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ABSTRACT

The work described in this thesis is concernéd with theoretical and
experimental aspects of the study of interfacial sturcture in germanium '
bicrystals using selected-area diffraction (SAD), convergent-beam
diffraction (CBED), and large-angle-convergent-beam diffraction
(LACBED). The theoretical work comprises a crystallographic treatment
which enables the diffraction groups for bicrystal specimens to be de-
termined, taking into account the relative orientation and position of the
adjacent crystals, and whether the interface is parallel (plan-view spec-
imens) or perpendicular (edge-on specimens) to the specimen surfaces.
Bicrystal specimens were prepared for electron microscopy from
germanium polycrystals comprising large grains. The interfaces studied
were £=3( 111 ) and ==3( 112 ), and Z=27( 552 ), and, in each case, both
"edge-on" and "plan-view" specimens were prepared. It was found that
the 2=3( 111 ) interface was planar, but theX=3( 112 ) exhibited a facetted
structure to some extent. The $=27( 552 ) interface exhibited extensive
facetting and decomposition, which complicated its investigation by

electron diffraction.

Using relatively large spot sizes, it was found that the CBED patterns
obtained with the incident probe straddling "edge-on" interfaces, corre-
sponded to the superimposition of the CBED patterns obtained separately
from the adjacent single crystals. This was explained in terms of the
summation of scattering events occurring in an incoherently related

manner in the adjacent crystals. On the other hand, CBED patterns from



"plan-view" specimens were interpreted in terms of the summation of
coherently related scattering events in the adjacent crystals. However,
the latter type of patterns did not reveal certain symmetries thought to -
be potentially present in the specimens, and this was consistent wi.th the:
suppression of these symmetries in specimen preparation, e.g. the
interface was not precisely parallel to the surfaces and did not occupy

the central plane.

Selected-area diffraction was found to be particularly useful in the
study of ¥=3( 112 ) "plan-view" specimens. Evidence was obtained
supporting an interfacial structure with centred 2x2 reconstruction. The
intensities of additional reflections arising due to this reconstruction were
found to be in good agreement with values calculated on the basis of
kinematic theory and using the atomic positions determined by. computer

simulation (Paxton et al. 1987).
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1.1. THE IMPORTANCE OF GRAIN BOUNDARY STRUCTURE.

Grain boundaries have significant influence on the properties of ma-
terials, for example, mechanical properties may be modified dramatically
(Smallman 1985), but in the present work we are particularly interested
in semiconductor materials, where grain boundaries can have a profound
influence on electrical propertiés such as resistivity, recombination effi-
ciéncy and I-V characteristics. Grain boundaries in semiconductors are
normally regarded as introducing deleterious electrical effects, but they
- can also play a role in determining the operating characteristics of several
types of electronic devices. They severely limit the performance of some,
such as thin film solar cells (Chu et al. 1976) and transistors (Anderson 1980).
On the other hand, in commercial varistors, the peculiar I-V character-

istics of grain boundaries are actually used advantageously (Mahan et al.
1979).

The ldng terin. objective of research into polycrystalline semiconductors
is to understand the origin of properties in terms of interfacial structure.
However, at present, only limited progress has been achieved toward this

goal, see for example Werner et al. 1952).

In the present study We are concerned with the structure of grain
boundaries in germanium, and the relationship between grain boundary
structure and electrical properties is outside of the scope of this thesis.
The present understanding of the structure of semiconductor grain
boundaries is firmly based on models developed for metallic boundaries.
The most cogent of these currently under discussion is the Structural
Unit Model, "SUM", (Sutton 1984, Sutton and Vitek 1983). From computer

generated relaxed grain boundary structures a small number of
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3-dimensional atomic units that form the cores of boundaries have been
identified. These units can also be considered as tﬁe cores of dislocations
at the boundary, and sd it is possible to describe the high ahgle grain
boundaries formally as arrays of very closely spaced dislocations. Certain
boundaries with very specific misorientation angles' (®), usually about
low index axes, contain only one structure unit. The core of the
boundary is then simply a 2-dimensional array of these units. Between
these favoured orientations, which are often calculated to have lower
energy than boundaries with more complex core structures, the calculated
structures show that many boundary cores can be described as linear
combinations of units characteristfc of the closest favoured boundaries.
A small angular deviation from a favoured boundary misorientation cah
be accommodat,ed by the introduction of a widely spaced array of new
structural units into the boundary core, this unit being characteristic
of the next favoured interface. These new structural units can also be
thought of as a secondary dislocation array accommodating the misorieh-
tation away from the favoured boundary. Thus effective use of the "SuM"
depends on the identification of a small number of structural units with |
which the core structure of boundaries within a particular niisorientation
range can be modelled. This model has a rather elegant correspondence
with the earlier geometric models of grain boundaries, where the coinci-
dence of lattice sites of the two crystals at the boundary plane is made

the criterion for describing the boundary structure (Pumphrey 1976 and

Grimmer et al. 1974).

Before the development of the experimental techniques that could be
used to investigate the structure of grain boundaries by direct obser-
vation, some attention was paid to the modelling of interfaces in covalent

materials, e.g. silicon and germanium. The boundaries were described
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as arrays of dislocations, and the atomic structures of the dislocation
cores were modelled so as to minimise both the density of dangling bonds,

and bond bending “and stretching (Hornstra 1959).

Direct observation of grain boundary structufes in semiconductors haé
only recently become common, and this can be related to the development
of the current generation of .High Resblution Electron Microscopes. With
these instruments it is sometimes possible to resolve the atomic structure
of crystals or bicrystals projected along certain low index directions
(Bourret et al. 1985a,b). However, more conventional electron microscopic
technique.s, such as Selected Area Diffraction (Hirsch et al. 1977), Conver-
gent Beam Electron Diffraction (Steeds 1979), and Large Angle Convergent
Beam Electron Diffraction (Tanakae et al. 1980), can also be used to give

useful information on boundary structure.:

1.2. THE OBJECTIVE OF THIS THESIS.

The objective of this thesis is to study the structure of interfaces in
germanium bicrystals supplied by J. J. Bacmann. The scheme of work to
accomplish this study is divided into two programmes. The first
programme is the preparation of germanium‘ bicryétal specimens for
transmission electron microscopy. The second one is determination of the
étructure and spacegroup of the germanium bicrystal specimens using
electron inicroscopy. The [irst programme includes preparation of two
different types of germanium bicrystal specimen depending on the orien-
tation and position of the boundary pléne with respect to the surface of
the bicrystal specimen. One type is called "edge-on" specimen where the.
boundary plane is perpendicular to the specimen surfaces, and the other

is called "plan-view", where the boundary plane is parallel to the speci-
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men surfaces. The procedure for the preparation of germanium bicrystal
specimens for electron microscopy comprises five steps. These steps are
slicing germanium bulk materials, drilling the slice into 3mm‘ discs,
dimpling the discs, chemical étching of the discs and finally ion be#m
thinning of the discs. The techniques used for structure and spacegroup
determinations in the second part of the programme are principally
transmission electron microscopy, but optical microsc.opy,' X-ray
diffraction, and scanning electron microscopy were also used. Optical and
scanning microscopy were used to detect the presehce of the grain
boundaries in germanium slices, and to photograph these. The Laue
back-reflection X-ray method was used to determine the approximate
orientation between. the different grains present in a germanium slice.
Transmission electron microscopy was used, first, to observe the micro-
scopic structure of germanium bicrystals by employing bright—ﬁeld and
dark-field imaging techniques. Second, the precise orientation relation-
ship between the bicrystal grains, the indices of the boundary planes
and the periodicity of the interfacial boundary ‘planes in germanium
bicrystal specimens was determined using the Selected Area Diffraction
(SAD) technique. Finally,it was intended to determine the spacegroup
of germanium bicrystal specimens by making use of Convergent Beam
Electron Diffraction (CBED) and Large Angle Convergent Beam Electron
Diffraction (LACBED) techniques.

1.3. THE SCOPE OF THE THESIS.

In chapter two of this thesis we summarise, initially, the theoretical
method for treating the symmetry of single crystals. Then we develop
and formulate the theory which deals with the symmetry of bicrystals.

Finally, this theory is applied to three germanium bicrystals with dif-
15



ferent relative orientat_ions of the componeﬁt crystals, which, in partic-
ular, the variation of bicrystal syminetfy as the relative position of the
crystals is changed is 'co‘nsidered. In chapter three the experimental
electron microscopical techniques used in the present study of interfaces
are introduced in more detail. The theoretical aspects of the CBED
technique are developed in chapter four, and, in particular pi‘ese_nts a
theoretical study of single crystal and bicrystal diffraction groups. First,
the correspondences befween single crystal point symmetries and the
diffraction groups have been determined by a new procedure, and com-
pared with those derived by Buxfon et al. (1974). Secondly, the relations
between single crystal point symmetries and bright-field, projection
diffraction and whole pattern point groups of CBED patterns have been
found using grﬁup theoretical methods, and tabulated. The equivalences
between the "plan-view" bicrystal specimen point symmetries and the 31
diffraction groups are established, and found to be identical to those

- between single crystal point symmetries and the 31 diffraction groups
(Buxton et al. 1974).

The experimental results obtained using the different techniques which
have been used to study the structure of germanium interfaces are pre-
sented in chapter five. Chapter six presents the discussion of the ex-
perimental results, making‘use of the theoretical considerations included
in chapters two and three. The principal conclusions reached in the
present work and suggestions for further work are set out in chapter

seven
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2.1. INTRODUCTION.

The purpose of this chapter is to introduce the method devised by .
Pond&Vlachavas (1983) for treating the symmetry of bicrystals and to

apply this procedure to the case of germanium bicrystals.

By way of introduction, we consider initially the symmetry of single
crystals, and germanium in particular. We use the notation set out in
the International Tables for Crystallography (Hahn 1984) for the matrix

representation of symmetry operations.

The symmetry of dichromatic patterns, complexes and bicrystals de-
pends on the relative orientation and position of the adjacent germanium
crystals and in the latter casé, the orientation of the interface. In the
presént work we are concerned with three distinct orientation relation-
ships, which can be defined by the axis/angle pairs <111>60°
<110>38.94° and <110>31.59°, respectively; we refer to these as
*=3,X=9and X = 27 orienfations and.will define the parameter X later.
The symmetry of. the dichromatic pattern and complex for a given ori-
entation relationship may vary as the relative position of the adjacent
;':rystals changes and the determination of such variations Will be dis-
cussed in some detail since experimental methods for measuring the

relative position with considerable accuracy are available.
In the £ = 3 case, the symmetry of the pattern and complex can

belong to the hexagonal class and we have found it helpful to use the

indexing method for such cases introduced by F.C.Frank (1965).
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2.2. CRYSTAL SYMMETRY.

The symmetry possessed by a crystal may be expressed concisely
by one of the 230 crystallographic spacegroups (Hahn 1984). Each
group represents the combination of the crystal point symmetry oper-
ations (e.g. the identity, inversion, rotation by 2z/n, n =1, 2, 3, 4
or 6, reflection and roto-inversion) and the infinite set of translation
vectors constituting the crystal's lattice. 'Each combination must trans-

form the crystal into itself. Symmetry operations are represented in
matrix notation (Hahn 1984) by the symbol (W, w), where W is (3x3)

" matrix and w is (3x1) column matrix. The former répresents the rotation
part and the latter represents the translation part of a symmetry op-

eration.

We now consider the symmetry of germanium. Its lattice is F.C.C.
and is represented schematically by the large&small circles in
Fig.2.1(a). Fig.2.1(b), repro'ducedvfrom the international tables for
crystallography (Hahn 1984), shows the symmetry elements present at
the upper left quadrant of the lattice in Fig.2.1(a). Examination of
this figure shows that, besides the 3-fdld axes along <111> there are
mirror planes perpendicular to <100> and <110>. Thus, the spacegroup
of the F.C.C. lattice (Fig.2.1(a)) is Fm3m No. 225 (Hahn 1984), which
contains forty eight point symmetry operations as tabulated in Table
2.1. The number and the coordinate triplets of the symmetry operations

(with respect to the chosen origin at position with site symmetry m3m)

are given in the first two columns; the point symmetry'operations, W,
are given in last column. Fig.2.1(b) and Table 2.1 show that the lattice
does not exhibit mirror-glide planes or screw-rotation axes, and

therefore its spacegroup is called symmorphic.
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(b)

Fig. 2.1. (a) The projection along [001] of a face centre cubic
(F.C.C.) lattice. Large and small circles are at heights
0 and i, respectively.
(b) The symmetry elements present at the upper left

quadrant of the F.C.C. lattice in (a) (reproduced

from Hahn 1984).



Table 2.1. The symmetry operations in the spacegroup
Fm3m (No. 225); origin at m3m.

No. Coordinate w No. Coordinate W
Triplets Triplets

(1) X,¥,2 1 (25) -x,-y,-z

(2)  z,x,y 3 (28) -z,-x,-y 3’
(3)  y,z,x 3 (27)  -y,-z,-x 3
(4) x,z,y m (28) X, "Z,y 2
(5) V,X,Z m (29) Y, "X,-2 2
(6) L Z,¥Y,X m (30) tZ,"y,"X 2
(7 X,-Y,"2 2 (31) -x,y,z m
(8)  z,-x,-y 3 @) -zx,y 3"
(%)  y,-z,-x 3 (33)  -y,z,x 3
(10) X,"Z,y m (34) -X,2,¥y 2
(11)  y,-x,-z 3* (35) -y,x,z 4"
(12) z,-y,-x 1 (36) -z,y,x 4"
(13) -x,y,-z 2 (37) X,"y,Z m
(14) -z,x,-y 3" (38)  z,-x,y 3"
(15) -y,z,-x 3 (39) Y, Z,X 3
(16) -x,z,-y ' @0 x,-z,y g’
(A7) -y,x,-z ' (41)  y,-x,z 4"
(18) -z,y,-x rzn 223; z,-y,X 2
19) “X,"y¥,2 X,¥,"2 m
( + +
(20) ~Z,-X,y 3 (44) Z,X,"y 3
(21) -y,-z,x 3 (45) V,z,-X 3
(22) -x,-z,y 3 (46)  x,z,-y 4"
(23) -y,-x,z m (47) V,X, -z 2
(24) -z,-y,x 3" (48)  z,y,-x 4t




Fig. 2.'2(a) shows a [001] projection of a germanium crystal; the basis
atoms occupy the positions with coordinates 000; 111 and those related
by the face-centring translations. Germanium has the spacegroup
Fd3m No. 227 (Hahn 1984). Its symmetry operatibns are shown in
Fig.2.2(b) and (c¢), and given in Tables 2.2(a) and (b), respectively.
Column one gives the number of the symmetry operations, column two

gives their coordinate triplets and the last three columns give the point
symmetry operations, W, their glide or screw pafts, Wg, and their lo-

cation parts, w] (due to the location of the symmetry operation), re-
spectively. Thé' origin of the spacegroup Fd3m may be ‘taken at the
position with site Symmetry 43m, as vshown in Table 2.2(a), or at a
centre of inversion at a positioh with site symmetx;y 3m, as shown in
Table 2.2(b). Fig.2.2(a), (b), Tables 2.2(a) and (b) show that the
spacegroup Fd3m contains screw-rotation ‘and mirror-giide symmetry
operations, i.e., germanium crystals are non-symmorphic and, by
comparihg these operations with those in Table 2.1 of the germanium
lattice, one can see that there is a one to one correspondenqe between
them, i.e., the germanium crystal's symmetry is isomorphous to its

lattice, and is hence referred to as being holosymmetric.

2.3. DICHROMATIC PATTERNS.

A dichromatic pattern is created by misorienting two crystal lattices,
one designated arbitrarily white and one black (distinguished here using
the Greek letters A, and p, respectively), by a given angle about some
axis passing through a lattice site considered as an origin. For example,

the misorientation of two F.C.C. lattices by the following axis-angle

pairs, [ 111 ],60°, [110], 38.94° and [110],31.59°, create the dichromatic
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Fig. 2.2. (a) The projection along [001] of a diamond crystal.
Large and small circles are at heights O and
respectively. Small and large squares are at heights
1/4 and 3/4, respectively.

(b) The representation of some of the symmetry elements
present at the upper left quadrant of (a), where the
origin is chosen at centre (3m), at
1/8 1/8 1/8 from the site which has symmetry
43m (reproduced from Hahn 1984).

(c) The same as (b), but the origin is chosen at 43m,

at -1/8 -1/8 -1/8 from centre (3m).



Table 2.2(a). The symmetry operations in the spacegroup
Fd3m (No. 227); origin at 33m.

Coordinate Triplets

W wg w;
| X,Y,Z 1 [0,0,0 0,0,0
(2) |-X,-Y+1/2,Z+1/2 2 |0,0,1/2 0,1/2,0
(3) |-X+1/2,Y+1/2,-2 2 {0,120 1/2,0,0
(4) | X+1/2,-Y,-2+1/2 2 | 1/2,0,0 0,0,1/2
6y | z,x,Y 3* | 0,0,0 0,0,0
6) | Z+1/2,-X,-Y+1/2 3* | v3,-1/3,1/3 1/6,1/3,1/6
(7 |-2,-X+1/2,Y+1/2 3* | -1/3,1/3,1/3 1/3,1/6,1/6
(8) |-2+1/2,X+1/2,-Y 3* | 1/3,1/3,-1/3 1/6,1/6,1/3
o | v,2,X 3" 0,00 0,0,0
(10)|-Y+1/2,2Z+1/2,-X 3" | 0,0,0 1/2,1/2,0
(A1) Y+1/2,-Z,-X+1/2 3" 1 0,0,0 1/2,0,1/2
(12)}-vY,-z+1/2,X+1/2 3" | o,0,0 0,1/2,1/2
(13)] Y+3/4,X+1/4,-2+3/74 | 2 | 1/2,1/2,0 1/4,-1/4,3/4
(14)]-y+1/4,-X+1/4,-2+1/14| 2 | 0,0,0 1/4,1/4,1/4
(15)] Y+1/4,-X+3/4,Z+3/4 | 4" | 0,0,3/4 1/4,3/4,0
(16)]-Y+3/4,X+3/4,2+1/4 4* | 0,0,1/4 3/4,3/4,0
(17)| X+3/4,2+1/4,-Y+3/4 | 4" | 3/4,0,0 0,1/4,3/4
(18)}-X+3/4,Z+3/4,Y+1/4 2 | 0,172,172 3/4,1/4,-1/4
(19)]-X+1/4,-Z+1/4,-Y+1/4 } 2 | 0,0,0 1/4,1/4,1/4
(20)] X+1/4,-2+3/4,Y+3/4 | 4* | 1/4,0,0 0,3/4,3/4
(21)| z+3/4,Y+1/4,-X+3/4 | 4* | 0,1/4,0 3/4,0,3/4
(22)} Z+1/4,-Y+3/4,X+3/4 | 2 | 1/2,0,1/2 -1/4,3/4,1/4
(23)]|-z+3/4,Y+3/4,X+1/4 4" | 0,3/4,0 3/4,0,1/4
(24)|-Z+1/4,-Y+1/4,-X+1/4 | 2 | 0,0,0 1/4,1/4,1/4
(25)]-X+1/4,-Y+1/4,-2+174 | 1T | 0,0,0 1/4,1/4,1/4
(26)| X+1/4,Y+3/4,-Z+3/4 | d | 1/4,3/4,0 0,0,3/4
(27)} X+3/4,-Y+3/4,Z+1/4 | 4 | 3/4,0,1/4 0,3/4,0
(28)|-X+3/4,Y+1/4,2+3/4 d | 0,1/4,3/4 3/4,0,0
(29)|-2+1/4,-X+1/4,-Y+174 | 3* | 0,0,0 1/4,1/4,1/4
(30)|-2+3/4,X+1/4,Y+374 | 3° | 0,0,0 3/4,1/4,3/4
(31| z+1/4,X+3/4,-Y+3/4 | 3" | 0,0,0 1/4,3/4,3/4
(32)| Z+3/4,-X+3/4,Y+1/4 | 3" { 0,0,0 3/4,3/4,1/4
(33)]-Y+1/4,-2+1/4,-X+174 | 3" | 0,0,0 1/4,1/4,1/4
(34)| Y+3/4,-2+3/4,X+1/4 | 37| 0,0,0 3/4,3/4,1/4
(35)] -Y+3/4,Z+1/4,X+3/4 3| 0,0,0 3/4,1/4,3/4
(36)| Y+1/4,2+3/4,-X+3/4 | 37| 0,0,0 1/4,3/4,3/4
(37)}-Y+1/2,-X,Z+1/2 g | 1/4,-1/4,172 1/4,1/4,0
38)} v,X,Z m | 0,0,0 0,0,0
(39)]-Y,X+1/2,-2+1/2 3" | o,0,0 0,1/2,1/2
(40)] Y+1/2,-X+1/2,-2 30,00 1/2,1/2,0
(41)]-X+1/2,-Z,Y+1/2 4 | 0,0,0 1/2,0,1/2
(42)| X+1/2,-Z+1/2,-Y g | 1/2,1/4,-1/4 0,1/4,1/4
43 x,2,Y m | 0,0,0 0,0,0
(48)|-x,2+1/2,-Y+1/2 3| 0,0,0 0,1/2,1/2
(45)|-Z+1/2,-Y,X+1/2 3'| o,0,0 1/2,0,1/2
(46))-Z,Y+1/2,-X+1/2 g ~1/4,1/2,1/4 1/4,0,1/4
47| z+1/2,-Y+1/2,-X 3| 0,0,0 1/2,1/2,0
(48)} Z,Y,X m | 0,0,0 0,0,0




Table 2.2(b). The symmetry operations in the spacegroup
Fd3m (No. 227); origin at 3m.

No.

Coordinate Triplets

w wg w
)| X,Y,Z 1]0,0,0 0,0,0
(2) | -x+3/4,-Y+1/4,2+1/2 | 2 10,0,1/2 3/4,1/4,0
(3) | -X+174,Y+1/2,-2+374 | 2 |o,1/2,0 1/4,0,3/4
(4) | X+1/2,-Y+3/4,-2+1/4 | 2 |1/2,0,0 0,3/4,1/4
5y | z,X,Y 3" lo,0,0 0,0,0
(6) | z+1/2,-X+3/4,-Y+174 | 3* 0,0,0 1/2,3/4,1/4
(1) | -Z+3/4,-X+1/4,Y+1/2 | 3* |o,0,0 3/4,1/4,1/2
(8) | -Z+1/4,X+1/2,-Y+3/4 | 3* o,0,0 1/4,1/2,3/4
9 | Y,z2,X 3" {0,0,0 0,0,0
(10) | ~Y+1/4,Z+1/2,-X+3/4 | 3" |-1/3,1/3,1/3 7/12,2/12,5/12
a1y | Ye1/2,-2+3/4,-X+1/4 | 3~ |1/3,1/3,-1/3 2/12,5/12,7/12
(12) | -Y+3/4,-2+1/4,X+1/2 | 3~ 11/3,-1/3,1/3 5/12,7/12,2/12
(13) | v+3/4,X+1/4,-2+372 | 2 {1/2,1/2,0 1/4,~1/4,1/2
(14) | -Y,-X,-2Z 2 |o,0,0 0,0,0
(15) | Yv+1/4,-x+1/2,2+3/4 | 4" {0,0,3/4 1/4,1/2,0
(16) | -Y+1/2,X+3/4,Z+1/4 4" |o,0,1/4 1/2,3/4,0
(17)| X+3/4,Z+1/4,-Y+1/2 | 4 |3/4,0,0 0,1/4,1/2
(18) | -X+1/2,Z+3/4,Y+1/4 2 [o,1/2,1/2 1/2,1/4,-1/4
a9 | -x,-z,-v 2 o,0,0 0,0,0
20y | x+1/4,-z2+1/2,Y+3/4 | 4" }1/4,0,0 0,1/2,3/4
(21)| Z+3/4,Y+1/4,-X+172 | 4% Jo,1/4,0 3/4,0,1/2
(22) | z+1/4,-Y+1/2,X+3/4 | 2 |1/2,0,1/2 -1/4,1/2,1/4
(23) | -Z+1/2,Y+3/4,X+1/4 4" Jo,3/4,0 1/2,0,1/4
24)| -z,-Y,-X 2 lo,0,0 0,0,0
(25| -X,-Y,-Z 1 {000 0.0,0
(26)| X+1/4,Y+3/4,-2+1/2 | 4 |1/4,3/4,0 0,0,1/2
(27) | X+3/4,-Y+1/2,Z+174 | 4 |3/4,0,1/4 0,1/2,0
(28) | -X+1/2,Y+1/4,Z+3/4 d [0,1/4,3/4 1/2,0,0
29| -z,-X,-Y 3* {o,0,0 0,0,0
(30) | -Z+1/2,X+1/4,Y+3/4 3* |o,0,0 1/2,1/4,3/4
@yl z+1/4,x+3/4,-v+172 | 3* {0,0,0 1/4,3/4,1/2
(32)| Z+3/4,-X+172,Y+174 | 3°]0,0,0 3/4,1/2,1/4
33| -vy,-z,-x 3 lo,0,0 0,0,0
(34)| Y+3/4,-2+1/2,X+174 | 3" |0,0,0 3/4,1/2,1/4
(35) | -Y+1/2,2+1/4,X+3/4 3 {o,0,0 1/2,1/4,3/4
(36)| Y+1/4,2+3/4,-x+172 | 3" |o0,0,0 1/4,3/4,1/2
(37) | -Y+1/4,-X+3/4,2+1/2 | g |-1/4,1/4,1/2 1/2,1/2,0
38)| Y,X,Z : m }0,0,0 0,0,0
(39)] -Y+3/4,X+1/2,-2+174 | 3" }o,0,0 3/4,1/2,1/4
(40y{ Y+1/2,-X+1/4,-2+3/4| 3*)0,0,0 1/2,1/4,3/4
(41) | -X+1/4,-2+3/4,Y+1/2 | 4" {0,0,0 1/4,3/4,1/2
(4§) x+1/3{,-2*1/4,-Y¢3/4 g |1/2,-1/4,1/4 0,1/2,1/2
43| x,z, m |0,0,0 0,0,0
(44)| -Xx+3/4,2+1/2,-Y+1/4 | 3*|0,0,0 3/4,1/2,1/4
(45)| -z+1/4,-¥+3/4,%+1/2 | 3*]0,0,0 1/4,3/4,1/2
(46) | -Z+3/4,Y+1/2,-X+1/4 | g | 1/4,1/2,-1/4 1/2,0,1/2
@n| z+1/2,-v+1/4,-X+374| 37| 0,0,0 1/2,1/4,3/4
48| z,v,x m 0,00 0,0,0




patterns characterised by £ =3, £ = 9 and £ = 27, and these are shown
in Fig.2.3(a), (b), and (c), respectively. In Fig.2.3(a) it can bé seen
that one in three lattice sites is coincident (half shaded), while in
Fig.2.3(b) one in nine lattice sites is coincident, and in Fig.2.3(c) one
in twenty séven lattice sites is coincident. This corresponds to our
earlier assignment of X = 3, 9, 27 for these dichromatic patterns and it
can be seen that X repreSents the reciprocal density of coincident lattice

sites in a dichromatic pattern.

