over (H) is {(0,0, z3)} giving us two orbits to consider 
((x) y2 + z2, xy + z3) A (x, y2 + z2, xy - z3) via the change of coordinates 
(x, y, z) !) (x, y, -z)): 

" (x, y2 + z2, xy + z3). This has (3,3)-transversal { (0,0, y2z) } giving the 1- 

parameter family 
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(x, y2 + z2, xy + z3 + ay2z). 

This has (3,4)-transversal 1 (0,0, y3)} giving the 2-parameter family 

(x, y2 + z2, xy + z3 + ay2z + by3). 

All higher (3, s)-transversals are empty. 

" (x, y2 + z2, xy). This has (3,3)-transversal {(0,0, y2z)} which gives the 
1-parameter family 

(x, y2 + z2, xy + ay2z). 

The tangent space contains the vector (0,0, y2z) except when a=0 giving 
two orbits to consider as (x, y2 + z2, xy +y 2Z) 'A (x, y2 + z2, xy - y2z) via 
the change of coordinates (x, y, z) i--) (x, y, -z): 

(x, y2 + z2, xy + y2z) (i), 

(x, y2 + z2, xy) (ii). 

(i) has (3,4) -transversal 1 (0,0, y3)} giving the 1-parameter family 

(x, y2 + z2, xy + y2z + ay3). 

All higher (3, s)-transversals are empty. 

(ii) has (3,4)-transversal 1 (0,0, y3)} giving the 1-parameter family 

(x, y2 + z2, xy + ay3). 

The tangent space contains the vector (0,0, y3) except when a=0 giving 
two orbits (as (x, y2 + z2, xy + y3) "A (x, y2 + z2, xy - y3) via the change of 
coordinates (x, y, z) 1) (-x, -y, z)): 

(x, y2 + z2, xy + y3), 
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(x, y2 + z2, xy). 

This gives us four JA3-orbits over (x, y2 + z2, xy): 

(x, y2 + z2, xy + z3 + ay2z + by3) (M), 
(x, y2 + z2, xy + y2z + ay3) (p), 
(x, y2 + z2, xy + y3) (#), 
(x, y2 + z2, xy) (u)" 

A (3,1)-transversal over (I) is {(O, 0, z3)} giving us two orbits to consider 
as (x, yz, xy + xz + z3) A (x, yz, xy + xz - z3) via the change of coordinates 
(x, yz) l) (-x, -y, -z): 

" (x, yz, xy + xz + z3). This has (3,3)-transversal {(0,0, y2z)} giving the 
1-parameter family 

(x, yz, xy + xz + z3 + ay2z). 

This has (3,4)-transversal {(0,0, y3)} giving the 2-parameter family 

(x, yz, xy+xz+z3+ay2z+by3) 

All higher (3, s)-transversals are empty. 

" (x, yz, xy + xz). This has (3,3) -transversal {(0,0, y2z)} which gives us the 
1-parameter family 

(x, yz, xy + xz + ay2z). 

The tangent space contains the vector (0,0, y2z) except when a=0 giving 
two orbits to consider ((x, yz, xy + xz + y2z) _A (x, yz, xy + xz - y2z) via 
the change of coordinates (x, y, z) º---0 (-x, -y, -z)): 

(x, yz, xy + xz + y2z) (i), 
(x, yz, xy + xz) (ii). 

(i) has (3,4)-transversal 1 (0,0, y3)} giving the 1-parameter family 
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(x, yz, xy + xz +y2z+ ay 3). 

All higher (3, s)-transversals are empty. 

(ii) has (3,4)-transversal 1 (0,0, y3)} giving the 1-parameter family 

(x, yz, xy + xz + ay3). 

The tangent space contains the vector (0,0, y3) except when a=0 giving 
two orbits as (x, yz, xy + xz + y3) A (x, yz, xy + xz - y3) via the change 
of coordinates (x, y, z) 1 (-x, -y, -z): 

(x, yz, xy + xz + y3), 
(x, yz, xy + xz). 

All higher (3, s)-transversals are empty in both cases. 

This gives us four JA3-orbits over (x, yz, xy + xz): 

(x, yz, xy + xz + z3 + ay2z + by3) (N), 

(x, yz, xy + xz +y2z+ ay 3) (p), 
(x, yz, xy + xz + y3) (), 
(x, yz, xy + xz) (#)" 

6.3.14 The 4-Jets 

A (4,9)-transversal over (F) is {(0, x3y, 0) } giving the 1-parameter family 

3 
(x, yz + y3 - 16 x2y + ax3y, y2 + z2 + xy + xz). 

The tangent space contains the vector (0, x3y, 0) except when a=0 giving 
three orbits: 

x2y 

+ x3y, y2 + z2 + xy + xz), (x, yz + y3 - 1-6 
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(x, yz + y3 _ sx2y, y2+Z2 + xy + xz), 
(x, yz + y3 - sx2y _ x3y, y2 + z2 + xy + xz). 

All higher (4, s)-transversals are empty in each case. This gives us three 
JA4-orbits over (x, yz + y3 - 16 x2 y, y2 + z2 + xy + xz): 

(x, yz + y3 - 
3 

1-6 x2 y+ x3y, y2 + z2 + xy + xz) 4-determined, 
(x, yz + y3 - sx2 y, y2 + z2 + xy + xz) (p), 
(x, yz + y3 - 

lfix2 

y- x3y, y2 + z2 + xy + xz) 4-determined. 

All (4, s)-transversal for (G) are empty giving one JA4-orbit over (x, yz + 
x2MY 2+ z2 + xy + xz): 

(x, yz + x2y, y2 + z2 + xy + xz) (I). 

A (4,1)-transversal for (H) is {(0,0, z4)}; this gives us the 1-parameter family 
fa = (x, yz, y2+xy+xz+z3 +az4). This has (4,2)-transversal {(0,0, yz3)} which 
gives us the 2-parameter family 

fa, b = (x, yz, y2 + xy + xz + z3 + az4 + byz3) 

The tangent space contains the vector (0,0, yz3) if it contains the vector 
(0,0, z4). This gives us a unimodular family with the following representative: 

(x, yz, y2 + xy + xz + z3 + ayz3) 4-determined, 

A (4,1)-transversal over (I) is 1 (0,0, z4)} giving us three orbits to consider; 

" (x, yz, y2 + xy + xz + z4); this has (4,2)-transversal {(0,0, yz3)} giving us 
three orbits: 

(x, yz, y2 + xy + xz + z4 + yz3), 
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(x, yz, y2+xy+xz+z4), 
(x, yz, y2 + xy + xz + z4 - yz3). 

All higher (4, s)-transversals are empty in each case. 

" (x, yz, y2 + xy + xz). This has (4,2)-transversal {(O, 0, yz3)} giving the 
1-parameter family 

(x, yz, y2 + xy + xz + ayz3) 

The tangent space contains the vector (0,0, yz3) except when a=0 giving 
three orbits: 

(x, yz, y2 + xy + xz + yz3), 
(x, yz, y2 + xy + xz), 

(x, yz, y2 + xy + xz - yz3). 

All higher (4, s)-transversals are empty in each case. 

So we have six JA4-orbits over (x, yz, y2 + xy + xz): 

(x) yz, y2 + xy + xz + z4 + yz3) (J), 
(x, yz, y2 + xy + xz + z4) (p), 
(x, yz, y2 + xy + xz + z4 - yz3) (J'), 
(x, yz, y2 + xy + xz + yz3) (#), 
(x, yz, y2 + xy + xz) (p), 
(x, yz, y2 + xy + xz - yz3) (u)" 

All (4, s)-transversals over (J) are empty, giving us one J4-orbit: 

(x, yz, y2 + xy + z3 + xz2 + ax2z) (K). 

A (4,1)-transversal for (K) is 1 (0,0, z4)} giving us three orbits to consider; 

" (x, yz, y2 + xz + z3 + z4); this has (4,2)-transversal { (0,0, yz3) } giving the 
1-parameter family 
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(x, yz, y2, y2 + xz + z3 + z4 + ayz3). 

All higher (4, s)-transversals are empty. 

" (x, yz, y2+xz+z3); this has (4,2)-transversal {(0,0, yz3)} giving two orbits 
to consider as (x, yz, y2 + xz + z3 + yz3) A (x, yz, y2 + xz + z3 - yz3) via 
the change of coordinates (x, y, z) a) (x, -y, z): 

(x, yz, y2 + xz + z3 + yz3) (i), 
(x, yz, y2 + xz + z3) (ii). 

All higher (4, s)-transversals are empty in each case. 

So we have three JA4-orbits over (x, yz, y2 + xz + z3): 

(x, yz, y2 + xz + z3 + z4 + ayz3) 4-determined, 
(x, yz, y2 + xz + z3 + yz3) 4-determined, 
(x, yz, y2 + xz + z3) (#). 

A (4,1)-transversal over (L) is {(0,0, z4)} giving only three orbits to consider; 

" (x, yz, y2 + xz + z4); this has (4,2)-transversal {(0,0, yz3)} which gives us 
two orbits as (x, yz, y2 + xz + z4 + yz3) 'A (x, yz, y2 + xz + z4 - yz3) via 
the change of coordinates (x, y, z) i -º (x, -y, z): 

(x, yz, y2 + xz + z4 + yz3), 
(x, yz, y2+xz+z4). 

All higher (4, s)-transversals are empty in each case. 

" (x, yz, y2 + xz). This has (4,2)-transversal {(0,0, yz3)} which gives the 
1-parameter family 
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(x, yz, y2 + xz + ayz3) 

The tangent space contains the vector (0,0, yz3) except when a=0 giving 
two orbits as (x, yz, y2 + xz + yz3) A (x, yz, y2 + xz - yz3) via the change 
of coordinates (x, y, z) i----* (x, -y, z); 

(x, yz, y2 + xz + yz3), 
(x, yz, y2 + xz). 

" (x, yz, y2 + xz - z4); this has (4,2)-transversal {(O, 0, yz3) } which gives us 
two orbits as (x, yz, y2 + xz - z4 + yz3) q (x, yz, y2 + xz - z4 - yz3) via 
the change of coordinates (x, y, z) i) (x, -y, z): 

(x, yz, y2 + xz - z4 + yz3, 
(x, yz, y2 + xz - z4). 

All higher (4, s)-transversals are empty in each case. 

So we have six JA4-orbits over (x, yz, y2 + xz): 

(x, yz, y2 + xz + z4 + yz3) (L), 
(x, yz, y2 + xz + z4) (#), 
(x, yz, y2 + xz + yz3) (#), 
(x, yz, y2 + xz) (#), 
(x, yz, y2 + xz - z4 + yz3) (L'), 

(x, yz, y2 + xz - z4) (p). 

A (4,4) -transversal for (M) is 1 (0,0, y3z)} giving the 3-parameter family 

(x, y2+z2, xy+z3+ayzz+by3+cy3z). 

The tangent space contains the vector (0,0, y3z) except when c=0 giving 
three orbits to consider: 

(x, y2+z2, xy+z3+ay2z+by3+y3z). This has (4,5)-transversal {(0,0, y4)} 
which gives the 3-parameter family 
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(x, y2+z2, xy+z3+ay2z+by3+y3z+cy4) 

" (x, y2 + z2, xy + z3 + ay2z + by3). This has (4,5)-transversal {(0,0, y4)} 
which gives the 3-parameter family 

(x, y2 + z2, xy + z3 + ay2z + by3 + cy4). 

" (x, y2+z2, xy+z3+ay2z+by3- y3z). This has (4,5)-transversal {(0,0, y4)} 
which gives the 3-parameter family 

(x, y2+z2, xy+z3+ay2z+by3-y3z+cy4). 

So we have three JA4-orbits over (x, y2 + z2, xy + z3 + ay2z + by3): 

(x, y2+z2, xy+z3+ay2z+by3+y3z+cy4) (M), 
(x, y2 + z2) xy + z3 + ay2z + by3 + cy4) (u), 
(x, y2 +z2, xy+ z3 +ay2z+by3 _ y3z+cy4) (M'), 

A (4,4)-transversal for (N) is 1 (0,0, y3z) } giving the 3-parameter family 

(x, yz, xy + xz + z3 + ay2z + by3 + cy3z). 

The tangent space contains the vector (0,0, y3z) except when c=0 giving 
three orbits to consider: 

" (x, yz, xy+xz+z3+ay2z+by3+y3z). This has (4,5) -transversal { (0,0, y4)} 
which gives the 3-parameter family 

(x, yz, xy+xz+z3+ay2z+by3+ y3z+cy4). 

" (x, yz, xy + xz + z3 + ay2z + by3). This has (4,5) -transversal {(0,0, y4)} 
which gives the 3-parameter family 
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(x, yz, xy + xz + z3 + ay2z + by3 + cy4). 

" (x, yz, xy+xz+z3 +ay2z+by3 - y3z). This has (4,5)-transversal { (0,0, y4) } 

which gives the 3-parameter family 

(x, yz, xy + xz + z3 + ay2z + by3 - y3z + cy4) 

So we have three JA4-orbits over (x, yz, xy + xz + z3 + ay2z + by3): 

(x, yz, xy + xz + z3 + ay2z + by3 + y3z + cy4) (N), 
(x, yz, xy + xz + z3 + ay2z + by3 + cy4) (p), 
(x, yz, xy + xz + z3 + ay2z + by3 - y3z + cy4) (N '), 

6.3.15 The 5-Jets 

A (5,7)-transversal for (I) is { (0, y5,0) 1 giving three orbits to consider: 

" (x, yz+x2y+y5, y2+z2 +xy+xz). All higher (5, s)-transversals are empty. 

