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Abstract 

With the increasing reliability of digital communication, the falling cost of hardware 

and increased computational power, the gathering and storage of data has become 

easier than at any other time in history. Commercial and public agencies are able to 

hold extensive records about all aspects of their operations. Witness the prolifera­

tion of point of sale (POS) transaction recording within retailing, digital storage of 

census data and computerized hospital records. Whilst the gathering of such data 

has uses in terms of answering specific queries and allowing visulisation of certain 

trends the volumes of data can hide significant patterns that would be impossible to 

locate manually. These patterns, once found, could provide an insight into customer 

behviour, demographic shifts and patient diagnosis hitherto unseen and unexpected. 

Remaining competitive in a modem business environment, or delivering services in 

a timely and cost effective manner for public services is a crucial part of modem 

economics. Analysis of the data held by an organisaton, by a system that "learns" 

can allow predictions to be made based on historical evidence. Users may guide the 

process but essentially the software is exploring the data unaided. 

The research described within this thesis develops current ideas regarding the ex­

ploration of large data volumes. Particular areas of research are the reduction of 

the search space within the dataset and the generation of rules which are deduced 

from the patterns within the data. These issues are discussed within an experimental 

framework which extracts information from binary data. 
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Chapter 1 

Introduction 

The rapid development of computer hardware and software has led to a revolution 

in working practices over the past thirty years. One aspect of this revolution is re­

lated to the ability of present day computers to store and manipulate databases con­

taining very large quantities of information. This thesis is concerned with knowl­

edge extraction from within such databases. Knowledge discovery in databases 

(KDD) has been defined by Fawley et al. [1991] as, "the nontrivial extraction of 

implicit, previously unknown and potentially useful information from data". The 

terms "knowledge discovery in databases" and "data mining"l have in recent years, 

become somewhat confused. At the first KDD conference in Montreal in 1995 

it was proposed that the term "knowledge discovery in databases" should be em­

ployed to describe the whole process of extracting knowledge from data. The term 

"data mining" should be used exclusively for the discovery stage of the knowledge 

discovery process. This thesis will use these definitions. 

In the business world, databases store information relating to, customer transac­

tions, product lines, share dealing, market fluctuations etc. Within public services 

databases contain medical records, library records, planning applications etc. The 

volume of data currently stored is huge and many businesses adopt the strategy of 

not disposing of data, believing that it may provide useful information at a later 

date. Falling prices of storage media make this a feasible and inexpensive option. 

lThere are also many other terms appearing in documenL~ carrying similar or slightly different 
meanings such as, knowledge mining from databases, knowledge extraction, data archaeology, data 
dredging, data analysis etc. 
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Chapter 1 Introduction 

Over the past ten years terms such as "data warehousing" and "data mining" have 

been increasingly seen in the mainstream media business sections [Taylor 1998], 

[Smith 1999], illustrating that businesses no longer see data storage and backup as 

a chore but as a potentially useful information source that could lead to a commer­

cial gain. The main problem is the volume stored and the fact that a human operator 

may be unable to discover "hidden" trends within that data. This thesis considers 

the application of knowledge discovery techniques to the Facilities Management 

(FM) function of an organization. The PM operation of a company can be defined 

as an integrated approach to operating, maintaining, improving and adapting the 

buildings and infrastructure of an organization in order to create an environment 

that strongly supports the primary objectives of that organization (Further Educa­

tion Funding Council [HMSO 1997]). Facilities Management is characterized by a 

great diversity of function, most of which is only peripherally related to the core ob­

jectives of the organization, and elements of which are essentially unrelated to each 

other. For example PM operations may cover such divisions as fleet car manage­

ment, catering, printing requirements and building maintenance and management. 

This diversity of function is reflected in a corresponding diversity of information 

and data organization. The application of knowledge discovery techniques to this 

data may yield interesting patterns which were previously unexpected. 

Figure 1.1 succinctly illustrates the motivation for KDD. This thesis is concerned 

broadly with advancing the efficiency of the data mining process. The research 

focuses in particular on issues arising in data mining from very large and dense 

datasets which have presented computational difficulties for analysts. An active 

area of research has involved the identification of association rules [Agrawal et al. 

1993] for this purpose. This thesis develops new techniques for deriving associa­

tion rules from large datasets. The aim of this research is to explore the generation 

of one type of data mining rule, the discovery driven association rule. Whilst the 

result of association rule generation i.e. the rule, is a simple and readily understand-
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Chapter 1 Introduction 

able concept, actually finding the rules within a given search space is a non-trivial 

problem. 

Larger stora.ge I-----.-:r,---e-,q-.:.u-'-Ci r-,---e s_----<-! 

ca.pa.city 

requires 

In.crea.sed data 

capture 

1\Ilorc efficien.t 

an.alysis 

Figure 1.1: The general motivation for this research work 

1.1 Database Evolution 

Prior to 1970 the main types of database in use were the network and the hierarchi­

cal models. These databases lacked flexibility: the network used embedded pointers 

and pre-defined links which are in themselves not a problem but create one if a user 

wishes to define a relationship that the designer did not foresee. A more serious 

problem is that the network representation exposes implementional details that are 

not relevant from the application viewpoint. The network model evolved specifi­

cally to handle non-hierarchical relationships. The hierarchical model predates the 

network database, and suffers from a rigidity which makes the method awkward 

unless the application presents a natural hierarchy. Whilst both these systems have 

largely been supplanted many data processing systems with network or hierarchical 

cores are still functioning. Much of this legacy software uses ffiM's Information 

Management System (lMS) product which was developed in the 1960's. It left a 
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Chapter 1 Introduction 

large investment in expensively developed software to be amortized over the ensu­

ing decades [Johnson 1997]. 

The relational model formulated by Codd [1970] allowed non-specialists to use 

databases, improved flexibility with respect to a wide variety of operations, espe­

cially queries, and also allowed formal definitions to make the approach sound and 

precise [Atzeni and DeAntonellis 1993]. The relational model has now become the 

standard database management system used throughout the business community 

because of this flexible and sound approach. Structured Query Language (SQL) 

provides a uniform interface for users, providing a collection of standard expres­

sions for storing and retrieving data. 

More recently two database models have been developed, known as post-relational 

models, which claim to provide more flexible data representation. Object orientated 

databases represent an application entity as a class which captures both the attributes 

and behaviour of the entity. This allows more accurate definitions of real world 

objects. Deductive databases, also known as the inferential model, store as little 

data as possible but compensate by maintaining rules (axioms) that allow new data 

combinations to be created as needed. 

Despite the creation of the post-relational models the relational model with its 

widespread use remains the current favourite. 

1.2 The Need for Knowledge Discovery 

The requirement for knowledge discovery is directly linked to both the growing 

number and increase in capacity of databases. As observed above the volume of 

stored data increases daily, but the ability to effectively examine and use patterns 

that may be hidden within the data is still the subject of active research. There 

are a number of factors that have brought knowledge discovery and data mining 
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Chapter 1 Introduction 

techniques to the attention of the business community; 

1. a recognition that there is untapped value in large databases 

2. a consolidation of database records leading to a single customer view 

3. a consolidation of databases including the concept of data warehousing 

4. a reduction in the cost of storing and processing allowing the accumulation 

of detailed data 

5. intense competition for the customer's attention in an increasingly saturated 

market 

6. a movement toward de-massification2 [Ester et al. 1996] of business practices 

Data mining tools must go beyond simply reporting data records or historical per­

formance: they must ultimately provide the analyst with a deep insight into why 

certain actions have occurred. This insight is best achieved with a combination of 

hindsight and foresight. KDD techniques have not been limited to commercial ac­

tivities: medical records [Mitchel 1999] , meteorological data [Buchner et al. 1999] 

and text data [Soderland 1997] have all provided sources for knowledge discovery. 

The wide variety of applications and the large area of active research suggest that 

as the world gathers more computerized data it is knowledge discovery techniques 

that will enable a more complete understanding of the information that has been 

captured. 

2During the industrial revolution economies of scale led businesses to mass manufacturing, ma<;s 
marketing and mass advertising. The information revolution is providing the capability to custom 
manufacture, market and advertise to small segments and ultimately to the individual. This is de­
massification and it is a strong force in business today. Knowledge discovery techniques can be used 
to identify segment groupings that are not obvious. 
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Chapter 1 Introduction 

1.3 The Knowledge Discovery Process 

Manilla [1997] outlines the following steps for extracting knowledge from data; 

1. understand the domain, 

2. prepare the dataset, 

3. discover patterns (data mining), 

4. post-process discovered patterns, 

5. put results into use. 

The outcome of any knowledge discovery process is an enhanced view of the do­

main of interest The diversity of data types and the different goals of data mining 

make it unrealistic to expect one data mining system to handle all kinds of data. 

Specific data mining systems should be constructed for data mining on specific 

kinds of data, such as systems dedicated to mining in relational databases, trans­

action databases, multimedia databases etc. However, regardless of the data types 

or system, the user requires a solid understanding of the domain in order to select 

the correct subsets of data, suitable classes of patterns and good criteria for interest­

ingness [Bayardo and Agrawal 1999], [Klemettinen et al. 1994], [Silberschatz and 

Tuzhilin 1995] of the pattern. The task is inherently interactive and iterative as to 

expect useful knowledge to be derived by merely pushing data into a black box is 

not realistic. Figure 1.2 illustrates the knowledge discovery process. 

Since what will be discovered from a database is unpredictable, a high level data 

mining query should be treated as a probe which may disclose some interesting 

traces for further exploration. Interactive discovery allows the user to refine the re­

quest and investigate the data at a deeper level. 1\vo types of data mining processes 

are available to the user wishing to exploit their data; 
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Chapter 1 Introduction 

1. Verification: This process takes a hypothesis from a user and tests its validity 

against the data. The emphasis is with the user to formulate the hypothesis 

and issue the query; the data returned either affirms or negates the hypothe­

sis. This process creates no new information, but as a result of information 

received the user can re-assess the hypothesis and pose a new, refined query. 

2. Discovery: In this process the system automatically discovers important in­

formation hidden within the data. The data is searched with no hypothesis in 

mind and no interaction from the user and the system groups elements of the 

data according to some common characteristic. 

These two mining processes can be linked to a data warehouse to form an online 

analytical mining architecture as described by Han et al. [1999]. A knowledge dis­

covery system linked to a data warehouse is not a prerequisite since most data min­

ing techniques can also work from data stored in flat files or operational databases. 

Mining a data warehouse however, usually results in higher quality information be­

cause of the diverse but complementary types of data stored. 

Dala sources 

search for review 

palterns output action 

refine queries 

Figure 1.2: The knowledge discovery process from Inmon et al. [1997.] 
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1.4 Data Mining Classifications 

Different classification schemes can be used to categorize data mining methods and 

systems, based on the kind of databases to be studied, the output of the process 

and the techniques to be used. The following classification was proposed by Chen 

et al. [1996a]: 

1. What kind of database is to be mined; 

Classification can be made according to the kinds of databases to be mined. 

For example a system is a relational miner if it discovers knowledge from a 

relational database, an object-orientated miner if it discovers knowledge from 

an object-orientated database etc. 

2. The output of the process; 

Different kinds of knowledge can be discovered by data miners, including 

association rules, classification rules, clustering etc. Data miners can also be 

categorized according to the abstraction level of the discovered knowledge. 

This may be classified into generalized, primitive level and multiple level 

knowledge. 

3. What kind of technique is utilized; 

The underlying data mining technique may classify the system. It can be 

categorized by how it is driven: it may be autonomous, query driven or in­

teractive. It can also be categorized according to its underlying approach into 

generalization based mining, pattern based mining, mining based on statistics 

or mathematical theories and integrated approaches. 

Whilst the above list is not exhaustive it gives an idea of the many different fields 

involved within data mining. A more detailed discussion will be found in section 

2.3. 
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1.5 Aims of the Research 

The whole concept of data mining is based on the fact that there is physically too 

much data to be examined manually. This problem, like the volumes of stored 

data, is likely to grow. Tools and applications are required in the hands of data 

analysts and knowledge workers which will allow them the freedom to exploit as 

much of the potential of the data as possible. The increasing size of the potential 

input means that any solution must be scalable, i.e. increasing in linear space and 

time. The FM operation of a company provides a previously unexplored domain in 

which to apply data mining techniques. The research work described here seeks to 

establish the thesis that pre-processing of data using specialized data structures can 

offer significant advantages in terms of storage and execution time when mining for 

association rules. This thesis will be argued for, and established using the following 

"modus operandi": 

• Current methods of association rule generation from binary data will be ex­

amined and their advantages and disadvantages discussed. 

• Several "benchmark" programs will be created to provide a baseline for as­

sessing the main research. 

• A data structure called the P-tree will be developed for organizing and com­

pacting the test datasets. 

• A data structure called the T -tree will be developed to sum the data held 

within the P-tree. 

• A case study will be undertaken using Facilities Management data to derive 

association rules and compare the P-treeIT-tree method with an implementa­

tion of the Agrawal and Srikant [1994] Apriori algorithm. 
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1.6 Structure of the Thesis 

Technical 
Background 

(1. Introduction) • 
( 2. Data Mining) 

( 3. Association Rules ) 

Figure 1.3: The structure of this thesis 

This thesis is organized as illustrated by the diagram in Fig. 1.3. The first part (this 

chapter) provides background material: Chapter 2 describes the field of knowledge 

discovery and data mining, whilst Chapter 3 details past developments in associa­

tion rule mining. 

The second part of the thesis presents technical work. Chapter 4 presents the devel­

opment of the P-tree and Chapter 5 the summation of the P-tree using the T-tree. 

Chapter 6 illustrates a case study using the P-tree and T-tree structures on FM 

datasets. Chapter 7 concludes the thesis. 

Page 10 



Chapter 2 

Previous Work on Knowledge Discovery in 
Databases 

2.1 Introduction 

Whilst this thesis is mainly concerned with a particular subset of Knowledge Dis­

covery in Databases, the main result of any knowledge discovery process must be 

to enhance and aid decision making. It is therefore instructive to review the area of 

KDD to place this research in perspective. This chapter provides an overview of the 

broad field of KDD. 

Knowledge discovery in databases is a relatively new field in computer science 

which has become popular over the past ten years. It has been brought about by the 

falling costs and increasing speeds of computer hardware and the proliferation of 

computer systems throughout modem society. These reasons have allowed organi­

zations to reliably gather and store more data than could have been imagined fifteen 

years ago. KDD combines ideas drawn from such fields as databases, machine 

learning, statistics, visualization and parallel and distributed computing, "its goal 

is to generate an integrated approach to knowledge discovery that is more powerful 

and richer than the sum of its parts" [Stolorz and Musick 1997]. The gathering of 

data and attempting to extract beneficial information from that data has introduced 

new problems, primarily because of the significant volumes which are now able to 

be collected. For example; 
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Chapter 2 Previous Work on Knowledge Discovery in Databases 

• the 1990 US census collected over a million million bytes of data; 

• the human genome project stores thousands of bytes for each of the several 

billion genetic bases; 

• NASA earth observation satellites generate a terabyte (i.e. 109 bytes) of data 

each day [Bramer 1999]. 

2.2 Overview of KDD 

The record of the Proceedings of the 1995 Conference in KDD opens with the 

following quotations: 

• "It is estimated that the amount oJinJormation doubles in the world every 20 

months. What are we supposed to do with this flood oj raw data? Clearly 

little oj it will ever be seen by human eyes." 

• "Computers promisedJountains oJwisdom but deliveredjioods oj data" 

These large data repositories will, undoubtedly, hold within them useful informa­

tion; sorting the interesting l from the non-interesting is the goal of KDD. 

Decisions made within any organization cannot be made in a random manner, but 

need to have foundations. The more solid the foundation the more likely the deci­

sion made is the correct one. For a large corporation an incorrect decision can mean 

millions of pounds in lost revenue, for small to medium sized businesses an incor­

rect decision can be catastrophic. The deeper the understanding of past trends, the 

more likely that future predictions will produce the desired results. The overriding 

aim of KDD is to assist in the prediction of future profitable directions. 

1 "Interest" is of course a subjective concept, and a definition of what is interesting is required: it 
is usually taken as an overall measure of pattern value, combining validity, novelty, usefulness and 
simplicity [Fayyad et al. 1996]. 
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2.2.1 Decision Support 

Decision support tools comprehensively analyze/explore current and historical data, 

identify useful trends and create summaries to support high-level decision making 

for knowledge workers (executives, managers, analysts) [Ramakrishnan and Gehrke 

1998]. There are three classes of data analysis tool as described by Chaudhuri and 

Dayal [1997]: 

1. complex queries: tools which support traditional SQL-style queries, but are 

designed to support complex queries efficiently; relational DBMS optimized 

for decision support applications; 

2. On-line Analytical Processing (OLAP) [Codd et al. 1993J: tools which sup­

port a class of stylized query which typically involves group-by and aggrega­

tion operators; and multiple dimension databases, data cubes etc. [Chen et al. 

1996a]; these systems support a query style in which the data is best thought 

of as a multidimensional array and are influenced by end user tools such as 

spreadsheets, in addition to database query languages. OLAP systems work 

in a mostly read only environment; 

3. data mining (intelligent exploratory data analysis): discovery of interesting 

patterns in the data. 

2.2.2 Data Warehousing 

Although a data warehouse is not essential for the process of data mining, in prac­

tice it is probably the most sensible option for a company wishing to instigate a 

KDD policy. The data warehouse need not necessarily be a huge database, the size 

depends on the volume of data stored and the techniques used to extract the infor­

mation. The primary type of database found in most organizations is the operational 

database. In most cases these have been designed to support the applications used 
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in everyday transactions,and they are therefore optimized for this type of work, i.e. 

high response speeds and a large number of users [Inmon et al. 1997.]. 

The data warehouse is primarily constructed to store historical data and enhance 

decision support techniques. Most data warehouses contain large amounts of his­

torical data, which is never altered or updated. Typically the warehouse is topped up 

with the most recent transactions from the on-line database (say) hourly, overnight 

or even weekly [Montgomery 1999]. The data warehouse can be used for both data 

mining activities and for OLAP, however, when mining data, the whole warehouse 

may be used, whereas when using OLAP tools it is common for the user to be 

accessing only a small subset of the warehouse contained within a datamart. 
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Figure 2.1: The Structure of the data warehouse from Inmon et al. [1997.] 

Data Marts 

There may be a great many users of the data warehouse system; different users will 

have different needs, from simple canned reports, to ad-hoc queries to advanced 

analysis. Meeting the needs of all the users with a single centralized system is not 

always feasible or wise. The solution is the data mart, sometimes called the depart-
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mental data warehouse. There are several different types of data mart. The data mart 

can be implemented within the centeral repository by creating special application 

specific views on the data in the base tables. These views are flexible and occupy 

no space in the database, but are expensive at run-time. Another approach is the 

instantiated view. This is an optimization of the view where the data for a particular 

view is placed into another table and kept up-to-date with the original data. Instan­

tiated views duplicate storage to improve performance. Keeping instantiated views 

synchronized with the base tables requires using database replication measures or 

triggers [Berry and Linoff 1997]. 

Metadata 

Metadata simply means "data about data", the basic metadata is the database schema 

i.e. the physical layout of the data in the tables. Metadata also answers questions 

posed by users about the availability of data and gives tools for browsing through 

the contents of the data warehouse. Good metadata gives the users information 

about the data warehouse in a format they can understand to enable them to use the 

system in the most efficient manner. 

2.2.3 Data Enrichment 

In some cases data enrichment can be applied to the raw data prior to its inclusion 

within the data warehouse. An example of this would be an operational database 

containing information on subscriptions to a publisher's magazine titles. The un­

enriched data contains details of customer name, address, date of purchase and mag­

azine title, and could be enriched by the inclusion of information regarding clients 

date of birth, income category, car/home ownership details [Adrianns and Zantinge 

1996]. This is more realistic than it may initially seem, since it is possible to pur­

chase demographic data on average incomes and details of carlhome ownership can 
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also be traced fairly easily. Reliable data of this type can considerably enhance the 

knowledge discovery process. 

2.2.4 Data Cleaning/Pre-processing 

As described above most databases found in the business community are operational 

databases used for the day-to-day running of the business. To enable data mining 

to take place frequently the data will need to be "cleaned" [Simoudis et al. 1995]. 

This can be an expensive operation; the following are some of the considerations; 

• Data sources may have been implemented in a variety of database systems, 

DB2, Oracle, Infomix etc. This is a result of maintaining and deploying 

legacy systems while also bringing in new technology in newer systems. 

• In addition to the database organization method, relational versus non-relational, 

further complications that arise are multiple data encoding, transmission stan­

dards and connectivity standards. There is a need for a technology shift as the 

data is being moved. 

• The selection of data from operational environments may be very complex. 

In order to qualify a record for extraction processing, several co-ordinated 

lookups to other records in a variety of files may have to be accomplished, 

requiring keyed reads, connecting logic etc. 

• When there are multiple input files, key resolution must be done before the 

files can be merged together. This means that if different key structures are 

used in different input files then the merging program must have logic em­

bedded in it that allows resolution. 

• Data relationships that have been built into the old legacy program logic must 

be understood before these files can be used as input. 
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• Fonnat Differences (data type and length); These occur because the databases 

that defined data differently did so from the narrow perspectives of the ap­

plications they supported, rather than from the need to apply organizational 

standards to data definitions. 

2.2.5 KDD in a Multi-Database Environment 

Methods used for KDD when multiple databases are involved, may be broadly 

viewed under three headings: 

1. Application of KDD techniques to each database separately; an example of 

this would be inducing a set of rules and applying some interestingness mea­

sure to them. Such work is found in Silberschatz and Tuzhilin [1995], Kamber 

and Shinghal [1996] and Dzeroski and Grbovic [1995]. 

2. Selection of a number of related, although not necessarily homogeneous databases 

and integrating them for the purpose of data mining. Research in this area has 

been conducted by McClean and Scotney [1996], Levy [1996] and Ganesh 

et al. [1996]. 

3. Creation of a data warehouse (as discussed in section 2.2.2) and integrating all 

the databases, either for the purposes of mining the warehouse or to establish 

data marts for independent mining activities [Gill and Rao 1996]. 

Two techniques are reviewed for the integration of information from multiple, dis­

parate, sources; 

1. Entity integration techniques. 

2. Query language extensions (e.g. SchemaSQL). 
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Entity integration techniques 

Identification of records that represent the same real world entity is an important 

task in the database integration process. When a common identification mechanism 

for similar records across heterogeneous databases is not readily available, entity 

integration can be performed by examining the various attribute values among the 

records. The distances between attribute values can be used as a measure of similar­

ity between the records they represent. Record matching conditions can, for entity 

integration, then be expressed as constraints on the attribute distances. KD tech­

niques can be used to automatically derive these conditions, (expressed as decision 

trees) directly from the data, using a distance based framework [Ganesh et al. 1996]. 

The process of integration requires two distinct tasks: schema integration and entity 

identification. The former resolves mismatches such as homonyms (the same name 

for different attributes), and synonyms (different names for the same attributes). The 

removal of these inconsistencies allows the creation of a global schema, making it 

possible to treat all the records uniformly for further processing. The mapped global 

database may contain multiple instances of the same real world entity, therefore the 

identification of distinct entities is the purpose of the entity identification phase. 

Query language extensions 

SQL is the most common language for the extraction of information from databases. 

An extension of SQL, (SchemaSQL) has been developed, that offers the capability 

of uniform manipulation of data and meta-data in relational multi-database systems 

[Lakshmanan et al. 1996], [Lakshmanan et al. 1999]. Interoperability in multiple 

databases is the ability to share, interpret and manipulate information in component 

databases. Factors influencing interoperability can be classified into semantic is­

sues (interpreting and cross-relating information in different databases), syntactic 

issues (heterogeneity in schemas, data models and query processing) and systems 
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issues (operating systems, communication protocols, security management etc.). 

SchemaSQL deals with the syntactic issues; its development is aimed at extracting 

information from relational databases storing semantically similar data in struc­

turally different ways. Some of the key features required of a language for the 

interoperability of relational multi-database systems are: 

1. It must have an expressive power that is independent of the schema with 

which the database is structured. 

2. To promote interoperability, it must permit the restructuring of one database 

to conform to the schema of another. 

3. It must be easy to use yet still be expressive. 

4. It must provide full data manipulation and view definition capabilities. 

5. It must be downward compatible with SQL in view of SQL's importance in 

the database world. 

6. The language must realise a non-intrusive implementation that would require 

minimal additions to the RDBMS. 

The architecture for implementing SchemaSQL builds on the existing database ar­

chitecture in a non-intrusive manner. The SchemaSQL system is built on top of the 

existing SQL systems. A SchemaSQL server communicates with local databases 

in the federation. Local meta-information, database names, names of attributes and 

relations, are stored on the SchemaSQL server in the form of a table called the 

Federation System Table. Global queries are submitted to the SchemaSQL server 

which determines the queries to submit to the local databases. The server then col­

lects the answers and executes a final series of SQL queries to produce an answer 

to the global query. 
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The rapid growth of the world wide web suggests the potential for mining large 

and distributed datasets, as such the integration of multiple distributed databases is 

an important research area within KDD. Furthermore, not all companies may wish 

to commit to a policy of data warehousing and the integration of their data on a 

temporary basis will allow analysis of the benefits of data warehousing. 

2.3 Data Mining 

There are three primary paradigms within data mining: classification methods, as­

sociation methods and clustering methods. There are other data mining techniques 

such as pattern-based similarity searches, mining path traversal patterns and visu­

alization which will be briefly discussed at the end of this section. 

2.3.1 Classification 

Data classification finds common properties among sets of objects in a database 

then places them into classes according to a classification model. To construct the 

classification model a sample dataset is treated as the training set the remainder is 

used as the test set. One designated attribute in the training set is called the depen­

dent attribute and the others the predictor attributes. The goal is to build a model 

that takes the predictor attribute as inputs and produces a value for the dependent 

attribute. If the dependent attribute is numerical the problem is a regression problem 

otherwise it is called a classification problem. 

Decision Trees 

Decision trees classify examples to a finite number of classes, the nodes are labelled 

with the attribute names, the edges are labelled with possible values for this attribute 

and the leaves are labelled with the different classes. Objects are classified by fol-
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lowing a path down the tree and taking the edges corresponding to the values of the 

attributes in that object [Dilly 1995]. 

Decision trees are attractive in a data mining environment for several reasons [Ganti 

et al. 1999]; 

• Their intuitive representation makes the model easy to understand. 

• Constructing decision trees does not require input from the analyst. 

• Their predictive accuracy is equal to, or higher than, other classification mod­

els. 

• Fast, scalable algorithms can be used to construct decision trees from very 

large training databases. 

There are two primary decision tree generation systems Classification And Regres­

sion Trees (CART), developed by Briemen et al. [1984] and the ID3 system [Quin­

lan 1986], C4.5 is the most recent available version of this Quinlan [1993]. The 

differences between CART and C4.5 are small, and so only C4.5 is discussed be­

low. 

C4.5 examines numerous recorded classifications and a model is constructed induc­

tively by generalizing from specific examples. The tree is constructed using leaf 

nodes or decision nodes. A case is classified by starting at the root of the tree and 

moving through it until a leaf is encountered. At each decision node the case's out­

come for the test at the node is determined and attention shifts to the root of the 

sub-tree corresponding to this outcome. When this process finally reaches a leaf 

node the class of the case is predicted to be that which is recorded in the leaf. 

One of the problems of decision trees is that they can easily grow too large, mak­

ing them incomprehensible to humans. The solution is to use the tree to generate 

production rules. These are of the form L --t R, in which the left-hand side, Lis 

Page 21 



Chapter 2 Previous Work on Knowledge Discovery in Databases 

a conjunction of the attribute-based tests and the right-hand side R is a class. To 

classify a case using the production rule model, the ordered list of rules is examined 

to find the first whose left-hand side is satisfied by the case. The predicted class is 

then the one nominated by the right-hand side of this rule. 

Constructing classification trees is an extremely active area of data mining research, 

techniques such as Rain/orest [Gehrke et al. 1998] strive to compact the data struc­

ture and Public [Rastogi and Shim 1998] attempts to reduce expansion costs of 

nodes. 

Neural Networks 

Neural networks are mathematical structures with the ability to learn. The method 

is a result of academic research into modeling nervous system learning. A "trained" 

network can be thought of as an "expert" in the category it has been given to analyse 

and can then be used to provide projections given new situations of interest and 

answer "what if' questions. 

Within data mining one of the advantages of neural networks is their ability to gen­

eralize and to learn from experience, i.e. a training set; this ability mimics the 

human process of learning from experience. 

The multi-layered perceptron combined with the back propagation technique is a 

common type of neural network for data mining [Brielley and Batty 1999]. The 

neural network has three types of layers, input, hidden and output. Each connection 

is assigned a weight, initially a set of random values. At the core of back propaga­

tion are the following steps: 

1. The network gets a training example and using the existing weights in the 

network calculates the output. 

2. Backpropagation then calculates the error by taking the difference between 
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the expected result and the output. 

3. The error is fed back through the system and the weights are adjusted to 

minimize the error. 