The symmetry operations of the white lattice's spacegroup are desig-

nated,
44 ()‘)4 = (W), w(r)) (2.1a)

where W(L) represents the rotation, reflection or inversion part, and

w(k) the translation part. For example, the translation operation

W () = (I, t(A) ), where, I, represents the identity operation and,
t(1), is a lattice translation vector. For ordinary or proper rotation

and reflection operations, W(L) represents ordinary n-fold rotation

operations, mirror operations, inversion operation, roto-inversion op-

erations, and w(A) equals zero or any lattice translation. Similarly, the

symmetry operations of the black lattice's spacegroup are designated

W) = (W), w(p) | (2.1b)
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formed by 2 F.C.C. lattices rotated about [1 T1] by an
angle 0=60°, The size of thé symbols represents
the...ABCABC... stacking along [1 T7}.

The projection along [110] of the I=9 dichromatic pattern
formed by 2 F.C.C. lattices rotated about [110Q] by an
angle 6=38.94°. The size of the symbols represents

the...ABAB... stacking along {110].
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formed by 2 F.C.C. lattices rotated about [110] by an
angle 0=31,59°., The size of the symbols represents
the...ABAB... stacking along [110].



where W(u) and w(p) have definition similar to those for the white lattice.

The transformation relating a white and black lattice is represented

N
P=(,p | @l

where, P is the matrix representing the transformation of vectors in the

white to their counterparts in the black frame and, p, represents a rigid
body shift of the black lattiqe with respect to the white (expressed in

~ the white coordinate frame). The matrix representation of the trans-
formation, P, (and its inverse P'l ) for the case of the £ = 3, 9, and

27 dichromatic i)atterns are given in Table2.3. When p = 0, the ith

black symmetry operation expressed in the white coordinate frame then

has the form PW(p)iP'l.
By inspection of the dichromatic patterns shown in Fig.2.3(a), (b),
and (c), one can recognise that each pattern exhibits two types of

symmetry operation called coincident and antisymmetry operations and

these are described in the next two sections.

2.3.1. COINCIDENT SYMMETRY ELEMENTS.

This type of Symmetry, designated W(c), arises when black and white

lattice symmetry operations coincide.
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Table 2.3. The pure linear transformation P and

-1
its inverse P for =3, 9, and 27.

-l
No. I P Matrix P Matrix
2 1 -2 2 -2 1
|3 |1s]-2 2 -1 1731 1 2 2
1 2 2 -2 -1 2
8 1 4 8 1 -4
2>l 9 |1/9] 1 8 -4 1791 1 8 4
-4 4 7 4 -4 7
25 2 10 25 2 -10
3) | 27 {1727] 2 25 -10 17271 2 25 10
-10 10 23 10 -10 23




Thus, for the given transformations, P, (Table 2.3) coincident sym-

metry operations must satisfy the following equivalence expression:

We=Wo=PW(gP-1 (2.2)

This expression shows that coincident translations arise when translation
vectoré with equal magnitudes‘are parallel in the black and white lattices,
and coihcideht point symmetry operations arise when identical symmetry
operations in the two lattices are both orientationally and translationally
aligned. For example, in Fig.2.3(a), there are twelve coincident point
symmetry elements, i.e, three diads along [110],, [101];, [ 011 l,, three
mirrors perpendicular to [110],, [101],, | 011 l,s two triads along [ 111 ], two
roto-inversion triads along | lﬁ Lo cehtre of inversfon at [000], and ‘the
identity. These twelve symmetry elements are tabulated in Table 2.4(a).
In Fig.2.3(b), there are four coincident symmetry elements, i.e., the
identity, a mirror perpendicular to [110],, a centre of inversion at [000],
and a diad along [110],. These four coincident elements of symmetry are
tabulated in Table 2.4(b). Similarly, Fig.2.3(c) shows four coincident
symmetry elements similar to those in Fig.2.3(b), and tabulated in Table

2.4(c).

2.3.2. ANTISYMMETRY ELEMENTS.

This type of operation, designated W, relates black features to white

and vice versa. The vector transformation from white to black and from

black to white are given by PW(3) and W(}) p-1 , respectively, using
the white coordinate frame, so antisymmetry operations arise in aA

dichromatic pattern when solutions to the following expression exist:
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Table 2.4(a). The coincident symmetry elements of the
dichromatic pattern of §=3(1 -1 -1).

No. W(c)[hkl] W(c) Matrix
(1) 1
1 0 0
[0 1 0]
0 0] 1
(2) 371 -1 -1)
0o -1 0]
[0 0 1]
-1 0 0
(3) 3'[1 -1 -1
o] 0 -1
[-1 0 o]
_ o 1 0
() 1[0 o 0]
-1 0 0 -
[0-1 0
0 0 -1
5) 37[1 -1 -1]
(5) [ 0 1 o .
[0 0 -1
1 0 o
— -
2] 3 [1 -1 -1
(6) ( ] o o -
[1 0] 0
0 -1 o
7 m[l 0 1]
() [ 0 0 '11
[0 1 0
-1 0 0
8 mf0 1 -1
(8) [ ] Lo 0 .
[O 0 1
0 1 o
(9) m[11 0]
0“1 01
[-1 0 0
0 0 1
(10) 2[1 0 1]
0 0 1 -
[0-1 0
1 0 0 -
(11) 2[0 1 -1]
'1 0 0'1
[0 0 -1
0 -1 6o -
(12) 2[1 1 0]
0 1 0 -
[1 0 0
0 0 -1




Table 2.4(b). The coincident symmetry elements in the
dichromatic pattern based on C.S.L. of
T=9(-22 1).

No.  W(c)[hkl] W(c) Matrix
(1) 1
1 o] 0 -
[ 0 1 0
' 0 0] 1
(2) m[1 1 0]
0 -1 0 -
[ -1 0 0]
_ o o 1
(3) 1[0 0 0]
-1 0 0 -
[ 0o -1 0
. 0 0 -1 -
(4) 2[1 1 0] ‘
0 1 0 S
[ 1 0 0
0 0 -1 4

Table 2.4(c). The coincident symmetry elements of the
dichromatic pattern based on C.S.L. of
£ = 27(5 =5 =2).

No. W(c) [hkl] W(c) Matrix
(1) 1
1 o] (o] 1
[ 0 1 0
0 0 1 -
(2) m[110]
- 0 =1 0 -
-1 0 0
L 0 0 1 -
(3) 1I{o 0 0]
=1 )] 0 -
0 -1 0
L 0 0 -1 4
(4) 2[11 0]
- 0 1 0 -
1 0 0
L 0 0 -1




W = PW() = W()P! @3)

For the dichromatic pattern shown in Fig.2.3(a), it can be seen that
there are twelve point antisymmetry elements, i;e. four ahtidiads (parallel
to [ 111 L, 211],, | 112 I, and | 121 Iy ), four antimirrors (perpendicular to
[ 111 Iy, 1211], | 112 ], and [ 121 l,, )s two antihexads and tw§ anti-roto-

inversion hexads (along | l~l_l]k ), Table 2.5(3).

Also, in Fig.2.3(b), there are four antisymmetry elements, i.e., two
antidiads parallel to [ 114 ],, and [ 221 |,, and two antimirrors perpendicular

to | 113 [, and [ 221 ];, Table 2.5(b).

Similarly, in Fig.2.3(c) there are four antisymmetry elements, i.e.,
two antidiads parallel to [ 115 |,, and | 552 |, and two antimirrors perpen-

dicular to [ 115],, and [ 552 ],, Table 2.5(c).

The total symmetry (i.e., coincident and antisymmetry elements) of
the dichromatic patterns of X = 3, 9, and 27 are expressed by their
‘spacegroups, and correspond to P6'/m'mm’, Imm'm’', and Amm'm', re-

spectively.
2.4. MATHEMATICAL ANALYSIS; GENERAL PRINCIPLES.

A mathematical formulation of the criteria for conservation of coincident
and antisymmetry operations, exhibited by dichromatic patterns, with

variation of the relative displacement of the black and white lattices can

be obtained and is described in this Section.
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TABLE 2.5(a). The antisymmetry elements of the dichromatic
pattern based on C.S.L. of £ = 3(1 -1 -1).

No. W' [hkl] W' Matrix

(1) 671 -1 -1]

S 2 1 -2
1/3 | -2 2 -1 ]

L1 2 2

(2) &' [1 -1 -1] - .
v lid o]

(3) &1 -1 -1) .
vl gl

(4) & '[1 -1 -1] P

3 -1 -2 -2
Y [ 2 1 -2 ]

() m'[211] Qo o

-2 2 -1
valz 2z o]

6 (1 -1 2 2 1 -2
(6) m'[ ] 1/3[é§ i]

7 "1 2 -1) 2 -2 1
(7Y m'[ 13 [ 'f _; g ]

(8) m'[l -1 -1] L.

1/3 [ 2 1 -2
2 -2 1

(9) 2'[211]

1 2 2 -

1/3 [ 2 -2 1
L2 1 -2

(10) 2'[1 -1 2] .

1/3 [ 'é -g -2

(11) 2'[1 2 -1] .
1/3 [ 2 1 -2 ]

-1 -2 -2

(12) 2'[1 -1 -1] - R
gy g




Table 2.5(b). The antisymmetry elements in the dichromatic
pattern based on C.S.L. of §=9(~-2 2 1).

No. Wt Matrix
(1) 2'[-1 1 -4]
- =8 =1 4 |
1/9 -1 -8 -4
- 4 =4 7 A
(2) 2'[ 2 -2 -1]
r '1 '8 '4 -
1/9 -8 =1 4
L -4 a4 -7 |
(3) m'[-1 1 -4]
- 8 1 -4 .
1/9 1 8 4
L -2 4 -7 |
(4) m'[ 2 -2 -1]
1 8 4 -
1/9 [ 8 1 -4
4 -4 7

Table 2.5(c). The antisymmetry elements in the dichromatic
pattern based on C.S.L. of £=27(5 =5 =2).

No. W' Matrix

(1) 2'[1 -1 5]
1/27 | -2 =25 -10
(2) 2'[ 5 -5

2]

1/27 | =25 =2 10
(3) m'[1-1 8]
1/27 | 2 25 10

- =10 10 =23
(4) m'[ 5 -5 -2]
' 2 25 10
1/27 [ 25 2 -10
. 10 -10 23




In section 2.3 the three dichromatic patterns, Fig.2.3(a), (b), and

(c), were created by a pure linear transformations, i.e. P = (P, p)
With p = 0, where the F.C.C. lattices used have symmorphic spacegroups

(i.e. w(k)g = W(u)g = 0 ). Now, by substitution into equations (2.2)

and (2.3), which describe the coincident and antisymmetry operations
respectively, taking the values of p= 0, and

wk)g = W(wg = 0, we obgaih

Wi = PWiP1 = W(o) Y

and'

PW() = WPl = w’ (2.5)

Now consider the relative displacement of the black lattice with respect

to the white one by shifts p=(0. Now by substitution into equation (2.2)

we obtain

W@, W(©) = PWWPL -PWWPlp +p)  (26)

Using equation (2.4) and equating the similar parts on both sides, the
following expressions must be satisfied for coincident symmetry to be

present,

W(c) = PW(u)P1 o (2.72)

and
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W(ep = p ‘ (2.7b)

Similarly, by substitution into equation (2.3), we obtain for the anti-

operations

(PW(), p) = (WePL, -W(P-lp) (2.8)

Using equation' (2.5) and equating the similar parts on both sides,

therefore,

PW()= Wpl (2.92)
and

W'p = -p (2.9b)

Equations (2.7b) and (2.9b) are the required criteria fdr conservation
of coincident and antisymmetry operations, respectively. The former

states that a coincident symmetry operation which leaves a shift vector
p invariant will be conserved by this shift. The latter states that‘ an

antisymmetry operation which inverts a shift vector p will be conserved

by this shift.
Some examples are given here to show the application of these two
criteria for establishing the breaking and/or conservation of the sym-

metry elements in a dichromatic pattern.

(1) Consider first the X = 9 dichromatic pattern, Fig.2.3(b). It can
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be seen by inspection that a shift p = L [ 114 |,, as depicted in
f‘ig.2.3(d), destroys two coincident symmetry elements; i.e. the centre
and the diad along [110],, and conserves two, i.e. the identity and the
mirror perpendicular to [llOl}\. If is readily confirmed that the same
result is obtained mathematically by using equation (2.7b). Alsd, this
shift destroys two antisymmetry operations, i.e. the anti-mirror per-
pendicular to | 521 I, and the anti-diad along | 114 l,» and conserves two,
j.e. the anti-mirror perpendicular to | 114 lk’ and the anti-diad along

[ 221 l,- Asgain this result is consistent with equation (2.9b).

(2) Fig.2.3(e) shows another example, similar to the one given above,

but with a different shift, p = | 221 l,, and one can observe the
breaking of the antimirror perpendicular to | 114 l,» the antidiad along
[221],. and the conservation of the antimirror perpendicular to | 221,

and the antidiad along [ 114 |,

2.4.1. EQUIVALENT DISPLACEMENT AND WIGNER-SEITZ CELLS.

Wﬁenever a dichromatic pattern with p=20 has both translation
symmetry and point symmetfy higher than 1, there is a set of equivalent
dichromatic patterns, obtained from the ijnitial pattern by a set of
‘equivalent displacements of the black lattice, which are related by the

~ symmetry eléments of the initial pattern; This set of displacements
which reproduce the initial dichromatic pattern includes the three
shortest indepehdent vectors in the dichromatic pattern which join black
sites to white ones and form a lattice called the d.s.c. lattice (Pond

et al. 1979). Fig.2.4(a), (b), and (c) show three d.s.c. lattices
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1271 T 15],

Fig. 2.4. (a) The Wigner-Seitz cell of the d.s.c. lattice associated
with 1=3 dichromatic pattern.
(b) The same as (a) but for X=9 dichromatic pattern.

(c) The same as (a) but for 1=27 dichromatic pattern.



associated with ¥ = 3, 9, and 27 dichromatic patterns.

Whereas displacements by d.s.c. vectors conserve all symmetry in a
dichromatic pattern, displacement by other vectors can conserve some
of the symmetry elements originally present, while breaking othér, and

in the next section we shall study the variation of 'symmetry ofX = 3,

9, and 27 dichromatic patterns with displacements p which fall within
the Wigner-Seitz cells of the d.s.c. lattices associated with these

dichromatic patterns.

2.4.2. THE VARIATION OF THE DICHROMATIC PATTERN
SYMMETRY WITH RELATIVE DISPLACEMENT.

We have used equations (2.7b) and (2.9b) to study the variation of

¥ = 3, 9, and 27 dichromatic patterns with some displacements p which
fall within the Wigner-Seitz cells of the d.s.c. lattices of these
dichromatic patterns. The results of this study have been tabulated in

Tables 2.6(a), é.6(b) and 2.6(c), respectively. Table 2.6(a) shows

that, for example}, a shift p =L <01T0>M.B. (thé subscript M.B.
stands for Miller-Bravais hexagonal indexing system) breaks six of the

12 coincident point symmefry elements (Table 2.4(a)), e.g. two triads,
two roto-inversion triads along IOOOI]M_B_,‘ a centre of inversion at
[0000]y. B, @ mirror parallel to ['2ﬁ0 Im.B.» and six of the 12 antisym-
metry elements (Table 2.5(a)), e.g. two antidiads along [ 1100 IM.B.> and
[TOIO ]M.B.’ two antihexads along IOOOIIMB_, and two anti-roto-inversion
hexads along [0001]pg .- So, this particular shift changes the

spacegroup from P6'/m'mm' to P2'mm'. A shift P = d[OOOI]MB, a< i,

similarly, change P6'/m'mm' to P6'm2', and so on.
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Table 2.6(a). The variation of P6'/m'mm' with a shift p.

No. p, M.B Spacegroup
(1) [0 0 0 0] P6'/m'mm'
(2) e[ 0 0 0 %1} P6'y/m'me’
(3) cf 0 O O i} P&'m2!
(4) z<0 11 0> P2'mm’
(5) x<27 7 0> P22t
(6) x<2T 1 0>+ ¢[00 O O 21} P2,22,'
) 2<0 17 0> + cj0 O 0 11} P2,'mc!
(8) 2<0 1T 0> ¢ c[0 0 O 21} Pm
(9) x<2T ¥ 0> + ¢[00 0 21} P2
(10)] x<21 1 0> + y<1 21 0> P2
(11)] x<21 1 0>+ y<I 21 0> P2,

+ c{0 0 O %1]
(12)] x<271 0>+ y<1 21 0> Pl

+ ¢[D 0 O 21}

* x<1/18, y<1/18, 251/9, c<1/6.

Table 2.6(b). The variations of imm'm’ with a shift p.

No. P Spacegroup

(1) 0,0,0 Imm'm’

(2) 1/8,0,0 1112

(3 0,1/8,0 11211

(4) 0,0,1/2 12'/m!

(5) x,%,0 112'2'

(6) Xx,-%,0 Imm'
x=1/8

48] X,-X,0 Iram’
x=1/2

(8) X,"X,2 Imm'm'
x=21/36 ,2=1/9

(9) X,~X,2 Imm'm'
x=1/9 ,z=-1/18

(10) X,¥.z 122'2!
x=2/9, y=5/18, and z=-1/18.

Table 2.6(c). The variations of Amm'm’' with a shift p.

No. P Spacegroup

(1) 0,0,0 Amm'm'

(2) 1/2,0,0 A12'2

(3) 0,~1/2,0 A12°2f

(4) 0,0,z A2/’
z21/10

5) 0,0,z A2'/m'
z=~1/8

6) x,x,0 A22'2!

(7) xx-xyo Amm'
x=1/4

(8) X, "X, % Amm'm'
x=1/54 ,2z=5/54

9) X, X,Z Amm'm'
x=5/216,z=-1/108

10) X,V,z A2m'2!
x=59/216, y=49/2186,
and 2=-1/108




2.5. DICHROMATIC COMPLEXES.

A dichromatic complex can be created either by placing white and
black motif (e.g. in case of germanium each motif contains two atoms
displaced from each other by [111] ), at lattice points of the éorre-
sponding dichromatic pattern or by misorienting two crystals by a
certain axis/angle. In the latter method, the crystals after rotation are
labelled white and black. The >ith white and the jth black crystal

symmetry operations have expressions similar to these in equations

(2.1a) and (2.1b), respectively, except that w ipcludes glidé and/or
screw translations. As in dichromatic pattern, the dichromatic complex
exhibits coincident and antisymmetry operations. The former can be
derived by substitution of equations (2.la) and (z.ib) into equation

(2.2). One obtains, for the 1 coincident operation

(WY(©), W[(©) = (W;(1), w;()

= (P, DXW{(), WGP, p)1 2.10)

Two cases will be considered. First, consider a dichromatic complex

created by only a pure linear transformation P, i.e. p = 0, so equation
(2.10) becomes after rearranging and equating similar parts on both -

sides

Wie) = Wi(x) = PWjwPl (2.11a)

and
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wi(e) = w;(x) + t(2)

= Pwj(u) + t () (2.11b)

Secondly, consider a dichromatic complex created by a linear trans-
formation P, and a shift p of a black crystal with respect to the white,

i.e. p¥0. Rearranging equation (2.10), equating similar parts on both

sides and using equation (2.11la) and (2.11b), we obtain

Wie)p = W;R)p = p , (2.11¢)

Equation (2.11c) is the criterion for the conservation of the coincident

symmetry operation, which states that the coincident symmetry opera-

tion which leaves a shift vector p invariant will be conserved by this

vector.

Similarly, by substitution of equations (2.1a) and (2.1b) into

equation (2.3), one obtains for the antisymmetry operation

(P, pXW;(A), wi())

= (Wi, wi()P, p)’! (2.12)

Rearranging and equating similar parts on both sides, we obtain

(W, w')

W = PWi()\-) = WJ(U)P-I (2.133)
and ' |

w= Pw) + p = Wil - WP Tp (2.13b)
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For p = 0, we obtain

w'= Pw;(x) = Wj(p) , (2.14a)
For p#0, we obtain

Wp=-p S (2.14b)

Equations (2.14a) and (2.14b) are the criteria for the conservation

of the antisymmetry operation of a dichromatic complex.

The dichromatic complexes which are characterised by £ = 3, 9, and
27 have been created by using the methods mentioned at the beginning
of this section. The projection of the £ = 3 dichromatic complex along
[0001]yg B, is found identical to the dichromatic pattern shown in
Fig.2.3(a), and therefore, it has a spacegroup .similar to the pattern,
i.e. P6'/m'mm'. The £ =9 and 27 complexes are shown in Fig.2.5(a)
and 2.5(b), respectively. The symmetry operations and hence the
spacegroups of fhes’e complexes have been derived as Imm'a', and
Amm'a', respectively using equatidns (2.10) ahd (2.12). These éymme- ‘
try operations are tabulated in Tables 2.7(a) and 2.7(b), respectively.
From these 'fables oﬁe.can notice that the .-spe’xcegroups Imm'a' and
Amm'a' contain mirror glide planes, therefore they are non-symmorphic.
Also, the spacegroups Imm'a' and Amm'a’ are isomorphic | to the

spacegroups Imm'm' and Amm'm' of £ = 9 and 27 dichromatic patterns.

2.5.1. THE VARIATION OF THE DICHROMATIC COMPLEX
- SYMMETRY WITH RELATIVE DISPLACEMENT.

Equations (2.11¢) and (2.14b) have been used to study the
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Table 2.7(a). The elements of the spacegroup Imm'a' of
the dichromatic complex of £=9(-2 2 1).

(a) Coincident Symmetry

No. (wl(c), wl(c)) w(c)l Matrix

(1) (1, [000])

1 0 0
0 1 0 ]
o 0 1
(2)  (2[110], 3/4[110])
0 1 0
1 0 o0 ]
0 0 -1

(3) (I[o00], [000])

(4) (m[110], 1/4[110])

0 -1 0
[-1 0 0 ]
0 0 1
(8) Antisymmetry
No. (W', w') W' Matrix
(5) (2'[-1 1 -4], 1/4[110]) 8 -1 .
1/9 [ -1 -8 -4 ]
4 -4 7
(6) (2'[-2 2 1], [000]) I .
1/9 [-8 -1 4 ]
-4 4 -7
(7) (m'[-1 1 -4], 3/4[110]) s 1 .
1/9[ 1 8 4 ]
-4 4 =7
(8) (m'[-2 2 1], [000]) - .
1/9[ 8 1 -4 ]
4 -4 7




Table 2.7(b). The elements of the spacegroup Amm'a' of
the dichromatic complex of I=27(5 -5 -2).

() Coincident Symmetry

No. (wl(c), wl(c)) w(c)1 Matrix

(1) (1, [000])

-1 0 0
0 1 0 ]
, Lo 0 1
(2)  (2[110], 3/4[110])
: 0 1 0
1 0 © ]
Lo 0o -1

(3)  (1[ooo], [000])

(4) (m[110], 1/4[110])

0 -1 0
[ 1 ¢ 0 }
0 0 1
(B) Antisymmetry
No. (W', w') W' Matrix
(5) (2'(-1 1 -5}, 1/4[110])
-25 =2 10
1/27 [ -2 -25 -10 ]
10 =10 23

(6)  (2'[5 -5 -2], [000])
=2 =25 -10
1/27 [ -25 -2 10 ]
-10 10 =23

(1)  (m'[-11 -5], 3/4[110])
25 2 =10
1/27 [ 2 25 10 ]
-10 10 -23

(8) (m*[5 -5 -2], [000])

2 25 10
1/27 [ 25 2 -10 ]
10 =10 23




variation of the X = 9 and 27 dichromatic complexes symmetry with some

shift vectors p and the results of this study tabulated in Tables 2.8(a)

and 2.8(b), respectively.
2.6. BICRYSTAL SYMMETRY.

A bicrystal can be created from a dichromatic complex by following
two steps; first, choose the orientation and location of the interfacial
plane. Second, discard white crystal atoms on one side and black atoms
on the other. Fig.2.6.(a), (b), and (c) shows three bicrystals created

from X = 3, 9, and 27 dichromatic complexes (section 2.5.), by following

this method. These bicrystals are called unrelaxed where p = 0 while

the relaxed bicrystals, i.e. p=0, will be considered in the next section.
A bicrystal exhibits coincident symmetry and antisymmetry, and a

bicrystal spacegroup can be assigned.

A coincident symmetry operator, W(c), has the property that it

leaves a vector, n, normal to the chosen interfacial plane ,and pointing
into the white crystal, invariant. This property can be expressed

mathematically as follows -

W(c)n =n | (2.15a)

While an antisymmetry operator, I'V', has the property that it inverts

the vector n, and this property expressed mathematically as follows
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Table 2.8(a). The variation of Imm'a’ with p.

No. p Spacegroup
(1) [000] Imm'a’
(2) 3[ 11 41, Imm'n'
(3) of 7113, Imm'1
(4) #[ 22 11, Ima'a'
(5) B[ 221], Imla'
(6) o[ 114], + 8] 22 11, Im11
(1) #[110], Iam'a'
(8) ¥[110], Ilm'a'
(9) ol T14], + 8[ 22 1], + 3[110], Iall
(10) o[ T 121]x + B[ 221], + ¥[110], 1111

* O<a<}, 0<B<}, and O<¥<}

Table 2.8(b). The variation of Amm'a" with p.

No. p Spacegroup
(1) [000] Amm'a’
(2) [ 11 Sly Ama'a'
3) o[ 11 5])‘ Amla'
(4) 355 2])‘ Amm'n'
(5) B[5 5 i]X Amm'1
() o[ T1 5])‘ + B[55 2]X Amll
(1) #[110], Aam'a’
(8) ¥[110], Alm'a’
(9) «[ T15], + B[55 2], + #[110], Aall
(10) of T 15], + B[5 5 2], + ¥[110], A111

# O<a<}, O<B<%, and O<¥<}




Wn=-n (2.15b)

A bicrystal symmetry operation can be determined by carrying out

on n the symmetry operations of the corresponding dichromatic complex

and making use of equations (2.15a) and (2.15b). For example, in

Fig.2.6{a) the interfacial plane is chosen as (-l_l—2°);‘ and its normal is

[112 l,» by carrying out on n the operations of £ = 3 dichromatic complex
v&e found that only two coincideht symmétry operations satisfy equation
(2.15a) and two antioperations satisfy equation (2.15Db). These oper-
ations are an_identity,' a mirror perpendicular to [110],, an anti-diad
parallel to | 111 l,, and an anti-mirror perpendicular to [112 I, These
operations form the spacegroup p2'mm'. Similarly, the spacegroups of
Z = 9 and 27 bicrystals, Fig.2.6(b) and (c¢), have been derived and
they are similar to £ = 3 bicrystal, and Tables 2.9(a) and (b) show

in detail their elements of symmetry.
2.7. RELAXED BICRYSTALS.

