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AP PPAr r 

Applications of a new, exact solution to the Axi-Symmetric Navier- 

Stokes equations have been studied. The important feature of this solution 

is that it is valid for all Reynolds number. All recent research in this 

field has needed to make a variety of assumptions regarding the physical 

properties of the flow. Consequently, this new solution has provoked a 

great deal of interest and has widespread implications in further re- 

search. 

A significant feature of this new solution is the non-zero radial 

velocity on surfaces equidistant from the axis of the pipe, and as such, 

applications to tubes with impermeable boundaries requires pipes to have 

varying radius. The first case to be considered was that of peristaltic 

transport, that is the movement of fluid by travelling, sinusoidal waves 

of contraction along a tube. This problem is of considerable relevance 

in biomechanics and in the pumping of corrosive fluids. Previous research 

into peristalsis has tackled specific approximated cases of small and 

large Reynolds number and good agreement has been found between flow 

features of these and those of this solution. 

Subsequent research has concentrated on flow through pipes of 

slowly varying cross-sectional area, with both porous and impermeable 

boundaries. Industry has expressed interest in transport of fluids along 

such pipes. However, the majority of the work done has been either nu- 

merical or experimental and deals only with particular flow character- 



istics. The solution for the impermeable case is found as a series in 

the axial parameter and uses a number of computational tools, algebraic 

computing and numerical software packages to obtain the coefficients. The 

work was comrleted by a study of a combination of variable width and 

suction. Families of boundaries are obtained for the necessary streamline 

distributions and the corresponding mass transfer profiles are presented. 
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INTRODUCTION 



Recently, [1], a new exact solution of the Navier-Stokes equations 

has been developed. It was obtained as a solution to the problem of the 

steady, laminar, axi-symmetric flow of an incompressible fluid along 

circular pipes of constant cross-sectional area, with mass transfer at 

the walls. There has been a great deal of interest in flow through pipes 

with porous walls due to such problems as transpiration cooling, gas 

diffusion technology and the control of fluids in nuclear reactors. All 

previous research has concentrated on constant injection or suction, 

whereas this solution is unique in that the through flow can be varied 

along the length of the tube. This allows the maintenance of a fully de- 

veloped velocity profile or alternatively permits the gradual transition 

from one prescribed velocity profile at some cross-section to another, 

similarly prescribed, further downstream. 

The two definitive equations of viscous fluid flow are the equations 

of continuity and the Navier-Stokes equations. Exact solutions of this 

pair of equations are rare. The most notable examples are Poiseuille and 

Couette flows. Poiseuille flow occurs in pipes or channels with sta- 

tionary walls, but with a pressure gradient and displays the character- 

istic parabolic velocity profile. Couette flow results from the movement 

of the boundary of a pipe or channel creating an axial or azimuthal 

shearing flow. This new solution is a combination of Poiseuille flow and 

a Potential flow. The laminar flow of an ideal fluid is known as Potential 

flow and the potential function is obtained as a solution of the axi- 

symmetric Laplace equation, the arbitrary constants being defined by the 

boundary conditions of the particular problem being considered. 
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The important and unique feature of this new solution is that it 

is valid for all Reynolds number. Reynolds number is a non-dimensional 

geometric constant which can be considered to be the ratio of the inertia 

and the viscous terms of the Navier-Stokes equations. It is considered, 

quantitatively to be the product of a typical velocity scale (the centre 

line velocity, inlet velocity, etc. ) and a typical length scale (the width 

of a channel, radius of a pipe, etc. ) divided by the kinematic viscosity 

of the fluid involved. Any two flows with the same initial and boundary 

conditions and the same Reynolds number can be considered to be dynam- 

ically similar. This is of particular relevance in 'model testing', which 

permits the variation of two or more of the constituent parameters, whilst 

maintaining the same Reynolds number, to allow the investigation of the 

flow in physical conditions that are more convenient than those of the 

unknown flow field. 

Most of the previous analytical research into fluid flow has needed 

to make an assumption as to the size of Reynolds number. Taking this to 

be small (slow flow) or even zero (Stokes flow) allows the inertia terms 

of the Navier-Stokes equations to be neglected. Conversely, taking 

Reynolds number to be large (boundary layer flow) allows the viscous terms 

to be neglected. Both these assumptions suitably reduce the governing 

equations to a form in which they can be more easily solved. 

This thesis investigates the applications of this new solution to 

a number of other problems. Even though the basic equations for each 

problem are the same; the assumptions, the boundary conditions and the 

techniques used in the solutions are different. Consequently, each sec- 
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tion addresses a separate problem. It is considered important to repeat 

the initial equations and, as such, each section can be viewed independ- 

ently of the others, with its own introduction and conclusion. The work 

initially concentrated on the flow along pipes with impermeable bounda- 

ries. Since the solution was developed for porous pipe flow, there is a 

non-zero radial velocity on surfaces equidistant from the axis of the 

pipe. As a result, the investigation of flow through pipes with no through 

flow necessitates a varying cross-sectional area. 

Section 1 concentrates on the first problem that was considered 

which was that of Peristaltic Transport. Classically, this is modelled 

by a pipe with a series of sinusoidal waves of small amplitude imposed 

upon it. This problem was tackled using a perturbation series technique, 

to first order when considering the classical problem, and subsequently 

to second order when considering a non-linear waveform as the wall pro- 

file. 

Section 2 investigates the more general problem of variable width. 

This appeared to be a natural extension of the type of problem encountered 

when considering peristaltic transport. The problem of flow through pipes 

with slowly changing cross-sectional area has provoked both theoretical 

and experimental interest. This approach is totally novel in that the 

boundary is considered to be unknown, but that the velocity in the pipe 

could be described by the new solution with a suitably obtained potential 

function. From this supposition the wall profile is defined by the 

boundary conditions and this type of problem is known as a Free Boundary 

Problem. Some research has been made into problems of this kind, however, 
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other difficulties are encountered which render the problem trickier than 

those previous cases. This problem is also tackled using a series tech- 

nique. The boundary conditions indicate that there is an infinity of 

zeros, or eigenvalues, of the derivative of the Bessel function of the 

first kind, J1. As a result of this there is an infinity of solutions for 

each term in the series. As such, the effects of combining all the sol- 

utions and using all the terms in the series are investigated separately. 

Section 2.1 concentrates on two terms in the series but with a large 

number of eigenvalues. Two particular cases are presented; that of flow 

along a pipe with parallel walls and different radii up and downstream, 

and flow along a parallel pipe with a bulge or constriction. Section 2.2 

considers the case of one eigenvalue and a large number of terms in the 

series. The first few terms are found, both analytically and using a 

double series method, and then an alternative perturbation parameter is 

used to optimise the information from the first series. 

Finally, in Section 3, there is an investigation of the effects of 

both variable width and suction on an axi-symmetric pipe flow. Streamline 

distributions and their corresponding family of boundaries are obtained 

for a selection of different potential functions. In addition, the 

suction/injection profiles for each case are found. 
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SECTION 1. 

PERISTALTIC TRANSPORT 



INTRODUCTION 

The word peristalsis comes from the Greek word peristaltikos which 

means clasping and compressing. It is used to describe a progressive wave 

of contraction along a tube or channel whose cross-sectional area conse- 

quently varies. The wave may have an arbitary shape [1]-[5], but for 

simplicity it is often assumed to have a sinusoidal shape, for example, 

[6]-[11]. Peristalsis is regarded as having considerable relevance in 

biomechanics and especially as the method of transport of many of the 

body's fluids. 

Early research in peristalsis involved the flow of urine from the 

kidney to the bladder [1], [7], [12], [13] and in the vascomotion of small 

blood vessels [7], [14], [15]. Subsequently research interest widened to 

include, for example, the motion of chyme in the small intestine [2], the 

peristaltic pumping of blood [8], [16]-[19], the transport of spermatozoa 

[20], the mechanical and neurological aspects of the peristaltic reflex 

[21], and, in plant physiology, phloem translocation by driving a sucrose 

solution along tubules by peristaltic contractions [32]. The application 

of peristaltic motion as a means of transporting fluid has aroused in- 

terest in engineering fields [10], [11], [22]. In particular, the 

peristaltic pumping of corrosive fluids and slurries could be useful as 

it is desirable to prevent their contact with the mechanical parts of the 

pump. 

Many research workers have attempted to obtain analytical and nu- 

merical solutions for peristaltic flows. The governing equations are 
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non-linear so that assumptions are made about the amplitude ratio, the 

wave number and the Reynolds number. The amplitude ratio is the ratio of 

the amplitude of the wave to the average radius of the pipe and is usually 

taken to be small. Analytic solutions for zero Reynolds number were first 

considered by [6] and [23]. These flows, in which the inertia terms are 

neglected, are known as Stokes flows. Many analytical solutions were then 

developed to take account of the small non-linear effects. These sol- 

utions, as typified by [7], [16], [23], [24] and [25], assume either that 

the Reynolds number is small or that the product of the Reynolds number 

and the wave number (the ratio of the radius of the pipe to the wavelength 

of the wave) is small. The other limiting case of large Reynolds number 

has been tackled in [22] by solving the boundary layer equations. 

To obtain information about flows at moderate Reynolds number it 

has been necessary to use numerical methods. The finite element method 

was used by [18], while more recently finite difference methods have been 

adopted by [9], [10], [11] and [26]. 

Recently a new solution of the Navier-Stokes equations for axi- 

symmetric flow has appeared. This solution is valid for all Reynolds 

numbers and has proved to be of considerable assistance in dealing with 

flows through porous tubes [27], [28], [29] as well as laminar flows 

through circular pipes whose cross-sectional area varies slowly in the 

axial direction [30]. 

This exact solution will be used to show that for any given ampli- 

tude ratio there is a general wave shape that yields an analytical sol- 

ution valid for all Reynolds numbers. Further this solution exhibits some 
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of the features that appear in the papers mentioned earlier. For example, 

a typical set of streamlines will appear that are consistent with those 

found numerically by [11] (Fig. 5(a)). It is also worth noting that the 

velocites shown in [11] (Fig. 8) are consistent with the solution pre- 

sented in this paper. 

As well as giving an insight into peristaltic flows, the solution 

in the present paper could be chosen as the first approximation for a 

numerical method for solving a wave of arbitrary shape. 

There has been some confusion in the literature concerning the 

correct boundary conditions. Many researchers have correctly assumed that 

the normal and tangential velocity components of the wall and of the fluid 

at the wall are equal and this will be followed in Section 2. However, 

in some cases, for example [23], the radial velocity at the wall has been 

neglected although numerical solutions [18] show this to be invalid. 

Others [31], have replaced the radial velocity condition by a pressure 

difference boundary condition taken from the flexibility condition that 

appears in foil bearings. Again the radial boundary condition has not been 

satisfied and the solution is invalid. 

FORMULATION OF THE PROBLEM 

Consider the laminar axi-symmetric motion of the an incompressible 

fluid through a tube of radius R. Choose a cylindrical polar co-ordinate 

system (r, O, z) where the axis Oz lies along the centre of the tube, r is 

the distance measured radially and 0 is the azimuthal angle. Let U and V 
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be the velocity components in the directions of z and r increasing re- 

spectively, as shown in Figure 1.1. For peristaltic flow, the equation 

of the wall at time t can be taken to be 

(1.1) R(z, t) =h+ chF{(21T/X)(z - ct)) ,£«1, 

where h is the average radius of the tube, Eh is the amplitude of the wave, 

c is the velocity of the wave and X is the wavelength. For the particular 

case of an infinite train of sinusoidal waves then 

(1.2) F{(2ii/X)(z - ct)} -7- cos{(2ii/X)(z - ct)) . 

The most popular choice of wall equation in the literature is that given 

by equations (1.1) and (1.2). 

It will also be assumed that there is no displacement of the wall 

in the axial direction. 

In the fixed co-ordinates (r, z) the flow in the pipe is unsteady 

but if moving co-ordinates (n, ') are chosen to travel in the positive 

z-direction with the same speed as the wave, then the flow can be treated 

as steady. The two co-ordinate frames are related by 

=z- ct , Tj =r; (1.3) 

u= U- c, v= V; 
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where u and v are the velocity components in the directions of ý and n 

respectively in the moving frame. 

In the steady frame the continuity equation is 

au =o, 
an aý 

and the Navier-Stokes equations are 

u 
au 

+v 
au 

= -1 
aP 

+ vV2u , Pa all 
(1.5) 

u 
av+v av= 

-1 
3P+v(V2V 

-V 
a 311 p an n2 

where 

ýI. 6) 
V2 _ 

a2 
+1a+ 

a2 

3 nt n all aý2 

and where p is the pressure, p the density and v is the kinematic 

viscosity. 

One of the boundary conditions for a flow that is axi-symmetric 

about the centre line is 

(1.7) V=0 on Ti =0 
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The remaining boundary conditions are obtained by taking the velocity 

components of the fluid at the wall to be the same as that of the wall. 

