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SUMMARY 

This thesis is primarily concerned with the design and analysis of 
composite concrete bridge decks, although some of the analytical 
procedures developed herein have a wider applicability. In the 
current study composite construction refers to precast, pretensioned 
concrete beams acting compositely with insitu concrete. 

The work is broadly divided into two sections, experimental and 
analytical. For the experimental programme two 1: 3.5 scale models of 
skewed bridge decks were designed to current standards and 
meticulously constructed. Comprehensive data acquisition facilities 
were installed and the testing programme for each model deck was based 
on current design loading. Detailed test results are presented and 
the full range structural response investigated and explained. The 
analytical investigation programme ran concurrently with the 
experimental programme and involved the development of material and 
structural modelling schemes and appropriate numerical modelling 
techniques. These were incorporated in an analytical package which 
involved the design and implementation of a sophisticated finite 
element program named SNAP. 

Composite concrete bridge decks are the solutions chosen for many 
crossings in the UK. However, the literature survey revealed that the 
previous experimental research was very limited and had been conducted 
during the 1950's. This position is reflected in the limited and 
ambiguous guidance that is currently available to designers. No 
analytical research on composite construction could be found. 

The experimental programme revealed several interesting features, such 
as; the inherently large factor of safety that results from current 
design practices; the unusual crack patterns that indicate limited 
breakdown of composite action; the complete breakdown of composite 
action along the supported edges at high load levels. The 
implications of the observed structural behaviour for analysts and 
designers are explored. 

The heterosis plate bending element was selected for the finite 
element analyses. Sophisticated non-linear solution procedures, 
including the arc-length method and the BFGS quasi-Newton method, were 
also developed and incorporated into the SNAP program. A decisive 
feature in the success of the analyses described herein was the 
inclusion in the program of a wide range of solution procedures, which 
were available for selection based on the current structural 
behaviour. The program was endowed with limited intelligence so that 
it could automatically switch between solution methods as numerical 
difficulties were encountered during an analysis. The program was 
subjected to testing and verification against the results of other 
published investigations. The SNAP program design philosophy resulted 
in a simple to use, comprehensive and effective tool for the analyst. 
Several new analytical concepts and methods, such as; a hybrid element 
for analyses of composite construction; scaled space and new 
convergence criteria and; statistically varied material properties 
were developed during the present study. 

Finally, conclusions are drawn from the reported investigations and 
recommendations for further work are given. 
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NOMMCLATURE 

General notation 

Denotes any variable 

A Denotes a matrix A 

a Denotes a vector a 

A or a Denotes a scalar A or a 

A* Denotes an incremental quantity 

60 Denotes an iterational quantity 
A 
4 Denotes a local quantity defined within a section 

,n Generally denotes increment In' 

Generally denotes iteration IiI 

Generally denotes line search trial IJI 

*k Denotes element IV of variablee 

0 Denotes the element corresponding to node m degree of m, n freedom type In' in variable 

1,01 Absolute value 

Second Holder or Euclidean norm 

Square brackets are sometimes included around matrices 
or vectors to enhance clarity 

[a] T Transpose of vector a 

Specific quantities 

Ct Concrete principal angle 

ciloct 2 Concrete tension stiffening parameters I and 2 

Iii Defined as -yi - ri_l - ri 

^txy Shear strain in xy 

Ifyz Shear strain in yz 

^Ixz Shear strain in xz 

71 XY Inplane component of the shear strain in xy 

'ff3 BS5400 design load effects partial safety factor 

^ffL BS5400 design loads partial safety factor 

'YM BS5400 material partial safety factor 
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'YT Tangential shear strain 

Strains continuous over the structural domain 

Exy Cartesian strains 

E 12 Principal strains 

Ae 
12 Principal incremental strains 

C_ Principal effective strains 12 

AE Principal effective incremental strains 12 

CRY- Strains resolved to either beam or steel local 
directions 

CR Strain in steel direction 

fo Strain at maximum concrete compressive stress 

Cu Strain at which crushing of concrete begins 

fm Strain at which concrete stress returns to zero in the 
post crushing region 

ecr Concrete cracking strain 

EO Cartesian strain offsets 

e* Scaled principal total strains 12 

ex Direct strain in x 

ey Direct strain in y 

Jx In-plane component of direct strain in x 

ei y In-plane component of direct strain in y 

Ox Nodal rotation around the y axis 

0y Nodal rotation around the x axis 

0 Angle between steel direction and the x axis 

OR, 07 Nodal rotations transformed to either beam or steel 
local directions 

OiT, 02T Tangential rotations for local nodes 1 and 2 

Kx Direct curvature in x 

Ky Direct curvature in y 

KXy Twisting curvature in xy 

XIX2 Matrix eigenvalues 
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Moment factor for transverse ultimate sagging 
resistance 

Moment factor for transverse ultimate hogging 
resistance 

V Poisson's ratio 

Element local coordinates 

Stresses continuous over the structural domain 

OIXY Cartesian stresses 

(T 12 
Principal stresses 

(T= X 
Stresses in either beam or steel local directions 

Y 

ao Concrete maximum compressive stress 

absmax Maximum permitted line search scale factor 

B Strain-displacement matrix 

Bs Strain- displacement matrices for bending and shear 
components respectively 

Bný b, 
Bn 

S Strain- displacement matrices for node In' for bending 
and shear components respectively 

C Matrix condition number 

e Continuous variables elasticity operator 

D XY Modular matrix in Cartesian coordinates 

Dc Concrete modular matrix in principal directions 12 

Ds Steel modular matrix in Cartesian directions xy 

Ds - Steel modular matrix in steel directions Ry 

D6b I Db s Modular matrix for beams in bending and shear 
respectively 

Dsb Modular matrix for steel in bending 

b, 
6b 

s Bending and shear modular matrices for smeared beams 
in local beam directions 

Dx Modular matrix element for Cartesian x direction 

Dy Modular matrix element for Cartesian y direction 

D, Off diagonal modular matrix element 

D XY Modular matrix element for Cartesian xy direction 

Dtoln Displacement convergence tolerance for dof type In' 



xi 

Dtolt Displacement convergence tolerance for all dof types 
combined 

Etoln Energy convergence tolerance for dof type 'n' 

Etolt Energy convergence tolerance for all dof types 
combined 

E Young's modulus 

Ec,, Ec 2 
Concrete tangent moduli in principal/crack directions 

Es Steel tangent modulus in steel direction 

f(u) Internal force vector at displacement level u 

ft- Concrete tensile strength 

Ftoln Force convergence tolerance for dof type In' 

Ftolt Force convergence tolerance for all dof types combined 

F Non-dimensionalising factor 

Gc Concrete shear modulus 

Ger Residual concrete shear modulus 

Gij Energy dissipated by the residual forces in the 
direction of the iterative displacements for iteration 
i, line search trial j 

GOij Energy dissipated by the old residual forces in the 
direction of the iterative displacements for iteration 
i, line search trial j 

Hu Interpolation functions for displacements 

HO, Interpolation functions for stresses 

He Interpolation functions for strains 

Id Desired number of iterations in an increment 

In-i Number of iterations in increment n-1 

I Moment of inertia 

i Jacobian matrix 

Stiffness matrix 

Kk, k Leading diagonal coefficient of K for dof W 

Km, n m, n Leading diagonal coefficient of K for dof type 'n' of 
node Im' 

KI Host recently formed stiffness matrix 

Keb, K% Elemental stiffness matrices for bending and shear 
respectively 



xil 

Aen Desired incremental change in either the 
characteristic displacement or the 'arc-length' 

Continuous variables strain operator 

Moment of resistance per unit length of sections 
normal to the i1th band of reinforcement 

M Slab ultimate sagging moment of resistance in the I longitudinal direction 

M2 Slab ultimate hoggizig moment of resistance in the 
longitudinal direction 

M Slab ultimate sagging moment of resistance in the 3 
transverse direction 

4 Slab ultimate hogging moment of resistance in the 
transverse direction 

mpxtmpypmpxy Moment stress resultants for the plate in x, y and xy 
directions respectively 

Mb n Moment stress resultant for the beam in local 
directions 

MX - MY - MXY Overall moment stress resultants for the slab in x,. y 
and xy directions 

Nn, x Partial derivative wrt x of the serendipity 
interpolation function for node 'n' 

p Total applied load vector 

P, * Nominal incremental load vector 

p Total load level 

AP Incremental load level change 

6P Iterational load level change 

P*b Body forces continuous over the structural domain 

Pt Surface tractions applied to the surface of the 
structural domain 

Pb Discretized body forces 

Pt Discretized surface tractions 

Scaled applied load vector 

Pn, x Partial derivative 
I 
wrt x of the Lagrangian shape 

function for node In 

Ppxtppytpp 
XY 

In-plane force stress resultants for the plate in x, y 
and xy directions 



xiii 

pb n In-plane stress resultants for the beams in local 
coordinates 

PXIPYIP XY Overall in-plane force stress resultants for the slab 
in x, y and xy directions 

r(u) Residual force vector at displacement level u, defined 
as r(u) -p --f(u) 

r Residual force vector as aboveý 

iý Scaled residual force vector 

relmax Maximum permitted relative change in the line search 
scale factor during a single trial 

rn Force, displacement or energy ratio for dof type 'n' 

rt Force, displacement or energy ration for all dof types 
combined 

rn Scaled force, displacement or energy ratio for dof 
type In' 

rt Scaled force, displacement or energy ratio for all dof 
types combined 

S Surface of the structural domain 

Sn Scaled space scaling factor for dof type In' 

. Si Final line search scaling factor for iteration i 

sij Line search scaling factor at trial j of iteration i 

Tol Line search tolerance 

Transformation matrix 

Tn Beam torque 

U Nodal translation in the x direction 

u Total displacement vector 

71 Scaled total displacement vector 

AU Incremental displacement vector 

AU Scaled incremental displacement vector 

6U Either virtual displacements or iterative displacement 
vector 

Scaled iterational displacement vector 

6u Unconstrained iterative displacement vector, used in 
displacement and arc-length control methods 

6 

u? Nominal displacement vector, defined as K-1 P* 



AV 

U* Displacements continuous over the structural domain 

U* Unknown displacement vector at end of increment 

Ui'O Displacement vector obtained with a line search 
scaling factor of 0 

v Nodal translation in the y direction 

w Nodal translation in the z direction 

XpY Either steel or beam local coordinates 

z Distance from section neutral axis (NA) 

F Distance of section neutral axis from top of section 
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SNAP PROGRAM FINITE EUMENT FORMATIONS 

8.1 Introduction 

The text within this chapter outlines the theoretical background to 

the algorithms that have been incorporated into the 'SNAP' computer 

program. Details of the analyses of the model decks using the SNAP' 

program can be found in Chapter 9. Only brief details of standard 

finite element theory are given here and the interested reader is 

referred to standard texts 1,2,3 for a more detailed explanation. 

The primary aim of structural analysis is to predict the response of a 

structure to a system of forces when restrained by a system of 

boundary conditions. The advent of the digital computer has allowed 

the displacement based finite element method to be a successful 

vehicle with which to fulfil this aim. The power of modern computing 

systems allows the investigator to pursue his analyses along the full 

range of the physical response, as far as physical failure and not 

numerical failure, which has been common until recently. 

8.2 Analytical format 

Once a structure has been defined using nodal coordinates and material 
cc, v tv- a---6 P 

properties, etc. then the mathematical model of the structureX. For a 

non- linear, \ analysis the stiffness matrix K is not constant for all 

load and displacement levels and hence a single assembly of the matrix 

is not sufficient. The present study is concerned with the response 

of the structure after taking into account the effects of material 

degrodation only. The non-linear response may be traced by 

sub-dividing an analysis into increments. In any one increment only a 

proportion of the load is applied. After the new displacement level 

has been achieved the stiffness matrix can be recalculated, taking 
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into account, to a certain extent, the non-linearity of the response, 

see Figure 8.9. Unless small increments are used, the analytical 

response will tend to drift away from the experimental response. The 

adoption of small increments, however, results in greatly increased 

cost for the analysis. This problem is generally overcome by using 

larger increments but incorporating iterations within increments, to 

redistribute the residual forces so that equilibrium can be achieved 

and analytical drift will be prevented. 

Traditionally an analysis is subdivided into increments of load. 

Hence, it may be said that the iterational constraint is load since we 

are constrained to achieve a certain load level within an increment. 

In this investigation other iterational constraints have also been 

employed such as displacement, where a certain displacement level is 

achieved within an increment. 

8.2.1 Standard increment/iteration format 

The majority of non-linear finite element analysis programs employ a 

standard incremental format, whether it be incrementing load, 

displacement or some other variable. For example, with incremental 

load, the system may apply a fixed load vector to account for constant 

loadings such as dead load, and an incrementally increased load vector 

to account for live loading. During the present, study this 

incremental format was found to be inappropriate for the structure 

under investigation and, therefore, a new format was developed. 

8.2.2 New stage/increment/iterational format 

For the new format the analysis was subdivided into stages and these 

stages were further sub-divided into increments. Iterations were 

carried out within increments to achieve equilibrium in the normal 

way. 
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During stages a fixed vector of load or other iterational constraint 

applied. To this was added a proportion of an incremental vector 

of load or other iterational constraint in each increment. Between 

stages a number of features could be changed, if required, such as 

material properties, load vectors and boundary conditions. 

The switching of material properties allowed the analysis to model the 

construction sequence for this form of construction accurately. Thus, 

in the first stage the concrete applicable to the beams was given full 

properties while the insitu concrete was given weak properties. This 

modelled the condition where the precast beams were covered with wet 

insitu concrete. Extra boundary conditions were applied during this 

stage to prevent rigid body motions, such as a rotation of the beams, 

which are possible with wet insitu concrete in-fill providing the only 

transverse continuity. 

During the second stage both precast and insitu concretes were given 

their full properties. The incremental load vector was switched from 

density loading to density correction and HA loading. The extra 

boundary condition that had been applied during the first stage werýý 

removed. During the'third and subsequent stages only the incremental 

loading vector is changed to that appropriate for HB loading. 

8.3 Finite element discretization 

In essence, the majority of structures are three dimensional. If they 

are modelled as three dimensional entities for analytical purposes 

then the analyses are likely to be expensive and complex. However, 

the adoption of assumptions which are appropriate to the structure 

under consideration allow the analyses to be simplified. The 

classical example of this simplification process is in the analysis of 
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plates, where assumptions about the through depth normal and shear 

strain variations lead to a pseudo 2D modelling philosophy. 

Traditionally the assumptions of Kirchoff's classical thin plate 

theory have been used for plate analysis. With this theory, lines 

which were normal to the mid-surface before deformation remain 

straight and normal to the mid-surface after deformation. Thus 

precluding the effects of transverse shear deformation. Finite 

elements based on Kirchoff's theory require C(l) continuity in w (i. e. 

ýow/ýix and ýiw/ýiy have to be continuous) since the curvatures are given 

by 1w 
and Zý; /ýo and Zow /ZixZoy. This requirement leads to 

complexity in element formulations. However, thin plate theory has 

been favoured by engineers for its conceptual simplicity. 

Recently formulations based upon Mindlin 4 /Reissners plate theory have 

begun to supers4f-those based on Kirchoff's thin plate theory, since 

Mindlin theory only requires C(O) continuity for w and the independant 

rotations OX and 0y across element interfaces. In addition, Mindlin 

elements are able to model transverse shear deformations. Mindlin 

deduced a two dimensional theory for flexural behaviour from the three 

dimensional equations through assumptions about the structural 

behaviour. The main assumptions are given below: - 

1. Displacements are small compared with the dimensions of the 

structure. 

2. The effects of stress normal to the mid-surface of the plate are 

negligible, irrespective of the type of loading. 

3. Lines normal to the mid-surface before deformation remain straight 

but not necessarily normal to the mid-surface after deformation, 

see Figure 8.1. 
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Unfortunately standard Mindlin elements do have certain problems, such 

as locking and rank deficiency, and these have been the subject of 

extensive research. Nagtegaal's et al proposed the method of 

constraint counting as a mean of assessing an elements susceptibility 

to locking Hinton" et al used the method of constraint counting to 

assess the suitability of Serendipity and Lagrangian elements for thin 

plate situations. It was shown that Serendipity elements may lock in 

thin plate situations while Lagrangian elements usually do not. 

Several different schemes have been proposed for the alleviation of 

these problems. At the moment two different approaches appear to 

offer solutions to these problems and they are either the application 

of discrete Kirchoff mode constraints7,9,9,10,11 or reduced/s elective 

6,12,13,14 integration 

For a fuller account, the interested reader is directed to a 

comprehensive discussion on the features of current plate bending 

elements by Rahman 17. 

The 'Heterosis' elements, which was developed by Hughes, was chosen 

for the present work because it is an extremely competent plate 

bending element which overcomes the locking and rank deficiency 

problems associated with standard Mindlin elements. The element is an 

amalgamation of the Serendipity and Lagrangian elements. It uses the 

Serendipity element for the transverse (z) translations and the 

Lagrangian element for all other degrees of freedom. It has been 

shown that while the 'Heterosis' element passes the patch test as a 

parallelogram, it does not as a general qua lateral. The element's 

inability to pass the patch test as a general quadilateral should not 

pose a problem since the meshes used for the present study will only 

incorporate parallelogram shaped elements. 
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To allow the plate element to model the section behaviour as the 

material degrades, a quadratic plane stress element has been 

amalgamated with the Heterosis plate bending element. Thus the 

neutral axis is free to move as the section degrades with increased 

curvature. 

8.3.1 Heterosis finite element 

The f inite element used for the investigations described herein is a 

hybrid of the Heterosis element. Brief details of the standard 

element will be given first followed by the modifications that were 

necessary for the present StUdy. For a more detailed description of 

the standard element the reader is directed to the paper by Hughess. 

The nodal degrees of freedom are u, v, w, Ox and 8 Y, The sign 

convention can be seen in Figure 8.2 and the nodal degrees of freedom 

(dof) are defined at the reference plane. 
i 

The strains at any point are given by: - 

x 

y 

XY 

Kx 

Ky 

K XY 

'Yxz 

['YYZ 

ýou 
ýox 

ýov 
ýy 

ýu + 
ýy 

<)v 
ýx 

Zox 
ýo y Zoy 

ýLox 
+ý0y ýy Zox 

ýlw 
+ 

x 
0 

x 

ýw 
ýy + oy 

(8.1) 

Hence the total strains at any point within the structure are given 

by: - 
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Ix �p 

Actual deformation 

Assumed deformation-,, 
\V 

Normal to reference 
// 

plane after deformation 

ex 

'b w 
'ýXz OX ZX 
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IYZ 

y by 

Reference plane 

FIG. 8.1. TRANSVERSE SHEAR DEFINITION FOR 

MINDLIN PLATE 

Rotations and W, z 
moments are 
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to a right hand () 
screw rule y 

MYX 
MY 

Ox mxy Tension is + ve 

mx 

:::; 4 V, y ex my 
myx 

U, X/ -0-oomx luy 
4m /jcjx 

oy Zoe XY 

FIG. 8.2. SIGN CONVENTION FOR MINDLIN PLATE 



a 

xfx+ZKx 

yfy+ZKy 

^txy ly XY +z Ic XY (8.2) 

^Ixz ^Ixz 

Ifyz 'YYZ 

where z is the distance from the reference plane to the point in 

question. 

The element is a hybrid of Serendipity and Lagrangian elements, using 

8 nodes with Serendipity shapi functions for the transverse 

displacements and 9 nodes' with Lagrangian shape functions for the 

in-plane displacements u and v and rotations Ox and 0 Y* The element 

is integrated in a selective manner, using 3x3 for the bending 

energy and 2x2 for the transverse shear energy. The stiffness 

matrix for an element is given by 

Ke - K% + Ký 

where 

eb- fBT b Db Bb dv bending stiffness contribution 

Kes - fBTs Ds B. dv shear stiffness contribution 

(8.3) 

(8.4) 

(8.5) 

The Db and D. matrices contain material property information and 

relate the stresses to the strains. For the work described here the 

in-plane material properties are degraded under the control of 

material models, described in section 8.4, as the analyses progress. 

However, the transverse shear modular matrix, Ds, is assumed to remain 

constant throughout the analyses and is not degraded. 

Numerical integration is used to evaluate the stiffness matrices given 

by equations 8.4 and 8.5. Gauss-Legendre integration rules are 
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selected for the integration over the plan area of the elements. A 

layered approach, involving both concrete and steel layers, was 

selected for the integration through depth. The use of a number of 

different through depth integration rules, including Newton-Cotes, 

Gauss, Trap ezoidal etc., was investigated in the present study. Only 

minor differences between the predicted responses for different 

through depth integration schemes were noted and no difference in the 

required computational effort was apparent. It was found that the 

location of the extreme integration station was the most influential 

factor. If this was located away from the extreme fibre then the 

predicted response tended to overestimate the cracking load and 

underestimate the failure load. 

8.3.2 Modelling of composite construction 

A composite concrete bridge can be modelled as a slab of plate finite 

elements to which are added discrete beam elements at element 

boundaries. To allow this approach to be evaluated, discrete 

Timoshenko beam elements were incorporated into the SNAP program. 

Essentially a Timoshenko beam element is a one dimensional version of 

the two dimensional Mindlin plate element described earlier. 

For structures involving relatively few beams the discrete beam 

approach could yield realistic results efficiently. The structures 

investigated for the present study incorporated numerous beams, 

typically 17 to 22. To obtain reasonable response predictions it was 

necessary to employ unrealistically fine meshes and therefore this 

avenue was not pursued. With discrete beams it is also difficult to 

model torsional stiffness and its degradation. The beams in a skew 

slab are subject to high torsional moments and therefore this aspect 

is fundamental to the response of the structure. Furthermore, the 

beams contained in a composite slab are encased in insitu concrete and 
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therefore they are subject to direct stresses orthogonal to the beam 

axis and in-plane shear strains. Traditional beam formulations 

generally treat the beam torsional stiffness as a linear quantity and 

ignore the orthogonal stress as being insignificant. 

If, for the analysis of a skewed structure, the beam torsional 

stiffness is treated as a linear quantity then an artificially high 

failure load will generally result. The beams will generally lie at a 

considerable angle to the principal directions at failure, therefore, 

the linear torsional stiffness will preclude total failure in the 

actual failure directions. Even though there will be little or no 

shear strain in the principal failure directions, a significant shear 

strain will result in the beam directions after transformation. The 

resulting shear stress in the beam directions will, after 

transformation, cause a significant moment in the failure direction, 

which will resist failure of the section. 

The integration over the volume for a beam element is generally 

carried out in two stages, firstly over the breadth and depth of the 

beam and then over the length. For the integration over the breadth 

and depth the section is generally divided into a number of horizontal 

uni-directional layers inside which the stiffness or stress is 

evaluated at one point as required. Knowing the distance to the 

neutral axis allows the section stiffness and stress resultant to be 

obtained as required. 

When an isolated beam is subject to a torsional moment then the shear 

stress flows around the section approximately as shown in Figure 

8.3(1). To overcome the problems described above torsional stiffness 

degradation could be incorporated. If one assumes that stresses 

orthogonal to the beam axis is insignificant, then the inclusion of 
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torsional stiffness integration, at the same sampling stations as 

direct stresses, would allow material properties to be defined in 

principal and not beam directions. Merely adding the integration of 

torsional stiffness to the existing direct stiffness evaluation at 

layers, is not appropriate, since the shear flow shown in Figure 

8.3(11) would be imposed. 

An integration scheme similar to that shown in Figure 8.3(111) may be 

more appropriate. In this scheme the section is treated as 2 

dimensional and a two dimensional derivative of an integration scheme, 

such as Gauss-Legendre, is used. The 1z' distance for the calculation 

of strains from the direct and twisting curvatures, is the orthogonal 

distance from the axis to the integration station in question. From 

Figure 8.3(111) and for integration station 3, the appropriate 

distances for the integration of direct bending stresses are a, and 

W. For the torsional stresses the appropriate distance is 'c'. At 

each integration station there is a two dimensional strain system in 

three dimensional space and the additional effects of transverse 

shear have not been considered. 

For the case where the precast beams are encased in hardened insitu 

concrete, the situation is radically different. If it is assumed that 

there is perfect strain compatibility at all interfaces then the 

portion of the slab above the bottom flanges will act as a homogeneous 

plate. Since ;t gap is left between adjacent bottom flanges during 

construction the detailed behaviour of the bottom flanges will be 

complicated. As failure of the composite deck approaches then the 

assumption of strain compatibility between the insitu and precast 

concretes may not be valid. Thus the behaviour could move towards 

that of a set of individual beams. 
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If discrete beams are used in an analysis of a composite concrete 

bridge deck then the best predictions are obtained with artificial 

values for the beam torsional stiffness. The predicted torsional 

stiffness of a beam in isolation can be used throughout an analysis. 

The underestimation of the slab torsional stiffness with this method 

allows better estimates of the degraded composite torsional stiffness 

that will occur at higher displacement levels, as failure is 

approached. Even with this approach, however, unrealistic failure 

loads can be predicted, since at very high displacement levels the 

small linear torsion can have a significant effect. 

It has been shown above that discrete beams are not the optimum choice 

for the analysis of composite concrete bridge decks and therefore 

other avenues were investigated for the present study. 

8.3.3 Modification of the Heterosis plate element for the analysis of 

composite concrete bridge decks 

The stiffness matrix for a Haterosis plate element is formed from: - 

K-f BT b Db Bb dA +f BTS Ds Bs dA (8.6) 

where the terms represent the bending and shear components. The 

integration in equation 8.6 is only carried out over the area of the 

element since the B matrices are constant through depth and the 

modular matrix, D, is the result of an integration through the depth. 

With smeared steel, equation 8.6 is modifiedto: - 

K-f BTb 1Dpb + D*Sbl Bb dA +f BTS DPS Bs dA (8.7) 

Implicit in equation 8.7 is the assumption of strain compatibility 

between the concrete and steel in the plate. For the calculation of 
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the concrete modular matrix Dpb the presence of the steel is generally 

ignored. This introduces a small error in the calculated stiffnesses. 

The way in which the smeared steel was included in equation 8.6 can 

also be applied to the inclusion of smeared beams into equation 8.7, 

thus: - 

K-f BTb [D'pb + Db b+ Dsbl Bb dA +f BTs [Dlps + Dbsl Bs dA 

(8.8) 

The modular matrix (D) for the calculation of a discrete beam element 

stiffness matrix contains stiffness terms per unit length. The 

smeared beam modular matrix in equation 8.8 contains stiffness terms 

per unit area. Thus, for a uniform spacing of beams, the smeared 

modular matrix is essentially equal to the discrete modular matrix 

divided by the orthogonal beam spacing. Again, strain compatibility 

between all three components, namely plate concrete, beam concrete and 

steel, is implicit in equation 8.8. Depending upon the assumptions 

that are applied, the smeared beam modular matrix can be defined in a 

number of ways. 

8.3.3.1 Uniaxial bean approach 

If it is assumed that the beams are uni-directional then the material 

and section properties are defined in the beam directions. Thus, the 

direct stiffness and transverse shear stiffness in the beam directions 

are specified. In addition, depending on how the beam torsional 

stiffness is applied, an in-plane shear stiffness may also be 

specified. Before the integration of equation 8.8 can be carried out 

the beam properties must be transformed to Cartesian directions using 

transformation matrix, T. Thus if ýb 
b and 

jbs 
are the modular 
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matrices defined in the beam directions, then the modular matrices in 

Cartesian directions, Dbb and Dbs, can be obtained from: - 

Db TT Dý Tb b b b 

Db TT 6b T s S s s 

Tb Cos 
2 cl 

sin 
2 cl 

L-2sinacosa 

Ts - rcosc, s inal 
II 

L-sina cosoti 

s in'a sinctcosot 

Cos 2 ci -sinacosci 

22 2sinacosci cos cf-sin al 

(8.9) 

(8.10) 

where a is the angle between the beam direction and the x axis. 

Implicit in this approach is the assumption that cracks can only form 

orthogonal to the beam directions, since the orthogonal direct stress 

is undefined and therefore a transformation to principal space cannot 

be performed. The approach described above will be referred to as the 

. uni-axial beam approach hereafter. 

With the uni-axial beam approach a complication arises when the 

torsional terms are evaluated for a slender member. If the Cartesian 

curvature strains are transformed to the beam directions then three 

curvature strains result thus: - 

dO- 
w 

dO- ICY aV 

PCRY- AO- + do- 
aýy--x ! 

d2:: x--y 

(8.11) 
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where R and Y are the beam local directions. Clearly, for the 

application of a uni-directional beam torsional stiffness, a twisting 

term, K equal to dO, /d3E 
xy y is required and not that shown in equation 

8.11. The addition to the B matrix of an extra term equal to: - 

dOx dO y 
dy dx 

will allow this problem to be overcome. After transformation of this 

term to the local beam direction, equation 8.11 becomes: - 

KR dOiE 

d-x 

Ky 
MY 

dy- 

[dOR 
+ 

dOyl. [dOR 
_ 

d0y] 

KT- 
dy- dy dR 

y2 

(8.13) 

Crisfield has adopted this approach with the formulation for his NFES 

program. Full details of this are given in Chapter 10 Section 

10.1.1.2. 

8.3.3.2 Biaxial bean approac 

For the major part of a composite concrete slab analysis, a bi-axial 

stress environment will exist in the precast beams; since the insitu 

and precast concretes act compositely with virtually perfect strain 

compatibility. Except for the presence of prestress in the beams, the 

composite slab behaviour will be similar to a homogeneous and 

isotropic slab of similar dimensions. It would seem more logical, 

therefore, to treat the insitu and precast concretes in a similar 

fashion but as separate entities. With this approach the material 
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properties are defined in principal directions. Thus, if the tensile 

strength is exceeded in the principal directions, a crack will form in 

these directions, which could be at any angle to the beam axis. For 

coincident insitu and precast integration stations, the principal 

directions will generally differ, since the precast concrete is 

prestrained. This second approach will be referred to as the bi-axial 

beam approach hereafter. 

Clearly no single approach is appropriate for all regions of the 

analysis, from discrete beams supporting wet insitu concrete to 

failure of the structure. The uni-axial approach is able to model the 

condition with wet insitu concrete accurately, whereas the bi-axial 

approach is more suited to the subsequent response as it moves towards 

failure. However, the bi-axial approach will not model the behaviour 

of the beam bottom flanges accurately, since a gap is left between 

adjacent flanges. As failure approaches and composite action begins 

to break down, neither the uni-axial or bi-axial approach will truely 

reflect the structural response. 

Both the uni-axial and bi-axial approaches were implemented in the 

SNAP program. For analyses where the principal directions coincided 

with the beam directions, both approaches yielded similar results. 

For analyses where the principal directions deviated from the beam 

directions, significantly overstrong predictions were given by the 

uni-axial beam approach, whereas the bi-axial approach yielded 

reasonable predictions. From the earlier discussion this is the 

expected result. 

The integration over the area in equation 8.8, together with the 

integration over the depth for the modular matrix, D, is carried out 

so that the strain energy over the volume can be equated to the energy 
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dissipated by the external loads. For composite construction the 

total strained volume is divided between plate concrete and beam 

material. Thus two integrations must be carried out, one over the 

volume of plate or insitu concrete and the second over the volume of 

the beam or precast concrete. Since a smeared approach has been 

adopted, the integrations over the area of the structure are identical 

for the two materials and may, therefore, be combined. The 

integrations over the depth, to produce the D matrices, are different, 

and must be carried out separately. 

Finite element analyses of homogeneous and isotropic plates generally 

apply classical integration rules, such as Gauss-Legendre or 

Newton-Cotes, for the through depth integration. Due to the 

interlaced nature of ýthe precast and insitu concretes in composite 

construction, each material is not distributed uniformly through 

depth. Thus the classical integration rules are not appropriate and 

an individually designed integration rule is required for each 

different structure that is analysed. 

Initially, the number of integration stations through depth is 

selected. The analyst uses his judgement to position the stations at 

appropriate locations through the depth, considering the size and 

location of the tributory area that is associated with the station. 

The weight attached to each station reflects the amount of material, 

precast or insitu as appropriate, that is adjacent to the integration 

station. The weight is obtained by first calculating the volume of 

either the precast or insitu. material that is contained within a 

certain through depth layer. Since the smeared approach is used the 

weights are then obtained by dividing the volume by the applicable 

area. For uniformly spaced beams, this process reduces to determining 

the area of the beam or insitu section, as appropriate, that is to be 
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attached to a particular integration station, and dividing this area 

by the beam spacing to obtain the weighting factor. 

In addition to modelling the linear case accurately, the chosen 

through depth integration system should be able to model the ultimate 

condition, when steel is yielding and concrete is crushing, 

realisticaly. For the present study, the integration schemes were 

arranged so that stations near to the soffit enabled cracking to be 

modelled accurately. The stations towards the top of the section were 

arranged so that the concrete compression block at failure could be 

modelled realisticaly. 

In the uni-axial beam approach, the straining of the precast material 

orthogonal to the beam axis is not included in the beam integration 

scheme. In this case it would appear appropriate to increase the 

insitu concrete integration weights in the orthogonal direction to 

reflect the total amount of strained material in that direction. 

However, complications arise in the calculation of a consistent 

integration weight for the twisting term in this case. 

8.4 Material Modelling 

For many years concrete has been accepted as an efficient structural 

material. This is clearly apparent from its extensive use throughout 

the world today. Until the advent of powerful computers, the detailed 

mathematical modelling of concrete as part of an overall structural 

response was not practical. This section is concerned with the 

detailed composition of the D matrix (also referred to as the modular 

matrix) and the constitutive law from which it is obtained. With a 

non-linear analysis, as the displacements, and hence the strains, 

change, then the material properties also change and the modular 

matrix must be updated. For the present study it is assumed that only 
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the in-plane material properties are non-linear and that the 

transverse shear properties remain linear throughout the analyses. 

For concrete loaded in uni-axial compression the stress-strain curve 

takes the f orm shown in Figure 8.4. It can be seen that up to about 

30% of the ultimate strength, concrete behaves in a practically linear 

manner. Thereafter, the concrete begins to soften and it has been 

suggested that the softening is caused by micro-cracks forming at the 

aggregate-mortar interface. As the ultimate strength is approached 

tensile cracks appear orthogonal to the applied compressive stress. 

Subsequently, the stress-strain curve begins to descend and failure of 

the specimen ensues. There is a tende-ncy for higher strength 

concretes to be significantly more brittle, with steeper descending 

curves, than low strength concretes. However, the influence of the 

stiffness of testing machines on published data is not yet clear. Also 

shown in Figure 8.4 is a typical stress-strain curve for concrete in 

tension. It can be seen that the shape of the tension curve is 

similar to that in compression, however, the tensile strength is 

approximately 10% of that in compression. 

Investigations by other researchers", 37 have shown that biaxial 

stress conditions can enhance the uni-axial compressive strength of 

concrete by up to 25%, and reduce the uni-axial tensile strength. A 

typical failure envelope is given in Figure 8.5. Since many empirical 

bi-axial failure criteria are defined in principal stress space, it is 

generally necessary to implement an iterative process to apply them in 

the displacement based finite element method. Thus, the implementation 

of a bi-axial material model can be both complex and expensive in 

terms of computational requirements. Furthermore, there is little 

experimental data for the tension-compression region on which to form 

a consistent model. 
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The response of reinforced/prestressed concrete is governed primarily 

by the cracking of concrete and subsequently by the yielding of the 

steel reinforcement/prestressing. Therefore, unless the structure is 

significantly over reinforced, minor enhancements to the concrete 

compressive material model will have little effect upon the structural 

response. Considering these points and the intrinsic variability of 

concrete as a material, it was decided to implement a uni-axial 

material model in each of the principal/crack directions. For the 

analysis of concrete slabs under monotonic loading it is necessary to 

incorporate realistic material unloading into the material model, 

however, a full cyclic model is not required. 