Much research has been conducted regarding using neural networks for data mining, 

but there are some problems which still need to be addressed. 

1. Their predictions/decisions may be difficult to explain. 

2. They may converge at a premature solution that is not optimal. 

Genetic Algorithms 

Based on the Darwinian theory of "survival of the fittest" a genetic classifier consists 

of a population of classification elements that compete to make a prediction. Ge­

netic algorithms have been used to train neural networks and enhance pre-classified 

data in classification models for data mining tasks [Hekanaho 1997]. 

Genetic algorithms (GAs) work by evolving successive generations of genomes that 

get progressively more and more fit. The fitness function used within a GA is critical 

to its success or failure. Like the neural networks outlined above, the GA can suffer 

from converging at a solution that is not optimal; the effectiveness of the fitness 

function dictates this outcome. The goal of a GA is to maximize the fitness of the 

genomes within the population. This is achieved in the following manner: 

1. Identify the genome and fitness function and create an initial generation of 

genomes. 

2. Modify initial population by applying; 

• selection; keeping the size of the population constant but increasing the 

fitness of the next generation. Genomes with higher fitness survive, 

lower fitness genomes die off. 
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• crossover; genomes are broken at a selected position then are recom­

bined to create two new genomes. 

• mutation; random changes are made at random positions within the 

genome to allow features to appear that may not have been present in 

the initial population. 

3. Repeat step 2 until the population no longer improves. 

GAs offer a flexible and powerful way to search for optimal values, if the input data 

can be represented as a binary vector then a GA can process it. However, although 

many problems fall into this category, the details of the encoding may affect the 

quality of the result. The results produced by GAs are more understandable to users 

than those of say, neural networks, because the concept of "survival of the fittest" is 

well understood. It is also possible to watch the fitness of generations improve over 

time to get a "feel" for the evolutionary path being taken. 

2.3.2 Association Rules 

A detailed description of association rules [Agrawal et al. 1993] will be given in 

the following chapter, but the following represents a high-level overview. Given a 

collection of items and a set of records, each of which contains some number of 

items from the given collection, an association function is an operation against this 

set of records which returns affinities or patterns that exist among the collection 

of items. The patterns can be expressed by association rules such as "72% of all 

records that contain items A, B and C also contain items D and E". In this rule A, 

Band C are called the antecedent and D and E the consequent. The associations 

may involve any number of items on the LHS or RHS. 

Page 24 



Chapter 2 Previous Work on Knowledge Discovery in Databases 

Constraint Based Association Rule Mining 

The research within this thesis is directed towards discovery driven association 

rule mining. Research has been undertaken to provide verification driven asso­

ciation rule mining by Srikant and Agrawal [1995], Srikant et ai. [1997], Kahng 

et al. [1997] and Han et al. [1999]. Many association rule mining methods only 

consider the leaf nodes of a taxonomy and are not designed to perform more gen­

eralized searching. For example the taxonomy in Figure 2.2 may show no asso­

ciations between jackets and hiking boots but moving up the taxonomy there may 

be a significant association between outerwear and hiking boots. Furthermore, the 

taxonomy may be used to constrain the search space in the following manner; if the 

user poses the query, 

(jacket A shoes) V (descendants(clothes) A -,ancestors(hikingboots)) 

this expresses the constraint that rules are required that either (a) contain both jack­

ets and shoes or, (b) contain clothes or any descendants of clothes and do not contain 

hiking boots or footwear. 

Clothes Footwear 

1\ 1\ 
Outerwear Shirts Shoes Hiking Boots 

1\ 
Jackets Ski pants 

Figure 2.2: Example of a taxonomy 

Integrating Association Rules 

Several research efforts have been devoted to the integration of association rule min­

ing combined with classification rule mining [Liu et al. 1998] and [Bayardo 1997]. 
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These techniques extract association rules from a dataset and use them to produce 

classes for the classifier. One of the primary issues within this research area is re­

lated to the fact that many classification datasets often contain continuous attributes 

that need to be discretized for the association rule miner to function correctly. This 

subject itself is a major research area with work by Wang et al. [1998] and Yoda 

et al. [1997] 

2.3.3 Clustering 

The process of grouping physical or abstract objects into classes of similar objects 

is called clustering or unsupervised classification. Clustering analysis helps to con­

struct meaningful partitioning of large data sets based on a "divide and conquer 

methodology". The clustering problem has been studied in many fields including, 

statistics, machine learning and biology. However, scalability was not a design goal 

in these applications as researchers assumed that the complete data set would fit in 

main memory, and so the focus was on improving the clustering quality. With the 

application of clustering to the very large data sets involved in data mining the issue 

of scalability has assumed increasing importance. 

There are two primary methods of clustering used in data mining, the K-means 

method first published by MacQueen [1967] and the agglomeration hierarchical 

method of Willet [1988]. 

The K-Means Method 

Partition-based clustering techniques attempt to break the data set into k clusters 

such that the partition optimizes a given criterion. [Bradley et al. 1998] uses cluster 

features to develop a framework for scaling up k-means methods. Starting with 

an initial data set partition the algorithm repeatedly moves points between clusters 

until the distribution optimizes a criterion function. 
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The framework functions by identifying sets of discardable, compressible and main 

memory points. A point is discardable if its membership of a cluster can be ascer­

tained: the algorithm discards the actual points and retains only the cluster features 

of all discardable points. A point is compressible if it is not discardable but belongs 

to a tight sub-cluster. Such a sub-cluster is summarized by using its cluster feature. 

A point is a memory point if it is neither discardable nor compressible. The algo­

rithm moves only main memory points and cluster features of compressible points 

between clusters until the distribution optimizes the criterion function. These algo­

rithms assume that the clusters are hyper-episodal and of similar sizes. They cannot 

find clusters that vary in size or that have concave shapes Jain and Dubes [1988]. 

Agglomeration Hierarchical Methods 

The above described problems of size and shape were addressed by Karypis et al. [1999] 

using the agglomeration method. In this method each data point initially forms its 

own cluster and all clusters gradually merge until all points are combined into one 

cluster. Towards the beginning of the approach the clusters are small and pure, the 

members of each cluster are very few but closely related. Towards the end of the 

process the clusters are large and less well defined. The history of the cluster gen­

eration is preserved to enable the level of clustering that suits the application to be 

ascertained. 

In some of the models used by Karypis et al. [1999] the cluster is represented by 

a centroid or medoid, a data point that is closest to the centre of the cluster and 

the similarity between the two clusters is measured by the similarity between the 

centroids/medoids. Both these schemes fail for data in which points in a given 

cluster are closer to the centre of another cluster than to the centre of their own 

cluster. 

The single-link hierarchical method measures the similarity between clusters by the 
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similarity of the closest pair of data points belonging to different clusters. Unlike 

centroidlmedoid based methods this method can find clusters of arbitrary shape and 

different sizes. However, it is highly susceptible to noise, outliers and artifacts. 

Clustering is a good primary data mining technique. The undirected nature of the 

search can be beneficial when there is no prior knowledge of the internal structure 

of the database. However, the choice of distance metric or similarity measure can 

radically alter the output of the procedure. The undirected nature of the search 

means that careful interpretation of the results is required; important clusters may 

be mis-interpreted if the analyst does not recognise them as such. 

2.3.4 Pattern-Based Similarity 

When searching for similar patterns in a temporal or spatial-temporal database two 

types of data mining queries are usually encountered Chen et al. [1996a]: 

• Object-relative similarity query (i.e. range or similarity query) in which a 

search is performed on a collection of objects to find the ones that are within 

a user defined distance from the queried object. 

• All-pair similarity query (i.e. spatial join) where the objective is to find all 

the pairs of elements within a user specified distance from each other. 

Two types of similarity query for temporal data have emerged: whole matching, in 

which the target sequence and the sequences in the database have the same length; 

subsequence matching, in which the target sequence could be shorter than the se­

quences in the database and a match can occur at any arbitrary point. 

Pattern matching has been applied to huge data sets such as the mission operations 

data for NASA's space shuttle [Keogh and Smyth 1997] with promising results. 
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2.3.5 Mining Path Traversal Patterns 

Understanding user access patterns within the environment of the World Wide Web 

has become an important data mining task. Path traversal patterns are a normal part 

of graph theory but, as in other examples within this chapter the scale of the problem 

has led to new algorithms having to be developed. Insight into access patterns will 

not only assist in improving system design, (e.g. providing efficient access between 

highly correlated objects, better authoring design for pages, etc.) but, will also lead 

to improved marketing decision making (e.g. better user classification and user 

analysis). Because users must traverse a series of links to search for the desired 

information, some objects are visited because of their locations rather than their 

content. This feature of the traversal pattern problem unavoidably increases the 

difficulty of extracting meaningful information from sequences of traversal data 

and was explored by Chen et al. [1996b]. 

Comparisons have been drawn between the problem of finding reference sequences 

and finding large item sets for association rules. However, they differ from each 

other in that a reference sequence in mining traversal patterns has to be consecu­

tive, whereas a large itemset is just a combination of items in a transaction. This 

difference between these two problems calls for the use of different algorithms for 

mining the know ledge required. 

2.4 Evaluation 

The diversity of function within the facilities management domain offers the po­

tential for extraction of knowledge and information which previously may not have 

been suspected. Issues arising from the PM domain applicable to data mining tech­

niques include large dense datasets and distributed heterogeneous databases. The 

notion of a verification driven data mining technique to explore this data is unreal-
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istic because of the great diversity of the data: therefore, a discovery driven method 

was required to address the problem. This research focuses on an association rule 

based approach. 

2.5 Summary 

KDD grew out of a need and desire to explore and exploit the potential commercial 

value contained within ever increasing data stores. This chapter has illustrated the 

volume and diversity of research being conducted within the field of knowledge 

discovery in databases and the increase in database sizes. 

Section 2.2 gave a high level description of some of the techniques and issues in­

vol ved in the capture and storage of data. 

The quest for increased performance and scalability in knowledge discovery tools, 

and specifically within data mining applications, is not merely an academic pursuit, 

but has real world relevance. 
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Association Rules 

3.1 Introduction 

An association rule, [Agrawal et al. 1993] is a probabilistic relationship of the form 

A -t B, where A and B are conjunctions of attributes between sets of database 

attributes. Only the positive occurance of attributes is of interest i.e. where a binary 

'1' is found in the set, an attribute such as "sex" is dealt with by converting it into 

two binary attributes: male and female. Attributes that are not naturally binary may 

have to be converted into a large number of binary attributes before they can be 

used. In the simplest case the attributes are boolean and the database takes the form 

of a set of records each of which reports the presence or absence of each of the 

attributes within that record. For example. in the database in Figure 3.1 the first 

complete record consists of the itemset ABC. Within the itemset ABC are also 

the itemsets A, B. C, AB. AC. and BC. An itemset may consist of one or more 

attributes. 

Attributes 

~ 1 1 100 
15 1 1 101 
~ 1 1 0 1 0 

o 1 000 

Figure 3.1: Sample database I 
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The support for an itemset is the proportion of database records that contain Au B. 

For example, in the database in Figure 3.1 the support for BC is 0.5 because the 

itemset BC occurs twice. The support for B alone is 1. A support threshold is the 

proportion below which itemsets are not used to generate rules. The threshold is 

user defined and may be increased or decreased depending on the user's require­

ments. An itemset that is ;::: the support threshold is termed large 1 • The confidence 

in the rule R is the ratio; 
support for R 

support forA 

For example, the confidence in the rule B-+C, from Figure 3.1, would be 50%. 

Support and confidence provide an empirical basis for the derivation of the inference 

expressed in a rule. Support for a rule expresses the number of records within which 

the association may be observed, while the confidence expresses this as a proportion 

of the instances of the antecedent of the rule. It is usual to regard these rules as 

"interesting" only if the support and confidence exceed some threshold values. The 

initial problem may, therefore be formulated as the search for all association rules 

within a database for which the required support and confidence levels are attained. 

This formulation can be refined into two steps: 

1. find all "large" itemsets. This step is computationally and 110 intensive and 

is the focus of most of the research into association rules, 

2. generate high confidence rules. This step is relatively straightforward: rules 

are generated for all large itemsets provided the rules have at least minimum 

confidence [Parthasarathy et al. 1998]. 

The paradigmatic example is in supermarket basket analysis. Point of sale tech­

nology allows records of customer transactions to be accurately stored as a binary 

vector within a database, with a binary '1' indicating an item purchased. The vol­

umes of data are extremely large; for example, Wal-Mart with a chain of over 2000 

1 Some authors use the tenns, frequent. supported or covering. 
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retail stores, every day uploads over 20 million point-of-sale transactions, [Hedberg 

1995]. Information about the current capabilities of commercial implementations 

of Apriori such as Clementine [SPSS 2002] is scarce. Claims have been made that 

it can handle 25,000 attributes, but these are not substantiated. Knowledge of which 

items may be purchased together can allow informed decisions to be made regarding 

pricing policy, product placement or store layout. 

3.2 Association Rules and their Properties 

Let D = {11,I2,' . . ,In} be a set of attributes, (oritems) over the binary domain {D,l}. 

The input for association rule mining is each record in the database. Each record 

consists of all the attributes in the database, with some number of attributes set to 1 

i.e. a set of binary vectors of length n (attribute number) and a number of records 

m. 

If X represents a set of attributes from within the domain, (D), then for each record, 

if X is a subset of the record, or an exact match of the record the support for X is 

incremented by 1. An association rule is an expression X ~ y2, where X and Y 

are both present within D as non-intersecting subsets. 1\\'0 filters are applied to 

the data they are; , (confidence threshold) and a (support threshold). X ~ Y is 

satisfied with respect to the number of records if; 

In(X U Y)I ~ am 

That is the number of records (n) that contain both X and Y ~ the user defined 

support a in m number of records. 

In(X U Y)I 
In(X)1 ~, 

2The use of the -t symbol follows the conventions set in Agrawal el al. [1993] and is usually 
taken to mean, "when attribute A appears in the data .. et then so does B", this is usually followed by 
a % value indicating the frequency with which this occurs. 

Page 33 



Chapter 3 Association Rules 

That is at least a fraction of a records have l's in all attributes of X and Y and at 

least a fraction 'Y of the records having a I in all attributes of X also have a I in all 

of Y. Given a set of attributes X we say that X is large (with respect to the database 

and the given support threshold a) if: 

In(X)1 ~ am 

The following example refers to Figure 3.1. The support threshold a is 0.6 and the 

confidence threshold 'Y is 0.9. Once the database has been read it can be seen that 

the support for the single itemsets are {A} = ~ = 0.75, {B} = ~ = 1, {C} = ~ = 
0.5, {D} and {E} = t = 0.25. The sets {A} and {B} are both above the required 

support threshold therefore set {AB} is a potentially interesting set. The set {AB} 

has support ~ = 0.75 and is therefore considered large. The confidence of {A} ~ 

{B} is ~:~~ and is greater than 'Y, however, {B} ~ {A} is not considered interesting 

in this case because the confidence o'i5 is less than 'Y. [Mannila et al. 1994] 

A large item set is described as monotone with respect to its subsets ([Mannila et at. 

1994]) because all subsets of the large set must be large themselves. This is some­

times called the downward closure property. In the example set because {AC} 

and {BC} are not large then {ABC} cannot possibly be large. If, however, a was 

lowered to 0.4 then {AB}, {AC} and {BC} would be large and {ABC} would be 

considered as a candidate set (and in the case of the example set be a large supported 

set). It is possible to argue that in the example "anything" implies B, however in a 

"real" situation support for an itemset is seldom 100%. 

Association rules do not have monotonicity properties with respect to the contrac­

tion or expansion of the left-hand side: if A ~ B holds, for some support threshold, 

then AC ~ B does not necessarily hold. For example if the support threshold (a) 

for the dataset in Figure 3.1 was set to 0.6 then A ~ B holds, clearly, if C was then 

added ABC would not be supported and no rule could be generated. 
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If AC -* B holds then A -* B does not necessarily hold with sufficient confidence. 

For example from Figure 3.1, support threshold = 0.4. confidence threshold = 0.6; 

the rule AB -* C holds with support 0.5 and confidence At; = O~i5 = 0.66. But, 

B -t C = B; = °i5 = 0.5. Further examples of association rule properties can be 

found in Ng et al. [1998]. 

The notion of confidence can be misleading. If a rule has a confidence of 1 then 

the rule cannot be improved upon. However, if it is less than 1 an improvement 

measure3 may be applied, (p = probability) improvement = pr1;p~1). Brin et al. [1997 j 

describe implication rules which measure conviction, (defined as P~1!:~~f)) rather 

than confidence or improvement. 

3.3 Association Rule Algorithms 

As described in section 3.1 the computationally intensive part of association rule 

mining is generating supported itemsets. The following sections provide an overview 

of some of the existing methods for achieving this aim. This thesis is primarily con­

cerned with the generation of supported itemsets and not the production of rules 

from itemsets. 

3.3.1 Exhaustive Methods 

The use of exhaustive methods to extract association rules is infeasible in cases 

where the number of attributes in the dataset exceeds about 30; however, they can 

provide a benchmark against which the performance of other methods may be mea­

sured. The simplest form of such an algorithm would be; 

for each record (j) in database do 

begin 

3Sometimes called interest, or lift. 
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for each subset of j do 

add 1 to support count for that subset 

end 

Four properties of this algorithm are of interest when considering its performance; 

1. The number of database passes required, 

2. The number of database accesses required, 

3. The number of computational steps, 

4. The memory requirement. 

For a database of m records the algorithm involves a single database pass requiring 

m database accesses to retrieve the records. If it is assumed that the database con­

sists of binary vectors, then enumeration of the subsets is straightforward and will 

involve a maximum of m x 2n computational steps. The actual number of steps 

would depend on the number of attributes present in each record. For each subset 

the binary encoding may be used to reference a simple array of support counts so 

incrementing is trivial, however, the array size will need to be 2n. For small values 

of n this method is simple and efficient. However, once n becomes even moder­

ately large i.e. ~ 30 the number of computational steps makes this infeasible. Even 

in cases where the number of attributes present in a record is small the size of the 

support count array is a limiting factor. 

For these reasons, practicable algorithms for computing association rules, generally 

proceed by generating support counts only for those sets which are identified as po­

tentially interesting, rather than attempting to compute support for all the database 

subsets. To assist in identifying these candidate sets it is helpful to observe that the 

subsets of an attribute set may be represented as a lattice. A lattice of this form is 

shown in Figure 3.2. 
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Figure 3.2: Lattice of subsets of {A, B, C, D} 

For any set of attributes to be large, i.e. to have support exceeding the required 

threshold, it is necessary for all its subsets to be large. For example, a necessary 

(although not sufficient) condition for the set ABC to be considered as interesting 

is that AB, AC and BC are all large which in turn requires that each of A, B, 

and C are supported at the necessary level. This observation provides a basis for 

pruning the lattice of subsets to reduce the search space. If it is known that D is not 

supported then it is no longer necessary to consider AD, BD, CD, ABD, ACD, 

BCD or ABCD. Algorithms that proceed on this basis reduce their requirement 

for storage and computation by eliminating candidates for support as soon as they 

are able to do so. The tradeoff for this is usually greater access to the database in a 

series of passes. 

3.3.2 Overview of AIS and SETM 

In 1993 two methods of generating association rules were published: the AIS algo­

rithm [Agrawal et al. 1993] and the SETM algorithm [Houtsma and Swami 1993]. 

The AIS algorithm provided a framework for the extraction of association rules 
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upon which many subsequent methods have built; 

• define a set of candidates 

• count the support for the candidates in a database pass 

• use the supported sets to define a new candidate set 

• continue until all large sets are found 

Both AIS and SETM generated and counted candidate itemsets as the database was 

read and used the notion of extending large itemsets. For example, in pass k of 

the database if a transaction t is read it is determined which of the large itemsets L, 

generated in the previous pass i.e. Lk - 1, are present in t. Each large item set in Lk-1 

is extended with all the large items present in t that are later in the lexicographic 

ordering than any of the items in Lk -1. This led to a significant number of candidate 

itemsets being generated that would later tum out to be small. In the tests reported 

only relatively small datasets (63 attributes and 46,873 transactions) were used. 

SETM, which used SQL, had a further disadvantage in that it used TIDs (transaction 

IDs) to generate candidates, which required repeated sorting at the end of each 

database pass. 

3.3.3 Breadth First Lattice Traversal 

The most influential association rule mining algorithm is the Apriori algorithm de­

veloped by Agrawal and Srikant [1994], which is the basis for much of the work in 

the field. This algorithm, and its many variants, all proceed by examining the search 

space in a breadth first manner. 

The paper containing the AIS algorithm was published in 1993; one year later 

Agrawal published his Apriori algorithm. It was significantly different from AIS 

in its candidate generation procedure and as such, allowed much larger datasets to 
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be mined. As with AIS and SETM the number of database passes required was 

still k+ 1, where k is the size of the largest supported set. Apriori was designed 

with datasets containing 1000 attributes and greater than 100,000 transactions in 

mind. The paper [Agrawal and Srikant 1994] contained three algorithms, Apriori, 

AprioriTid and AprioriHybrid the latter being a union of the two former algorithms. 

Apriori and AprioriTid generate the candidate itemsets to be counted in a pass by 

using only the itemsets found large in the previous pass, without considering the 

transactions in the database. The basic intuition is that any subset of a large itemset 

must be large4 • 

Apriori 

The algorithm proceeds in a breadth first manner as follows; 

Lk = large (supported itemsets) of size k. 

Ck = candidate itemsets. Initially, the set C1 consists of the individual attributes in 

the dataset. The kth cycle proceeds as (for k = 1,2, ... , until Ck = emptyset): 

1. Perform a pass over the database to compute the support for all members of 

Ck. 

2. From this, produce the set Lk of interesting sets of size k. 

3. Derive from this the candidate sets Ck +!, using the downward closure prop­

erty, i.e. that all the subsets of any member of Ck +! must be members of 

L k • 

The following version of the algorithm is taken from Agrawal and Srikant [1994]; 

L1 = {Large 1-itemsets} 

for (k = 2; Lk -1 =F 0; k++) do begin 

4Some authors use the term downward closure property (see section 3.2) 
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end 

Ck = apriori-gen(Lk _ 1); 

forall transactions tED do begin 

Ct = subset(Ckl t); 

forall candidates c E Ct do 

c.count++: 

end 

Lk = {c E Ck I c.count ~ minsup} 

Answer = Uk L k ; 

Association Rules 

The apriori-gen function takes as its argument Lk-l> the set of all (k - I)-itemsets. 

It returns a superset of the set of all large k-itemsets. The join step works as follows, 

joining L k - 1 with L k - 1 : 

insert into Ck 

select p.itemb p.item2, ... , p.itemk-l, q.itemk-l 

from Lk - 1 p, Lk-l q 

where p.iteml = q.itemb ... ,p.itemk_2 = q.itemk-2, 

p.itemk-l < q.itemk-l 

Finally the prune step deletes all itemsets c E Ck such that some (k - I)-subset of 

cis notin L k - 1 : 

forall itemsets c E Ck do 

forall (k - I)-subsets s of c do 

if(s ~ Lk-d then 

delete c from Ck 
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The effectiveness of the candidate generation used in the Apriori algorithm can be 

contrasted with that of AIS in the following example taken from the 1994 paper: 

Let L3 = {{ABC},{ABD},{ACD},{ACE},{BCD}}. After the join step C4 

would be {{ABCD},{ACDE}}. The prune step would delete itemset {ACDE} 

because the itemset {ADE} is not in L3 ; only {ABCD} is left in C4• 

AIS would proceed as follows when the transaction {ABCDE} was read: in the 

fourth pass two candidates, {{ABCD},{ABCE}} would be generated by extend­

ing that large itemset {ABC}. An additional three candidate itemsets would be 

generated by extending the other large itemsets in L3 , leading to a total of 5 can­

didates for consideration in the fourth pass. Apriori generates and counts only one 

item set { ABC D}, because it concludes a priori that the other combinations cannot 

have minimum support. 

Hash Tree Function 

Candidate itemsets generated by the Apriori algorithm, are stored in a hash tree. A 

node of the hash tree either contains a list of itemsets (leaf node) or a hash table 

(interior node). In an interior node each bucket of the hash table points to another 

node. The root is defined to be at depth 1, and interior nodes of depth d point to 

nodes at depth d + 1. The itemsets are stored in the leaves. When an itemset c 

is added, starting at the root the tree is traversed until a leaf node is reached. At 

an interior node at depth d the branch to follow is decided by applying the hash 

function to the dth item of the itemset. All nodes are initially created as leaf nodes. 

When the number of itemsets in a node exceeds a specified threshold the leaf is 

converted into an interior node. 

Starting from the root all candidates in a transaction t are found as follows: if a leaf 

node is encountered and it contains item sets that are in t references are added to the 

answer set (Le. the support is incremented). If an interior node is encountered and 
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it has been reached by hashing on item i each item in t that comes after i is hashed 

recursively and the procedure applied to the node in the corresponding bucket. For 

the root every item in t is hashed. The following Figure 3.3 illustrates a small hash 

tree containing candidate 3 itemsets. 

Hash Function; h(B)=h(D)=O; h(A)=h(C)=h(E)= 1 

Figure 3.3: An example hash tree structure from Zaki et al. [1997] 

AprioriTid 

ApriorTID differs from the standard Apriori algorithm in the number of database 

passes made; recall that Apriori makes k + 1 passes over the database. AprioriTID 

makes only one pass over the database to count support; subsequently the candi­

date set Ok is used as a replacement for the database. Each member of Ok is of 

the form < TID, {Xd >, where each Xk is a potentially large k-itemset present in 

the transaction with the identifier TID. For k = 1, 0 1 corresponds to the database 

although conceptually each item i is replaced by the itemset {i}. The member of 

Ok corresponding to transaction tis < t.TID,{c E Ok I c contained in t} >. If a 

transaction does not contain any k-itemset then Ok will not have an entry for this 

transaction. Thus the number of entries in Ck may be smaller than the number of 

transactions in the database, especially for large values of k. In addition, for large 

values of k, each entry may be smaller than the corresponding transaction because 

very few candidates may be contained in the transaction. These two factors have 
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a considerable effect on the algorithm's performance. If the number of candidates 

reduces rapidly, to a point where they can fit in main memory, the algorithm is su­

perior to Apriori. However, for small values of k, each entry may be larger than the 

corresponding transaction because an entry in Ck contains all candidate k-itemsets 

contained in the transaction. This means that the number of candidates generated in 

the early passes of the algorithm may exceed the size of the original dataset. This 

problem is at its worst if a large number of 2-itemsets are supported. The following 

example uses Figure 3.4 to illustrate how AprioriTID generates more candidates at 

the 2-itemset stage than Apriori. If support threshold is set to 1, then all itemsets 

are supported at the 1 level. Aprori would generate 6 candidate 2-itemsets i.e. AB, 

AC, AD, BC, BD and CD. AprioriTID would generate 12 candidate 2-itemsets 

i.e. TID 1; AB, AD, and BD, TID 2; AC AD and CD, TID 3; BC, BD and CD, 

TID 4; AC, AD and CD. 

1 1 101 
2 1 0 1 1 
3 0 1 1 1 
4 1 0 1 1 

Figure 3.4: Sample database II 

AprioriHybrid 

AprioriHybrid uses the two algorithms Apriori and AprioriTID to generate rules 

from a dataset. In the early stages of the algorithm Apriori is used when the number 

of candidate sets is high. AprioriTID is activated when the number of candidate 

sets is deemed small enough to fit into main memory. The switching point between 

the two algorithms is critical to the performance because once the switch is made 

all subsequent candidates generated in each pass must fit in main memory. The 

performance of AprioriHybrid compared to Apriori depends upon how the size of 
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the candidate sets decline. If the candidate set remains large until nearly the end 

of the process then there is a sudden drop in candidate set size little advantage is 

gained from the switch. 

The Partition Algorithm 

Published in 1995 the Partitian algorithm [Savasere et al. 1995] attempts to re­

duce the number of database passes made to extract all association rules. Partition 

has the advantage that the number of database passes required to generate all asso­

ciation rules is reduced to two. The algorithm is based on the idea that the reason 

the database needs to be scanned a number of times is that the number of possible 

itemsets to be tested for support is exponentially large if it must be done in a single 

scan. If, however, a small set of potentially large itemsets is known from a previ­

ous scan, then the database can be scanned once to find the support for these sets. 

The database is divided into a number of non-overlapping partitions, for the first 

database pass. Each partition is scanned and all locally frequent candidate itemsets 

are generated (the support count for each partition is a proportion of the total sup­

port count). Any locally frequent candidate itemsets found are then used to generate 

global candidate itemsets. The support of the global candidate sets is then derived 

by the second database pass. 

Instead of using a hash tree to store the candidates these are stored in an inverted 

form of the database structure. This works as follows; associated with every itemset 

is a structure called a tidlist. The tidlist for itemset i contains the T I Ds of all trans­

actions that contain itemset i. The T IDs are kept in sorted order. The cardinality of 

a tidlist of an itemset divided by the total number of transactions gives the support 

for that itemset. The tidlist for a candidate k-itemset is generated by intersecting the 

tidlists of the two (k-1) itemsets that were used to generate the candidate k itemset. 