" (x, yz + x2y, y2 + z2 + xy + xz). All higher (5, s)-transversals are empty. 

" (x, yz+x2y-y5, y2+z2+xy+xz). All higher (5, s)-transversals are empty. 

So this gives us three JA5-orbits over (x, yz + x2y, y2 + z2 + xy + xz): 

(x, yz + x2y + y5, y2 + z2 + xy + xz) 5-determined, 
(x, yz + x2y, y2 + z2 + xy + xz) (9), 
(x, yz + x2y - y5, y2 + z2 + xy + xz) 5-determined. 

A (5,1)-transversal over (J) is {(0,0, z5)} which gives the 1-parameter family 

186 



(x, yz, y2 + xy + xz + z4 + yz3 + az5) 

This has (5,2) -transversal {(0,0, yz4)} which gives its one JA5--orbit over 
(x, yz, y2+xy+xz+z4+yz3): 

(x, yz, y2+xy+xz+z4+yz3+az5+byz4) (H). 

A (5,1)-transversal over (J ') is 1(0,0, z5) } which gives the 1-parameter family 

(x, yz, y2 + xy + xz + z4 - yz3 + az5) 

This has (5,2)-transversal {(0,0, yz4)} which gives us one JA5-orbit over 
(x, yz, y2 + xy + xz + z4 - yz3): 

(x, yz, y2 + xy + xz + z4 - yz3 + az5 + byz4) (II'). 

A (5,1)-transversal over (K) is 1 (0,0, z5)} giving the 2-parameter family 

(x, yz, y2 + xy + z3 + xz2 + ax2z + bz5). 

All higher (5, s)-transversals are empty. This gives us one JA5-orbit over (x, yz, y2+ 
xy + z3 + xz2 + ax2z): 

(x, yz, y2 + xy + z3 + xz2 + ax2z + bz5) 5-determined. 

A (5,1)-transversal over (L) is {(O, 0, z5)} giving the 1-parameter family 

(x, yz, y2 + xz + z4 + yz3 + az5) 

This has (5,2)-transversal {(0,0, yz4)} giving the 2-parameter family 

187 



(x, yz, y2 + xz + z4 + yz3 + az5 + byz4). 

All higher (5, s)-transversals are empty. 

So we have one JA'-orbit over (x, yz, y2 + xz + z4 + yz3): 

(x, yz, y2 + xz + z4 + yz3 + az5 + byz4) (I). 

A (5,1)-transversal over (L') is {(0,0, z5)} giving the 1-parameter family 

(x, yz, y2 + xz + z4 - yz3 + az5). 

This has (5,2)-transversal 1 (0,0, yz4)} giving the 2-parameter family 

(x, yz, y2 + xz + z4 - yz3 + az5 + byz4). 

All higher (5, s)-transversals are empty. 

So we have one JAS-orbit over (x, yz, y2 + xz + z4 - yz3): 

(x, yz, Y2 + xZ + z4 - yz3 + Az' + byz4) (1'). 

A (5,3)-transversal for (M) is {(0,0, y2z3)} giving the 4-parameter family 

(x, y2 + z2, xy + z3 + ay2z + by3 + y3z + cy4 + dy2z3). 

This has (5,5) -transversal {(0,0, y4z)} which again gives a family 
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(x, y2+z2, xy+z3+ay2z+by3+93z+cy4+dy2z3+ey4z). 

Which in turn has (5,6)-transversal 1 (0,0, y5) } giving the 6-parameter family 

(x) y2+z2, xy+z3+ay2z+by3+y3z+cy4+dy2z3+ey4z+fy5). 

All higher (5, s)-transversals are empty. 

So we have one JA'-orbit over (x, y2 + z2, xy + z3 + ay2z +b y3 + y3z + cy4): 

(x, y2 + z2, xy + z3 + ay2z + by3 + y3z + cy4 + dy2z3 + ey4z + fy5) (J). 

A (5,3)-transversal for (M') is {(O, 0, y2z3)} giving the 4-parameter family 

(x, y2 + z2, xy + z3 + ay2z + by3 - y3z + cy4 + dy2z3). 

This has (5,5)-transversal 1 (0,0, y4z)} which again gives a family 

(x, y2 + z2, xy + z3 + ay2z + by3 - y3z + cy4 + dy2z3 + ey4z). 

Which in turn has (5,6)-transversal {(0,0, y5)} giving the 6-parameter family 

(x, y2 + z2, xy + z3 + ay2z + by3 - y3z + cy4 + dy2z3 + ey4z + fy5). 

All higher (5, s)-transversals are empty. 

So we have one JA'-orbit over (x, y2 + z2, xy + z3 + ay2z + by3 - y3z + cy4): 

(x) y2 + z2, xy + z3 + ay2z + by3 _ y3z + cy4 + dy2z3 + ey4z + fy5) (1). 

A (5,3) -transversal for (N) is {(0,0, y2z3)} giving the 4-parameter family 
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(x, yz, xy+xz+z3+ay2z+by3+y3z+cy4+dy2z3). 

This has (5,5) -transversal 1 (0,0, y4z)} which again gives a family 

(x, yz, xy+xz+z3+ay2z+by3+y3z+cy4+dy2z3+cy4z). 

Which in turn has (5,6)-transversal {(O, 0, y5)} giving the 6-parameter family 

(x, yz, xy+xz+z3+ay2z+by3+y3z+cy4+dy2z3 +ey4z+ fy5). 

All higher (5, s)-transversals are empty. 

So we have one JA'-orbit over (x, yz, xy + xz + z3 + ay2z + by3 + y3z + cy4): 

(x, yz, xy + xz + z3 + ay2z + by3 + y3z + cy4 + dy2z3 + ey4z + fy5) (K) 

A (5,3)-transversal for (N') is {(0,0, y2z3)} giving the 4-parameter family 

(x, yz, xy + xz + z3 + ay2z + by3 - y3z + cy4 + dy 2 z3). 

This has (5,5)-transversal 1 (0,0, y4z)} which again gives a family 

(x, yz, xy + xz + z3 + ay2z + by3 - y3z + cy4 + dy2z3 + ey4z). 

Which in turn has (5,6)-transversal {(0,0, y5)} giving the 6--parameter family 

(x, yz, xy + xz + z3 + ay2z + by3 - y3z + cy4 + dy2z3 + ey4z + fy5). 

All higher (5, s)-transversals are empty. 
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So we have one JA5-orbit over (x, yz, xy + xz + z3 + ay2z + by3 - y3z + cy4): 

(x, yz, xy + xz + z3 + ay2z + by3 - y3z + cy4 + dy2z3 + ey4z + fy5) (J). 

6.3.16 The 6-Jets 

A (6,1)-transversal for (H) is {(0,0, z6)} giving the 3-parameter family 

(x, yz, y2 + xy + xz + z4 + yz3 + az5 + byz4 + cz6). 

All higher (6, s)-transversals are empty. 

This gives one JA6-orbit over (x, yz, y2 + xy + xz + z4 + yz3 + az5 + byz4): 

(x, yz, y2 + xy + xz + z4 + yz3 + az5 + byz4 + cz6) 6-determined. 

A (6,1)-transversal for (H') is 1 (0,0, z6)} giving the 3-parameter family 

(x, yz, y2 + xy + xz + z4 - yz3 + az5 + byz4 + cz6). 

All higher (6, s)-transversals are empty. 

This gives one JA'-orbit over (x, yz, y2 + xy + xz + z4 - yz3 + az5 + byz4): 

(x, yz, y2 + xy + xz + z4 - yz3 + az5 + byz4 + czs) 6-determined. 

A (6,1)-transversal for (I) is 1 (0,0, z6)} giving the 3-parameter family 

(x, yz, y2 + xz + z4 + yz3 + az5 + byz4 + cz6). 

All higher (6, s)-transversals are empty. 
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This gives one JA6-orbit over (x, yz, y2 + xz + z4 + yz3 + az5 + byz4): 

(x, yz, y2 + xz + z4 + yz3 + az5 + byz4 + cz6) 6-determined. 

A (6,1)-transversal for (I') is {(0,0, z6)} giving the 3-parameter family 

(x, yz, y2 + xz + z4 - yz3 + az5 + byz4 + cz6) 

All higher (6, s)-transversals are empty. 

This gives one JA'-orbit over (x, yz, y2 + xz + z4 - yz3 + az5 + byz4): 

(x, yz, y2 + xz + z4 - yz3 + az5 + byz4 + czs) 6-determined. 

The (6, s)-transversals for (J), (J'), (K) and (K') produce more moduli which 
make it impossible for us to extend the analysis of these branches any further. 
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6.3.17 Example of Computer Output 

In this section we will take one branch of our classification and follow it through 

until we find a determined jet giving the computer output at each level. 

We use the `unipotent' group C9 described in Section 1.3. We will consider the 
1 -jet (x, y, 0). The following command sets up the program to work with correct 
dimensions and Lie algebra and Maple responds by printing out values of various 
parameters. 

> setup_classn(3,3, [O, x3]); 

liealg = stdjacobian 
equiv =A 

compltrans = true 
source-dim =3 

source-power =2 
target-power =2 

nilp = true-order 
R_nilp : 

[ [x1,2] 
, 

[x1,3] , [x2 , 3] ] 
L. nilp : 

[[2,1], [3,1] 
, 

[3,2] ] 

> 

We now input our 1-jet (x, 0,0) which we want to study. 

>f := Lxl, x2,47 ; 
> jetcalc(f, 2); 

Maple eventually replies Ready and we now use one of the `print' routines to view 
the complete transversal. 

> pcompO ; 

[0,0, x32] 
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[0,0, x2 x3] 
[0,0, x1 x3] 

> 

We now need to, work out what (2, s)-levels these belong to, we to this using 
a different `print' routine; 

> pmons(2); 

level: (2,1) 

[0,0, x32] 

level: (2,2) 

[0, x32,0] 
[0,0, x2 x3] 

level: (2,3) 

[x32,0,0] 

[0, x2 x3,0] 

[0,0, x22] 

and this continues through all the possible (1), s)-levels. From this we find that 

we get three JA'-orbits over (x, y, 0): 

(X, y, z2) (i) 

(x, y, yz) (ii) 
(x, y, 0) (iii) 

(i) is 2-determined, but this calculation is very simple so we will carry on until 
we reach one for which we need to use the determinacy criterion in the program. 
If we look at (ii) and we go through the same routine to get the three JA3-orbits: 

(x, y, yz + z3) (a) 
(x, y, yz + xz2) (b) 
(x, y, yz) (c) 

We would like to prove that (a) is 3-determined. To do this we use the 
Aclassify routine; 
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>f := [xi, x2, x2*x3+x3"3]: 
> Aclassify(f, 3) ; 

Maple responds by calculating the 4- , 5- , 6- and 7-transversals; the result is 

[xl, x2, x2 x3 + x33] 

germ is 3--A--determined 

> 

Now lets look at the 3-jet of corank 2: (x, yz, y2 + xy + xz + z3), say. Firstly 

we want to find its 4-transversal, we do this as follows: 

> f: =[x1, x1*x2, x2"2+x1*x2+x1*x3+x3'3]; 

f :_ [xl, x2 x3, x2"2 +xl x2+xl x3+x3'3) 

> jetcalc(f, 4); 

Maple will then take a couple of seconds working this out and finally come out 
with the response Ready so we then ask it to print its answer using pcomp: 

Ready. 

> pcompO ; 

[0,0, x341 

195 



[0 ,0, x2 x33] 

We can then find out which (4, s)-level each of these belong to using the pmons 
command. When we do this we find that (0,0, z4) belongs to the (4,1) - level and 
(0,0 

1 yz3) to the (4,2)-level, so we can consider them individually. 1(0,0 
, z4) } 

gives us the 1-parameter family (x, yz, y2 + xy + xz + z3 + az4). Now we cannot 
`scale' a using obvious techniques so we wish to check if a is a modulus. To do 

this we need to use the group A and work in the 4-jet-space to show that 

(0,0, z4) V LA "f modulo M3. E(3,3); 

To begin with we need to set up the global variables to define the A group. 
Within the program this is done as follows: 

> setup_unf (2) ; 

liealg = stdjacobian 
equiv =A 

compltrans = false 

source-dim 3 

source-power 0 

target-power 0 

nilp = true-order 
R-nilp : 
Rnilp : 
L nilp: 
L_nilp: 

This gives us the Ae group, to change this to the A group we need to change the 

source and target powers: 

> source-power: =I; target _power: =1; 

We now calculate the tangent space TA "f in J5(3,3) and determine whether the 

vector (0,0, z4) belongs to this tangent space. 
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>f : =[x1, x2*x3, x2"+x1*x2+x1*x3+x3"+a*x3"4]; 
> jetcalc(f, 4); 

> intangent ([0 
,0, x3"4]) ; 

false 

> 

The Maple response false indicates that a is a modulus. We now find that 
the (4,2)-transversal for this 1-parameter family is given by { (0,0, yz3) } giving 
the 2-parameter family fa 

,b= 
(x, yz, y2+xy+xz+z3+az4+byz3) which contains 

the vector (0,0, yz3) for all values of b giving us one JA4-orbit. 
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Chapter 7 

Unfoldings and Bifurcations 

We have our list of map-germs : (H3,0) --º (It3,0) and we wish to study the 
geometry of their unfoldings. 