The bicrystals presented | in the previous section - are idealy and
holosymmetric. The .Structure of the real bicrystals, which have
thermodynamically favourable configurations, are related to the ideal
sfructures by one or a combination of the following relaxation modes
(Pond et al. 1983): |

(i) rigid body translation,
(ii) migration of the interface plane,
(iii) local atomic relaxation, and

(iv) -insertion or removal of additional material at the interface.
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Table 2.9(a). The derivation of Ge bicrystal spacegroup

of £=9( 3 2 1), n=[ 2 2 1)

No. Imm'm’ Bicrystal symmetry
(A)| Coincident Symmetry W, (e)n=n
(1) 1[000] 1[000]
(2) 2[110]
(3) 1000}
4 m[110] m[110]
(B) Antisymmetry W' n=-n
5) 20713 2'( 113
(6) 2'1221)
M m'[ 713
(8) m'{ 221] m'[221)]
Table 2.9(b). The derivation of Ge bicrystal spacegroup
of £=27(5 5 2), n=[5 5 2}
No. Amm'm' Bicrystal symmetry
(A)| Coincident Symmetry W (c)n=n
(1) 1[000} 1[000]
(2) 2{110]
3) 1{000]
(4) m[110} m[110]
(B)|  Antisymmetry W' n=-n
(5) 2'[T15) 21115
(6) 2'(5 5 2]
O m'[ T15]
(8) m'[5 5 2] m'[55 2}




We consider here the first mode of relaxation in more detail. The

conservation and/or breaking of coincident and antisymmetry operations

with a shift p is expressed mathematically by the equations derived

earlier (equation (2.11c) and (2.14b)), which are rewritten here for

convenience

W(ep = p | | (2.16a)
and

Wp = -p » (2.16b)

The overall rigid body translafion p at actual grain boundaries com-
prises two distinct components. One component corresponds to a physical
displacement of one crystal, say the black crystal, in a direction per-
pendicﬁlar to the boundary plane. The other component corresponds
to a displacement parallel to the boundary Iplane. In this study we
consider only the reiative displacemehts which are pérallel to the
boundary plane and fall within the in-plane Wigner-Seit;z cells (Pond
1977), which are planarAand parallel to the bicrys'tal chosen interfaces.
Fig.2.7(a),(b), and (c) show the in-plane Wigher-Seitz cells for the X
= 3( 112 ),, 9(221), and 27( 552 ), bicrystals. The holosymmetric
structures which have the spacegroups p2'mm', are represented By fhe
points O, in these cells. Other structures are‘ designated A, B, and
C. For example, the in-plane Wigner-Seitz cell of ¥ = 3 bicrystal
(Fig.2.7(a)) consists of the two vectors —;—- [ 111 1, and —12—[1101}\. The
reference structure which is represented by O, has the holosymmetric
spacegroup p2'mm'. Other structures can be obtained by considering
certain in-plane displacements relative to the reference structure. Table

2.10(a) shows that an in-plane displacement equals, for example,
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Table 2.10(a). The variation of the spacegroup of
:=3( 11 2)X bicrystal with p.

No. p* Spacegroup
(1| [000] p2'mm'
(2| #1171, p2'yma’
3| e12 11, plmi
4)[ 411 o1, p2'mb'
G |s110], p2'11
6311 ’l]x + 411 0])‘ p2'ymn’
(M1 T ’l]x +BM11 0]X pl

Table 2.10(b). The variation of the spacegroup of
I=9( 2 2 1)x bicrystal with p.

No. pul Spacegroup
(1)} [0 0 0] p2'mm’
)3 71 3]x p2'ima’
@]l 112 plml
()] 4[1 1 0]x p2'mb’
G)fe8[11 0]x : p2'11
OIEIRE! le + 311 0])‘ p2'ymn’
MlefT1 2!]X + B[1} le pl

Table 2.10(c). The variation of the spacegroup of
£=27(5 § 2)X bicrystal with p.

No. p* Spacegroup
(1)] [000) p2'mm'
)| 471 5]x p2',ma'
e[ T1 51, piml
(4)] 31 1 0], p2'mb’
(5)1 8[11 0]x p2'11
6){3r11 Slx + 311 01, p2',mn’
(MfelT15], +p(11 01, pl

* O<a<#, 0<p<i.



of 111 ], is corresponding to the structure which has the spacegroup

p2,'ma' whena= —;— or plml when 0 <a< -;—- . Similarly, in-plane dis-

placement equals, p[110};, and p = -‘-l‘—or, 0<p< -l— is corresponding to the
structures which have the spacegroups pz'ﬁlb' or p2'll, respectively.
The combinations of the above two in-plane displacements will result
in structures which have spacegroups p21'mn' or pl, (see Table
2.10(a)). The possible in-plane dislplacements and the correspénding

structure's spacegroups are tabulated in Tables 2.10(b) and (c) for

¥ = 9 and 27 bicrystals, respectively.
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3.1. SPECIMEN PREPARATION.

The two pieces of germanium material used in this study have been
obtained from oJ.J.Bacmann (Department de Metallurgie/ SRM,
CEN-Grenoble, France). One piece has a cylindrical external shape
with circular cross-section of diameter approximately 2.7 cm (Fig.5.1(a)
in chapter 5). The other one has also cylindrical shape but with el-
liptical cross-section with major axis diameter about 2.7 cm (Fig.5.1(b)

in chapter 5).

Two types of electron microscopy specimens have been prepared.
"edge-on" specimens where the grain boundary plane is located per-
pendicular to the specimen surface, and "plan-view" specimens which
have the boundary parallel to the specimen surfaces. The detailed
method of preparation of these two types of specimens will be given in
the next two sections, respectively. The 'method can be summarised

here by the following four stages and shown schematically in Fig.(3.1):

stage one : slicing Ge bulk material,

stage two : chemical polishing of the slices to reveal the grain

boundary,
stage three: cutting the slices into 3mm. dises,

stage four : mechanical, chemical and ion-beam thinning of the

discs.
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stage one

stage two

3mm

stage three *O(.

150 microns

Ly
* 0.1 micron

stage four

Fig. 3.1. Specimen preparation stages:
stage one: slicing Ge bulk material.
stage two: chemical polishing.
stage three: drilling the slice into 3mm discs.
stage four: mechanical and jon-beam thinning

of the 3mm discs.



3.1.1. ’JEDGE-ON” SPECIMENS.

The preliminary step in the very long and difficult procedure for the
preparation of germaniuxﬁ specimens for electron microscopy was cutting
the germanium into slices. Difficulty arose from the fact that germanium
is fragile and easy to break into small fragments under a slight stress.
Because of the fragility of Ge material a diamond saw was used to slice
the Ge material into 0.5 mm thick slices. The slices were manually
polished by very fine emery papers to remove the effect of cutting on
bofh sides of each slice. Then the slices were ready for ’the second
stage, chemical polishing to reveal their grain boundaries. The polishing
solution consisted of 20gm ferric chloride, 50ml distilled water and 50ml
hydrochloric acid. The slices were immersed in the solution after
bringing its temperature to boiling. After four minutes the slices are
removed and washed thoroughly with acetone. This stage is very im-
portant because without being able to see the grain boundaries with the
naked eye the next stage is impossible. The third stage was cutting
or drilling the slices into 3mm diameter dfscs using an ultrasonjc drill.
Eachkdisc contained the grain boundary (which had been r;evealed in the
previous stage) edge-on and apprbximately situated at the middle of the
disc. The fourth and the final stage is the thinning of the discs, and
this consisted of three consecutive sub-stages. The first sub-stage was
thinning using a mechénical dimpling machine. At the end of this sub-
stage each disc was ground from 0.5mm down to 150 microns in thick-
ness. The second sub-stage was chemical thinning which a mixture of
10% HF acid and 90% nitric acid was used in a chemical etching jet ap-
paratus (Fig.3.2). The disc circumferences were protected against

chemical solution attack by painting them with Lacomif varnish before
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Fig. 3.2. The essential components of a jet chemical thinning apparatus S-
specimen, G-transparent glass slice to protect the observer's eyes
and the specimen S is fixed on the other side away from the observer,
L-light source, J-1mm diameter jet orifice, E-chemical etching solution
(10% HF + 90% H,NO;) and W-the observer eye.



the thinning process. The jet nozzle was directed towards each disc and
the chemical thinning process continued until a very sm‘all hole appeared
as indicated by a light sourée loéated behind the specimen. Once the
hole appeared the process needed to be stopped at once and the specimen
washed first using plenty of diétilled water to stop the etéhing process,
then by acetone, and finally soaked in methanol for 24 hours. The final
sub-stage of preparing the specimen is the fon beam thinning. In tﬁis
stage Argon jons are accelerated by 8 KV in an ion miller machine to
bombard the specimens and the beam inclinatién angle with respect to
the specimen surface was 20 degrees. In each bombardment Ge material
is removed layer by layer to reach the.thickness approximately 0.1
micron. Then the specimens were ready for the electron microscope in-

vestigations.
3.1.2. “PLAN-VIEW” SPECIMENS.

The method of preparing thé "plan-view" specimens is slightly dif-
ferent to that used for the case of "edge-on" ones. The main difference
lies in the slicing step. While for the "edge-on" specimens the slicing
step was straight forward, because already the boundaries were ori-
ented edge-on, wé found. the slicing proéess in the case of "plan-view"
specimens to be rather difficult. To overcome this difficulty the fol-
lowing preparation method was 'developed to suit this case. First, the
Ge bulk materials were immersed in the polishing solution to reveal the
grain boundaries on the top and bottom of the material as well as on
the cylindrical surface then, the traces of the grain boundaries were
marked by a sharp cutter. Secondly, the material was cut at a fixed

distance on both sides of the marked traces, approximately 0.5 mm,
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so the boundary plane was parallel to the slice sﬁrface. The next -
procedures were typically the same as those for the "edge-on" case;
drilling the slices into 3mm discs and thinning the discs mechanically,

chemically and finally ion beam thinning.

3.2. TRANSMISSION ELECTRON MICROSCOPY (TEM)
TECHNIQUES.

The three well-known techniques for obtaining diffraction patterns
in electron microscopy are selected-area diffraction, SAD (Hirsch et
al. 1965), convergent beam eleétron diffraction, CBED (Steeds 1979),
and Tanaka or large-angle convergent beam electron diffraction,
LACBED (Tanaka et al. 1980), techniques. In the first technique, the
electron beam incident on the specimen is broad and nearly parallel.
It is focused below the specimen onto a distaht viewing screen using
the post-specimen lenses. In the second and third techniques the in-
cident electron beam is focused on the specimen. The convergent angle
of the incident beam in the case of CBED is less than the Bragg angle‘
while in the case of LACBED it is equal to a Bragg angle. More details

about these techniques will be given in the next three sections.
3.2.1. SELECTED AREA DIFFRACTION. |

In this mode of operation a small area of a specimen can be selected
for diffraction studies. Fig.3.3 shows a ray diagram of the formation
of a SAD pattern in an electron microscope having two condenser
lenses, one objective lens, ahd two projector lenses. The elecfron beam

leaving the condenser lens is almost parallel and scattered by the
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Electron Source

A A First Condenser Lens (C1)

Second Condense: Lens (C2)

B
—1— C2 Aperture
L

Incident Beam

c pecimen
Scattered Beam
D Ob]ective Lens
E Back Focal Plane
F Selected Area Aperture

First Projector Lens

%E 5 ; ; Second Projector Lens

Viewing Screen

Fig. 3.3. A ray diagram showing the selected area diffraction
mode in an electron microscope having 5 lenses.



specimen 'C'. The objective lens 'D' focused the incident and scattered
beams (indicated by single and double arrows, respectively) in its back
focal plane 'E' to form the diffraction pattern. The area from lwhich the
diffraction pattern is taken could be selected by placing a selected area
aperture in the image plane 'F' of the objectivé lens. The function of
the two projector lenses 'G' and 'H' which follow the objective lens is
to transfer the SAD pattern'formed by the objective lens on to the

viewing screen 'I' at a high magnification.

As the electron beam passes through a selected area of a single
crystal or bicrystal spécimen (area selected by a selected area aperture
'F') in the microscope, some of the electrons are scattered from the
main beam, in various directions and at various angles. Electrons
scattered in phase from succeséive parallel planes lying at particular
orientations, will combine constructively and peaks of intensity will

occur in the form of regularly spaced diffraction spots. These intense

spots obey Bragg law; A = 2d)sin@p, where O is the angle between

the incident electron beam and the plane of reflecting atoms and is

called Bragg's angle, dhkl is the spacing between the set of lattice
planes and A is the incident electron beam wavelength. While the
electrons scattered from ‘lattice planes lying at all other orientations
will be out of phase and interact destructively, and no diffraction
maxima will a{ppeai' iﬁ the diffraction pattern froni these scattered
electrons. Fig. 3.4(a) is a SAD pattern obtained from Ge using a 120kv
electroﬁ beam oriented along a <111> direction. The sik spots closest
to the origin (the most intense spot) of the pattern are 220 type as

shown indexed in Fig. 3.4(b)

The understanding and interpretation of SAD patterns can be easily
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Flg 34. (a) The [111] selected area diffraction pattern
from germanium single crystal specimen with 120 Kv
electron beam. It is taken at low camera length to
show both the zero and first order laue reflections,
(b) A plan-view section showing the zero and first order
laue reflection zones.



achieved by making use of the concept of the reciprocal lattice (RL),

Ewald reflection sphere (ERS), Laue zones and structure factor.

First, the RL is ;‘elated to the direct lattice, and is constructed by
drawing a normal to each set of planes in the direct space lattice and
marking off points along these normals at distances 1/d from the origin,

where d is the interplanar spacing for each set of planes. A set of basis

vectors, €, in direct space and their reciprocal vectors, e*j, in recip-
rocal space are related to each other by the vector dot product:
*
. j = aij
where
Bij =0 if i}

and

&j = 1 if i=j 3.1)
For example the F.C.C. lattice shown in Fig.2.1(a) chapter two (its unit
cell in airect spaée has the lattice points 000; 31050335101 ) its RL
has lattice points at 000; 200; 020; 002; 111, i.e., a body centred cubic
lattice. Fig.3.5 shows the RL corresponding to the F.C.C. lattice in

Fig.2.1(a).

Secondly, the Ewald reflection sphere (ERS) can be constructed as
| shown in Fig.3.6, by drawing a sphere of radius OC = 1/i, where A is
the wavelength of the‘electron beam. The radius OC of the ERS is drawn
from the origin 'O’ of the RL in Fig.3.6 to a point 'C' which represents
the centre of ERS. The radius of ERS, ~ 304 ~! at 120 KV, is so large

compared with the lattice spacing that the ERS can be approximated to
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Fig. 3.5. The reciprocal lattice for a F.C.C. lattice.
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Fig. 3.6. The intersection between Ewald sphere and the
reciprocal lattice planes and the position of
the zero, first and second order laue zones.



a plane.

Whenever the ERS intersects a RL point, the Bragg equation will be
satisfied, and diffraction will occur, and hence a spot‘ will appear in a
- SAD pattern. The‘ ERS in Fig.3.6 intersects, f@r example, the boints 0
and P, so strong reflections will be produced, where the vectors CO

and CP represent the incident and scattered beam directions, and an

angle equal twice the Bragg angle, @R, is enclosed between them. Since
the angle @g is small and from the geometry of the triangle OCP one

can write

20g = (1/d)/(1/n) or » = 20gd = 2dsinog

i.e., the Bragg equation is satisfied.

Thirdly, the Laue zone construction is very useful for indexing of
SAD patferns. Because of the slight curvature of the ERS it intersects
sucéessiire RL planes (Fig.3.6) so that reflection from these highér order
RL planes as well as from the zero order RL plane will contriﬁute to the
corresponding SAD pattern. These spofs will lie within circular bands
called Laue zones. The <111> SAD patterh in Fig.3.4(a) contains re-

flection spots from zero and first order Laue zones.

Finally, the structure factor (Hirsch et al. 1965), may be expressed
more rigorously in terms of the atomic scattering factor and a path
difference argument applied to scattering by each atom within a unit cell.

For example, the‘wave scattered by the ith atom is
f; exp(2rig; . 1})

where f; is the ith atom scattering amplitude and the exponential argu-

ment corresponds to the phase difference between the wave scattered
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by the ith atom which has the fractional coordinates r; = (uj, vj, wj) and

that scattered by an atom at the origin for the g = hkl, reflection. If

a unit cell contains n atoms, then the resultant wave scattered by all

the n atoms for the hkl reflection, is designated Fy] and called the

structure factor, eqﬁals

Fpl = 3j fi exp(2nig; . 1) (3.2)

where the summation extends over all the n atoms of the unit cell.
The atomic scattering amplitude for germanium, f; = fG,, is plotted in

Fig.3.7 as a function of sin®@/A(=1/2d). The values of f;;, are taken

from Hirsch et al. (1965) and multiplied by a correction factor
M = m, [m where m  is the mass of electron accelerated by 120kv

and m_ .is the rest mass of the electron.

The intensity of a diffracted beam, I, is proportional to the magnitude
of the product of the structure factor, F, and its complex conjugate,

F *, and can be written as follows
I«FF - (3.3)

The equation of the structure factor (Eq. 3.2) can be used to predict
whether a reflection spot is allowed or forbidden in a RL énd also to
calculate the relative intensities of the RL points. Violation of the

structure factor equation can occur as a result of double diffraction
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Fig. 3.7. The mean atomic scattering amplitude for germanium.



(Tu et al. 1978). For example, the structure factor for germanium
crystal shown in Fig.2.2(a) may be calculated using equation (3.2) as

follows. This crystal contains 8 atoms of the same kind, located at 000; .

|w

11,, 1,1, 11 111 331,
770'T02'022'444'44 ’

NS

13 13
<3 and 5

alw

By substitution of these

N &

3.

~~

atom positions in equation ) and factorize the lattice and basis terms,

we obtain

Fru = fgell + erith + K) 4 eri(h + 1) 4 enik + 1)

n+ erith + k + l)/2] _ (3.49)

" The first bracket on the right of the equality sign contains four terms
corresponding to the four lattice sites in the Ge cell. The second bracket
contains two terms corresponding to the two basis atoms. The atoms at

the four lattice sites all scatter either in phase (constructive interfer-
ence) or out of phase leading to Fpp} = 0 (destructive interference).
The latter occurs if h, k, | are mixed (odd and even). The basis batoms
scétter either partially in phase if h, k, | are all odd or out of phase if

h, k,1 are all even and (h + k + 1) = 4(n + -%—), n is integer. These

conditions after recombined together can be summarised as follows:

(1) /F/* = 0if b, k, 1 mixed (0dd and even) 3.5(a)

() [F[* = 64fGet if h, k, 1 even and (h + k + 1) = 4n, n is

integer ‘ 3.5(b)

(3) [F* = 32 if b, k, 1 0dd 3.5(c)
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4) [F[2 = 0ifh,k,1evenand (h + k + 1) = 4(n + '2), nis

integer 3.5(d)

For example, Fig.3.4(a) shows the reflections of the type 220. According
to the structure factor eqﬁation (3.4) and condition 3.5(b), these re-

flections are kinematically allowed. While reflections of the type 123 are

not‘allowed.kinematically because h, k, | are mixed (condition 3.5(a)),
and consequently, they are absent in the diffraction pattern. Fig.3.8
shows a [110] SAD pattern is taken from a germanium single crystal. The
reflection spots of the type 002, which are kinematically ﬁot allowed
(condition 3.5(d)), can be observed with high intensity. This type of
reflection viélates the kinematical theory of electron diffraction and they
can be interpreted by using the dynamical theory of electron diffraction
(Hirsch et al. 1965) as a result of double diffraction (Tu et al. 1978)
such as,_l'll followed by 111 , both of which are close to the ERS and
also appear m the pattern. This anomaly in the kinematical electron
diffraction theory arises because in this theory it was assumed that the
wave incident on each atom is simply the primary }wave falling on the
crystal, and therefore that the total amplitude of the diffracted wave
is proportional to the number of atoms in the crystal. This is not quite
correct, for it is clear tﬁat the amplitude of ‘the original wave will be
diminished as it passes successi\}e reflecting planes of atoms, because
of the loss of electrons into the réflected wave. Also, the above men-
tioned double diffraction effect predicates that the diffracted beams act
as new sources inside the specimen so that further diffraction can occur

by the crystal.

The range of applicability of the kinematical electron diffraction theory
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Flg. 3.8. The |110] S AD pattern was taken from a germanium

single crystal (120Kv).



depends on the thickness, t, of the electron microécopy specimens. Thus
specimens have to be very thin for this theory to be valid. All the SAD,
CBED and LACBED patterns have been taken from the thinnest areas
of Ge specimens prepared during this study. The thicknesé of these
thin areas was within the values at which the kinematical theory is vélid,
so, this theory is sufficient to be used to interpret all the diffraction

patterns presented here.

Thicker specimens need the dynamical diffraction theory which will
take account of the repeated scattering and of the dynamical interaction _
of the incident and scattered electron beams with the material of the
specimens. "This theory has been explained at length by many authors,

for example Hirsch et al. (1965)

The structure of interfaces in "edge-oﬁ" and "plan-view" grain
boundarieé has been studied considerably in the last decade using SAD
technique. It .is found that the interface in 'edge-on' specimens gives
rise to an array of relrods along a direction parallel to both the specimen
surface and the interface. These relrods are elongated normal to the
interface (Carter et al. 1980). The ERS can cut the relrods along their
length and thus one can observe them in a SAD pattern as an array of

streaks running normal to the boundary plane.

Also, the interface in the "plan-view" grain boundary gives rise to
extra reflection spots (which result from the periodic structure of the
boundary), besides the reflections from both grains. (one and two).
So, the SAD patterns taken from these specimens contain reflections from
grains oﬁe and two and the grain boundary region. They also contain

many spots due to double diffraction. It is therefore necessary to sort
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out those reflections which result from double diffraction from those
which are singly diffracted. One can differentiate between grain

boundary reflections and double diffraction by making use of the double
diffraction cell. Such a cell consists of the ‘shortest two vectors, say
V, and V,, of the RL in consideration, The vector, V (=V,orV),can
be represented in terms of the reciprocal vectors g and h, as follows V

= (g - h) where g and h are any two reciprocal vectors connected to the
origin of the RL with two spots in the zero or higher order laue zones
for which the curvature of the ERS cquld be significant. In case of
bicrystals the contribution to the double diffraction spots intensity is
arising from multiple difijaction via spots, in the zero or higher order
laue zones in one or both grains which constitute the bicrystal, that

intersected or nearly intersected the ERS.

The SAD technique is useful in the determination of the orientation
relationships between the grains in a specimen and the determination of
the crystal class but it is unable to determine the point group or
spacegroup' of a crystal. We shall turn in the next section to consider
another technique which will enable us to do so, and this technique is.

the CBED technique.
3.2.2. CONVERGENT BEAM ELECTRON DIFFRACTION.
The CBED is one of the most powerful techniques for investigations

and determinations of crystal structure. Recently, the power of this

technique has been appreciated in a wide variety of 'applications, such
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as the determination of crystal point grou;Ss and spacegroups

Using the SAD technique (section 3.2‘.1) a rather large area of the
specimen contributes to the pattern because the specimen is illuminated
with a parallel beam of electrons. On the other hand, ‘using‘CBED, the
electron beam is focused onto the specimen so that a small area of the

specimen contributes to the pattern.

One can obtain a CBED pattern in a TEM by following this procedure
(Spénce et al. 1986):
| (1) forming an image of the specimen,

(2) increase the strength of the .first condenser lens Cl1
(Fig.3.3) to its maximum excitation while altering the sec-
ond condenser lens C2 to produce a focused spot. This
simply means that the illuminated area on the screen is
minimised using the C2 fine contral,

.(3) the CBED pattern is observed by switéhing to dfffraction

mode.

Fig.3.9 shows é ray diagram depicting the formation of CBED patterns
in the back focal plahe'. Eig.s.lo shows a [111] CBED pattern is taken
from a germanium spvecimen following the above procedure. The central
disc is 000 type, and the six next discs which are surrounding the zero
one are of the type 220 and all are in the zero order Laue zone. Two
types of information are available in the CBED patterns (e.g. Fig.3.10).
The first is the detailed structure, within the direct beam, 000, and
within the diffracted béams, 220, which shows certain symmetries. The
second is information in the form of fine lines which are visible in the

direct beam. These lines are called higher order laue zone
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Fig. 3.9. A ray diagram illustrating the formation
of the CBED pattern.



Flg. 3.10. The (111] CBfcD pattern was taken from a germanium

single crystal (120Kv). The central disc is 000 type

and the next discs around the centre are of the type

220.



lines (HOLZ lines) which arise as a result of elastic interactions between
the electrén beam and the HOLZ (Jones et al. 1977). Buxton et al.
(1976) classified the possible symmetry of the CBED patterns into 31
groups called the 31 diffraction groups. These groups consist of the ten
two dimensional point groups, 1, 2, m, '2mm, 3, 3mm, 4, 4mm, 6, 6mmn,
(Steeds 1979) and 21 groups arising from the effect of inversion opera-
tion through one of the hkl maxima in the CBED péttern and design.ated
by the subscript R, 1y, 2R, 21g, mR, mlgp, 2mgmg, 2pmmp, 2mmlg,
i, 4lg, Amgmg, 4gmmg, 4mmlp, 31k, 3mg, 3mlg, 6g, 6lg, 6mpmg,
6gmmp and 6mmlg. More detail about diffraction groups for single

~ erystals and bicrystals will be given in chapter 4.

Tables 3.1 and 3.2 are reprbduced from Buxton et al. (1976). Table
3.1 lists, for each of the 31 diffraction groups, the symmetry of bright
field, BF, the whole pattern, WP, dark field, DF, and +G. The latter
refers to the symmetry found when +g reflections are observed using

the displaced aperture method. Depending on the point group of the

crystal +g and -g hkl discs may exhibit different internal symmetry.
Table 3.2 connects the 31 diffraction groups to the 32 crystallographic
- point groups. Thus, if the diffraction group of a CBED pattern was
found, then reference to Table 3.2 the point group could be determined

for the material from which the CBED pattern was taken.