For example, consider the following database (Figure 3.5); The TID lists associated 

with A = {1O,20} and with B = {10,20,30}. The support for itemset AB = A n B 
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10 1 I 0 
20 1 1 0 
30 0 I 1 
40 0 0 I 

Figure 3.5: Sample database III 

= {1O,20} = 2. When support is counted in this way the database is said to have a 

verticallayout5 as opposed to horizontal. Using the intersection of TID lists has the 

advantage that hash structures are not required for support counting, but, when the 

itemsets are small, many more intersections need to be made than count increments 

in a hash tree. If the dataset contains dense data then the TID lists would become 

very large very quickly. For example, if the dataset contained 100,000 transaction 

records and the average record contained 40 supported attributes the TID list for 

candidate 2-itemsets would contain 39~40 x 100,000 = 78 million elements. The 

number of partitions within the database is important in that, if there are too many 

then there will be a large number of locally large candidate itemsets generated that 

will later turn out to be small. 

Direct Hashing and Pruning (DHP) 

One of the main problem areas within association rule mining is the number of 

candidates generated during the early stages of the process. If L1 is large then 

( I~ll ) becomes an extremely large number. This problem was addressed by Park 

et al. [1995] using the DHP (direct hashing and pruning) algorithm. DHP uses an 

additional hash tree structure to reduce the size of C2 • In addition to the hash table 

DHP also prunes the database after each scan to reduce the search space for the next 

scan. 

5Sometimes called inverted or decomposed storage structure. 
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Reducing C2 

The hashing function in DHP works as follows: when the support for candidate k­

itemset is counted by scanning the database the algorithm counts all the occurrences 

of the itemsets of size k + 1 within the transaction and hashes these into a hash table, 

this is a type of "advanced lookup" function. Each bucket in the hash table contains 

a number representing how many itemsets have been placed in that bucket so far. 

Once the database scan is complete a bit vector is constructed to represent the total 

number of sets in each bucket. If the number exceeds the support level a '1 • is placed 

in the bucket otherwise a '0'. Every item that passes the hash filter i.e has a 1 in its 

bucket. is placed into another hash tree of the type used in the Apriori algorithm. 

The following two figures are from Park et al. [1995]. The smaller number of 2-

Generated on the fly 
Database 

C 1 count L 1 

{A) 2 IA) 
IB) 3 ___ IB) 
{C) 3 IC) 
ID) 1 IE) 
IE) 3 

TIn Tt"'n~ 
100 ACD 
200 BCE 
300 ABCE 
400 BE 

Minimum support = 2 

Create hash table 
100 {AC} {ADI{CD} 
200 {BCI{BEJ{CE} 
300 I AB II AC II AE II BC II BE I {CE I 
400 IBE} 

hIIXYII=«or<ier of X)" 10 +(order of Y» mod 7 

ICEI IBE} IACI 
ICE) IBC) IBE} ICD} 

Generating C 2 

lAB) 
lAC) 
lAB) 
IBC) 
IBE) 
ICE) 

(BEl (ABI (AC) 

o I 3 I 1 I 3 I Hash table H 2 

3 4 .5 6 

Number of items hashed to bucket 2 

Number ina 
bucket with itemset 

1 
3 1 ___ 

2 
3 
3 

C2 

lAC) 
IBC) 
IBE) 
ICEI 

Figure 3.6: An example hash tree structure and generation of C2 

itemset candidates is beneficial when the database pass is made to count support for 
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these candidates: obviously the smaller number of candidates the less memory and 

computational effort required. However, as can be seen from Figure 3.6, the itcmset 

D which is below the support level is included in the hash table H2 as members 

of the sets AD and CD when clearly they cannot be supported 2-itemsets. This 

occurs because of the "advanced lookup" function described above. Furthermore, 

the construction and maintenance of the additional hash tree requires memory and 

computational effort. 

Reducing Database Transactions 

100 ACD 
200 BCE 
300 ABCE 
400 BE 

set-of-itemseL~ 
(AC) ------;;.;. Discard 
(BC){BE){CE) > Keep (BCE) 
(AC){BC){BE){CE) ~ Keep (BCE) 
(BE) ;. Discard 

C 2 count L 2 

(AC) 2 (AC) 
(BC) 2 (BC) 
(BE) 3 (BE) 
(CE) 2 ICE) 

D 3 = (<2oo,BCE>,<300,BCE» 

Figure 3.7: An example of £2 and database Da 

DHP attempts to restructure the database after each pass to reduce the search space 

in subsequent passes. In Figure 3.7 transaction 100 contains only a single candidate 

itemset AC in £2, as shown in the set-of-itemsets. There are no 3-sets in transaction 

100 so it is discarded. In transaction 300 the only possible supported 3-set is BCE 

and therefore A is eliminated from the transaction. Restructuring the database af­

ter each pass obviously reduces the search space for subsequent passes, however, 

for large databases restructuring will undoubtedly add to the execution time of the 

algorithm. 
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Sampling Algorithms 

After the publication of the AIS algorithm researchers at the Department of Com­

puter Science at Helsinki University attempted to improve on its performance [Man­

nila et al. 1994], and also develop association rule mining using inverted structures 

and a general purpose DBMS [Holsheimer et al. 1995]. With the introduction of 

Apriori the work on improving the AIS algorithm was quickly abandoned and the 

target was now to improve on Apriori. The method proposed by Toivonen [1996] 

was to take a sample of the database from which is derived a candidate set for the 

full database search. To ensure (with high probability) that this candidate set con­

tains all the actual frequent sets, two devices are used. First, the support threshold is 

lowered when the database sample is processed, leading to a candidate set S which 

is a superset of the actual (locally) frequent set. Secondly, the set is further extended 

by adding its negative border, i.e. those sets that are not members of S, but all of 

whose subsets are included in S. This extended set is used as the candidate set for 

a full database pass, which, if no members of the negative border are found to be 

frequent, completes the search. 

This method of support counting trades a larger candidate set for reduced database 

passes. However, if the distribution of the data is not consistent throughout the 

dataset then sampling risks either missing many large itemsets outside the sample 

area or producing many candidate sets from the sample that are only large within 

the sample. 

Work by Brin and Page [1998] on mining web pages also uses sampling to mine 

data which is large and also contains a great many items per transaction (200+). In 

pursuit of this goal completeness is sacrificed for the ability to penetrate the data in 

a realistic time. The search is guided by the use of a concept called the heavy edge 

property, which views the search space as a hyper-graph. The edges of the graph 

are described as heavy if they exceed a user defined weight. If an edge is found to 
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be heavy then the edges that are its neighbours are likely to be heavy too. 

Dynamic Itemset Counting 

The Ole algorithm [Brin et al. 1997] aimed at making fewer database passes than 

Apriori and producing smaller candidate sets than sampling methods. Reducing the 

number of database passes is achieved by counting candidates of various sizes in 

one pass of the database. The reduction in the size of candidate sets over sampling 

methods is achieved because Ole does not need to lower the support threshold and 

examine candidates in the negative border. The reduction in the number of database 

passes made by Ole provides an advantage over Apriori. Brin attempts to mine 

census data which although containing fewer records, contains a higher proportion 

of binary 1 's per record. In some cases attributes appear in 95% of records. This 

more dense data could only be analysed with support thresholds of 30-50% rather 

than the "usual" support thresholds on supermarket data of 0.5-2%. DIe operates 

in exactly the same way as Apriori, with the exception of database passes, and 

therefore suffers from the same problems when confronted with dense datasets. 

3.3.4 Depth First Lattice Traversal 

Several researchers have tried to improve association rule mining techniques by at­

tempting different strategies for traversing the search space. Both Zaki et al. [1997] 

(and in [Zaki 1997]) and Bayardo [1998] use "look ahead" techniques to enable 

depth first searching to proceed. 

Clustering Algorithms 

Zaki et al. [1997] present a number of algorithms based on finding maximal large 

itemsets. An itemset is maximallarge6 if it has no superset that is large. Any large 

6Zaki uses the tenn maximal frequent. 
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itemset is a subset of a maximal large itemset. Once all the maximal large itemsets 

are found then they can be used to generate all rules because of the monotonicity 

properties with respect to contraction (as described in section 3.2). The algorithms 

use equivalence class clustering and maximal uniform hypcrgraph clique clustering 

to identify maximal itemsets. An equivalence class is generated in the following 

manner; if Lk consists of {A, B, C, D}, then the equivalence class for A = AB, 

AG, AD, then for B = BG, BD etc. For k = 1 the entire item universe is the 

potential maximal itemset, however once k ~ 2 maximal frequent itemsets can be 

generated that are more specific. Each maximal equivalence class or clique de­

fines a search space. This is then traversed in breadth first, depth first or a hybrid 

breadth first/depth first manner. Traversing the search space can be done either us­

ing equivalence class itemsets or the clique generated itemsets. The equivalence 

class itemsets are less specific but require less computation to generate. The clique 

generated itemsets require more computation because L2 needs to be produced prior 

to the cliques being derived, however, more accurate potential maximal itemsets are 

produced. One of the problems with this method is that the itemsets generated are 

only "potentially" maximal. If they indeed tum out to be maximal then the search 

is finished, but if not then all the subsets of the potential maximal itemsets must 

be checked for support until "true" maximal itemsets are found. Zaki attempts to 

address this problem by using a hybrid breadth first/depth first search. This method 

provides an improvement over Apriori because it searches for maximal itemsets 

first and when found the maximal large itemsets and all their subsets can be ro­

moved from the search space. This leaves a smaller space for the breadth first part 

of the algorithm to search. Using clustering in this manner depends critically on be­

ing able to generate small clusters, invert the database and compute the 2-itemsets 

prior to the algorithm starting. Large clusters derived from dense data, will increase 

the search space significantly and require a huge number of intersections for support 

counting. 
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Rule Generation Using Trees 

Set Eumeration Trees 

The equivalence classes described above bear a close relationship to the set enu­

meration trees proposed by Rymon [1992] and developed in Rymon [1993] and Ry­

mon [1996]. Initially developed for generalizing decision trees, the set enumeration 

framework was proposed for use with association rule mining by Bayardo [1998] 

and expanded in Bayardo et at. [1999]. The set enumeration tree imposes an or­

dering on the set of items and then enumerates the sets of items according to the 

ordering as illustrated in Figure 3.8. 

{ } 

__ --------~1r--=~~ --__ _ 
A C D 

~ I 
AB AC AD BC BD CD 

~ 
ABC ABD ACD BCD 

I 
ABCD 

Figure 3.8: Set enumeration tree for {A,B,C,D} ordered lexicographically 

Bayardo's Max Miner algorithm searches for maximal large itemsets and proceeds 

in a similar manner to Apriori in that it must scan the database multiple times. The 

fact that the algorithm searches for maximal large itemsets enables it to adopt a dual 

pruning strategy, it prunes both supersets and subsets at the same time. 

The candidate item sets 7 are described as containing the head denoted h(g) repre­

senting the item enumerated by the node and the tail t(g) an ordered set containing 

everything not in the head. In Figure 3.8 the node enumerating itemset {A} has 

7Bayardo calls them candidate groups. 
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h(g) = {A} and t(g) = {B,C,D}. Superset pruning proceeds by determining if a 

maximal itemset is a large maximal itemset during a database scan. If it is then all 

its subsets must be large so the node in the enumeration trce is not expanded into its 

sub-nodes. Subset pruning is achieved by determining if an itemset h(g) U {i} for 

some i E t(g) is not large. If h(g) U {i} is not large then any head of sub-node that 

contains i will also be not large. Subset pruning removes any such item {i} from 

the candidate group before expanding its sub-nodes. 

Bayardo uses an itemset re-ording policy to ensure the effectiveness of superset 

pruning. The idea is to ensure that as many candidate groups as possible contain 

items that are large. This is based on the notion that items with high support are 

more likely to be part of large itemsets. Items that appear later in the ordering will 

appear in the most number of candidate sets. As can be seen from Figure 3.8 item 

D appears in the head or tail of every node. 

Bayardo's approach is primarily directed at mining more dense data than Apriori. 

This is achieved in a similar manner to the methods of Zaki et al. [1997]. The sub­

set and superset pruning idea has the desired effect of reducing the search space and 

Bayardo's method improves over Zaki's, the former attempts to identify maximal 

large itemsets during the search, the latter only seeks maximal large itemsets dur­

ing initialization. Bayardo's method however, still requires multiple passes of the 

database. 

3.3.5 ADtrees 

The ADtree [Moore and Lee 1998], [Anderson and Moore 1998] as a data structure 

was initially developed as a generic framework to facilitate fast counting and query 

matching. The tree structure aims to represent all possible queries and counts. 

The tree has two primary features which facilitate sparse representation; 
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1. For any query that matches zero records a NULL is stored, 

2. When an attribute has a MeV (see below) a NULL is stored. 

The database attributes contain integer values in the range {I ... n}. A query is 

a set of (attribute = value) pairs in which the left hand side form a subset of the 

attributes. The count of a query C (query) is the number of records matching all 

the (attribute = value) pairs in query. The tree is constructed starting at the root 

which is described by Moore as an "ADnode", where each attribute has a "don't 

care" (*) value within the ADnode. This points to a "Vary" node for each attribute 

which lists the most common value (mcv) for that attribute. Vary nodes then point 

to AD nodes which list and contain the counts of the attributes which do not contain 

the mcv. From the example (Figure 3.9 taken from Moore and Lee [1998]) it can be 

seen that the mcv, in the database, for A = 3, when the tree is constructed the Vary 

node contains the mcv for A (in this case 3). The remaining, smaller values for A 

are enumerated in 'child' ADnodes while the child ADnode that "would" have the 

value A = 3 in it points to NULL because the fact that mcv for A = 3 is stored in the 

Vary node above. 

The ADtree is constructed once and is intended as a fast method of answering user 

defined queries as opposed to discovery driven rule mining. It does however, illus­

trate an interesting structure for representing a database. For example, the combi­

nation of a set enumeration tree using the sparse representation of the ADtree could 

be a way to reduce the size of a database, that would allow the data to be held in 

main memory. This in tum would reduce the access times required when counting 

support of records in the database. 

3.3.6 Parallel and Distributed Association Rule Mining 

The number of candidate sets generated in the second pass of databases has led 

some researchers to propose using parallel processing to address the problem. The 
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Figure 3.9: An AD tree and sample database 

basis for most of the parallel algorithms is Apriori and the target area for improve­

ment is the support counting phase. Research by Shintani and Kitsuregawa [1996] 

calculated support within several hash tables (one per processor) then integrated the 

hash tables to produce a result for that database pass. Parthasarathy et al. [1998] 

has attempted to reduce/eliminate false sharing, on shared memory machines i.e. 

allocating memory in such a way that only the correct processor accesses the cor­

rect memory area. Further research in this area has been carried out by Tamura and 

Kitsuregawa [1999], Han etal. [1997] and Shintani and Kitsuregawa [1998]. 

Distributed algorithms for computing association rules have been proposed by Che­

ung et al. [1996a] Cheung et al. [1996b]. In these algorithms local pruning and 

global pruning are used to reduce the number of messages passed. Mining asso­

ciation rules over large distributed databases contains all the problems/issues as­

sociated with mining rules within one database but the additional complication of 

selecting the correct message passing strategy. 
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3.3.7 Sequential Analysis 

Given a set of data-sequences, each of which is a list of transactions ordered by 

the transaction time, the problem of mining sequential patterns is to discover all se­

quences with a user specified minimum support. Examples can be found in Thomas 

and Sarawagi [1998] and Hatonen et al. [1996]. Each transaction contains a set of 

items. A sequential pattern is an ordered list (sequence) of itemsets. The itemsets 

that are contained in the sequence are called the elements of the sequence. For 

example, ( (computer, modem) (printer) ) is a sequence with two elements 

(computer, modem) and (printer). The support for a sequential pattern is 

the number of data-sequences that contain the sequence. A sequential pattern can 

be further qualified by specifying minimum and lor maximum time gaps between 

adjacent elements, and a sliding time window within which items are considered 

part of the same sequence element. Sequential patterns are essentially associations 

over temporal data. Whilst some of the datasets under consideration in this the­

sis contain time stamps, many do not. The current motivation for this research is 

the extraction of supported sets: once this has been achieved satisfactorly then the 

integration of time into the attribute set could be explored. 

3.4 Evaluation 

The description of association rule mining techniques above illustrates that since 

1993 and the introduction of the AIS algorithm many research efforts have been 

devoted to improving rule generation. The Apriori algorithm remains the foun­

dation of many subsequent algorithms and the basis against which all subsequent 

algorithms are judged. 

The number of database passes required by Apriori is k+l, where k is the number 

of attributes in the largest supported itemset. The number of database accesses 
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required in each pass is m (number of records in the database). The maximum 

number of computational steps required in each database pass is 

(3.1) 

This is for each record the number of subsets of size j in the set of size ki where 

j is the jth pass of the database. The memory requirement is largest number of 

candidate itemsets generated during a pass of the database, and a hash tree structure 

to contain and update the candidates. The number of database passes required to 

generate rules has, in cases such as Partition [Savasere et al. 1995] and Sampling 

[Toivonen 1996] and and Dynamic Itemset Counting, [Brin et al. 1997], been re­

duced. However, the number of candidates generated with Partition and Sampling 

increases and with DIC the computation involved in processing each record is in­

creased. Partition requires more computational steps in the early database passes 

because the TID-lists of small itemsets provide little information about associations 

among itemsets. For example, a database with 10,000 transactions, 500 large (sin­

gle) itemsets and an average transaction size of 10 items has TID-lists of average 

size 200. To find all the candidate 2-itemsets intersections must be made between 

each pair of items, this requires ( ~o ) x (2 x 200) ~ 50 million operations. Us­

ing hash tables only the pairs appearing in a transaction need to be formed and their 

count incremented, requiring ( 1: ) x (10,000) ~ 0.5 million operations. Attributes 

that are very common can also cause extremely large TID lists, if an attribute ap­

pears in all transactions its TID list will be as big as the original dataset. 

Both Zaki et al. [1997] and Bayardo [1998] attempt to look ahead and reduce the 

search space by early pruning. Zaki et al. [1997] looks ahead during the initializa­

tion phase of the algorithms and uses a pre-processing step to obtain support for all 

the 2-itemsets (requiring two database passes before the algorithm starts). Zaki's 

computational steps increase (over Apriori) because of the intersection problem 

(described above). Max-Miner [Bayardo 1998] can complete its search in fewer 

database passes than Apriori if it locates all maximal large itemsets early in the 
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search. If, however, the maximal large itemsets are not located early in the pro­

cess (because they are not supported), then Max-Miner can take as many database 

passes as Apriori. Early location of, at least some of, the maximal sets is important 

for Max-Miner to facilitate the reduction in search space and number of computa­

tions required. 

3.5 Summary 

The first part of this chapter explained how association rules are arrived at and 

some of the different evaluation criteria used to judge the supported itemsets. In the 

second part many different approaches for deriving the support count of an itemset 

were examined. These were sub-divided into the methods mainly based on the 

Apriori algorithm and those that adopted a slightly different strategy. 

When considering the databases contained within the facilities management divi­

sion of an organization there may be attributes that occur with great frequency e.g. 

job category, sex, age, a frequency not usually found within supermarket datasets. 

The implications of this are that frequent sets may contain large numbers of at­

tributes, so that an Apriori type algorithm would require many database passes and 

generate many candidate sets. Methods such as Max-Miner encounter problems 

when the potential maximal set is very large but the actual supported sets are small 

because the search space does not shrink quickly. Methods such as Moore's ADtrees 

and Bayardo's Max-Miner provide an interesting start point for the exploration of 

Facilities Management databases. 
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The Partial Support Tree 

4.1 Introduction 

The previous three chapters have provided background material. 

• Chapter 1 described the motivation for the research, and the emergence of 

the field of knowledge discovery in databases. The domain of facilities man­

agement was introduced and highlighted as a previously unexplored area. 

• Chapter 2 introduced the broad area of knowledge discovery in databases 

and specifically discussed data mining as a key area of research. 

• Chapter 3 examined in detail data mining methods for the extraction of as­

sociation rules developed over the last eight years and provided some bench­

marks (database passes, computational effort, etc.) by which algorithms could 

be judged. 

The remaining chapters of this work aim to establish the thesis that the pre-processing 

of data using specialised data structures can offer significant advantages when min­

ing association rules. The following chapters will seek to address some of the issues 

arising from using data mining (Chapter 2) within the domain of facilities manage­

ment (Chapter 1) building upon previous association rule mining techniques (Chap­

ter 3). This chapter deals with the construction of a data structure described as 

the P-tree or partial support tree. The motivation behind the development of the 
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A B C D E F G 
1 1 1 0 1 1 0 
1 1 1 0 1 1 0 

Table 4.1: Sample database IV 

P-tree was to reduce the number of database passes required to generate support 

counts, this being one of the primary issues in association rule mining research, and 

to reduce the combinations involved in performing these counts. All the algorithms 

described in the previous chapter that repeatedly read the database take no account 

of any of the previous transaction records they have processed. As each transaction 

record is read all the subsets of size k, (k being the number of the database pass) 

within the record must be examined. Each transaction record, therefore, is treated 

as a unique entity. For example, if two records follow each other in the dataset, as 

shown in table 4.1, then during the generation of candidate itemsets containing pairs 

each record will require 5~4 increments within the hash tree structure. Obviously 

both records are exact copies of each other but this fact is not taken into account. 

Clearly if a database contains many duplicate records a great deal of computational 

effort can be wasted. One of the data structures to be used within this thesis is called 

the Partial Support Tree (P-tree). The P-tree aims to take advantage of any dupli­

cation found in the dataset, by pre-processing the data and storing it in an structured 

manner. The advantages gained when processing duplicated data will be illustrated 

later in this chapter. If the data contains no duplicate records, the summation part of 

the process should be enhanced because of the structural advantages that the P-tree 

delivers. 

The general concept is to read the database once and dynamically create a data stor­

age structure that could be contained in memory and therefore reduce the number 

of accesses to a disk resident database. 
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In order to understand why and how the P-tree was developed it is instructive to 

examine some of the experiments carried out earlier as part of this research using 

data structures that would allow the database to read, and the support for itemsets 

computed, in one pass. 

4.2 Exhaustive Algorithms 

As noted in the previous chapter (section 3.3.1) it is infeasible to compute associ­

ation rules for any dataset containing more than 30 attributes using an exhaustive 

approach. To achieve a degree of understanding of some of the implementation de­

tails and to provide a start point for this research two exhaustive algorithms were 

developed. These, like all other work in this thesis, were programmed using ANSI 

C. 

4.2.1 Brute Force 1 Algorithm (BF1) 

The data structure used for this algorithm was a linked list of structures. Each 

structure contained a character string, an integer code and an integer representing 

the support for that code. The character string was restricted to the 26 letters of 

the alphabet. The integer code was derived from the bit pattern associated with an 

attribute. For example, when reading a bit pattern from left to right, A = 10000000 

= (integer code 1), B = 01000000 = (integer code 2) and AB = 11000000 = (integer 

code 3). The support was represented as an integer. The algorithm proceeded in the 

following manner: 

• Read the first line of the transaction dataset. 

• From this line determine the number of columns/attributes in the dataset. Use 

this information to generate a linked list of structures, one structure for each 

combination of one or more attributes. 
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• Read the rest of the dataset one record at a time until the end of the dataset 

is reached. As each record is read compare its contents with the contents of 

the linked list by traversing the list. If the record contained a subset or exact 

match for an element in the list increment that element's support count by 1. 

• On completion the linked list structure will contain details of all the support 

that the dataset provides for every possible combination of the attributes de­

scribed by the table columns. 

Test Data 

The test data consisted of several datasets each containing 100,000 records gener­

ated by a synthetic data generator. The number of attributes in the datasets was 10, 

11, 14 and 15. The generator created records randomly with an average percentage 

of binary 1 's in each record set to either 20% or 80%. 

Test Environment 

All the tests within this thesis were conducted using a stand alone IBM PC clone 

with an Intel Celeron 300MHz processor, 128Mb of main memory and a 20Gb IDE 

secondary storage device. The operating system was Mandrake Linux version 7.2, 

kernel release 2.2.17-21. 

Test Results 

Table 4.2 provides a key for table 4.3. 

From the results presented in table 4.3 it can be observed that as would be expected 

the memory requirements increase exponentially each time one attribute is added 

to the dataset. The table differentiates between node increments and node compar­

isons. The former occurs when a node is found to contain a subset or exact match of 

Page 61 



Chapter 4 The Partial Support Tree 

A Number of Attributes 
P Record density % 
N Nodes in list 
M Memory required (bytes) 
I Node increments (rounded) 
C Comparisons (rounded) 
T Execution time (sees.) 

Table 4.2: Key for table 4.3 

A P N M I C T 
10 20 1023 45012 lOoxO.297 lOHx 1.023 9 
10 80 1023 45012 lOsxO.258 108 X 1.023 9 
11 20 2047 90068 106 xO.298 1Q8 x2.047 26 
11 80 2047 90068 108 xO.258 1Q8 x 2.047 35 
14 20 16383 720852 1Q6 xO.299 lQ~x 1.638 623 
14 80 16383 720852 1O~xO.206 lO~x 1.638 648 
15 20 32767 1441748 106 xO.698 1Q9 x3.276 962 
15 80 32767 1441748 1O~xO.411 1O~x3.276 973 

Table 4.3: Results from algorithm BFl 
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a record, the latter is a test performed on all nodes for all records. The results show 

that the more dense data sets have slightly increased execution times, this is because 

of the greater number of node increments. To ensure that the number of transaction 

records was not the limiting factor several tests were run with the above datasets 

containing 200,000 records. These tests showed a linear increase in the number of 

node increments and comparisons and a sub-linear increase in execution times. 

4.2.2 Brute Force 2 Algorithm (BF2) 

The limitations of the BFl algorithm were apparent prior to its implementation, test­

ing confirmed its poor performance and scalability. The purpose of this implemen­

tation was only to demonstrate the inherently exponential scaling of the problem. 

Although BF2 was also never expected to be a practical algorithm in terms of sup­

port counting over large numbers of attributes, it was felt that some improvements 

could be made to BFt. BF2 offered two advantages over BFl: 

• The amount of memory required was reduced. 

• The comparison of bit patterns was no longer necessary. 

The first advantage was achieved by dispensing with the linked list data structure 

in which results were stored, using instead a I-D array. The fact that each possible 

combination of attributes could be defined as a binary sequence then translated into 

an integer (as described in section 4.2.1 ) enables direct indexing into the array. 

Each index represents a particular configuration of attributes and the content, that 

configuration's support. The second advantage is a direct result of the first, because 

of the direct indexing it is no longer necessary to carry out comparisons between the 

records in the table and the elements of the data structure. The replacement method 

for this is to calculate each possible subset of each transaction record as an integer 

and use this to index into the array and increment that element's support. Computing 
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A Number of Attributes 
P Record density % 
S Array size 
M Memory required (bytes) 
I Array updates (rounded) 
T Execution time (sees.) 

Table 4.4: Key for table 4.5 

The Partial Support Tree 

all subsets of each transaction record replaces the need to search the linked list (as 

in BF1) but requires additional computation. BF2 works in the same manner as BFl 

described above with the exception of the data structures and indexing. 

Test Data 

The same synthetic test data generation program was used to produce the datasets 

for testing BF2 as for BF1. As with BFl attribute numbers were small but BF2 

could process slightly higher numbers: the attribute numbers were 10, 11, 15, 20 

and 21 (the first three enable direct comparison with BFl). 

Test Results 

Table 4.4 provides a key for table 4.5. 

The results presented in 4.5 show, as expected, an exponential increase in the size 

of the array required to hold the results and a corresponding increase in memory re­

quirement. As with the tests on BFl, several datasets were tested which contained 

200,000 records these displayed a linear increase in the number of array increments 

and a sub-linear increase in execution times. BF2 showed a moderate improve­

ment over the results for the the BFl algorithm (table 4.3) in that, the number of 

attributes processed by BF2 was 21 compared with 15, and the execution time of 

BF2 was faster. An interesting observation when comparing the two algorithms is 
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A P S M I T 
10 20 1024 4096 lOoxO.297 <1 
10 80 1024 4096 1O!SxO.258 8 
11 20 2048 8192 106 xO.298 <1 
11 80 2048 8192 1O!SxO.258 19 
15 20 32768 131072 lOoxO.698 1 
15 80 32768 131072 lOlI xO.411 136 
20 20 1048576 4194034 107xO.149 1 
20 80 1048576 4194034 101OXO.226 172 
21 20 2097152 83886084 107xO.149 2 
21 80 2097152 83886084 lOiU xO.229 236 

Table 4.5: Results from algorithm BF2 

the increase in execution time between the sets containing 20% density and 80% 

density. Algorithm BFl had a slight increase in execution time between the two 

sets whereas BF2 displayed a significant increase in execution time. This was be­

cause the more dense dataset produced many more subsets and more subsets result 

in a greater number of array accesses and increments, BFl did not suffer from this 

drawback because all the elements in the list were tested for the subset/exact match 

property regardless of the dataset density. BF2 scales better: it is only slightly faster 

for 10-11 attributes (80% density) but much faster for 15. 