Bond between steel and concrete is fundamental to the behaviour of 

reinforced/prestressed concrete. Bond is a combination of adhesion, 

friction and mechanical interlock between protruding bar ribs and the 

surrounding concrete. Before cracking, bond has little effect upon 

the structural behaviour, however, after cracking it affects several 

features such as; the crack spacing; crack widths; and the residual 

material stiffness. 

If the tensile strength is exceeded anywhere in a concrete material, 

then a crack will form. Subsequently, all the force normal to the 

crack will be transmitted through any steel which crosses the crack. 

Either side of the crack, the bond between the steel and concrete will 

transfer the load to the concrete until strain compatibility is 

regained. Further cracks may form adjacent to the initial crack and 

between these cracks bond action will transfer some of the load to the 

concrete again. Thus, while at the crack sites there is no stress in 

the concrete normal to the crack, in other areas load has been 

transferred to the concrete. 
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The smeared crack approach adopted for the present study averages out 

the distinct phenomenon that are present in the complex concrete 

material. Therefore, in an average sense, the concrete is still 

stressed after cracking. In the limiting case, when cracking becomes 

intense, the average stress can tend to zero although there are test 

data indicating retention of bond up to and beyond steel yielding. 

The averaging process accounts for the post cracking falling branch of 

the tensile concrete stress strain curve. Assuming zero tensile 

strength in the concrete at yield ensures that failure correctly 

models yielding at cracked sections. It should be noted, however, 

that other investigations have indicated the presence of a 

post-cracking falling branch even in plain concrete specimens. 

Besides normal forces, shear forces are also applied to cracks in 

concrete. This force is transmitted across the crack by a number of 

mechanisms. Since the majority of cracks in concrete are rough and 

angular, shear forces can be transmitted through aggregate interlock. 

As the crack width increases the capacity of aggregate interlock to 

transfer force will decrease. A second mechanism for the transfer of 

shear is the 'dowel action' of reinforcing and prestressing bars. Thus 

the bars that cross cracks act as dowels to resist shear force. The 

major influences upon the effectiveness of dowel action are the size 

and strength of the bars and the concrete cover around the bars. 

The steel reinforcement and prestressing wire contained within slabs 

is relatively thin. Thus, a realistic steel material model need only 

cater for the axial properties of steel and it's shear properties can 

be safety ignored in the global sense. 
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8.4.1 Incorporation of material models into the finite element 

syste 

8.4.1.1 Concrete 

The modular matrix D 
XY 

links the Cartesian 
strains, exyp to the 

Cartesian stresses, arxy, thus: - 

OIXY -D XY exy 

It was mentioned earlier that material models incorporated into the 

SNAP program treat biaxial concrete as a pseudo uniaxial material in 

principal strain space. The modular matrix is defined in principal 

strain space and thus the Cartesian strain3 are transformed to the 

principal directions using a transformation matrix T thus: - 

f12Tc XY 

where 

Fcos 2 ci 

sin 2 ci 

[-2 sina cosci 

sin2a 

Cos 2 cl 

2 sinct cosci 

sina cosa 

-sina cosa 
.22 

cos a -sin aj 

(8.15) 

(8.16) 

Likewise the obtained principal stresses need to be transformed to 

Cartesian directions: - 

OIXY - TT or 12 (8.17) 

With the modular matrix def ined in principal space equation B. 14 

becomes: - 

, Txy - TT D12Tc 
XY 

(8.18) 

and a, 12-D12f12 (8.19) 



25 

or in incremental format, Aa 
12-D12 AC 

12 
(8.20) 

where D 12 is the principal space modular matrix. Since the non-linear 

material constitutive laws are solved as a set of linearised steps, 

the incremental approach of equation 8.20 is most appropriate for the 

formation of the stiffness matrix. Under plane stress assumptions, 

for the orthotropic case which occurs after the material becomes 

non-linear, equation 8.20 becomes: - 

Aal 
11 

Eel PEC, 0 Ael 

Aa 2 
(1-v7-) PEC 2 Ec 20 Ae 2 (8.21) 

LA-r 12J 
LO 0 (1_P2 )Gj LAIfl 2J 

This is assuming that the value of Poisson's ratio is the same in each 

of the two directionS4 ' and that there is no linking between direct 

stresses and shearing strains, or vice versa, in the non-linear 

region. The variables Ec, and Ec 2 are the concrete tangent moduli in 

the two principal directions. It will be realised that the modular 

matrix is unsymmetrical and thus is not appropriate for the symmetric 

solvers contained in the majority of finite element programs. In the 

SNAP program this was overcome by setting the off diagonal terms to 

either P[Ec, EC 
21 

1/2 or P(Ec, +E C21 /2. This approach is justified to 

some extent by test data. Carefully conducted tests by Maekawa and 

Okamura 49 in the compression- tension zone have indicated symmetry up 

to about 90% of the cylinder strength. Tests by Kupfer and Hilsdorf3 6 

in the compression- compression zone suggested the preservation of an 

approximate symmetry until the failure envelope was approached. It is 

OF 
not possible to employ the first formýaveraging if the moduli in the 

two directions are of different signs and therefore the second form 

was used for the present study. Using equation 8.21 the tangent 

stiffness matrix may thus be evaluated. 
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For the evaluation of the residual forces in the iterative process the 

strains are obtained. Through the use of the material's constitutive 

law the stresses may be calculated from these strains. For the 

material models incorporated into the SNAP program, total strains are 

used in preference to incremental strains for this process. Since 

concrete is treated as a uniaxial material in each principal 

direction, effective strains, e 121 must be calculated for input into 

the material models such that: - 

(8.22) 121 
EVI Etl2l 

where 

1 v' 

IV) 0 (8.23) i- 77 i-p 

0 1. 

It will be realised from equation 8.23, that unless Poisson's ratio is 

constantly updated during the iterative process, residual forces will 

remain when the material properties are updated at the end of the 

'converged' increment. The nodal force can then be calculated from: - 

[f] - [B]T I "'XY 1 (8.24) 

8.4.1.2 Steel 

The modular matrix for steel, Ds-, links the steel strains to the XY 

stresses, however, since the steel is uni-directional this matrix 

consists of only one element: - 

Ds- e- Ds- - [Es 1 0'XY - XY XYP XY (8.25) 
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where e- are the strains in the direction of the steel and are xy dx-y 

the stresses in the direction of the steel. In Cartesian directions: - 

Thus, 

axy _ TT Ds- T exy (8.26) XY 

Ds - TT Ds- T (8.27) xy XY 

where T is a transformation matrix such that: - 

f5FY - [e5E] -T exy - [cos 29 sin 20 sinO cosei rex 1 
(8.28) ley I 

L-Yxyl 

where 0 is the angle between the steel direction and the x axis. 

8.4.2 Concrete material models 

Popovics's has reviewed the experimental work of many researchers and 

in a subsequent paper 40 he noted that stress-strain curves have 

significantly different characteristics according to whether the load 

was applied in stress or strain increments, with higher failure loads 

being recorded for stress increments. Obviously, the rates of 

stressing or straining are also of fundamental importance in a study 

of this kind. Gerstle et a14 ' have argued that the falling part of 

the concrete stress-strain curve is mainly dependent upon the nature 

of the testing machine, and in particular the stiffness of its 

interface with the specimen. Generally it is argued that if there 

were no restraint, the concrete would fail completely at its maximum 

stress. 

From the test data that he studied, Popovics proposed the following 

equation: - 

U-( UO ne 

fol (n-1 , (, /�, )n) 
(8.29) 
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where n - 1.0 - 0.058 ao for normal weight concretes; ao is the 

maximum stress (N/mm'); eo is the corresponding strain. When eo is 

not known Popovic suggested that it could be evaluated using eo 

9.368 X 10-4 4jýT 
0 

The tangent modulus may be evaluated by differentiating equation 

8.29: - 

do' (f/co )n) n (n-1) 

iE fol (n-1 + (e/eo)")" 
(8.30) 

For strains beyond eov because of the restraint offered *by adjacent, 

less highly stressed material, the concrete can be assumed to behave 

plastically until crushing begins at the ultimate strain, eu. Tests 

on plain concrete specimens under eccentric loading have indicated 

that stress-strain curves for a flexural member are similar to those 

from axially loaded specimens. Other tests have indicated greater 

strength and ductility in the presence of a strain gradient. Blume 42 

has suggested the use of an ultimate strain of 0.004. There is little 

experimental data on which to base the falling branch of the 

compressive curve, i. e. for strains greater than the ultimate strain, 

u. 

The uni-axial tensile stress-strain response for concrete is 

approximately linear until cracking. Tests have indicated that plain 

concrete specimens are able to resist a falling tensile force with 

strains that are several times the strains at the maximum stress, when 

the deformation is displacement controlled. The tensile strength may 

be determined from a number of different tests, including modulus of 

rupture, split cylinder and direct tension tests. While each of these 

0 
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tests will generally indicate a different tensile strength, the split 

cylinder strength has been found to give reasonable predictionS43. 

In the smeared crack approach equivalent stress-strain curves are 

applied at a discrete number of sampling stations. The spacing of the 

sampling stations give the lengths over which average deformations are 

considered. To obtain mesh independence, it is necessary to take this 

length into account when specifying the post peak tensile stress 

strain curve. For the present study the finite element meshes 

employed are essentially uniform and it was not considered necessary 

to vary the tensile curves according to the sampling station spacing. 

8.4.2.1 COSIG2 material model 

Popovic's equations (8.29 to 8.30) are employed in this model for 

compressive stresses up to the maximum stress, ao, see Figure 8.6. For 

strains beyond the strain corresponding to the maximum stress, eo, the 

stress is assumed to be constant until the ultimate strain, eu, is 

attained. For strains beyond eu, the stress reduces linearly to zero 

at the maximum strain, em. 

In tension either a two or three segment curve is employed, see Figure 

8.6. The post cracking tension stiffening curve is defined by the 

points cy, (cr and ot 2f cr, where ecr is the cracking strain and oi, and 

U2 are constants. The values of a, and a2 are affected by many 

factors, including bond, concrete cover and bar spacing. Test data on 

tension stiffening exhibits considerable scatter and this is due in 

part to the nature of the phenomenon. Test results for beams and one 

way spanning slabs, with different steel ratios, reported by Clark and 

SpeirS44, indicate that the effect of tension' stiffening decreases 

with an increase in the steel ratio and the steel strain. The 

tension- stiffening curve used in the present study is based on the 
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data obtained by Clark and Speirs. Values for (x, were in the range 

1.25 to 4.5 and for Ct 2 
in the range 10 and 30. Low values of a2 can 

lead to nett section stiffnesses which are negative in the 

post-cracking region. With negative section stiffnesses severe 

numerical difficulties can be encountered. 

For compressive unloading before the maximum stress, aot is reached, 

the response returns down Popovic's curve. At strains greater than fo 

the response unloads down a line parallel to the initial modulus. In 

compression Poisson's ratio is kept constant at its initial value 

until crushing begins at eu. Subsequently Poisson's ratio is reduced 

linearly to zero at the maximum strain, ems and is zero for strains 

greater than this. The shear modulus is kept constant until the onset 

of crushing at eu. For greater strains the shear modulus is reduced 

linearly to the residual shear modulus at the maximum strain, em. For 

the present study the residual shear modulus was generally between 10% 

and 1% of the full shear modulus. 

'For tensile unloading before cracking, the response returns down the 

initial line. In the post cracking region the response returns down a 

line joining the state of maximum stress and strain reached in an 

analysis with the cracking strain at zero stress, see Figure 8.6. For 

the present study this approach gave reasonable predictions, however, 

in several cases the residual deflections after unloading were 

significantly underestimated. Until cracking Poisson's ratio is 

constant at the initial value. After cracking Poisson's ratio is 

reduced linearly to zero at a crack normal strain equal to a2 ecr, For 

greater strains than this a zero Poisson's ratio is used, see Figure 

8.6. After cracking the in-plane shear modulus is linearly reduced to 

the residual shear modulus at a strain of a2f cr, For greater strains 

the residual shear modulus is used. If the material unloads and the 
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stress reduces, Poisson' s ratio is increased linearly so that it 

regains its initial value when the crack is fully closed. A similar 

approach is used to reinstate the in-plane shear modulus as the crack 

closes. Stress reversal is allowed if the compression state is still 

elastic. Therefore cracks are allowed to close and go into 

compression during the redistribution process but plastic or crushed 

concrete is not allowed to crack. If this criteria is violated the 

run is aborted. 

8.4.2.2 MLCMLT material model 

This material model is similar to the COSIG2 model. However, in 

compression a linear segment is used in preference to Popovic's curve, 

see Figure 8.7. In the plastic and crushing regions the MLCMLT model 

is identical to the COSIG2 model. In the crushing region Poisson's 

ratio and the in-plane shear modulus are reduced in a stepped manner 

and not a linear manner. For strains greater than cu Poisson's ratio 

equal to half the initial value is used. For strains greater than the 

maximum strain, em, Poisson's ratio is set to zero. The in-plane 

shear modulus is degraded to (GC + Gcr)/2 for strains greater than cu. 

For strains greater than the maximum strain, em, the residual shear 

modulus, Gcr, is used. 

A similar approach is adopted in the tensile region. For strains 

greater than the cracking strain, Ecr, the shear modulus is set to (Gc 

+ Gcr)/2 while Poisson's ratio is set to half its initial value. For 

strains greater than a2 ccr the shear modulus is set to its residual 

value, Gcr and Poisson's ratio is set to zero. Again stress, reversal 

is allowed if the compression state i's still elastic. 

8.4.2.3 Fixed and rotating material axes 

Reinforced concrete slabs are complex statically indeterminate 
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structures, where stress redistribution and rotation of the principal 

stress and strain directions occur after cracking. 

If the post cracking material property axes are fixed in the direction 

of initial cracking, then the effective strains of equation 8.22 are 

calculated in the crack directions and not in principal directions. 

The uni-axial material models described earlier are applied to these 

effective strains. The Poisson's ratio and shear modulus degradation 

curves can be used to degrade those parameters as the strain normal to 

the crack increases. In the present study this approach is referred 

to as the fixed material property axis model (FMP). The fixed 

material property axis approach makes it difficult for the principal 

axes to rotate as the failure mode forms. This phenomenon is 

particularly apparent with 'real' bridge slabs where the failure 

loading regime can be significantly different from that which caused 

initial cracking. Thus the retention of a significant shear modulus 

in the FMP model can lead to large over strength predictions. 

In answer to these problems, the Rotating Material Property axis (RMP) 

model was developed by Cope and Ra045. With this method the material 

property axes are allowed to follow the principal strain directions as 

they rotate. Thus, even in the post cracking region, the effective 

strains are calculated in the principal strain directions. With this 

approach the principal stress and strain directions are coincident and 

the in-plane shear modulus degredation curve is not required. With 

both the FMP and RMP model a second crack is only allowed to form 

orthogonal to the first crack. The RMP model has been shown to give 

reasonable predictions for a number of types of structures, including 

slabs 45 
. This view is supported by the present study where the RMP 

model gave significantly better predictions than the FMP model. The 
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RMP model, however, does not meet with the approval of material 

scientis tS46. 

8.4.3 Steel material models 

The material parameters relating to steel are generally consistent and 

well defined. For the present study the analytical curves were fitted 

to data obtained from numerous tests on specimens of the reinforcement 

and prestressing contained within each of the models. For the 

analysis of prestressed slabs, a steel material model must include 

facilities for limited stress cycling in addition to unloading. With 

the large range of steel strengths present in a prestressed concrete 

section, it is possible for low strength reinforcement to yield in 

compression as an intensly cracked section unloads. The stress 

cycling facilities implemented for the present study are simple and do 

not consider the Bauschinger effeCt47. 

8.4.3.1 STSIC2 steel material model 

The STSIG2 model is shown diagrammatically in Figure 8.8. The stress 

strain curve is divided into a number of linear segments and is 

symmetrical in compression and tension. For the majority of analyses 

described herein a five segment curve was employed. It can be seen 

that at the maximum steel strain, the stress is reduced to zero. In 

some cases it was possible to specify the shape of this falling branch 

from test results, however, for the majority of test specimens it was 

not possible to obtain data for the falling branch. In this case, an 

approximate falling branch was specified for the analytical curves. 

For some of the analyses described herein, the lack of material data 

dictated the use of elastic-perfectly plastic curves. In regions of 

very low structural stiffness it was found that elastic -perfectly 

plastic curves led to severe numerical difficulties. ' 
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If unloading occurs then the material state returns down a line 

parallel to the initial modulus. If unloading continues then stress 

reversal is allowed to continue as far as yielding in the reverse 

direction. If this condition is violated the analysis is aborted. 

8.4.4 Multi-stage material properties 

It will be appreciated that during the analysis of a composite 

concrete bridge deck, some of the material parameters must change as 

the analysis progresses. Initially the insitu concrete is in a wet 

state as the load is carried by the precast beams. Subsequently, the 

insitu concrete hardens and the load is carried by the insitu concrete 

and the precast beams acting compositely. 

This feature is modelled in the SNAP program by applying different 

material curves to the insitu concrete at different stages of the 

analysis. During the wet stage a material curve with initial modulus 

of 1.0 x 1.0-10 N/MM2 is applied. Subsequently, for the hardened 

state, the material curves are switched so that the material has the 

measured material parameters. Equilibrium must be maintained after 

the material curve switching is carried out and therefore a system of 

strain offsets was implemented. 

Total strains are used in the material models contained within the 

SNAP program. The strain offsets for each integration station are 

added to the strains caused by loading to get total strains before 

input into the material models. Initially the strain offsets are zero 

unless the material is prestrained, in which case the prestrains are 

contained within the strain offsets. Cracking was not expected until 

after the insitu concrete had hardened and this simplified the 

calculation of the strain offsets. The strain offsets are calculated 

in a generalised way so that the switch of material properties could 
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be between long and short term values, as defined by the various 

British Standards. Thus from equation 8.22 the effective strains 

become: - 

[c-'] [VI [TI [e + to] (8.31) 

The strain offsets are calculated from; the current strain level, e; 

the old material properties, designated i; and the new material 

properties, designated i+l. For convenience the offsets are first 

calculated in principal directions and then transformed back to 

Cartesian directions. Thus in principal directions: - 

coil 
. 

Ei J1 - vi vi+1 Pi - Fj+j 

f i+ 11- Pi Pi+ 

i oil "I 

02 Pi - Pi+, 01f2 

(8.32) 

where e, and e2 are the current total principal strains and eo, and 

f02 are the strain offsets in principal directions. 

8.4.5 Statistically varied material properties 

Cenerally for nonlinear finite element analyses separate material 

property curves are defined for each type of material contained within 

a structure. These material property curves are applied in an 

identical manner, at each applicable integration station in the 

analytical structure. In the physical structure, however, the 

material ý properties vary over the structural domain. It is not 

practical or realistic to obtain individual insitu material property 

information for all the integration stations contained within the 

analytical structure. However, many concrete cubes and cylinders are 

generally cast at the same time as the structures. When these 

specimens are tested an indication of the mean and standard deviation 
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can be obtained. These values will not have a high accuracy since 

other factors, such as through depth material variation, have not been 

investigated. However, the specimen test results can form a basis 

from which a simple material variability model can be implemented and 

such a model has been incorporated into the SNAP program. Essentially 

the procedure assigns the same material property curve to each 

integration station, in addition, a material property scaling factor 

is also assigned. The scaling factors are generated 46 So that they 

have the required mean and standard deviation and are normally 

distributed. On entry into a material model the scaled strains are 

obtained from the total effective strains thus: - 

I 

1212 (8.33) 
m 

where 'm' is the material property scaling factor for the integration 

station in question. The material model uses the scaled strains as 

though they were effective strains to obtain the resulting scaled 

stresses, a* 12* 
The unscaled stresses are then obtained from: - 

or 12 m or 
12 (8.34) 

In the present study the statistically varied material properties had 

a significant effect in areas of constant stress. Details of the 

analyses illustrating this can be seen in Chapter 9. 

8.5 Solution Procedures 

The solution of the linear finite element problem can be relatively 

straightforward, requiring only the solution of the In' equations that 

form the stiffness matrix K. For the non-linear finite element 

problem, more sophisticated solution strategies are required in order 

for the response to be traced throughout the range to failure. 
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Using these sophisticated solution methods to reach equilibrium in 

each increment is by far the most time consuming section in the 

majority of non-linear analyses. The judicious choice of a particular 

solution method can, not only significantly effect the computational 

time, but also whether convergence to equilibrium is ever achieved. 

The sudden changes in stiffness that occurs with concrete cracking and 

steel yielding can plague a reinforced concrete analysis with solution 

difficulties. 

The philosophy behind the solution systems that have been implemented 

into the SNAP program is one of semi -automation. The analyst has 

overall control of which solution methods may be used, however, the 

program is endowed with some intelligence, so that it is able to 

select and implement a solution strategy which it considers 

appropriate given the constraints set by the analyst and its previous 
0 

experience. This philoyhy was devised so that the program was able 

to make the most effective use of the allocated computer resources, 

enabling the program to continue even though one particular solution 

method was unable to achieve convergence. 

During the last few years much effort has been devoted to the 

development of efficient new solution algorithms which overcome some 

of the disadvantages of traditional methods. Some effective 

alternatives to the traditional Newton-Raphson and Modified 

Newton-Raphson methods have been suggested. Those include methods 

such as the BFGS Quasi-Newton algorithm which was introduced by 

Matthies and Strang 50 and the Arc-length methods introduced by Riks 29 

51 and modified by Crisfield 
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The objectives of this section are to give an outline of the 

traditional methods that can be used in the solution of non-linear 

equations, such as the Newton-Raphson method; to expand more fully on 

the newer methods, such as the Arc-length methods and finally to give 

full details where methods have been enhanced or modified. This 

section also outlines how the aforementioned methods may be linked 

together to form a successful solution strategy. This section begins 

with the introduction of a new concept, called scaled space, which 

allows the finite element equations to be scaled so that they are 

better conditioned in certain solution methods. The concept can also 

reduce the unit dependence of convergence criteria. 

8.5.1 Scaled Space 

In a plate bending analysis the stiffness matrix contains terms of 

widely different magnitudes and units. This can be seen if one 

compares the terms that link forces to translations with those that 

link moments to rotations. These problems are most apparent in the 

selection of convergence criteria, when attempting to compare, say 

residual moments, with applied direct forces. The scaled space 

concept attempts to convert the residual and applied forces to 

comparable units so that they can be compared directly. A related 

concept has been introduced previously by Crisfieldle. However, in 

this case the scaling factors were not normalised and were only 

applied to convergence checking. In this context they convert a force 

convergence check to a form of energy convergence check and, 

therefore, have not found wide acceptance. 

The leading diagonal elements of the stiffness matrix Kmn 
mn 

link the 

deflection component at node Iml degree of freedom (dof) In' to the 

corresponding force at the same location. If we now calculate scaling 

factors Sn such that: - 
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1/2 

Sn 
nn fm_l,. Y*ml m, 

nIznn Kmn mn 
M-1 

I 
For all dof types In' (8.35) 

where nn Is the number of nodes with dof type 'n' and K is the 

stiffness matrix before the application of boundary conditions. The 

scaling factors are effettively a measure of the ratio between the 

average stiffness for each dof type 'n', and the average stiffness for 

the reference dof type, in this case type 1. 

The scaling factors Sn give the ability to scale displacement or force 

vectors into units similar to those used for the reference dof (in 

this case dof type 1 was used as the reference): 

umn for m-1, nn; for n-1, ndof (8.36) umn - 
Sn 

%n - Sn Pmn for m-1, nn; for n-1, ndof 

where ndof is the number of dof types at any node and nn is the number 

of nodes that have dof type In'. 

It would be more consistent to calculate an individual scaling factor 

for each degree of freedom in the structure, thus avoiding problems 

with different sized elements, different dof at different nodes. 

However, for the sake of simplicity, at the expense of the small error 

involved, the calculation of a scaling factor for each type of dof, 

rather than each individual dof, was found to be preferable. 

8.5.2 Iterative Solution Methods 

The majority of incremental solution procedures are linked with 

iterations within increments which aim to reduce the residual force 

vector I r' towards zero within the limits of the chosen convergence 
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criteria. An initial estimate of the incremental displacement (Aun) 

is calculated, to which is added a corrective displacement (buni) 

during each iteration. 

The general sign convention is worthy of emphasis at this point, 

enboldened capital alphabetics generally represent matrices, such as 

the stiffness matrix K. Emboldened lower case characters, generally 

stand for vectors, such as u the displacement vector. Symbols 

preceeded by A represent incremental quantities while those preceeded 

by 6 represent iterational quantities. Superscripts generally refer 

to increment numbers while subscripts refer to iteration numbers. 

8.5.2.1 Newton-Raphson Method 

The finite element equilibrium requirements amount to f inding the 

solution to the equations 

r (u'*) - (8.37) 

P where u* is the unknown solution vector at the end of increment 

r (un*) is defined as: -- 

r (u) - pt1 - f(u*) 

and r (un*) - the gradient of the total potential energy or the 

out of balance (residual) force vector 

f (uT'*) - the vector of internal forces at displacement level 

un* 

pn - the vector of externally applied energy consistent 

nodal point loads 

Assume that in the iterative solution we have evaluated uni_ I then a 

Taylor series expansion gives: - 
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n (un* . un r(u *) - r(u'i-, ) -I-,, 
rd 

i-d (8 
1 . 

38) 

where higher order terms are neglected and hence substituting equation 

8.37 into 8.38 gives 

[!,, 
-rd 

(un* _ un i-I )-e-f (un i-d (8.39) 

If we define: - 

un* un n 
- i. I. bu (8.40) 

and recognise that: - 

[!,, 
-r, 

l 
- Ki 

then equation 8.39 can be written as 

aun, .e. f(un, 
_, 

) (8.42). 

Thus the iterative displacements can be calculated from: 

Suni - K"i (pn - f(uni_, )) - K"i rni., (8.43) 

and hence a better approximation to the displacements un* is 

nnn (8.44) uU+ bu 

The concept of a line search will be introduced in a future section, 

however, it will be useful to define the concept upon which a line 

search is based here. In essence, a'line search involves scaling the 

iterative displacements so that a preset criterion can be attained. In 

this way one hopes to accelerate the solution process. A line search 

algorithm modifies equation 8.44 to: - 

nn Ui-I+Si 6UT, i 

where si is the line search scaling factor. 

(8.45) 

8.5.2.2 Modified Newton-Raphson Method 

With the Newton-Raphson method the tangential stiffness K is updated 

at every iteration. This procedure can be very expensive, especially 

in reinforced concrete analysis where concrete cracking and steel 
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yielding can lead to a large number of iterations within an analysis. 

To overcome this disadvantage the Newton-Raphson technique can be 

modified so that the tangential stiffness matrix is only updated 

occasionally. Probably the most popular approach is the updating of 

the stiffness matrix once in an increment, generally at either the 

first or second iteration, see Figure 8.11. This modifies equation 

8.43 to: - 

sun, m K-11 (e - f(uni_, )) - K-11 rni_l (8.46) 

where K-1, refers to the most recently formed stiffness matrix. This 

equation is repeatedly solved with different residual force vectors, 

but the same stiffness matrix during subsequent iterations. 

It can be seen that the modified Newton-Raphson technique could result 

in a reduced cost due to the fewer stiffness reformations. However, 

convergence is slower with the modified Newton-Raphson method, this is 

particularly true during large stiffness changes, such as occur with 

concrete cracking and steel yielding. Even though there are fewer 

stiffness reformationsin an increment, the residual force still has to 

be calculated at each iteration and since this forms a large part of 

the required resources, the modified Newton-Raphson method results in 

an increased overall cost in many cases. It can be seen that the 

modified Newton-Raphson technique is more suited to early increments, 

where little material degredation is taking place and therefore it 

would seem sensible to use this technique early on and switch to a 

more powerful technique when required. 

8.5.2.3 BFCS Method 

In recent years a new group of algorithms which offer advantages over 

the traditional Newton-Raphson and modified Newton-Raphson techniques 
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have emerged. These methods, which are generally known as quasi-Newton 

methods, were introduced by Davidon' 9, in - 1959 for the solution of 

minimization problems. The first practical implementation of these 

methods for the solution of the non-linear equations in finite-element 

analyses was made by Matthies and Strang" in 1979. The quasi-Newton 

methods are based upon the idea that instead of reforming the 

stiffness matrix, or leaving it unchanged, the matrix should be 

updated in a simple way at each iteration. The new stiffness matrix 

Ki should satisfy the quasi-Newton condition: - 

Ki (aun 1- 1) - rni-2 - rni-, - ^yi-I (8.47) 

This condition is shown diagrammatically in Figure B. 12. For the 

one-degree of freedom case this completely defines the matrix Kit 

however, for a multi-degree of freedom case, all matrices satisfying 

equation 8.47 are candidates for Ki* The rank of the update is 

generally one or two. A requirement for the majority of finite 

element analyses is that the stiffness matrix should continue to the 

symmetric. The most successful of the update algorithms appears to be 

the BFGS method, which has been selected for the present study. An 

additional feature of the BFGS method is that the updated matrix is 

positive definite if the previous matrix was positive definite. 

It is more convenient to store the updates rather than to apply them 

directly to the stiffness matrix since this reduces the computational 

work in many cases and also allows the updates to be discarded if 

necessary. If the updates are stored then it is more efficient to 

apply them in multiplicative, rather than additive form so that: - 

K-li + wi VTi) ... 
(I +w3 VT 3) 

(I +w2 VT 2 
)l K-11 

+v2 WT 2) 
(I +v3 WT3) ... 

(I + vi wTi)] (8.48) 



48 

where I is the identity matrix. The vectors vi and vi are defined as 

follows: - 

UT 1/2 
Vi Ki_ 

I 
bui 

_1 fi_ (8.49) [SuTi_l 

Ki_l bui_,, 

Wi m1 6ui. (8.50) 

6UTi-I yi-I 

where, I 

-yi-, - ri, - ri-, 

Hence, 

Vi Si- I 
Isi auTi-I ^fi-I 

1,2 
ri 

-2 + ri_l 

_1 
6uTi_l ri -21 

where si-I is the optional line search scaling factor contained in 

equation 8.45. The expansion is increased by one as each new update 

is added. The stiffness matrix inverse K-1i is never explicitly 

formed. The updates are applied during the forward and back 

substitution process on the matrix K",. As the number of updates 

increases the overall efficiency of the algorithm decreases so it is 

desirable to set an upper limit upon the number of updates. Of ten, 

convergence is achieved before the limit is reached. If the limit is 

reached there are several options: 

(i) Update the material properties and form a new tangent stiffness 

matrix to which new updates are applied in subsequent 

iterations. 
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Discard the oldest set of update vectors and form a new pair 

for the current iteration, thus maintaining the number of 

updates at the maximum allowable. 

Discard all the current update vectors and begin updating the 

old tangential stiffness matrix again from the beginning. 

For the present study option (i) was chosen when the number of updates 

reached the maximum of twenty. Option (i) was chosen since it 

logically provides a more efficient algorithm. In addition this 

method could be used to provide a hybrid solution algorithm whereby 

the tangential stiffness matrix is reformed every, say 4 iterations, 

and BFGS updating is used for iterations between stiffness 

reformations. 

It has been suggested in references 50 and 21 that dangerous updates, 

if applied, may adversely effect the numerical stability and 

efficiency of the BFGS algorithm. Reference 50 suggests that the 

condition number (c) of the update matrix, q-I+vJ, be calculated 

and checked against a preset criteria. The condition number is 

defined as 

c 
Maximum eigenvalue of matrix 1/2 

(8.52) [Minimum 

eigenvalue of matrix]. 

Since Q is unsymmetric than it is the eigenvalues of QTQ which enter 

T into equation 8.52. The matrix QQ is of rank 2 and therefore will 

have n-2 eigenvalues equal to 1 and 'two non-unit eigenvalues x, and 

X2 Thus, and with reference to 20, the condition number is equal 

to: - 

1/2 [(V TV)1/2 (WTW)1/2 + ((VTV)(WTW) + 4(l + WTV)11/2]2 c 
'Y 

2- 4(l + wTv) (8.53) 
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In contrast, reference 21 recommends that the condition number of the 

matrix Q and not 
4rQ be checked. The matrix Q is of rank I and 

therefore possesses n-l eigenvalues of unity and one equal to 1+ vTw. 

From equations 8.49 and 8.50: - 

1 bui-, 1/2 

i-i 1-1 (8.54) 

8uTi-i 'fi-i 

x1 öui., -ti-, 
1/4 

(8.55) 

), 
21 öuTi_, Ki_I öui-lý 

It would appear that an incorrect subscript to X of i, instead of i-1, 

appears in the definition of X. m1+ vTw in reference 50. 

A number of researchers have suggested various values from 10' to 1010 

as the limit for c, above which updates are considered dangerous and 

are not applied. Generally, for the present study if the condition 

number defined by equation 8.53 exceeded 109 than the update was 

avoided. Analyses were carried out with larger limits on c (101, and 

1020). With these analyses no problems were encountered and the 

solution converged to the expected configuration. 

8.5.2.4 Line Searches 

Matthies and Strang specifically recommended that the BFGS algorithm 

be combined with a line search procedure. However, the BFGS algorithm 

may be used independently of the line search procedures, in some cases 

this may be preferable for maximum efficiency. Line searching is not 

exclusive to the BFGS algorithm and may improve the effectiveness and 

efficiency of many other algorithms, such as the Newton-Raphson and 

Modified Newton-Raphson techniques, that have been described in 

previous sections. Moreover the line search principle may be used 

with good effect even when an iterative solution method, such as BFGS, 

is combined with an iterative constraint method, such as displacement 
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control. Line searching can be particularly useful for problems 

involving rapid changes in structural stiffness, such as in reinforced 

concrete analyses when concrete cracks or steel yields. 

In a problem involving In' degrees of freedom, given an approximation 

uni_1 to the solution of r(un*) -0 an iterative solution method, such 

as BFGS, may be used to obtain a direction, buni, in which to search 

for a better approximation. A new guess will lie along the line uni M 

un, _, + s, 6uni where si is a scalar scaling factor. Along this line 

it cannot be expected that an exact solution to the equation, r(un*) _ 

0 will be found, however, a value of si can be chosen so that si 

r(uni)T aun i-0. Thus, the component of the residual force vector, 

r(uni), in the search direction, 6unig is zero. This, implies 

equilibrium in the direction of buni and, thus, the aim is to 

achieve: - 

si r(o, )T aun i. 0 (8.56) 

Equation 8.56 is generally solved through an iterative technique. An 

exact solution of equation 8.56 can be prohibitively expensive since 

the residual forces have to be evaluated for each new trial value of 

si. Therefore equation 8.56 is generally solved within some tolerance 

so that: - 

Isij r(uni, j)T 6uni, 4 Tol Isij r(Oi, (I)T Suni 1 (8.57) 

0 Tol 41 

If we also define: - 

Ci, j sij r(unij)T bun i 

and GOi, j si, j r(Oi, O)T bun 

(8.58) 

(8.59) 
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so that the criterion becomes: - 

Gij 4 Tol GOij (8.60) 

where j denotes the line search trial number. A small value for Tol, 

and hence a tight tolerance, will, most probably, result in fewer 

itlerations, but the number of line search trials may increase 

significantly resulting in an increased solution cost. For the 

present investigations, a value for Tol of between 0.3 and 0.5 was 

chosen. This is in line with the values - chosen by other 

researchers 50,21. 

Two different line search algorithms were employed for the present 

investigation. The first, which is based on the Illinois algorithm, 

is the more stable, while the second, which is based on a secant 

approach, has the potential to be the most efficient. 

The Illinois based algorithm is divided into two stages. The first 

locates a bracket on zero so that GOij Gij < 0, that is the solution 

for 's' in equation 8.56 lies between sij., and sij. The second 

stage iterates within this bracket to locate a value of si which 

satisfies equation 8.57. This procedure is shown diagrammatically in 

Figure 8.13(11), however, for full details the interested reader is 

directed to reference 50. 

