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Abstract

This thesis is concerned with the numerical solution of the stresses occurring

between bodies in the regime of linear elastic contact. The computational

modelling technique used is the finite element method.

Contact problems are generally non-linear in form with changing boundary

conditions at the contact interface. To solve these problems several load

incrementation solution algorithms have been developed. One change in

boundary condition or loading in pre-defined load steps were the techniques

used. The pre-defined load step method is similar in form to existing

non-linear finite element analysis techniques. The method of identification

of contact is undertaken. from geometrically checking if 'potential' contact

nodes of one surface, are touching or are inside the surface elements of the



other. This is achieved by the conversion of the contacting node's global

coordinates into the equivalent isoparametric local coordinates of the other

body's surface elements. Nodes are then defined as contacting if they are

identified to be within the domain of an element on the other body.

Constraint equations are formed between each contacting node and target

clement which are based on the exact location of contact as defined by the

element's shape functions. This technique of defining constraint equations

allows direct imposition of contact effects, as well as permitting mis-aligned

meshes and the use of a wide range of different element types in the contact

zone. The constraint equations applied are dependent upon the contact

conditions. In the case of sticking contact, then either two or three constraint

equations (depending upon the model's dimensionality) are applied, these

being in the global x,y (and z if 3-D) directions. For sliding contact, a single

constraint equation is applied in the normal direction relative to the contact

surface.

Friciional effects as defined by CoulonTh Friction has been implemented.

These forces are included by an iterative technique, however, when the

direction of sliding is known a priori then these forces have been included

directly.

The constraint equations are imposed on the 'standard' stiffness matrix

through the use of Lagrange multipliers, although it has been shown that the

Penalty method can also directly impose identical constraints on the stiffness

matrix in a single iteration. Additionally, if there is no overlap in the

constraint equation then.the Transformation matrix method can also apply

identical constraints.



Substructuring is undertaken to improve solution times using frontal

elimination, leaving just potential contact and externally loaded degrees of

freedom in a reduced stiffness matrix. A hybrid equation solver is also

developed which when coupled with Lagrange multipliers, permits just one

decomposition of the structure's stiffness matrix. With this equation solver

only the Lagrange multiplier constraint terms need to be decomposed in

subsequent iterations.
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CHAPTER 1

INTRODUCTION

1.1 Contact in engineering

In engineering almost alt devices are made up from an assemblage of

different parts which are mechanically joined resulting in contact interfaces.

At these interfaces contact stresses are likely to occur. Typical examples of

this are the connection of flanged pipes, where contact stresses occur between

the flange faces. A more complicated example is the mounting of turbine

blades, where contact occurs between the blades' roots and the rotor. Other

forms of contact are where components are initially separate, but due to

relative displacements come together resulting in either sticking or sliding

contact zones. Circumstances where this occur are in gear teeth contact and

sliding contact in machine tools, for example as found in slideway and

journal bearing contact. Applications of contact can also be seen in

bio-engineering with contacting surfaces in artificial joint replacements.

In all of the above examples, knowledge of the location and magnitude of the

contact stresses is of particular interest in obtaining an estimate of the

component's reliability and survivability.

There are essentially two distinctly different areas in engineering where the

use of contact stress analysis is of benefit. The main area is in the early stages



of design, whereby initial component configurations and shapes can be

analysed to provide indications of where the regions and magnitudes of high

stress arc likely to occur. This information can be used to modify either the

component's shape or choice of material if initially unacceptably high stresses

were occurring. Obvious time and economic savings can be obtained if the

stress prediction can be calculated without recourse to actual manufacture

during this design phase. Once the final design is decided however, it is wise

for experimental confirmation of the structural performance to be

undertaken.

The other area of engineering where contact stress analysis is of benefit

occurs in situations where existing components require analysis. This may be

needed for example in problems where an estimate of the fatigue life is

desired or where failure has occurred and recommendations for future design

improvements are required.

1.2 Scope of the present work

In circumstances where the applied loads and geometries of the contacting

bodies are relatively simple, then 'closed form' analytical solutions can be

used to predict the contact stresses. However, for a great many real structures

this simplicity of shape and loading is not apparent. For these problems

numerical modelling techniques are generally needed.

In this thesis several numerical computer based modelling techniques using

the finite element method have been developed. The final computer

algorithms produced by the author are general programs which allow the

2



modelling of any shaped, two or three dimensional structure with sticking or

frictional sliding contact under elastic conditions. The methods compare well

with known analytic results, and with work done by other researchers.

Particular advances here are in the allowance of mis-aligned nodes in the

contact zone and the use of curved elements. Additionally, a 'hybrid' matrix

equation solver has been developed, which when combined with

substructuring can produce substantial reductions in the solution times.

Although contact stress analysis using the finite element method has been in

evidence for over fifteen years, little comparison has been made between the

different techniques available. This is particularly the case with regard to

highlighting their limitations. As a consequence, one of the aims of this thesis

is to critically survey other techniques, as vellas to develop and describe new

methods.

1.3 Description of thesis content

The contents of the chapters in this thesis are now summarised.

A review of literature on the subject of computer modelling of contact

problems is given in the remainder of this chapter for both the finite element

method and other methods. The precise contribution by the author in the

field is detailed at the end of this chapter in Section 1.5.

In Chapter two the standard finite element method is described and the basic

theory recalled. Chapters three and four detail the complexities of modelling

contact that occurs both in the real physical problem and the finite element
e
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contact model. The essential stages within a finite element contact algorithm

are identified and discussed in Chapter five and a unified constraint theory

shown to exist. Chapter six contains the new theories developed by the

author for including contact effects within the finite element method. In

Chapter seven, detailed areas of the new algorithms including their structure

are presented. The contact identification process is detailed in Chapter eight

and a 'hybrid' equation solver explained in Chapter nine. Results for various

test runs are shown and described in Chapter ten for both 'simple' and

'complex' models with Chapter eleven discussing the main findings. Finally

the main conclusions of the work and further recommendations are given in

Chapter twelve.

1.4 Review of Literature

The subject of contact stress analysis was probably first addressed by Hertz

(1896) in his celebfated work on contact between elastic rollers. This work

culminated in several fundamental theories which are still used today in

contact stress analysis. These theories were developed to solve the contact

conditions between parallel cylindrical frictionless rollers under the action of

point loading. In the mathematical derivation, Hertz assumed the contact

region to be a continuous quadratic profile which was small in size when

compared to the contacting bodies. With these assumptions, equations were

derived allowing the size of the contact zone and the pressure variation

within it to be calculated. Unfortunately, the applicability of the method is

restricted to simply shaped frictionless contact.
e
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Other mathematical theories were developed for different shapes and loading.

Hill et al (1947) allowed wedges to be analysed, with Mindlin (1949)

producing a general theory for elastic bodies assuming circular or elliptical

contact zones. Tangential forces were included by Johnson (1955) and slip

analysed between cylinders by Bentall et al (1967) with Spence (1975)

including friction into Hertz's contact problem. A full treatise of the different

mathematical theories is given in Johnson's book (1985) on contact stress

analysis. These mathematical methods however are restricted in their

applicability due to the necessary simplifying assumptions made to facilitate

a solution. That is they are restricted to simple 'easy to mathematically

define' contact boundaries, which generally are flat or circular in form.

Many real contact problems though do not fit into these categories. For these

problems alternative techniques for evaluating the contact size and contact

stresses were needed.

The finite element method developed in the late 1950's and early 1960's was

a giant leap forward in the field of stress anaysis. Amongst early

contributors were Turner et al (1956) and dough (1960). The method

essentially involves discretisation of the structure to be analysed into a mesh

of grid points (nodes) and small blocks (finite elements). A matrix

representing the structure's stiffness can then be generated. Application of.

restraints and external loads then yields the nodal displacements from which

stresses can be calculated. Use of the finite element method to solve contact

problems was not successfully achieved until the late 1970's & 1980's. The

reason for this late development was primarily due to inherent non-linearity

in the contact problem, with the size of the contact region and the contact

conditions unknown prior to solution.

5



For contact to be modelled effectively using the finite element method

requires prevention of mesh overlap of the contacting bodies, with

appropriate modification either to the stiffness matrix or the force vector.

Over the years, distinctly different techniques for doing this have evolved.

They can essentially be categorised as,

a, Penalty methods (gap elements)

b, Lagrange multiplier methods

c, Transformation matrix methods

d, Flexibility methods

e, Other specialist techniques

Developments using these techniques in contact stress analysis using the

finite clement method are now discussed.

1.4.1 Penalty methods

The penalty method is a general technique of constraint imposition where

extra terms are added inside the original finite element stiffness matrix. These

terms invoke the contact conditions. They are probably best understood in

the context of gap elements connected across the potential contact interface.

The technique of modelling contact using finite elements in conjunction with

the penalty method for the imposition of contact constraints was initiated by

White and Enderby (1970),and Stadter and Weiss (1979). In both

approaches, the gap element stiffnesses were initially defined by the user (low

in a region where separation was thought may occur, and high where thought

6



to remain contacting). An iterative solution proceeded with checks made for

mesh overlap after each stage, if overlap was detected then a re-solution was

undertaken with the gap clement's stiffness modified by the amount of

overlap. The restriction with the methods were that in the first, nodal pairs

were connected across the contact surface permitting only sticking contact to

be modelled, whereas frictionless sliding could only be imposed in the second

method. Additionally, node on node contact was necessary in the region of

potential contact.

Oden (1981) and Kikuchi (1982) approached the contact problem from a

more mathematical viewpoint. They showed how the penalty method was an

addition to the standard finite element variational statement. The constraints

were imposed by numerical integration at selected points, using reduced

integration schemes such as Simpson's rule and the Trapezoid rule.

Friction occurring at the contact interface was included by Campos, Oden

and Kikuchi (1982). In their method a frictionless run was initially

undertaken to define the normal contact forces. Then, using Coulomb's

friction relationship, frictional forces were calculated which were added to

the force vector and a re-solve undertaken. Iteration continued in this

manner until no noticeable change in the displacement vector occurred. The

contact applications by these authors were however restricted to contact

between a deformable body and a rigid body. This type of contact is

considerably easier to solve than problems where both contacting bodies are

deformable.
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An alternative technique for including friction using gap elements (and with

both contacting bodies deformable) was developed by Mazurkiewicz and

Ostachowicz (1983), Zolti (1983), Ostachowicz (1984), and Hellen (1988).

The methods involve including tangential gap elements whose stiffness is

equal to the product of the coefficient of friction and the normal gap element

stiffness. Although this technique intuitively seems to correctly add the

frictional effects, it suffers severely depending upon the penalty value used.

To impose the displacement constraints as accurately as possible necessitates

the use of a high penalty value (equivalent to the gap element stiffness). In

this circumstance the forces occurring in the system are in fact 'locking' the

solution and hence applying sticking contact, and not the desired frictional

sliding contact. If a low penalty value is used then the frictional condition can

be imposed, however many iterations are necessary to eliminate the overlaps

and satisfy the Coulomb Friction relationship.

Oden and Pires (1983a, 1983b) developed a variational statement that

directly included friction. The friction relationship they produced was

non-local and non-linear in form. The non-locality was induced as the

decision on sticking or sliding was based not on the local contact forces alone,

but on neighbourhood effects at a microscopic level. This essentially was

defined by the roughness of the surface, selected by an 'asperity' indicator

p. The non-linearity occurred due to elastic-plastic deformation, defined to

be occurring at the junction of the contact interface and selected by a

non-linear indicator . This method is probably more realistic in modelling

the frictional effects than the Coulomb relationship. However, the need for

user input of 'asperity' and.'non-linearity' variables complicate its use for the

general 'non-expert' user. Another advanced friction relationship was

8



developed by Cheng and Kikuchi (1985), this also however required much

experimental analysis to determine the appropriate extra friction variables.

The use of an incremental loading scheme with linear gap elements was used

for the interesting problem of paper rolling by Wong (1984). Endo et a!

(1984) and Simo Ct a! (1986) usc a Riks load incrementation algorithm to

allow contact and limit-point behaviour of snap-through problems to be

analysed. Padovan eta! (1985) highlighted some of the problems encountered

in large displacement contact, where the area gap elements become so

distorted that poor Jacobians are formed. This results in incorrect penalty

stiffness terms being added to the stiffness matrix. They overcame this by

pantographing and subsequent re-formation of the area gap elements.

Chang, Salceb and Shyu (1987) use a special contact element which imposed

constant pressure and had displacement continuity. 	 However, their

approach was limited to frictionlcss contact.

The use of constraints applied directly at Gauss points rather than nodes has

been applied by Hitchings (1988). The advantage of this technique is that

the decision on the contact state of sticking or sliding, is directly obtained

from the Gauss point forces. However, as the gap elements are inserted at the

beginning of the solution process, this method is best applied only when the

contact zone is well defined in advance. With this condition, only one

decomposition of the stiffness matrix is necessary, with changes only to the

force vector in subsequent iterations for frictional effects.

9
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To summarise, the penalty or gap clement method involves the addition of

extra terms into the original stiffness matrix. In its most common form in

commercial finite clement packages node on node contact is necessary to

allow the gap element to be connected. Additionally, the rate of convergence

of the solution is highly dependent upon the penalty value (gap stiffness)

selected. However, its ease of implementation and the relatively minor

architectural changes required, have made the gap clement method the most

widespread technique for contact stress analysis in current finite element

packages.

1.4.2 Lagrange multiplier methods

The Lagrange multiplier method is a general technique of constraint

imposition, where extra rows and columns are added around the outside of

the original finite element stiffness matrix. These terms exactly apply the

desired constraints. The extra variables in the solution vector represent the

forces to enforce the constraint, and are the Lagrange multipliers. The size

of the system of finite element equations is always increased by this

approach.

The technique of Lagrange multipliers was first used in contact stress

analysis by Hughes Ct al (1976). Their work was a particular advance as it

allowed elastic and elastic-impact contact to be analysed. Restrictions were

that node on node contact was necessary in the contact zone. Once contact

was identified for a nodal pair, their displacements and forces were coupled

by the addition of unity Lagrange terms in the relevant positions around the

stiffness matrix. A Newmark time stepping algorithm was used for the
e
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dynamic analysis. However, linear elements and sticking or frictionless

contact could only be modelled.

Okamoto and Nakazawa (1979) permitted frictional effects to be directly

included in the Lagrange terms. Again node on node contact was necessary,

with the inclusion of friction causing the stiffness matrix to be unsymmetric.

The loading was controlled to allow just one extra node to be included per

load stage. This was achieved by fully loading the structure, then scaling such

that the new node just contacted. Node on node contact was not necessary

in the method of Guerra and Browning (1983). They used an incremental

loading procedure and applied linear constraint equations. The concept of

master and slave surfaces was also introduced (the current terminology now

being contactor and target surfaces). They showed that penalty or Lagrange

multiplier methods could be used to impose the constraints, although they

highlighted that specific aspects of the implementation of the algorithm

affected the solution obtained. In particular, the tolerance of contact

identification was found to be of significance.

Bathe and Chaudhary (1985) developed a general two dimensional algorithm

similar to Guerra and Browning. The decisions on contact state were made

from the clement forces with the subsequent constraints applied at the nodes.

Chaudhary and Bathe (1986) further extended their method to include three

dimensional and elastic dynamic contact. Only linear elements however were

permitted in the contact zone.
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In summary, the Lagrange multiplier method appears to have a distinct

advantage over the penalty mcthod in that constraints can be exactly applied.

However, the size of the system of equations generally increases.

1.4.3 Transformation matrix methods

In the transformation matrix method, the contact constraints are applied by

a pre- and post multiplication of the stiffness matrix by a 'transformation

matrix'. This transformation matrix contains the constraints to be imposed

on the system of equations. The resulting stiffness matrix is generally reduced

in size, with the constraints exactly applied.

The first use of this method in contact ana'ysis was by 'Wilson anà Parsons

(1970). Sticking contact was the imposed state resulting in applications to

axisymmetric shrink-fit type contact problems. Fredriksson (1976) allowed

both sticking and sliding contact with friction included as extra terms added

to the force vector. The method was however restricted to node on node

contact. A similar approach was developed by Gaertner (1977) although only

one extra node was permitted per load stage. Mahmoud, Salamon and Marks

(1982) proposed total removal of friction, giving a frictionless solution which

admittedly was easier to install inside finite element coding. This method

however was obviously restricted in its application. Particular advantage of

the unity values occurring in the transformation matrix with node on node

contact was realised by Torstenfelt (1983). This allowed Boolean operations

to be undertaken on the. pre- and post multiplication, reducing the

computational time for this stage by a factor of about ten.
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The allowance of non-aligned contacting nodes was permitted by Chen and

Ych (1988). Additionally, they directly included friction in a modified

transformation matrix.

In summary, the transformation matrix method can apply constraints exactly

on the system of finite element equations. However, a full decomposition of

the 'reduced' stiffness matrix then needs to be carried out at each stage. This

can become computationally quite time consuming.

1.4.4 Flexibility methods

There are several different variants under this heading, but essentially

flexibility methods involve the inverse of stiffness in the solution technique.

Chan and Tuba (1971a, 1971b) calculated the lOcal flexibility at the region

of contact. This was then used to determine the corrective forces needed to

eliminate mesh overlap. For its time the method was quite advanced as node

on node contact was not necessary and friction could be included. A simpler

flexibility technique was developed by Francavilla and Zienkiewicz (1975).

Frictionless node on node contact was modelled, with re-inversion of the

stiffness matrix for each change in boundary condition. Nodal pressures

were the unknowns with gap displacements defined prior to solution. This

method was restricted in its scope of applicability whilst Chan and Tuba's

method was restricted to linear elements.

e
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1.4.5 Other Techniques.

Many of the other techniques which have been developed are for specific

applications and as such are restricted in their use.

Gangal (1972) developed a technique for interference fit contact problems

requiring no modifications to standard finite clement codes. This was

achieved by inducing interference by applying a temperature field to the

sleeve and shaft whilst setting the sleeve's coefficient of thermal expansion to

zero. The corresponding expansion of the shaft subsequently inducing the

interference stresses.

A method for modelling the interface between steel and conctete in teinfocced

structures was developed by Schafer (1975), and extended by Keuser Ct al

(1983), Beer (1985) and Mehihorn et al (1985). This method involved the use

of a special 'bond' clement, which had user defined properties for shear,

obtained from experiment.

The contact problem of modelling tyre and road contact, where a travelling

load and hence time enters the solution, was reduced to a purely spatial

problem using a transformed coordinate system by Padovan and Zeid (1980),

and Zeid and Padovan (1981).

Up to now, the contact methods described have all been based on the

displacement derived finite 1ement method. A discussion on some of the

other techniques now follows.

14



The mixed or hybrid finite element method has been applied to contact stress

analysis. This method involves the introduction of stress variables into the

initial variational formulation. Tscng and Olsen (1981) used hybrid elements

with two displacement and three stress degrees of freedom per node. Node

on node contact was necessary with only one extra contacting node permitted

per load stage. Hcyligcr and Reddy (1987a, 1987b) used Lagrange multipliers

and mixed elements to allow non-aligned contacting nodes. A distinct

advantage of these hybrid elements is that stresses are natural variables

obtained in the solution vector. This allows the contact state of sticking or

sliding to be easily identified. However, the number of unknowns is increased

in the solution matrix because of these extra stress variables, resulting in

larger matrices to be solved. Additionally, the hybrid elements are not

familiar to many finite clement users hence their use is probably restricted.

Another technique used in contact stress analysis is the boundary element

method. In this method only the boundary of the structure is discretised into

elements. Application of this technique to contact problems was made by

Anderson et al (1980) and Becker and Plant (1987). Node on node contact

is necessary in the contacting zone, hence large scale sliding problems require

re-meshing of the elements. An advantage often quoted with the boundary

element method over the finite element method is the reduced dimensionality

of the model, resulting in smaller matrices to be solved, as the boundary and

not the full domain is discretised. However, the use of substructuring

techniques in the finite , element method, whereby internal nodes are

eliminated from the matrix, can result in comparable or smaller matrices

being produced. Researchers who have used this technique of substructuring

with the finite element method are Francavilla and Zienkiewicz (1975),

15
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Frcdriksson (1976), Mazurkiewicz et al (1983) and Nour-Omid and Wriggers

(1986).

The non-linear nature of the contact problem and the subsequent large

number of iterations required, coupled with the generally large structural

matrices involved, stimulate the need for efficient equation solvers. Recent

developments are the use of conjugate gradient methods by Nour-Omid and

Wriggers (1986), May (1986) and Dilintas et a! (1988). In this technique

direct inversion of the stiffness matrix is avoided. Similarly simplex type

algorithms were used by Fischer and Melosh (1987) and Vijayakar et al

(1988) which allow minimisation without direct inversion.

1.5 Contribution by the author

In this thesis methods are developed for elastic, quasi-static finite element

modelling of contact with aligned or mis-aligned meshes of linear and

quadratic elements. The particular difficulties of identification of contact and

definition of the constraints are overcome using the element's shape

functions. Although only quadrilateral and brick elements have been

implemented here, the technique of using shape functions is shown to hold

for many types of finite element. The constraints are added as Lagrange

multipliers, although a unified theory of constraint imposition is shown to

exist which shows that the Penalty method could equally be used and if no

overlaps exist, then so could the transformation matrix method.

Three new two-dimensional contact algorithms are developed, the first

including Coulomb friction directly in the Lagrange constraint terms, which
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results in an unsymmetric stiffness matrix. The other two methods are

symmetrical variants of the first, although iteration is necessary to include

friction. The load history is tracked by only allowing one change in boundary

condition per load step.

A two and three-dimensional algorithm is also developed whereby nodal

constraints arc applied directly using Lagrange multipliers. The decision on

contact state is selected at an element rather than nodal level. A load

incrementation technique similar to that used in standard non-linear finite

clement analyses is developed, rather than allowing just one extra node per

load stage. This method of loading was used because of the many nodes that

may come into contact with 3-D problems. A modified version of the frontal

solution technique (Hcllcn (1969) and Irons (1970)) was implemented, with

just the potential contacting nodes remaining in the final 'reduced' stiffness

matrix. Additionally, an active zone equation solver was used allowing the

'reduced' stiffness matrix to be decomposed just once. The Lagrange

constraint terms due to contact arc then the only terms requiring

decomposition in each solution stage. This equation solver is shown to yield

considerable computational savings.
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CHAPTER 2

THE FINITE ELEMENT METHOD

2.1 Introduction

The finite element method is described in this chapter and its mathematical

derivation presented.