4.3 Partial Support 

One of the main problems with both the brute force algorithms is that they compute 

and store every possible combination of the attribute set. Another is that an increase 

in the number of attributes by 1 doubles the potential search space and therefore the 

memory requirement. It may be observed that within any attribute set there may be a 

great many combinations of attributes that contain no support. Calculating the code 

combinations and allocating memory for these is a wasted effort. The exponential 
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scaling places a low upper bound on the number of attributes that can be considered. 

The algorithms described in Chapter 3 all depend, to some degree, on a reduction 

of the search space by reducing the candidates to a number which can be retained in 

memory and counted feasibly. In most cases, each pass of the database proceeds by 

examining each record to identify all the members of the candidate set that are sub­

sets of the record. This can be computationally expensive, especially when records 

are densely populated. In principle, however, it is possible to reduce this cost by ex­

ploiting the relationships between sets of attributes illustrated in the lattice (figure 

3.2). For example, in the simplest case, a record containing the attribute set ABD 

will cause incrementation of the support-counts for each of the sets ABD, AB, 

AD, BD, A, Band D. Strictly, however, only the first of these is necessary, since a 

level of support for all the subsets of ABD can be inferred from the support-count 

of ABD. Let i be a subset of the set I (where I is the set of n attributes represented 

by the database). ~ is defined as, the partial support for the set i, to be the number 

of records whose contents are identical with the set i. Then Ii, the total support for 

the set i, can be determined as: 

Ii = L Pj ('Vj,j ;2 i) 

This allows us to postulate an exhaustive algorithm for computing all (total) sup­

ports: 

Algorithm A: 

Stage 1: for all records j in database do 

begin add 1 to P(j) 

end; 

Stage 2: for all distinct j found in database do 

begin for all i ~ j do 
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end 

begin add P(j) to T(i) 

end 

The Partial Support Tree 

For a database of m records, the algorithm performs m support-count incrementa­

tions in a single pass (stage 1), to compute a total of m' partial supports, for some 

m' ::; m. Stage 2 involves, for each of these, a further 2i additions, where i is 

the number of attributes present in the set being considered. If the database con­

tains no duplicate records, then the method will be less efficient than an exhaustive 

computation such as BF2 which enumerates subsets of each record as it is exam­

ined. Computing via summation of partial supports will be superior, however, in 

two cases. First, when n is small (2n « m), then stage 2 involves the summation 

of a set of counts which is significantly smaller than a summation over the whole 

database, especially if the database records are densely-populated. Secondly, even 

for large n, if the database contains a high degree of duplication (m' «: m) then the 

stage 2 summation will be significantly faster than a full database pass. 

Computing partial supports as described above allows, in one pass of the database, 

to capture all the relevant information in a form which enables efficient computation 

of the totals, exploiting the structural relationships inherent in the lattice of partial 

supports. 

4.3.1 Linked List Partial Support Algorithm (LLPS) 

Both the brute force algorithms perform the set enumeration function and the sup­

port count function within the pass of the dataset; the idea behind partial support 

is that only some of the supports are counted during the initial pass through the 

dataset, section 1 of algorithm A. The remainder of the supported sets are computed 

from the linked list after it has been constructed, i.e. it is the duplicates within the 
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linked list that provide the support counts. Whilst this will require more computa­

tion the linked list (held in main memory), not the dataset will provide the support 

counts. The objectives of the algorithm were as follows: 

1. Read the dataset in one pass and store the result in main memory. 

2. Only store results for which records are present i.e. there is a transaction 

record in the dataset corresponding to a record in the structure. 

3. Consider datasets of> 20 attributes. 

The algorithm proceeded as follows: 

• Read the first record in the table describing a transaction. 

• From this determine the number of columns/attributes in the table and use this 

information to generate the initial structure in the linked list. 

• Read the remainder of the table and for each transaction record: 

- If the transaction record is already represented by a node in the linked 

list increment the support for that node. 

- Otherwise create a new structure and add this to the list in such a way 

that the list is ordered according to the identification codes associated 

with the transaction records. 

The brute force algorithms could not cope with attribute numbers greater than 20 

and therefore any combination that required representation could be identified as 

a single 32 bit integer as described in section 4.2.1. The LLPS algorithm would 

be required to process numbers of attributes greater than 32 and therefore a single 

unsigned integer would not be sufficient. The codes were stored as arrays of un­

signed integers. The number of elements in the array is dependent on the number of 
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attributes in the dataset and is calculated as follows (k = number of array elements): 

number of attributes 31 . 
k = 32 + 32 (rounded up to the nearest mteger) 

For example, if the following transaction record was read; 

01001011010000000010100100001010 11001100 

first 32 bits second 8 bits 

The number of attributes in the transaction record above would be 40. Taking the 

leftmost digit to be the least significant, this would translate to the integer code 

2703754658 51 (the spaces are for clarity) these two integers could then be stored 

in the array, (of unsigned integers). The remaining elements of each linked list 

structure was an integer for the support count and a "next" pointer, each requiring 4 

bytes. Therefore the total storage for the algorithm is defined as: 

u(8 + k)bytes 

where u is the number of unique transaction records in the dataset. In the worst 

case u will be equal to m (all records unique) and in the best case u would equal 

1 (all records the same). The brute force algorithms took no account of any of the 

properties of the dataset except the number of attributes, because all possible com­

binations of the attribute set were calculated regardless of their support. This factor 

changed significantly with the LLPS: First, because the number of unique elements 

in the dataset was significant, as described above, and secondly, the ordering of 

the transaction records influenced the number of comparisons. For example, con­

sider the following two datasets, both binary encodings of all the values between 

1 and 15 (or an alternative description, the complete enumeration of the attribute 

set ABC D). The dataset on the left enumerates in ascending order, on the right 

descending order. When the LLPS algorithm constructs the linked list to store the 

transaction records the number of comparisons made to enable the new structure 
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1 0 0 0 1 1 1 1 
0 1 0 0 0 1 1 1 
1 1 0 0 1 0 1 1 
0 0 1 0 0 0 1 1 
1 0 1 0 1 1 0 1 
1 1 0 0 0 0 1 1 
1 1 1 0 1 0 0 1 
0 0 0 1 0 0 0 1 
1 0 0 1 1 1 1 0 
0 1 0 1 0 1 1 0 
1 1 0 1 1 0 1 0 
0 0 1 1 0 0 1 0 
1 0 1 1 1 1 0 0 
0 1 1 1 0 1 0 0 

Figure 4.1: Two datasets enumerating 1 to 16 

to be added to the existing list is, 20 for the descending dataset but 105 for the 

ascending dataset. 

Test Data 

The LLPS algorithm was tested on files generated with the same synthetic test data 

generator as the brute force algorithms. The LLPS algorithm datasets were consid­

erably smaller in terms of the number of transaction records. The algorithm was 

not able to process 100,000 records; 10,000 was found to be the maximum number 

for the various attribute numbers. The number of attributes, however, was increased 

to 50. As with the previous datasets for each attribute number, two data densities 

were generated, 20% and 80%. The attribute numbers increased in increments of 

ten from 10 to 50. 

Test Results 

Table 4.6 provides a key for table 4.7. 

From the test results provided in table 4.7 it can clearly be seen that, unlike the 

brute force algorithms, increasing the number of attributes does not result in any 
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A Number of Attributes 
P Record density % 
N N odes in list 
M Memory required (bytes) 
I Node increments (rounded) 
C Comparisons (rounded) 
T Execution time (sees.) 

Table 4.6: Key for table 4.7 

A P N M I C T 
10 20 55 660 9945 lOoxO.289 2 
10 80 887 10644 9113 107 xOA06 4 
20 20 4886 58632 5114 10tl xO.154 27 
20 80 9939 119268 61 lOti xO.119 30 
30 20 9917 119004 83 101IxO.246 44 
30 80 10000 120000 0 1O!lxO.249 45 
40 20 1 ()()()() 160000 0 1011 xO.253 54 
40 80 10000 160000 0 10tl xO.252 56 
50 20 10000 160000 0 10!lxO.251 67 
50 80 10000 160000 0 lOtlxO.250 67 

Table 4.7: Results from algorithm LLPS 
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exponential growth. The field described as "node increments" serves two functions, 

it illustrates the number of node increments but also serves to show how many du­

plicate transaction records were in the dataset. It will be recalled from the algorithm 

description that when a transaction record is read either a new node is created or 

support for an existing node is increased. The table shows that when lower num­

bers of attributes were used there was a higher probability of duplication occurring 

within the dataset so the algorithm is efficient for these cases. As the chance of 

duplication diminishes the algorithm becomes less efficient and turns out to be a 

repeat of the original dataset in an ordered format but occupying much more stor­

age space. Direct comparison with algorithms BF! and BF2 is unjustified because 

LLPS only calculates partial support as opposed to total support. 

The datasets for table 4.7 were all randomly generated. The following figure 4.2 

illustrates the execution times when two datasets are presented as a random sets, sets 

sorted in ascending order and in descending order. The data sets selected contained 

30 attributes, 10,000 transaction records and densities of 20% and 80%. 

seconds 

60 

50 

40 

30 

20 

10 

Key 

~ descending 

~ random 

~ ascending 

L.......J~ICoCI:~---"">O">O::"""""G4-___ density 
20% 80% 

Figure 4.2: Graph illustrating random, ascending and descending ordering 

As can be seen from the graph (4.2) the ordering of the dataset does, as expected, 

have an influence on the running time of the algorithm. Whilst the LLPS algorithm 

enables a greater number of attributes to be processed its limitations in terms of 
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number of transaction records mean it is not a viable method for processing large 

datasets. The LLPS algorithm computes stage 1 of Algorithm A earlier. The lim­

itations in its performance illustrate that it is impractical to implement stage 2 of 

Algorithm A. 

For effective implementation of both stages of Algorithm A, a method is required for 

storing the partial supports in a form which facilitates efficient stage 2 computation. 

4.3.2 Developing The P-tree 

The concept of the P-tree was developed to overcome the shortfalls of the BF 

and LLPS algorithms. Both algorithms contained good and bad points; BF could 

process the number of records required, but was limited to small attribute numbers 

and wasted much computational effort, LLPS could deal with the larger attribute 

numbers but not the required number of records. 

To address these issues the set enumeration framework proposed by Rymon [1992] 

was explored. Figure 4.3 shows the sets of subsets of I, for I = {A, B, C, D}, in 

this form. The tree is generated in its entirety with all counts set to zero. In this 

structure, each subtree contains all the supersets of the root node which follow the 

root node in lexicographic order. 

Using this tree as a storage structure for support-counts in stage 1 of Algorithm A is 

straightforward and computationally efficient: locating the required position on the 

tree for any set of attributes requires at most n steps. Furthermore advantage can 

be taken of the structural relationships implied by the tree to begin the computation 

of total supports. This is because, in locating a node on the tree, the traversal will 

pass through a number of nodes which are subsets of the target node. In doing so, 

it is inexpensive to accumulate interim support-counts at these nodes. A (stage 1) 

algorithm for this has the following form: 
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Figure 4.3: Tree storage of subsets of {A, B, C, D} 

Algorithm B: 

for all records j in database do 

starting at root node of tree: 

begin if j ;2 node then increment Q(node); 

if j = node then exit 

end 

else if j ;2 node then recurse to child node 

else recurse to next sibling; 

This algorithm will, in stage 1, compute interim support-counts Qi for each subset 

i of I, where Qi is defined thus: 

(Vj,j ;2 i,j follows i in lexicographic order) (4.1) 

It then becomes possible to compute total support using the equation: 

Ti = Qi + L Pj (Vj,j :J i,j precedes i in lexicographic order) (4.2) 
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The following example shows how Algorithm B would populate a set enumeration 

tree from the example dataset in Figure 4.4 (note, the TIDs are to clarify the exam­

ple). Initially the tree is generated in its entirety with all support counts set to zero, 

(in the example support counts are shown as the integers to the right of each node). 

Example dataset 

o 

Figure 4.4: Tree storage of example dataset 

• Transaction record (R) 10 is read: 

1. The initial element of the transaction is used to locate the root of the 

subtree to be traversed, in this case subtree root A. 

2. As R passes A the support for node A is incremented by 1. 

3. R then moves down to node AB but this is not a subset so it is not 

incremented and its sibling is inspected. 

4. The sibling, AC is a subset of R so this node's support is incremented 

by 1. 
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5. The child of AC is inspected this is an exact match for R so its support 

is incremented by 1 and the search terminates. 

• The next R, 20, contains as its initial element B, therefore the root of the 

subtree to be traversed is at node B. 

1. The R contains B as a subset so the support for B is incremented by 1. 

2. The child of B, BC, is an exact match so its support is incremented by 

1 and the search terminates. 

• R 30 has its root at A. 

1. Node A is a subset of R, increment support by 1. 

2. Inspect child, AB is a subset of R increment support by 1. 

3. Inspect child ABC is an exact match of R increment support by 1 and 

exit. 

• R 40, has its root at A. 

1. Node A is a subset of R, increment support by 1. 

2. Inspect child, AB is not a subset. 

3. Inspect sibling (AC) not a subset. 

4. Inspect sibling AD is an exact match of R increment support by 1 and 

exit. 

• Finally, R 50 has its root at A increment and inspect child. 

1. AB is a subset of R increment and inspect child. 

2. ABC is a subset of R increment and inspect child. 

3. ABCD is an exact match for R, increment support by 1 and exit. 
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As can be seen from the example (figure 4.4) some of the nodes are never incre­

mented and storage of the complete tree of subsets of J, of course, has a require­

ment of order 2n, (where n is the number of attributes in J) which will in general be 

infeasible. This can be avoided, however, by observing that for large n it is likely 

that most of the subsets i will be unrepresented in the database and will therefore 

not contribute to the partial-count summation. 

An alternative version of Algorithm B that exploits the fact that many subsets are 

unrepresented builds the tree dynamically as the transaction records are processed 

storing partial totals only for transaction records which appear in the database. This 

tree structure could, if allowed, degenerate into another form of the LLPS algorithm, 

however the tree structure is maintained by inserting "dummy" nodes when certain 

criteria are found. Nodes are created only when a new subset i is encountered in the 

database as with LLPS, or when two siblings i and j share a leading subset which 

is not already represented. The latter provision maintains the structure of the tree as 

it grows. The summation of the interim supports that are present in the tree allows 

the total supports to be obtained using the formulae numbered 4.2. 

Building the tree dynamically enables a storage requirement of order m, the number 

of records, rather than 2n. This will be reduced further, perhaps substantially, if 

the database contains a high incidence of duplicates. In the following sections the 

algorithm for building the partial support tree is described. Completing the support­

count computation using the tree is described in Chapter 5. 

4.4 Generating the P-tree 

A complete set enumeration tree, as illustrated in 4.3, would require 2n nodes for 

large n (n being the number of attributes) this would be impractical. The P-tree, 

because of its dynamic construction, only has nodes added in the following cases: 

when a new subset i is encountered in the database, or when two siblings i and j 
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share a leading subset which is not already represented. In this section the algo­

rithm to produce a partial support tree with dummy nodes is described. The nodes 

in the tree represent either unique transaction records within the transaction dataset, 

or dummy nodes inserted to prevent the tree from degenerating into a "linked list". 

The nodes are arranged so that parent nodes are subsets of their descendent nodes. 

Sibling nodes are ordered lexicographically, consequently the conception of "elder" 

and "younger" siblings can be used. Examples are given later in the chapter. The 

algorithm operates by passing through the transaction dataset in an iterative manner 

reading each transaction record. On each iteration if the transaction record under 

consideration is already represented by a node in the tree the support associated with 

this node is incremented by one. Otherwise a new node is created for the record and 

inserted in the appropriate location in the tree. This requires a search through the 

tree as a consequence of which the new node is inserted as a parent, child, elder 

sibling or younger sibling of some existing node. On route supports associated with 

existing nodes may be incremented. Where necessary an additional (dummy) node 

may also be created to preserve the desired tree structure. Alternatively, when in­

serting a new node it may be necessary to break certain portions of the tree and 

reconnect them so as to conform to the defined structure of the tree. To achieve 

this the tree is traversed in an iterative manner. On each iteration the nature of the 

search is defined by a set of five basic rules. These rules are described in detail 

below (where R represents the bit pattern of the transaction record currently under 

consideration, and B a bit pattern attached to an existing tree node under consider­

ation). The search commences at the root of the tree and may progress down either 

the sibling branch or child branch of this node. So that knowledge of the nature of 

the current branch is maintained a flag is set with the values a (root), 1 (child) or 2 

(sibling). Note; the < and > operators are used to define lexicographic not numeric 

ordering. 

Rule l(R = B, an identical node is found) : Simply increment the support asso-
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Figure 4.5: Application of Rule 2 

ciated with B and return. 

The Partial Support Tree 

Rule 2(R < Band ReB, new transaction record is a parent of current node) 

1. Create a new node for R and place the node associated with B on the 

new node's child branch. 

2. Place the new node either as a new root node, or add it to the child or 

sibling branch of the previously investigated node (as indicated by the 

flag). This is illustrated in Figure 4.5(a), (b) and (c). In Figure 4.5 (a) the 

new node is added as a new root node, in (b) as a child of the previously 

investigated node and in (c) as a elder sibling. 

3. If necessary move one or more of the younger siblings of the previously 

existent node up to become younger siblings of the newly created node. 
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This is illustrated in Figure 4.5(d) where the node AD, which was an 

elder sibling of AG D is moved up to become an elder sibling of the 

newly created node AG. 

Rule 3(R < Band R rt B, new transaction record is an elder sibling of existing node) 

1. If Rand B have a leading sub string Sand S is not equal to the code 

associated with the parent node of the node representing B then: 

• Create a dummy node for S with support summation of that associ­

ated with the node for B and any of B's siblings. 

• Place the new dummy node either as a new root node, or add it to 

the child or sibling branch of the previously investigated node (as 

indicated by the flag). A number of examples illustrating this are 

given in Figure 4.6. In Figure 4.6(a) a dummy node is created 

(B) as a new root node, in 4.6(b) a dummy node is created (BG) as 

child node of node B, and in Figure 4.6(c) a dummy node is created 

(Be) as an elder sibling node of AB. 

• Then create a new node for R and place this so that it is a child of 

the newly created dummy node. 

• Finally place the previously existent node for B as a younger sibling 

of the node for R. 

2. Else create a new node for R and place the node associated with B 

on the new node's sibling branch. The new node is then placed either 

as a new root node, or is added to the child or sibling branch of the 

previously investigated node (as indicated by the flag). Examples are 

given in Figure 4.6 (d), (e) and (t). 

Rule 4(R > Band R ::J B, new transaction record child of current node) : In­

crement the support for the current node (B) by one and: 

Page 80 



Chapter 4 The Partial Support Tree 

(a)@+@ = 

~ 1 

1 1 

~)~ 
BeE

2 
+ @ = 

1 

(C)@@+@ = 
1 1 

(d)G)+@ 
1 

= @>--G) 
1 1 

=~ 
1 1 

(1) @-0 + @ = @-@--G) 
1 1 1 1 1 

Figure 4.6: Application of Rule 3 

1. If node associated with B has no child node create a new node for Rand 

add this to the existing node's child branch. 

2. Otherwise proceed down child branch (with flag set appropriately) and 

apply the rules to the next node encountered. 

Rule 5(R > Band R 1; B, new transaction record is a younger sibling of current node) 

1. If node associated with B has no sibling node, and: 

• If current node (node for B) does not have a parent node and Rand 

B have a leading sub string S then: 

- Create a dummy node for S with support equivalent to that as­

sociated with the node for B. 
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Figure 4.7: Application of Rule 5 

- Place the new dummy node either as a new root node, or add 

it to the child or sibling branch of the previously investigated 

node (as indicated by the appropriately set flag). This is illus­

trated in Figure 4.7(a) where the dummy node C is created. 

- Create a new node for R and place this so that it is a younger 

sibling of B. 

- Place B as the child of the dummy node S. 

• Otherwise create a new node for R and add this to the existing 

node's sibling branch (Figure 4.7(b) and (c». 

2. Otherwise proceed down sibling branch and (with flag set appropriately) 

and apply the rules to the next node encountered. 

Thus given a bit Pattern R and a bit pattern B associated with an existing node there 

are five broad possible outcomes; each with a number of variations according to the 

nature of the tree so far, and the relationship between Rand B. 

4.4.1 Test Data 

The P-tree algorithm was tested on three different groups of files: 
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1. Test Group A: Files generated with the synthetic data generator, as used for 

generating the test files for the previous algorithms. 

2. Test Group B: Files generated by the synthetic data generator available from 

the IBM Quest Data Mining Project [Quest 2000]. 

3. Test Group C: Files Generated from the Fleet Car database and the Print Stock 

database at the Royal & SunAlliance facilities management operation 

Test Group A Description 

The benchmark number of randomly generated transaction records within this test 

group was 100,000. Some of the test files however, contained 200,000 randomly 

generated transactions and others 100,000 transactions containing 50,000 dupli­

cates, i.e. each record was duplicated once. The number of attributes was between 

200 and 1000 increasing in increments of 200. Transaction record density was set 

as before at 20% and 80%. 

Test Group A Results 

Table 4.8 provides a key for table 4.9. 

A Number of Attributes 
P Record density % 
N Total nodes in tree 
D Dummy nodes in tree 
M Memory required (bytes) 
I Node increments (rounded) 
C Comparisons (rounded) 
T Execution time (sees.) 

Table 4.8: Key for tables 4.9, 4.10 and 4.11 
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A P N D M I C T 
200 20 137849 37849 107 xO.551 106 xO.398 107 xO.926 33 
200 80 170715 70715 107 xO.682 107 xO.109 107 xO.622 19 
400 20 137691 37691 107 xO.881 106 xO.398 107 xO.928 43 
400 80 170665 70665 1Ol:SxO.109 lO'xO.109 lO'xO.622 27 
600 20 137568 37568 10l:SxO.121 lOti x 0.410 107 xO.936 53 
600 80 170789 70789 1Ol:SxO.150 lO'xO.109 lO'xO.622 36 
800 20 137732 37732 101:!xO.154 10ti xO.399 107 xO.931 60 
800 80 170587 70587 1Ol:SxO.191 107 xO.109 107 xO.621 46 

1000 20 137693 37693 10l:SxO.192 10ti xO.398 10' xO.931 71 
1000 80 170826 70826 101:!xO.239 107 xO.109 107 xO.621 55 

Table 4.9: Results from algorithm P-tree (Dataset x) 

The three test datasets are referred to as Datasets x, y and z to enable comparisons 

to be made. From the test results provided in table 4.9 and the graphs, figures 4.8 

and 4.9, it can be seen that the P-tree can easily process datasets containing 1000 

attributes and 100,000 transaction records. The increase in attribute numbers show 

that both the execution time and the memory requirement scale in a sub-linear man­

ner. It can be seen that the less dense datasets require more processing time because 

of the increased number of comparisons made during tree generation. Each dataset 

contains no duplication: this can be seen because the total number of nodes mi­

nus the number of dummy nodes equals the number of transaction records in the 

original dataset. The greater number of dummy nodes in the more dense data can 

be accounted for by examining the number of combinations within each transac­

tion record of the dataset. For example, the dataset containing 1000 attributes and 

80% density contains 800! combinations whereas the same number of attributes 

at 20% density (only) contains 200! combinations. It is therefore more likely that 

in the tree constructed from the 20% density data that two sets will share a lead­

ing subset that is represented and a dummy node will not be required. This fact is 

also confirmed by the number of comparisons made. The total number of compar­

isons is calculated from the number of "before" tests, i.e. the current transaction 
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Figure 4.8: Increase in attributes vs time (Dataset x) 

record is before (lexicographically) the node under inspection; "subset" tests, i.e. 

the current transaction record is a subset of the node under inspection; "equals" 

tests, i.e. the current transaction record is equal to the node under inspection; and 

"substring" tests, i.e. the current transaction record contains a substring node under 

inspection. The difference between "subset" and "substring" is illustrated by the 

following example. ABC and ABD are both subsets of ABCDE however, they 

contain different substrings and therefore need to be placed in different parts of the 

tree. The greater number of comparisons shows that the nodes in the tree and trans­

actions being read from the dataset share a greater number of similarities in their 

elements and therefore require more comparisons to locate their correct position on 

the tree. 

To ensure the scalability in terms of transaction records each of the data sets listed in 

table 4.9 that contained 20% density were produced containing 200,000 transaction 

records. Table 4.10 displays the results of these tests and figure 4.10 illustrates the 

execution times and memory requirements graphically. 

As can be seen from the table 4.10 and the graphs in figure 4.10, both the execution 
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Figure 4.9: Increase in attributes vs storage requirement (Dataset x) 

A P N D M I C T 
200 20 275892 75892 108 xO.110 106 xO.859 108 xO.199 73 
400 20 275992 75992 108 xO.l76 106 xO.863 108 xO.199 92 
600 20 277013 76013 108 x 0.242 106 xO.914 108 x 0.200 122 
800 20 275910 75910 108 x 0.309 lQCl x O.865 lOti x 0.200 139 
1000 20 275712 77712 108 x 0.385 106 xO.863 lQtlxO.200 162 

Table 4.10: Results from 200,000 transactions (Dataset y) 

time and the memory requirements increase in an almost linear manner. 

To illustrate the effect of duplication on the algorithm each of the datasets listed 

in table 4.9 that contained 20% density were produced containing 100,000 transac­

tion records, 50,000 of which were duplicates. Table 4.11 displays the results of 

these tests and figure 4.11 illustrates the execution times and memory requirements 

graphically. 

As can be seen from the results presented the memory requirements are what would 

be expected, the duplicated data set requires roughly half the memory space. The 

time differences between the two sets of data shows very little difference. This is 
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Figure 4.10: Comparison at 20% density of Datasets x and y 

P N D M I C 
20 68910 18910 107xO.275 lOti x O.418 107 xO.851 
20 68855 18855 107 x 0.440 10ti x O.419 107 xO.851 
20 68711 18711 lO'xO.604 lOti x 0.424 1O(xO.860 
20 68791 18791 107 x 0.770 lOti x O.418 107 x O.855 
20 68824 18824 lO'xO.963 lOti x O.418 10' xO.855 

T 
34 
42 
51 
61 
67 

Table 4.11: Results from 100,000 transactions (50,OOOduplicates) (Dataset z) 

because of the number of comparisons carried out during the construction of the 

trees, each tree is placing 100,000 transaction records, the fact that a record is a 

duplicate of a previous one does not reduce the number of comparisons that need to 

be made to place the record in its correct location. 

Test Group B Description 

The test files making up Test Group B were generated using the synthetic data gen­

erator downloaded from the IBM Quest Data Mining Project web site. The datasets 

generated in Test Group A were randomly generated with the only guidance being 
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Figure 4.11: Comparison at 20% density of Datasets x and z 

the average density of each transaction record, The following description of the 

Quest data generation method is from [Agrawal and Srikant 1994]: The Quest data 

is aimed at mimicking transactions taking place in a retail environment. To this 

end it models the fact that people tend to buy sets of items together. Transaction 

sizes are typically clustered around a mean and a few transactions have many items, 

'TYpical sizes of large itemsets are also clustered around a mean with a few large 

itemsets having a large number of items, The following two tables 4.12 and 4.13 

provide a key to the parameters and the parameter settings used in the dataset gener­

ation, (Note, because of the different dataset properties a different labelling system 

is used.) 

For each dataset the number of transaction records (D) was set to 100,000, the 

number of attributes (N) was set to 1000 and the number of maximal potentially 

large itemsets (L) was set to 2000. These parameters mirror those used in [Agrawal 

and Srikant 1994]. 
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D Number of transactions 
T Average size of transactions 
I Average size of the maximal potentially 

large itemsets 
L Number of maximal potentially large itemsets 
N Number of items 

DE Data Density 

Table 4.12: Parameters used in dataset generation 

Dataset T I DE 
A 5 2 0.5 
B 10 2 1.0 
C 10 4 1.0 
D 20 2 2.0 
E 20 4 2.0 
F 20 6 2.0 

Table 4.13: Parameter settings 

Test Group B Results 

Table 4.8 provides a key for table 4.14. The results illustrated in table 4.14 show 

that the overall performance of the P-tree algorithm is fairly consistent regardless 

of the numbers of items within each transaction record. The dominant factor in the 

running time of the algorithm, (as with Test Group A) is the number of comparisons 

that need to be made for the tree to be correctly constructed. As can be seen it is 

the smallest test group (A) in terms of numbers of items per transaction record, that 

takes the longest time to execute. Datasets A', B' and D' were created with 200,000 

records and the results are shown in table 4.15 Testing the datasets with 200,000 

transaction records reveals the linear scaling features of the algorithm. 