The second line search algorithm is based upon a secant approach, see 

Figure 8.14. As with the first method values for GOij and Gij with 

sij -1 and j-1 are calculated. Using these values and a linear 

prediction a value of s which will satisfy equation 8.56 is thus 

calculated: - 

si, 2 - 
GO 

GOj,, 

i'l - Gi, l 
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For subsequent line search trials the predictor equation becomes: - 

Si, i+l Si, i-l 
si, J-1 - Sij Gipj_l (8.62) [Ci, 

j_l - Gi, j] 

It would be dangerous to accept any value that equation 8.62 produces. 

Therefore, in order to avoid dangerous extrapolations, relative and 

absolute constraints are placed upon the predicted step length and 

these are given below: - 

lsi, j+l - siji 4 relmax 

Isi, j+l 14 absmax 

(8.63) 

(8.64) 

For the present study relmax was set to 5 and absmax was set to 15. 

The iterative process is terminated when either of the following 

conditions are met: - 

Gij 4 Tol GOij (8.65) 

Isij - sij. 11 < Tol 
I sij +2 Si, j-l 1 (8.66) 

The value for Tol is the same in both equations and, as with method 1, 

a value in the range 0.3 to 0.5 was chosen for the present study. The 

second criterion in equation 8.66 is included to prevent the algorithm 

expending resources obtaining unnecessarily accurate values of sij. 

It was mentioned earlier that method 1 is the most stable, since it 

essentially follows a preset path, regardless of the information about 

G that is being obtained. While method 2 is more efficient in many 

cases, severe difficulties can be encountered if G is discontinuous 

and in this case method I would probably succeed. However, method 2 
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is able to search in negative s space which can be an advantage in 

situations of sudden stiffening. 

8.5.3 Iterative Constraint Methods 

It was mentioned earlier that a non-linear analysis is generally split 

into increments with only a small section of the response being traced 

within a particular increment. Within an increment one wishes to 

attain an increase in the magnitude of a variable, whether it be load, 

displacement or some hybrid constraint as in the arc-length method. 

Thus, these methods may be termed iterative constraint methods since 

the solution is constrained to attain an increase in a variable during 

an increment. 

The most frequently used iterative constraint is load control which 

has been dealt with in an earlier section. The present section will 

be concerned mainly with the other two iterative constraint methods 

that have been implemented in the SNAP program, namely displacement 

and arc-length control. 

8.5.3.1 Displacement Control 

For the ascending branch of a load-deflection response, load control 

is generally the most efficient method. As the plateau in the 

response is reached, see point A in Figure 8.15 then difficulty in 

converging under load control will be encountered. After this point 

either displacement or arc-length control will be required in order to 

achieve convergence. It was found in this investigation that 

displacement control was the more efficient in situations where both 

displacement and arc-length control were able to achieve convergence. 

With displacement control an incremental increase in the displacement 

at a particular dof is specified for an increment and the load level 
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is varied during the increment so that equilibrium can be achieved. 

Essentially two forms of displacement control are available, one 

involves the manipulation of the stiffness matrix, K, while the other 

is related to the arc-length method. Both methods will be presented. 

Haisler, Stricklin and Key 23 have proposed a method for incrementing a 

characteristic displacement in an analysis past a limit point, which 

does not result in unsymmetric equations. The retention of symmetry 

increases its suitability for finite element programs, which generally 

incorporate symmetric equation solvers. A novel approach to the 

problem of pursuing an analysis past a limit point has been presented 

by Sharifi and popOV24 , in which they overcome the singularity at the 

limit point by introducing a fictitious spring into the problem. 

From equation 8.43 we see that a corrective displacement, 6uni can be 

found within increment, n, at iteration, i, which gives a better 

approximation to: - 

r(O*) - 
where 

nnn UU+ 6u 

Ki auni - r(uni_, ) _ pn _f (un 1.1) 

(8.67) 

(8.68) 

(8.69) 

If we now replace the load vector, e with a load factor Pni and a 

nominal load vector p* then equation 8.69 can be written as: - 

K, bun, _ pn, P* _ f(u n 
-d 

(8.70) 

If we also define: - 13n, _ ln,., + av n, (8.71) 

then: - 

Ki Sun, _ pn ip*+ ni. 
,p*-f 

(un i-I )- apni p*+ rni. , 
(8.72) 
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If we now denote the controlling dof - as dof number k and for 

simplicity make this equation the last equation, then equation 8.72 

can be written as: - 

KI, Kik r aun 11nrpir rn, _, 
1 

11 6p iII+I 
rn 

1 (8.73) 
L Kk, Kkk IL 60i, k iLPkIL i-i, k J 

Partitioning we obtain: - 

KI, 6uni + Kik Sun i, k - 6P n, P* + rn,., (8.74) 

Kki 8uni + Kkk 8uni, k ' 6P niP*k+ rn i-i, k (8.75) 

Rearranging equations 8.74 and 8.75 we obtain: - 

K 
11 6un, _ pni p* + rni_, -Kn ik Su i, k (8.76) 

K1 k 6un, _ pn iPk 
n - rx'i-i, k - Kkk au i, k (8.77) 

Solving for 601 in equation 8.76 we obtain 

buni K-',, [6pn iP+ rni_l - Kik 8uni, k] (8.78) 

6un ia+ apni b (8.79) 

where 

n 
ik 6t' i, k] 

Substituting equation 8.79 into equation 8.77 yields: - 

Kkl [a + 6pni b] - apni p*k' ýn i-i, k ' Kkk 8u n i, k (8.80) 

6pn, [Kk, b" P*kl ' rni-,, k - Kkk aun i, k , Kk, a (8.81) 

bpn: L _ 
rn i-i, k ' Kkk 6uni, k - Kk, a (8.82) 

Kk Ib- P*k 
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Thus at the beginning of any iteration the current displacement field 

uni_1 and hence the residual force vector, rni_l are known. a and b 

may be evaluated and hence by equation 8.82 6pn, may be calculated. 

From equation 8.79 the iterational displacement vector 6uni may be 

obtained, and hence uni may be calculated from: - 

nnn bu (8.83) 

The process is then repeated for iteration i+l. In practice the 

stiffness matrix would not be partitioned but boundary conditions 

would be applied to the k' th row and column. These boundary 

conditions would consist of setting all locations in the k1th row and 

column to zero except for the leading diagonal location which would be 

set to 1. In the calculation of a and b the - k' th location in each 

right hand side vector would be set to 6uni, k and zero respectively. 

Equation 8.82 is only truely applicable to the first iteration since 

for subsequent iterations buni, k ' 0, therefore, equation 7.103 

simplifies to: - 

a- K-', 
, rn (8.84) 

b, - K-11, p* (8.85) 

and, 

, pn rn i-i, k - Kk, a (8.86) 

Kk, b-p*k 

The second form of displacement control uses equation 8.72 to 

calculate a new iterational displacement vector 6uPi such that: - 

6un, _ Spni K"i p*+ K-1i rn 1-1 (8.87) 
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The displacement control constraint is applied through the equation: - 

'Aun i, k - Aen (8.88) 

Aun i Aui-I + 6un i- Aui- 
I+ apni K- 11 p+ K- 11 rn 1-1 . (8.89) 

Let 

a1 01 ý K-li rn 1-1 (8.90) 

ut i- K-li P* (8.91) 

pni-P ni_, + pn 1 (8.92) 

The iterational load level change apni is calculated from: - 

, &un i, k - Apn _ Aun i-i, k + 8'uni, k + apn, ut i, k (8.93) 

where k- dof to which the constraint is applied 

Aen - required incremental displacement for dof k. 

so that, N 

, pn 
den ' ui-i, k "6'u n i, k (8.94) 

ut i, k 

If the displacement constraint was satisfied at the previous iteration 

then equation 8.94 simplifies to: - 

, pn, . -stun i, k 

ut i, k 

In effect the displacement constraint brings the iterational 

displacements back to the required level using the displacements, ut it 

obtained from the nominal incremenial load vector, p*- 

Since the application of method 2 has no effect upon the calculation 

of the unconstrained iterational displacement vector, 6'unij it may be 

implemented as a simple addition to a standard iterative algorithm. 
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For these reasons the second form of displacement control was 

incorporated into the SNAP program. The method was found to offer an 

efficient solution to the problem of tracing the structural response 

past a limit point. 

Subsequent to the author's derivation and implementation of this 

25 
method a paper by Batoz and Dhatt , which details a similar 

algorithm, was discovered. 

8.5.3.1.1 Displacement control and iterative solution methods 

The displacement control methods described above can be used in 

conjunction with any of the iterative solution methods, such as 

Newton-Raphson, which were described earlier. For the Newton-Raphson 

procedure the stiffness matrix Ki that was calculated at the end of 

the previous iteration is used in equations 8.90 and 8.91. For the 

modified Newton-Raphson procedure the most recently formed stiffness 

matrix, K,, replaces Ki. It will be noticed that uti, need only be 

recomputed when the stiffness matrix is reformed. Storing the uei 

vector will allow it to be recalled for use in subsequent iterations. 

The same principles generally apply when the BFGS method is used. The 

K"i matrix represents the current stiffness matrix including all 

current updates. The application of displacement control does, 

however, complicate the calculation of new update vectors. The 

'M variable ri-2 in equation 8.51 should be replaced by r^i -2 such that: - 
A'" -n + pni ,* ri_2 - ri -2 .1p 

(8.95) 

This modification is most conveniently carried out with the 

application of the displacement control constraint so that in addition 

to updating the load level, pn i-I -pn 1-2 + 6pn, 
_,, 

the residual force 

vector is also updated. Thus in equation 8.49: - 
'n 

A *h Ki-I bui-I - si-I ri -2 (8.96) 
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8.5.3.1.2 Displacement control and line searchin 

First impressions may indicate that the application of line searching, 

in conjunction with a displacement control method, is unnecessary, 

since, it may be argued, the displacement level has already been 

constrained by the displacement control. However, it will be realised 

that unless the 6'uni and uti vectors (as defined by equations 8.90 

and 8.91) are parallel, the application of a line search will modify 

the overall displacement pattern whilst maintaining the constraint at 

the control dof. These two vectors will generally only be parallel at 

the beginning of an increment, when the incremental load is first 

applied. This is assuming no significant residual forces remained at 

the end of the previous increment. Therefore the application of a- 

line search at this stage should be avoided. Using equation 8.87 and 

modifying it such that: - 

a un iý Si blun, + bpn, ue 

one can incorporate a line searching scale factor si. 

displacement level ui is defined as: - 

l Ui ý U, _l + s, 8 un, + apn, ue 

(8.97) 

Thus the trial 

(8.98) 

For a trial value of si - sij at the J'th line search iteration, the 

energy dissipated by the original residual force vector and the 

current residual force vector in the current search direction, 6uni, jo 

is defined as: - 

GOij r(ui, O)T bun ij 

Gi, j r(uij)T bun ij 

(8.99) 

(8.100) 
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Any suitable line search algorithm, such as those described earlier, 

can now be used to find an approximate solution to the equation: - 

r(ui, j) - 

within the tolerances given in section 8.5.2.4. The system proceeds 

with the line search algorithm selecting a trial value for sij. The 

displacement constraint is applied to find an iterational displacement 

vector buij and hence an iterational change in load level bpi 
, j. 

Equations 8.99 and 8.100 can then be used to calculate GO and G at the 

current displacement level. The line search algorithm then checks 

whether the tolerances for the solution of equation 2.56 have been 

met. If not, another line search iteration begins with a new trial 

value, si, j+,. 

If BFGS acceleration is also used with line searching under 

displacement control then the variable rn 1-2' in equation 8.51 should 

be replaced by in 1-2' since the load level has changed and the scale 

factor si., is now, most probably, not equal to 1. 

kn 1-2 ý rn 1-2 + apn i-I 
Si-I 

(8.102) 

8.5.3.2 Arc-length control 

For the present study it was found that displacement control was an 

efficient method for tracing the structural response past limit points 

such as point A in Figure S. 15. However, in situations where the 

response cuts back on itself or snaps back, as in point B of Figure 

8.15, displacement control would not enable the correct load path to 

be followed. In places such as this it was necessary to use a method 

such as arc-length control. It may appear that the possibility of a 

snap back occurring in plate analysis is remote. However, an 
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injudiciously chosen displacement control point and a particular set 

of concrete and steel stress-strain curves may combine to cause a 

snap-back in the most unexpected places, see Chapter 9 Section 

9.3.3.1. The arc-length method's ability to deal with problems 

involving snap-through and snap-back have resulted in its recent 

popularity26,27,28. Several different variants of the arc-length 

method are available, including the normal hyper-plane, updated normal 

hyper-plane and the spherical formulation. In addition all of these 

methods can be formulated with or without a load variable in the 

constraint. 

Procedures for varying the load level during the iterations within an 

increment were advocated by Riks 29 
. Essentially the applied loading 

is specified via a nominal load vector p* and a load level, pn, such 

that the total load is given by p for increment n. For an 'n' 

dimensional problem the original Rik's method introduced a constraint 

equation in addition to the In' stiffness equations. The constraint 

equation takes the form: - 

[ Aun, ]T Aun, +[ Apn, 2[p *]T [P*] [Aen]2 (8.103) 

where,, &Un &Un i-l' + aun (8.104) 

bun i Stun, + Spn, p (8.105) 

Stun, m Y-1 ,i rn i-I - K-li (pn, 
_, p f(un, 

_, 
)) (8.106) 

Apn i- Apn i-I + pn, (8.107) 

where Aen denotes the required 'are-length' change for increment n. If 

equation 8.103 is added directly to the normal In' equilibrium 

equations, then both symmetry and the banded nature are destroyed. If 

one adopts a procedure similar to the displacement control method, 

described in the previous section, the desirable attributes of the 
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original stiffness equation such as their symmetry and banded nature 

can be retained. 

8.5.3.2.1 Normal hyper-plane formulation 

For the normal hyper-plane formulation the solution to r(uni) -0 is 

constrained lie on a hyper-plane which is orthogonal to the tangent at 

the beginning of the increment, see Figure 8.16. The tangent vector, 

t,, can be defined as: - 

Aun 

An LppJ 

For the incremental vector at iteration i to lie on a hyper-plane 

which is perpendicular to this vector, then the scalar vector product 

of the incremental vector and t, must equal zero, thus: - 

r &un 1Tr Aun, &un 
11 (8.108) 1 

Apn 
II 

&Pn _ Apn *I LPILiPIPI 

I Since the constraint which is defined by equation 8.108 is applied at 

the end of each iteration then equation 8.108 can be rewritten as: - 

Tn Aun, 1r au ,1 z8.109) 
Apn *11n*1 

1p1L öp iP1 

( Aun 
IIT [aun, ] + &p n, pn, [p *]T lp *I-0 (8.110) 

using buni - aluni + apni ut 1 (8.111) 

We can solve for apni such that: - 

, pn, . -[Aun, ]T [6'un, ] 

[Aun 
11 

T [uei] + Apn, [P*]T lp*l 

possible variation upon equation 8.108 ignores the load term, so 

equation 8.109 becomes 
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[, &,, n,, T pun,, _0 

and equation 8.112 becomes: - 

, pn, 
(, &un IIT 

[6'un (8.114) 

(Aun, IT (ut, l 

The dropping of the load terms modifies the graphical representation 

of the constraint to that shown in Figure 8.17. This figure depicts 

the 2 dof case for clarity and it can be seen that the load level does 

not now feature in the constraint and is in fact subservient to it. 

The process is primed in the first iteration by the selection of an 

initial length increment, , tn. so that Apn, and Aun, can be 

calculated. 

Any of the iterative solution methods, such as Newton-Raphson, 

described earlier can be used to obtain 6'uni and uei, The use of 

these methods with the normal hyperplane form of the arc-length 

control method is more fully described in section 8.5.3.2.4. 

8.5.3.2.2 Updated normal hyperplane formulation 

With the updated form of the hyperplane formulation the solution to r 

(un 1) 0 is constrained to lie on a hyperplane which is 

perpendicular to the tangent in the previous iteration. Thus the ti 

vector is defined as: - 

Aun 

A,, n i-I 

For the incremental vector at iteration i to lie on the hyperplane 

perpendicular to this vector then: - 
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r &un ITr Aun i Aun 1-1 1 
111 

Apn _ Apn *I-0 
(8.116) 

L Api-I PILip i-I pj 

And using, Auni 'Aun i-I + 6un 1 (8.117) 

gives, 
r &un 1-1 1Tr 6uni 1 

(8.118) 1AnIIIn*I-o 
LP i- pJL 6P iPI 

Figure 8.18 depicts the effect of the updated constraint graphically. 

It can be seen that the use of equation 8.116 results in aI growing, 

tangential vector. It will be realised that, as with the normal 

hyperplane formulation of section 8.5.3.2.1, the load variables could 

be omitted from the constraint equations leaving only constraints 

involving displacement variables. 

8.5.3.2.3 Spherical formulation 

Crisfield" and Ramm2o have advocated the adoption of a spherical 

constraint. With the spherical constraint the incremental vector is 

constrained to lie on a sphere whose centre is located at the 

structural state at the beginning of the increment, see Figure 8.19. 

The constraint can be specified as: - 

[, &un, IT[ Aun, I+ ap n, Ap n, (p *IT I P*] . [Aen] 2 (8.119) 

where jen is the radius of the sphere and Ap ni and Auni are defined 

as: - 

, &uni M Ao i-I + Sun, = &un + S'un, + 6pni ut i 

, &p n, _ Ap n,. 
I+8, 

n, 

(8.120) 

(8.121) 

Substituting equations 8.120 and 8.121 into equation 8.119 and solving 

for apn, yields an equation of the form: - 
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A[ apni] 2+ B(SI)n, ] 

where, 

[ut,, T [ut I+ lp*l T lp * 

(8.122) 

B- 2[Auni_l + 6'uni, T [uti] +2 Apn, 
_, 

[p *]T (p *] 

C- [AO + 51uni, [Au ni., + a, u ni] + (Ap n,., ]2 [p *]T 

Ep *] . [, Itnl 2 

This equation can be solved to yield two solutions, [ Sp n, ]a and 

[apn, lb. Using these solutions two possible incremental displacement 

vectors for iteration i can be obtained from: - 

[, &un, a_ Aun + 6'un, +( pn, Ia ue 

[ Aun ib. &Un + S'un, +[ ap n, ]b ue 

(8.123) 

(8.124) 

In order to avoid doubling back on the original load-deflection path 

the 'angle' between the current incremental displacement vector 

and the previous one, Auni-1, is calculated for both possibilities: - 

Oa - [, Ae, ] aT [ Aun,. 
I], Ob _( Aun, I bT [ Aun,. ,] 

(8.125) 

The appropriate root, [apn, la or (6pnilb, is the one which gives a 

positive 'angle'. If both 'angles' are positive, which is unlikely, 

then the root closest to the linear solution may be chosen5l: - 

[6pn, le _c (8.126) 
B 

Alternatively, instead of calculating 'angles' between the current 

incremental displacement vector and the previous one, the 'angle' 

between the current incremental displacement vector and the previous 

total displacement vector can be calculated from: - 

a 
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0a- ['au n il aT [ un i-111 Ob - läu n il 
bT lu n 1-11 (8.127) 

This may prevent the analysis from slipping back on itself after a 

number of iterations have been carried out. Once a value of 6p ni has 

been selected then the displacement vector can be updated according 

to: - 

nnn un + alun, + 6pn, ut uu+ 6u i-I 1 (8.128) 

and the load level can be updated to Ap n, _ AP ni., + pn, 

As with the previous forms of arc-length control it is possible to 

omit the load variable terms from equation 8.119, so that a constraint 

purely in displacement space remains, see Figure 8.20. 

It is possible that equation 8.122 will not possess any real 

solutions, only complex ones. In the displacement space only method, 

this can be likened to the uti vector missing the sphere as shown in 

Figure 8.21. In this case the only real option is to adopt the line 

search implementation which will be described in section 8.5.3.2.5. 

8.5.3.2.4 Arc-lenzth-control with various iterative solution methods 

All of the arc-length control methods described above can be linked 

with any of the iterative solution methods, such as Newton-Raphson. 

which are described in section 8.5.2. For the Newton-Raphson method 

the quantities contained in equation 8.120 are calculated using Ki, 

the stiffness matrix calculated at the end of the previous iteration. 

For the modified Newton-Raphson method the quantities 6'uni and uti 

are calculated using the most recently formed stiffness matrix, K,. 
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While it is necessary to recalculate 61 uni for each iteration, the 

quantity uej need only be recalculated if and when the stiffness 

matrix is reformed. 

With the BFGS method the updated stiffness matrix, K'lLg is used to 

obtain the quantities 6'uni and ueL' The quantity 
di 

need not be 

recomputed unless a new update has been applied to the stiffness 

matrix. If the quasi-Newton condition is to be maintained with a load 

varying algorithm, such as the arc-length method, in equation 8.51, 

the quantity r(uni must be replaced with r such that: - -2) 
^(Ui-2) 

k (un + Pni. , P* r-r (un 1- 2) '. 1-2) (8.129) 

The variants of the arc-length control method which omit the load 

level variables from the constraint equations are most popular. For 

the present work the inclusion of the load level variables in the 

constraint equation was not found to offer any computational 

advantages. Without the load variables the are-length methods are 

essentially constraints upon the incremental change in the length of 
the displacement vector. 

8.5.3.2.5 Are-length control and line searches 
I 

Crisfield" has advocated the use of line-searches with the arc-length 

control method. First impressions may indicate that, as with the 

displacement control method, the inclusion of line searches will not 

be advantageous. However, unless the iterational displacement vector, 

auni, and the notional displacement vector, uti, are parallel, then a 

different displacement pattern will result Wýen different values of 

the line search scaling factor are applied. Thus, it can be 

advantageous to search for a value of the scale factor which gives 
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equilibrium in the direction of the iterational displacement vector, 

a un iI 

From the previous equations the iterative displacement change, in the 

search for the solution to r(uni) -0 when using the arc-length 

control method is given by: - 

aun i- alun, + apn, ut 1 (8.130) 

and the incremental displacement at iteration i is given by: - 

'dun i- &un i-I + bun, m &un i-I + 6, un, + apn, u, 
e 

where, 

alun, X-i, (Pn,., P, f(un (8.132) 

n P _I applied load level at end of iteration i-l 

, pn i iterational change in load factor for iteration i 

p* nominal incremental load vector 

fn (u i-d - internal forces at displacement level uni-I 

ue i- K-1i p* 

Crisfield advocates incorporating a line search step length sij where 

represents line search iteration j such that: - 

, dun, = &un i-I + s,, j ao,, j . Aun, 
_, + S,, J(a'un i, j+ apn, ut j) 

However, the author prefers a relationship such that: - 

, &un &un 1nnt 
iý i-I + Si, i 6U ij + ap iju i 

(8.133) 

(8.134) 

The benefit of equation 8.134 over equation 8.133 is that the removal 

of the link between sij and apn,, j in the constraint equation. 
. 
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Therefore, in the constraint equation, apn,, j is now subservient to 

the specified value for si'j. This modification will somewhat 

simplify the subsequent algebra. If we adopt the constraint equation 

of 8.119 but omit the load variable terms (although this need not be 

the case) then [Au, ]T [, &u, ] [, den] 2. Substituting equation 8.134 

into this equation gives an equation of the form: - 

A[ 6pi 
,j]2+ 

B[6pi, jl+ C- 

where 

[ueil T [ue il 

(8.135) 

B-2 [Auni_l + s,, j 6'un,, J]T [ul, ] 

C. [, &un i-I + si, j alun ij IT[, &uni_, + si, j 610i'j, . [, &enl2 

To obtain the potential energy gradients in the search direction, the 

scalar vector products GOij and Gij need to be evaluated thus: - 

Gij _ rT(uni, j) öun�j _ (pn, 
_, , Zpni, j p*-f (un i, J» 

T 6un ij 

GOi, j _ rT(un�0) öj�j _ (ýn, 
_, 

+ pni, j p*_f (un 1,0» 
T öun i, j 

(8.136) 

where 

a un ij - sij 8t un ij + apn,, j ue i 

un 1,0 - un i-I 

un ij - un i-I + aun ij 

Ap n,, j - 
Ap n,, J_, + pn,, j 

alun,, j = K-i, (Vn, 
_, p f(un i, o)) 

vi w. 
h Api, o Api., 

The criteria defined by equation 8.57 can now be applied to the 

potential energy gradients. If the criteria are not satisfied then 

any of the line search algorithms defined earlier can be used to 

calculate a new line search scale factor, si, j+,. Thus the procedure 

continues with equation 8.135. 
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Again any of the iterative solution methods, such as Newton-Raphson, 

may be used in conjunction with line searches when under arc-length 

control. A problem arises if the BFGS method is employed, when the 

update vectors are calculated at the start of an iteration. In the 

update vector calculation equation (equation 8.51) the vector in 1- 2 

should be replaced with in 1-2, where: - 

in rn + 
bpn 

1-2 1-2 - 
S i-I 

It will be realised that it is not possible to adopt arbitary values 

for the line search scaling factor since the spherical constraint 

equation will only yield a real solution for a limited range of scale 

factors. If we examine equation 8.135 then: - 

A[81)n,, J]2 +B [Spn,, J] +C_0 (8.138) 

where 

A- [Ueil T [ue il - el 

B- 2[Auni., ]T [uej] +2 si, j[6'un i, j] 
T [uej] - 2e 

2+ 
2si 

'i 
e3 

n 'un,, 
jT[, &un,. +sj2 C_ [Aun 

-I] 
T [, &u i_, ] +2s,, J[a 

[61un j, j IT [6'un ij [, &en] 2 

e4+2 sij es + sij 2 e. -* [, &en]2 

and e, to e. define the scalar vecto. r products. Equation 8.138 can be 

(8.137) 

solved so that 

, pn i, j - -B t [B 2-4 ACI 1/2 
(8.139) 

2A 

It will be realised that when the term under the square root becomes 

negative then the equation can only yield complex values. Thus, the 

limits on the range of scale factors that will yield real results can 
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be discovered by setting this term to zero. This will yield an 

equation of the form: 

s2 ij +B sij 

where, 

e3e3-e, e6 

e2e3-2 el e. 

e2e2-e, e4+e, (Aen] 2 

(8.140) 

Solving this quadratic equation may yield two real values of sij - 

These form the limits to the real solution of the constraint equation. 

A line search can be carried out within these limits to locate an 

approximate solution to equation 8.56. 

8.5.3.2.6 Are-length control in scaled space 

The displacement vectors in a finite element analysis of a plate 

include vector elements with different units, such as translations and 

rotations. Hence, it may be advantageous to scale the displacements 

so that they are consistent, in a unit sense, before the application 

of the arc-length constraint. This scaling may be effected using the 

scaled space concept which was described in section 8.5.1. Thus in 

the constraint equation: - 

Tn [apn] 2 [Aoil [Au (8.141) 

where AuTi - &un i-I + 8'un, + apn, ut i the displacement vectors 

Auni- 
I, 

S1 01 and uti are replaced by A7uni. 
1, 

S'Uni and 
di 

respectively where: 

7 =n Aun u i-', m/n ' i-', m/n 
Sn for m-1, nn and n-1, ndof (8.142) 
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61 iin ism/n 61 un i, m/n 
Sn 

jje i, m/n ue i, m/n 
Sn 

where 

nn - number of dof of type n 

m- node number 

n dof type number 

ndof - number of dof types 

Aui-', 
m/n ' element at node m dof type n of vector Aui_, 

Sn ' scaling factor for dof type n (from section 8.5.1) 

Thus with this application of the scaling factors, sj, the spherical 

constraint is effectively converted to an ellipsoidal constraint. 

8.5.3.2.7 Arc-length control fami 

It will be realised that the arc-length constraint methods described 

here are but a few members of a family of constraints which are based 

upon the same principles. For instance, a mask could be applied to 

the vectors involved in the constraint equations. Its effect would be 

to mask out certain dof in each vector so that the constraint is only 

effected against those degrees of freedom which remain. One 

immediately obvious option would involve a mask which caused the 

constraint equation to act on only one certain dof type, say the 'w' 

(translation) dof in a plate analysis. In the extreme case a mask 

could be applied which blanked out all but one dof, in such as case 

the arc-length constraint would, effectively, be converted to a 

displacement control constraint. 
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8.5.4 Incremental and iterational strate 

8.5.4.1 Solution control hierar 

In the preceeding sections several powerful iterative solution 

methods, such as BFGS, and iterative constraint methods, such as 

arc-length control were described. Each of these methods have 

features, such as efficiency or power, which make each suitable for a 

particular situation in a response. Therefore, the selection of one 

or other method can be decisive to the success or failure of an 

analysis. 

Restart facilities have been incorporated into the SNAP program. Thus 

allowing the solution method to be modified between restarts. However, 

these features are not the complete answer to iterational strategy 

selection, since one does not wish to continually stop and start the 

analysis merely to change iteration technique. This is particularly 

true when the analysis is carried out in a batch environment. For 

these reasons it is beneficial to endow the analysis program with some 

intelligence so that it is able to use past experience to select a new 

technique, when required. It may be wise to switch techniques not 

only when difficulties are encountered but also when the response 

becomes smooth so that more efficient and less powerful techniques 

will suffice. With the SNAP program the analyst has absolute power to 

decide which techniques the program may use. On entry the program 

sets up a technique hierarchy based on the analyst specified options. 

The analysis is then begun using the analyst specified default 

technique. Subsequently, if required, the program will select another 

of the techniques permitted by the technique hierarchy. 

Crisfield" has introduced the concept of a desired number of 

iterations and this concept has been used to control the selection of 

solution techniques as well as automatic increment sizing. Also 
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specified by the analyst is the maximum number of iterations that may 

be used in the search for convergence with a particular solution 

method. Generally all increments are automatically sized in the SNAP 

program, except in some instances when under load control. Currently 

an equation suggested by Crisfield 30 is employed in the automatic 

increment sizing algorithm and this is given below: - 

, ften In-i- 1/2 
Aen- 1 (8.143) 

Id 
- 

where 

In-i - number of iterations in increment n-1 

Id ý desired number of iterations. 

The quoted equation specifies an increment of arc-length however it 

could easily specify load level or displacement level. This equation 

has to be primed in the f irst increment, generally via a manual 

increment size. 

If during an increment the maximum number of iterations is reached 

without convergence then the program resets all relevant qualities to 

their values at the beginning of the increment. The program then 

seeks convergence using the next more powerful technique in the method 

hierarchy. If, however, very few iterations were used in the last 

increment, say less than half the desired number of iterations, then 

the program begins the current increment with the next more efficient 

technique in the method hierarchy. If the program exhausts the method 

hierarchy without achieving convergence then, if allowed by the 

analyst, the program will cut the automatic increment size to 0.25 of 

its previous value and will restart the increment with the most 

powerful technique available. If the program is still unable to 

achieve convergence then the increment cutting procedure is repeated 
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up to an analyst specified maximum number times. If, after this, 

convergence is still not achieved the analyst can specify whether the 

run is aborted or the next increment is begun. If during an increment 

the program has to switch technique then the subsequent increment is 

begun with the latest technique. 

8.5.4.2 Stiffness matrix reformations 

With the modified Newton-Raphson and BFGS techniques a fixed procedure 

for the reformation of the stiffness matrix at and only at the 

beginning of increments can be inefficient. Therefore, a system that 

only reforms the stiffness matrix when required is preferable. A 

number of different parameters can be used to indicate the need for a 

stiffness reformation. Two such parameters are immediately obvious, 

Berganls3l stiffness parameter and the number of iterations required 

to achieve convergence in the previous increment. Crisfield" has 

also suggested that a small step length in the line search procedure 

can indicate the need for a stiffness reformation. Bergan's current 

stiffness parameter may be specified as: - 

Sn 
p_ 

Apn [ue]T [V*] 

(Aun, T [p *] 
(8.144) 

Since it is necessary to calculate the vector ut each time the 

stiffness matrix is reformed the vector scalar product [ut] T [P*] can 

also be recalculated. Thus, Sn P is a measure of the current stiffness 

with respect to the most recent stiffness reformation. 

This approach avoids complications with non- proportional loading, 

providing that the loading is proportional between stiffness 

reformations. 
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8.5.5 Convergence Criteria 

A constant problem with the implementation of any of the iterative 

constraints methods described earlier is the selection of suitable 

criteria for the termination of the iterations. At the end of each 

iteration the solution is checked for compliance with the chosen 

convergence criteria. Checks can also be carried out to detect 

divergence of the solution. If the convergence criteria are too tight 

then increased resources will be expected to obtain unnecessary 

accuracy. If, on the other hand, the criteria are too slack then, 

amongst other things, unstable equilibrium paths may be traced. 

With non-linear finite element analysis the criteria employed are 

usually based on either; residual forces; displacements; or energy 

dissipation. In the following sections the most popular criteria will 

be detailed and in addition a new method to improve the consistency of 

convergence checking will be presented. 

8.5.5.1 Force convergence criterion 

The basis for the force convergence criterion is the residual force at 

the end of an iteration. This is generally checked against the 

applied external loading and/or the reactions. Initially a scalar 

norm for each of the vectors is generally obtained. The most popular 

scalar norm is the second Holder 32 norm, which is usually referred to 

as the Euclidian norm, and is defined below: - 

lixil zn Ixil' 1/2 
(8.145) 

i-I 
I 

where x is an arbitary vector. 

In a finite element analysis either total equilibrium of forces can be 

checked or equilibrium in a certain direction. A convergence 
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criterion which is frequently used to check equilibrium in a certain 

direction, 'n', is 

rn - 
11rn i, n" 4 Ftoln, where Ftol is the specified tolerance. 

jtpn,, njj 
(8.146) 

For a total equilibrium check then the equation is modified to: - 

rt Ftolt (8.147) 

This total equilibrium check is generally not appropriate to the 

majority of finite element analyses since the units of the elements 

contained in both the residual force and applied force vectors are 

generally not consistent. 

Thus, in a plate analysis one may have vector elements with units of 

force (Newtons) and moments (Newton millimetres). Clearly the moments 

will swamp the direct forces. If, however, one chose moment units of 

Newton metres this may not be the case. The unit dependence of this 

check makes it generally unsuitable. The situation is further 

complicated in the Mindlin plate analyses undertaken here. Since the 

transverse shear stiffness is not degraded equilibrium in the 'w' 

direction is guaranteed (except possibly with BFGS type updates where 

numerical rounding may lead to small residual forces in the 'w' 

direction). Cenerally plates are only loaded in the 'wl direction and 

with the basic Mindlin formulation the consistent load vector will 

contain 'wI forces only. Thus equilibrium cannot be checked in any 

directiont 

8.5.5.2 Displacement convergence criterion 

For the displacement criteria the iterative displacements, au n 
i, are 

used to check for convergence of the solution. A number of different 

forms of displacement criteria are available, however, in all cases it 
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is possible to carry out the checks either in individual directions, 

n, or totally for all dof Is together. A popular criterion compares 

the iterative displacements in an iteration with ei ther the iterative 

displacements in the first iteration or the current incremental 

displacements, thus for direction In' (i. e. dof type In'): - 

rn - 
"buni, n" 4 Dto'ns or r. - 

116un i, n" 4 Dtoln (8.148) 
sij libel nil sij 116ei'lall 

For all dof types combined, equation 8.148 becomes: - 

L (8.149) rt Dtolt, or, rt lkol 

sij llaun III si, j 114unill 

The sij term in the above equations is optional and is included to 

reduce the possibility of a line search procedure producing artificial 

convergence through a small step size. However, care must be taken 

when line searches are used in conjunction with an iterational 

constraint method, such as displacement control or arc-length control. 

If the total displacement, uni, had been used in place of either bun, 

or Auni in the above equation the criteria would effectively become 

slacker as the analysis progressed. Typically. final displacements in 

a finite analysis can be 200 times the displacements in the first 

increment, therefore, if the total displacements are used, the 

criteria is effectively 200 times slacker at the end of the analysis 

than at the beginning. 