The spacegroup of a single crystal can be determined by observing

the presence of what is called "lines of dynamic absence" which occur
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Table 3.1 CBD Pattern Symmetries®
(Where a Dash Appears in Col 7, the Special Sy ries Can Be Deduced from Col Sand 6
of This Tabie (or trom Table 1 in Buxton et al 1976).)

Dark Field +G Projection
Diftraction Brignt Whole P ———.. Ditt y
Group Field Pattern General Special Genera! Special Group
A 1 1 1 none 1 noney 1
Tq- 2 1 2 none 1 _none n
2 2 2 1 none 2 none
2 1 1 1 none 2a none 21
21 2 2 2 none 21y none
Mg m 1 1 m 1 Mg
m m m 1 m 1 m mig
Mg 2mm m 2 2mm L mig
[2mgmg 2mm 2 1 m 2 -
2mm 2mm 2mm 1 m 2 -

)
2emmq m m 1 m 2% - 2mmitn
2mmip 2mm 2mm 2 2mm 21 -

4 4 4 1 none 2 none

4a 4 2 1. none 2 none a1
4p 4 4 2 none 21q none

4MpMa Amm 4 1 m 2 -

4mm 4amm 4mm 1 m 2 — ammiq
l4ammy, 4mm 2mm 1 m 2 -

4mmtg 4amm 4mm 2 2mm 21 b

3 3 3 1 none 1 none 2

31a [ 3 2 none 1 none ?
3mg 3m k] 1 m 1 mg

3m 3m 3m 1 m 1 m amig
Imig 6mm 3m 2 2mm 1 mig

(] 6 [ ] none 2 none

6p 3 3 1 none 2n none 61p
61n 6 6 2 none 2tp none

6mamy 6mm 6 t m 2 —_

6mm émm 6mm 1 m 2 -— smmig,
6pmmg 3m 3m 1 m 2 -

smmig émm 6mm 2 2mm 21¢q -




Retation Between the Diffraction Groups and the Crystal Point Groups
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in the kinematically forbidden reflections (Gjonnes and Moodie, 1965).
This effect indicates the presence of glide planes or screw axes in the
crystal. An example will be considered next to show the usefulness of
the above procedure for the determination the point group and the -
spacegroup for germanium single'crystal. Fig.3.11(é), (b), (c), (4d),
(e) and (f) show six CBED patterns were taken in six different di-
rections from Ge singlé crystal specimens. These patterns have been
examined carefully, and to determine the diffraction group for each
"pattern their syfnmetrieé, WP, BF, DF and G, have been determined
and tabulated in Table 3.3. Once the diffraction groups havg been de-
termined (Bth column in Table 3.3) one can make use of Table 3.2 to
determine the point gfoup which correSponds to each diffraction group
and the results are listed in the last column of Table 3.3. _Thus the point

group of germanium is m3m.

In order to determine the spacegroup of germanium it is necessary
to identify forbidden reflections which occur due to double diffraction.
In CBED patterns some of forbidden reflections reveal dynamic absences

which take the form of dark bars or lines within the forbidden re-

~flections. These dynamic absences are clearly seen in [011] and [013]

CBED patterns Fig.3.11(b) and (e), respectively, for g = +200 and
~ this is a proof for the presence of a glide plane in Ge erystal parallel
to the plane (100). So, one can assign Fd3m for the spacegroup of

germanium.
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3-11 (a) 10011 lowhigh-camera lengths and ;<I (lil 1) patterns.



® K] low-



;tind high-camera lengths ("HKD patterns.



Fig. 3.11. (c) (Uli low-, high-camera lengths and +G CBED patterns.



ki<*. 3.1 1. (d) [012] low-, high-camera lengths and (i ( HLI) patterns.



Flg 31 l (e) |013] low- and high-camera lengths CBED patterns.



Flg 3.11. (f) 1112] low- and high-camera lengths CBED patterns.



Table 3.3. The symmetry of CBED patterns (Whole pattern, bright field, dark field, and $G),

possiblediffraction groups for a germanium single crystal specimen.

Figure |Zone| Whole Bright Dark Tield G Possible Diffraction | Point
No. Axis| Pattern] Field | General |Special General| Special Groups Groups
()| 3.11¢ay}1001}]  4mm Amm 2 2mm - — 4mmlp m3m
)] 3.11(x)][011]}] 2mm 2mm 2 2mm | — 6gmmp m3m

— 1

3)] 3.11¢e) |[111}] 3m 3m 1 m — 2mmlp m3m
(4)} 3.11(d){[012})] m m 1 m 2r - 2pmmp m3m
(5)| 3.11¢e) {[013]] m m 1 m 2 | — Zpmmp m3m
6)| 3.11(¢f) [112]] m m 1 m 2p — 2gmmp m3m




3.2.3. LARGE ANGLE CONVERGENT BEAM ELECTRON
DIFFRACTION (TANAKA).

The diameter of a non-overlapping CBED pattern is limited by the
Bragg angle. For large unit cell, i.e. has large lattice parameter, the
CBED disc diameters become small, and the intensity distribution
available in a small disc does.not show clear symmetry so that the in-

formation in the disc is reduced severely.

The LACBED (Tanaka) technique is useful in the above case because
it consists of large diameter non-overlapping discs. Another advantage
of the LACBED technique is that it enables the electron microscopist

to obtain .patterns from relatively small areas, ~100 nm diameter
( Wiliiams 1984). In the case of CBED technique four patterns (whole
pattern, bright-field, dark-field, and +G dark field patterns) are
needed to determine a crystal point group, whereas, by using LACBEDk
technique, a single pattern confains the above intormatioh simultane-

ously.

- The procedure for obtaining a LACBED pattern for a PHILIPS EM400
is (Williams 1984):
(1) Set up tfxe microscope in the normal CBED mode (see section
3.2.2).
(2) Switch to image mode and focus the electron probe fully on.
the specimen surface.
(3) Use the. specimen height control to increase the specimen
heiéhf. (i.e, move specimen toward electron gun) until the

probe is seen split into many probe images, one for each

'Bragg beam.
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(4) Isolate the order of interest by inserting the SAD aperture
so fhat the order required paéses through the aperture.
(5) Switch to diffraction pattern mode and remove the condenser
aperture completely. A LACBED pattern with no overlap of
order will be seen on the viewing screen‘..
Fig.3.12(a), (b), (¢) and (d) show [001], [011], [111] and [112] LACBED
patterns were taken from Ge single crystal specimens. Each pattern
shows the WP, BF, DF and +G symmetries, Simultaneously, and they
are equivalent to those listed before in Table 3.3 and recorded by 'tour
different pattern for each zone axis. Thus using the LAC‘BEI_) technique
the procedure for determining the point group becomes shorter than

using the CBED one.
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Fig. 3.12(8). The [0011 LACBED pattern was taken from

a germanium single crystal (120Kv).



a germanium single crystal (120Kv).






Fig. 3.12(d). The [112] LA C B ED pattern was taken from

a germanium single crystal (120Kv).
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4.1. INTRODUCTION.

As mentioned in chapter 3, Buxion et al.(1976) classified the sym-
metry of CBED patterns taken from single crystal specimens into 31
groups Which are called the diffraction groups. They also tabulated the
relationship between thése groups and the corresponding 32
“crystallographic pvoint groups (Table 3.2), hence the point groups of
single crystal specimens can be determined. A complete example for
the detefmination' of the point and spacegroup ol' a Ge single crystal

is given in the previous chapter.

This chapter is divided into two main parts. In the first part we
present an alternative method for obtaining the 31 diffraction groups.
We show that the 31 possible symmetries of CBED patterns from ideal
plane single crystal parallel foils correspond, precisely, to the 31

' permisSiblg rosette groups (Pond ef al. 1983).

The second part of this chapter is devoted to the derivation of the
"plan-view" and "edge-on" bicrystal diffraction groups by following the
procedure adopted in part one, and making use of the 80 layer and 31

band permissible bicrystal groups (Pond et al. 1983) , respectively.

4.2. TYPES OF SYMMETRY.

Single crystal specimens, as mentioned before in chapter 2, may
exhibit two types of symmetry elements: 6rdinary and/or antisymmetry.

One can define an ordinary symmetry element in the present application
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as a symmetry element which leaves 'th.e normal to the specimen surface

invariant, while an antisymmetry element inverts it.

4.2.1. THE ORDINARY SYMMETRY ELEMENTS.

The ordinary symmetry elements are:

(1) Ordinary rotation axis perpendicular to the specimen

surface: 1-,2-,3-,4-,and 6-fold axes.
(2) Ordinary mirror perpendicular to the specimen su_rface: m
4.2.2. THE ANTISYMMETRY ELEMENTS.

The antisymmetry elements afe:

(1) antirotation axis parallel to specimen surface: 2'

(2) antimirror parallel to specimen surface :‘ m'

(3) anti-inversion centre located in specimen: 1 '

(4) anti-roto-inversion axis perpendicular to specimen surface:

§ v’ Zv, gr
4.3. DIFFRACTION GROUPS FOR SINGLE CRYSTALS.

We shall determine the types of symmetry' (ordinary énd/or anti-
symmetry), and hence the point groups which an ideal parallel plane
foil can have, and then, relate them to the diffraction groups:

(1) Let the specimen have the identity element of symmetry, 1. The

ray diagram in Fig.4.1(a) depicts, graphically, this element of

symmetry. The two horizontal lines represent the upper and lower
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Fig. 4.1. (a) A ray diagram represents a specimen having the identity symmetry
element.
(b) A stereographic projection represents the identity symmetry ele-

ment (reproduced from Buxton et al. 1976).

ement perpendicular to its surface.

(b) A stereographic projection represents a diad symmetry element
(reproduced from Buxton et al. 1976).

(c) As (b), but represents a triad symmetry element.

(d) As (b), but represents a tetrad symmetry element.

(e) As (b), but represents a hexad symmetry element.

Fig. 4.3 (a) A ray diagram represents a specimen having a mirror symmetry
element perpendicular to its surface.

(b) A stereographic projection represents the mirror symmetry element



surfaces of the specimen, the 'inclined parallel lines, s, represent
a set of parallel planes in the specimen. The ingoing electron
beam, vi, is diffracted by the set of planes, s, to d satisfying

Bragg'é law of reflection.

Alterriative]y; using the stereographic' projection method
(Buxtoh et al. 1976) one can represent the elemenf of symmetry
possessed by the above specime_n. Fig.4.1(b), for éxample, is a
stereographic projection dépicfifxg the syinmetry in Fig.4.1(a),
where the large c.ircle representsla dark field disc and the small
one represents the outgoing beam. This figure is identical to
that representing the diffraction group 1 (Buxtfon et al. 1976).

(2) Let the specimen ’héve an n-fold axis, n = 2, 3, 4, or 6, i.e.,
20 1 11

rotation by an angle II, S g0 OF 5

dicular to the specimen surface. For each n-fold axis there are

respectively, perpen-

n sets of planes and hence n pairé of Bragg reflections related
by this axis. For example, Fig.4.2(a) illustrates the case when
n=2. The two sets of planes s and sj are related by this axis
as well as the two pairs of Bragg reflection ij-d) and i3 -d3.
Fig.4.2(b), (c), (d), and (e), show the symmetries of the n=
2-, 3-, 4-, and 6'fold axes, using the stereographic projection
method, and they are similar to the figures representing the
diffraction grdups 2, 3, 4, and 6, respectively. |

(3) Let the séecimen have a mirror, m, perpendicular to the surface
of the specimen. Fig.4.3(a) illustrates the pairs of Bragg re-
flections i3 -dj and ig3-dg which are related by this ordinary

mirror operation. Fig.4.3(b) represents the mirror symmetry of
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Fig.4.3(a), using the sterebgraphic projection method, and it can

bé seen that this represents the diffraction .group m (Buxton et
al. 1976). |

(4) Let the specimen have an anti-inversion centre, 1 '. Here, andk

in the following cases(5-7), the reciprocity theorem (Howie 1978)

" has been invoked. It states that the wave amplitude at a point,

say Va, originating from a point spherical source located at a

point, say b, is equal to the amplitude at b when the source is

placed at a.

Fig.4.4(a) is ray diagram representing the symmetry 1'. The
ingoing béam, i1, is incidént on the upper surface of the specimen
and is diffracfed By the set of planes s to dj. Similarly, and due
to the presence of the symmetry element, 1', an ingoing beam
i, would be diffracted by the set of planes s1 to dj. Because
of the reciprocity theorem, ‘t.he diffraéted beam dg can be re-
garded as the incident beam i3 and the incident beam ig as the
diffracted beam d3. The diffracted beéms d1 and d2 must have
equal amplitudes to preserve the symmetry element, 1'. The
stereographic projection of Fig.4.4(a) is shown in Fig.4.4(b).
The latter is identical to that which represents the diffraction
group 2R, i.e. the symmetry element 1' corresponds to the
diffraction group 2r. Note that the subscript R stands vfor the
fact that we have invoked the reciprocity theorem.

(5) Let the specimen have an anti-diad axis parallel to its surface,
2', Fig.4.5(a). The two sets of planes s; and s are related by
this element of antisymmetry. The incident beam, {; , is
diffracted by s to dj and the incident be#m i2 , would be

diffracted by s; to d3. By applyihg the reciprocity théorem,
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®

centre.

(b) A stereographic projection represents the symmetry element in (a)

(reproduced from Buxton et al. 1976).

(a) ()

Fig 4.5.(.) A ray diagram represents a specimen having an anti-diad parallel
to its surface.

(b) A stereographic projection represents the symmetry element in (a)

d 2Ci3)

®

Fig 4 6" A r*y diagram represents a specimen having an anti-mirror parallel
to its surface.
(b) A stereographic projection represents the symmetry element in (a)

(reproduced from Buxton et al. 1976).



the beams ig and dg can be regarded as d3 and i3, respectively,
ahd d1 and d3 must have equal amplitudes. Fig.4.5(b) is the
stereographic projection of Fig.4.4(a) which is the same as that
represents the diffraction group mgp. It also depicts the corre-
spondence between the_‘ element of ahtisymmetry 2' and the
diffx;aétion group mpR. | | -

(6) Let the séecimen have an‘anti-mirror parallel to its surface, m',
Fig.4.6(a). The incident beam i is diffracted by the set of planes
s to dj The set of planeé s1 is related to.the set of planes s by
the symmetry element m' and they would diffract the incident
beam ig into dj. By applying the reciprocity theorem, the
diffracted beam dg can be regarded as the incident beam i3 and
the incident beam i3 as the diffracted beam d3 and the diffracted
beams dj and d3 must hav(e equal amplitudes. The stereographic
projection of Fig.4.6(a) is shown in Fig.4.6(b), where the two
bragg reflection pairs i1 -dj and i3-d3 are represented by two
discs in complete coincidence because of the presence of the
anti-mirror symmetry element, which has symmetry> similar to that
of the diffraction group 1R, i.e. there is correspondence between
‘m' and 1R.

(7) Finally, let the specimen have one of the anti-roto-inversion
axes, 3 ', 4' or 6, perpendicu]ar to its surface. Similarly, we
found they are corresponding to the diffraction groups FGR, an

and 31p , respectively (Fig.4.7(a), (b) and (c), respectively).

The correspondences between the ordinary symmetry and antisymmetry
elements and the diffraction groups described in points 1 to 7 are tabu-

lated in Table 4.1.
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Fig. 4.7.
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®@-° |©
D) e o ® 2 ag 6'=31p
() (b) (c)

A stere hi jecti
ographic projection represents the symmetry elements: (a)

3', (b) 4" and (c) §'.




Table 4.1. The correspondence between crystal symmetry elements

(ordinary and antisymmetry) and diffraction groups.

Crystal symmetry elements Diffraction groups
No. Ordinary Antisymmetry
(1) 1 1
- (2) 2 ) : | 2
(3) 3 3
(4) 4 4
(5) 6 | 6
(6) m m
1
(7 2 mp
(8) m' 1p
. 1
(9 1 2R
!
(10) .3 , 6
! ;
(11) , 3 g

(12) - 6' 31




The final step is the direct conversion of the 31 permissible rosette
‘groups into their corresponding diffraction groups, using Table 4.1.
Table 4.2 shows the correspondences between the 31 diffraction groups

and their counterpart permissible rosette groups.

We believe that the method which we have used and illustrated in points
1 to 7, for the determination of the symmetry and hence the point groups
of single crystal, is simpler than that used by Buxfon et al. (1976).
4.4. THE BRIGHT FIELD, PROJECTION DIFFRA.CTIO.N, AND WHOLE
PATTERN GROUPS.

It is well known now that a CBED pattern is composed of three
inter-related patterns, i.e. the bright field, projecfioxi diffraction, and
whole patterns (Steeds 1979). The bright field pattern consists of the
transmitted or direct beam disc, while the projection diffraction pattern
comprises the direct and diffracted beam discs which form what is called
the iero order laue zone (zolz). The whole pattern includes, beside the
zo]z reflection discs, the higher ordef laue zone (holz) dises. Conse-
quently, the symmetry of a CBED pattern may be specified precisely
byA knowing the individual symmetry of its bright field, projection
diffraction, and whole patterns. The possible symmetries of bright
field, projection diffraction, and whole patterns belong to one of the
set of ten of bright field,‘ G, , projection diffraction, G, , and whole
pattern, G, , point groups, respectively, which were tabulated previously
in Table 3.1 in chapter three. The importance of G, , G, and G, point
groups is, clearly, beéause of their role in the determination of the point

group of a specimen.
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Table 4.2. The correspondence between the 31 diffraction
groups and the permissible rosette groups.

No. Permissible rosette groups Diffraction groups

ordinary Antisymmetry
(1) 1 1
(2) 11m' lR
(3) 112 2
(1) 1 ZR
(5) 112/m' 21R
(6) 2'11 , mp
(7 mll m
(8) m2'm' mlR
(9) , 2'2'2 szmR
(10) mm2 2mm
(11) 2'/m11 ZRmmR
(12) mmm' 2mm_1R
(13) 4 4
(14) 4 4p
(15) 4/m’ 41R
(16) ' 42'2" ' 4mpmp
(17) 4mm 4mm
(18) 4'2'm 4RmmR
(19) -~ 4/m'mm - 4mmlp
(20) 3 3
(21) 6' _ 31R
(22) 32' 3mp
(23) 3m o 3m
(24) 6'm2’ 3mlp
(25) 6 6
(26) - 3 6R
(27) 6/m' ‘ 61R
(28) 62'2' GmRmR
(29) 6mm 6mm

1

(30) 3'm 6pmmp

(31 6/m'mm 6mm1lp,




In the .pre\?ious section we ,found there was a one to one _cﬁrre?
spondence betwéeh the 31 rosette groups, which describe the specimen
symmetry, and the 31 diffraction groups. The 10 ordinary rosette
groups (second column of Table 4.2) directly correspond to the 10 or-
dinary diffraction groups (last'column of Table 4.2) while the 21 anti-
symmetry rosette groups correspond to the 21 diffréction groups (last
column of Table 4.2) which we marked by a subscripf R, indicating

application of the reciprocity theorem.

The object of this section is to find a relation which may relate the
specimen syﬁmetry groups (the rosette groups) to the CBED pattern
groués (G."’ G,, G.), considering the one to one correspondence between
the rosette groﬁps, G, and the diffraction groups, G;, which have al-

ready been emphasised previously (Table 4.2).
4.4.1. THE BRIGHT FIELD GROUPS.

The BF groups (see Table 3.1) envisage thé possible symmetry of the
transmitted beam, which form the internal disc of a CBED pattern.
First, we consider the effect on the bright field disc of ordinary ele-
ments of symmetry in the specimen. If a specimen possesses one of the
following ordinary symmetry 1, 2, 3, 4, 6 and m or a combination of
them, e.g. 2mm, 4mm, 3m, or 6mm, then the resulting BF pattern will
have symmetry similar to that possessed by the specimen itself as il-
lustrated, stereographically, by patterns 1 to 10, respectively, in
Fig.4.8. The dot and circle represent the incident and the transmitted

beams, respectively and the cross represents the centre of the pattern.
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Fig. 4.8. The stereographic projections represent the ten 2-dimensional bright

field point groups.



The symmetry assignéd at the bottom of each pattern representing the

symmetry of the transmitted beams only.

Secondly, we consider a specimen possessing antisymmetry. Fig.4.9’(a)
is a ray diagram for a specimen exhibiting an antidiad, 2'. In this case,
the incident beam, {1, is transmitted through the specimen to t; . Due
to the presence of 2', .the symmetry related incident beam, i3, would
bé transﬁitted through the specinien to tg . Alternatively, and invoking
the reciprocity theorein, the beams i3 and ts can >be regarded as i§ and
t?, respectively. The superscript R means that the reciprocity theorem
has been invoked. The stereographic projection connected to Fig.4.9(a)
is shown in Fig.4.9(b) and it is seen to exhibit mirror symmetry, where
we‘ have considered only the symmetry of the transmitted beams. In
other words, if the specimen possesses an antidiad the resulting BF
pattern will exhibit ordinary mirror symmetry. If the specimen possesses
an antimirror',' Fig.4.10(a), then the resulting BF pattern, Fig.4.10(b),
will exhibit a diad symmetry, and if the specimen possesses an
anticentre, 1 ', as illustrated in Fig.4.11(a), the resulting BF pattern,
Fig.4.11(b), will exhibit a diad element of symmetry. Similarly, if a
specimen possesses one of the followiné antisymmetry elements 3 ', 4'
and 6', the resulting BF pattern will exhibit the ordinary symmetry 3,
4 or 6 respectively. One can conclude that the BF patterns (Table 4.3)
possess only ordinary symmetry whether the specimen exhibits ofdinary

symmetry or antisymmetry, and this conclusion agrees with the symmetry

of the BF patterns given in Table 3.1.

'The above conclusion can be expressed mathematically as follows:
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(b)

Pig 4.10. (a) A rav diagram for a specimen exhibiting nX

(b) A stereographic promotion for rr/ in (a).

(b)

1n A rd' diagram for a specimen exhibiting

(b) A stereographic projection for I'Am (a).



Table 4.3. The Correspondence of Specimen Symmetry
and Bright Field Pattern Symmetry.

No. Specimen Symmetry Bright Field Symmetry
1 1 1
Ez; 11m' 2
(3) 112 2
(4) T 2
(5) 112/m' 2
(6) 2'11 m
(7) m1ll m
(8) m2'm' 2mm
(9) 2'2"2 2mm
(10) mm2 © 2mm
(11) 2'/m1i1 2
(12) mmm' 2mm
(13) 4 | 4
(14) 4 4
(15) 4/m' ‘ 4
(16) 42'2' 4mm
(17) 4mm - 4mm
(18) 4'2'm Amm
(19)  4/m'mm 4mm
(20) 3 3
(21) 6' ‘ 6
(22) 32' 3m
(23) 3m 3m
(24) 6'm2' R 6mm
(25) 6 6
(26) 3' 3
(27) 6/m’ 6
(28) - 6212' ' 6mm
(29) 6mm 6mm
(30) 3'm | 3m

(31) 6/m'mm 6mm




G = GUG: .7 | ' .1

where the rosette group G, has been decomposed into two sets, one
containing only the ordinary elements of symmetry, G?, and the- other
" containing the anﬁsymmetfy elements, G7, (ie. G, = G:U G?). For exam-
ple; consider the rosette group G, = 2’2’2 =’{ 1,2,2/,2’}, (No. 9 in Table
4.3), which can be éf{préssed as the union of the sets of ordinary and

antisymmetry elements G, = (l,' 2) U (2%, 2). Using Eq.(4.1) we obtain

G=012U@,2).1V
= (1,2) U (m, m)
={1,2,m,m} = 2mm.
Thus the rosette group, G, = 2’2’2 leads to the bright field group

G, = 2mm

4.4.2. THE PROJECTION DIFFRACTION GROUPS.

It has been shown that (Buxtfon et al. 1976) when the projection ap- |
proximétion is valid, the specimen behaves as though it has onl& two
dimensjonal periodicity, and therefore, it'ex‘hibits an antimirror parallel
to its Surface. Also, the projection diffraction groups describe the
symmetry present in th_e zolz of the CBED patterns. The consequence
of the above two statements is that the projection diffraction groups can

be expressed as the extension of the 31 diffraction groups by an anti-

symmetry group of index 2, i.e. G’ = {1, m’ }, which contains
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the identity aﬁd an antimirror parallel to the specimen surface. Table
' 4.4 shows that the extension of the 31 rosette groups (se-condvcolumn),
by C’ = { _l,m"} leads to the 10 groups shown in the last column. These
10 groups are identical to the 10 projection diffraction groups, G, , of

Table 3.1. This extension of G, by G’ is formulated mathematically by

the following expression:
G, = G,0G/, G = {l,m} , 4.2)
4.4.3. THE WHOLE PATTERN GROUPS.

The whole pattern symmetry is the two dimensional point group sym-
metry of the CBED discs, including the .symmétry of the zero and higher
order laue zone discs. The whole pattern group, G, , may be expressed

mathematically as the intersection between G? and G, as follows:
G, =G NG, : 4.3)

For example, the intersection. of the rosette group and the bright field
group listed in the first row of Table 4.5 results in the whole pattern
point group listed in the same row and so on for the rest of the groups
in the next rows. The whole pattern groups, G, , which are listed in
the last column of Table 4.5, are identical to these listed in Table 3.1

(third column).
4.5. DIFFRACTION GROUPS FOR BICRYSTALS. .

Pond et al. (1983) indicated how all the possible bicrystal spatiai

groups, e.g., permissible bicrystal band and layer groups, can be
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Table 4.4. Crystal Symmetry and the
Projection Diffraction Groups.

(31) 6/m'mm 6mm1

No. Rosette Projection Diffraction Group
(1) 1 1p
(2) 11m' 1p
(3) 112 25
4 1! 2R
(5) 112/m' 25
(6) 2'11 25
(7) m11 mlp
(8) m2'm' mlp
(9) 2'2'2 2mm1p
(10) mm2 2mm1y
(11) 2'/mi1 2mm1R
(12) | mmm' 2mmlpy
(13) 4 41p
(14) 3 a1y
(15) 4/m' 41p
(16) 42'2' 4mm1R
(17) 4mm - Ammlp
(18) 4'2'm 4mmly
(19) 4/m'mm 4mm1y
(20) 3 31
(21) 6' 31,
(22) 32! 3mly
(23) 3m 3m1R
(24) 6'm2’ 3mlp
(25) 6 - 61p
(26) 3 61R }
(27) 6/m' 61R
(28) 62'2' 6mran
(29) 6mm 6mmlp
(30) 3'm 6mmlp
R




Table 4.5. Specimen Symmetry and the
Whole Pattern Groups.

