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ABSTRACT

The work described in this thesis is concerned with theoretical and 

experimental aspects of the study of interfacial sturcture in germanium 

bicrystals using selected-area diffraction (SAD ), convergent-beam 

diffraction (CBED), and large-angle-convergent-beam diffraction 

(LACBED). The theoretical work comprises a crystallographic treatment 

which enables the diffraction groups for bicrystal specimens to be de

termined, taking into account the relative orientation and position of the 

adjacent crystals, and whether the interface is parallel (plan-view spec

imens) or perpendicular (edge-on specimens) to the specimen surfaces. 

Bicrystal specimens were prepared for electron microscopy from 

germanium poly crystals comprising large grains. The interfaces studied 

were Z=3( l î ï  ) andZ=3( Ï12 ) ,  andZ=27( 552 ) ,  and, in each case, both 

"edge-on" and "plan-view" specimens were prepared. It was found that 

theZ=3( l î ï  ) interface was planar, but theX=3( 112 ) exhibited a facetted 

structure to some extent. TheZ=27( 552 ) interface exhibited extensive 

facetting and decomposition, which complicated its investigation by 

electron diffraction.

Using relatively large spot sizes, it was found that the CBED patterns 

obtained with the incident probe straddling "edge-on” interfaces, corre

sponded to the superimposition of the CBED patterns obtained separately 

from the adjacent single crystals. This was explained in terms of the 

summation of scattering events occurring in an incoherently related 

manner in the adjacent crystals. On the other hand, CBED patterns from



"plan-view" specimens were interpreted in terms of the summation of 

coherently related scattering events in the adjacent crystals. However, 

the latter type of patterns did not reveal certain symmetries thought to 

be potentially present in the specimens, and this was consistent with the 

suppression of these symmetries in specimen preparation, e .g . the 

interface was not precisely parallel to the surfaces and did not occupy 

the central plane.

Selected-area diffraction was found to be particularly useful in the 

study of 1=3 ( I l2  ) "plan-view" specimens. Evidence was obtained 

supporting an interfacial structure with centred 2x2 reconstruction. The 

intensities of additional reflections arising due to this reconstruction were 

found to be in good agreement with values calculated on the basis of 

kinematic theory and using the atomic positions determined by computer 

simulation (Paxton et al. 1987).
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1.3. The scope of the thesis...................................... 1.5

1.1



1.1. TH E  IM PO R TA N C E  OF G R A IN  B O U N D A R Y  STRUCTURE.

Grain boundaries have significant influence on the properties of ma

terials, for example, mechanical properties may be modified dramatically 

(Smallman 1985), but in the present work we are particularly interested 

in semiconductor materials, where grain boundaries can have a profound 

influence on electrical properties such as resistivity, recombination effi

ciency and I-V  characteristics. Grain boundaries in semiconductors are 

normally regarded as introducing deleterious electrical effects, but they 

can also play a role in determining the operating characteristics of several 

types of electronic devices. They severely limit the performance of some, 

such as thin film solar cells (Chu et al. 1976) and transistors (Anderson 1980). 

On the other hand, in commercial varistors, the peculiar I-V  character

istics of grain boundaries are actually used advantageously (Mahan et al. 

1979).

The long term objective of research into polycrystalline semiconductors 

is to understand the origin of properties in terms of interfacial structure. 

However, at present, only limited progress has been achieved toward this 

goal, see for example Werner et al. 1982).

In the present study we are concerned with the structure of grain 

boundaries in germanium, and the relationship between grain boundary 

structure and electrical properties is outside of the scope of this thesis. 

The present understanding of the structure of semiconductor grain 

boundaries is firmly based on models developed for metallic boundaries. 

The most cogent of these currently under discussion is the Structural 

Unit Model, "SUM”, (Sutton 1984, Sutton and Vitek 1983). From computer 

generated relaxed grain boundary structures a small number of
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3-dimensional atomic units that form the cores of boundaries have been 

identified. These units can also be considered as the cores of dislocations 

at the boundary, and so it is possible to describe the high angle grain 

boundaries formally as arrays of very closely spaced dislocations. Certain 

boundaries with very specific misorientation angles (0 ) ,  usually about 

low index axes, contain only one structure unit. The core of the 

boundary is then simply a 2-dimensional array of these units. Between 

these favoured orientations, which are often calculated to have lower 

energy than boundaries with more complex core structures, the calculated 

structures show that many boundary cores can be described as linear 

combinations of units characteristic of the closest favoured boundaries. 

A small angular deviation from a favoured boundary misorientation can 

be accommodated by the introduction of a widely spaced array of new 

structural units into the boundary core, this unit being characteristic 

of the next favoured interface. These new structural units can also be 

thought of as a secondary dislocation array accommodating the misorien

tation away from the favoured boundary. Thus effective use of the "SUM" 

depends on the identification of a small number of structural units with 

which the core structure of boundaries within a particular misorientation 

range can be modelled. This model has a rather elegant correspondence 

with the earlier geometric models of grain boundaries, where the coinci

dence of lattice sites of the two crystals at the boundary plane is made

the criterion for describing the boundary structure (Pumphrey 1976 and 

Grimmer et al. 1974).

Before the development of the experimental techniques that could be 

used to investigate the structure of grain boundaries by direct obser

vation, some attention was paid to the modelling of interfaces in covalent

materials, e .g . silicon and germanium. The boundaries were described
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as arrays of dislocations, and the atomic structures of the dislocation 

cores were modelled so as to minimise both the density of dangling bonds, 

and bond bending and stretching (Hornstra 1959).

Direct observation of grain boundary structures in semiconductors has 

only recently become common, and this can be related to the development 

of the current generation of High Resolution Electron Microscopes. With 

these instruments it is sometimes possible to resolve the atomic structure 

of crystals or bicrystals projected along certain low index directions 

(Bourret et al. 1985a,b). However, more conventional electron microscopic 

techniques, such as Selected Area Diffraction (H irsch et al. 1977), Conver

gent Beam Electron Diffraction (Steeds 1979), and Large Angle Convergent 

Beam Electron Diffraction (Tanaka et al. 1980), can also be used to give 

useful information on boundary structure.

1.2. TH E  OBJECTIVE OF TH IS  THESIS.

The objective of this thesis is to study the structure of interfaces in 

germanium bicrystals supplied by J. J. Bacmann. The scheme of work to 

accomplish this study is divided into two programmes. The first 

programme is the preparation of germanium bicrystal specimens for 

transmission electron microscopy. The second one is determination of the 

structure and spacegroup of the germanium bicrystal specimens using 

electron microscopy. The first programme includes preparation of two 

different types of germanium bicrystal specimen depending on the orien

tation and position of the boundary plane with respect to the surface of 

the bicrystal specimen. One type is called "edge-on" specimen where the 

boundary plane is perpendicular to the specimen surfaces, and the other 

is called "plan-view", where the boundary plane is parallel to the speci-
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men surfaces. The procedure for the preparation of germanium bicrystal 

specimens for electron microscopy comprises five steps. These steps are 

slicing germanium bulk materials, drilling the slice into 3mm discs, 

dimpling the discs, chemical etching of the discs and finally ion beam 

thinning of the discs. The techniques used for structure and spacegroup 

determinations in the second part of the programme are principally 

transmission electron microscopy, but optical microscopy, x -ray  

diffraction, and scanning electron microscopy were also used. Optical and 

scanning microscopy were used to detect the presence of the grain 

boundaries in germanium slices, and to photograph these. The Laue 

back-reflection X-ray method was used to determine the approximate 

orientation between the different grains present in a germanium slice. 

Transmission electron microscopy was used, first, to observe the micro

scopic structure of germanium bicrystals by employing bright-field and 

dark-field imaging techniques. Second, the precise orientation relation

ship between the bicrystal grains, the indices of the boundary planes 

and the periodicity of the interfacial boundary planes in germanium 

bicrystal specimens was determined using the Selected Area Diffraction 

(SAD ) technique. Finally,it was intended to determine the spacegroup 

of germanium bicrystal specimens by making use of Convergent Beam 

Electron Diffraction (CBED) and Large Angle Convergent Beam Electron 

Diffraction (LACBED) techniques.

1.3. TH E  SCOPE OF TH E  THESIS.

In chapter two of this thesis we summarise, initially, the theoretical 

method for treating the symmetry of single crystals. Then we develop 

and formulate the theory which deals with the symmetry of bicrystals. 

Finally, this theory is applied to three germanium bicrystals with dif
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ferent relative orientations of the component crystals, which, in partic

ular, the variation of bicrystal symmetry as the relative position of the 

crystals is changed is considered. In chapter three the experimental 

electron microscopical techniques used in the present study of interfaces 

are introduced in more detail. The theoretical aspects of the CBED 

technique are developed in chapter four, and, in particular presents a 

theoretical study of single crystal and bicrystal diffraction groups. First, 

the correspondences between single crystal point symmetries and the 

diffraction groups have been determined by a new procedure, and com

pared with those derived by Buxton et al. (1974). Secondly, the relations 

between single crystal point symmetries and bright-field, projection 

diffraction and whole pattern point groups of CBED patterns have been 

found using group theoretical methods, and tabulated. The equivalences 

between the "plan-view" bicrystal specimen point symmetries and the 31 

diffraction groups are established, and found to be identical to those

between single crystal point symmetries and the 31 diffraction groups 

( Buxton et al. 1974).

The experimental results obtained using the different techniques which 

have been used to study the structure of germanium interfaces are pre

sented in chapter five. Chapter six presents the discussion of the ex

perimental results, making use of the theoretical considerations included 

in chapters two and three. The principal conclusions reached in the 

present work and suggestions for further work are set out in chapter 

seven
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2.1. INTRODUCTION.

The purpose of this chapter is to introduce the method devised by 

Pond&Vlachavas (1983) for treating the symmetry of bicrystals and to 

apply this procedure to the case of germanium bicrystals.

By way of introduction, we consider initially the symmetry of single 

crystals, and germanium in particular. We use the notation set out in 

the International Tables for Crystallography (Hahn 1984) for the matrix 

representation of symmetry operations.

The symmetry of dichromatic patterns, complexes and bicrystals de

pends on the relative orientation and position of the adjacent germanium 

crystals and in the latter case, the orientation of the interface. In the 

present work we are concerned with three distinct orientation relation

ships, which can be defined by the axis/angle pairs <111 >60°, 

<110 >38.94° and <110 >31.59°, respectively; we refer to these as 

S = 3, S = 9 and I  = 27 orientations and will define the parameter I  later. 

The symmetry of the dichromatic pattern and complex for a given ori

entation relationship may vary as the relative position of the adjacent 

crystals changes and the determination of such variations will be dis

cussed in some detail since experimental methods for measuring the 

relative position with considerable accuracy are available.

In the 1 = 3 case, the symmetry of the pattern and complex can 

belong to the hexagonal class and we have found it helpful to use the 

indexing method for such cases introduced by F .C .F rank  (1965).
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2.2. CRYSTAL SYMMETRY.

The symmetry possessed by a crystal may be expressed concisely 

by one of the 230 crystallographic spacegroups (Hahn 1984). Each 

group represents the combination of the crystal point symmetry oper

ations (e .g . the identity, inversion, rotation by 2ir/n, n = 1, 2, 3, 4 

or 6, reflection and roto-inversion) and the infinite set of translation 

vectors constituting the crystal's lattice. Each combination must trans

form the crystal into itself. Symmetry operations are represented in

matrix notation (Hahn 1984) by the symbol (W , w), where W  is (3x3)

matrix and w is (3x1) column matrix. The former represents the rotation 

part and the latter represents the translation part of a symmetry op

eration.

We now consider the symmetry of germanium. Its lattice is F .C .C . 

and is represented schematically by the large&small circles in 

F ig .2 .1 (a ). F ig .2.1 (b ), reproduced from the international tables for 

crystallography (H ahn 1984), shows the symmetry elements present at 

the upper left quadrant of the lattice in F ig .2.1 (a ). Examination of 

this figure shows that, besides the 3-fold axes along <111> there are 

mirror planes perpendicular to <100> and <110>. Thus, the spacegroup 

of the F .C .C . lattice (F ig .2.1 (a )) is Fm3m No. 225 (H ahn 1984), which 

contains forty eight point symmetry operations as tabulated in Table

2.1. The number and the coordinate triplets of the symmetry operations 

(with respect to the chosen origin at position with site symmetry m3m)

are given in the first two columns; the point symmetry operations, W , 

are given in last column. F ig .2 .1 (b ) and Table 2.1 show that the lattice 

does not exhibit mirror-glide planes or screw-rotation axes, and 

therefore its spacegroup is called symmorphic.
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(a)

(b)

Fig. 2.1. (a) The projection along [001] of a face centre cubic

(F .C .C .) lattice. Large and small circles are at heights 

0 and i ,  respectively.

(b) The symmetry elements present at the upper left 

quadrant of the F.C.C. lattice in (a) (reproduced 

from Hahn 1984).



T a b le  2 .1. T h e  sym m e try  o p e ra t io n s  in the  sp a c e g ro u p  
Fm3m (N o . 225); o r ig in  a t m3m.

No. Coordinate
Triplets

W No. Coordinate
Triplets

w

(1) x ,y ,z 1 (25) ■ x ,-y ,-z T
(2) z ,x ,y 3 + (26) -z , -x , -y 3+
(3) y ,z ,x 3~ (27) -y , -z , -x 3“
(4) x ,z ,y m (28) - x ,~z, -y 2
(5) y ,* ,z m (29) -y » -x ,-z 2
(6) z ,y ,x m (30) -z , -y , -x 2
(7) x , -y , -z 2 (31) *x ,y ,z m
(8) N >• K %•

1 << 3+ (32) -z ,x ,y 3+
(9) y , -z , -x 3“ (33) -y ,z ,x 3"
(10) x , -z , -y m (34) _x ,z ,y 2
(11) y ,-x ,-z X (35) -y>x,z 4+
(12) z , -y , -x r (36) -z ,y ,x 4“
(13) ■x ,y ,-z 2 (37) x ,-y ,z m
(14) -z ,x ,-y 3+ (38) z ,-x ,y 3+
(15) -y ,z , -x 3" (39) y ,-z ,x 3"
(1G) -x ,z ,-y 4+ (40) x ,-z ,y 4+
(17) -y ,x ,-z X (41) y ,-x ,z 4“
(18) -z ,y , -x m (42) z, -y ,x 2
(19) -x ,-y ,z 2 (43) x ,y ,-z m
(20) -z ,-x ,y 3+ (44) z ,x ,-y 3+
(21) -y , -z ,x 3" (45) y ,z ,-x 3 '
(22) -x , -z ,y 4" (46) x, z ,-y 4"
(23) -y ,-x ,z m (47) y ,x ,-z 2
(24) -z , -y ,x (48) z ,y ,-x 4+



Fig. 2 .2(a) shows a [0011 projection of a germanium crystal; the basis 

atoms occupy the positions with coordinates 000; and those related 

by the face-centring translations. Germanium has the spacegroup 

Fd3m No. 227 (Hahn 1984). Its symmetry operations are shown in 

F ig .2.2 (b ) and (c ) ,  and given in Tables 2 .2 (a) and (b ) ,  respectively. 

Column one gives the number of the symmetry operations, column two 

gives their coordinate triplets and the last three columns give the point

symmetry operations, VV, their glide or screw parts, Wg, and their lo

cation parts, W| (due to the location of the symmetry operation), re 

spectively. The origin of the spacegroup Fd3m may be taken at the 

position with site symmetry 43m, as shown in Table 2 .2 (a ), or at' a 

centre of inversion at a position with site symmetry 3m, as shown in 

Table 2 .2 (b ). F ig .2.2 (a ), (b ) ,  Tables 2.2(a) and (b )  show that the 

spacegroup Fd3m contains screw-rotation and mirror-glide symmetry 

operations, i .e .,  germanium crystals are non-symmorphic and, by 

comparing these operations with those in Table 2.1 of the germanium 

lattice, one can see that there is a one to one correspondence between 

them, i .e .,  the germanium crystal's symmetry is isomorphous to its 

lattice, and is hence referred to as being holosymmetric.

2.3. D ICH R O M ATIC  PATTERNS.

A dichromatic pattern is created by misorienting two crystal lattices, 

one designated arbitrarily white and one black (distinguished here using 

the Greek letters X, and n, respectively), by a given angle about some 

axis passing through a lattice site considered as an origin. For example, 

the misorientation of two F .C .C . lattices by the following axis-angle 

pairs, I 111 1^60°, |H01^38.94° and |110]^31.59°, create the dichromatic
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o o O

Fig. 2.2. (a) The projection along [001] of a diamond crystal.

Large and small circles are at heights 0 and 

respectively. Small and large squares are at heights 

1/4 and 3/4, respectively.

(b) The representation of some of the symmetry elements

present at the upper left quadrant of (a ) , where the

origin is chosen at centre (3m), at

1/8 1/8 1/8 from the site which has symmetry

43m (reproduced from Hahn 1984).

(c) The same as (b ), but the origin is chosen at 43m,

at -1/8 -1/8 -1/8 from centre (3m).



Table 2.2(a). The aymmetry operations In the spacegroup
Fd3m (No. 227); origin at 43m.

No. Coordinate Triplets W
W8 W1

( 1 ) X ,Y ,Z 1 0 ,0 , 0 0 ,0 ,0
( 2 ) -X,-Y+l/2,Z+l/2 2 0 ,0 , 1 /2 0 ,1/2 ,0
(3) -X+l/2, Y+l/2,-Z 2 0 , 1/2 ,0 1/2 ,0 , 0
(4) X+l/2, -Y , -Z+l/2 2 1/2 ,0 , 0 0 ,0 , 1 /2

(5) Z ,X ,Y 3* 0 , 0 , 0 0 ,0 ,0

( 6 ) Z+l/2, -X,-Y+l/2 3+ 1/3,-1/3,1/3 1/6,1/3,1/6

(7) -Z, -X+l/2, Y+l/2 3+ -1/3,1/3,1/3 1/3,1/6,1/6

( 8 ) -Z+l/2,X+1/2.-Y 3* 1/3,1/3,-1/3 1/6,1/6,1/3

(9) Y ,Z ,X 3" 0 , 0 ,0 0 ,0 , 0
( 10 ) -Y+l/2, Z+l/2,-X 3" 0 , 0 ,0 1/2 , 1/2 ,0

( W Y+l/2,-Z,-X+l/2 ~ 0 ,0 , 0 1/2 ,0 , 1 /2
( 12 ) -Y,-Z+l/2,X+l/2 3' 0 ,0 ,0 0 ,1/2 , 1 /2
(13) Y+3/4,X+l/4, -Z+3/4 2 1/2 , 1/2 ,0 1/4,-1/4,3/4
(14) -Y+l/4, -X+l/4, -Z+l/4 2 0 ,0 ,0 1/4,1/4,1/4

(15) Y+1/4.-X+3/4, Z+3/4 4' 0,0,3/4 1/4,3/4,0

(16) -Y+3/4.X+3/4,Z+l/4 4* 0,0,1/4 3/4,3/4,0

(17) X+3/4, Z+l/4,-Y+3/4 4" 3/4,0,0 0,1/4,3/4
(18) -X+3/4,Z+3/4,Y+l/4 2 0 , 1/2 , 1 /2 3/4,1/4,-1/4
(19) -X+l/4,-Z+l/4,-Y+l/4 2 0 ,0 ,0 1/4,1/4,1/4
( 2 0 ) X+l/4,-Z+3/4, Y+3/4 4* 1/4,0,0 0,3/4,3/4

( 21 ) Z+3/4, Y+l/4,-X+3/4 4+ 0,1/4,0 3/4,0,3/4
( 22 ) Z+l/4,-Y+3/4,X+3/4 2 1/2 ,0 , 1 /2 -1/4,3/4,1/4

(23) -Z+3/4,Y+3/4,X+l/4 4~ 0,3/4,0 3/4,0,1/4
(24) -Z+l/4,-Y + l/4,-X+l/4 2 0 ,0 ,0 1/4,1/4,1/4
(25) -X+l/4,-Y+l/4,-Z+l/4 T 0 ,0 , 0 1/4,1/4,1/4
(26) X+l/4, Y+3/4,-Z+3/4 d 1/4,3/4,0 0,0,3/4
(27) X+3/4,-Y+3/4, Z+l/4 d 3/4,0,1/4 0,3/4,0
(28) -X+3/4, Y+l/4, Z+3/4 d 0,1/4,3/4 3/4,0,0
(29) -Z+l/4,-X+l/4,-Y+l/4 3 * 0 ,0 , 0 1/4,1/4,1/4
(30) -Z+3/4,X+l/4,Y+3/4 3 + 0 ,0 ,0 3/4,1/4,3/4

(31) Z+l/4,X+3/4,-Y+3/4 3 + 0 ,0 ,0 1/4,3/4,3/4
(32) Z+3/4,-X+3/4, Y+l/4 3 * 0 ,0 ,0 3/4,3/4,1/4

(33) -Y+l/4,-Z+l/4,-X+l/4 3 ' 0 ,0 ,0 1/4,1/4,1/4
(34) Y+3/4,-Z+3/4, X+l/4 3 ' 0 ,0 ,0 3/4,3/4,1/4
(35) -Y+3/4,Z+l/4,X+3/4 3 ' 0 ,0 ,0 3/4,1/4,3/4
(36) Y+l/4, Z+3/4,-X+3/4 3 ’ 0 ,0 ,0 1/4,3/4,3/4
(37) -Y+l/2,-X,Z+l/2 e 1/4,-1/4,1/2 1/4,1/4,0
(38) Y ,X ,Z m 0 , 0 ,0 0 ,0 , 0
(39) -Y,X+l/2,-Z+l/2 r 0 ,0 , 0 0 , 1/2 , 1 /2
(40) Y+l/2, -X+l/2, -Z 4 + 0 , 0 , 0 1/2 , 1/2 ,0
(41) -X+l/2,-Z, Y+l/2 4 ' 0 ,0 , 0 1/2 ,0 , 1 /2
(42) X+l/2,-Z + l/2 ,-Y e 1/2,1/4,-1/4 0,1/4,1/4
(43) X ,Z ,Y m 0 ,0 , 0 0 ,0 ,0
(44) -X,Z+l/2,-Y+l/2 4 + 0 ,0 , 0 0 , 1/2 , 1 /2
(45) -Z+l/2,-Y,X+l/2 4 + 0 ,0 ,0 1/2 ,0 , 1 /2
(46) -Z, Y+l/2,-X+l/2 s -1/4,1/2,1/4 1/4,0,1/4
(47) Z+l/2,-Y+l/2,-X 4 ' 0 ,0 , 0 1/2 , 1/2 ,0
(48) Z ,Y ,X m 0 ,0 , 0 0 ,0 , 0



Table 2.2 (b ) ,  The symmetry operations in the spacegroup
Fd3m (No. 227) ;  origin at 3m.

No. Coordinate Triplets W
g V 1

( 1) X ,Y ,Z 1 0 ,0 , 0 0 ,0 ,6
( 2 ) -X+3/4,-Y+l/4, Z+l/2 2 0 ,0 , 1 /2 3/4,1/4,0
(3) -X+l/4, Y+l/2, -Z+3/4 2 0 , 1/2 , 0 1/4,0,3/4
(4) X+l/2,-Y+3/4,-Z+l/4 2 1/2 ,0 , 0 0,3/4,1/4
(5) Z ,X ,Y 3+ 0 , 0 ,0 0 ,0 ,0

( 6 ) Z+l/2, -X+3/4, -Y+l/4 3+ 0 , 0 ,0 1/2,3/4,1/4

(7) -Z+3/4, -X+l/4, Y+l/2 3+ 0 , 0 ,0 3/4,1/4,1/2

(8 ) -Z+l/4,X+l/2, -Y+3/4 3+ 0 , 0 ,0 1/4,1/2,3/4

(9) Y ,Z ,X 3" 0 , 0 ,0 0 ,0 ,0

( 10 ) -Y+l/4,Z+l/2, -X+3/4 3' -1/3,1/3,1/3 7/12,2/12,5/12

(ID Y+l/2,-Z+3/4, -X+l/4 3' 1/3,1/3,-1/3 2/12,5/12,7/12

( 12 ) -Y+3/4,-Z+l/4,X+l/2 3' 1/3,-1/3,1/3 5/12,7/12,2/12
(13) Y+3/4,X+l/4,-Z+l/2 2 1/2 , 1/2 ,0 1/4,-1/4,1/2
(14) -Y ,-X , -Z 2 0 ,0 , 0 0 ,0 ,0

(15) Y+l/4,-X+l/2,Z+3/4 4' 0,0,3/4 1/4,1/2,0

(16) -Y+l/2,X+3/4,Z+l/4 4* 0,0,1/4 1/2,3/4,0

(17) X+3/4,Z+l/4, -Y+l/2 4‘ 3/4,0,0 0,1/4,1/2
(18) -X+l/2,Z+3/4,Y + l/4 2 0 , 1/2 , 1/2 1/2,1/4,-1/4
(19) -X .-Z .-Y 2 0 , 0 ,0 0 , 0 ,0
( 20 ) X+l/4,-Z+l/2, Y+3/4 4* 1/4,0,0 0,1/2,3/4

( 21 ) Z+3/4, Y+l/4,-X+l/2 4* 0,1/4,0 3/4,0,1/2
( 22 ) Z+l/4,-Y+l/2, X+3/4 2 1/2 ,0 , 1 /2 -1/4,1/2,1/4
(23) -Z+l/2, Y+3/4, X + l/4 4' 0,3/4,0 1/2,0,1/4
(24) -Z, -Y , -X 2 0 ,0 ,0 0 ,0 ,0
(25) -X .-Y .-Z T 0 ,0 , 0 0 ,0 , 0
(26) X+l/4, Y+3/4,-Z+l/2 d 1/4,3/4,0 0 ,0 , 1 /2
(27) X+3/4,-Y+l/2,Z+l/4 d 3/4,0,1/4 0 , 1/2 ,0
(28) -X+l/2,Y+l/4,Z+3/4 d 0,1/4,3/4 1/2 ,0 , 0
(29) -Z ,-X ,-Y 3* 0 ,0 ,0 0 ,0 ,0
(30) -Z+l/2,X+l/4,Y+3/4 3* 0 ,0 , 0 1/2,1/4,3/4
(31) Z+l/4,X+3/4,-Y+l/2 3* 0 ,0 , 0 1/4,3/4,1/2
(32) Z+3/4,-X+l/2, Y+l/4 3+ 0 ,0 ,0 3/4,1/2,1/4

(33) -Y , -Z, -X 3" 0 ,0 ,0 0 ,0 ,0
(34) Y+3/4,-Z+l/2,X+l/4 3" 0 ,0 ,0 3/4,1/2,1/4
(35) -Y+l/2,Z+l/4,X+3/4 3‘ 0 ,0 , 0 1/2,1/4,3/4
(36) Y+l/4,Z+3/4,-X+l/2 3 ' 0 ,0 , 0 1/4,3/4,1/2
(37) -Y+l/4,-X+3/4,Z+l/2 g -1/4,1/4,1/2 1/2 , 1/2 ,0
(38) Y ,X ,Z m 0 ,0 , 0 0 ,0 ,0
(39) -Y+3/4,X+l/2,-Z+l/4 r 0 ,0 , 0 3/4,1/2,1/4
(40) Y+l/2, -X+l/4, -Z+3/4 4* 0 ,0 , 0 1/2,1/4,3/4
(41) -X+1/4.-Z+3/4,Y+l/2 4 ' 0 ,0 , 0 1/4,3/4,1/2
(42) X+l/2,-Z+l/4,-Y+3/4 g 1/2,-1/4,1/4 0 , 1/2 , 1 /2
(43) X .Z .Y m 0 ,0 , 0 0 ,0 ,0
(44) -X+3/4,Z+l/2,-Y+l/4 4* 0 ,0 , 0 3/4,1/2,1/4
(45) -Z+l/4,-Y+3/4, X+l/2 4+ 0 ,0 , 0 1/4,3/4,1/2
(46) -Z+3/4, Y+l/2,-X+l/4 g 1/4,1/2,-1/4 1/2 , 0 , 1 /2
(47) Z+l/2,-Y+l/4,-X+3/4 4" 0 ,0 , 0 1/2,1/4,3/4
(48) Z, Y ,X m 0 ,0 , 0 0 ,0 , 0



patterns characterised by I  = 3, S = 9 and I  = 27, and these are shown 

in F ig .2.3 (a ), (b ) ,  and (c ) ,  respectively. In F ig .2.3 (a) it can be seen 

that one in three lattice sites is coincident (half shaded), while in 

F ig .2.3 (b ) one in nine lattice sites is coincident, and in F ig .2 .3(c) one 

in twenty seven lattice sites is coincident. This corresponds to our 

earlier assignment of I  = 3, 9, 27 for these dichromatic patterns and it 

can be seen that I  represents the reciprocal density of coincident lattice 

sites in a dichromatic pattern.