8.5.5.3 Energy convergence criterion 

A number of researcherS33,34 have advocated the use of an energy 

convergence criterion in the light of the difficulties that are 

encountered when applying a force criterion to some finite element 

analyses. The energy convergence criterion was introduced to provide 

an indication when both displacements and forces were nearing their 
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equilibrium values. For this criterion, the amount of work done by 

the residual forces, moving through the iterative displacements, is 

compared against the work done in the first iteration. Generally, the 

energy criterion is only applied totally and not to individual degrees 

of freedom, thus: 

rt - 
[rni]T [aun, ] 

[rn 
11 

T [6un 
11 

( Etolt (8.150) 

To avoid spurious satisfaction of the energy criterion Cope and Rao 

have suggested that for convergence the energy criterion should be 

satisfied in a fixed number, say 5, of consecutive iterations. 

It must be noted that a line search procedure searches for an 

rnT approximate solution to , bun, -0 which may lead to energy 

convergence criteria achieving an artificial: convergence when line 

searches are also employed in the iterative solution method. The 

convergence could be artificial since equilibrium may only be 

satisfied in the iterative direction and not globally. 

8.5.5.4 Scaled convergence criteria 

Crisfield' 8 introduced the concept of scaled displacement norms in a 

convergence check criterion. With this modification equation 8.148 

becomes, after omitting the sij term: - 

Ft 116jin ill 4 Dtolt 

1 tAu-n ill 

where, ajin i, k Ai, kk Sun i, k for all degrees of freedom, k 

and, A7un i, k Ai, kk Auri, k for all k 

In effect the displacements are scaled by root Of Ki, kkl which is the 

diagonal tangent stiffness term. The scale factors may be applied in 
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a similar way to the force convergence criterion of equation 8.147 

resulting in the production of a scaled force convergence criterion. 

It will be noted that the scaled convergence checks in this form are 

in effect energy convergence checks. This can be seen from the fact 

that terms such as bulli, k Ki. kk au U i, k appear in the calculation of 

the displacement norms and terms such as (rni, k rn i, k)/Ki, kk appear in 

the calculation of the force norms. Clearly these terms represent 

some form of work done. 

The scaled convergence criteria that have been developed for the 

present study incorporate the scaling factors that were described in 

section 8.5.1. Thus the force convergence criterion takes the form: - 

Ft Ftolt 

where 'ni, 
mn ' Sn rn i, mn 

and ýni, 
mn - Sn Pni, mn for m-1, nn; for n-l, ndof 

The displacement criterion takes the form: - 

Ft - 
11 61in, 11 4 Dtolt 

I Sun, 11 

nn bun 
where, 6u imn 

s 
i, mn 

n 

lin .- &un i, mn and, A7u i, mn Sn 
for m-1, nn; for n-1, ndof 

(8.152) 

(8.153) 

where ndof is the number of dof types at any node and nn is the number 

of nodes that have dof type In'. 
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Section 8.5.1 describes the derivation of these scaling factors and it 

was noted there that in a plate analysis, for example, the scaling 

factors increase the consistancy of the units, thus, allowing the 

applied vertical loads to be directly compared to the residual 

moments. Thus, it is not necessary to check convergence in individual 

direction since a total convergence check is all that is required. 

If we carry out a units analysis for the force convergence check. 

Assuming that we have a two dimensional system. The f irst dof is a 

translation while the second is a rotation, as in a plate analysis. 

Thus: - 

K, 
I- 

Nmm- 1K 
22 ý Nmm 

hence, 

[K 1/2 

KK 
I 

s [K 1/2 N=- 1 1/2 
- mm 2i 11 - 

[Nmm 

221 

il S, r, 1N-N 

F2s2r2 Nmm -N 

In the calculation of the norms, i. e. ii-Fill, terms such as (rn i, mn 

Ki. mI rn i, mn)/Ki, mn appear. It will be noticed that, if applied, the 

scale factors would have no effect upon the energy convergence 

criterion. 

Difficulty in obtaining convergence to an unscaled force convergence 

criterion has been mentioned by a number of researchers, notably Cope 

34 35 and Rao and Bergan and Holland . Cope and Rao found that when 
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monitoring indices in the non-linear analysis of reinforced concrete 

structures, the force norms were unlikely to converge always towards 

zero, even when a large number (500) of iterations were performed. 

Bergan and Holland commented that unbalanced forces often form 

equilibrium groups which do not have a significant influence on the 

overall structural response. 

For the majority of analyses reported in this study a two tiered 

convergence criterion was adopted. In all cases the scaled norms were 

employed but the unscaled norms were also monitored and the results of 

this monitoring are reported in Chapter 9. The program was allowed to 

converge on either force or displacement. The force tolerance was 

generally a tight 1% while the displacement was set at an 

exceptionally tight 0.01% of the incremental displacements. 

If difficulty in converging in an analysis was encountered then the 

increment was generally located in the unstable region of the 

response, around the plateau in the load-deflection response. As a 

general rule approximately 4-7 % of the computational resources for a 

complete analysis were expended in climbing up the response curve as 

far as the start of the plateau, while the rest were expended moving 

along the plateau and down the far side. 

8.6 Ancillary details 

It was intended that the SNAP program would be capable of tracing the 

complete analytical response to actual structural failure. Thus, if 

true tangent stiffness matrices are formed, as in the SNAP program, 

the equation solver must be capable of handling negative definite 

matrices in addition to the normal positive definite matrices. In 

addition, since solutions to a number of different right hand sides 

will be required, the solver must be capable of rapid solutions after 
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an initial decomposition has been carried out. For these reasons a 

Choleski LTDL 22 algorithm was selected and implemented. 

A feature that can increase the power and controllability of a 

non-linear analysis is the ability to restart. For the majority of 

analyses carried out for the present study a restart checkpoint was 

carried out every 4 increments. The restart facility is also used by 

the iterative solution system, allowing it to repeat an increment with 

a different solution method but using the same initial conditions. 

8.7 SNAP program implementation 

In the design and coding of the SNAP program seven criteria were 

applied: - 

1. Modularisation 

Standardisation I 

3. Simplicity 

4. Documentation, especially in-code documentation 

5. Automation and intelligence 

*6. Capacity to handle large problems but highly efficient for small 

problems 

Structure 

The general layout of the SNAP program can be seen in Figure 8.22. The 

program is divided into six main modules. Each module carries out a 

distinct function, such as stiffness formation or input. The main 

controlling segment, called snap, initially calls the input module to 

read and assimilate the data. The input module in turn calls the 

gener module to generate the mesh if required. The other routines are 

then called as required to carry out such tasks as decomposition of 

the stiffness equations and the iterative solution procedure as 

required. Within each module, sub-modules are defined. For instance 



91 

0. 

a, 

0 
I- 

0 

0 

Lai 

cl) 

Li 

t- 

0440 
i- 

0Z 

Co 
CL c 

4. ) -0 0 

-EC0. 
moo o=O 
ZL-- 00. wo 

ý 
L. 000 &-41 0 O= 0 

00-0. -4JQ) -4- ý, 
ý. o 4.. b. ) 0 rj c.. r- -Z 41 

(D 04- om 0 a) 0 

r_ >Z >-- -61- 41 
c 00 

> L-Mi2 acm FE 
0 dj m Co 0 9) 

M- NZZ Co 0M 
0- 00m di CL 

a0 CJ 0 cm 0 t- -, c &1 00 
00 ij 0 (D 00 .- ci 0 
c) C) cn Q0 -- >m4.3 a) 0 

Z -J 

LA- 
Ld. mc.: Q) F- 

C) (.. ji 1Z3 0 (D C) 0 
U) fA .-m Z) 0 0» s- -- 

c 41 U) 
cc m 

LAJ 

L61 

La 
th 

z �I, 

0 

0 

0 
0 
-J 

CIJ 



92 

in the iterat module there are sub-modules for displacement control, 

arc-length control, convergence checking etc. Therefore, it can be 

seen that criterion one is satisfied. 

The program is written in absolutely standard Fortran 77. 

Standardisation extends as far as the use of individually defined 

arrays, in preference to the popular approach of allocating storage in 

one long common block, and then allowing the program to sub-divide 

this area for specific purposes. Flexibility is maintained in the 

SNAP program by the use of the PARAMETER statement. Through this the 

maximum size of problem can be easily and safety changed through 

simple changes in the PARAMETER statement. The SNAP approach avoids 

the complexity and resource overhead attached to the popular single 

storage area approach. 

The SNAP program was designed to be extremely efficient at solving 

small problems thus allowing rapid development and checking of the 

program. However, realistic results can only be attained with larger 

problems incorporating finer meshes and thus the SNAP program was 

designed to handle the larger problems efficiently. Generally the 

smaller problems were run in an interactive environment, whereas the 

larger problems were despatched to remote computers running a batch 

environment. 
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'SNAP' PROGRAM ANALYSES 

9.1 Validation Analyses 

9.1.1 Introduction 

The primary aim of this section is to assess the accuracy and 

efficiency of the computational models that have been incorporated 

into the SNAP program. The effects upon the structural response of 

variations in several modelling parameters are also investigated. It 

is shown that if some parameters are made to reflect observed 

behaviour more realistically, then a more stable numerical solution 

results. Difficulties in obtaining the original texts of experimental 

tests were encountered and, therefore, it was necessary to use details 

that have been presented by other authors. 

9.1.2 Duddeck's Slabs 

The three slabs that have been tested by Duddeck et al' will be 

considered. Reference I was not available and therefore the details 

presented by Rahman2 have been used. Comparisons with the results 

presented in reference 2 were particularly useful in assessing the 

accuracy and efficiency of the SNAP iterative solution algorithms. 

The degree of reinforcement orthotropy is the only difference between 

each of Duddeck's slabs. In each slab the total amount of 

reinforcement contained within the slab is the same. The 

reinforcement is arranged parallel to the slab edges. The 

reinforcement layout details are presented in Table 9.1. 

In this table the amount of reinforcement is specified as an 

equivalent smeared thickness in I mm' . This is obtained by dividing 

the rebar area by the spacing of the bars perpendicular to the bar 

direction. It can be seen that isotropic reinforcement is provided in 
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slab Sl, while in slab S2 the ratio of steel in the two directions is 

1.9. For slab S3 this ratio was increased to 2.75. The general 

layout of the experimental slabs and their finite element 

idealisations can be seen in Figure 9.1. The slabs are supported on a 

vertical restraint at each of the four corners. A single point load 

is applied to the centre of each slab. 

Smeared reinforcement thickness (mm) 

Top layers Bottom layers 
Slab 
mark 

x-direction y-direction x-direction y-direction 

Sl 0.193 0.193 0.397 0.397 

S2 0.252 0.133 0.520 0.273 

S3 0.283. 0.103 0.582 0.212 

TABLE 9.1 REINFORCEMENT ARRANGEMENTS FOR DUDDECK'S SLABS 

9.1.2.1 Finite Element Idealisation 

Advantage was taken of symmetry, hence only a quadrant of each slab 

was analysed. It is not clear from reference 2 whether any in-plane 

restraint was present at the corner supports of each slab. It will be 

shown later that the experimental load-deflection response for each of 

the slabs exhibits an enhanced stiffness in the post-cracking to steel 

yielding region. It is possible that in-plane restraint at the 

supports could have caused this behaviour. 

For the through depth integration, the suitability of both a5 point 

Gaussian and a5 point Newton-Cotes integration rule was investigated. 

Due to the early onset, and fast propogation of cracking in Duddeck's 

slabs, there was little difference in the results obtained with either 
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integration rule. It was decided to use the Newton-Cotes rule since 

this placed an integration station on each extreme fibre. 

9.1.2.2 Material Models 

Details of the material properties can be seen in Table 9.2. Unless 

otherwise stated the fixed crack direction model was employed for the 

analyses described here. The COSIC2 material model was used to model 

the concrete. After Popovic's curve, perfect plasticity was assumed 

until the onset of crushing at -5000 Ite. For compressive strains 

beyond this, the compressive stress was reduced linearly to zero at an 

ultimate strain of -8000 Ae. For concrete in tension, a two segment 

stress-strain curve was used with a tension stiffening factor, CI 21 

between 15 and 25. The lack of data on the steel material properties 

dictated that a simple, symmetrical, bi-linear elasto-plastic material 

model, with an ultimate strain of -40000 Ae, was used to model the 

reinforcement unless otherwise stated. 

Slab fC ft EC f E Shear 
mark N1mm N/mm N/mm N/L2 N/mm degredation 

factor 

si 43 2 16400 670 201000 0.5 

S2 43 2 16400 670 201000 0.5 

S3 43 2 16400 670 201000 0.5 

TABLE 9.2 ASSUMED MATERIAL PROPERTIES FOR 

FOR DUDDECK'S SIABS (AFTER MEULLEEL2) 

9.1.2.3 Iterative Solution Techniques 

BFGS acceleration, with line searching, was used for the iterative 

solution process. The structural stiffness matrix was reformed at the 

beginning of each increment, provided that either; the current 
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stiffness parameter at the end of the previous increment was below 0.7 

or greater than 1.5 with respect to the most recent stiffness matrix 

recalculation; or the number of iterations in the previous increment 

had exceeded, the desired number of iterations (set at 5 for these 

analyses). During the final increments of some of the analyses 

described here, the program found it necessary to switch to arc-length 

control in order to achieve convergence. When under arc-length 

control, BFGS acceleration without line searching was employed. 

9.1.2.4 Convergence Criteria 

An energy convergence criterion of 1% was adopted initially, this is 

consistent with reference 2. Several analyses were also carried out 

with both a 1% scaled force convergence criterion and a 1% raw force 

convergence criterion so that the effects of the different convergence 

criteria upon the structural response could be quantified. The result 

from these analyses have been stimmarised in Table 9.3 for slab Sl and 

in Table 9.4 for slab S2. 

If one compares the results obtained with the energy convergence 

criterion, with those obtained using the raw force convergence 

criterion and with reference to Figure 9.2, then the effects of the 

different convergence criteria can be quantified. In the post 

cracking to steel yielding region the difference in the central 

deflection is generally limited to 0.5% and is in many cases less than 

0.2%. For the post-yielding region the differences, at approximately 

1% to 3% are substantially larger. A comparison between the scaled 

force convergence criterion central deflections and those with the raw 

force convergence criterion reveals little difference, even in the 

post yielding region. 
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Energy convergence 
criterion (1%) 

Scaled force 
convergence 

Raw force 
convergence 

Incr Load 
(M) Central Scaled Raw Central Raw Central 

deflection force force deflection force deflection 
(mm) norm norm (mm) norm (mm) 

M M M 

1 5 0.522 1.18 33.64 0.522 0.38 0.522 

2 10 1.10 8.18 201.8 1.10 19.00 1.10 

3 15 2.06 11.19 226.4 2.05 14.83 2.05 

4 20 3.69 11.22 188.8 3.69 8.94 3.69 

5 25 5.82 10.46 142.2 5.85 9.76 5.85 

6 30 8.29 110.3 1972. 8.26 6.55 8.26 

7 35 10.6 14.42 249. 10.62 8.39 10.62 

8 40 12.9 4.37 63.5 12.89 14.56 12.89 

9 45 15.3 38.31 561. 15.29 11.67 15.29 

10 50 17.9 0.77 11.86 17.83 11.54 17.83 

11 52.5 19.3 5.50 96.53 19.31 7.20 19.31 

12 55.0 20.9 6.25 118.4 20.84 16.29 20.84 

13 57.5 23.9 4.72 95.6 23.67 8.17 23.67 

14 60.0 32.0 3.91 54.6 31.55 16.31 31.53 

TABLE 9.3 CONVERGENCE ANALYSIS FOR DUDDECK'S Sl SUB 

It can be seen from Table 9.4 that there are substantial residual 

forces, generally about 200%, but as large as 2000% of the applied load, 

remaining af ter energy convergence has been achieved. The -residual 

moments constitute the major part of these residual forces, while the 

residual in-plans forces account for only a minor part. It must also be 

noted that the choice of length unit will have a major effect upon the 

contribution due to the residual moments, since the magnitude of the 

moments depend upon the selected length unit. It can also be seen that 

for the scaled force convergence criterion, the residual forces are 

generally less than 10% of the applied load. 
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Energy convergence 
criterion (1%) 

Scaled force 
convergence 

Raw force 
convergence 

Incr Load 
(M) Central Scaled Raw Central Raw Central 

deflection force force deflection force deflection 
(mm) norm norm (MM) norm (mm) 

M M M 

1 5 0.524 1.39 39.33 0.524 0.82 0.524 

2 10 1.12 12.33 301.6 1.12 14.61 1.12 

3 15 2.33 23.42 390.7 2.34 15.68 2.34 

4 20 4.66 87.87 1425.0 4.63 10.09 4.63 

5 25 7.35 4.50 77.5 7.35 7.32 7.35 

6 30 10.30 117.30 2098.0 10.33 12.69 10.33 

7 32.5 11.80 4.81 79.9 11.78 6.57 11.78 

8 35.0 13.30 44.82 676.0 13.24 7.35 13.24 

9 37.5 15.40 7.87 105.5 15.30 11.70 15.31 

10 40.0 18.90 33.30 534.0 19.27 8.84 19.31 

11 42.5 27.20 132.20 1987.0 27.21 12.50 27.20 

12 43.0 32.41 81.84 1539.0 29.92 

1 

8.50 29.54 

11 

TABLE 9.4 CONVERGENCE ANALYSIS FOR DUDDECK'S S3 SLAB 

The cpu time used by each of the analyses is approximately in the 

ratio 3: 8: 13 for slab S1 and in the ratio 4: 10: 19 for slab S3. This 

investigation indicates that the adoption of an unnecessarily 

stringent convergence criterion, such as raw force, can dramatically 

increase the required computer resources. The adoption of a slack 

convergence criterion, such as energy, leads to substantially lower 

computer resource requirements. However, massive residual forces 

remain after 'convergence' has been achieved and also the solution 

drifts when the structural stiffness becomes low, typically when the 

steel yields. A satisfactory compromise would appear to be the scaled 

force convergence criterion which requires only medium computer 

resources, while the response agrees well with that obtained with the 
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raw force convergence criterion. Furthermore, the raw force 

convergence criteria is not suitable since it is length unit 

dependant. 

9.1.2.5 Load-deflection Responses 

Experimental and analytical load-deflection responses for each of the 

three slabs have been presented in Figures 9.2 to 9.5. The f igures 

titled SNAP were obtained from the author's program while those titled 

PLASAN are due to Rahman 2. Generally, for the author's plots, both 

the tensile strength, ft. and the tension stiffening factor, u2s have 

been varied. Rahman has only shown the effect of variations in Ci 2- 

For many of the author's analyses, the end of the response curve 

represents the onset of either, crushing in the top layer concrete, or 

rupture of the steel, in the central region of the slab. 

The scheme used for the through depth integration is the most 

significant difference between the author's idealisation and that of 

Rahman. Rahman used 8 equal thickness through depth layers, with 

stress sampling at the mid-point of each layer, whereas the author 

used a five point Newton-Cotes integration rule. It is thought that 

this factor accounts for slight differences between the two sets 

of results. 

The effect of variations in the tensile strength, ft, can be seen in 

Figure 9.2. A relatively small change in the tensile strength from 2 

Nl= 2 to 2.5 N/mm2 has changed the early post-cracking region of the 

response significantly. An increase in the tension stiffening factor, 

a,, from 15 to 25 has its most significant effect in the later 

post-cracking region, up until the onset of steel yielding. Therefore, 

it can be seen that, essentially, these two parameters effect 

different regions of the response curve. The load-deflection curve 
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M SNAP load-central deflection responses for Duddeck! s, S2- slab. 
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(ii) SNAP load-central deflection responses for Duddeck's S3 slab. 
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PLASAN load-central deflection responses for Duddeck's, S1 slab. 

x1o, 
7 

-cs 6 

5 

i 

3 

2 

0 

(ii)PLASAN load-central deflection responses for Duddeck's S3 slab 

15 
Z 

-c 

10 

-' 35 

30 

25 

20 

15- 

lo: 

5 

0 

2 

1' Experimental 
PLASAN analyses-- 

+ 'X 2 12.5 

A 'X2 25*0 

5 10 15 20 25 30 35 
Central deflection (mm. ) 

FIG. 9.4. 'PLASAN' LOAD-DEFLECTION RESPONSE COMPARISONS 
FOR DUDDECK'S S1 AND S3 SLABS 

5 10 15* 20- 25 30- 35 
Central deflection (mm. ) 



105 

that is obtained when both the tensile strength, ft, and the tension 

stiffening factor, a 2' are increased has also been presented in Figure 

9.2. It can be seen that this curve is in good agreement with that of 

the experimental, both in the post-cracking region-and in the ultimate 

load prediction. 

It must be noted that the nature of any in-plane restraint at the 

supports may have an effect upon the post-cracking to steel 

yielding/concrete crushing region. 

Similar analyses for Duddeck's S2 and S3 slabs have been presented in 

Figure 9.3. The effects of both the tensile strength and the tension 

stiffening factor have again been shown to have a significant effect 

upon the post-cracking response. The analytical responses are again 

in good agreement with those obtained by Rahman with the Plasan 

program, see Figure 9.4. 

9.1.2.6 Maximum Load Analyses 

It can be seen from Figure 9.3, for slab S3, that while the general 

form of the analytical response curve is similar to that of the 

experiment, the analytical maximum load is considerably in excess of 

the experimental value, also see Table 9.5. 

Slab 

. mark 
Experimental 

Maximum 
Analytical Maximum 

Load (kN) 
Load (kN) 

PLASAN SNAP 

Sl 61.66 61.0 61.0 

S2 43.46 54.0 48.5 

S3 34.25 45.0 43.0 

TABIZ 9.5 MAXIMUK LOAD COMPARISON FOR DUDDECK'S SLABS 
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To a lesser extent, the same is true of slab S2, see Figure 9.3 and 

Table 9.5. Rahman2 attributes this phenomenon to the analytical 

tension stiffening effect enhancing the ultimate section strength. If 

this were true, as Rahman points out, one would expect different 

values of the tension stiffening factor, C1 2' to yield different 

maximum loads. This view is not supported by the load deflection 

curves, see Figures 9.3 and 9.4, which indicate little change in the 

maximum load for different values of the tension stiffening factor, 

ci 2' 

Failure of a section will be preceeded by yielding of the steel and, 

therefore, it is interesting to examine the tension stiffening effect 

at the onset of steel yielding. For this structure the failure section 

is likely to be perpendicular to the steel. From the details 

presented in Table 9.2 one can calculate a steel yield strain of 3333 

Ae. For the concrete tensile stress to just be zero at this strain, a 

tension stiffening factor, Ct 2* of 27 is required. Thus, it is 

unlikely that the tension stiffening effect will have a significant 

effect upon the ultimate strength with a2< 25. 

It is interesting to note that the analysis of slab Sl, with uniform 

reinforcement, gave a good prediction of the failure load and, 

therefore, slab S3 was reanalysed with uniform reinforcement equal to 

that originally provided in the 'y' direction. One would expect this 

change to produce a more flexible structure, however, a yield line 

analysis indicates that the structure will have a similar maximum 

load, provided that the section has sufficient ductility. The 

predicted failure load is now in good agreement with that of the 

experiment and, as expected, the flexibility of the structure has 

increased. 



110 

For these slabs the geometry and proportional loading regime would 

suggest that the principal strain direction will change little after 

the crack directions have been fixed. However, with orthotropic 

reinforcement, the principal strain direction will change, and hence 

the cracks in the lower layers, which 4ill have formed in earlier 

increments, will not then lie in the current principal strain 

directions. Thus there will be a shear strain in the crack directions, 

to which the degraded shear modulus is applied. The resulting shear 

stress, when transformed back to Cartesian directions will yield a 

stress normal to the expected failure section, thus enhancing the 

strength of the section. Consequently, an excessive failure load 

results. 

A scaled force convergence criteria was applied for all the analyses 

involved in the maximim load investigation. Generally, this was set 

to 1%, however, for some increments this had to be increased to 5% or 

even 10% in a few cases. The use of a tight scaled force convergence 

criterion resulted in approximately 60 increments being required for 

each of the full range analyses. A summary of the failure loads that 

were obtained from the analyses concerned with this maximum load 

investigation, can be seen in Table 9.6. 

The original analyses carried out by the author used a degraded shear 

modulus equal to 0.5G, this is consistent with that used by Rahman. 

The total stress approach used by the author and the incremental 

stress approach adopted by Rahman will produce similar results, since 

the cracks will form in principal strain directions and thus, 

initially, there will be no shear stress in the crack directions. 
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Analytical Maximum Load (kN) 

Crk. Mod. Fixed Fixed Fixed Fixed Rot. Fixed 

Rein. Orth. Orth. Orth. ISO. Orth. Orth. 

Stl. Mod. Elasto- Elasto- Elasto- Elasto- Elasto- Multi- 
Plastic Plastic Plastic Plastic Plastic Linear 

Deg. Shr. 0.5G OAG 0.01G 0.5G OAG 
Modulus 

Experimental 
Maximum 

Load 
(M) 

34.25 43.0 38.69 35.52 35.48 35.26 38.09 

TABLE 9.6 RESULTS OF MAXDWM LOAD STUDY FOR DUDDECXIS S3 SLAB 

To illustrate the phenomenon described above, slab S3 was reanalysed 

with degraded shear moduli equal to OAG and 0.01G. The resulting 

load-deflection responses have been included in Figure 9.5. The 

reduction in the maximum load, as the residual shear modulus is 

reduced, can clearly be seen. For the analysis using a degraded shear 

modulus of 0.01G there is very good agreement between the analytical 

failure load and that of the experiment. 

An analysis was also carried out using a rotating material axis 

direction model. The load-deflection response for this analysis can 

also be seen in Figure 9.5. It can be seen that the rotating material 

axis model yields a response curve which is very similar to that 

obtained from the fixed crack model using a low residual shear modulus 

of 0.01G. 
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With the rotating material axis analysis and the fixed cr4ck analyses 

with residual shear moduli of OAG and 0.01G, severe difficulties were 

encountered in achieving convergence in the region where the response 

curve became flat. In fact many of the 60 increments required for the 

complete analysis were concentrated in this region. It was suspected 

that the elastic -perfectly plastic steel stress-strain curve was 

responsible for this phenomenon. Therefore, slab S3 was reanalysed 

using a4 linear segment stress-strain curve modelled on that of 

Torbar reinforcement. It was found that with the multi-linear steel 

stress-strain curve convergence was more easily achieved, while the 

analytical response exhibited the gradual stiffness reduction that 

could be seen in the experimental response. 

On the basis of these results, the question arises of whether a fixed 

crack material model, which maintains significant residual shear 

modulus in the crack directions, can be justified? 

9.1.2.7 Crack Patterns 

Crack pattern plots for Duddeck's slabs are given in Figures 9.6 to 

9.8. On these plots, concrete which has turned plastic in compression 

is indicated by a wavy line. Cracks are indicated by a straight line. 

In both cases, the length of the line is proportional to the strain 

normal to the line. The scale at the top of each plot indicates the 

constant of proportionality. 

For the top layer plot of Figure 9.6 all marks indicate points that 

have turned plastic in compression, for some of those points the 

strain is small and, therefore, the wavy form of the line is not 

clear. It can be seen that in the central region the direction of 

plastic compression bisects the corner. The plastic compressive 

strain drops off rapidly towards the edges of the slab. The bottom 
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layer plots clearly show intense cracking in the central region of the 

slab. This cracking continues along both centre lines towards the 

edges of the slab, indicating the formation of yield lines in these 

regions. 

The analytical crack patterns for Duddeck' s S3 slab are shown in 

Figures 9.7 and 9.8. The top surface and soffit surface plots clearly 

,,,, -par-c-. 
IIe. j to the weakest indicate the- formation of a yield line , 

section. 

on the crack pattern plots only 'visible' cracks have been plotted. 

For this structure the minimum visible cracking strain was calculated 

from a specified average crack spacing of 100 mm and minimum visible 

crack width of 0.05 mm. This results in a minimum visible cracking 

strain of 500 Ae. It must be noted that this calculation is 

approximate and does not take factors such as tension stiffening into 

account. 

9.2 Longitudinal and Transverse Section Analyses 

9.2.1 Introduction 

To obtain detailed moment curvature information of the precast 

inverted T beam with in-situ fill form of construction, several simply 

supported beam sections had been constructed and tested. Each of 

these beam sections modelled either a longitudinal or transverse slice 

of the model decks and consisted of both prestressed precast beams and 

insitu concrete (see Appendices 5.1,5.2 and 7.1). 

Full advantage was taken of the restart facilities that are available 

in the SNAP program so that the iteration strategy could be modified 

in the light of new developments as each analysis progressed. 

Initially load-control with BFGS acceleration was employed for the 
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analyses. As the structural stiffness reduced and convergence under 

load control became difficult, or impossible, then either displacement 

or arc length control, with BFGS, was employed. In situations where 

there was a rapid change in structural stiffness, such as crushing of 

the concre te or rupture of the steel, thqn a Newton-Raphson procedure 

was used in preference to BFGS. While under load-control the 

increments were sized manually, however, while under either 

displacement or arc-length control, the automatic increment sizing 

algorithms in the SNAP program were utilised. In situations where 

great difficulty in converging was encountered the increment was 

automatically repeated with the automatic increment size cut to 0.25 

of its previous value. Detailed descriptions of the iteration 

procedures that are incorporated into the SNAP program have been given 

in Chapter 8 Section 8.5. 

Dual convergence criteria were employed for these analyses. 

Convergence was achieved when either a 1% scaled force criterion or a 

0.01% scaled displacement criterion was satisfied'. In reality the 

majority of increments converged on the force criterion, with few 

converging on the very tight displacement criterion. However, when the 

structural stiffnesses approached zero then convergence to the above 

force tolerances became impossible and, therefore, the scaled force 

convergence criterion was slackened to 5%, so that convergence on 

force could be achieved. 

Two algorithms for the modelling of the precast beams were formulated, 

which treated the beams as either I dimensional or 2 dimensional 

entities. In the analyses, both formulations are used and the 

resulting responses are compared. A full description of the two 

modelling philosophies has been presented in Chapter 8 Section 8.3. 

Algorithms were developed for the application of statistically varied 
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material properties in an analysis. In the following sections. the 

effects of this feature on the response are assessed. A full 

description of this feature has been presented in Chapter 8 Section 

8.4.4. 

9.2.2 Model I Longitudinal Section 

9.2.2.1 Finite Element Idealisation 

Details of the structural config%ration and finite element mesh can be 

seen in Figure 9.9. Advantage could not be taken of symmetry since 

the structure is no longer symmetrical after statistically varied 

material properties have been applied. The boundary conditions 

consisted of fixed vertical restraint at each of the four corner 

nodes. Besides analysing the structure with the test loading, it was 

also analysed with inverted applied loading, to investigate the 

analytical response to applied hogging moments. The through depth 
`6 

integration was achieved with 5 integration stations in the precast 

concrete and 5 stations in the insitu concrete. Details of the 

through depth integration scheme are contained in Tables 9.7 and 9.8 

and Figures 9.10 and 9.11. 

Integration Distance Weigh (mm) 
station from insitu 

centre line I x I y 

-(mm) 
direction direction 

1 68.5 10.9 10.7 

2. 34.25 35.1 48.7 

3 0.0 13.2 18.3 

4 -34.25 35.2 48.7 

5 -68.50 6.31 10.7 

Note: The directions X and Y refer to 
beaja local coordinate space 

TABLE 9.7 INSITU INTEGRATION DISTANCES AND WEIGHTS 
FOR MODEL I NON-LINEAR ANALYSES 
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Integration 
station 

Distance 
from beam NA 

(mm) 
Weight 

(mm) 

1 89.97 6.63 

2 43.44 22.2 

3 -16.64 11.6 

4 -37.81 19.6 

5 -54.42 11.7 

TABLE 9.8 BEAM INTEGRATION DISTANCES AND WEIGHTS 
FOR MODEL 1 NON-LINEAR ANALYSES 

The COSIG2 material model was employed for the concrete. Details of 

the material curves applicable to the precast and insitu concretes can 

be seen in Figure 9.12. From this figure it can be seen that, in the 

tension zone, a tri-linear curve was utilised. The material modelling 

curves used for the steel prestressing and reinforcement are identical 

to those utilised for the SNAP analyses of model deck 1, described in 

Section 9.3, and, therefore, details are not given here. 

9.2.2.2 Load-Deflection Response with normal loadin 

Figure 9.13 compares the experimental load-deflection response with 

those obtained from the SNAP program. It can be seen that the best 

agreement with the experiment is obtained from the analysis using a 

prestress loss of 20% and a concrete tensile strength of 3.56 N/mm 2, 

which are the values obtained from actual tests. 

In order to illustrate the sensitivity of the response to variations 

in these two important parameters, further analyses were carried out. 

It can be seen from Figure 9.13 that the adoption of a zero concrete 

tensile strength has only a small effect upon the response, whereas 
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the adoption of high prestress losses has a far larger effect. This 

occurs because the compressive prestress in the beam soffit is many 

times larger than the concrete tensile strength. It will be noticed 

that only a small proportion of the section strength remains to be 

attained after initial cracking occurs. As expected all the SNAP 

analyses with the different modelling parameters converge on the same 

ultimate strength since, essentially, only the steel strength and the 

lever arm affect this factor. The analytical ultimate strength is 

approximately 4% below the experimental value. Much of this 

difference can be accounted form in the necessarily coarse through 

depth integration scheme, which was unable to model the ultimate 

condition exactly. The scheme could not be expected to model all 

section states, up to and beyond the ultimate condition, exactly and, 

therefore, the scheme used for these analyses was the best compromise. 

The residual ultimate strength difference is most probably due to 

material property variations and constructional inaccuracies. From 

Figure 9.13 it can be seen that the final segment of the experimental 

curve drops below the analytical curves and this can most probably be 

accounted for by breakdown of bond in the experimental test. 

Full range analytical responses for this section have been presented 

in Figure 9.14(1), together with the experimental response. If we 

examine the uniform property curve first, the onset of cracking is not 

discernible, whereas the onset of steel yielding, at point A is. The 

steel continues to yield as the response progresses along the top 

plateau. Also, in this region, at a displacement of approximately 120 

mm, the top layer of the insitu concrete is crushing and has begun 

descending down the final linear portion of the stress strain curve. 

When the response reaches point B, the lower prestressing steel begins 

to move along the falling branch of the- steel stress-strain curve 

towards complete rupture. Other points in the structure begin to 
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unload which results in the closing of cracks and steel unloading. 

There is some strain localisation in the near constant moment zone. 

However, the presence and location of this localisation appears to 

result, primarily, from the type of iteration procedure and the path 

it takes to achieve convergence. The lower prestressing steel has 

ruptured at point C on the curve. 

The concrete statistical property descripters used for the second 

response curve shown in Figure 9.14(1) were derived from the data 

presented in Chapter 5 Section 5.1.1. Thus, the insitu. concrete was 

assigned a standard error of 0.05 and the precast concrete 0.12. 

Extensive material test data for the steel materials was not 

available. However, the available test data, in conjunction with 

manufacturers published material data, was used to obtain a standard 

error of 0.02 for all steel materials. 

Until point D on the response curve was reached the statistically 

varied properties had little effect upon the structural behaviour. At 

point D the top layer of insitu concrete at one set of integration 

stations in the near constant moment zone began to crush. 