No. Specimen Symmetry Whole Pattern Symmetry
(1) 1 1
(2) 1im' 1
(3) 112 2
(4) 1 1
(5) 112/m' 2
(6) 2'11 1
(7 mll m
(8) m2'm' m
(9) 2'2"2 2
(10) .~ mm2 2mm
(11) 2'/m11 m
(12) mmm' 2mm
(13) 4 4
(1a) @ 2
(15) 4/m' 4
(16) 42'2' 4
(17) 4mm _ 4mm
(18) . 4'2'm 2mm
(19) 4/m'mm 4mm
(20) 3 3
(21) 6' 3
(22) 32" 3
(23) 3m 3m
(24) 6'm2' 3m
(25) 6 6
(26) 3 -3
(27) 6/m' 6
(28) 62'2' 6 .
(29) 6mm 6mm
(30) 3'm : , 3m

(31) 6/m'mm 6mm




established from first principles. They expressed the spatial bicrystal
groups as extensions of the translation groups by means of ordinary
and antisymmetry groups containing operations which leave the bicrystal
invariant. In the case qf bicryStal band groups the translation symmetry
group is one dimensional and desfgnated pP. The ordinary and anti-
symmetry element sets which leave the translation symmetry p and the
boundary planer invariant are (1, 2, m, a) and (1', 2', m', 2', a'),
respectively. For the case of b~icrysta1 layer groups, the translation
group corresponds to one of the five 2-dimensional lattices and is des-
ignated p or c. The permissible ordinary and antisymmetry element sets
are (1, 2, 3, 4, 6, m., a, b) and (1', 2', m', a', b', n'), respectively.
They, also reported that a bicrystal band can have one of 31 band
groups while a bicrystal layer can have one of 80 permissible bicrystal

lJayer groups.
4.5.1. DIFFRACTION GROUPS FOR “PLAN-VIEW” BICRYSTALS.

The "plan-view" bicrystal has the interface parallel to its surface
(see chapter 3). It can have 2-dimensional translatioh symmetry, or less,
parallel to the boundary plane. It is pointed out in chapter 3 that the
presence of non-symmorphjc symmetry elements can be detected exper-
imentally using CBED patterns: firstly, by means of ‘equations 3.5(a)
to (d) one can determine the kinematically forbidden ret‘lectioﬁs. Sec-
ondly, the dynami.c abse;lces, which have the form of dark bars or lines
within the forbidden reflection -disks, indicate the presence of these

elements (Gjonnes and Moodie 1965).
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The possible ordinary eleméﬁts of point symmetry exhibited by a -
"plan-view" bicrystal:
(1) the identity, 1,
'(2) a diad, a triad, a tetrad, and a_hexad perpendicular to
the specimen surface, 2, 3, 4, and 6,

(3) a mirror perpendicular to specimen surface, m.

The possible antisymmetry élenients:
(1) an anti-inversion centre of symrﬁetry in the boundary
plane, 1°',
(2) an anti-diad parallel'to the boundary plane, 2',
(3) an anti-roto-inversion triad, tetrad, and hexad perpen-
dicular to the boundary plane, 3 ', 4' and &', |

(4) an anti-mirror parallel td the boundary plane, m’'.

It is illustrated in Fig.4.12, usihg the stereographic projection
method, that "plan-view" bicrystal specimens can exhibit one of the 31
point groups. These 31 point groups are found to be equi\'zalent to the

.31 symmorphjc layer point groups (Pond et al. 1983). Hence the pos-
sible s&mmetry of the "plan-view" bicrystal specimens can be described
precisely by the 31 symmorphic layer point groups (Pond et al. 1983).
The equivalence between the 31 symmorphic layer or' "plan-view"
bicrystal specimen point groups' and the 31 diffraction groups- is es-
tablished and found identical to that which was tabulated in Table 4.2
for the equivalence between single crystal specimen point groups and
thé 31 diffraction groups. In other words, the point symmetries which

can be exhibited by the two types of specimens are the same.
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Fig. 4.12. The stereographic projection patterns for the 31

#plan-view” bicrystal point groups. The dot and circle

represent the incident and outgeing beams, respectively.



4.5.2. DIFFRACTION GROUPS FOR “EDGE-ON” BICRYSTALS.

In the case qf "plan-view" bicrystal specimens the concept of anti-
symmetry in bicrystal groups corresponded directly to éymmetry which
could be revealed in CBED patterns because anti-operations, g', cor-
respond to those where the reciprocity theorem must be inv.oked. But

this is not necessarily the case for the "edge-on" bicrystal specimens.

The objective of this section is to explain how we can identify those
operations in the point group of an "edge-on" bicrystal, G(b), which
lead to syﬁmetry in CBED pattern when reciprocity is. invoked. In
other wordsA, we describe a procedure for re-assigning the ordinary
and anti-operations in G(b) into two sets, one corresponding to oper-
afions which lead tvo conventional symmetry, and the other containing
the operations for which reciprocity must be invoked. We refer to such
groups ‘as revised groups, and designate them G’ (b). Thus, a group
. G(b), formally expressed as G°|J G* will now be re-expressed as G" (b)
= G |J Gz , where the subseript R refers to the set of operations for
which reciprdcity must be invoked. The operations in the set GR can
be readily obtained és follows. Let i be a unit vector paraliel to the
incident beam direction, -and 3 be the beam direction related to i by
the operationé gorg' belonging to'GV(bb). If ie j is negative, then
this operatfon must be assigned to the set Gp. Some examples of this
procedure are illustrated below for the case of = 3, 9, and 27
bicr&stéls. The first example chosen is for the £ = 3( 112 );, bicrystal

which is shown in Fig.2.6(a) (chapter 2). It exhibits the following
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ordinary elements of symmetry (see chapter 2):

~ (1) the identity, 1,
(2) a mirror perpendicular to the interface and parallel to the
specimen surface, m(110),. |
It exhibits the following antisymmetry elements:
(3) an anti-mirror_paraliel to the interface, m’(112),
(4) an anti-diad parallel to both the interface and the specimen'surface,

21T,

Therefore, this specimen has the bicrystal point group 2’‘mnv. ﬁow,
consider i = [110];, i.e. the normal to the specimen surface, and op-
erate on this direction by the 4 operations in the point group 2’mm’.
One can find that only two operations arise such that io j is negative;
these operations are m(110), and 2’| 111 l, » as shown in the third column
of Tablé 4.6(a). Therefore the revised point group forZ = 3( 112 ),
bicrystal is:

Gr(b) = (1, m(Tlf)k) U (mY’(110),, 2] 111 ) = 2m'm.
Similarly, for i = [5311],,[421],,[31T],, or [512],, rows 4 to 7 in Table
4.6(a), the revised specimen point group is also, G" (b) = 2’m’m, and
for 1 = [207 Lo [ 312 Lo | 111 l,, rows 8 to 10 in Table 4.6(a), G"(b) =
2mm. Other examples are given in'Tables 4.6(b>), and (c) for * = 9,

and 27, respectively.

The final step is converting the above revised point groups to their
corresponding diffraction, bright field, projection diffraction and whole

pattern point groups making use of Tables 4.2, 4.3, 4.4 and 4.5,
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Table 4.6(a). Derivation of the revised point group for
L= 3( 712)x bicrystal.

Surface % E
Normal |£|E 1 m(110), m'(112), 2'(177],
Y
5 e 1 0 0 Q -1 V] 1 ~2 ~1 -2 -2
ol ¢ 0 1 0 -1 0 - -
fefle s 127 shell s Zhelad ]
[110], (1101, { Ti03, [110] [ 110)
[53 1) 53 1 ) A
X 153 11, [ 3511, (53 11, [ 3511,
(42 11, (42 13, [ 231}, (a2 11, [ 237,
[31 10, 31 1, 1310, SRIN [ 131,
(51 21, (51 21, 1521, 51 21, [ 152)
X
[20 11 (20 11, { 0211, (20 1, { 031}
A
(3 12, 13 125, 1132, (3 121, (37,
{1 17], [1 TT]X {1 ﬁ]x ’ (111, RN
:Tab|e 4.6(b). Derivation of the revised point group for
L= 9¢( 221))‘ bicrystal
Surf 42' A ] '
N\;;:acle % .E I m(llO)x m (221)X 2 [Tll}x
—-| &
o
Wfr 1 6 0 o -1 0 1 8 4 -1 -8 -4
fol e} Q - Q Q 9 8 1 -4 9 -8 -1 4
5:[8é1][3011/[4- 7]1/[-44-7]
HE
oy, | {1104, L 110, (110}, [ 1101,
[35 3]). [35 Z]X [ 533]x [35 Z]x [ 531]X
(13 3, (13 3y, [ 313), (13 3, [ 313),
(15 31, (15 3], [ 514), (15 31, { 514},
[o1 21, {01 2), t 102), (o1 21, [ 102),
[ 17 11, [ 17 T8, (71 81, [ 17 %), (71 %1,
[ 35T6], [ 35T6), [ 5378], [ 3578], [ 53T8],
[ T4}, [ T3}, [ 113}, [ 13, [ T13),
Table 4.6(c). Derivation of the revised point group for
= 27(5 52))‘ bicrystal.
|8 E I m(110), m'(552), 2'(1151,
£l
% . 2 25 10 -25 -2 10
Surface (B3 [ R ] [ S0 Y e [ 25 2 -10 ] 121 [ -2 -25 -10 ]
Normal £l 0 o0 1 o o 1 10 <10 23 10 -10 23
nlx
(110] (1107, { TTO]X {110], [ 1101,
135 5], 135 5], [ 535), 135 51, [ 535],
(23 51, [23 5}, [ 335, (23 51, [ 3251,
(17 131, (17 151, (71 15, (17 18], L7 1),
[ 17 0}, [ 17 30, [ 130}, {17 1), { 11201,
[0z 5], (02 53, ( 2051, {0z 51, { 2051,
{1 1370], [ 1370], [ 3170), [ 131, [ 3170,
[ 115, [ 115), [ 115, { 1151, [ 1151,




respecfively. For example, 1f an "edge-on" specimen has a revised point
‘group G’; (b) = mm2, then its corresponding G, = 2mm, G, = 2mm, G, =
2mm1g, and G, = 2mm. Similarly, if an "edge-on" specimén has G (b)
= 2’m’'m then its corresponding G, = mlg, G, = 2mm, G, = ml &, and G,

= N

4.6. EXPERIMENTAL DETERMINATIONS OF RELATIVE
DISPLACEMENT.

In chapter 2 a theoretical study is given concerning the variation of

the symmetry of three germanium bicrystals with rigid body translation
p parallel to the boundary plane (section 2.7). It was deduced that a

bicrystal"s spacegroup is a function of the shift p. This conclusion was
formuléted mathematically through two equations expressing the criteria
for conservation and/or breaking of coincident and antisymmetry oper-

ations (Eq. 2.16(a) and (b)).

In principle a rigid body translation p can be determined exper-

imentally using SAD or CBED techniques (see chapter 3). The applica-

tion of the former technique to determine p can be appreciated by
considering the following points. Firstly, the structure factor equation

(Eq.3.2 in chapter 3) can be rewritten for bicrystal interfacial re-

flections as

ihxt + kvt + lz:h :
Fra = Zig {fix ez’“(hx] + l\yl + lz! ) + fqp e2nl(hxq“ + kyq“ + lzq“)
'eZRi(hpx + kpy + lpz)} (4.4)
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where the sum is over all the white and black atAoms in the biérystal,
f* and f* are the atpmic scat(ering factors for the jth white and gqth black
;atoms, (x*, yA, z") and (x*, y#, z') are the fractional coordinates of the jth
white and qth black atoms in the( bicrystal and (py, Py» py) are the X, y;
z components of the the rigid body translation p of the black crystal
with respect to the white one. Secondly, _fhe absolute inteﬁsities, Ihkoo
of the spots in a SAD pattern afe given by Iy = Fhlehkl* (Eq.(3.3)
chapter 3).

Thus, if a rigid body translation is present in a given bicrystal, then

a comparison of calculated intensities, Ij;j, and that measured from the

SAD pattern from the bicrystal gives an insight into p. Howéver, the
SAD technique is not usually used for the determination of the rigid

body translation because of the difficulty of the measurement of the

absolute intensity, Iyp.

Recenﬁy, Cherns et al. (1986) used the CBED technique to determine

the interfacial rigid body displacement, p, in an Al/(001)GaAs "plan-
view"' specimen. Molecular beam epitaxy was used to grow 50nm of Al
at 560°c on a fresh 1luym GaAs subStrafe. The projection symmetry of
the observed [001] CBED pattern from this Al/(001)GaAs bicrystal, ex-
hibited four-fold symmetry. Three possibilities for thé rigid body shift,

p, would be consistent with this as is described in more detail below.

GaAs crystal has the diamond structure (Fig.2.2(a)), where the Ga
atoms have the coordinates (Wyckoff 1963): |
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000; 02 ’ 1%20% H %2 %20
and As atoms have the coordinates:

s it et ¥ s, e vt ¥ i, . vt ® e e, e

GaAs exhibits the symmetry of the spacegroup F'4"3m'(Table 4.7(a)). Al
“has the 'F.C.C. structure (Fig.2.1(a)) which exhibits syﬁmetry identical
to fhat of the s.lh)a-ceg'r'oup Fmﬁm (Table 2.1). Consider GaAs as the white
crystal and Al as the blaék one, and to distinguish between them the
subscripts A and y, respectively, will be used. ”Now, if the Al/ (001)GaAs
"plan-view" bicrystal has the orientation where the 2;fold axes along
<001;7\,p. are coincident and the (110); and (110)k mirror planes in GaAs
are coincident with the (100)u and (Olo)u mirror planes in Af, then the
biérystal exhib_its only coincident symmetry elemer_xts identical to these
in Table 4.7(a) under numbers (1) to (4) and (13) to (16) and listed
in Table 4.7(b). Thus, the point4symmetry of Al/(001)GaAs "plan-view"

bicrystal is 42m. Let us study the variation of that point group when

the black crystal is displaced with respect to the white by shifts p which

lie within the in-plane Wigner-Seitz cell for Al/(001)GaAs "plan-view"

‘bicrystal, which has the dimensions 2[100], x l/z[OlO]k, and is represented
in Fig 4.13 by dashed lines. Now, a shift p parallel to [100], or [010],,

whereO <p-< lX4<100>;~, destroys all the symmetry elements in the

point group 42m except the identity and the 2-fold axis along <100> and
the point group becomes G(b) = 121, while a shift p= Va <_10()>)~ makes
G(b) = 222. Similarly, a shift p parallel to [110], or [ 110 ],, where

0 < p < %a<110>, conserves the identity and the mirror plane parallel
to {110},, and G(b) becomés llm and when p = Y <110>,, d(b) =

42m. A general shift p consists of a combination of the above two shifts,

i.e.
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Table 4.7(a). The symmetry operations in the spacegroup
F43m (No. 216); origin at 43m.

No. Coordinate Ay
Triplets
(1) X,¥,z 1
(2) -x,-y,z 2[001]
3) -x,¥,7z 2{010]
(4) X,"y, 2z 2[100]
(5)  z,x,y 3 [111]
(6)  z,7x,-y 3'[ T17)
(1) -2,%X,-y 3* 1 11
() -z,-X,y 3T
9  ¥,z,X 37[111]
(10) v,-z,-x 37[171)
(11) -y,z,-x 37[ 111)
(12) -y,-z,x 37 117)
(13) -y,-x,z m([110]
(14) y,x,z m[1 10]
(15)  ¥,-%,- 3'{001]
(16) -¥,x,-z 3 [o01]
(17)  x,-z,-y m[011]
(18) -x,z,-y a*[100]
(19) -x,-z,y 3 [100]
(20) x,z,y m{01l 1]
(21) -z,y¥,-x m{101]
(22) z,-y,-x 37 [010]
(23) z,y,x m{ 101]

(24) -z,-y,x a'[o10)




Table 4.7(b). The symmetry operations in the
point group 42m.

No. Coordinate |
Triplets

(1) X,¥,2 1

(2) ‘ “X,"Y,2 : 2[001]
(3) ¥,-X,"z 3" [001]
(4) -y, X, 37 {001}
(5) -X,¥,-Z 2[010]
(6) X,"Y,"z 2[100]
(7) V,X,Z m[1 0]
(8) -y,-X,2 m[110]

Table 4.7(c). The variation of the point group
42m with the shift p.

No. The Shift Point Projection
p ’ Group Symmetry

(1 o 42m 4mm

(2) 0<p < :}[0101x 121 2

) p~= i[OlO]k 222 4mm

(4) 0<p < %[110]x 1lm m

(5) p = i[llO]x 42m 4mm

(6) 0 <p< %[110]x + 3[010])‘ 111 1




211001, 1 o
| o

' m [llolx

Fig. 4.13.  Projection of Al/(001)GaAs structure along [001]x

Ga (open small and large circles, at heig\hts 3 and 0),
As (open small and large squares, at heights 3/4 and
1) and Al (filled small and large circles, at heights 3 and
0). The.coihcident site is half shaded. The in-plane

Wigner-Seitz cell is ihdicated by dashed lines.



Ya<110>, and Y2a<100>,, would destroy all the symmetry elements so

that the point group becomes the identity (Table 4.7(c)).

The possibilities for the anticipated structure of Al/(001)GaAs "plan-

view" bicrystal specimen are represented in Fig.4.13 by the letters O,
A and B which correspond to the rigid body translations p = 0 and

Yy < 100>, and Ya<110>, respectively. In the structure O, as well
as B, the columns of Al atoms sit on those of As and Ga atoms, and
therefore both structures exhibit the symmetry of the point group G(b)

= 42m. This is no longer the case for the A structure where the Al
strings are shifted with respect to those of Ga and As by a shift p =

U, < 10()>;. and, consequently, this structure possess the symmetry of
the point group G(b) = 222. An important point is that the 3 structures,
O, A and B, exhibit the same projection symmetry Gp = 4mm, as shown

in the last column of Table 4.7(c).

The sctual shift p was determined from among these three possibilities
(Cherns et al. 1986) as follows. First, the comparison between segments
of HOLZ rings obtained from Al/(001)GaAs and GaAs specimens revealed
that these two specimens exhibited two different branch structures,
where an extra branch was observed in the case of Al/(001)GaAs com-
pared with GaAs. Secondly, the branch structures for both
Al/(001)GaAs and GaAs were calculated using the dynamical theory of
electron diffraction (Hirsch et al. 1965). In the case of GaAs, the cal-
culation resulted in two strongly excited branches represent 1s states
of As and Ga ( due to Bloch waves strongly localised on As and Ga
strings of atoms) and one represents 2s state of Ga + As. In the case
of Al/(001)GaAs a similar branch structure was obtained with two extra

branches; one just outside that in the 2s state of Ga + As ( may be due
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to a Bloch wave with maximum intensity at the mid-points between Ga
or As strings), and another branch more strongly localised than that
mentioned above, which showed more intensity in Al/ (001)GaAs compared
with GaAs. These two extra branches or Bloch states.have been con-
firmed (Cherns et al. 1986 , Eq.(3)) to be strongly excited in the lower
crystal (GaAs) for the stfucture represented by the letter A, Fig. 4.13,
and weakly excited for that represented by O. kThus ,» the structure of
Al/(001)GaAs "plan?view" bicrystal specimen was determined to be that

is represented in Fig. 4.13 by A where the Al crystals were shifted by

a shift p = %< 100>k with respect to GaAs crystals.

420
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This chapter contains an account of the experimental investigations
of germanium (Ge) grain boundaries from both macroscopic and micro-
scopic points of view. The macroscopic investigations include optical’
microscopy, ,scax}ning' electron micrdscopy, and the back-reflection X-ray
met.hod.' Thé- microscopic investigations include SAD patterns, CBED -

patterns, and LACBED or Tanaka pafterns.
5.1. MACROSCOPIC INVESTIGATIONS.

The aim of the macroscopic investigations is to investigate the |
'germanium bulk materials received, for example the orientation re-

lationships between the individual grains in Ge cylinders.

5.1.1. OPTICAL MICROSCOPY.

Fig;s;l(a) shows an optical micrograph for a poljshed Ge circular
slice. It reveals the grains and the grain boundaries contained in the
slice. It contains four grains marked by the letters A., B,, C, and
D,, (where the subscript c¢ re't'er's‘ to the circular slice), separated by
four straight grain boundariés, gm, gn, go and kl and a curved one,
gk, as sketched in Fig.5.1(c). At g three of the straight and one of_
the curved grain boundaries meet. This point is enclosed by a circle in
the figure. Similarly, F“ig.5.l(b) is an optical micrograph for a polished
Ge elliptical slice. Tt also, contains two junction points similar to g in
Fig.5.1(a) with some slight differences (these junction points are en-
closed by two circles, Fig.5.1(d), and each confines portions from four
grains similar to grains A, Bé, Ce and D,, in Fig.5.1(a) and marked

by the letters A,, B,, C, and Do where the subscript e refers to the

elliptical slice. The first circle (from the left) encloses four straight
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showing a chemically polished

I_I<k. 5.1. (a) 3\ optical micrograph

section)

slice, revealing four grains.

germanium (circular cross

\c lic Cc and |I)c.

(h) 3\ optical micrograph showing a chemicnil) polished germanium

(elliptical cross section) slice.



(c)

(d)

Fig. 5.1. (c) A schematic sketch for the . grains observed in (a),

(d) A schematic sketch for the grains observed in
(b). '



grain boundaries, mg, ng, og and gl, joined at g, similarly, the second
circle encloses the four straight grain boundaries, 1g, qg, ng and og,

which are joined at g.

The. ellipticél Ge slice contains also a grain E, énclosed by the
straight grain boundaries jo, pl and a corrugated one ol. The grain
boundaries are Iterminated at the circumference of the slice, at points
m, n o, and 1 in the case of circular slice and at m, n, j, p, n, o and

1 for the elliptical one.
5.1.2. SCANNING ELECTRON MICROSCOPY.

A scanning electron microscope was used to observe the slices at
higher magnification in order to reveal more about the shape of the
grain boundarievs,‘ particularly the curved one. Fig.5.2 shows a scan-
ning electron micrograph for the curved graih boundary, gk in
Fig.5.1(c). It starts at k befng straight, then it curves between b
and c¢ and then it is stepped as betwéen d and g. So, the closer look
to the curvéd grain boundafy, gk, shows that it consists of faceted

grain boundaries.

5.1.3. LAUE BACK-REFLECTION X-RAY DIFFRACTION.

The 6rientations between the fouf grains, Aey Bgs C, and D, in
the slice (Fig.5.1(a)) were determined using the Laue back-reflection
X-ray method (Cullity, 1979). In this méthod a Ge slice was attached with
plasticine to a two dimensional translatable holder, and a tungsten

(35Kv, 25ma) X-ray beam was made incident for 30 minutes on one of

the grains in the slice. The specimen-to-film distance was fixed at 3

5.3






em. Fig.5.3(a),(b),(c), énd (d) show the diffraction pattérns taken
froxﬁ gfains Ac, Bc, Cc and Dc, respectively. These patterns haveAbeen
obtained from the various grains by moving the specimen, between
~ exposures, in two directions ét right angles in the plane of the slice
surface, this surface being perpendicular to the incident X-ray beam. |
Each diffraction pattern consists of spots lying on hyperbolae, or
straight lines. This is due to the fact that Laue reflection spots from
planeé beidnging to different zones lie on the surface of imaginary cones
whose axes- are the zones axes. Depending on the ang;es betwéen those
zone axes and the x-ray incident beam, fhe _ﬁlm, placed between the
specimen and the x-ray source to record the diffraction pattern,
intersects these cones in spots lying on hyperbolae or straight lines.
Examinatioh of these patterns showed that they are similar; each has
two mirror elements of symmetry at right angles to each other and in-
dicated by m: and m:, respectively. The pattern pairs A,-Bg, Bc—Cc,
CeDes .De-A, are found to be rotated with respect fo each other by
the angles (110.0° ¢}0.5°), (32.0° + 0.41°), (71.0° = 0.5°) and (71.0° = 0.5°)
respectively, about the direction normal to their planes. This normal
will be determined by indexing the four patterns using the method
explained by (Cullity, 1979). Fig.5.4(a), for example, fs a tracing of the
photograph shown in Fig.5.3(a). FIt .shows some of the important spots.
numbered for reference. The poles of the planes causing these num-
bered spots are plotted stereographically in Fig.5.4(b), using a Wulff
net. | The great circles W, X, Y and Z are drawn through 4 sets of
poles corresponding to the hyperbolae of spots on the film. These cir-
cles connect planes of a zone and these zones are, Py, Py, Py and

Py, respectively, and shown as open circles in the figure.. The 4 zone

axes, Py, Px, Py and Py, are indexed as [ 211 ],[211],[121 ] and
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Grain Cc, and (d) Grain D> m, and m, indicate the po-
sition of two mirror planes perpendicular to each other.



(a)

(b)

S

Fig. 5.4. (a) A tracing of the diffraction pattern spots in
Fig.5.3(a),
(b) A stereographic projection corresponding to the laue
‘back reflection pattern in (a),



[ 121 ], respectively. The pole number 0 is the centre of the projection

and corresponds to the specimen normal and has the index [110].

» From the orientation relatiﬁnships which have been established above
.between‘ the 4 diffraction patterns, one can assign £ = 3, 27, 3 and 3
for the grain boundaries between grain pairs A.-B,, Bé-Cc, C.-De ahd
'Dc-Ac, reSpectively, and the ‘zone axis [110] is common for all the
grains.’ The four grains, A,, B,, C, and D,, in Fig.5.1(b), have
oriéntation relationships similar to those found for the four grains in
Fig.5.1(a). Grain E, and its border were not investigated during this

study.
5.2. MICROSCOPIC INVESTIGATIONS.

The main aim of the nexf sections is to present the transmission
electron microscope (TEM) investigations for the four grain boundaries
identified in the previous section. Also they are concerned with the
experimental study of ¥=3, and X=27 grain boundaries‘respectively using

SAD, CBED and LACBED techniques.

Five electron microscopy specimens, listed in Table 5.1, four of the
type assigned =3 and one of the type £=27, were prepared to determine
the precise orientation relationships between the grains. Each specimen-
contains two grains and the boundary plane between them is either
"edge-on" or "plan-view". Specimens i, ii, iii contain the grain pairs
As-Bgo, By-Cqy Co-D, and Dc'Ac-’ respectively. Specime_n iv contains
grain pair A,-D, and specimen v contains grain pair B,-C, and the
bouhdary assigned X=27.
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Table 5.1. Types of the electron microscopy specimens.