In many structural analysis problems, direct closed form solutions can be

obtained for the stresses or displacements. However, these solutions are

generally restricted to 'simple geometries' and 'simple loading'. This

approach though can give good results for real structural problems and some

examples of which are given in Johnson (1985) and Timenshenko and

Goodicr (1951). The development and advancement of the computer in the

early sixties, allowed structural analysis techniques which although simple in

their concept, were phenomenally powerful in their applicability. A whole

new range of structural problems could now be analysed in detail where

before their geometry or loading were too difficult. A particular area of

engineering which pioneered these techniques was the aerospace industry,

where minimum weight and maximum strength priorities resulted in complex

shapes which were difficult to analyse in any other way than by finite

elements. In today's environment, the finite element method is used not just

by aircraft designers, but also motor car manufacturers, the oil industry and

construction companies to name but a few. It can be seen from its wide use,
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that the method of finite elements has probably gained the reputation as

being one of the most reliable and versatile methods for computational stress

analysis.

The method of finite elements is fully described in many books on the

subject, such as the reference text of Zicnkicwicz (1977) and the texts of

Bathe (1982) and Ahmad and Irons (1986). For new or unfamiliar readers

in the subject, the book by Stasa (1985) is particularly recommended. A

review of the fundamental method of finite elements now follows.

2.2 Description of the method

A component requiring analysis by the finite element technique must first be

divided into an assemblage of blocks. Each block is of a finite size and is

termed a finite element. At strategic points within each block are positions

called nodes. Thus when using the finite element method the initial structure

is converted into an equivalent geometrically formed shape consisting of

nodes and elements. This assemblage is commonly referred to as the finite

element 'mesh', a typical example of which is shown in Figure 2.1.

The discretisation of the structure is the key to the whole method and

formation of a 'good' mesh is vital for obtaining reliable results. In fact this

is quite a skillful process and mesh generation packages such as PATRAN

have been developed to aid in.this task. Once the mesh has been formed then

a 'stiffness' matrix is calculated for each element. Summation of these
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elemental stiffness matrices then gives a global structural stiffness matrix.

The system of equations to then be solved is,

[K]{U} = {R}	 2.1

where [K] = global structural stiffness matrix

{U} = global nodal displacement vector

CR) = global external loads vector

Equation 2.1 represents a set of linear equations. With the external loads

known, a solution for the unknown nodal displacements can be obtained,

from which stresses can then be calculated.

To allow modification of this equation for the effects of contact requires the

derivation and theory of its development to be understood.

2.3 Theoretical basis of finite elements

The total energy in any static structural system can be expressed in terms of

the initial strain energy due to deformation and the work done due to

external forces acting on the structure, i.e.

fl=S—W	 2.2
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For a discrete structural system under steady state Equation 2.2 can be

rewritten as,

11 
= ^ {U}T[K]{U} - {U}T{R}	 2.3

In a real structure the deformation will be to a minimum energy condition,

that is,

an
L	

=	 (for all nodes , i)	 2.4

Thus differentiating Equation 2.3 with respect to the unknown nodal

displacements and application of Equation 2.4 for minimisation, gives the

familiar finite clement equations of Equation 2.1.

The principles and techniques used to obtain the stiffness matrix now follow.

Particular emphasis is placed on the element shape functions, which define

the interpolation formulae inside each of the finite elements. It will be shown

later that these shape functions play a key role in the contact algorithm

developed by the author.

2.4 Element shape functions

Shape functions are a set of mathematical equations that define the

interpolation rule within an element from its nodal values. They are defined

S

21



from the degrees of freedom per node and the number of nodes per element.

The shape functions are well documented for each type of element.

Zicnkiewicz (1977) lists many of the commonly used element types and their

appropriate shape functions, an example of which is the four noded

quadrilateral element shown in Figure 2.2. The shape functions for this

clement arc given in Equation 2.5.

N 1 =--(l —)(l—j)

N2 = .-f(l —)(1 +q)

}	

2.5
N3 =-4-(l -i-)(l +j)

N4 =—f(l +)( 1 —;i)

Note that a local isoparametric coordinate system (, ij) has been used, with

the maximum value of each local coordinate within the element being + 1 or

-I. These values represent the outer surfaces of the element. If the local

coordinates of a point within an element (k, 71k) are known, then the global

coordinates (xk,yk) of this point can simply be obtained from substitution of

k and i into Equation 2.5 to give,

xk = N 1 x 1 +N2x2 + N3x3 + N4x4
2.6

Yk= N1y1+N2y2+N3y3+N4y4 	 J

where x 1 .. x4 = known x nodal coordinates

Yi .. y4 = known y nodal coordinates
.
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Equation 2.6 can be rewritten in matrix notation as,

JXk 

= {X} k =	 2.7
YkJ

where

[N1j = shape function matrix for element i,

evaluated at (k,flk)

{X}r = nodal coordinates vector of element i

A similar expression for the displacements at any point within the element

can also be obtained using the shape functions and the nodal displacements.

Ukx

= {U} k =	 2.8
LUkyJ

The strains within each element can be calculated from the nodal

displacements,

= [B]{u}r	 2.9

The terms within [BI are global derivatives of the shape functions, and are

obtained using the element's Jacobian matrix. The Jacobian matrix defines

the transformation from global to local derivatives and for the

two-dimensional element shown in Figure 2.2 can be written as,
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3x

[J]=	 cy
	 2.10

a,'
	

a,'

The terms in [B] therefore are,

-[Nk]. 0

$
-- [Nh].

2.11

L_[Nk].1 -A-[Nk]j -
	 Ii[Nk]

i_I

Assuming Hookean behaviour the element stresses can then be defined as,

=	 2.12

Where [DJ in Equation 2.12 is dependent upon the Young's Modulus and

Poissons ratio terms defined in the constitutive equations. For example in

plane stress analysis it takes the form,

with

a
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I	 V	 0	 1
[D]=	

E	 1	 v	 1	 0	 1	 2.1321	 I(I—v)	 I
0	 0 (l_v)/2j

A formulation for the strain energy within a system has been quoted in

Equation 2.3 in terms of stiffness and displacement. It is also possible to

express strain energy in terms of stresses and strain,

S =	 2.14

(where ^ = discretised domain i.e. 2-D or 3-D)

By the substitution of Equations 2.9 and 2.12 into 2.14, the following

equation is formed,

S = +J{U}T(B}T[D]{B}{U}dc^ 	 2.15

Inspection of the strain energy terms in Equation 2.3 and 2.15 shows the

element stiffness matrix can be written as,

[K]e 
= I {B}T[D]{B}d	 2.16

Jç
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To summarise, the stiffness matrix for each element can be calculated

knowing the clement shape functions, their derivatives and the constitutive

law applied.

The integration involved in Equation 2.16 can in some cases be carried out

analytically, however it is impractical for complicated functions especially

when and arc curvilinear. In general, numerical quadrature is applied

with weighting functions at specific positions within the element. The most

commonly used method is Gaussian quadrature (see Zienkiewicz (1977)

p196).

The global stiffness matrix representing the entire structure can be obtained

by summation of the individual clement stiffness matrices. This global

stiffness is generally banded and symmetric in form.
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CHAPTER 3

DISCUSSION OF PHYSICAL CONTACT PROBLEMS

3.1 Introduction

In contact analysis it is necessary to realise the wide range of different types

of contact that can occur, for without proper understanding of the physical

complexity of the real contact problcm, then the computer modelling cannot

be expected to predict the real situation reliably.

This thesis is concerned with the modelling of elastic contact. In the following

sections, the physical complexities of this form of contact are identified and

their effects discussed.

3.2 Physical complexity

The physical complexity for a contact problem can essentially be divided into

two separate areas,

a, the shape and size of the contact zone

b, the prevalent contact state

Further discussion on these areas now follows.
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3.3 Shape and size of the contact zone

The shape and size of the contact zone is dependent upon the shape of the

potential contact surfaccs, the material properties of the contacting bodies

and the forces applied to them. There are two main types of

sub-classification, this being problems where the shape and- size of the

contact region remains constant during all stages of loading, and problems

where the shape and size varies. Obviously the latter type of contact problem

is a much more difficult problem to solve than the former. Examples of

non-changing contact area problems are those where generally large contact

zones are present between conformingly shaped components, for example two

slabs resting on top of each other under uniform vertical pressure loading as

shown in Figure 3.1. Engineering examples of this form of contact can be

seen in the contact of slideways in machine tools such as lathes and milling

machines, and in interference fits between say a pin and a hole. In these

problems, the following 'simplifying' features can be identified about the

contact zone,

a, there is no change in contact size

b, the position of contact is known in advance

However, in the case of contact problems with varying contact areas, these

two 'simplifying' features do not occur.

Varying contact areas generally occur when there is little conformity of the

surfaces between the structures in the region of likely contact. For example

this occurs in the contact of a cylindrical roller on a flat surface as shown in
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Figure 3.2a, where the curvatures of the contact surfaces are quite different.

In this case, contact occurs initially along a line and with the application of

force the contact zone 'grows' to a finite size as shown in Figure 3.2b. This

growth of contact zone occurs in many contact problems upon application

of the loads. However, in some situations the increase in load can actually

cause the contact zone to decrease in size. An example of this can be seen in

Figure 3.3a, where a beam is initially resting on two wide supports. With

application of load, the beam deforms into a curved profile resulting in small

localised regions of contact at the inside edges of the supports as indicated in

Figure 3.3b.

These contact examples, where the size of the contact zone changes during

loading, highlight some of the difficulties involved in the contact modelling

process. They show that a general reliable method must be capable of,

a, identifying whether contact is increasing or decreasing and

b, imposing these contact conditions on the contact model.

3.4 State of the contact conditions

Up to now, only geometric considerations have been discussed in obtaining

the shape and size of the contact zone. There is however a further condition

that is vitally important, and that is the contact state. The contact state

identifies the type of contact that is occurring. There are three states that

may exist, these are,
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a, sticking contact

b, frictionless sliding contact

c, frictional sliding contact

These types of contact are fairly self-explanatory however a precise definition

now follows, from which key features and differences can be identified.

3.4.1 Sticking contact

Sticking contact occurs when two bodies come together and no relative

normal or tangential movement occurs at the contact interface. The

displacements for the contacting zone of the two bodies are therefore

identical, with equal and opposite contact forces also generated. Sticking

contact can be described by the following equations for the contact zone.

on	 0n -
	 3.1

L 0	 3.2

F+F=O	 3.3

F'+F=O	 3.4

where	 = surface displacement in the contact zone

F	 contact force

n	 the normal direction relative to the contact surface
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t = the tangential direction relative to the contact surface

A = denotes body A involved in contact

B = denotes body B involved in contact

3.4.2 Frictionless sliding contact

Frictionless sliding contact occurs when no tangential force can be sustained

on the contact interface. In this circumstance relative tangential sliding

occurs between the two bodies. The amount of sliding is unknown prior to

solution, although in certain problems it is governed by the normal interface

forces. For example in Figure 3.4, a tapered wedge under end loading is being

pushed into a similarly shaped cavity. With no load applied there are no

interface forces occurring. However, with the application of the end load,

sliding and deformation of the wedge occurs which results in normal interface

forces being generated. The final position of the wedge is determined when

the resolved normal contact forces acting in the direction of the applied loads

are equal and opposite to the external loads. At this stage 'jamming' of the -

wedge has occurred.

The set of equations which define frictionless sliding contact are stated below,

3.5.

3.6

F+F=O	 3.7
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F'=F=0	 3.8

From the above equations it can be seen that the equations in the normal

directions (Equations 3.5 & 3.7) are the same as for sticking contact. The

tangential direction equations are however quite different.

3.4.3 Frictional sliding contact

Frictional contact is similar to frictionless contact, with the same normal

displacement and normal force equations. The difference with frictional

contact though, is that although the sliding displacements are again

unknown, frictional (tangential) forces are now present which are defined by

some pre-determ med relationship.

Researchers in the field of frictional contact have developed many different

(and in general quite complex) relationships to define the friction forces

present at a contact interface. These relationships are dependent upon a

whole range of different parameters as can be seen in Bowden and Tabor's

(1950,1964) definitive text on frictional contact. Some of the key variables

which are defined as having effect are,

a, surface finish

b, contact size

c, material properties

d, temperature
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e, lubrication etc.

No single relationship has been proven to be generally reliable due to the

many different parameters that effect the problem. However, the friction

relationship developed by Coulomb (1781) has been used extensively in solid

mechanics due to its case of understanding and acceptable results that it

produces. As a consequence, Coulomb's friction relationship has been used

to model frictional contact. The principles and equations used in this friction

relationship are now described.

3.4.4 Coulomb's Friction Relationship

This relationship defines the maximum value of tangential force that can be

sustained on a surface for sticking to be occurring, beyond which frictional

sliding contact occurs. The magnitude of this limitiiig value is defined as the

product of a 'coefficient of friction' and the normal forces present.

IFL I = ulFI	 3.9

Hence, if the magnitude of the tangential forces present in a contact problem

are less than this limiting value, then sticking is occurring. Otherwise sliding

results, with the tangential interface forces equal to this value. This

tangential force acts in a direction opposite to the direction of sliding. In

two-dimensional problems the direction of sliding can only be in one of two

directions, these being along a tangent to the contact surface as shown in
a
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Figure 3.5a. However, fr three-dimensional problems the direction of

sliding can be in any direction on the contact surface's tangential plane, as

shown in Figure 3.5b.

The value for the friction coefficient is usually determined experimentally.

Generally a single value of friction coefficient docsn't exist, this is because the

tangential forces applied to a body to initiate sliding, are greater than those

to maintain sliding. To include this effect properly, two coefficients of friction

are needed, a static coefficient of friction to define the forces to initiate

sliding, and a dynamic coefficient of friction Pd defining the forces to

maintain sliding . Normally Ps is greater than Pd. A list of typical coefficient

of friction values for different materials is given in Table 3.1.
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CHAPTER 4

DISCUSSION OF FINITE ELEMENT

CONTACT MODELS

4.1 Introduction

The physical complexity encountered with real contact problems has been

described in the previous chapter. There is however a range of complexity

also apparent in the finite element modelling phase. Th purpose of this

section is to explain the different levels of complexity that may occur. This

allows a fuller understanding of the contact solution methods developed here

and by other researchers. Additionally, the applicability of a particular

method and its relative advantages and disadvantages can be made more

readily.

The main contact features that can occur in a whole range of different

contact problems have been identified and listed in terms of complexity in

Table 4.1. The headings 'easy' and 'difficult' have been used, these are

general headings meant for relative comparison of the different features. A

discussion on the complexity of each with regard to finite element modelling

now follows.
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4.2 Variation in contact area

If the region of contact is known in advance not to change in size, then this

can greatly reduce the problems encountered as,

a, all nodes in this region can be set initially as contacting.

b, no checking routine is needed to identify separation.

c, a single linear solution may be acceptable.

However, if varying contact areas arc 1ikcl then,

a, a method for identification of initial contact is neccssary.

b, a method for eliminating any overlaps that may occur is required.

c, a method for identifying regions that were initially contacting but

now may be separating is needed.

d, an incremental loading procedure is needed to allow for the

changing contact area (and hence boundary conditions) during the

loading phase.

4.3 Contact state

If sticking alone or frictionless sliding alone can be defined in advance as the

prevalent contact state, then advantage of the following features can be

taken,

a, this single state can be imposed upon identification of contact.
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b, with sticking contact, once the position of contact has been

identified, this remains the same for the whole solution.

c, with frictionless sliding no frictional forces need to be defined.

However, if mixed sticking and frictional sliding is possible, which may occur

in real contact problems, or where the modeller is unsure of the actual

contact state then,

a, a technique is needed to identify which contact state is prevalent

and to change it if necessary as the solution progresses.

b, the magnitude of the frictional forces and the direction in which

they act must be ascertained and included within the finite element

solution.

These last two points arc particularly difficult to incorporate within the finite

element formulation and as could be seen in the literature survey, most early

contact algorithms where sliding was incorporated, were for frictionless

contact only.

4.4 Structural deformity

If the region of contact is between two structures of different materials with

Young's Moduli values of E 1 and E2 respectively, then if the ratio of E1/E2

< .001, then contact bctween a rigid body and a deformable body can be

assumed to be occurring as very little deformation of the rigid body will
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occur. This allows the stiffer of the bodies to be modelled as totally rigid with

the other body deformable. The advantages of this strategy are,

a, no finite element stiffness matrix need be generated for the rigid

body as it is wholly restrained, with the size of the corresponding

matrices to be solved therefore reduced.

b, as one body is totally rigid, its surface does not move and hence

checking and identifying of contact is simplified.

If the Young's Modulus values are similar for the contacting bodies, then

selecting one body to be rigid is obviously an inaccurate assumption. In this

type of contact (which accounts for many real contact problefris) modelling

techniques are necessary which allow both bodies to be deformable.

4.5 Diniensionality

All real structures arc three dimensional in shape and form. Certain physical

aspects though, allow a two dimensional computer model to give accurate

results for some three dimensional problems. This can yield considerable

advantages as models representing just the cross-sectional shape need be

generated, allowing a reduction in model size and complexity. With regard

to contact problems key advantages of two dimensional modelling are,

a, movements occur only in the plane of the cross section, making

monitoring of contact geometrically easier.

b, line contact occurs (which is assumed to be constant in the depth
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direction), whereas complex area contact may be present in some

three dimensional problems. Hence, force and pressure monitoring

at the interface is easier in 2-D.

c, generally an iterative solution technique is needed in contact

modelling, thus the reduction in model size permitted with a two

dimensional model yields significant computational savings.

It becomes apparent that advantage of two dimensional modelling should be

taken whenever possible.

4.6 Mesh considerations

If the region in which contact will occur is known in advance, then special

considerations can be made in the generation of the finite element meshes.

Firstly, a fine mesh can be generated in this region to allow the high stress

gradients which may occur to be detected. This is especially relevant in

non-conforming contact, where small localised contact zones are likely.

Particular advantages in the solution process can be attained if the elements

in the contact interface are arranged such that node on node contact occurs,

as shown in Figure 4.1. This nodal arrangement allows that upon

identification of contact, the separate meshes can become directly coupled at

the nodal positions. Advantages of this feature are that,

a, the identification of contact becomes easier as only nodal pairs
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(which may be defined in the initial data file or in some other

manner) need to be checked for contact.

b, coupling in this manner allows the interface forces to be

transmitted directly across the element boundaries at these

coupled nodes.

However, due to intrinsic physical features in the real contact problem, node

on node contact may not be possible in the contact zone. Circumstances

where this may be so are,

a, where large scale sliding of one of the bodies over the other is

occurring. In this case, mesh alignment may be initially achieved,

howecr, due to sliding the meshes become mis-aligned as shown

in Figure 4.2 (It is possible to reconstruct the meshes to ensure

alignment as the sliding solution progresses, but this would be

highly inefficient computationally as the stiffness matrix would

need to be reformed).

b, where the bodies are initially separate and large scale movement

is occurring, in which case the position of where initial contact

commences may be difficult to predict.

c, where the geometric form of the surfaces of the contacting bodies

are quite different, such that ensuring element alignment in the

interface region in the mesh generation phase becomes excessively

difficult. In this case a simpler, non-aligned mesh may have to be

created. This problem is particularly likely in the three

dimensional modelling of differently shaped contacting objects
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(the knee prosthesis contact problem described in Appendix J

being a typical example).

Further difficulties that can arise due to non-node on node contact are,

a, the checking routines to identify contact become more

complicated as nodal pairs are not now occurring, with the

location of contact being potentially anywhere on the contact

surface. It therefore becomes necessary to identify with which

clement a node on one body is contacting and its precise position

on the element.

b, interface forces cannot now be directly transmitted between

adjacent nodes as they do not now occur, hence an alternative

approach for transmission of these forces is necessary.

4.7 Contact curvature

In contact problems where the contact surface is curved, geometric

difficulties are encountered when large amounts of sliding occur. This is

because the curved sliding route necessary for a sliding node to remain in

contact around a curved body, cannot be directly imposed in a single stage

solution in the finite element method. This is due to the formulation of the

finite element method yielding a linear system of equations. As a

consequence, the nodal displacements are linear with respect to their initial

positions. The sliding nodes therefore slide linearly in directions tangential

to the contact surface. The result of this for large amounts of sliding is that
e
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either geometric separation or penetration occurs as shown in Figure 4.3.

These gaps or overlaps are unacceptable as they represent sliding around a

shape different to the true profile, and, can cause incorrect stress values to

be obtained. Hence modelling of curved sliding contact requires techniques

for elimination of possible induced gaps or overlaps.

4.8 Large scale sliding

Apart from the previously mentioned consequences of large scale sliding and

contact curvature, there is also another problem encountered. This is that the

position of one body on the other may change quite dramatically due to large

scale sliding, when compared to the initial position of contact. In terms of

finite element modelling, this may result in the clement on which a node is

finally contacting, being different to the element it was initially contacting

as shown in Figure 4.4. It is therefore necessary in the solution procedure to

identify when sliding from one element to another has occurred and with

which element it is now contacting.

All of the above finite clement difficulties need to be automatically overcome

within a contact algorithm for its successful and reliable operation.
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CHAPTER 5

INTRODUCTION TO CONTACT ALGORITHMS.

5.1 Introduction

The extra stages that need to be included within a finite element package to

allow modelling of contact are discussed in this chapter. It is shown that

there are five essential stages, each of which must be automated and

integrated to ensure convergence and satisfactory operation. Additionally,

how these stages are solved is vital in defining the generality and applicability

of a finite clement contact algorithm.

The overall purposc of this chapter therefore, is to allow the 'best

approaches' to be identified and subsequently for these to be selected.. To

achieve this selection requires a quite detailed analysis of each stage and this

is now presented . The individual stages are,

a, the method of load application.

b, the method of identification of the size of the contact zone.

c, how the contact state is identified.

d, implementation of the contact constraints into the

finite element equations.

e, the method of matrix solution.
e
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A more detailed discussion of these stages follows.

5.2 Method of load application

There are primarily three different methods of applying the external loads

which are,

a, fully loading the model in one stage.

b, loading in stages of one boundary condition change per step.

c, incrementally loading in defined load steps.