The symmetry operations of the white lattice's spacegroup are desig

nated,

W (>.) = (WOO, w(>.)) (2.1a)

where WO) represents the rotation, reflection or inversion part, and 

w(X) the translation part. For example, the translation operation

W  0 )  =  (1» tOO )> where, I, represents the identity operation and, 

t(x), is a lattice translation vector. For ordinary or proper rotation

and reflection operations, WOO represents ordinary n-fold rotation 

operations, mirror operations, inversion operation, roto-inversion op

erations, and w(X) equals zero or any lattice translation. Similarly, the 

symmetry operations of the black lattice’s spacegroup are designated

w  GO = (W O), wGO) (2.1b)
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[ 2 2 u x/ [ 2 2

Fig. 2 .3 (a ). The projection along (1 TT] of the 1=3 dichromatic pattern 

formed by 2 F.C .C . lattices rotated about [1 IT] by an 

angle 0=60°. The size of the symbols represents 

th e .. . ABCABC... stacking along [1 TT].

(b ) .  The projection along [110] of the 1=9 dichromatic pattern 

formed by 2 F.C .C . lattices rotated about [H Q ] by an 

angle 0=38.94°. The size of the symbols represents 

th e ... ABAB ... stacking along [110].



Fig. 2 .3 (c ). The projection along [110] of the X=27 dichromatic pattern 

formed by 2 F .C .C . lattices rotated about [110] by an 

angle 0=31.59°. The size of the symbols represents 

the.. .A B A B ... stacking along [110].



The transformation relating a white and black lattice is represented

by

where W ([i) and w(n) have definition similar to those for the white lattice.

P  =  (P , p) (2.1c)

where, P  is the matrix representing the transformation of vectors in the

white to their counterparts in the black frame and, p, represents a rigid 

body shift of the black lattice with respect to the white (expressed in 

the white coordinate frame). The matrix representation of the trans

formation, P, (and its inverse P -* ) for the case of the 1 = 3 , 9 ,  and

27 dichromatic patterns are given in Table2.3. When p =  0, the ith 

black symmetry operation expressed in the white coordinate frame then

has the form PW (n )jP"l.

By inspection of the dichromatic patterns shown in F ig .2.3 (a ), (b ) ,  

and (c ) ,  one can recognise that each pattern exhibits two types of 

symmetry operation called coincident and antisymmetry operations and 

these are described in the next two sections.

2.3.1. CO INC ID ENT SY M M E T R Y  ELEM ENTS.

This type of symmetry, designated W (c), arises when black and white 

lattice symmetry operations coincide.
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T a b le  2 .3 . T h e  p u re  lin e a r  t ra n s fo rm a t io n  P and
_ X

its  in v e r se  P fo r  Z=3, 9, a n d  27.



Thus, for the given transformations, P, (Table 2.3) coincident sym

metry operations must satisfy the following equivalence expression:

W  (c) =  W  ( l )  =  P  W  (m)  P  _1 (2.2)

This expression shows that coincident translations arise when translation 

vectors with equal magnitudes are parallel in the black and white lattices, 

and coincident point symmetry operations arise when identical symmetry 

operations in the two lattices are both orientationally and translationally 

aligned. For example, in F ig .2.3(a ) ,  there are twelve coincident point 

symmetry elements, i.e , three diads along 1110) ,̂ [101|^ I O il )^, three 

mirrors perpendicular to [110]^, |101)^,) O il ]^, two triads along ( 111 ]^, two 

roto-inversion triads along | 111 ]^, centre of inversion at (000), and the 

identity. These twelve symmetry elements are tabulated in Table 2 .4 (a ). 

In F ig .2.3 (b ), there are four coincident symmetry elements, i .e . ,  the 

identity, a mirror perpendicular to [110)^, a centre of inversion at [000), 

and a diad along )110) .̂ These four coincident elements of symmetry are 

tabulated in Table 2 .4 (b ). Similarly, F ig .2.3 (c ) shows four coincident 

symmetry elements similar to those in F ig .2.3 (b ),  and tabulated in Table 

2 .4 (c ).

2.3.2. A N T ISYM M ETR Y  ELEMENTS.

This type of operation, designated W ', relates black features to white 

and vice versa. The vector transformation from white to black and from

black to white are given by P W ( x )  and W (\i) P~^, respectively, using 

the white coordinate frame, so antisymmetry operations arise in a 

dichromatic pattern when solutions to the following expression exist:
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Table 2.4(a). The coincident symmetry elements of the
dichromatic pattern of 1=3(1 -1 -1).



Table 2.4(b). The coincident symmetry elements in the
dichromatic pattern based on C.S.L. of
I = 9(-2 2 1).

Table 2.4(c). The coincident symmetry elements of the 
dichromatic pattern based on C.S.L. of 
Z = 27(5 -5 -2).

W(c) Matrix

1
0
0

0
-1
0

-1
0
0

0
1
0

0
1
0

-1
0
0

0
-1
0

1
0
0

0
0
1
0
0
1
0
0

-1
0
0

-1



W  =  PW(x) = W M P-1 (2.3)

For the dichromatic pattern shown in F ig .2.3 (a ), it can be seen that 

there are twelve point antisymmetry elements, i.e . four antidiads (parallel 

to [ ITT ]x, 12111̂ , [ 112 and (121 ) ,  four antimirrors (perpendicular to

[ i l l  |̂ , [211]^, [ 112 and l 121 1̂  ) ,  two antihexads and two anti-roto- 

inversion hexads (along! I l l  1̂  )»  Table 2 .5 (a ).

Also, in F ig .2.3 (b ), there are four antisymmetry elements, i .e . ,  two 

antidiads parallel to [ 114 and [221 and two antimirrors perpendicular 

to [ I l4  1̂ , and [ 221 1̂ , Table 2 .5 (b ).

Similarly, in F ig .2.3(c) there are four antisymmetry elements, i .e .,  

two antidiads parallel to I 115 1̂ , and | 552 and two antimirrors perpen

dicular to | I l5  1̂ , and ( 552 ]^, Table 2 .5 (c ).

The total symmetry (i .e . ,  coincident and antisymmetry elements) of 

the dichromatic patterns of X = 3, 9, and 27 are expressed by their 

spacegroups, and correspond to P6'/mfmmf, Imm'm’, and Amm'm', re 

spectively .

2.4. M A T H E M A T IC A L  ANALYSIS ; GENERAL PRINCIPLES.

A mathematical formulation of the criteria for conservation of coincident 

and antisymmetry operations, exhibited by dichromatic patterns, with 

variation of the relative displacement of the black and white lattices can 

be obtained and is described in this section.
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TABLE 2.5(a). The antisymmetry elements of the dichromatic
pattern based on C.S.L. of I = 3(1 -1 -1).



Table 2.5(b). The antisymmetry elements in the dichromatic
pattern based on C.S.L. of I=9(-2 2 1).

Table 2.5(c). The antisymmetry elements in the dichromatic 
pattern based on C.S.L. of 1=27(5 -5 -2).



(c ) ,  were created by a pure linear transformations, i.e . P  =  (P , p)

with p =  0, where the F.C.C. lattices used have symmorphic spacegroups

(i.e . w(X)g =  w(ji)g =  0 ) .  Now, by substitution into equations (2.2) 

and (2 .3 ), which describe the coincident and antisymmetry operations

respectively, taking the values of p =  0, and

w(X)g =  w(ji)g =  0, we obtain

Wj(X) = PW jM P-1 = W(c)

and

PW(5i) = W(n)P_1 = w

Now consider the relative displacement of the black lattice with respect

to the white one by shifts p#0. Now by substitution into equation (2.2) 

we obtain

In section 2.3 the three dichromatic patterns, Fig.2.3 (a), (b ) ,  and

(2.4)

(2.5)

(W (c ), w (c)) =  (P W (n )P '1, -PW O O P^p  +  p) (2.6)

Using equation (2.4) and equating the similar parts on both sides, the 

following expressions must be satisfied for coincident symmetry to be 

present,

W (c ) =  PW G O P '1 (2.7a)

and
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W (c)p  =  p (2.7b)

Similarly, by substitution into equation (2 .3 ), we obtain for the anti

operations

(p\v(x), p) =  (W (p )i* - ', - w w p - 'p ) (2.8)

Using equation (2.5) and equating the similar parts on both sides,

therefore,

PW (> .)=  \V(m)P _1 (2.9a)

and

W 'p  =  -p (2.9b)

Equations (2 .7b) and (2.9b) are the required criteria for conservation 

of coincident and antisymmetry operations, respectively. The former 

states that a coincident symmetry operation which leaves a shift vector

p invariant will be conserved by this shift. The latter states that an

antisymmetry operation which inverts a shift vector p will be conserved 

by this shift.

Some examples are given here to show the application of these two 

criteria for establishing the breaking and/or conservation of the sym

metry elements in a dichromatic pattern. 1

(1 ) Consider first the 1 = 9 dichromatic pattern, F ig .2.3 (b ).  It can

2.10



be seen by inspection that a shift p =  -i. [ 114 as depicted in 

F ig .2.3 (d ), destroys two coincident symmetry elements, i.e . the centre 

and the diad along [110]^, and conserves two, i.e . the identity and the 

mirror perpendicular to [1101 .̂ It is readily confirmed that the same 

result is obtained mathematically by using equation (2 .7b ). Also, this 

shift destroys two antisymmetry operations, i.e . the anti-mirror per

pendicular to [ 221 1̂ , and the anti-diad along [ 114 ]^, and conserves two, 

i.e . the anti-mirror perpendicular to [ 114 and the anti-diad along 

[221 ]^. Again this result is consistent with equation (2 .9b ).

(2) F ig .2.3(e) shows another example, similar to the one given above,

but with a different shift, p =  {  [ 221 |̂ , and one can observe the 

breaking of the antimirror perpendicular to [ 114 1̂ , the antidiad along 

[ 221 1̂ . and the conservation of the antimirror perpendicular to [ 221 [^ 

and the antidiad along | 114 [^,

2.4.1. EQ U IVALENT  D ISPLACEM ENT AND  W1GNER-SEITZ CELLS.

Whenever a dichromatic pattern with p =  0 has both translation 

symmetry and point symmetry higher than 1, there is a set of equivalent 

dichromatic patterns, obtained from the initial pattern by a set of 

equivalent displacements of the black lattice, which are related by the 

symmetry elements of the initial pattern. This set of displacements 

which reproduce the initial dichromatic pattern includes the three 

shortest independent vectors in the dichromatic pattern which join black 

sites to white ones and form a lattice called the d .s .c . lattice (Pond  

et al. 1979). F ig .2.4 (a ), ( b ) ,  and (c ) show three d .s .c . lattices
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15 2 l]^  l 2 2 11̂

Fig. 2.3. (d ) The projection along {110]  ̂ of the 1=9 dichromatic 

pattern, in F ig .2.3 (b ), but the black lattice is 

shifted by p = 1/18[ Tl4j 

(e ) The same as (d ) but p = 1/9 [ 521]



1/271 T 1 5]
\

Fig. 2.4. (a) The Wigner-Seitz cell of the d .s .c . lattice associated 

with 1=3 dichromatic pattern.

(b ) The same as (a) but for X=9 dichromatic pattern.

(c ) The same as (a) but for 1=27 dichromatic pattern.



associated with I  = 3, 9, and 27 dichromatic patterns.

Whereas displacements by d .s .c . vectors conserve all symmetry in a 

dichromatic pattern, displacement by other vectors can conserve some 

of the symmetry elements originally present, while breaking other, and 

in the next section we shall study the variation of symmetry ofZ  = 3,

9, and 27 dichromatic patterns with displacements p which fall within 

the Wigner-Seitz cells of the d .s .c . lattices associated with these 

dichromatic patterns.

2.4.2. THE VARIATION OF THE D ICH R O M ATIC  PATTERN  

SYM M ETR Y W ITH  RELATIVE D ISPLACEM ENT.

We have used equations (2.7b) and (2.9b) to study the variation of

I  = 3, 9, and 27 dichromatic patterns with some displacements p which 

fall within the Wigner-Seitz cells of the d .s .c . lattices of these 

dichromatic patterns. The results of this study have been tabulated in 

Tables 2 .6 (a ), 2 .6 (b ) and 2 .6 (c ), respectively. Table 2.6 (a) shows

that, for example, a shift p =  <0110 > ( the subscript M.B.

stands for Miller-Bravais hexagonal indexing system) breaks six of the 

12 coincident point symmetry elements (Table 2 .4 (a )),  e .g . two triads, 

two roto-inversion triads along [0001]^ B , a centre of inversion at

[0000]fyf.B.* a mirror parallel to [ 2110 Jjyj B , and six of the 12 antisym

metry elements (Table 2 .5 (a )),  e .g . two antidiads along 11100 Jjyj g  , and 

[ TOIO 1M  b .> two antihexads along [0001]M  B , and two anti-roto-inversion 

hexads along (0001Ijyi.B.. S°» this particular shift changes the

spacegroup from PB’/ni’mm’ to P2’mmf. A  shift p =  a[0001]jyj B , a < 

similarly, change P67m’mm’ to P6'm2\ and so on.

2.12



Table 2.6(a). The variation of PS’/m'rom' with a shift p.

No. p*, M.B. Spacegroup

(1) 1 0 0 0 0] P6'/m'iran'
(2) c( 0 0 0 ±1] P6 ',/m W

(3) c[ 0 0 0 ±1] P6’m2'
P 2 W(4) z<o i l  o>

(5) x<2l 1 0> P2'22’
(6) x<2l 1 0> ♦ c[0 0 0 t l j P2,'22,'

(7) z<0 l l  0> ♦ c[0 0 0 ±1} P 2 ,W

(8) z<0 l l  0> ♦ c[0 0 0 t i l Pm
(9) x<2l T 0> ♦ c[0 0 0 i l } P2
(10) x<2T T 0> ♦ y<T 21 0> P2'
(H ) x<2l 1 0> ♦ y<T 21 0> 

* c[0 0 0 ±1]

P2!1

(12) x<2l 1 0> ♦ y<l 21 0> 
♦ c[0 0 0 i l ]

PI

*  x<l/18, y<l/18, zSl/9, c<l/6.

Table 2 .6 (b ). The variations of Imm'm' with a shift p.

No. P Spacegroup

(1) 0,0,0 Imm'm'
(2) 1/8,0,0 1112'
(3) 0,1/8,0 112*1
(4 ) 0,0,1/2 12 7m'
(5) x ,x ,0 I12'2'
(6) x ,-x ,0

x=l/8
1mm'

(7) x ,-x ,0
x=l/2

Imm’

(8 )
x=l/36 ,2=1/9

Imm'm'

(9) X,-X,2
x=l/9 ,2=-l/18

Imm'm'

(10) x .y .z
x~2/9, y=5/18, and i=*l/18.

I22'2'

Table 2 .6 (c ). The variations of Amm'm' with a shift p.

No. P Spacegroup

(1) 0,0,0 AbiwV

(2) 1/2,0,0 A12’2’

(3) 0,-1/2,0 A12'2'

(4) 0,0,2
z il/ 1 0

A2’/m’

(5) 0,0,2
z=-l/8

A27m'

(6) x ,x ,0 A22'2'

(7) x ,-x ,0
x=l/4

Amm'

(8) x ,- x ,z
x=l/54 , z=5/54

Amm'm'

(9)
x=5/216, z=-1/108

Amm'm’

(10) x ,y ,z
x=59/216, y=49/216, 
and 2=-1/108

A2m'2'



2.5. D ICH R O M ATIC  COMPLEXES.

A dichromatic complex can be created either by placing white and 

black motif (e .g . in case of germanium each motif contains two atoms 

displaced from each other b y | | l l l ]  ) ,  at lattice points of the corre

sponding dichromatic pattern or by misorienting two crystals by a 

certain axis/angle. In the latter method, the crystals after rotation are 

labelled white and black. The i**1 white and the j**1 black crystal 

symmetry operations have expressions similar to these in equations

(2.1a) and (2 .1b ), respectively, except that w includes glide and/or 

screw translations. As in dichromatic pattern, the dichromatic complex 

exhibits coincident and antisymmetry operations. The former can be 

derived by substitution of equations (2.1a) and (2.1b) into equation 

(2 .2 ). One obtains, for the l4*1 coincident operation

(W j(c ), w j(c »  =  (W j(X), Wj(>,))

=  (P ; pXWjOi), w jtoX P, p ) '1 (2.10)

Two cases will be considered. First, consider a dichromatic complex

created by only a pure linear transformation P , i.e. p =  0, so equation 

(2.10) becomes after rearranging and equating similar parts on both 

sides

W |(c) =  W j(x ) =  P W jM P - l  (2.11a)

and
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Wl(c) = WiOO +  tk(X) 

= PWj(n) + tk(x) (2.11b)

Secondly, consider a dichromatic complex created by a linear trans

formation P , and a shift p of a black crystal with respect to the white,

i.e . p *0 . Rearranging equation (2.10), equating similar parts on both 

sides and using equation (2.11a) and (2.11b), we obtain

Equation (2.11c) is the criterion for the conservation of the coincident 

symmetry operation, which states that the coincident symmetry opera

tion which leaves a shift vector p invariant will be conserved by this 

vector.

Similarly, by substitution of equations (2.1a) and (2.1b) into 

equation (2 .3 ), one obtains for the antisymmetry operation

Rearranging and equating similar parts on both sides, we obtain

W|(c)p = WjOOp = p (2.11c)

(W ', w ') = (P, pXWjOi), Wj(x))

= (Wj(n), Wj(n))(P, p r1 (2 .12)

W ' =  PW i(x ) =  W j W 1 (2.13a)

and

w '=  Pwj(X) +  p =  wj(n) - WjOi)P_1p (2.13b)
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For p =  0, we obtain

w ' =  Pwj(X) =  WjOl) (2.14a)
For p^O, we obtain

W 'p =  -p (2.14b)

Equations (2.14a) and (2.14b) are the criteria for the conservation 

of the antisymmetry operation of a dichromatic complex.

The dichromatic complexes which are characterised by I  = 3, 9, and 

27 have been created by using the methods mentioned at the beginning 

of this section. The projection of the I  = 3 dichromatic complex along 

[0001 Jjyi g  is found identical to the dichromatic pattern shown in 

F ig .2 .3 (a ), and therefore, it has a spacegroup similar to the pattern, 

i.e . P6'/m'mm*. The Z = 9 and 27 complexes are shown in F ig .2.5(a) 

and 2 .5 (b ), respectively. The symmetry operations and hence the 

spacegroups of these complexes have been derived as Imm’a ', and 

Amm’a’ , respectively using equations (2.10) and (2.12). These symme

try operations are tabulated in Tables 2.7(a) and 2 .7 (b ), respectively. 

From these Tables one . can notice that the spacegroups Imm'a’ and 

Amm’a’ contain mirror glide planes, therefore they are non-symmorphic. 

Also, the spacegroups Imm'a’ and Amra'a' are isomorphic to the 

spacegroups Imm'm' and Amm’m’ of Z = 9 and 27 dichromatic patterns.

2.5.1. THE VARIATION OF THE D ICH R O M ATIC  C O M PLEX  

SYM M ETR Y W ITH  RELATIVE D ISPLACEM ENT.

Equations (2.11c) and (2.14b) have been used to study the
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Fig. 2.5. (a ) The projection along [110]x of the 

1=9 dichromatic complex.

(b ) The same as (a ) but for 1=27 dichromatic complex. 

The size of the symbols represents the...ABAB . 

stacking along [110]x#



Table 2.7(a). The elements of the spacegroup Imm'a' of
the dichromatic complex of E=9(-2 2 1).

( A ) Coincident Symmetry

No. (W^c), wx(c)) W(c) ^ Matrix

(1) (1, [000])
1 0 0 10 1 °  1
0 0 1 J

(2) (2[110], 3/4[110])
0 1 0 11 0 °  1
0 0 -1 J

(3) (I[000], [000])
-1 0 0 1

! 0 -1 °  1
0 0 -1 J

(4) (m[110], 1/4[110])
- 0 -1 0 1-1 0 0 1
- 0 0 1 J

(B) Antisymmetry

No. ( W ,  w 1) W' Matrix

(5) (2‘ [-1 1 -4], 1/4[110])
r - 8 -1 4

1/9 -1 - 8 -4
L 4 -4 7 J

(6) (2'[-2 2 1], [000])
r _1 - 8 -4

1/9 - 8 -1 4
L -4 4 -7 J

(7) 1 -4], 3/4[110])

r 8 1 -4
1/9 1 8 4

L -4 4 -7 J

( 8 ) (m'[-2 2 1], [000])
r 1 8 4 H

1/9 8 1 -4
L 4 -4 7 ^



Table 2.7(b). The elements of the spacegroup Amm'a' of
the dichromatic complex of 1=27(5 -5 -2).

(A) Coincident Symmetry 

No. (W^c), wx(c))

(1) (1, [000])

(2) (2[110], 3/4(110])

(3) (1(000], [000])

(4) (m[110], 1/4(110])

W(c)x Matrix

(B) Antisymmetry 

No. (W', w')

(5) (21[-1 1 -5 ], 1/4(110])

(6) (2*[5 -5 -2 ], [000])

(7) (m '[-l 1 -5], 3/4(110])

W' Matrix

r -25 -2 10
1/27 -2 -25 -1 0

L 10 -1 0 23

I- -2 -25 -10
1/27 -25 -2 10

1L -io 10 -23

1r 25 2 -10
1/27 2 25 101L -io 10 -23

r 2 25 10
1/27 25 2 -10

L• 10 -10 23

]

]

]

]
(8) (m'[5 -5 -2 ], [000])



shift vectors p and the results of this study tabulated in Tables 2.8(a) 

and 2 .8 (b ), respectively.

2.6. B ICRYSTAL SYM M ETRY.

A bicrystal can be created from a dichromatic complex by following 

two steps; first, choose the orientation and location of the interfacial 

plane. Second, discard white crystal atoms on one side and black atoms 

on the other. F ig .2 .6 .(a ) ,  (b ) ,  and (c ) shows three bicrystals created 

from £ = 3, 9, and 27 dichromatic complexes (section 2 .5 .), by following

this method. These bicrystals are called unrelaxed where p =  0 while

the relaxed bicrystals, i.e . p *0 , will be considered in the next section. 

A bicrystal exhibits coincident symmetry and antisymmetry, and a 

bicrystal spacegroup can be assigned.

variation of the 1  = 9 and 27 dichromatic complexes symmetry with some

A coincident symmetry operator, W ( c ) ,  has the property that it

leaves a vector, n, normal to the chosen interfacial plane ,and pointing 

into the white crystal, invariant. This property can be expressed 

mathematically as follows

W(c) n = n (2.15a)

While an antisymmetry operator, W', has the property that it inverts 

the vector n, and this property expressed mathematically as follows
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Table 2.8(a). The variation of Imm'a’ with p.

*
No. P Spacegroup

(1) [0 0 0] Imm'a'
(2) i [  T i  4 ] x Imm'n'

(3) a [ T 1 4 ]x Imm'l

(4) H  2 2 i ] x Ima'a'

(5) P[ 2 2 l ] x Imla'

(6) o[ T l 4 ] x + 3[ 5 2  l ] x Imll

(7) ¿[1 1 0 ]x Iam'a'

(8) y [ i  i  o ] x Ilm'a'

(9) a[ T 14]x + P[ 2 2 1 ]X + ¿[110]x Ia ll

(10) a [ T 14]x ♦ p[ 2 2 1 ]X ♦ y fllO ]x m i

*  0<a<i, 0<P<i, and 0<Y<i

T a b le 2 . 8 ( b ) .  T h e  va r ia t io n  o f  Am m'a ' with  p.

No. #
P Spacegroup

(1) [0 0 0] Amm'a'
(2) i [  T l  5 ]x Ama'a'

(3) o[ T 1 5 ]x Amla'

(4) ¿ [ 5  5 2 ] x Amm'n'

(5) P[5 5 2 ]x Amm'l

(6) o[ T 1 5 ] x + p[5 5 2 ]x Amll

(7) ¿[1 1 0 ]x Aam'a'

(8) Y[1 1 0 ]x Alm'a'

(9) « [  T 15]x + P[5 5 2 ]x + i [110]x A a ll

(10) o[ T 15]x + P[5 5 2 ]x + i [ l l 0 ] x A l l l

# 0<a<i, 0<&<i, and 0<Y<i



W  n =  -n (2.15b)

A bicrystal symmetry operation can be determined by carrying out

on n the symmetry operations of the corresponding dichromatic complex 

and making use of equations (2.15a) and (2.15b). For example, in 

F ig .2.6(a) the interfacial plane is chosen as (112)^ and its normal is

l l l2 ]^ ,  by carrying out on n the operations of Z = 3 dichromatic complex 

we found that only two coincident symmetry operations satisfy equation 

(2.15a) and two antioperations satisfy equation (2.15b). These oper

ations are an identity, a mirror perpendicular to [llO ^ , an anti-diad 

parallel to | 111 and an anti-mirror perpendicular to [ 112 These 

operations form the spacegroup p2,mm\ Similarly, the spacegroups of 

Z = 9 and 27 bicrystals, F ig .2.6 (b ) and (c ) ,  have been derived and 

they are similar to Z = 3 bicrystal, and Tables 2.9(a) and (b )  show 

in detail their elements of symmetry.

2.7. RELAXED BICRYSTALS.

The bicrystals presented in the previous section are ideal and 

holosymmetric. The structure of the real bicrystals, which have 

thermodynamically favourable configurations, are related to the ideal 

structures by one or a combination of the following relaxation modes 

(Pond et al. 1983):

(i ) rigid body translation,

(ii) migration of the interface plane,

(iii) local atomic relaxation, and

(iv ) insertion or removal of additional material at the interface.
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Fig. 2.6. (a ) The projection along [110]  ̂ of the I=3( 112)^ unrelaxed 

germanium bicrystal.

(b ) The same as (a ) but for 1=9(2 21)^ unrelaxed

germanium bicrystal.

(c ) The same as (a ) but for Z=27( 552)^ unrelaxed

germanium bicrystal.



Table 2.9(a). The derivation of Ge bicrystal spacegroup
of I=9( 2 2 1), n=[ 2 2 1]

No. Imm'm1 Bicrystal symmetry

(A ) Coincident Symmetry Wj(c)n=n

(1) 1[0001 1[000]

(2) 2[110]

(3) 1[000]

(4) m [U0] m [U0]

(B ) Antisymmetry W' n=-n

(5) 2'[ T 1 4] 2’ [ T 1 4]

(6) 2' [ 2 2 1]

(7) m'[ T 1 4]

(8) m'[ 2 2 1] m'{ 2 2 1]

Table 2.9(b). The derivation of Ge bicrystal spacegroup 
of 1=27(5 5 2 ) ,  n=[5 5 2]

No. Amm'm' Bicrystal symmetry

(A ) Coincident Symmetry Wj(c)n=n

(1) 1[000] 1[000]

(2) 2(110]

(3) T [ o o o ]

(4) m[110] m[110]

(B ) Antisymmetry W n=-n

(5) 2 '[ T 1 5] 2' [ 1 1 5]

(6) 2'[5 5 2]

(7) m'[ 1 1 5]

(8) m '[5 5 2] m'[5 5 2]



We consider here the first mode of relaxation in more detail. The 

conservation and/or breaking of coincident and antisymmetry operations

with a shift p is expressed mathematically by the equations derived 

earlier (equation (2.11c) and (2 .14b )), which are rewritten here for 

convenience

(2.16a) 

(2.16b)

The overall rigid body translation p at actual grain boundaries com

prises two distinct components. One component corresponds to a physical 

displacement of one crystal, say the black crystal, in a direction per

pendicular to the boundary plane. The other component corresponds 

to a displacement parallel to the boundary plane. In this study we 

consider only the relative displacements which are parallel to the 

boundary plane and fall within the in-plane Wigner-Seitz cells (Pond  

1977), which are planar and parallel to the bicrystal chosen interfaces. 

F ig .2 .7 (a ) , (b ) ,  and (c ) show the in-plane Wigner-Seitz cells for the I  

= 3( 112 )^ , 9(221)^ and 27( 552 )^ bicrystals. The holosymmetric 

structures which have the spacegroups p2’mm', are represented by the 

points O, in these cells. Other structures are designated A , B, and 

C. For example, the in-plane Wigner-Seitz cell of I  = 3 bicrystal

(F ig .2 .7 (a )) consists of the two vectors l 111 and -~-|I 10]^. The
«  *

reference structure which is represented by O, has the holosymmetric 

spacegroup p2’mmf. Other structures can be obtained by considering 

certain in-plane displacements relative to the reference structure. Table 

2.10(a) shows that an in-plane displacement equals, for example,

W (c)p =  p

and

W 'p =  -p
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Fig. 2.7. (a) The vector digram for the in-plane Wigner-Seitz cell for 

1=3( Tl2>^ boundary.

(b ) The same as (a) but for 5>9(2 21)^

unrelaxed germanium bicrystal.

(c ) The same as (a ) but for ï=27( 552)^

unrelaxed germanium bicrystal.



Table 2.10(a). The variation of the spacegroup of
I=3( T 1 2 )x bicrystal with p.

No.
*

P Spacegroup

( 1 ) [0 0 0] p2'mm'
(2) Ì [ 1 T T ] X p2'lma'

(3) « H T  T ]x pim i

(4) i n  i  o jx p2'mb'

(5) » 1  i  o ] x p 2 'll

(G) i [ l  T T ]x ♦ i [ l  1 0 ]x p2',mn'

(7) «[1  T T ] x ♦ M l 1 0 ]x P i

Table 2.10(b). The variation of the spacegroup of 
X=9( 2 2 l ) x bicrystal with p.