Grain

Specimen Type Orientation Surface
No., Pair Edge-on Plan-view relation normal
(ia)  A_-B, X £=3(1 1), [110],
(ib)  A_-B, X 1=3(1 1), [ 77,
(iia) C_-D, X 1=3(1 ﬁ)x [110],
(iib) C,-D, X I=3(1 TT)x [1 TT]X
(iila) D_-A, X 1=3(1 Fﬁ)k [110],
(iiib) D_-A, X £=3(1 1), [1 11,
(va) AD, X =3( 112),  [110],
(ivb) A -D, X ‘ 1=3( 112), [1 171,
(tve) A_-D, X =3( 12, [ T12],
(va) B_C, X (5 5D, [10],
(vb) B,-C, X 1=27(5 52)X [5 E‘Q]X




Each specimen has been studied in a PHILIPS EM400 electron micro-
scope opverating at 120 KV(or otherwise stated). A cold stage double-tilt
specimen holder was. used to hold the specimen and to keep its tempér-
ature down to liquid nitrogen teﬁlperature to minimise diffuse electron
scattgring. The gfains have been imaged and SAD, CBED and LACBED
patterns taken from each grain and the grain boundary region. The

pafterns and images were then carefully studied.
5.2.1. £ = 3 ”EDGE-ON” SPECIMENS “ia”, “iia” AND “iia”. .

The bright-field (BF) micrographs which have been taken from the

"ja", "ija", "iiia" showed that the grain boundary

"edge-on" specimens
of each specimen is quite flat. For each specimeh of the above three
the SAD, CBED, and LACBED patterns were takeh from each grain and
trom the grain boundary.. These patterns ai‘e of the type <110>. A and
p will bé used from now on to refer, respéctively, to the two grains in
each specimen. ' Fig.5.5 is a BF image taken from specimen "ia".
Fig-.5.6, 5.7 and 5.8 are the SAD,‘ CBED, and LACBED patterns, re-
spectively, taken from fhe spécimen "ia" grain pair and frdm the érain

boundary.

The SAD-patterns in Fig.5.6 have been solved and indexed for both
grains and grain boundary. The careful study of these patterns showed
that the SAD patterns from grains A, and B, are of the type <110> and
rotated by an angle 70.5° (or its complement) with respect to each other
about the common zone axis [110],. In fact the author has chosen to
index the <110> zone axes as [[10], and [lOll‘1 with respect to the two

crystal coordinate frames. This implies that the orientation relationship
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O *VIV bright Held micrograph taken from (e+e specimen "ia" from an area

containing 1 = M1 1 ), houndary.
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5 00017?n

L]
Flg' 5-6(a)| 1-(110|; Low-camera length S AD pattern was taken

from Grain A c.



20
£ nNnnno”™ -

L]
Flg' 5:6(a)| 2-]110|; High-camera length S AD pattern was taken

from Grain A c.



20 9000

6 0001?n

L]
Flg' 5:6(b)| 1-[101](1 Low-camera length S AD pattern was taken

from Grain B,.
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20 J7M
$ 000177

Flg' 5-6(C)| 1-[110];/[101](1l Low-camcra length S AD pattern was taken

from grain boundary between Grains A c and B c.

A trace of the boundary plane (111)7~ is indicated.



Fig. 5.6(c). 2-[UO0]>/[101)™ High-camera length SAD pattern was
taken from grain boundary between Grains A c and B c.

A trace of the boundary plane (111)” is indicated.



«»

Flg' 5-7 a 1 [1101; High-camera length C B ED pattern was taken

from Grain A c.



Fig. 5.7(b). [101]@ High-camera length CBED pattern was taken

from Grain Bc.



20 3123

i M ! 9

m ~il g

' . - =
Fg_ 5.7(C). I"WIIGI High-camera length C B ED pattern was

taken from grain boundary between Grains A c¢ and Bc.

A trace of the boundary plane (111); is indicated.



20 6137
e 00210:

F'g. 5.8(a). [110]; LACHEO pattern was taken

from Crain Ac.



5.8(b). 1i0oi]@LACBED pattern was taken

from Grain Bc.



0 «132

S 0Q0?0C

5:8 C 1 [1101,711011 LACBTED pattern was taken

from grain boundary between Grains Ac and Bc.

A trace of the boundary plane (111); indicated.



20 2«?9
6 000*00

. 5-8(d)| | 111 Il sabp pattern was taken

from as = 3( 111 )k "plan-view" specimen.



«5.8(c). [111 CBED pattern >vas taken

from a | = 3( 111 ); "plan-view7 specimen



5-8 1 1 | 111 m LA C B ED pattern was taken

from a i = 3( 111 )} "plan-view" specimen



3.2.3. THE = = 3 7EDGE-ON” SPECIMEN “iva”,

Fig.5.9 is a BF image‘taken from specimen "iva" from an ar’ea ¢on~
taining the grain boundary. The low- and high-camera lengths SAD
patterns taken from grains kAe and" D, and grain boundary are shown
in Fig.5.10(a), (b) and (c), respectively. The SAD pattern from grain
A, can be indexed as [110];,. The angle of rotation of these two phtferns
abouf the axis [110], is 70.5° Tﬁe_ SAD pattern from the grain boundary
have been indexed and soime‘ of the indices of the dift‘fa_ction spots in-
dicated ask wéll as the trace of the boundary plahe which in this case
has the indexk (fliik. So, the ’bound'a‘ry pléne ’i‘n the case of "iva"
specimen is of the typeX = 3( 112 ),. Fig.5.10(d), (e) and (f) are the
" CBED patterns taken t'roni the grain pairs A, and D, and the graih
boundary pléne (see section 5.3.2 for the explanation of the symmetry

of these patterns).

Fig.5.9 was taken from an area cqntaining they = 3( 112 ), grain
bouhdary where it appeared to be flat af loWer magnification. In fact
this grain boundary was not exactly flat as shown in the fi_gure but it
is observed’ microséopiéallystepped in some areas. Fig.5.11 is one okfr
~ our observations which is taken from an area containing the grain
boundary where it is microscopicaily stepped. Also, the £ = 3( 112 '),
grain boundary is found to be unstable in some areas and dissociated
intoz = 3( 112 ),,% = 3( 111 ), T = 9( 212 )u andz = 9( 141 ), as
observed and recorded in the BF image shown in Fig.5.12(a).
Fig.5.12(b) shows the SAD pattern taken from the dissociated boundary
(fig.5.12(a)). |
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grain

Fig. 59 A bright mmrograph taken from "ila" Ge "edge-on" specimen






[110]; Low- and High-camera lengths S AD patterns

were taken from Grain A e.






(1011 Low- and High-camera lengths S A1) patterns
r

were taken from Grain B c.



m:94

L]
Flg' 5:10 C 1 1-[110]~/[101](l Low-camera length S AD pattern was

taken from grain boundary between Grains A e and B e.

A trace of the boundary plane (112)* is indicated.



L]
FI((u 5:10 C 1 2-1110J; /7110111 Itligh-camera length SAL) pattern was

taken from grain boundary between Grains A e and B e.

A trace of the boundary plane (T 12)* is indicated.









trace of (he

1011111 N plane

Fi». 5.1« low ad liiko-camcra length CHI-.1) patterns:  4d> |IIO] , from
grain Ac. (e) |101]t from «rain l)e and (f) |IO] / 11011 from the

boundary between the «rain pair \t-l)c. \ trace of (lie boundary

plare (112), is indicated.



I_g. 5.11 A bright field micrograph of the stepped |l — 3( 112 )} "edge-on'

grain boundary



5-12 (a) A bright field micrograph of the facetted | = 3( 112 )- ‘'edge-on'
grain boundary.

(b) S AD pattern from the facetted grain boundary in (a).



5.3.% = 3(112), GRAIN BOUNDARY.

The compféhensive study of the structure of the T = 3( ili‘ );, grain
boundary in Ge has required the préparation of three different types
of thin specimens for TEM in;»'estigations. One was a "plan-view" speci-
~men where the direction | 112 1 vwasj normal to the i)oundary plane (as
shown schematicaily “in Fig.5.13(a)). The other two Weie "edge-on"
specimens where the directions |1101k and [ 111 ], were perpendicular to
the specirﬁen surfaces and lie in the "poundar}y plané (112),

(Fig.5.13(b))..

The advantage of preparihg the abbve‘ mentioned three specimens was -
that, using a dotble-tilt specimen hdlde‘r, one has the facilfty to make
the electron beam sweep a -wide fange of incident angles with reépect
to the boundary. For example, making use of the two "edgé-on" speci-
mens, one can make the electron beam parallel to fhe directions indicated
in Fig.5.13(c) keepiﬁg the boundary plane edge-on alI the time to avoid

double diffraction.

Extensive SAD and CBED techniques have "beén used to accomplish
this study. In the case of "edge—oh'; specimens SAD and CBED patterns
have been faken from both gx_'éins and grain boundéfy fof some of the
low index zoneé ’lying_ between the directioﬁs [110}, and | 111 L
(Fig.5.13(c)). Also in the case of the "plan-view"' specimen the [ 112 l
SAD and CBED patterns have been obtained. | | |
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Fig 513 A schematic didgraa’ showsnf): (a) [1 11] and [110]x
surface normal "edge-on" specimens, and (b) [ T12]x

surface normal "plan-view" specimens, (c) A schematic
diagram showing some of the directions enclosed between
(1 t1p X and [i110] X directions and lie in the boundary

plane (t12) x.



5.3.1. THE [ 112 |, SAD AND CBED PATTERNS.

Shown in Fig.5.14(a) is a dark field (DF) image was takeh ffom the |

"jve" and the electron bearh was parallel to the

"plan-view" specimen
direction [ 112 I, (this was achieved by tilting the specimen by the anglés
8.5° and 3.0° clockwise relative to the coordinate axes of the double tilt
_ Specimen holder). The areas marked by A, and D, contained the single
érains A, and 'De resﬁectiv'ely (Fig.5.1(a)), while that marked by
Aga-Dg contained both gfains A, and D,. The CBED patterns which were
taken from the. single grains A, and D, are show‘nwin Fig'.5..14(b) and .

Fig.5.14(c), respéctively.

Fig.5.14(d) shows the | Tl‘fnl)‘ SAD pattern taken troui the "plan-view"
specimen from an 'érea containing the grain boundary. The SAD pattern
consists of two sets of reflection spots. The first are of the type 000,
111,, 220,, 311, which repre.sentk the cry;stal i"efleétion spots. The
second set contains two subsets of grain boundary',refle'ction spots. |

The first subset contains spots of the type -;)--g-% X,—}%—-}L, 110,, %’%’73‘7»

, 20

)
>>

+31,andid ‘The second subset contains spots of

Wi
t;lnl
c;l—n
t;lul

3
3

42
the type 2 2.1,

Fig. 5.14(e) shows the | 112 J, CBED pattern taken from the same
‘area. It has a mirror symmetry plane,. m(llO)M perpendicular to

[220], direction.
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rie]
I:I - 5.14. (a) A dark field (:Dl) micrograph taken from the specimen "ivc"

from an area contained the single grains Ac, I)e and a "plan-\ie\v"
area contained the grains A c-l>e. The =electron beam was parallel

to the direction | 112 |-.



F

a

5 - 14- (*151-11) patterns:

«rain l)c.

(b)



12 1, from «rain \e, (c) 112 1 |p (Vom



Flg' 5-14 d 1 [ 112 |, S AD pattern was taken

from a E= 3{T12 V "plan-view specimen.



from a S = 3( 112 \ "plan-view specimen.

The arrows indicate to the trace of the mirror m (110)".



L]
Flg' 5:14 e 1 2-] 112 ]- high-camera length CB FJ) pattern was taken

from a | = 3( 112 ); "plan-view specimen.

The arrows indicate to the trace of the mirror m (1 10)A.



5.3.2. THE [110], SAD AND CBED PATTERNS.

The SAD patterns which were taken l‘rom“specimen "iva" greins A,
and D, are shown, previously, in Fig.5.10(a) and (b), respectively.k,
They'are based on the 111 ), and 250)‘ types reflections and the forbidden
002, type reflection. Fig.S .10(c) was taken froxn an area containing the
boundary plane. The crystal reflectlon spots are indexed Fig.5,10(c)
shows no ev1dence of the grain boundary reflection spots Flg.5.10(d)k
and (e) are the lllﬂlk and [lOllu low—‘end hlgh-camerg lengths CBED -
patterns taken from the same 'grains above. Fig.5.10(f) is' the [110];
CBED pattern taken from the grain bonndary. It exhibits av mirror
symmetry perpendicular to tlxe boundary plane, m(lﬁ)k, a’ mirror par-

allel to the boundary plane, m(fl-?:)x, and a diad perpenclicular to the

pattern plane, 2[110];.
5.3.3. THE [ 111 ], SAD AND CBED PATTERNS.

Fig.5.15 shows the CBED and SAD patterns, which were taken from
the | 111 ], surface normal "edge-on" specimen, "ivb", when the electron
beam was parallel to the zone axis | l'l—flx. Fi'g.5.15(a) was taken from

grain A,, Fig.5.15(b) from grain D, and Fig.5.15(c) from the grain

boundary. The SAD pattern, which was taken from the grain boundary, -

is shown in Fig.5. 15(d) The crystal reflect:on spots from both grains :
were in complete coincidence and undlstinguishable from each other. _’
* Also, Fig.5.15(d) shows no ev:dence of the grain boundary reflection
spots or streaks.k The symmetry exhibited by the low-vand high-camera

length CBED patterns, Fig.5.15(c), are 3m (BF and whole pattern), ie.

a triad perpendxcular to the pattern plane, 3[ lll l)u and three mirror |
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I 1], low and high-camera length ‘'BKD patterns taken from
the "i\I>" "edge-on" specimen from grains: (a) Ae, (b) I)c and (c)

Ac-l)c. \ trace of the boundary plane is indicated.



Iig' 5'35' (d) Low- and high-camera length S A D patterns taken from the

"i\h" "edge-on" specimen from the grain boundary area.



planes, m(110),, m(101),, and m(Oil)k, perpendicular to the directions

1220}, [202];, and [ 022 ], respectively.
5.4. =27 GRAIN BOUNDARY.

5.4.1. THE © = 27 ”edge-on” specimen ”va”.

A bright-field image for an area containiﬁg the 2=27 gréin' boundary
in the "édge-on" specimen ‘_'vé‘,' is shown in Fig.5>.16, where the electron
beam diréétx‘on was exactly parailel to the [110]; directidn. 'Thé fig'ure
shows that the boundary is not flat as was shown before in the optical
micrograph in’Fig.S.l(a), (the boundary plane bétWeen grains B, and
Ce)s But has a complex microscopic structure. If is corrugated between
points g&h, o&n, and it Was also unstable'between‘ points h&o, where
the £=27 boundary was dissociated intokfizk's"t and second order;symmetric

tilt boundary, =3 andv9, respectively as listed in Table 5.2.

Beside: grains B, and C,, Fig.5.16 shows two other big mjcroscopic
grains E, and Fé. There are some tiny Subgrains, e.g. Gg, left uni-

dentified in this study.

The SAD and CBED patterns have been taﬁen from both grains B,
and C, and from the grain boundars; ( the segvmen_ts marked "gh" and
"on" in Fig.s.;s); and shown in Fig.5.17 and 5.18, respectively. The
electron beam direction was exactly parallel td the common zone axis
[110], and the patterns from B, and C, were found to be misori’ented

by an angle ©=31.6° and the boundary plane index was (Sﬁ)k. A trace
5.12



Hil. 516 A bright field micrograph of the dissociated! 27(5 52  sym

metric tilt boundary from the "va" "edge-on" Ge specimen. It con

tained grains Bc, Cc and the microscopic grains Ec and Fc.



Table 5.2. The dissociated $=27(5 52) tilt boundary.

Segment Grains Figure - Orientation relation
 and interface plane*

gh B-C  5.18 1=27(5 52),
on B-C  as5.18  1=27(5 52),
hk C-E 5.21  3=9( 221),
hl B-E 5.19 - E=3( T,
Ik "E-F 5.20 1= 1),
km C-F 5.22 3301 1),
2 C-F as 5.22 1=3(1 T1),
mzk - C-F ~  as 5.22 1=3(1 Ti)x‘
w B-F 5.23 1=9(2 21),
o CcF

wo' B-F-G

* The indexing of the planes are quoted with respect to
the first grain in each grain pair of the second column.

| # unidentified



specimen vV a

Fi<$. 5 .17. In «1/ S AD patterns were taken from the "edge-on

(a) from grain Bc, (b) from grain Cc, and (c) from the boundary of

the grain pair Bc-Cc. A trace of the boundary plane is indicated.



I ig. 5.'8. [:I:q.c B EI) patterns were taken from the "edge-on specimen >a

(a) from grain Bc¢, (b) from grain Cc, and (c) from Crain

boundary segments "gh" and on". A trace of the boundary plane

IS indicated.



of the plane (552)k is indlcated in Fig. 5 17(e) and 5. 18(c) Since the
grains B, and C, were mxsorxented by the angle ©=31. 6° about [110},

a_nd the boundary plane was of the type (552)}” thus segments "gh"

and "on" were‘ traces of grain boundaries of the type I = 27( 552 )y

The symmetry exhibited by the CBED pattern in Fig.5.18(c), which
was taken from the grain boundary X = 27( 552 )A- ai‘e ax‘m’rror sym-
metry perpendicular to the boundary 'plane,‘ m(5§§)k, a mirror parallel

to the boundary plane, m(115),, and a diad perpendicular to the pat-

tern plane, 2[110],.

Similarly, the CBED patterns in Fig.5.19, 5.20, 5.21, 5.22 and 5 23
have been taken from the grain boundary segments "hl", "Ik", "hk" k
"km" and "lw", respectively, ahd the grain pairs on both sides of each
segment. At point "h" theX = 27( 552 ) boundary dlssocxated into |

T = 3( 111 ), (segment hl) andX = 9( 221 ), (segment hk). At pomt
"" theX = 9( 221 ), (segment 1w) dissociated into X = 3( 11'1 ), (segment

lIh) and ¥ = 3( 111 )x(segment 1i<). g At'point "K" fhez = 9( 321 oo
(segment hk) dzssoclated intoX = 3( 111 ); (segment km) and |
= 3( 111 ), (segment kl). Segment mz was of the boundary type =

3 as km but formed on ( 112 ), plane. Segment "zj" was identical to
"km". The examination of the boundaries between j&o and w&o revealed

“the presence of a number of tiny steps, and left for future study A

sketch of thez = 27( 552 ); boundary is shown in Fig.5.24, where each -

segment has been indexed and identified, except the segments "jo" and

” A

wo .
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[ ]
Flg' 19: C'BKIl) patterns were taken from the "edge-on" specimen "va" from

grains: (a) Bc, (b) Ec, and (c) Crain boundary segments "hi". A

trace of the boundary plane is indicated.



Flg' 5:20: ( MCl) patterns were taken from the "edge-on" specimen "va" from

grains: (a) Ec, (b) Il c, and (c) (jrain boundary segments "lk". A

trace of the boundary plane is indicated.



I'i". 5.2 1.( HI D patterns were taken from the "edge-on" specimen "\a" from
grains: (a) Cc, (h) Kc, and (c) (.rain boundary segments "lik". \

trace of tlie boundary plane is indicated.



VIKE s 22 (w0 > patterns were taken from the "edge-on™ specimen ">a" from

wrains: (a) (¢. (b) fc. and (c) (.rain boundary segments "km". \

trace of the boundary plane is indicated.



H<r. 5.23.CBKI) patterns were taken from the "edge-on" specimen "\a" from
grains: (a) Bc, (h> Fc, and (c) («rain boundary segments "lvv". A

trace of (lie boundan plane is indicated.
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grain

&

m £=3(1 12 )

\

i h of the grain boundary geometr
Fig. 5.24. ?:5??? 52), symmetric tilt boundary.

boundary planes are indexed.

y of the dissociated
The traces of the



5.4.2. THEZ = 27 ”PLAN-VIEW” SPECIMEN “vb”,

A "plan-view" specimen, where the axis | 552 ], was perpendicular
to both the surface of the specimen and the boundary plane, as shown

schematically in Fig.5.25, was prepared.

Fig.5.26 is a BF image taken fromX = 27( 552 ), "plane-view" spec-

imen "vb" where the électron beam was parallel to the direction

[ 552 I, (this »Qvas achieved by tilting the specimen by th’e,angle_s 1.5°
anticlvock wise and 1.0° clockwise relative to the coordinate axes of the -
double tilt specimen hoider).’ | The area marked by Bc and C, contained
the single grains B, and C, (Fig.5.1(a)), and that marked by B,-C,
contained both the grains By and C, in plan-view. Fig.5.27(a) and
(b) are the [552]; CBED patterns taken. froni the single grains B, ;nd
C., respectively, and Fié.5;27(c) is the high-camera length CBED

péttern taken from B,.

Fig.5.28 is a SAD pattern taken from an area containing the
" undissociated £ = 27( 552 ), "plane-view" boundary (area marked by
B,-C, in Fig.5.26. _The electron beam ‘(accelerated’ by‘ 100kv), was
exactly parallel to | 552 L direction.» It is based on the crystal reflection
spofs 220,, 115, and 135, and some grain boundary reflections spots
and/or double diffraction spots ¢oming frqin higher order Laue zbnes
in both grains. Fig.5.29(a) and (b) are low- and high-camera lengths
[ 552 }, CBED patterns taken from the same area defined above, The

whole pattern and BF exhibit no symmetry other than the identity ele-

ment of symmetry.
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Fig. 5.25. A schematic diagram for the 1=27(5 53) y bierystal,



Fig. 5.26. a bright field micrograph taken from the 1 -27(s s2 ) "plan-view"

(ie specimen






Fig. 5.%. I-] 552 | tow-camera length S A D pattern was taken

from a | = 27 (552); "plan-view specimen.



Fg. 5.28. 2. ss2 | High-camera length sap pattern was taken

from a s= 27( s52 \ "plan-view" specimen.



Fig. 5.29. [552 | CUED patterns: (a) Low-camera length and (b) Migli-

camera length.
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6.1. GENERAL REMARKS.

The objective of this study can be restated here briefly as follows.
The experimental work programme was divided into two parts. The first
part was concerned with the preparation of germanium bicrystél speci-
mens for electron microscopy. The second pa.rt was devoted to obtaining
SAD, CBED and LACBED patterns from these bicrystal specimens.
Many difficulties were faced in the specimen preparation process; for
example, the fragility of germanium was one of the major obstacles and
required modifications of the methodology of specimen preparation in
order to be overcome. Also, a new method has been adopted and used
successfully for preparing £=3( 111 ),, £=3( 112 ), and £=27( 552 ),
"edge-on" and "plan-view" specimens (see chapter 3). Hence, the first
part of the experimental work has been carried out completely as

planned.

SAD, CBED, and LACBED patterns have been obtained and photo-
graphed from the above specimens, i.e. 3 "edge-on" and 3 "plan-view"
specimens. In the case of "edge-on" specimens 3 different patterns
(SAD or CBED) have been taken from each specimen; one straddling
the grain boundary and one from each of the adjacent grains. A dis-b
cussion of these patterns might be expected next, but complications
arose which need to be discussed first. These unfdreseen difficulties
are concerned with the fact that the 2=3( 112 ), and £=27( 552 ),
boundaries were found not to be planar, but were generally facetted
or dissociated. Secondly, the interpretation of CBED from "plan-view"
and "edge-on" bicrystal specimens is not as straight forward as was
originally envisaged. These two topics will be considered before dis-
cussing the experimental results described.in chapter 5.
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6.2. INTERFACIAL FACETTING AND DISSOCIATION.

The words facetting and dissociation imply the change in the atomic
structure of a boundary to produce special configurations in order to
lower the total contribution of this boundary to the free energy of the
grains present dn either side of the boundary. Indeed, if a boundary
produces a lower energy configuration without creation of new grains,
other than the parent grains, it is called a facetted boundary whereas,
if a boundary produbes a lower energy configuration with creation of
new grains, in addition to parent grains, it is called a dissociated
boundary. In the case of CSL boundaries it has been suggested that
interfacial energy is inversely correlated to the density of coincident
sites (Grimmer et al. 1974). ‘Therefore, the interfacial energy would be
expected also.to depend on the type of the boundary plane, so that
different facets of the same boundary have different energies. This
model implies that, for example, the grain boundaries = 3, 9, or 27
are stable when they form on the dense plaﬁes{ 111 }, { —2;21 } or { 552}

(see Fig. 2.6(a), (b) and (c) in chapter 2), respectively, and also that
a £= 3 boundary which has formed on a { 112 } plane would have rela-

tively higher energy than that for the boundary formed on a { 11 }

plane.

The facetting and dissociation behaviour of grain boundaries illus-
trates that the thermodynamic driving force is acting in such a way
as to reduce or minimise interfaciai energy. Let us consider that a
boundary has facetted in order to attain a lower energy configuration.
Hence, the sum of the energies of the two facets must be less than or
equal to the parent boundary energy, i.e.

1,4, 2 1,A, * 1A, (6.1)
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where vy is the grain boundary energy per unit area and A is the area
of the boundary plane. From the experimental point of view, A can be
measured easily, but determinations of the energies y are difficult and
only relative values can be obtained by standard techniques (e.g. Goodhew
1980). For this reason, observations of facetting and dissociation are

useful since they can provide some information concerning 7.

The tendency of a grain boundary to acquire low energy configura-
tions by facetting or dissociation mechanisms mentioned above has been
appreciated and confirmed experimentally. For example, in the last
decade significant transmission electron microscopy (TEM) and high re-
solution electron microscopy (HREM) observations have been made of
facetted and djssociated boundaries in the second and third order twins

(see e.g. Cunningham et al. 1982, Vaudin et al. 1983, Bourret et al. 1985, 1986
and Garg et al. 1988).

Some 'experimental evidence, reported by .Goodhew (1980), showed 'that
grain boundary energy v'aried with misorientation, inclination, impurity
levels and temperature. Recehtly, a review of possible geometric criteria
for low interfacial energy has been given (Sutton et al. 1987). Those cri-
teria comprise:

(1) low reciprocal volume density of coincidences sites;

(2) high planar density of coincidences sites;

(3) large interplanar spacing;

(4) high density of locked-in rows of atoms; and

(5) high planar density of coincidence sites at constant interplanar

spacing. |
These authors also made use of the available experimental observations

to test these criteria, and found a significant number of experimental
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observations violating the first four of the criteria above. The last
criterion is applicable for a limited number of cases, e.g. metal/metal

or ionic/ionic interfaces but fails for metal/ionic interfaces.

In summary, we can say that there is no general and reliable theory
available which can be used to predict grain boundary energies, and
only a relatively small body of experimental observations has been re-

corded.