For convenience, a parameter a given by 

(1. sß = 21T/X , 

is introduced. Then the velocity components at the wall 

-n =h+ EhF(aý) 

(1.9) are u= -c (from U=0 for a fixed wall) 

and v= -achcF'(aý) , 

where ' denotes differentiation with respect to aý. For the sinusoidal 

waves (1.2), the radial boundary condition becomes 

(1.10) v= achcsin(ac; ) 

THE ANALYTIC SOLUTION 

at n=h+ Ehcosaý 

The peristaltic solution will be derived from an exact solution of 

the Navier-Stokes equations given in [27] and will be valid for all 

Reynolds number. It has been shown by [27] that the equations (1.4) and 

(1.5) are satisfied by 
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(1.11) u= k(a2 - n2) + 
aý 

ý" = 
ao 

an 

where k and a are arbitrary constants, provided 0(ý, n) satisfies Laplace's 

equation 

(1.12) V20 =o, 

where V2 is given in (1.6). This solution can be written 

A 
U(r)z+V 

where 
z is a unit vector parallel to the axis of the tube. It is a com- 

bination of Poiseuille flow (the first term) and a potential flow (the 

second term), and consequently it is evident that the second term makes 

no contribution to the viscous friction. The constant k can be related 

to the pressure gradient in the tube. The general equation of (1.12), 

chosen by [2'/]-[29] for flows through a pipe with porous walls and by [30] 

for flows through a circular pipe whose cross-sectional area varies slowly 

in the axial direction, involved Bessel functions of the first and second 

kind, namely J0(r) and Y0(n), together with exp(ý). However, the appro- 

priate solution of (1.12) for peristaltic flow is 

Co 

(1.13) =S {Ancosct Bnsincný){I0(ann) + DnK0(an1l)) 
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where 10 and K0 are modified Bessel functions of the first and second kind 

respectively and an, An, Bn and Dn are constants to be determined. The 

symmetry condition (1.7) together with (1.11) and (1.13) yields 

(1.14) D0. 
n 

The values of an are determined by relating the general wave form F(ad) 

in (1.9) to the orthogonal set of functions in (1.13). Thus, for the 

general waveform, the values of an are given by 

(1.15) an = na , 

where n is an integer. However, for the first order solution for a 

sinusoidal wave, the term given by n=1 will be sufficient. 

A FIRST ORDER SOLUTION 

The sinusoidal wave given by (1.2) is the most popular waveform in 

the literature and series solutions for small Reynolds numbers can be 

found in, for example, [23] and [25]. A solution valid for all Reynolds 

numbers will now be sought by taking series expansions in c, the ratio 

of the amplitude of the wave to the average radius of the tube. 

For a wave of the shape (1.2), the boundary condition on 0 can be 

derived from (1.9), (1.10) and (1.11) to yield that at the wall 
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(1.16) ý1 = h(1 + ccosaC) , 

the velocity components satisfy 

(1.17) ao 
= czchcsina 

3 ,n ,I =n 1 

A solution in the form 

CX> 

(1.18) = 
n 

E 
n(ý3il) 

ro 

-k(a2 

aý I=1 

will now be sought, where 0 satisfies (1.12), that is 

(1.19) V20n =0n=0,1,2,3,... 

Although the constants k, c etc. could also be written as series expan- 

sions in 6, it will be sufficient to choose 

(1.20) a2 = a02 + ßa12 + c2a`2 + ... . 

The first term 00(ý, fl) satisfies (1.19) and, from (1.17), the 

boundary conditions at n= n1 are 

(1.21) 300 
=0 and 0= -k(a02 - h2) -c 

aTj 

17 



The appropriate solution of (1.19) satisfying (1.21) is 

(1.22) ý0C;, n) =o 

and the constant a0 is given by 

(1.23) a02 = h2 - c/k . 

The second term 01(ý, Tj) satisfies (1.19) and, from (1.17), boundary 

conditions of order e, that is, at n= 71 l 

301 
= ahcsinaý 

(1.24) 
ail 

= -k(a12 - 2h2cosaý) 

The boundary conditions (1.24) suggest that, from (1.13) and (1.14), the 

required solution of (1.19) is, 

01 = (A1cosaý + B1sinaý)I0(a11) . 

The radial velocity condition in (1.24) gives 

Al =0 B1I0'(ar1) = he , 
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where ' denotes differentiation with respect to an. Now, from (1.16), to 

first order -n 1=h so that the solution for 01(ß, n) is 

(1.25 I (au) 
ý1 = he 0 sinaC 

I0'(ah) 

The tangential boundary condition in (1.24) will relate the pressure 

gradient to the velocity of propagation of the wave c. Thus 

(1.26) a1 =05 k= B1aI0(a*11) 

2h2 

Consequently to first order, k is given by 

(1.27) k= acl0(ah) 

2hI0'(ah) 

Substitution from (1.21)-(1.27) into (1.11) yields the following simple 

expressions for the velocity components of the fluid 

u_ _c + cahI0(ah) f1 _ 
n2] + Ecah10 

(an) 
cosa4 

2 I0'(ah) h2 I0 '(ah) 

(1.28) 

EcahIOaii) sinaý . 
10'(ah) 

Before examining solution (1.28) in detail, some preliminary ob- 

servations can be made. Analytical solutions have previously been ob- 
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tained by taking a double series expansion in terms of the Reynolds number 

and a small parameter which was either the amplitude ratio or the wave 

number, [see [7], [16], [23] and [25]]. The choice of typical Reynolds 

number has alternated between R= (ch/v) and Re = (ch/v)ah, and there has 

been some doubt as to which one was the more suitable. Indeed [24] exam- 

ines this problem in the conclusion and decides that Re is more appro- 

priate. In [16], R is used throughout the analysis but finally the author 

writes in the conclusion: 

" The results of the higher-order solutions suggest that a Reynolds 

number more relevant than the one introduced earlier for the problem is 

perhaps Re". 

It is clear, from (1.28), that the significant parameter combina- 

tion is ah, so this suggests that series expansions should have taken R 
e 

as the parameter. 

It is also evident that the velocity components of the flow and the 

pressure gradient are directly proportional to the velocity of the prop- 

agating wave. 

To visualise the analytical solution (1.28) it will be useful to 

choose a suitable value of ah. Although the pipe is the most appropriate 

shape for physical applications, numerical work has concentrated on two 

dimensional flows because numerical solutions for axi-symmetric flows are 

more difficult due to the singularity in the governing equations when 

n=0. Consequently, while ah will be chosen to have the value 0.25 to 

enable some comparisons to be made with numerical values obtained in two 

dimensional flows for moderate Reynolds number by [6], precise corre- 
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lation cannot be expected. The actual velocity components U and V can be 

obtained from (1.28) and (1.3) and their respective velocity profiles are 

shown in Figs. 1.2 and 1.3 for the case ah = 0.25 and E=0.1. It should 

be noted that ý=z- ct, so that the velocity profiles are given at a 

fixed time t, t=0 say. Fig. 1.2 illustrates the general statement that 

for all ah the axial velocities have a maximum value with respect to ý 

when aý = 2nv and a minimum value when aý = (2n + 1)7 where n is an in- 

teger. These values of aý correspond to the maximum and minimum radii of 

the pipe. The radial velocity, as illustrated in Fig. 1.3, has the same 

period as the axial velocity but it is out of phase by '/2. The radial 

velocity increases in amplitude as n increases for all values of ah but 

the rate of increase depends on ah. 

It is particularly interesting to observe how the velocity compo- 

nents change by considering the limiting cases. For ah 0, (1.28) yields 

z 
U= c[(1 -n)+ 2ecosaý) ,V= Fcartsinaý 

h2 

which are in accord with expansions for small Reynolds numbers. The shape 

of U and V are only slightly different from those shown in Figs. 1.2 and 

1.3. For ah -+ oo and using that for z large 

z 

ID(z) -e' 

then (1.28) yields that for ih 
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i 
U cash[ 

1(1 
-n)+ e�Ch/71 )exp{a(ft - h)}cosaC] 

2 h2 

and 

V- Ecah�(h/)exp{a(TI - h))sinaý , 

and for values of q in 0 <_ -n <h- 0(1/a) 

U cock 1_ T1 2)V=0 

2 h2 

Thus although deductions about periodicity remains unchanged, there is a 

dramatic change in velocity in a narrow region near the boundary of width 

0(1/a). This is precisely the behaviour that would be expected for large 

Reynolds numbers from boundary layer theory. 

For plane two dimensional peristaltic flows, the centre line ve- 

locity of the flow has been examined by various authors, for example, 

[10], [11], [23] and [33]. From equations (1.3) and (1.28), the centre 

line velocity for a first order solution is given by: 

Uý 
= ah I0(ah) 

+ £cosaýJ 
-ii=O 
c I0'(ah) 2 

Again, a significant parameter in the solution is the product ah. Al- 

though the present solution is for axi-symmetric flows, it suggests that 

numerical solutions to the plane flow should consider values of ah rather 

than individual values for a and h. The numerical solutions [11] and the 
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series solution for small Reynolds numbers are consistent with these ob- 

servations. 

Since ah > 0,1 
0(ah) >0 and I0'(ah) > 0, the only quantity that 

may be negative is the cosine term. Clearly, as e>0 is small, Ujn=o >0 

for all ý, and thus there is no ref lux, reverse flow, at any point of the 

peristaltic cycle. This is an important requirement for industrial fluid 

propulsion. Details of this flow, such as the mass flow and pressure 

distribution will now be discussed. 

STREAMLINES. PRESSURE DISTRIBUTION AND MASS FLUX 

To visualise the flow the equation of the streamlines will now be 

found. Introducing the streamfunction p defined by 

(1.29) u=1 
30 aýp 

Ti 3n Ti 

then substituting for v into (1.28), integration with respect to ý yields 

(1.30) I0'(ah)p = schnIO'(aii)cosaý + g(n) , 

where g(n) is an arbitrary function of n to be determined. After substi- 

tuting for 4 and u from (1.30) and (1.29) respectively into (1.28) and 

also noting that 1 
0(an) satisfies 

Io � (an) +1 I0'(an) I0(aTi) _0 

aTI 
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it can be shown that g(n) satisfies 

(1.31) $(ý1) _ en [ -I0'(ah) + ah I0(ah)(1 -nz)) 

2 h2 

Integration of (1.31) with respect to Ti and substitution into (1.30) gives 

(1.32) p+ cTi 2_ ch'n [ aT1 (1 - 
112)j + E: I0'(atl)cosaz ], 

2 I0'(ah) 4 2h2 

where p is the streamfunction in the moving frame. The non-dimensional 

function (alp/c) depends only on the non-dimensional quantities ah, an, 

aý and e. Contours for constant values of (alp/c) have been plotted in 

Fig. 1.4 for ah = 0.25 and e=0.1. The wall of the pipe is a streamline 

of the flow in the moving frame and the streamlines close to the wall 

follow the shape of the wall, as is to be expected. However, as ah in- 

creases, the width of the region in which the streamlines follows the 

shape of the wall narrows until it becomes a boundary layer. Indeed, it 

can be shown that for ah large, the streamlines away from the wall satisfy 

12(2h2 - T12) = constant. 

In the fixed frame the streamfunction 'f is given by 

(1.3 3) 'Y =4+ Cl, 2 
/12 , 

where ip satisfies (1.32). A typical streamline pattern is illustrated in 

Fig. 1.5 and demonstrates a flow down the tube near the centre line. It 
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should be noted that in the fixed frame 'Y is a function of (z - ct) and 

so depends on both position and time. However, choosing a fixed time, say 

t= (27n/ac) where n is an integer, will give the streamline pattern 

shown. 

The pressure distribution can be obtained by substituting for u and 

v from (1.11) into (1.5) and integrating each of the equations of the 

motion. It can be shown that the pressure, p, is given by 

(1.34) p+ P{-21(0TI 2+0 2) + u0 + u0' 0 
ndC} = p0 - 4kpC , 

where uO = k(a2 - n2) and p0 is a constant. The first-order evaluation 

is given by 

(1.35) p- p0 2I0(ah)aý 
_ 

cRcosaC{ I0(ah) 
[ anI 0 

, (ark) 

ppa ahl0'(ah) I0'(ah) ahI0'(ah) 

I2 
+0 

(aý )a2h2[1- 71 )]- I0 (ail )} 

2 h2 

where R= (hc/v) is a non-dimensional Reynolds number. Contours for 

((p - p0) / pca) are shown in Figs. 1.6 and 1.7 for ah = 0.25 and c=0.1. 

For small Reynolds number the first term is dominant, showing the pressure 

to be independent of cross-channel position and proportional to ý and this 

can clearly be seen in Fig. 1.6. For increasing Reynolds number the second 

term becomes more significant and the pressure exhibits an an dependence 

and a more periodic nature in ý, as illustrated in Fig. 1.7. 
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Numerical solutions and series solutions for small Reynolds numbers 

have usually examined the special cases of the pressure distribution on 

the centre line and on the boundary. For n=0, (1.35) yields 

(1.36) (Pil, 
=O Pp) = -2I0(ah)aZ 

_ 
ER { ahI0(ah) 

_1 }cosaý 
, 

uca ahI() (ah) I0'(ah) 2I0'(ah) 

showing the central line pressure to be periodic of same period as the 

wave, but out of phase by 11. On the boundary ri = h(1 + ccosaý), the 

pressure (1.35) to O(c)is 

(1.37) (Pln_n 
1- 

P0) _ -2I0(ah)aý 

t uca ahI0(ah) 

which shows that the pressure on the boundary decreases linearly with 4. 

The relation (1.37) is the same as that obtained for small Reynolds number 

expansions. Consequently, increasing the Reynolds number has more influ- 

ence on the centre line pressure distribution than on the boundary pres- 

sure distribution. 