A subset of datasets within Test Group B was generated to illustrate the algorithm's 
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Dataset N D M I C T 
A 113673 13673 lO8 xO.159 lQoxO.420 1Q8 xO.645 144 
B 142507 42507 1Q!SxO.199 106 xO.613 10!SxO.511 135 
C 135831 35831 1Q8 xO.190 lQoxO.564 lOB xO.458 121 
D 151749 51749 1Q!SxO.212 1Q7 xO.108 lO!SxO.345 120 
E 151885 51885 lQBxO.212 lOoxO.871 10B xO.351 121 
F 152973 52973 1Q!SxO.214 lQtixO.965 10!SxO.358 121 

Thble 4.14: Results from Test Group B (100,000 records) 

Dataset N D M I C T 
A' 220805 20805 lQBxO.319 1Q7 x O.132 lO9 xO.135 331 
B' 285084 85084 1Q!SxO.399 1Q' xO.205 lOllxO.107 318 
D' 303357 103357 1Q!SxO.424 1Q7 x O.379 lO!SxO.750 298 

Table 4.15: Results from Test Group B (200,000 records) 

behaviour with clustered data. Test Group A contained only random data within 

any transaction record and the initial datasets of Group B i.e. those detailed in 

tables 4.14 and 4.15 contain clustering within anyone transaction but not inter­

transaction clustering. To generate clustering "around" a particular transaction the 

synthetic data generator was adapted to produce a number of closely related transac­

tion records. For example, a file containing 25,000 transaction records generated by 

the Quest Generator, would be read in to the program, each record would then have 

three new records created which were similar to the original but not exact matches. 

The results for Test Group B, clustered datasets, are shown in table 4.16. 

The clustered datasets produced similar memory requirements and node numbers. 

The execution time was slightly faster for each of the clustered datasets because the 

number of comparisons made and the number of node increments were reduced. 
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Dataset N D M I C T 
A 109389 9389 108 xO.153 10fi xO.396 10!!xO.617 131 
B 148910 48910 10!!xO.208 lOb xO.352 10!!xO.443 118 
C 134192 34192 108 xO.187 106 xO.348 108 x 0.424 112 
D 153376 53376 10!!xO.214 lOb xO.489 10!!xO.295 105 
E 151793 51793 10!!xO.212 10b xO.443 10!!xO.306 106 
F 148988 48988 10!!xO.208 lOb x O.453 10!!xO.312 108 

Table 4.16: Results from Test Group B (100,000 clustered records) 

Test Group C Description 

The final test data sets were obtained from the Royal & SunAlliance facilities man­

agement operation. These were the car fleet dataset and the print stock dataset. The 

fleet data was stored on a personal computer in Microsoft Excel format. The print 

data operating software was the Shuttleworth "Prima" Stock Control System ver­

sion 17. This ran on an SCO UNIX system. Both systems allowed the creation of 

flatfiles i.e. files containing asci code only. Once these had been obtained they were 

pre-processed to transform each record into a binary vector. 

A full listing of the attributes and how they were preprocessed is detailed in Ap­

pendix A. After processing the Fleet Dataset contained 9000 records and 195 at­

tributes each record contained 17 binary l's, the Print Dataset contained 6800 records 

and 459 attributes each record contained 24 binary 1 'so 

Test Group C Results 

As would be expected after the performance characteristics illustrated by the pre­

vious test datasets the fairly small facilities management datasets were processed 

without any problems. Table 4.17 details the performance of the algorithm on these 

datasets. Table 4.8 provides a key for table 4.17. 
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Dataset N D M I C T 
PM Fleet 11545 2545 106 xO.461 105 xO.514 106 xO.690 3 
PM Print 10799 3999 lO ti xO.777 105 xO.199 10' xO.274 4 

Table 4.17: Results fron Test Group C (FM Dataset) 

4.5 Evaluation 

In the case of a very small dataset the brute force type algorithm would provide an 

efficient and rapid means of calculating support. However, as illustrated by the two 

examples, the brute force method has severe limitations. The Linked List Partial 

Support algorithm overcomes, to a degree, some of the limitations in terms of at­

tribute numbers encountered by BF algorithms, however only partial supports are 

gained from the LLPS algorithm. When executing the Fleet Dataset the LLPS al­

gorithm took in excess of two hours to terminate, (compared with 3 seconds for 

the P-tree). LLPS is also limited by the small number of transaction records it can 

process. 

The P -tree storage structure has shown itself to be an effective method of resructur­

ing the original dataset in the following ways: 

• The increase in terms of record numbers in the test data sets results in approx­

imately linear scaling in terms of time and space. 

• Execution time is almost independent of attribute numbers. 

• Data density affects the size and build time for the tree. However, it is 

decreasing the density that leads to an increase in execution time. 

• The presence of duplicates transaction records reduces memory requirement. 

• In building the P-tree some of the work required for the computation of total 

support is completed. 
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Whilst it is obvious that the number of nodes in the P -tree is greater than the number 

of transaction records in the original dataset in all the test data, this is not seen as a 

problem. When summing total supports the advantage of the tree structure will be 

that it allows the elimination of large areas of the search space. 

4.6 Summary 

The first part of this chapter dealt with the construction and evaluation of three 

algorithms, Brute Force 1, Brute Force 2 and Linked List Partial Support. The 

Brute Force algorithms were expected to be of limited pracrtical use for mining 

association rules, however the implementation of them provided a start point for 

further development. The LLPS algorithm differed from the BF algorithms both in 

terms of its goals and its data processing ability. Whilst the BF algorithms provided 

a complete solution i.e. their output was a list of supported sets, the LLPS algorithm 

only made a partial contribution to locating these. 

The second part of the chapter detailed the construction, implementation and testing 

of the P-tree. Using the foundation of the set enumeration tree and the dummy 

node concept the dynamic construction of the P-tree was achieved. The test data 

files showed the P-tree more than capable of processing moderately large datasets 

with various configurations of attributes, transaction record numbers and transaction 

record density. As with the LLPS algorithm the P-tree algorithm in its single pass 

of the dataset goes some way to calculating the supported itemsets. The algorithm 

and data structure for delivering the itemsets that meet the user defined support 

threshold will be detailed in the next chapter. 
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Summation Of Partial Support Tree 

5.1 Introduction 

The previous chapter described the idea and implementation of the P-tree. This 

chapter describes how the P-tree structure can be used to produce lists of supported 

itemsets from which the association rules can be produced. The P-tree is exploited 

by a data structure called the Total Support Tree or T -tree. This structure allows 

maximum benefit to be derived from the partial totals already gathered in the P-tree 

and resident in main memory. Using the T -tree to produce total support for itemsets 

has the following advantages over existing "repeated pass algorithms": 

1. The T -tree is tailored to take ad vantage of the pre-processing achieved by the 

P-tree. 

2. In building the T-tree only the areas of the P-tree necessary to be searched 

are examined: the ordering of the nodes in both trees reduces the potential 

search area. 

The summation of the partial supports contained within the P-tree is achieved by a 

depth first traversal of the structure. The T-tree however, is built in a breadth first 

manner as the total supports are retrieved from the P-tree. 
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5.2 Summation of Partial Supports 

As observed in Chapter 4, the P-tree is essentially a restructuring of the database in 

to a more useful form while also beginning the process of computing support counts 

for its attribute sets. In principle it is possible to apply any existing algorithm for 

computing association rules to this revised structure. The T -tree solution is based on 

the Apriori breadth first construction method. The advantage offered is that because 

of the partial summation already carried out fewer subsets need to be considered as 

each node of the P-tree is examined. The following example (Figure 5.1) illustrates 

this property. 

1 

10 1 0 0 0 0 
20 1 1 0 0 0 
30 1 1 1 0 0 
40 1 1 1 0 0 
50 1 1 1 1 1 

Figure 5.1: P-tree and dataset 

In Figure (5.1) the P-tree on the left is constructed from the dataset on the right (the 

dataset TID numbers are for clarity). When support is being calculated using the 

P-tree the number of subsets that need investigating is less than when reading the 

dataset. If the support for level 2 subsets, i.e. pairs was being determined traversing 

the P-tree would proceed in the following manner: 

N = number of subsets examined. 

1. Examine root, node contains only one attribute proceed to child, N = 0 

2. AB contains only one pair, N = N + 1 
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3. Examine ABC; because the support for AB has been determined by the ex­

amination of the previous node only the support for AC and BC needs find­

ing, N = N + 2 

4. The final node only differs from the previous node by the items D and E so 

support needs to found for sets AD, B D, CD, AE, BE, C E and DE a total 

of 7 pairs N = N + 7 

Total: 10 pairs examined. 

Contrast this with the numbers of subsets calculated from the dataset: 

1. TID 10, one attribute, therefore no pairs N = 0 

2. TID 20, one pair N = N + 1 

3. TID 30 and 40, three attributes 3 pairs each, N = N + 6 

4. TID 50 requires all pairs to be examined N = N + 10 

Total: 17 pairs examined. 

As can be seen from the example in the best case only r - 1 subsets of a record of 

r attributes need to be considered, rather than r( r - 1)/2 required by the original 

Apriori. 

Storing The Total Supports 

The T-tree stores the total support counts for sets identified as interesting. An ex­

ample of a complete T-tree is illustrated in Figure 5.3. This has been generated 

from the P-tree shown in Figure 5.2. 

From the figures it can be observed that the T-tree is essentially the obverse of the 

P-tree, i.e. each subtree contains only predecessors of its parent. The singleton 
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Figure 5.2: Example P-tree 

Figure 5.3: Complete T-tree founded on P-tree presented in 5.2 

nodes are ranged along the top from which the pairs, triples descend as appropriate. 

Whereas in the P-tree the (say) "B-branch" contains only those nodes whose iden­

tifier commences with the digit B, in the T-tree the "B-branch" contains only those 

nodes whose identifier ends in B. The significance of this arrangement is that, when 

counting total support deriving from any particular set, the subsets which need to be 

considered are grouped together in the tree. This advantage can best be illustrated 

by considering the T -tree generation process. 
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5.3 T -tree Generation 

At its most abstract the process of generating the T-tree. using the Apriori-type 

methodology, can be viewed as an iterative algorithm comprising of the following 

steps: 

1. Build level k in the T -tree. 

2. Traverse the P-tree and apply appropriate partial supports associated with 

individual P-tree nodes to the level k nodes established in (1). 

3. Remove any level k T-tree nodes that fall below the support threshold. 

4. Repeat steps (1),(2) and (3); until a level k is reached where no nodes exceed 

the support threshold. 

Consider the dataset and its derived P-tree as shown in Figure 5.4. 

1 0 1 0 
o 1 0 1 
1 0 1 1 
1 0 1 0 
o 0 1 1 
o 1 1 0 
1 0 1 1 

Dataset 

2 

P-tree 

Figure 5.4: dataset and P-tree 

Initially, the first level to be established in the T-tree will comprise of the singleton 

nodes displayed along the top sibling branch of the P-tree (compare the top lines of 

Figures 5.4 and 5.5). Note the P-tree node containing CD is broken down into its 

subsets to enable support to be derived for the attributes C and D. The support is 
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then applied as follows: 

\lP E Ptree 

\IT E Ttree where (level(T) = 1) 

if (T c P) & (T rt Pparent) T!up = Tsup + Psup 

In the above the level function returns the level in the T -tree at which its argument 

is located~ for example level(ABC) will return 3 (note that with respect to the T­

tree the level is equivalent to the number of digits present in the node identifier). 

The reason for ensuring that a particular T-tree node T is a subset of the P-tree 

node P, but not of the parent of the P-tree node is that individual supports are not 

calculated twice. For example if: 

P = {A, B, C, D} with support 2 

Pparent = {A, B} with support 4 

the support of 4 associated with {A, B} already includes the support contribution 

associated with {A, B, C, D}. Note, however, that the P-tree in this case does 

not include the node ABC. Thus, the above algorithm (assuming for the moment 

inspection of the top level only) will add a support of 2 to the supports calculated 

so far for nodes C and D but not to those associated with nodes A and B because 

these will have been considered earlier during the tree traversal. An alternative, and 

more succinct formal definition of the algorithm is: 

\lP E Ptree 

P' = P \ Pparent 

\IT E Ttree where (level(T) = 1) 

if (T C Pi) T,up = T,up + P:up 

In the above, the search node pi is made up of those digits that are in P but not 

in Pparent. In some cases Pparent may equate to null (i.e. no parent) in which case 
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P' will be equal to P. In this manner the supports for the top-level nodes in the 

T-tree can be determined. This first level is then pruned by removing any nodes 

that do not display the required level of support. Thus, considering the example 

P-tree presented in Figure 5.2 and assuming a minimum required support level of 

2, Figure 5.5(a) represents the initial T-tree candidate set. 

a) A H B C D 

0 0 0 0 

b) A H B C D 

4 2 5 5 

Figure 5.5: Levell T-tree 

Applying the above algorithm to the P-tree and this candidate T-tree set will give a 

revised T-tree with total supports given in Figure 5.5(b). This will then be pruned; 

however in this example, as all the total supports exceed the minimum support the 

tree will remain unaltered after pruning. From this first T -tree level (the top level) 

the second level candidates are now generated. The algorithm is as follows: 

'tiT E Ttree where (level(T) = nextLevel - 1) 

'tiT' E Ttree where (level{T') = 1) 

if (T' < T) 

add (T' U T) as child of T 

Note that the < diadic infix operator used above should be interpreted as a lexi­

cographic before; thus {B, C, E} < {C, D} would return true. As a result of 

the above, and given the T-tree so far (Figure 5.5(b» the level 2 candidate nodes 

("doubles") of the T-tree shown in Figure 5.6 are generated. 

To determine the total supports for these level 2 T-tree nodes the P-tree is traversed 

for a second time and, for each P-tree node, add the interim support associated 

with the P-tree node to the appropriate (level 2) T-tree node(s). To achieve this 
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o o o o o o 
Figure 5.6: Level 2 T -tree 

efficiently it is desirable to use some technique to limit the search space. As noted 

above, a feature of the T -tree is that the identifier for each node in a subtree ema­

nating from a top level node contains the same end digit. This is important because 

this allows the identification of those particular subtrees in the T -tree that need to be 

considered when determining total supports for lower level T-tree nodes. The nodes 

of interest are the complement of any discovered P-tree node in its parent node. For 

example if P = {A, B, e, D} and Pparent = {A, B} then only the branches ema­

nating from the e and D top level T-tree nodes ({A, B, e, D} \ {A, B} = {e, D} 

need to be considered. This provides an effective implementation of the reduced 

subset-count derived from the partial computation already completed. The deriva­

tion of the supports for lower level T -tree nodes, taking into consideration the above 

technique, thus requires some addition/modification to the basic algorithm as pre­

sented so far. The revised algorithm can be considered to comprise two parts: 

Part 1 Process the top level of the T -tree and identify those nodes which merit 

consideration (by virtue of being a subset of the search node Pi). If, at this 

stage, the required level is equal to 1 (i.e. the top level) apply the appropriate 

additional support levels as already described, and stop; otherwise proceed to 

Part 2. 

Part 2 Proceed down the child branches of each of the nodes identified in Part 

1 until the required level is reached and then apply the appropriate support 

updates. 
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More formally this can be expressed as follows: 

'iP E Ptree where (numDigits(P) ~ requiredLevel) 

pI = P \ Pparent 

'iT E Ttree where (level(T) = 1) 

if (T c PI) 

if (requiredLevel = 1) Tsup = Tsup + Psup 

else proceed down child branch of T until required level 

is reached and then apply appropriate support updates 

Note that the numDigits function returns the number if digits (binary' l's) in the 

identifier for a P-tree node; this will equate to a T-tree level. Of course, it is de­

sirable to avoid exhaustive searches of both the top level of the T -tree and any 

sub-branches which require attention. This can be achieved by making use of the 

lexicographic ordering imposed on the T-tree. Thus considering the first stage in 

the above: given some search node pI begin at the start of the T -tree (node A in the 

examples given in Figures 5.5, 5.6 and 5.7) and test whether A is before, equal to, 

subset of or after pI and then continue as follows: 

before Simply proceed to the next T-tree node. 

equal to If level 1 is currently under inspection update the current T-tree node and 

stop; otherwise proceed to Part 2. In neither case is there any need to continue 

processing the top level of the T -tree because for pI to be equal to a top level 

T -tree node it must be a singleton, in which case it can only match one T -tree 

node. 

subset of Proceed in a similar manner as in the equals case but this time continue 

processing the top level of the T-tree having removed the first digit of the 

identifier for pl. 
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after Proceed to next node in T -tree having first removed the first digit of the iden­

tifier for pl. 

Continue in this manner until there are no digits left in the search node (PI). To 

identify the first digit of a node identifier a function firstDigit is defined which 

returns the first digit of its argument (which must be a node identifier). Thus: 

firstDigit({l1,l7,D}) 

will return 11. To remove this first digit from pI perform a complement operation: 

i.e. {l1,C,D} \ firstDigit ({l1,C, D}) = {l1,C,D} \ {B} = {C,D}. More 

formally the above can be described as follows: 

loap while pI #- null 

if TIJ < P' 

j++ 

if TIJ = P' 

if (requiredLevel = 1) Tsup = Tsup + Psup 

else Part 2 

pI = null 

if (TIJ C PI) 

if (requiredLevel = 1) Tsup = Tsup + P,lUP 

else Part 2 

pi = P' \ firstDigit(P') . j + + 

if TIJ > P' 

Stap 

where the double subscript of T is interpreted as the level number and location 

along that level respectively. Thus the T-tree node TI ,3 is in the top level (level 

1) and is the third node along in this level, i.e. node C in Figure 5.7. The ++ 
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postfix unary operator should be interpreted as "increment by 1". Suppose the P­

tree node {A, B, C} of Figure 5.2 is being processed. pI in this case is equal to C 

({ A, B, C} \ {A, B} = {C}). Commencing at the top level of the T -tree of Figure 

5.7 with the node A. Node A is before C (PI) so proceed to T-tree node B. Node 

B is also before C (PI) so proceed to T-tree node C. T-trec node C is equal to C 

(PI); level 1 is of no interest, so proceed to Part 2. After returning from Part 2 stop. 

Putting all of the above together the Part 1 algorithm can be expressed as presented 

below. 

'tiP E Ptree where (numDigits(P) ~ requiredLevel) 

pI = P \ Pparent 

'tiT E Ttree where (level(T) = 1) 

loop while pI i- null 

if T1,j < pI j + + 
if T1,j = p' 

if (requiredLevel = 1) T,up = Tsup + Psup 

else Part 2 

pI = null 

if (Tl,j C PI) 

if (requiredLevel = 1) Tsup = Tsup + Psup 

else Part 2 

P' = pI \ firstDigit(Pl) . j + + 

if T1,j > P'Stop 

Table 1: Total Support Algorithm (Part 1) 
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Part 2 is only invoked when the required level is not levelland some level 1 T-tree 

node is equal to or a subset of P'. Again, to minimise the work required to search 

the subtree; use is made of the lexicographic ordering of the nodes. Proceeding 

in a similar manner to that described for identifying individual branches but using 

a termination search node equivalent to the last n digits of the discovered P-tree 

node (where n is equivalent to the current level in the branch of the T-tree under 

investigation). Thus if P is equivalent to ABC and level two is the current level 

(the "doubles" level) the termination search node CP") will be equivalent to BC. 

A function endDigits is defined, that takes two arguments P' and n (where n is 

the current level) and returns an identifier comprising the last n digits of P'. For 

example: 

endDigits(ABC,2) 

will return BC. The significance of this is that BC is the last subset of ABC at 

level 2 that need be considered. Each discovered T -tree branch is processed in an 

iterative manner commencing with the first child node of the branch, until arriving 

at the required level. While descending the tree, a termination node P" is computed 

at each level, and determines whether the T-tree node is: before, equal to or after 

P" (note that because both P" and T, as defined here, have the same number of 

digits at any particular level, T can never be a "proper" subset of P'). As a result of 

this test proceed as follows: 

before If T is a subset of P proceed down child branch. In every case also continue 

to next T -tree node. 

equals If T = P" then T c P proceed down child branch, but do not continue to 

check siblings of T. 

after Stop. 
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More formally: 

p" = endDigits(P', currentLevel) 

loop while Ii,; =I null 

if Ii,; < p" 

if(Tj ,; C P) recursively call Part 2 commencing with TH+,l 

j++ 

if Ii,; = P" recursively call Part 2 commencing with TH+,l 

Stop 

if Ii,; > p" 

Stop 

The recursive calls in each case terminate when the required level is reached. At 

this level step along the nodes updating the supports as appropriate. Again. use the 

termination search node P" to bound the search. comparing this node to each T -tree 

node. There are three possibilities: 

before If T is a subset of P update support. Whatever the case also continue along 

sibling branch. 

equals If T = P" then T C P update support and stop. 

after Stop. 

Thus. expressed formally: 

p" = endDigits(P', currentLevel) 

loop while Ti,; =I null 

if Ti.; < P" 

if(Ti.; C P) T6UP = T6UP + P6Up 

j++ 

Page 106 



Chapter 5 Summation Of Partial Support Tree 

if TiJ = p" 

Tsup = Tsup + Psup 

stop 

if IiJ > p lI 

stop 

Combining the above with the sub-branch search algorithm produces the entire part 

2 algorithm shown below. 

p lI = endDigits(P', currentLevel) 

loop while TiJ =F null 

if IiJ < P" 

if(IiJ C P) 

if currentLevel = requiredLevel Tsup = Tsup + Psup 

else recursively call Part 2 commencing with Ii++.l 

j++ 

if TIJ = p" 

if currentLevel = requiredLevel Tsup = Tsup + PI/UP 

else recursively call Part 2 commencing with Ii++.l 

stop 

if TIJ > p" 

stop 

Table 2: Total Support Algorithm (Part 2) 

Page 107 



Chapter 5 Summation Of Partial Support Tree 

a) 

o 3 3 3 

b) 

3 

o 

c) 

3 

2 

Figure 5.7: Level 3 T-tree 

Returning to the example T-tree generated so far (Figure 5.6): using the above 

algorithm support will be added for all the pairs to give the result presented in 

Figure 5.7(a). These supports are all above the minimum threshold so pruning will 

produce no changes. Generate the next level in the T -tree (triples) as shown in 

Figure 5.7(b). Again adding supports derived from the P-tree nodes will produce a 

T-tree of the form presented in Figure 5.7(c). A level has now been reached which 

has no supported T -tree nodes and consequently the end of the T -tree generation 

process has been reached. The final tree produced will thus be of the form given in 

Figure 5.7(c). This tree contains all the supported sets and can be used to derive all 

relevant association rules contained in the data set. 

Page 108 



Chapter 5 Summation Of Partial Support Tree 

Initial Performance 

The candidate generation algorithm used for constructing the T -tree docs not strictly 

adhere to the downward closure property described in Chapter 3 section 3.2. When 

constructing candidate sets for level three and below the algorithm does not check 

all the subsets of the candidate set before creating it. The algorithm takes the top 

level (single) T-tree nodes and appends them to the lower level node that is being 

created. Thus, if node BC is supported in the T -tree and A is also supported then 

the node ABC is created without checking for the presence of AB or AG. This 

means that in some cases candidate nodes will be created that will prove to be false 

because all their subsets are not present in the T -tree. The false candidate set that is 

generated will be identified as such during the P-tree traversal to establish support 

for this level candidate. The trade-off is therefore to either traverse the T -tree to 

establish the candidate as a "true" candidate or traverse the P-tree to establish that it 

is a "false" candidate. Using either method will return only the supported candidates 

at the required level. Unfortunately, the non-availability of implementations of these 

alternative algorithms means that direct comparison was not possible. 

Initial tests for constructing the T -tree from small datasets proved that it could be 

constructed correctly and quickly. However, once larger datasets were introduced 

i.e. the level 2 candidate set contained more than 2000 candidates, the time taken 

to construct the T-tree became unacceptable because traversing the original P-tree 

structure took too long. To address this problem a new data structure was created, 

the P-table. This table was a dynamically created two dimensional array consisting 

of pointers to the P-tree. Once the level 2 candidate sets had been created on the 

T-tree the P-table was accessed to establish the support levels for the candidates. 
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5.4 Testing The T-tree 

The T-tree test data was the same files which were used to construct the P-tree, as 

described in section 4.4.1. 

1. Test Group 1: Files generated with the synthetic data generator, as used for 

generating the test files for the previous algorithms, i.e. BF1, BF2 and LLPS. 

2. Test Group 2: Files generated by the synthetic data generator available from 

the IBM Quest Data Mining Project [Quest 2000]. 

3. Test Group 3: Files Generated from the Fleet Car database and the Print Stock 

database at the Royal & SunAlliance facilities management operation 

During the testing of the T-tree the time taken to construct the P-tree was ignored. 

Two constraints were placed on the generation of supported itemsets a) that the sup­

port threshold must be less than 5% and b) whatever the support level that was being 

tested the result must be produced in less than 90 minutes. The support restriction 

was introduced to enable comparison with other association rule generation meth­

ods. The time restriction was introduced to emulate a working environment where 

to wait an inordinate amount of time for results would be unreasonable. Note: A 

full tabular breakdown of each datasets performance can be found in Appendix B. 

Test Group A Results 

Test Group A consisted of 3 datasets, two of which (Datasets 1 and 2) were the same 

datasets as used to generate the P-tree in Chapter 4 (see Test Group A description 

Chapter 4). The remaining dataset (3) was generated to examine the record density 

threshold. Each dataset contained 100,000 records, the remaining properties were: 

• Dataset 1: 200 attributes with a record density of 20%. 
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• Dataset 2: As above, but with each of 50,000 records having one duplicate . 

• Dataset 3: 1000 attributes with a record density of 6%. 
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Figure 5.8: Test Group A, Dataset 1: Execution time 
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Figure 5.9: Test Group A, Dataset 1: Candidates and time at each level 

(Note, in Figures 5.9 and 5.11 the 4.5% support result is superimposed over the 

3.8% result up to T-tree level 2.) The graph shown in Figure 5.8 illustrates the 

increasing time taken to process the dataset as the level of support is decreased. 

Once the support threshold falls below 4% the number of supported sets at the pairs 

level increases from 15 to in excess of 20001
; as a result of this the candidates for 

lThis rapid increase in the number of candidates would be expected to occur at some point in the 
experiment as the support figure is lowered. This is because the problem addressed in this thesis is 
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level 3 increase from 900 to 145,000. The two graphs shown in Figure 5.9 illustrate 

the effect of the rapid increase in candidate sets. The graphs show the number of 

candidate sets and the time taken to process each level of the T -tree to be exactly the 

same for the differing support levels until level 2 is finished, at this point the 4.5% 

support threshold can find no level 3 candidates so the execution terminates. This 

can be contrasted with the 3.8% support threshold and the subsequent significant 

increase in time taken to process level 3 and the number of candidate sets generated. 

The three graphs shown in Figures 5.10 and 5.11 illustrate the performance of the 

4.75 4.50 4.25 4.0 3.89 

Suppon% 

Figure 5.10: Test Group A, Dataset 2: Execution time 

dataset containing 100,000 records (50,000 duplicates), 200 attributes and a density 

of 20%. As can be seen from the graphs the execution times are almost halved as 

would be expected because the P-tree is half the size of the Dataset 1 P-tree, whilst 

the number of candidates remains the same as for Dataset 1. The performance of 

Dataset 3 is illustrated in the graphs in Figures 5.12 and 5.13. The execution time 

does not increase in the same manner as for Datasets 1 and 2 because the candidate 

numbers at the given support levels do not show the same significant increases. This 

is reflected in the graphs illustrating the candidates generated and time spent at each 

level (Figure 5.13) where the 2% and 0.5% support levels follow each other closely. 

inherently exponential. 

Page 112 



Chapter 5 Summation Of Partial Support Tree 

180 
. .. .. 3.8% Support 
- 4.5% Support 45. 

. . . .. 3.8% Support 
- 4.5% Support 

37. 
6' 

~ 120 ~ 30. 

~ 
~ 22. 
a 
~ 15. 

<II 

B 
~ 90 
:g a 60 

30 7.5 

2 3 2 3 

T -tree level T -tree level 

Figure 5.11: Test Group A, Dataset 2: Candidates and time at each level 
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Figure 5.12: Test Group A, Dataset 3: Execution time 

Test Group B Results 

Four datasets from within Group B (Chapter 4, Test Group B) were used to build 

the T -tree. The test datasets all contained 1000 attributes and had the following 

properties (as described by Agrawal and Srikant [1994]): 

• Dataset 1: 100,000 rows, average of 5 transactions per row. 

• Dataset 2: 100,000 rows, average of 20 transactions per row. 

• Dataset 3: 200,000 rows, average of 20 transactions per row. 
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Figure 5.13: Test Group A, Dataset 3: Candidates and time at each level 

• Dataset 4: 100,000 rows, average of 20 transactions per row. This dataset 

contained clustering as described in Chapter 4. 