5.2.1 Fully loading

If this tcchnRue is used, then the loading history of the structure is obscured

because complete re-solution is performed until . force equilibrium and

displacement compatibility are simultaneously satisfied. This is effectively

linearising a non-linear problem into one load stage and as such creates

errors when modelling contact with closing gaps and friction. However,

modelling of non-varying contact areas using this approach is acceptable as

implemented by Stadler and Weiss (1979) and Hitchings (1988). The

disadvantage of this approach is its limited range of applicability.
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52.2 One boundary condition change per load step

The other extreme in loading to fully loading In one stage is where only one

extra boundary condition is permitted per load stage. This can be achieved

by applying the full external loads and then scaling the resulting

displacements such that no overlap occurs and just one new extra boundary

condition is included in the next solution. The remainder of load is then

applied in this next solution and the scaling process repeated. This procedure

is continued until the structure is fully loaded. The overall solution Is then

obtained by summation of each of the scaled solutions. A diagram showing

this scaling process is presented in Figure 5.1. An accurate build up of the

contact zone is ensured with this technique. This method is probably the

most obvious for tracking the solution whereby the non-linear problem has

been converted into a series of linear solutions, with summation of the linear

stages giving the overall solution. Some authors who have used this approach

are Okamoto and Nakazawa (1979), Torstenfelt (1983) and Pascoe and

Mottershcad (1988,1989). However, the computational time with this

approach may become excessive in problems where many contact nodes are

present.

5.2.3 Incremental loading in defined stages

An alternative to the two approaches above is to apply load increments as in

standard finite element non-linear analyses. This involves loading in

prescribed load increments with iteration within each increment to eliminate

any overlaps and force residuals to achieve convergence of nodal states,
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displacements and contact forces. This technique has been used by

Mazurkiewicz and Ostachowicz (1983) and Bathe and Chaudhary (1985)

It is probably the most attractive approach to problems involving many

nodcs in the contact region, as it allows reasonable tracking of the load

history and is not restricted to one boundary condition change per load step.

To summarise, the method of loading depends to a great extent on the type

of problem being considered. It should be noted that a variable load method,

will due to its generality of applicability, be considerably more complex in its

solution procedure for certain 'simple' problems than the 'straight forward'

fully loading approach. However, a general method can always cope with a

simple problem, whereas a 'straight forward' fully loading approach cannot

always cope with complex models.

5.3 Identification of the size of the contact zone

From a finite element basis, this involves having a method for identifying

which nodes and elements are in contact and precisely at which locations.

The gap element technique which is the most commonly used in finite

clement contact analysis has a particularly simple method of contact

identification. This involves calculation of the forces occurring in the gap

element. As an example, consider the line gap element inserted between

adjacent nodes in Figure 5.2. The forces generated in the normal direction

of the gap element indicate whether tension or compression is occurring, with

compression indicating contact. They can be calculated from,
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F = K n (5 1n2n 5 gapn )	 5.1

In Equation 5.1, K is the clement stiffness which is constant for each

iteration and hence plays no role in identifying contact. It therefore becomes

apparent that a direct comparison of the normal displacements of the end

nodes is in fact being undertaken. Paradoxically, this • simplicity of

identification highlights the fundamental limitation of standard gap element

theory. This being that node on node contact is necessary across the interface

to allow this checking of relative nodal displacements through the calculation

of gap clement forces. Consequently, gap elements cannot be reliably used

in problems involving large scale sliding, unknown contact zones or where

nodal alignment cannot be achieved because of mesh generation difficulties.

To solve the modelling of these problems, nodal identification of contact is

necessary of not just if a node is contacting, but also where it is contacting.

This involves finding the clement against which a node is contacting and its

exact position on the clement's side or face. The contact checking routine to

allow this must therefore be much more sophisticated than that used for gap

elements.

The main technique used for this complex contact identification involves

defining one surface as a master and the other as a slave, or as they are now

more commonly phrased, 'contactor and target' respectively. Each node on

the contactor surface is then checked for contact with each target element.

This requires two checks to be carried out, one for the position of contact and

the other for the overlap distance. Figure 5.3 shows a typical

two-dimensional simple contact surface with one contacting node. Contact
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5.2

5.3

}

5.4

can be identified by the intersection of a normal with respect to the target

surface and the contactor node. From the position of intersection the values

of /3 and 5 can be evaluated for as,

xc — x1	 yc—yl
13=	 = Y2Y1

and 5 = n(x - Xk) + n(y - Yk)

where n,, n, = normal direction cosines relative

to the target surface

Contact is then defined to be occurring if,

O ^I3 ^ 1

and 5^O

A major restriction with this approach is that only linear elements are

permitted in the contact zone. The reason why this is so can be seen in Figure

5.4, where contact is occurring on a curved boundary. The values of /3 and

5 from Equations 5.2 and 5.3 suggest in this case that no contact is occurring

(as	 is calculated using the linear equation of 5.3, indicating a gap rather

than overlap). The contact solutions for these quadratic and higher order

elements (which would be. encountered in curved boundary modelling) would

therefore be seriously corrupted by this identification technique.
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In three dimensional problems, contact identification is further complicated

by the fact that contact is not occurring simply on an element edge, but

anywhere on an element face. From the literature Chaudhary and Bathe

(1986) have one of the few three- dimensional non-node on node contact

algorithms. However, they only permit linear quadrilateral element faces in

the contact zone, restricting the type of elements that can be used to eight

nodcd brick elements. With these elements, the local position of contact on

the target clement is defined in terms of subtended area coordinates between

the contacting node and each of the edges of the target element. The normal

distance is again calculated from the intersection point on the target element

face and the normal unit vector. This method of contact identification is also

restricted to only linear elements for similar reasons to those previously

described in two dimensional modelling.

Once the extent of the contact region has been identified, it is then necessary

to determine whether the contact state of either sticking or sliding needs to

be imposed.

5.4 Identification of the contact state

In many of the early contact algorithms, only wholly sticking or wholly

sliding contact could be imposed. Examples of this are found in Francavilla

and Zienkiewicz (1975), Stadter and Weiss (1979) and Mahmoud et al

(1982). This is satisfactory for many types of contact problem if the contact

conditions are known a priori and can considerably reduce the computational

effort. However, the user may often be unaware of the contact conditions in
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advance, in which casc general purpose algorithms are required which can

automatically calculate and apply the correct constraints.

The solution procedure most commonly used in these general purpose

algorithms is to define newly contacting areas as sticking. From the forces

generated after a solution the decision to change the contact state may be

made. This change of state usually occurs when the tangential forces are

greater than some limiting value, for example as defined from Coulomb's

friction relationship.

The positions at which the forces are monitored and subsequently how the

decisions on contact state are made is an important feature of the solution

procedure. There are three different locations which are generally used, these

being at nodes, elements or Gauss points. The techniques and advantages

and disadvantages of each are now discussed.

5.4.1 Nodal decisions

Probably the easiest and most direct method of determining the contact

forces and contact states is to use the forces occurring on the contacting

nodes. These forces can be calculated from the element stiffnesses and

displacements of the contacting nodes or by,

{R}	 {R} - [K]{u}	 5.5
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where [K] is the overall stiffness matrix without any imposed constraints and

{R} is the external applied loads vector. The resulting force vector R}

contains zero and non-zero terms, the non-zero terms are the nodal global

contact forces.

The decision for the nodal contact state can be made by transforming the

global nodal forces into local tangential and normal forces with respect to the

contact surface as shown in Figure 5.5. Note that when the master and slave

technique is used for the contact surfaces, only the contact state on the

master (contactor) surface is needed, as these forces will be subsequently

distributed onto the slave (target) surface.

The contact state for each contactor node is then obtained from the following

checks.

If,

F > 0	 5.6

then tension is occurring, indicating this node should be released from the

contact conditions.

If,

IFI > LuFI	 5.7

then the sticking condition previously applied needs to be changed to sliding,

with the frictional (tangential) forces set as,
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IFI = I ILLdFnI	 5.8

If

IFI < I p FI	 5.9

then the sticking condition should continue.

The nodal states need to be updated according to the above information and

the appropriate constraints applied in the next iteration.

The nodal forces can only be directly used if they are truly representative of

the contact conditions. To identify this, the nodal forces need to be examined

from their derivation in the finite element method.

The discretisation of the domain into finite elements, with distinct

interpolation functions (shape functions) per element, necessitates the forces

acting on the finite elements to be consistent with these functions.

Consequently, although uniformly distributed loading may be occurring on

the real structure, the finite element nodal forces in this zone may not be

similarly uniform. Examples of this can be seen in. Figure 5.6, where the

nodal forces to model uniform loading for different element types are shown.

From this figure it becomes apparent why contact modelling using the finite

element method has been almost entirely restricted to linear elements, as the

nodal forces for these elements are directly indicative of the real forces.

In the case of the two-dimensional quadratic element, the sign of the

contacting nodal forces does correctly identify whether separation or contact
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is occurring. However, with the three-dimensional quadratic element there

are tensile forces generated at the corner nodes when subjected to

compressive loading. Thus using nodal forces alone to decide the contact

condition is erroneous for this type of element.

5.4.2 Element decisions

An alternative decision making technique for identifying the contact state is

to use forces acting on an clement face, rather than nodal forces. This can

be achieved by again initially calculating the nodal contact forces as in

Equation 5.5. These discrete nodal forces can then either be averaged over

an element by simply summing the nodal contributions as shown in Figure

5.7, or converted into an equivalent continuous pressure distribution over the

surface, as shown in Figure 5.8. By numerical integration (usually Gaussian

quadrature) the element forces can be calculated.

Once the element's total normal and tangential forces are known, then its

state can be defined using the same conditions as for nodes (Equations 5.6

to 5.9). However, as only nodal constraints can be applied to 'the stiffness

matrix, this requires that nodal states be defined from these element values.

Bathe and Chaudhary (1985) use a system whereby if any of the adjacent

elements to a node are sticking, then its state is also stIcking. Similarly if all

adjacent elements are sliding, or sliding and releasing, then this node is also

sliding. Finally, release is defined for the node if all adjacent elements are

releasing.
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The technique of element decision making is more complex than for nodal

checking, as 'conversion' matrices are required to convert the nodal forces

into equivalent pressures and element force values.

5.4.3 Gauss point decisions

With the previously mentioned difficulties involved in three-dimensional

quadratic elements in mind, Hitchings (1988) implemented the use of

monitoring contact at surface Gauss point positions. This technique was used

as the Gauss points are known to be positions at which the element stresses

are 'best' determined (Barlow (1976)). The same contact checks for nodes

and elements can also be applied at the Gauss points. One unfortunate effect

with this method is that slight mesh overlap can occur. However, Hitchings

results indicated that the stresses were still satisfactory.

The question arises as to which of these methods is the most reliable and

hence which should be used. In Chapter ten, various test runs have been

made using the different contact identification techniques. A summary of this

analysis is that although slightly different results occur, they converge with

increase of mesh refinement. The element contact state checking technique

tends to smooth the results due to force averaging, whereas the discrete

locations used in the other techniques can, in some applications, cause

difficulties (see Appendix F). As previously mentioned, deciding the contact

state directly at each node from its nodal forces is not suitable for

three-dimensional elements of quadratic and higher order.
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5.5 Implementation of the contact conditions

A key point that should be made here is that all finite element contact

algorithms apply both displacement and force constraints on the structural

stiffness matrix to impose the contact conditions. How these constraints are

applied on a matrix level in terms of the changes and accuracy of the applied

desired constraint, defines to a large extent the differences between the

different contact algorithms.

In the field of finite elements the following three methods of constraint

imposition have evolved.

a, Penalty method

b, Lagrange multiplier method

c, Transformation matrix method

The theoretical basis of each is now shown, from which the matrix

modifications can be seen. The relative advantages and disadvantages of each

method is also highlighted.

5.5.1 Penalty method

In this approach, each constraint is included by the addition of an extra term

into the initial finite element variational statement (Equation 2.3), as shown

in Equation 5.10.
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[1 * = n+fCTC	 5.10

where	 penalty number

C = constraint equation

The 'penalty number' is analogous to stiffness with the constraint equations

containing displacement relations. This extra term is physically representative

of the strain energy to maintain the constraint.

As an example of this technique, consider the nodal overlap that would occur

when nodes not previously contacting come into contact after an iteration,

as shown in Figure 5.9. It is necessary to eliminate this 'physically

unacceptable' nodal overlap in the subsequent iterations. This can be

achieved if the following displacement constraint equation is imposed on the

system of finite clement equations.

u5—u2 = 5n	 5.11

Equation 5.11 can be re-written in matrix form, to be compatible with

Equation 5.10 as,

[1 -1 ]<
Lu2

cusn} =
	

}	

5.12

or [L]{U} =
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such that C = [L]{U} -	 5.13

Inserting Equation 5.13 into 5.10 gives,

[1 * = II + -- ([L]{U} - flT([L]{U} -	 5.14

Equation 5.14 can be expanded as,

1_I* =
	 +

1- ({U}T[L]T[L]{U} - 2{U}T[L]T + 	 5.15

( note [L]{U} = {U}T[L]T as this term is scalar )

Minimisation of Equation 5.15 by differentiation with respect to the

displacements gives,

0 = [K]{u} - {R} +	 - [L]5)	 5.16

Rearrangement of Equation 5.16 with the unknown nodal displacements on

the left hand side gives,
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[[K] + cx[L]T[L]]{U} = {{R} + x [L]T{ 5 }}	 5.17

The derivation of the finite clement equations using the penalty method for

constraint imposition has now been completed.

For the example constraint shown in Equation 5.11, the only extra terms to

be added to the 'standard' finite clement equations (Equation 2.1) are four

terms in the stiffness matrix and two to the force vector. The rows and

columns to which these terms apply is defined by the degrees of freedom in 	 -

the initial constraint equation. Although only one constraint equation was

applied here, the technique allows multiple constraints to be cumulatively

applied. Hence global x,y,z constraints or local normal or tangential

constraints can be imposed for multiple contacting nodes.

The modifications made here to the stiffness matrix have been derived

entirely from a mathematical viewpoint. It is however also possible to

intuitively obtain the same equations using gap elements. In this approach,

a gap element is inserted between the potential contacting nodes with a very

low stiffness initially defined. Once contact is identified, a very high stiffness

value is inserted, effectively locking the nodes together. The contributions to

the stiffness matrix for this approach are identical to that of the constraint

approach (Equation 5.17). Some of the many authors who have used this gap

element approach are Mazurkiewicz and Ostachowicz (1983), Zolti (1983)

and Hellen (1988).
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A major drawback of the penalty method is that the accuracy of the desired

constraint on the system of equations is dependent upon the penalty number

used. As a consequence, it is not possible to exactly apply the desired

constraint. This can be realised by close inspection of Equation 5.17, where

the greater the magnitude of the penalty number, the more likely these terms

are to dominate the rows in which they occur. A typical row in which these

terms occur is written out below.

stiffness terms	 - xu2	 + u 5 =	 5.18

The dominance of the penalty terms in the rows in which they appear

effectively explain why this method of constraint imposition works. The force

equilibrium equation initially represented by a row in the stiffness matrix has

been converted to what amounts to a displacement constraint equation, with

the stiffness terms made to have little effect by the selection of a very high

penalty number. However, if too high a penalty value is selected, then an

ill-conditioned matrix can result. Felippa (1977) in his paper gives advice on

recommended values. From results conducted in this thesis, a penalty value

in the order of 10+6 times greater than the largest term in the initial stiffness

matrix, gave convergence of results to within five significant figures of the

exact solution.

A distinct advantage of the penalty method is its ease of implementation into

existing finite element codes through the use of gap elements, although in this

form the contact is restricted to being node on node. Further advantages are

that the size and positive definiteness of the matrix remain unchanged.
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The allowance of free movement when not contacting and constrained

movement when contacting, requires two different stiffness values to be

defined for each gap element. When switching from one to the other, the

structural stiffness matrix is changed, necessitating it to be re-decomposed

at the solution stage. This can be a computationally expensive procedure.

Element numbering to minimise this effect can be introduced at the mesh

generation phase where the elements of potential contact are the last to be

numbered. Then in the full stiffness matrix only the bottom right hand corner

of the matrix requires re-decomposition.

To avoid this re-decomposition, some authors (Ishinabe (1987) and Hitchings

(1988)) define only one 'medium' stiffness value for the gap elements. This

allows the stiffness matrix to be decomposed just once. However, the use of

medium stiffnesses results in the constraints being only 'weakly' applied with

overlaps still existing after a solution. This overlap is eliminated by further

iteration using new force vectors calculated after each solution. This can

result though in many iterations in certain problems, especially those with

varying contact areas.

In summary, the penalty method using gap elements is relatively 'easy' to

install and monitor in existing finite element codes. However, matrix

decomposition and re-solution can become a major phase in the solution

procedure due to swapping of gap element stiffnesses or 'weakly' imposed

constraints. Additionally, t.he technique in gap element form is restricted to

node on node contact.
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5.5.2 Lagrange Multipliers

With the Lagrange multiplier approach the contact constraints are included

by the addition of a different term than that of the penalty method to the

initial variational statement (Equation 2.3). The variational formulation for

Lagrange multipliers is shown in Equation 5.19,

11 * = fI+ATC	 5.19

where A = Lagrange multiplier

C = Constraint equation

The Lagrange multiplier is a scalar value and represents the force to

maintain the constraint. The 'energy product' of the Lagrange multiplier and

the constraint equation represents the 'work done' in applying the constraint.

The finite element formulation using Lagrange multipliers to impose contact

will now be developed. Inserting the constraint equation of 5.13 into 5.19

gives,

11 * 
= 

H + AT([L]{U} -	 5.20

Although AT is scalar, it now becomes an additional variable in the

variational formulation. Hence differentiation with respect to both U and A

must be undertaken,
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0	 [K]{u} - {R} + [L]TA	 5.21

0 = [L]{U} — ö	 5.22

( note 1T[L]{U} = {U}T[L]TA as this is a scalar term )

Equations 5.21 and 5.22 can be combined to form their more familiar

Lagrange multiplier matrix form of,

I K Lflçu	 [Ri

= ln	
5.23

For the example constraint shown in Equation 5.11, there would be no

changes inside the initial stiffness matrix, with four new terms added in extra

rows and columns around the outside of the stiffness matrix and one to the

augmented force vector. The rows and columns to which these terms are

added are defined by the degrees of freedom in the initial constraint

equation. Multiple constraints can be applied, with the dimension of the

stiffness matrix and the augmented force vector increasing accordingly.

One of the main advantages of Lagrange multipliers is that the constraint

equations are exactly imposed on the system of equations, although this is

at the expense of increasing the size of the initial matrix.

Difficulties can occur for some equation solvers for this type of matrix due

to the zero terms on the main diagonal. For example, the Cholesky

decomposition method (explained in Wilkinson and Reinsch (1971)) results
a
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in the square root of negative terms occurring during the decomposition

process, which prevents solution by this technique. However, solutions can

be obtained using Gaussian elimination or Crout's method.

Authors who have used the Lagrange multiplier method of constraint

imposition include Hughes et al (1976), Okamoto et al (1979) , Bathe and

Chaudhary (1985) and Pascoe and Mottcrshead (1988,1989).

5.5.3 Transformation matrix method

This technique of constraint imposition is derived not from a variational

viewpoint, but from matrix operations of coupling degrees of freedom in the

stiffness matrix. The constraint equation, by its very dcflnition, connects one

variable with respect to several others. This variable therefore is a dependent

ratio of the other variables. This permits the initial variable to be directly

eliminated from the system of equations with its contribution being added to

the other terms.

The matrix operations to carry out this elimination for a single constraint are

shown in Equation 5.24.

T	 T
[ET] [K][T]]{u}	 [T] {R}	 5.24

where ET]	 Transformation matrix
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{ U} = reduced system of unknown nodal displacements

The transformation matrix defines the matrix operations to combine the

coupled degrees of freedom and is defined by the desired constraint to be

imposed on the system. Its general form can be written as,

[T] = [I] - EL] *
	

5.25

0

where EL] * = L

0

and [I] = unit matrix

Note that in Equation 5.25, the [L] constraint terms only occur in the row

of the dependent degree of freedom and the columnar positions of this row

as defined by the other degrees of freedom in the constraint equation. The

diagonal term in the transformation matrix for the dependent degree of

freedom should be zero. This can be guaranteed by ensuring the constraint

coefficient term in [U for the dependent degree of freedom is + 1 (This can

be achieved by dividing through the equation by the coefficient of the

dependent degree of freedom). Most authors using the transformation matrix

method for contact analysis use node on node contact in which case the

elements of ET] can be intuitively obtained (Fredriksson (1976) &

Torstenfelt (1983)). The general method of calculation of the transformation

matrix for any type of constraint, as shown in Equation 5.25 has not

previously been encountered by the author. Confirmation of the validity of
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the technique is contained in the results chapter, where a range of different

constraint problems are solved and compared with the penalty and Lagrange

multiplier methods.

Advantages of the transformation matrix method are that the constraints can

be exactly applied and that a reduction in dimension of the matrix occurs.

Disadvantages arc that extra matrix operations are required for each change

in contact conditions and that re-decomposition of the reduced structural

stiffness matrix is necessary. Additionally, it is necessary to have no overlaps

hence one boundary condition change per load step is the only permitted

loading technique.

To summarise, the main techniques of constraint imposition have now been

discussed and described. From the generalised concept of defining an [LI

constraint array, it has been shown that any of the methods of constraint

imposition described here could be used. In the examples shown here, only

node on node contact was considered. In the following chapter, it will be

shown that the [LI matrix does not necessarily have to define node on node

contact, in which case completely general and unified theories have been

developed. The extra complications in allowing non-node on node contact

however, requires much more sophisticated geometric identification routines

to allow the general [LI matrix to be constructed.

The overriding question that arises from this section is which method of

constraint imposition is 'best'. The definition of 'best' is a somewhat

awkward quantity to define. Probably a satisfactory definition would be,
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'the 'best' technique is one which provides

sufficiently accurate results in a minimum of time'.

It can be seen from this definition that the method of constraint alone is not

sufficient to define the 'best' technique as time considerations become

important. This is particularly relevant in varying boundary condition type

contact problems, as their inherent non-linearity results in generally many

tens, if not hundreds, of iterations being necessary to obtain 'sufficiently

accurate' results. Thus the type of matrix solution solver used and any

reduction in matrix size can have dramatic effects on the computational

effort required.