Due to the periodic nature of this flow, the concept of average mass 

flux over one wavelength will now be introduced. The actual average mass 

flux, at time t=T is given by 

(1.38) 
21T P Tn=, 

n 
dz at t=T, 

1 

0 
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where A is the wavelength of the peristaltic wave, and 'Y is the fixed 

frame streamfunction. The actual mass flux is measured relative to axes 

in space and is different to the mass flux relative to the moving bound- 

ary. From (1.3), at a fixed time t=T, dz = dý and, after substituting 

(1.33) and (1.32) into (1.38) and integrating with respect to ý, it can 

be shown that the average mass flux is 

(1.39) npcahl0(ah)h2 

410'(ah) 

It should be noted that the term of 0(E) in (1.39) is identically zero. 

The average mass flux given by formula (1.39) is useful in calculations 

concerning the peristaltic pumping of fluids in a variety of engineering 

applications. 
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EXTENSION TO A SECOND-ORDER SOLUTION 

It has been shown that even though the velocities and the 

streamfunction contain periodic terms in c, the pressure and average mass 

flux are linear to first-order, and thus knowledge of the second-order 

solution is important for developing a deeper understanding of these 

quantities. For a second-order flow, the equation of the wall at time t, 

can be taken to be 

(1.40) R(z, t) =h+E: hF{(2ii/X)(z - ct) )+ e2hG{(2ii/X)(z - ct) ), 

where h is the average radius of the tube, Eh is the average amplitude 

of the wave and E2h is the amplitude of the perturbation imposed on the 

wave. Considering the particular case that was investigated to first- 

order, then 

(1.41) F{(21T/X)(z - ct)} = cos{(21T/X)(z - ct)) , 

as before and 

(1.42) G{(21T/X)(z - ct)) = öcos2{(21T/X)(z - ct)) , 

where ä is a constant to be determined by the boundary conditions. 

Using the transformed co-ordinates defined by (1.3), the boundary 

conditions become 
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(1.43) V=0 on n=09 

which is identical to (1.7). By taking velocity components of the fluid 

at the wall to be the same as those of the wall 

(1.44) u= -c and v= -achcF'(aý) - aC2hcG'(aO on the wall. 

In the case of an infinite train of perturbed sinusoidal waves, then 

(1.41) and (1.42) give: 

(1.45) v= aEhcsinaý + 2aC2hcäsin2aý . 

For a wave of this shape the boundary conditions on 0 can be obtained from 

(1.11), (1.12), (1.13), (1.43) and (1.44) to yield 

an n=n2 

(1.46) and 

aý , '=n2 

= aehcsinaý + 2ac2hcXsin2aý , 

= -k(a2 -7122) -c, 

where *n 2=h+ Ehcosaý + c2Hcos2aý. 

When 0 is written as the series (1.18), the second-order boundary condi- 

tions on n= 71 2 
become 
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2= 2ahc? lsin2aý _ 
ahcl0" (ah)sin2aý 

än 
L=h 

2 I0 (ah) 

(1.47) 

ao2 
= -k[ a22h2 - h2cos2aý - 2h22(cos2aý ]- a2ch2cos2aý 

3ý n=h 

where ' denotes differentiation with respect to an. 

The general form, suggested by (1.13) and (1.25), of the solution is 

(1.48) ý2 = B2I0(2ap)sin2aý . 

Thus, imposing the radial condition (1.47) gives 

(1.49) 
B_2 ch [ 2'd _ 

ahI0 01 
'(ah) 

I0'(2ah) 2I0'(ah) 

and hence 

(1.50) 
0= ch [M_ ahI0 '' (ah) 

)I0(2a1])sin2aZ . 2 
I0'(2ah) 2I0'(ah) 

The constants a2 and X are given by the tangential condition of (1. +7), 

that is, 

(1.51) a22 _11_ 
2ahI0'(ah) 1 

h2 210 (ah) 
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and 

(1.52) 
ah [ I0(2ah)I0 ''(ah) 

_1]+ 
I0(ah) 

_ 
I0'(ah)I0'(2ah) 2 4I0'(ah) 

4I0(2ah) 
_ 

I0(ah) 

I0'(2ah) I0'(ah) 

It can be shown that X>0 for all ah. 

The substitution of (1.51) and (1.52) into (1.11) gives: 

u= -c + cahI0(ah) 

h) 2I0'(a 
11- n2 1 

h 
+ ccahI 

I0' 
0(an)cosaý 
(ah) 

+ E2cah ( I0(ah) 
_ 

ahI0'(ah) 

2I0'(ah) 1 
0(ah) 

+2{ 2ý _ 
ahI0 ''(ah) 

}I0(2aTI)cos2aZ ], 

' I01(2ah) 2I0(ah) 

(1.53) 

v= cah [ £I0'(an)sinaý 
T 1 

0(ah) 

Z ri 

+E{N- ahI0 (ah) }I0'(2an)sin2aý J 

' 10'(2ah) 21o(ah) 

These velocities are tabulated in Tables 1.1 and 1.2 as coefficients of 

C, enabling comparison between terms of first and second order for any 

choice of E. It can readily be seen from this that for c=0.1 the second 

order term has little effect, so the graphical profiles shown in Fig. 1.8 
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Table 1.1 

Centre-line axial velocity coefficients with ah = 0.25 

c Const O(E) 0(c2) 

0 4.031169 7.937824 9.133103 

1T/4 11 4.031169 1 5.612889 '' 1.890584 

1T/2 11 4.031169 1 0.000000 1 -5.351934 

3nf4 11 4.031169 1 5.612889 1 1.890584 

it 11 4.031169 1 -7.937824 1 9.133103 

51T/4 11 4.031169 1 5.612889 1 1.890584 

31T/2 11 4.031169 1 0.000000 1 -5.351934 

7r/4 11 4.031169 1 5.612889 1 1.890584 

21T 11 4.031169 1 7.937824 1 9.133103 
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Table 1.2 

Radial coefficients for t= Jn with ah = 0.25 

Const 0(e) 0(E2) 

R 

0.0 0.000000 0.000000 0.000000 

0.1 0.000000 0.070167 0.090559 

0.2 0.000000 0.140366 0.181289 

0.3 0.000000 0.210631 0.272359 

0.4 0.000000 0.280995 0.363939 

0.5 0.000000 0.351491 0.456203 

0.6 0.000000 0.422152 0.549322 

0.7 0.000000 0.493010 0.643474 

0.8 0.000000 0.564100 0.738834 

0.9 0.000000 0.635454 0.835582 

1.0 0.000000 0.707107 0.933902 
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and 1.9 are presented for the case ah = 0.25 and c=0.3. 

the streamfunction is given by 

From (1.29), 

2 (1.54) ý+ cn 2= 
ch { ahI 0 

(ah) 
,1_ Ti 2 

ßn2 + E: nI0'(all )cosaý 

2 4I0'(ah) 2h2 h2 hI0 (ah) 

[M- achI 0] cos2aCI0'(2an)} 
h 2I0'(2ah) 2I0'(ah) 

where ä is given by (1.52). 

The second order streamfunction (1.54) can be compared with the corre- 

sponding first order approximation (1.32) given by (1.52). 

The second order pressure distribution can be determined by sub- 

stitution from (1.50) and (1.53) into (1.34). Hence 

p-po (ah)a ecosaý I (ah) n2 (1.55) 0=-0-R{[0 (ah(1 - )I0(an) 

uca ah l0'(ah) I0'(ah) 2I0'(ah) h2 

+ 
2-q I0'(a-q ))- 

I0(aii) ]+ E2 [ ah [ sin2aýI0'(an)2 

h 2I0t(ah)2 

+ cos2aýI0(aTI )2 )+1 (2ä _ 
ahI0 (ah))[ 

-2I0(2an) 

I0'(2ah) 2I0'(ah) 

+ 
I0(ah)ail I0t(2an) 

+ ahI0(ah)10(2ar1)(1 
- 

n2) ]cos2aC ] }, 
2ahI0'(ah) I0'(ah) h2 

where R= (hc/v) is the non-dimensional Reynolds number, and ä is given 

by (1.52). The first order pressure distribution given by (1.35) can be 

compared with (1.55). In particular, it can be shown that the pressure 
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at the boundary which, to first order, is not affected by the peristaltic 

wave, is modified by the second order term. The term that needs to be 

added to (1.37) is 

(1.56) E 2ahR 2 { sin2ag + cos2aý( 
I0(ah) 

_ 2) ) 
2 I0+(ah)s 

+ E2R [IK - 
ahI0 ''(ah)11I0(ah) 

_ 
4I0(2ah)1cos2aý 

. 4I0'(ah) I0'(ah) I0'(2ah) 

Values of the coefficients in the series for this boundary pressure are 

presented in Table 1.3. The wave-average mass flux is also only changed 

by second-order terms, and it can be shown that the average mass flux 

(1.39) is increased by 

(1.57) e2h2, TpcahI0(ah) 

210'(ah) 

Consequently to this order there is a net transport over a wavelength. 

CONCLUSION 

The axi-symmetric peristaltic problem has been studied using the 

new exact solution of the Navier-Stokes equations (1.11), which allows a 

solution to be found that is valid for all Reynolds numbers. For this 

solution 0 is described by an asymptotic series in the dimensionless 

quantity e«1, where to first order Eh is the amplitude of the 
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Table 1.3 

Coefficients of 
p p0 

for = 1.0 with ah = 0.25 
pca 

Const 0(t) 0(t2) 

0 0.000000 0.000000 3.937581 

1r/4 -50.657163 0.000000 4.000081 

it/2 -101.314326 0.000000 4.062581 

31T/4 -151.971489 0.000000 4.000081 

1r -202.628651 0.000000 3.937581 

511/4 -253.285814 0.000000 4.000081 

31r/2 -303.942977 0.000000 4.062581 

71T/4 -354.600140 0.000000 4.000081 

21r -405.257303 0.000000 3.937581 
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peristaltic wave. The solution and flow characteristics have been found 

to 0 EZ). 

A good correlation, typified by the streamline patterns, has been 

found between the flow features of this solution and those obtained using 

large or small Reynolds number approximations. In addition some inter- 

esting observations have been made by considering the limiting cases 

ah -+ 0 and ah oo of the velocity components. The former case shows good 

agreement with solutions for small Reynolds number and the latter demon- 

strates a boundary layer-like effect. 

The higher-order solution has been studied to clarify the effects 

of the peristaltic wave on the average mass flux and boundary pressure, 

which are not altered to first-order but which do have correction terms 

to O(e2). 

Throughout this work a Reynolds number of (ch/v)ah has been used. 

The work clearly demonstrates that the important parameter combination 

is ah and consequently that in obtaining numerical solutions or series 

expansions, the appropriate Reynolds number is (ch/v)ah rather than 

(ch/v). 
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SECTION 2. 

VARIABLE WIDTH 
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INTRODUCTION 

This section considers in detail the problem of the steady, laminar, 

axi-symmetric flow of an incompressible fluid along circular cylindrical 

pipes of slowly varying cross-sectional area. An application of the new 

solution presented in [1] was briefly sketched by Terrill [2], however, 

it is important to develop some of these ideas and results further. The 

method used in [2] considers the radius R and the potential function 0 

to be series expansions in a non-dimensional axial variable. This method, 

if in a slightly amended form, will be employed in this section. It soon 

becomes apparent that there is an infinite number of solutions, or 

eigenvalues, for each term in the series for 0. To investigate the effect 

of using all possible solutions for each term, as opposed to the effect 

of higher order terms, it is necessary initially to consider the two 

problems independently. 

Section 2.1 investigates the effect of using all the possible sol- 

utions, by considering the first order solution to give some understanding 

of boundary shapes and their corresponding velocity profiles. The sol- 

ution is illustrated by considering two special cases; that of flow along 

a parallel pipe with different upstream and downstream radii, and flow 

along a parallel pipe with a small bulge or constriction. Since this is 

the first order solution, the extent of the variation of the wall shape 

needs to be small. 

The effect of higher order terms is presented in Section 2.2. For 

simplicity, this is investigated initially by using only one particular 
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eigenvalue for each term in the series. As well as throwing light on the 

series, this case demonstrates the power of analytic programming and in- 

troduces an improved approach to the convergence of series which could 

have widespread applications. The section is concluded with a brief 

presentation of the complicated general solution which is obtained by 

combining both cases. This includes 'cross' terms , which occur as a result 

of the presence of more than one eigenvalue. 

FORMULATION OF THE PROBLEM 

Consider the steady, laminar, axi-symmetric motion of an 

incompressible fluid through a tube of radius R(z). Choose a cylindrical 

polar co-ordinate system (r, O, z) where the axis Oz lies along the centre 

of the tube, r is the distance measured radially and 8 is the azimuthal 

angle. Let u and v be the velocity components in the directions of z and 

r increasing respectively. Then for axi-symmetric flow, the Navier-Stokes 

equations are 

(2.1) 

au au 1 aP 
+ v02u 

az ar p az 

av av aP +V (V2X- `) 
, az 3r p ar r2 

with the equation of continuity 

53 



(2.2) a 
(rv) +r 

au 
=0 

ar az 

where 

(2.3) 
V2 _ 

a2 
+1a+ 

a2 

art r ar az2 

a 

and where p is the pressure, p the density and v is the kinematic 

viscosity. 