A maximal large itemset is 
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Figure 5.14: Test Group B, Dataset 1: Execution time 

The three graphs shown in Figures 5.14 and 5.15 illustrate the performance of 

Dataset 1. Dataset 1 is very sparse, this is illustrated by two facts; 

1. The execution time for the test data is less than 60 seconds even at the 0.5% 

support level. 
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Figure 5.15: Test Group B. Dataset 1: Candidates and time at each level 

2. The large number of level 2 candidates generated produces very few level 3 

candidates (i.e. very few level 2 candidate itemsets are supported). 
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Figure 5.16: Test Group B. Dataset 2: Execution time 

The graphs showing the performance of Dataset 2 illustrate the fact that the data is 

more "dense" than that of Dataset 1. i.e. each record has an average of 20 trans­

actions per row. It can immediately be seen from the graph in Figure 5.16 that the 

execution time for generating supported sets at the 0.5% level has significantly in­

creased. The graphs in Figure 5.17 show how the increase in time is being used. the 

number of supported candidate itemsets at the 2 level leads to a very large number 

of candidate sets being generated at the 3 level. 
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Figure 5.17: Test Group B, Dataset 2: Candidates and time at each level 
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Figure 5.18: Test Group B, Dataset 3: Execution time 

Initial inspection of the graphs showing execution times for Datasets 2 (Figure 5.16) 

and 3 (Figure 5.18) reveal an increased execution time for Dataset 3 but perhaps not 

as great as would be expected. However Dataset 3 produced no candidate sets below 

level 4 so the program terminated more rapidly than when running the Dataset 2 

which produced candidates at levelS. The number of candidates generated at each 

level was almost the same as for the smaller dataset (Dataset 2) the increase in both 

overall execution time and execution time at each T-tree level can be accounted for 

by the larger size of the P-tree. 
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Figure 5.19: Test Group B, Dataset 3: Candidates and time at each level 
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Figure 5.20: Test Group B, Dataset 4: Execution time 

Dataset 4 contained a degree of clustering, recall from Chapter 4 (section 4.4.1) 

that for each record that was generated three similar records were produced. This 

dataset as can be seen from the graphs in Figures 5.20 and 5.21 produced extremely 

small numbers of candidates and supported sets at all the support thresholds and 

therefore executed very quickly. 

Test Group C Results 

The two facilities management datasets were much smaller than the synthetic data sets 

and offered the potential to extract "real" supported item sets that could be related 
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Figure S.21: Test Group B, Dataset 4: Candidates and time at each level 

to the real data files (as illustrated in Appendix A). As can be seen from the graphs 
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Figure S.22: Test Group C, Print: Time vs support 

(Figures 5.22 and 5.24) execution time and support followed a similar pattern to the 

previous test groups. For the purposes of this chapter and the imposed "time out" 

limitation the minimum support achieved was 1.5%. To explore the influence of 

attribute frequency on the perfonnance of the T-tree two attributes were removed 

from the Fleet Dataset. These were the "previous drivers" and "other drivers" at­

tributes. Both of these consisted of only two binary attributes within the test dataset 

and therefore removing them would have little influence on the overall density, i.e. 

down from 8.6% to 7.8%, but would result in far fewer candidates being generated. 
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Figure 5.23: Test Group C, Print: Candidates and time at each level 

The following graphs (Figures 5.26 and 5.27) illustrate the performance of the T­

tree on this dataset. Note, the dataset now consisted of 191 attributes with 15 binary 

1 's per record, this dataset is called Fleet191 to distinguish it from the original Fleet 

Dataset. 
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Figure 5.24: Test Group C, Fleet: Time vs support 

5.5 Evaluation 

Three factors influence the T -tree generation process: 

1. The density of the data within the transaction records. 
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Figure 5.25: Test Group C, Fleet: Candidates and time at each level 
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Figure 5.26: Test Group C, Fleet191: Time vs support 

2. The number of unique records i.e. the size of the P-tree. 

3. The frequency of attributes within the dataset. 

The graphs illustrating the performance of Test Group A show how the data density 

affects the T -tree construction process. Test Group A Datasets 1 and 2 contained 

20% density i.e. 40 binary ones in each record but the minimum support that could 

be examined was 3.89%. By contrast Test Group A Dataset 3 contained 60 binary 

ones in each record, but it remained feasible to process it at a support level as low 

as 0.5% because of the low (6%) density. Both Test Group A Datasets 1 and 3 had 
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Figure 5.27: Test Group C, Fleet191: Candidates and time at each level 

P-trees of similar sizes i.e. approximately 140,()()() nodes. When looking at the 

number of records in the dataset the example of Test Group B Datasets 2 and 3 can 

be compared. The execution time for the larger dataset (3) is approximately double 

that for 2 but approximately the same number of candidates are generated at each 

level, indicating that traversing the larger P-tree is taking the extra time. 

The facilities management data sets examined in Test Group C could only be exam­

ined to 1.5% support within the time limit imposed. Both datasets contained higher 

densities and a higher percentage of frequently occurring attributes then the "usual" 

transaction type datasets. When two frequently occurring attributes were removed 

the execution time and the number of candidates generated at each level signifi­

cantly decreased, whereas the density was only reduced by 0.8%. This illustrates 

that a combination of high data density and frequently occurring attributes presents 

a significant challenge for association rule mining. 

5.6 Summary 

The first part of this chapter dealt with the principle of exploiting the data that was 

stored in the P-tree i.e. the summation of the partial support counts. The idea of 
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the T -tree was developed to store the total support counts gathered from the partial 

totals in the P-tree. 

The second part of this chapter dealt with testing and evaluating the T-tree when 

presented with a number of different test files both synthetically generated and ex­

tracted from real databases. The tests show that the method is feasible on a variety 

of different cases, although (as with other methods) execution times rose sharply 

with very dense data. In the next chapter this will be examined in comparison with 

existing methods. 
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Chapter 6 

Association Rule Discovery: Case Study 

6.1 Introduction 

The previous two chapters have dealt with the theory, application and performance 

assessment of discovering supported itemsets using the P-tree and the T -tree. This 

chapter has two main themes: 

1. To present a case study in discovering association rules from within the Print 

and Fleet datasets. 

2. To compare the use of the P-treelT-tree combination to discover supported 

itemsets with a method based on Apriori coupled with the T-tree and establish 

the advantages and disadvantages of either case. 

6.2 The FM Datasets 

The two FM datasets supplied by the Royal & SunAlliance were obtained in Jan­

uary 1999. This was after the merger in 1996 of the two insurance companies 

Royal, predominantly operating in the northern UK and the Sun Alliance predomi­

nantly operating in the southern UK. The Fleet Dataset contained all the details of 

the vehicle management within the enlarged group, however some references still 

remained to aspects of the vehicles prior to the merger. The Print Dataset contained 

details of print ordering, supplying and re-stocking this dataset had been integrated 
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and only contained details of the merged group. The fleet management function 

(and therefore the dataset) is fairly obvious, i.e. who is driving which vehicle and 

the vehicle details. The print function of the FM division is different, it acted as a 

broker between the employees requirements for printed material and the suppliers 

ability to supply that material at the correct cost. The Print Dataset also recorded 

stocking levels to ensure over/under ordering was avoided. 

6.2.1 Pre-Processing the Data 

The two datasets were stored in text format on different computer systems, as out­

lined in Chapter 4, (section 4.4.1). The initial operation required, to allow the pro­

duction of association rules from the dataset, was to decide how the attributes were 

to be split. This is an area of research in itself with authors like Quinlan [1993] 

advising "caution" when continuous-valued attributes are broken down. Other au­

thors, such as Brin et al. [1997], when dealing with continuous-valued attributes 

like income, take the logarithm of the value and round it to the nearest integer to re­

duce the number of possible answers. For this case study the managers of the Fleet 

and Print datasets were consulted for their opinions on how to divide the continuous 

attributes to give the possibility of interesting rules being discovered. 

Within the Fleet Dataset three types of attribute were identified: 

1. Attributes such as, driver sex, car telephone, fuel card etc. naturally lend 

themselves to conversion to binary attributes. These were converted into two 

binary attributes for example, a male would be represented as 1 O. The reason 

for having two attributes to indicate presence or absence is that to generate 

supported sets a binary '1' needs to be found. 

2. Attributes such as job description or cost centre could be described as "multi­

valued" and allowed conversion to binary format because there was only a 

finite number of potential attributes. For example, an employee's job de-
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scription according to the text in the original dataset would be described as, 

Executive, Senior Manager, Manager or Operations, therefore the attribute 

"job description" from the original dataset could be broken down into four 

binary attributes; if the driver's record held "manager" under the job descrip­

tion attribute then that section of the binary dataset would be as follows, 0 0 

10. 

3. Attributes from the original dataset that could be described as "continuous", 

for example, the "latest mileage" attribute could be represented as 40,000 bi­

nary attributes each containing 39,999 zeros and only one binary 'I' detailing 

the exact mileage of the car. Clearly this would be an impractical solution and 

therefore the "mileage" attribute from the original dataset was divided into a 

more sensible 20 binary attributes each representing an increment of 2000 

miles. A similar approach was adopted towards other "continuous" attributes 

such as average mpg and licence issue date. 

The Print Dataset contained no attributes that naturally lent themselves to binary 

conversion as described in 1 above. Several attributes such as, unit of sale, unit of 

purchase and supplier code could be converted using the description of the method 

from 2 above. The "continuous" type attribute within the Print Dataset was identi­

fied for attributes such as, date of last purchase, date of last sale etc. 

The use of the FM datasets also showed how the potential results can be affected by 

the splitting of multi-valued attributes. For example, the original Fleet Dataset con­

tained the attribute registration date. The pre-processing of this attribute divided it 

into thirty six binary values, each representing one month from January 1996 to De­

cember 1998. The original attribute could easily have been divided into three binary 

attributes each representing one year (1996, 1997 and 1998). This would have led 

to each vehicle record containing one binary 'I' in three rather than one binary '1' 

in thirty six. The fewer number of instances would have forced the registration 
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date attribute to become more visible. This attribute reduction/expansion could 

have been investigated for any number of multi-valued attributes and potentially al­

tered the resulting rules. This example reinforces the notion that data mining is not a 

"one off' exercise but an iterative process where the results from one analysis of the 

data are interpreted and evaluated, and the the data is mined again using different 

parameters. 

6.2.2 Dataset Characteristics 

The binary datasets produced by the pre-processing stage were very different from 

the "nonnal" transaction type datasets used in association rule generation research 

by Agrawal and Srikant [1994], Zaki [1997], Toivonen [1996] etc. The "normal" 

datasets contain 1000 attributes and at least 100,000 records; however the density 

of the data is usually about 2%. The FM datasets were both much smaller, the 

Fleet Dataset contained 194 attributes and 9000 records and the Print Dataset 458 

attributes and 6800 records. The density of each of the sets was 8.76% and 5.22% 

respectively. Furthermore, within the Fleet Dataset several attributes such as driver 

sex, car telephone and fuel card occurred with great frequency. 

6.3 Association Rule Generation 

Most of the datasets used for developing and testing the P-tree/T -tree idea have 

been synthetically generated and as sueh only contain binary strings that have little 

"real" meaning. Whilst these are undoubtedly useful for the purposes of research 

any rules that may be extracted are of no value in "real world" terms. The use of 

the Royal & SunAlliance's facilities management datasets allows the P-tree/T -tree 

development to be extended to see if any useful or interesting rules can be found. 

Once the T -tree is constructed it contains all the supported itemsets above the user 
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defined support threshold. The user may then input a number that represents the 

number of attributes in the supported sets that they are interested in. For example, 

if the maximum depth of the T-tree was 7, meaning that the largest supported sets 

contained 7 attributes, the user may wish to determine all the supported sets that 

contain 5 attributes above a certain confidence. The following algorithm can be 

used to derive the confidence for these itemsets: 

L = level, N = node under inspection. 

"'IN E Ttree 

if attributes(N) = L 

"'In Inc N 

"'IN' E Ttree 

if n = N' 

In the above algorithm the function attributes returns the number of attributes in 

the node under inspection. During the second traversal of the T-tree, i.e. while 

searching for n, it is sufficient to locate exact match. Any supersets of n that have 

a contribution to make towards its support will have been included during the T­

tree construction. The following example illustrates this; if n = CD E and the node 

ODE is found in the T-tree the search terminates at this point. Nodes at lower 

levels such as ODEF, ODEJ would be excluded from contributing their support 

because their support counts would have been included during the construction of 

level 3 of the T-tree. 
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6.3.1 Association Rules from the FM Datasets 

The above algorithm was applied to the T -trees constructed from the Fleet Datasets 

and the Print Dataset. In both cases the support level was set to 1.5%, lower support 

levels taking too long to process. In the case of the Fleet Dataset the confidence was 

set to 55% and for the Print Dataset the confidence needed to be 38% before any 

rules were produced. A partial listing of the supported sets from the Fleet Dataset 

and a full listing of the generated rules from both datasets can be found in Appendix 

C. 

The following are some of the rules generated from the Fleet Dataset: 

Group Accounting - London ~ No other drivers: support = 169/306 confidence = 

55% 

Male, 30,000 miles ~ Fuel card: yes: support = 139/248 confidence = 56% 

Male, 30,000 miles ~ Previous vehicle: yes: support = 142/248 confidence = 57% 

Male, Pool, Lex ~ Phone: no: support = 295/518 confidence = 56% 

Operations, Fuel card: no, Phone: no ~ Previous vehicle: no: = support 318/562 

confidence = 56% 

The first rule states with a confidence of 55% that when the cost centre is Group Ac­

counting - London other drivers are not allowed. The second rule states with 56% 

confidence that a male with the last recorded mileage of 30,()()() miles has a fuel 

card. The third rule states with 57% confidence that a male with the last recorded 

mileage of 30,000 miles has owned a previous fleet vehicle. The fourth rule states 

with 56% confidence that a male who has a pool car from Lex Leasing will not 

have a car phone. The final rule states with 56% confidence that a person who is in 

Operations does not have a fuel card and does not have a car phone will not have 

owned a previous vehicle. 
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The following are some of the rules generated from the Print Dataset: 

Available stock: low, on supplier order: low ~ sales current month: high: support 

= 271/691 confidence 39% 

Minimum order level: high, On supplier order: high ~ on customer order: 

medium: support = 2941763 confidence = 38% 

Available stock: low, on customer order: high: ~ sales last year: low: support = 
2741711 confidence = 38% 

Available stock: high, on supplier order: high ~ sales last month: medium: 

support = 2831736 confidence = 38% 

The first rule states with 39% confidence that when available stock is low, and on 

supplier order is low then sales current month are high. The second rule states with 

38% confidence that when minimum order level is high and on supplier order is 

high then on customer order is medium. The third rule states with 38% confidence 

that when available stock is low and on customer order is high then sales last year 

are low. The final rule states with 38% confidence that when available stock is high 

and on supplier order is high then sales last month are medium. 

The rules listed above from the Fleet dataset are easy to read and understand. A 

person viewing them without domain specific knowledge could easily be expected 

to follow the implications that the rules display. The Print Dataset, however does 

not lend itself particularly well to interpretation by a non-domain expert. Whilst the 

rules generated from the Print Dataset may make sense to someone who is familiar 

with the ordering and re-stocking system they make little sense as stand alone 

statements. The use of confidence as a mark of rule interestingness was applied for 

the purposes of these experiments, however, confidence could have been replaced 

with lift or conviction as discussed in Chapter 3 (section 3.2). 
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6.4 The P -Tree Advantage 

As outlined in the previous chapter (section 5.1) the main advantage of the P-tree is 

that during total support summation the partially gathered supports and the structure 

of the P-tree allow the T-tree to be constructed and populated with support totals 

more easily than if the database itself was being repeatedly read. The following 

examples compare the construction of a T-tree from repeatedly reading a small 

dataset with the construction of a T-tree from a P-tree constructed from the same 

dataset Two operations are defined to be of interest when constructing the T -tree: 

1. Node visits (NV): This is the actual number of nodes visited in the T -tree. 

2. Node updates (NU): This is the number of nodes that have their support count 

incremented. 

The following Figure (6.1) shows a P-tree constructed from a small dataset. (The 

partial support counts appear below each P-tree node.) For this example the support 

threshold is set to 1. 

TID Attributes 

10 11100 
20 00111 
30 00101 
40 10010 
50 10100 2 

60 10011 
70 00111 

Datasat P-tree 

Figure 6.1: P-tree and dataset 
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6.4.1 Support from The Dataset 

The following algorithm describes the populating of each level of the T-tree from 

a dataset, R represents a record in the dataset and T a node in the T -tree. The 

algorithm terminates when no more candidate sets can be generated. 

VR E Dataset 

Vattributes X in R 

descend aranch X in Ttree (if it exists) 

VTat required level 

ifT::R 

T,up = T,up + 1 

stop 

ifTC R 

The top level T -tree candidates are generated and the T -tree resembles Figure 6.2a. 

Once the initial candidates have been generated the algorithm proceeds as follows. 

Read initial record (TID 10) R, proceed along the top level of the T -tree until either 

a) 

o o o o o 

b) 

4 5 4 4 

Figure 6.2: Level 1 T -tree 

an exaet match is found or the T-tree node under inspection is lexicographically 

after the last attribute in R. In the case of this record the first three nodes are subsets 

Page 131 



Chapter 6 Association Rule Discovery: Case Study 

of R so NU = 3 and NV = 4, the T -tree node D must be checked to ensure com­

pleteness. 

The second record (TID 20) requires 3 NU (total NU = 6) and all the nodes in the 

top level to be visited NV = 5 (total NV = 9). 

The algorithm proceeds in this manner until all the records in the dataset have been 

read. The T -tree now resembles Figure 6.2b. Once all the records have been pro­

cessed the T-tree is pruned (in this case no nodes are removed) and new candidates 

generated as described in Chapter 5. The total number of NU's for level 1 = 18 and 

NV's = 33. 

The level 2 candidates are now present as illustrated in Figure 6.3a. The NV and 

NU counters are reset to O. The initial record from the dataset is re-read and the 

T-tree is again traversed if the number of binary 1 's in the record is less than the 

current level (Le. 2) then the next record is read, a record with less attributes than 

the current level cannot have a contribution to make towards the current level. On 

this traversal all the nodes present before and including D require a visit (NY = 7) 

and three AB, AC, and BC require updating (NU = 3). 

The next record (TID 20) needs to visit all the nodes descending from the top nodes 

D and E. Descending the sub-tree emanating from C is not required because the 

lexicographical ordering of the T -tree ensures that no subset of a record that starts 

with, for example C, will be found in the C sub-tree. Three nodes are updated, CD, 

CE and DE, NU = 3 (total NU = 6) NV = 12 (total NV = 19). The total number of 

node updates at the second level is I5,the total number of node visits is 60 (Figure 

6.3b). 

The T-tree is pruned, the nodes BD and BE are removed and the new candidate 

nodes ABC, ACD, ACE, ADE and CDE are inserted. The T-tree now resem­

bles Figure 6.4a. 
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Level 3 requires a total of 48 node visits and 4 updates. No candidates can be 

generated below this level therefore the algorithm terminates with the T-trce as 

shown in 6.4b. 

a) 

o o o o o 0 o o o o 

b) 

2 2 o 2 o 

Figure 6.3: Level 2 T-tree 

a) 

a a a a a 

b) 

2 

Figure 6.4: Level 3 T-tree 

6.4.2 Support from The P-tree 

This section uses the same example as the previous section, the only difference be­

ing that the T-tree is populated with support counts from the P-tree. The same two 

counters node updates and node visits will be used. The figures illustrated above, 

6.2, 6.3 and 6.4 are exactly the same when produced by both algorithms. 

The first node of the P-tree (Figure 6.1) and T-tree are an exact match therefore 

NV = 1, NU = 1, exact match, stop search. 
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The next node in the P-tree is ABC; this does not match any of the first level of the 

T-tree but stops at T-tree node D (because of the lexicographical ordering). Node 

A in the T-tree does not get updated because ({A,B,C} \ {A} = {B,C}; node 

visits = 4 (total NY = 5) node updates = 2 i.e. T-tree nodes Band C are updated 

(total NU = 3). 

The next node in the P -tree is AC, ({ A, C} \ { A} = {C} therefore there are 4 node 

visits (total NY = 9) and node update = 1 (total NU = 4). To populate the top level 

of the T-tree with support counts from the P-tree takes a total of 32 node visits and 

11 node updates. 

The P-tree is now traversed again but any P-tree nodes with only one element are 

ignored. The P-tree nodes A and C do not prompt a traversal of the T -tree. The 

initial P-tree node to prompt a T-tree traversal is therefore ABC. The level 1 T­

tree nodes matching the trailing elements of ABC i.e. B and C, are located taking 

3 node visits. At this point descend the sub-trees emanating from these nodes, three 

(level 2) node updates take place because AB, AC and BC are subsets of ABC 

three node visits also take place. At this point, NU = 3 NY = 7. 

The next P-tree node is AC. Locate level 1 node C and descend looking for subsets 

or exact matches the child of Cis AC an exact match therefore update support and 

stop search. NU = 1, NV = 4. Total node visits 11, node updates 4. To fully populate 

the second level of the of the T-tree takes 48 node visits and 12 node updates. 

Level 3 requires a total of of 27 node visits and 3 updates. 

As can be seen from table 6.1 the node updates and node visits at the first level of 

the T-tree are almost the same between the two approaches. As the T-tree grows 

larger the differences become greater because the ordering of P-tree allows areas of 

the T-tree to be excluded from the search space. 
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P-treelT -tree Apriori 
Level 1 2 3 1 2 3 
NU 11 12 3 18 15 4 
NV 32 48 27 33 60 48 

Table 6.1: A comparison of the two methods 

6.4.3 Further Comparison 

Having established the superiority of the P-tree method in the small test case the 

two facilities management datasets were tested. The support level was set at 3% 

for both algorithms. The results of these tests are shown in the graphs (Figures 

6.5 and 6.6) and tables (Figures 6.2 and 6.3) the table headings NU 1 NU2 refer to 

Node Updates at levels 1 and 2, NVI and NV2 refer to Node Visits. Although the 

tables and graphs only illustrate building the T -tree to level 3 the differences are 

significant. 

2 
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~ Readlna p-u·_ 
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Figure 6.5: Node update comparisons 
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Figure 6.6: Node visit comparisons 

NV1 NU2 NV2 NV3 NV3 
Fleet data lOli xO.153 107 xO.175 1O-(xO.125 l07 x 0.249 107 x 0.348 107 xO.517 
Print data lOli xO.156 lO'xO.312 107 x 0.142 107xO.486 107 xO.514 107xO.815 

Table 6.2: Reading Dataset 

6.5 P-tree Advantage Evaluation 

From the results provided, both in the small test case and the two facilities man­

agement datasets, the P-tree method clearly outperforms the repeated dataset pass 

method. The P-tree and the T-tree complement each other in a manner that is not 

reflected when the T -tree alone is used. The two performance indicators, node in­

crements and node updates can be seen as illustrating two of the strengths of the 

File NUl NV1 NU2 NV2 NV3 NV3 
Fleet data lOo xO.998 107xO.138 106 xO.559 l07 x O.114 107 xO.197 107 xO.273 
Print data lO(j xO.112 lO"xO.165 lOli xO.697 1O"xO.268 lO' xO.446 107 xO.642 

Table 6.3: Reading P-tree 
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combined P-treeIT-tree method. 

1. Node visits: The lexicographic ordering of the nodes within both trees allows 

the number of node visits to be significantly reduced because when seeking a 

T -tree node to update large areas of the T -tree can be ignored. 

2. Node updates: The fact that the P-tree contains support counts for subsets 

means that in some cases only one node update will be required to establish a 

T-tree nodes support level. Whereas in the repeated pass model each time a 

particular subset is encountered the relevant T -tree node must be incremented. 

The number of node updates for the P-tree model would be significantly less 

if the original dataset had contained duplication. 

6.6 Summary 

The two themes of this chapter were, the generation of association rules from within 

the two PM datasets and a comparison between using the P-tree to generate the T­

tree and using repeated database passes to generate the T -tree. 

Generating association rules from the T -tree is a straightforward task. Once the T -

tree contains all the supported sets at the required level the rule generation algorithm 

extracts the data from the nodes in the T-tree that match the user's requirements, 

i.e. produce all supported sets at level x. The supported sets are then broken down 

into their subsets and the support for the subsets compared with the support for the 

superset. If the user defined confidence level is matched or exceeded then the rule 

is produced. The PM datasets used in the testing of the rule generation procedure 

allowed the rules to be interpreted with meaningful results. The generated rules 

show that some datasets (i.e. Fleet) can produce readily understandable results to a 

non-expert, whereas datasets such as the Print Dataset would benefit from analysis 

by a domain expert. The partitioning of the dataset into attribute values assigned 
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for the tests may be perceived by a domain expert to require revision and a different 

partitioning strategy may result in different rules being generated. 

Using the repeated database pass method to generate the T -tree proved more costly 

in terms of time, due to the increased number of node updates and node comparisons 

that needed performing. The use of the lexicographical ordering within both the P­

tree and the T-tree enabled the search space for inspecting/updating anyone node 

to be significantly reduced. This benefit was absent from the repeated pass method. 
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Conclusion 

7.1 Introduction 

The broad aim of this research was to explore ways in which supported sets, and 

therefore association rules could be generated from binary data. The need for more 

efficient knowledge discovery methods was described in Chapter 1. This need arises 

because of the ever increasing volumes of data stored in binary format and the 

increasing demands of database users to fully exploit the potential and untapped 

value held in their databases. The specific aim of this thesis was to establish that 

pre-processing data by using specialized data structures could offer significant ad­

vantages in terms of memory requirement and execution time. 

The generation of association rules from binary databases has been an extrcmcly 

active area of research since the publication of the AIS algorithm [Agrawal el al. 

1993]. Two of the fundamental problems encountered in this area havc been: 

1. Generating all supported sets in one pass of the database. 

2. Dealing with "dense" data. 

The reduction of the number of database passes has been seen as desirable be­

cause constantly reading and re-reading large databases held in secondary storage 

increases disk 110 and therefore leads to an increased time requirement and load on 

systems in multi-user environments. The second problem of dealing with "dense" 
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data can be seen as one of trying to move association rule discovery away from 

the traditional area of "shopping basket analysis" and explore new sources for rule 

discovery. The benchmark datasets available from Quest [2000] mirror a shopping 

transaction dataset; however the "shopper" usually purchases a maximum of 20 

items from a range of 1000, i.e. the data has a 2% density. The datasets used by 

Brin et al. [1997] (census data 57% density) and Bayardo [1998] (mushroom classi­

fication 17% density) contain a much greater density and therefore present a much 

greater challenge because the possible number of candidate/supported sets is larger. 

One of the issues illuminated by, but not evaluated in, this thesis was the relative data 

densities for optimum performance by both the P-tree and the T-tree when working 

together. The P-tree appears to be almost insensitive to the density of the data, 

processing datasets of 80% density with ease. The T-tree performed well when 

the data density was lower: this was because it had to generate all the supported 

combinations present in the P-tree not just store them. It is clear that it is the T-tree 

that holds the solution to the optimum density question. 

7.2 The P-treeIT-tree Advantage 

The solution proposed within this thesis to address both the one pass problem and 

the more dense data problem was the development of the P-tree/T-trce algorithms. 

The P-tree takes the place of repeatedly reading the dataset. It is a structure that 

grows in an (almost) linear manner in relation to the number of records and at­

tributes in the dataset. The tree primary advantages of the P-tree are: 

1. Compacting the data for more efficient searching. 

2. Re-arranging the data from the dataset to take advantage of any duplication. 

3. Computation of partial supports are inexpensively achieved during the con­

struction of the tree. 
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The T-tree in which the supported sets are held was essentially the obverse of the 

P-tree. The T-tree is constructed in a breadth first manner using an "Apriori" type 

methodology. During the conversion of the dataset to the P-tree format the lexi­

cographical ordering of the attributes is exploited and this is continued during the 

construction of the T -tree. The ordering of the attributes in both trees allows large 

areas of both trees to be excluded from the search space when seeking the support 

for particular sets. 

The test data used ranged from the "benchmark" Quest [2000] datasets to the facil­

ities management datasets provided by the Royal & SunAlliance Insurance Group. 

The P-tree/T -tree algorithms performed well against all the datasets and when com­

pared with an ''Apriori type" repeated pass method used on the FM data. 

Using the facilities management data allowed the generation of "meaningful" rules 

from the datasets. In Chapter 6 the generation and interpretation of these rules 

was undertaken. The FM data did not reveal any particularly interesting results 

because to generate any rules the confidence had to be set fairly low. The problem 

of translating continuous valued attributes into a suitable form for association rule 

mining was one of the issues illustrated by the use of the FM datasets. 

7.3 Wider Issues 

During the course of this research the P-tree/T -tree have been linked and used as a 

complete solution to the supported sets/rule generation problem. However, the use 

of both trees togetheris not necessarily the only solution to the problem. The P-trce 

could easily be seen as working with some other support summation method which 

would take advantage of the lexicographical ordering and the partial supports. The 

T-tree construction method in its present form represents a breadth first traversal 

of the search space but a depth first search may prove more effective in domains of 

very high density with many repeating attributes. 
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As observed in Chapter 4, (section 4.4.1) when the dataset contains a high degree 

of duplication the memory requirement for P-tree storage is considerably reduced. 