5.6 Matrix solution solver techniques

The technique of substructuring where internal degrees of freedom are

condensed out of the initial stiffness matrix, yielding a 'reduced' matrix is

ideally suited to contact problems. The method of substructuring is well

documented in the literature (for example, Stasa pp337-339). The method

has in the past been used in several contact papers (Francavilla and

Zicnkiewicz (1975), Frcdriksson (1976) and Mazurkiewicz et a! (1983)). Its

use however, is imperative for efficient iterative solution.

A major part in most finite element contact algorithms is the computational

cost incurred with re-decomposition of the stiffness matrix, which is

necessary due to the different contact constraints that become operative as

the solution progresses. Hence a reduction in matrix size, achievable by using
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a frontal elimination technique (Hellen (1969) and Irons (1970)), can yield

considerable computational savings as smaller matrices require

decomposition (the frontal elimination procedure in effect automatically

imposes su bstructuring techniques).

Additionally, how and where the constraint terms due to contact are added

to the stiffness matrix, can also have a dramatic effect on the computation

required in the re-decomposition. For example, a full re-decomposition may

not be necessary with certain equation solvers.

In Chapter nine, a 'hybrid' equation solver is developed which only requires

one decomposition of the reduced stiffness matrix. Furthermore, the

re-decomposition at each iteration stage is restricted to only the Lagrange

constraint terms, and even these may not need to be re-decomposed for

subsequent iterations. The overall computational efficiency with these

features, can in certain applications, make the hybrid equation solver tens

or hundreds of times faster in decomposition, when compared to full stiffness

matrices and traditional equation solvers.
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CHAPTER 6

CONTACT CONSTRAINTS

6.1 Introduction

In the preceding chapters many of the general problems encountered when

modelling contact have been discussed. These problems can essentially be

summarised as to how a contact is identified, and what are the 'appropriate'

constraints that need to be imposed on the system of finite element equations

to enforce the prevailing contact conditions.

In this chapter, a general theory is developed which allows these problems to

be resolved. Towards the end of the chapter, several specific contact

techniques for directly including frictional effects are described.

6.2 Contactor and target definition

Consider two separate structures, each divided into a finite element mesh as

shown in Figure 6.1 (for reasons of simplicity, only one interface region and

two dimensional contact will be considered in the foregoing constraint

analysis, however the principles developed here can be directly applied to

multi-interface contact and three dimensional problems).
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Let one of the bodies be labelled the contactor and the other the target. The

labelling of these bodies is important as they define the role of master and

slave in the analysis. Nodes on the contactor surface are the masters, whilst

the target nodes which define the element surfaces arc the slaves. Contactor

nodes are prevented from penetrating the target surface, however no similar

constraint applies to the target nodes. This system is satisfactory for the

prevention of mesh overlap provided care is taken in the selection of which

body is the contactor. General recommendations are that fine meshes should

be used in the region of potential contact (which the 'aware' finite element

user should use for reliable stress calculations anyway) and that the body

with the most curved or sharp contact zone be selected as the contactor. This

final point avoids a problem that can occur of overlapped meshes not being

detected as shown in Figure 6.2, where in the second diagram none of the

contactor nodes have overlapped, yet considerable penetration of the target

has occurred.

6.3 Identification of contact

The method of identification of contact developed here is based on geometric

considerations. It uses the displacements from the last iteration to update the

surface nodal coordinates. Geometric routines are then entered to identify

contactor overlap.

The geometric routines used need to be accurate, as usually the displacements

are small compared to the initial coordinates and hence only small differences
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in values are occurring. Additionally, they need to be general to allow for the

different types of clement that may be used in the contact zone.

6.3.1 Local isopararnetric coordinate identification

The technique for identification of contact developed here takes advantage

of key characteristics of the clement's local isoparametric coordinate system.

For example consider the elements shown in Figure 6.3. With these elements,

their surfaces are exactly defined by one of the local coordinates (

, j, or if 3D) taking the value of + 1 or -1. With triangular elements local

area coordinates arc usually defined within the the elements as shown in

Figure 6.4. In these cases, their outer surfaces are exactly defined by one of

the area coordinates ( L 1 , L2 or L3 ) taking the value of 0.

The geometric identification routine relies upon the target elements on which

contact is likely to occur, having their potential contact surfaces being

defined at the beginning as 'active surfaces'. The associated normal local

coordinates to these surfaces are also labelled as 'active' (the other local

coordinates being labelled as 'non-active'). The information defining this can

either be input by the user, possibly in a similar labelling system as already

used in many finite element packages to define edge or facial element

pressures from the element nodal topology. Alternatively, this process can

be automated whereby only the target elements are defined. Then, from

calculation of nodal outward normals from each element and summation of

normals for shared nodes, permits the 'free' surface to be defined from

non-zero normal vectors as shown in Figure 6.5.
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With the active surface and the active isoparametric direction known, then

identification can be undertaken of whether a node is touching, and if it is,

with which target clement and exactly where on its surface. This is achieved

by conversion of the global coordinates of the contactor node into local

coordinates of the target clement in question.

This coordinate conversion is attained by the solution of Equation 6.1 for the

unknown local coordinates used in the shape function matrix.

{X} k	[Nk]T {x}	 6.1

For linear target elements of the type shown in Figure 6.3, the

k and k terms in [ N k] are linear, which allows the matrix to be directly

solved for these local coordinates. However, for elements of quadratic and

higher order, the shape function expressions for these elements contain

similarly quadratic or higher order local coordinate terms. Consequently the

system of equations to be solved is of a similar order.

The direct solution of these equations can be difficult, hence a Newton

Raphson iterative technique is used here. The method is an important part

of the solution algorithm and is fully detailed in Chapter eight. A key feature

in the implementation is that the Newton Raphson equations are derived

from the element's shape functions and its local derivatives. Hence, as these

are standard routines in finite element codes, then this method of contact

identification is general fort any element type and independent of the

complexity of shape of the actual surfaces.
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Once the local coordinates have been obtained, then whether contact is

occurring or not, is checked from the type of target element and the local

coordinates. If the clement is of a type where local coordinates of + 1 or -1

indicate a surface, then contact is occurring if,

'k' ^ 1.0 + TOL	 6.2

and	 I'I ^ 1.0	 6.3

where Dk = active local coordinate

= the non-active local coordinates

TOL = tolerance of acceptable deviation from the

exact target surface for contact.

Values of CDk and 'k outside the limits defined in Equations 6.2 and 6.3

indicate that the node is outside the domain of the target clement.

For elements in which local area coordinates are used, such as triangular

elements, contact is occurring if,

—TOL	 k 1 + TOL	 6.4

and O^'Yk ^1	 6.5

e
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The above techniques can be used to identify contact irrespective of the

curvature or dimensionality of the target elements. In the next section, the

local coordinates of contact defined above are used in the derivation of the

contact constraint equations.

6.4 Contact constraints

There are two types of contact condition that may be prevalent in a contact

zone, these are sticking contact and sliding contact. In the following sections,

constraints for these conditions arc derived which can be generally applied

for any type of clement. Additionally, the contacting nodes between the two

meshes can eithcr be aligned (node on node contact) or mis-aligned

(non-node on node contact).

6.4.1 Sticking contact

Consider the individual contactor node k coming into contact with the target

body shown in Figure 6.6. For sticking contact to be defined between the

contactor node and the target surface, requires this node to be effectively

adhering to the exact position of initial eontact on the target. For this to

occur, the subsequent displacements of the contactor node must be identical

to the subsequent displacements of the initial point of contact on the target

body. From the finite eIemett formulation, the displacements at any point

within an element can be defined from the element's nodal displacements and
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its shape functions. Therefore, for sticking contact the following displacement

constraint can be defined,

{U} k = [Nk]T{U}.	 6.6

The displacement constraint defined by Equation 6.6 assumes the contactor

node was initially just touching the target surface. However, in the general

case node k may well be overlapping the target element mesh. This is likely

to occur when a contactor node was previously not contacting, and due to

displacements in the last solution now overlaps.

The removal of overlaps (which is necessary, as physically structural overlap

cannot be accepted) is achieved by the addition of a global overlap vector to

Equation 6.6. i.e.

{U) k =	 + {A}	 6.7

cx
where in 2-D	 {i\} =

( 
5,

In circumstances where overlap has occurred, the position of initial contact (

k and , for the target element in Equation 6.6) on the target surface is again

required. However, this is not as readily available as now the coordinates of

the overlapped node do not represent this 'just touching' position. The local

coordinates of initial surface contact in this circumstance can be calculated

from the intercept of the updated target surface, and a line joining the
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current and previous coordinates of the contactor node in question, as shown

in Figure 6.7. A particularly efficient technique is to take advantage of

inherent features of the target clement's local coordinate system. For example

in quadrilateral and brick elements, the outer surfaces are as previously

stated, exactly defined by one of the local coordinates taking the value of

+ 1 or -1 as indicated in Figure 6.3.

The ratio to initial contact y for all the elements in Figure 6.3, can be

calculated using the 'active' local coordinate,

A — cD'

D' -''
	 6.8

where A = + 1 or -1, dependent upon the active surface

cD'' = previous active local coordinate

cD' = current active local coordinate

The local coordinates of the position of initial contact can now be found,

=	 i-i 
+ y( - t '')	 6.9

77k = 1	 + v('f - , 
Ii)	 6.10

-	 =	 '-' + yg' - Ii)	 (if 3-D)	 6.11

Obviously, the active surface local coordinate in the above will take the value

of + 1 or -1. The global overlap vector for stIcking contact can be evaluated

from,
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{L} = [[Nk]T_[Nj]T]{u}	 6.12

The constraint coefficients and the overlap vector in Equation 6.7 are now

fully defined. Rearrangement of this equation with separation of the known

and unknown quantities to the right and left hand sides respectively gives,

{ U }k - [Nk]T { U } =	 6.13

For the two dimensional contact shown here, there arc two separate

constraint equations defined in Equation 6.13, one representing an 'x'

direction constraint and the other a 'y' direction constraint. Writing out the

first row of Equation 6.13 gives,

- [NkX]J.{U}.X =	 6.14

which can be rearranged into the constraint form of Equation 5.12 to form,

UkX)
[i -	 =

or	 [L]{U)=51

Equation 6.15 is identical in form to the general constraint of Equation 5.13.

Hence, either Lagrange multipliers or the Penalty method of constraint

}

	

6.15
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imposition discussed in Section 5.5 could be used for applying this constraint

on the stiffness matrix.

The constraint method used here is that of Lagrange multipliers. This was

used because it permits exact imposition of the contact conditions.

Additionally, the use of Lagrange multipliers when coupled with the 'hybrid'

equation solver discussed in Chapter nine, permits 'fast' iterative

decomposition which can yield considerable computational savings.

The sticking type of contact described here is probably the easiest to define

as there is no relative sliding occurring. In sliding problems it is necessary to

define different contact constraints.

6.4.2 Sliding contact

There arc essentially two types of sliding contact which can be defined to

occur, these being frictionless and frictional contact. In the following analysis,

frictionless contact is initially addressed. The effects of friction are then

included either iteratively or directly in the initial stiffness matrix if the

direction of sliding is known.

Consider again Figure 6.6, where an individual contactor node is touching

the target body, however, now the node is desired to undergo frictionless

sliding. In the case of small scale sliding, the node will slide from its initial

point of contact along a tangeht to the target surface. For this to occur in the

finite element model requires the subsequent displacements of the contactor
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node in the normal direction, to be identical to the normal displacement of

the initial point of contact on the target body. In terms of the nodal

displacements, the following individual normal displacement constraint can

be defined.

= {n}T[Nk],r{U}	 6.16

where {n}T = normal direction cosine vector relative

to the point of initial contact

In the definition of frictionlcss contact, there is no tangential direction

constraint occurring at the contact interface. Therefore, imposition of

Equation 6.16 alone (in the rearranged form of Equation 6.17) on the

stiffness matrix, will cause frictionless sliding of the contactor node until

'jamming' occurs.

IUk)[{n}T {n}T[N]]1	= 0	 6.17

6.4.3 Large scale sliding

If the contact surface is curved and large scale sliding occurs, then nodal

overlap or separation as defined in Section 4.7 may result.
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The method to correct this effect is dependent upon the loading procedure

used. If one boundary condition change per load step is used, then the

contact zone must be accurately tracked through the loading stages to permit

correct identification of newly contacting nodes. This necessitates that the

sliding solution be re-solved with a modified normal direction cosine vector

in Equation 6.17, such that the sliding node's final position is on the target

surface (or to within some pre-defined tolerance of contact). This new normal

direction cosine vector can be defined from the average of the previous and

new normal direction cosines.

When using the loading procedure of pre-defined load increments

(Section 5.2.3), the displacements obtained from each iteration contribute to

the final solution. Hence this method necessitates the overlap (or separation)

distance due to large scale sliding, to be eliminated directly in the next

iteration. This can be achieved by the addition of this normal overlap (or

separation) distance to Equation 6.17, producing the constraint of Equation

6.18.

IUk1
[{fl}T_{fl}T[N]]1	 = ö.	 6.18

This displacement constraint can, as for sticking contact, be directly imposed

on the stiffness matrix using Lagrange multipliers.
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Up to now, the contact constraints have only been derived in terms of

displacements. There is however the important consideration of how the

contact forces are defined and how they are distributed across the interface.

6.4.4 Distribution of contact forces

The contact forces have not been discussed up to now, this is because they

are automatically defined from the minimisation of the variational statement

with the applied displacement constraint. For example, consider the normal

reaction force between the contactor node and the target element shown in

Figure 6.8. Correct distribution of this force onto the target element is

required. From standard finite clement theory, point loads which are not

applied directly at a no4e, should from virtual work considerations be

distributed in the ratio of the shape functions onto the element's surface

nodes, i.e.

{F}. = Ffl [Nk ]i{n}	 6.19

In Lagrange multiplier theory, the Lagrange multiplier represents the force

to maintain the constraint. Hence from rewriting Equation 5.23, the physical

significance of the [L]T term becomes apparent,

K LT fU	 fR	
6.20

L o
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The constituents in the [L]T term and the Lagrange multiplier A in the above

equation precisely imposes the force constraint of Equation 6.19 onto the

relevant contacting nodes. This is confirmed by examination of the affected

rows of the stiffness matrix, where the force equation that each column of

[L]T represents, imposing the contributions due to the contact forces of that

specific constraint.

The physical significance of the [L]T term above is an important realisation,

as in Section 6.4.6 it will be shown that it can be modified for the direct

inclusion of friction.

6.4.5 Frictional contact

A major difficulty in modelling frictional contact is that it is dependent upon

the load history. In particular the loads exerted on a system will define in

which direction sliding will occur, and as the friction forces by their nature

oppose the direction of sliding, then they cannot be accurately included

unless this direction is known.

To overcome this difficulty, many authors initially carry out a frictionless

solution when sliding is defined. Then from analysis of the resulting normal

contact forces and the direction of sliding, Coulomb's friction relation can

be used to define the 'missing' frictional forces as,

IFI _1ld IFn I 	 6.21
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This frictional force can be included into the system of finite element

equations by resolution of the tangential friction forces occurring at the	 -

contactor nodes into global forces. Using these forces and Equation 6.19

permits the target element nodal friction forces to be determined, as shown

in Equation 6.22.

{F}- = - FL[Nk]'1j{ t}	 6.22

where {t}	 tangential direction cosine of the sliding

direction relative to the target surface

( note, -ye force in Equation 6.22 as the target friction forces act in an

opposite direction to those of the contactor's)

These forces are added to the right-hand side force vector of Equation 6.20

and re-solution undertaken. Generally, because of the effect of the new

friction forces, the new normal forces generated are slightly different from

those obtained with the frictionless run. As a consequence, the tangential

friction forces also need to be modified to maintain the Coulomb relation.

An iterative process involving re-calculation of the friction forces and

re-solution, generally results in converged solutions being obtained.

However, in certain situations divergence can occur and hence no solution

can be formed using this technique of 'adding the friction forces

post-solution'. Campos, Oden and Kikuchi (1982) identified that there could
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possibly be problems in applying friction in this manner, although they did

not show in what type of problem it may occur.

In Appendix H, a class of wedge type contact problems (similar to Figure

3.4) are shown to suffer from this problem. It is indicated that provided the

difference in angle between the applied forces and the taper surface is greater

than the friction angle, then the problem of divergence does not occur.

However,when this is not the case solutions can be obtained, provided the

total contact force in the direction of the applied force is scaled to equal the

applied force in this direction.

It should be pointed out that this problem of divergence rarely occurs and

on the whole, 'post-solution' addition of the friction forces is satisfactory. -

The number of iterations to attain frictional convergence is problem

dependent. However, in general from the author's experience at least four

iterations arc needed assuming no change in boundary conditions. In the next

section, a method is developed for the direct inclusion of the friction forces

in one iteration provided the direction of sliding is known.

6.4.6 Direct inclusion of friction

The normal and tangential force relationships present under frictional sliding

can be summed to define the global nodal contact forces acting on the

contactor and target respectively as,
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{F}k = F{n} - F{t}
	

6.23

{F} = Ffl [Nk ] j {n} - FL[Nk]{t}
	

6.24

As F is defined from Coulomb's friction relation in terms of F, then these

equations can be rewritten as,

{F}k = Ffl[{n}—pd{t}]
	

6.25

{F} .. = F[[Nk]ii({n} - ud{t})]
	

6.26

Equations 6.25 and 6.26 represent the interface contact forces between a

contactor node and target element. For force equilibrium these relationships

need to be coupled as equal and opposite, i.e.

IFkl
F[({n} - IAd{t}) - [Nk]({n} - d{t})] =	 e

(FTJ

or	
2[J]T{}

Equation 6.27 is a force constraint for frictional sliding and defines the

distribution of F (and its induced F ) on the affected contacting nodes.

From Section 6.4.4 it becanre apparent that the [L]T terms in the Lagrange

multiplier equation physically represents the force constraint on the system.

}

	

6.27
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Hence this term can be replaced by [j]T to directly impose frictional sliding,

i.e.

1'	
jT ctii

L L 0

It should be emphasised that Equation 6.28 can only be used for the direct

inclusion of sliding, when the sliding direction defined by {t} is known.

Probably the simplest procedure for obtaining this direction is to initially

apply frictionless conditions for when sliding has been. identified. The

displacements from this solution can then be used to obtain the vector

defining the direction of sliding.

An unfortunate characteristic that occurs with the direct inclusion of friction,

is that it causes the 'total' stiffness matrix to become unsymmetric. This can

cause difficulties in some matrix equation solvers due to increased storage

and loss of symmetry in the decomposition process. In the following section,

a symmetric method of friction inclusion is developed, which although not

direct, has about half the iterations of the 'post-solution' friction technique

discussed in Section 6.4.5.

6.4.7 Symmetric friction method

This method is essentially a hybrid version of Equation 6.28. It originated

from examination of the terms in the 'stiffness' matrix and identifying what

6.28
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happens when the matrix is made symmetric. It was noted that the

'post-solution' method of including friction was a symmetric variation of this

equation with [LI and [L]T contributions. Therefore, what would be the

effect of [J] and [j]T contributions ?

With the Lagrange multiplier method, it has become clearly evident that the

extra rows added to the stiffness matrix define the displacement constraints

on the system, and that the extra columns define the force constraints. Thus

application of [J] as the displacement constraint, will actually apply

incorrect displacement constraints as the coefficients in the Lagrange terms

now include friction (see Equation 6.27). The effect of this is that the normal

which was previously used to define the sliding surface becomes modified by

the coefficient of friction. This causes sliding to occur along a different slope

as shown in Figure 6.9.

If a contact problem has sliding occurring in one direction, then all the

contactor nodes on that surface will because of application of the [J]

displacement constraint, slide along the 'wrong' slope creating a gap as

indicated in Figure 6.10. However, because the frictional force constraints are

correctly applied (by [J]T) this causes the induced contact forces to be close

to the forces obtained from the 'exact' direct inclusion of friction method.

As a consequence of this, the deformation of the target body, which is

controlled by the generated contact forces acting on it, is close to the

frictional solution obtained in the direct method.

The gap though that has P resulted between the contactor and target is

unacceptable, as these contactor displacements do not represent sliding
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around the true contact surface. However, with the calculation and inclusion

of 'corrective gap terms' into the Lagrange overlap vector, subsequent

re-solution produces convergence to the same results as obtained by the direct

friction method.

The 'corrective gap terms' were defined by a rigid body translation of the

contactor nodes in the direction of the applied loads as shown in Figure 6.11,

such that the sum of the normal gaps above the target surface were equal to

the sum of the normal gaps beneath it, that is,

+ 5) = I	 - 5) I	 6.29

Confirmation of the improved convergence with this method over the

'post-solution' technique of including friction is highlighted in the paper 'Two

new finite clement contact algorithms' contained in Appendix K, where

several example problems are compared.

Although there arc advantages in symmetrification of the matrix in this

manner, the method relics on calculation of translation distances and normal

corrective gaps. In three dimensional problems, this process could become

quite complex, hence this method has only been implemented for

two-dimensional contact. The main motivation for developing this method

was to allow existing symmetric equation solvers to be used. The 'hybrid'

equation solver developed in Chapter nine allows unsymmetric matrices to

be solved and hence friction can be directly included with this equation

solver.
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This chapter has described and defined contact constraint equations between

contactor nodes and target clement surfaces for sticking, frictionless sliding

and frictional sliding contact. A key feature of these constraints was that the

clement shape functions were used. As a result, the equations developed here

can be modified by selection of the appropriate shape functions for the

particular type of target clement (evaluated at the point of contact), which

allows the technique to be applied to almost all area (2D) and volume (3D)

elements.

The constraints on the contactor body defined above were applied at the

contactor's nodes. It is possible however to apply constraints at different

positions on the contactor surface, for example at 'surface' Gauss points.

This technique and the resulting constraints are now described.

6.5 Gauss point constraints

It was explained in Section 5.4.1 that nodal forces could only be used for

deciding the contact state for certain element types, where their naturally

occurring nodal contact forces were representative of the real contact

conditions.

The motivation for using Gauss point constraints is derived from the fact

that stresses calculated at these points are known to be the most accurate

(Barlow (1976)). Thus sampling the contact forces at positions as close to the

Gauss points as possible, is likely to give better indication of the contact
e
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condition than at the nodes. These surface points can be found from

extrapolation of the Gauss points to the surface as shown in Figure 6.12.