No. P Spacegroup

(1) [0 0 0] p2'mm'
(2) i [ T l 4 l x p2'1ma'

(3) « [  T 1 4 lx pim i

(4) i [ l  1 0 ]x p2'mb'

(5) M l 1 0 ]x p 2 'll

(G) i l  T 1 4 ]x ♦ i [ l  l  0 )x p2 'lmn'

(7) « [  T l  4 ]x ♦ P [l i  0 ]x P i

Table 2.10(c). The variation of the spacegroup of 
2=27(5 5 2)x bicrystal with p.

No.
*

P Spacegroup

( 1 ) [0 0 0] p2'mm'
(2) i l  T 1  5 ] x p2'1ma'

(3) « 1  T l  5 ] x pim i

(4) i l l  1 0 ] x p2'mb'

(5) M i 1 0 ]x p 2 'll

(G) i l  T l  5 ] x * i [ l  l  0 ]x p2' imn'

(7) « [  T 1 5 ] x ♦ M l  1  0 ] x P i

* 0<u<i, 0<B<i.



°l 111 h  is corresponding to the structure which has the spacegroup 

p2J’ma’ when a =  —  or plm l w h en O <a<  . Similarly, in-plane dis

placement equals, p[110]^, andp -  -|-or, 0 < p <  —■ is corresponding to the 

structures which have the spacegroups p2*mb’ or p2’l l ,  respectively. 

The combinations of the above two in-plane displacements will result 

in structures which have spacegroups p2l'mn’ or p i,  (see Table 

2 .10 (a )). The possible in-plane displacements and the corresponding 

structure's spacegroups are tabulated in Tables 2.10(b) and (c ) for 

1 = 9 and 27 bicrystals, respectively.
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3.1. SPECIMEN PREPARATION.

The two pieces of germanium material used in this study have been 

obtained from J.J.Bacmann (Department de M etallurgie! SRM, 

CEN-Grenoble, France). One piece has a cylindrical external shape 

with circular cross-section of diameter approximately 2.7 cm (F ig .5 .1(a) 

in chapter 5 ). The other one has also cylindrical shape but with el

liptical cross-section with major axis diameter about 2.7 cm (F ig .5 .1(b) 

in chapter 5 ).

Two types of electron microscopy specimens have been prepared. 

"edge-on” specimens where the grain boundary plane is located per

pendicular to the specimen surface, and "plan-view" specimens which 

have the boundary parallel to the specimen surfaces. The detailed 

method of preparation of these two types of specimens will be given in 

the next two sections, respectively. The method can be summarised 

here by the following four stages and shown schematically in F ig .(3 .1 ):

stage one : slicing Ge bulk material,

stage two : chemical polishing of the slices to reveal the grain 

boundary,

stage three: cutting the slices into 3mm. discs,

stage four : mechanical, chemical and ion-beam thinning of the 

discs.
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stage one

0.5 mm
*

stage two

stage three

3mm

■HOK

stage four 150 microns

0.1 micron

Fig. 3.1. Specimen preparation stages:
stage one: slicing Ge bulk material.
stage two: chemical polishing.
stage three: drilling the slice into 3mm discs.
stage four: mechanical and ion-beam thinning

of the 3mm discs.



3.1.1. "EDGE-ON" SPECIMENS.

The preliminary step in the very long and difficult procedure for the 

preparation of germanium specimens for electron microscopy was cutting 

the germanium into slices. Difficulty arose from the fact that germanium 

is fragile and easy to break into small fragments under a slight stress. 

Because of the fragility of Ge material a diamond saw was used to slice 

the Ge material into 0.5 mm thick slices. The slices were manually 

polished by very fine emery papers to remove the effect of cutting on 

both sides of each slice. Then the slices were ready for the second 

stage, chemical polishing to reveal their grain boundaries. The polishing 

solution consisted of 20gm ferric chloride, 50ml distilled water and 50ml 

hydrochloric acid. The slices were immersed in the solution after 

bringing its temperature to boiling. After four minutes the slices are 

removed and washed thoroughly with acetone. This stage is very im

portant because without being able to see the grain boundaries with the 

naked eye the next stage is impossible. The third stage was cutting 

or drilling the slices into 3mm diameter discs using an ultrasonic drill. 

Each disc contained the grain boundary (which had been revealed in the 

previous stage) edge-on and approximately situated at the middle of the 

disc. The fourth and the final stage is the thinning of the discs, and 

this consisted of three consecutive sub-stages. The first sub-stage was 

thinning using a mechanical dimpling machine. At the end of this sub- 

stage each disc was ground from 0.5mm down to 150 microns in thick

ness. The second sub-stage was chemical thinning which a mixture of 

10% HF acid and 90% nitric acid was used in a chemical etching jet ap

paratus (F ig .3.2). The disc circumferences were protected against

chemical solution attack by painting them with Lacomit varnish before
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Fig. 3.2. The essential components of a jet chemical thinning apparatus. S- 
specimen, G-transparent glass slice to protect the observer’s eyes 
and the specimen S is fixed on the other side away from the observer, 
L-light source, J-lmm diameter jet orifice, E-chemical etching solution 
(10% HF + 90% H2N 0 3) and W-the observer eye.



the thinning process. The jet nozzle was directed towards each disc and 

the chemical thinning process continued until a very small hole appeared 

as indicated by a light source located behind the specimen. Once the 

hole appeared the process needed to be stopped at once and the specimen 

washed first using plenty of distilled water to stop the etching process, 

then by acetone, and finally soaked in methanol for 24 hours. The final 

sub-stage of preparing the specimen is the ion beam thinning. In this 

stage Argon ions are accelerated by 8 KV in an ion miller machine to 

bombard the specimens and the beam inclination angle with respect to 

the specimen surface was 20 degrees. In each bombardment Ge material 

is removed layer by layer to reach the thickness approximately 0.1 

micron. Then the specimens were ready for the electron microscope in

vestigations.

3.1.2. "P LA N -V IE W " SPECIMENS.

The method of preparing the ’’plan-View" specimens is slightly dif

ferent to that used for the case of "edge-on" ones. The main difference 

lies in the slicing step. While for the "edge-on" specimens the slicing 

step was straight forward, because already the boundaries were ori

ented edge-on, we found the slicing process in the case of "plan-view" 

specimens to be rather difficult. To overcome this difficulty the fol

lowing preparation method was developed to suit this case. First, the 

Ge bulk materials were immersed in the polishing solution to reveal the 

grain boundaries on the top and bottom of the material as well as on 

the cylindrical surface then, the traces of the grain boundaries were 

marked by a sharp cutter. Secondly, the material was cut at a fixed 

distance on both sides of the marked traces, approximately 0.5 mm,
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so the boundary plane was parallel to the slice surface. The next 

procedures were typically the same as those for the "edge-on" case; 

drilling the slices into 3mm discs and thinning the discs mechanically, 

chemically and finally ion beam thinning.

3.2. TRANSM ISSION ELECTRON M IC R O SC O PY  (TE M )

TECHNIQUES.

The three well-known techniques for obtaining diffraction patterns 

in electron microscopy are selected-area diffraction, SAD (Hirsch et 

ah 1965), convergent beam electron diffraction, CBED (Steeds 1979), 

and Tanaka or large-angle convergent beam electron diffraction, 

LACBED (Tanaka et ah 1980), techniques. In the first technique, the 

electron beam incident on the specimen is broad and nearly parallel. 

It is focused below the specimen onto a distant viewing screen using 

the post-specimen lenses. In the second and third techniques the in

cident electron beam is focused on the specimen. The convergent angle 

of the incident beam in the case of CBED is less than the Bragg angle 

while in the case of LACBED it is equal to a Bragg angle. More details 

about these techniques will be given in the next three sections.

3.2.1. SELECTED AREA DIFFRACTION.

In this mode of operation a small area of a specimen can be selected 

for diffraction studies. F ig .3.3 shows a ray diagram of the formation 

of a SAD pattern in an electron microscope having two condenser 

lenses, one objective lens, and two projector lenses. The electron beam 

leaving the condenser lens is almost parallel and scattered by the
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Electron Source

D

E

H

First Condenser Lens (C l)

Second Condenser Liens (C2) 

C2 Aperture

Incident Beam

Specimen 

Scattered Beam
Objective Lens

Back Focal Plane

Selected Area Aperture

First Projector Lens

Second Projector Lens

Viewing Screen

Fig. 3.3. A ray diagram showing the selected area diffraction 
mode in an electron microscope having 5 lenses.



specimen ’C’ . The objective lens fD' focused the incident and scattered 

beams (indicated by single and double arrows, respectively) in its back 

focal plane ’Ef to form the diffraction pattern. The area from which the 

diffraction pattern is taken could be selected by placing a selected area 

aperture in the image plane ’F’ of the objective lens. The function of 

the two projector lenses ’G’ and ’H’ which follow the objective lens is 

to transfer the SAD pattern formed by the objective lens on to the 

viewing screen ’I' at a high magnification.

As the electron beam passes through a selected area of a single 

crystal or bicrystal specimen (area selected by a selected area aperture 

’F ') in the microscope, some of the electrons are scattered from the 

main beam, in various directions and at various angles. Electrons

scattered in phase from successive parallel planes lying at particular 

orientations, will combine constructively and peaks of intensity will 

occur in the form of regularly spaced diffraction spots. These intense

spots obey Bragg law; X — ^d^kisinGg, where 0 g  is the angle between 

the incident electron beam and the plane of reflecting atoms and is

called Bragg’s angle, d y ^  is the spacing between the set of lattice 

planes and X is the incident electron beam wavelength. While the 

electrons scattered from lattice planes lying at all other orientations 

will be out of phase and interact destructively, and no diffraction 

maxima will appear in the diffraction pattern from these scattered 

electrons. Fig. 3 .4(a) is a SAD pattern obtained from Ge using a 120kv 

electron beam oriented along a <111> direction. The six spots closest 

to the origin (the most intense spot) of the pattern are 220 type as 

shown indexed in Fig. 3 .4 (b )

The understanding and interpretation of SAD patterns can be easily

3.6



20 2471
f 0004?;

Fig. 3 4. (a) The [111] selected area diffraction pattern
from germanium single crystal specimen with 120 Kv 
electron beam. It is taken at low camera length to 
show both the zero and first order laue reflections, 

(b) A plan-view section showing the zero and first order 
laue reflection zones.



achieved by making use of the concept of the reciprocal lattice (R L ), 

Ewald reflection sphere (ERS), Laue zones and structure factor.

First, the RL is related to the direct lattice, and is constructed by  

drawing a normal to each set of planes in the direct space lattice and 

marking off points along these normals at distances 1/d from the origin, 

where d is the interplanar spacing for each set of planes. A set of basis

■(»
vectors, ej, in direct space and their reciprocal vectors, e j, in recip

rocal space are related to each other by the vector dot product:

where

8jj = 0 if

and

8jj =  1 if i =  j (3.1)

For example the F .C .C . lattice shown in F ig .2 .1(a) chapter two (its unit 

cell in direct space has the lattice points 000; i - i - o )  its RL 

has lattice points at 000; 200; 020; 002; 111, i .e . ,  a body centred cubic 

lattice. F ig .3.5 shows the RL corresponding to the F .C .C . lattice in 

F ig .2 .1 (a ).

Secondly, the Ewald reflection sphere (ERS) can be constructed as 

shown in F ig .3.6, by drawing a sphere of radius OC = 1/k, where k is 

the wavelength of the electron beam. The radius OC of the ERS is drawn 

from the origin 'O' of the RL in F ig .3.6 to a point 'C ' which represents 

the centre of ERS. The radius of ERS, «  30Â at 120 KV, is so large 

compared with the lattice spacing that the ERS can be approximated to
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Fig. 3.5. The reciprocal lattice for a F . C . C . lattice.

C
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a plane.

Whenever the ERS intersects a RL point, the Bragg equation will be 

satisfied, and diffraction will occur, and hence a spot will appear in a 

SAD pattern. The ERS in F ig .3.6 intersects, for example, the points O 

and P, so strong reflections will be produced, where the vectors CO 

and CP represent the incident and scattered beam directions, and an

angle equal twice the Bragg angle, ©g, is enclosed between them. Since 

the angle © g  is small and from the geometry oi the triangle OCP one 

can write

2©g =  (l/d)/(l/>.) or X =  2©gd =  2dsin©g 

i .e . ,  the Bragg equation is satisfied.

Thirdly, the Laue zone construction is very useful for indexing of 

SAD patterns. Because of the slight curvature of the ERS it intersects 

successive RL planes (F ig .3.6) so that reflection from these higher order 

RL planes as well as from the zero order RL plane will contribute to the 

corresponding SAD pattern. These spots will lie within circular bands 

called Laue zones. The <111> SAD pattern in F ig .3 .4(a) contains re

flection spots from zero and first order Laue zones.

Finally, the structure factor (H irsch et al. 1965), may be expressed 

more rigorously in terms of the atomic scattering factor and a path 

difference argument applied to scattering by each atom within a unit cell. 

For example, the wave scattered by the ith atom is

f\ exp(2rtigj . q )

where fj is the i**1 atom scattering amplitude and the exponential argu

ment corresponds to the phase difference between the wave scattered
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by the ith atom which has the fractional coordinates rj =  (uj, vj, w j) and

that scattered by an atom at the origin for the g =  hkl, reflection. If 

a unit cell contains n atoms, then the resultant wave scattered by all

the n atoms for the hkl reflection, is designated F ^ y  and called the 

structure factor, equals

Fhkl =  zi h exP(2n'gi • ri> (3-2)

where the summation extends over all the n atoms of the unit cell.

The atomic scattering amplitude for germanium, fj =  f ( j e, is plotted in

F ig .3.7 as a function of sin0/X(= l/2d). The values of f £ e are taken 

from Hirsch et al. (1965) and multiplied by a correction factor

M  — m /m where m is the mass of electron accelerated by 120kv
1 120' 0 120

and mQ is the rest mass of the electron.

The intensity of a diffracted beam, I, is proportional to the magnitude 

of the product of the structure factor, F, and its complex conjugate,

"is
F , and can be written as follows

I o c  F.F* (3.3)

The equation of the structure factor (Eq. 3.2) can be used to predict 

whether a reflection spot is allowed or forbidden in a RL and also to 

calculate the relative intensities of the RL points. Violation of the 

structure factor equation can occur as a result of double diffraction
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Fig. 3.7. The mean atomic scattering amplitude for germanium.



(Tu et al. 1978). For example, the structure factor for germanium 

crystal shown in F ig .2.2(a) may be calculated using equation (3.2) as 

follows. This crystal contains 8 atoms of the same kind, located at 000;

y i 05i ° b ° T T ' i i i !TT '4-sT '4 4 i andT T ^  • substitution of these 

atom positions in equation (3.2) and factorize the lattice and basis terms,

we obtain

Fhki = fee l 1 + enî h + + eni(h + ^ + eni(k + 1) j

[1 +  eni(h +  k +  !>/2 ] (3.4)

The first bracket on the right of the equality sign contains four terms 

corresponding to the four lattice sites in the Ge cell. The second bracket 

contains two terms corresponding to the two basis atoms. The atoms at 

the four lattice sites all scatter either in phase (constructive interfer

ence) or out of phase leading to F ^ ]  =  0 (destructive interference). 

The latter occurs if h, k, I are mixed (odd and even). The basis atoms 

scatter either partially in phase if h, k, I are all odd or out of phase if

h, k, 1 are all even and (h +  k +  1) =  4(n +  ■—), n is integer. These 

conditions after recombined together can be summarised as follows:

(1) /F/2 =  0 if h, k, 1 mixed (odd and even) 3.5(a)

(2) /F/2 =  64f(je2 if h, k, 1 even and (h +  k +  1) =  4n, n is 

integer 3.5(b)

(3) /F/2 =  32fGe2 if h, k, 1 odd 3.5(c)
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(4) /F/2 =  0 if h, k, 1 even and (h +  k +  1) =  4(n +  ‘/ i), n is 

integer 3.5(d)

For example, F ig .3.4(a) shows the reflections of the type 220. According 

to the structure factor equation (3.4) and condition 3 .5 (b ), these re 

flections are kinematically allowed. While reflections of the type 123 are

not allowed kinematically because h, k, 1 are mixed (condition 3 .5 (a )),  

and consequently, they are absent in the diffraction pattern. F ig .3.8 

shows a (110] SAD pattern is taken from a germanium single crystal. The 

reflection spots of the type 002, which are kinematically not allowed 

(condition 3 .5 (d )), can be observed with high intensity. This type of 

reflection violates the kinematical theory of electron diffraction and they 

can be interpreted by using the dynamical theory of electron diffraction 

(H irsch et al. 1965) as a result of double diffraction (Tu et al. 1978) 

such as 111 followed by 111 , both of which are close to the ERS and 

also appear in the pattern. This anomaly in the kinematical electron 

diffraction theory arises because in this theory it was assumed that the 

wave incident on each atom is simply the primary wave falling on the 

crystal, and therefore that the total amplitude of the diffracted wave 

is proportional to the number of atoms in the crystal. This is not quite 

correct, for it is clear that the amplitude of the original wave will be 

diminished as it passes successive reflecting planes of atoms, because 

of the loss of electrons into the reflected wave. Also, the above men

tioned double diffraction effect predicates that the diffracted beams act 

as new sources inside the specimen so that further diffraction can occur 

by the crystal.

The range of applicability of the kinematical electron diffraction theory
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depends on the thickness, t, of the electron microscopy specimens. Thus 

specimens have to be very thin for this theory to be valid. All the SAD, 

CBED and LACBED patterns have been taken from the thinnest areas 

of Ge specimens prepared during this study. The thickness of these 

thin areas was within the values at which the kinematical theory is valid, 

so, this theory is sufficient to be used to interpret all the diffraction 

patterns presented here.

Thicker specimens need the dynamical diffraction theory which will 

take account of the repeated scattering and of the dynamical interaction 

of the incident and scattered electron beams with the material of the 

specimens. This theory has been explained at length by many authors, 

for example Hirsch et al. (1965)

The structure of interfaces in "edge-on” and "plan-view" grain 

boundaries has been studied considerably in the last decade using SAD 

technique. It is found that the interface in ’edge-on* specimens gives 

rise to an array of relrods along a direction parallel to both the specimen 

surface and the interface. These relrods are elongated normal to the 

interface (Carter et al. 1980). The ERS can cut the relrods along their 

length and thus one can observe them in a SAD pattern as an array of 

streaks running normal to the boundary plane.

Also, the interface in the "plan-view” grain boundary gives rise to 

extra reflection spots (which result from the periodic structure of the 

boundary), besides the reflections from both grains (one and two). 

So, the SAD patterns taken from these specimens contain reflections from 

grains one and two and the grain boundary region. They also contain 

many spots due to double diffraction. It is therefore necessary to sort
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out those reflections which result from double diffraction from those 

which are singly diffracted. One can differentiate between grain 

boundary reflections and double diffraction by making use of the double

diffraction cell. Such a cell consists of the shortest two vectors, say

V  and V 2, of the RL in consideration. The vector, V  (  =  V 2 or V 2), can

be represented in terms of the reciprocal vectors g and h, as follows V

=  (g - h) where g and h are any two reciprocal vectors connected to the 

origin of the RL with two spots in the zero or higher order laue zones 

for which the curvature of the ERS could be significant. In case of 

bicrystals the contribution to the double diffraction spots intensity is 

arising from multiple diffraction via spots, in the zero or higher order 

laue zones in one or both grains which constitute the bicrystal, that 

intersected or nearly intersected the ERS.

The SAD technique is useful in the determination of the orientation 

relationships between the grains in a specimen and the determination of 

the crystal class but it is unable to determine the point group or 

spacegroup of a crystal. We shall turn in the next section to consider 

another technique which will enable us to do so, and this technique is 

the CBED technique.

3.2.2. CONVERGENT BEAM  ELECTRON DIFFRACTION.

The CBED is one of the most powerful techniques for investigations 

and determinations of crystal structure. Recently, the power of this 

technique has been appreciated in a wide variety of applications, such
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as the determination of crystal point groups and spacegroups

Using the SAD technique (section 3.2.1) a rather large area of the 

specimen contributes to the pattern because the specimen is illuminated 

with a parallel beam of electrons. On the other hand, using CBED, the 

electron beam is focused onto the specimen so that a small area of the 

specimen contributes to the pattern.

One can obtain a CBED pattern in a TEM by following this procedure 

(Spence et al. 1986):

(1 ) forming an image of the specimen,

(2 ) increase the strength of the first condenser lens C l 

(F ig .3.3) to its maximum excitation while altering the sec

ond condenser lens C2 to produce a focused spot. This 

simply means that the illuminated area on the screen is 

minimised using the C2 fine control,

(3 ) the CBED pattern is observed by switching to diffraction 

mode.

F ig .3.9 shows a ray diagram depicting the formation of CBED patterns 

in the back focal plane. F ig .3.10 shows a (1111 CBED pattern is taken 

from a germanium specimen following the above procedure. The central 

disc is 000 type, and the six next discs which are surrounding the zero 

one are of the type 220 and all are in the zero order Laue zone. Two 

types of information are available in the CBED patterns (e .g . F ig .3.10). 

The first is the detailed structure, within the direct beam, 000, and 

within the diffracted beams, 220, which shows certain symmetries. The 

second is information in the form of fine lines which are visible in the 

direct beam. These lines are called higher order laue zone
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Fig. 3.10. T h e  ( 1 1 1 ]  C B f c D  p a t t e r n  w a s  t a k e n  f r o m  a  g e r m a n i u m  

s i n g l e  c r y s t a l  ( 1 2 0 K v ) .  T h e  c e n t r a l  d i s c  i s  0 0 0  t y p e  

a n d  t h e  n e x t  d i s c s  a r o u n d  t h e  c e n t r e  a r e  o f  t h e  t y p e

220.



lines (HOLZ lines) which arise as a result of elastic interactions between 

the electron beam and the HOLZ (Jones et al. 1977). Buxton et al. 

(1976) classified the possible symmetry of the CBED patterns into 31 

groups called the 31 diffraction groups. These groups consist of the ten 

two dimensional point groups, 1, 2, m, 2mm, 3, 3mm, 4, 4mm, 6, 6mm, 

(Steeds 1979) and 21 groups arising from the effect of inversion opera

tion through one of the hkl maxima in the CBED pattern and designated 

by the subscript R, 1R , 2R , 21R , mR , mlR , 2mRmR , 2RmmR , 2mmlR , 

4R* 41R> 4mRmR» 4RmmR* 4mmlR , 31R , 3mR , 3mlR , 6R , 61R , 6mRmR , 

6RmmR and 6mmlR . More detail about diffraction groups for single 

crystals and bicrystals will be given in chapter 4.

Tables 3.1 and 3.2 are reproduced from Buxton et al. (1976). Table

3.1 lists, for each of the 31 diffraction groups, the symmetry of bright 

field, BF, the whole pattern, WP, dark field, DF, and ±G . The latter 

refers to the symmetry found when ± g  reflections are observed using 

the displaced aperture method. Depending on the point group of the

crystal + g  and -g  hkl discs may exhibit different internal symmetry. 

Table 3.2 connects the 31 diffraction groups to the 32 crystallographic 

point groups. Thus, if the diffraction group of a CBED pattern was 

found, then reference to Table 3.2 the point group could be determined 

for the material from which the CBED pattern was taken.

The spacegroup of a single crystal can be determined by observing 

the presence of what is called ’’lines of dynamic absence” which occur
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in the kinematically forbidden reflections (Gjonnes and Moodie, 1965). 

This effect indicates the presence of glide planes or screw axes in the 

crystal. An example will be considered next to show the usefulness of 

the above procedure for the determination the point group and the 

spacegroup for germanium single crystal. F ig .3 .11(a), ( b ) ,  (c ) ,  (d ) ,  

(e ) and ( f )  show six CBED patterns were taken in six different di

rections from Ge single crystal specimens. These patterns have been 

examined carefully, and to determine the diffraction group for each 

pattern their symmetries, WP, BF, DF and ± G , have been determined 

and tabulated in Table 3.3. Once the diffraction groups have been de

termined (8**1 column in Table 3.3) one can make use of Table 3.2 to 

determine the point group which corresponds to each diffraction group 

and the results are listed in the last column of Table 3.3. Thus the point 

group of germanium is m3m.

In order to determine the spacegroup of germanium it is necessary 

to identify forbidden reflections which occur due to double diffraction. 

In CBED patterns some of forbidden reflections reveal dynamic absences 

which take the form of dark bars or lines within the forbidden re 

flections. These dynamic absences are clearly seen in [O il] and [013]

CBED patterns F ig .3 .11(b) and (e ) ,  respectively, for g =  ±200 and 

this is a proof for the presence of a glide plane in Ge crystal parallel 

to the plane (100). So, one can assign Fd3m for the spacegroup of 

germanium.
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3.11. ( a )  1 0 0 1 1 l o w h i g h - c a m e r a l e n g t h s  a n d ; <i ( lil l) patterns.



(b) |<>! 1| low-



;tnd high-camera lengths ("H K D patterns.



F ig .  3 .1 1 . (c) (U li low-, high-camera lengths and ±G C B ED  patterns.



|< i<*. 3 .1  1. (d) [012| low-, high-camera lengths and ¿(¡ ( H L l) patterns.



Fig. 3.1 1. (e ) |013| low- and high-camera lengths CBED patterns.



Fig. 3.11. ( f )  1112] low- and high-camera lengths C B E D  patterns.



T a b le  3 ,3 . T h e  sy m m e try  o f  C B E D  p a tte rn s  (W hole  p a tte rn ,  b r ig h t  f ie ld , d a r k  f ie ld ,  an d  i G )  

p o s s ib le  d if fra c t io n  g r o u p s  fo r  a ge rm an iu m  s in g le  c r y s ta l  specim en.

No.
Figure Zone

Axis
Whole
Pattern

Bright
Field

Dark Field ±G Possible Diffraction 
Groups

Point
GroupsGeneral Special General Special

(1) 3.11(a) [001J 4mm 4mm 2 2mm — — 4mmlĵ m3m

(2) 3.11(b) [ O i l ] 2mm 2mm 2 2mm 2R — 6RmmR m3m
r_ 2mml-r, m3m

(3 ) 3.11(c) [111] 3m 3m 1 m R

(4 ) 3.11(d) [012] m m 1 m V 2R mmR
m3m

(5 ) 3.11(e) [013] m m 1 m 2 r
m3m

(6) 3.11(f) [112] m m 1 m 2r — m3m



3.2.3. LARGE AN G LE  CONVERGENT BEAM  ELECTRON  

DIFFRACTION (TANAKA).

The diameter of a non-overlapping CBED pattern is limited by the 

Bragg angle. For large unit cell, i.e . has large lattice parameter, the 

CBED disc diameters become small, and the intensity distribution 

available in a small disc does not show clear symmetry so that the in

formation in the disc is reduced severely.

The LACBED (Tanaka) technique is useful in the above case because 

it consists of large diameter non-overlapping discs. Another advantage 

of the LACBED technique is that it enables the electron microscopist 

to obtain patterns from relatively small areas, ~100 nm diameter 

(W illiam s 1984), In the case of CBED technique four patterns (whole 

pattern, bright-field, dark-field, and ±G  dark field patterns) are 

needed to determine a crystal point group, whereas, by using LACBED 

technique, a single pattern contains the above information simultane

ously.

The procedure for obtaining a LACBED pattern for a PHILIPS EM400 

is (W illiam s 1984):

(1 ) Set up the microscope in the normal CBED mode (see section 

3.2.2).

(2 ) Switch to image mode and focus the electron probe fully on 

the specimen surface.

(3 ) Use the specimen height control to increase the specimen 

height (i .e , move specimen toward electron gun) until the 

probe is seen split into many probe images, one for each 

Bragg beam.
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(4 ) Isolate the order of interest by inserting the SAD aperture 

so that the order required passes through the aperture.

(5 ) Switch to diffraction pattern mode and remove the condenser 

aperture completely. A LAC BED pattern with no overlap of 

order will be seen on the viewing screen.

F ig .3 .12(a), (b ) ,  (c ) and (d ) show (001(, (011|, (111] and (1121 LACBED 

patterns were taken from Ge single crystal specimens. Each pattern 

shows the WP, BF, DF and ±G  symmetries, simultaneously, and they 

are equivalent to those listed before in Table 3.3 and recorded by four 

different pattern for each zone axis. Thus using the LACBED technique 

the procedure for determining the point group becomes shorter than 

using the CBED one.
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Fig. 3.12(a). T h e  [ 0 0 1 1 L A C B E D  p a t t e r n  w a s  t a k e n  f r o m  

a  g e r m a n i u m  s i n g l e  c r y s t a l  ( 1 2 0 K v ) .



a  g e r m a n i u m  s i n g l e  c r y s t a l  ( 1 2 0 K v ) .





Fig. 3.12(d). T h e  [ 1 1 2 ]  L A C B E D  p a t t e r n  w a s  t a k e n  f r o m  

a  g e r m a n i u m  s i n g l e  c r y s t a l  ( 1 2 0 K v ) .
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4.1. INTRODUCTION.

As mentioned in chapter 3, Buxton et al.(1976) classified the sym

metry of CBED patterns taken from single crystal specimens into 31 

groups which are called the diffraction groups. They also tabulated the 

relationship between these groups and the corresponding 32 

crystallographic point groups (Table 3 .2 ), hence the point groups of 

single crystal specimens can be determined. A complete example for 

the determination of the point and spacegroup of a Ge single crystal 

is given in the previous chapter.