The "best case" for the P-tree algorithm would be in the (unlikely) event of all 

records being the same i.e. the P-tree would contain one node. The test datasets 

used in this thesis, with the exception of one (Test Group A, Dataset z), contained 

no duplication but have shared leading subsets and the P-tree has performed well. 

Indeed the P-tree at times has almost seemed "data insensitive". 

The rules generated from the PM dataset provided a real world example of how 

association rule generation is more than locating supported sets and then applying 

the confidence filter to them. One of the more interesting points when dealing with 

the FM data was the fact that certain combinations of attributes can never occur. 

For example, within the Fleet Dataset if the attribute "does not have a car phone" 

was true then the average phone bill attribute would not contain an entry. This type 

of "if then" relationship between attributes needs to be considered when generating 

candidate sets to avoid the production of sets that cannot possibly be supported. 

One could envisage datasets where this type of attribute relationship, if known in 

advance, could significantly reduce the number of candidate sets generated. 

7.4 Current Research 

During the writing of this thesis two published works also advocated the use of tree 

structures for mining association rules. 

TreeProjection [Agrawal et al. 2000] generates itemsets of frequent sets by succes­

sive construction of the nodes of a lexicographic tree of itemsets. Each tree is a 

subdatabase of the original dataset. Agrawal discusses different search strategies 

for the tree structure such as depth first, breadth first and a combination of both 

and examines the trade-offs between the strategies in terms of YO, memory and 

computational time requirement. 
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Recent work published by Han et al. [2000] has used a similar structure to the P­

tree to achieve dataset compaction. The overall concept is remarkably similar to 

the P-tree, but the F P-tree (Frequent Path tree), is built in two database passes. 

The first pass eliminates attributes that fail to reach the required support threshold 

and orders the remaining attributes by frequency of occurrence. The second pass 

constructs the tree using a complex series of pointers that join related nodes in 

the tree structure. Each node in the tree stores a single attribute that is linked to 

other nodes, each path therefore represents and counts one or more records in the 

database. The F P-tree also requires that all nodes representing anyone attribute be 

linked into a list. The additional structure of the list facilitates the implementation 

of an efficient algorithm "FP-growth" which successively generates sub trees from 

the F P-tree corresponding to each frequent attribute to represent all sets in which 

the attribute is associated with its predecessors in the tree ordering. The drawback 

of this method is the additional structural links in the tree, and the repeated accesses 

to generate the subtrees create problems for efficient implementation for which the 

tree is too large to fit in main memory. Han however, maintains that by traversing 

the F P-tree the generation of candidates is avoided and that only"true" frequent 

sets are produced. 

7.5 Future Research 

Using the P-tree/T-tree algorithms to generate association rules has proved an ef­

fective method with several datasets containing different characteristics. However, 

several improvements could be made to the system to enhance its performance. 

Currently the P-tree consists of one complete structure. However, if the tree was 

constructed as a number of separate trees each having its own root it would be possi­

ble to compute interim supports for each tree independently. For example, it would 

be possible to separate the P-tree presented in Chapter 5 (Figure 5.2) into four sub 

trees rooted at the nodes A. B, C and D. A record containing AB D for example 
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would increment support counts within the A-tree, BD within the B-trec and D 

within the D-tree. The advantage of this is that the completion of the summation to 

obtain the total supports can be carried out independently within the subtrees used 

for the interim summation rather than across the whole structure. Partitioning the 

tree in this manner allows the possibility of using different summation methods for 

different parts of the structure. a subtree that is large and sparse would invite sum­

mation using the T-tree approach, whereas a small dense subtree may benefit from 

summation via exhaustive methods as described in Chapter 4 (section 4.2.1). 

The gain from this approach can be maximized by applying some ordering heuristic 

similar to those used by Bayardo [1998] and Brin et al. [1997]. Suppose the order 

of frequency of the attributes is known, at least approximately. If the dataset I is 

ordered so that aj is the least common attribute and an, the most common attributes 

will be clustered around the right hand side of the P-tree structure. At this end of 

the P-tree structure exhaustive computation is feasible. Conversely the sparseness 

of the storage at the left hand side of the P -tree structure is increased. 

Essentially this approach is a combination of two heuristics; 

1. For a combination of a small set of very frequent attributes exhaustive com­

putation of total supports is efficient. 

2. For less frequent sets of attributes, a partitioning of the database correspond­

ing to equivalence classes, i.e. separately rooted P-trees, can be done in a 

single pass. Each resulting partition can be processed independently. 

This dual approach has the advantage that in one full pass of the database compu­

tation of the supports of the commonest attributes is completed while at the same 

tome the database is reorganized into partitions to facilitate the contribution of the 

least common attributes. A further advantage of this approach is that because the 

most common attributes have been processed the remaining database partitions may 

contain relatively few frequent sets enabling the small partitions to be processed in 
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main memory. 

7.6 Summary 

The P-treeIT-tree concept has, in this thesis, proved to be a valid method for pro­

ducing sets of supported itemsets from datasets with different characteristics. The 

production of association rules from these sets has been achieved. Whilst no "out­

standing" rules were produced from the facilities management sets, the exercise of 

using these datasets provided a "real world" scenario in which decisions rcgarding 

attribute division can have a considerable impact on the results produced. 

The research detailed in this thesis can be seen as a starting point from which the P­

treelT -tree concept could be expanded further. The recent work of Agrawal and Han 

indicates that other researchers see the idea of data compaction and reorganization 

as a potential way forward to deal with the ever expanding universe of data. 

Page 145 



References 

[Adrianns and Zantinge 1996] 

P. Adrianns and D. Zantinge. Data Mining. Addison Wesley Longman Ltd., 

1996. 

[Agrawal et al. 2000] 

R. Agrawal, C. Aggrawal and V.V.V. Prasad. "A tree projection algorithm for 

the generation of frequent itemsets". In Journal of Parallel and Distributed 

Computing, pages 350-371, 2000. 

[Agrawal et al. 1993] 

R. Agrawal, T. Imielinski and A. Swami. "Mining association rules between 

sets of items in large databases". In Proceedings of ACM SIGMOD, pages 207-

216, 1993. 

[Agrawal and Srikant 1994] 

R. Agrawal and R. Srikant. "Fast algorithms for mining association rules". 

In Proceedings of 20th VLDB Conference, pages 487-499, Morgan Kaufman, 

1994. 

[Anderson and Moore 1998] 

B. Anderson and A. Moore. "Adtrees for fast counting and fast learning of 

association rules". In Proceedings of the 4th International Conference on 

Knowledge Discovery in Databases, pages 134-138, KDD'98, AAAI Press, 

1998. 

[Atzeni and DeAntonellis 1993] 

Page 146 



References 

P. Atzeni and V. DeAntonellis. Relational Database Theory. The Ben­

jamin/Cummings Publishing Company Inc., 1993. 

[Bayardo 1998] 

R J. Bayardo. "Efficiently mining long patterns from databases". In Pro­

ceedings of 1998 ACM-SIGMOD International Conference on Management of 

Data, pages 85-93, ACM, ACM Press, 1998. 

[Bayardo 1997] 

RJ. Bayardo. "Brute-force mining of high-confidence classification rules". 

In Proceedings of the third international conference on Knowledge Discovery 

and Data Mining, pages 123-126, KDD'97, AAAI Press, 1997. 

[Bayardo and Agrawal 1999] 

RJ. Bayardo and R Agrawal. "Mining the most interesting rules". In Fifth 

ACM Conference on Knowledge Discovery and Data Mining, pages 145-154, 

ACM,1999. 

[Bayardo et al. 1999] 

RJ. Bayardo, R. Agrawal and D. Gunopulos. "Constraint-based rule mining in 

large, dense databases". In Proceedings of the 15th International Conference 

on Data Engineering, page not sure yet, Not sure yet, 1999. 

[Berry and Linoff 1997] 

M.J.A. Berry and G. Linoff. Data Mining Techniquesfor Marketing, Sales and 

Customer Support. Wiley Computer Publishing, 1997. ISBN 0-471-17980-9. 

[Bradley et al. 1998] 

P. Bradley, U. Fayyad and C. Reina. "Scaling cluster algorithms to large 

databases". In Proceedings of the Fourth international Conference on Knowl­

edge Discovery in Databases, pages 9-15, KDD'98, AAAI Press, 1998. 

Page 147 



References 

[Bramer 1999] 

M. Bramer, editor. Knowledge Discovery and Data Mining .. Institute of Elec­

trical Engineers, 1999. 

[Brielley and Batty 1999] 

P. Brielley and B. Batty. Knowledge discovery and data mining, chapter Data 

mining with neural networks - an applied example in understanding electric­

ity electricity consumption patterns, pages 240-303. Institution of Electrical 

Engineers, 1999. 

[Briemen et al. 1984] 

L. Briemen, 1. Friedman, R. Dlshen and C. Stone. Classification and regres­

sion trees. Wadsworth International Group, 1984. 

[Brin et al. 1997] 

S. Brin, R. Motwani, J. Ullman and S. Tsur. "Dynamic itemset counting 

and implication rules for market basket data". In Proceedings of 1997 ACM­

SIGMOD International Conference on Management of Data, pages 225-264, 

ACM, ACM, 1997. 

[Brin and Page 1998] 

S. Brin and L. Page. Dynamic Data Mining: Exploring large rule spaces by 

sampling. Technical Report 261, Stanford University, 1998. 

[Buchner et al. 1999] 

A.G. Buchner, J.C.L. Chan, S.L. Hung and J.G. Hughes. A meteorological 

knowledge discovery environment, chapter to, pages 204-226. Institution of 

Electrical Engineers, 1999. 

[Chaudhuri and Dayal 1997] 

S. Chaudhuri and U. Dayal. ''An overview of data warehousing and olap tech­

nology". In SIGMOD Record, pages 65-74, ACM Press, 1997. 

Page 148 



References 

[Chen et al. 1996a] 

M.S. Chen, I. Han and P.S. Yu. "Data mining: An overview from a database 

perspective". In IEEE Transactions on Knowledge and Data Engineering, 

pages 866-883, 1996. 

[Chen et al. 1996b] 

M.S. Chen, I.S. Park and P.S. Yu. "Data mining for path traversal patterns 

in a web environment". In Proceedings of 16th international conference on 

Distributed computing systems, pages 385-392, 1996. 

[Cheung et al. 1996a] 

D. Cheung, V. Ng, A. Fu and Y. Fu. "Efficient mining of association rules in 

distributed databases". In IEEE Transactions on Knowledge and Data Engi­

neering, pages 911-922, IEEE Computer Society Press, 1996. 

[Cheung et al. 1996b] 

D. Cheung, V. Ng, A. Fu and Y. Fu. "A fast distributed algorithm for min­

ing association rules". In Proceedings of 1996 international Conference on 

Parallel and Distributed Information Systems, pages 31-42, PIDS'96, IEEE 

Computer Society Press, 1996. 

[Codd 1970] 

E. F. Codd. ''A relational model for shared databanks". In Communications of 

the ACM, pages 377-387,1970. 

[Codd et al. 1993] 

E.F. Codd, S.B. Codd and C.T. Salley. Providing OLAP to User Analysts: An 

IT Mandate. Codd and Date Inc., 1993. 

[Dilly 1995] 

R. Dilly. Data Mining. Technical Report, The Queens University Belfast, 

1995. 

Page 149 



References 

[Dzeroski and Grbovic 1995] 

S. Dzeroski and J. Grbovic. "Knowledge discovery in a water quality 

database". In Proceedings of the First International Conference on Data Min­

ing and Knowledge Discovery, pages 81-86, AAAI Press, 1995. 

[Ester et al. 1996] 

D. Ester, G. Gilder, G. Keyworth and A. Toffler. "A magna carta for the knowl­

edge age". The Information Society, volume 12, number 3, pages 295-308, 

1996. 

[Pawley et al. 1991] 

W.J. Fawley, G. Piatesky-Shapiro and C. J. Matheus. Knowledge Discovery in 

Databases: An Overview. AAAI Press, 1991. 

[Payyad et al. 1996] 

U. Fayyad, G. Piatetsky-Shapiro and P. Smythe. "Knowledge discovery and 

data mining: Towards a unifying framework". In Proceedings of the Second In­

ternational Conference on Data Mining and Knowledge Discovery, pages 82-

95, AAAI Press, 1996. 

[Ganesh et al. 1996] 

M. Ganesh, Sirvastava J and T. Richardson. "Mining entity-identification rules 

for database integration". In Proceedings of the Second International Confer­

ence on Data Mining and Knowledge Discovery, pages 291-294, AAAI Press, 

1996. 

[Ganti et al. 1999] 

V. Ganti, J. Gehrke and R. Ramakrishnan. "Mining very large databases". 

Computer, pages 38-45, 1999. IEEE Computer Society Press. 

[Gehrke et al. 1998] 

J. Gehrke, R. Ramakrishnan and V. Gnati. "Rainforrest - a framework for 

Page 150 



References 

fast decision tree construction of large datasets". In Proceedings of 24th In­

ternational Conference on Very Large Databases, pages 416-427, VLDB'98, 

Morgan Kaufman, 1998. 

[Gill and Rao 1996] 

H. S. Gill and P.C. Rao. Computing Guide To Data Warehousing. Que Corp, 

1996. ISBN 0-7897-0714-4. 

[Han et al. 2000] 

E.H. Han, G. Karypis and V. Kumar. "Mining frequent patterns without can­

didate generation". In Proceedings of ACM SIGMOD, pages 1-12,2000. 

[Han et al. 1997] 

E.H. Han, G. Karypis and V. Kumar. "Scalable parallel data mining for associ­

ation rules". In Proceedings of 1997 ACM-SIGMOD International Conference 

on Management of Data, pages 277-288, ACM, ACM Press, 1997. 

[Han et al. 1999] 

J. Han, L.V.S. Lakshmanan and R.T. Ng. "Constraint-based, multidimensional 

data mining". Computer, pages 45-50, August 1999. IEEE Computer Society 

Press. 

[Hatonen et al. 1996] 

K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen and H. Toivonen. 

"Knowledge discovery from telecommunication network alarm databases". 

In Proceedings of 12th International Conference on Data Engineering, 

pages 115-122, IEEE Computer Society Press, 1996. 

[Hedberg 1995] 

S.R. Hedberg. ''The data gold rush". Byte, pages 83-88, 1995. 

[Hekanaho 1997] 

J. Hekanaho. "Ga - based rule enhancement in concept learning". In Proceed-

Page 151 



References 

ings of the third international conference on Knowledge Discovery and Data 

Mining, pages 183-186, KOD'97, AAAI Press, 1997. 

[HMSO 1997] 

HMSO. Effective Facilities Management: A Good Practice Guide. Technical 

Report, Further Education Funding Council, Her Majesty's Stationery Office, 

1997. 

[Holsheimer et al. 1995] 

H. Holsheimer, M. Kersten, H. Mannila and H. Toivonen. "A perspective on 

databases and data mining". In First International Conference on Knowledge 

Discovery and Data Mining, pages 150-155, 1995. 

[Houtsma and Swami 1993] 

M. Houtsma and A. Swami. Set Orientated Mining of Association Rules. Tech­

nical Report RJ 9567, IBM Almaden Research Center, 1993. 

[Inmon et al. 1997.] 

W.H. Inmon, J.D. Welch and K.L. Glassey. Managing the Data Warehouse. 

Wiley Computer Publishing, 1997. 

[Jain and Dubes 1988] 

A.K. Jain and R.C. Dubes. Algorithmsfor clustering data. Prentice Hall, 1988. 

[Johnson 1997] 

J. L. Johnson. Database Models, lAnguages, Design. Oxford University Press, 

1997. 

[Kahng et al. 1997] 

J. Kahng, W.H.K. Liao and D. McLeod. "Mining generalized term associa­

tions: Count propagation algorithm". In Proceedings of the third International 

Conference on Knowledge Discovery in Databases, pages 203-206, KDO'97, 

AAAI Press, 1997. 

Page 152 



References 

[Kamber and Shinghal1996] 

M. R. Kamber and R. Shinghal. "Evaluating the interestingness of character­

istic rules". In Proceedings of the Second International Conference on Data 

Mining and Knowledge Discovery, pages 263-266, AAAI Press, 1996. 

[Karypis et al. 1999] 

G. Karypis, E. Han and V. Kumar. "Charmeleon: Hierarchical clustering using 

dynamic modeling". Computer, pages 68-75, 1999. IEEE Computer Society 

Press. 

[Keogh and Smyth 1997] 

E. Keogh and P. Smyth. ''A probabilistic approach to fast pattern matching 

in time series databases". In Third International Conference on Knowledge 

Discovery and Data Mining, pages 24-30, KDD'97, AAAI Press, 1997. 

[Klemettinen et al. 1994] 

M. Klemettinen, H. Mannila, P. Rokainen, H. Toivonen and A. I. Verkamo. 

"Finding interesting rules from large sets of association rules". In Proceedings 

of ACM, pages 401 - 407, ACM, 1994. 

[Lakshmanan et al. 1996] 

L.V.S. Lakshmanan, F. Sadri and I.N. Subramanian. "Schemasql- a language 

for interoperability in relational multi-database systems". In Proceedings of 

22nd VLDB Conference, pages 239-250, Morgan Kaufman, 1996. 

[Lakshmanan et al. 1999] 

L.V.S. Lakshmanan, F. Sadri and S.N. Subramanian. "On efficiently imple­

menting schemasql on a sqI database system". In Proceedings of 25th VLDB 

Conference, pages 471-482, Morgan Kaufman, 1999. 

[Levy 1996] 

A. Levy. "Obtaining complete answers from incomplete databases". In Pro­

ceedings of the 22nd VLDB Conference, pages 402-412, 1996. 

Page 153 



References 

[Liu et al. 1998] 

B. Liu, W. Hsu and Y. Ma. "Integrating classification and association rules". 

In Proceedings of the fourth international conference on Knowledge Discovery 

and Data Mining, pages 80-86, KDD'98, AAAI Press, 1998. 

[MacQueen 1967] 

J.B. MacQueen. "Some methods for classification and analysis of multivariate 

observations". In Proceedings of the 5th Berkeley symposium on mathematical 

statistics and probability, pages 281-297, University of California Press. 1967. 

[Manilla 1997] 

H. Manilla. "Methods and problems in data mining". In Proceedings of In­

ternational Conference on Database Theory, pages 41-55, Springer-Verlag, 

1997. 

[Mannila et al. 1994] 

H. Mannila, H. Toivonen and A. Inkeri Verkamo. Improved Methodsfor Find­

ing Association Rules. Technical Report, Series of Publications C, No. C-

1993-65 University of Helsinki, 1994. 

[McClean and Scotney 1996] 

S. McClean and B. Scotney. Using Evidence Theory for Knowledge Discov­

ery and Extraction in Distributed Databases. Technical Report, Number 11 

University of Ulster, 1996. 

[Mitchel 1999] 

T.M. Mitchel. "Machine learning and data mining". Communications of the 

ACM, volume 42, number 11, pages 31-36, 1999. 

[Montgomery 1999] 

A. Montgomery. Data Mining: Computer Support for Discovering and De­

ploying Best Practice in Business and Public Service. Technical Report 3, 

BCS SOBS, Expert Update, 1999. ISSN 1465-4091. 

Page 154 



References 

[Moore and Lee 1998] 

A. Moore and M. S. Lee. "Cached sufficient statistics for efficient machine 

learning with large datasets". Journal of AI Research, pages 67-91, 1998. 

[Ng etal. 1998] 

R. T. Ng, L.V.S. Lakshmanan, 1. Han and A. Pang. "Exploratory mining 

and pruning optimizations of constrained association rules". In Proceedings 

of 1998 ACM-SIGMOD International Conference on Management of Data, 

pages 13-29, ACM, ACM Press, 1998. 

[Park et at. 1995] 

J.S. Park, M.S. Chen and P.S. Yu. "An effective hash-bases algorithm for min­

ing association rules". In Proceedings of 1995 ACM-SIGMOD International 

Conference on Management of Data, pages 175-186, ACM Press, 1995. 

[Parthasarathy et al. 1998] 

S. Parthasarathy, M.J. Zaki and W. Li. "Memory placement techniques for par­

allel association mining". In Proceedings of the Founh international confer­

ence on Knowledge Discovery in Databases, pages 304-308, KDD'98, AAAI 

Press, 1998. 

[Quest 2000] 

Quest. http://www.ibm.almarden.cs/quest/syndata.html. Data Mining Project, 

IBM Almarden Research Centre, 2000. 

[Quinlan 1993] 

J. R. Quinlan. C4.5: Programsfor machine learning. Morgan Kaufman, 1993. 

[Quinlan 1986] 

J.R. Quinlan. "Induction of decision trees". In Machine Learning, pages 81-

106, 1986. 

Page 155 



References 

[Ramakrishnan and Gehrke 1998] 

R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw­

Hill,1998. 

[Rastogi and Shim 1998] 

R. Rastogi and K. Shim. "Public: A decision tree classifier that integrates 

building and pruning". In Proceedings of 24th International Conference on 

Very Large Databases, pages 404-415, VLDB'98, Morgan Kaufman, 1998. 

[Rymon 1993] 

R. Rymon. ''An se-tree based characterization of the induction problem". 

In Proceedings of the Tenth International Conference on Machine Learning, 

pages 268-275, Morgan Kaufman, 1993. 

[Rymon 1996] 

R. Rymon. "Se-trees outperfonn decision trees in noisy domains". In Pro­

ceedings of the Second International Conference on Knowledge Discovery in 

Databases, pages 331-334, KDD'96, AAAI Press, 1996. 

[Rymon 1992] 

R. Rymon. "Search through systematic set enumeration". In Proceedings of 

the third international conference on the Principles of Knowledge and Rea­

soning, pages 539-550, Morgan Kaufman, 1992. 

[Savasere et al. 1995] 

A. Savasere, E. Omiecinski and S. Navathe. "An efficient algorithm for mining 

association rules in large databases". In Proceedings of 21st VLDB Confer­

ence, pages 432-444, Morgan Kaufman, 1995. 

[Shintani and Kitsuregawa 1996] 

T. Shintani and M. Kitsuregawa. "Hash based parallel algorithms for min­

ing association rules". In Proceedings of the 4th International Conference on 

Page 156 



References 

Parallel and Distributed Information Systems, pages 19-30, IEEE Computer 

Society Press, 1996. 

[Shintani and Kitsuregawa 1998] 

T. Shintani and M. Kitsuregawa. "Parallel mining algorithms for generalized 

association rules with classification hierarchy". In Proceedings of 1998 ACM­

SIGMOD International Conference on Management of Data, pages 25-36, 

ACM, ACM Press, 1998. 

[Silberschatz and Tuzhilin 1995] 

A. Silberschatz and A. Tuzhilin. "On subjective measures of interestingness 

in kd". In Proceedings of the First International Conference on Data Mining 

and Knowledge Discovery, pages 275-281, AAAI Press, 1995. 

[Simoudis et al. 1995] 

E. Simoudis, B. Livezey and R. Kerber. "Using recon for data cleaning". 

In First International Conference on Knowledge Discovery and Data Mining, 

pages 282-287, AAAI Press, 1995. 

[Smith 1999] 

D.S. Smith. "Getting to know clients lifts profits". The Sunday Times, 

pages 17-18, 1999. 

[Soderland 1997] 

S. Soderland. "Learning to extract text based infonnation from the world wide 

web". In Third international conference on knowledge discovery and data 

mining, pages 251-254, KDD'97, AAAI press, 1997. 

[SPSS 2002] 

SPSS. http://www.SPSS.com.SPSSInc.Chicago.IL. USA, 2002. 

[Srikant and Agrawal 1995] 

R. Srikant and R. Agrawal. "Mining generalized association rules". In Pro-

Page 157 



References 

ceedings of the 21st VLDB conference, pages 407-419, VLDB'95, Morgan 

Kaufman, 1995. 

[Srikant et al. 1997] 

R. Srikant, Q. VU and R. Agrawal. "Mining association rules with item con­

straints". In Proceedings of the third International Conference on Knowledge 

Discovery in Databases, pages 67-73, KDD'97, AAAI Press, 1997. 

[Stolorz and Musick 1997] 

P. Stolorz and R. Musick. Scalable High Performance Computing for KDD. 

Volume 1, Kluwer Academic Publishers, 1997. 

[Tamura and Kitsuregawa 1999] 

M. Tamura and M. Kitsuregawa. "Dynamic load balancing for parallel as­

sociation rule mining on heterogeneous pc cluster systems". In Proceedings 

of 25th International Conference on Very Large Databases, pages 162-173, 

1999. 

[Taylor 1998] 

P. Taylor. "Key role for business intelligence". Financial Times, pages 1-2, 

1998. 

[Thomas and Sarawagi 1998] 

S. Thomas and S. Sarawagi. "Mining generalized association rules and se­

quential patterns using sql queries". In Proceedings of the Third International 

Conference on Data Mining and Knowledge Discovery, pages 344-348, AAAI 

Press, 1998. 

[Toivonen 1996] 

H. Toivonen. "Sampling large databases for association rules". In Proceedings 

of22nd VLDB Conference, pages 134-145, Morgan Kaufman, 1996. 

Page 158 



References 

[Wang et al. 1998] 

K. Wang, S. H. W. Tay and B. Liu. "Interestingness-based interval merger for 

numeric association rules". In Proceedings of the fourth international con­

ference on Knowledge Discovery and Data Mining, pages 121-127, KDD'98, 

AAAI Press, 1998. 

[Willet 1988] 

P. Willet. "Recent trends in hierarchical document clustering". Not sure, vol­

ume 24, number 5, pages 577-597, 1988. 

[Yoda et al. 1997] 

K. Yoda, T. Fukuda, Y. Morimoto and S. Morishita. "Computing optimized 

rectilinear regions for association rules". In Proceedings of the third interna­

tional conference on Knowledge Discovery and Data Mining, pages 96-103, 

KDD'97, AAAI Press, 1997. 

[Zaki 1997] 

M.J. Zaki. Fast Mining of Sequential Patterns in Very Large Databases. Tech­

nical Report, Department of Computer Science, University of Rochester, NY, 

1997. Technical Report 668. 

[Zaki et al. 1997] 

M.l Zaki, S. Parthasarathy, M. Ogihara and W. Li. New Algorithms for Fast 

Discovery of Association Rules. Technical Report, Department of Computer 

Science, University of Rochester, NY, 1997. Technical Report 651. 

Page 159 



Appendix A 

The fleet database consisted of the following attributes: 

I. Driver name 
2. Sex 
3. Job description 
4. Category 
5. Lease agreement 
6. Cost centre 
7 . Make/Model 
8. Registration date 
9. Latest mileage 
10. Last service 
1I. Fuel card 
12. Average mpg 
13. Car telephone 
14. Average telephone bill 
15. Licence issue date 
16. Accident 
17. Previous vehicle 
18. Other drivers 

The attributes were held in text format and therefore a pre-processing step to create 

a binary vector was required. The following list details how and why the different 

attributes were split: 

1. Driver name: Not included for reasons of privacy. 

2. Sex: 1\vo attributes MIF. 

3. Job description: Four attributes Executive, Senior Manager, Manager or Op­

erations. 
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4. Category: Which operation ran the vehicle, three attributes Royal, Sun Al­

liance or Pool. 

5. Lease agreement: Who was the lease agreement with, three attributes Lex, 

Hertz or Ford. 

6. Cost centre: Which cost centre was the vehicle charged to, thirty attributes 

such as, Group Accounting-London, Planning & Research, Sponsorship, Ac­

counting Internal Audit etc. 

7. MakeIModel: Thirty attributes Saloon 2 door petrol, Saloon 2 door diesel, 

Estate 2 door petrol etc. 

8. Registration date: Thirty six attributes each month between January 1996 

and December 1998. 

9. Latest mileage: Twenty attributes, from 0 to 40,000 in increments of 2000. 

10. Last service: Thirty six attributes each month between January 1996 and 

December 1998. 

11. Fuel card: Two attributes YIN. 

12. Average mpg: Five attributes, 0 to 50 in increments of 10. 

13. Car telephone: Two attributes YIN. 

14. Average telephone bill: Six attributes, 0 to 300 (yearly) in increments of 25. 

15. Licence issue date: Six attributes, last thirty years in increments of 5. 

16. Accident: Six attributes, last thirty years in increments of 5. 

17. Previous vehicle; Two attributes YIN. 

18. Other drivers: Two attributes YIN. 
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The total number of attributes was 195 with 17 binary 1 's in each record. 

The print stock database consisted of the following attributes: 

1. Stock code. 
2. Available stock. 
3. Minimum level. 
4. Maximum level. 
5. Minimum supplier order quantity. 
6. Maximum customer order quantity. 
7. On supplier order. 
8. On customer order. 
9. Unit of sale. 
10. Unit of purchase. 
11. Pack size. 
12. List price. 
13. Average cost. 
14. Latest cost. 
15. Old list price. 
16. Weight. 
17. Date of last sale. 
18. Date of last purchase. 
19. Sales current month. 
20. Sales last month 
21. Sales last year. 
22. Division/Department. 
23. Supplier code. 
24. VAT rate. 