The principles defined in the previous section of this chapter for constraints

at the contactor nodes also apply for the contactor surface Gauss points. The

only difference is in the definition of the position of point of contact on the

contactor. Hence the nodal contactor term becomes replaced by the Gauss

point position defined from the shape function of the contactor element, i.e.

{ U }k	 6.30

where [NG]C = Contactor shape functions evaluated

at the surface Gauss point

{U} = Contactor global nodal displacement vector %%

Hence the general constraints would for surface Gauss points become,

For sticking contact,

T Te'

[ [NG]C_ [Nk]T]4! uc} = {A}	 6.3'!
(UT

For frictionless sliding contact,

cj
[{fl}T[N] - {n}T[Nk]T]{	 =	 6.32
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For frictional sliding contact,

T
[J] = [[NG ]({n} - I td{t}) - [Nk ]({n} - Ud{t})]	 6.33

This chapter has described and discussed how contact is identified and

developed many different types of contact constraint and shown how they

can be included in the finite element equations. In the next chapter, four

different contact algorithms are derived which incorporate these features.
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CHAPTER 7

NEW CONTACT ALGORITHMS

7.1 Introduction

Four complete contact algorithms are described in this chapter, including the

architecture of the algorithms for automated operation. The first three

algorithms have been coded for two dimensional elements only. The final

algorithm allows both two and three dimensional modelling.

7.2 Linearised contact algorithms

Three algorithms arc presented here which use the one boundary condition

change per load step approach. By using this technique, the non-linear nature

of the contact problem is converted into a series of linear solutions.

Summation of the displacements from each solution provides the overall

deformation profile. Note that as these algorithms have only been

implemented in 2-D and involve linearised steps, that the Lagrange

multipliers (which represent the forces to maintain the constraint) are in

fact the nodal contactor contact forces. Therefore in these specific algorithms

these contactor forces have been used to define the contact state. The

solution procedure when using the linearised approach is now summarised.
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Initial contact conditions are identified and the appropriate constraints and

full external loads imposed. The resulting displacements and contact forces

are then scaled such that the next new boundary condition just becomes

operative. A new boundary condition could include any of the following,

a, change of contact state (e.g. sticking to sliding)

b, new nodal contact

c, nodal sliding into a new target element

d, nodal release

To just begin to introduce a new boundary condition a scale factor fi is

calculated. The displacements and contact forces from this iteration are then

scaled by this value and stored. The remainder of load is then calculated.

The next iteration includes the new boundary condition amongst its imposed

constraint equations along with application of the remainder of load. The

scaling procedure is then re-entered for the results from this iteration. This

process is repeated until the structure is fully loaded and is shown below.

Solve,

çR'

= loS

where [K * ] i 
= the current stiffness matrix including the Lagrange

constraint terms

and
	

i = the current iteration (if i = 1 then apply

the full external loads).

7.1
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Calculate the scale factor /3 to introduce the next boundary condition and

then update the displacements and contact forces,

=	 {U} + /JU}1
	

7.2

=	 {A} +
	

7.3

Calculate the remainder of load to be applied,

= (l—fl){R}'
	

7.4

Increment i and re-enter Equations 7.1-7.4 until the loads have been fully

applied.

More details on aspects of the individual algorithms now follow.

7.3 Direct inclusion of friction algorithm

A flow diagram showing the solution procedure when using this method is

contained in Figure 7.1. Key features are that unsymmetric constraints are

applied for frictional sliding, with the transition from sticking to sliding

involving a frictionless sliding run to be initially imposed. This allows the

direction of sliding to be correctly defined in the next frictional iteration.
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7.4 Post-inclusion of frictional forces algorithm

A flow diagram outlining the solution procedure for this algorithm is shown

in Figure 7.2. In particular with this method, the 'missing' nodal frictional

forces are calculated from the normal contact forces and included in the force

vector of the next iteration. Re-solution is continued until the Coulomb

friction relation is correctly satisfied.

7.5 Post-inclusion of normal gaps algorithm

The flow diagram for this algorithm is shown in Figure 7.3. With this

method, the translation distance of the contactor to equalise the normal gaps

above and beneath the target surface after a solution is desired. From this

translated position, the normal gap terms can be calculated and inserted in

the constraints of the next iteration.

7.6 Algorithmic similarities

The flow diagrams in Figures 7.1-7.3 show many similarities between the

methods. For example, the scaling and load application procedures are

identical. They also highlight the main disadvantages of the one boundary

condition change technique. This being that scaling can only be reliably

undertaken if the displacement results in this iteration are accurate. To

enable this requires several re-solves to be undertaken, to ensure the correct

friction forces are acting and the elimination of any induced overlaps or gaps
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due to large scale sliding. The number of re-solves coupled with the allowance

of only one extra boundary condition change per load step, can cause these

methods to be computationally expensive.

The following method is derived from an incremental loading approach and

does not have a re-solve stage, as every solution contributes to the overall

solution, and as such permits multi-changes in contact conditions per

iteration.

7.7 Incremental loading algorithm

The energy functionals developed in Chapter five related to individual linear

stages. For non-linear problems the external loads are applied in increments,

with iteration within each increment for convergence. The general non-linear

form of these equations for the jth iteration within the pth increment can be

written as,

T

np = +	 + 
{AU}J} [K]{{Au) 1 + > 

{AU1Y} -

T

{ 

{AU}1 ±	 (LU}J} { {RJ} +
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p - I	 i-i

[K]	 {U} + [K]	 (AUPY} (Ri 1 'I

	

1	 +c	 7.10
0	 (A''j

which can be written as,

(Rd

1	
= {R}_{F)1l +<	 )	 7.11

or more simply,

IAU')	 (AR)
[ K *]	 P	 = •	 .	 7.12

where [K * ]	 global stiffness matrix including the current Lagrange

constraints

{AU,} = incremental displacements from this iteration

(should obviously decrease in each iteration as

convergence is approached for each load increment)

{AA.'} = incremental contactor contact forces from this iteration

{ R}	 sum of the incremental load so far

{F} j = sum of the total element stresses upto the (i - 1)th

iteration of the present load increment

{R} j = sum of the total nodal contact forces upto the (i - 1)th

iteration of the present load increment
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The total displacements are found by summation of the incremental

displacements from every iteration. The incremental form of Equation 7.10

is not new, as other authors (e.g. Bathe and Chaudhary (1985)) have

developed similar equations. However, the formation of a general constraint

equation [U makes these equations universally applicable. Similarly,

provided the total contactor forces are known then they can be distributed

in the ratio of the constraint equations to define the forces on the target

nodes. An important feature of the algorithm is how these contact forces are

obtained.

The form of Equation 7.10 is similar to standard non-linear finite element

equations. The (R-F) term on the r.h.s. usually represents 'out-of-balance'

force terms which are generally removed by further iteration. However, in the

contact formulation, these 'out-of-balance' terms represent the nodal contact

forces. Hence for convergence, the nodal contact forces (defined in the {R}

vector) should be equal and opposite to the (R-F) terms at these nodes. In

fact after each iteration, the (R-F) and {R} terms do exactly satisfy this

condition (in elastic analyses). However, because of changes in contact

subsequently identified after this iteration, the (R} contact force vector or

{A} overlap vector may become modified. For example, if a change of state

from sticking to frictionless sliding is defined, then the {R} tangential

contact force components calculated due to the sticking constraint need to

be set to zero, in which case {R} is modified and a nett force residual is

produced from summation of the r.h.s. force terms of Equation 7.11.

Additionally, new contact constraints may be defined, in which case overlap

terms in the r.h.s. of Equation 7.11 also need to be eliminated. Thus residuals

in the r.h.s. of Equation 7.11 (force or displacement) occur as a consequence
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of changes in contact conditions when compared to the last iteration.

Convergence can therefore be defined within a load increment when the load

residual and the overlap vector to be applied in the next iteration are both

below pre-determined tolerance values.

7.7.1 Convergence criteria

The Euclidean norms of the residual displacements and the residual forces

were calculated after each iteration and convergence defined to have occurred

for that load increment, when these were beneath pre-dctcrmincd tolerance

values. The norms were calculated as,

Eu =	 7.13

ER =	 7.14

where n = total displacement degrees of freedom in the stiffness matrix

The magnitude of the tolerance values selected are quite important. If too low

a value is selected, then a high precision is being defined, requiring extra

iterations that probably do not significantly contribute to the accuracy of the

final solution. Conversely, if too high a value is selected, then convergence

may be accepted for quite a poor (inaccurate) solution. Comparison of the

results after many iterations for different models have indicated that a

convergence criteria of ER to 0.1% of the load increment, and E to 0.1% of
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the total displacements in that increment, to 'be satisfactory convergence

tolerances.

7.7.2 Incremental solution procedure

A flow diagram showing the solution stages for the incremental loading

approach is shown in Figure 7.4. Key features of this algorithm are that no

re-solutions are involved as every iteration contributes towards the converged

incremental solution. Additionally, multi-changes in boundary condition can

be facilitated within each iteration. The contact force checking routine and

geometric contact checking routines are now discussed in more detail.

7.7.3 Contact force checking routine

In the first contact iteration only {R} terms exist in the {AR} force vector.

The nodal forces equivalent to element stresses {F} can be evaluated as,

{F} ' = {F} i-2 
+ [K]u}

The nodal contact forces are then obtained from,

(Re) •' = {R} - {F}
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Specifically, only the contactor nodal forces are needed which are converted

from global to local forces relative to the contact surface. The total normal

and tangential force acting on each element is then obtained by dividing the

nodal forces by the number of elements each node shares. These divided

nodal forces arc then summed for each element, to give the total normal and

tangential forces per element face. The contact state of the element is then

defined by application of the Coulomb friction check, i.e.

a, if the tangential forces exceed the limiting value defined by the

product of the normal force and the static coefficient of friction,

then the clement is defined as sliding.

b, if the tangential forces are less than this limiting value,

then the clement is defined as sticking.

c, if the normal forces are positive, then release of the element

is defined.

The decision on contact state was made on an element rather than nodal level

because of the fluctuations in nodal force values that can occur in the initial

iterations. The use of element forces tends to smooth out these effects.

However, the constraints imposed on the stiffness matrix must be at a nodal

level, hence the contact state at each node must be decided from the element

states. The technique used here is to decide the nodal state from the state of

adjacent elements.

a, if any of the adjacent elements to a node are sticking, then the
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node's state is also sticking.

b, if all of the adjacent elements are sliding or sliding and releasing,

then the nodal state is sliding.

c, if all of the adjacent elements are releasing, then the nodal

state is also releasing.

The nodal states, which define the type of constraint equation to be applied,

have now been identified. It is also necessary to modify the contactor contact

nodal forces {R} to be consistent with these nodal states.

a, if the nodal state is sticking, then no change is made to the

nodal forces.

b, if the nodal state is sliding, then the tangential nodal force

is scaled to the frictional value defined by the normal force and the

dynamic coefficient of friction. This tangential force is applied in

the direction opposing motion.

c, if the nodal state is releasing, then its contact forces are set

to zero.

The {R} vector for the contacting contactor nodes has now been defined.

To obtain the forces on the target nodes these forces are distributed in the

ratio of the latest constraint equations (as defined by the shape functions)
e
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onto the relevant target nodes. The {R} vector is now fully set-up allowing

the residual force vector for the next iteration to be calculated.

7.7.4 Geometric contact checking routine

The procedure for identifying contact is fully explained in the next chapter

and essentially involves identifying whether or not a contactor node is

contacting the target body. The process involves checking each contactor

node with each potential target element. Two checks are undertaken, the first

is a rough check which quickly identifies if a node is in the possible domain

of the target clement. If it is, a more accurate check is then undertaken to

precisely identify the local coordinates of the node's final position. If the node

is found to be inside the target element., then, the target element number, the

position of initial contact, the amount of overlap, and the contactor node

number are stored (which arc then used to define the constraint equation in

the next iteration).
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CHAPTER 8

Contact Identification Procedure

8.1 Introduction

The identification of contact is a vital stage in a general contact algorithm.

The process used here essentially involves checking each contactor node for

contact with the potential target surface elements of the other body. Different

contact checking procedures were used, depending upon the contactor node's

previous state.

8.2 Previously non-contacting nodes

For nodes not previously in contact it is necessary to identify for each

potential contactor surface node whether it has contacted the target body,

and if it has, with which target element. The contact checking technique

employed here involves checking each contactor node against each target

element. This comprises of two stages, the first stage is a rough geometric

check which identifies quickly whether a node is in the possible domain of a

target clement. This is undertaken by obtaining the maximum and minimum

global x,y (and z if 3-D) coordinates of the target element in question. The

updated global coordinates of the contactor node are then checked for

whether they lie in the target element's coordinate range. If any of the

contactor node's coordinates lie outside the x,y or z range, then contact with

this target element is not occurring.

S
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It is possible however, for a contactor node to pass through the element

against which it should actually be touching as shown in Figure 8.la. To

overcome this difficulty, the maximum displacement occurring in the

previous iteration is added to either side of the target clement's coordinate

range. This maximum displacement is generally small and results in an

envelope extending around the true element's shape as shown in Figure 8.lb,

allowing rough contact to be detected. Once the rough contact checking

routine identifies contact, it is necessary to enter the accurate contact

checking routine.

The purpose of the accurate contact checking routine is to identify the precise

location of the previous and current global coordinates of the contactor node

within the isoparamctric local coordinate system of the relevant target

clement. Then by using linear interpolation, the position of initial contact on

the target element's surface can be identified using Equations 6.8 to 6.11.

8.3 Previously sticking nodes

For nodes that were previously sticking, then the element with which it is

contacting is known, in which case it is necessary only to check whether there

is any overlap as stated in Equation 6.12.

8.4 Previously sliding nodes

For these nodes the element against which it was previously contacting is

known, the first check therefore is to identify whether it is still contacting this

element. This is done by converting its new position into local isoparametric
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coordinates of this element and checking that the non-active local coordinates

lie in the range + ito -1. If they do not, then this node must be checked with

the other potential target elements until the new target element against which

it is touching is identified.

8.5 Global to isoparametric coordinate conversion

The conversion of global x,y (and z if 3-D) coordinates to local

, ,( and if 3-D) coordinates for quadratic and higher order elements

requires the solution of non-linear equations. The technique developed here

is iterative and makes use of the target element shape functions. The method

had to be capable of accurately locating contact as generally only small

changes in displacement occur. Additionally, reasonable convergence

characteristics were desired.

As previously stated the global coordinates of the contactor node need to be

converted into the equivalent isoparametric coordinates of.the target element,

the general equations therefore which need to be solved are,

Xk = [N ( k , p7k' Ck)]T{x}T	
)

Yk = [N(k,k,Ck)]{y}	 8.1

Zk =	 flk'	 J

Where k, ?7k and Ck are the unknown isoparametric coordinate values of the

target element exactly equivalent to the global coordinates of the contactor

node (Xk, yk and Zk) . The shape function relationships containing

k, 11k and Ck in Equation 8.1 are of the same order as the target element (i.e.
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linear if linear elements and quadratic if quadratic elements etc.). Hence

these equations for quadratic and higher order elements are non-linear.

One method for solving the system of equations in Equation 8.1 is to apply

the Newton Raphson iterative solution procedure (e.g. see Jeffrey p651). This

procedure essentially involves,

1. calculation of the shape functions using initial estimates for , i and

2. calculation of an improved estimate of the local coordinates from

Newton Raphson theory using an equation of the form,

x i+1 =	
1_ f(X')

f '(X')

Here three separate equations in x, y and z need to be solved. In the

following analysis it is necessary to allocate each local coordinate to its

'nearest in orientation' global coordinate. Assuming that c, AC are nearest

to x,y, and z rcspctivcly then rearrangement of Equation 8.1 and application

of the Raphson theory gives,

i+ 1 = - [ N( 1 , pi', C)]T{x} - Xk

•j- [N(', ii', C)]T{x}

8.2

8.3
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i+'	 [N(, iii, ) ]T{Y}T - Yk
17	 =11—	 8.4

[N( 1 , 17', ')]T{Y}T

[N(, 77k, 
C)]T {z} - Zk-i+1 =i_

[N(, , C)]{z}	

8.5

The updated values for c, and obtained after the first solution from

Equations 8.3-8.5 arc used to calculate updated shape function terms. These

equations are then re-entered and this process repeated until convergence in

the local coordinate values occurs. The use of shape functions and their local

derivatives in the above equations takes advantage of standard shape

function routines which generally return both of these quantities.

If the clement shapes are relatively 'uncurvcd', then Equations 8.3-8.5

converge in relatively few iterations (less than ten). However, because these

equations are coupled, then for curved elements very poor convergence (and

in some cases divergence) can occur. To overcome this problem the following

technique has been developed, which is based on the Newton Raphson

theory and has accelerated and reliable convergence characteristics.

8.6 Accelerated accurate identification routine

Consider the node and target element shown in Figure 8.2. Two fictitious

positions are calculated from this node. The first (Xk, Yk, z1 ) is obtained

assuming constant 'non-active' global coordinates (x and y in this case) and
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a constant active local coordinate ( C = + 1, representing the top surface in

this case). The second position (x 2, Y2, Zk) is obtained assuming - a éonstant

'active' global coordinate (z in this case) and constant 'non-active' local

coordinates k1i as calculated from position 1.

The values of the active local coordinate D at positions 1 and 2 bound the

exact solution of the active local coordinate Dk for node k. However, a close

approximation can be obtained for k, by construction of a normal from k

to the line formed by positions 1 and 2. The close approximation for L can

then be obtained from,

= 1+fl(2-1)	 8.6

where fi = ratio along the line 1-2 to the intersection

point of the normal with the element surface

The above process (of forming new positions 1 and 2 and improved estimates

of klJk and Dk) can be repeated until suitably accurate results are obtained.

The equations to execute this technique are now presented for 3-D (a

somewhat similar approach also applies to 2-D involving the definition of

two fictitious positions, although C and z obviously do not enter the solution).

Position I

Using an initial (constani) active local coordinate, calculate the non-active

local coordinates to achieve the same non-active global coordinates of k, i.e.
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1. Use constant Xk, O = 1.0,	 = 0 variable (O 0)

o	 [N(°, i° 0)]T{x} , -
solve	 .' =	 ---i-	 8.7

-;- [N(°, 710 0)]{}e

Let c°	 and re-solve Equation 8.7 until convergence is attained to give

'I.

2. Use constant Yk, C0 = + 1, = ', variable 77 (j° = 0)

	[N(1 , pi° C ) ]T{Y} r - Yk	
8.81 0 ______________solve	 = 71 -	

[N(', 
770 

C)]T{Y}T
all

Let ° = pjl and re-solve Equation 8.8 until convergence is attained to give

'l'•

Position 2

Using the non-active local coordinates calculated for position 1, calculate the

active local coordinate to achieve the same active global coordinate of k, i.e.

3. Use constant Zk, =	 = ?7, variable C (C° = + 1)

1	 r°	
[N(l, 

77i 
C°)]T{z}_zk

solve C = ------.--	 8.9
-- [N("711, C°) ]T{z}-
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Let ° = and re-solve Equation 8.9 until convergence is attained for .

4. Use	 j1 and° to calculate z1

5. Use , ,' and to calculate x 2 and Y2

From similar triangles in Figure 8.2 the value of fi can be obtained as

b=	 8.10
b2 + c2

where b = Zk -

and c = J(xk - x2)2 + (Yk -

Using Equation 8.6, an improved estimate of the active local coordinate is

obtained. This value and the latest non-active local coordinates can be used

as new initial guesses in Equation 8.7 etc., and the process repeated. This

procedure then continued until the local coordinates obtained for these

fictitious positions are to within some pre-defined tolerance of each other,

indicating converged values.

The derivation shown here has assumed that contact is occurring on a surface

where is the active coordinate. For contact on other surfaces, i.e. or

active coordinate systems, then the same basic principles hold although

different local coordinates would represent the non-active directions.

Similarly the terms for b and c in Equation 8.10 would also be

correspondingly changed.
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CHAPTER 9

HYBRID MATRIX EQUATION SOLVER

9.1 IntrOdLiCtion

A new 'hybrid' equation solver facilitating 'fast' solution of iterative contact

problems with varying boundary conditions has been developed. It takes

advantage of the following features,

a, Lagrange multipliers

b, the frontal elimination method

c, substructuring and

d, an active zone equation solver

The particular advantages in using these features are now discussed.

9.2 Features and operation of the 'hybrid' technique

Lagrange muRipliers have been used to apply the contact constraints, the

reasons why they were used are two fold, firstly they allow the constraints to

be exactly imposed and secondly they do not effect the 'inside' of the initial

stiffness matrix, i.e. no terms are added as in the penalty method and no row

or column multiplications are needed as is necessary with the transformation
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matrix method. The advantage of this will become clear when the active zone

equation solver technique is described.

The frontal elimination method permits only the elements and nodes of the

wave 'front' to be retained as the solution progresses with Gaussian

elimination of the fully summed terms. The advantages of this are that the

full stiffness matrix need never be formed, permitting considerable space

savings compared to storage of the full matrix. The technique is well

explained in Irons and Ahmcd pp2O3-213. A slightly modified version is

used here where the elimination process is aborted when all the non-contact

degrees of freedom have been eliminated. More details on the method now

follows.

The technique of substructuring, is to a large degree automatically

incorporated in the frontal elimination process. How the 'front' identifies

which degrees of freedom are either externally loaded nodes or potential

contacting nodes, and hence are not to be eliminated, is defined here by the

use of a fictitious clement of highest element number containing this degree

of freedom (d.o.f.) list. An element versus d.o.f. lookup table is set up with

this fictitious clement included, as shown for a typical example in Figure 9.1.

The frontal elimination procedure involves the calculation of one element

stiffness matrix at a time. This is added to the overall current stiffness matrix.

Each degree of freedom in this is then checked to see if it is fully summed.

This can easily be identified from scanning along the row in which this degree

of freedom occurs in the table shown in Figure 9.1. If no further reference in

the remaining elements is made, then this d.o.f. can be eliminated. The

frontal elimination process is aborted when all the elements have been added
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into the 'front' and only the last fictitious element's degrees of freedom

remain in the reduced stiffness matrix.

The active zone equation solver decomposes the reduced stiffness matrix into

lower and upper triangular form as shown in Equation 9.1,

[K] = [L][U]
	

9.1

A review of the technique is shown here along with its particular advantages.