This chapter is divided into two main parts. In the first part we 

present an alternative method for obtaining the 31 diffraction groups. 

We show that the 31 possible symmetries of CBED patterns from ideal 

plane single crystal parallel foils correspond, precisely, to the 31 

permissible rosette groups (Pond et al. 1983).

The second part of this chapter is devoted to the derivation of the 

"plan-view" and "edge-on" bicrystal diffraction groups by following the 

procedure adopted in part one, and making use of the 80 layer and 31 

band permissible bicrystal groups (Pond et al. 1983) , respectively.

4.2. TYPES OF SYM M ETRY.

Single crystal specimens, as mentioned before in chapter 2, may 

exhibit two types of symmetry elements: ordinary and/or antisymmetry. 

One can define an ordinary symmetry element in the present application
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as a symmetry element which leaves the normal to the specimen surface 

invariant, while an antisymmetry element inverts it.

4.2.1. THE O R D INAR Y  SYM M ETR Y  ELEM ENTS.

The ordinary symmetry elements are:

(1) Ordinary rotation axis perpendicular to the specimen 

surface: 1- , 2- ,3 - ,4 - ,and 6-fold axes.

(2 ) Ordinary mirror perpendicular to the specimen surface: m

4.2.2. THE ANTISYM M ETR Y  ELEM ENTS.

The antisymmetry elements are:

( 1) antirotation axis parallel to specimen surface: 2'

( 2) antimirror parallel to specimen surface: m’

(3 ) anti-inversion centre located in specimen: I  ’

(4) anti-roto-inversion axis perpendicular to specimen surface: 

3 \  4\ 6f

4.3. D IFFRACTION G R O UPS FOR S ING LE  CRYSTALS.

We shall determine the types of symmetry (ordinary and/or anti

symmetry), and hence the point groups which an ideal parallel plane 

foil can have, and then, relate them to the diffraction groups:

(1 ) Let the specimen have the identity element of symmetry, 1. The 

ray diagram in F ig .4 .1(a) depicts, graphically, this element of 

symmetry. The two horizontal lines represent the upper and lower
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t

Fig. 4.1. (a) A ray diagram represents a specimen having the identity symmetry

element.

(b) A stereographic projection represents the identity symmetry ele

ment (reproduced from Buxton et al. 1976).

ement perpendicular to its surface.

(b) A stereographic projection represents a diad symmetry element 

(reproduced from Buxton et al. 1976).

(c) As (b ), but represents a triad symmetry element.

(d) As (b ), but represents a tetrad symmetry element.

(e) As (b ), but represents a hexad symmetry element.

m

( b )

Fig. 4.3 (a) A ray diagram represents a specimen having a mirror symmetry

element perpendicular to its surface.

(b ) A stereographic projection represents the mirror symmetry element



surfaces of the specimen, the inclined parallel lines, s, represent 

a set of parallel planes in the specimen. The ingoing electron 

beam, i, is diffracted by the set of planes, s, to d satisfying 

Bragg's law of reflection.

Alternatively, using the stereographic projection method 

(Buxton et al. 1976) one can represent the element of symmetry 

possessed by the above specimen. F ig .4 .1 (b ),  for example, is a 

stereographic projection depicting the symmetry in F ig .4 .1 (a ), 

where the large circle represents a dark field disc and the small 

one represents the outgoing beam. This figure is identical to 

that representing the diffraction group 1 (Buxton et al. 1976).

(2 ) Let the specimen have an n-fold axis, n = 2, 3, 4, or 6, i .e .,  

rotation by an angle n , , or respectively, perpen- 

dicular to the specimen surface. For each n-fold axis there are 

n sets of planes and hence n pairs of Bragg reflections related 

by this axis. For example, F ig .4.2(a) illustrates the case when 

n=2. The two sets of planes s and s i are related by this axis 

as well as the two pairs of Bragg reflection i i -d i  and ¿2 "¿2* 

F ig .4.2 (b ),  (c ) ,  (d ) ,  and (e ) ,  show the symmetries of the n= 

2-, 3 -, 4-, and 6-fold axes, using the stereographic projection 

method, and they are similar to the figures representing the 

diffraction groups 2, 3, 4, and 6, respectively.

(3 ) Let the specimen have a mirror, m, perpendicular to the surface 

of the specimen. F ig .4.3(a ) illustrates the pairs of Bragg re 

flections fi -d i  and i'2“d2 which are related by this ordinary 

mirror operation. F ig .4.3 (b ) represents the mirror symmetry of
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F ig .4.3(a ) ,  using the stereographic projection method, and it can 

be seen that this represents the diffraction group m (Buxton et 

al. 1976).

(4 ) Let the specimen have an anti-inversion centre, I  ’ . Here, and 

in the following cases(5-7), the reciprocity theorem (Howie 1978) 

has been invoked. It states that the wave amplitude at a point, 

say a, originating from a point spherical source located at a 

point, say b , is equal to the amplitude at b when the source is 

placed at a.

F ig .4.4(a) is ray diagram representing the symmetry 1 '. The 

ingoing beam, £i, is incident on the upper surface of the specimen 

and is diffracted by the set of planes s to d j.  Similarly, and due 

to the presence of the symmetry element, 1',  an ingoing beam 

i2, would be diffracted by the set of planes s i to ¿2« Because 

of the reciprocity theorem, the diffracted beam d2 can be re 

garded as the incident beam £3 and the incident beam £2 as the 

diffracted beam d3. The diffracted beams d i and d2 must have 

equal amplitudes to preserve the symmetry element, 1’ . The 

stereographic projection of F ig .4.4(a) is shown in F ig .4.4 (b ). 

The latter is identical to that which represents the diffraction 

group 2r , i.e . the symmetry element I* corresponds to the 

diffraction group 2r . Note that the subscript R stands for the 

fact that we have invoked the reciprocity theorem.

(5 ) Let the specimen have an anti-diad axis parallel to its surface, 

2f, F ig .4.5 (a ). The two sets of planes s i and S2 are related by  

this element of antisymmetry. The incident beam, fi , is 

diffracted by s to d i and the incident beam 1*2 , would be 

diffracted by s i  to d2. By applying the reciprocity theorem,
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centre.

(b ) A stereographic projection represents the symmetry element in (a) 

(reproduced from Buxton et al. 1976).

(b)

< 2'

( a ) (b)

Fig 4 .5 .( . ) A ray diagram represents a specimen having an anti-diad parallel 

to its surface.

(b ) A stereographic projection represents the symmetry element in (a)

mi

d  2 C i 3 )

(b)

Fig 4 6* A r*y diagram represents a specimen having an anti-mirror parallel 

to its surface.

(b ) A stereographic projection represents the symmetry element in (a) 

(reproduced from Buxton et al. 1976).



the beams Í2 and c?2 can be regarded as d3 and Í3, respectively, 

and d i and d3 must have equal amplitudes. F ig .4.5 (b ) is the 

stereographic projection of F ig .4.4(a) which is the same as that 

represents the diffraction group m^. It also depicts the corre

spondence between the element of antisymmetry 2* and the 

diffraction group oir.

( 6) Let the specimen have an anti-mirror parallel to its surface, m’ , 

Fig.4 .6(a ) .  The incident beam i i  is diffracted by the set of planes 

s to d i The set of planes s i is related to the set of planes s by  

the symmetry element m* and they would diffract the incident 

beam Í2 into d2. By applying the reciprocity theorem, the 

diffracted beam d2 can be regarded as the incident beam Í3 and 

the incident beam Í2 as the diffracted beam d3 and the diffracted 

beams d i and d3 must have equal amplitudes. The stereographic 

projection of F ig .4.6(a ) is shown in F ig .4.6(b ) ,  where the two 

bragg reflection pairs fi -d i and ¿3-d3 are represented by two 

discs in complete coincidence because of the presence of the 

anti-mirror symmetry element, which has symmetry similar to that 

of the diffraction group 1r , i.e . there is correspondence between 

m’ and 1r .

(7 ) Finally, let the specimen have one of the anti-roto-inversion 

axes, 3 ',  4’ or 6’ , perpendicular to its surface. Similarly, we 

found they aré corresponding to the diffraction groups 6r , 4r  

and 31r  , respectively (F ig .4.7(a ) ,  (b )  and (c ) ,  respectively).

The correspondences between the ordinary symmetry and antisymmetry 

elements and the diffraction groups described in points 1 to 7 are tabu

lated in Table 4.1.
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Fig. 4. A  stereographic projection represents the symmetry elements: (a) 

3', (b) 4' and (c) 6'.



T a b le  4 .1 . T h e  co rre sp o n d e n ce  betw een c r y s ta l  sym m e try  e lem ents

(o r d in a r y  an d  a n t isy m m e try ) and  d if fra c t io n  g r o u p s .

Crystal symmetry elements Diffraction groups

No. Ordinary Antisymmetry

( 1) 1 l

( 2) 2 2

(3) 3 3

(4) 4 4

(5) 6 6

(6) m m

(7) 2' mR

(8) m' *R

(9) T' 2r

( 10) 3' 6r

(U) 4' 4r

( 12) 6' 31r



The final step is the direct conversion of the 31 permissible rosette 

groups into their corresponding diffraction groups, using Table 4.1. 

Table 4.2 shows the correspondences between the 31 diffraction groups 

and their counterpart permissible rosette groups.

We believe that the method which we have used and illustrated in points 

1 to 7, for the determination of the symmetry and hence the point groups 

of single crystal, is simpler than that used by Buxton et al. (1976).

4.4. TH E BRIGHT FIELD, PROJECTION DIFFRACTION, A N D  W H O LE  

PATTERN GROUPS.

It is well known now that a CBED pattern is composed of three 

inter-related patterns, i.e . the bright field, projection diffraction, and 

whole patterns (Steeds 1979). The bright field pattern consists of the 

transmitted or direct beam disc, while the projection diffraction pattern 

comprises the direct and diffracted beam discs which form what is called 

the zero order laue zone (zolz). The whole pattern includes, beside the 

zolz reflection discs, the higher order laue zone (holz) discs. Conse

quently, the symmetry of a CBED pattern may be specified precisely 

by knowing the individual symmetry of its bright field, projection 

diffraction, and whole patterns. The possible symmetries of bright 

field, projection diffraction, and whole patterns belong to one of the 

set of ten of bright field, Gb , projection diffraction, Gr , and whole 

pattern, G„ , point groups, respectively, which were tabulated previously 

in Table 3.1 in chapter three. The importance of Gb , Gf and Gw point 

groups is, clearly, because of their role in the determination of the point 

group of a specimen.
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T a b le  4 .2 . T h e  co rre sp o n d e n ce  betw een th e  31 d iffra c t io n  
g r o u p s  and  the  p e rm iss ib le  ro se tte  g r o u p s .

No. Permissible rosette groups Diffraction groups 

ordinary Antisymmetry

(1) 1
11m'

1
(2) 1R
(3) 112 2
(4) T' 2R
(5) 112/m1 21r
(6) 2’11 mR
(7) mil

m2'm'
m

(8) mlR
(9) 2'2'2 2mRmR
(10) mm2

27mll
2mm

(ID 2RmmR
(12) mmm' 2mmlj^
(13) 4 4
(14) 4' 4R
(15) 4/m' 41r
(16) 42'2' ^ r IHr

(17) 4mm
4'2'm

4mm
(18) 4RmmR
(19) 4/m'mm 4mmlj^
(20) 3 3
(21) 6' 31r
(22) 32' 3mR
(23) 3m

6’m2’
3m

(24) 3mlR
(25) 6

3’
6

(26) 6R
(27) 6/m'

g1r
(28) 62'2’ GmRmR
(29) 6mm 6mm
(30) 3'm GRmmR
(31) 6/m’mm 6mmlj^



In the previous section we found there was a one to one corre

spondence between the 31 rosette groups, which describe the specimen 

symmetry, and the 31 diffraction groups. The 10 ordinary rosette 

groups (second column of Table 4.2) directly correspond to the 10 or

dinary diffraction groups (last column of Table 4.2) while the 21 anti

symmetry rosette groups correspond to the 21 diffraction groups (last 

column of Table 4.2) which we marked by a subscript R, indicating 

application of the reciprocity theorem.

The object of this section is to find a relation which may relate the 

specimen symmetry groups (the rosette groups) to the CBED pattern 

groups (G4, Gp, Gw), considering the one to one correspondence between 

the rosette groups, Gr and the diffraction groups, G j , which have al

ready been emphasised previously (Table 4 .2 ).

4.4.1. THE BRIGHT FIELD GROUPS.

The BF groups (see Table 3.1) envisage the possible symmetry of the 

transmitted beam, which form the internal disc of a CBED pattern. 

First, we consider the effect on the bright field disc of ordinary ele

ments of symmetry in the specimen. If a specimen possesses one of the 

following ordinary symmetry 1, 2, 3, 4, 6 and m or a combination of 

them, e .g . 2mm, 4mm, 3m, or 6mm, then the resulting BF pattern will 

have symmetry similar to that possessed by the specimen itself as il

lustrated, stereographically, by patterns 1 to 10, respectively, in 

F ig .4.8. The dot and circle represent the incident and the transmitted 

beams, respectively and the cross represents the centre of the pattern.
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(5 ) 4 (6 ) 4mm

Fig. 4.8. The stereographic projections represent the ten 2-dimensional bright

field point groups.



The symmetry assigned at the bottom of each pattern representing the 

symmetry of the transmitted beams only.

Secondly, we consider a specimen possessing antisymmetry. F ig .4.9(a) 

is a ray diagram for a specimen exhibiting an antidiad, 2'. In this case, 

the incident beam, i\, is transmitted through the specimen to i i  . Due 

to the presence of 2\  the symmetry related incident beam, ¿2, would 

be transmitted through the specimen to ¿2 . Alternatively, and invoking 

the reciprocity theorem, the beams i2 and *2 can be regarded as i§- and 

t§-, respectively. The superscript R means that the reciprocity theorem 

has been invoked. The stereographic projection connected to F ig .4.9(a) 

is shown in F ig .4.9 (b ) and it is seen to exhibit mirror symmetry, where 

we have considered only the symmetry of the transmitted beams. In 

other words, if the specimen possesses an antidiad the resulting BF 

pattern will exhibit ordinary mirror symmetry. If the specimen possesses 

an antimirror, F ig .4 .10(a), then the resulting BF pattern, F ig .4 .10(b), 

will exhibit a diad symmetry, and if the specimen possesses an 

anticentre, 1 ’ , as illustrated in F ig .4 .11(a), the resulting BF pattern, 

F ig .4 .11 (b ), will exhibit a diad element of symmetry. Similarly, if a 

specimen possesses one of the following antisymmetry elements 3 4'

and 6',  the resulting BF pattern will exhibit the ordinary symmetry 3, 

4 or 6 respectively. One can conclude that the BF patterns (Table 4.3) 

possess only ordinary symmetry whether the specimen exhibits ordinary 

symmetry or antisymmetry, and this conclusion agrees with the symmetry 

of the BF patterns given in Table 3.1.

The above conclusion can be expressed mathematically as follows:
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(b)

P i g  4 .1 0 .  (a )  A rav d i a g r a m  f o r  a s p ec im en  e x h i b i t i n g  n X  

( b )  A s t e r e o g r a p h i c  p r o m o t i o n  f o r  rr/ in ( a ) .

1 11 ^  r d '  d i a g r a m  f o r  a  s p e c i m e n  e x h i b i t i n g

( b )  A  s t e r e o g r a p h i c  p r o j e c t i o n  f o r  l ' ^ m  ( a ) .

(b)



T a b le  4.,3. T h e  C o rre sp o n d e n c e  o f  Specim en  Sym m e try  
and  B r ig h t  F ie ld  P a tte rn  S ym m e try .

No. Specimen Symmetry Bright Field Symmetry

(1) 1 1
(2) 11m' 2
(3) 112 2
(4) V 2
(5) 112/m' 2
(6) 2'11 m
(7) mil m
(8) m2'm' 2mm
(9) 2'2'2 2mm
(10) mm2 2mm
(ID 2'/mll 2
(12) mmm' 2mm
(13) 4 4
(14) 4' 4
(15) 4/m' 4
(16) 42*2' 4mm
(17) 4mm 4mm
(18) 4'2'm 4mm
(19) 4/m'mm 4mm
(20) 3 3
(21) S' 6
(22) 32' 3m
(23) 3m 3m
(24) S'm2' 6mm
(25) 6 6
(26) 3' 3
(27) 6/m' 6
(28) 62'2' 6mm
(29) 6mm 6mm
(30) 3'm 3m
(31) 6/m'mm 6mm



Gb =  G? U  G'r . 1' (4.1)

where the rosette group G> has been decomposed into two sets, one 

containing only the ordinary elements of symmetry, G° , and the other 

containing the antisymmetry elements, Gf , (i.e. G> =  G? (J Gf). For exam

ple, consider the rosette group G> ** 2'2'2 = {1 ,2 , 2', 2 '} ,  (No. 9 in Table 

4.3) ,  which can be expressed as the union of the sets of ordinary and 

antisymmetry elements Gr = (1, 2) (J (2', 2*). Using E q .(4 .1 ) we obtain

G„ -  (1, 2) U  (2% 20 . V 

= (1,2) U (m, m)

= { 1, 2, m, m } = 2mm.

Thus the rosette group, Gr =  2/2,2 leads to the bright field group 

Gb =  2mm

4.4.2. THE PROJECTION DIFFRACTION GROUPS.

It has been shown that (Buxton et al. 1976) when the projection ap

proximation is valid, the specimen behaves as though it has only two 

dimensional periodicity, and therefore, it exhibits an antimirror parallel 

to its surface. Also, the projection diffraction groups describe the 

symmetry present in the zolz of the CBED patterns. The consequence 

of the above two statements is that the projection diffraction groups can 

be expressed as the extension of the 31 diffraction groups by an anti

symmetry group of index 2, i.e . G ' *= {  l ,m ' }, which contains
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the identity and an antimirror parallel to the specimen surface. Table 

4.4 shows that the extension of the 31 rosette groups (second column), 

by G ' = {  l,m' } leads to the 10 groups shown in the last column. These 

10 groups are identical to the 10 projection diffraction groups, Gr , of 

Table 3.1. This extension of Gr by G ' is formulated mathematically by  

the following expression:

4.4.3. THE W H O LE  PATTERN GROUPS.

The whole pattern symmetry is the two dimensional point group sym

metry of the CBED discs, including the symmetry of the zero and higher 

order laue zone discs. The whole pattern group, Gn , may be expressed 

mathematically as the intersection between G? and G* as follows:

For example, the intersection of the rosette group and the bright field 

group listed in the first row of Table 4.5 results in the whole pattern 

point group listed in the same row and so on for the rest of the groups 

in the next rows. The whole pattern groups, G* , which are listed in 

the last column of Table 4.5, are identical to these listed in Table 3.1 

(third column).

4.5. D IFFRACTION GROUPS FOR BICRYSTALS.

Pon d  et al. (1983) indicated how all the possible bicrystal spatial 

groups, e .g . ,  permissible bicrystal band and layer groups, can be

Gp — Gr o G ', Gr — { I » ^  } (4.2)

g h —  g ?  n G* (4.3)
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Table 4.4. Crystal Symmetry and the
Projection Diffraction Groups.

No. Rosette Projection Diffraction Group

(1) 1 *R
(2) 11m' *R
(3) 112 2R
(4) V 2r
(5) 112/m' 2r
(6 ) 2'11 2r
(7) mil mlR
(8) m 2 V mlR
(9) 2'2'2 2mml^

(10) mm2 2 m m l^

(U ) 2'/mil 2mml^

(12) mmm' 2mmlj^

(13) 4 41r
(14) V 41r
(15) 4/m'

41r

(16) 42'2' 4mmlj^

(17) 4mm 4mmlj^

(18) 4'2'm 4mmlj^

(19) 4/m'mm 4mmlj^

(20) 3 31r
(21) 6' 31r
(22) 32' 3mlR
(23) 3m SmlR
(24) 6'm2' 3mlR
(25) 6 61r
(26) 3* 61r .
(27) 6/m' 61r
(28) 62'2' 6mml^
(29) 6mm 6mmlj^

(30) 3 'm 6mmlj^

(31) 6/m'mm 6mmlj^



Table 4.5. Specimen Symmetry and the
Whole Pattern Groups.

No. Specimen Symmetry Whole Pattern Symmetry

( 1)
( 2 )
(3)
(4)
(5)
( 6)
(7)
( 8)
(9)
( 10) 
(ID 
( 12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20) 
( 21) 
(2 2 )
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

1
11m'112
T'
112/m'
2*11
mil
m2W
2 '2' 2
mm2
27mll
mmm'
4
4'
4/m'
42'2'
4mm
4'2'm
4/m'mm
3
6'
32'
3m
6'm2'
6
3’
6/m'
62'2'
6mm
3'm
6/m'mm

1
1
2
1
2
1
m
m
2
2mm
m
2mm
4
2
4
4
4mm
2mm
4mm
3
3
3
3m
3m
6
3
6
6
6mm
3m
6mm



established from first principles. They expressed the spatial bicrystal 

groups as extensions of the translation groups by means of ordinary 

and antisymmetry groups containing operations which leave the bicrystal 

invariant. In the case of bicrystal band groups the translation symmetry 

group is one dimensional and designated p. The ordinary and anti

symmetry element sets which leave the translation symmetry p and the 

boundary plane invariant are ( 1, 2, m, a) and ( ! ' ,  2?, m’ , 2^ , a’ )»  

respectively. For the case of bicrystal layer groups, the translation 

group corresponds to one of the five 2-dimensional lattices and is des

ignated p or c. The permissible ordinary and antisymmetry element sets 

are (1, 2, 3, 4, 6, m, a, b ) and ( I 1, 2’ , m’, a’ , b ', n ') ,  respectively. 

They, also reported that a bicrystal band can have one of 31 band 

groups while a bicrystal layer can have one of 80 permissible bicrystal 

layer groups.

4.5.1. D IFFRACTION GROUPS FOR "P LA N -V IE W " BICRYSTALS.

The "plan-view" bicrystal has the interface parallel to its surface 

(see chapter 3 ). It can have 2-dimensional translation symmetry, or less, 

parallel to the boundary plane. It is pointed out in chapter 3 that the 

presence of non-symmorphic symmetry elements can be detected exper

imentally using CBED patterns: firstly, by means of equations 3.5(a) 

to (d ) one can determine the kinematically forbidden reflections. Sec

ondly, the dynamic absences, which have the form of dark bars or lines 

within the forbidden reflection disks, indicate the presence of these 

elements (Gjonnes and Moodie 1965).
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The possible ordinary elements of point symmetry exhibited by a 

"plan-view” bicrystal:

( 1) the identity, 1,

( 2) a diad, a triad, a tetrad, and a hexad perpendicular to 

the specimen surface, 2, 3, 4, and 6,

( 3) a mirror perpendicular to specimen surface, m.

The possible antisymmetry elements:

( 1) an anti-inversion centre of symmetry in the boundary 

plane, 1 ',

( 2) an anti-diad parallel to the boundary plane, 2r,

( 3) an anti-roto-inversion triad, tetrad, and hexad perpen

dicular to the boundary plane, 3 ',  4' and 6',

(4) an anti-mirror parallel to the boundary plane, m*.

It is illustrated in F ig .4.12, using the stereographic projection 

method, that "plan-view" bicrystal specimens can exhibit one of the 31 

point groups. These 31 point groups are found to be equivalent to the 

31 symmorphic layer point groups (Pond et al. 1983). Hence the pos

sible symmetry of the "plan-view" bicrystal specimens can be described 

precisely by the 31 symmorphic layer point groups (Pond et al. 1983). 

The equivalence between the 31 symmorphic layer or "plan-view" 

bicrystal specimen point groups and the 31 diffraction groups is es

tablished and found identical to that which was tabulated in Table 4.2 

for the equivalence between single crystal specimen point groups and 

the 31 diffraction groups. In other words, the point symmetries which 

can be exhibited by the two types of specimens are the same.
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Fig. 4.12. The stereographic projection patterns for the 31

"plan-view" bicrystal point groups. The dot and circle 

represent the incident and outgoing beams, respectively.



4.5.2. D IFFRACTION GROUPS FOR "ED G E -O N " BICRYSTALS.

In the case of "plan-view" bicrystal specimens the concept of anti

symmetry in bicrystal groups corresponded directly to symmetry which 

could be revealed in CBED patterns because anti-operations, g ',  cor

respond to those where the reciprocity theorem must be invoked. But 

this is not necessarily the case for the "edge-on" bicrystal specimens.

The objective of this section is to explain how we can identify those 

operations in the point group of an "edge-on” bicrystal, G(b), which 

lead to symmetry in CBED pattern when reciprocity is invoked. In 

other words, we describe a procedure for re-assigning the ordinary 

and anti-operations in G(b) into two sets, one corresponding to oper

ations which lead to conventional symmetry, and the other containing 

the operations for which reciprocity must be invoked. We refer to such 

groups as revised groups, and designate them Gr (b). Thus, a group 

G(b), formally expressed as G° JJ Ga will now be re-expressed as Gr (b) 

=  G U  Gr , where the subscript R refers to the set of operations for 

which reciprocity must be invoked. The operations in the set Gr  can 

be readily obtained as follows. Let i  be a unit vector parallel to the 

incident beam direction, and j. be the beam direction related to A by 

the operations g or g ' belonging to G(b). If i  • A is negative, then 

this operation must be assigned to the set Gr . Some examples of this 

procedure are illustrated below for the case of I  = 3, 9, and 27 

bicrystals. The first example chosen is for the I  = 3( I l 2 bicrystal 

which is shown in F ig .2 .6(a ) (chapter 2 ). It exhibits the following
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( 1) the identity, 1,

( 2) a mirror perpendicular to the interface and parallel to the 

specimen surface, m(110)^.

It exhibits the following antisymmetry elements:

(3 ) an anti-mirror parallel to the interface, 1^(112)^

(4) an anti-diad parallel to both the interface and the specimen surface,

21 ini*

Therefore, this specimen has the bicrystal point group 2,mm/. Now, 

consider i  =  1110k, i.e . the normal to the specimen surface, and op

erate on this direction by the 4 operations in the point group 2 W .  

One can find that only two operations arise such that i  • j. is negative; 

these operations arem (110k  and2'| 111 k  » as shown in the third column 

of Table 4 .6 (a ). Therefore the revised point group f o r i  = 3( I l2  

bicrystal is:

&  (b) = (1, m (Il2)x) u (m'(U0)x, 2'[ i l l  \x) -  2'm'm.

Similarly, for A =  [ 531 k , l 42l k , | 311 k , or 1512 k , rows 4 to 7 in Table 

4.6(a ) ,  the revised specimen point group is also, Gr (b) =  2/ni'm, and 

for A =  I 201 k , [ 312 k , | 111 k, rows 8 to 10 in Table 4 .6 (a ), G r (b) =  

2mm. Other examples are given in Tables 4 .6 (b ), and (c ) for 1 = 9, 

and 27, respectively.

The final step is converting the above revised point groups to their 

corresponding diffraction, bright field, projection diffraction and whole 

pattern point groups making use of Tables 4.2, 4.3, 4.4 and 4.5,

ordinary elements of symmetry (see chapter 2):
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Table 4 .6 (a ). Derivation of the revised point group for 
I  = 3( 7 l5 )x bicrystal.

Surface
Normal

W4->c4)E4)iH4>
>-U4->4)EE>.w

'e
E
N

I m(110)x m '(T l2 )x v m x

K-Hia4J«3£

r i  °  o , 
0 1 0 

L o o  i  J

r o - i  o 
- 1 0  0

L 0 0  1 J

r 2 i  -2
1 / 3 1 2  2

L -2 2 -1 -1
r ' 2 *2 i1/3 - 2 - 1  2
L -2 2 -1 J

11101X 11101X [ 770]x 11101X I 770]x
[53 T ]x [53 7 ]x [ 55T]X [53 T ]x i 35T]X
[42 T ]x [42 T ]x l 247]x [42 7 ], [ 247]x

131 T lX 131 T lX [ 737], [31 T ]x [ T3T]X
151 2 ]x [5 i 2 ]x I 752]x 151 21X [ 752]x
[20 7 jx [20 Tjx [ 02T]X [20 T ]x { 027]x
[3 75] x [3 72]x 11 32]x [3 72] [ i  32].
n  7T]X l l  TTJX 11  T 1 1 x 11  T 1 1 x 1 1  T T l x

Table 4 .6 (b ). Derivation of the revised point group for 
l  -  9( 221)x bicrystal.

Surface
Normal

(0+Jc <u £ 41
£
E
CJ

1 m(110)x m'(221)x 2’ M x

4>
>1
<V

to M
at

ri
x 

]

r i  o o , 
0 1 o

L o o  l - l

r o - i  o -I 
- 1 0  o 

L o o  i  J

r 1 8 4 i
1/9 8 1 -4

L 4 -4 7 J

r -1 -8 -4 i 
1 /9  -a - i  4 

L -4 4 -7-1

[UOlx 11101X
[ n o ix

11101X 1 1101X
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respectively. For example, if an "edge-on" specimen has a revised point 

group Gr (b) =  mm2, then its corresponding Gr =  2mm, <7* =  2mm, Gp =  

2 mm 1*, and G„ =  2mm. Similarly, if an "edge-on" specimen has Gr (b) 

=  2/m/m then its corresponding Gr -  ml R, Gb -  2mm, Gf -  m l*, and G„ 

= m.