As with the fleet dataset the attributes were held in a mostly text format that required 

pre-processing to convert to a binary vector. The following list details how and why 

the different attributes were split: 

1. Stock code: Two hundred attributes. 

2. Available stock: Three attributes based on what was considered low, medium 

and high stock levels. 

3. Minimum level: As above. 

4. Maximum level: As above. 
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5. Minimum supplier order quantity: As above. 

6. Maximum customer order quantity: As above. 

7. On supplier order; As above. 

8. On customer order: As above. 

9. Unit of sale: Ten attributes detailing each, pads, kilo, book etc. 

10. Unit of purchase: As above. 

11. List price; Ten attributes 2,4,6,8,10,15,20,25,30,35. 

12. Average cost: As above. 

13. Latest cost: As above. 

14. Old list price: As above. 

15. Weight: Ten attributes 1-10 kilos. 

16. Date of last sale: Twelve attributes one each month for past year. 

17. Date of last purchase: As above. 

18. Sales current month: Three attributes based on what was considered low, 

medium and high stock levels. 

19. Sales last month: As above. 

20. Sales last year: As above. 

21. Division/Department: One hundred attributes, which department was stock 

ordered by Group Accounting-London, Planning & Research, Sponsorship, 

Accounting Internal Audit etc. 

22. Supplier code: Thirty attributes. 
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23. VAT rate: Five attributes, zero, exempt, 17.5%, 15%, unused. 

The total number of attributes was 459 with 24 binary 1 's in each record. 
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The following tables detail the results from the Chapter 5 tests for building the T­

tree. 

Test Group A 

A Candidates at level 1 
B Supported at level 1 
C Execution time level 1 
D Candidates at level 2 
E Supported at level 2 
F Execution time level 2 
G Candidates at level 3 
H Supported at level 3 
I Execution time level 3 
J Total execution time 

Key for the following three tables 

Dataset description: 

Dataset 1: Attributes 200, transaction records 100,000, record density 20% 

sup't A B C D E F G H I J 
4.75% 1000 187 28 17391 - 62 - - - 90 
4.50% 1000 187 28 17391 - 62 - - - 90 
4.25% 1000 187 28 17391 6 68 9 - - 96 
4.00% 1000 187 28 17391 15 73 924 - 2 101 
3.89% 1000 187 28 17391 2319 88 108880 - 739 855 

Results for Test Group A, Dataset 1 
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Dataset description: 

Dataset 2: Attributes 200, transaction records 100,000 (50,000 duplicates), record 

density 20% 

sup't A B C D E F G H I J 
4.75% 1000 187 18 17391 - 29 - - - 47 
4.50% 1000 187 28 17391 - 62 - - - 90 
4.25% 1000 187 28 17391 6 34 9 - - 52 
4.00% 1000 187 28 17391 15 37 924 - 2 57 
3.89% 1000 187 28 17391 2319 39 108880 - 349 406 

Results for Test Group A, Dataset 2 

Dataset description: 

Dataset 3: Attributes 200, transaction records 100,000, record density 6% 

sup't A B C D E F G H I J 
2.00% 1000 923 35 425503 51 799 - - - 834 
1.50% 1000 927 35 429201 77 825 501 - 79 939 
1.00% 1000 936 36 437580 151 845 1362 - 70 961 
0.75% 1000 941 36 442270 204 896 2198 - 83 1015 
0.50% 1000 944 36 445096 345 946 4562 - 99 1081 

Results for Test Group A, Dataset 3 
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Test Group B 

A Candidates at level 1 
B Supported at level 1 
C Execution time level 1 
D Candidates at level 2 
E Supported at level 2 
F Execution time level 2 
G Candidates at level 3 
H Supported at level 3 
I Execution time level 3 
J Candidates at level 4 
K Supported at level 4 
L Execution time level 4 
M Total execution time 

Key for the following four tables 

Dataset description: 

Dataset 1: Attributes 1000, transaction records 100,000, average 5 items per trans­

action. 

sur/t A B C D E F G H I J K L M 
2.00% 1000 30 10 435 1 11 - - - - - - 21 
1.50% 1000 44 10 946 3 12 70 - 2 - - - 22 
1.00% 1000 65 11 2080 10 15 237 1 2 - - - 28 
0.75% 1000 92 12 4186 16 15 499 1 2 - - - 29 
0.50% 1000 138 14 9453 30 18 1151 1 2 - - - 34 

Results for Test Group B, Dataset 1 
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Dataset description: 
Dataset 2: Attributes 1000, transaction records 100,000, average 20 items per trans­
action. 

8Up't A B C D E F G H I J K L 
2.00% 1000 277 30 38226 21 78 317 - 4 - - -
1.50% 1000 364 31 66066 42 147 1456 - 63 - - -
1.00% 1000 452 33 101926 116 159 13396 - 93 - - -
0.75% 1000 510 35 129795 418 218 57106 1 146 - - -
0.50% 1000 597 38 177906 1479 337 266459 39 1208 406 8 421 

Results for Test Group B, Dataset 2 

Dataset description: 
Dataset 3: Attributes 1000, transaction records 200,000, average 20 items per trans­
action. 

8Up't A B C D E F G H I J K 
2.00% 1000 274 62 37401 57 160 1095 - 20 - -
1.50% 1000 352 63 61776 97 194 2396 - 35 - -
1.00% 1000 440 63 96580 211 227 13161 - 49 - -
0.75% 1000 496 68 122769 487 308 54115 1 87 - -

L 
-
-
-
-

0.50% 1000 584 73 170236 1465 401 239404 28 2598 4470 2 654 

Results for Test Group B, Dataset 3 

Dataset description: 
Dataset 4: Attributes 1000, transaction records 100,000 (clustered), average 20 
items per transaction. 

8Up't A B C D E F G H I J K L M 
2.00% 1000 50 9 1225 5 8 47 - 2 - - - 17 
1.50% 1000 81 15 3240 6 21 66 - 4 - - - 40 
1.00% 1000 166 19 13695 25 13 142 - 12 - - - 56 
0.75% 1000 240 21 28680 28 26 361 - 14 - - - 61 
0.50% 1000 364 33 66066 70 78 1745 1 17 - - - 130 

Results for Test Group B, Dataset 4 
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Test Group B 

A Candidates at level 1 
B Supported at level 1 
C Execution time level I 
D Candidates at level 2 
E Supported at level 2 
F Execution time level 2 
G Candidates at level 3 
H Supported at level 3 
I Execution time level 3 
J Candidates at level 4 
K Supported at level 4 
L Execution time level 4 
M Candidates at level 5 
N Supported at level 5 
0 Execution time level 5 
p Total execution time 

Key for the following three tables 

Dataset description: 
Print Dataset: Attributes 459, transaction records 6,800, average 24 items per trans­
action. 

sup t A B C D E F G H I J K L M N 
3.50% 459 137 7 9316 1132 3 26579 2726 95 19629 - 207 - -
3.00% 459 158 7 12403 2686 3 64513 3238 347 22782 - 244 - -
2.50% 459 159 7 12561 3342 3 88085 3491 462 27063 - 288 - -
2.00% 459 159 7 1261 3549 3 99277 5006 530 49223 - 533 - -
1.50% 459 159 7 1261 3832 3 119816 5321 619 54372 497 582 2243 

Results Cor Test Group C, PrInt Dataset 
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Dataset description: 
Fleet Dataset: Attributes 195, transaction records 9,000, average 17 items per trans­
action. 

sup t A B C D E F G H I J K L M 
3.50% 195 79 2 30816 651 2 14972 1792 62 34306 575 411 2626 
3.00% 195 119 2 7021 721 2 30492 2030 81 59263 743 702 3547 
2.50% 195 194 2 18721 924 2 80596 3198 124 110669 1443 1324 21798 

N 
-

18 
35 

2.00% 195 195 3 18915 1040 2 91627 3942 133 114521 3370 1369 104718 360 
1.50% 195 195 3 18915 1821 3 22573 5527 173 257589 6050 3096 141740 899 

Results for Test Group C, Fleet Dataset 

Dataset description: 
Fleet Dataset: Attributes 191, transaction records 9,()()(), average 15 items per trans­
action. 

sup t A B C D E F G H I J K L M N 
3.50% 190 66 2 2145 471 1 6483 620 34 4756 48 58 24 
3.00% 191 116 2 6670 540 1 18302 782 50 10096 70 119 48 
2.50% 191 189 2 17766 696 2 52371 1447 82 20129 203 242 1313 
2.00% 191 190 3 17955 762 2 58073 1903 82 22093 517 257 702 
1.50% 191 190 3 17955 1287 2 74974 2913 99 86596 1278 1044 2862 18 

Results for Test Group C, F1eetl91 Dataset 
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Rules generated from the Fleet Dataset. 
**************************************** 
At 0.55 confidence no rules were generated 
for the following; 
A=>BC 
A=> BCD 
A=> BCDE 
AB=> CD 
AB=>CDE 
ABC=>DE 
ABCD=> E 
*************************************** 
Number of rules = 54 at 0.5500 confidence 
*************************************** 
Rule is Group accounting - London => Other drivers No :- 169/306 = 0.5522 
Rule is Group accounting - Liverpool => Phone No:- 163/295 = 0.5525 
Rule is Planning and Research => Prev Veh No :- 175/311 = 0.5627 
Rule is Group Treasury Corp Finance => Fuel Card No:- 168/303 = 0.5581 
Rule is Group Treasury Corp Finance => Other drivers Yes :- 1701301 = 0.5647 
Rule is Sponsorship => Prev Veh No :- 167/299 = 0.5585 
Rule is RSA Challenge => Other drivers No :- 173/311 = 0.5562 
Rule is Group Executive => Fuel Card No :- 1821324 = 0.5617 
Rule is Group Legal(life) => Prev Veh Yes:- 169/300 = 0.5633 
Rule is Group Strategy => Phone No :- 155/275 = 0.5636 
Rule is Life Cornhill => Other drivers Yes:- 154(277 = 0.5559 
Rule is Saloon 2Dr Petrol => Prev Veh No:- 166/297 = 0.5589 
Rule is Saloon 2Dr Diesel => Fuel Card No :- 175/314 = 0.5573 
Rule is Hatch 3Dr Petrol => Phone No :- 174/314 = 0.5541 
Rule is Hatch 5Dr Petrol => Prev Veh No:- 180/318 = 0.5660 
Rule is Hatch 5Dr Petrol => Other drivers Yes:- 1801318 = 0.5660 
Rule is Coupe 3Dr => Phone No :- 1781301 = 0.5647 
Rule is Coupe 3Dr auto => Prev Veh No :- 1711302 = 0.5662 
Rule is Coupe 3Dr auto => Fuel Card No:- 173/302 = 0.5728 
Rule is Commercial Petrol => Other drivers No :- 1701299 = 0.5685 
Rule is Commercial Diesel => Fuel Card Yes :- 160(283 = 0.5653 
Rule is Commercial Heavy => Phone Yes:- 1451259 = 0.5598 
Rule is Apr 96 => Fuel Card Yes :- 152/263 = 0.5779 
Rule is Apr 96 => Prev Veh No:- 146(263 = 0.5551 
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Rule is Jun 96 => Fuel Card No :- 140/250 = 0.5600 
Rule is Sep 96 => Other drivers No:- 138/246 = 0.5609 
Rule is Jan 97 => Phone Yes :- 140/250 = 0.5600 
Rule is Jan 97 => Prey Veh No:- 140/250 = 0.5600 
Rule is May 97 => Phone Yes :- 152/273 = 0.5567 
Rule is Oct 97 => Prev Veh No :- 135/253 = 0.5744 
Rule is Nov 97 => Phone No :- 140/248 = 0.5645 
Rule is Nov 97 => Other drivers Yes :- 1381248 = 0.5564 
Rule is Mar 98 => Fuel Card No :- 138/246 = 0.5609 
Rule is May 98 => Prey Veh Yes:- 1411253 = 0.5573 
Rule is Jul 98 => Other drivers No :- 139/243 = 0.5720 
Rule is Aug 98 => Prev Veh No :- 148/264 = 0.5606 
Rule is Sep 98 => Other drivers Yes :- 138/248 = 0.5564 
Rule is Oct 98 => Prey Veh No :- 143/245 = 0.5836 
Rule is 30,000 miles => Prey Veh Yes :- 266/476 = 0.5588 
Rule is 38,000 miles => Prey Veh No :- 243/436 = 0.5573 
Rule is 40,000 miles => Fuel Card No :- 248/448 = 0.5535 
Rule is Serv Jan 96 => Phone No ;- 143/257 = 0.5564 
Rule is Serv Jan 96 => Prev Veh Yes;- 1421257 = 0.5525 
Rule is Serv May 96 => Other drivers Yes ;- 138/243 = 0.5679 
Rule is Serv Sept 96 => Other drivers Yes ;- 1401227 = 0.6167 
Rule is Serv Oct 96 => Prev Veh No :- 1601280 = 0.5714 
Rule is Serv Oct 96 => Other drivers Yes ;- 1561280 = 0.5571 
Rule is Serv Nov 96 => Prev Veh Yes :- 145/261 = 0.5555 
Rule is Serv Nov 97 => Fuel Card Yes ;- 1351231 = 0.5844 
Rule is Serv Apr 98 => Prev Veh No ;- 1551276 = 0.5615 
Rule is Serv Aug 98 => Other drivers Yes ;- 1411256 = 0.5507 
Rule is Fuel Card Yes => Phone Yes ;- 140/243 = 0.5761 

**************************************** 
Number of rules = 58 at 0.5500 confidence 
*************************************** 
Rule is Executive Pool => Fuel Card No ;- 404n28 = 0.5549 
Rule is Female 12,000 miles => Other drivers Yes ;- 1381240 = 0.5750 
Rule is Male 30,000 miles => Fuel Card Yes ;- 1391248 = 0.5604 
Rule is Male 30,000 miles => Prev Veh Yes :- 142/248 = 0.5725 
Rule is Male 38,000 miles => Prev Veh No ;- 1361225 = 0.6044 
Rule is 26,000 miles Fuel Card Yes => Phone Yes :- 142/236 = 0.6016 
Rule is 28,000 miles Fuel Card Yes => Prev Veh No:- 140/242 = 0.5785 
Rule is 30,000 miles Fuel Card Yes => Prev Veh Yes :- 138/250 = 0.5520 
Rule is Operations 20 mpg => Prev Veh No ;- 260/462 = 0.5627 
Rule is Hertz 20 mpg => Prey Veh No ;- 3321600 = 0.5533 
Rule is Manager 30 mpg => Prey Veh No :- 260/470 = 0.5531 
Rule is Operations 50 mpg => Prev Veh No ;- 260/462 = 0.5627 
Rule is 26,000 miles Phone Yes => Other drivers No ;- 146/261 = 0.5593 
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Rule is Executive 50 Pounds => Prev Veh No :- 213/387 = 0.5503 
Rule is Operations 100 Pounds => Other drivers Yes :- 203/367 = 0.5531 
Rule is 40 mpg 100 Pounds => Prev Veh Yes :- 160/282 = 0.5673 
Rule is Pool 200 Pounds => Prev Veh No :- 284/512 = 0.5546 
Rule is 20 mpg 200 Pounds => Other drivers Yes;- 170/306 = 0.5555 
Rule is Executive 250 Pounds => Other drivers Yes :- 207/375 = 0.5520 
Rule is Hertz 300 Pounds => Prev Veh No:- 290/521 = 0.5566 
Rule is 10 mpg 300 Pounds => Other drivers Yes:- 168/304 = 0.5526 
Rule is Operations 0-5 yrs => Prev Veh No :- 214/380 = 0.5631 
Rule is 20 mpg 0-5 yrs => Prev Veh No :- 170/298 = 0.5704 
Rule is 50 mpg 0-5 yrs => Other drivers No :- 166/300 = 0.5533 
Rule is 150 Pounds 0-5 yrs => Other drivers No :- 1411254 = 0.5551 
Rule is 200 Pounds 0-5 yrs => Prev Veh No :- 152/256 = 0.5937 
Rule is Operations 6-10 yrs => Prev Veh No :- 207/370 = 0.5594 
Rule is Lex 6-10 yrs => Other drivers Yes :- 291/517 = 0.5628 
Rule is 20 mpg 6-10 yrs => Other drivers Yes :- 170/299 = 0.5685 
Rule is 300 Pounds 6-10 yrs => Other drivers Yes:- 1461254 = 0.5748 
Rule is 50 Pounds 11-15 yrs => Other drivers No:- 137/235 = 0.5829 
Rule is 20 mpg 16-20 yrs => Prev Veh No :- 159/288 = 0.5520 
Rule is Female 25-30 yrs => Other drivers Yes :- 417/752 = 0.5545 
Rule is Royal 25-30 yrs => Other drivers Yes :- 2851513 = 0.5555 
Rule is Fuel Card Yes 25-30 yrs => Other drivers Yes :- 411/733 = 0.5607 
Rule is 30 mpg 25-30 yrs => Other drivers Yes :- 1511272 = 0.5551 
Rule is 50 Pounds 25-30 acc yrs => Other drivers No :- 136/236 = 0.5762 
Rule is 20 mpg 21-25 acc yrs => Prev Veh No :- 1681295 = 0.5694 
Rule is 40 mpg 21-25 acc yrs => Other drivers Yes :- 168n79 = 0.6021 
Rule is 200 Pounds 21-25 acc yrs => Other drivers Yes :- 146/259 = 0.5637 
Rule is 0-5 yrs 16-20 acc yrs => Prev Veh No:- 1381244 = 0.5655 
Rule is 11-15 yrs 16-20 aee yrs => Other drivers Yes:- 140/243 = 0.5761 
Rule is 16-20 yrs 16-20 aec yrs => Other drivers No :- 137n45 = 0.5591 
Rule is 21-25 yrs 16-20 ace yrs => Prev Veh Yes:- 138/250 = 0.5520 
Rule is 10 mpg 11-15 ace yrs => Other drivers Yes :- 165n96 = 0.5574 
Rule is 20 mpg 11-15 ace yrs => Prev Veh No:- 1621292 = 0.5547 
Rule is 300 Pounds 11-15 ace yrs => Prev Veh No :- 140/251 = 0.5577 
Rule is 0-5 yrs 11-15 ace yrs => Other drivers No :- 1461252 = 0.5793 
Rule is 6-10 yrs 11-15 aee yrs => Other drivers Yes :- 144/260 = 0.5538 
Rule is 100 Pounds 6-10 ace yrs => Other drivers Yes ;- 144/251 = 0.5737 
Rule is 250 Pounds 6-10 ace yrs => Prev Veh Yes:- 145n48 = 0.5846 
Rule is 300 Pounds 6-10 ace yrs => Prev Veh No:- 144/257 = 0.5631 
Rule is 25-30 yrs 6-10 ace yrs => Other drivers Yes :- 137/236 = 0.5805 
Rule is 40 mpg 0-5 ace yrs => Prev Veh Yes :- 1611292 = 0.5513 
Rule is 150 Pounds 0-5 aec yrs => Prev Veh Yes :- 1521266 = 0.5714 
Rule is 250 Pounds 0-5 ace yrs => Other drivers Yes :- 150/261 = 0.5747 
Rule is 6-10 yrs 0-5 ace yrs => Other drivers Yes:- 1361246 = 0.5528 
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**************************************** 
Number of rules = 58 at 0.5500 confidence 
*************************************** 
Rule is Male Pool Lex => Phone No:- 2951518 = 0.5694 
Rule is Male Pool Fuel Card No => Phone No:- 4251757 = 0.5614 
Rule is Male Lex Fuel Card No => Phone No :- 4271771 = 0.5538 
Rule is Pool Lex Fuel Card No => Phone No :- 288/522 = 0.5517 
Rule is Female Executive Phone No => Other drivers Yes :- 323/575 = 0.5617 
Rule is Male Operations Phone No => Prev Veh No :- 333/585 = 0.5692 
Rule is Operations Fuel Card No Phone No => Prev Veh No :- 318/562 = 0.5658 
Rule is Operations Phone Yes Prev Veh No => Other drivers Yes:- 3051553 = 0.5515 
Rule is Executive Phone No Prev Veh No => Other drivers Yes:- 316/574 = 0.5505 

**************************************** 

Number of Nodes in P-tree = 11654 

Support Level = 280 (3%) 

Supported at level 1 = 119 
Execution time level 1 = 4.00 seconds 

Candidates generated for level 2 = 700 1 
Supported at level 2 = 721 
Execution time level 2 = 2.00 seconds 

Candidates generated for level 3 = 30492 
Supported at level 3 = 2030 
Execution time level 3 = 92.00 seconds 

Candidates generated for level 4 = 59263 
Supported at level 4 = 743 
Execution time level 4 = 747.00 seconds 

Candidates generated for level 5 = 3547 
Supported at level 5 = 18 
Execution time level 5 = 47.00 seconds 

The following are some of the singles and pairs of 
supported sets from the Fleet Dataset 
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o Support for this itemset = 4518 
1 Support for this item set = 4482 
2 Support for this itemset = 2248 
3 Support for this itemset = 2262 
4 Support for this itemset = 2224 
5 Support for this itemset = 2266 
6 Support for this itemset = 2959 
7 Support for this itemset = 3079 
8 Support for this itemset = 2962 
9 Support for this itemset = 3037 
10 Support for this itemset = 3072 
11 Support for this itemset = 2891 
12 Support for this itemset = 306 
13 Support for this itemset = 295 
14 Support for this itemset = 296 
15 Support for this itemset = 322 
16 Support for this itemset = 320 
17 Support for this itemset = 299 
18 Support for this itemset = 311 
19 Support for this itemset = 316 
20 Support for this itemset = 301 
21 Support for this itemset = 315 
22 Support for this itemset = 299 
23 Support for this itemset = 287 
24 Support for this itemset = 311 
25 Support for this itemset = 318 
26 Support for this itemset = 324 
27 Support for this itemset = 288 
28 Support for this itemset = 287 
29 Support for this itemset = 287 
30 Support for this itemset = 300 
31 Support for this itemset = 326 
32 Support for this itemset = 293 
33 Support for this itemset = 281 
34 Support for this itemset = 291 
35 Support for this itemset = 319 
36 Support for this itemset = 317 
37 Support for this itemset = 305 
38 Support for this itemset = 297 
39 Support for this itemset = 287 
40 Support for this itemset = 303 
41 Support for this itemset = 303 
42 Support for this itemset = 314 
43 Support for this itemset = 342 
44 Support for this itemset = 332 
45 Support for this itemset = 303 
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46 Support for this itemset = 311 
47 Support for this itemset = 291 
48 Support for this itemset = 316 
49 Support for this itemset = 318 
50 Support for this itemset = 286 
51 Support for this itemset = 284 
52 Support for this itemset = 310 
53 Support for this itemset = 301 
54 Support for this itemset = 291 
55 Support for this itemset = 289 
56 Support for this itemset = 302 
57 Support for this itemset = 283 
58 Support for this itemset = 299 
59 Support for this itemset = 316 
60 Support for this itemset = 281 
61 Support for this itemset = 283 
62 Support for this itemset = 341 
63 Support for this itemset = 325 
64 Support for this itemset = 283 
65 Support for this itemset = 298 
66 Support for this itemset = 281 
67 Support for this itemset = 443 
68 Support for this itemset = 427 
69 Support for this itemset = 448 
70 Support for this itemset = 492 
71 Support for this itemset = 438 
72 Support for this itemset = 478 
73 Support for this itemset = 432 
74 Support for this itemset = 449 
75 Support for this itemset = 423 
76 Support for this itemset = 429 
77 Support for this itemset = 443 
78 Support for this itemset = 448 
79 Support for this itemset = 482 
80 Support for this itemset = 478 
81 Support for this itemset = 476 
82 Support for this itemset = 449 
83 Support for this itemset = 439 
84 Support for this itemset = 442 
85 Support for this itemset = 436 
108 Support for this itemset = 443 
109 Support for this itemset = 427 
110 Support for this itemset = 448 
111 Support for this itemset = 492 
112 Support for this itemset = 438 
113 Support for this itemset = 478 
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114 Support for this itemset = 432 
115 Support for this itemset = 449 
116 Support for this itemset = 423 
117 Support for this itemset = 429 
118 Support for this itemset = 443 
119 Support for this itemset = 448 
120 Support for this itemset = 482 
121 Support for this itemset = 478 
122 Support for this itemset = 476 
123 Support for this itemset = 449 
124 Support for this itemset = 439 
125 Support for this itemset = 442 
126 Support for this itemset = 436 
127 Support for this itemset = 448 
137 Support for this itemset = 280 
164 Support for this itemset = 4483 
165 Support for this itemset = 4517 
166 Support for this itemset = 1798 
167 Support for this itemset = 1787 
168 Support for this itemset = 1834 
169 Support for this itemset = 1765 
170 Support for this itemset = 1816 
171 Support for this itemset = 4462 
172 Support for this itemset = 4538 
173 Support for this itemset = 1502 
174 Support for this itemset = 1463 
175 Support for this itemset = 1502 
176 Support for this itemset = 1529 
177 Support for this itemset = 1480 
178 Support for this itemset = 1524 
179 Support for this itemset = 1505 
180 Support for this itemset = 1479 
181 Support for this itemset = 1482 
182 Support for this itemset = 1489 
183 Support for this itemset = 1512 
184 Support for this itemset = 1533 
185 Support for this itemset = 1529 
186 Support for this itemset = 1487 
187 Support for this itemset = 1507 
188 Support for this itemset = 1464 
189 Support for this itemset = 1494 
190 Support for this itemset = 1528 
191 Support for this itemset = 4440 
192 Support for this itemset = 4560 
193 Support for this itemset = 4558 
194 Support for this itemset = 4442 
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The sets at level 2 are ... 

02 Support for this itemset = 1150 
1 2 Support for this itemset = 1098 
03 Support for this item set = 1122 
1 3 Support for this itemset = 1140 
04 Support for this itemset = 1125 
1 4 Support for this itemset = 1099 
05 Support for this itemset = 1121 
1 5 Support for this itemset = 1145 
o 6 Support for this itemset = 1522 
1 6 Support for this itemset = 1437 
2 6 Support for this itemset = 744 
3 6 Support for this itemset = 746 
4 6 Support for this itemset = 705 
5 6 Support for this itemset = 764 
07 Support for this itemset = 1531 
1 7 Support for this itemset = 1548 
2 7 Support for this itemset = 760 
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Rules generated from the Print Dataset. 

At 0.3800 confidence no rules were generated for the following; 

A=>BC 

**************************************** 
Number of rules = 8 at 0.3800 confidence 
*************************************** 

Rule is List price 8 => Sales last yr: Low :- 264/689 = 0.3831 
Rule is Weight 2kg => Sales last yr: Low :- 248/652 = 0.3803 
Rule is Weight 5kg => Sales last mth: high :- 247/647 = 0.3817 
Rule is Last sale Jan => Sales last mth: med :- 2281582 = 0.3917 
Rule is Last sale Apr => Sales last yr: Low :- 244/577 = 0.3882 
Rule is Last sale Dec => Sales last yr: Low :- 213/531 = 0.4011 
Rule is Last purch Sept => Sales last mth: high :- 208/546 = 0.3809 
Rule is Last purch Dec => Sales current mth: high :- 2151560 = 0.3839 

**************************************** 
Number of rules = 17 at 0.3800 confidence 
*************************************** 
Rule is Avail stock low Min lev med => Sales last yr: low :- 2881784 = 0.3850 
Rule is Min lev low Max lev low => Cust ord med :- 267/697 = 0.3803 
Rule is Avail stock med Max lev high => On sup ord med :- 2741707 = 0.3875 
Rule is Avail stock high Min sup ord low => On sup ord med:- 2901760 == 0.3815 
Rule is Avail stock med Min sup ord med => Sales cmt mth low :- 2761716 = 0.3854 
Rule is Avail stock low On sup ord low => Sales cmt mth high :- 2971761 = 0.3902 
Rule is Min lev med On sup ord med => Sales cmt mth low :- 2971761 = 0.3902 
Rule is Avail stock high On sup ord high => Sales last mth med :- 2831736 = 0.3845 
Rule is Min lev low On sup ord high => On cust ord med :- 2871743 = 0.3862 
Rule is Max lev low On sup ord high => On cust ord med:- 2941763 = 0.3853 
Rule is Max lev high On sup ord high => Sales cmt mth low :- 3011791 = 0.3805 
Rule is Avail stock low On cust ord high => Sales last yr: low :- 2741711 = 0.3853 
Rule is Max lev low On cust ord high => Sales cmt mth low :- 2741708 = 0.3870 
Rule is Avail stock med Sales cmt mth low => Sales last mth high :- 292/767 = 0.3807 
Rule is Max lev med Sales cmt mth med=> Sales last yr: low :- 2931761 = 0.3850 
Rule is On cust ord high Sales cmt mth med => Sales last yr: low :- 2721713 = 0.3814 
Rule is Avai] stock low Sales cmt mth high => Sales last yr: low :- 2961760 = 0.3894 
*************************************** 
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