Now, we present and discuss some examples of specific observations,
published by other workers, which are relevant to our work. First,
we present some examples concerning dissociation and tacétting. For
example, =27 interfaces could dissociate into £=3 :;nd 9 boundaries which
have higher planar densities of coincidence sites. A specific example
is the Z=3{lll};\/{115}p boundary, which has low planar density of co-
incidence sites, andA is observed to be facetted to Z=3{lll};\/{lll}p,
Z=3{“2}A/{"2}u boundaries, which have higher planar densities of
coincidence sites (Sutfon ef al. 1987). Also, theZ=9{lll}k/{115}p boundary
is observed to be dissociated into 2‘_=3{111};‘/{lll}p plus
Z=3{”2}k/{“2}p boundaries for the same reason (Sutton et al. 1987).
Secondly, we show how one can estimate relative grain boundary ener-
gies from such observations. Bourret and Bacmann (1985b) observed a I=3(
211 ) boundary which dissociated into=3( 111 ) and £=9( 122 ) bound-
aries, and, in another paper (Bourret et al. 1985), gave a calculated value
for the energy of £=3( 211 ) boundary as 7,70.29Jm?>. The measured
areas of the boundary planes of $=3( 211 ), £=3( 111 ) and 2=9( 122 )
boundaries, respectively, ai‘e A =0.82a%, Al2=2'.31a2 and A3=0.67a2.
Substituting into relation (6.1) one can therefore obfain

6.6



0.29 x 0.82a> > 2.3la’y, + 0.67a%,

or

y, 2 (1.0 - 2.8 v,/9.714) (6.2)

6.3. INTERPRETATION OF CBED AND LACBED PATTERNS FROM
#PLAN-VIEW” AND “EDGE-ON” SPECIMENS.

In the course of this work it has been noticed that the observed
symmetry of CBED and LACBED patterns, which were obtained exper-
imentally from I = 3, and 27 grain boundaries in germanium "plan-view"
and "edge-on" bicrystal specimens, did not always correspond to the
anticipated bicrystal symmetry. We believe that these discrepancies have
arisen for two reasons; firstly due to effects associated with an extended
focal spot size, and secondly due to symmetry breaking inherent in the
specimen preparation. These aspects are discussed separately below.

In previously published accounts of the interpretation of CBED sym-
metry from "edge-on" bicrystal specimens, Schapink and Co-workers (Caron'
of al. (1985), Schapink et al. (1986) and Schapink (1986)), it was assumed that
the incident convergent beam has a point focus centred in the boundary
plane as depicted in Fig.6.1(a). It can be seen from the figure that the
range of angles of incidence of the electron beam in this case is not
equivalent in the adjacent crystals. As a consequence, the symmetry
of CBED and LACBED patterns may not therefore correspond directly
to that of the bicrystal. However, in the present work, we note that
the incident beam in fact has an extended focus or "spot size", due to,
firstly, the electron source not being a point sourcé but an extended
one, and secondly, the lens aberrations (see for example Edingfon (1976)

and Chescoe et al. (1984) ), and we believe that this is a most important
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. 1 2 Grain 2

Flg. 6. 1 « A schematic diagram for an electron beam incident on:

(a) an “edge-on” specimen, and (b) a “plan-view” specimen,



consideration in the present context. Each point on the focal spot can
be regarded as the point focus of a cone incoherently related to the cone
corresponding to any other point. Only cones focused on points very
close to interface irradiate both crystals. The cones focused on points
between O and O, irradiate crystal 1 predominantly, and those between
O and O, irradiate crystal 2 predominantly. From the discussion above
we would expect the CBED patterns cobtained with relatively large spot
sizes (= 1um) from such "edge-on" bicrystals to correspond to the
superimposition of the patterns taken from the adjacent crystals sepa-
rately, i.e. addition of the intensities of the two patterns. We shall
refer to such patterns as exhibiting "complex symmetry", because this
symmetfy corresponds to the point symmetry of the dichromatic complex
(see chapter 2) viewed along the appropriéte direction. We note,
therefore, thaf such patterns may be regérded as exhibiting antisym-
metry, for example when an anti-mirror is present which relates a white
disc, e.g. g, to a black disc, g,. As spot size diminishes, the con-
tributions to the final pattern from cones wﬁich irradiate both crystals,
i.e. those focused at points close to the boundary, increases compared
to cones which irradiate only one of the crystals. Under these circum-
stances complex symmetry is no longer expected. Thus, for very small
spot sizes (= lnm), i.e. where virtually all incident cones frradiate both
crystals, lower symmetry patterns are expected. We would also anticipate
this result if the convergence angle is increased. Hence we expect that
LACBED patterns may show lower symmetry than the complex symmétry

exhibited by CBED patterns obtained using the same spot size.

We now consider the case of "plan-view" specimens. As depicted in
Fig.6.1(b), when the focal spot is taken to be close to the boundary

plane, it is seen that cones focused at each point between Ol and O,
2
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i.e. all cones, will irradiate both crystals. Thus, in this case, we would
expect the CBED pattern to exhibit the symmetry of the bicrystal, and

not that of the dichromatic complex as in the above case.

The second cause of discrepancy between observed and anticipated
CBED symmetry, as mentioned in the introduction to section 6.3, arises
due to symmetry breaking as a consequence of specimen preparation.
In the case of "edge-on" bicrystals, provided the specimen surfaces are
flat ‘and perpendicular to the interfacial plane, no bicrystal symmetry
will be broken. However, this is not the case for "plan-view" specimens.
The ideal "plan-view" bicrystal specimen, which has smooth surfaces and
where the boundary plane is situated exactly centpally, is depicted in
Fig.6.2(a). Such a specimen would exhibit, for example, an anti-mirror
and/or an anti-diad parallel to the bouhdary plane if these were present
in the bicrystal group. On the other hand these antisymmetry elements
would be broken if the boundary plane were not central and/or because

of specimen surface roughness.

In summary, from the discussion above it can be seen that, taking
these further aspects into account, we anticipate that CBED patterhs
obtained from "plan-view" specimens should exhibit bicrystal symmetry,
but those taken from "edge-on" specimens should exhibit primarily
complexl symmetry for the spot sizes used in the present work. More-
over, if any symmetry is broicen by virtue of specimen preparation, we
would expect only to see "the residue” of bicrystal or complex symme-
tries in the "plan-view" and "edge-on" cases, réspectively. Conse-
quently, in the discussion of the observations of CBED and LACBED
patterns observed from individual interfaces to be presented in the

following sections, we begin by considering the complex and bierystal
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Fig. 6.2. A schematic diagram for a “plan-view” bicrystal specimen:
(a) an ideal bicrystal specimen where the position of the boundary
plane is exactly at the centre of the specimen and the specimen
surfaces are smooth, and (b) a real bicrystal specimen where the
boundary plane is not exactly at the centre of the specimen and the

specimen surfaces are rough.



symmetries. The reader can then appreciate that the observed symme-
tries are in fact the residues of the complex and bicrystal symmetries
as discussed above. For the reader's convenience we have also included
the single crystal patterns obtained from the adjacent crystals (see

chapter 5), which facilitate the visualisation of the complex symmetry.
6.4. INTERPRETATION OF SAD PATTERNS.

SAD patterns taken from bicrystal specimens can exhibit three types
of distinct reflections, i.e. crystal, double diffraction and grain
boundary reflections, and we begin this section by explaining how these
various reflections can be identified. Firstly we outline the process for
indexing crystal reflections, recalling that the concepts of the reciprocal
lattice and structure factors were introducéd in chapter 3. In the
present.work we are studying germanium crystals which have fec lattices
in direct space, and hence have bce reciprocal lattices (see Fig.3.5).
The unit vectors of the non-primitive fee unit cell are e = [100], e, =

[010] and e, = [001] and hence the non-primitive reciprocal unit cell vee-

tors are el* = 100, ez* = 010 and el* = 001. However, it is also necessary
to consider the reflections systematically absent according to Eq.(3.5).
These correspond to the set due to the fec direct lattice, i.e. only re-
flections with h, k and 1 unmixed are present, and , in addition, ab-
sences due to the double atom-basis, i.e. reflections where h + k + | =
4(n + 1/2), where h, k and 1 are even and n is an integer, are absent.
To be consistent with general practice, we shall refer to the reciprocal
vector correqunding to reflection by a particular set of planes (hkl)
%

in a diffraction pattern as g = hel* + ke2 + Ie:*' In the case of a

bicrystal specimen, where the direct space unit cells of the white and
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black crystals are related by the transformation P (see chapter 2), the
white and black reciprocal unit cells will also be related by this trans-
formation. Thus, the indices of white and black crystal reflections can
be identified in a given SAD pattern by determining the appropriate
section of the white and black reciprocal lattices. We remind the reader
that, as explained in chapfer 3, some crystal reflections ‘which are
kinematically forbidden according to Eq.(3.5) may exhibit non zero in-

tensities due to multiple scattering (Tu et al. 1978).

Double diffraction is the process where a beam g, excited in the white
crystal by the incident beam, is subsequently incident on the black
crystal thereby exciting a beam g, (or vicé versa). Such double
diffraction is especfally likely in "plan-view" specimens, but much less
likely in "edgé-on" specimens when the incident beam is parallel to the
interface. It can be seen that the indices of double diffraction beams
are given by g;“- Pg, (using the white reciprocal lattice frame). This
set of reciprocal vectors, designated S (or g“;\), is readily obtained for

each of the systems studied in this work. For example, in the case of

r = 3, the setg,, corresponds to a hexagonal lattice with primitive re-
ciprocal vectors %%“{4{ , %—%%— and ’31;'%’%' . Hence, in order to
establish whether a reflection observed in a given SAD pattern is due
to double diffréction, it is necessary to‘ obtain the appropriate section
of this double diffraction lattice, i.e.' that perpendicular to the beam
direction.' In addition, it should be kept in mind that if a reflection i

does lie in this section, its intensity will only be significant if the

component reflections, g, and g,, are strongly excited. This enables one
to investigate whether a particular reflection is actually due to double

diffraction, as opposed to some other cause, by tilting the specimen in
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such a way that g, and g, are not strongly excited. If the intensity of
the reflection in question does not diminish as a result of tilting, it is
probably not due to double diffraction. It must be kept in mind alse
that, if the Ewald reflection sphere construction is used to identify
excited reflections, the beam incident 6n the lowér crystal is 9% and

hence the corresponding orientation of the Ewald sphere must be chosen.

The third type of reflection, and from the presént point of view the
most interesting type, is that due to interfacial relaxation. Such re-
laxation may include a displacement field extending from the boundary
into the adjacent crystals, reconstruction of the bonds at the interface
leading to new periodicities, and also possibly segregation of impurities
to the interface. If the periodicity of an interface is defined in direct
space by the primitive vectors sli and szi, diffracted beams gli and gzi, or
any combination, can arise. These may or may not be coincident with
crystal or double diffraction reflections. The intensity of interfacial
reflections, gi, can be obtained using the kinematic structure factor
equation (Eq.(3.2)) if the displacement field and segregation effects are
known. These reflections are expected to be elongated in the direction
perpendicular to the interface. We therefore expect that such streaks,
or relrods, may be observed in SAD patterns from "edge-on" specimens,
and other works have estimated grain bouﬁdary thickness from the
length of such relrods (Carter et al. 1980). We also note that bicrystal
symmetries can be investigated from systematic absences in arrays of

interfacial reflections, as has been described by Bacmann et al. (1985).

One final point which it is appropriate to mention here, for the sake
of completeness, concerns kinematically forbidden reflections (Eq.3.5(a),

(b), (¢) and (d)). For such reflections the structure factor, Fhkl
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(Eq.(3.2)), will be zero for a perfect crystal column parallel to the in-
cident beam and which contains an integral number of unit cells. How-
ever, Fpy) can be non-zero for crystal columns containing non-integral
numbers of unit cells (Cherns 197¢). Thus, forbidden reflections can ac-
tually be present in SAD patterns, and, in the present context, it is

important to consider this possibility.
6.5. OBSERVATION OF ==3( 111 ),, BOUNDARY.

We begin this section by considering briefly the current state of
theoretical and experimental knowledge concerning the structure of the
T o= 3( 111 N interface in germanium. Subsequently we coh\pare this
knowledge to the results obtained by electron diffraction experiments

in the present work.

6.5.1. PREVIOUS EXPERIMENTAL OBSERVATIONS AND
THEORETICAL MODELS OF £ = 3( 111 ), BOUNDARY.

There is a general consensus that the structure of this interface is well under-
stood. Recent theoretical studies, e.g. Paxtfon (1987), suggest that the struc-
ture illustrated in Fig.6.3 is stable, and has low energy (calculated
energy ~ 29 erg/cm?). This figure shows a projection along [110], di-
rection. The vector normal to the boundary plane isl 1t ], and points
vertically up the page. The crosses and triangles represent atoms at
heights 0 and 1/4[110],. The interfacial periodicity of this structure is
s, = 1/2[110}, and s, = 1/2| 112],. The twin interface consists of a s.ingle
layer of six-membered rings or "T" units without dangling bond. The

bond lengths between the atom pairs 1-1', 1-2 and 4-5 are shortened
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while those between the atom pairs 2-3 and 3-4 are stretched. In the
positions where the bond length decreases the bond energy increases
and vice versa. The structure exhibits the point symmetry m'2'm, i.e.

the identity, a mirror m(110),, an anti-mirror m'(111),;, and an anti-diad

2112,

Experimental evidence collected by various researchers is in agreement
with this model. For example the HREM work of D’Anterroches and Bourret
(1984), and o-fringes work of Viachavas and Pond (1980) on z=3(111) coher-
ent twins in silicon proved that there is no relative displacement at the
boundary plane (111). The CBED work by Schapink (1986) on gold
bicrystals determined the point group of a "plan-view" bicrystal as
6'/m'm'm which indicates that the rigid body translation at a (111)
boundary in gold is zero. Oftgn ¥=3(111) coherent twin observed in
dissociation of other interfaces, but not observed to dissociate itself,

implying that it is a particular stable boundary.
6.5.2. SAD PATTERNS.

The selected area electron diffraction patterns, which have been taken
frdm $=3( 111 ), "edge-on", viewed along [110];, and "plan-view"
bicrysfal specimens, are shown in Fig.5.6(c) and 5.8(d) respectively.
The crystal reflections have been idfzntified and indexed in the figures
and a trace of the boundary plane (111), is indicated, in the case of
the "edge-on" specimen in Fig.5.6(c). We now consider the possibility
of double diffraction and grain boundary reflections in this "edge-on"

case. The primitive double diffraction vectors, By in this section of

the reciprocal lattice are —;—%——;— and 221 . No reflections were

3 33
observed in these positions which is as .expected for "edge-on" speci-
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mens. Similarly, no grain boundary reflections were detectable for these
"edge-on" specimens. Since the interfacial periodicity corresponds to
periodicity in both crystals, grain boundary reflections are expected to
be coincident with crystal reflections in the present case. No additional

grain boundary reflections were detectable in this work.

The SAD pattern from a "plan-view" specimen is shown in Fig.5.8(d).
The white and black crystal reflections are all coincident in the zero
layer for this 111 section of the reciprocal lattice for example 202, is

coincident with 22011' The primitive double diffraction reflections in this

2 2 4 2 42 .
_:_3_-:—3——3— and 3373 ° and clear evidence for such re-

flections is seen in Fig.5.8(d). These double diffraction reflections are

zero layer are

weak because they involve component reflections from HOLZ which are

only weakly excited. No evidence of grain boundary reflections was

obtained.

6.5.3. CBED PATTERNS FROM “EDGE-ON” SPECIMENS.

We begin this section by writing the expected point symmetry for
both the T = 3 dichromatic complex and £=3( 111 ), bicrystal, looking
along [110];, direction. The point symmetry for =3( 111 )); dichromatic

complex and bicrystal are

G(c) = mm’'m’
= {1, m(110), 2[110], T , w/(113), m(1T1), 2 T1Z |, 2/ 171 |}
and
G(b) = 2’mm’ = {1, m(110), 2’[ T12 }, m’(111)},
respectively. '
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The CBED patterns in Fig.5.7(c), has been taken from ar=3( 1ii )y,
"edge-on" specimen where the electron beam was parallel to the surface
normal [110],. The observed elements of symmetry (BF and whole pat-

tern) exhibited by this pattern are:

(1) an anti-mirror parallel to the boundary plane, m'(l—ﬁ)k s
(2) an anti-mirror perpendicular to the boundary plane, m'(112),,
and

(3) a diad perpendicular to the pattern plane, 2[110],.
Thus, the observed symmetry is 2m'm', i.e. {1, 2[110],, nv( 1TT s
m’(112),}. We note that m(110), has not been detected, and we assumed
that this is due to specimen preparation as discussed in section 6.3.
From a comparison between the observed symmetry and the expected
bicrystal and complex point symmetry one can recognise that the ob-
served symmetry is not equivalent to the bicrystal point symmetry but ¢t
is a residue of the complex symmetry, following some symmetry breaking

due to specimen preparation.
6.5.4. CBED PATTERNS FROM “PLAN-VIEW” SPECIMENS.

The point symmetry of a ¥ = 3 dichromatic complex and a

£=3( 111 ), bicrystal, looking along [ 111 |, direction are

G(c) = 6/mmnv (see Tables 2.4(a) and 2.5(a) for the 24 symmetry and
anti-symmetry elements of this point group)
and v
G) = &m2 = {1,3%, 3", m(110), m(101), mOIT), §+/, &, m'( 117 ),
YRUL 2112, 21121,
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respectively.

The CBED pattern in Fig.5.8(e), has been taken from a£=3( 111 ),
"plan-view" bicrystal specimen where the electron beam was parallel to

the specimen surface normal [ 111],. The observed elements of symmetry

(BF and whole pattern) exhibited by this pattern are:

(1) triad along [ 111 |, direction, 3%, 37,

(2) m(110),,

(3) m(101), and

(4) m(011),.
Thus, the observed symmetry is

3m = {1,3%, 3", m(110), m(101), m(011)}.

In this case we note that the observed symme‘try is a residue of the
bicrystal point symmetry, assuming that the anti-mirror m'(lﬁ);‘ has

been broken by specimen preparation.

6.5.5. LACBED PATTERNS FROM “EDGE-ON”

AND “PLAN-VIEW” SPECIMENS.

The point symmetries of the =3 dichromatic complex and Z=3( 111 )

bicrystal are mentioned above.

The LACBED pattern in Fig.5.8(c), has been taken from a3l =
3( 1ﬁ)k "edge-on" specimen where the electron beam was parallel to the
surface normal [110],. This pattern exhibits an anti-mirror symmetry

parallel to the boundary plane, m'(ﬁi)k_ We note that, comparing by

the CBED pattern taken from the same boundary and using the same
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spot size, the anti-mirror m'(112), has been broken due to possibly the
larger convergent angle which has been used for obtaining the LACBED

patterns as discussed above.

The LACBED pattern in Fig.5.8(f), has been taken from a I =
3(11_1’))~ "plan-view" specimen where the electron beam was parallel to
the specimen surface normal | 111 l,. It exhibits 3m symmetry , i.e.,
the same as CBED pattern, as was expected all the components cones

jrradiated both crystals.

6.5.6. SUMMARY OF OBSERVATIONS.

In summary the evidence collected in the present work using the SAD
technique is consistent with other works, and supports the model of
the x=3( 111 ), coherent twin described by Paxton (1987). In particular,
our observations imply the presence of a negligible interfacial dis-
placement field, and that no reconstruction has occurred which modifies

the interfacial periodicity.

Regarding the symmetry of the interfacial structure as studied using
CBED énd LACBED, we conclude that the present observations are also
consistent with the model, Fig.6.3, which exhibits the symmetry pém2'.
However, it must be remembered that the results from the "edge-on"
specimens, i.e. showing the residue of the complex symmetry, does not
provide information about the interfacial structure. In addition, al-
though the bicrystal spacegroup can be determined from "plan-view"
specimens in principle, only the residual group p3m has been detected

here due to symmetry breaking in specimen preparation.
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6.6. PREVIOUS EXPERIMENTAL OBSERVATIONS AND
THEORETICAL MODELS OF £ = 3(112), BOUNDARY.

The structure of £ = 3( 112 ), grain boundaries in covalent semi-
conductors, e.g. silicon and germanium, has been the subject of many
experimental and theoretical studies. In particular a combination of
electron diffraction, high resolution electron microscopy, and the
a-fringe method has been applied to‘ determine the atomic structure of
this boundary. The electron diffraction study of Bourret et al. (1985b) for
the boundary in germanium showed that this boundary exhibits the
spacegoup clml. The centred unit cell has the periodicity s = [110],
and s, = [ 222 l,, i.e. double the periodicity of the unrelaxed bicrystal
(Fig.2.6(a)). " High resolution electron microscopy, Bourret et al. (1985a),
directly confirmed the centred and doubled periodicity structure, or
in short /c(2x2). Hence, they concluded that this boundary is recon-
structed along [110], such that successive reconstructed rows of atoms
are shifted by —;—- [110], forming a centred pattern. Also, a rigid body
translation along [ 111 |, was measured using the a-fringe method,
Vlachavas and Pond (1980), in silicon and was confirmed directly by the
high resolution observations mentioned above. This boundary has been
observed to be sometimes stepped and facetted (Bourret et al. 1985a).
Also, dissociation of this boundary into £3(111) plus £9(221) has been

observed (Bourret et al. 1985b).

Several atomic models of theX = 3( 112 ), boundary have been pro-
posed; but noneof them are compatible with the ¢(2x2) structure ob-
served above except that proposed recently by Papon et al.(1985) and

which is shown in Fig.6.4. This figure has been reproduced from the
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work of Paxton (1987), who investigated its structure and energy using
computer simulation. This structure can be regarded as a sequehce
of two structural units comprising one five- and one seven-membered
ring per half period. No dangling bonds are present in the model at

all. The structure has the interfacial periodicity s = [110], and

J

, = [222],. It is centred and exhibits the mirror symmetry, m(110),,
and therefore has the spacegroup clml. The calculated energy of the
grain boundary structure in Fig.6.4 was 339 erg/cm’. One notable
feature of this boundary is the nature of reconstruction along [llO])\,
i.e the bonding between pairs of atoms such as numbers 1, 1', 11, 11
in the figure and the ones above them. These bonds also exhibit the
maximum bond stretching that occurs, and hence the highest bond en-

ergies obtained in the study.

6.6.1. SAD PATTERNS.

The SAD pattern which has been taken from aX = 3( 112 ); "edge-on"

bicrystal specimen viewed along | 111 ), is shown in Fig.5.15(d). The

white and black crystal reflections, e.g. 220, and 202p, are coincident

in the zero layer for this 111 section of the reciprocal lattice. The
o ) . 224

primitive double diffraction vectors, g, are ->--3-— and 110,, and

reflections of the former type are present in Fig.5.15(d). The origin
of these observed double diffraction reflections is not clear; reflections
of this type were seen in | 11 ], SAD patterns from single crystals,
and were presumably caused by multiple scattering (Tu ef al. 1978), or
due to non-integral number of uﬁit cells (Cherns 1974). Aﬁother possi-
bility is that thesé reflections did arise -by genuine double diffraction

as a consequence of the presence of interfacial facets which would mean
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that the interface was not entirely parallel to the incident electron

beam. The anticipated grain boundary reflections, gi , are of the type

'%"%‘Ok with all the odd orders systematically absent due to centring,

but these were not detected.

The SAD pattern which has been taken from a% = 3( 112 ), "edge-on"

bicrystal specimen viewed along |110], is shown in Fig.5.10(c). The
white and black crystal reflections are indexed and we note that re-
flections of the type 1ﬁ;\, 224 ) are coincident in the zero layer for this

110 section of the reciprocal lattice. The primitive double diffraction
. 22 4 111 .

vectors, &),» are -3 ) and 33T but no double diffraction

reflections were observed. The expected grain boundary reflections,

gi, are of the type %——%——é—;\, where odd orders are systematically ab-

sent due to centring, but none were detected. The possible reason for

not observing these will be considered later.

The SAD pattern which has been taken from af = 3( 112 ), "plan-

view" bicrystal specimen viewed along | 112 l, is shown in Fig.5.14(d).
The white and black crystal reflections are coincident in the zero layer

for this 112 section of the reciprocal lattice depicted in Fig.6.5(d).

The primitive double diffraction vectors, B)u» are -l——l——l—k and 110,,

- = 3 33
. 111 2 22
and reflections, e.§. -3 33 )» 333 A and 110;, were observed,
As described before, the expected grain boundary reflections are based
on the centred cell with primitive reciprocal indices —:13-—;——%- 1 and

110, . Thus, the centre reflections have the form %——g--%- »» and re-
flections of this type can be seen in Fig.5.14(d). The crystal, double
diffraction and anticipated interfacial reflections are indicated sche-
matically in Fig.6.5(a), (b) and (c), respectively. We note that al-

~ though a subset of the double diffraction and grain boundary reflections
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are coincident, the reflections corresponding to the grain boundary
centring positions cannot arise due to doqble diffraction. In addition,
scattering effects due to specimen thicknesses which are not equivalent
to integral numbers of unit cells (Cherns 1971), would also not lead to
beams coincident with the centring grain boundary boundary re-
flections. Hence, for purposes of comparison between experimental ob-
servations and the model structure, it is advisable to concentrate our

attention on the centring reflections.

In order to compare the observed intensities of the grain boundary
reflections (Fig.5.14(d)) with the calculated ones, a structure factor
calculation programme has been invoked. The calculations have been
carried out for both the unrelaxed (Fig.2.6(a)) and the relaxed (2x2)
Ge bicryStal (Fig.6.4) making use of the structure factor equation
(Eq.(3.2)). For the relaxed bicrystal the atomic coordinates were ob-
tained from Sutton (1987) and are tabulated in Table 6.1. The intensity
of a reflection can be calculated using Eq.(3.3). In the case of the
unrelaxed bicrystal, this equation leads to the result that the crystal
reflections have strong intensities while all the anticipated grain
boundary reflections have zero calculated intensities. On the other
hand, in the case of the relaxed bicrystal the calculated intensities of
the grain boundary reflections have intensities greatly less than those
of crystal reflections, but are greater than zero. The calculated in-

tensity of centring grain 'boundary reflections, relative to that of the
1081

6 6 61
corresponding reflection in Fig.6.5(d). We have confined our attention

strongest grain boundary reflection, are written above each
to the intensities of only the centring reflections since no contribution

to these can arise by double diffraction. Comparison between the cal-
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Tabic 6.1. Coordinates for Bourret's ( 112) c(2X2) «rain boundary, computed for Si by light binding.