The boundary conditions for this axi-symmetric flow are 

(2.4) v=0 on r=0 

and 

u=0, 

(2.5) on r= R(z) 

V=0 

(symmetry), 

where R(z) is the pipe boundary. 

It has been shown by [1] that the equations (2.1) and (2.2) are 

satisfied by 

30 

(2.6) X(a2 - r2) +- ý' = 
az ar 
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where X and a are arbitrary constants, provided ý(ý, ý) satisfies Laplace's 

equation 

(2.7) V20 =0. 

However, the profile of the tube, R(z), is not known and it is 

convenient to select co-ordinates (n, ý) so that the boundary becomes the 

surface rj = 1, that is 

(2.8) TI =r 
R(z) 

In this new frame the solution, (2.7), is 

u= X[a2 - r12R(ý)2] + 
R(ý) 3 pt 

(2.9) 

1 a. v= _, 
R(C) 31] 

where ' denotes differentiation with respect to ý, provided that 

(2.10) V20 =0, 

where 
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V2 _ 
a2 

+1a+R()232+ R' ()2n2 
a2 

aTj 2 11 3 TI aTI 2 aTj 2 
(2.11) 

i 
+ [2R'(ß)2 - R(J)R'º(ý)ITla - 2R(C)Rt(ý)n 

a 

3n an aý 

On substituting for u and v from (2.9) into the boundary conditions 

(2.4) and (2.5) the relations 

a o= 
on Ti =0 and i= 

a, n 
(2.12) 

aý 
_ -a[a2 - R( )2) on n=1, 

ac 

are obtained. These form the boundary conditions from which, first the 

potential function and then the wall profile, can be found. 
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2.1 THE FIRST ORDER SOLUTION 

The first order solution will now be derived from (2.10) and (2.11) 

using boundary conditions (2.12). The shape of the wall R(z), has now 

to be determined, and it should be stressed that there are only particular 

wall shapes which will yield solutions vaild for all Reynolds numbers. 

However, these flows, of which Poiseuille is a special case, are phys- 

ically extremely interesting. Writing the wall and the potential function 

as series in a small parameter c, then 

(2.13) R= R0(1 + CR1) ) 

and 

(?. 14) 0= XE :0 , z) . 

From (2.12) R0, the first approximation to the pipe radius, is equal to 

a. Substituting (2.13) and (2.14) into (2.10)-(2.12) yield to first order 

(2.15) 
azof 

+1 
ail 

+ R02a2o1 =o, 

871 e Tj an az2 

subject to the boundary conditions 

(2.16) 
301 

=0 on n=0,1, 

all 
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and 

(2.17) 301 
= 2R02R1 on Ti = 1. 

aZ 

Solving produces 

01 = {Aexp(az/R0) + Bexp(-az/RC)}{JC(an) + CY0(an)} , 

where A, B, C and a are arbitrary constants to be determined and J0 and 

Y0 are Bessel functions of the first and second kind respectively. As 

Y0(an) is infinite at n=0, then C=0 and the boundary condition on 01 

at 71 =0 is automatically satisfied. Applying condition (2.16) demands 

that J1(a) = 0; hence a= an are the zeros of J1, namely 3.8317,7.0156 

etc. Thus, the general solution of (2.15) can be written 

00 

(2.18) ý1 = [Anexp(anz/R0) + Bnexp(-anz/R0)]JO (antl). 

From (2.17) it can readily be seen that 

1 
(2.19) R1 = [Anexp(anz/R0) - Bnexp(-anz/R0)]anJ0(an)" 

2R 3 
0 H=I 

Substituting for (2.18) and (2.19) into (2.6) yields, to first order, 
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W 

(2.20) u2£ 
%JO(an)[Anexp(anz/RO) - n)- 

XR2 Ra 00 
NN_, 
Bnexp(-anz/R0)][ý12 - 

J0(anil) 
] 

1 
O(an) 

and 

co 
(2.21) V=-£ Za 

n[Anexp(anz/RO) 
+ Bnexp(-anz/RO)]J1(a 

n1l) 23 XR0 R0 
LA _4 

Clearly c=0 is a cylindrical pipe of constant cross-section and the 

solution reduces to Poiseuille flow. 

To understand the first order solution, some simple examples will 

now be considered. 

CASE 1. 

A Semi-Infinite Pipe, the radius of which changes from R0for large posi- 

tive z to R0 +c at z=0. 

Consider a semi-infinite pipe (0 <_ z <_ oo) of radius R(z) such that 
L .L 

R(z) R0, and R=R 
0+E at z=0, where c is small. It can readily 

be seen from (2.19) that the condition R1 -* 0 as z cc demands that 

An=0 for all n. Thus, to first order, the wall is given by 

m 

(2.22) R= R0[1 -c xnexp(-anz/R0)] 

N-1 

59 



where xn= anBnJ0(an) 
and the axial velocity is given by 

2R 3 
0 

(2.23) u-J -n 2) + 2E L [TI 20 anT ]xnexp(-anz/R0) 

i XR0 
Lk_% 1 

O(an) 

The unknown constants xn depend on the constraints on the wall shape that 

are imposed. Suppose that in the neighbourhood of z=0, R(z) is parallel 

to the axis of the pipe. To achieve this, R'(z) and higher order deriva- 

tives can be chosen to be zero at z=0. The number of conditions N, de- 

fines the number of constraints xn that can be uniquely determined. Thus 

at z=0, 

R=R0+Eý 

(2.24) and 

R' = R'' = ... = R(N-1) = 0. 

Taking xiE0 for j>N+1, then (2.24) implies that the xnare solutions 

of 

£, 
X=- 

n 
£R N =ý 

N 

a 
kx 

=0 
nn 

k=1, 

For N small, the exact solution can be easily obtained for N=2, 

x 
a2£ x2 = 

1 
cR0(a1 - a`) 

co 

[T2 

-al£ 

cR0(a1 - a2) 

xj =0jý3. 
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However, for larger values of N, the system of differential equations is 

solved by using a numerical matrix inversion routine from the NAg library. 

This is a software development covering the full range of possible nu- 

merical requirements. This allows the user an algorithm of guaranteed 

efficiency and stability, giving good results economically. Values of 

xn are given in Table 2.1 for N=1,4,6,10 with e=0.005 and 

E 
==0.005. Figure 2.1 illustrates the wall profiles for these values 

0 
of N, and shows that as N increases, the wall is parallel to the axis near 

z=0, for a larger range of z. Substituting the obtained values of xn 

into (2.23) gives the axial velocities for each case. Figures 2.2-2.5 show 

these velocity profiles when N=6 and 10, e=0.005 and iE /R0ý = 0.005 

for both converging (Figs. 2.3 and 2.5), and diverging (Figs. 2.2 and 2.4) 

boundaries, (clearly taking E negative gives a narrowing pipe). In these 

figures u/XR 

02 
is plotted against n for specific values of 

Z/R0 
,X nega- 

tive gives Poiseuille flow into a contracting or expanding pipe. It can 

be seen that deviation from the parabolic profile occurs earlier, that 

is, at larger values of z, for larger values of N. This is expected since 

using more terms in the series accelerates the departure from the limit 

R= R0. The most marked effect of the change of radius on the flow is 

the change in velocity on the axis of the pipe. For e>0, ref lux occurs 

if N? 4; when N=6 the back flow begins near z=0.13R0 and when N= 10 

near z=0.33R0. 
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Table 2.1 

: 'ý 

n 
Values for the coefficients x, when E=0.005 and £ /R = 0.005. 

0 

N= 1 N= 4 N= 6 N= 10 

x2 - 1.63781,1 4.44159,1 1.48450,2 

x3 - -1.13544,1 -6.16956,1 -4.13399,2 

x4 - 2.89973 4.73137,1 7.40684,2 

x - - -1.91924,1 -9.02066,2 5 

x - - 3.22964 7.59395,2 
6 

x - - - -4.37165,2 

x - - - 1.64864,2 
8 

x - - - -3.67993,1 

x - - 3.69313 
10 
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CASE 2. 

A Semi-Infinite Pipe with radius R= RO at both z=0 and z= ý_ 

Consider a semi-infinite pipe (0 <_ z <_ -) with R= R0 at z=0 and 

RR0 as z -* oo, and let R(z) - RD be small, but non-zero, for some 

intermediate values of z. Clearly, the constants xn in (2.22) can be 

chosen such that R(z) and some of its derivatives are specified at certain 

values of z in 0 <_ z<-. The most interesting case is for the pipe to 

have the same radius in a large neighbourhood of z=0 as it has z -+ CID , 

and to require that the pipe passes through a specified point. This is 

achieved by choosing 

RR0 

R=R0 

(2.25) 
R=Rý+ýý 

R' _ ... = RAN-1ý 

at z-'° , 
at z=0 

at /= 
R zs , 

0 

at z=0, 

where N is an integer, c is small and the boundary passes through 

(zy, R0 + c). The system of simultaneous equations generated by (2.25) 

and (2.22) are 

rf N ;, 
E 

xn =0, xnexp(-anz 

r_ý hJ& I cR0 

and ,. ( 

a 
kh 

=0k=1, ..., 
N-2 

nn 
N=1 

Table 2.2 lists the values obtained for xn together with the position of 

the peak when e=0.001, 
ER=0.001 

, z" = 0.5 and N is chosen to be 

0 
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4,8,12 and 15. Figure 2.6 shows the boundaries for these values, and 

illustrates the increase in magnitude of the maximum displacement and its 

migration in the direction of z increasing with increasing N. The larger 

the value of N that is chosen, the further the peak, or trough, in the 

the pipe is from z=0. This is caused by increasing the flatness at z=0 

by making more derivatives vanish there. The axial velocity is given by 

the substitution of the values obtained for x into (2.23). Taking X<0 
n 

and plotting u /XR 2 against -n for specific values of 
z/R for N=4,8,12 

00 
and 15 demonstrates the deformation of the parabolic flow from infinity 

caused by the change in pipe radius. 

Again, the addition of more terms to the series causes the radius 

to grow (for E> 0) or contract (for c< 0) from R= R0, and for the 

radius to reach its maximum or minimum value earlier, that is, for larger 

z. For e> 0, Figures 2.7-2.10 illustrate this trend and as N increases, 

the reflux begins at an earlier cross-section. Near the axis of the pipe 

and, to a lesser extent, the outer wall, the axial velocity decreases with 

decreasing z; however, for 0.4 < it < 0.6 there is a marked increase. For 

e<0, this behaviour is reversed, and this is illustrated in Fig- 

ures 2.11-2.14. 

The wall profiles and their solutions that have been presented in 

this section will prove useful in the understanding of higher order sol- 

utions presented in Section 2.2. 
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Table 2.2 

Values for the coefficients x 
n, 

when E=0.001, 

boundary passing through (0.5,1.001). 
R=0.001, with the 

0 

N= 1 N= 4 N= 6 N= 10 

x1 4.04628,1 1.01734, 2 2.56573, 2 5.14026, 2 

x2 -1.22272,2 -7.23208, 2 -2.88070, 3 -7.36612, 3 

x3 1.22923,2 2.18805, 3 1.45541, 4 4.84335, 4 

x4 -4.11133,1 -3.66525, 3 -4.39291, 4 -1.95031, 5 

x5 - 3.67749, 3 8.82081, 4 5.38663, 5 

x6 - -2.21170, 3 -1.23837, 5 -1.08060, 6 

x7 - 7.38525, 2 1.24093, 5 1.62454, 6 

x8 - -1.05646, 2 -8.87788, 4 -1.85983, 6 

x9 - - 4.44455, 4 1.62958, 6 

x10 - - -1.48304, 4 -1.08759, 6 

x - - 2.96859, 3 5.44295, 5 
11 

x - - -2.70065, 2 -1.98079, 5 
12 

x - ' 4.95524, 4 
13 

x - - - -7.62779, 3 
14 

x - - . - 5.45113, 2 
15 

Z/ 
R 

0.39344 0.60491 0.73082 0.80057 

0 
eak 

R 1.00217 1.00219 1.00330 1.00500 
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2.2 THE HIGHER ORDER SOLUTION 

THE ANALYTIC SOLUTION 

The solution will be derived from (2.10) and (2.11) using boundary 

conditions (2.12). However, neither R(c) nor 0(n, C) is known. The obvious 

technique is to write both 0 and R as series expansions in ý, with con- 

stant coefficients in the series for R, and coefficients that are func- 

tions of 11 in the 0 series. The method suggests assuming either a 

polynomial or an exponential series in ý. The exponential series is chosen 

because it allows a system of differential equations to be obtained which 

in conjunction with the boundary conditions, can be solved sequentially. 

This is the result of only one new variable being introduced in each 

successive equation. Consequently, the forms of R and 0 are chosen to be 

Co m 

ke-kai 
RR e-kai (2.26) 

u L. ý 
k 

C=o C=o 

where Rk is a constant, Ok =0 k(n) and a is a constant to be determined. 