Theorem 7.0.2 For our map-germs : (d? 3,0) 
--* (I?, 0) the versal unfoldings 

and the invariants associated to those with smooth critical set are given in the 
following table. 

R Versal unfolding d c S T 
1 (x, y, z) - - - - 
2 (x, y, z2) - - - - 
3 (x, y, yz + z3) - 0 - 0 
4 (x, y, yz+xzz+z4) 0 0 1 1 
5 (x, yz+ay, y +z +xy) 
6 (x, yz + ay, y2 - z2 + xy) 
7 (x, y, z3 + (y2 + x2)z + az) 

8-9 (x, y, z3 + (y2 - x2)z + az) 
10 (x, y, z3 - (y2 + x2)z + az) 
11 (x, y, yz+z4+x222+az2) 1 1 2 2 
12 (x, y, yz+z4-x222+az2) 1 1 2 2 

13 (x, y, yz + xz2 + z5 + az3) 5 0 2 4 

Table 7.1: Versal unfoldings of map-germs : (R3,0) --1 (R3,0) 
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R Versal unfolding d c S T 
14 322 (x, yz+y ,y +z +xy+xz 

+ay + bxy) 
15 (x, yz+y3- x2y, y2+z2+. y+xz 

+ay + bxy) 
16 (x, y, z3 + (y2 +x3)z+az+bxz) 
17 (x, yz, y2 + xy + xz + z3 + ayz3 

+by + cz2 ) 
18 (x, yz, y2 + xz + z3 + z4 + ayz3 

+by + cz2 ) 
19 (x, y, yz+z4+x322+az2+bxz2) 2 2 3 3 
20 (x, y, yz2 + x2z + z4 + z5 + az2 + bz4) 

21 (x, y, yz2 + x2z + z4 - z5 + az2 + bz4) 

22 (x, y, yz+xz3+z5+z6+az2+bz4) 22 1 3 6 
23 (x, y, yz+xz2+z6+z8+az9 

+bz3 + cz4) 22 0 3 10 
24 (x, y, yz + xz2 + z6 - z8 + az9 

+bz3 + Cz4) 22 0 3 10 
25 (x, yz±y3+ax2y+by, y2±z2+y3+x2y 

+cy + dxy), a y-I Z 
26 (x, yz±y3+ax2y+by, y2±z2+y3-x2y 

+cy + dxy), a#2 
27 (x, yz + ax2y, y2 + z2 + y3 + x2y 

+by + cxy + dx2y), a02 
28 (x, yz + ax2y, y2 ± z2 + y3 - x2y 

+by + cxy + dx2y), a 54 z 

29 (x, yz + y3 - 16x2y + x3y, 
y2 + z2 + xy + xz + ay + bz2 + cyz3) 

30 (x, yz + y3 - lsx2y - x3y, 
y2 + z2 + xy + xz + ay + bz2 + cyz3) 

31 (x, yz, y2 + xz + z3 + yz3 + ay + bz2 + cz4) 
32 (x, y, z3 + (y2 + x4)z + az + bxz + cx2z) 
33 (x, y, z3 + (y2 - x4)z + az + bxz + cx2z) 
34 (x, y, z3 - (x2 - y4)z + az + byz + cy2z) 
35 (x, y, z3 - (x2 + y4)z + az + byz + cy2z) 
36 (x, yz+x2y+y5, y2+z2+xy+xz 

+ay+bxy+cy3) 

Table 7.2: Table 7.1 continued 
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R Versal unfolding d c S T 
37 (x, yz+x y-y ,y +z +xy+xz 

+ay + bxy + cy3) 
38 (x, yz, y2 + xy + z3 + xz2 + ax2z + bz5 

+cz + dz2 + exz) a 
39 (x, y, yz + z4 + x422 + az2 + bxz2 + cx2z2) 3 3 4 4 
40 (x, y, yz + z4 - x422 + az2 + bxz2 + cx2z2) 3 3 4 4 
41 (x, yz, y2 + xy + xz + z4 + yz3 + az5 

+byz4 + cz6 + dy + ez2 +f z3) 
42 (x, yz, y2 +xy+xz+z4 - yz3 +az5 

+byz4 + cz6 + dy + ez2 + fz3) 
43 (x, yz, y2 + xz + z4 + 4yz3 + az5 

+byz4 + cz6 + dy + ez2 +f z3) 
44 (x, yz, y2 + xz + z4 - yz3 + az5 

+byz4 + cz6 + dy + ez2 +f z3) 
45 (x, y, yz+xz3+z5+az2+bz4+cz6) 10 1 3 6 
46 (x, y, yz+x222+z5+z6+az7+bz2 15 2 4 8 

+cz3 + dxz3), a 54 0 
47 (x, y, yz+xzz2+z5-z6+az7+bz2 15 2 4 8 

+cz3 + dxz3), a0 
48 (x, y, yz2 + x2z + z4 + z7 + az + bz3 + cz5) 
49 (x, y, yz2 + x2z + z4 - z7 + az + bz3 + cz5) 
50 (x, y, yz + xz2 + z6 + z9 + az3 + bz4 + cz8) 22 0 3 10 

Table 7.3: Table 7.1 continued 

where R is the place at which the normal form appears in Table 6.16 of Chapter 6, 
d is the Milnor number of the double point curve of the discriminant f (E f), C is 
the Milnor number of the cuspidaledge curve of the discriminant f (E f), S is the 

maximum number of swallowtails in the unfolding and T is the maximum number 
of triplepoints in the unfolding. 
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Figure 7.1: A2, A3, Al, A, A2, Ai singularities 

7.1 The Invariants 

Consider a map-germ f: (ß, 3,0) 
-1 (R. 3,0). We denote the critical set of f 

by >, and the discriminant of f by A, i. e. A=f (E). When E is smooth, the 

restriction of f to E can be considered as a map-germ F: (Ii2,0) --º (I 3,0) 

parametrizing A. The map-germ F is generally not finitely A-determined due 
to the presence of cuspidal edges. Arnol'd, [A21 showed that F are as in Fig. 7.1. 

We can study a lot of the geometry of F by studying a plane curve singularity, 
namely the double point curve of F. The double point curve is the locus of points 
pEEf such that the number of pre-images of p is two, i. e. #F-'(F(p)) = 2, 
together with the points where F fails to be immersive. The defining equation 
h: (]R2) --* (]R, 0) of the double point curve can be obtained using the following 

result from Bruce & Marar, [BM] and Marar & Tari, (MT]: 

Proposition 7.1.1 Let F: (R2, O) -+ (R3,0) be an analytic map-germ with 
F(x, y) = (a(x, y), b(x, y), c(x, y)). Let G: (R3,0) -k (R, 0) be an analytic 
function such that G(X, Y, Z) =0 is the defining equation of the image of F. 
Then the defining equation, h of the double point curve of F is given by 
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h(x, y) - 
äz (a(x, y), b(x, y), c(x, y))" 

aa, b 

,y 

lax 

If our F is corank 1 at the origin we can simplify the above by choosing a 
suitable system of coordinates. The simplified formula being: 

h(x, y) = 
äz fix, aäx, y), Q(x, y))- 

ay(x, y) 

Now in practice, the equation G(X, Y, Z) =0 is obtained by eliminating the 
variable y from the equations Y- a(x, y) =0 and Z- ß(x, y) = 0. This is done 

using MAPLE. 

From [BM] we know that h factors as 

h(x, y) = d(x, y)(c(x, y))2, 

where d(x, y) =0 defines the closure of ordinary double points of F and c(x, y) = 
0 defines the curve in the source which is mapped into the cuspidaledges of F. 
We call d(x, y) =0 the double point curve and c(x, y) =0 the cuspidaledge curve 
of A. From [MT] we know that the Milnor numbers µ(d) and µ(c) of these plane 
curve singularities are analytic invariants of the map-germ f. 

The number of swallowtails of A is also an invariant for f. We denote this 
by #A3. To calculate #A3 for corank 1 map-germs we use the following result 
from Marar, Montaldi & Ruas, [MMR]: 

Proposition 7.1.2 Let f: (Cl, 0) -) (C3,0) be a corank 1 map-germ with 
f (x, y, z) = (x, y, g(x, y, z)). Then 

#A3 = d2112CE3/(9, gzz, 9zzz)E3- 

In particular, if g is quasi-homogeneous of weights wl, w2 and w3 and degree 
d, then 
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#A3 _ 
(d - w3)(d - 2w3)(d - 3w3). 

wlw2w3 

We also wish to calculate the number of triplepoints which occur in the un- 
folding of f. To do this we introduce the work of Mond [Mol, Mo2]. We assume 
that our map-germ f has smooth critical set and the restriction of the map to 
this critical set can be parametrized to give a map-germ g: C2 --i C3. If we 
want to look at double points then we consider two sets of coordinates in the 

source, (x, y) and (x', y') say, i. e. we look at C2 x C2. Now g is going to have the 
form (x, g1(x, y)) g2(x) y)). We need the following to be true. 

x- x=0, 

9i (x, y) - 9i (x, y') = 0, 

92(x, y) - 92(x, y') = 0. 

So we have the ideal 12 given by 

1 91(x) y) - 91(x, y`) 92(X) y) - 92(X i YI ) I2=ýX-x, 
y-y1 y-y, 

)04. 

We can embed this is CX C2 giving 

91(x, y) - 91(x, y') 92 x, y) - 92(X Y') 12 = (x, 
y_ y1 y_y, 

) 03. 

Now triplepoints live in C2 x C2 x C2, and similarly we can embed this in 
Cx C3 ((x, y, y', y°))" 

So 

Is = (x, hi, h2, ki, k2)04 

where hi - 91(x, y)-91(x, y') 
and k{ = h, (x, y, y')-h1ix, y, y") 

y_y yg _yý, 
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Theorem 7.1.3 (Mond) A generic deformation of a germ f: (C2,0) 
(C3,0) with rank 1 at 0, has 1dim04/I3(f )o triple points. 

Call this the number of triple points of a map-germ F: (I13,0) -0 (R3,0) 
(where f: (C2,0) --* (C3,0) is the restriction of F to the critical set. So using 
MAPLE and SINGULAR we can calculate the codimension of these ideals. 

7.2 Calculating the Invariants 

0f (x, y, z) = (x, y, yz + z3). 

The critical set for f is given by 

f ={(x, y, z): y+3z2=0}. 

Now we need to look at where the critical set is singular, i. e. when 

==0. This is never the case, so Ef is smooth. This means that öy 8z 

we can parametrize Ef by (x, -3z2, z), and our F is given by (x, -3z2, -2z3). 
In this case our defining equation G can be found by inspection to be 

G(X, Y, Z) = 27Z2 + 4Y3 = 0. 

So using Prop. 7.1.1 we have 

h(x, z) - 
54(-2z3) 

- 
-108z3 

_ 1822. 
10 -6z 
0 -6z 

So f has no double point curve but has cuspidal edge curve z=0 giving 
µ(c) = 0. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 

hl = -3z - 3a, 

h2 = -2z2 - 2az - 2a2, 

kl = -3, 
k2 = -2a-2z-2b. 

This ideal has codimension 0. 

"f (x, y, z) = (x, y, yz + xz2 + z4) 
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The critical set for f is given by 

Zf={ (x, y, z) :y+ 2xz + 4z3 = 0} . 

Again >f is smooth and we can parametrize it by (x, -2xz - 4z3, z), and 
F is given by (x, -2xz - 4z3, -xz2 - 3z4). So we have the equations 

Y+2Xz+4z3 =0 
Z+X z2 + 3z4 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation: 

G(X, Y, Z) = 4X3Y2 + 27Y4 + 16X4Z + 128Z2X2 + 144X Y2 Z+ 256Z3 = 0. 

So using Prop. 7.1.1 we have 

h(x, z) _ (x + 6z2)2(x + 2z2) 

So f has double point curve given by d(x, z) =x+ 2z2 and cuspidal edge 
curve given by c(x, z) =x+ 6z2. So we have µ(d) = µ(c) = 0. Finally to 

calculate the number of swallowtails we use Prop. 7.1.2. 

So for f we have x has weight 2, y has weight 3 and z has weight 1, and 
the degree of g is 4 (f (x, y, z) = (x, y, g(x, y, z)): 

A3 _ 
(4-1)(2.31)(4-3) 

= 1. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 

h, = -4z2 - 4az - 2x - 4a2, 

h2 = -3z3 - 3az2 - xz - 3za2 - xa - 3a3, 

k, = -4a-4z-4b, 
k2 = -3a2 - 3az - 3ab - 3z2 -x- 3bz - 3b2. 

This ideal has codimension 1. 

"f (x, y, z) = (x, yz, y2 + z2 + xy). 

The critical set for f is given by 
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100 
Ef = (x, y, z): rk 0zy <3 

y 2y +x 2z 

= {(x, y, z) : 2z2 - 2y2 - xy = 0} . 

Now this curve is singular when x=y=z=0. 

"f (x, y, z) = (x, yz, y2 - z2 + xy). 

The critical set for f is given by 

100 
Ef = (x, y, z): rk 0zyj <3 

y 2y +x -2z 
= {(x, y, z) : -2z2 - 2y2 - xy = 0} . 

Now this curve is singular when x=y=z=0. 