4.6. EXPERIM ENTAL DETERM INATIONS OF RELATIVE  

DISPLACEM ENT.

In chapter 2 a theoretical study is given concerning the variation of 

the symmetry of three germanium bicrystals with rigid body translation

p parallel to the boundary plane (section 2 .7 ). It was deduced that a

bicrystal's spacegroup is a function of the shift p. This conclusion was 

formulated mathematically through two equations expressing the criteria 

for conservation and/or breaking of coincident and antisymmetry oper

ations (Eq. 2.16(a) and (b ) ) .

In principle a rigid body translation p can be determined exper

imentally using SAD or CBED techniques (see chapter 3 ). The applica

tion of the former technique to determine p can be appreciated by  

considering the following points. Firstly, the structure factor equation 

(Eq.3.2 in chapter 3) can be rewritten for bicrystal interfacial re 

flections as

Fhkl =  zj,q i fjX e2ni(hxj^ +  kyjX +  lzjX) +  fqn e2ni(hx^ +  k y ^  +  lzq^) 

e2?ti(hpx +  kpy +  lpz) j  (4.4)
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where the sum is over all the white and black atoms in the bicrystal, 

fk and f*1 are the atomic scattering factors for the jth white and qth black 

atoms, (x \  y\ z^) and (x*1, y^, ẑ 1) are the fractional coordinates of the jth 

white and qth black atoms in the bicrystal and (px, Py, pz) are the x, y, 

z components of the the rigid body translation p of the black crystal 

with respect to the white one. Secondly, the absolute intensities, 

of the spots in a SAD pattern are given by Iĵ j =  (E q .(3 .3 )

chapter 3 ).

Thus, if a rigid body translation is present in a given bicrystal, then 

a comparison of calculated intensities, I^ki» and that measured from the 

SAD pattern from the bicrystal gives an insight into p. However, the 

SAD technique is not usually used for the determination of the rigid 

body translation because of the difficulty of the measurement of the

absolute intensity, Ihkj.

Recently, Chems et al. (1986) used the CBED technique to determine 

the interfacial rigid body displacement, p, in an Al/(001)GaAs ’’plan- 

view" specimen. Molecular beam epitaxy was used to grow 50nm of Al 

at 560°c on a fresh l^m GaAs substrate. The projection symmetry of 

the observed [001] CBED pattern from this A l/ (001)GaAs bicrystal, ex

hibited four-fold symmetry. Three possibilities for the rigid body shift, 

p, would be consistent with this as is described in more detail below.

GaAs crystal has the diamond structure (F ig .2.2(a ) ) ,  where the Ga 

atoms have the coordinates (W yckoff 1963):
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000; O'AVi ; VtOY* ; V1 V1O 

and As atoms have the coordinates:
j_ . X  JLJL. . A. JL_L
4 4 4 » 4 4 4  ’ 4 4 4 *4  4 4

GaAs exhibits the symmetry of the spacegroup F43m (Table 4 .7 (a )). A1 

has the F .C .C . structure (F ig .2 .1 (a )) which exhibits symmetry identical 

to that of the spacegroup Fm3m (Table 2.1). Consider GaAs as the white 

crystal and A1 as the black one, and to distinguish between them the 

subscripts X and n, respectively, will be used. Now, if the Al/(001)GaAs 

"plan-view" bicrystal has the orientation where the 2-fold axes along 

<001^ are coincident and the (110)^ and (110)^ mirror planes in GaAs 

are coincident with the (100)^ and (010)^ mirror planes in Al, then the 

bicrystal exhibits only coincident symmetry elements identical to these 

in Table 4.7(a) under numbers (1) to (4 ) and (13) to (16) and listed 

in Table 4 .7 (b ). Thus, the point symmetry of Al/(001)GaAs "plan-view" 

bicrystal is 42m. Let us study the variation of that point group when

the black crystal is displaced with respect to the white by shifts p which 

lie within the in-plane Wigner-Seitz cell for Al/(001)GaAs "plan-view" 

bicrystal, which has the dimensions VillOOJ^x VilOlO]^, and is represented

in Fig 4.13 by dashed lines. Now, a shift p parallel to [100]^ or I010J ,̂

where 0 <  p <  V4 <  100 >  ̂ , destroys all the symmetry elements in the 

point group 42m except the identity and the 2-fold axis along <100>Jl and

the point group becomes G (b ) = 121, while a shift p =  V* <  100 > ^ makes

G (b ) = 222. Similarly, a shift p parallel to [110]^ or [ 110 Ĵ , where

0 <  p <  V4 <  110 >  ̂  conserves the identity and the mirror plane parallel

to {110}^, and G (b ) becomes 11m and when p =  % < 1 1 0 > ^ , G (b ) =

42m. A general shift p consists of a combination of the above two shifts, 

i.e .
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Table 4.7(a). The symmetry operations in the spacegroup
F43m (No. 216); origin at 43m.

No. Coordinate
Triplets

w

(1) x ,y ,z 1
( 2) -x , -y ,z 2[001]
(3) -x ,y ,-z 2[010]
(4) x , -y , -z 2[100]

(5) z ,x ,y 3+ [HI]
( 6) z , - x , -y 3+[ Til]

(7) - z ,x , -y 3+[l Tl]
(8) - z , -x ,y 3+l Til]
(9) y ,z ,x 3 " [111]
( 10) y , - z , - x 3'[1 11]
( I D -y ,z , -x 3"[ TTl]
(12) - y , - z ,x 3~[ TlT]
(13) -y , -x ,z m[110]
(14) y,x ,z m[l 10]
(15) y , - x , - z 4+[001]
(16) -y ,x , - z 4“ [001]
(17) x , - z , - y m[011]
(18) - x ,z , -y 4+[ioo]
(19) - x , - z ,y 4“ [100]
(20) x ,z ,y m[01 1]
(21) - z ,y , - x m[101]
( 22) z , - y , - x 4~[010]
(23) z,y ,x m[ 101]
(24) - z , -y ,x 4+[010]



Table 4.7(b). The symmetry operations in the
point group 42m.

No. Coordinate
Triplets

w

(1) x ,y ,z 1
(2) -x ,-y ,z 2[001]

(3) y , -x , -z 4+[001]

(4) -y ,x ,-z 4"[001]
(5) -x ,y ,-z 2[010]
(6) x , -y , -z 2[100]
(7) y ,x ,z m [l 10]
(8) -y ,-x ,z m[110]

T a b le  4.7 (c ). The variation of the point group 
42m with the shift p.

No. The Shift 
P

Point Projection
Group Symmetry

(1) 0 42m 4mm
(2) 0 < p  < i  [010] x 121 2

(3) P = i[010 ]x 222 4mm

(4) 0 < p  < i[110]x 11m m

(5) P = i [110]x 42m 4mm

(G) o < p  < i[n o ]x + 4 [0 1 0 ] X 111 1



m[l
21100 l x

. 4 .1 3 . P ro je c tio n  o f  A I/ (0 0 1 )G a A s  s t r u c tu r e  a lo n g  [001JX

G a (o p e n  sm all an d  la r g e  c ir c le s ,  a t h e ig h ts  5  an d  0 ) ,  

A s  (o p en  sm all an d  la rg e  s q u a r e s ,  a t  h e ig h ts  3 /4  an d  

* )  and  A l ( f il le d  sm all an d  la rg e  c ir c le s ,  at h e ig h ts  5  an d  

0 ) .  T h e  co in c id e n t s ite  is  h a lf  sh a d e d . T h e  in -p la n e  

W ig n e r -S e itz  ce ll is  in d ica te d  b y  d a sh e d  lin e s.



V* <110>jl and % <1 0 0 > jL, would destroy all the symmetry elements so 

that the point group becomes the identity (Table 4 .7 (c )).

The possibilities for the anticipated structure of Al/(001)GaAs "plan- 

view" bicrystal specimen are represented in F ig .4.13 by the letters O,

A and B which correspond to the rigid body translations p =  0 and

V ^<100>^  and Va <\\0>  respectively. In the structure O, as well 

as B, the columns of A1 atoms sit on those of As and Ga atoms, and 

therefore both structures exhibit the symmetry of the point group G (b )

= 42m. This is no longer the case for the A structure where the A1

strings are shifted with respect to those of Ga and As by a shift p =

%  <  100 >   ̂ and, consequently, this structure possess the symmetry of 

the point group G (b ) = 222. An important point is that the 3 structures, 

O, A  and B, exhibit the same projection symmetry Gp = 4mm, as shown 

in the last column of Table 4 .7 (c ).

The actual shift p was determined from among these three possibilities 

(Chems et al. 1986) as follows. First, the comparison between segments 

of HOLZ rings obtained from Al/(001)GaAs and GaAs specimens revealed 

that these two specimens exhibited two different branch structures, 

where an extra branch was observed in the case of A l/ (001)GaAs com

pared with GaAs. Secondly, the branch structures for both 

Al/ (001) GaAs and GaAs were calculated using the dynamical theory of 

electron diffraction (H irsch et al. 1965). In the case of GaAs, the cal

culation resulted in two strongly excited branches represent Is states 

of As and Ga ( due to Bloch waves strongly localised on As and Ga 

strings of atoms) and one represents 2s state of Ga + As. In the case 

of Al/( 001) GaAs a similar branch structure was obtained with two extra 

branches; one just outside that in the 2s state of Ga + As ( may be due
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to a Bloch wave with maximum intensity at the mid-points between Ga 

or As strings), and another branch more strongly localised than that 

mentioned above, which showed more intensity in Al/(001)GaAs compared 

with GaAs. These two extra branches or Bloch states have been con

firmed (Chems et al. 1986 , E q .(3 )) to be strongly excited in the lower 

crystal (GaAs) for the structure represented by the letter A , Fig. 4.13, 

and weakly excited for that represented by O. Thus , the structure of 

Al/(001)GaAs "plan-view" bicrystal specimen was determined to be that 

is represented in Fig. 4.13 by A where the Al crystals were shifted by

a shift p =  M t< i0 0 > ^  with respect to GaAs crystals.
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This chapter contains an account of the experimental investigations 

of germanium (Ge) grain boundaries from both macroscopic and micro

scopic points of view. The macroscopic investigations include optical 

microscopy, scanning electron microscopy, and the back-reflection X-ray  

method. The microscopic investigations include SAD patterns, CBED 

patterns, and LACBED or Tanaka patterns.

5.1. M ACR O SCO PIC  INVESTIGATIONS.

The aim of the macroscopic investigations is to investigate the 

germanium bulk materials received, for example the orientation re

lationships between the individual grains in Ge cylinders.

5.1.1. O PT IC AL  M ICROSCOPY.

F ig .5 .1(a) shows an optical micrograph for a polished Ge circular 

slice. It reveals the grains and the grain boundaries contained in the 

slice. It contains four grains marked by the letters Ac , Bc, Cc and 

D_, (where the subscript c refers to the circular slice), separated by  

four straight grain boundaries, gm, gn, go and kl and a curved one, 

gk, as sketched in F ig .5 ,1 (c ). At g three of the straight and one of 

the curved grain boundaries meet. This point is enclosed by a circle in 

the figure. Similarly, F ig .5 .1 (b ) is an optical micrograph for a polished 

Ge elliptical slice. It also, contains two junction points similar to g in 

F ig .5 .1(a) with some slight differences (these junction points are en

closed by two circles, F ig .5 .1 (d ), and each confines portions from four 

grains similar to grains Ac, Bc, Cc and Dc, in F ig .5 .1(a) and marked 

by the letters Ae, Be , Ce and De, where the subscript e refers to the 

elliptical slice. The first circle (from the left) encloses four straight
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H<*. 5.1. ( a )  3 \  o p t i c a l  m i c r o g r a p h  s h o w i n g  a  c h e m i c a l l y  p o l i s h e d

g e r m a n i u m  ( c i r c u l a r  c r o s s  s e c t i o n )  s l i c e ,  r e v e a l i n g  f o u r  g r a i n s .  

\ c  l i c  C c  a n d  l ) c .

( h )  3 \  o p t i c a l  m i c r o g r a p h  s h o w i n g  a  c h e m i c n i l )  p o l i s h e d  g e r m a n i u m  

( e l l i p t i c a l  c r o s s  s e c t i o n )  s l i c e .



(c )

(d )

Fig. 5.1. (c ) A schematic sketch for the .grains observed in (a ),  

(d ) A schematic sketch for the grains observed in 

(b ) .



grain boundaries, mg, ng, og and gl, joined at g , similarly, the second 

circle encloses the four straight grain boundaries, Ig, qg , ng and og, 

which are joined at g .

The elliptical Ge slice contains also a grain Ee , enclosed by the 

straight grain boundaries jo, pi and a corrugated one ol. The grain 

boundaries are terminated at the circumference of the slice, at points 

m, n o, and 1 in the case of circular slice and at m, n, j, p , n , o and 

1 for the elliptical one.

5.1.2. SC ANN ING  ELECTRON M ICROSCOPY.

A scanning electron microscope was used to observe the slices at 

higher magnification in order to reveal more about the shape of the 

grain boundaries, particularly the curved one. F ig .5.2 shows a scan

ning electron micrograph for the curved grain boundary, gk in 

F ig .5 .1 (c ). It starts at k being straight, then it curves between b 

and c.and then it is stepped as between d and g . So, the closer look 

to the curved grain boundary, gk, shows that it consists of faceted 

grain boundaries.

5.1.3. LAU E  BACK-REFLECTION X -RAY DIFFRACTION.

The orientations between the four grains, Ac , Bc , Cc and Dc, in 

the slice (F ig .5 .1 (a )) were determined using the Laue back-reflection 

X-ray method (Cullity, 1979). In this method a Ge slice was attached with 

plasticine to a two dimensional translatable holder, and a tungsten 

(35Kv, 25ma) X -ray beam was made incident for 30 minutes on one of 

the grains in the slice. The specimen-to-film distance was fixed at 3
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cm. F ig .5 .3 (a ) , (b ) , (c ) ,  and (d ) show the diffraction patterns taken 

from grains Ac , Bc, Cc and Dc , respectively. These patterns have been 

obtained from the various grains by moving the specimen, between 

exposures, in two directions at right angles in the plane of the slice 

surface, this surface being perpendicular to the incident x -ray  beam. 

Each diffraction pattern consists of spots lying on hyperbolae, or 

straight lines. This is due to the fact that Laue reflection spots from 

planes belonging to different zones lie on the surface of imaginary cones 

whose axes are the zones axes. Depending on the angles between those 

zone axes and the x -ray  incident beam, the film, placed between the 

specimen and the x -ray  source to record the diffraction pattern, 

intersects these cones in spots lying on hyperbolae or straight lines. 

Examination of these patterns showed that they are similar; each has 

two mirror elements of symmetry at right angles to each other and in

dicated by mi and nu, respectively. The pattern pairs Ac-B c , Bc-C c , 

Cc-D c, Dc-A c are found to be rotated with respect to each other by  

the angles (110.0° ±  0.5°), (32.0° ±  0.41°), (71.0° ±  0.5°) and (71.0° ±  0.5°) 

respectively, about the direction normal to their planes. This normal 

will be determined by indexing the four patterns using the method 

explained by (Cullity, 1979). Fig.5.4 (a ), for example, is a tracing of the 

photograph shown in F ig .5.3(a ) .  It shows some of the important spots 

numbered for reference. The poles of the planes causing these num

bered spots are plotted stereographically in F ig .5 .4 (b ), using a Wulff 

net. The great circles W, X , Y and Z are drawn through 4 sets of 

poles corresponding to the hyperbolae of spots on the film. These cir

cles connect planes of a zone and these zones are, P ^ , P^» Py and 

P£, respectively, and shown as open circles in the figure. The 4 zone 

axes, P ^ , Px> Py and Pg. are indexed as [211 ], | 2 ll ], [ 121 ] and
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• 5.3» The laue-back reflection x-ray diffraction patterns from Ge specimen In F ig .5 .1(a): (a) Grain A q , (b) Grain Bc , (c)
Grain Cc , and (d) Grain Dc> m, and m, indicate the po
sition of two mirror planes perpendicular to each other.



Fig. 5

(b )

.4. (a ) A tracing of the diffraction pattern spots in 
Fig.5.3 (a );

(b )  A stereographic projection corresponding to the laue 
back reflection pattern in ( a) t



[ 121 1, respectively. The pole number 0 is the centre, of the projection 

and corresponds to the specimen normal and has the index {110].

From the orientation relationships which have been established above 

between the 4 diffraction patterns, one can assign I  = 3, 27, 3 and 3 

for the grain boundaries between grain pairs A c-B c , Bc-C c , Cc~Dc and 

Dc-A c, respectively, and the zone axis (110] is common for all the 

grains. The four grains, Ae , Be , Ce and De, in F ig .5.1 (b ), have 

orientation relationships similar to those found for the four grains in 

F ig .5 .1 (a ). Grain Ee and its border were not investigated during this 

study.

5.2. M ICR O SCO PIC  INVESTIGATIONS.

The main aim of the next sections is to present the transmission 

electron microscope (TEM) investigations for the four grain boundaries 

identified in the previous section. Also they are concerned with the 

experimental study of 1=3, and 1=27 grain boundaries respectively using 

SAD, CBED and LACBED techniques.

Five electron microscopy specimens, listed in Table 5.1, four of the 

type assigned 1=3 and one of the typeZ=27, were prepared to determine 

the precise orientation relationships between the grains. Each specimen 

contains two grains and the boundary plane between them is either 

"edge-on” or "plan-view". Specimens i, ii, iii contain the grain pairs 

Ac-B c , Bc-C c , Cc-Dc and Dc-A c, respectively. Specimen iv contains 

grain pair Ae-D e and specimen v contains grain pair Bc-C c and the 

boundary assigned Z=27.
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Table 5.1. Types of the electron microscopy specimens.

Grain Specimen Type Orientation

No. Pair Edge-on Plan-view relation

Surface

normal

(ia) A -B  c c
(ib ) A -B  c c

(iia) C -D  c c

(üb ) C -D  c c
(iiia) D -A  c c

(iiib) D -A  c c

(iva) A -D e e

(ivb ) A -D  e e

(ivc) A -D e e

(va) B -C  c c

(vb ) B -C  c c

X

X

X

X

X

X

X

X

X

X

1=3(1 TT)X [ n ° ] x

i=3(l TT)X U H ] x

2=3(1 H ) x [H 0 ]x

2=3(1 ï ï ) x [1 11]x

2=3(1 Tï)x [U 0 ]x

2=3(1 ï ï ) x [1 H ] x

2=3( 112)x 11101X
2=3( T12)X [1 1T]X

2=3( Tl2)x [ T12]X

2=27(5 52)x 11101X

2=27(5 52)x 15 52]x

X



Each specimen has been studied in a PHILIPS EM400 electron micro

scope operating at 120 KV(or otherwise stated). A cold stage double-tilt 

specimen holder was used to hold the specimen and to keep its temper

ature down to liquid nitrogen temperature to minimise diffuse electron 

scattering. The grains have been imaged and SAD, CBED and LACBED 

patterns taken from each grain and the grain boundary region. The 

patterns and images were then carefully studied.

5.2.1.1 =  3 "ED G E -O N " SPECIM ENS "ia", "iia" AN D  "iiia".

The bright-field (BF ) micrographs which have been taken from the 

"edge-on” specimens "ia", "iia", "iiia" showed that the grain boundary

of each specimen is quite flat. For each specimen of the above three

the SAD, CBED, and LACBED patterns were taken from each grain and 

from the grain boundary. These patterns are of the type <110>. X and 

H will be used from now on to refer, respectively, to the two grains in 

each specimen. F ig .5.5 is a BF image taken from specimen "ia".

F ig .5.6, 5.7 and 5.8 are the SAD, CBED, and LACBED patterns, re 

spectively, taken from the specimen "ia" grain pair and from the grain 

boundary.

The SAD patterns in F ig .5.6 have been solved and indexed for both 

grains and grain boundary. The careful study of these patterns showed 

that the SAD patterns from grains Ac and Bc are of the type <110> and 

rotated by an angle 70.5° (or its complement) with respect to each other 

about the common zone axis ¡llOJ^. In fact the author has chosen to 

index the <110> zone axes as and [101|  ̂ with respect to the two

crystal coordinate frames. This implies that the orientation relationship
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20 S?*7
5 000 l ? n

Fig. 5.6(a). 1 - ( 1 1 0 | ;  L o w - c a m e r a  l e n g t h  S A D  p a t t e r n  w a s  t a k e n  

f r o m  G r a i n  A c .



20
£ n n n o ^ -

Fig. 5.6(a). 2 - | 1 1 0 | ;  H i g h - c a m e r a  l e n g t h  S A D  p a t t e r n  w a s  t a k e n  

f r o m  G r a i n  A c .



20 9000
6 0 0 0 l ? n

Fig. 5.6(b). 1 - [ 1 0 1 ] (1 L o w - c a m e r a  l e n g t h  S A D  p a t t e r n  w a s  t a k e n

f r o m  G r a i n  B „ .
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5 000800

Fig. 5.6(b). 2 - [  1 0 1 1  H i g h - c a m e r a  l e n g t h  S A D  p a t t e r n  w a s  t a k e i

f r o m  G r a i n  B c .
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Fig. 5.6(c). 1 - [ 1 1 0 ] ;  / [ 1 0 1 ] (1 L o w - c a m c r a  l e n g t h  S A D  p a t t e r n  w a s  t a k e n  

f r o m  g r a i n  b o u n d a r y  b e t w e e n  G r a i n s  A c  a n d  B c .

A  t r a c e  o f  t h e  b o u n d a r y  p l a n e  ( 1 1 1 ) ^  i s  i n d i c a t e d .



t a k e n  f r o m  g r a i n  b o u n d a r y  b e t w e e n  G r a i n s  A c  a n d  B c .  

A  t r a c e  o f  t h e  b o u n d a r y  p l a n e  ( 1 1 1 ) ^  i s  i n d i c a t e d .

F ig .  5 .6 (c ) .  2-[U0]>/[101]  ̂ High-camera length SAD pattern was



«<»

Fig. 5.7(a). [ 1 1 0 1 ;  H i g h - c a m e r a  l e n g t h  C B E D  p a t t e r n  w a s  t a k e n  

f r o m  G r a i n  A c .



F ig .  5 .7 (b ) .  [101](1 High-camera length CBED pattern was taken

from Grain Bc.
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F'g- 5.7(c). |iioy|ioi| H i g h - c a m e r a  l e n g t h  C B E D  p a t t e r n  w a s

t a k e n  f r o m  g r a i n  b o u n d a r y  b e t w e e n  G r a i n s  A c  a n d  B c .  

A  t r a c e  o f  t h e  b o u n d a r y  p l a n e  ( 1 1 1 ) ;  i s  i n d i c a t e d .



20 6137
€  00210 :

F 'g .  5 .8 (a ) . [110]; LACHEO pattern was taken

from Crain Ac.



5 .8 (b ) .  iioi|(1 LACBED pattern was taken

from Grain Bc.



20 «132
S  0 Q 0 ? 0 C

5.8(c). [ 1 1 0 1 , 7 1 1 0 1 1  L A C B E D  p a t t e r n  w a s  t a k e n

f r o m  g r a i n  b o u n d a r y  b e t w e e n  G r a i n s  A c  a n d  B c .  

A  t r a c e  o f  t h e  b o u n d a r y  p l a n e  ( 1 1 1 ) ;  i n d i c a t e d .



20 2 « ? 9

6 000*00

. 5.8(d). |  1 1 1  l  S A D  p a t t e r n  w a s  t a k e n  

f r o m  a s  =  3 (  1 1 1  )k  " p l a n - v i e w "  s p e c i m e n .



• 5 .8 ( c ) .  [ 111 CBED pattern >vas taken
f r o m  a  l  =  3 (  1 1 1  ) ;  " p l a n - v i e w 7'  s p e c i m e n .



5.8(1). | 1 1 1  ]■ L A C B E D  p a t t e r n  w a s  t a k e n

f r o m  a  i  =  3 (  1 1 1  ) } " p l a n - v i e w "  s p e c i m e n



5.2.3. THE 1 = 3 "EDGE-ON" SPECIMEN "iva".

F ig .5.9 is a BF image taken from specimen "iva" from an area con

taining the grain boundary. The low- and high-camera lengths SAD 

patterns taken from grains Ae and De and grain boundary are shown 

in F ig .5 .10(a), (b )  and (c ) ,  respectively. The SAD pattern from grain  

Ae can be indexed as IllOJ^. The angle of rotation of these two patterns 

about the axis [110|̂  is 70.5°. The SAD pattern from the grain boundary 

have been indexed and some of the indices of the diffraction spots in

dicated as well as the trace of the boundary plane which in this case 

has the index (112)^. So, the boundary plane in the case of "iva" 

specimen is of the ty p e ! = 3( Il2 )^ . F ig .5 .10 (d ), (e ) and ( f )  are the 

CBED patterns taken from the grain pairs A e and De and the grain 

boundary plane (see section 5.3.2 for the explanation of the symmetry 

of these patterns).

F ig .5.9 was taken from an area containing the I  = 3( 112 )^ grain 

boundary where it appeared to be flat at lower magnification. In fact 

this grain boundary was not exactly flat as shown in the figure but it 

is observed microscopically stepped in some areas. F ig .5.11 is one of 

our observations which is taken from an area containing the grain 

boundary where it is microscopically stepped. Also, the I  = 3( 112 )^  

grain boundary is found to be unstable in some areas and dissociated 

intoz = 3( Il2  ) x , 1 = 3( 111 ) k, 1 = 9( 212 ) p andS = 9( 14l ) R as 

observed and recorded in the BF image shown in Fig. 5.12 (a ).  

E ig.5 .12(b) shows the SAD pattern taken from the dissociated boundary 

( f ig .5 .1 2 (a )).
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grain
l ) e

Fig. 5.9. A  b r i g h t  field m i c r o g r a p h  t a k e n  f r o m  " i \ a "  G e  " e d g e - o n "  s p e c i m e n





[ 1 1 0 ] ;  L o w -  a n d  H i g h - c a m e r a  l e n g t h s  S A D  p a t t e r n s  

w e r e  t a k e n  f r o m  G r a i n  A e .





( 1 0 1 J L o w -  a n d  H i g h - c a m e r a  l e n g t h s  S A I )  p a t t e r n s
r

w e r e  t a k e n  f r o m  G r a i n  B c .



20 «494e ooc:

Fig. 5.10(c). 1 - [ 1 1 0 ] ^  / [ 1 0 1 ] ( l  L o w - c a m e r a  l e n g t h  S A D  p a t t e r n  w a s

t a k e n  f r o m  g r a i n  b o u n d a r y  b e t w e e n  G r a i n s  A e  a n d  B e .  

A  t r a c e  o f  t h e  b o u n d a r y  p l a n e  ( 1 1 2 ) ^  i s  i n d i c a t e d .



Fi«. 5.10(c). 2 - 1 1 1 0 J ;  / |  1 0 1 1 (1 I l i g h - c a m e r a  l e n g t h  S A L )  p a t t e r n  w a s

t a k e n  f r o m  g r a i n  b o u n d a r y  b e t w e e n  G r a i n s  A e  a n d  B e .  

A  t r a c e  o f  t h e  b o u n d a r y  p l a n e  ( T 1 2 ) ^  i s  i n d i c a t e d .



I





trace of (he

1)01111(1 planein

(MM)

Fi». 5.1«. l ow- and lii«b-camcra length CHI-'.I) patterns: 4d> |IIO| , from 

grain Ac. (e) |101|t, from «rain l)e and (f) |IIO| / 11011 from the 

boundary between the «rain pair \t,-l)c. \ trace of (lie boundary

plane (112), is indicated.



Hg. 5.1 1. A  b r i g h t  f i e l d  m i c r o g r a p h  o f  t h e  s t e p p e d  I  —  3 (  1 1 2  ) } " e d g e - o n '

g r a i n  b o u n d a r y



5.12 .  ( a )  A  b r i g h t  f i e l d  m i c r o g r a p h  o f  t h e  f a c e t t e d  I  =  3 (  1 1 2  ) - ' e d g e - o n '

g r a i n  b o u n d a r y .

( b )  S A D  p a t t e r n  f r o m  t h e  f a c e t t e d  g r a i n  b o u n d a r y  i n  ( a ) .



The comprehensive study of the structure of the 2 = 3( I l2  ) x grain 

boundary in Ge has required the preparation of three different types 

of thin specimens for TEM investigations. One was a "plan-view” speci

men where the direction I 112 was normal to the boundary plane (as 

shown schematically in F ig .5 .1 3 (a )). The other two were "edge-on" 

specimens where the directions 1110]  ̂ and | 111 were perpendicular to 

the specimen surfaces and lie in the boundary plane (I l2 )^  

(F ig. 5 .1 3 (b )).

The advantage of preparing the above mentioned three specimens was 

that, using a double-tilt specimen holder, one has the facility to make 

the electron beam sweep a wide range of incident angles with respect 

to the boundary. For example, making use of the two "edge-on" speci

mens, one can make the electron beam parallel to the directions indicated 

in F ig .5 .13(c) keeping the boundary plane edge-on all the time to avoid 

double diffraction.