On substitution for R and 0 from (2.26) into (2.10) and (2.11) the general 

equation for the nth term is given by 
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(2.27) 

V%-1 N-1 

1t+1f222-t1 $n 
_n+ 

oc R0 nn -a din -k- 1)1n2¢, 

1C: 1 fn0 

IG+t iý 

+ (2n1 - 4kl - 312)-no 
k' + k20kJRn_k_1R1 

with 

(2.28) 

and 

(2.29) 

0 0iß 

0 It + (1/n)01' + a201 =0, 

n? 2 

where ' denotes differentiation with respect to n. The boundary conditions 

are given by 

(2.30) 

and 

30k 
=o 

311 
on r=0 and i=1 

N 

(2.31) -naO =nXYRJR n'. ] 
on t1 =1n? 1, 

J=o 

with X(R02 - a2) =0 from the zero term. From this it can readily be seen 

that R02 = a2 , where RO is the radius of the pipe for large C, and without 

loss of generality, can be taken to be unity. Hence 

(2.32) R02 = a2 =1 
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The first term in the expansion for 0 given by integrating (2.28) 

and applying condition (2.30) yields 00 is a constant, which can be taken 

to be zero. For the second term in 0, it can easily be seen that the 

general solution of (2.29) is of the form 

(2.33) 01 = AJ0(ar) + BY0(ari) 
, 

where J0 and Y0 are Bessel functions of the first and second kinds re- 

spectively and a, A and B are constants to be determined [3]. Now 01 is 

finite at Tj =0 and so B=0. Applying conditions (2.30) yields 

-aAJ1(ar) =0 on n= 0 and i= 1 

The condition at n=0 is automatically satisfied, while the condition 

at n=1 implies that an is a zero of J1, namely 3.8317,7.0156,10.1735 

etc. The full solution would be the sum over all the eigenvalues as il- 

lustrated in Section 2.1. However, to investigate the higher order terms 

it will be sufficient to select only one arbitrary eigenvalue, and this 

case will be considered here. The boundary condition (2.31) demands 

ao1in=1 = 2XR0R1 3 

which relates the initial coefficients in the two series by 
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(2.34) A= -2 

aJO(a) 

Since X is an arbitrary parameter of the problem, and R1 can be included 

as part of the independent variable of the equations, new series are 

chosen to facilitate as general a solution as possible, namely, 

(2.35) ýk = 
Ok 

XR1k 

and Rk = 
Rk 

R1k 

where 10 = 0, ý, = -2 '[ 
J0 (a)] 

1 
0(al]) and R1 = 1. Then (2.27) becomes 

IA-1 %A-1 

,t+1+ c2n2ý _ _a (n -k- 1) 1n2 

71 
n_nn 

r_I P=o 
W4 <<uA- 

(2.36) 

+ (2nl - 4k1 - 312)TIk' +k2ýk] Rn-k-1R1 n>2' 

where ' denotes differentiation with respect to 11. The boundary conditions 

are 

(2.37) 
ask 

=0 
all 

on 'n =0 and r1 =1, 

(2.38) -antnýý=1 RkTn_k on n=1. 

Y. ra 
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THE SOLUTION FOR SUCCESSIVE N 

Frr r-1 

From (2.23) 

ý, = A1J0(cn) 
, 

while 

R. 
1 =1 

1:. r --7 

Equation (2.36) reduces to 

A 
1=-2 

aJ0 (a) 

2+12+ 4a2ý2 = -a2A1[2J0(aTt) - 3aflJ0t(an)] 

a71 2 TI 3 TI 

where ' denotes differentiation with respect to the argument. On inte- 

gration this yields 

ý2 = A, J0(2a-n) - A1anJ1(an) 

where A2 is an arbitrary constant of the integration to be determined and 

Al is given above. Application of (2.37) gives 
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A= -aA1J0(a) 
2' 

2J1(2a) 

and (2.38) determines 

712 = -aA2J0(2a) -2 

For n=3 

In this case (2.36) becomes 

3+1 a$3 
+ 9a2ý3 = A2 a 2[5ariJ0'(2an) - 8J0(2an)J 

a 1I 2 71 a 1I 

+ AIR2a2[8aTiJ0'(an) - 2J0(ari)I - 2A1a2[8a2n2J0(ar) 

+ 12afJ0' (aT1 )+ 2J0 (ari) I 

where ' denotes differentiation with respect to the argument. Integration 

yields 

$3 = A3J0(3an) - 2A2anJ1(2an) - A1R2arJ1(an) 

- Ala2ý2J0(ar) + -AlarJ1(ai) 

where A3 is a constant of integration to be determined. The boundary 

condition (2.37) gives 
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A3 =1 [-4aA2J0(2a) +2 R2 + 1] , 
3J1(3a) 

and from (2.38) 

R3 = _3a[A3J0(3a) - 2aA2J1(2a) + a] - R2 

2 

Forn=4 

Now (2.36) yields 

ý4 
+1 

aý4 
+ 16a2ý4 = A123a2[15ariJ0'(an) - 2J0(an)] 

a7j 2 1I a1I 

+A2R2a2[12a-nJ01(2aTI) - 8J0(2an)] + A3a2[7afJ0'(3ar1) 

- 18J0(3aii)]- A2a2[24a2n2J0(2an) + 14anJ0'(2an) 

+ 4J0(2an)] -A 1R2a2[15a2n2J0(an) 
+ 19anJ0'(an) 

+ 2Jý(an)ý 'Ala3n[5a2n2J0'(ail) - 7anJO(ari) 

- 10J0'(an)] , 

where ' denotes differentiation with respect to the argument. Integration 

yields the solution 
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14 = A4J0(4ar) - 3A3anJ1Dan) - 2A2R2anJ1(2an) - A1R3anJ1(an) 

- 2A2a2n210(aT) + A2anJ1(2an) - A1R2a271 210(an) 

+ A1a2anj1(an) + (1/6)AIa311 311(ar, ) + (1/6)A1a2n210(a7l) 

(1/3)A1anJ1( r) 

where A4 is given by (2.37) as 

A4 =1 [- 9aA3J0(3a) - 4aA2R2J0(2a) - 2aA2J0(2a) 

4J1(4a) 

+ 4a2A2J1(2a) + 2R3 +2 SZ 
2- 

(1/3)a2] , 

and (2.38) gives 

R4 = -2a[A4J0(4a) - 3aA3J1(3a) - 2aA2R2J1(2a) - 2a2A2J0(2a) 

+ aA2J1(2a) - a2A1R9J0(a) - (1/3)a] - R3 2 R2s 

r-r n=S 

For this case (2.36) becomes 
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a5+15+ 
25cx2 ý5 = A1R4a2 [ 24a Tito f (ocn) - 2J0 (acrd) J 

a lj 2 lj a Tl 

+ A2R3a2[21arJ01(2aii) - 8J0(2an)1 + A3R`a2[16aiJ0'(3ari) 

- 18J0(3an)] + A4a2[9anJ0'(4arj) - 32J0(4an)] 

- A1R3a2[24a2fl2J0(aT) + 28a7iJ0'(ap) + 2J0(a-n )] 

- A3a2[72a2T, 2J0(3ari) + 26anJof (3an) + 9J0'(3ar)J 

- A1R22a2[12a2ri2J0(an) + 14a11J0'(aT) + J0(an)] 

- A2R2a2[84a2T12J0(2a11) + 37anJ0'(2an) + 8J0(2aTl)] 

- A2a2[14a3T, 3J0'(2a11) - 30a2TI 2J0(2an) - 7aiiJ0'(2ai)] 

- A1R2cc 2[12a3. n 3J0'(a11) - 15a202J0(ai) - 24anJ0T(an)1 

+ (1/6)A1a2[6a°n"J0(an) + 14a3n3Jýý(aý) - 17a2n2Jý(an ) 

- 37anJ0t(an)I , 

where t denotes differentiation with respect to the argument. On inte- 

gration this yields 
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15 = A5J0(5an) - 4A4aiJ1(4ar, ) - 3A3R2arJ1(3a1]) 

- 2A2R3aiiJ1(2an) - A114aiiJ1(ari) - A1R3[a271 2 J0(cc 'I ) 

- aTIJI(aTI )I- 2A 
3[9a2rj2J0Own) - 3ayiJ1(3aii)I 

- 2A 
1R 22[ a2n2J0(aii) - aflJI(aý)) - A2k2[4a2T) 2J0(2ari) 

2anJ1(2aT1)} + (1/3)A2[4CC 3ii3J1(2aii) + 2a2n2J0(2aii) 

- 2ariJ1(2ari)] + 2A1R[a3n31 (ari) + a2ii2J0(an) 1 

- 2aiiJ1(an)] + (1/24)A1[a4i4J0(aii) - 2a3n3J1(an) 

- 3a2ri2J0(ap) + 6aiiJ1(ari)I , 

where (2.37) gives 

A_ =1 {-16aA4J0(4a) - 9aA3R2J0(3a) - 4aA2R3J0(2a) 

5J1(5a) 

+ (9/2)aA3[3aJI(3a) - J0(3a)] + 4aA3R2[2aJ1(2a) - J0(2a)] 

+22+ R3 + X22 + (4/3)a2A9[2aJ0(2a) + J1(2a)] 
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, 2} - (1/6)a2 ' a2 T 

and from (2.38) 

R5= -(5/2)a{A5Jp(5a) - 4aA4J1(4a) - 3aA3k2J1(3a) 

- 2aA2R3J1(2a) + 2a R3- (3/2)aA3[3aJ0(3a) - J1(3a)] 

+a X22 - 2aA212[2aJ0(2a) - J1(2a)) 

+ (2/3)aA2[2a2J1(2a) + aJ0(2a) - JI(2a)] -aT, 2 

- (1/12)a[ 2- 

The numerical value of the coefficients A, R and the value of the 
nn 

potential function evaluated on the wall for n=1, ..., 5, evaluated 

using the exact solutions with a=3.83171 are presented in Table 2.3. 

The ease with which these solutions were obtained using the Computer 

Algebraic Manipulation System REDUCE [4] demonstrates the power of alge- 

braic computation. This is a computer package for carrying out algebraic 

operations accurately, no matter how complicated the expressions become. 

It can manipulate polynomials, both expanding and factorizing them, ex- 

tracting various parts as required. It can also perform differentiation 

and integration and allows the definition of differential operators. 

Using this facility to define the relations between the Bessel Functions 
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Table 2.3 

The values for An and 2n evaluated from the exact solution with a=3.83171. 

n A 
n 

ýt 
n 

ý 
nI n=1 

1 1.29596 1.00000 -0.52196 

2 5.76515 -5.82488 1.38969 

3 4.66803,1 4.62982,1 -7.04183 

4 4.83666,2 -4.16886,2 4.61443,1 

5 5.74607,3 3.98671,3 -3.44509,2 
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and their derivatives, and to specify differential operators to act upon 

these functions, allows these higher order solutions to be determined and 

differentiated exactly, without the need for extensive, demanding alge- 

bra. It should now be feasible to use the computer to obtain long and 

complicated analytical solutions to problems which previously were tack- 

led by a mixture of analytic and numerical methods. 

AN ALTERNATIVE APPROACH 

This exact technique could easily be used for n larger than 5, but, 

the complexity and length of the solution for In and Rn suggest investi- 

gating alternative approaches to produce further values. A completely 

numerical solution encounters many difficulties. It is necessary to solve 

the axi-symmetric Laplace equation with a singularity on the axis, in a 

region whose boundary R(z) is unknown and has to be determined from the 

boundary conditions. The natural development would be to take the velocity 

profile obtained analytically as a boundary condition for a solution on 

a region downstream. However, two major difficulties still remain. The 

centre line singularity can be dealt with by mapping it to infinity, and 

there has been some research into Free-Boundary problems, but the combi- 

nation of the two appears to be unique and a suitable numerical method 

of tackling the problem has not yet been devised. Consequently, it was 

decided to use the exponential series method employed in the analytic 

solution and to numerically solve the system of equations produced. How- 
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ever, this does not remove the problem at r=0. Previously, [3], the 

difficulty of the singularity was overcome by writing the solution as a 

series in Tj , for ii small, to provide a starting value for a numerical 

technique. The series method will now be used all the way across the pipe, 

and enough terms are retained to ensure convergence of 0 and 
ao/an 

on the 

outer wall. 

THE SERIES METHOD 

Returning to (2.36), it is known that 

k +1'+ a2n24 = -c 
[ (n k- 1)ln24 � 

nnn 
n rcý I 

+ (2n1 - 4kl - 312)T14k' + k24k} Rn-k-111 ný2 

-2 
with ý1=/ (aJ0 (a) ]10 

(a-n) ' and boundary equations (2.37) and (2.38) 

giving 

ask 
=0 on fl = 0,1 and -anýn', Tj=1 kn-k 

an r__- 0 

The power series form for ýk is chosen to be 

(2.39) k= 
Ak ck, j 

(an) 
2j 

_j=o 

Hý N. 1 

[ (n 
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where ck 0=1. Using the notation adopted for the analytic solution the 

value of Ik on the centre line is written as Ak. The symmetry about n=0 

means that only the even powers of 71 need to be considered. 

On substitution of (2.39) into (2.36) and equating powers of (cn), 

the general recurrence relation for c k, j is determined to be 

N-% LA-1 

(2.40) c=-1 n, j-1 [ncn + 2j1(n -k- 1)(2j - 1) 

4(j + 1)2 K-I t=o 
K4 (G N 

+ 2j(2n1 - 4k1 - 312) + k2] 
Ak 

ck, J 
Rn-k-1R1 n? 2 

A 
n 

with 

(2.41) Al =-2 

aJ0(a) 

and c1, J+1 - 
c1, j 

4(j + 1)2 

� 

and boundary condition 

(2.42) 
2: 

jc 
n 

a2j =0 

j=c 

The condition on n=0 is automatically satisfied. 