Full documentation of the method can be found in Stasa pp27O-275.

A key advantage of the active zone equation solver is that the terms for [L]

and [U] arc calculated using only previously evaluated [L] and [U] values,

and from stiffness terms from the current 'active zone' of the original stiffness

matrix. These active zones can be seen in Equation 9.2, where a simple 3x3

stiffness matrix has been partitioned into its three active zones.

1	 2	 3	 1	 2

K 11	 K 12 : K 13	 1	 :

K23 =

K31 K32 K 33	 L31	 L32

3	 1	 2	 3

oil u11 U 121 U131

-Ill
o	 U22' U23 I

----j	 I
0	 U33]

9.2

The calculation of the [L] and [U] terms is undertaken from the use of each

active zone in lurn as,

zone I	 U11 = K11
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zone 2	 U12 = K2

L21	 K 21 I U11

U22 = K22 - L21 I U12

zone 3	 Ui3 = K13

L31 = K 31 / U11

1	 11'	 1	 IT	 \FIT
'-32	 k	 - '-31'--'12)i '--'22

U-,3 = K - L21U13

U33 = K33 - L31 U 13 - L32U23

The above equations are shown in their general form for any size of matrix

in Appendix E.

A vital feature of this decomposition is that the [L] and [U] terms for the

current active zone can be calculated entirely from the previously

decomposed active zones of [L] and [U], and the current [L], [U] and [K]

active zone. The essence of why this is such a good method can be realised

from the general trend of the propagation of the active zones, these being

from the top left of the matrix, with adjacent positions to the right and below

being used in the next and subsequent zones. This permits changes to be

made to the outside of the stiffness matrix, i.e. the addition of extra active

zones, which are completely isolated from the initial matrix. The advantage
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of this being that changes can be made to the outside of the reduced stiffness

matrix, with these extra terms having no effect whatsoever on the previously

calculated [L] and [U] terms of the initial reduced stiffness matrix. There are

obvious advantages when this technique is allied with Lagrange multipliers,

as only one decomposition of the reduced stiffness matrix is necessary.

With regard to contact modelling, any changes in the contact conditions

identified after each iteration doesn't need a full decomposition, as only the

decomposition of the Lagrange constraint terms is required. In the case of

relatively few contact constraints as is often encountered in the early stages

of 'growing contact', then this extra computation is quite low. Further

advantage can be gained if the region of contact does not involve gross

sliding. In these circumstances, the constraint equations for previously

contacting nodes may not change, and heace their previously obtained [L]

and [U] decompositions would remain valid.

Solutions are obtained for each iteration using two backward substitution

phases as shown below,

[L]{z} = {R}	 )
9.3

[U]{u} = {z}	 J

Due to the relatively small coefficients of the Lagrange constraint terms when

compared to the stiffness values, round-off errors can be encountered causing

inaccurate displacements to be obtained. However, using a process of
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iterative refinement, accurate displacements result where the error residuals

are calculated as shown in Equation 9.4.

r) = [K]{u} - {R}	 9.4

By back-substitution of this error residual, replacing {R} in Equation 9.3,

corrective displacement terms can be calculated.

The active zone equation solver is a fast technique of constraint imposition

and equation solver when coupled with Lagrange multipliers and the frontal

elimination method. Other methods of constraint imposition such as the

Penalty method or the Transformation matrix method involve changes to the

actual stiffness matrix. These changes being either the addition of extra

terms, or row and column multiplications. As a consequence of this, the

advantage of the active zone technique as shown above is not realised with

these methods.

One of the commonest equation solver methods in finite element codes is

Gaussian elimination. There are not, however, any 'active zone

characteristics' in this decomposition technique. Hence, if Lagrange

multipliers (or the Penalty method) are used, then re-decomposition from the

row in which the first columnar contact term occurs becomes necessary with

Gaussian elimination. This is because the technique involves direct

elimination of variables using row subtraction, thus the first row in which a

Lagrange term occurs, has effect for the remainder of the decomposition.
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CHAPTER 10

RES ULTS

10.1 Introduction

One of the purposes of this work was to develop a successful and reliable

contact solution method. However, from previous chapters, it becomes

apparent that there are many different features that need to be 'optimised'

to attain a desirable algorithm.

In this chapter, some results for the two-dimensional algorithms presented

earlier are discussed. The majority of the results though, relate to the final

general purpose algorithm CONTACT FORTRAN, which can solve both

two and three-dimensional contact problems.

10.2 CONTACT FORTRAN

The finite clement contact code developed here has evolved from the

standard NAGFE finite element program SEG1P1DP FORTRAN on the

I.B.M. 3081 mainframe computer. The program (SEG1P1DP FORTRAN)

in its virgin form only allowed elastic static analysis of two dimensional plane

strain linear quadrilateral elements. The advantage of using this code was

that it was fully documented and simply structured to allow its manipulation
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by finite clement researchers. The final finite element program developed by

the author, CONTACT FORTRAN, bears little resemblance to the initial

SEG1P1DP code, as substructuring using, the frontal elimination technique,

load incrementation or prescribed displacements and a new equation solver

have been included, along with the addition of three extra clement types.

These elements being the eight. noded quadratic two dimensional

quadrilateral clement, the eight noded linear three di'mensional brick element

and the twenty noded quadratic three dimensional brick element. To

facilitate these extra clement types, the three dimensional constitutive law

was added (Zienkiewicz (1977)), along with the appropriate shape function

and numerical ntcgration routines for the varying number of Gauss points

needed for the different elements. To confirm the correct implementation of

these routines, standard (non-contact) finite clement runs were undertaken

using CONTACT FORTRAN, the results of which were validated using

BERSAFE.

Commercial finite element packages such as BERSAFE make use of highly

efficient data storage techniques. These techniques are quite advanced and

could not be implemented inside CONTACT FORTRAN within the scope

of this work. As a consequence of this, the models analysed here cannot hope

to represent the truly complex models that can occur in real problems. The

principles and techniques, however, for modelling contact can be identified

and implemented for relatively simple meshes. Comparison of these results

with different techniquesand known analytic results give confidence in the

validity and accuracy of the approaches developed.
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All the finite element meshes were generated using PATRAN. A translator

program cnvcrtcd the PATRAN 'neutral' files to CONTACT FORTRAN

input data format with manual modification to include the extra contact

information. Appendix D details the main changes needed to permit contact

analysis. The final output from CONTACT FORTRAN contains the

interface nodal contact forces, the final nodal displacements and a summary

of the nodal contact states as the solution progressed, as well as convergence

criteria regarding displacements and forces after each iteration.

Stress results were obtained using BERSAFE which allowed advantage to

be taken of their existing stress calculation routines. This was achieved by

translation of the CONTACT finite element input data files into a

BERSAFE compatible input file, with prescribed nodal displacements at

every node as defined by the CONTACT displacements results file.

BERSAFE results were then subsequently obtained. Stress and displacement

plots were then produced by conversion of the BERSAFE results into a

PATRAN compatible results file.

10.3 Verification

The results presented in this chapter can be separated into two different

classifications, these being 'initial verification' problems and 'complex'

problems. The initial verification involved results for very simple models with

the purpose of confirming the basic validity of the constraint theory and the

correct implementation of the finite element code. Only a sample of these are

shown here, as the results from these analyses run into several hundred
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pages. The compkx models were run when the code was known to be

satisfactory with the purpose of checking the accuracy and convergence

criteria for different techniques and features.

10.4 Simple verification nins

As previously mentioned, the purpose of running simple verification runs was

to confirm the constraint theories and ensure the correct implementation of

the finite clement code. Many test runs were undertaken and a selection of

typical models used and their results are given in Appendix F. The type of.

checks that were carried out during these runs were,

a, confirmation that the displacement constraint was correctly

imposed by comparison and plotting of the displacements of the

constrained nodes and the target surface.

b, in certain cases, symmetric models and symmetric loading were

used. In these circumstances, the displacements that result should

obviously also be symmetric. This symmetry check is particularly

useful for confirmation of the correct positional insertion of the

constraint terms into the stiffness matrix and correct equation

solution.

c, the sum of the contact forces at the interface in the direction of

the applied load, should (provided no restraints exist on the

contactor body in that direction) be exactly equal and opposite to

the applied exfernal loads in that direction.

d, the sum of the contactor interface normal and tangential forces
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should be exactly equal and opposite to the sum of the target

interface forces in those same directions.

e, in the case of sticking contact with node alignment across the

interface, then standard (non-contact) results for an equivalent

single mesh should yield identical results. 	 -

The results in Appendix F validate the nodal constraint imposition theory

of using Lagrange multipliers and constraint equations derived from shape

functions. The specific features of sticking, frictionless sliding, direct and

iterative inclusion of friction and the use of different clement types has also

been confirmed. Presented in the following section are results for more

complicated finite element models.

10.5 Advanced models

In this section, more advanced contact models are run and the results

compared with known analytical solutions.

The first set of results included here show the accuracy of results that can

be obtained. Additionally, important features of nodal contact state and

convergence criteria as the solution progresses are highlighted and discussed.

The second phase of results are comparative runs to highlight differences of

loading, constraint type, constraint method and mesh effects. In particular,

what is their influence on the accuracy and computational efficiency of the

solutions obtained?
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Very few analytical solutions are available for frictional contact conditions.

The commonest technique of comparison of finite element contact results,

therefore, is with analytical frictionless solutions. Probably the most well

known of these are the Hertzian contact equations, listed in Appendix C.

These equations quite reliably predict the contact stresses and the contact

area for cylindrical contact provided the contact area is small. The

confirmation of frictionless finite element results with these and other

frictionless analytical results, gives confidence in the general finite element

contact method. The finite clement results with friction are then subsequently

compared with the frictionless results and particular trends are looked for.

For example, in sliding contact, the amount of sliding would be expected to

decrease with the inclusion of friction, due to the induced frictional tangential

forces opposing the motion. Additionally, tangential forces should be

introduced which comply with the imposed friction relationship.

10.5.1 The Hertz contact problem

The Hertz contact problem consists of a cylinder subjected to normal loading

on a frictionless rigid flat surface as shown in Figure 10.1. Two different

finite element meshes were used to allow comparison of the results between

four noded linear elements and eight noded quadrilateral elements. The

shape of the mesh was kept constant for both models, whilst advantage of

symmetry allowed just a quarter of the cylinder to be modelled. The finite

element mesh for the linear elements is shown in Figure 10.2, with mid-side

nodes present in the quadratic element mesh. The load incrementation

solution procedure was used with a prescribed vertical displacement on the
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top surface of 0.2mm. Converged solutions were obtained in five iterations

for both models with the contact width being two contactor elements wide.

The displacement plot obtained from PATRAN for the linear mesh is shown

in Figure 10.3. This plot is misleading as it shows that the contactor mesh

has overlapped the target body. This is not actually the case, as examination

of the nodal displacement values shows no overlap to be present. The mesh

'overlap effect' is caused by magnification in the plotting routine of

displacements for nodes which were not initially contacting. For this reason

in the remainder of this thesis displacement plots have mainly been avoided

with the displacement values tabulated. The normal contact stress results

obtained using CONTACT FORTRAN are shown in Figures 10.4 and 10.5.

As would be expected, the maximum o stress (equivalent to normal stress in

this case) is at the point of contact and a high stress concentration is observed

in this zone. The linear elements yield a maximum contact stress of 212.55

MN1m 2 whereas the quadratic elements give 197.95 MN/rn 2 . From the

Hcrtzian equations (Appendix C), the maximum normal contact pressure can

be calculated for this problem, provided the equivalent load to cause 0.2mm

deformation is known. This load was obtained by summing the normal

contact forces on the contactor body, as these values are equal and opposite

to the applied force. The maximum contact pressure using the Hertzian

equations with this force is 196.8 MN/m 2 . Thus finite element results to

within an accuracy of 1 % of the Hertzian results have been attained for the

quadratic mesh. Additionally, the size of the contact zone from the finite

element run (two elcmerfts wide) is 0.868mm compared to the predicted

Hertzian width of 0.869mm. Furthermore, the piots of maximum shear stress
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r 1 contained in Figures 10.6 and 10.7, confirm the sub-surface location of the

maximum value.

The iterations involved to obtain these final converged results for the

quadratic mesh are now discussed. The contactor nodal states after each

iteration arc shown in Table 10.1. It can be seen that after the first iteration

where just a single node was initially contacting, that deformation of the

contactor has caused five new nodes to overlap. Sticking constraints to

eliminate these overlaps were applied in the second iteration. After this stage,

the end contactor node was defined as releasing, as tensile forces were

encountered on this element face. The sticking nodes were also changed to

sliding in this iteration as the tangential forces exceeded Coulomb's friction

relation. In the next three iterations no change in contact state occurred,

however, these iterations were necessary to remove residual forces and to

eliminate overlaps. Convergence occurred when the Euclidean norm of the

force vector to be applied in the next iteration, and the Euclidean norm of the

displacements in the last iteration were beneath a pre- defined tolerance

value. For all the incremental solution runs undertaken in this thesis, a force

tolerance of 0.1% of the load per increment and a displacement tolerance of

0.1 % of the total displacements, were defined as the convergence criteria.

In the next set of results, the effect of different loads on the quadratic mesh

was investigated in terms of the number of contacting nodes and the contact

stresses that result, with comparison to Hertz's solution. Figure 10.8 shows

the theoretical Hertzian normal contact stress variation and the finite element

maximum contact stress fesults for four different prescribed displacements.

The number of contacting nodes increased with increase of rescribed
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displacement as shown in Figure 10.9. The difference in the contact area size

between the Hertz and finite clement results is predominantly due to the

coarseness of the mesh.

A more difficult Hertzian problem rarely attempted by finite element contact

researchers, is where the flat surface is also deformable. This, as mentioned

in previous chapters, is more complicated to model as the shape of the target

surface varies with application of load. The mesh used for this problem is

shown in Figure 10.10 and consists of 77 quadratic eight noded elements.

Different material properties were defined for the cylinder and base, with the

cylinder having a Young's Modulus ten times less than the base. A prescribed

displacement of 0.2mm was applied to the top surface.

The Hcrtzian solution for this problem gives a maximum contact stress of

181.7 MN/rn 2 . The maximum o contact stress from the finite element model

was 185.3 MN/rn 2 . This represents an error of 3% which, considering the

relative coarseness of the mesh, is an acceptable result. The contact stresses

should be equal in magnitude at the interface between the contactor and

target, and this is confirmed in the a plot shown in Figure 10.11. The

number of iterations for convergence in this problem was five.

10.5.2 Pin in a hole contact model

The contact problem to be analysed consists of a frictionless pin in a

conforming hole with small radial clearance as shown in Figure 10.12. The

Hertzian theory of contact between cylinders can give satisfactory results for
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this type of problem by definition of a negative radius in the equivalent

radius equation (Equation C.2 in Appendix C). However, when very small

radial clearances are present (typically AR/R less than 0.01) the Hertzian

equation becomes ill- conditioned and poor results for contact stress and

contact area subsequently occurs. Johnson (1985) in his book on contact

mechanics lists two different analytic solutions by Steuermann (1939) and

Pcrssori (1964), which more accurately predict the contact conditions in these

circumstances. Results are presented here for the one boundary condition

change per load step approach and the incremental loading approach which

are both compared with the analytic solutions.

The finite clement meshes initially used for this problem are shown in Figure

10.13. A radial clearance of 0.01mm was used with a pin of 5mm radius.

The nodal contact states occurring in each iteration under a load of 1030 N

are shown in Tables 10.2 and 10.3 for the one boundary condition change

and load incrementation methods. It can be seen from these results that the

one boundary condition method took eighteen iterations to converge whereas

the incremental method converged in seven iterations. The larger number of

iterations for the one boundary condition method were necessary as scaling

was undertaken to allow just one extra node to contact in each iteration.

Also, initially defining newly contacting nodes as sticking and then a change

of state to sliding, required a further two iterations per newly contacting

node.

The size of the final contact zone for the one boundary condition change per

load step approach was 60° (equivalent to nine contacting nodes) and 52.5°
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(equivalent to eight contacting nodes) for the incremental loading approach.

This difference in contact area is probably because the applied force of

1030N was that required with the one boundary condition change approach

to just bring the ninth node into contact. However, with the incremental

method, residuals of load remain (although small) which may cause this

ninth node to not come into contact.

A plot of the average normal pressure per clement for both models is

compared with Persson's theoretical solution in Figure 10.14.

The next series of runs investigated the effect of changing the applied load

on the size of contact area between the pin and hoic. These plots are shown

in Figure 10.15 and are also compared with the Steuermann, Persson and

Hertz solutions, the latter known to be unsatisfactory. It can be seen that

both the one boundary condition and the load incrementation approach

results lie in the range defIned by the former analytic solutions. The solution

by Persson is accepted as the more accurate (Johnson (1985)) and it can be

seen that the one boundary condition change results are closer than the load

incrementation approach to this solution. This is probably because of the

gradual application of Load with the one boundary condition change per load

step method.	 -

The effect of whether a closer solution to Persson's results could be attained

for the incremental load method by increase of mesh refinement was next

investigated. The refined mesh used is shown in Figure 10.16. Results are

plotted in Figure 10.15 which confirm closer values to Persson's with increase

of mesh refinement.
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Up to now, only frictionless results have been obtained. The following section

compares results from the one boundary condition change loading approach,

using the three different techniques for including friction as discussed in

Chapters six and seven.

10.5.3 Comparison of friction techniques

Two simple models covering flat and curved frictional contact of mis-aligned

meshes were analysed using the one boundary condition change loading

techniques described in Chapter seven. The meshes and results for these runs

arc described in the paper by Pascoc and Mottcrshcad (1989) (section 5.1

and 5.2 of Appendix K).

In summary, with all three methods the models analysed converged to the

same frictional solution. The method of directly including friction using

unsymmetric constraints converged the fastest, whilst the 'post-inclusion' of

friction method took approximately twice as many iterations. The corrcctive

gap method was approximately half way between these results in the number

of iterations for convergence.

10.5.4 Sliding frictional cylinder contact problem

A cylinder sliding over a frictional flat surface, with both bodies having the

same elastic properties, has been analytically solved by several researchers

including Sackficld and Hills (1983). Finite element results for this contact
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problem have been obtained here using the one boundary condition change

with direct inclusion of friction method, and the load incrementation method

with friction included in subsequent iterations. The finite element mesh used

is shown in Figure 10.17 with a coefficient of friction of 0.2. The number of

iterations for convergence with the two methods was 80 iterations for the one

boundary condition change loading method and 10 iterations for the load

incrementation method with the load applied in one increment. The analytic

contours defined by Sackman and Hills of principal shear stress are

compared with the finite clement one boundary condition results in Figure

10.18, and maximum shear stresses plotted alone for the load incrementation

method in Figure 10.19. In Figure 10.19 the contactor stresses have been set

to zero, this was necessary because high stresses occurred at the point of load

application which dominated the stress pattern, masking out stresses in the

target body. The location of the maximum shear stress values by the finite

element method in both cases is sub-surface and offset from the centre as

predicted by the analytical results. The values of this shear stress are

over-estimated by 15% for the one boundary condition change loading

method and under-estimated by 10% for the load incrementation method.

10.5.5 Large scale frictional sliding problem

Conforming contact problems are particularly difficult to analyse by closed

form analytical solutions because of problems in defining suitable

displacement profile and pressure distribution functions. A feature of

conforming type contact problems is that small changes in the contact
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conditions (such -as the coefficient of friction) can have a significant effect on

the solutions obtained.

Consider the contact problem of a wedge sliding into a similarly shaped

cavity as shown in Figure 3.4. This problem was analysed using the load

incrementation method with the mesh shown in Figure 10.20. Scaling of the

contact forces after each iteration was implemented, to overcome convergence

difficulties due to 'excessive' tangential forces being defined with the

post-inclusion of friction (see Appendix H for further discussion on this

effect). The finite element model consists of 48 quadratic elements and a

mis-aligned mesh in the contact zone. Several runs were undertaken to

investigate the effect of different coefficients of friction. A summary of these

results is now presented. In Figure 10.21, the displacement profiles of the

loaded con tactor 'front' surface is • shown with increasing coefficient of

friction. As would be expected, the sliding displacements of the contactor

gradually decrease with increase of coefficient of dynamic friction.

Additionally, the resisting 'x' direction forces at the contact interface cause

a shear type displacement profile of the contactor. The average normal and

tangential contact pressure per element is plotted in Figure 10.22. The

tangential pressures exactly satisfy the Coulomb friction relation with a

noticeable decrease in normal contact pressure with increase of coefficient of

dynamic friction. This occurred because the tangential frictional forces act to

reduce the amount of sliding displacement and hence reduce the subsequent

normal pressures induced. The number of iterations to attain convergence

with increase of coefficient of friction is shown in Figure 10.23. This plots

shows that the introducton of friction has little effect on the number of

iterations for convergence.
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10.5.6 Variation of slope models

The effect of varying the slope in the wedge model above, using the same load

and a constant dynamic coefficient of friction of 0.2 was investigated. The

number of elements in the meshes were maintained as in Figure 10.20, the

only difference was the angle of the slope defined for the contact surface.

Results for two slope values either side of the 0.1 tangent slope used above

arc now presented. From Figure 10.24 and Figure 10.25, it can be seen that

the amount of sliding and the normal contact pressures both decrease with

increase of slope. These are trends that would be expected in the real contact

problem.

10.5.7 Comparison of aligned and mis-aligned mesh results

The effect of variation of mesh characteristics between node on node contact

and mis-aligned nodal contact are now compared. The discretisation process

of the contacting bodies should ideally (provided a fine enough mesh is used)

produce similar contact results irrespective of whether the mesh is aligned or

mis-aligned.

The previously obtained results for the 0.1 tangent slope wedge contact

problem with a mis-aligned mesh, are now compared with results obtained

using the aligned mesh shown in Figure 10.26. From the displacement plot

in Figures 10.27, it can be seen that almost identical results are obtained.
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10.6 Comparison of constraint techniques

In Chapter five, it was shown that provided a constraint equation could be

formed, that the Penalty method, Lagrange multiplier method or the

Transformation matrix method (if no overlap) could be used to impose the

constraint. In this section, results arc obtained for a single 'simple' model

which allow comparisons to be made between the accuracy of the technique

applied. A second 'advanced model' is then used which allows the differences

in computational efficiency to then be compared.