Extensive SAD and CBED techniques have been used to accomplish 

this study. In the case of "edge-on" specimens SAD and CBED patterns 

have been taken from both grains and grain boundary for some of the 

low index zones lying between the directions |1H% and I H I  lx, 

(F ig .5 .1 3 (c )). Also in the case of the "plan-view" specimen the I 112 

SAD and CBED patterns have been obtained.

5.3. 2 -  3( 112 ) k GRAIN BOUNDARY.

5.9



Fig. 5.13.  A schematic diagram showing: (a) [1 11]scnemaxic uidgiaa* >•—  ̂ and [110] x
surface normal "edge-on" specimens, and (b ) [ Ï12] x

surface normal "plan-view" specimens, (c ) A schematic 
diagram showing some of the directions enclosed between 
[ 1  T T ]  x and [ 1 1 0 ]  x directions and lie in the boundary

plane ( T l 2 )  x .



Shown in F ig .5 .14(a) is a dark field (D F ) image was taken from the 

’’plan-view" specimen "ivc" and the electron beam was parallel to the 

direction 1112 1̂  (this was achieved by tilting the specimen by the angles 

8.5° and 3.0° clockwise relative to the coordinate axes of the double tilt 

specimen holder). The areas marked by Ae and De contained the single 

grains Ae and De respectively (F ig .5 .1 (a ) ) ,  while that marked by  

Ae-D e contained both grains Ae and De . The CBED patterns which were 

taken from the single grains Ae and De are shown in F ig .5 .14(b) and 

F ig .5 .14(c), respectively.

F ig .5 .14(d) shows the | Tl2 SAD pattern taken from the "plan-view" 

specimen from an area containing the grain boundary. The SAD pattern 

consists of two sets of reflection spots. The first are of the type 000, 

i l l  220^, 3 l l  ^ which represent the crystal reflection spots. The 

second set contains two subsets of grain boundary reflection spots. 

The first subset contains spots of the t y p e - i - i i  ,̂-1* 110^,

20 l^ , and y  The second subset contains spots of

the type y  ~

Fig. 5.14(e) shows the | 112 CBED pattern taken from the same 

area. It has a mirror symmetry plane, m(110)^, perpendicular to 

[220]^ direction.

5.3.1. THE I 112 \x SAD AND CBED PATTERNS.
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Fi°. 5.14. ( a )  A  d a r k  f i e l d  (1)1 )  m i c r o g r a p h  t a k e n  f r o m  t h e  s p e c i m e n  " i v c "  

f r o m  a n  a r e a  c o n t a i n e d  t h e  s i n g l e  g r a i n s  A c ,  I ) e  a n d  a  " p l a n - \ i e \ v "  

a r e a  c o n t a i n e d  t h e  g r a i n s  A c - I > e .  T h e  e l e c t r o n  b e a m  w a s  p a r a l l e l

t o  t h e  d i r e c t i o n  | 1 1 2  | - .



( b )

F i a  5.14. ( * 1 5 1 - 1 1  )  p a t t e r n s :  ( b )  | 1 

« r a i n  l ) c .



12 I , from «rain \ e, (c) 112 1 |p (Vom



Fig. 5.14(d). [  1 1 2  | ,  S A D  p a t t e r n  w a s  t a k e n

f r o m  a  E  =  3 {  T 1 2  V  " p l a n - v i e w "  s p e c i m e n .



f r o m  a  S  =  3 (  1 1 2  \  " p l a n - v i e w "  s p e c i m e n .

T h e  a r r o w s  i n d i c a t e  t o  t h e  t r a c e  o f  t h e  m i r r o r  m ( 1 1 0 ) ^ .



§
 

w

Fig. 5.14(e). 2 - |  1 1 2  ] -  h i g h - c a m e r a  l e n g t h  C B F J )  p a t t e r n  w a s  t a k e n

f r o m  a  I  =  3 (  1 1 2  ) ;  " p l a n - v i e w "  s p e c i m e n .

T h e  a r r o w s  i n d i c a t e  t o  t h e  t r a c e  o f  t h e  m i r r o r  m ( l  1 0 ) À .



5.3.2. THE 1110IÀ SAD  A N D  CBED PATTERNS.

The SAD patterns which were taken from specimen "iva” grains Ae 

and De are shown, previously, in F ig .5 .10(a) and ( b ) ,  respectively. 

They are based on the i l l  ̂  and 220 ̂  types reflections and the forbidden 

002^ type reflection. F ig .5 .10(c) was taken from an area containing the 

boundary plane. The crystal reflection spots are indexed. F ig .5 ,10(c) 

shows no evidence of the grain boundary reflection spots. F ig .5 .10(d) 

and (e ) are the IllOJ^ and |101|̂  low- and high-camera lengths CBED 

patterns taken from the same grains above. F ig .5 .10(f) is the |110Ĵ  

CBED pattern taken from the grain boundary. It exhibits a mirror 

symmetry perpendicular to the boundary plane, m (l l l )^ ,  a mirror par

allel to the boundary plane, m (Il2 )^ , and a diad perpendicular to the 

pattern plane, 21110] .̂

5.3.3. TH E I lYT 1̂  SAD  A N D  CBED PATTERNS.

F ig .5.15 shows the CBED and SAD patterns, which were taken from 

the I 111 surface normal "edge-on" specimen, "ivb ", when the electron 

beam was parallel to the zone axis ( 111 ]^. F ig .5.15(a ) was taken from 

grain A e , F ig .5 .15(b) from grain De and F ig .5 .15(c) from the grain 

boundary. The SAD pattern, which was taken from the grain boundary, 

is shown in F ig .5 .15(d). The crystal reflection spots from both grains 

were in complete coincidence and undistinguishable from each other. 

Also, F ig .5 .15(d) shows no evidence of the grain boundary reflection 

spots or streaks. The symmetry exhibited by the low- and high-camera 

length CBED patterns, F ig .5 .15(c), are 3m (BF and whole pattern), i.e .

a triad perpendicular to the pattern plane, 3[ 111 Ĵ , and three mirror
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|l 11 |, l ow- and high-camera length ('BKD patterns taken from 

the "i\l>" "edge-on" specimen from grains: (a) Ae, (b) l)c and (c) 

Ac-I)c. \ trace of the boundary plane is indicated.



Fig. 5.15. ( d )  L o w -  a n d  h i g h - c a m e r a  l e n g t h  S A D  p a t t e r n s  t a k e n  f r o m  t h e

" i \ h "  " e d g e - o n "  s p e c i m e n  f r o m  t h e  g r a i n  b o u n d a r y  a r e a .



planes, m(110)x, m(101)x, and m(011)^, perpendicular to the directions 

1220) ,̂ [2021 ,̂ and [ 022 )^, respectively.

5.4. 2 =  27 GRAIN  BO UND AR Y.

5.4.1. THE I  *  27 "edge-on" specimen "va".

A bright-field image for an area containing the 1=27 grain boundary 

in the "edge-on” specimen ”va” is shown in F ig .5.16, where the electron 

beam direction was exactly parallel to the {1101  ̂ direction. The figure  

shows that the boundary is not flat as was shown before in the optical 

micrograph in F ig .5 .1 (a ), (the boundary plane between grains Bc and 

Cc) ,  but has a complex microscopic structure. It is corrugated between 

points g&h, o&n, and it was also unstable between points h&o, where 

the 1=27 boundary was dissociated into first and second order symmetric 

tilt boundary, 1=3 and 9, respectively as listed in Table 5.2.

Beside1 grains Bc and Cc , F ig .5.16 shows two other big microscopic 

grains Ec and Fc . There are some tiny subgrains, e .g . Gc , left uni

dentified in this study.

The SAD and CBED patterns have been taken from both grains Bc 

and Cc and from the grain boundary ( the segments marked ”gh” and 

"on” in F ig .5.16), and shown in F ig .5.17 and 5.18, respectively. The 

electron beam direction was exactly parallel to the common zone axis 

[110)^ and the patterns from Bc and Cc were found to be misoriented 

by an angle 0=31.6° and the boundary plane index was (552)^. A trace
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Fiil. 5.16. A bright field micrograph of the dissociated! 27(5 52 sym 

metric tilt boundary from the "va" "edge-on" Ge specimen. It con 

tained grains Bc, Cc and the microscopic grains Ec and Fc.



T a b le  5.2. T h e  d is so c ia te d  2=27(5 52) t i l t  b o u n d a ry .

Segment Grains Figure Orientation relation
and interface plane

2=27(5 52)x 
2=27(5 52)x 
2=9( 221)x 

2=3( Tll)x 
2=3( Tll)x 
2=3(1 Tl)x 
2=3(1 Tl)x 
2=3(1 T2)x 
2=9(2 2l)x *

*  The indexing of the planes are quoted with respect to 
the first grain in each grain pair of the second column.

# unidentified

gh B -C 5.18

on B-C as 5.18

hk C-E 5.21

hi B-E 5.19

Ik E-F 5.20

km C-F 5.22

z j C-F as 5.22

mz C-F as 5.22

lw B -F 5.23

. #JO C-F

#wo B -F -G



F i < $ .  5 . 1 7 .  l n « l /  S A D  p a t t e r n s  w e r e  t a k e n  f r o m  t h e  " e d g e - o n "  s p e c i m e n  " v a " :

( a )  f r o m  g r a i n  B c ,  ( b )  f r o m  g r a i n  C c ,  a n d  ( c )  f r o m  t h e  b o u n d a r y  o f  

t h e  g r a i n  p a i r  B c - C c .  A  t r a c e  o f  t h e  b o u n d a r y  p l a n e  i s  i n d i c a t e d .



Fig. 5.IS. [110|). C B E I )  p a t t e r n s  w e r e  t a k e n  f r o m  t h e  " e d g e - o n  s p e c i m e n  > a  .

( a )  f r o m  g r a i n  B c ,  ( b )  f r o m  g r a i n  C c ,  a n d  ( c )  f r o m  C r a i n  

b o u n d a r y  s e g m e n t s  " g h "  a n d  " o n " .  A  t r a c e  o f  t h e  b o u n d a r y  p l a n e

is indicated.



of the plane (552)^ is indicated in F ig .5 .17(c) and 5 .18(c). Since the 

grains Bc and Cc were misoriented by the angle 0=31.6° about [11OĴ  

and the boundary plane was of the type (552)^, thus segments "gh" 

and "on” were traces of grain boundaries of the type !  = 27( 552 )^.

The symmetry exhibited by the CBED pattern in F ig .5 .18(c), which 

was taken from the grain boundary! = 27( 552 ) x, are a mirror sym

metry perpendicular to the boundary plane, m(552)^, a mirror parallel 

to the boundary plane, m (Il5 )^ , and a diad perpendicular to the pat

tern plane, 211101̂ .

Similarly, the CBED patterns in F ig .5.19, 5.20, 5.21, 5.22 and 5.23 

have been taken from the grain boundary segments "h i", "lk ", "hk” , 

"km" and "lw” , respectively, and the grain pairs on both sides of each 

segment. At point "h" the I  = 27( 552 ) x boundary dissociated into 

!  = 3( 111 ) Jl (segment hi) a n d ! = 9( 221 )^ (segment h k ). At point 

"1" th e ! = 9( 221 ) x (segment lw) dissociated into I  = 3( 111 )^ (segment 

Ih) a n d !  = 3( 111 ) x (segment lk ). At point ”k" the I  = 9( 221 ) x 

(segment hk) dissociated in to ! = 3( i l l  ) x (segment km) and 

!  = 3( 111 )^ (segment k l). Segment mz was of the boundary type !  = 

3 as km but formed on (  l l2  ) x plane. Segment "z j" was identical to 

"km". The examination of the boundaries between j&o and w&o revealed 

the presence of a number of tiny steps, and left for future study. A  

sketch of th e ! = 27( 552 )^ boundary is shown in F ig .5.24, where each 

segment has been indexed and identified, except the segments "jo" and 

"wo".
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Fig. 1 9. C ' B K l )  p a t t e r n s  w e r e  t a k e n  f r o m  t h e  " e d g e - o n "  s p e c i m e n  " v a "  f r o m  

g r a i n s :  ( a )  B c ,  ( b )  E c ,  a n d  ( c )  C r a i n  b o u n d a r y  s e g m e n t s  " h i " .  A  

t r a c e  o f  t h e  b o u n d a r y  p l a n e  i s  i n d i c a t e d .



Fig. 5.20. (  M C I )  p a t t e r n s  w e r e  t a k e n  f r o m  t h e  " e d g e - o n "  s p e c i m e n  " v a "  f r o m  

g r a i n s :  ( a )  E c ,  ( b )  I  c ,  a n d  ( c )  ( ¡ r a i n  b o u n d a r y  s e g m e n t s  " I k " .  A  

t r a c e  o f  t h e  b o u n d a r y  p l a n e  i s  i n d i c a t e d .



I' ¡" . 5 . 2  1 . (  HI D patterns were taken from the "edge-on" specimen "\a" from 

grains: (a) Cc, (h) Kc, and (c) (.rain boundary segments "lik". \ 

trace of tlie boundary plane is indicated.



| 'i<i 5  2 2  ( H I  l> patterns were taken from the "edge-on" specimen ">a" from 

«•rains: (a) ( c . (b) f c . and (c) (.rain boundary segments "km". \

trace of the boundary plane is indicated.



H < r .  5 . 2 3 . C B K I )  p a t t e r n s  w e r e  t a k e n  f r o m  t h e  " e d g e - o n "  s p e c i m e n  " \ a "  f r o m  

g r a i n s :  ( a )  B c ,  ( h >  F c ,  a n d  ( c )  ( « r a i n  b o u n d a r y  s e g m e n t s  " I v v " .  A  

t r a c e  o f  ( l i e  b o u n d  a n  p l a n e  i s  i n d i c a t e d .



Fiff 5 24 A sketch of the grain boundary geometry of the dissociated 
S * ' 1=27(5 52K symmetric tilt boundary. The traces of the

A

boundary planes are indexed.



5.4.2. THE z -  27 "PLAN-VIEW" SPECIMEN "vb".

A "plan-view” specimen, where the axis f 552 Jx was perpendicular 

to both the surface of the specimen and the boundary plane, as shown 

schematically in F ig .5.25, was prepared.

F ig .5.26 is a BF image taken from l = 27( 552 "plane-view" spec

imen "vb " where the electron beam was parallel to the direction 

I 552 Jx (this was achieved by tilting the specimen by the angles 1.5° 

anticlock wise and 1.0° clockwise relative to the coordinate axes of the 

double tilt specimen holder). The area marked by Bc and Cc contained 

the single grains Bc and Cc (F ig .5 .1 (a ) ) ,  and that marked by Bc-C c 

contained both the grains Bc and Cc in plan-view. F ig .5.27(a ) and

(b )  are the I 552 Ix CBED patterns taken from the single grains B andc

Cc, respectively, and F ig .5.27(c) is the high-camera length CBED 

pattern taken from Bc.

F ig .5.28 is a SAD pattern taken from an area containing the 

undissociated Z = 27 ( 552 ) x "plane-view" boundary (area marked by  

Bc-C c in F ig .5.26. The electron beam (accelerated by lOOkv), was

exactly parallel to [ 552 ^  direction. It is based on the crystal reflection 

spots 220x , 115 x and 135 x and some grain boundary reflections spots 

and/or double diffraction spots coming from higher order Laue zones 

in both grains. F ig .5.29(a) and (b )  are low- and high-camera lengths 

I 552 ^  CBED patterns taken from the same area defined above. The 

whole pattern and BF exhibit no symmetry other than the identity ele

ment of symmetry.
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[5 52] x

Fig. 5.25. A schematic diagram for the Z=27(5 52). bicrystal
A



F i g .  5 . 2 6 .  a  bright field micrograph taken from the I -2 7 (5  52 )• "plan-view"

(ie  specimen





Fig. 5.28. I - |  5 5 2  l  l o w - c a m e r a  l e n g t h  S A D  p a t t e r n  w a s  t a k e n  

f r o m  a  I  =  2 7  ( 5 5 2 ) ;  " p l a n - v i e w "  s p e c i m e n .



Fig. 5.28. 2-i 552 | High-camera length S A D  pattern was taken 
from a s = 27( 552 \ ''plan-view" specimen.



F ig .  5 . 2 9 .  |5 52 |. CUED patterns: (a) Low-camera length and (b) Migli-
camera length.
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6.1. GENERAL REMARKS.

The objective of this study can be restated here briefly as follows. 

The experimental work programme was divided into two parts. The first 

part was concerned with the preparation of germanium bicrystal speci

mens for electron microscopy. The second part was devoted to obtaining 

SAD, CBED and LACBED patterns from these bicrystal specimens. 

Many difficulties were faced in the specimen preparation process; for 

example, the fragility of germanium was one of the major obstacles and 

required modifications of the methodology of specimen preparation in 

order to be overcome. Also, a new method has been adopted and used 

successfully for preparing 1=3( 111 )^ , I=3( Il2 and 1=27( 552 

"edge-on” and "plan-view" specimens (see chapter 3 ). Hence, the first 

part of the experimental work has been carried out completely as 

planned.

SAD, CBED, and LACBED patterns have been obtained and photo

graphed from the above specimens, i.e . 3 "edge-on" and 3 "plan-view" 

specimens. In the case of "edge-on" specimens 3 different patterns 

(SAD or CBED) have been taken from each specimen; one straddling 

the grain boundary and one from each of the adjacent grains. A dis

cussion of these patterns might be expected next, but complications 

arose which need to be discussed first. These unforeseen difficulties 

are concerned with the fact that the I=3( 112 and 1=27( 552 

boundaries were found not to be planar, but were generally facetted 

or dissociated. Secondly, the interpretation of CBED from "plan-view" 

and "edge-on" bicrystal specimens is not as straight forward as was 

originally envisaged. These two topics will be considered before dis

cussing the experimental results described in chapter 5.
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6.2. INTERFACIAL FACETTING A N D  DISSOCIATION.

The words facetting and dissociation imply the change in the atomic 

structure of a boundary to produce special configurations in order to 

lower the total contribution of this boundary to the free energy of the 

grains present on either side of the boundary. Indeed, if a boundary 

produces a lower energy configuration without creation of new grains, 

other than the parent grains, it is called a facetted boundary whereas, 

if a boundary produces a lower energy configuration with creation of 

new grains, in addition to parent grains, it is called a dissociated 

boundary. In the case of CSL boundaries it has been suggested that 

interfacial energy is inversely correlated to the density of coincident 

sites (Grim m er et al. 1974). Therefore, the interfacial energy would be 

expected also to depend on the type of the boundary plane, so that 

different facets of the same boundary have different energies. This 

model implies that, for example, the grain boundaries 1= 3, 9, or 27 

are stable when they form on the dense planes { 111 }, {  221 } or { 552 } 

(see Fig. 2 .6 (a ), (b )  and (c ) in chapter 2 ), respectively, and also that 

a j r  3 boundary which has formed on a { 112 } plane would have rela

tively higher energy than that for the boundary formed on a {  111 } 

plane.

The facetting and dissociation behaviour of grain boundaries illus

trates that the thermodynamic driving force is acting in such a way 

as to reduce or minimise interfacial energy. Let us consider that a 

boundary has facetted in order to attain a lower energy configuration. 

Hence, the sum of the energies of the two facets must be less than or 

equal to the parent boundary energy, i.e .

A  * A  + A  (6.1)
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where y is the grain boundary energy per unit area and A is the area 

of the boundary plane. From the experimental point of view, A can be 

measured easily, but determinations of the energies y are difficult and 

only relative values can be obtained by standard techniques (e.g. Goodhew  

1980). For this reason, observations of facetting and dissociation are 

useful since they can provide some information concerning y.

The tendency of a grain boundary to acquire low energy configura

tions by facetting or dissociation mechanisms mentioned above has been 

appreciated and confirmed experimentally. For example, in the last 

decade significant transmission electron microscopy (TEM) and high re 

solution electron microscopy (HEEM) observations have been made of 

facetted and dissociated boundaries in the second and third order twins 

(see e .g . Cunningham et al. 1982, Vaudin et al. 1983, Bourret et al. 1985, 1986 

and Garg et al. 1988).

Some experimental evidence, reported by Goodhew (1980), showed that 

grain boundary energy varied with misorientation, inclination, impurity 

levels and temperature. Recently, a review of possible geometric criteria 

for low interfacial energy has been given (Sutton et al. 1987). Those cri

teria comprise:

( 1) low reciprocal volume density of coincidences sites;

( 2) high planar density of coincidences sites;

( 3) large interplanar spacing;

( 4) high density of locked-in rows of atoms; and

( 5) high planar density of coincidence sites at constant interplanar 

spacing.

These authors also made use of the available experimental observations 

to test these criteria, and found a significant number of experimental
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observations violating the first four of the criteria above. The last 

criterion is applicable for a limited number of cases, e .g . metal/metal 

or ionic/ionic interfaces but fails for metal/ionic interfaces.

In summary, we can say that there is no general and reliable theory 

available which can be used to predict grain boundary energies, and 

only a relatively small body of experimental observations has been re 

corded.

Now, we present and discuss some examples of specific observations, 

published by other workers, which are relevant to our work. First, 

we present some examples concerning dissociation and facetting. For 

example, S=27 interfaces could dissociate into X=3 and 9 boundaries which 

have higher planar densities of coincidence sites. A specific example 

is the Z = 3 {ill}^ / {I1 5 }11 boundary, which has low planar density of co

incidence sites, and is observed to be facetted to S = 3{111}X/{111}M, 

I  = 3{112}X/ {U 2 }JI boundaries, which have higher planar densities of 

coincidence sites (Sutton et al. 1987). Also, the I  =  9{111}^/{115}^ boundary 

is observed to be dissociated into I  = 3 { l l l } j l/{111}^ plus 

!  = 3{112}x/{112}lA boundaries for the same reason (Sutton et at. 1987). 

Secondly, we show how one can estimate relative grain boundary ener

gies from such observations. Bourret and Bacmann (1985b) observed a £=3( 

2 ll  ) boundary which dissociated intoS=3( 111 ) andX=9( 122 ) bound

aries, and, in another paper (Bourret et al. 1985), gave a calculated value 

for the energy of X=3( 2 ll ) boundary as Y^O.MJm2. The measured 

areas of the boundary planes of X=3( 2 ll  ),Z = 3 ( 111 ) and X=9( 122 ) 

boundaries, respectively, are A ^O .8232, A z=2.31a2 and A 3=0.67a2. 

Substituting into relation (6.1) one can therefore obtain
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0.29 x  0.82a2 ^ 2.31a2y2 + 0.67a2ys

or

y2 > (1.0 - 2.8 y3/9.714) (6 .2 )

6.3. INTERPRETATION OF CBED AND  LACBED PATTERNS FROM

"PLA N -V IE W " A N D  "E D G E -O N " SPECIM ENS.

In the course of this work it has been noticed that the observed 

symmetry of CBED and LACBED patterns, which were obtained exper

imentally from 1 = 3, and 27 grain boundaries in germanium "plan-view” 

and "edge-on" bicrystal specimens, did not always correspond to the 

anticipated bicrystal symmetry. We believe that these discrepancies have 

arisen for two reasons; firstly due to effects associated with an extended 

focal spot size, and secondly due to symmetry breaking inherent in the 

specimen preparation. These aspects are discussed separately below.

In previously published accounts of the interpretation of CBED sym

metry from "edge-on" bicrystal specimens, Schapink and Co-workers (Caron  

et at. (1985), Schapink et al. (1986) and Schapink (1986)), it Was assumed that 

the incident convergent beam has a point focus centred in the boundary 

plane as depicted in F ig .6. 1 (a ). It can be seen from the figure that the 

range of angles of incidence of the electron beam in this case is not 

equivalent in the adjacent crystals. As a consequence, the symmetry 

of CBED and LACBED patterns may not therefore correspond directly 

to that of the bicrystal. However, in the present work, we note that 

the incident beam in fact has an extended focus or "spot size", due to, 

firstly, the electron source not being a point source but an extended 

one, and secondly, the lens aberrations (see for example Edington (1976) 

and Chescoe et al. (1984) ) ,  and we believe that this is a most important
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(a)

boundary (b)

Fig. 6.1. A schematic diagram for an electron beam incident on:
(a) an "edge-on" specimen, and (b) a "plan-view" specimen.



consideration in the present context. Each point on the focal spot can 

be regarded as the point focus of a cone incoherently related to the cone 

corresponding to any other point. Only cones focused on points very 

close to interface irradiate both crystals. The cones focused on points 

between O and irradiate crystal 1 predominantly, and those between 

O and 02 irradiate crystal 2 predominantly. From the discussion above 

we would expect the CBED patterns obtained with relatively large spot 

sizes l^m) from such "edge-on" bicrystals to correspond to the 

superimposition of the patterns taken from the adjacent crystals sepa

rately, i.e. addition of the intensities of the two patterns. We shall 

refer to such patterns as exhibiting "complex symmetry", because this 

symmetry corresponds to the point symmetry of the dichromatic complex 

(see chapter 2) viewed along the appropriate direction. We note, 

therefore, that such patterns may be regarded as exhibiting antisym

metry, for example when an anti-mirror is present which relates a white 

disc, e .g . g^, to a black disc, g^. As spot size diminishes, the con

tributions to the final pattern from cones which irradiate both crystals, 

i.e . those focused at points close to the boundary, increases compared 

to cones which irradiate only one of the crystals. Under these circum

stances complex symmetry is no longer expected. Thus, for very small 

spot sizes ( *  lnm), i.e . where virtually all incident cones irradiate both 

crystals, lower symmetry patterns are expected. We would also anticipate 

this result if the convergence angle is increased. Hence we expect that 

LACBED patterns may show lower symmetry than the complex symmetry 

exhibited by CBED patterns obtained using the same spot size.

We now consider the case of "plan-view" specimens. As depicted in 

Fig.6.1 (b ) , when the focal spot is taken to be close to the boundary 

plane, it is seen that cones focused at each point between and 02,
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i.e . all cones, will irradiate both crystals. Thus, in this case, we would 

expect the CBED pattern to exhibit the symmetry of the bicrystal, and 

not that of the dichromatic complex as in the above case.

The second cause of discrepancy between observed and anticipated 

CBED symmetry, as mentioned in the introduction to section 6.3, arises 

due to symmetry breaking as a consequence of specimen preparation. 

In the case of "edge-on" bicrystals, provided the specimen surfaces are 

flat and perpendicular to the interfacial plane, no bicrystal symmetry 

will be broken. However, this is not the case for "plan-view" specimens. 

The ideal "plan-view" bicrystal specimen, which has smooth surfaces and 

where the boundary plane is situated exactly centrally, is depicted in 

F ig .6.2 (a ). Such a specimen would exhibit, for example, an anti-mirror 

and/or an anti-diad parallel to the boundary plane if these were present 

in the bicrystal group. On the other hand these antisymmetry elements 

would be broken if the boundary plane were not central and/or because 

of specimen surface roughness.

In summary, from the discussion above it can be seen that, taking 

these further aspects into account, we anticipate that CBED patterns 

obtained from "plan-view" specimens should exhibit bicrystal symmetry, 

but those taken from "edge-on" specimens should exhibit primarily 

complex symmetry for the spot sizes used in the present work. More

over, if any symmetry is broken by virtue of specimen preparation, we 

would expect only to see "the residue" of bicrystal or complex symme

tries in the "plan-view" and "edge-on" cases, respectively. Conse

quently, in the discussion of the observations of CBED and LAC BED 

patterns observed from individual interfaces to be presented in the 

following sections, we begin by considering the complex and bicrystal
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Grain 1 
Grain 2

(a)

, boundary plane

Grain 1
Grain 2_ «. boundary plane

(b)

. 6.2. A schematic diagram for a "plan-view" bicrystal specimen:
(a) an ideal bicrystal specimen where the position of the boundary 
plane is exactly at the centre of the specimen and the specimen 
surfaces are smooth, and (b) a real bicrystal specimen where the 
boundary plane is not exactly at the centre of the specimen and the 
specimen surfaces are rough.



symmetries. The reader can then appreciate that the observed symme

tries are in fact the residues of the complex and bicrystal symmetries 

as discussed above. For the reader’s convenience we have also included 

the single crystal patterns obtained from the adjacent crystals (see 

chapter 5 ), which facilitate the visualisation of the complex symmetry.

6.4. INTERPRETATION OF SAD PATTERNS.

SAD patterns taken from bicrystal specimens can exhibit three types 

of distinct reflections, i.e . crystal, double diffraction and grain 

boundary reflections, and we begin this section by explaining how these 

various reflections can be identified. Firstly we outline the process for 

indexing crystal reflections, recalling that the concepts of the reciprocal 

lattice and structure factors were introduced in chapter 3. In the 

present work we are studying germanium crystals which have fee lattices 

in direct space, and hence have bcc reciprocal lattices (see F ig .3.5). 

The unit vectors of the non-primitive fee unit cell are ej “  [100], e2 =  

[OlOj and e3 =  [001 ] and hence the non-primitive reciprocal unit cell vec-

tors areej =  100, e2 =  010 and e3 =001. However, it is also necessary 

to consider the reflections systematically absent according to E q . (3.5) .  

These correspond to the set due to the fee direct lattice, i.e . only re 

flections with h, k and 1 unmixed are present, and , in addition, ab

sences due to the double atom-basis, i.e . reflections where h + k + 1 = 

4(n + 1/2), where h, k and 1 are even and n is an integer, are absent. 