"f (x, y, z) = (x, y, z3 + (y2 + x2)z). 

The critical set for f is given by 

1: f= {(x, y, z) : 3z2+y2+x2 =o}. 

This curve is singular when x=y=z=0. 

"f (x, y, z) = (x, y, z3 + (y2 - x2)z). 

The critical set for f is given by 

Zf = 
{(x, y, z) : 3z2+y2-x2 =0}" 

This curve is singular when x=y=z=0. 

"f (x, y, z) = (x, y, z3 - 
(y, 

- x2)z). 

The critical set for f is given by 

Ef= {(x, y, z) : 3z2 - y2 + x2 = 01. 

This curve is singular when x=y=z=0. 

" f(x, y, z) = (x, y, z3 - (y2 + x2)z). 
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The critical set for f is given by 

Ef={ (x, y, z) : 3z 2- y2 - x2 =0}. 

This curve is singular when x=y=z=0. 

"f (x, y, z) = (x, 71, yz + z4 + x2z2). 

The critical set for f is given by 

f= {(x, y, z) : y+4z3+2x22=o}. 

So >f is smooth and we can parametrize it by (x, -4z3 - 2x2z, z), and F 
is given by (x, -4z3 -2 x22, -3z4 - x222). So we have the equations 

Y+2X22+4z3 =0 
Z+ X2z2 + 3z4 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation: 

G(X, Y, Z) = 4X6Y2+27Y4+16X82+128Z2X4+144X2Y2Z+256Z3 = 0. 

So using Prop. 7.1.1 we have 

h(x, z) = (x2 + 6z2)2(x2 + 2z2). 

So f has double point curve given by d(x, z) = x2 + 2z2 and cuspidal edge 
curve given by c(x, z) = x2 + 6z2. So we have µ(d) = µ(c) = 1. Finally to 

calculate the number of swallowtails we use Prop. 7.1.2. 

So for f we have x has weight 1, y has weight 3 and z has weight 1, and 
the degree of g is 4 (f (x, y, z) = (x, y, g(x, y, z)): 

_ 
(4-1)(4-2)(4-3) A3 

- 1.3.1 

= 2. 

Now for the triplepoints we have the following ideal (h1, h2i kt, k2) with 

h, = -4z2 - 4az - 2x2 - 4a2, 

h2 = -3z3 - 3az2 - x2z - 3za2 - x2a - 3a3, 

kl = -4a - 4z - 4b, 

k2 = -3a2 - 3az - 3ab - 3z2 - X2 - 3bz - 3b2. 

This ideal has codimension 2. 

"f (x, y, z) = (x, y, yz + z4 - x222) 
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The critical set for f is given by 

Zf={ (x, y, z) :y+ 4z3 - 2x2z = 01. 

So Ef is smooth and we can parametrize it by (x, -4z3 + 2x? z, z), and F 
is given by (x, -4z3 + 2x2z, -3z4 + x222). So we have the equations 

Y-2X22+4z3 =0 
Z-X2z2+3z4 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation: 

G(X, Y, Z) = 4X6Y2+27Y4+16X82+128Z2X4+144X2Y2Z+256Z3 = 0. 

So using Prop. 7.1.1 we have 

h(x, z) = (x2 - 6z2)2(x2 -2 Z2) 

So f has double point curve given by d(x, z) = x2 - 2z2 and cuspidal edge 

curve given by c(x, z) = x2 - W. So we have p(d) = µ(c) = 1. Finally to 

calculate the number of swallowtails we use Prop. 7.1.2. 

So for f we have x has weight 1, y has weight 3 and z has weight 1, and 
the degree of g is 4 (f (x, y, z) = (x, y, g(x, y, z)): 

A3 _ 
(4-1)(431)(4-3) 

= 2. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) With 

h, = -4z2 - 4az + 2x2 - 4a2, 

h2 = -3z3 - 3az2 + x2z - 3za2 + x2a - 3a3, 

kl = -4a - 4z - 4b, 

k2 = -3a2 - 3az - 3ab - 3z2 + x2 - 3bz - 3b2. 

This ideal has codimension 2. 

"f (x, y, z) = (x, y, yz + xz2 + z5). 

The critical set for f is given by 
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Zf= {(x, 
y, z) : y+2xz+5z4 =0}. 

So Ef is smooth and we can parametrize it by (x, -2xz - 5z', z), and F 
is given by (x, -2xz - 5z4, -xz2 -- 4z5). So we have the equations 

Y+2Xz+5z4 =0 
Z+Xz2+4z5 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation: 

G(X, Y, Z) = -27X4Y2+2250X2YZ2+1600XY3Z+312524+256Y5-108X5Z. 

So using Prop. 7.1.1 we have 

h(x, z) _ (27x2 + 140xz3 + 200z6)(x + 10x3)2). 

So f has double point curve given by d(x, z) = 27x2 + 140xz3 + 200z6 and 
cuspidal edge curve given by c(x, z) =x+ 10x3. So we have µ(d) =5 and 
µ(c) = 0. Finally to calculate the number of swallowtails we use Prop. 7.1.2. 

So for f we have x has weight 3, y has weight 4 and z has weight 1, and 
the degree of g is 5 (f (x, y, z) = (x, y, g(x, y, z)): 

A3 = 
(5-1)(5-2)(5-3) 

= 2. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) With 

hl = -5z3 - 5az2 - 5za2 - 2x - 5a3, 
h2 = -4z4 - 4az3 - 4a2z2 - xz - 4za3 - xa - 4a4, 
kl = -5a2 - 5az - 5ab - 5z2 - 5bz - 5b2, 
k2 = -4a3 - 4za2 - 4a2b - 4az2 - 4abz - 4ab2 - 4z3 -x- 4bz2 - 4zb2 - 4b3. 

This ideal has codimension 4. 

" f(x, y, z) = (x, yz+y3, y2+z2+xy+xz). 

The critical set for f is given by 
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Zf= {(x, y, z) : (z + 3y2)(2z + x) - y(2y + x) =0}. 

Now =z+3y2-y, = 6y(2z + x) - 4y -x and = 4z +x+ 6y2. ax ay Oz 

The only solution for these all to be identically 0 is x=y=z=0. So Ef 
is singular at the origin. 

"f (x, y, z) = (x, yz + y3 - x2y, y2 + z2 + xy + xz). 

The critical set for f is given by 

Zf ={(x, y, z): (z+3y2-x2)(2z+x)-y(2y+x)=0}. 

Now 2E 
= -2x(2z + x) +z+3 y2 - x2 - y, = 6y(2z + x) - 4y -x and Ox Oy 

= 4z +x+ 6y2 - 2x2. The only solutions for these all to be identically 
0arex=y=z=0. 

9 (X, y, z) = (x, y, z3+(y2+x3)z). 

The critical set for f is given by 

Ef= {(x, y, z) : 3z2 + y2 + x3 = 0} . 

This curve is singular when x=y=z=0. 

"f (x, y, z) _ 
(x, y, z3 + (x2 

- y3)z)" 

The critical set for f is given by 

E. f ={(x, y, z): 3z2+x2-y3=0}. 

This curve is singular when x=y=z=0. 

"f (x, y, z) _ (x, yz, y2 + xy + xz + z3 + ayz3). 

The critical set for f is given by 

Zf= {(x, y, z) : z(x + 3z2 + 3ayz2) - y(2y + x) =0}. 

This curve is singular when x=y=z=0. 

" f(x, y, z) = (x) y, yz+z4+x322). 
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The critical set for f is given by 

Zf={ (x, y, z) :y+ 4z3 + 2x3z = 01. 

So >f is smooth and we can parametrize it by (x, -4z3 - 2x3z, z), and F 
is given by (x, -4z3 - 2x32, -3z4 - x3z2). So we have the equations 

Y+ 2X 32 + 4z3 =0 
Z+ X3z2 + 3z4 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation: 

G(X, Y, Z) = 4X9Y2+27Y4+16X12Z+128Z2X6+144.3Y2Z+25623 = 0. 

So using Prop. 7.1.1 we have 

h(x, z) = (x3 + 622)2(x3 + 2z2). 

So f has double point curve given by d(x, z) = x3 + 2z2 and cuspidal edge 
curve given by c(x, z) = x3 + 6z2. So we have p(d) = µ(c) = 2. Finally to 

calculate the number of swallowtails we use Prop. 7.1.2. 

So for f we have x has weight 2, y has weight 9 and z has weight 3, and 
the aegree of g is 12 (f (x, y, z) = (x, y, g(x, y, z)): 

#A3 _ 
(12-3)(12-6)(12-9) 

2.9.3 
= 3. 

Now for the triplepoints we have the following ideal (hl, h2, ki, k2) with 

hl = -4z2 - 4az - 2x3 - 4a2, 

h2 = -3z3 - 3az2 - x3z - 3za2 - x3a - 3a3, 

k, = -4a-4z-4b, 
k2 = -3a2-3az-3ab-3z2-x3-3bz-3b2. 

This ideal has codimension 3. 

" f(x, y, z) = (x, y, yz2+x2z+z4+z5). 

The critical set for f is given by 
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f={ (x, y, z) : 2yz + x2 + 4z3 + 5z4 = 0} . 

This is singular when x=y=z=0. 

"(X, (X, 

The critical set for f is given by 

f={ (x, y, z) : 2yz + x2 + 4z3 - 5z4 = 0} . 

This is singular when x=y=z=0. 

" I(x, y, z) _ (x, y, yz+xz3+z5+z6). 

The critical set for f is given by 

Ef= {(x, y, z) :y+ 3xz2 + 5z4 + 6z5 = 0} . 

So Ef is smooth and we can parametrize it by (x, -3xz2 - 5z4 - 6z5, z), 
and F is given by (x, -3xz2 - 5z4 - 6z5, -2xz3 - 4z5 - 5z6). So we have 

the equations 

Y+ 3Xz2 + 5z4 + 6z5 =0 
Z+2Xz3+4z5+5z6 = 0. 

Using MAPLE to calculate the resultant of these two equations , ve obtain 

our defining equation: 

G(X, Y, Z) = 3125Y6 + (2000X + 256)Y5 + (-900X3 - 128X2 - 320Z - 
2250ZX)Y4+(1350X3Z+410Z2+108X5+208ZX2+16X4+27000Z2X) Y3+ 
(-54023+2000Z2X+15417Z2X2)Y2+(-2250Z3X+38880Z4 -15552Z3X2 - 
6318X4Z2 - 900Z2X3)Y + 108X522 + 46656Z5 + 3125Z4 + 27000Z4X + 
34992Z4X2 + 1350X3Z3 + 8748X4Z3 + 729X6Z2. 

So using Prop. 7.1.1 we have 

h(x, z) = -2(27x2 + 4x + 81xz2 + 8z2 + 108xz3 + 12z3 + 63z4 + 162z5 + 
108z6)(x2 + 15xz2 - 40xz3 + 25z4 - 50z5 - 100zs)(3x + 10z2 + 15z3)2z2. 

So f has double point curve given by d(x, z) _ (27x2 + 4x + 81xz2 + 8z2 + 
108xz3+12x3+63x4+162x5+108x6) (x2 +15xz2 -40xz3+25x4 - 50z5 -100z6 ) 

and cuspidal edge curve given by c(x, z) = (3x + 10z2 + 15z3)z. So we have 

µ(d) = 22 and µ(c) = 1. Finally to calculate the number of swallowtails we 
use Prop. 7.1.2. 
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dimcf3/(9:, 9zz, 9zZ: )93 = 3. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 

hl = -6z4 - 5z3 - 6az3 - 5az2 -6a 2Z2 - 3xz - 5za2 - 6za3 - 3xa - 5a3 - 6a4, 

h2 = -5z5 -4 Z4 -5 Z4 a- 4az3 -5 Z3 a2- 2xz2 - 4a2z2 - 5zza' - 2zxa - 
4za3 - 5za4 - 2xa2 - 4a4 - 5a5, 
kl = -6a3 - 6za2 -5a 2 -6a 2b- 5az - 6az2 - 6abz - 5ab - 6ab2 - 3r - 5z2 - 
6z3 - 5bz - 6bz2 - 6zb2 - 5b2 - 6b3, 
k2 = -4z3 - 4a3 - 5z4 - 2xz - 2xa - 4az2 - 4za2 - 4bz2 - 4zb2 - 2xb - 5a4 - 
4b3 - 4abz - 5a2bz - 5az3 - 5a2z2 - 5za3 -5b 4- 5bz3 - 5b2z2 - 5zb3 - 4a2b - 
4ab2 - 5abz2 - 5azb2 - 5a3b - 5a2b2 - 5ab3. 

This ideal has codimension 6. 

" f(x, y, z) = (x, y, yz+xz2+z6+z8+az9). 

The critical set for f is given by 

Ef={ (x, y, z) :y+ 2xz + 6z5 + 8z7 + 9az8 = 0} . 

So Ef is smooth and we can parametrize it by (x, -2xz-6z5-8z7-9az8, z), 

and F is given by (x, -2xz - 6z5 - 8z7 - 9az8, -xz2 - 5z6 - 7z8 - 8az9). 

So we have the equations 

Y+ 2Xz + 6z5 + 8z7 + 9az8 =0 
Z+X z2 + 5z6 + 7z8 + 8az9 =0 

Using MAPLE to calculate the resultant of these two equations we obtain 

our defining equation. 

his gives µ(d) = 22 and µ(c) = 0. 