Simultaneously, other sets of integration stations in the near 

constant moment zone began to unload. Thus, the strain field began to 

localise. This localisation was primarily due to the statistically 

varied properties resulting in a limited range of section strengths 

and not upon the iteration procedure or convergence path. Past point 

D the localisation effect increases until at point E the lower 

prestressing steel at the failing section begins to rupture. At point 

F the lower prestressing steel at the failing section has ruptured 

completely and the residual section strength is dependent upon the 

remaining prestressing and reinforcing steel in the section. 
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The rupture of the steel, in the statistically varied analysis, at a 

significantly lower displacement level can be explained if the effects 

of strain localisation are looked at in detail. After the onset of 

localisation at point D. the sections away from the failing section 

were effectively rigid, if not unloading, for extra increments of 

displacement. Therefore, the increments of displacement past point D 

were accommodated completely by increases in strain at the failing 

section. Thus causing the rupture of the lower prestressing steel at 

a lower displacement level. Three points should be noted, firstly, if 

advantage had been taken of symmetry, then a significantly different 

response would have been obtained. Secondly, the maximum load 

attained was virtually unaffected by the adoption of the statistically 

varied properties. Finally, if the falling branches of the steel 

stress-strain curves were made steeper then it is possible that a 

'snap back' situation could occur. 

9.2.2.3 Load-Deflection Response with inverted loading 

In Figure 9.14(11) the analytical response of the longitudinal section 

to inverted loading is shown. This response curve was obtained with 

uniform material properties throughout the structure. It can be seen 

that the strength of the section in hogging is only approximately 40% 

of that in sagging. Furthermore, it will bp noticed that the section 

has limited ductility in hogging, with the maximum load being reached 

at a displacement of only 40 mm. 

Generally the load-deflection response follows a typical pattern until 

point B is reached. However, there is a 'bump' at point A and this is 

most probably caused by the propagation of cracking to areas outside 

the near constant moment zone. The drop in load adjacent to point A 

resulted in the program switching from-load control to displacement 

control so that convergence could be achieved. Under both load 
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control and displacement control a 1% scaled force convergence 

criterion was applied. Between points B, and C, both types of top 

reinforcement ruptured causing a sudden decrease in applied load. Both 

the beam top reinforcement and the reinforcement located above the 

beams in the insitu concrete are nominally 'mild steel' .A gradual 

reduction in applied load occurs between points C and D. This 

reduction is the result of both the concrete and prestressing steel 
I 

progressing further along their appropriate stress-strain curves. 

Between points D and E, concrete crushing occurs in the bottom layer 

of the precast beam, reducing the lever arm and hence causing the load 

to drop off further. It was not considered necessary to continue the 

analysis beyond point E. 

9.2.3 Model I Transverse Section 

9.2.3.1 Finite Element Idealisation 

The transverse section incorporated 20 precast beam segments, each 440 

mm long and positioned transversely across the span (see Appendix 

5.2). In the model bridge deck the lower transverse steel is oriented 

at 65' to the beam axes. In the transverse section it was, through 

necessity, located at 90*. It was felt that this minor change would 

not have a significant effect upon the behaviour. 

The structural configuration, finite element mesh and loading regime 

for the SNAP analysis can be seen in Figure 9.15. The effects of 

three different through depth integration schemes were investigated. 

The three schemes were (i) the section treated as a homogeneous and 

isotropic reinforced concrete section, thus the presence of the beams 

was ignored; (ii) the beams were assumed to be. 1 dimensional entities 

and the appropriate integration scheme from the previous section was 
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selectedZ (iii) the beams were treated as 2 dimensional entities and 

again the appropriate integration scheme from the previous section was 

selected. 

Identical material properties and curves were used for the transverse 

section as were used for the longitudinal section analyses in the 

previous section. 

9.2.3.2 Load-Deflection Response 

The effects upon the load-deflection response of two material 

parameters, ft - the tensile strength and of 2' the tension stiffening 

parameter, were investigated and the resulting responses can be seen 

in Figure 9.16. The best agreement yith the experimental curve is 

obtained with a tensile strength, ft, equal to- 75% of the values 

obtained from tests and a tension stiffening factor of 25. The 

interface between the precast and insitu concretes could be 

responsible for the reduced effective tensile strength. ' The 

load-deflection response follows the classical reinforced concrete 

load-deflection response with the onset of cracking at point A. The 

cracks propagate as the response proceeds towards point B. At point B 

the lower transverse steel begins to yield leading to a plateau in the 

response after this point. The load-deflection responses that result 

from different tensile strengths and the tension stiffening factors 

are also shown in Figure 9.16. It should be noted that the strain 

levels which define- the tension stiffening curve are dependent upon 

both the tensile strength and the tension stiffening factor. 

Therefore, variations in either of these factors will result in a 

different tension stiffening curve, see Chapter 8 Section 8.4. 

Figure 9.17(1) shows the responses that result from the use of 

different approaches for modelling the precast beams. They are: - 
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1. Section treated as homogeneous and isotropic, ie the presence of 

the beams is ignored and the section is treated as reinforced 

concrete. 

2. The beams are treated as 1 dimensional entities. 

3. The beams are treated as 2 dimensional entities. 

Modelling philosophies 1 and 2 result in almost identical responses. 

This is to be expected since the same through depth integration scheme 

is used in the transverse direction. The difference between the two 

modelling philosophies lies in the integration scheme used in the 

longitudinal direction, that is in the beam direction. Modelling 

philosophy 3 results in very similar response to that of the other two 

philosophies up until yielding of the steel. In the post-yielding 

region modelling philosophy 3 results in a lower failure load. With 

modelling philosophy 3, ten through depth integration stations, 5 in 

beams and 5 in the insitu concrete, are used in the transverse 

direction. In the other two philosophies, only 5 through depth 

integration stations are used in the transverse direction. In the 

post-yielding region, the response if governed mainly by the steel 

behaviour and the lever arm. The size of the lever arm is affected by 

the form of the concrete compression block. With the 10 through depth 

integration stations of modelling philosophy 3, the compression block 

extends further down the section, thus reducing the effective lever 

arm. 

Figure 9.17(11) illustrates the full range analytical response of the 

transverse section. For this analysis the precast beams were modelled 

as 2 dimensional entities. At point A on the response curve, the top 

layer of the insitu concrete is beginning to crush. The compressive 

load is then transferred to the top integration station in the beams, 
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which is just below the failing station. Simultaneously, the steel 

materials are progressing along their appropriate stress-strain 

curves. These factors caused the analysis program severe difficulties 

at this point and numerous small increments were required to obtain 

converged solutions. By point B, the analysis has again become 

relatively stable, with the majority of the material property changes 

being concentrated around the lower reinforcing steel. At point C, 

rupture of the lower reinforcing steel begins and complete failure of 

the section ensues. 

9.2.4 Model 2 Langitudinal Section 

9.2.4.1 Finite Element Idealisation 

Details of the structural configuration, finite element mesh and the 

loading arrangement can be seen in Figure 9.18. Advantage could not 

be made of symmetry, since it was intended to carry out analyses with 

statistically varied material properties. Fixed vertical restraints 

were applied at each of the four corner nodýs. 

-A through depth integration scheme, similar to that of model 1, was 

formulated for model 2. Again, 5 integration stations were used for 

both the beam and the insitu concretes. Full details of the Model 2 

through depth integration scheme can be seen in Tables 9.9 and 9.10 

and Figures 9.19 and 9.20. 

Details of the model 2 longitudinal section concrete material curves 

can be seen in Figure 9.21. Details of the material curves used for 

the steel prestressing and reinforcement can be found in Section 9.3, 

on the SNAP analyses of model deck 2. 
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Integration 
station 

Distance 
from insitu 

Weight (mm) 

centre line 
(mm) x y 

direction direction 

112.5 17.51 17.51 

2 56.25 49.10 79.99 

3 0.0 22.01 30.02 

4 -56.25 58.66 79.99 

5 -112.5 10.28 17.51 

Ii Note: The directions X and Y refer to 
beam local coordinate space 

TABLE 9.9 INSITU INTEGRATION DISTANCES AND WEIGHTS 
FOR MODEL 2 NON-LINEAR ANALYSES 

Integration 
station 

Distance 
from beam NA 

(mm) 

Weight 

(mm) 

1 114.2 18.06 

2 49.0 27.77 

3 -33.6 17.20 

4 -77.7 24.72 

5 -101.0 9.47 

TABLE 9.10 BEAM INTEGRATION DISTANCES AND WEIGHTS 
FOR MODEL 2 NON-LINEAR ANALYSES 

9.2.4.2 Load-Deflection Response vith normal loadin 

Figure 9.22 illustrates the load-deflection responses that resulted 

from the normal loading analyses. It was found that good agreement 

with the experimental response was achieved with a concrete tensile 

strength equal to half that obtained from specimen tests. No reliable 

data on the actual experimental prestress in model 2 was available, 

for the reasons given in Chapter 7. Hence, it is not possible to say 
V 
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how the analytical prestress loss of 34% compares with that of the 

experiment. The prestress loss was calculated to be approximately 28% 

and it can be seen that this agrees well with the analytical loss of 

34%. 

Figure 9.23(1) illustrates the full range response that was obtained 

with both uniform material properties and also statistically varied 

material properties. In the uniform material property analysis, the 

onset of cracking was at a load of approximately 25kN and the onset of 

steel yielding was at a load of 45 M. Steel yielding is well 

progressed at point A, when the top layer of insitu concrete begins to 

crush. As the concrete crushes, there is a resulting drop off in the 

applied load. At point B rupture of the lower prestressing steel 

begins and at point C the rupture of the steel is complete. After 

point C, the residual section strength is dependent upon the remaining 

steel which is higher up the section. 

The third curve in Figure 9.23(1) gives the statistically varied 

material property response. It can be seen that this curve is in good 

agreement with the uniform material property curve until point D is 

reached. At point D, major strain localisation begins and this is 

quickly followed by crushing of the top layer of insitu concrete at 

the weakest section. At point E on the response curve, the bottom 

prestressing steel is beginning of proceed down the falling branch of 

the steel stress-strain curve, leading to rupture of the steel. 

9.2.4.3 Load-Deflection Response vith inverted loading 

The analytical response of the model 2 longitudinal section to 

inverted loading is shown in Figure 9.23(11). This response curve was 

obtained with uniform material properties throughout the structure. It 

can be seen that the section strength in hogging is only about 40% of 
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that in sagging. In contrast to model 1, the model 2 section exhibits 

a high degree of ductility in hogging. This can be accounted for by 

the presence of 'Torbarl high yield reinforcement in the top of the 

section rather than the low ductility 'mild steel' that was present in 

model 1. 

9.3 Model deck analyses 

9.3.1 Introduction 

This section will deal with the analyses of the model decks that were 

carried out using the SNAP program. The experimental data collected 

during the model tests will be used for comparison with the analytical 

results. Deflection profiles, reaction linearity and reaction 

profiles have been selected for detailed comparison. These three 

parameters were chosen for their fundamental importance to the 

structural behaviour. 

Detailed descriptions of the formulations and algorithms that have 

been incorporated into the SNAP program have been given in Chapter 8. 

in this section the effect of selecting or varying different 

parameters and algorithms will be explored. The SNAP analytical 

models deviate only slightly from the physical models described in 

Volurriel. In the physical models the UDL loading was not applied 

within a distance equal to one overall depth from each support line. 

In the analytical models the UDL loading continues as far as the 

support line. This was necessary since it was not possible, with the 

SNAP program, to apply a UDL loading to part of an element. This 

should not have a significant effect since this extra loading should 

only result in a small near uniform increase in the reactions. For 

model 2a uniform mesh spacing was employed. Therefore there is a 

slight difference in the width of the physical and analytical 

footpaths. This was compensated for by adjusting the UDL load 
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Comparison of load-deflection responses for model 2 longitudinal section. 
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intensities so that the same load was applied. Diagrams showing the 

layout of each analytical model can be seen in Figure 9.24 for model I 

and in Figure 9.25 for model 2. 

The majority of these analyses were run on local and remote IBM 

machines using double precision (64 bit) arithmetic. Typically, a 

single full range analyses would require between 120 and 200 

increments. A restart was generally carried out every 8 increments 

and thus each analysis required between 15 and 25 individual runs. 

9.3.2 Finite element idealisation 

9.3.2.1 Finite element meshes 

The preliminary runs for each of the models was carried out using a3 

x3 mesh of Heterosis elements. For all the detailed analysis an 8x 

6 mesh was used and a plot of this mesh can be seen in Figure 9.26for 

model 1 and Figure 9.27 for model 2. It can be seen that each 

analytical model was divided uniformly into 8 elements along the 

length and 6 across the width. Details of the selected through depth 

integration scheme for model 1 can be seen in Table 9.7 and 9.8 and 

Figures 9.10 and 9.11. Details relevant to model 2 can be seen in 

Tables 9.9 and 9.10 and Figures 9.19 and 9.20. 

Initially the effect of adopting either the bi-axial or uni-axial beam 

approach, as described in Chapter 8 Section 8.3.3, was investigated. 

It was discovered that the uni-axial approach resulted in considerably 

increased stiffness and failure loads far in excess of the 

experimental values. This was particularly true of the analyses of 

model 2. These features were a direct result of the way in which beam 

cracking and torsional stiffness were modelled. As described earlier, 

the high torsional strength that remained in the beams as the 

experimental failure load was approached, greatly enhanced the section 
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strength in the failure direction. This results in excessive failure 

loads. None of these problems were apparent with the bi-axial beam 

approach which allowed the beams to crack in the principal directions. 

For the SNAP analyses the boundary conditions essentially consisted of 

x and y restraints at node 1 and ay restraint at node 209 to prevent 

rigid body movements with w restraints along each support line. For 

the majority of the analyses described herein, elastic Iw' restraints 

were applied along each support line. The many supports present in a 

composite deck may be considered to form a line support. Therefore, 

for the present study, the effects of the two approaches, discrete 

supports or line supports were investigated. For the discrete support 

approach, the total support line stiffness was calculated for the 

physical structure. This total line stiffness was allocated uniformly 

amongst all of the analytical supports. For the line support approach 

a stiffness per unit length was calculated by dividing the total 

support line stiffness by the support line length. The stiffnesses 

were allocated to each of the nodes using a procedure similar to that 

-employed for the allocation of energy consistent nodal loads, when a 

line load is applied along the edge of an element.. For the Heterosis 

element this resulted in '/, of the element edge stiffness (that is 

the stiffness per unit length multiplied by the element edge length) 

being allocated to each of the corner nodes and 2/3 of the stiffness 

being allocated to the midside node. 

An important feature which became apparent during the SNAP analyses of 

the model decks was the 'lift off' of the acute corner supports. In 

reality physical supports are discontinuous since they can only 

withstand compressive and not tensile load in the majority of 

instances. Therefore, logically the analytical supports should be 

able to model this feature. It is not practical to control this 
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aspect manually and therefore the analysis program should be capable 

of monitoring the support loads and removing a support if a tensile 

load is indicated. 

9.3.2.2 Material inodellin 

The COSIC2 material model was chosen to model the concrete in the slab 

analyses. Details of the material property curves can be seen in 

Figure 9.28 and 9.29 for model 1 and Figures 9.30 and 9.31 for model 

2. These curves were derived from material tests carried out at the 

time of the model tests. 

Several analyses were carried out to compare the f ixed crack model 

with the rotating crack model. It will be shown later that the use of 

the fixed crack model resulted in highly unrealistic structural 

behaviour and, therefore, all of the subsequent analyses utilised the 

rotating crack model. The effects of variations in several important 

material parameters such as tensile strength, Young's modulus and 

prestress will be investigated in subsequent sections. In addition, 

the effect of adopting statistically varied material properties will 

be explored. To allow the effect of material non-linearity in the 

analyses to be assessed and also to investigate the effects of the 

differences in boundary conditions in the physical and analytical 

structures, linear finite element analyses were also conducted. The 

SNAP program was used for the linear finite element analyses. The 

linear data was identical to the non-linear data except that material 

damage was suppressed at all integration stations. The effects of 

employing both 2 and 3 segment curves for concrete in tension were 

also explored. For either curve the second tension stiffening 

parameter, a 2' was generally set to 15, see Figure 9.28 for model 1 

and Figure 9.30 for model 2. During concrete crushing, perfect 

plasticity was assumed until a strain of -0.0035 was attained in the 
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model 1 concretes and a strain of -0.0045 was attained in the model 2 

concretes. After this, the stress reduced linearly to zero at a 

strain of -0.006 for the model I concretes and -0.007 for the model 1 

concretes. The increased ductility for the model 2 concretes was 

based on the increased ductility that was evident from the material 

tests on the model 2 concretes, see Figure 7.5 of Chapter 7. 

9.3.2.3 Iterative solution strate 

All the SNAP model slab analyses were begun under load control with 

manually sized increments. The model 1 analyses were divided into 

three stages, the first stage modelled the precast beams with wet 

insitu concrete. The second stage modelled the application of dead 

load and HA loading to the hardened composite slab. During the third 

stage the HB bogie load was applied and incrementally increased to 

induce failure. The model 2 analyses were divided into 4 stages, the 

first two being identical to those of model 1. For the third stage 

the analytical HB bogie was placed in position la, see Figure 9.2! 5, and 

incrementally increased to a load level equal to 4.0 x the ULS 45 unit 

HB bogies. The HB bogie load was then incrementally decreased and 

removed. For the fourth stage the HB bogie was placed in position lb 

and incrementally increased to induce failure. This follows the 

analytical procedure which is described more fully in Chapter 8. The 

layout diagram for the model 2 analyses which can be seen in Figure 

9.2Sdepicts HB bogie position lb. 

While under load control BFGS acceleration with line searching was 

employed. When convergence under load control became impossible then 

the SNAP program switched to displacement control with BFCS 

acceleration and line searching. At times of large stiffness change, 

such as when crushing of concrete or yielding of the steel occurred 

then it was necessary to employ the Newton-Raphson technique with line 
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searching while under displacement control. In some instances 

arc-length control was employed although displacement control was 

found to be more efficient for the majority of situations. Under load 

control the increments were sized manually. While under displacement 

or arc-length control the increments were sized automatically. if 

convergence could not be achieved with the initial increment size, 

then the increment was repeated with the increment size cut. For the 

increment sizing algorithms the desired number of increments was 

generally set at between 8 and 12 depending upon the stability of the 

response at a particular section. 

In some instances it was impossible to achieve convergence in an 

increment even with increment cutting. On these occasions engineering 

judgement was used to decide if the increment should be accepted and 

the analysis allowed to continue or whether the section should be 

repeated using a different approach. The out of balance force and the 

displacement norms were inspected. If these indicated that 

iterational procedure had significantly reduced the residual forces 

but a small residual force group (say up to 10% of the applied forces) 

still persisted then the increment was accepted and the next increment 

begun and monitored. If the subsequent increments did not achieve 

convergence then the whole section was repeated. 

Line searches were generally carried out at all times. A definitive 

study of the advantages and effects of including line searches in the 

iterational solution strategy was not carried out. However, the 

analyses described herein indicated that line searches offered 

significantly improved solution convergence. A line search 

convergence factor in the range 0.3 to 0.5 was chosen. 
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The structural stiffness matrix was generally reformed at the 

beginning of each increment, except for the initial increments when 

the response was essentially linear. 

9.3.2.4 Convergence criteria 

A dual convergence criterion was selected for the SNAP analyses of the 

model bridge decks. Convergence was achieved when either a 1% scaled 

force criterion or a 0.01% scaled displacement criterion was 

satisfied. The majority of increments converged on the tight force 

tolerance with few converging on the exceptionally tight displacement 

criterion. When the structural stiffness approached zero and 

convergence on the 1% force tolerance became impossible then the 

scaled force tolerance was slackened to 5% to allow convergence on 

forces to be achieved. 

The difficulty in converging in areas of very low structural stiffness 

was investigated. These investigations indicated that the limitations 

of the static analysis that had been employed were partly responsible 

for the difficulty in converging. The adoption of a pseudo dynamic 

analysis would most probably yield more stable solutions in areas of 

low structural stiffness. A technique similar to Dynamic Relaxation 

may be appropriate. The dynamic structure need not be given accurate 

mass or damping parameters, in fact the mass may even be omitted. The 

adoption of damping terms would help to stabilize the uncontrolled 

oscillations that can occur with a static analysis in areas of low 

structural stiffness. 

9.3.3 Load deflection response 

The load-deflection responses for each analysis are given in Figures 

9.32 and 9.33 for model 1 and Figures 9.34 to 9.36 for model 2. In 

addition to the response of the loaded free edge at mid-span, the 
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response at two other points is also given. For model 1 these are the 

lane 1 to lane 2 boundary and the unloaded free edge at mid-span. For 

model 2 these are mid-width and the unloaded free edge at mid-span. 

9.3.3.1 Model I 

The model 1 load-deflection responses obtained with a9 element mesh 

can be seen in Figure 9.32. An obvious feature of these curves is the 

'bump' that occurs in the analytical curves as the response begins to 

flatten. The cause of these bumps was investigated and while it was 

not possible to form a definitive explanation, the studies indicated 

that the propagation of cracking to areas outside the central zone was 

a major factor. The crack propagation hypothesis is supported by the 

response obtained with a2 segment curve for concrete in tension. The 

2 segment curve has shifted the bump and increased its size. For the 

2 segment analyses, the other parameters were as for the standard data 

analyses. 

From Figure 9.32 it can be seen that all of the analyses are in very 

good agreement with the experimental response up to a load factor of 

1. On the ordinate of these plots is shown the load factor in terms of 

the number of ULS 45 unit HB bogies. Each unit of ULS 45 unit HB 

bogie is equal to 45 units of one HB bogie, as defined by BS5400 Pt 2 

(1978) with a partial safety factor, yfL, of 1.30. The agreement 

indicates that parameters other than material degradation are correct. 

Significant structural cracking begins at a load factor of 1.5. The 

effect of large prestress losses can be seen in this section. Curve 2 

depicts the response with a prestress loss of 50% and it can be seen 

that this results in an excessively flexible structure. The 'bumps' 

in the analytical responses occur at a displacement level of 

approximately 20 to 40 mm in the loaded free edge response. By this 
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stage the program has switched to displacement control. The 'snapping 

back' that could be seen in the response at the lane 1/lane 2 boundary 

with the 50% prestress loss analysis, serves to illustrate the 

problems that could be encountered with an injudiciously chosen 

controlling degree of freedom when under displacement control. For 

all the analyses described here the controlling degree of freedom was 

placed on the free edge adjacent to the HB bogie. If, however, the 

controlling degree of freedom had been placed on the lane l/lane 2 

boundary, severe difficulties could have been encountered. 

In the post bump region the analytical responses follow the 

experimental response closely. However, for all responses except the 

unloaded free edge response, the analytical response begins to drift 

away from the experimental response at higher displacement levels. 

There is very poor agreement for the unloaded free edge response 

during the later stages of the analyses. It will be seen that in the 

experiment, the unloaded free edge began to lift up during the later 

stages of the test. The analytical responses predict a continuing 

slow increase in sagging deflection and there is no indication of the 

'kick back' that is present in the experimental response. Again the 

large prestress losses have a large effect upon the response curve. 

Figure 9.33 depicts the responses obtained with a finer 48 element 

mesh. It will be noticed that the adoption of af iner mesh has 

resulted in a smaller 'bump' which supports the crack propagation 

hypothesis for the formation of the 'bump'. Again the initial part of 

the analytical curves is in good agreement with the experimental data. 

Significant cracking begins at a load factor of approximately 2. 

Cracking is followed by steel yielding as the response moves along the 

plateau. There is little difference between the responses up to a 

displacement level of 120 mm. After this the standard data analysis 
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suddenly drops off, as the prestressing steel ruptures and concrete 

crushes. Curve 4 in Figure 9.33 exhibits a limited drop off at the 

same level. The increased prestress losses and the adoption of a2 

segment curve for concrete in tension has allowed the analytical model 

to redistribute the load, resulting in a limited load drop off. The 

adoption of statistically varied properties. for the analysis depicted 

by curve 5 in Figure 9.33 has resulted in a gradual load reduction and 

not the sudden drop off that was evident with the previous two curves. 

At the high displacement levels which occur at the end of the analyses 

shown in Figure 9.33, the small displacement theory on which the SNAP 

program is based may not be appropriate and an alternative formulation 

should be considered. 

It will be noticed from Figure 9.33 that analysis 3, with 35% 

prestress losses but a3 segment concrete tension curve, was 

terminated at an early stage. Just before termination the load level 

climbed dramatically as the analysis appeared to adopt an alternative 

solution path. The rapid load rise was spread over a number of 

'increments and in these increments convergence was achieved. 

As with the 9 element analyses described earlier, the 48 element 

analyses fail to predict the unloaded free edge response with any 

degree of accuracy. The unloaded free edge response does, however, 

provide an insight into the behaviour of analysis 4. It can be seen 

that the recovery that follows the limited load drop off in the loaded 

free edge response of this analysis, corresponds to a large deflection 

increase at the unloaded free edge. 

9.3.3.2 Hodal 2 

In Figure 9.34 load deflection responses for model 2, which were 

obtained with a9 element mesh, are shown. This figure illustrates 
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the differences that result from the adoption of the fixed and 

rotating crack material models. With the standard data the rotating 

crack model does not accurately predict the experimental response. 

Whilst the fixed crack model results in a very large over strength 

prediction. 

A possible reason for the inability of the rotating crack analysis to 

predict the experimental response can be deduced from Figure 9.34. It 

can be seen that the final loaded free edge analytical displacement is 

approximately 2.33 times the experimental value. The unloaded free 

edge displacement ratio is approximately 7.5. Thus it would appear 

that the analytical models were either too stiff in torsion, thus 

preventing rotation of the mid span section, or too stiff in 

transverse bending. 

Figure 9.35 depicts the analytical load deflection responses obtained 

with a finer 48 element mesh. As with the 9 element mesh responses of 

Figure 9.34, the initial response, up to a load level of approximately 

2, is not accurately predicted. This suggests that either; the 

analytical Young's modulus was in error; or the analytical concrete 

tensile strength was too high; or the prestress losses were too low. 

The response obtained with the standard data (curve 2 of Figure 9.35) 

over predicts the model strength by about 15% however the displacement 

level at which failure of the slab occurs is accurately predicted. 

In the analysis, as in the experiment, the structure was first loaded 

and unloaded with the HB bogie in position la (see Figure 9.25). The 

response for this first loading can be seen in Figure 9.35. When 

compared with the experimental response, it will be noticed that all 

the analyses predict only small residual deflections after unloading 

in position la. This indicates that the 'locked in' strains predicted 
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by the material curves of Figure 9.30 are far less than experimental 

values. The residual deflections may be more realistically predicted 

if the strain at which the tensile unloading curve returns to zero 

stress was increased by a factor of 4 or 5. 

To discover the effects of variations in several modelling parameters, 

further analyses were carried out. Curve 3 of Figure 9.35 depicts the 

response obtained with the concrete tensile strength and Young' s 

modulus reduced by 50% and with the prestress losses increased from 

the calculated 34% to 40%. This analysis produced a smooth response 

which is in better agreement with the experiment, however, the 

predicted failure load is 10% too high. Again the displacement level 

at which failure occurs is accurately predicted. 

The adoption of statistically varied material properties had little 

effect upon the predicted response until the post peak region of the 

response curve was reached. However, the statistically varied 

material properties resulted in a more stable solution path which 

required less computational effort. The falling branches in the 

responses are the result of both steel rupturing and concrete 

crushing. 

It will be noticed, from Figure 9.35, that even though the 

displacement level at failure is accurately predicted for the loaded 

free edge, the corresponding level for the unloaded free edge is 

considerably in excess of the experimental value. This again suggests 

that the analytical model was unable to model either the torsional 

flexibility, or the transverse moment flexibility of the physical 

model. These factors most probably account for the over strength 

predictions of between 10% and 15%. The gaps between adjacent beam 

I TIP_ 
flanges, that weApresent in the experimental models, are not modelled 
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satisfactorily in the biaxial beam approach and in fact the gaps are 

assumed to be filled with concrete. The approach requires refining so 

that the gaps are correctly modelled. This will increase the 

transverse flexibility, which may result in reduced failure loads for 

the model 2 analyses. 

Two further responses are shown in Figure 9.36 with these analyses the 

concrete tensile strength has been set to zero. The first analytical 

curve relates to an analysis with increased prestress losses and a 

reduced E value in addition to zero tensile strength concrete. It can 

be seen that this combination produces a structure which is too 

flexible. The ultimate strength in the analysis is approximately 8% 

above the experimental value. 

The second analytical curve that is shown in Figure 9.36 relates to an 

analysis that used the standard data except that the concrete tensile 

strength was set to zero. It will be seen that this analysis predicts 

a structural flexibility which is similar to that of the experiment. 

However, the ultimate strength is still 10% above that of the 

experiment. It is interesting to note that the analytical unloaded 

free edge displacement is closer to that of the experiment. This 

suggests that this analysis is modelling the transverse behaviour of 

the experimental model more accurately. 

It may be noticed from Figure 9.36 that the locked in deflections, 

after unloading in position la are almost non-existent. This results 

from the zero tensile strength concrete curve that has been adopted 

for these analyses. With this curve the stress returns to zero at a 

zero strain when unloading after cracking. 
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For each model three particular structural states have been selected 

at which comparisons will be conducted. The first of these states is 

located on the ascending portion of the load-deflection curve at 

approximately 80% of the maximum load. The second state is situated 

approximately half way along the plateau in the response curve, 

generally this is close to the experimental maximum load. The third 

structural state is situated at the end of each of the model tests. 

The first comparison level is specified in terms of load while it is 

necessary to specify the other two states in terms of the displacement 

of the loaded free edge at mid-span. Each structural state for 

comparison corresponds to a distinct level as defined in Appendices 

5.3 and 7.2 on the presentation of the experimental results. 

9.3.4 Deflection profiles 

Deflection profiles from the SNAP analyses of the models are shown in 

Figures 9.37 to 9.39 for model 1 and Figures 9.40 to 9.42 for model 2. 

For each load/displacement level at which deflection profiles are 

given, profiles for sections at 3/4' 1/2 and 1/4 span are included. To 

allow an objective assessment to be made, all the deflection profile 

comparions for a particular model have been plotted to the same scale. 

9.3.4.1 Model I deflection profiles 

The first deflection profile comparison that is given is at a load 

factor of 2.7 x ULS 45 unit HB bogies, which is equivalent to level 16 

of Appendix 5.3. From the load-deflection responses of Figure 9.33 it 

can be seen that at a load level of 2.7 the structural response is 

still climbing steeply. There is extensive cracking but the steel is 

only beginning to yield. This profile comparison has been defined at 

a certain load level and therefore, as expected, there is an error in 

the magnitude of the predicted deflections. From the 11, span profile 

comparison, the analjtýical response can be seen to be too rigid. It 
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is difficult to assess the analytical profiles at 3/4 and 1/4 span. 

They do, however, appear to be in reasonable agreement with the 

experiment. 

Figure 9.38 depicts the deflection profiles at a displacement level of 

79 mm which is equivalent to level 21 of Appendix 5.3. It can be seen 

that there is outstanding agreement between the experimental and 

analytical 112 span section profiles. The major deviation occurs at 

the unloaded free edge where the analytical profile overestimates the 

transverse hogging curvature. There is little difference between the 

profiles from each of the different analyses. However, the standard 

data analysis tends to underestimate the deflections in the unloaded 

half of the slab. The restricted number of experimental readings for 

the 314 and 1/4 span sections makes it difficult to assess curvature 

agreement although reasonable agreement is indicated. The analytical 

profiles are generally similar except that reduced deflections in the 

unloaded half of the slab are predicted by the standard data analysis. 

The final model 1 deflection profiles are presented in Figure 9.39 and 

these relate to a displacement level of 137 mm which corresponds to 

level 25 as defined by Appendix 5.3. These experimental readings were 

taken just before the model test was terminated. It can be seen that 

the experimental and analytical 1/2 span profiles are generally in 

good agreement. The major differences occur at the unloaded free edge 

where the experimental profile 'kicks' up but the analytical profile 

remains horizontal. Only minor differences will be noticed between 

each of the analytical profiles. At 3/4 and 1/4 span the magnitude of 

the displacements are under estimated in the analytical predictions by 

approximately 30%. At the end of the experimental test a number of 

displacement transducers had reached the limit of their adjustment and 

were, therefore, removed. This accounts for the single data point 
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that appears on the 114 span profile comparison of this figure. From 

the 3/4 span profile it is not possible to assess the curvature 

agreement between the experimental and analtyical profiles. 

The poor agreement between the profiles for the unloaded free edge 

segment may be a direct consequence of the boundary condition 

arrangement in the analyses. Towards the end of the analyses tensile 

reaction forces were predicted for a number of supports, generally 3 

or 4, at the acute corner end of instrumented support line. Tensile 

reaction forces were not possible in the actual tests. These 

analytical tensile reaction forces most probably held the unloaded 

free edge of the analytical model down, resulting in the differences 

between the profiles for that region. 

9.3.4.2 Model 2 deflection profiles 

Deflection profile comparisons for model 2 can be seen in Figures 9.40 

to 9.42. The first comparison that is presented is at a load factor 

of 5.1 x 45 unit ULS HB bogie which corresponds to level 21 of 

Appendix 7.2. It can be seen that for all but the standard data 

analyses, the displacement magnitudes are predicted with reasonable 

accuracy for all sections. However, even at this stage the 

experimental profile is exhibiting far greater flexibility than those 

of the analyses. 

The second deflection profile comparison, which is shown in Figure 

9.41, depicts the situation at a displacement level of 90 mm. This 

corresponds to level 23 of Appendix 7.2. It can be seen that overall 

agreement is good with indistinguishable differences for the 3/, span 

comparison. From the '/2 span comparison, it can be seen that all the 

analytical profiles are grouped together except for curve 5, which 

corresponds to the analysis with zero tensile strength. Curve 5 gives 
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the best. agreement, however the experimental profile exhibits greater 

flexibility and transverse curvatures. 

x 

Figure 9.42 compares the profiles at a displacement level of 156 mm 

which corresponds to level 25 as defined in Appendix 7.2. It can be 

seen that there is a large difference between the 112 span 

experimental and analytical profiles. It is obvious that the analyses 

have not predicted the transverse flexibility that was present in the 

model. This feature could account for the analytical overstrength 

predictions. The differences can also be seen in the 114 span 

comparison. 

As with model 1 several acute corner supports were seen to lift off in 

the model 2 test. In the analyses, tensile reactions forces were 

predicted in this region, however there is nothing to indicate that 

this feature had a significant effect on either the experimental or 

analytical profiles for model 2. 

9.3.5 Reaction profiles 

Reaction prof ile comparisons can be seen in Figures 9.43 to 9.46 for 

model 1 and Figure 9.47 to 9.50 for model 2. It is not a 

straightforward procedure to compare experimental and analytical 

reaction profiles when the number and location of supports differ. To 

allow a direct comparison all data needs to be processed. For the 

present study the data was reduced to produce equivalent forces per 

unit width. For the experimental data this involved dividing each 

reaction reading by the beam spacing. For the discrete analtyical 

boundary conditions, each 'rea\ction was divided by a uniform 

proportion of the support line width except for the end supports which 

were divided by half this value. For the line support consistent 

boundary conditions, the reactions were divided by a proportion of the 

\ 
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support line width. The proportions were based on the ratio of an 

individual support stiffness to the total support line stiffness. 

To allow an objective assessment of the effects of non-linearity on 

the reaction profile, a linear finite element prediction is included 

on each plot. The profiles for each of the different non-linear 

analyses were generally in close agreement and, therefore, only a 

single characteristic non-linear finite element curve is included on 

each of the plots. To allow a direct comparison between levels, all 

the plots for a particular model are shown to the same scale. All 

distances are given in terms of the width of the slab perpendicular to 

the loaded free edge. On some plots of the experimental reaction 

profiles, tensile reactions are indicated. No tensile reactions were 

permitted in the model tests and the tensile reactions shown on the 

plots are a result of the datum that was chosen for plotting the 

results. The datum for all reaction plots is the structure 

immediately before the application of the HB bogie. 