From (2.40) it can be seen that the values of ck, j 
depend on Aki 

and in order to determine them it is necessary to obtain a value for Ak. 

It would be possible to improve the initial approximation by using (2.42) 

as a basis for an iterative scheme. However, ck will be determined using 

an algorithm developed from the analytic solution. It can be shown that 

94 



n_ -nuAnJ K not) + Fn( ... ) 
all , i=i 

where Fn is a combination of previously determined constants. Let An 
(Iý 

and An(E) be the initial approximation and the exact value respectively. 

Then, from the boundary conditions 

-naAn(E)J1(na) + Fn(... ) =0 

and hence 

(E) 
_ 

Fn(... ) 
n 

naJ1(na) 

I 

Substituting from (2.43) for Fn(... ) gives 

A 
(E) 

=A 
(I) 

+ 
nn 

1 aý 
n 

naJ1(na) all =1 

31 

where 
aln/aTj! 

ý_1 
is obtained by differentiation of (2.42) and evaluated 

using An(1) in the determination of chýj, (2.40). The values of An and 

Rn, obtained from this technique are detailed in Table 2.4 for n <_ 7. 

Comparison with the values evaluated using the exact solution, which are 

presented in Table 2.3 for a=3.83171, shows agreement to at least five 

decimal places. As n increases the values for ýn and In do become pro- 

gressively less accurate due to the accumulation of truncation errors. 
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Table 2.4 

The values for An and Reevaluated from the series solution with a=3.83171. 

n A 
n 

R 
n nln=1 

1 1.29596 1.00000 -0.52196 

2 5.76515 -5.82488 1.38969 

3 4.66803,1 4.62982,1 -7.04183 

4 4.83666,2 -4.16886,2 4.61443,1 

5 5.74607,3 3.98671,3 -3.44509,2 

6 7.42359,4 -3.97448,4 2.80624,3 

7 1.01525,6 4.08824,5 -2.43499,4 

96 



This occurs because the nth order coefficients are evaluated from a com- 

bination of the previously determined lower order terms, which creates 

unavoidable error amplification for large n. Thus it was decided to obtain 

only the first seven terms. 

EXAMINING THE SERIES FOR R AND 0 

R and 0 can be considered to be series in Rte-aý, where R1 is ar- 

bitrary. It can easily be seen that altering the size of R1 is equivalent 

to a translation in ý, hence it is sufficient to take R1 to be either +1 

or -1. Taking R1 positive creates an alternating series for R. Conversely, 

for the case R1 = -1, the initial constant, which defines the radius for 

large z, is the sole positive term. This describes a rapidly narrowing 

pipe, but, in the region R«1, the series for R does not converge and 

consequently the flow characteristics can not be investigated here. How- 

ever, for R1 positive, the oscillatory behaviour of the terms in the se- 

ries for R suggests a better form for an analytic solution. When 

considering solutions that are of the form presented in this section the 

choice of perturbation parameter is somewhat arbitrary. Only when the 

coefficients are actually determined can its suitability be assessed. The 

convergence of the series can vary widely and is dependent upon the choice 

made. There is evidence that reparametrizing the series can make a vast 

improvement and much interest, notably from Van Dyke [6], has been shown 
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in improving series of this type. 

parameter & such that 

(2.44) = 
Gx 

31 
1+ Gx 

Choosing an alternative perturbation 

with x= Rle_ýý 

where G is a suitable arbitrary constant. The series for R and 0 can be 

written 

CO m 

(2.45) R= Bk&k 

r_=o 

where Bk is a constant and xp k= TPk(rI). Substituting these into (2.10) 

and (2.11) with boundary conditions (2.12) would yield formulae for the 

new series in a similar way to the solutions found for R and ý. However, 

since every term of both the new and the original series must match, the 

new analytic coefficients Bk and ip k can easily be deduced. For ý large, 

it is known that R=1 and that the flow is Poiseuille. To determine the 

relationship between Rk and Bk, and 0k and ip k, the series coefficients 

are matched for z large. For iGxj < 1, (2.44) can be expanded to yield 

the relation 

(2.46) 
k= (Gx)k[1 - kGx + 2k(k + 1)G2x2 - ... 

] , 

which gives 

98 



B1 = /G(R1) 

(2.47) B2 = /G2(R2 + GR1) 

B3 = 
1/G3(R3 

+ 2GR2 + G2R1) etc. 

and similarly for *k and 0 k. 

THE CHOICE OF G 

The effectiveness of the new series for R and 0 will be determined 

by the choice of the parameter G. It is clear from (2.47) that for dif- 

ferent values of G the individual terms in these series will be different. 

It can be shown that for any series there is an optimum perturbation pa- 

rameter and consequently there would be a best choice of G if only one 

series were being considered. However, in this case there are at least 

two series (one being a double series which can be considered as many 

series, one for each n! ). Hence, there is no one, distinct value for G 

that should be used, but it can be seen that some choices are better than 

others in enabling an understanding of the flow. This suggests that the 

series for the radius and the potential function need to be considered 

separately, the effects of different values for G investigated and then 

a compromise made. Similarly, if alternative eigenvalues are used, a new 

choice of G will need to be made to improve the new series. 

99 



CHARACTERISTICS OF THE FLOW 

Using the new series for R and 0, substitution into (2.9) gives the 

radial and axial velocites in the pipe. Since 

coo Co 

0= 17, x and R= 
ER 

xn 
N=-0 Nn0 

where R0 = R1 =1 and x= Rte- aý, then 

CC) ao Co co 

u= a{ (1 - T, 2R 
JRkxj+k) -a nýnxn + vats n 

zRnxn) 

JýO V-=O 
V =C LA=C) 

(2.48) and 

Co 

xn V=a NBCD m ZR xn 
K_o 

3 

where ' denotes differentiation with respect to n. 

To visualise the flow it is necessary to consider the special cases 

which arise by taking specific values for X, R1 and a in (2.48). X appears 

in these velocities as a scale factor, and as such, graphs of 
u/X 

and 

v/ý 
give the identical velocity profiles as u and v. X negative reverses 

the direction of the flow. The sign of R1 creates either an expanding (+1) 

or a contracting (-1) pipe. The possible values of a are defined by the 

boundary conditions. 
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Profiles are shown for a=3.8317. Similar graphs can be generated 

for other values of a, however, a different perturbation parameter, i. e. 

a different value for G, would be needed to optimise the particular se- 

ries, and in addition it should be noted that the error accumulation is 

greater for larger values of a. Figure 2.15 illustrates the changes in 

axial velocity as the pipe expands. For large z the flow is parabolic, 

but as z decreases and the radius of the pipe slowly increases the ve- 

locity of the flow near the axis of the tube decreases until for z=0.7 

back flow occurs. Figure 2.16 shows the radial velocity along the lines 

tj = 0.2,0.4,0.6,0.8. For z large the radial flow is zero, but as z 

decreases a flow towards the centre of the pipe develops. 

0 
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HIGHER ORDER SOLUTION USING MORE THAN ONE EIGENVALUE 

Earlier in the section the two distinct cases, namely the first 

order solution summed over all eigenvalues and the higher order solution 

with one eigenvalue, have been considered. It now remains to draw the two 

approaches together into a general solution of the variable width problem. 

It will be shown that these solutions are complicated, but further ana- 

lytic investigation is worthwhile. 

The forms that have been assumed in 2.2 for R and 0 (2.26) yield 

the system of differential equations equations (2.27). The solution of 

the first of these is 

11 = AJ0(wn) , 

which is not a unique result as there are an infinity of 'a's such that 

ý1 satisfies the boundary condition J1(a) = 0. This is illustrated by the 

first order solution for a large number of eigenvalues presented in 2.1. 

However, the extension to higher order terms using more than one 

eigenvalue will not be as straight forward as in the one eigenvalue case 

shown earlier. It is now possible to have 'cross' terms. They are formed 

by the products of the radius and potential functions that occur in the 

differential equation (2.27). Each term depends on two or more different 

eigenvalues and consequently a new notation is necessary to allow for the 

larger number of coefficients that are now needed. The potential is now 

written as 
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l+... +i a )ý ýý 
.... .. 

ý 
ýýý Aý CL 

ss, 
ýl ý A,, 

where s is the number of eigenvalues being used, 

al, ..., as are the eigenvalues of the problem 

il, ..., is are the coefficients of the al, ..., as respectively in the 

exponent and 

il + ... + is is the order of the term. 

Similarly, the radius function is defined to be 

R= Rýý.. 
A .. 4 sas)ý 

A1 .ýý 

To increase the understanding of the appearance and the form of the 

cross terms it is beneficial initially to investigate the simplest case, 

that of two eigenvalues. 

USING TWO EIGENVALUES 

Considering case for two eigenvalues. The potential function and the wall 

profile can be written as 

A J 
e-dicc l+ja`) 

and 

R= RA j, e-ýla1 2 ý' 
, J 
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where RAJ is a constant and +AJ=^J (n). Then the differential A +J' A +j jA4J 
equation (2.11) becomes 

(2.49) 
j^ +%^A + (1/Tl )ý 

V%+0. ýf + (nal + ma2)2ý UR ö2 

+[ (na1 + ja2)2ý \., + q(m -j- q)cc`2i2I 
`A Jº, 

-, h+ 1N ýý 
Jýo 

ckzo v 

+ ga2[(2m - 4j - 3q)a2 - 2na1]Ti ýN J 
. 

']R R 

+S[ (ial + ma2)2ý+ P(n -i- p)a12nZe ; 
A. Op=o 

o<Atpcv. 

+ pal[(2n - 4i - 3p)al - 2mal1 n4 Ä']RPP R' ,P 

N-l w -1 V "A 

+ 
Zj[(ia 

+ ja2)2 
AJ+ 

(pal + ga2)[(n -p- i)al 
1 .O j=o p=o etc 

J 

o5 itpc... 
0 4-+(m 

'q j)an 2^+ + (pal + ga9)[(-n - 4i - 3p)al 
J 

+(2m - 4j - 3q)a0]n 
ýý 

'IR 
P+ý 

R0 
ý+ ý -. --P_ J CV 

for n or m>2, with boundary conditions 

0 V. A 

aý+ý= 0 on = 0,1, (2.50) 

an 

and 

(2.51) -(na1 + ma2)ý 
NkpwI71 = x, ýjRR 

LA+L4-A -P-g, 
on n 

p: o c- 
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Equation (2.49) is the system of differential equations for two 

eigenvalues presented for order n+m. 

Now, the equations will be solved in a similar way to that for the one 

eigenvalue case, that is for successive values of (n + m). 

Considering n+m=0. 

There is only one case, that is Id. In this case equation (2.49) 

reduces to 

co 0 10 II o f= 0, 

which, in conjuction with the boundary conditions (2.50), requires that 

= 0,1, 
C) 

'=0 on Ti 

and gives ý ö° = constant, which since 0 is a potential, can be taken 

to be zero. Substitution into (2.51) yields 

R o0 2_ a2 
0 

Without loss of generality a2 can be taken to be 1 and so Rö=1. 
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Considering n+m=1 

Here there are two cases to consider, that is n=1, m=0 and 

n=0, m=1. For n=1, m=0 equation (2.49) reduces to 

it C: O 
jo, cx 

II= 

The solution of this is the Bessel function of the first kind as obtained 

earlier in the section, that is 

(2.52) ýý =A J0(alrý) 

where A 'I 4=1 is an arbitrary constant to be determined from the boundary 

conditions. Similarly 

°, ý = A'D ' J0(a2n) 

where a1 and a2 are any two zeros of J1. On application of condition 

(2.51) the arbitrary constants are determined to be 

o 
2R tI, 

and similarly A'ý, ý 2R o, 

a1J0(a1) a210(a2) 

It can easily be seen that these are the results obtained when considering 

only one eigenvalue with I'° replacing ý1, and R'ý replacing R1 etc.. 
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It is evident that the one eigenvalue solution will occur whenever either 

n or m is zero. As such it is only necessary to consider the cases when 

neither n nor m is zero. 

Considering n+m=2 

From the one eigenvalue solution 

2=A 2'i J0(2a1 ýl) -AR a1nJ1(alil) 

with 

ýO2 

A zO =R and R 20 
Z 

1 
1( al) 

t2 a1J0(2a1) + [ 21 
11\ I(-VA i) 

and a similar expression is obtained for 1Z by interchanging n and m, 

and substituting a,, for a1. 

However, a new case, the first example of a cross term, is intro- 

duced, that is n=m=1. For this the differential equation (2.49) re- 

duces to 

Iz111+ WT O+ 'Z' '+ (al + a`)2ý '2ý 

-{ (2a 2ý ýI -a (a + 2a1)ný 'o, )R oi 
(2.53) =122 

+ (2a 2 °I - al(al + 2a2)ný +)R 1} 
2 
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where al and a2 are any two eigenvalues. The solution of (2.53) is 

11 aoi (2.54) 1 2=A210 [(a 
1+ a2)Tl ]- A" R a171J1(a1TI ) 

_A 
o1ý Ro a2TIJ1Ca2) 

The arbitrary constants are determined by the boundary conditions (2.50) 

and (2.51) to be 

2RR 
z 

Jl(a1 + a2) 

and 

O Cl I 
R' Cal + a2)J0(al + a2) 

_ Rf 
Z 

J0(a1 + a2) 

There are distinct similarities between this cross term solution and the 

one for one eigenvalue found earlier in 2.2.4 'Z' is of the same form 

as ý 2i and 4 iIz 
, incorporating all their salient features and, in ad- 

dition, maintaining the symmetry of the equations in a1 and a2. 