The coordinﬂ
parallel to

to the tilt axis ]IIO]. Unit of lengt

-1.732068598403, -3.062065246827, -0.3535589417173
-0.43.30355164686, -3.0b 1898632577, -0.3535260208838
| 1796445525096 K 5, -3.00246429425, 0.3535586617023
1.299025657971, -3 061430872554. -0.3535375050751
-1.732099929733, -3.062170128015. 0.353551*587461
-0.4.32995624316, -3.061709875575, 0.3535790199655

6 422246378262K-5, -3.062288532092, 0.353537929487
1,298999395254. -3.061631558~03, 0.3536028447568
-1.010350243023, -2.85766558873!, -0.707! 142858703
-0.57735546.37866, -2.85756736189, 0.-0-0024299263
0.7217640183.36, -2.85739.3*57383. 0.707179744627
1.154719518898. -2.85717758717, -0.7071652682046
-1.010390986101, -2.85766207622, -3.4822325514.379F-5
-0.5774002402-93, -2.85757.302821!, -6.01%86245J95IK-5
0.7217842954818, -2.85742J289173, 3.25464195391.34K-5
1.154749101089, -2.857213030619, 1.26.34474240667K-4
-1.154634960214. -2.65.3)15385626. -0.3535321776614
0.1444250))7564, -2.6544958*'6781, -0.3535797199716
0.5774059479523, -2.653406602182, -0.35.15657507305
1.876394212298, -2.65]99"652178, -0.35J5088080639
1154729567216, -2.653604409454, 0.3535522117.36
0.1444478519932, -2.654233,300504, 0.3534863"85487
0.57750207790'6, -2.65J0b813-309, 0.35352560U18I

1. 876346929699, -2.65418-089211, 0.3535b30b02877
-1.732108496%42. -2.450V48022852, -0.70714327J7582
-0.4330884975671, -2.449219095405, -0.706986956 (608
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s are given xs X,y,z for each of the 8 atoms in the layer unit cell, x is
112 | (the grain boundary normal), and z is parallel
is the lattice parameter.
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culated and observed intensities indicates good agreement as summarised

below:
(1) the reflection -1—69--2——%— has the highest, intensity, and that of
%‘%‘%‘k has the second highest,
(2) the reflection —%4—%—2— has the lowest intensity and that of the
’%%—2—1 has the second lowest intensity.

A comprehensive analysis of the SAD patterns, Fig.5.10(c), 5.15(d)
and 5.14(d), has revealed that grain boundary reflections were clearly
‘observed in the SAD pattern taken from "plan-view" bicrystal specimen
but not observed in those taken from the "edge-on" ones. The possible
reason behind this is that the intensity of grain boundary reflections
in the "plan-view" case is considerably greater than that in the
"edge-on" ones, so that ohe cannot detect these in the latter. To be
more specific, the illuminated areas in both cases above are proportional
to the size of the selected area aperture. In the "plan-view" case the
amplitude of a grain boundary reflection, hkl, is proportional to the
structure factor, Fyy), times the number of interfacial 'unit cells' (i.e.
the centred (2x2) cells), va. present in the illuminated area, and
hence the intensity, Ipv' is proportional to szv. On the other hand,
in the case of "edge-on" bicrystal specimen the intensity of a grain
boundary reflection from the same set of planes hkl, I,,, is proportional
to N?,,, where Ny, is the number of 'unit cells' in the illuminated area.
Since thé illuminated areas in both cases are the same, it follows from
the geometry of the situation'that, va is much greater than Neo-
Consequently, Ipv is also relatively much greater than I,,. For example,
in the case of SAD patterns in Fig.5.10(c) and Fig.5.14(d), the size

of the SAD aperture was 30um in diameter, and, therefore, the number
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of unit' cells Noy and Ny, in this illuminated area éan be estimated as
follows. In the "edge-on" case, the area of boundary examined is ap-
proximately 30xtum?, where t is the specimen thickness which was of the
order 0.1ym. Therefore, since the area of an interfacial 2x2 unit cell is
(V2x2y3)a’ = 4.9a’um?, N, ~ 1912888.9. In the "plane-view" case, the
area illuminated is equal to 30&S2num?, which means that va =
1.8x109. Hence, the ratio of intensities for the same reflection observed '
in the "piane-view" and "edge-on" cases is
.. :

pv i leo © N*p

i.e. the intensity of the grain boundary reflection in‘ the "plane-view"

v N?go = 888264.39 : 1

case is much greater than in the "edge-on" case, and hence these re-

flections are more likely to be observed in the former case.
6.6.2. CBED PATTERNS.

The [11'0];‘ surface normal "edge-on" bicrystal and dichromatic complex

would exhibit the following expected point symmetry

G(b) = m2m = {1, m(110),, n'(112),, 2’ 111 ],}, and
G(c) = mm'm’

= {1, m(110), 2{110], T , w/(112), n’(111), 2] T12 }, 2’| 111 }}

The observed CBED pattern, Fig.5.10(f) which was taken from an
area containing the grain boundary, exhibits the following elements of

symmetry (BF and whole pattern):

(1) an anti-mirror, m'(111),,
(2) an anti-mirror, m'(112),and
(3) a diad, 2[110],.
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The observed symmetry is
2m'm’ = {1, 2[110],, m’(lﬁ);\, m’(Tl—Z“)}\}
This is consistent with the residue of the complex point symmetry, as-

suming the mirror m(110), has been broken due to sbecixﬁen preparation.

Similarly, the’[ 111 ], surface normal '"edge-on" bicrystal and

dichromatic complex would exhibit the following point symmetry:

G@®) = &2’m = {1,3%,3°, m(110), m(101), m(017), m’(112), 6 **,6 ~,
2[211], 271 111 |, 2’[ 121 |}, and
G(c) = ¢’/mm’'m’ (see Tables 2.4(a) and 2.5(a) for the 24 symmetry

and anti-symmetry elements of this point group)

The observed CBED pattern, Fig.5.15(¢c) which was taken from an
area containing the grain boundary, exhibits the following elements of

symmetry (BF and whole pattern):

(1) triad along | 1m l, direction, 3*, 37,

(2) m(110);,

(3) m(101), and

(4) m(011),
Thus, the observed point symmetry is

3m = {1,371, 3", m(110), m(101), m(011)}.

This is consistent with the residue of the complex point symmetry, as-
suming tha.t the anti-mirror m'(111), has been broken by specimen
preparatioh .
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Finally, the point symmetry exhibited by | 112 l, surface normal

"plan-view" bicrystal and dichromatic complex are
G(b) = m2'm’ = {1, m(110), 2] 111 ], m’(112)},
and
G(c) = mm'nY
= {1, m(110), 2[110], T , m’(112), n(111), 2’| T12 ], 27[ 111 ]},

respectively.

The CBED patterns in Fig.5.14(e), have been taken from a ¥ =
3(112), "plan-view" specimen where the electron beam was parallel to

the specimen surface normal | 112 ], The observed element of symmetry

(BF and whole pattern) exhibited by this pattern is:

(1) a mirror m(110),,
hence, the observed point symmetry is m = {I, m(110),}, which is
equivalent to the residue of the bicrystal point symmetry, assuming that
the anti-symmetry elements m'(112), and 2[ 112]
are broken either due to specimen preparation (section 6.3), or due to

a relative displacement parallel to | 111 ].
6.6.3. SUMMARY OF OBSERVATIONS.

In summary the evidence collected in the present work using the SAD
technique is consistent with other recent works, and supports the c(2x2)
| model of the T=3( 112 ); grain boundary studied by Paxton (1987). In
particular our observations imply the presence of an interfacial dis-

placement field, and that the boundary is reconstructed such that the
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interfacial periodicity is doubled. Good agreement has been found be-

tween the relative values of observed and calculated intensities.

Regarding the symmetry of the interfacial structure as studied using
CBED, we conclude that the present observations are also consistent -
with the model, Fig.6.4, which exhibits the symmetry clml. However,
it must be remembered that the result from the "edge-on" specimens,
if.e. showing the residue of the complex symmetry, doés not provide
information about the interfacial structure. On the other hand, the
bicrystal spacegroup was determined from a "plan-view" specimen and
the symmetry observed is consistent with that of the proposed model,

i.e. clml.

6.6.4. OBSERVATION OF DISSOCIATION IN £=3( 112),
»EDGE-ON” SPECIMEN.

The $=3( 112 ), interface appears to bé unstable with respect to
dissociation (Fig.5.12(a)). The solution of the SAD pattern
(Fig.5.12(b), which is taken from the dissociated boundary shows that
the 253( 112 ))\ interface has dissociated, as depicted schematically in

Fig.6.6, according to the following reaction:

Z=X(TiE), = Z=X(1Ty + Z=X(Ti2), + Z=9(Z2), + Z=9( D),

We note that all the interfaces following dissociation are symmetric; the
$=9( 212 )u interface has been studied in some detail both experimentally
(see for example Papon et al.1982) and theoretically (Krivanek et al.1977), and
is thought to have low energy. On the other hand, the Z=9( 11 ),
interface, indicated by the dotted line in Fig.6.6, has not been observed

frequently.
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Fig 6.6. A schematic of the dissociated = = 3( 112 ), boundary
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6.7. PREVIOUS EXPERIMENTAL OBSERVATIONS AND

THEORETICAL MODELS OF £=27( 552 );, BOUNDARY.

A small number of expefimental and theoretical works concerned with
the structure of the £=27( 552 ), interface in silicon and germanium have
beeh published. Selected area electron diffraction and high resolution
electron microscopy techniques have been used in the experimental in-
vestigations. The electron diffraction investigations of (Bourret et al. 1985b)
for the interface in germanium showed SAD patterns containing a large
number of diffraction spots of low intensity. High resolution electron
microscopy images for interfaces in polycrystalline silicon, (Cunningham
et al. (1982) and Vaudin et al. (1983)) and in a germanium bicrystal (Bourret
et al. 1985b), looking down [110], show a periodicity of a magnitude 2.83nm
along | T15 |, i.e. the same as that of the unrelaxed bicrystal in
Fig.2.6(c). This interface was also observed, using HREM and TEM
techniques, to ’be facetted and dissociated. Bourrcl.el al. (1985a) and
Vaudin et al. (1983) observed successive facets along {110} and {111} planes

with a width successively close to 3a and <211>a, where a is the lattice
parameter. For this particular miserientation a {110} facet in one crystal
faces a {111} facet in the other, and these are arranged alternatively
along the boundary. The interface was also observed (Cunningham et al.
1982) to be dissociated into Z=3{111}/{111}, Z=3{115}/{111} and
£ =9{122}/{122} interfaces in <110> surface normal polycrystalline silicon
specimens. Also, Garg et al. (1988) observed the dissociation in
polycrystalline silicon, using optical and TEM microscopy techniques,

into £=3{115}/{111} and £ =9{122}/{122} boundaries.
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Two atomic models for the structure of £=27( 552 ), interface, pro-
posed by Vaudin et al. (1983), are shown in Fig.6.7(a) and (b). The first
consists of ABAC structural unit combinations and the second consists
of AAD combinations as illustrated in the figures. The dotted lines in
Fig.6.7(a) indicate {111} facets in one crystal and { 111 } in the other.
Good agreement exists between the HREM image for the facetted
$£=27( 552 ), boundary and the model shown in Fig.6.7(a), suggesting
that the model gives a nearly correct representation of the HREM image.
As far as we are aware, the energy of this interface has not been in-

vestigated by computer simulation.

6.7.1. DISSOCIATION OF THE £=27( 552 ), BOUNDARY.

In the cases of the boundaries considered previously, the discussion
of dissociation was considered after that of SAD and CBED investi-
gations, but in the present case dissociation was observed to be such

a prominent feature that it is discussed first.

At low magnification, M<10x Fig.5.1(a) and (b), the grain boundary
‘area between grain pairs B,-C, and B,-C,, apparently, consisted of a
smooth interface. At high magnification, M=60,000x Fig.5.16, the major
observed poition of the grain boundary showed a rather complicated
appearance as is illustrated schematically in Fig.5.24. In some other
areas, quite iarge grains were observed to be enclosed between the
grain pair B,-C,, for example grain E;, which is confined by the tri-
angular border "hlk" and the grain F, which has a very complicated
irregular shape. The CBED patterns taken from the microscopic grains

E, and F,, Fig.5.19 and 5.20, showed them to have the direction
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[110], parallel to the electron beam in common with the grains B, and
Ce- The pairs of grains Bc'Ec and Cc’Ec were found to be rotated
about this direction by 71.0° + 0.5°. Hence, the £=27( 552 );, interface
at point "h" dissociated into a configuration of £ = 3( 111 ), and X =

9( 221 ), symmetric tilt boundaries.

6.7.2. SAD PATTERNS FROM “EDGE-ON” AND

#PLAN-VIEW” SPECIMENS.

In the case of % = 27( 552 ), "edge-on" bicrystal specimen, the
[110], SAD pattern taken from the grain boundary region is shown in
Fig.5.17. The area investigated was chosen carefully so as not to in-
clude regions where the interface had dissociated. However, the
boundary was rarely found to be strictly planar, and hence was prob-
ably facetted on a microscopic scale. Crystal reflections 115, and 1_1_:';‘l
are coincident in the zero layer for this 110 section of the reciprocal
lattice. Some double diffraction reflections are present in Fig.5.17(c)
and this was presumably due to facetting. The anticipated first order
i qq L1 5
27 27 271 M
reflection was obtained, and the reason for this, as mentioned before

grain boundary reflection, g, is No evidence for this
in section 6.6.1 for a similar case, is presumably that the intensity of

the grain boundary reflections is too small to be observed.

In the case of the "plan-view" bicrystal specimen, the | 552 l, SAD
pattern is shown in Fig.5.28. In the zero layer of the 552 section of
the reciprocal lattice all crystal reflections are coincident, for example
white crystal reflections 220,, 11_5—,& and 135, are coincident with the

black crystal reflections 220,, 115 , and 313'“. respectively, as depicted
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in Fig.6.8. Crystal reflections from higher order Laue zones are ob-
served in Fig.5.28, and crystal reflections from the first order Laue
zones are also indexed in the figure, e.g. (519,, 319,, 139,, 159 ,)

and (644, 124, 204, 024)).

u’

Double diffraction reflections, B can be identified by considering
the white and black reciprocal lattices and bearing in mind that these
display the same symmetry as the dichromatic pattern, which includes

m(110),, m'( 552 ), and m'(115),. Thus, for example, the zero layers

th

are coincident, and the +n""" white layer is a mirror image of the -nth

layer of the black reciprocal lattice. Therefore, reflections such as
2 _z__s_x arise by scattering by the planes corresponding to

Ein ~ 373 —
) T - 463 1929 6824
firstly g, = 3.19 and subsequently 8, 729 729 729 °

The expected grain boundary reflections, gi, are of the types
115
27 27 27
Fig.5.28 as satellites of crystal and double diffraction spots, as indi-

 and 110,. Reflections of the first type are observed in

cated in Fig.6.8. We note that grain boundary reflections of this type
are to be expected from a facetted interface such as that shown in
Fig.6.7(a). However, we note that such reflections could also arise
due to the specimen thickness not comprising integral numbers of unit
cells, and it was not possible to distinguish between these two possi-

bilities in the present work.
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6.7.3. CBED PATTERNS FROM “EDGE-ON” AND
“PLAN-VIEW” SPECIMENS.

The point symmetry for £ = 27( 552 ), Dbicrystal and dichromatic
complex (projected down [110] direction) are
G(b) = 2’mmy’ = {1, m(110),, m’( 552 ),, 21 115 I}, and
G(c) = m’'m’m
= {1, m(110),, 2[110], T , m’(552),, m’(115),, 2’| 115 ], 2] 552 |},

respectively.

The observed symmetry elements of the [110], CBED pattern, which
was taken from X = 27( 552 );, "edge-on" bicrystal specimen from the
grain boundary, Fig.5.18(c), are:

(1) ah antimirror parallel to the boundary plane, m'(5§§)k.

(2) an antimirror perpendicular to the boundary plane, m'(115),,

and

(3) a diad perpendicular to the plane of the pattern, 2[110],.
Thus, the observed symmetry is

2m'm’ = {1, 2[110],, m’(552),, m’(115), }.
Therefore, the observed symmetry is equivalent to a residue of the
dichromatic complex point symmetry; assuming the mirror m(110), is
broken due to specimen preparation and also due facetting and

dissociation of £ = 27( 552 ), interface in some places.

The point symmetry for T = 27( 552 ');‘ bicrystal and dichromatic
complex projected down the | 552 | direction are
G(b) = m2'm’ = {1, m(110),, m’( 552 o 21 115 I}
G(c) = m'mm’
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= {1, m(110),, 2[110}, T , m’(552),,, o’ (115),, 2’| T15 }, 2] 552 |}.

The observed symmetry of the [ 552 [, CBED pattern, whiéh was taken
from £ = 27( 552 ), "plan-view" bicrystal specimen, Fig.5.29, exhibited
only the identity elemént of symmetry. In the present case we believe
that all symmetry in the bicrystal has been suppressed due to the
combined effects of specimen preparation; facetting and dissociation of

this interfacial structure.

6.7.4. SUMMARY OF OBSERVATIONS.

Our observations of facetting and dissociation of theX = 27( 552 M
interface are similar to other recent observations. Such observations
indicate that, because facetting and dissociation are prominent features
of the interface, this boundary probably has high interfacial energy.
The SAD investigatipns presented here provide evidence that the
periodicity of the interface is the same as that of the CSL. The absence
of the expected symmetry in the CBED patterns taken from the "plan-
view" bicrystal specimens is probably due to a combination of symmetry
breaking by specimen preparation, and the instability of this grain

boundary with its tendency to dissociate into more stable structures.
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'CHAPTER SEVEN

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

7.1. CONCLUSIONS REGARDING THEORETICAL
CRYSTALLOGRAPHY.

(1) It has been shown that the 31 diffraction groups for single crystals,
previously obtained by Buxfon et al. (1974) using stereographic argu-
ments, can be obtained in a straightforward manner using
crystallographic theory. These groups have been derived here by
starting witﬁ the 31 rosette groups and using the concept of anti-

symmetry to identify symmetry elements for which the reciprocity

theorem must be invoked in CBED.

(2) A group theoretical method for obtaining the BF, projection
diffraction and whole pattern symmetries corresponding to a given

diffraction group has been presented.

(3) The results outlined above have been extended to obtain all possible
diffraction groups for bicrystals. Procedures for’determining the ad-

missible diffraction groups for both "plan-view" and "edge-on" spec-

imens have been discussed.
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7.2. CONCLUSIONS REGARDING EXPERIMENTAL TECHNIQUES,

(1) "Edge-on" and "plan-view" germanium bicrystal specimens have been
prepared successfullyv for investigations by ‘transmission electron

microscopy.

(2) SAD, CBED and LACBED techniques have been used to study
bicrystél specimens. The SAD method was found to be particularly
useful for studying interfacial reconstruction. Bicrystal symmetry was
successfully investigated using CBED on "plan-view" specimens. On
the other hand, CBED patterns obtained from "edge-on" specimens

could not be interpreted directly in terms of bicrystal symmetry.

7.3. CONCLUSIONS REGARDING SPECIFIC INTERFACIAL

STRUCTURES.

(1) £ = 3( 111 )N boundary: the experimental observations are consistent
with a bicrystal exhibiting symmetry p6'm2'. Moreover, no evidence
was found for interfacial reconstruction or a significant displacement

field. This boundary is stable and showed no tendency to dissociate,

(2) £ = 3( 112 );, boundary: the experimental observations are consistent
with a bicrystal exhibiting the symmetry clml. In particular, clear
evidence of a ¢(2x2) reconstruction was obtained, and the intensities
of interfacial reflections were found to be in good agreement with
those calculated based on the model structure suggested by Papon et
al. (1985). It was also observed that this interface is unstable with

respect to dissociation into other X = 3 and ¥ = 9 boundaries.
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(3) = = 27( 552 ); boundary: this boundary was observed to be highly
unstable, exhibiting extensive dissociation and facetting. Due to this
structural complexity, it was not possible to determine the bicrystal
spacegroup using CBED. Some evidence was obtained using SAD in-
dicating that the periodicity of the interface is the same as that of
theX = 27 CSL.

7.4. SUGGESTIONS FOR FURTHER WORK.

In the course of this work it has become evident that two aspects of
the experimental programme would benefit from further attention. These
are, firstly, problems associated with the interpretation of CBED pat-
terns from bicrystal specimens, and secondly, quantitative comparison

between the calculated and measured intensities of diffracted beams.

Concerning CBED, three topics need to be considered. The first one
follows from our observations that antisymmetry operators, such as m',
and 2' in the interface of a "plan-view" specimen, were frequently
broken, i.e. did not lead the anticipated symmetries being observed in
CBED patterns. We have presumed that this has arisen due to surface
roughness or the location.of the interface not being coincident with the
central plane of "plane-view" specimens. It would be valuable to carry
out a systematic study by simulating the contrast expected from "plan-
view" specimens where the interface location and suﬂ‘ace smoothness and
orientation were varied. The second topic concerns the symmetry ob-
served in CBED patterns from "edge-on" specimens. As explained in the
thesis, it is anticipated that the symmetry observed depends upon the
spot size used, so called "complex symmetry" being observed for rela-

tively large spot sizes as in the present work. It would therefore be
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interesting to investigate pattern symmetry using smaller spot sizes.
Finally, as has been suggested by Schapink et al. (1986), it would be val-
uable to investigate the symmetry of CBED patterns from "edge-on"
bicrystai specimens usihg the double-rocking zone axis pattern (DRZAP)

technique, and to vary the spot size in addition as outlined above.

With regard to quantitative measurement of diffracted intensities, it
would be particularly valuable to carry out x-ray diffraction studies of
"plan-view" bicrystal specimens using a synchrotron source. This would
have the advantage of making the comparison between experimental
measurements and theoretical calculations based on kinematical theory
more justifiéble. At the same time, use of a synchrotron source would
overcome the experimental difficulties associated with the problem of
weak x-ray diffraction by interfaces. This approach is currently being

undertaken by Sass ef al. (1988) in their work on gold bicrystals.
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CHAPTER SEVEN

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WO'RK

7.1. CONCLUSIONS REGARDING THEORETICAL
CRYSTALLOGRAPHY.

(1) it has Been Shox.vn that the 31 diffraction groups for single crystals,
_ previousiy obtained by Buxton et al. (1974) using stereographic argu-
ments, (':an' be obtained in a straightforward manner using
crystall_ographic theory. These groups have been derived here by
starting with the 31 rosette groups and using the concept of anti-
symmetry to identify symmetry elements for which the reciprocity

theorem must be inveked in CBED.

(2) A group theoretical method for obtaining the BF, projection
diffraction and whole pattern symmetries corresponding to a given

diffraction group has been presented.

(3) The results outlined above have been extended to obtain all pessible
diffraction groups for bicrystals. Procedures for determining the ad-

missible diffraction groups for both "plan-view" and "edge-on" spec-

imens have been discussed.
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7.2. CONCLUSIONS REGARDING EXPERIMENTAL TECHNIQUES,

(1) "Edge-on" and "plan-view" germanium bicrystal specimens have been
prepared successfully for investigations by transmission electi'on

microscopy.

(2) SAD, CBED and LACBED techniques have been used to study
bicrystal specimens. The SAD method was found to be particularly
useful for Studying interfacial reconstruction. Bicrystal symmetry was
successfully investigated using CBED on "plan-view" specimens. On
the other hand, CBED patterns obtained from "edge-on" specimens

could not be interpreted directly in terms of bicrystal symmetry.

7.3. CONCLUSIONS REGARDING SPECIFIC INTERFACIAL

STRUCTURES.

(1) = = 3( 111 ); boundary: the experimental observations are consistent
with a bicrystal exhibiting symmetry p6'm2'. Moreover, no evidence
was found for interfacial reconstruction or a significant displacement

field. This boundary is stable and showed no tendency to dissociate.

(2) == 3( 112 ); boundary: the experimental observations are consistent
| with a bicrystal exhibiting the symmetry clml. In particular, clear
evidence of a ¢(2x2) reconstruction was obtained, and the intensities

of interfacial reflections were found to be in good agreement with
those calculated based on the model structure suggested by Papon et
al. (1985). It was also observed that this interface is unstable with

respect to dissociation into other Z = 3 and £ = 9 boundaries.
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(3) = = 27( 552 ); boundary: this boundary was observed to be highly
unstable, exhibitihg extensive dissociation and facetting. Due to this
structural complexity, it was not possible to determine the bicrystal
spacegroup using CBED. Some evidence was obtained using SAD in-
dicating that the periodicity of the interface is the same as that of
theX = 27 CSL.

7.4. SUGGESTIONS FOR FURTHER WORK.

In the course of this work it has become evident that two aspects of
the experimental programme would benefit from fui'ther attention. These
are, firstly, problems associated with the interpret&.mon of CBED pat-
terns fromlbicrystal specimens, and sect;ndly, quantitative comparison

betwéen the calculated and measured intensities of diffracted beams.

Concerning CBED, three topics need to be considered. The first one
foliows ffom our observafions that antisymmetry opefators, such as m',
and 2' in the inteffa'cé of a "plan-view" specimen, were frequently
broken, i.e. did not lead the anticipated symmetries being observed in
CBED patterns. We have presumed that this has arisen due to surface
roughness or the location of the interface not being coincident with the
éentral plane of "plane-view" specimens. It would be valuable to carry
out a systematic study by simulating the contrast expected from "plan-
view" speciniens where the interface locétion and surface smoothness and
orientation were varied. The second topic concerns the symmetry ob-
served in CBED patterns from "edge-on" specimens. As explained in the
thesis, it is anticipated that the symmetry observed depends upon the
spot size psed, so called "complex symmetx_-y" being observed for rela-

tively largé spot sizes as in the present work. It would therefore be
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interesting to investigate patterh éymmetry ‘using smaller spot sizes.
Finally, as has been suggested by Schapink et al. (1986), it would be val-
uable to investigafe the symmetry ot. CBED patterns from "edge-on"
bicrystal specimens using the double-rocking zone axis patt;ern (DRZAP)

technique, and to vary the spot size in addition as outlined above.

With regard to quantitative méasurement of diffracted intensities, 1t
would be particularly valuable to carry out x-ray diffraction studie$ of
"plan-view" bicrystal specimehs using a synchrotron source. This would
have the advantage of making the comparison between experimental
measurementé and theoretical calculations based on kinematical theory
more justifiable. At the same time, use of a synchrotron source would
ovércome the experimental difficulties associated with the problem of
weak x-ray diffraction by interfaces. This approach is currently being

undertaken by Sass et al. (1988) in their work on gold bicrystals.
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