To be consistent with general practice, we shall refer to the reciprocal 

vector corresponding to reflection by a particular set of planes (hkl) 

in a diffraction pattern as g -  he,* + ke2* + le3*. In the case of a 

bicrystal specimen, where the direct space unit cells of the white and
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black crystals are related by the transformation P (see chapter 2) ,  the 

white and black reciprocal unit cells will also be related by this trans

formation. Thus, the indices of white and black crystal reflections can 

be identified in a given SAD pattern by determining the appropriate 

section of the white and black reciprocal lattices. We remind the reader 

that, as explained in chapter 3, some crystal reflections which are 

kinematically forbidden according to Eq .(3 .5 ) may exhibit non zero in

tensities due to multiple scattering (Tu et al. 1978).

Double diffraction is the process where a beam g^ excited in the white

crystal by the incident beam, is subsequently incident on the black

crystal thereby exciting a beam g^ (or vice versa). Such double

diffraction is especially likely in "plan-view" specimens, but much less

likely in "edge-on" specimens when the incident beam is parallel to the

interface. It can be seen that the indices of double diffraction beams

are given by g^ - PgM (using the white reciprocal lattice frame). This

set of reciprocal vectors, designated g ^  (or g ^ ),  is readily obtained for

each of the systems studied in this work. For example, in the case of

Z = 3, the set gXjA corresponds to a hexagonal lattice with primitive re- 
2 2 4  2 4 2  i T T

ciprocal vectors -y-g--g- , "3" l } - ”3" an(* • Hence, in order to

establish whether a reflection observed in a given SAD pattern is due 

to double diffraction, it is necessary to obtain the appropriate section 

of this double diffraction lattice, i.e . that perpendicular to the beam 

direction. In addition, it should be kept in mind that if a reflection g^ 

does lie in this section, its intensity will only be significant if the

component reflections, g^ and g^, are strongly excited. This enables one 

to investigate whether a particular reflection is actually due to double 

diffraction, as opposed to some other cause, by tilting the specimen in
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such a way that g^ and g^ are not strongly excited. If the intensity of 

the reflection in question does not diminish as a result of tilting, it is 

probably not due to double diffraction. It must be kept in mind also 

that, if the Ewald reflection sphere construction is used to identify 

excited reflections, the beam incident on the lower crystal is g^ and 

hence the corresponding orientation of the Ewald sphere must be chosen.

The third type of reflection, and from the present point of view the 

most interesting type, is that due to interfacial relaxation. Such re 

laxation may include a displacement field extending from the boundary 

into the adjacent crystals, reconstruction of the bonds at the interface 

leading to new periodicities, and also possibly segregation of impurities 

to the interface. If the periodicity of an interface is defined in direct 

space by the primitive vectors and s2‘, diffracted beams g^ and g2‘, or 

any combination, can arise. These may or may not be coincident with 

crystal or double diffraction reflections. The intensity of interfacial 

reflections, g', can be obtained using the kinematic structure factor 

equation (E q .(3 .2 )) if the displacement field and segregation effects are 

known. These reflections are expected to be elongated in the direction 

perpendicular to the interface. We therefore expect that such streaks, 

or relrods, may be observed in SAD patterns from ’’edge-on*' specimens, 

and other works have estimated grain boundary thickness from the 

length of such relrods (Carter et al. 1980). We also note that bicrystal 

symmetries can be investigated from systematic absences in arrays of 

interfacial reflections, as has been described by Bacmann et al. (1985).

One final point which it is appropriate to mention here, for the sake 

of completeness, concerns kinematically forbidden reflections (E q .3 .5 (a ), 

(b ) ,  (c ) and (d ) ) .  For such reflections the structure factor, Fhkl

6.12



(E q .(3 .2 )),  will be zero for a perfect crystal column parallel to the in

cident beam and which contains an integral number of unit cells. How

ever, Fhkl can be non-zero for crystal columns containing non-integral 

numbers of unit cells (Chem a 1974). Thus, forbidden reflections can ac

tually be present in SAD patterns, and, in the present context, it is 

important to consider this possibility.

6.5. OBSERVATION OF I  = 3( i l l  )k BOUNDARY.

We begin this section by considering briefly the current state of 

theoretical and experimental knowledge concerning the structure of the 

I  = 3( l H  ) k interface in germanium. Subsequently we compare this 

knowledge to the results obtained by electron diffraction experiments 

in the present work.

6.5.1. PREVIOUS EXPERIM ENTAL OBSERVATIONS AND  

THEORETICAL M O DELS OF I  =  3( i l l  )k BOUNDARY.

There is a general consensus that the structure of this interface is well under

stood. Recent theoretical studies, e.g. Paxton (1987), suggest that the struc

ture illustrated in F ig .6.3 is stable, and has low energy (calculated 

energy *  29 erg/cm2) .  This figure shows a projection along |110|x di

rection. The vector normal to the boundary plane is [ llT  \k and points 

vertically up the page. The crosses and triangles represent atoms at 

heights 0 and l/4[110j^. The interfacial periodicity of this structure is 

Sj =  1/2[110]^ and S2 =  l/2( 112]^. The twin interface consists of a single 

layer of six-membered rings or "T ” units without dangling bond. The 

bond lengths between the atom pairs 1- 1*, 1-2 and 4-5 are shortened
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Atom
Numbers

A «(%)

1M -0.092
1.2 -0.071
2.3 0.022
3.4 0.023
4.5 -0.004

Fig. 6.3. ( I l l )  twin interface: atomic structure and changes 

in bond Iengths(A5, (reproduced from Paxton 1987).



while those between the atom pairs 2-3 and 3-4 are stretched. In the 

positions where the bond length decreases the bond energy increases 

and vice versa. The structure exhibits the point symmetry m'2’m, i.e. 

the identity, a mirror m(110)^, an anti-mirror m’ (lIT )^ , and an anti-diad

2 ' \ U 2 \ k

Experimental evidence collected by various researchers is in agreement 

with this model. For example the HREM work of DAnterrochea and Bourret 

(1984), and a-fringes work of Vlachavas and Pond  (1980) on 1=3(111) coher

ent twins in silicon proved that there is no relative displacement at the 

boundary plane (111). The CBED work by Schapink (1986) on gold 

bicrystals determined the point group of a "plan-view" bicrystal as 

e’/m'm'm which indicates that the rigid body translation at a (111) 

boundary in gold is zero. Often 1=3(111) coherent twin observed in 

dissociation of other interfaces, but not observed to dissociate itself, 

implying that it is a particular stable boundary.

6.5.2. SAD PATTERNS.

The selected area electron diffraction patterns, which have been taken 

from I=3( i l l  ) x "edge-on", viewed along 1110] ,̂ and "plan-view" 

bicrystal specimens, are shown in F ig .5.6(c) and 5.8(d) respectively. 

The crystal reflections have been identified and indexed in the figures 

and a trace of the boundary plane ( l ï ï ) ^  is indicated, in the case of 

the "edge-on" specimen in Fig.5.6(c).  We now consider the possibility 

of double diffraction and grain boundary reflections in this "edge-on" 

case. The primitive double diffraction vectors, g ^ ,  in this section of 

the reciprocal lattice are y  y  y  and | | |  . No reflections were 

observed in these positions which is as expected for "edge-on" speci-
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mens. Similarly, no grain boundary reflections were detectable for these 

"edge-on" specimens. Since the interfacial periodicity corresponds to 

periodicity in both crystals, grain boundary reflections are expected to 

be coincident with crystal reflections in the present case. No additional 

grain boundary reflections were detectable in this work.

The SAD pattern from a "plan-view" specimen is shown in F ig .5 .8 (d ). 

The white and black crystal reflections are all coincident in the zero 

layer for this i l l  section of the reciprocal lattice for example 202^ is 

coincident with 220^. The primitive double diffraction reflections in this 

zero layer are y y y  and y  j j  » and clear evidence for such re 

flections is seen in F ig .5.8 (d ). These double diffraction reflections are 

weak because they involve component reflections from HOLZ which are 

only weakly excited. No evidence of grain boundary reflections was 

obtained.

6.5.3. CBED PATTERNS FROM  "EDGE-ON '7 SPECIM ENS.

We begin this section by writing the expected point symmetry for 

both the I  = 3 dichromatic complex and 1=3( i l l  )^ bicrystal, looking 

along 1110JX direction. The point symmetry for 1=3( i l l  ) x dichromatic 

complex and bicrystal are

G(c) = mni'ni'

= {1, m(110), 21110], I , m '(Il2), m'(lTT), 2'[ 112 1, 2 '\ lTT 1}

and

G(b) = 2'mm' =  {1, m(110), 2'( Il2  1, m'(lTT)},

respectively.
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The CBED patterns in F ig .5 .7 (c ), has been taken from a l= 3 ( 1U  ) k 

”edge-on” specimen where the electron beam was parallel to the surface 

normal [UOj^. The observed elements of symmetry (BF and whole pat

tern) exhibited by this pattern are:

(1 ) an anti-mirror parallel to the boundary plane, m '(lT I)^,

(2) an anti-mirror perpendicular to the boundary plane, m’(I l2 )^ ,  

and

(3) a diad perpendicular to the pattern plane, 2|110) .̂

Thus, the observed symmetry is 2m’m\ i.e . {1, 2|I 1 (%, m'( i l l  )^, 

m 'f i l ^ } .  We note that m(110)^ has not been detected, and we assumed

that this is due to specimen preparation as discussed in section 6.3. 

From a comparison between the observed symmetry and the expected 

bicrystal and complex point symmetry one can recognise that the ob

served symmetry is not equivalent to the bicrystal point symmetry but it  

i t  a residue of the complex symmetry, following some symmetry breaking 

due to specimen preparation.

6.5.4. CBED PATTERNS FROM "P LA N -V IE W " SPECIM ENS.

The point symmetry of a I  = 3 dichromatic complex and a 

1=3( i l l  ^  bicrystal, looking along | i l l  ]x direction are

G(c) — 67nr'mm/ (see Tables 2.4(a) and 2.5(a) for the 24 symmetry and 

anti-symmetry elements of this point group)

and

G(b) =  6'm2' -  {1, 3 +  , 3’, m(110), m(101), m(OlT), 6 +  /, 6 m'( lTT),

2'I211],2 'lT l2J,2 '[12Tj},
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respectively.

The CBED pattern in F ig .5.8 (e ), has been taken from a l= 3 ( 111 

’’plan-view” bicrystal specimen where the electron beam was parallel to 

the specimen surface normal I 111 1̂ . The observed elements of symmetry 

(BF  and whole pattern) exhibited by this pattern are:

(1 ) triad along [ 111 direction, 3+, 3",

(2 ) m(110)x,

(3) m(101)^ and

(4) m (Oll)^.

Thus, the observed symmetry is

3m = (1, 3 +, 3% m(110), m(101), m(OlT)}.

In this case we note that the observed symmetry is a residue of the 

bicrystal point symmetry, assuming that the anti-mirror m’( l l l ) ^  has 

been broken by specimen preparation.

6.5.5. LACBED PATTERNS FROM  /,EDGE-ON//

A N D  "PLA N -V IE W " SPECIM ENS.

The point symmetries of the 1=3 dichromatic complex and£=3( i l l  )̂ A.
bicrystal are mentioned above.

The LACBED pattern in F ig .5 .8 (c ), has been taken from a I  = 

3 ( l I I ) x "edge-on” specimen where the electron beam was parallel to the 

surface normal 1110]k. This pattern exhibits an anti-mirror symmetry 

parallel to the boundary plane, a ’ ( l l l ) x . We note that, comparing by  

the CBED pattern taken from the same boundary and using the same
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spot size, the anti-mirror m’(I l2 )^  has been broken due to possibly the 

larger convergent angle which has been used for obtaining the LACBED 

patterns as discussed above.

The LACBED pattern in F ig .5.8 (f ),  has been taken from a I  = 

3 (lI I )^  "plan-view" specimen where the electron beam was parallel to 

the specimen surface normal! I l l  Ĵ . It exhibits 3m symmetry , i .e . ,  

the same as CBED pattern, as was expected all the components cones 

irradiated both crystals.

6.5.6. SU M M AR Y  OF OBSERVATIONS.

In summary the evidence collected in the present work using the SAD 

technique is consistent with other works, and supports the model of 

the 1=3( i l l  coherent twin described by Paxton (1987). In particular, 

our observations imply the presence of a negligible interfacial dis

placement field, and that no reconstruction has occurred which modifies 

the interfacial periodicity.

Regarding the symmetry of the interfacial structure as studied using 

CBED and LACBED, we conclude that the present observations are also 

consistent with the model, F ig .6.3, which exhibits the symmetry p6m2\ 

However, it must be remembered that the results from the "edge-on" 

specimens, i.e . showing the residue of the complex symmetry, does not 

provide information about the interfacial structure. In addition, al

though the bicrystal spacegroup can be determined from "plan-view" 

specimens in principle, only the residual group p3m has been detected 

here due to symmetry breaking in specimen preparation.
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6.6. PREVIOUS EXPERIM ENTAL OBSERVATIONS A N D  

THEORETICAL M ODELS OF Z =  3( I l2  )k BOUNDARY.

The structure of Z = 3( Il2  grain boundaries in covalent semi

conductors, e .g . silicon and germanium, has been the subject of many 

experimental and theoretical studies. In particular a combination of 

electron diffraction, high resolution electron microscopy, and the 

a-fringe method has been applied to determine the atomic structure of 

this boundary. The electron diffraction study of Bourret et al. (1985b) for 

the boundary in germanium showed that this boundary exhibits the 

spacegoup clml. The centred unit cell has the periodicity st =° |110)  ̂

and s2 =  [ 222 i.e. double the periodicity of the unrelaxed bicrystal 

(F ig .2.6 (a )).  High resolution electron microscopy, Bourret et al. (1985a), 

directly confirmed the centred and doubled periodicity structure, or 

in short c(2x2). Hence, they concluded that this boundary is recon

structed along 111OĴ  such that successive reconstructed rows of atoms 

are shifted by —  (110^ forming a centred pattern. Also, a rigid body 

translation along I 111 was measured using the a-fringe method, 

Vlachavas and Pond (1980), in silicon and was confirmed directly by the 

high resolution observations mentioned above. This boundary has been 

observed to be sometimes stepped and facetted (Bourret et al. 1985a). 

Also, dissociation of this boundary in to Z 3 (lll) plus Z9(221) has been 

observed (Bourret et al. 1985b).

Several atomic models of theZ = 3( I l2  ) k boundary have been pro

posed; but none of them are compatible with the c(2x2) structure ob

served above except that proposed recently by Papon et al.(1985) and 

which is shown in F ig .6.4. This figure has been reproduced from the
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work of Paxton (1987), who investigated its structure and energy using 

computer simulation. This structure can be regarded as a sequence 

of two structural units comprising one five- and one seven-membered 

ring per half period. No dangling bonds are present in the model at 

all. The structure has the interfacial periodicity = jllO ^  and 

s2 =  | 222 Ĵ . It is centred and exhibits the mirror symmetry, m illO )^, 

and therefore has the spacegroup clml. The calculated energy of the 

grain boundary structure in F ig .6.4 was 339 erg/cm2. One notable 

feature of this boundary is the nature of reconstruction along 1110] ,̂ 

i.e  the bonding between pairs of atoms such as numbers I , 1’ , 11, 11* 

in the figure and the ones above them. These bonds also exhibit the 

maximum bond stretching that occurs, and hence the highest bond en

ergies obtained in the study.

6.6.1. SAD  PATTERNS.

The SAD pattern which has been taken from aX = 3( 112 "edge-on” 

bicrystal specimen viewed along | 111 is shown in F ig .5 .15(d). The 

white and black crystal reflections, e .g . 220  ̂ and 202^, are coincident 

in the zero layer for this 111 section of the reciprocal lattice. The 

primitive double diffraction vectors, g ^ ,  are and 110^, and

reflections of the former type are present in F ig .5 .15(d). The origin 

of these observed double diffraction reflections is not clear; reflections 

of this type were seen in [ 111 1̂  SAD patterns from single crystals, 

and were presumably caused by multiple scattering (Tu  et al. 1978), or 

due to non-integral number of unit cells (Cherns 1974). Another possi

bility is that these reflections did arise by genuine double diffraction

as a consequence of the presence of interfacial facets which would mean
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that the interface was not entirely parallel to the incident electron 

beam. The anticipated grain boundary reflections, g*, are of the type 

with all the odd orders systematically absent due to centring,2 2 K

but these were not detected.

The SAD pattern which has been taken from a I  = 3( I l2  ’’edge-on” 

bicrystal specimen viewed along |110|̂  is shown in F ig .5 .10(c). The 

white and black crystal reflections are indexed and we note that re 

flections of the type lTI^, 224  ̂ are coincident in the zero layer for this 

110 section of the reciprocal lattice. The primitive double diffraction 

vectors, g ^ ,  are - f - y y x  and y - y y  » but no double diffraction 

reflections were observed. The expected grain boundary reflections, 

g*, are of the type y y y x . »  where odd orders are systematically ab

sent due to centring, but none were detected. The possible reason for 

not observing these will be considered later.

The SAD pattern which has been taken from a Z = 3( 112 "plan-

view" bicrystal specimen viewed along f I l2  is shown in F ig .5 .14(d).

The white and black crystal reflections are coincident in the zero layer

for this Il2  section of the reciprocal lattice depicted in F ig .6.5 (d ).

The primitive double diffraction vectors, g ^ ,  are y y y x  and 110^»

and reflections, e .g . y y y X, y y y ^  and 110X* were observed*

As described before, the expected grain boundary reflections are based

on the centred cell with primitive reciprocal indices y y - | “ x and
4 2 1

110^. Thus, the centre reflections have the form y y y x >  and re " 

flections of this type can be seen in F ig .5.14(d). The crystal, double 

diffraction and anticipated interfacial reflections are indicated sche

matically in F ig .6.5(a ) ,  (b )  and (c ) ,  respectively. We note that al

though a subset of the double diffraction and grain boundary reflections
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Fig. 6.5. A schematic illustration of (a) crystal reflections, (b) double
diffraction reflections (c) grain boundary reflections and (d) calcu

lated intensities of some grain boundary reflections for a 

I  =  3(Tf 2 '‘'plan-view* specimen.



are coincident, the reflections corresponding to the grain boundary 

centring positions cannot arise due to double diffraction. In addition, 

scattering effects due to specimen thicknesses which are not equivalent 

to integral numbers of unit cells (Cherns 1974), would also not lead to 

beams coincident with the centring grain boundary boundary re 

flections. Hence, for purposes of comparison between experimental ob

servations and the model structure, it is advisable to concentrate our 

attention on the centring reflections.

In order to compare the observed intensities of the grain boundary 

reflections (F ig .5 .14(d)) with the calculated ones, a structure factor 

calculation programme has been invoked. The calculations have been 

carried out for both the unrelaxed (F ig .2.6 (a )) and the relaxed (2x2) 

Ge bicrystal (F ig .6.4) making use of the structure factor equation 

(E q .(3 .2 )).  For the relaxed bicrystal the atomic coordinates were ob

tained from Sutton (1987) and are tabulated in Table 6.1. The intensity 

of a reflection can be calculated using E q .(3 .3 ). In the case of the 

unrelaxed bicrystal, this equation leads to the result that the crystal 

reflections have strong intensities while all the anticipated grain 

boundary reflections have zero calculated intensities. On the other 

hand, in the case of the relaxed bicrystal the calculated intensities of 

the grain boundary reflections have intensities greatly less than those 

of crystal reflections, but are greater than zero. The calculated in

tensity of centring grain boundary reflections, relative to that of the 

strongest grain boundary reflection, are written above each

corresponding reflection in F ig .6 .5 (d ). We have confined our attention 

to the intensities of only the centring reflections since no contribution 

to these can arise by double diffraction. Comparison between the cal-
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Tabic 6.1. Coordinates for Bourret's ( 112) c(2X2) «rain boundary, computed for S i by light binding.
The coordinates are given xs x,y,z for each of the 8 atoms in the layer unit cell, x is
parallel to | III |, y is parallel to | 112 | (the grain boundary normal), and z is parallel 
to the tilt axis |IIO|. Unit of length is the lattice parameter.

0 .I 4 4 4 2 S 0 J J 7 5 6 4 , 
0 .5 774 0 5 9 4 7 9 5 2 3 , 
1 .8 76 3 9 4 2 1 2 2 9 8 , - 

-1 .1 5 4 7 2 9 5 6 7 2 1 6 , 
0 .1 4 4 4 4 7 8 5 1 9 9 3 2 , 
0 .5 7 7 5 0 2 0 7 7 9 0 '6 ,

-1.732068598403, -3.062065246827, -0.3535589417173 
-0.43.30355164686, -3.0b 1898632577, -0.3535260208838 
I 1796445525096 K 5, -3.0b246429425, 0.3535586617023 
1.299025657971, -3 061430872554. -0.3535375050751 
-1.732099929733, -3.062170128015. 0.353551*587461 
-0.4.32995624316, -3.061709875575, 0.3535790199655 
6 422246378262K-5, -3.062288532092, 0.353537929487 
1,298999395254. -3.06163I558**03, 0.3536028447568 
-1.010350243023, -2.85766558873!, -0.707! 142858703 
-0.57735546.37866, -2.85756736189, 0.-0-0024299263 
0.7217640183.36, -2.85739.3*57383. 0.707179744627 
1.154719518898. -2.85717758717, -0.7071652682046 
-1.010390986101, -2.85766207622, -3.4822325514.379F-5 
-0.5774002402-93, -2.85757.302821!, -6.0l%86245J95IK-5 
0.7217842954818, -2.85742J289I73, 3.25464195391.34K-5 
1.154749101089, -2.857213030619, 1.26.34474240667K-4 
-1.154634960214. -2.65.3J 15385626. -0.3535321776614 

-2.6544958*"6781, -0.3535797199716 
-2.653406602182, -0.35.15657507305 
2.65 J99"652178, -0.35J5088080639 
-2.653604409454, 0.3535522117.36 
-2.654233,300504, 0.3534863^85487 
-2.65J0b813-309, 0.3535256OU18I

I. 876346929699, -2.65418-089211, 0.3535b30b02877 
-1.732108496*42. -2.450 V48022852, -0.70714327J7582 
-0.4330884975671, -2.449219095405, -0.706986956 (608
J. 424182~902.306K-5, -2.450b98574454, 0.70-0360559.353 
1.2*489394966.38. -2.448'6'08'6|7, -0.707313315997 
-1.73206475*43!. -2.450277898805, 1.05.30091705532F-4 
-0.4.3.31087790*79, -2.449225-49893, - l.%792107224J7K-4
-1.9554292247* 13K-5, -2.450683794891. -1.6619558133574K-4 
1.2989350.37275, -2.448770135486, 1.308.3+499*9895K-4 
-1.01030401.3654, -2.244889930526. -0.3535058680336 
-0.5773754784178. 2.244224’ 44966, 0.3536038674838
0.721-62416-3-8. -2 24486646947. -0.J5.36.306225849 
1.154559912438, -2.244644929 387. -0.J535811689789 
-1.010.328658175. -2.2451564985.36. 0.35358688904 
-0.5774850960909, -2.245161169787, 0..35J524%98425 
0.-218-83444684, -2.244338094199, 0.353478226018 
1.1547442%"%. 2.2436653-1221. 0.3535003639141 
-1.154493.302275, -2.(>40b5222t>895, -0."072221428193 
0 144497.36945-6, -2.04.30.387.3.3094, -0.7069800011165 
0.5776372902314, -2.04022349-842. -0.-0-043618.3387 
1.876485049516, -2.04278899l0b5, -0.7071866682271 
-1.154484740703, -2.040569010844, 2.00957J975924K-4 
0.1444356861392, -2.0429"8893076, -2.8918840140803K-4 
0.57758168-0434, -2.040241790698, -3.4541042671428 K 4 
1.876544140728. -2.04263276556J, 2.5373530027546K-4 
-1.732.32831241, -I.840009S56587, -0.3534693155653 
-0.4332623901936, 1.835188145137. -0J537J2b2O4758
-3.8957J21538682K-5, 1.8 3928771418.3, -0.35.3698731474
1.298693437838, -1.836.1130"8983. -0.3536288749714 
- 1.7.320.30696824, -1.8.38891158554. 0.3536464900291 
-0.43.32910882.362, -1.8.16841360114. O.J5.3489|93JJ%
-2.5414919475948K-4, -1.8405408.10864. 0.3534561918013 
1.29883008106, -1.8.346-3.56048, 0.3533665535143 
-1.010157915767, - I.6JI71558275I, -0.707 3925706851 
-0.5774056593551, - I .630b847350.36, -0.7082358694241 
0.7219391355602, -1.6.3121216.3354, -0.7069487614033 
1.15470942607, -1.630228079166, -0.706237.369809J 
-1.010101579521, -1.631673424302. 4.222702800.3857K-4 
-0.577.32595.V4O41, -1.630760240858, 8.7173742852488 K 4 

-1.63 II87186462, -5.77785.30394137 K 4
1.6 30168322609. - 1.1384759926608K-3 
-1.428327527864, -0.3534782815843 
- 1 432.54697645, -0.3538157793645 
-1.425758778423, -0.35.37*49563627 
1.433961264357, -0.J5J4%8<104|79 
-1.426258186979, 0 35.36049217742 

0.3533573680136 
0.3533433312674

0 .7 2 1 8 7 6 0 1 1 4 5 1 9 ,
1.15 4 5 9 8 4 3 3 9 4 9 ,

-1 .1 5 4 8 1 3 6 0 9 1 3 9 ,
0.1445 685 23 90 «» I ,
0 .5 77*4 6 6 7 .3 0 1 78 1 ,
1 8 7 6 5 1 7 2 1 8 5 3 4 .

- 1 . 1 5 4 0 1 9 9 0 1 5 2 1 ,
0 .1 4 4 4 6 3 5 7 2 4 7 7 8 , -1 .4 .3 4  3266.33963, 
0 .5 7 7 2 1 8 7 3 1 0 5 4 6 , -1 .4 2 78 9 0 3 3 2 6 5 7,
1.876638352669, -1.432250131485, 0.353647273925 
-1.73184611-684, -1.2.309%225.362, -0.7061609072174 
-0.4334766363351, -1.221249898947, -0.7093618881615 
2.48 5114.3114 1 38 K 4, -1.2.3145.3543964, 0.7082635886732 
1.298570524831, -1.220749101999, -0.7051407920507 
-1.7.31-88 338815. -1.231024567728, -7.9717021698275 K-4 
-0.4333791913116, 1.221308134301, 1.6119861677285K-1
2.690540187827 K 4, -1.231401266978, 6.3676980997505 K-4 
1.298616955348. -1.220764422102, -1.9590439579944 K-J 
-1 010290192093, -1.01909597735, -0.J532650272376 
-0.5791005147856, - 1.02134151*4111, -0.35.38288325508 
0.7220651775855, 1.014586187748, -0.3536320986004

1.15362019805, 1.00762045.3702, 0.3534*34552418
-1.009797377014, -1.015279 372804, O.J536126985864 
-0.5782720140821, -1.008150000756, 0.3532488007388 
0.72167319420f>6, -1.0185.3591.3.306, 0.35.11025013531 
1.152908999.36, -1.020926016617, 0.J5.34885 310285 
-1.151270562688, -0.811001718772.3, -0.7058780585828 
0.1452047383663. -0.8274.335848191, -0.708J7I2(>40(MI 
0.5808294706084, -0.8101747*78191, -0.7084351978858 
1.8771313395.33, 0.8270974.315119, 0.705910285827 
-1.151191770029, 0.8106548556158, -9 8699160120199 K 4 
0.1450825548441, -0.827283477285. 6.0*88405188 351 K-4 
0.5806416481008, -0.8102332712523, 1.0382799747575K-J 
1.8772U8229%3, 0.8270668668316, -6.146264899 3451 K-4 
-1.738383741159, 0.6280694124661, -0.3531380814577 
-0.4360022133145. -0.6156700838442, -0.353*4462462353 
-2.4834II99I4885K-J, -0.634952737690b, 03539906903098 
1.297949980169, -0.590735*(M<*4.3, 0. 3534611S%428
-1 734610877JJ1, 0 6.3467 3.3001114, 0.353845685 31 
-0.433% 18015505, -0.59I2J.5I4126.54, 0.3532024474681 
-6.2627010127512K-3, 0.628.3700182545, 0.3532456079093 
1 295941255073, 0.6153269807298. 0.353SI7977S20*
-1 003607688147, -0.39605144711.58, -0.7031662178274 
-0.5693895641714, -0.3854857634277, 0.6956098220251
0. 7283897487938, -0.3951142550004. 0.711286.3097281
1. !625764*»8%7, 0.385056%26597. -0.7190675.364778 
-1.003439966765, -0.3956919011312, -3.9290255536795K-J 
-0.5692898040129, -0.3854374189007, • 1.220991584535K-2 
0.7282.388176.184, -OJ951.3572.35569, 3 807290165401K-J 
1.162550855133, -0.3849331413142, 1.19| |8b4%45l IK 2 
-I.17|1083%78, -0.20.3808.3901953, 0.3536010889282 
0.1583555292723, -0.245112284515, -0 J541034.345141 
0.58028286.11099, -0.20718826 38049, -0.35.38614750.371 
1.862200115.36, 0.2315962478202, 0.35.31604171098 
-1.151541737998, -0.2078 P4391034, 0.35369097-^,49 
0.1298619513058, -0.2.315824117687, 0.3531575349751
0 5605757402245, -0.2032151856638, 0.353.1603094095 
1.890418423373, -0.2450tV4.377.3397, 0.354115 376964 
-1.-»09748561456. -2.516.3932568472 V-2, 0.-202145104629 
-0.397-540577202, 1.4119"6.3297628K-2, -0 58 rU4H04.3 3*6 
2.231921645-656K-2, 2.54195-6681585K 2, 0 6937569|7|b41 
1.3.34.322818707, 1.4475.30.377082IK 2, 0.832792-803819 
-1.-09466830065, -2.562294829O405 K 2. 1.4203V54406667K-2 
-0.3977013678989, 1.4175344925681K-2. -0.126 3666031505 
2.2.342190494302F-2, -2.5.508.3202.32008K-2, 1.4101-820.317.17V
1.334484569821, 1.4404212975512K-2, 0.126|.32'T%59| 
-1.188762766535, 0.2275831526228. 0.3534810847916 
0.310007197767, 0.2987-6142.3886. -0.7026818778054 
0.5630724724171, 0.22673.10272001. 0.3538932469771
2.042490943572, 0.2985916719 351, -0.711568371-.36.3 
-1.16864874749, 0.22620807184%, 0.J5.3"55599604 
0..309997b7662%. 0.29873320-6392, -5.269 1 3|6‘HV4646K 3 
0.5424205606922, 0.228.33-0950032. 0.35.323% 300b58 
2.042650662649, 0.29824.50380763, 4.94485-bO%777K 3 
0.8417% 3996033, 0.4759123125281, 0 35.190 34419604 

-0.5773175491638. 0.4042312798266, 0 688209087305 
0.9248.365442291, 0.4708860J2bl81. 0..35333.3 38500.31 
1.15438830763, 0.4047277638902, 0.7262IOU.825 
-0 8070413676749, 0.4706240.121021, 0 35J 388628966 
-0.57731899353.38, 0.4G4J554J217J9. -1 9416352907637K-2 
0.88939395991.36, 0.4763824387064. 0.3517790171942 
1.154409176351, 0.40450556182.58, 1.9688024061302 K 2 
-1.5849.32798309, 0 693257077 3744. 0 718026979452 
-0.2772475445088, 0.70832.35508783, -0.581 40 1.3526044 
0.1470480.350088, 0 69 33-08228981. -0.6954598599 358 
1.455006415549. 0.708 3461747iM2. -0.8 329.3565666.3 3 
-1.58438.3313615, 0.69 30)0.3881-62. 1.207581575648K 2 
-0.2772291127477, 0.7082697310803, -0.1263030879122 
0.146940J4I0117, 0.69.3.324.3142642, - 1. l*672%484002K-2 
1.455181960.1*7, 0.70819505781 |J, 0. |2b25 3507.317 
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culated and observed intensities indicates good agreement as summarised 

below:

(1 ) the reflection ^as ^ e  highest, intensity, and that of
i n i

has the second highest,
o o o A

(2 ) the reflection -y - y - j r x  has the lowest intensity and that of the

8 2 5
1} *6 I f  ̂  **as the secont* lowest intensity.