9.3.5.1 Model 1 reaction profiles 

From the comparison at level 16 for the discrete approach, which is 

shown in Figure 9.43, it can be seen that linear analysis predicts a 

larger obtuse corner force per unit width than the non-linear 

analysis. Thus, even at this stage, significant reaction 

non-linearity is apparent in the analyses. It appears that the 

non-linear analysis is beginning to shed load when compared to the 

linear analysis. The profile resulting from the adoption of 

consistent boundary conditions can be seen in Figure 9.45 for the same 

level. It can be seen that while the obtuse corner force per unit 

width is in good agreement, the non-linear analysis does not predict 

the rapid reduction in the force per unit width that occurs adjacent 

to the obtuse corner. 
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Support reaction profile comparison for level 16, with 2.7OxULS HB. 
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Support reaction profile comparison for level 21, at 79mm. deflection. 
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FIG. 9.43. REACTION PROFILE COMPARISONS FOR MODEL 
USING 'DISCRETE' BOUNDARY CONDITIONS 
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Support reaciion profile comparison for level 16, with 2.7OxULS HB. 
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Support reaction profile comparison for level 21, at '79mm. deflection. 
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FIG. 9.45. REACTION PROFILE COMPARISONS FOR MODEL 1 
USING 'CONSISTENT' BOUNDARY CONDITIONS 
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At level 21, which can be seen in Figure 9.43, for the discrete 

boundary condition approach, the non-linear profile is becoming 

erratic, suggesting significant non-linearity near the supports. The 

analysis predicts the large load attracted by the obtuse corner 

support in the experimental profile. The linear analysis 

significantly over estimates the peak force per unit width that occurs 

at the obtuse corner. It will be noticed that significant tensile 

reaction forces are predicted for the acute corner end of the support 

line. The reaction profile obtained with the consistent boundary 

condition approach for level 21 can be seen in Figure 9.45. It will 

be noticed that the non-linear profile is becoming erratic suggesting 

the onset of significant non-linearity. The non-linear analysis 

profile exhibits rapid load drop off adjacent to the obtuse corner 

whereas the linear analysis predicts a smooth reduction in load away 

from the obtuse corner. The accurate modelling of the profile shape, 

and not just the peak value, is important since it is unlikely that 

average shear stresses would -be calculated from a single reaction 

load. The average forces per unit length can be converted to 

equivalent shear stresses by dividing by the slab depth. Thus at 

level 21 the peak force per unit width is approximately equal to 0.4 

kN/mm. This corresponds to an equivalent shear stress of 2.29 N/=2 

in model 1. 

Reaction prof ile comparisons for level 25 are given in Figures 9.44 

and 9.46. This level corresponds to the final state ok the model 

before the test was terminated. At this level the applied load had 

reduced and thus no linear predictions are included in Figures 9.44 

and 9.46. It will be noticed that at this level, the consistent 

boundary conditions, shown in Figure 9.46, are predicting larger peak 

forces per unit width than the discrete boundary condition analysis of 
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Figure 9.44. Away from the obtuse corner, the non-linear analysis 

predicts the reaction load with reasonable accuracy, however, the 

experimental profile is somewhat oscillatory. Again large tensile 

reactions in the acute corner are predicted by each analysis. 

9.3.5.2 Model 2 reaction profiles 

The first set of comparisons that are presented relate to level 21 as 

defined in Appendix 7.2. While the analytical discrete boundary 

condition profiles of Figure 9.47 show little non-linear influence, 

the consistent boundary condition profiles of Figure 9.49 indicate 

large non-linear effects. For either analysis, the 2/3 of the support 

line which is remote from the obtuse corner, carries very little load. 

The next comparison is carried out at level 23 and is shown in Figures 

9.47 and 9.49. At this level both the discrete and consistent 

non-linear analyses significantly over estimate the peak force per 

unit width in the obtuse corner. At this level the peak experimental 

value is approximately 0.9 kN/mm. This corresponds to a shear stress 

in model 2 of approximately 3.5 N/mm 2, although this is perpendicular 

to the free edge. If transformed to a direction parallel to the 

support line, this is equivalent to 2.7 N/MM2 . An interesting feature 

of the comparisons at this level is the increased load on the third 

experimental support from the left. It may be recalled that during 

the later stages of the test on model 2, the end two beams in the 

obtuse corner were seen to separate from the rest of the model. This 

would result in load being transferred to the third support in from 

the obtuse corner. As with model 1, significant tensile reaction 

forces are predicted in the acute corner. 

The final reaction profile comparisons for model 2 are shown in Figure 

9.48 and 9.50. Again only the non-linear response is shown since this 
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Support reaction profile comparison for levei 21, with 5.1OxULS HB. 
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Support reaction profile comparison for level 21. with 5.1OxULS HB. 
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FIG. 9.49. REACTION PROFILE COMPARISON FOR MODEL 2. 
USING 'CONSISTENT' BOUNDARY CONDITIONS 
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comparison is carried out in the post-peak region of the 

load-deflection curve. By this stage the third support from the left 

has attracted a large proportion of the load away from the obtuse 

corner reaction. This possibly explains the large differences between 

the experimental and analytical predictions for the obtuse corner 

region. 

9.3.6 Reaction lineart 

Reaction linearity comparisons have been presented in Figure 9.51 to 

9.54. The comparison is complex since the number and location of 

supports is different for the experiment and the analysis. For the 

plots shown, the reaction loads have been converted into forces per 

unit width so that a comparison can be made. A method similar to that 

described in the previous section, on the reaction profiles, was used 

to produce the values of force per unit width. Plots are produced for 

the five analytical supports nearest the obtuse corner. For each of 

these supports the closest experimental support is used for 

comparison. 

Figures 9.51 and 9.53 present the variation in the force per unit 

length with respect to the HB load factor. This is a common way to 

present reaction non-linearity plots. This method is satisfactory 

until the plateau and falling branches of the load-deflection response 

are reached, whereupon the plots can become confusing. The detail in 

this area is clarified in Figures 9.52 and 9.54 where the force per 

unit width is plotted against a compound load-displacement level. The 

compound load-displacement level is obtained from c-1.069d + 11.52 

p for model 1 and c-1.069d + 6.20 p for model 2, where d is the 

displacement level and p is the load level. 
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The reaction comparisons for model 1 are shown in Figure 9.51 and 

9.52. It would appear that there is reasonably good agreement between 

the analysis and experiment until high displacement levels are 

reached. At these levels the experimental reaction load in the obtuse 

corner droP3 of suddenly while the analytical support continues to 

attract load. There is little difference between the traces for the 

two non-linear analyses. 

Figures 9.53 and 9.54 depict the behaviour of model 2. It is 

immediately obvious that there is a large error in the predictions for 

the obtuse corner support, number 17. No reason for this large 

discrepancy is apparent, although the slightly different locations for 

the experimental and analytical supports may be a factor. There is 

good agreement for support 16, however, the analysis predicts shedding 

of load for support 15 while the experimental results indicate 

attraction of load. This deviation could be a result of the 

separation of the end two beams that was seen to occur in the test. 

Low forces occur in the final two supports in the comparison and, 

therefore, it is difficult to assess the accuracy of the analytical 

predictions. 

9.3.7 Crack patterns 

A simple way in which the behaviour of a complex three dimensional 

structure, such as a slab, may be assessed, is by monitoring the 

material state changes across the structural domain. With concrete 

this is most effectively achieved through the plotting of crack 

patterns. In addition, the surface analytical crack patterns may be 

compared to the experimental crack patterns that were recorded at the 

time of the model tests. 
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For the crack pattern plats of Figures 9.55 to 9.82 only 'visible' 

cracks have been plotted. The strain at which a crack becomes visible 

is calculated from a specified crack spacing and visible crack width. 

Given the crack strain, ecs at a particular location the plotted crack 

length was calculated from: - 

tcr " 0-0 fc4 tvis 

tcr r) + "c r tmax Evis ( 'c ( 'max 
fmax 

I 

where, 

rWA ratio which was varied to enhance the clarity of 

the plots, set to 0.75 

fmax ' Maximum strain for a particular set of plots 

tmax - Maximum permitted length of plotted crack for the 

particular mesh 

tcr - Plotted crack length 

tvis - Strain at which cracks become visible 

If a crack is closing then this is indicated by the use of a dashed 

line for the plotted crack. Areas of crushing are indicated by wavy 

lines which are drawn perpendicular to the compressive strain. Again 

the length of the wavy line indicates the magnitude of the crushing 

strain, in a similar way to the length of the plotted cracks. 

For each model a typical non-linear analysis has been selected. For 

each selected analysis a set of crack patterns have been plotted for 

the three different structural states used in the deflection profile 

and reaction profile comparisons of the previous sections. 
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9.3.7.1 Model I crack patterns 

The analysis chosen for presentation in the model 1 crack pattern 

plots corresponds to curve 5 in the load-deflection plots of Figure 

9.33. This analysis featured increased prestress losses from 20% to 

35%, a2 segment curve for concrete in tension and statistically 

varied material properties. This analysis gave good agreement with 

the experimental load-deflection response. 

The first level presented is at an applied load of 2.7 x ULS 45 unit 

HB bogies. This level corresponds to level 16 of Appendix 5.3. 

Figures 9.55 to 9.57 depict the crack patterns for each of the five 

through depth layers in the insitu concrete. Figures 9.58 to 9.60 

illustrate the crack patterns in the precast concrete. For the insitu 

top layer no cracking or crushing is indicated, see Figure 9.55. From 

Figure 9.56 it can be seen that the first cracks are indicated in 

layer 3 of the insitu concrete. These cracks appear to be forming a 

line between the HB bogie and the unloaded acute corner. For the 

insitu bottom layer increased cracking and even some closing cracks, 

which are indicated by dashed lines, are evident. From the titling on 

these plot; it can be seen that the cracks are plotted with respect to 

a maximum strain of 4880 pe. The through depth location of each of 

the insitu and precast layers can be obtained from Figure 9.11, which 

defines the through depth integration scheme. 

The precast concrete cracking plots which are shown in Figure 9.58 to 

9.60 are similar to those of the insitu concrete. Considering the 

presence of prestress in the precast concrete, this similarity may 

seem surprising. One of the reasons for this similarity can be 

illustrated by looking at the initial prestrain in the precast beams. 

In Chapter 10 Section 10.2.6 it is deduced that the residual prestress 

in the precast concrete at the time of model 1 testing was 
I 
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approximately 10.42 N/mm2. Assuming a Young's modulus of 35800 NIMM 2 

for the precast concrete this equates to a prestrain of 291 Ae. 

Cracking strains of approximately 4500 jAe are indicated in Figure 

9.60. This relatively large magnitude is thought to be the cause of 

the similarity between the principal strain directions. 

The second set of crack pattern plots relate to a displacement level 

of 79 mm and correspond to level 21 of Appendix 5.3. The top surface 

crack pattern plot of Figure 9.61 agrees well with the experimental 

crack pattern that can be seen in Figure 5.9 Chapter 5. It can be seen 

that an area of crushing is developing in the vicinity of the HB 

Bogie. The analytical soffit crack pattern plot of Figure 9.62 agrees 

reasonably well with the experimental plot of Figure 5.8 of Chapter 5, 

except that the analytical cracking is more intense. It is 

interesting to note in this figure that the cracks on the unloaded 

side of the slab are closing. This suggests that a yield line at 

mid-span was trying to form, but was superceded by an alternative 

pattern such as aY shaped mode. 

The final crack pattern plots for model 1 relate to a displacement 

level of 137 mm and correspond to level 25 of Appendix 5.3. From- the 

top surface plot it can be seen that the area of concrete crushing has 

become very extensive and concrete compressive strains of up to 30000 

Ae are indicated for the area adjacent to the HB Bogie. The cracking 

pattern on the top surface is largely the same as the previous level. 

Cracking through the depth is very intense with many doubly cracked 

points indicated. From the soffit crack pattern plot of Figure 9.68, 

it can be seen that the largest cracking strains are concentrated near 

to the HB Bogie. Closing cracks are indicated both along the loaded 

free edge and towards the unloaded free edge. 
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SNAP analysis of model deck 1,48 element mesh. 
Date : 111/ 8/81' at 1: 50: 7 Concrete cracking & crush: ng pattern plots. 

Plot for in-situ concrete bottom layer. 
Geometrical Scale Factor 30 . 99 

Stage : 3/ 8 Strain Scale, . -i88E -2 

II 

/ 001 
ooo, e. ý 

FIG. 9.57. CRACKING/CRUSHING PATTERN PLOT FOR MODEL I AT LEVEL 16. WITH AN APPLIED 
LOAD LEVEL OF 2-7 

SNAP analysis of model deck 1,48 element mesh. 
Date : 111/ 8/87 at 1: 50: 7 Concrete cracking & crushing pcttern plots. 

Stage : -., / 3 

11 . JO. 99 

FIG-9.58. CRACKING/CRUSHING PATTERN PLOT FOR MODEL I AT LEVEL 16, WITH AN APPLIED 
LOAD LEVEL OF 2-7 

Rot for precast concrete top layer. 
Geometrical Scale Fcctor 
Strain Scale, . 488E: -2 
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SNAP anclysis of model deck 1,48 element mesh. 
Date : 11/ 8/87 at 1: 50: 7 Concrete cracking & crush: ng pattern piots. 

Plot for precast concrete bottom layer. 
Geometrical Sco, e Fcctor 30 . 99 

8 Strain Scale, . 488E -2 Stage :2 
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FIG 9.60. CRACK ING/CRUSHI NG PATTERN PLOT FOR MODEL 1 AT LEVEL 16, WITH AN APPLIED 

LOAD LEVEL OF 2-7 

S14AP analysis of modei deck 1,48 element rnesh. 
Octe : 11/ 8/87 at 1: 53: 7 Concrete crack: ng & crushing pcttern plots. 

Piot for in-situ concrete top Iloyer. 
Geometrical Scale Factor 30.99 

Stage : 3/ G4 Strain Scale, . 43 30E -I 

XX 
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FIG. 9 61. CRACK ING/CRUSHING PATTERN PLOTS FOR MODEL i AT LEVEL 21, WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 79mm 
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9.3.7.2 Model 2 crack patterns 

The analysis chosen for presentation of the model 2 crack pattern 

plots corresponds to curve 2 in Figure 9.35. The first level is 

specified in terms of a load of 5.1 x ULS 45 unit HB Bogies and the 

plots pertaining to level 21 can be seen in Figures 9.69 to 9.74. 

From the insitu top layer plot of Figure 9.69, limited cracking is 

indicated for the area adjacent to the loaded obtuse corner. Further 

down the depth, it is shown that the main cracks are concentrated at 

mid-span and are orientated approximately parallel to the supports. 

The precast concrete plots of Figures 9.72 to 9.74 are similar to 

those in the insitu concrete. One or two isolated closing cracks are 

indicated on the soffit crack pattern plot of Figure 9.74. 

Top surface and soffit crack patterns are presented in Figures 9.75 

and 9.76 for level 23, which is defined at a displacement level of 90 

MM. By this stage the top surface crack pattern has become very 

extensive covering half the slab area. When compared with the 

experimental crack plot of Figure 7.8 of Chapter 7, it will be seen 

that there is good agreement for the crack located towards the 

instrumented support line, see Figure 9.75. While cracks are shown on 

the experimental plot for the far side of the slab, surprisingly, no 

cracks are indicated in the analytical plot. On the analytical plot, 

crushing is developing along a band across the slab at mid-span. The 

analytical soffit crack pattern plot of Figure 9.76 indicates 

extensive cracking over most of the slab except for the loaded acute 

corner. Comparison of this plot with the experimental crack pattern 

plot of Figure 7.9 of Chapter 7 reveals good agreement for the crack 

orientations. In Figure 9.76 a group of cracks close to the HB Bogie 

are shown to be closing. 
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SNAP analysis of model deck 1,48 element mesh. 
Date : 11/ 8/87 at 1: 53: 7 Concrete cracking & crushing pattern plots. 

P ýot for precast conc. rete bottom layer. 
Geometrical Scale Factor 20.99 

Stage . 0/ G4 Strain Scale. ., QOE -1 
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FIG. 9 62. CRACKING/CRUSHING PATTERN PLOTS FOR MODEL I AT LEVEL 21, WITH A LOADED FREE', 
EDGE DISPLACEMENT LEVEL OF 79mm 

S14AP cnaiysis of model deck 1,48 eiement mesh. 
Dcte : 11/ 8/81' at 1: 57: 22 Concrete crackling & crushing pattern plots. 

Piot for in-situ concrete top layer. 
Geometrical Sccle Fcctor 30 . 99 

Stage 3/ 96 Strain Scoie, . 94 1E -- 11 
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FIG 9.63. CRACK ING/CRUSHI NO PATTERN PLOTS FOR * MODEL 1 AT LEVEL 2S. WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 137mm 
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SNAP anclysis of model deck 1,48 element mesh. 
Date : 111/ 8/87 at 1: 57: 22 Concrete cracking & crushing pcttern plots. 

Rot for in-s*-tu concrete bottom Icyer. 
Geometricc, Scale Factor '10.99 

Stage 31/ 96 Stro*, n Scale, . 9-iIE -1 
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FIG 9.65. CRACKING/CRUSHING PATTERN PLOTS FOR MODEL I AT LEVEL 25. WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 137mm 

SNAP analysis of model deck 1,48 element mesh. 
Date : 11/ 8/87 at 1: 57: 22 Concrete cracking & crushing pcttern plots. 

Plot for precast concrete top Icyer. 
Geornetriccl Scale Factor 30.99 

Stage : 3/ 96 St, roin Sccle, . 941E -1 
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FIG 9 66. CRACKING/CRUSHiNG PATTERN PLOTS FOR MODEL' 1 AT LEVEL 25. WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 137mm 
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The final set of crack pattern plots for model 2 are shown in Figures 

9.77 to 9.82. These figures depict the situation with a displacement 

of 156 mm, and this corresponds to level 25 of Appendix 7.2. By this 

stage some of the prestressing tendons have ruptured, resulting in a 

reduction of the applied load. This load reduction has caused the 

strains to localise and the majority of cracks have begun to close. 

From the top surface crack pattern to Figure 9.77 it can be seen that 

almost all of the cracks are closing. The area of crushing now covers 

the complete model width. Looking through the depth it can be seen 

that the only active material is located in a narrow band at midspan, 

which stretches across the full width of the slab. From the soffit 

crack pattern it is clear that the slab is failing through the 

formation of a yield line at midspan. This was predicted by the yield 

line analyses of Appendix 9.1 but was not apparent in the actual test. 
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SNAP analysis of. model deck 1,48 element mesh. 
Date : 11/ 8/87 at 1: 5 71: 22 Concrete cracking & crushing pattern plots. 

Plot for precast concrete bottom Icyer. 
Geometrical Scale Factor 30.99 

Stage : '30/ 96 Strain Scc; e, . 9-ilE -1 
N 
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FIG. 9.68.. CRACKING/CRUSHING PATTERN PLOTS FOR MODEL 1 AT LEVEL 25, WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 137mm 

SNAP analysis of model deck 2,48 element mesh. 
[)ate : 11/ 8/87 at 23: 4: 11 Concrete cracking & crushing pattern plots. 

Plot for in-situ concrete top layer. 
Geometrical Scale Factor 26.23 

Stage 1/ 27 Strain Scale, . 629E -2 

F12- -9-69- 
CRACK I NG/CRUSHI NG PATTERN PLOTS FOR MODEL 2 AT LEVEL 21. WITH AN APPLIED 

LOAD LEVEL OF S. I 
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SNAP analysis of model deck 2,48 element mesh. 
Date : 11/ 8/87 at 23: 4: 11 Concrete cracking & crushing pattern plots. 

Plot for in-situ concrete bottom layer. 
Geometrical Scale Factor 26.23 

Stage i/ 27 Strain Scale, . 62SE-2 

. oo 

'00, 

FIG -9.71. CRACKING/CRUSHING PATTERN PLOTS FOR MODEL 2 AT LEVEL 21, WITH AN APPLIED 
LOAD LEVEL OF 5.1 

SNAP analysis of model deck 2,48 element mesh. 
Date : 11 / 8/87 at 23: 4: 11 Concrete cracking & crushing pattern plots. 

Plot for precast concrete top layer. 
Geometrical Scale Factor 2G. 23 

Stage 1/ 27 Strain Scale, . 629E -2 

FIG. 9.72. CRACKING/CRUSHING PATTERN PLOTS FOR MODEL 2 AT LEVEL 21, WITH AN APPLIED 
LOAD LEVEL OF 5.1 
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SNAP analysis of model deck 2,48 element mesh. 
Date : 11/ 8/87 at 23: 4: 11 Concrete cracking & crushing pattern plots. 

Plot for precast concrete bottom layer. 
Geometrical Scale Factor 26.23 

Stage 1/ 27 Strain Scale, . 629E -2 
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FIG-9.71.. CRACKING/ CRUSH ING PATTERN PLOTS FOR MODEL 2 AT LEVEL 21. WITH AN APPLIED. 
LOAD LEVEL OF 5.1 

SNAP analysis of model deck 2,48 element mesh. 
Date 7/ 8/87 ct 9: 34: 58 Concrete cracking & crushing pattern plots. 

Plot for in-situ concrete top ! oyer. 
Geometrical Scale Factor 26.23 

Stage 4/106 Strain Scale, . 326E -1 
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FIG 9.75. CRACK ING/CRUSH ING PATTERN PLOTS FOR MODEL 2 AT LEVEL 23, WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 90mm 



PAG ; 

NUlVI RIN-G 

AS ORIGINAL 



209 

- mesh. SNAP cnaiysis of model deck 2,48 element 
[)ate 7/ 8/87 at 9: 34: 58 Concrete cracking & crushing pattern plots. 

Plot for precast concrete bottom layer. 
Geometrical Sccle Factor 26.23P 

Stage i/IOG Stroin Sccle. . 326E -1 
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FIG 9.76. CRACKING/CRUSHING PATTERN PLOTS FOR MODEL 2 AT LEVEL 23. WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 90mm 

SNAP anciysis of model deck 2,48 eiement mesh. 
()Ctc : 11/ 8/81 at 1: 44: 56 Concrete cracking & c, rusning pattern plots. 

Plot for in-situ concrete top layer. 
Geometrical Sccie Factor 26.23 

Stage -1 /158 Strain Sccie, .I i3E 0 
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FIG 9.77. CRACK ING/CRUSHI NG PATTERN PLOTS FOR MODEL 2 AT LEVEL 25, WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 156mm 
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SNAP cnalysis of modei deck 2,48 eiemeni mesh. 
Date : 11/ 8/87 at 1: 44: 56 Concrete crack-Ing & c. rushing pattern plots. 

Plot for in-situ concrete bottom layer. 
Geometricali Scale Factor 26.2'. 3o 

stage -1/158 Strain Scale. .1 43E 0 
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FIG. 9.79. CRACK I NG/CRUSHING PATTERN PLOTS FOR MODEL 2 AT LEVEL 25, WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 156mm 

SNAP anaiysis of model deck 2,48 element mesh. 
[)ate : 11/ 8/87 at 1: 44: 56 Concrete cracking & crushing pattern plots. 

Plot for precast concrete top layer. 
Geometrical Scale Factor 26.23 
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FIG 9- 80, CRACKING/CRUSHING PATTERN PLOTS FOR MODEL 2 AT LEVEL 25, WITH A LOADED FREE 
EDGE DISPLACEMENT LEVEL OF 156rnm 
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10. 'NFES' PROGRAM ANALYSES 

Analyses of model 1 were carried out using a finite element analysis 

program that has been developed by Dr M. A. Crisfield of the Transport 

and Road Research Laboratory, Crowthorne. The program, called NFES 

(Non-linear Finite Element System) is a general purpose system 

encompassing 3-D elements as well as plates and shells. There are 

three plate bending elements available in the system to which one of 

the material models may be assigned. With the NFES program a full 

range analysis of a program is carried out as a set of discrete runs. 

Each run restarts from the end of a previous run, in a similar way to 

the SNAP program. 

The construction sequence was modelled through an option in the NFES 

program which allowed the swapping of material incremental 

stress-strain curves between runs. In essence the first run was used 

to apply prestress and deck self-weight to the beams, while the second 

run was used to apply the UDL live loading to the complete composite 

structure. The runs from the third onwards were used to apply the HB 

bogie loading in an incremental manner to the complete structure to 

cause collapse. For the first run the in-situ concrete was given a low 

'E' value of 10.0 N/mm 2 (compared with a full 'EI of 30 000 N/MM2), 

thus for týe first run the in-sittf concrete effectively did not exist 

and was thus unstressed. An incremental approach to the stress-strain 

relationships allowed a smooth transition to the second stage when the 

in-situ concrete was given its full properties. 
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10.1 Finite element modellin 

10.1.1 Element 

The element selected for the analysis of model 1 was developed by 

Crisfield' and is known as a Discrete -Kirchhoff element although a 

more exact title may be 'A Four-Noded Thin Plate Bending Element Using 

Shear Constraints'. 

This element uses various constraints on the shear deformation in 

order to reduce the number of elemental dof while also avoiding 

element locking and zero energy modes which often occur with 

contemporary Mindlin plate bending elements. The basis for the 

formulation is a9 noded quadilateral element with initially 3 dof (w, 
I 

Ox and Oy) at each node. The result of applying the constraints is 

that some of the dof are removed, namely w, Ox and 0y at all mid-side 

nodes as well as the 9th node. Thus 12 of the original 27 dof remain 

and one would expect 15 constraints. In essence the formulation uses 

three types of constraint, namely: - 

1. The transverse shear strains tangential to an element edge are 

constrained to zero at Causs points located at i 1/3 43 along that 

edge (8 constraints) 

2. The rotation normal to an element edge is constrained to vary 

linearly along that edge (4 constraints) 

The transverse shear strains tangential to each of the element 

centre-lines are constrained to zero at Gauss points located at 

±1/3 J3 along each centre-line (4 constraints) 

It will be noticed that 16 constraints are listed above thus an 

ambiguity arises over Aw. (constraint 3), see Figure/0.1, the Aw dof 

at the 9th node. This problem is overcome by noting that Aw. does not 



217 

node remaining 
type 

I 
dof 

constrained 
dof 

wi ex% ey 

x 

13 

, &wl AEý40 

Aox, ABY 

374 

FIG. 10-1. CONSTRAINED DOF FOR DISCRETE- KIRCHOFF PLATE 

BENDING FINITE ELMENT, 

lomm 

Eý 

a 
E 
E 
Go I 

51mm 40mm 

FIG. 10.2. IDEALISATION OF MODEL 1 PRECAST BEAMS FOR 
TORSIONAL STIFFNESS CALCULATION 

1 

No 
E 

1 



21d 

feature in the bending strain energy and as the shear strain energy is 

assumed to be effectively zero for this element, then Aw. can be set 

to zero. 

10.1.2 Prestressed bean modellin 

For the analysis of the composite model the Discrete-Kirchhoff element 

was used for in-situ concrete which was modelled as a plate. The 

prestressed beams were modelled as ribs attached to the plate. Even 

though each prestressed beam is a discrete unit the large number (22 

in model 1) allowed the ribs to be smeared across the complete plan 

area of the plate mesh, similar in concept to the treatment of 

reinforcing steel in a normal reinforced concrete analysis. This 

approach is similar to that employed by the SNAP program, which is 

fully described in Chapter 8. Therefore, only the differences between 

the two approaches will be detailed here. 

At each plan integration station, a through depth integration is 

carried out for the plate in the normal way. This yields stress 

resultant components for the direct and shear stresses in the plate. 

A second through depth integration is then carried out for the beam. 

In the beam integration only the direct stresses along the axis of the 

beams are evaluated. 

The torsional stiffness of the beams is then considered. This is 

calculated as a linear quantity which is never degraded and its 

evaluation requires the twisting rotation along the beam axis. 

The torsional stiffness is given by: - 

Tn ý 
GJ dO t, where n and t define the beam local coordinates 

dn 
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The twisting rotation is obtained from (using tensor notation): - 

don don 
cose sinO' 

dOx dOx' 
cose -sinO' 

dn fit 

dOt d8t 
-sinO cose 

dx dy 

dO y dO y sinO coso 
dn dt] dx -dy] 

where the curvatures are given by: - 

9ý 
dOx 

, Icy . 
dOy 

, Kxy . 
dOx 

+ 
dOy 

X dy dy dx 

Multiplying out for dO t and 
On 

we obtain 
dn dt 

dOt dO 
x sinO cosO - 

dO X sin 20 + 
dO Y Cos 20 + 

dO Y cosO sinO 
dn dx dy dx dy 

don dO x sinO cosO + 
dO x Cos 20 . 

dO Y sin 20 + 
dO Y sinO coso 

dt dx dy dx dy 

now 
don 

+ 
dO t- 2sinO cosO (LOy _ 

LOx) 
+ (dOx + 

d'y)(cos2o 
. sin 20) 

dt dn dy dx dy dx 

and 
d On 

_ 
dOt 

. 
dO 

x Cos 28 _ 
dO 

Y sin 20 + 
dO 

x sin 20 
. 

dO 
y Cos 20 

dt dn dy dx dy dx 

dOx 
. 

dO y 
dy dx 

Hence d8t 
_ 

[don + 
dO don dO 

dnt] dt dn Tn- dt 
ti 

2 

The strain displacement matrix (B] for the element is modified to 

include one extra term: - 

[EI - [BI [ul 
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where (u] - vector of displacements (12 dof) 

[B] - strain displacement matrix (4 x 12) 

[e] - strain vector 

where lel - dOx 

dx 

dO y 
Ty- 

dOx 
+ 

dO y 
dy dx 

dOx 
_ 

dO 
ýiy- a 

10.1.3 Finite element zmesh geomet 

As mentioned earlier, during the 'wet' stage (i. e. during the initial 

prestressing and casting stages) the in-situ plate concrete was 

modelled as a material of very high strength and very low stiffness. 

However, this method led to severe problems with the boundary 

conditions. The Discrete -Kirchhoff element does not have a 'wI 

(vertical) degree of freedom at its midside nodes, therefore the 

analytical mesh could only be constrained at element corner nodes in 

the IwI direction along a supported edge. This would not have been a 

problem if the plate had possessed realistic properties from the 

beginning of the analysis. Even though there is no explicit 1w, degree 

of freedom at the element mid-side nodes it is nevertheless still 

there, but is constrained to only move in modes dictated by the 

explicit degrees of freedom. 

With the elemental corner nodes restrained and 'wet' plate concrete 

the analytical model sagged dramatically between the 'wI restraints. 

This was due to the very low transverse bending stiffness. This 

phenomenon can be overcome by restraining the tangential rotations 

a 
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along a supported edge with preferably an elastic stiffness. However, 

only the less preferable method of restraining these rotations to zero 

was available. Due to the skewness of the deck, the supported edges 

did not lie in a Cartesian direction, as the preferred analytical 

model oriented the free edges in the Cartesian x direction. Therefore 

it was necessary to re-orientate the mesh with the supported edges 

aligned in the Cartesian x direction, this can be seen in Figure 10.3. 

In reality, the model deck was supported on flexible 'elastomeric' 

type supports and hence it would have been desirable to also support 

the analytical model on flexible restraints. However, there was no 

simple method for doing this in the NFES program. Therefore, after 

considering the constraints of time, the anticipated errors arising 

from the use of fixed supports and the errors expected from other 

analytical modelling approximations it was decided to use fixed 1w' 

restraints for the NFES program analysis. 

10.1.4 Material model 

Of the material models that were available in the NFES program for the 

in-situ concrete of the plate, the one most suitable for our 

application treated the plate as multi-layered in the conventional 

manner. Each layer was assumed to be in plane-stress and was treated 

as a bi-axial material orientated in the Cartesian directions until 

after cracking when the orientation changed to the fixed crack 

directions. The stress-strain relationships were applied in an 

incremental fashion. For the compression-compression quadrant of the 

stress space the material behaviour was governed by the Von-Mises 

yield criterion combined with a multi-linear stress-strain curve, see 

Figure 10.4. For the tension-tension quadrant of the stress space the 

in-situ concrete was treated as either bi-linear or tri-linear. After 

cracking the incremental Poisson's ratio was set to zero also the 
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incremental in-plane shear modulus was reduced to 10% of its initial 

value. The effects of adopting an incremental approach to the 

stress-strain relationships is only really apparent with the Poisson's 

ratio effect. As the approach is incremental then even though 

Poisson's ratio is set to zero after cracking there will still be 

locked in Poisson strains from the increments before cracking. 

However, there will not be the same effect from the shear modulus 

since before cracking the material is isotropic and hence at the onset 

of cracking there will be no shear strain in the crack directions. 

During the progress of the project a multi-layered rotating 

crack-model was also incorporated into the prcgram. In a similar 

fashion to the fixed crack model above, each layer was assumed to be 

in plane-stress, however, for this model the material properties were 

assumed to rotate with the principal strain directions, also the 

stress-strain relationships were treated in a total and not 

incremental fashion. 

The prestressing and reinforcing steels were modelled as elastic 

multi-linear uniaxial materials, the stress-strain curves for these 

can be seen in Figure 10.5. 

The prestressed concrete in the beams or 'ribs' was modelled as a 

uniaxial version of the plate material model although the multi-linear 

stress-strain curves were of different shapes to account for the 

different strength and ductility of the two concretes. The adopted 

stress-strain curves can be seen in Figure 10.4. 

10.1.5 Through depth integratio 

In a similar fashion to the SNAP program the effectively interlaced 

nature of the precast and insitu concretes was modelled by 
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modification of the through depth integration scheme. Five 

integration stations were chosen for the plate (in-situ) concrete and 

5 for the rib (precast) concrete making a total of 10 through depth 

integration stations. The integration schemes are shown in Figures 

10.6 and 10.7 while the numerical details are the same as those given 

for the SNAP program in Chapter 9. 

10.1.6 Bean torsional stiffness 

In the NFES analysis the prestressed beams were modelled as uniaxial 

elements with only the strain in the direction of the beams being 

considered, however, as mentioned earlier there was also a linear 

rotary torsional stiffness associated with the beams. The value of 

the torsional rigidity was calculated on the basis of equivalent 

2,3 rectangles 

With reference to Figure 

51 
_ 1.342 -. K, - 0.1802 

38 

. -. J, m 0.1802 x 51 x3 83 - 504.29 X 103 MM4 

B2m 153 
_ 3.825 Km0.279 2 

D2 40 

12-0.279 x 153 x 403 - 2.73 x 106 MM4 

B3m 21 
. 2.1 K3 - 0.234 

D3 10 

J3 m 0.234 x 21 x 103 - 4914 MM4 

JT - 2.73 x 106 + (4914 + 504.29 x 103) 2 

- 3.748 x 106 MM4 
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GJ is given by, assuming E- 35800 N/MM2 and P-0.15: - 

GJ 
35800 3.748 x 106 - 58.34 x 109 NMM2 

2(1+0.15) 

10.1.7 Finite element mesh 

Af inite element mesh with 3 elements in both the longitudinal and 

transverse directions was chosen for the initial analytical runs. Even 

though a mesh as coarse as 3x3 would not be expected to yield 

accurate results, it was useful for debugging the data and appraising 

different modelling strategies. Thus the increased resource 

requirements of the finer meshes would only be required for the final 

production runs. The limited amount of computing power that was 

available at the TRRL was also a constraint upon the fineness of mesh 

that could realistically be considered. A plot of the initial 3x3 

mesh can be seen in Figure 10.3, the location of the HB bogie can also 

be seen on this Figure. 

The constraint of time only allowed the most promising modelling 

strategy to be analysed with the finer 8x6 mesh although a number of 

modelling strategies were investigated with the coarse 3x3 mesh. It 

was desired to plot load-deflection graphs for the mid-point of the 

free edge nearest the HB Bogie to allow direct comparison with the 

experimental results. However, no vertical dof is present at the 

mid-point node with the Discrete-Kirchhoff element formulation for the 

3x3 mesh. Therefore, a displacement combination incorporating all 

three plate bending dofs at the 2 adjacent nodes was formulated to 

predict the mid-span deflection. The free edge deflection profiles 

obtained from the 3x3 mesh using the prediction equation are 

compared against the free edge deflection profiles obtained from the 8 

x6 mesh in Figure 10.8. 
k 
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10.1.8 Loadin 

The model decks had been constructed to a scale of 1: 3.5 therefore the 

finite element analyses were carried out at 1: 3.5, i. e. at model full 

size. Consequently, the load intensities given in BS5400 (1978) Part 

2 had to be scaled before input to the finite element analysis, Table 

10.1 lists the finite element load intensities and the appropriate 

partial safety factors, -yfL, that were used. 