To calculate the number of swallowtails we use Prop. 7.1.2. 

dimcE3/(9:, 9x:, 9: zZ)E3 = 3. 

Now for the triplepoints we have the following ideal (hl, h2i k1, k2) With 
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hl =- 9z7 - 8z6 - 9z6a - 8z5a - 9z5a2 - 6z4 - 8z4a2 _9Z4 a' - 6az3 - 8z3a3 - 
9z3a4 

- 
6a2z2 

- 
8z2a4 - 

9z2a5 
- 

6za3 - 
8za5 - 

9za6 - 2x - 
6a4 - 8a 6- 9a7, 

h2 =- xz - xa - 5z5 - 5a5 - 5z4a - 5z3a2 -5 Z2 a3- 5za4 - 8z8 - 7z7 - 7a7 - 
8a8 - 7z6a - 7z5a2 - 7z4a3 -- 7z3a4 - 7z2a5 - 7za6 - 8z7a - 8z6a2 - 8z5a 3- 

8z4a4 - 8z3a5 - 8z2 a6 - 8za7 
kl =- 

, 
9az4b - 8a3hz - 6z3 - 9a3zb2 - 9a4bz - 6a3 - 6az2 - 6za2 - 6b--j - 

6zb2 - 9a3bz2 - 9a2bz3 - 6b3 - 6abz - 8z5 - 8a5 - 6a2b - 6ab2 - 9z'' - 9a'' - 
8z4a - 8z3a2 - 8z2a3 - 8za4 - 8b5 - 8z4b - 8z3b2 - 8z2b3 - 8zb4 - 9--'a - 

9z4a2 - 9z3a3 - 9z2a4 - 9za5 - 8a2bz2 - 9a2b2z2 - 8a2zb2 - 9a2 z b3 - 
8abz-; - 

9az3b2 -8ab2z2 - 9az2b3 -8azb3 - 9azb4 -9b6 -9z5b-9z4b2 _9Z3 b3- 9z2b4 - 
9zb5 - 9a5b - 8a4b - 9a4b2 - 8a3b2 - 9a3b3 - 8a2b3 - 9a2b4 - Baba - 9ab5, 
k2 =- 7az4b - 8a3bz3 -x- 8a5bz - 7a3zb2 - 7a4bz - 5z4 - 5a4 - 7a3b'2 - 

7a2bz3 -5a 2 bz - 5az3 -5a 2Z2 - 5za3 -5b 4- 5bz3 -5b 2Z2 - 5zb3 - 8a4bz 2- 7z6 - 
7a6 - 5abz2 - 5azb2 - 5a3b - 5a2b2 - 5ab3 - 8z7 - 8a7 - 8zsa - 7zsa - 8z5a2 - 
7z4 a2 -8z 

4a3- 7z3a3 - 8z3a4 - 7z2 a4 - 
8z2a5 - 

7za5 - 
8za6 - 

7a2b2 z2 - 
7a 2 

zb3 - 

7az3b2 - 7az2b3 - 7azb4 - 8a4zb2 - 8a3b2z2 - 8a3zb3 - 8a2Z4b - 8a2,3 V- 

8a2z2b3 - 8a2zb4 - 8az5b - 8az4b2 - 8az3b3 - 7b6 - 8b7 - 8z6b - 7z5b - 8z5b2 - 
7z4b2 -8z4 

b3 
-7z3b3 -8z3b4 -7z2 

b4 
- 8z2b5 -7zb5 -8zb6 -7a5b- 

7a4b2 -7a 
3b 3- 

7a2b4 - 7ab5 - 8a6b - 8a5b2 - 8a4b3 - 8a3b4 - 8a2b5 - 8abs - 8az2b4 - 8azb5. 

This ideal has codiimension 10. 

9f (x, y, z) = (x, y, yz + xz2 + z6 - z8 + az9). 

The critical set for f is given by 

Zf={ (x, y, z) :y+ 2xz + 6z5 - 8z7 + 9az8 = 0} . 

So Ef is smooth and we can parametrize it by (x, -2xz-6z5+8z7-9azx, z), 

and F is given by (x, -2xz - 6z5 + 8z7 - 9az8, -xz2 - 5z6 + 7zg - 8a-). 

So we have the equations 

Y+Mz+ 6z5 - 8z7 + 9az8 =0 
Z+X z' + 5z6 - 7z8 + 8az9 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 

our defining equation. 

This gives µ(d) = 22 and µ(c) = 0. 

To calculate the number of swallowtails we use Prop. 7.1.2. 
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dimcE3/(9Z, 9zz, 9ZZ: )E3 = 3. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 
hl = -9z7 + 8z6 - 9z6a+ 8z5a - 9z5a2 - 6z4 + 8z4a2 - 9z4a3 - Gaza + 8z3a3 - 

9z3a4 - 6azz2 + 8z2 a4 - 9z2a5 - 6za3 + 8za5 - 9za6 - 2x - 6a4 + 8a6 - 9a7, 
h2 = -xz - xa - 5z5 - 5a5 - 5z4a - 5z3a2 -5 Z2 a3- 5za4 - 8z8 + 7z7 + 7a7 - 

8a8 + 7z6a + 7z5a2 + 7z4a3 + 7z3a4 + 7z2a5 + 7zas - 8z7a - 8zsa'1- 8z5a3 - 
8z4a4 - 8z3a5 -8 Z2 a6- 8za7, 
kl = -9az4b + 8a3bz - 6z3 - 9a3zb2 - 9a4bz - 6a3 - Gaze - 6za2 - Gbz2 - 
6zb2 - 9a3bz2 - 9a2bz3 - 6b3 - 6abz + 8z5 + 8a5 - Ga2b - Gabe - 9z6 - 9a6 + 
8z4a + 8z3a2 + 8z2a3 + 8za4 + 8b5 + 8z4b + 8z3b2 + 8z2b3 + 8zb4 - 9z5a - 
9z4a2 - 9z3a3 - 

9z2a4 
- 

9za5 + 8a2bz2 
- 

9a2b2z2 +8a 2 zb 2- 9a2zb3 + 8abz3 - 

9az3b2 +8ab2z2 - 9az2b3 +8azb3 - 9azb4 -9b 6 _9Z5 b- 9z4b2 _9Z3 b3- 9zIb4 - 
9zb5 - 9a5b + 8a4b - 9a4b2 + 8a3b2 - 9a3b3 + 8a2b3 - 9a2b4 + 8ab4 - 9ab5, 

k2 = 7az4b-8a3bz3-x-8a5bz+7a3zb2+7a4bz-5z4-5a4+7a3bz2+7a2bz3- 

5a2bz - 5az3 - 5a2z2 - 5za3 - 5b4 - 5bz3 -5b 
2Z2 

- 5zb3 - 8a4bz2 + 7z6 + 7a6 - 
5abz2 - 5azb2 -5a 

3 b-5a2b2 - 5ab3 - 8z7 -8a 
7- 8zsa+7z5a - 8z5a2 +7z4a2 - 

8z4a3+7z3a3 -8z3a4+7z2a4-8z2a5+7za5 -8za6+7a2b2Z2+7a2zb3+7az3b2+ 
7az2b3 + 7azb4 - 8a4zb2 - 8a3b2z2 - 8a3zb3 - 8a2Z4b - 8a2z3b2 - 8a2 2b3 - 
8a2zb4 - 8az5b - 8az4b2 - 8az3b3 + 7b6 - 8b7 - 8zsb+ 7z5b - 8z5b2 + 7zab2 - 
8z4b3 + 7z3b3 - 8z3b4 + 7z2b4 - 8z2b5 + 7zb5 - 8zb6 + 7a5b + 7a4b2 + 7a3b3 + 
7a2b4 + 7ab5 - 8a6b - 8a5b2 - 8a4b3 - 8a3b4 - 8a2b5 - 8ab6 - 8az2b4 - 8azb5. 

This ideal has codimension 3. 

" f(x, y, z) = (x, yz + y3 + ax2y, y2 ± z2 + y3 + x2y)" 
The critical set for f is given by 

Zf= {(x, y, z) : ±2z(z ± 3y2 + axe) - y(2y + 3y2 + x2) =0}. 

Singular when x=y=z=0 and at 3 other points. 

" f(x, y, z) = (x, yz±y3+ax2y, y2±z2+y3-x2y)" 

The critical set for f is given by 

Zf= {(x, y, z) : f2z(z f 3y2 + ax 2) - y(2y + 3y2 - s2) =0}. 

Singular when x=y=z=0 and at 3 other points. 

" f(x, y, z) = (x, yz+ax2y, y2±z2+y3+x2y)" 
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The critical set for f is given by 

Ef ={(x, y, z): ±2z(z+axe)-y(2y+3y2+x2)=0}. 

Singular when x=y=z=0 and at 3 other points. 

"f (x, y, z) = (x, yz + ax2y, y2 ± z2 + y3 - x2y). 

The critical set for f is given by 

Ef= {(x, 
y, z) : ±2z(z + axe) - y(2y +3 y2 - x2) =0}. 

Singular when x=y=z=0 and at 3 other points. 

" f(x, y, z) = (x, yz+y3- 
3x2y+x3y, 

y2+z2+xy+xz). 

The critical set for f is given by 

. 
Zf= {(x, 

y, z) : (2z + x)(z + 3y2 -3 x2 + x3) - y(2y + x) =01 16 

Singular when x=y=z=0 and at 1 other point. 

"f (x, y, z) = (x, yz + y3 -3x2y- x3y, y2 + z2 + xy + xz). 

The critical set for f is given by 

}. Zf= {(x, 
y, z) : (2z + x)(z + 3y2 - 

16x2 - x3) - y(2y + x) =0 

Singular when x=y=z=0 and at 1 other point. 

"f (x, y, z) = (x, yz, y2 + xz + z3 + z4 + ayz3). 

The critical set for f is given by 

Ef= {(x, y, z) : z(x + 3z2 + 4z3 + 3ayz2) - y(2y + az3) =0}. 

Singular when x=y=z=0. 

"f (x, y, z) = (x, yz, y2 + xz + z3 + yz3). 

The critical set for f is given by 
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Ef= {(x, y, z) : z(x + 3z2 +3 YZ2) - y(2y + z3) =0}. 

Singular when x=y=z=0. 

" f(x, y, z) _ (x, y, z3+(y2+x4)z)" 

The critical set for f is given by 

Zf = 
{(x, y, z) : 3z2+y2+x4 =0}. 

This curve is singular when x=y=z=0. 

"f (x, y, z) = (x, y, z3 + (y2 - x4)z). 

The critical set for f is given by 

Ef= {(x, y, Z): 3z2 +y2 - x9 = 0} . 

This curve is singular when x=y=z=0. 

"f (x, y, z) _ (x, y, z3 - (x2 - y4)z)" 

The critical set for f is given by 

Zf={ (x, y, z) : 3z2 - x2 + y4 = ()1. 

This curve is singular when x=y=z=0. 

" f(x, y, z) = (x, y, z3 - 
(x2 +y4)z)" 

The critical set for f is given by 

J: f = 
{(x, y, z) : 3z2 - x2 - y4 = 0} . 

This curve is singular when x=y=z=0. 

"f (x, y, z) = (x, yz +x2y+ y5, y2 + z2 + xy + xz). 

The critical set for f is given by 
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Zf={ (x, y, z) : (z+ xz + 5y4)(2z + x) - y(2y + x) =0}. 

This curve is singular when x=y=z=0 at at one other point. 

"f (x, y, z) = (x, yz + x2y - y5, y2 + z2 + xy + xz). 

The critical set for f is given by 

Zf= {(x, y, z) : (z +x 2 
-5 y4 )(2z +x) - y(2y +x) =0}. 

This curve is singular when x=y=z=0 at at one other point. 

" f(x, y, z) = (x, yz, y2+xy+z3+xz2+ax2z+bz5). 

The critical set for f is given by 

Ef= {(x, y, z) : z(3z2 + 2xz + ax 2+ 5bz4) - y(2y + x) = 0} . 

This curve is singular when x=y=z=0 at at one other point. 

9 f(X, y, z) = (x, y, yz+Z4+x422). 

The critical set for f is given by 

Ef= {(x, y, z) : y+4z3+2x42 =0}. 

So Ef is smooth and we can parametrize it by (x, -4z3 - 2x42, z), and F 
is given by (x, -4z3 - 2x42, -3z4 - x422). So we have the equations 

Y+2X42+4z3 =0 
Z+ X4z2 + 3z4 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation: 

G(X, Y, Z) = 4X12Y2+27Y4+16X16Z+128Z2X8+144X4Y2Z+25623 = 0. 

So using Prop. 7.1.1 we have 
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h(x, z) = (x4 + 622)2(x4 + 222) 

So f has double point curve given by d(x, z) = x4 + 2z2 and cuspidal edge 
curve given by c(x, z) = x4 + M. So we have µ(d) = p(c) = 3. Finally to 

calculate the number of swallowtails we use Prop. 7.1.2. 

So for f we have x has weight 1, y has weight 6 and z has weight 2, and 
the degree of g is 8 where (f (x, y, z) = (x, y, g(x, y, z)): 

-14A3 = 
(8-2)(8- 2)(8-6) 

tt- 1.6 

= 4. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 

hl = -4z2 - 4az - 2x4 - 4a2, (7.1) 

h2 = -3z3 - 3az2 - x4z - 3za2 - x4a - 3a3, (7.2) 

kl = -4a - 4z - 4b, (7.3) 

k2 = -3a2 - 3az - 3ab - 3z2 - x4 - 3bz - 3b2. (7.4) 

This ideal has codimension 4. 