A  comprehensive analysis of the SAD patterns, F ig .5 .10(c), 5.15(d) 

and 5.14(d), has revealed that grain boundary reflections were clearly 

observed in the SAD pattern taken from "plan-view" bicrystal specimen 

but not observed in those taken from the "edge-on" ones. The possible 

reason behind this is that the intensity of grain boundary reflections 

in the "plan-view" case is considerably greater than that in the 

"edge-on" ones, so that one cannot detect these in the latter. To be 

more specific, the illuminated areas in both cases above are proportional 

to the size of the selected area aperture. In the "plan-view" case the 

amplitude of a grain boundary reflection, hkl, is proportional to the 

structure factor, Fhki, times the number of interfacial ’unit cells’ (i .e . 

the centred (2x2) cells), Npv , present in the illuminated area, and 

hence the intensity, Ip v , is proportional to N2p v . On the other hand, 

in the case of "edge-on" bicrystal specimen the intensity of a grain 

boundary reflection from the same set of planes hkl, I eo, is proportional 

to N2eo, where Neo is the number of ’unit cells’ in the illuminated area. 

Since the illuminated areas in both cases are the same, it follows from 

the geometry of the situation that, Npv is much greater than Neo. 

Consequently, Ipv is also relatively much greater than Ieo. For example, 

in the case of SAD patterns in F ig .5 .10(c) and F ig .5 .14(d), the size 

of the SAD aperture was 30|iin in diameter, and, therefore, the number
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of unit cells Neo and NpV in this illuminated area can be estimated as 

follows. In the "edge-on'* case, the area of boundary examined is ap

proximately 30xtpm2, where t is the specimen thickness which was of the 

order 0.1pm. Therefore, since the area of an interfacial 2x2 unit cell is 

( x/2x2N/3)a2 = 4.9a2pm2, Ne0 ~ 1912888.9. In the "plane-view" case, the 

area illuminated is equal to 30&S2npm2, which means that Nnv = 

1.8x10®. Hence, the ratio of intensities for the same reflection observed 

in the "plane-view" and "edge-on" cases is

Ipv : reo = N2p v  : N2eo = 888264.39 : 1 

i.e . the intensity of the grain boundary reflection in the "plane-view" 

case is much greater than in the "edge-on" case, and hence these re 

flections are more likely to be observed in the former case.

6.6.2. CBED PATTERNS.

The [110]^ surface normal "edge-on" bicrystal and dichromatic complex 

would exhibit the following expected point symmetry

G(b) -  m'2'm = {1, ni(110)^, 2'] 111 \k) , and

G(c) = mm'in'

=  {1, m(110), 21110], T , m '(il2 ), ni'(lTT), 2'\ I l2  J, 2'| i l l  ]}

The observed CBED pattern, F ig .5 .10(f) which was taken from an 

area containing the grain boundary, exhibits the following elements of 

symmetry (BF and whole pattern):

(1) an anti-mirror, m '(lT I)^,

(2) an anti-mirror, m '(Il2)^and

(3) a diad, 2]110y
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The observed symmetry is

2m'm' =  {1, 2[110]x, m'(lTT)x, m '(Il2 )x}

This is consistent with the residue of the complex point symmetry, as

suming the mirror millO)^ has been broken due to specimen preparation.

Similarly, the | 111 \x surface normal ’’edge-on" bicrystal and 

dichromatic complex would exhibit the following point symmetry:

G(b) = 6'2'm =  {1, 3 + , 3% m (U0), m(101), ni(0 ll), m'(Tl2), 6 + /, 6 

2'12111, 2'\ i l l  I, 2'\ \2\ ]}, and

G(c) =  67m m V (see Tables 2.4(a) and 2 .5 (a) for the 24 symmetry 

and anti-symmetry elements of this point group)

The observed CBED pattern, F ig .5 .15(c) which was taken from an 

area containing the grain boundary, exhibits the following elements of 

symmetry (BF and whole pattern):

(1 ) triad along[ I l l  direction, 3+, 3",

(2 ) m (110)x ,

(3 ) m(101)^ and

(4) m (0 ll)x

Thus, the observed point symmetry is 

3m =  {1, 3 +  , 3“, m(110), m(101), m(OlT)}.

This is consistent with the residue of the complex point symmetry, as

suming that the anti-mirror m’(lT i)^  has been broken by specimen 

preparation.
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Finally, the point symmetry exhibited by | 112 \k surface normal 

"plan-view" bicrystal and dichromatic complex are 

G(b) = m2'm' =  {1, m(110), 2'[ i l l  J, m '(Tl2)},

and

G(c) =  mm'ni'

= {1, m(l 10), 2(110(, I , m'(il2), m'(lTT), 2'( Tl2 |, 2 ' [  i l l  (},
respectively.

The CBED patterns in F ig.5.14(e), have been taken from a I  = 

3 (Il2 )^  "plan-view" specimen where the electron beam was parallel to 

the specimen surface normal ( Tl 2 (^. The observed element of symmetry 

(BF and whole pattern) exhibited by this pattern is:

(1) a mirror mCllO)^,

hence, the observed point symmetry is m =  {1, ni(110)^}, which is 

equivalent to the residue of the bicrystal point symmetry, assuming that 

the anti-symmetry elements 1̂ ( 112)^ and 2'[ i l2  (

are broken either due to specimen preparation (section 6 .3 ), or due to 

a relative displacement parallel to ( 111 ].

6.6.3. SU M M A R Y  OF OBSERVATIONS.

In summary the evidence collected in the present work using the SAD 

technique is consistent with other recent works, and supports the c(2x2) 

model of the Z=3( I l2  ) k grain boundary studied by Paxton (1987). In 

particular our observations imply the presence of an interfacial dis- 

placement field, and that the boundary is reconstructed such that the
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interfacial periodicity is doubled. Good agreement has been found be 

tween the relative values of observed and calculated intensities.

Regarding the symmetry of the interfacial structure as studied using 

CBED, we conclude that the present observations are also consistent 

with the model, F ig .6.4, which exhibits the symmetry clm l. However, 

it must be remembered that the result from the ’’edge-on" specimens, 

i.e . showing the residue of the complex symmetry, does not provide 

information about the interfacial structure. On the other hand, the 

bicrystal spacegroup was determined from a "plan-view" specimen and 

the symmetry observed is consistent with that of the proposed model, 

i.e . clml.

6.6.4. OBSERVATION OF DISSOCIATION IN I “ 3( T l2 \

"ED G E -O N " SPECIM EN.

The 1=3 ( Ï12 interface appears to be unstable with respect to 

dissociation (F ig .5 .1 2 (a )). The solution of the SAD pattern

(F ig .5 .12(b), which is taken from the dissociated boundary shows that 

the 1=3( Ï12 )^ interface has dissociated, as depicted schematically in 

F ig .6.6, according to the following reaction:

Z = 3( Î12 - *  £ = 3( 1ÏI )̂  + 1 = 3012)^ + X = 9(2Ï2)M + 2>9( 14Ï ̂

We note that all the interfaces following dissociation are symmetric; the 

Z=9( 2Ï2 interface has been studied in some detail both experimentally 

(see for example Papon et al.1982) and theoretically (Krivanek et al.1977), and 

is thought to have low energy. On the other hand, the 1=9( 14Ï ) 

interface, indicated by the dotted line in F ig .6.6, has not been observed 

frequently.
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in Fig.5.12(a).



6.7. PREVIOUS EXPERIM ENTAL OBSERVATIONS AND  

THEORETICAL M O D ELS OF X = 27( 552 )x BOUNDARY.

A small number of experimental and theoretical works concerned with 

the structure of the 1=27 ( 552 interface in silicon and germanium have 

been published. Selected area electron diffraction and high resolution 

electron microscopy techniques have been used in the experimental in

vestigations. The electron diffraction investigations of (Bourret et al. 19851») 

for the interface in germanium showed SAD patterns containing a large 

number of diffraction spots of low intensity. High resolution electron 

microscopy images for interfaces in polycrystalline silicon, (Cunningham  

et al. (1982) and Vaudin et al. (1983)) and in a germanium bicrystal (Bourret 

eta l. 1985b), looking down 1110]  ̂ show a periodicity of a magnitude 2.83nm 

along I I l5  ]k, i.e. the same as that of the unrelaxed bicrystal in 

F ig .2.6 (c ). This interface was also observed, using HREM and TEM 

techniques, to be facetted and dissociated. Bourret et al. (1985a) and 

Vaudin et al. (1983) observed successive facets along {110} and {111} planes 

with a width successively close to 3a and <211>a, where a is the lattice 

parameter. For this particular misorientation a {110} facet in one crystal 

faces a {111} facet in the other, and these are arranged alternatively 

along the boundary. The interface was also observed (Cunningham et al. 

1982) to be dissociated into Z = 3{111}/{111}, I  =  3 {115}/{ 111} and 

Z =  9{122}/{122} interfaces in <110> surface normal polycrystalline silicon 

specimens. Also, Garg et al. (1988) observed the dissociation in 

polycrystalline silicon, using optical and TEM microscopy techniques, 

intoI = 3 {115 }/ {lll} and I  =  9{ 122}/{122} boundaries.
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Two atomic models for the structure ofI=27( 552 interface, pro

posed by Vaudin et at. (1983), are shown in F ig .6 .7(a) and (b ) .  The first 

consists of ABAC structural unit combinations and the second consists 

of AAD combinations as illustrated in the figures. The dotted lines in 

F ig .6.7(a ) indicate {111} facets in one crystal and { 111 } in the other. 

Good agreement exists between the HREM image for the facetted 

X=27( 552 ^  boundary and the model shown in F ig .6 .7 (a ), suggesting 

that the model gives a nearly correct representation of the HREM image. 

As far as we are aware, the energy of this interface has not been in

vestigated by computer simulation.

6.7.1. DISSOCIATION OF THE I  =  27( 552 ) k BOUNDARY.

In the cases of the boundaries considered previously, the discussion 

of dissociation was considered after that of SAD and CBED investi

gations, but in the present case dissociation was observed to be such 

a prominent feature that it is discussed first.

At low magnification, MslOx F ig .5.1(a) and (b ) ,  the grain boundary 

area between grain pairs Bc-C c and Be-Ce , apparently, consisted of a 

smooth interface. At high magnification, M=60,000x F ig .5.16, the major 

observed portion of the grain boundary showed a rather complicated 

appearance as is illustrated schematically in F ig .5.24. In some other 

areas, quite large grains were observed to be enclosed between the 

grain pair Bc-C c , for example grain Ec which is confined by the tri

angular border "hlk" and the grain Fc which has a very complicated 

irregular shape. The CBED patterns taken from the microscopic grains 

Ec and Fc , F ig .5.19 and 5.20, showed them to have the direction
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[1101  ̂ parallel to the electron beam in common with the grains Bc and 

Cc . The pairs of grains Bc-Ec and Cc-Ec were found to be rotated 

about this direction by 71.0° ±  0.5°. Hence, the £=27( 552 interface 

at point "h" dissociated into a configuration of £ = 3( 111 and £ = 

9( 221 symmetric tilt boundaries.

6.7.2. SAD PATTERNS FROM "ED G E-O N* AND  

"PLA N -V IE W * SPECIMENS.

In the case of £ = 27( 552 "edge-on” bicrystal specimen, the 

[110Ĵ  SAD pattern taken from the grain boundary region is shown in 

F ig .5.17. The area investigated was chosen carefully so as not to in

clude regions where the interface had dissociated. However, the 

boundary was rarely found to be strictly planar, and hence was prob

ably facetted on a microscopic scale. Crystal reflections Il5^ and 115  ̂

are coincident in the zero layer for this 110 section of the reciprocal 

lattice. Some double diffraction reflections are present in F ig .5 .17(c) 

and this was presumably due to facetting. The anticipated first order 

grain boundary reflection, g*, is x,* No evidence for this

reflection was obtained, and the reason for this, as mentioned before 

in section 6.6.1 for a similar case, is presumably that the intensity of 

the grain boundary reflections is too small to be observed.

In the case of the "plan-view" bicrystal specimen, the I 552 SAD 

pattern is shown in F ig .5.28. In the zero layer of the 552 section of 

the reciprocal lattice all crystal reflections are coincident, for example 

white crystal reflections 220^, I l5  ^ and 135 ^ are coincident with the 

black crystal reflections 220^, 115 ^ and 315 , respectively, as depicted
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in F ig .6.8. Crystal reflections from higher order Laue zones are ob

served in F ig .5.28, and crystal reflections from the first order Laue 

zones are also indexed in the figure, e .g . (519^, 3l9 139^, 159^)

and (644^, 424 fl, 204 ^  024^).

Double diffraction reflections, g ^  can be identified by considering 

the white and black reciprocal lattices and bearing in mind that these 

display the same symmetry as the dichromatic pattern, which includes 

m(110)^, m'( 552 and m’illS )^ . Thus, for example, the zero layers

are coincident, and the +nth white layer is a mirror image of the -nth 

layer of the black reciprocal lattice. Therefore, reflections such as 

= - ^ 2 3 ^  ar*se ^  scattering by the planes corresponding to 

firstly gk = 3l9 and subsequently g^ = .

The expected grain boundary reflections, g*, are of the types 

- i — -— i and HO,.. Reflections of the first type are observed in 

F ig .5.28 as satellites of crystal and double diffraction spots, as indi

cated in F ig .6.8. We note that grain boundary reflections of this type 

are to be expected from a facetted interface such as that shown in 

F ig .6.7(a ).  However, we note that such reflections could also arise

due to the specimen thickness not comprising integral numbers of unit 

cells, and it was not possible to distinguish between these two possi

bilities in the present work.
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Fig. 6.8. A  s c h e m a t i c  r e p r e s e n t a t i o n  o f  t h e  S A l )  p a t t e r n  i n  F i g . 5 . 2 8 ,  

o n e  e x a m p l e  o f  a  s a t e l l i t e  s p o t  a s s o c i a t e d  w i t h  t h e  d o u b l y  

d i f f r a c t e d  r e f l e c t i o n  i s  i n d i c a t e d  b y  t h e  a r r o w .



6.7.3. CBED PATTERNS FROM  "ED G E -O N " AN D

"PLA N -V IE W " SPECIM ENS.

The point symmetry for Z = 27 ( 552 bicrystal and dichromatic 

complex (projected down[110[ direction) are

G(b) = 2 / m m /  -  ( 1 ,  m ( l  1 0 ) ^ ,  m ' (  5 5 2  )k> 2'[ I l 5  y ,  a n d  

G(c) =  n i ' m ' m

=  { 1 ,  m ( 1 1 0 ) x ,  2 | U 0 I ,  I ,  m ' ( 5 5 %  m ' ( T l % ,  2 ' I  I I I  1 ,  2 ' [  5 5 2  1 } ,

respectively.

The observed symmetry elements of the (II0|j^ CBED pattern, which 

was taken from X = 27( 552 ’’edge-on” bicrystal specimen from the 

grain boundary, F ig .5 .18(c), are:

(1) an antimirror parallel to the boundary plane, m’(552)^,

(2) an antimirror perpendicular to the boundary plane, m’ (115)^, 

and

(3) a diad perpendicular to the plane of the pattern, 2(1101 .̂

Thus, the observed symmetry is

2 m ' m '  =  { l , 2 [ 1 1 0 ] x , m ' ( 5 5 2 ) ^ m ' ( I l 5 ) x } .

Therefore, the observed symmetry is equivalent to a residue of the 

dichromatic complex point symmetry, assuming the mirror mtllO)^ is 

broken due to specimen preparation and also due facetting and 

dissociation of Z = 27( 552 )^ interface in some places.

The point symmetry for Z = 27 ( 552 ) k bicrystal and dichromatic 

complex projected down the [ 552 | direction are

G(b) = m 2 V  = { 1 ,  n i ( 1 1 0 ) ? ,  m ' (  5 5 2  )k, 2'[ I l 5  j j  

G(c) = m W
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“  {1, m(110)̂ , 21110], 1 , m '(552)x, m'(115)x, 2'1115 I, 2'[ 552 1}.

The observed symmetry of the f 552 CBED pattern, which was taken 

from I  = 27( 552 "plan-view" bicrystal specimen, F ig .5.29, exhibited

only the identity element of symmetry. In the present case we believe 

that all symmetry in the bicrystal has been suppressed due to the 

combined effects of specimen preparation, facetting and dissociation of 

this interfacial structure.

6.7.4. SU M M AR Y  OF OBSERVATIONS.

Our observations of facetting and dissociation of the X = 27( 552 

interface are similar to other recent observations. Such observations 

indicate that, because facetting and dissociation are prominent features 

of the interface, this boundary probably has high interfacial energy. 

The SAD investigations presented here provide evidence that the 

periodicity of the interface is the same as that of the CSL. The absence 

of the expected symmetry in the CBED patterns taken from the "plan- 

view" bicrystal specimens is probably due to a combination of symmetry 

breaking by specimen preparation, and the instability of this grain 

boundary with its tendency to dissociate into more stable structures.
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CHAPTER SEVEN

CONCLUSIONS AND  SUGGESTIONS FOR FURTHER W O R K

7.1. CO NCLUSIO NS REGARDING THEORETICAL  

CRYSTALLOGRAPHY.

(1 ) It has been shown that the 31 diffraction groups for single crystals, 

previously obtained by Buxton et al. (1974) using stereographic argu

ments, can be obtained in a straightforward manner using 

crystallographic theory. These groups have been derived here by  

starting with the 31 rosette groups and using the concept of anti

symmetry to identify symmetry elements for which the reciprocity 

theorem must be invoked in CBED.

(2 ) A group theoretical method for obtaining the BF, projection 

diffraction and whole pattern symmetries corresponding to a given 

diffraction group has been presented.

(3 ) The results outlined above have been extended to obtain all possible 

diffraction groups for bicrystals. Procedures for determining the ad

missible diffraction groups for both ’’plan-view" and ’’edge-on" spec

imens have been discussed.
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7.2. CO NCLUSIO NS REGARDING EXPERIM ENTAL TECHNIQUES.

(1) "Edge-on" and "plan-view" germanium bicrystal specimens have been 

prepared successfully for investigations by transmission electron 

microscopy.

(2 ) SAD, CBED and LACBED techniques have been used to study 

bicrystal specimens. The SAD method was found to be particularly 

useful for studying interfacial reconstruction. Bicrystal symmetry was 

successfully investigated using CBED on "plan-view" specimens. On 

the other hand, CBED patterns obtained from "edge-on" specimens 

could not be interpreted directly in terms of bicrystal symmetry.

7.3. CO NCLUSIONS REGARDING SPECIFIC INTERFACIAL  

STRUCTURES.

(1 ) Z = 3( 1ÎÏ ) jl boundary: the experimental observations are consistent 

with a bicrystal exhibiting symmetry p6'm2'. Moreover, no evidence 

was found for interfacial reconstruction or a significant displacement 

field. This boundary is stable and showed no tendency to dissociate.

(2 ) Z = 3( Ï12 boundary: the experimental observations are consistent 

with a bicrystal exhibiting the symmetry clm l. In particular, clear 

evidence of a c(2x2) reconstruction was obtained, and the intensities 

of interfacial reflections were found to be in good agreement with 

those calculated based on the model structure suggested by Papon et 

al. (1985). It was also observed that this interface is unstable with 

respect to dissociation into other Z = 3 and Z = 9 boundaries.
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(3 ) Z = 27( 552 ^  boundary: this boundary was observed to be highly 

unstable, exhibiting extensive dissociation and facetting. Due to this 

structural complexity, it was not possible to determine the bicrystal 

spacegroup using CBED. Some evidence was obtained using SAD in

dicating that the periodicity of the interface is the same as that of 

the I  = 27 CSL.

7.4. SUGGESTIONS FOR FURTHER WORK.

In the course of this work it has become evident that two aspects of 

the experimental programme would benefit from further attention. These 

are, firstly, problems associated with the interpretation of CBED pat

terns from bicrystal specimens, and secondly, quantitative comparison 

between the calculated and measured intensities of diffracted beams.

Concerning CBED, three topics need to be considered. The first one 

follows from our observations that antisymmetry operators, such as m', 

and 2' in the interface of a ’’plan-view" specimen, were frequently 

broken, i.e . did not lead the anticipated symmetries being observed In 

CBED patterns. We have presumed that this has arisen due to surface 

roughness or the location of the interface not being coincident with the 

central plane of ’’plane-view’’ specimens. It would be valuable to carry 

out a systematic study by simulating the contrast expected from "plan- 

view" specimens where the interface location and surface smoothness and 

orientation were varied. The second topic concerns the symmetry ob

served in CBED patterns from "edge-on" specimens. As explained in the 

thesis, it is anticipated that the symmetry observed depends upon the 

spot size used, so called "complex symmetry" being observed for rela

tively large spot sizes as in the present work. It would therefore be
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interesting to investigate pattern symmetry using smaller spot sizes. 

Finally, as has been suggested by Schapink et al. (1986), it would be val

uable to investigate the symmetry of CBED patterns from "edge-on" 

bicrystal specimens using the double-rocking zone axis pattern (DRZAP) 

technique, and to vary the spot size in addition as outlined above.

With regard to quantitative measurement of diffracted intensities, it 

would be particularly valuable to carry out x -ray diffraction studies of 

"plan-view" bicrystal specimens using a synchrotron source. This would 

have the advantage of making the comparison between experimental 

measurements and theoretical calculations based on kinematical theory 

more justifiable. At the same time, use of a synchrotron source would 

overcome the experimental difficulties associated with the problem of 

weak x -ray  diffraction by interfaces. This approach is currently being 

undertaken by Saas et al. (1988) in their work on gold bicrystals.
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CONCLUSIONS AND  SUGGESTIONS FOR FURTHER W O R K

7.1. CO NCLUSIO NS REGARDING TH EO RETICAL  

CRYSTALLOGRAPHY.

(1) It has been shown that the 31 diffraction groups for single crystals, 

previously obtained by Buxton et al. (1974) using stereographic argu

ments, can be obtained in a straightforward manner using 

crystallographic theory. These groups have been derived here by 

starting with the 31 rosette groups and using the concept of anti

symmetry to identify symmetry elements for which the reciprocity 

theorem must be invoked in CBED.

(2 ) A group theoretical method for obtaining the BF, projection 

diffraction and whole pattern symmetries corresponding to a given 

diffraction group has been presented.

(3 ) The results outlined above have been extended to obtain all possible 

diffraction groups for bierystals. Procedures for determining the ad

missible diffraction groups for both ’’plan-view” and ”edge-on” spec

imens have been discussed.
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7.2. CO NCLUSIO NS REGARDING EXPERIM ENTAL TECHNIQUES.

(1 ) "Edge-on" and "plan-view" germanium bicrystal specimens have been 

prepared successfully for investigations by transmission electron 

microscopy.

(2 ) SAD, CBED and LACBED techniques have been used to study 

bicrystal specimens. The SAD method was found to be particularly 

useful for studying interfacial reconstruction. Bicrystal symmetry was 

successfully investigated using CBED on "plan-view" specimens. On 

the other hand, CBED patterns obtained from "edge-on" specimens 

could not be interpreted directly in terms of bicrystal symmetry.

7.3. CO NCLUSIO NS REGARDING SPECIFIC INTERFACIAL  

STRUCTURES.

(1 ) Z = 3( 1ÏÏ boundary: the experimental observations are consistent 

with a bicrystal exhibiting symmetry p6,m2*. Moreover, no evidence 

was found for interfacial reconstruction or a significant displacement 

field. This boundary is stable and showed no tendency to dissociate.

(2 ) I  = 3( Ï12 boundary: the experimental observations are consistent 

with a bicrystal exhibiting the symmetry clm l. In particular, clear 

evidence of a c(2x2) reconstruction was obtained, and the intensities 

of interfacial reflections were found to be in good agreement with 

those calculated based on the model structure suggested by Papon et 

al. (1985). It was also observed that this interface is unstable with 

respect to dissociation into other Z = 3 and Z = 9 boundaries.
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(3 ) X = 27( 552 boundary: this boundary was observed to be highly 

unstable, exhibiting extensive dissociation and facetting. Due to this 

structural complexity, it was not possible to determine the bicrystal 

spacegroup using CBED. Some evidence was obtained using SAD in

dicating that the periodicity of the interface is the same as that of 

the I  = 27 CSL.

7.4. SUGGESTIONS FOR FURTHER WORK.

In the course of this work it has become evident that two aspects of 

the experimental programme would benefit from further attention. These 

are, firstly, problems associated with the interpretation of CBED pat

terns from bicrystal specimens, and secondly, quantitative comparison 

between the calculated and measured intensities of diffracted beams.

Concerning CBED, three topics need to be considered. The first one 

follows from our observations that antisymmetry operators, such as m', 

and 2' in the interface of a "plan-view" specimen, were frequently 

broken, i.e. did not lead the anticipated symmetries being observed in 

CBED patterns. We have presumed that this has arisen due to surface 

roughness or the location of the interface not being coincident with the 

central plane of "plane-view" specimens. It would be valuable to carry 

out a systematic study by simulating the contrast expected from "plan- 

view" specimens where the interface location and surface smoothness and 

orientation were varied. The second topic concerns the symmetry ob

served in CBED patterns from "edge-on" specimens. As explained in the 

thesis, it is anticipated that the symmetry observed depends upon the 

spot size used, so called "complex symmetry" being observed for rela

tively large spot sizes as in the present work. It would therefore be
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interesting to investigate pattern symmetry using smaller spot sizes. 

Finally, as has been suggested by Schapink et al. (1986), it would be val

uable to investigate the symmetry of CBED patterns from "edge-on" 

bicrystal specimens using the double-rocking zone axis pattern (DRZAP) 

technique, and to vary the spot size in addition as outlined above.

With regard to quantitative measurement of diffracted intensities, it 

would be particularly valuable to carry out x -ray  diffraction studies of 

"plan-view" bicrystal specimens using a synchrotron source. This would 

have the advantage of making the comparison between experimental 

measurements and theoretical calculations based on kinematical theory 

more justifiable. At the same time, use of a synchrotron source would 

overcome the experimental difficulties associated with the problem of 

weak x-ray diffraction by interfaces. This approach is currently being 

undertaken by Sass et al. (1988) in their work on gold bicrystals.
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