10.6.1 Simple model analysis

The mesh shown in Figure 10.28 was used for the simple model. A single

frictionlcss sliding constraint was imposed.

The final global displacement of typical nodes for this mesh are tabulated for

the different methods in Table 10.4. There are four sets of results for the

penalty method, where gradually higher values of penalty number have been

used.

From Table 10.4, it becomes apparent that identical results were obtained

by the Lagrange multiplier and Transformation matrix methods. The Penalty

method results are quite severely in error for low penalty values, although a

penalty value 10+6 times greater than the highest stiffness term, resulted in

identical results to those of the Lagrange multiplier and Transformation

matrix methods being obtained. It should be noted that the Transformation
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matrix method can only solve problems where no overlap occurs, this limits

its use to I b.c. change loading.

10.6.2 Advanced model analysis

The 'advanced model' used in this case was the wedge contact problem

shown in Figure 10.20. In this model slight overlaps are induced as the

solution progresses. The Transformation matrix method is therefore not able

to solve this problem by the load incrementation method. The Penalty and

Lagrange multiplier methods are compared with a penalty value 10+6 greater

than the highest term in the stiffness matrix.

The displacement and force results obtained by the different techniques were

identical. However, the computational solution times to obtain these results,

varied depending upon the constraint imposition technique. The Lagrange

multiplier method total c.p.u. time was 17.8 secs, whilst the Penalty method's

c.p.u. was 21.1 sees. Examination of the contributions to these times showed

10.7 sees was due to initial element formation and frontal elimination. The

contact iterations therefore took 7.1 sees and 10.4 sees respectively. This

c.p.u. benefit by Lagrange multipliers is entirely due it being necessary to

decompose only the Lagrange constraint terms in each iteration, whereas full

elimination was necessary with the Penalty method.

.
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10.7 Variation of the number of load increments

All the models and results using the incremental loading approach up to now

have had the loads fully applied in just one load increment. The effect of

increasing the number of load increments on several of the previous

frictionless and frictional models is now examined.

For the pin in a hole contact problem, the contact pressures for one and ten

load increments were within 0.1%. Similarily, for the sliding frictional

cylinder problem, results to within 0.1% with one and ten load increments

were also obtained.

10.8 Further constraint investigations

In this section, results for some further constraint techniques have been

coded and verified for some simple models. The first method shows how

constraints using Lagrange multipliers can be applied at Gauss points. In the

second method, a technique for imposing slope continuity constraints on

elements not containing slope degrees of freedom is presented. Finally in the

third method, a variation of the Penalty method is described which allows

frictional effects to be directly included in the stiffness matrix.
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10.8.1 Lagrange multipliers and Gauss point constraints

The constraint theory for this technique is explained in Chapter six.

Displacements have been obtained for the simple two block contact problem

described in Section F.l of Appendix F, using constraints imposed at the

surface Gauss points. These results were found to be identical to those

obtained by imposition of nodal constraints, as undertaken in Section F.I.

10.8.2 Lagrange nuiltipliers and slope constraints

In the course of this work, the development of displacement nodal constraint

techniques was extended to slope constraints. The slope constraint theory is

detailed in Appendix G. It essentially involved either equating local

derivatives of the shape functions of one element to local derivatives of the

adjacent clement, if slope continuity is desired, or setting the local derivatives

to zero if prescribed displacements are desired.

As a consequence of applying these slope constraints, novel constraints can

be applied which previously were difficult to define. For example, consider

the situation where a prescribed uniform displacement needs to be imposed

such that the total equivalent force due to this displacement equals some

pre-determined value. By applying slope constraints, the exact desired force

and the corresponding uniform displacements can be automatically imposed.

This constraint technique has been applied to the finite element mesh shown

in Figure 10.29. Seven local derivative constraints were imposed, two at three
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of the corner nodes and one at the other. (Note, application of eight

constraints over defines the problem, causing a singular matrix to be formed).

A single vertical load of lOON was applied in separate runs at different

corners on the top surface and was found to have no effect on the final

solution. The displacement results for this mesh are also shown in Figure

10.29. It can be seen that a uniform prescribed displacement has been

imposed on the top surface.

10.8.3 Penalty method and the direct inclusion of friction

This method hasn't been developed from a strict mathematical approach, but

from inspection and speculative modification of the contributions to the

stiffness matrix with the Penalty method. The technique is described in

Appendix I, and involves replacing the 'normal' x[L][L]T penalty terms

added to the stiffness matrix by x[L][J]T terms. Initial investigations using

this technique have shown that frictional effects can be directly included. For

example the sliding contact problem shown in Figure 10.28 produced

identical frictional results with this method in one iteration, when compared

to the post-inclusion of friction results and the Lagrange multiplier direct

inclusion of friction results.

10.9 Special application contact problems

In this section, two special applications of the contact methods developed

here are presented which were undertaken under contracts with Thackray
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Ltd and Ford U.K.. The contact problem for Thackray involved analysis of

the contact stresses occurring in an artificial knee joint prosthesis. The

contact problem for Ford involved the dynamic analysis of a disc brake

assembly.

10.9.1 Knee joint prosthesis analysis

The knee joint prosthesis that was analysed is shown in Figure 10.30. The

purpose of the analysis was to identify and locate the position of maximum

stress on the two separate contact interfaces, between the 'femoral' and

'meniscal' component and the 'meniscal' and 'tibial' components. The

procedure and results are fully described in Mottershead and Pascoc (1988)

of which the main features are described in Appendix J. A summary of the

analysis is discussed here.

The contact modelling for the knee prosthesis involved three-dimensional

curved frictional contact between three separate components, resulting in two

separate contact interfaces. The finite clement mesh used is shown in Figure

10.31.

The mesh, although being quite coarse, gave results that indicated the

positions of maximum stress to be consistently at the outer regions of the

contact surfaces, as shown in Figure 10.32. As a consequence of this work,

further analysis is to be carried out with more refined meshes and possible

modifications are to be made to the prosthesis design. It is hoped to obtain

a more uniform distribution of the contact stresses, thereby improving the

design life of this componcn.
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10.9.2 Dynamic brake assembly analysis.

The finite element mesh of the brake assembly to be dynamically analysed is

shown in Figure 10.33 and consists of five separate components. The purpose

of the analysis was to identify if there were any natural frequencies around

a specific frequency of 2500 Hz, which was known to be a frequency at which

'brake squeal' occurred in some brake assembly designs.

The key rple of the contact analysis in this case was not to obtain a contact

stress solution, but to use the contact algorithm to form the constraint

equations allowing the individual finite clement meshes to be coupled. In

total over 500 constraint equations were defined to allow complete coupling

of the five individual meshes. These equations were formed by entering the

geometric contact identification routines within CONTACT FORTRAN.

Each interface was analysed in turn to identify the location of the potential

contactor nodes on one surface, with the potential target elements on the

other. The constraint equations were then applied as 'multi-point constraints'

in MSC-NASTRAN.

A dynamic solution of the assembled mesh was undertaken using modal

analysis, giving the natural frequencies and mode shapes of the brake

assembly. The results from this work are commercially confidential, although

it was shown that the method of joining meshes in this manner was

successful.
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CHAPTER 11

DISCUSSION

11.1 Introduction

The main findings of the work in this thesis are discussed in this chapter,

including discussion on,

a, the method of load application

b, the method of identifying contact

c, the method of defining the contact state

d, the method of imposing the contact constraints

e, the method of equation solution

Additionally, features such as mesh effects (e.g. refined or mis-aligned

meshes) and the use of sub-structuring are also discussed.

11.2 Method of load application

From the results obtained in Chapter ten, contact results have been obtained

which compare. well with the analytical solutions for the different methods

of load application, i.e. allowing one boundary condition change or using

pre-defined load steps. However, some of the variation in results that

occurred, were found to be caused by the coarseness of the meshes. For
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example, in the pin in a hole contact problem, the initial differences in

calculated contact angle between the different loading approaches was 7.5°

(equivalent to one node), however with mesh refinement, closer results were

obtained by the incremental method. The contact interface pressures were

also found to improve with mesh refinement.

Results for the sliding cylinder problem, confirmed that similar results

between the incremental and one boundary condition loading approach could

be obtained, which were close to the analytic solution. The load

incrementation technique however, allowed solution in significantly less

iterations, as re-solves to correct induced overlaps (or gaps) occurring due to

the relatively large amount of sliding, were not necessary.

A significant feature with the incremental method was its rate of convergence

and number of total iterations to obtain the final solution, this being quicker

than the one boundary condition change technique. One of the main reasons

for this was because multi-changes in contact were permitted per iteration.

The amount of reduction in number of iterations is problem dependent, but

for the problems shown here was of the order of a factor of three or four. In

the larger 3-D models which can be analysed in commercial packages, even

greater gains would be realised, with many more nodes permitted in the likely

contact zone.	 -

The effect of varying the number of load increments on the displacement

results was found to be marginal, with the variation in displacements

between one load step and ten load steps producing results that varied by less

than 0.1%. This 'closeness' of results was unexpected, as it was felt that
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allowing gradual build up of the contact zone (as is achieved when using 10

load increments) would yield different results. A possible reason for the

similarity in results may be due to the method of contact force evaluation and

distribution. To calculate the contact forces requires the total contactor

surface forces to be evaluated after each iteration, these are then distributed

in the ratio of the 'latest' constraint equation onto the target nodes. This

procedure is valid when the displacements are small compared to the element

sizes, in which case the constraint equations for a each contactor node do not

appreciably change with sliding. However, if the displacements are of the

same order as the elements, then the constraint equations will change

significantly during loading in which case the target forces may need to be

stored and 'built-up' as the solution progresses.

11.3 Method of identifying contact

The geometric identification of where contact is occurring (especially with

mis-aligned meshes) represents one of the main difficulties in developing

general contact algorithms. The method described in Chapter eight has

proven to be reliable and accurate for the quadrilateral and brick elements

analysed in this work. Slight modifications would need to be made to this

process for triangular shaped elements, although the concept of evaluating

accurate local coordinates (area coordinates in this case) remains the same.

It is possible that contactor nodes, which are undergoing sliding, may just

slide off the edge of the target element into free space. In this circumstance

the geometric identification routines would identify the node as not touching

any element, and hence it would be removed from the contacting constraints.
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Geometrically this is correct, but from a modelling viewpoint this can cause

poor results to occur. This is because the region adjacent to this node and the

next constrained node on the contactor body now has no constraints applied

to it and hence may result in overlap of the target body in the next iteration.

In this type of problem it is best to include this sliding node in the contact

constraints, since it has only just slid off the clement. This can be achieved

by defining an extended tolerance around the target clement when checking

for contact of sliding nodes in this special circumstance.

11.4 Method of identifying the contact state

As mentioned in Chapter five, deciding the contact state from the nodal

forces is only reliable for elements whose generated nodal contact forces are

representative of the real forces, and in particular for compression and

tension, to allow identification of nodal release. For the two dimensional

algorithms the use of nodal or element contact state decision making

processes generally results in the same solutions. However, in certain

circumstances the end regions of the contact zone may have less contacting

nodes when the contact state is decided by nodal rather than element forces.

This effect can occur for example on a 2-D linear element face, where the end

zone of a region of contact has a large compressive force on the pen-ultimate

node and a small tensile force on the last contacting node. If the nodal force

decision making process is used, then release of this end node would be

defined. With the element force decision making process though, this end

node would be defined as contacting because its state is defined from the

state of adjacent elemenf faces. It can therefore be seen that a different

number of contacting nodes may be defined depending upon the method
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used. The reason why this occurs is because the end of the 'real' contact zone

lies somewhere between this pen-ultimate and end node. 	 -

The question arises as to which of the contact state decision making processes

is nearer to the true solution and what is their influence on the solution? In

the case of the nodal approach, the contact stresses will be higher because the

interface forces are transmitted over fewer nodes and hence a smaller area.

If the nctt contact forces on an clement face indicate compression (even

though the end node i in tension) then this generally indicates that the 'real'

contact zone extends to nearer the tensile node than the compressive node.

In which case it is best to include the tensile node in the contact constraints,

as would be achieved when using the element approach.

The influence of this effect on the maximum Stresses depends on the problem

considered. If the contact region tends to grow in size with the application

of load vhich is one of the most common forms of contact, then the

maximum stresses occur in the 'central' region of the ensuing contact zone

and the effect of these 'remote nodes' becomes of less importance on the

contact stresses. Additionally, the use of many elements in the contact zone

would reduce this effect.

11.5 Method of imposing the contact constraints

From the results in Chapter ten, it has been shown that the Penalty,

Lagrange multiplier and Transformation matrix method can all be used to

impose the contact constraints (although no overlaps are permitted with the
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Transformation matrix approach). Furthermore, the exact imposition of

constraints for non-aligned meshes in just one iteration was achieved with all

these methods. To achieve this the penalty value was about 10+6 times

greater than the highest term in the stiffness matrix. The technique of

applying high penalty numbers with normal and tangential gap elements

though, causes 'locking' of the results to the sticking solution. Because of this

effect, medium stiffness values (penalty numbers) are a necessity when

tangential gap elements are used, which as a consequence requires extra

iterations to remove overlaps due to the weakly imposed constraints. It has

been shown here, that by application of a normal direction constraint alone

and using the Penalty method with a very high stiffness value, allows

frictionless sliding, to be accurately imposed. Then using the induced normal

contact forces calculated from the (R-F) force term, the frictional forces can

be included in the force vector of the next iteration.

The technique of including the friction forces 'post-solution' was

implemented within the incremental contact algorithm and is not restricted

to the Penalty method of constraint imposition. However, as stated in

Appendix H, for models where shallow contact slopes and horizontal loading

occur, scaling may be necessary to ensure 'excessive' frictional forces are not

imposed which can cause slow convergence and even possibly divergence.

11.6 Elimination of internal degrees of freedom

All the results obtained using the incremental algorithm in Chapter ten

incorporated frontal elimination, which left just the potential contact degrees

of freedom (d.o.f.) and the d.o.f.'s at which external loads were applied in a

e
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reduced stiffness matrix. At each iteration stage therefore, solution of a

reduced matrix rather than the total structural stiffness matrix was

undertaken. Compared to the solution of the initial global stiffness matrix

this yields considerable computational savings.

In the case of the Penalty and Transformation matrix methods, a complete

re-decomposition of the reduced matrix, including the new constraints was

needed for each iteration. The savings per iteration for these methods with

the reduced matrix, compared to the full system are generally quite

significant.

The solution time for a symmetric banded matrix is dependent upon the

decomposition method used, for Gaussian elimination is approximately equal

to,

time = N(2H - 1) 2 	 11.1

The reduced stiffness matrix produced after frontal elimination is generally

not banded but fully populated. In Equation 11.1 the reduced matrix size (N)

can be substituted for the bandwidth (H). The time to solve this reduced

'fully populated' matrix can still be dramatically less than for the initial

banded matrix. For example, with a model of 1000 d.o.f.'s and a bandwidth

of 100, of which say 50 d.o.f.'s are on the potential contact region, then

inserting these values into Equation 11.1 gives an 80 fold reduction in

solution time for the reduced matrix. For larger models the savings can be

even greater.
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With the use of the active zone equation solver and Lagrange multipliers, still

further computational savings can be made. Only one decomposition of the

reduced stiffness matrix is necessary and decomposition in subsequent

iterations is only required for the outer constraint terms. The computational

savings by this process are dependent upon the number of constraint

equations added. For increasing area type contact problems this method is

particularly advantageous, as the initial iterations where relatively few nodes

arc contacting, can be solved with minimal extra decomposition.

11.7 Large deformation and plasticity

Although contact coupled with plasticity has not been addressed here, the

technique of applying nodal constraints between the potential contact

surfaces is equally valid in the plastic regime. With regard to plasticity the

elimination of all internal degrees of freedom now needs to be modified, such

that the nodes connected to elements that may become plastic, are now

prevented from elimination. This then allows the effects of variation of

element stiffness associated with plasticity to be included on these nodes.

Another important point is that the incremental contact algorithm developed

here, is similar in its form to other non-linear approaches, and as such is well

suited to the merging with current plasticity finite element theories.

With large deformation problems, the elimination of all internal degrees of

freedom can cause problems with the contact identification routine. This

difficulty occurs due to the current method of updating only the degrees of

freedom retained in the reduced stiffness matrix. This results in distorted

shape functions because the sub-surface nodal coordinates aren't updated.

e
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Provided the deformations are small (which is generally the case in linear

elastic analysis) then the shape function relationships are adequate to identify

contact. However with large deformations, the shape function relationships

can become quite distorted.

This problem can be overcome by either including all the nodes of the surface

elements to be retained in the reduced stiffness matrix, or by entering a

back-substitution phase after each iteration, permitting the sub-surface nodal

coordinates to be updated.

11.8 Mesh difficulties

The refined mesh that was initially used in the pin and hole contact problem,

involved just refinement of the contactor (pin) mesh alone and is shown in

Figure 11 .1. For this mesh extremely poor contact pressure results were

obtained, with the maximum normal contact pressure not under the pin's

centre, but at its edge. This was found to be occurring due to the coarse

nature of the target mesh and the geometric inaccuracy in modelling a 15°

curve with a single quadratic element. Magnification of the mesh geometry

between the refined contactor clement mesh and the coarse target element

mesh is also shown in Figure 11.1 and highlights the cause. It can be clearly

seen that the contactor mesh will not progressively increase in contact from

the pin's centre, but touch initially at the edges of the target element. This

will obviously cause poor stress results to be obtained as contact is occurring

not on the desired target profile.
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This effect is apparent in problems where quite coarse mis-aligned meshes

are used to model curved contact regions. Provided either refined meshes are

used or if this is not possible then aligned meshes (which ensures the

geometric inaccuracies are identical in both contacting bodies) then this

problem can be avoided.

In linear elastic contact problems generally only small amounts of

displacement occur, it is therefore necessary that the accuracy of the

contacting surfaces be maintained as high as possible during the mesh

generation phase for reliable finite element contact stress calculation.

Appendix B details procedures that allow accurate mesh generation.
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CHAPTER 12

CONCLUSIONS

Constraint imposition theories have been developed and applied based on the

element shape functions. Both sticking and sliding constraint equations have

been defined. These allow the contact conditions to be imposed between any

set of meshes, and are not restricted to node on node contact. Frictional

effects have been included iteratively in a general load incrementation

algorithm, although direct techniques have been implemented in

two-dimensional analysis.

The method of constraint imposition used has been the Lagrange multiplier

method, although it has been shown that either the Penalty or

Transformation matrix method could also be used, even for mis-aligned

meshes. However, no overlaps are permitted with the Transformation matrix

method. The advantage gained with the Lagrange multiplier method coupled

with an active zone equation solver, yield this technique as the most

computationally efficient. Several one boundary condition change per load

step algorithms were developed, although the results indicated that the

incremental loading algorithm was considerably quicker in obtaining the

overall solution. Additionally, the use of this algorithm and in particularits

solution procedure, make it compatible for extension into other non-linear

finite element areas such as plasticity and creep.

e
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The process of substructuring using the frontal elimination method has been

implemented. This allows just the degrees of freedom relating to the potential

contact nodes and the loaded nodes to remain in a 'reduced' stiffness matrix.

Subsequently, the size of the matrices to be solved at each iteration is

considerably less than that of the initial structure's 'full' stiffness matrix.

Further investigation on larger models, permitted by coding this work into

commercial finite clement packages and in particular for 3-D problems is

recommended, as this would allow further comparison of the different

contact state decision making processes such as using Gauss points or

clement forces.
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APPENDIX A

Initial Contact Checks

The standard finite clement discretisation procedure results in meshes being

formed for the structure(s) to be analysed. However, whether or not contact

constraints should be initially imposed depends on the type of contact

problem. For example, if both of the potential contacting bodies have rigidly

fixed nodes (such that non-singular stiffness matrices are naturally formed

for each body after application of restraints) then no contact conditions need

be imposed unless geometric contact or overlap is initially identified. An

example of this form of contact problem can be seen in the case of a

cantilevcred beam and dcformablc base as shown in Figure A.I.

Other forms of contact problem are where one of the bodies is insufficiently

restrained, such that its stiffness matrix is singular. This is quite a common

situation in contact problems and occurs frequently when restraints are only

applied in one direction (generally seen in sliding problems). If the meshes

are initially generated such that they are just touching in their assembled

form, then a geometric contact checking routine can identify the appropriate

contact constraint to 'couple' the meshes.

In some circumstances however, the complexity of the contact surface profiles

make it extremely difficult to identify just where initial contact will occur. In

this case it is difficult to generate the initial meshes in a 'just touching' form.

This problem can be seen in the rack and pinion type contact shown in

Figure A.2, where the exact position of contact cannot easily be identified.
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The difficulty is overcome here for this sort of problem by constructing

vectors in the direction of likely movement for the 'under-restrained' body

(usually the contactor) from its surface nodes. The length of each vector to

intersect with the target surface is calculated. The minimum length is

identified and used as a translation distance which is added onto the global

coordinates of the 'under-restrained' body. Entrance into a geometric contact

checking routine then defines the appropriate contact constraints to couple

the meshes.
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APPENDIX B

Accurate Surface Modelling

The precision of the finite element mesh representing .the structural shape,

as defined by the nodal coordinates in the input data file, is extremely

important for accurate contact solutions. This is because generally only small

displacements are occurring in the solution, hence the reliable detection of

contact is dependent upon the fact that the initial surface profiles are

accurately defined.

At first glance, it would appear that this can be ensured by increasing the

precision of the input geometry. For example, most finite element packages

have the facility of allowing coordinates of higher precision than normal to

be defined (e.g. in BERSAFE 8 d.p. instead of 3 d.p.). This feature is in fact

necessary in contact analysis, but does not guarantee the accuracy of the

actual coordinates. This is defined by the process of mesh generation.

Many of the mesh generators, such as PATRAN, generate a geometric model

from which the finite element model is derived. Hence, it is the accuracy of

this geometric model that must be maintained for the definition of accurate

contact surfaces. Straight or flat surfaces generally do not present any

problem, as the lines or surfaces can be precisely defined. However, curved

surfaces can cause difficulties because they are generally defined by an

isoparametric function, which for PATRAN is cubic in form. For example,

with circular arcs, deviation of the cubic function from the true circular

profile increases with increase of subtended arc. General recommendations

a
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to ensure accurate circular surface definition are to restrict individual

isoparamctrics to subtend an angle of less than 300. Thus, if a potential

contact zone was defined by a curved surface of 90° as shown in Figure B.!,

then at least three (rather than one) isoparametrics should be used in the

generation of this surface. For example, if PATRAN was being used, then

this would involve at least three separate 'patches' being defined around this

surface.