Considering n+m=3. 

Continuing by considering only the cases where neither n nor m are 

zero creates two new equations to solve, that is those obtained by taking 
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n=2, m=1 and n=1, m=2. Substituting for the first pair into (2. ý-9) 

and solving the differential equation obtained gives 

3=A 3ý Jý[ (2 a+ a2)ýl) - 2A 2? R o. 
a1'n J1(2a1Ti ) 

- A%2 Rio (a1 + a2)nJl[(al + a2)T1] 

-A 
ýý R ýi Ti a1J1(a1Ti ) 

-A 
'o R .oR o' ßa12 i2 J0(a1T) - al(aln)) 

zi 
where A3 

- 
°I R°R° [a2ZrýZJO(a2T) - a, (a TO] 

22 

and R 31 
can be found from (2.50) and (2.51) to be 

A 2I 
3 

R ý1ý J0(2a1) 1 {4a12A 2-0 

(2a1 + a2)J1(2a1 + aq) 

+ (al + a9)2A 
ýZý R J0(al + a2) 

-a 2A' °R `i JO(al) + `O R. oRo, ý a12 JO(al) 
1 

+ 2A 
o1, R. oR. o 

a22 JO aý) } 

and 
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R Lý _ 3 'ß(2a1 +a c2) [A 3 J0(2ac1 + a2) - 2A zi Ro1a1 J1(2al) 

AZR (al + a2)J1(al + a2) 

io 
-A' R' R°' a12 J0(a1) - JA ot1 R 10 R IQ a 21 (a2)) 

Similarly, using the symmetry of the equations, + ý3 
can be obtained by 

interchanging n and m, and substituting a1 for a2 and vice versa. It 

should be stressed that the solutions that have been obtained are for any 

values of al and a2 such that J1(al) = J1(a2) = 0, and consequently the 

general second order solution can be found by summing over all possible 

pairs of eigenvalues. 

Solutions for larger values of (n + m) can be found in a similar way. 

Clearly, the two eigenvalue solution is only a special case of the 

three eigenvalue solution, which in its turn, is a special case of the 

one for many eigenvalues. As a result, the solutions obtained to the two 

eigenvalue problem are only a subset of those which would be found for 

the general problem. For example, all the terms of the third order general 

solution have been found except any involving the product of three dif- 

ferent eigenvalues. 

In principle, further solutions can be found for a large number of 

eigenvalues. However, the complexity of the differential equations en- 

countered, even for small numbers of eigenvalues, questions the wisdom 
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of proceeding further explicitly. For example, the equation equivalent 

to (2.49) but with three eigenvalues has been derived and is more than 

three times as long as (2.49). Nevertheless, a good deal of information 

can be extracted about the results for three or more eigenvalues from the 

one and two eigenvalue solutions. 

As indicated earlier, new cross terms are introduced when the order 

of the differential equations are equal to the number of eigenvalues used. 

From an inspection of the similarities between I `2' and f2, it can be 

established how 1 `? can be constructed from 12 by maintaining the sa- 

lient features of the solution and, in addition, introducing a symmetry 

in a1and a2. It seemed likely, and a basic investigation confirmed that, 

the cross terms for higher order could be found in an analagous way. 
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CONCLUSION 

This Section has concentrated on the investigation of an axi- 

symmetric flow through an impermeable, cylindrical pipe with changing 

radius, using the new solution of the Navier-Stokes equations (2.6). The 

form for the potential function and radius description was taken to be 

that of an exponential series in the axial parameter which, in theory, 

allowed an exact solution of the system of differential equations for the 

potential function and ultimately, via the boundary conditions, the ra- 

dius function. The solution is complex and to increase the understanding 

it is tackled in stages. Section 2.1 presents the solution as a first 

order perturbation, but using a large number of eigenvalues. Conversely, 

Section 2.2 considers only one eigenvalue, but a large number of terms. 

The solutions for the higher order terms becomes progressively more com- 

plicated and only the first five are found analytically, using an alge- 

braic computing package. These are later re-inforced and extended to 

seventh order using a polynomial series in the radial parameter. The se- 

ries description is then improved by using a new perturbation parameter 

which better described and improved the understanding of the flow. 

Finally, the salient features of both these methods are brought together 

in the general solution. The differences that are met when combining both 

a large number of eigenvalues and higher order terms is illustrated using 

two eigenvalues, concentrating on the previously unencountered cross 

terms which are novel to these particular cases since they contain more 

than one eigenvalue. 
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INTRODUCTION 

Most of the research into flow through cylindrical tubes with mass 

transfer at the walls has concentrated on flow along pipes with constant 

injection or suction. The new exact solution of the Navier-Stokes 

equations valid for all Reynolds number, [1], was developed as a solution 

to steady, laminar, incompressible, axi-symmetric flow along a pipe of 

constant radius. The novel feature of this solution was that variation 

in the flow through the wall allowed either maintenance of the shape of 

the axial velocity profile for any flow or else to gradually change one 

specified axial velocity distribution at a given cross-section to an- 

other, similarly specified, further downstream. Further developments 

involving calculations of suction velocities depending on the structure 

of the boundary [2], and the incorporation of slip at the boundary [3], 

also concentrate solely on pipes of constant cross-sectional area. 

In the previous sections the author has considered the case of flow 

along a circular pipe with impermeable walls and with slowly varying 

cross-sectional area. In this section, the previously uninvestigated 

case of exact, analytical solutions for flow along a porous pipe with 

variable mass transfer and varying cross-sectional area has been consid- 

ered. This article presents a selection of velocity distributions and 

corresponding classes of wall profiles that satisfy the Navier-Stokes 

equations exactly which are obtained by assuming that the tangential ve- 

locity component on the wall to be zero. Streamlines of these flows with 

the corresponding families of boundaries are presented for a selection 
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of salient parameters of the problem. For each case an exact expression 

for the required radial throughflow, as a function of z, is obtained. 

FORMULATION OF THE PROBLEM 

Consider the steady, laminar, axi-symmetric motion of an 

incompressible fluid along a porous tube of radius R(z). A cylindrical 

polar co-ordinate system (r, O, z) is chosen, where Oz lies along the centre 

of the tube, r is the distance measured radially and 0 is the azimuthal 

angle. Let u and v be the velocity components in the direction of z and 

r increasing respectively. Then, for an axi-symmetric flow, the equation 

of continuity is 

(3.1) 
a (rv) + rau =0, 
ar az 

and the Navier-Stokes equations are 

u 
au 

+v 
au 

= -1 
aP 

+ vV2u 
8z ar p öz 

(3.2) 

av av 1 ap +v (v2V -° U- + v- ) - -- -' 
az ar p ar r2 
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where 

(3.3) oZ = a2 +1a+ a2 
art r ar az2 

and where p is the pressure, p is the density and v is the kinematic 

viscosity. 

The symmetry condition for the axi-symmetric flow gives the bound- 

ary condition, 

(3.4) v=0 on r=0 

In addition, it is assumed that the tangential velocity on the wall, 

r= R(z), is zero, that is 

(3.5) u(z)cosw + v(z)sinw =0 on r= R(z) , 

where w is the angle between the tangent and the pipe axis. Thus sub- 

stituting for w in (3.5) from tanw = R'(z) yields 

(3.6) u+ vR'(z) =0 on r= R(z) , 

where ' denotes differentiation with respect to z. 

It has been shown by [1] that the equations (3.1) and (3.2) are 

satisfied by 
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(3.7) u= X(a2 - r2) + 
aZ 

V= 
30 

ar 

where X and a are arbitrary constants, provided O(r, z) satisfies Laplace's 

equation 

(3.8) V20 =0 

On substituting for u and v from (3.7) into the equations (3.4) and 

(3.6) the boundary conditions become 

(3.9) 

and 

(3.10) 

=0 on r=0 
ar 

X(a2 - R2) + 
30 

+ R'30 =0 on r= R(z) 
8z ar 

THE ANALYTIC SOLUTION 

A solution of (3.8) is sought subject to conditions (3.9) and 

(3.10). Since the axi-symmetric Laplace equation is homogeneous, it is 

reasonable to assume that 0 is a homogeneous function of r and z. Con- 

sequently, the form for 0 is taken to be 

(3.11) _Lf rPzn P 
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where fP are constants to be determined and n is the order of the sol- 

ution. On substituting for 0 from (3.11), (3.8) becomes 

n-1 y`7- 
(3.12) = f1 + [(p + 2)2f 

p+2 
+ (n - p)(n -p- 1)fp]rpzn p-2 = 0, 

r 

which, on equating coefficients, yields 

fl =0 

(3.13) 
1 fp+2 

(p + 2)2 

(n - p) (n -p- 1)fp for all p, 

where f0 is some suitably chosen arbitrary constant. 

Since n and p are both integers and n? p, it can readily be seen 

that (3.13) generates a finite series for each n. It follows that each 

value of n will create different solutions of the differential equation. 

Applying the boundary conditions to these solutions, the symmetry condi- 

tion is automatically satisfied, while (3.10) becomes a differential 

equation which must be solved for the unknown boundary profile. 
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CASE 1. n-2 

Substituting n=2 into (3.13) gives 

0= a(2z2 - r2) , 

where a is a constant, the value of which is obtained by choosing 

f0 = 2a in (3.13). Substituting for 0 into (3.10) yields 

2aRR' + XR2 = Xa2 + 4az 
, 

which, by defining a= X/a, can be written as 

(3.14) 2RR' +X R2 =X a2 + 4z 

where X" and a are arbitrary constants. 

exactly to give the class of boundaries 

(3.15) R2 = Ae- 
XZ 

+ 

Equation (14) can be integrated 

4 * (X z- 1) + a2 

where A is an arbitrary constant of integration. The radial and axial 

velocities are obtained by substituting for 0 into (3.7) and are 

(3.16) u= a[X (a2 - r2) + 4z] v= -tar . 

122 



It can immediately be seen that for a given cross-section, the magnitude 

of the radial velocity v, increases linearly with distance from the pipe 

axis. The cross-pipe axial velocity profile is parabolic. For any given 

cross-section z", the axial velocity can be considered to be 

u= -Ar2 +C, 

where the constant C depends on the distance downstream. For C/X <_ 0 and 

C/X ? R2 the flow is uni-directional but the flow for C/a <_ 0 is in the 

opposite direction to that for C/a >_ R2. For the intermediate values 

0< C/X < R2 a region of flow reversal occurs. The actual values of these 

velocities, and the wall shape itself are dependent on the choice of the 

arbitrary constants A, X and a. The changes in these velocities are best 

illustrated by the streamlines of the flow. Let 4 be the streamfunction 

defined by 

1 alp (3.17) u=1 
aý 

,V= -- -' 
r ar r az 

then substituting u and v from (3.16) into (3.17) and carrying out suit- 

able integration and differentiation gives 

(3.18) ip = c[2r2z + 4X r2(2a2 - r2)) 
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To investigate the streamfunction and wall profiles in more detail, 

it is necessary to consider the effect of the different range of values 

of the arbitrary constants of the problem; X, a and A. An inspection 

of (3.15) and (3.18) shows that it is sufficient to consider XZ >0 and 

a? 0, since X_ -c generates the same flow pattern and boundary profiles 

as X=c, but with the direction reversed. It is worth noting that the 

streamfunction t is independent of the choice of A and so by varying the 

value of Aa family of wall profiles can be generated, that will enclose 

one particular flow with the required zero tangential velocity on the 

boundary. Further, the parameter a does not influence the problem. The 

wall description (3.15) is independent of a, and even though the values 

of the streamfunction on the streamlines are different for the different 

choices of a, the pattern itself remains unchanged. Taking X large re- 

duces the equations to those for Poiseuille Flow, that is 

R- a and u- X(a2 - r2) , v-0 

The interesting cases exist for X small. It should be noted that, since 

a= X/a, taking X*small does not necessarily imply that X itself is 

small. Since a is an arbitrary parameter of the problem, its value can 

be chosen in such a way to ensure that X" is small regardless of the size 

of X. Clearly, this means that the interesting cases are not necessarily 

a perturbation of a slow flow solution. Figures 3.1-3.4 illustrate the 

streamfunction and corresponding families of boundaries for a=1,2,4 

with a=2, and X =2, a=0. 

The requirement that there is zero tangential velocity at the wall implies 

that the boundaries and the streamlines are orthogonal, and as such that 
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boundaries could be constructed geometrically. The values of A in the 

figures are chosen to best illustrate the range of shapes which can be 

obtained as a solution. It should be noted that it is necessary for R 

to be real. Consequently, values of R are obtained only for the range of 

z such that R2 ? 0. As a result it is possible for the pipe to have two 

distinct parts. These boundaries can exist independently of each other, 

but in these cases the streamfunction is valid only in the relevant range 

of Z. If A <_ 0, the pipe has only one branch and is closed, alternatively 

if 

A> 
4e4ý.. 2 a2 

, 

then, for all z, R2 ?0 and the pipe narrows and then quickly expands 

again. The special case when A is equal to the above value gives a pipe 

which narrows to a cusp. Otherwise, the profile has two distinct parts. 