"f (x, y, z) = (x, y, yz + z4 - x4z2). 

TI. -: ritical set for f is given by 

Zf= {(x, y, z) : y+4z3 - 2x42 =0}. 

So >f is smooth and we can parametrize it by (x, -4z3 + 2x42, z), and F 

is given by (x, -4z3 + 2x42, -3z4 +X4 Z 2). So we have the equations 

Y-2X'42+4z3 =0 
Z-X4z2+3z4 =0 

Using MAPLE to calculate the resultant of these two equations we obtain 

our defining equation: 

G(X, Y, Z) = 4X12Y2+27Y4+16X16Z+128Z2X8+144X4Y2Z+256Z3 = 0. 

So using Prop. 7.1.1 we have 
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h(x, z) = (x4 - 6z2)2(x4 - 2z2). 

So f has double point curve given by d(x, z) = x4 - 2z2 and cuspidal edge 
curve given by c(x, z) = x4 - W. So we have µ(d) = µ(c) = 3. Finally to 

calculate the number of swallowtails we use Prop. 7.1.2. 

So for f we have x has weight 1, y has weight 6 and z has weight 2, and 

the degree of g is 8 where (f (x, y, z) = (x, y, g(x, y, z)): 

A3 = 
(s-2)(8.2)(8-6) 

= 4. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 

hl = -4z2 - 4az + 2x4 - 4a2, (7.5) 

h2 = -3z3 - 3az2 + x4z - 3za2 + x4a - 3a3, (7.6) 

kl = -4a - 4z - 4b, (7.7) 

k2 = -3a2 - 3az - 3ab - 3z2 + x4 - 3bz - 3b2. (7.8) 

This ideal has codimension 4. 

" f(x, y, z) _ (x, yz, y2+xy+xz+z4+yz3+az5+byz4+cz6). 

The critical set for f is given by 

Ef = {(x, y, z): z(x + 4z3 + 3yz2 + 5az4 + 4byz3 + 6cz5) - y(2y +x+ z3 + bz4) = 0}. 

This curve is singular when x=y=z=0 at at one other point. 

"f (x, y, z) _ (x, yz, y2 + xy + xz + z4 _ yz3 + az5 + byz4 + czs). 

The critical set for f is given by 

{(x, y, z) : z(x + 4z3 - 3yz2 + 5az4 + 4byz3 + 6cz5) - y(2y +x- z3 + bz4) = Q} 
. 

This curve is singular when x=y=z=0 at at one other point. 

"f (x, y, z) = (x, yz, y2 + xz + z4 + yz3 + az5 + byz4 + cz6). 

The critical set for f is given by 

220 



Ef 
= {(x, y, z): z(x + 4z3 + 3yz2 + 5az4 + 4byz3 + 6cz5) - y(2y + z3 + bz4) = O}. 

This curve is singular when x=y=z=0. 

"f (x, y, z) = (x, yz, y2 + xz + z4 - yz3 + az5 + byz4 + czs). 
The critical set for f is given by 

>f= {(x, y, z): z(x + 4z3 - 3yz2 + 5az4 + 4byz3 + 6cz5) - y(2y - z3 + b. 4) = 0}. 

This curve is singular when x=y=z=0. 

"f (x, y, z) = (x, y, yz + xz3 + z5). 
The critical set for f is given by 

Zf= {(x, y, Z): y+ 3xz2 + 5z4 = 0} . 

So Ef is smooth and we can parametrize it by (x, -3xz2 - 5z4, z), and F 
is given by (x, -3xz2 - 5z4, -2xz3 - 4z5). So we have the equations 

Y+3Xz2+5z4 =0 
Z+2Xz3+4z5 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation: 
G(X, Y, Z) = 16X4Y3 - 128X2Y4 - 900X3YZ2 + 2000XY2Z2 + 256`5 + 
3125Z4 + 108X5Z2. 

So using Prop. 7.1.1 we have 

h(x, z) = (x + 2z2)(25z4 + 15xz2 + x2)(3x + 10z2)2z2. 

So f has double point curve given by d(x, z) = (x + 2z2)(25z4 + 15xz2 + x2) 
and cuspidal edge curve given by c(x, z) = z(3x + 10x2). So we have µ(d) _ 
10, µ(c) = 1. 

To calculate the number of swallowtails we use Prop. 7.1.2. 

So for f we have x has weight 2, y has weight 4 and z has weight 1, and 
the degree of g is 5 where (f (x, y, z) = (x, y, g(x, y, z)): 

#A3 = 
(5-1)(5.1)(5-3) 

2.4 

= 3. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 
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h, = -5z3 - 5az2 - 3xz - 5za2 - 3xa - 5a3, 
h2 = -4z4 - 4az3 - 2xz2 - 4a2z2 - 2zxa - 4za3 - 2xa2 - 4a4, 
kl = -5a2 - 5az - 5ab - 5z2 - 3x - 5bz - 5b2, 
k2 = -4a3 - 4za2 - 4a2b - 4az2 - 2xa - 4abz - 4ab2 - 4z3 - 2xz - 4bz2 - 
2xb - 4zb2 - 4b3. 

This ideal has codimension 6. 

"f (x, y, z) = (x, y, yz + x222 + z5 + z6 + az7). 

The critical set for f is given by 

Ef= {(x, y, z) : y+2x22±5z4+6z5+7az6=0}. 

So Ef is smooth and we can parametrize it by (x, -2x2z 5z4 - 6z5 - 
7az6, z), and F is given by (x, -2x2z 5z4 - 6z5 - 7az6, -x222 4z5 - 5zs - 
6az7). So we have the equations 

Y+ 2X22 f 5z4 + 6z5 + 7az6 =0 
Z+X 2Z2 ± 4z5 + 5z6 + 6az7 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation. 
This gives p(d) = 15, µ(c) = 2. To calculate the number of swallowtails we 
use Prop. 7.1.2. 

dimcE3/(9, z, 9: Z, 9:: Z)S3 = 4. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 
hl =- 7z'-6z 4- 7z4a - 5z3 - 6az3 - 7z3a2 - 5az2 - 6a2z2 - 7z2a3 - 5za2 - 
6za3 - 7za4 - 2x2 - 5a3 - Ga4 - 7a5 

h2 =- 
, 

6z6 - 5z5 - 6z5a - 4z4 - 5z4a - 6z4a2 - 4az3 - 5z3a2 - Gz3a3 - 4a 2z2 - 
5z2a3 - 6z2a4 - x2z - 4za3 - 5za4 - 6za5 - x2a - 4a4 - 5a5 - bas, 
kl =- 5z2 - 5az - 5bz - 6z3 - 5a2 - 6a3 - 5b2 - 7z4 - Gaze - Gza2 - Gbz2 - 
6zb2 - 7a4 - 6b3 - 5ab - 6abz - 7a2bz - 7az3 - 7a2z2 - 7za3 - 7b4 - 7b 3- 
7b2z2 - 7zb3 - 6a2b - 6ab2 - 7abz2 - 7azb2 - 7a3b - 7a2b2 - 7ab3, 
k2 =- 6a3bz - 4z3 - 4a3 - 5z4 - 4az2 - 4za2 - 4bz2 - 4zb2 - 5a4 - 4b3 - 
x2 - 4abz - 5a2bz - 6z5 - 5az3 - 5a2z2 - 5za3 - 6a5 - 5b4 - 5bz3 - 5b2z2 - 
5zb3 - 4a2b - 4ab2 - 6z4a - 6z3a2 - 6z2a3 - Gza4 - 5abz2 - 5azb2 - Gb5 - 
6z4b - 6z3b2 - 6z2b3 - 6zb4 - 5a3b - 5a2b2 - 5ab3 - Ga2bz2 - Ga2zb2 - Gabz3 - 
6ab2z2 - 6azb3 - 6a4b - 6a3b2 - 6a2b3 - Gab4. 
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This ideal has codimension 8. 

0f (x, y, z) = (x, y, yz + x2z2 ± z5 - z6 + az7) 

The critical set for f is given by 

f= {(x, y, z) : y+2x22±5z4 -6z5+7az6 =0}. 

So Ef is smooth and we can parametrize it by (x, -2x2z 5z4 + Gz5 - 
7az6, z), and F is given by (x, -2x2z 5z4 +6z5 - 7az6, -x222 4z5 + 5z6 - 
6az7). So we have the equations 

Y+ 2X 2z ± 5z4 - 6z5 + 7az6 =0 
Z+X 2Z2 ± 4z5 - 5z6 + 6az7 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation. 

This gives µ(d) = 15, µ(c) = 2. 

To calculate the number of swallowtails we use Prop. 7.1.2. 

dimCE3/(9Z, 9z: ß 9: ZZ)S3 = 4. 

Now for the triplepoints we have the following ideal (hl, h2, k1, k2) with 
hl = -7z5 + 6z4 - 7z4a - 5z3 + 6az3 - 7z3a2 - 5az2 + 6a2z2 - 7z2a3 - 5za2 + 
6za3 - 7za4 - 2x2 - 5a3 + 6a4 - 7a5, 
h2 = -6z6 +5z 5- 6z5a - 4z4 + 5z4a - 6z4a2 - 4az3 + 5Z3a2 - 6z3a3 - 4a2 2,2 + 

5z2a3 - 6z2a4 - x2z - 4za3 + 5za4 - 6za5 - x2a - 4a4 + 5a5 - 6a6, 
kl = -5z2 - 5az - 5bz + 6z3 - 5a2 +6a 3- 5b2 - 7z4 + Gaze + 6za2 + 6bz2 + 
6zb2 - 7a4 + 6b3 - 5ab + 6abz - 7a2bz - 7az3 - 7a2z2 - 7za3 - 7b4 - 7bz3 - 
7b2z2 - 7zb3 + 6a2b + 6ab2 - 7abz2 - 7azb2 - 7a3b - 7a2b2 - 7ab3, 
k2 = -6a3bz - 4z3 - 4a3 + 5z4 - 4az2 - 4za2 - 4bz2 - 4zb2 + 5a4 - 463 - 
x2 - 4abz + 5a2bz - 6z5 + 5az3 + 5a2z2 + 5za3 - 6a5 + 5b4 + 5bz3 + 5b2z2 + 
5zb3 - 4a2b - 4ab2 - 6z4a - 6z3a2 - 6z2a3 - 6za4 + 5abz2 + 5azb2 - Gb' - 
6z4b - 6z3b2 - 6z2b3 - 6zb4 + 5a3b + 5a2b2 + 5ab3 - Ga2bz2 - Gat zb2 - Gabz3 - 
Gab2z2 - 6azb3 - 6a4b - 6a3b2 - 6a2b3 - 6ab4. 

This ideal has codimension 8. 

"f (x, y, z) = (x, y, yz2 + x2z + z4 + z7) 

The critical set for f is given by 
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Ef= {(x, y, z) : 2yz + x2 + 4z3 + 7z6 = 0} . 

This is singular when x=y=z=0. 

"f (x, y, z) = (x, y, yz2 + x2z + z4 - z7). 

The critical set for f is given by 

Ef={ (x, y, z) : 2yz + x2 + 4z3 - 7z6 = 0} 
. 

This is singular when x=y=z=0. 

" f(x, y, z) = (x, y, yz+xz2 --z6+z9). 

The critical set for f is given by 

Ef=I (x, y, z) :z+ 2xz + 6z5 + 9z8 = 01. 

So Ef is smooth and we can parametrize it by (x, -2xz - 6z5 - 9z8, z), 
and F is given by (x, -2xz - 6z5 - 9z8, -xz2 - 5z6 - 8z9). So we have the 

equations 

Y+ 2Xz + 6z5 + 9z8 =0 
Z+Xz2+5z6+8z9 = 0. 