The precast self weight and in-situ self-weight were applied at the 

'wet' stage, i. e. with low stiffness, high strength plate concrete. 

The density correction loading was either applied at the 'wet' stage 

or at the cured 'hard' stage, i. e. normal stiffness and strength plate 

concrete. The super-imposed dead loading and the HA UDL loading was 

applied at the 'hard, stage and finally the HB load intensity was 

incrementally increased until failure. The location of each of the 

eight wheels of the HB bogie can be seen in the finite element mesh 

plot of Figure 10.3. 

10.2 Finite element analyses 

A number of different analyses were carried out upon the 9 element 

idealisation of model 1. Each of these analyses formed 'a series' of 

runs varying one or more of the factors in the finite element 

modelling of the problem, such as different loading, different 

stress-strain curves, etc. Each analytical series consisted of a 

number of individual runs and restarted runs so that the complete 

structural response could be traced for each 'series'. The base 

series of runs is known as the IV series' and examples of other series 

are the 'X series', IY series' and 'Z series'. 

The load deflection plots for the 3x3 mesh finite element analyses 

can be seen in Figure 10.10. The traces refer to the HB bogie load 
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and the deflection of the mid-point of the free edge adjacent to the 

HB bogie, node 22 in Figure 10.3. However, besides the HB bogie load 

there was also 257 x 103 N of fixed UDL loading representing the model 

self-weight density correction, super-imposed dead loading and HA UDL 

loading. 

Initially, the analytical load application was arranged to follow that 

of the model test as closely as possible with the density correction 

UDL load being applied to the cured model structure. However, it was 

soon discovered that this philosophy led to severe difficulties with 

the material model. Under the density correction loading the cured 

in-situ concrete in the model analysis cracked with the fixed cracks 

predominantly aligned parallel to the supported edges, this can be 

seen in Figure 10.12. Although the plot shown in Figure 10.12 was 

obtained from the 8x6 mesh analysis. Subsequently, under the HB 

bogie loading the principal strain and stress directions rotated 

through angles of approximately 30' to 40" causing the fixed crack 

model such severe difficulties that it was not possible to continue 

. with the analysis. This problem was overcome by applying the density 

correction at the 'wet' stage, that is with low stiffness plate 

concrete. Thus the whole density correction loading was carried by 

the prestressed beams alone and hence there was no cracking in the 

analytical model until the HB bogie load was applied. The crack 

pattern resulting from this modified load application can be seen in 

Figure 10.13, for which the load intensity is 1.0 x ULS HB (1.0 x ULS 

HB can be taken as 45 units of one BS5400 HB bogie at a scale factor 

of 1: 3.5 with a partial safety factor, , yfL, of 1.3). During the 

subsequent analysis to failure there was a change in the principal 

angle as the effects of the concentrated regime of the HB bogie load 

became more influential than the UDL loading regimes of the HA and 



231 

LO (S) Lr) 0 Ln 0 X I- Itr mmNN 

@SaT608 8H s-in jo . 4aqwnN 

Ll J 

4) 

CL) 

go 

CD 

>< 

E 

0 
-4 
41 u 

(L 

P4 

OD 

(D 

I- 

"i-IS) 
0 

w z 

z 0 
z 
(I) 
w Li 
z 
w 
= I- 

0 
z 
In 

-j w 
0 
0 
m 

cr. 
0 
U- 

w 
(A 
z 
0 
CL 
Ln w cr. 
z 0 

w 
-j U- w 

0 

w 
L) 25 
w cr CL 

'7 
LD 
a: 

cr. 
C) 

CL 

z 
w 
m 
w 
-i w 

w 

z 
IL 



232 

superimposed dead loadings. However these rotations were small and 

did not cause the fixed crack material model any serious problems. 

The three segment stress-strain curve shown in Figure 10.4 was 

initially chosen to represent the tensile behaviour of the concrete. 

However severe numerical problems were encountered in region A of the 

load deflection curve in Figure 10.10 it was suspected that the 

steepness of the second segment in the tensile stress-strain curve was 

responsible. The numerical effects of different tensile stress-strain 

curves will be discussed later. To overcome these numerical 

difficulties the use of the 2 segment tensile stress-strain curve 

shown in Figure 10.4 was investigated. The various analyses can be 

identified from: - 

V series - Density correction load applied to cured slab, 3 segment 

tensile stress-strain curve. 

X series - Density correction load applied at 'wet' stage, 2 

segment tensile stress-strain curve. 

Y series - Density correction load applied to cured slab, 2 segment 

tensile stress-strain curve. 

Z series - Density correction load applied at 'wet' stage, 3 segment 

tensile stress-strain curve. 

From the general shape of the load-deflection curves of Figure 10.10 

it can be seen that the stiffness of the analytical model is slightly 

less than that of the actual model stiffness at any load level, before 

the onset of significant non-linearities, at approximately 1.5 * the 

ULS HB load level. The reduced stiffness is apparent in the 

analytical response up until the maximum experimental load is 

attained. The stiffness of the experimental model then becomes 
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negative; whereas the analytical model maintains an approximately 

constant posLtLve stLffness. 

For an explanation of these observations, one must look at the finite 

element modelling in detail. The torsional stiffness of a homogeneous 

isotropic plate for a section width equal to one precast beam is given 

by: - 

GJ Ed 3bEI 
where b, - width 

6(1+p, ) 2(1+r) of 1 beam - 145 mm 

However because of the intertwined nature of the in-situ and precast 

concretes GJt - GJi + GJ P; where t- total, i- in-situ, p- precast. 

GJi is determined by the integration through depth and is a function 

of the position and volume of the insitu concrete. The volume of 

in-situ concrete is less than that of an isotropic plate and is also 

distributed through the depth in a non-uniform way. This is reflected 

in the special integration scheme that has been adopted, see Figure 

10.7. The value of GJi given 
. 
by this integration scheme for E- 27750 

N/=2, P. 0.15,1 1- 30.39 x 106 MM4 is GJi - 366.7 x 109 N=2. The 

torsional stiffness of an isotropic plate of equivalent thickness for 

E- 27750 N/MM2' v-0.15,1 -. 63.66 x 106 NmM2 is CJ - 768.0 x 109 

Nmm 2. The torsional stiffness adopted for the precast beams based 

upon the assumption that they act independently of the plate, see 

Section 10.1.6, is GJ P- 
58.34 x 109 NMM2. 

Therefore the ratio the composite plate torsional stiffness to the 

torsional stiffness of an isotropic plate of equivalent thickness is 

m 
366.7 x 109 + 58.3 x 109 

- 0.553, ' 
768.0 x 10' 
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Therefore, it can be seen that there will be a 45% loss in torsional 

stiffness for the uncracked case. The ratio of the precast linear 

torsional stiffness to its equivalent 'fully composite' value is 

58.3 x 109 58.3 x 109 
- 0.145 

768.0 x 10' - 366.7 x 10' 401.3 x 10' 

Figure 10.10 depicts the deflection response of the free edge 

mid-point, to increasing HB bogie load. The deflection at the 

free-edge mid-point will be influenced by the torsional stiffness of 

the slab, through the position of the HB bogie and its increasing 

dominance of the loading regime. Thus, for the free edge mid-point, 

one would expect the structure's analytical stiffness to be less than 

that of the experimental stiffness during the early stages, before the 

onset of significant cracking. 

The inverted T beam with insitu fill form of construction is a 

composite of beams and in-fill concrete. Therefore, depending upon 

the linkage between the beams and the in-fill, the slab may act as one 

homogeneous unit, with the construction details having little effect 

upon the response. On the other hand the two components of the system 

may act as separate entities, so that the slab's response is akin to 

that of two sets of beams. One would expect the behaviour of the slab 

to change, within the limits of these two extremes, during loading to 

failure. 

The linkage between the beams and the in-fill has two components, 

firstly there is a physical structural action due to the shape of the 

component parts and their interlinked nature. Secondly there is 

chemical bond between the two concretes. One would expect high 

displacement levels to be achieved before the physical linkage broke 

down completely. There was no evidence of complete' physical linkage 
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breakdown during the tests. However, in critical areas during the 

later stages of the tests, the linkage between the structural 

components will, most probably, have depended upon their physical 

shape without the benefit of chemical bond. 

If one examines the beam profile then it can be seen that the shape is 

better able to resist different force components with varying degrees 

of effectiveness. If we define a force system that is parallel and 

perpendicular to the beam axes, then the most seriously effected force 

components can be isolated. The presence of a top and bottom flange 

will facilitate a high resistance to vertical shears perpendicular to 

the beams. The compressive capacity of the interface and the 

continuous transverse reinforcement will enable effective resistance 

to perpendicular sagging and hogging moments. The transverse section 

test in Appendix 5.2 showed that perpendicular sagging 

moment- curvature response was not significantly effected by the form 

of construction. In the transverse section tests it was observed that 

all cracks began at the junction of two beams, subsequently some 

followed the beam profile whilst the majority continued vertically 

upwards. 

The most severely effected aspect, will be the structural system's 

ability to resist torsional moments. With the loss of chemical bond 

and with little physical restraint there will be little resistance to 

in-plane shear stresses along the interfaces. Therefore, the 

structure may begin to act as a set of semi-independent beams for the 

resistance to torsion, and composite action, with strain 

compatibility, cannot be assured. 

The torsional stiffness degradation, due to the reduction of in-plane 

shear resistance, will be in addition to the, reduction in torsional 
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stiffness caused by cracks in the beams and in-situ fill. Therefore, 

the criteria for analytical torsional stiffness degradation should not 

be based solely on Ln-plane direct strains. The linear beam torsional 

stiffness facility in the NFES program allowed an investigation to be 

carried out, giving manual control of the magnitude of the beam 

torsional stiffness. 

10.2.1 Effect of bean torsional stiffness variation 

A series of problems were analysed in which the beam torsional 

stiffness was varied from 58.34 to 58-34 x 1021 NMM2 in ten steps. The 

results of this investigation are shown in Figure 10.9-. The beam 

stiffness that was calculated earlier, using the method of equivalent 

rectangles, is shown as a vertical line on this figure. The beam 

torsional stiffness is given as the abscissa of this plot. While the 

deflection of the free edge mid-point at a load level of 3.0 x the ULS 

HB bogie load, is given on the ordinate. An HB Bogie load level 

factor of 3 was chosen to allow the non-linear effects of material 

degradation to have a significant effect. 

For beam torsional stiffnesses between 58.34 and 58.34 x 107 N=2 the 

displacement is virtually constant at 68 mm. For stiffnesses between 

58.34 x 1013 and 58.34 X 1024 Nmm2 the displacement is again 

relatively constant, however, this time the magnitude is extremely low 

at approximately 3 mm. For the region between those two states the 

displacement varies with changes in the torsional stiffness, however, 

it must be realised -that in Figure 10.9 a log scale is used for the 

torsional stiffness axis. Figure 10.9 can be considered with the load 

deflection plots of Figures 10.10 and 10.11, where the analytical 

responses of slabs with beam torsional stiffnesses of 58.34 x 109 Nmm 2 

and 1.5 x 106 Nmm2 have been plotted with the experimental responses 

of the model deck. It can be deduced that for torsional stiffnesses 
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in excess of 58.34 x 1010 N=2 an over stiff response will result. For 

torsional stiffnesses below 58.34 x 106 an under-stiff response will 

result, however, the effect is less pronounced. One torsional 

stiffness value will not be suitable for the complete analysis as the 

material degrades. Thus the presence of a constant linear torsional 

resistance fixed in a direction parallel to the beams is probably the 

cause of the positive, almost constant, structure stiffness towards 

the end of the load-deflection plot. 

The effect upon structural failure, of prescribed material axes in the 

beams can be illustrated through the curvature and moment 

transformation equations. In the general case the principal 

curvatures will be at a finite angle to the beam axes. Transformation 

of these principal curvatures to the material directions will result 

in direct curvature and a twisting curvature. After application of 

the material model the resulting direct and twisting moments can be 

transformed back to the principal directions. The material 

stiffnesses in the principal directions will include a component from 

the torsional stiffness in the material direction. Therefore, with a 

linear beam stiffness, there will always be a positive stiffness 

component in the principal direction preventing total failure. 

From the load-deflection plots of Figures 10.10 and 10.11 it can be 

seen that varying the linear beam torsional stiffness by a factor of 

40000 has a moderate effect upon the analytical response of the 

structure. Therefore, while the NFES program produced useful and 

interesting results and allowed the effect of beam torsional stiffness 

variations to be investigated, its analytical philosophy was not 

totally satisfactory for this form of construction. 

i 
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10.2.2 Effects of aniltilinear stress-strain curves for concrete in 

tension 

Initially, stress-strain curves for concrete in tension involving 

three linear segments were employed for both the precast and in-situ 

concretes. These curves, which are shown in Figure 10.4 incorporated 

a second segment which has a gradient equal to the initial 'E' yalue 

before cracking negated. After cracking, when the stress had dropped 

to 75% of the cracking stress then the third segment took control. The 

tension stiffening in the third segment reduced linearly as the strain 

increased to its ultimate value. For all of those analyses an 

ultimate strain of 15 times the cracking strain was adopted. The 

analyses that used the three segment tension curve were denoted the Z 

series and the load-deflection responses obtained from these analyses 

can be seen in Figure 10.10. For the analysis with a beam torsional 

stiffness of 1.5 x 106 N=2 the response progresses well until the 

displacement reaches approximately 54mm. After this level severe 

difficulties were encountered. These manifested themselves in the 

stiffness matrix having a positive determinant whilst also having a 

negative pivot. It has been suggested by Crisfield 4 that these two 

factors may indicate that a bifurcation point, has been reached. At a 

limit point, with the structural load-deflection response subsequently 

falling one would expect both a negative determinant and negative 

pivots. However, a bifurcation point, after which there are multiple 

possible paths that the structure may follow, may be indicated by a 

negative pivot and positive determinant. 

Crisfield has suggested, that to ensure the structure follows the 

state equilibrium path leading to the minimal failure load, a 

perturbation be applied to the . structure. - The eigenvector 

corresponding to the lowest eigenvalue defines the deflection mode in 

which the structure is most. flexible.. Therefore a component of this 
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eigermode can be used to provide the perturbation, however, the 

direction in which it should be applied is unknown. Crisfield has 

suggested several methods for determining this direction and they have 

been incorporated into the NFES program. 

0 

Upon encountering the negative pivot during the model analysis, the 

program applied a positive component of the eigenmode. This caused 

the load deflection response to fall and subsequently to return up the 

same path. With a negative component of the eigenmode, the 

load-deflection response continued to rise. Moreover, with no 

perturbation, the structure followed the same path as the analysis 

with a negative component of the eigenmode had followed. The 

numerical problems intensified as the analysis progressed, eventually 

causing the analysis to be abandoned. 

It was suspected that the steepness of the second segment of the 

concrete tension curve was the cause of the negative pivots and 

numerical difficulties. A two segment curve, which is also shown in 

Figure 10.4 was therefore introduced. Essentially, the curves are 

identical, except that the second and third segments of the three 

segment curve are combined into a single linear segment, in the two 

segment curve. The negative pivots and numerical difficulties did not 

occur with the two segment curve analysis, while the structure's 

response was almost identical to the response with the three segment 

curve. The similarity between the load-deflection curves can be seen 

in Figure 10.10. 

It was concluded that the steepness of the second segment of the three 

segment curved was the primary cause of the negative pivots and 

numerical difficulties. It was not possible to exactly define what 

was happening to the structure when the negative pivot was 
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encountered. This may have been a bifurcation, however, the 

eigen-analysis was not successful in solving the problem. 

10.2.3 Convergence 

During the early stages of the analysis it was desired to remain under 

manual load control. This permitted the experimental load application 

to be modelled exactly, allowing direct comparison of results at 

different load levels. At the onset of significant non-linearity in 

the response, it was necessary to switch to Arc-length5 control so 

that convergence could be achieved. While under Arc-length control, 

the magnitude of the increments were calculated automatically. It was 

found that the most successful approach incorporated small increments 

with few iterations, generally less than 5, rather than moderately 

sized increments with corresponding larger numbers of iterations 

during each increment. This was no doubt due, in part, to the 

recalculation of the stiffness matrix at the beginning of each 

increment while only a secant stiffness update was used during the 

iterations. 

stringent convergence criterion was applied to all of the analyses. 

The criterion involved the Euclidean norms of the residual force and 

total applied force vectors and was defined by: - 

0.33 > 
100 JrTr 

JPT p 

where r- Residual force vector 

p- Total applied force vector. 

However, it must be remembered that different element formulations 

will effect the stringency of criteria similar to this one. For 

example, if a vertical 'w' load is applied to the Discrete -Kirchhoff 
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element, then its formulation dictates that the consistent loading 

will include applied nodal moments, which have a significant effect 

upon the size of the total force norm. Conversely, for the Heterosis 

element, no nodal moments will be involved in the consistent loading 

and, therefore, relatively, the total force norm will be tighter. 

A full range 8x6 mesh analysis, such as that shown in Figure 10.11, 

involved a large number of increments, typically 60. With 250 

iterations and 40 line searches and using 5 hours and 41 minutes of 

central processor time on a Cyber 720 machine. 

10.2.4 Fixed crack and rotating crack models 

The majority of the analyses for this investigation were carried out 

using a fixed crack direction material model. A rotating crack model 

was used for two analyses and the load deflection response for these 

can be seen in Figure 10.10. 

If a strain system exq tyo yxy acts at a point and just causes 

cracking then provided the strain system is increased proportionally 

the fixed and rotating crack models will give similar results. 

However, if after cracking the proportions of the strain components 

change, then the fixed crack model will result in a stiffer response 

as the material model is no longer being applied in principal 

directions. This stiffer response is illustrated in the different 

load-deflection responses for the two material models which are shown 

in Figure 10.10. The non-proportionality of strain increments will be 

most pronounced in an analysis which involves a large fixed loading 

system in addition to a dissimilar loading system whose intensity is 

increased incrementally to induce failure. This is typical of bridge 

deck analyses. where the self-weight loading, superimposed dead 



242 

loading and HA loading constitutes the fixed loading system and the HB 

loading the incremental failure loading. 

10.2.5 Crack patterns 

Figures 10.12 to 10.18 show crack patterns that were obtained from the 

NFES analyses of model 1. the load-deflection response is shown in 

Figure 10.11. These plots show the crack states of different layers 

for different load levels. A layer refers to a particular through 

depth integration station of which there were 5 for the in-situ plate. 

It was not possible to obtain crack pattern plots for the beams at the 

time these analyses were carried out. Crack states are plotted for 

each of the 2x2 Gauss quadrature integration stations in the plan of 

each element. The presence of a crack at an integration station is 

shown by a line in the direction of the crack, There is no indication 

of the magnitude of the cracking strain at that point. Generally, at a 

particular load level either the top and bottom layers are shown or 

the top two and bottom two layers. If a crack is closing then it is 

shown as a dotted line. 

The first crack pattern plot that is presented relates the design 

ultimate limit state with 45 units of one HB Bogie applied to the 

structure, see Figure 10.13. No cracking is indicated on the top 

surface and the soffit cracking is concentrated in the loaded obtuse 

corner region. 

The second crack pattern under RB loading that is considered is at an 

HB Bogie load factor of 2 and can be, seen in Figure 10.14. At this 

stage, the displacement level was approximately 13 mm. It can be seen 

that the top surface crack pattern is developing into a circular 

pattern around the HB bogie. The principal moment plot of Chapter 4 

Figure 4.11 illustrates the results for a linear analysis at a load 
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KEY: - 

LOADING TYPE: Density Correction loading applied to cured slob. - crack opening 

MATERIAL TYPE: 2 Segment concrete tension curve Is** Fig. 10.4.1 + orthogonal cracks 

LOAD LEVEL: Full HA etc. OxULS H13 Bogies --- crock closing 

FIG. 10.12. CRACK PATTERNS OBTAINED FROM THE NFES ANALYSIS OF MODEL 1 

ILI 

PLATE 130TTOM LAYER 

KEY'. - 

LOADING TYPE , Density Correction loading applied ot 'wtt' stage. - crack opening 

MATERIAL TYPE' 2 Segment concrete tension curve. (Fig 10.4. ) + 
Orthogonal cracks 

LOAD LEVEL - Full HA etc. 1-0 x ULS HB Bogie. crack closing 

FIG. 10.13. CRACK PATTERNS OBTAINED FROM THE NFES ANALYSIS OF MODEL 1 

PLATE TOP LAYER PLATE BOTTOM LAYER 

PLATE TOP LAYER 
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level of 1.0. Up until the onset of material non-linearity, one would 

expect the non-linear NFES analysis of Figure 10.14 to give similar 

results to the linear analysis of Chapter 4 Figure 4.11. Therefore, 

one would expect the initial top cracks to form approximately 

perpendicular to the maximum principal linear hogging moments. In 

general, if one compares Chapter 4 Figure 4; 11 with Figure 10.14 this 

is seen to be the case. Although the linear analysis assumed an 

orthotropic plate, whereas the non-linear analysis included the 

prestressed beams as separate entities. The major differences in the 

principal crack directions for these two plots occurs in the bottom 

left hand corner of the slab of Figure 10.14. Figure 10.14 supports 

the experimental observation that top cracking began adjacent to the 

supports, especially the non-instrumented support line. 

Besides the top layer, crack patterns are given for three other 

layers. These are the second layer down from the top, the fourth 

layer and the bottom layer. The bottom layer pattern, which is quite 

extensive can be seen in Figure 10.15. One set of orthogonal cracks 

are indicated under the HB bogie. The crack pattern plot for layer 4, 

which is also shown in Figure 10.15 shows extensive cracking in the 

obtuse corner region. However, the crack pattern plot of layer 2 

shown in Figure 10.14 shows very limited cracking and this is centred 

around the non-instrumented support edge. 

The next load factor at which crack pattern plots are given is 2.51. 

Plots for the top and bottom layers are shown in Figure 10.16. From 

the top layer crack pattern plot, it can be seen that the cracks cover 

about half the slab surface and surround the HB bogie in a continuous 

pattern between the supports. The similarity between this plot and 

the experimental top surface crack-pattern plot of Chapter 5 Figure 

5.9 can clearly be seen. The areas where crushing occurred in the 
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KEY -- 

LOADING TYPE. D*ns. ty Correction loading applied at 'wet' stage - crack opening 

MATERIAL TYPE. 2 segment concrete tension curve (so* Fig. 10-4. ) + orthogonal crock 

LOAD LEVEL: Full HA otc. 2-Ox ULS H13 Bogie. --- crack closing 

FIG. 10.14. CRACK PATTERNS OBTAINED FROM THE NFES ANALYSIS OF MODEL 1. 

PLATE LAYER 

FIG. 10.15. CRACK PATTERNS OBTAINED 'FROM THE - NFES ANALYSIS OF MODEL 1 

PLATE LAYER 2 PLATE TOP LAYER 

PLATE BOTTOM LAYER 
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experiment are shown by cross hatching in the experimental plot of 

Figure 5.9. No indication is given on the analytical plots of the 

state of the concrete in compression. 

The 'tearing' type cracking that was apparent on the top surface of 

both models during testing, and which has been more fully described in 

Chapter 7 Section 7.3, can be seen on the crack pattern plot of 

Chapter 5 Figure 5.9. The nature of this tearing cracking does not 

allow easy identification of the directions of the principal strains. 

Comparison of Figure 5.9 and Figure 10.16 reveals that where the 

experimental tearing cracks appear, the analytical cracks form at a 

small angle to the beam axis, generally between 10* and 40*. From 

Chapter 7 Section 7.3 and Figure 7.16 it can be seen that for a stress 

ratio (R) between -8 and -3 and for an angle of friction of between 

40* and 60' then one would expect the tearing type cracking to become 

continuous again when the angle between the crack direction and the 

beam axis is in the range 35* to 55'. From the earlier comparison 

between the experimental and analytical crack pattern plots it was 

deduced that the tearing cracks became continuous again at a principal 

angle of approximately 40'. 

The analytical soffit crack pattern that is shown in Figure 10.16 

agrees closely with the experimental pattern of Chapter 5 Figure 5.8. 

This is surprising since the experimental plot refers to the soffits 

of the prestressed beams whereas the analysis refers to the bottom of 

the in-situ concrete. Therefore one would expect the prestress to 

bias the crack direction towards the beam axis. If one examines 

Appendix 5.3, then from the soffit strain gauge readings of Table 7, 

at load level 11, where all loading except HB has been applied, the 

soffit strains in the direction of the beams were approximately 100 

'UE. Foil strain gauges will almost certainly fail after concrete 
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cracking and therefore from Appendix 5.3 Table 7 it can be deduced 

that cracks occurred at tensile strains of approximately 400 ge. This 

value is supported by the longitudinal section tests of Appendix 5.1 

where. from the load deflection response and the 'de-mec strain reading 

it can be deduced that cracking occurred at beam soffit strains above 

450 Ae. For the physical test, assuming an 'E' value of 35800 N/MM2 

for the precast concrete and that the principal strain angles under 

the HB bogie at the time of precast concrete cracking were at a small 

angle to the beam axes, then the stress increment required above *the 

load level 11 value to cause cracking was 35800 x 300 x 10-6 - 10.74 

N/mm2. With a tensile strength of 3.9 N/mm2 (Chapter 5 Table 5.6), the 

stress increment required to place the beam soffit in a state of zero 

stress is 10.74 -3.9 - 6.84 N/mm 2. 

The biasing effect of this prestress on the initial crack directions 

is severely reduced by the discontinuity in transverse stress between 

adjacent beam flanges. Moreover, the prestress delays cracking which 

results in the increased dominance of the HB Bogie in the loading 

regime. This will cause the initial crack directions to tend toward 

the principal directions of the stress increment resulting from the HB 

Bogie application. 

In the majority of the NFES analyses the density correction was 

applied at the 'wet' stage. Thus-, the analytical cracks form in the 

principal stress directions resulting from the load applied since the 

beginning of the 'hard' stage. With the exception of the small HA 

load, only HB Bogie loading is applied during the 'hard' stage and 

thus the analytical cracks will tend towards the principal directions 

of the HB Bogie load increment. These factors result in the similar 

analytical and experimental soffit crack patterns. 
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KEY: - 
LOADING TYPE: Density Correction loading applied at 'w*f stage - crack opening 

MATERIAL TYPE: 2 Segment concrete tension curve. (see Fig. 10.41 + orthogonal crocks 

LOAD LEVEL: Full HA etc. 2.95 x ULS H8 Bogie --- crack closing 

FIG. 10,17 CRACK PATTERNS OBTAINED FROM THE NFES ANALYSIS OF MODEL I 

PLATE BOTTOM LAYER 

FIG. 10.18. CRACK PATTERNS OBTAINED FROM THE NFES ANALYSIS OF MODEL 1 

PLATE LAYER 2 PLATE TOP LAYER 

PLATE LAYER 4 
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It would appear that at the time of the model 1 test the prestress in 

the beam soffit was 35800 x 400 x 10'6 - 3.9 - 10.42 N/MM2' this 

equates to a loss of approximately 53%. However, this calculation 

assumes an 'E' value of 35800 N/mm 2 and a tensile strength of 3.9 

N/mm2. 

From the crack pattern plots of Figure 10.16. It can be seen that the 

analysis predicts significant double cracking under the HB bogie. It 

can be observed from the load deflection plot of Figure 10.11 at a 

load factor of 2.51 that the displacement level is relatively small 

while the crack pattern plots indicate a considerable number of 

closing cracks. This effect is most probably due to the 

redistribution of moments caused by the top cracking in a span wise 

band at mid-width. Thus the material activity is being polarised in 

the half of the deck that contains the HB bogie. 

The final set of crack patterns, at a load factor of 2.95 are shown in 

Figures 10.17 and 10.18. By this time it can be seen that the 

cracking is very extensive on all of the plotted layers. The top 

layer pattern covers the complete model area except for a thin band 

along the unloaded free edge and the area around the HB bogie. It 

will be noticed that the NFES crack pattern is more extensive than the 

experimental one, however, many of the NFES cracks may correspond to 

experimental cracks that were not visible to the naked eye or that 

closed completely when the slab was unloaded to allow the crack 

pattern photographs to be taken and, therefore, did not appear on the 

experimental crack pattern plots. As far as crack direction is 

concerned, there is good agreement between the experimental and NFES 

patterns. 
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It will be noted that orthogonal cracking is predicted in the crack 

pattern plot of laYer 2 along the instrumented support line. This 

would indicate that the analytical NA in this area is particularly 

high. It is interesting to note that the majority of cracks that were 

closing at the previous load level have become active again at this 

load level. Unusually the few closing cracks that were present 

appeared to be isolated amongst other active cracks and this 

phenomenon may be a function of the concrete tension stiffening and 

unloading curves. 

The bottom layer pattern is similar to that at a load factor of 2.51, 

although the crack pattern has become more extensive in the 

less-loaded obtuse corner. The formation of a yield line pattern is 

not strongly suggested by the NFES analytical crack pattern plots, 

however there are indicators of a possible 'Y' shaped pattern. 
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11. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

11.1 Conclusions 

11.1.1 Composite construction 

1. It is impossible to give firm guidance as to when concrete 

composite construction will be most economic. In 1973, a survey 

believed to be mainly of bridges with little skew, concluded that 

for spans of up to 18 m, composite construction often provided 

the cheapest solution. Optimization calculations based on 

material content or cost are not likely to be helpful in 

determining parameters, as the total cost is likely to be 

governed by particular site and construction conditions. By its 

nature, composite construction is particularly economical with 

falsework, and gaps can be spanned quickly. 

2. Composite construction exposes high quality, factory made 

prestressed concrete on the soffit and is therefore likely to be 

durable. 

3. Composite construction has been used for bridge decks with up to 

15' of skew since at least the early 1950's. Some of the early 

structures were prestressed transversely, although many had 

little transverse reinforcement. 

11.1.2 Analysis and design 

4. With the introduction of the design abnormal load vehicle in the 

mid-1950's, analytical methods to predict the distribution of 

working loads in bridges were developed. Their suitability for 

use in predicting short term deflection distributions of 
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composite construction bridge decks were verified against data 

from full scale tests. 

5. Tests to destruction on models of composite decks were first 

conducted at the C&CA in the late 19501 s. Although scale 

models and loadings were not used, the results suggested that 

considerable transverse reinforcement would be required to 

mobilise the full, potential cross-sectional strength. 

6. There are no directly relevant test data on interface shear 

behaviour of composite construction bridges. Although transverse 

bending stiffnesses may be calculated using the assumption of 

zero tensile concrete strength, the calculation of torsional 

parameters, and indeed the use of elastic analysis presuppose 

integral composite action. 

7. Composite construction was, naturally, included in the range of 

Standard Bridges prepared by the Department of Transport. The 

reinforcement for these structures was specified to be parallel 

to the deck sides. An orthogonal arrangement is preferable for 

both stiffness and strength provision, but the loss of structural 

efficiency of non-orthogonal steel for plan shapes with a skew up 

to 25* is small and the arrangement simplifies construction. 

8. The policy of treating reinforced and prestressed concrete as 

distinct structural systems for limit state design produces 

considerable conceptual difficulties for a designer considering a 

hybrid structural system such as composite construction. 

For a reinforced structure, the ultimate limit state is generally 

considered for design. However, the current stress limit checks 
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effectively rule out consideration of moment redistribution. In 

effect, for new designs, linear elastic analyses are required for 

both the SLS and the ULS. 

For prestressed concrete. design is governed by SLS criteria. 

For an ultimate load analysis; either the yield line method could 

be used, in which case the prestress would be ignored; or a lower 

bound plastic analysis would be used, with the prestress treated 

as an applied load. 

From the limited study of current design methods conducted, it 

would appear that initial design would be based on linear 

analyses, using specified stress limits. A check would then be 

made on sections normal and parallel to the beam axes at the ULS. 

For the linear analyses at the ULS, it is advantageous to treat 

transverse sections as being cracked. 

9. In reality reinforced, and fully prestressed concrete are not 

distinct, but are extremes at either end of a complete spectrum 

of concrete structures. Adoption of continuous criteria would be 

more logical and would lead to more rational design procedures, 

especially for shear and hogging over supports of continuous 

decks. 

10. BS5400 does not cater for some structural features specific to 

composite construction. Interface shear is not checked. 

Transverse shear is treated in an empirical manner which presumes 

that the principal shear acts on sections orthogonal to the beam 

axes. As the prestress force is unidirectional and not in a 

principal direction, particularly when there is skew, the amount 

of prestress to limit inclined principal tensile stresses can be 
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prohibitive. If strictly applied, the code would limit the use 

of composite construction to decks with a very small angle of 

skew. The test results for the second model suggest that this is 

an unnecessary restriction on the freedom of a designer to 

provide the most economical solution. 

Design of both the bridge decks studied was governed by SLS 

criteria for the outer-most prestressed beam. Once a beam and 

the prestressing details had been selected, the quantity of 

transverse reinforcement was determined using the Wood-Armer 

equations. Specifying cracked section properties in the 

transverse direction for the linear analysis required to predict 

moments reduced the amount of reinforcement significantly. 

12. Design at the ULS can be based on yield line analyses. At 

failure, not all of the reinforcement crossing the theoretical 

yield lines of the models was in fact yielding. Because a 

relatively large number of bars cross a yield line, the 

theoretical factor of safety obtained on the basis of all steel 

having the characteristic strength is higher than that of a 

member with few bars crossing a yielding section. The use of a 

*yf3 factor greater than unity cannot be justified when a single 

yield line across a deck is considered, as the analysis can be 

based on statical principles. 

11.1.3 Large scale model testin 

13. The costs of testing increases logarithmically with scale. 

Ideally, tests should be conducted at full size. Compromises are 

inevitable when scaling is introduced. At the 1: 3.5 scale used, 

specially strengthened and extended testing rigs had to be 

designed. 
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Although the major structural properties were represented, some 

doubt remains over the modelling of the prestressing, 

particularly with regard to bond after cracking and with regard 

to the behaviour of the precast - insitu concrete interfaces. On 

the whole, however, the data obtained provide the most reliable 

information currently available on this form of construction. 

14. Subsidiary testing of: bearings; concrete and steel specimens; 

bond action; longitudinal and transverse slab slices and 

examination of concrete cores provided vital information needed 

to interpret the behaviour of the models. Such testing is time 

consuming and expensive, but contributed significantly to the 

success of the project. 

11.1.4 Data collection 

15. The specially designed automatic data collection system worked 

well and the procedures developed can be generally recommended. 

16. The least satisfactory part of the data collection was the 

gathering of concrete tensile strains. Before cracking, strains 

due to loading are small. After cracking, they are dominated by 

the spacing and vagaries of local crack directions. Also, 

because of time constraints and the spasmodic nature of crack 

propagation, obtaining an accurate overall snapshot, at an 

instant of time and at a specified load level, was often very 

difficult. The only practical way in which cracked concrete 

tensile strains can be collected is through the use of a Demec 

gauge. From the experience gained on the present study it is 

recommended that Demec points are positioned in a systematic way 

and that they are continuous in orthogonal directions. In this 
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way it is unlikely that cracks will miss the Demec gauge lengths. 

If useful concrete tensile strain data are required, then a large 

proportion of the time available will have to be allocated to 

this aspect, since a large number of Demec points will be 

requ ired. Copious amounts of data will be produced and this will 

require careful and detailed interpretation after completion of a 

test. It is recommended that for large scale tests an 

electronically readable Demec gauge is the most time efficient 

method for collecting the strain data. Despite the vast quantity 

of strain data gathered in this project, little of it was useful 

in assessing the structural response. 