For z large and positive the boundary is independent of A and 

R2 
4z 

while for z large and negative the pipe rapidly contracts, if A <_ 0, or 

eventually expands if A>0. Hence, the family of boundaries tend to 

these shape far up and downstream. Consequently, it is sufficient to 

present the figures for the range -4 ýz <_ 4. 
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The quantity of fluid flowing in/out through the wall can be de- 

termined by considering the normal velocity at the boundary. Let the ve- 

locity normal to the boundary be S(z); then resolving the velocities gives 

(3.19) S(z) = v(z)cosw - u(z)sinw on r= R(z) . 

Since w is the angle of inclination of the tangent to the wall, this can 

be re-written as 

1 

(3.20) S(z) = (1 + R' (Z)2) Z{v(z) - u(z)R'(z)} on r= R(z) 

Multiplying both the numerator and denominator by R and substituting from 

(3.16) and (3.14) it can be shown that 

1 
(3.21) S(z) = -2 (R2 + (RR' )2)2 

where the positive square root is taken to ensure that the direction of 

the flow is in agreement with that predicted by the velocity equations 

(3.16). R2 and RR' can be obtained from (3.15), thus 

S(z) = -2oc{4X.. 2A2e-2a z- Ae-a z+1 (X a2 + 4z)}2 

a 

From (3.21) it can immediately be seen that for a>0, S(z) is negative 

for all z and so there are no regions of suction. Conversely, for a<0 
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there are no regions of injection. Differentiating (3.21) shows that if 

R2 >0 for all z then the minimum injection occurs at the minimum radius. 

This is demonstrated effectively by the graphs of wall shapes and suction. 

Figures 3.5-3.8 depict the injection profiles corresponding to the cases 

presented in Figs. 3.1-3.4. 

is independent of A and 

1 

For z large and positive, the through flow 

while for z large and negative the through flow rapidly increases if 

a<0, or decreases if a>0. Hence, it is sufficient to present the 

through flow for -4 5z <_ 4. It should be noted that in the cases when 

the tubes are closed, the injection is evaluated only in the regions where 

R? O. 

CASE 2. n=3 

Substituting n=3 into (3.13) and (3.11) gives 

0= ß[2z3 - 3r2z] 
, 

where ß, like a in Case 1, is an arbitrary constant obtained by choosing 

f0 = 2ß in equation (3.13). Substituting 0 into (3.10) gives 
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(22) ýA" + 3)R2 + 6RR'z = aa2 + 6z2 

where X : 'c 
= X/ß and a are arbitrary constants. Equation (3.22) can be 

integrated exactly to yield 

(3.23) R2 = Az_ 
(a +3)/3 

+6z2+ ß'a2 

(X + 9) (X" + 3) 

where A is an arbitrary constant of integration, and X" = -3 and -9. 

These two cases need to be considered separately. When X" _ -3 integration 

of (3.22) yields 

(3.24) R2 =A+ z2 - a2lnjzl , 

while for X" -9, the integration gives 

z 
(3.25) R2 = Az2 + 2z21nýzi + 

3a 

2 

Differentiating 0 and substituting the differentials into (3.7) gives the 

velocities 

(3.26) u= ß[X(a2 - r2) + 6z2 - 3r2] , -, " = -6ßrz . 

At a given cross-section the size of the radial velocity increases line- 

arly towards the boundary and the axial velocity profile is again 
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parabolic. The streamfunction for this flow is obtained by substituting 

(3.26) into (3.16) and is 

(3.27) = ß{3r2z2 + 4r2[2X a2 - (a. 1 + 3)r2]) 

which is symmetric about both r=0 and z=0. As in Case 1 it is suffi- 

cient to consider a _> 0. However, to ensure that R2 is always real it is 

necessary to take a real root of z- 
[(X +3)/31. 

Clearly, for a< -3, R2 

is finite for all z, otherwise R2 is undefined at z=0. Again, values 

of R are obtained only for the range of z such that R is real, that is, 

R2 >_ 0. Choosing different values of A generates a class of wall profiles 

that satisfy the zero tangential velocity condition on the boundary. 

Figures 3.9-3.14 show contours of the streamfunction ', with a se- 

lection of the boundaries that satisfy the velocity conditions. There are 

two general streamline distributions corresponding to whether X>_ -3 or 

ýý < -3. 

For a? -3 the streamfunction has two asymptotes, 

r=+� 
2/(a` 

+ 3)[6z2 
+ Xa2]. There is no flow across these lines and 

consequently the fluid is confined to the three distinct sections bounded 

by them (Fig. 3.12-3.14). It should be observed that for these values of 

X* and A60, the boundary is infinite at z=0. 

For 1< -3 the streamline patterns include some closed contours 

which enclose regions of 'trapped' fluid (Fig. 3.9-3.11). 

The symmetry of the streamfunction about z=0 was mentioned ear- 

Tier. However, the wall is symmetric about z=0 only when ( /3 + 1) 
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is even, that is A" = -9, -3,3,9, .. etc. (Fig. 3.13-3.14), or for all A" 

when the arbitrary constant of integration A is chosen to be zero. 

To investigate the through flow the velocities (3.26) are substi- 

tuted into (3.20) to yield 

1 
(3.28) S(z) = -6ßz{R2 + (RR')2) 

taking the positive square root to ensure that the flow direction is in 

agreement with that predicted by the velocity equation (3.26), and where 

R2 and RR' can be found from equation (3.24) if X" _ -3, equation (3.25) 

if X= -9 and equation (3.23) otherwise. This clearly shows that there 

are two distinct regions of through flow. That is, for a>0 regions of 

injection' for z>0 and suction for z<0, and vice versa for a<0. 

Figures 3.15-3.20 illustrate the through flow needed to produce the 

streamlines presented in Figures 3.9-3.15. The in/out flow is plotted for 

values of z such that R(z) is real and greater than zero. 

CASE 3. n=4 

Substituting n=4 in the recurrence relation (3.13) gives the po- 

tential 0 to be 

2r(6z4 - 24r2z2 + 3r°) 
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where ä is an arbitrary constant obtained by taking f0 = 8ä in (3.13). 

Substituting for 0 into (3.10) the differential equation for the boundary 

is found to be 

(3.29) 12R3R' - 48RR'z2 - 48R2z - XR2 = -32z3 - X"a2 

where X" = X/X, and a are arbitrary constants. This equation (3.29) can 

be written more concisely by using the transformation 

R2 =V+4z2 , 

which when substituted into (3.29) yields 

6VV' -XV= 160z3 + 4a z2 - a2 

The author has not been able to obtain a general solution to this 

equation, although it is clearly possible to solve it numerically. How- 

ever, a particular solution can be found by considering R2 to be a 

polynomial in z, such that 

(3.30) R2 =V- 4z2 = Bz2 +X 
Bz + 

X" 2 B(B - 6) 

lg(B - 4) 4320(B - 4) 

where 
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(3.31) 3B2 - 24B +8=0 

From the potential function 0, the velocities and streamfunction for this 

case can be obtained, that is 

(3.32) u= 'X[X (a2 - r2) + 16z(2z2 - 3r2)] 

V= 12Yr(r2 - 4z2) 
, 

and 

ly = {2ý r2, [a2- - 2r2j + 4r2z[4z2 - 3r2]) 

where Xand a are arbitrary constants. In this case there are only two 

boundaries rather than the family of profiles obtained in Cases 1 and 2. 

These are given by (3.30) using B=4± 2/3130, 
which are the solutions 

of the quadratic (3.31). The injection/suction needed to maintain this 

flow can be obtained by the substitution of the velocities (3.32) into 

(3.19). 

For n>4, potential functions can be found in the same way from 

equations (3.11) and (3.13). These generate non-linear, first order dif- 

ferential equations for the radius function, but with progressively 

higher degree. As for n=4, particular cases can be found for these 

larger values of n, but no general solution. It can be shown that R2 is 

a solution of all the differential equations for the boundary, regardless 

of the value of n, if R2 is taken to be a quadratic in z. 

152 



COMBINING SOLUTIONS 

An important classification for differential equations is whether 

or not they are linear. The theories and techniques for solving linear 

equations are extensive. However, for nonlinear equations the situation 

is less satisfactory. General methods for solving such equations are to 

a large extent lacking, and the theory associated with them is also more 

complicated than that for linear equations. As a result, nonlinear dif- 

ferential equations are not usually considered advantageous. 

The Axi-symmetric Laplace equation is itself a linear differential 

equation and as such any linear combination of solutions is also a sol- 

ution. That is, if 

V21=0 and 02`1'=0 

then 

02[cß + ßT] =0 

Consequently, in this case it is possible to combine two or more previous 

solutions, for example 12 and ý3, to produce a further solution to the 

Laplace equation. This new 'combination' solution can now be substituted 

into (3.10) to generate a differential equation for the boundary profile. 

However, this equation is nonlinear. As a result, the boundary obtained 

by solving this differential equation is not a linear combination of the 

boundaries corresponding to the combination of potential functions. The 

nonlinearity would not normally be considered advantageous, however, in 
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this case it allows a totally new solution of the problem to be generated 

from those already known. 

For example, writing 

I= aI2 + ßý3= a(2z2 - r2) + ß(2z3 - 3r2z) , 

where a and 5 are arbitrary constants. Suitable differentiation of 0 and 

its substitution into (3.10) yields 

(3.33) (A + 3ß)R2 + (a + 3ßz)2RR' = 6ßz2 + 4az + Xa2 9 

which can be integrated to give 

i 
R2 = A(a + 3ßz)-(1+X/3ß) +2 (a + 3ßz)2 - 

2a 

3ß()i + 95) 3ß(a + 35) 

+ 
Xa2 

a+3ß 

for X# -3ß and -9ß, and ß00. Considering the special case when 5=0, 

equation (3.33) reduces to the differential equation for the wall profile 

encountered in Case 1. The other two special cases integrate to give 

R2 = z2 + 
2az 

_ (2a2 + 9ß2a2)ln(a + 3ßz) +A 
3ß 3ß2 
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for X -35 while 

R2 = A(a + 3ßz)2 + 
2(a + 3ßz)21n(a 

+ 3ýz) + 
2a2 

+ 
3a2 

9ß2 18 ß2 2 

.L 

for X= -9ß. It can immediately be seen that taking a=0 gives the 

results presented in Case 3. Different choices of a and ß give a variety 

of different solutions to the problem, none of which are a direct combi- 

nation of any two or more of the others. This technique is not confined 

to combinations of two solutions. Any number of analytic solutions, gen- 

eral or particular, as well as numerical ones can be used to obtain a new 

flow and boundary configuration. 

CONCLUSION 

This article has presented a wide range of solutions for flow along 

pipes with impermeable walls and varying cross-sectional area. The method 

that was employed considered the potential functions to be homogenous 

polynomials in r and z. Two cases were shown in detail. These were special 

in that a general solution of the nonlinear differential equation for the 

boundary function could be obtained using the quadratic and cubic poten- 

tial functions. Graphs of the streamfunctions and the corresponding 

family of the boundaries were used to illustrate both cases. In addition, 

the necessary injection/suction profiles were presented. For those of 
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higher order, that is quartic and above, a quadratic particular solution 

for R was found, however it was noted that a numerical method would be 

needed to obtain a general solution. 

Finally, the combining of previous solutions was discussed. In- 

spection of the governing pair of differential equations for the potential 

function, 0, and the wall profile, R, yields that the former is linear 

and the latter nonlinear. It is particularly interesting to see that the 

linear combination of potential functions generate a completely new 

boundary which is not a linear combination of the those already obtained. 
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The aim of this research has been to find applications of the New 

Solution 

u= a(a2 - r2) +V= 
Z Or 

with 

020=0 

to a range of axi-symmetric fluid problems. 

The Peristaltic problem presented in Section 1 showed a use of the 

solution in an already well worked field, producing an analytic solution 

for all Reynolds number, and with fewer restrictions than in previous 

research. The extension to using a second order nonlinear waveform as a 

boundary allowed a greater understanding of the effects of the periodic 

terms on the characteristics of the flow. 

A further application employed the New Solution to give an insight 

into the flow through a pipe with a slowly varying cross-sectional area. 

The use of a perturbation series put a limitation on the range of validity 

of the solution obtained. The solution to this problem could be further 

developed using a completely numerical method, however, at this time there 

is no known technique that could be used to generate a solution with the 

appropriate geometry and boundary conditions. 

The addition of mass transfer at the boundary opened a new direction 

for the research. In this case the new solution was used to investigate 

analytically an interesting and unexplored problem. A number of exact 

solutions have been found, but some of the differential equations obtained 
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were nonlinear and needed a wholly numerical approach. In this instance 

the New Solution has given a preliminary view of a completely new area 

of potential research. 

The cases presented in this thesis are only a small number of the 

possible applications of this exciting New Solution to axi-symmetric 

flow. It would be possible to use the New Solution as the basis of a 

perturbation solution of the Navier-Stokes equations. The higher order 

terms of the perturbation solution would be obtained from a linearized 

Navier-Stokes equation and so, unlike the New Solution, would be Reynolds 

Number dependent. It is thought that it could be used in other fields, 

most specifically in the investigation of accelerating flows and heat 

transfer problems. The development of this solution is still in its in- 

fancy and it will be exciting to uncover problems that could be tackled 

using it in the future. 
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