Using MAPLE to calculate the resultant of these two equations we obtain 
our defining equation: 

G(X, Y, Z) = 145800Z3Y3 + 2646X4Y4 - 13500X2Y5 + 7873200Z4X' - 
208324872Z5X3 - 3031182Z4Y3 - 6912X5Y2 + 592704X6Z2 - 27648X6Z + 
1728000ZY6-11239424X3Y6-7372800XY7-99837360Z2X3Y3-123294312Z5N Y '_ 
15402 8952 Z2X 5Y2 -114082668 Z4X 2 Y2 - 80607744 ZX4 Y4 - 52780032 ZX2Y "s + 
283553298Z4X4Y - 73903104Z3XY4 + 768144384X3Y3Z3 - 1259712Z5 - 
84375Y6+25509168Z6 -2420208X7YZ+169869312X 1f7 Z+272097792Z5Y3 - 
49009212X6Z3 -11943936Z2Y6 -605052X6Y3 -823543XSY2 -3294172X9Z+ 
16777216Y9+387420489Z8+803538792Z6XY+585252864Z2X 2 Y5 -17218688.1Z7+ 
24065748Z3X2Y2 - 29148336Z3X4Y + 12470760Z2XY4 + 629856Z4X1 - 
607500ZXY4-1166400Z2X2Y2-92880ZX3Y3-155520Z2X41' -373248Z3X3+ 
158760X5 Y2 Z 

So using Prop. 7.1.1 we have 
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h(x, z) = -2(-58320z15+30664656z18+14070546x524+291600z'2+15448740552x27+ 
71464091616z30+162976499712x33+39053988x21 +1111237299x24 -198288x2 z7+ 
12042108x2z10-373248xz11+30909600xz14 -157636044xz 17+201715163136z3t3 + 
130606940160z39+34828517376z42 +99164528640xz32 + 31926140928xz: i5 + 
341156448x4z14+4880030976x3218 +2693357568x3221 +30703380480x2215 + 
12496343040x2 z28+823543x6+233280xz8+2131596x326 -191996244x: 22 13+ 

1111055778x220+92990241x428+315727092x3212+2721137328x3215+671204637x2 z "i 
9721419120x2z19+27275704128x2z22+18701456904x223+70812610560x226+ 
120851730432x229+402634152z11x 4-15788952x425-81685476x'29+13759214 z2 - 
1210104x5z - 3024023x3 + 24589224z7x5 + 6609624x2 + 6912x3)(x + 15z4 + 
36z7)2 

So f has double point curve given by d(x, z) = -2(-58320z15+30664656x18+ 
14070546x5 z4+291600z12+15448740552x27+71464091616230+ 162976.199712233+ 
39053988z2' + 1111237299z24 -198288x227 + 12042108x2210 - 373248xz' + 
30909600xz14 -157636044xz17+201715163136x36+130606940160x39+3482851737624 
99164528640xz32 + 31926140928x235 +341156448x4214 + 4880030976x32 'A + 
2693357568x3221 +30703380480x2225 +12496343040x2228+823543x6+233280. cz8+ 
2131596x326 -191996244x2213+1111055778x220+92990241x4z8+315727092x32 

12 + 
2721137328x 3z 15 + 671204637x2 z 16 + 972141912Ox 2z 19 + 27275704128x 2z 22 + 
18701456904xz23+70812610560x226+120851730432x229+402634152z L 1x4 - 
15788952x4z5 - 81685476x329 + 137592x422 - 1210104x5z - 3024023x3 + 
24589224z7x5 + 6609624x2 + 6912x3) and cuspidal edge curve given by 

c(x, z) =x+ 15z4 + 36z7. So we have p(d) = 22, p(c) = 0. 

To calculate the number of swallowtails we use Prop. 7.1.2. 

dimcE3/(9Z, 9zZ, 9::: )93 = 3. 

Now for the triplepoints we have the following ideal (hl, h2i k1, k2) with 
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hl =- 9z7 - 9z6a - 9z5a2 - 6z4 - 9z4a3 - 6az3 - 9z3a4 - 6a2Z2 - 9z2a5 - 

6za3 - 9za6 - 2x - 6a4 - 9a7, 
h2 =- 8z8 - 8z7a - 8z6a2 -5 Z5 - 8z5a3 -5 Z4 a- 8z4a4 - 5Z3a2 - 8Z3a' - 

5z2a3 - 8z2a6 - xz - 5za4 - 8za7 - xa - 5a5 - 8a8, 

kl =- 9az4b - 6z3 - 9a3zb2 - 9a4bz - 6a3 - Gaze - Gza2 - 6bz2 - Gzb2 - 
9a3bz2 - 9a2bz3 - 6b3 - 6abz - 6a2b - 6ab2 - 9z6 - 9a6 - 9z5a - 9z4a2 - 
9z3a3 - 9z2a4 - 9za5 - 9a2b2z2 - 9a2zb3 - 9az3b2 - 9az2b3 - 9azb4 - 9b6 - 
9z5b - 9z4b2 - 9z3b3 - 9z2b4 - 9zb5 - 9a5b - 9a4b2 - 9a3b3 - 9a2b4 - 9ab5, 

k2 =- 8a3bz3-x-8a5bz-5z4-5a4-5a2bz-5az3-5a2z2-5za3-5b4 -5bZ3 - 

5b=z2 - 5zb3 -8a 4 bZ2 - 5abz2 - 5azb2 -5a 3 b- 5a2b2 - 5ab3 - 8z7 -8a 7 - 8z6a - 
8z5a2 

- 
8z4a3 

- 
8z3a4 

- 
8z2a5 

- 
8za6 

- 
8a4zb2 - 

8a3b2z2 - 
8a3zb3 - 

8a2zab - 

8a2z3b2-8a2z2b3-8a2zb4-8az5b-8az4b2-8az3b3-8b7-8z6b-8z5b2 -8z4b3 - 

8z3b4- 8z2b5 -8zb6 -8a6b-8a5 
b2 -8a4b3-8a3b4 -8a2b5 -8ab6 -8az2b4 -8azb5. 

This ideal has codimension 10. 
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7.3 Bifurcations 

We have the following pictures of the images of the critical sets obtained frone 
GEOMVIEW on a SILICON GRAPHICS WORKSTATION. 

Figure 7.2: f (x, y, z) = (x, y, yz + z3) 

Figure 7.3: f (x, y, z) _ (x, y, yz + xz2 + z4) 
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o_ 0 

Figure 7.4: f (x, y, z) = (x, yz + ay, y2 + z2 + xy) 

0. =O 

a- o 

a. *O 

Figure 7.5: f (x, y, z) = (x, yz + ay, y2 - z2 + xy) 
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0a 

Figure 7.6: f (x, y, z) = (x, y, z3 + (y2 + x2)z + az) 
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0a 

Figure 7.7: f(x, y, z) = (x, y, z3 + (y2 - x2)z + az) 
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Figure 7.8: f (x, y, z) = (x, y, z3 - (y2 - x2)z + az) 
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Figure 7.9: f (x, y, z) = (x, y, z3 - (y2 + s2)z + az) 
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0a 

Figure 7.10: f (x, y, z) = (x, y, yz + z4 +x2z2+ az2) 

iT 

0 a, 

Figure 7.11: f (x, y, z) = (x, y, yz + z4 - x222 + az2) 
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0 0. 

Figure 7.12: f (x, y, z) = (x, y, yz + xz2 + z5 + az3) 
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Figure 7.13: f(x, y, z) = (x, yz+y3, y2+z2+xy+xz+ay+bxy) 
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Figure 7.14: +, y3 
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Figure 7.15: f (x, y, z) = (x, y, z3 + (y2 + x3)z + az + bxz) 
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Figure 7.16: f (x, y, z) = (x, yz, y2 + xy + xz + z3 + ayz3 + by + cz2), 
a=0 
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Figure 7.17: f (x, y, z) = (x, yz, y2 + xz + z3 + z4 + ayz3 + by + ez2), 
a=0 
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Figure 7.18: f(x, y, z) = (x, y, yz + z4 + x322 + az2 + bxz2) 
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Figure 7.19: f(x, y, z) _ (x, y, yz2 + x2z + z4 + z5 + az2 + bz4) 
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Figure 7.20: f(x, y, z) = (x, y, yz2 + x2z + z4 - z5 + az2 + bz4) 
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Figure 7.21: f (x, y, z) = (x, y, yz + xz3 + z5 + zs + az2 + bz4 ) 
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Figure 7.22 

PZ 

/ JLJI b 

f (x, y, z) = (x, y, yz + xz2 + z6 ± z8 + az9 + bz3 + cz4), 

a=0 
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eý 

Figure 7.23: f(x, y, z) = (x, yz±y3+ax2y+by, y2±z2+y3±x2y+cy+dry), 
a=1 
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Figure 7.24: f (x, y, z) = (x, yz + ax2y, y2 ± z2 + y3 ± x2y + by + cxy + dx2y), 

a=1 
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Figure 7.25: f (x, y, z) = (x, yz+y3- lsx2ytx3y, y2+z2+xy+xz+ay+bz2+cyz3) 

245 



Figure 7.26: f (x, y, z) = (x, yz, y2 + xz + z3 + yz3 + ay + bz2 + czß) 
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Figure 7.27: f (x, y, z) = (x, y, z3 + (y2 + x4)z + az + bxz + cx2z) 
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Figure 7.28: f (x, y, z) _ (x, y, z3 + (y2 - x4)z + az + bxz + cx2z) 
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Figure 7.29: f (x, y, z) = (x, y, z3 - (x2 - y4)z + az + byz + cy2z) 
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Figure 7.30: f (x, y, z) - (x, y, z3 - (x2 + y4)z + az + byz + cy2z) 
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Figure 7.31: f(x, y, z) = (x, yz+x2y+y5, y2+z2+xy+xz+ay+bxy+ry3) 
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Figure 7.32: f(x, y, z) = (x, yz+x2y_ y5, y2+z2+xy+xz+ay +bxy+rya) 
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Figure 7.33: f (x, y, z) = (x, yz, y2 + xy + z3 + xz2 + ax2Z + bz5 + cz + dz2 + exz), 
a=b=1 
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Figure 7.34: f (x, y, z) = (x, y, yz + z4 + x222 + az2 + bxz2 + cx2Z2) 
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Figure 7.35: f (x, y, z) = (x, y, yz + z4 - x222 + az2 + bxz2 + cx2z2) 
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Figure 7.36: f (x, y, z) = (x, yz, y2 + xy + xz + z4 ± yz3 + az5 + byz4 + cz6 + dy+ 

ez2+fz3), a=b=c=1 
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T 

Figure 7.37: f (x, y, z) = (x, yz, y2 + xz + z4 ± yz3 + azs + byz4 + cz6 + dy+ 

ez2 +f z3), a= b= c= 1 
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Figure 7.38: f (x, y, z) = (x, y, yz + xz3 + z5 + az2 + bz4 + cz6) 
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Figure 7.39: f (x, y, z) = (x, y, yz + x222 + z5 ± z6 + az7 + bz2 + Cz3 + dxz'), 

a=1 
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Figure 7.40: f (x, y, z) = (x, y, yz2 + x2z + z4 + z7 + az + bz3 + cz5) 
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Figure 7.41: f(x, y, z) = (x, y, yz2 + x2z + z4 - z7 + az + bz3 + cz5) 
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Figure 7.42: f (x, y, z) = (x, y, yz + xz2 + z6 + z9 + az3 + bz4 + cz8) 
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Appendix A 

Quasihomogeneous functions 

First we need some definitions. 

Definition A. 0.1 1. If we consider the space C' with fixed co-ordinates xl, ..., xn. 
A function f: (C`, 0) --> (C, 0) is said to be quasihomogeneous of degree 

d with exponents al, ..., an if 

f (Aal x1, ..., 
AanXn) = I\df x17 ..., xn) for all A. 

2. A gnasihomogeneous function f is said to be non-degenerate if 0 is an iso- 
lated critical point. 

3. We say that the monomial Xk = xk' ... inn has degree d if (a, k) = al kl + 

... + ankh, = d. 

4. A polynomial has filtration d if all its monomials are of degree d or higher. 

5. A polynomial is said to be semiquasihomogeneous of degree d with exponents 
cal, ..., can if it is of the form f= fo + f', where fo is a non-degenerate 
quasihomogeneous polynomial of degree d with exponents a, and f' is a 
polynomial of filtration > d. 
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Theorem A. 0.2 [Al] 

The multiplicity of the critical point 0 of a semiquasihomogeneous function f 
is that of its quasihornogeneous part: µ(f) = p(fo). 

Corollary A. 0.3 Assume that the syste°' of monomials el,..., F,, is a basis of the 
local ring of the quasihomogeneous part fo of a semiquasihomoyeneou. S fun ettona 
f. Then this same system of monomials is a basis of the local ring of f. 

Remark A. 0.4 The number of basis monomials of the local ring of a quasihu- 
mogeneous or semiquasihomogeneous function f having given degree d does not 
depend on the choice of the basis in the local ring. 

If we consider the local ring of a quasihomogeneous or semiquasihonuogenvous 
function f of degree d and fix a system of monomials forming a basis for this 

ring. 

Definition A. 0.5 A monomial is said to be upper or to lie above the diagonal 
(or lower, or diagonal) if it has degree greater than d (or less than d, or equal to 
d) for given quasihomogeneous exponents. 

Let el,..., e3 be the system of all upper basis monomials in a fixed basis of the 
local ring of the function fo. 

Lemma A. 0.6 Let fo be a quasihomogeneous function of degree d and ei, ..., e,. 
the set of all basis monomials of fixed degree d' >d in the local ring of fo. Then 

every series of the form fo + fl, where the filtration of fl is greater than d, can 
be brought by a formal diffeomorphism to the form fo + f, 

, where the terms in 
fl of degree less than d' are the same as in f 1, and the terms of degree d' reduce 
toclel+... +crer.. 

Theorem A. 0.7 Every semiquasihomogeneous function with quasihomogeneou, i 
part fo is equivalent to a function of the form fa +> ckek, where the e"k am 
constants. 

Proof. Using the above lemma. 

0 
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Let al,..., ap be a fixed collection of p quasihomogeneous types. We recall 
that the monomial xk is of degree (a;, k) = Oi(k) in the i-th filtration. We define 
the piecewise degree of xk to be O(k) = min[ti(k), ..., 

Op(k)]. 

Definition A. 0.8 A power series has piecewise filtration d if all its monoanals 
have piecewise filtration d or higher. 

The sum of the terms of lowest (piecewise) degree in a given power series is 

called the principal part of the series. A (piecewise) homogeneous function of 
degree d is a polynomial whose monomials all have (piecewise) degree d. 