17. With hindsight, more stations would have been monitored for 

displacements. Values of displacements, after cracking, are 

difficult to interpret. This is due to the accumulated effects 

of different load positions, and sustained and cyclic load 

effects on material. properties. However, the displacement 

readings gave a very clear picture of the curvatures in the slab 

and of the division into active and relatively 'rigid' regions as 

failure was approached. 

18. Strain gauges attached to reinforcement and prestressing tendons 

gave useful information. However, precise interpretation of the 

stress distribution over a section is made difficult by the 

presence of cracks, which were inclined to the steel directions, 

and by the need to assess tension stiffening effects in the 

cracked concrete., 

19. Reaction readings provided useful information on the changing 

load paths in the models. If useful reaction data are to be 

obtained then the model supports should be carefully designed and 
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verified before the initiation of a test. It is important to 

ensure that the model supports are representative of full size. 

20. Visual inspection and recording of crack growth and separation 

provided essential, useful information which could be correlated 

with the numerical transducer readings during processing of the 

test results and the assessment of the structural response. 

21. Visual inspection of cores provided vital information on the 

nature of cracking. Tearing cracks in the top layer of insitu 

concrete were not anticipated, but their relationship to 

separation of the insitu and precast concretes was clearly 

demonstrated. The cores also showed that shear cracking in 

adjacent insitu and prestressed concretes were at different 

inclinations, indicating that their formation was associated with 

separation. The relative rotations of parts of the slab were 

also clearly distinguishable in the cored specimens. 

The cores showed that the concretes were well compacted and that 

the ducts for the transverse reinforcement were well filled. At 

sections where there was no separation, it was often impossible 

to distinguish between the insitu and precast concretes. The 

cores also allowed the final steel positions to be checked. 

22. Loading was applied at first to prescribed load levels, but 

control was later switched to displacements. This was essential 

to examine the development of failure. 
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11.1.5 Model test results 

11.1.5.1 Hodel I 

23. Application of SLS loadings produced no visible cracking and the 

structural response was essentially linear and elastic. 

24.45 units of RB loading, factored for the ULS, in an edge lane, 

with other loads also factored for the ULS produced no visible 

cracking. 

25. A 50% increase in the HB loading produced narrow, well 

distributed cracking in the edge insitu concrete outside the edge 

beam nearest to the bogie. 

26. A 100% ificrease in the HB bogie load produced well distributed 

cracking in the precast concrete of the soffit, in the centre of 

the outer lane. When the load on the bogie was removed, a 

permanent deflection of about only half a millimeter was 

recorded. Reloading produced an essentially linear response. 

27. At higher bogis loads there were plastic strains and the 

load- displacement response became highly non-linear. The model 

sustained 3.27 times the ULS factored, 45 unit, bogie load. 

28. This high value is due to the design of all precast beams to the 

SLS requirement of the most highly stressed edge beam, and the 

provision of lower bound transverse reinforcement to prevent 

section failure under any loading configuration. Although much 

higher than the design ultimate load, this factor is less than 

the value of 4.33 predicted by yield line theory. The main 

reason for this is that it is unlikely that all of the 
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reinforcement crossing the theoretical yield lines was in fact 

yielding. 

29. When the bogie load was at about twice the ULS design value, the 

bearing reactions indicated a change in load path. The rate of 

increase of loading on the most heavily loaded obtuse corner 

bearing reduced, and load was shed from the next four bearings, 

to bearings in the centre of the support line. This behaviour is 

believed to be due to separation of the insitu and precast 

concretes. At higher load levels the slab lifted off the obtuse 

corner bearings. 

30. Separation of the concretes was not anticipated and was first 

noticed on the end elevations when the bogie load had reached 

about 3.25 times its design ULS value. Because the top surface 

was covered with dead weights, the associated tearing cracks in 

the top layer of insitu. concrete were not noticed until after 

completion of the testing programme. Although modelling was made 

as realistic as possible, it is not possible to say with 

certainty whether this type of action would occur with full sized 

construction. 

31. Tests on models of transverse strips of the model deck indicated 

excellent bond between the insitu and precast concretes and 

between the insitu. concrete and the reinforcement. In these 

tests, the vertical concrete interfaces were subjected primarily 

to tension. In the bridge decks, the state of stress on the 

interfaces would involve shear resulting from torsional moments 

and changes in the bending moment intensity, in addition to the 

tensile bending stresses, and no test data are known concerning 

strength criteria for these states. 
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32. Tests on models of longitudinal strips of the model deck 

indicated that those with insitu concrete confined by adjacent 

prestressed beams were stiffer than those with a single 

prestressed beam surrounded by insitu concrete. The tensile 

stiffness of concrete sandwiched between prestressed beams was 

largely restrained until cracking of the prestressed beams. 

Internal stresses in the insitu concrete before loading arise due 

to restraint of early thermal movement (tensile) and creep of the 

prestressed beams (compressive). They cannot, therefore, be 

calculated with any degree of certainty. There was no separation 

at the precast/insitu interfaces and visible cracks were 

continuous across the interfaces. 

33. The tests on model 1 showed that, for decks with skews of up to 

25', current design procedures lead to well behaved structures 

with a considerable overload capacity. Failure is complicated by 

the nature of the composite construction and this is not 

addressed in the current code of practice (BS 5400). 

34. Although the failure mechanism was complicated and involved a 

large shear crack, crushing of concrete and separation, it had a 

ductile nature. 

35. The reasoning behind the code clauses to determine shear capacity 

is not readily discernible. Unlike the treatment of slabs, the 

length over which shear forces are to be averaged is set - at one 

beam flange width. On this basis, the maximum average shear 

stress on an equivalent reinforced concrete section was 2.65 

N/mm2. The calculated capacity of the shear reinforcement (which 

would have been ineffective according to LS8110 because of the 
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shallow depth) is equivalent to 0.31 N1mm 2. The net average 

shear stress on the composite section at failure was, therefore, 

far in excess of that allowed by the code. 

36. Further studies to determine a rational method to predict the 

shear capacity and method of collapse in composite concrete 

bridges are needed. 

11.1.5.2 Model 2 

37. Application of SLS loadings produced minor cracking of the free 

edges, but the response was essentially linear and elastic. 

38. Application of ULS loading, with 45 units of HB bogie loading 

centred in a design lane produced only minor cracking in the 

insitu concrete along both free edges. A few cracks were also 

noticed on the top surface above the support lines. The 

tangential structural response was essentially linear, but there 

were permanent deflections. These may have been due to 

inelasticity of the bearings or to transverse cracking. 

39. Cracking of the outer prestressed beams was detected with twice 

the design ULS loading on the HB bogie. However, due to a power 

supply failure to the load control equipment, these may have 

formed at any load between 2 and 2.4 times the design load 

intensity. Structural response was still, essentially, linear. 

40. Increasing the load on the HB bogie to 4 times its design value 

introduced further cracking and non-linear response. Due 

probably to variation in the level of prestress and concrete 

tensile strengths, the spread of soffit cracking was not uniform. 

However, at the higher load levels, the soffit crack pattern had 
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the appearance of continuous cracking across the flange gaps and 

it is reasonable to conclude that composite action was maintained 

at this stage. 

41. As is to be expected with a slab having 40* of skew, much of the 

reaction was found to be concentrated on the obtuse corner 

bearings. At this stage, nearly a quarter of the total load was 

carried by the four bearings in the obtuse corner of the lane 

carrying the HB bogie. 

42. For the test to failure, the HB bogie was moved closer to the 

free edge, and the lane configuration was different to that used 

for the design of the bridge. With the bogie load at 4.32 times 

the design intensity, the most heavily loaded obtuse corner 

bearing carried 15% of the total applied load. A shear crack was 

apparent in the insitu. concrete of the free edge, but it did not 

pass through the beam flange. 

A few new cracks formed on the beam flanges which intersected 

existing cracks. These suggest that good bond between the 

prestressing strand and the beam concrete existed and that the 

load path had changed. 

43. Failure was progressive and ductile. When the bogie load reached 

five times its design intensity an acute corner lifted off its 

bearing. 

44. Crushing of concrete in the vicinity of the HB bogie was observed 

at about five and a half times the design loading. At this stage 

tearing cracks were observed, along the beams, over the central 
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part of the dock and it was concluded that composite action was 

breaking down. 

45. With the bogie load at about six times its design value, the 

shear crack in the insitu concrete of the edge beam had a 

vertical displacement of about 3 mm, and a horizontal relative 

displacement of about 2 mm, at the soffit, with no relative 

horizontal displacement at the top. Later inspection of a core 

taken from the slab showed separation of the insitu and precast 

concretes and shear cracks at different inclinations in the two 

concretes. The load carrying mechanism in the obtuse corner 

region could not be deduced from the data. From visual 

observations, it was concluded that load was probably transferred 

transversely by the insitu concrete acting as struts between the 

upper and lower flanges of adjacent beams. 

Although the obtuse corner bearing attracted a slightly 

increasing proportion of the total load up to failure, the 

adjacent bearings shed load after the HB bogie load reached four 

times its design value. It was concluded that this was due to 

the breakdown of composite action. 

46. The maximum average shear stress on the edge beam, considered as 

a reinforced concrete section, was 4.03 N/mm2. This is much 

higher than an isolated beam could have withstood and emphasises 

the need for a more rational approach to design against shear 

failure. 

47. The deck was not capable of supporting any additional load as the 

displacement at the HB bogis was further increased. The load 

carrying capacity began to reduce and the test was eventually 
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stopped when at least two tendons were heard to rupture. The 

failure is very complicated and not anticipated in current codes 

of practice. 

11.1.6 Analytical techniques 

11.1.6.1 Non-linear finite element analysis 

48. Non-linear analysis would appear to be a logical choice for the 

assessment of a structure at the actual ULS. Non-linear analysis 

takes into account the large redistribution of moments that 

occurs as failure is approached. 

49. The models examined during the present study were over strong by 

load factors of 3.3 and 6.0 on the HB loading for models 1 and 2 

respectively. Therefore, large non-linear effects were not 

apparent at the design ULS. 

50. For realistic shear distributions to be obtained it is essential 

that the supports are modelled accurately. For the analysis of 

reinforced concrete slabs, the relatively few physical supports 

allow each physical support to be modelled by a discrete 

analytical support. This would be the preferred approach for 

composite slabs, however, this would require very fine meshes. 

51. The element shape functions dictate how the support forces are 

distributed in the adjacent elements. For the finite element 

model to produce realistic stress predictions close to the 

supports this factor must be taken into account. 

52. The supports in a composite slab are more akin to a line support 

than to discrete supports. Therefore, a method was developed for 

the f inite element model to be supported on a line support and 
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not discrete supports. This approach gave encouraging results 

but requires further Investigation. 

53. The non-linear analysis of composite docks is complicated since 

the dock Is constructed of two separate materials, one 

prestressed and one not. For most structural states these 

materials act compositely. A further complication is the gap 

that is generally present between adjacent beam flanges. 

54. A numerical model for the analysis of composite bridge decks was 

developed during the present study. This model gave good 

agreement vith the experizental response, however, further 

investigation and refinement is required. 

55. It is difficult to justify the adoption of a complex bi-axial 

material model for concrete. since the behaviour of reinforced 

and prestressod concrete slabs is governed by concrete cracking 

and steel yielding. A simple and efficient uni-axial material 

model was selected for the present study. This philosophy allows 

the available computational resources to be reallocated so that 

finer mashes can be used. Since cracking is - so fundamental to the 

behaviour of concrete slabs further development and refinement of 

this aspect of the material model is required. 

56. In a physical slab the material properties will vary over the 

structural domain. To model this a method was developed-in the 

present study to apply statistically varied material properties 

over the analytical structure. It was found that the adoption of 

this approach produced significantly different results for areas 

of constant stress. The adoption of variable properties resulted 

In better predictions of the displacement at failure. 
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57. Analyses of model 1 were carried out using an alternative 

non-linear program named NFES. These analyses allowed the effect 

of variations in torsional stiffness to be investigated. it was 

shown that the adoption of a torsional stiffness for the precast 

beams in the deck which was equivalent to the torsional stiffness 

of an isolated beam produced reasonable predictions. 

58. The NFES program analyses allowed the implications of the fixed 

crack direction model to be evaluated. The investigations 

revealed that where the loading regime changes significantly as 

the structure moves towards failure, the failure state is 

unlikely to be modelled correctly by the fixed crack model and 

high failure load predictions will probably result. The loading 

regime changes significantly with 'real' bridge slabs where the 

loading regime which causes initial cracking is generally 

dominated by UDL loading. As the structure moves towards 

failure, the HB bogie load increases in dominance resulting in a 

significantly different overall loading regime. 

59. During all the non-linear analyses conducted for the present 

study the power of restarting and program intelligence was 

clearly apparent. Restarting allows a complete analysis to be 

divided into a set of smaller runs. This results in lower costs 

for the analysis and also allows the solution method to be 

modified in the light of the developing structural behaviour. 

Programming limited intelligence into the analysis program 

allowed the solution method to be modified by the program as the 

structural response varied during a run. This resulted in lower 

costs since the program was able to achieve convergence when 

otherwise it would not. 
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60. During the present study new convergence criteria were developed 

for non-linear analyses. These criteria were shown to be 

effective for slab analyses where one attempts to compare 

residual moments to direct forces when checking for convergence. 

61. Sophisticated solution procedures were adopted in the present 

study and these allowed the full structural response up to 

failure to be investigated. 

11.1.6.2 Yield line analysis 

62. A yield line failure mechanism was not apparent in either slab. 

Disintegration of integral action and failure of steel tendons 

and concrete occurred before a mechanism formed. 

63. Resolving moments of resistance requires a constant lever arm in 

all directions. The depths of the longitudinal prestressing and 

transverse reinforcing steel are significantly different. The 

gaps between the beam soffit flange makes resolution of hogging 

moments of resistance conceptually difficult. 

64. The yield line method cannot be recommended for concrete 

composite construction bridges with a significant skew. 

11.1.7 Deflection profile predictions 

11.1.7.1 Non-linear finite element analyses 

65. The analytical deflection profiles for model 1 in the first 

non-linear comparison, at a load factor of 2.7, are good. The 

physical model does, however, appear to be more flexible. There 

is less agreement in the model 2 comparison and again the 

physical structure exhibits greater flexibility. 
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66. For the subsequent model 1 deflection profile comparisons, up to 

failure, there is excellent agreement. The only deviation is 

close to the unloaded free edge where the experimental profile 

'kicks up' but the analytical one does not. This deviation 

probably results from the allowance of tensile support reactions 

in the analysis. The analytical boundary condition modelling 

requires refinement so that tensile reactions are not permitted. 

There is poor agreement for the final model 2 deflection profile 

comparisons where the physical structure exhibits far greater 

flexibility. The flexibility of the analytical structure may be 

increased by correct modelling of gaps between beam flanges. The 

increased skew of model 2 increases the importance of torsional 

stiffness in the structural behaviour. The increased stiffness 

of the analytical profiles could be a result of incorrect 

modelling of this feature and requires further investigation. 

67. Variations in fundamental material parameters produced little 

change in the shape of the deflection profiles. 

11.1.8 Reaction profile predictions 

11.1.8.1 Non-linear finite element analysis 

68. For structural states up to the maximum load the model 

analytical reaction profiles are in good agreement with the 

experimental profiles. There is little difference between the 

linear and non-linear profiles until high displacement levels are 

reached and the maximum load is approached. 

69. For model 2, the magnitude of the obtuse corner reaction is 

poorly predicted by the analysis for all structural states. For 
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the comparisons at lower loads, this phenomenon is difficult to 

explain, but may be connected to the use of relatively few 

supports. At higher load levels the breakdown of composite 

action begins and this appears to reduce the magnitude of the 

obtuse corner reaction significantly in the physical model. This 

factor no doubt contributes to the poor analytical predictions. 

70. In analysis, there are generally fewer supports, which are also 

at different locations, to those in the physical model. This 

makes the prediction of reactions and the shear force 

distribution in a structure difficult. With fewer supports, it 

is difficult to predict the magnitude of the obtuse corner 

reaction with any accuracy. For a composite concrete deck, which 

has many supports, it is probably reasonable to obtain shear 

forces by averaging over 2 or 3 supports adjacent to the obtuse 

corner. 

71. It is considered that the location of the obtuse corner 

analytical support is of importance in the prediction of 

reactions. If possible, it is recommended that the analytical 

obtuse corner support be placed in the same location as the 

corresponding physical support. Most analytical obtuse corner 

supports are located at the corner of the structure which most 

probably contributes to the poor predictions. 

11.1.9 Crack patterns 

72. The plotting of crack patterns provides a valuable insight into 

the behaviour of a structure in a non-linear analysis. The power 

of this was clearly shown in the present study. 
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73. Non-linear analyses produce massive amounts of output which has 

to be interpreted by the engineer. The only practical way in 

which an overall picture of the structural behaviour can be 

obtained is through graphical presentation of the data. 

11.2 Recommendations for further work 

11.2.1 Experimental investigations 

1. During the present work very useful data were obtained from 

subsidiary tests on longitudinal and transverse slices of the 

model decks. This data could be enhanced by further tests on 

similar slices but subjected to inverted loading. Thus, the 

response of composite construction to hogging moments could be 

investigated. 

2. Torsion is fundamental to the behaviour of composite concrete 

structures. Extremely useful and interesting data could be 

acquired from tests on slices of the model decks which are 

subjected to torsional loadings. Comprehensive data could be 

obtained from a series of tests of both longitudinal and 

transverse sections of varying widths. 

3. The behaviour of composite construction is complex and tests on 

apparently simple structures, such as slices, can yield 

complicated failure modes. Tests on typical concrete interface 

specimens would provide valuable data that could be used in the 

assimilation of the longitudinal and transverse section test 

data. 

4. Composite construction has the potential to provide the optimum 

structure for many bridge problems. Further testing of model 

composite bridge structures is required to increase our knowledge 
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and understanding of their structural behaviour. The principal 

criteria in any model test should be the quality and reliability 

of the data obtained. 

11.2.2 Analytical investigations 

5. The 'biaxiall beam structural model requires further refinement, 

especially the treatment of the gaps between adjacent precast 

beam flanges, before it could be recommended for general use. 

6. The behaviour of the concrete material models in the tensile 

region requires refinement. Cracking is fundamental to the 

behaviour of most concrete structures and therefore the 

development of this aspect of the material model should be 

productive. 

7. Further comparisons with other published experimental and 

analytical investigations are required, before non-linear methods 

could be recommended for general use. 

8. The development and refinement of non-linear solution procedures, 

such as those contained in the SNAP program, is required to 

reduce the high cost of a full range non-linear analysis. The 

viability and accuracy of newer finite elements, which have fewer 

degrees of freedom and require lower order integration, requires 

investigation. 

9. Informative results could be obtained from analyses of model 2 

with the NFES finite element-program. These analyses would allow 

the effect of torsional stiffness variation on the behaviour of 

model 2 to be evaluated. 
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APPENDIX 9.1 YIELD LM ANALYSES OF THE MODEL DECKS 

Introduction 

When assessing the capacity of a composite slab bridge deck, the yield 

line analytical method may be used. This technique is based on the 

theory of plasticity, and provides a theoretical upper bound to the 

load intensity that can be sustained. 

There are a number of particular concerns when the method is used for 

prestressed composite construction. To perform a yield line analysis, 

it is necessary to derive the moment of resistance of sections on the 

yield line through resolution of the moments of resistance in the 

steel directions. To be able to perform this resolution, a constant 

lever arm is required in all directions. For sagging moments, the 

effective depths of the longitudinal (prestressed) reinforcement and 

the transverse reinforcement (which is threaded through web holes 

above the flanges) are significantly different and, therefore, so are 

the lever arms. For transverse hogging moments compression between 

the beam flange sides cannot be expected. The outermost fibres of the 

compression block are, therefore, at the level of the bottom of the 

in-situ concrete, whereas the compression block for longitudinal 

hogging moments is in the prestressed soffit flanges of the beams. 

The lever arms for the transverse and longitudinal hogging moments can 

be, therefore, considerably different. 

Yield line analyses of Model I 

The purpose of these yield line analyses is to assess the ability of 

the method to provide an estimate of the ultimate load capacity, by 

comparing predictions with the test data of model 1. The loading 
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considered is self weight with density correction and superimposed 

dead load, factored for the ultimate limit state; one third of the 

uniformly distributed part of HA loading on lane 3 and the full 

uniformly distributed part of HA loading on lane 2, both factored for 

the ultimate limit state; and an HB bogie, with an unknown number of 

units, positioned in lane 1 as shown in Figure 1. 

Loading for test to failure 

1. Self weight plus density correction: 

0.0144 x 1.15 - 0.01656 Nl= 2 all over. 
V 

Superimposed dead load: 

0.00196 x 1.75 - 0.00343 N/mm 2 all over. 

HA, udl component 

0.00812 x 1.3 - 0.01056 N/mm 2 lane 2, see Figure 

4.1/3 HA, udl component - 0.00352 N/mm2 lane 3, see Figure 

5. HB bogie, lane 1, see Figure 1, wheel load P kN 

Total udl in lane 1-0.020 N/mm 2 

Total udl in lane 2-0.0305 N/MM2 

Total udl in lane 3-0.0235 N/mm 2 

Best estimate of actual section resistances, see Appendices 5.1 and 

5.2 

ml - 132 kNmm/mm, M2 -43 kNmm/= 

; LM, - 34.5 kN=/mm, pM2-'9.3 kNmm/mm 

The sagging section resistances were obtained from tests while the 

hogging resistances were derived using actual material properties and 

partial safety factors equal to unity. 
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FIG 1. GENERAL ARRANGEMENT FOR THE MODEL 
DECK I YIELD LINE ANALYSIS 
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Mechanisms 

Four different mechanisms were considered for this yield line analysis 

of model 1. This analysis was carried out to obtain the most 

realistic estimate of the strength of the model slab. Each of the 

mechanisms is described in detail below. 

Mechanism 1: A sagging yield line following the mid-span section 

parallel to the supports. 

Energy dissipated for a unit displacement of the centre line: 

2xH, x sin2 65 x (3190/sin 65) (1/1568) 486.8 kN. = 

Work done by udls: 

(0.02 + 0.0305 + 0.0235) 3460 x 1063 x 0.5 136.0 kNmm 

Work done by HB bogie: 
1730 - 257 

Deflection of the centroid. of an axle - 0.852 
1730 

Work done - 8P x 0.852 - 6.816P 

Equating: 6.816P - 486.8 - 136.0 

P- 51.46 kN 

Bogie load: 8P - 411.7 kN 

Scale 45 unLts of HB bogie load (at -yfl - 1.30) - 95.51 kN 

No. of 45 unLts of HB bogie load - 4.31 

Testing of model 1 was stopped before all of the tendons on the centre 

line were yielding. However, a plot of the HB bogie load against 

deflection, see Figure 5.1, suggested that the load capacity was 

almost exhausted. A number of yield line patterns involving hogging 

yielding were, therefore, investigated. 

Mechanism 2: Mechanism 2 is illustrated in Figure 2. As the values of 

three parameters have to be determined, a computer program was written 
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and used to obtain the critical yield line locations. The angles to 

the yield lines were found to be -yI m 30', 't 2a 
65* , y3 tj 51". 

Therefore, BD a 2495 =, AB m 2415 mm, BC a 1832 mm and AC a 1774 mm. 

As BC is parallel to the supported edge, only M, was considered 

effective in sagging. The critical value of the bogie load was 601 

M. (Equivalent to 6.3 no. of 45 units of HB bogie load at yfl - 1.30) 

Mechanism 3: For mechanism 3, the sagging yield line is taken into the 

obtuse corner opposite the HB bogie (see Figure 2), and only one 

hogging yield line is considered. The critical value of the bogie 

load was found to be approximately 870 kN (equivalent to 9.1 no. of 45 

unit HB Bogies at -yfl - 1.30), and so this mechanism is unlikely to 

form. 

Mechanism 4: For mechanism 4, see Figure 3, y was found to be 1032 mm 

and the critical value of the bogie load was 414 kN (equivalent to 

4.33 no of 45 unit HB bogies at -yfl - 1.30). Agreement of this 

mechanism with the soffit crack pattern shown on Figure 5.8 of Chapter 

5 is not unreasonable, although it is clear that a well defined 

mechanism was not produced. The sagging yield line parallel to the 

free edge was not observed and would be above the visible soffit. 

Cracking on the top surface, as shown in Figure 5.9 of Chapter 5, is 

consistent with the incipient formation of this mechanism. 

The maximum bogie load sustained by the model was 3.26 x 1.3 x 73.5 - 

311 M. Thus the total load on the model at failure was only 75% of 

the predicted total load. A number of reasons could be postula ted for 

this. The method is an upper bound approach. However, realistic 

estimates of the plastic section strengths have been incorporated into 

the analysis, provided all of the reinforcement is yielding. Yield 
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lines AC and BD are inclined at only about 28 degrees to the 

longitudinal tendon direction, and it is, therefore, unlikely that all 

of this steel was yielding. To test the effect of this hypothesis, 

the yield line analysis was repeated, but with the contributions of 

the moment of resistance of the sections perpendicular to the free 

edge on ACDB reduced by a third. The predicted value of the bogie 

load is reduced to 290 M. This is similar to the maximum load 

sustained and it is thus reasonable to postulate that the test was 

stopped before full yielding of the longitudinal tendons crossing ACDB 

had occurred. 

T%z 

Since yield line analysis involves reinforcement over a considerable 

portion of a structure, it seems reasonable to consider the flexural 

capacity per unit length to be based on higher steel strengths than 

would be used for an individual section check. Beeby2 has calculated 

that, if the value of -ym for two bars crossing a critical section is 

1.15, then, for a uniform probability of failure for members with 

different numbers of bars, the values of -ym for ten and fifty bars 

crossing a failing section would be 0.97 and 0.91, respectively. To 

determine these values, Beeby assumed a normal distribution for the 

strengths of individual bars and, based on test data, a standard 

deviation for the yield strengths of individual bars of 10% of the 

characteristic strength. For a simple mechanism consisting of a 

single yield line crossing the centre of a slab, it is difficult to 

Justify any value for yf3 other than unity, as the value of the work 

done can be determined accurately. 

Yield Line Analysis of Model 2 

As with the model 1 yield line analyses the purpose of the model 2 
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analyses was to obtain the most realistic estimate of the model's 

strength. The design load effects safety factor ('Yf 
3) was taken as 

unity for all mechanisms. 

The yield line analysis technique does not lend itself to 

computerisation in a way that other structural analysis techniques, 

such as the finite element method, do. However, the hand calculations 

required to assemble the energy equations can become tedious and prone 

to error for anything more complex than a basic mechanism with uniform 

loading on a right slab. A semi-automated analysis technique was, 

therefore, developed using an algebraic manipulation package called 

REDUCE3. This system allowed the input of the data describing the 

problem in the form of expressions including variables such as a, 6 

etc. After the energy equations had been assembled, partial 

derivatives with each of the variables could be obtained by the 

program. The resulting equations could be set to zero and solved 

simultaneously to obtain the critical configuration. 

Loadinz 

The loading that was considered for these analyses corresponds to that 

given in Chapter 7 section 7.1.3, for the test to failure of model 2, 

and can be seen in Figure 5. Three UDL intensities were applied to 

the complete slab area. namely density, density correction and 

superimposed dead load. In addition live load UDL's and KEL's 

consisting of footpath live load along both footpaths and full HA UDL 

and KEL in lane 2 were also considered. A factored HB bogie was 

placed at mid-span and as close to the free edge allowed by BS 5400 Pt 

2 (1978) cl. 3.2.9.1. The 6 load components are described below: - 
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Self weight and density correction: 

(0.00598 + 0.01495) 1.15 - 0.0241 N/MM2 all over 

2. Superimposed dead load: 

0.0024. x 1.75 - 0.0042 N/mm 2 all over 

3. Footpath live load: 

0.0025 x 1.50 - 0.0038 N/MM2 along both footpaths 

4. Full HA UDL: 

0.01091 x 1.30 - 0.01418 N/MM2 in lane 2 

5. Full HA KEL: 

9790 x 1.30 - 12730 N at mid-span in lane 2 

6. HB bogie: 

73470 x 1.30 0- 95510 0N at midspan. 

Best estimate of actual section resistances, see Appendix 7.1 

Using the longitudinal section test ultimate sagging moment then: - 

M, ý 360 kNmm/mm 

M2 C12 M, -120 kNmm/mm 012 ý -0.333 
M3 cl 3 

M, 55 kN=/mm CY3 - 0.153 

ct 
4 M, - . 41 kN=/mm -. a4ý'0.114 

Section resistances other than the longitudinal sagging resistance 

were derived using actual material properties and partial safety 

factors equal to unity. 

Mechanisms 

Six mechanisms were considered and these can be seen in Figures 6 and 

7. However, essentially, there are only two different basic patterns. 

Patterns 1 to 4 belong to one family, while patterns 5 and 6 belong to 

the second family. 
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Mechanism 1: This is the simplest pattern, consisting of a single 

sagging yield line at midspan, see Figure 6. Energy dissipated by 

yield lines for a unit displacement of centre line: 

1221 
2542 m- 924.9 kN= 

, 3501 
M, + 

[2814 
3 11 

2 

Work done by all loads except HB bogie: - 

- 216.4 kN= 

Work done by HB bogie: - 

deflection of axle - 
2350 - 257 

_ 0.89 
2350 

. -. work done - 0.89 x 95.51 g- 85 g kNmm 

Equating: 216.4 + 85 ft - 924.9 

. -. 0-8.3 

. -. No. of 45 units of HB bogie load (at yfl - 1.30) - 8.3 

It will be noticed that this factor of 8.3 is considerably greater 

than the experimental failure factor of 6.02 given in Appendix 7.2, 

Table 1. In fact, the premium over the experimental factor, at 38% is 

similar to the premium calculated for model I in the previous section. 

If the calculated ultimate longitudinal section resistance is used 

instead of the longitudinal section test ultimate moment, then 0- 

7.7. If the design section strengths were to be used, with 'Yf3 - "0' 

then the factor 6.1 which is within 2% of the actual failure 

factor for the experiment. 

The positioning of the HB bogie significantly closer to the free edge 

than the design position, introduced the possibility of a 'Y' shaped 

mechanism forming, therefore, further mechanisms were investigated. 
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Mechanism 2: The details of mechanism 2 can be seen in Figure 6. The 

formation of a 'Y' shaped mechanism will depend upon the relative 

moment capacities in the transverse direction, compared to the 

longitudinal direction and with the width/span ratio of the structure. 

For an analysis of this type, where the failure load is applied 

through a factored HB bogie load, the relative importance of other 

load types, such as UDL's and KEL's is reduced. This is particularly 

true for the composite construction form, which possesses a high 

inherent factor of safety. Therefore, the problem reduces to 

minimising the energy dissipation in the yield lines, while maximising 

the displacement of the HB bogie. In order for the HB bogie 

displacement to be maximised the only remaining variable in mechanism 

2 is the location of the longitudinal hogging line at 2542 8 from the 

free edge. 

The details for this mechanism were fed into the REDUCE program, 

assuming a unit displacement of the HB bogie. This analysis gave the 

critical value for 8 to be 0.53 with 0-9.7. The load energy 

dissipation equation was calculated as 45.64 + 112.6 6+ 95.51 0 kNmm. 

However, if a more accurate value had been used for the bogie 

deflection, then the factor P would have increased. Therefore, this 

path was not pursued. The crack patterns shown in Chapter 7 Figure 

7.8 and 7.9 suggest that a hogging yield line was not forming. 

Mechanism 3: The high span/width ratio of this model suggested that 

the yield line pattern shown in Figure 6 as mechanism 3 was possible. 

Essentially, this mechanism is the same as mechanism 2, except that 

the hogging yield line has been allowed to align itself along the free 

edge. 
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Examination of Figure 6 will reveal 

mechanism 3 to yield a lower value of 

energy dissipated by the longitudinal si 

both mechanisms, there is additional 

transverse sagging steel in mechanism 3, 

energy dissipation than mechanism 1. 

that it is impossible for 

than mechanism 1. While the 

agging steel is the same for 

energy dissipation by the 

which also has a lower load 

Mechanism 4: Mechanism 4, the configuration of which can be seen in 

Figure 7, is essentially the same as mechanism 3, except that the unit 

displacement now only occurs at one point, which is along the free 

edge. Mechanism 4 produces a similar yield line energy dissipation 

equation to that of mechanism 3. However, the load energy dissipation 

equation will be reduced due to the reduced deflection of the HB 

bogie. Therefore, a higher HB bogie load factor, 0, will result. 

Mechanism 5: Mechanisms 1 to 4 considered global forms of failure 

involving a large proportion of the slab. There is the possibility of 

a more local mode of failure, see Figure 7, occurring in the free edge 

zone of the slab. Mechanism 5, was utilised to investigate the 

possibility of this mode of failure occurring. The geometry of this 

mechanism is such that the sagging yield line bd can assume virtually 

any orientation. Thus the geometry of the pattern is defined by ýhree 

variables ct, -y and 6. The REDUCE program was used to obtain the 

critical values for these three variables which were 1.18,0.299 and 

0.70 respectively with 0- 16.8. It will be seen that in the critical 

pattern the transverse sagging yield line is aligned along the 

transverse sagging steel, thus there is no energy dissipated by this 

steel. 
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One of the major influences upon the formation of this pattern is the 

geometry of the HB bogie. As the bogie becomes larger the deflection 

of each of the wheels reduces and hence the load energy also reduces. 

This can be illustrated by re-analysing the pattern assuming that the 

total HB bogie load is applied through its central point. In this 

case, the reduce program gives critical values of a 1.27, y-0.48 

and 6-0.625 with 13.7. Thus, this apparently simple change has 

reduced the HB bogie factor by 18%. 

Mechanism 6: Using the correct application points for the HB bogis 

load, the REDUCE program gave 0.70 as the critical value for 6 for- 

mechanism 5. The large value of this factor increases the likelyhood 

of a pattern similar to mechanism 5, but stretching across the 

complete model width, becoming critical. However, if the'mechanism 

were- to cover the whole width, then it is likely that the apex of the 

pattern, point d, would be located at the corner of the slab, see 

Fig, are 7. With this pattern, the sagging yield line would be closely 

aligned along the transverse sagging steel. Thus mechanism 6, which 

can be seen in Figure 7 was obtained. The geometry of this pattern is 

defined through one variable, a. Using the REDUCE program, the 

critical value for the HB bogie factor 0 was 16.41 at 1.20. Thus, 
_ 

it can be seen that this value of 0 is less than that for mechanism 5,, " 

but is double that for mechanism 1. 

Discussion 

It can be seen that the energy dissipated by*the longitudinal sagging 

steel dominates the failure mode for "all of the'-selected mechanisms. 

Thus for the mechanisms with a failure mode' involving the complete 

model width, the problem essentially simplifies to locating the 
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pattern that maximises the load energy dissipation. The factored HB 

bogie failure criteria of the current investigation significantly 

reduces the importance of loading types besides the HB bogie. 

Theoretically, the yield line method is an upper-bound approach. 

However, through tests, it has been shown to give good predictions of 

a slab's load carrying capacity. The lowest value of 0, for all the 

mechanisms considered here, was 8.3, for mechanism 1. However, this is 

38% greater than the actual failure factor of 6.02 for the composite 

slab. The value of 8.3 was calculated using the actual loading and 

section resistances with -yf3 set to unity. In the test, the 

load-deflection curve had reached its falling branch. However, 

inspection of the model and the steel strain readings indicated that a 

yield line mechanism had not fully formed. At least three tendons 

were heard to rupture and the composite action of the slab was 

breaking down. It is interesting to note, that if the yield line 

calculations are performed with the design section resistances, then 0 

for the critical mechanism reduces to 6.1, which is within 2% of the 

actual failure factor. If one sets _Yf 3 to the BS5400 Pt 4 (1978) 

value of 1.15, then 0 reduces to 5.30, which is approximately 12% 

below the experimentally obtained value. 
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