Definition A. 0.9 A piecewise homogeneous function fo of degree d satisfies con- 
dition A if for every function g of filtration d+b>d in the ideal spanned by the 
derivatives of fo there is a decomposition 

bfo 
º g=-vi +9º Sx, 

where the vector field v has filtration S, and the function g' has filtration 

greater than d+ö. 

Note that a quasihomogeneous function always satisfies condition A. 

We consider a basis of the local ring of a piecewise homogeneous function fo 

of finite multiplicity p. 

Definition A. 0.10 A basis el, ..., ew, of homogeneous elements is said to be reg- 

ular if, for each D, the elements of the basis of degree D are independent modulo 
the sum of the ideal I= (Sf/öxo) and the space E>D of functions of filtrations 

greater than D. 

Proposition A. 0.11 There always exists a regular basis, in fact, one consisting 

entirely of monomials. 

Theorem A. 0.12 If the principal part fo of a function f satisfies condition A 

and has finite multiplicity µ, then f can be reduced by a difeomorphism to the 
form fo + clef +... + ces, where el,..., e3 are the superdiagonal monomials of the 

regular basis. 
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Appendix B 

Determinacy Results 

" (x, y)" 

This is clearly 1-A1-determined. 

" (x, y2±z2). 

TA1 f= 
. 
M3((1,0), (0, y), (0, z)) + f"Mz{el, e2}. 

We want to check to see if this germ is 2-A1-determined, so we want 

M3 C TA1 f+ M3(f *M2 ý3ý. C(3,2). 

Clearly this is the case, so (x, y2 ± z2) is 2-A1-determined. 

" (x, xy+y3±z2). 

TA, f= M2 «1, y), (0, x+ 3y2), (O, z)) +f` Mz{el, e21- 3 

We want to check to see if this germ is 3-A1-determined, so we want 

A43 c TA1 f+ 
, 
M3(f *M2 + M34). E(3,2). 

So we have 

Oet with 0E . 
M3 

x0e; with 0E Jýt3 

y3q5e; with 0E ý1ý13 
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z¢ei with 0E M3 

So we are looking for 

ei e2 
x4 � � 

x3y � � 

x2y2 � � 

3 xy � � 
4 y � � 
5 y � � 
6 y � � 

We have (xq, 0) with 0e 
. 
M3 

. 
(0, x3y) f---* (x3,0) which we have from (x`, 0). 

(0, x2y2) 4---* (0, x2) which we have from (0, xi). 
(0, xy3) f--* (0, x2y) which we have from (x2, x2y). 
(y6,0) <--ý (0, y7) which we have from y3(0, y4). 
(y5,0) E--* (0, y6) H (0, xy4) which we have from x(0, y4). 
(y4, ) -' (0, y5) 1 (0, xy3)" 
(0, y4) H (0, xy2). If we use the nilpotent vector field xt we have 

x(0, x+ 3y2). 

So we find that (x, xy + y3 ± z2) is not 3-A1-determined, but it is 3-A- 
determined. 

" (x, y3 ± x2y ± z2). 

TA1 f= 
. 
M3«1, +2xy), (0,3y2 ± x2), (0, z)) +f *Mi{et, es } 

We want to check to see if this germ is 3-A1-determined, so we want 

M3 C TA1 f +M4 (f *M2 +M4 ). e(3,2). 

So we have 

¢ei with 0E 
, 
M3 

xget with 0E M3 

y3ge= with 0E Jý13 

267 



zgei with 0EM. 

So we are looking for 

ei e2 

x3 y � � 
x2y2 � � 

3 xy � � 
4 y � � 
5 y V V 
6 y � � 

We have (xo, 0) with 0E . /V13. 
(0, x3y) F--ý (x2,0) which we have from (xt, 0). 

(0, x2y2) F-º (0, x4) which we have from (0, x=). 
(0, xy3) -' (0, x3y)" 
(ys, 0) E3 (0, y7) which we have from y3(0, y4). 

(y5,0) E---* (0, y6) F----' (0, x2y4). 
(y4,0) F--' (0, y5) (0, x2y3). 
(0, y4) -+ (0, x2y2). 
So we see that (x, y3 ± x2y ± z2) is 3-A1-determined. 

" (x, xy+y4±z2). 

TA1 "f= M3((1, y), {), X+4y3), (0, z))+f*M {el, e2}. 

We want to check to see if this germ is 4-A1-determined, so we want 

M5 C T. A1 'f+ M3(f *M2 + M3). e(3,2). 

So we have 

Oet with 0E M30 

xcei with 0EM 

y4Oe2 with E . 
M3 
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zgei with 0E ý1ýi3 . 

So we are looking for 

ei e2 
x5 � � 

x4 y � 
x3y2 � � 

x2y3 J � 

4 xy � J 
5 y � � 

6 y J J 
7 y � � 

8 y J 

We have (xO, 0) with ¢EM. 

(0, x4y) F-- (x4,0) which we have from (xt, 0). 

(0, x3y2) `-' (0, x2y5) 

(0, x2y3) (o (0, x3) which we have from (0, xi). 

(0, xy4) -+ (0, x2y) (- ) (x2,0). 

(y8,0) H (0, y9) which we have from y4(0, y5). 
(y', 0) F---' (0, y8) (0, xy5)" 
(y6,0) (0, y7) '-' (0, xy4)" 
(y5,0) ( (0, ys) F---) (0, xy3) which we have if we use the nilpotent vector 
field x-2- y 

in the source , 
i. e. we have (0, x2 + 4xy3). 

(0, y5) ( ---) (0, xy2). So if we use the nilpotent vector field (, 0) in the 
target we have (xy + y4,0) which gives us (y4, y5) - (xy + y4,0) + (xy, 

. ry2) - 
(0, xy2 + 4y5) _ (0, -3y5). 

So our germ (x, xy + y4 + z2) is 4-A-determined but not 4-A1-determined. 

" (x, y3 ± x3y ± z2) 

TAI "f =M32 ((l, ±3x2y), (0,3 Y2 ± x3), (0, z)) +f 0M22{et, e2 }. 

We want to check to see if this germ is 4-Al-determined, so we want 
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M3 c TA1 'f+ M3(f *M2 + M35) 
.. 
F(3,2). 

So we have 

qe, with 0E MO 

x¢e, with ¢E M3 
y3gei with 0E M3 

zgei with 0E M3 

So we are looking for 

el e2 
x5 � � 

x4y � � 
3 2 x y � � 

2 3 x y � � 

4 xy � � 

y5 � � 
6 y � � 
7 y � � 

We have (xý, 0) with q5 E . /V13. 

(0, x4y) F--j_(x2,0) which we have from (xt, 0). 

(0, x3y2) `-' (0, xs). 

(0, x2y3) H (0, x5y) which we have from x(0, x4y). 

(0, xy4) «---> (0, x4y2) which we have from x(0, x3y2). 

(y7,0) 4 (0, y8) which we have from y3(0, y5). 

(ys, 0) '-' (0, y7) `-' (0, x3y5). 
(y5,0) -; (0, y6) -' (0, x344). 

(0, y5) 4---+ (0, x3y3). 

So our germ (x, y3 ± x3y ± z2) is 4-Al-determined . 

" (x, xy2+y4+y5±z2) 

TA, "f= . 
M3ýý1, y2), (0,2xy + 4y3 + 5y4), (O, z)) + 

. 
f*M {eý, e2}. 

We want to check to see if this germ is 5-A1-determined, and so want 
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M3 c TA1 f+ 
. 
M3(f *M2 + 

. 
/: ý3). E(3,2). 

So we have 

Oe2 with 0E M'2 

x0eti with 0E J1ýi3 
(y4 + y5)oe, with 0E J4 

zgei with 0EM. 

So we are looking for 

el e2 

x6 �� 
x5y �� 

x4y2 �� 

x3y3 V/ 

x2y4 V �V 

xy5 �� 

y6 �� 

y7 �� 

y8 �� 
y9 �� 

y10 �� 

y11 �� 

We have (0,0) with qEM. 

(0, x5y) x4y3). 
(0, x4y2) x3y4). 

(0, x3y3) x2y5). 
(p, x2y4) E--º (0, xy6). 

(0, xy5) i --ý (0, x2y3) e' (0, x3y) '-' (x2,0). 

(0, y11) (0, y12) from (y4 + y5)(0, y7). 

(0, y10) H (0, y11). 
(0, y9) E----3 (0, xy7). 
(0, y8) 4 --* (0, xys). 
(0, y') 4_4 (0, xy5). 
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(0, y6) E (0, xy4) E--ý (0, x2y2) which we get from (0, x2 y2 + 4xy4) and 
(0, x2y2 + xy4). 
So our germ (x, xy2 + y4 + y5 ± z2) is 5-Ai-determined. 

" (x, xy+y5±y7±z2). 

TAl .f=M ((1, y), (0, x+ 5y4 ± 7y6), (0, z)) +f *jt12{ce1. e2}. 

We want to check to see if this germ is 7-A1-determined, and so want 

M3 c TA, f+ 
. 
M3 (f *M2 + . 

M3). S(3,2). 

So we have 

cbei with 0E M'6 

xq5ei with ¢E M3 
(y5 ± y7)Oei with 0E M3 

z4ei with 0EM. 

So we are looking for 

el e2 
x8 � � 

x7y � � 
X6 y2 � � 

x5 y3 � � 

x4y4 � � 

x3y5 � � 

X2Y6 � � 
7 xy � � 

8 y � � 
9 y � � 
10 y 
11 y � � 

12 y � � 

13 
y � � 

14 y � � 

15 
y � � 

We have (xo, 0) with 0EM. 
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(0, x7y) H (x7,0) which we have from (x', 0). 
(0, x6y2) E---' (0, x5y6). 

(0, x5y3) F-º (0, x4y7)" 

(0, x4y4) <----* (0, x5). 

(0, x3y5) ý (0, x2y9) 

(O, x2y6) E-* (0, xy10)" 
(0, xy7) 4--- * (0, x2y3) ý---ý (x2y2,0) E--º (xy6,0) and (yt0 0) ; (0, yý ). 
So we have (0, xy7 + y" + y'3), (0, x2y3 + xy7`, (x2 y2, i2 y3), (x2 y2 + 

2xy6 + y10,0), (xy6, xy7) and (y'°, y" ). Now we 
(have 

(y'5,0) and (0,! / 1') 

comes from (y5 ± y7)(0, y10). Similarly for (0, y14) and (0, y13). This gives 

us (0, xy7 + 5y") - 5(y1°, y") + 5(x2y2 + 2xy6 + y10,0) - 5(x2y2, 
. r. 

_' y: 1) + 
5(0, x2y3 + 5xy7) - 10(xy6, xy7) _ (0, -4xy7). 

(0, y12) H (0, xy8) . 
(0, y10) 4---) (0, xys) and (0, x2y2). We have (0, xys +5y1°), (0, x2y` + 5xy6) 

and (0, x2y2+ 2xy6 + y'°) 

(0, y9) E---+ (0, xy5) F- (0, x2y)" 
(0, y8) F--> (0, xy4). Using the nilpotent vector field x& in the source we 
have (0, x2 + 5xy4). 

So our germ (x, xy2 + y4 + y5 ± z2) is 7-A-determined, but not 7-Ai- 
determined.. 

" (x, xy+z3 + y2z+ay3 +y5). 

TAI- f =M3((1, y), (0, x±2yz+3ay2+5y4), (0,3z2±y2)}+f*M {el, t'a}. 

We want to check to see if this germ is 5-A1-determined, and so want 

M3 c TAl 
,f+, 

M3(f*M2 + M6) 
3.. 

6(3,2). 

This is too complex to complete by hand but the program TRANSVERSAL 

gave the map-germ to be 5-A-determined. 
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Appendix C 

Surfaces 

The following pictures represent the critical image of the given map germ. In 

each case the values of the unfolding parameters are chosen to give a elºaru"terist jr 

surface which best describes the unfolding. 
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f (x, y, z) = (x, y, yz + z4 + x222 + az2) for a= -0.9 



f (x, y, z) = (x, y, yz + xz2 + z5 + az3) for a= -1.2 



f(x, y, z) =(x, yz+ay, y' + Z2 +xy) for a=0 



f (x, y, z) _ (x, y, yz + z4 + x322 + az2 + bxzl) for a=b= -0.5 



J(x, y, z)=(x, y, yz2+ß'2z+z4+z5+az+bz3)fora=0, b=-0.5 



J (-r, y, ') = (z, 
. 
t%, yz2 +x2z+ z4 - z5 + az + bz 3) for a= -0.5, 

b=0.5 



f(x, y, z) = (x, y, yz + xz3 + z5 + z6 + az2 + bz4)for a=b=0 



f(z, y, z)=(x, yz, y2+xy+XZ+z3+ayz3+bz +cz2)for a=b=c=0 



f(x, y, z)=(x, y, z3-y2z-x4z+az+b. rz+cr2z)for a=b=0, c= 0.5 



f( ix. y. z) = (r, yz+x y+y5, y2+z2+xy+xz+ay+b: ry+( y's) for a=b=c=0 



f (x, y, z) _ (X, yz + x2 y- y5, y2 + z2 + xy + xz + ay + bxy + cy3) for a=b=c=0 



bxz2 + 
yz+z4-x422+az2+ 

C2Z1)for( =b= =0 



f(x"y. z)=(X, y, yz+xz3+z5+az2+bz4+cz6) fora=b=c. =0 

, IN ' y. 
Mix' 