Additionally, the type of clement used affects the accuracy of the contact -

surfaces. Obviously linear elements only allow straight line segments to define

the contact surface. Thus to use these to model curved contact is unwise, as

even with the use of many elements, the true surface profile cannot be

accurately produced. Quadratic or higher order elements are recommended

for curved contact although again problems ol inaccurate surlace modeing

can occur if the meshes arc too coarse.
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APPENDIX C

Hertz Contact Equations

The following equations apply to linear elastic frictionless contact between

two parallel cylinders subjected to a load of F per unit length. An 'equivalent'

Young's modulus E and equivalent radius R , for the contacting cylinders

are calculated as shown in Equations C.1 and C.2. These values in

conjunction with Equations C.3 and C.4 allow the maximum contact

pressure Pmax and semi-contact width 'a' to be calculated.

2*	 ( (l-v)	 (l—V2)
E =
	 E1 + E2	

c.1

-1

R* = {*+*}	 C.2

Prnax = 
JFE:	 C.3

a 
= I

4FR*	 C.4
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APPENDIX D

Input Contact Data

Described here is the extra input data required, compared to a 'standard'

finite clement input data file, to allow contact to be defined using

CONTACT FORTRAN.

There arc essentially three extra features which need to be included, these

are,

1, the static and dynamic coefficients of friction

2, a list of 'potential' contactor nodes

3, a list of 'potential' target elements and their

respective 'active' surfaces

To minimise the effort of the modeller and avoid the possibly tedious task

of identifying the potential contactor nodes, (which for a complex analysis

could involve many hundreds of nodes) just the potential contactor elements

are required and their 'active' surfaces, rather than a list of contactor nodes.

For quadrilateral and brick elements the 'active' surface labelling scheme is

shown Figure 6.3. This labelling scheme is linked to the element's node

numbering topology. With the NAGFE finite element topology known (e.g.

for a 2-D quadrilateral element start the local node numbering from the

bottom left hand corner of the element and number sequentially clockwise)

and the particular element and its active surface known, allows routines to

automatically identify and list the potential contactor surface nodes and the
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potential target surface nodes. This information is then used internally within

CONTACT FORTRAN in the frontal elimination procedure to prevent their

elimination, as well as for the contact geometric identification process.

The contact input data for a typical model is shown in Table D.1. This is in

fact the contact input data used fior the sliding wedge problem (Section 9.5.5),

where eight quadratic contactor elements and eight quadratic target elements

were present. The node numbering topology for each element was such that

the active surface for the contactor elements was defined by -2 , and +2 for

the target elements.
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APPENDIX E

General Active Zone Equations

The active zone equation solver equations described in Chapter 9, can be

gcncraliscd for an n x n matrix [K] as follows,

For the first active zone,

U 11 = K11	 E.1

L11=l
	

E.2

and for each subsequent active zone j, from 2 to n

i'=
	 K.1	

E.3

U 1 	 K
	

E.4

and

L1 

= K1	 >LjmUmi	
fori= 2,3...,j-1
	

E.5

U 1 = K—	 himtTmj	 for i = 2,3,...,j-1
	

E.6
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and finally,

L=l	 E.7

i-i

= K 1 -	 LjmUmj	 E.8

If [K] is symmetric, then the L terms can be obtained more simply as

Ui.
L 1	forj^i	 E.9
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APPENDIX F

Simple Verification

The models used here were simple two and three element models. The

purpose of running these problems was to confirm the constraint theories and

ensure the correct implementation of the finite element code. All the runs

listed are single iterations unless stated otherwise using the Lagrange

multiplier method of constraint imposition.

F. 1 Two element sticking contact

The model in Figure F.la contains eight nodes and consists of two separate

elements. Sticking contact is occurring with equations of the type shown in

Equation 6.6 applied. To verify the sticking contact results, a standard

(non-contact) solution was undertaken with a different mesh of only six

nodes and two coupled elements as shown in Figure F.lb. The displacement

results obtained by both methods were identical confirming the sticking

constraint theory and code. The displacements are plotted in Figure F.lc and

tabulated in Table F.!. Within the contact algorithm specific features that

were confirmed by this run were,

a, correct identification of position of contact

b, correct definition of direction cosines defining the normal and

tangent directions

c, correct sticking or sliding constraints being formed
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d, correct insertion of Lagrange terms into the stiffness matrix

e, correct equation solution

F.2a Two element 2-D frictionless sliding contact

The model shown in Figure F.2 is more difficult to solve than that of Figure

F.la in that contact is not occurring between adjacent nodes. The shallow

slope in the region of contact and the horizontal contactor force cause sliding

to be the prevalent state. With this model, an initially frictionless run was

performed by application of a single constraint of the form shown in

Equation 6.17. In this circumstance large scale sliding of the single contacting

node occurs. From force equilibrium considerations, the normal force

generated due to contact is dependent upon the applied force and the contact

slope. The 'x' component of this normal force should be equal and opposite

to the applied force, i.e.

F = FSinO	 F.!

The finite element contact results for this model are summarised in Table

F.2. The contact force generated exactly satisfies the force considerations of

Equation F. 1. Additionally, the displacement of the sliding node is along the

tangent from the initial point of contact as desired. The magnitude of

displacement however was quite large, causing the final position of the sliding

node to be above the deformed target surface. The overlap elimination

procedure in the subsequent iteration removed this positional error.
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F.2b Two element frictional sliding contact

An identical model to Figure F.2 was used here with the only difference

being that friction was present at the interface. In this case, from force

equilibrium conditions the total resolved normal and tangential (friction)

force in the 'x' direction should equal the applied horizontal force, i.e.

F = lFSinOl + (FCosOl	 F.2

Constraints allowing the direct inclusion of friction were applied (Equation

6.27) The results are summarised in Table F.2. From these results it can be

seen that the. constraints exactly impose the force equilibrium of Equation

F.2 and that the Coulomb friction relation between the normal and

tangential forces is also exactly imposed. Additionally, the displacement of

the sliding node has decreased with inclusion of the coefficient of friction.

This is as desired as the frictional forces will cause less sliding displacement.

It should be noted that in these runs two stages were required for the final

solution. In the first stage the direction of sliding was known, allowing the

direct inclusion of friction in the constraint equations. From this solution the

normal positional error was corrected in the next iteration. In a general

contact algorithm there would need to be two earlier stages, the first applying

sticking contact from which a Coulomb friction check would in this case

indicate sliding, the second stage applying frictionless contact permitting the

direction of sliding to be identified.

F.3 Three element overlap contact
S
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A contactor body consisting of two elements contacting a single target

clement is shown in Figure F.3. Initially only one node is contacting, however

after the first solution nodal overlap of the initially 'unconstrained' end nodes

has occurred. Application of the sticking overlap constraints in the next

iteration causes these overlaps to be eliminated. The results are summarised

in Table F.3. It should be noted that one of the main arguments for using

clement decision making for deciding the contact state is highlighted here.

The forces generated at the end nodes exceed the limiting value of static

friction and hence indicate sliding, however the physical contact of normal

contacting faces and normal forces suggests sticking should be the prevalent

state. Averaging the forces over the face of each contacting element generally

gives a better decision on the true contact state. In this numerical example

'element force averaging' does in fact produce an element contact state of

sticking.

F.4 Three dimensional contact

Two blocks touching over a face are shown in Figure F.4. Frictionless

conditions were imposed, which resulted in eight normal constraints being

applied. The finite element model consists of twenty nodes per element. The

displacements from this run are shown in Figure F.4 and show the desired

symmetry and prevention of mesh overlap.

F.5 Mis-aligned contact

A single element undergoing contact at a single node with the middle of a

face of another element is shown in Figure F.5. In this case sticking contact
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was imposed. The displacement of the contacting node obtained from the

results, was precisely such that it remained in contact with the deforming

target surface. Also, no tangential forces were generated with the normal

contactor nodal force exactly equal to the external applied loads.

F.6 Three body contact

The finite element mesh shown in Figure F.6 was used to model three bodies

in contact. This is a particularly interesting problem as no restraints apart

from contact conditions were imposed on the middle block. Frictionless

conditions were imposed with applied loads causing the deformation shown

in Figure F.6.
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APPENDIX G

Slope Constraint Theory

The following theory allows slope constraints to be applied on a finite

clement model which has no sIope degrees of freedom in its initial stiffness

matrix.

Generally, to allow slope constraints to be imposed, necessitates that slope

degrees of freedom exist in the formulation of the finite element and its shape

functions. The equations developed here, permit slope constraints (such as

slope continuity between adjacent elements) to be imposed when there are

no such slope degrees of freedom in the element (e.g. as is the case with the

commonly used twenty noded brick element).

Consider the two adjacent elements at the free surface at node k in Figure

0.1. To impose slope continuity across this node, requires that the slope

approaching node k in element 1, is equal to the slope approaching the same

node in clement 2, i.e.

ay 
'1k	 ox 2k

	 0.1

In the region of node k, a local slope constraint equivalent to Equation G.l

can also be defined,

I 1k =	 12k
	 G.2
	 .
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The value of 'y' in the above equation can be defined for each element from

its nodal values Y}, and its shape functions. Hence, differentiating the shape

functions with respect to , allows Equation G.2 to be written as,

- -p-. [N(2, 112, C2)]2 {y}2	 G.3
-

This equation can be rearranged into the general form of

= 0
	

G .4
(Y2J

Equation 0.4 simply defines a constraint equation which needs to be

imposed on the system of equations, and is identical in form to the

displacement constraints already discussed in the main body of this thesis.

Hence using Lagrange multipliers this constraint can be directly imposed.

The equations developed above are specifically for two-dimensional elements,

with slope continuity required on a constant global 'y' surface. It is not

essential that global 'y' constraints be imposed, although if global 'x'

constraints are imposed ( ôx/8) , then these slopes would approach infinity

(in this particular problem) creating ill-conditioning in the applied constraint.

The general rule therefore, is that provided the local derivative of the global

variable takes a finite value ( this can in fact always be guaranteed by

selection of the appropriate global variable ) then slope constraints can be

satisfactorily applied. Additionally, the local derivatives with respect to
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which differentiation is occurring, must be the 'non-active' local coordinates.

In 3-D analysis therefore, slope constraints need to be applied in the two

'non-active' local coordinate directions.

Up to now slope continuity between adjacent elements has been discussed.

It is also possible to apply individual slope constraints at particular locations.

For example if the top surface of a structure is desired to have a prescribed

displacement corresponding tt a pre-determined load, then this can be

applied by imposing a set of slope constraints on the model. With the simple

mesh shown in Figure 10.29, application of the following seven slope

constraints, imposed a uniform prescribed displacement equal to the applied

force.

az 30

az 50

7 - 0

182



3z
—=0

az
'3 = 0

0z
S - 0

183



e

APPENDIX H

Divergence with Post-Inclusion of Friction

11.1 Introduction

A divergence effect is discussed here which applies to a class of contact

problem where sliding over a shallow slope occurs. Furthcrmore, the

divergence effect is directly due to the post-inclusion of friction in the solution

method, and hence is only encountered with this method of frictional

modelling. The cause is now described and a technique is suggested for

overcoming the divergence problem. Finally a numerical example

highlighting the effect is presented.

H.2 Cause

Consider the sliding wedge problem shown in Figure 3.4. When frictionless

sliding is imposed, the normal contact forces generated, are from force

equilibrium conditions equal to,

F
F = 

Sin	
H.l

Using this value of F to obtain the first estimate of the frictional forces gives,

F = 4uF	 H.2
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Equation H.2 can result in the magnitude of the resolved friction forces in the

'x' direction, being greater than the applied external loads in this same

direction. Thus including these friction forces in the right-hand side force

vector of the next iteration, is to effectively be solving a model where the nett

external forces in the 'x' direction on the contactor are negative rather than

positive. The consequence of this being that sliding in the next iteration

occurs in the opposite direction to that as would be expected with the initial

external forces. This is obviously undesirable and leads to a divergent

solution, as the friction forces which are defined to occur in the opposite

direction to sliding, now act ,vith the applied external loads. This therefore

creates even greater normal contact forces from which greater tangential

forces are produced, which now act in the opposite direction, and hence the

divergence effect is accentuated.

1-1.3 Results

The divergence effect is solely occurring because the initial frictionless normal

contact forces are not 'close' to the final frictional values. Therefore, the

estimated tangential forces are also in error. Examining the resultants of the

initial normal and tangential contact forces in the 'x' direction, shows them

to exceed the applied external 'x' direction load. From force equilibrium

conditions though, these resolved normal and tangential 'x' direction forces

should exactly equal the applied external loads. Therefore, a valid correction

would be to scale the initial normal and tangential forces, such that the

resolved 'x' component exactly equals the applied external 'x' loads. This has

been implemented and found to solve the divergence problem.
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H.4 Occurrence

When divergence is likely to occur and when scaling is necessary is of

importance in the force calculation routines. A possible option is to always

have force scaling. However, results undertaken with this option, have shown

that this can introduce poor convergence in problems where there is not a

large amount of sliding occurring. Examination of Equations H.! and H.2

shows that the effect of estimated tangential forces being greater than the

applied external forces, is a function of the difference in angle between the

direction of applied loads and the contact surface (/,), and the coefficient of

friction. In fact, provided the difference in angle between the forces and

contact slope is greater than the friction angle (as stated in Equation H.3),

then the tangential forces will not exceed the applied external loads and

convergence will result.

< Tan	 H.3

H.5 Examples

Consider the sliding wedge model discussed in Chapter ten and shown in

Figure 9.20. With frictionless conditions a converged solution is obtained in

eight iterations. However, inclusion of a dynamic coefficient of friction of 0.2,

causes divergence to occur. Introducing scaling, such that the resolved

normal and tangential forces in the 'x' direction equal that of the applied

load results in convergence in seven iterations.
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APPENDIX I

Penalty 1'vlethod for the Direct
Inclusion of Friction

1.1 Introduction

In the following analysis it is shown that the direct inclusion of friction

technique, developed and installed in the one boundary condition change per

load step algorithms using Lagrange multipliers, can also be imposed using

the Penalty method.

1.2 Theory

In penalty techniques, the additional term added to the variational statement

is representative of the strain energy distribution associated with the

constraint. The extra terms that become added to the stiffness matrix, are

defined by the a[L][L]T product. This imposes frictionless constraints.

T
From Chapter six, it was shown how the use of a [J] term (which

essentially is a [L]T term with frictional effects included) could be used with

Lagrange multipliers to impose friction directly. The following theory hasn't

been strictly derived, but derived from comparison of the [L]T and 
[j]T

terms. When using Lagrange multipliers, the 
[j]T term imposed the frictional

force conditions, what therefore would be the effect of replacing the [L]T

term by 
[j]T 

in the cx[L][L]T product added to the stiffness matrix?
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1.3 Results

Imposition of x[L][J]T terms into the stiffness matrix was found to exactly

impose the frictional conditions, with identical results to those obtained by

the EL] and [j]T Lagrange multiplier technique. This was confirmed by

analysis of the sliding block problem shown in Figure F.2, whereby identical

frictional results to those using the Lagrange multiplier frictional technique

were obtained in a single iteration, using the x[L][J]T contributions to the

stiffness matrix.
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APPENDIX J

Knee Prosthesis Analysis

The stress analysis of a three-dimensional knee prosthesis using the direct

inclusion of friction algorithm is summarised here.

The knee prosthesis analysed is shown in Figure 10.30 and consisted of three

parts, the femoral and tibial components manufactured from a high grade

stainless steel and the meniscal component made from high density

polyethylene. When assembled, the three parts allow universal motion of the

joint. Cylindrical surfaces on the femoral component and on the top of the

meniscal component allow the knee to bend. Conforming conical surfaces on

the underside of the meniscal component and on the tibia! component allow

rotation of the tibia about its vertical axis.

The finite clement mesh for the prosthesis is shown in Figure 10.31. With this

particular contact problem there are two separate contact interfaces, one

between the femoral and meniscal components, and the other between the

meniscal and tibia! components. To allow this to be defined required two sets

of contact information to be input for the interfaces.

The geometric contact checking routines were then entered for the contactor

nodes of each interface with their respective target elements. Once the

positions of contact had been identified then frictionless sliding constraints

were imposed (sliding ws known to occur because of the different material

properties of the components). The force applied to the mesh was 28 stones
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(this value was obtained from estimating the shock load due to sudden

jarring on the prosthesis, as two times the body weight of a 14 stone person)..

This force was applied as a uniformly distributed load on the top flat surface

of the fcmoral component. Restraints preventing nodal movement were

applied on the underside of the tibial component.

The solution procedure involved an initial solution with frictionless sliding

imposed. From this result direct inclusion of friction constraints were added

in the next iteration ( /.L = 0.15). Several different runs were undertaken

with this mesh and other more locally refined meshes. Some of the key results

arc now presented.

The o direct stresses on the contact surfaces were of particular interest.

These stresses although not trudy representative of the normal contact

forces, could be used as a guide to the normal stresses, as their values greatly

exceeded the o and a, stresses. From these stress results it was found that

approximately equal in magnitude compressive stresses were occurring

between adjacent contact surfaces. This is obviously as would be expected

and desired. A typical o stress plot for the underside of the meniscal

component is shown in Figure 10.32. From this plot it can be seen that the

maximum stresses occur at the outer region of the meniscal component's

surface. They are probably occurring here because the femoral component,

to which the external loads are applied, rests on the outer region of the top

of the cylindrical surface of the meniscal component. Hence the induced

contact stresses are concentrated primarily in this outer zone and transmitted

through to the meniscal's underside surface.
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The mesh used here is admittedly quite coarse (this was because of

computational storage limitations) however, further results on modified

meshes have all endorsed these locations of maximum stress. The maximum

a stress obtained here is in the order of 3 MN/rn 2 . This is within the yield

stress of the meniscal component (this component suffering the most wear,

due to its relatively low material properties compared to the other two

components).

This work has confirmed the technique and principles of using constraint

equations and Lagrange' multipliers for the complex analysis of a 3-D

multi-body conforming sliding contact problem.
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LINEAR ELASTIC CONTACT PROBLEMS USING CURVED
ELEMENTS AND INCLUDING DYNAMIC FRICTION

S. K. PASCOE AND J. E. MOTTERSHEAD

Department of Mechanical Engineering, The University of Liverpool, Liverpool, U.K.

SUMMARY

A finite element solution for two-dimensional contact between elastic bodies is presented. Equations of
constraint and eq uilibrium governing 'sticking' and 'sliding' contact are imposed at mesh contact bound-
aries and incorporated in the usual displacement solution routine. The method allows sliding over curved
bodies and the dynamic coefficient of friction between the bodies is included in a direct (non-iterative)
solution at each loading stage.

A progressive loading approach is implemented whereby full loads are initially applied. If a change in the
contact boundary condition occurs, then scaling (reduction) of loads and displacements is undertaken until
the first new boundary constraint becomes just operative again. The remainder of the load is then applied
with a modified stiffness matrix and the process is repeated. Finally the mesh is fully loaded and the contact
boundary conditions are satisfied.

Sample problems include comparison of the finite element results with classical solutions from the
literature.

INTRODUCTION

Contact stress problems occur in the design of cams, valves, pistons, rolling element bearings and
a wide variety of other engineering components and structures. Not only is the range of
engineering products which require an analysis of contact stresses very wide but also there is great
variety in the treatment which is most appropriate to these products. Johnson 1 in his book
Contact Mechanics deals with elastic and non-elastic contact, dry friction and lubricated surfaces,
rolling and sliding contact, thermal effects and surface roughness. In the present paper the
authors restrict their attention to linear elastic contact problems vith Coulomb friction. 'This
'limited' range of problems still represents a huge area of vital interest to the design of many
engineering components. Industrial interest has been such that in-house developments for contact
stress analysis have been widely used. For example, the work of Hartnett, 2 who provided a
numerical solution to the Boussinesq equations of a half space, has been widely applied in the
rolling element bearing industry.

Contact problems have been particularly difficult to treat using the finite element method
because of the problems of determining the region of contact between two (or more) meshes
representing separate components and ensuring overall equilibrium of forces including applied
external forces, contact forces and reactions at nodal constraints. One of the most widely applied
numerical algorithms to be installed in a finite element program is that of Francavilla and
Zienkiewicz. 3 The main disadvantage with the method was that it required a flexibility (rather
than stiffness) approach which was applied locally in the contact zone.
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A significant advance in the finite element modelling of contact stress problems was made by
Hughes et al.4 who developed a method which could be installed in the usual finite element
displacement solution routines, but node on node contact was necessary in the contact region.
Bathe and Chaudhary 5 removed this restraint for two-dimensional finite element meshes with
sticking and sliding contact using four-noded quadrilateral elements. In a further paper 6 the work
was extended to allow the solution of three-dimensional problems and dynamic contact using the
Newmark direct integration scheme.' Displacement constraints, designed to prevent overlapping
of meshes in contact regions, and contact forces, were determined using linear interpolation
formulae between the nodes. The dynamic coefficient of friction was not included explicitly in the
formulation and this omission made it necessary to perform an iterative solution of sliding
contact problems.

A rather different approach using a non-local and non-linear model was proposed by Oden and
Pires. 8 Oden and Martins 9 conducted a thorough survey of experimental results appertaining to
frictional contact problems before implementing in a simplified form the results of Reference 8 in
a finite element algorithm.

In the present paper the authors extend the work of Bathe and Chaudhary to include eight-
node isoparametric elements using the shape functions to determine displacement constraints and
forces in the contact zone. For sliding contact problems the dynamic coefficient of friction is
included explicitly, thereby allowing a direct (non-iterative) solution. The formulation and the
results presented apply specifically to linear elastic contact but the method can be adapted to deal
with material and geometric non-linearity in the contacting bodies.

FORMULATION OF THE FINITE ELEMENT CONTACT APPROACH

We begin by recalling the familiar finite element displacement equation,

Ku=f	 (1)

where K is the global finite element stiffness matrix, u is the vector of unknown element nodal
displacements and f is a vector of externally applied loads. If two or more separate finite element
meshes are considered then equation (1) cannot prevent overlapping unless some further
constraint is applied. Bathe and Chaudhary have introduced the notion of contactor and target
bodies. Following this approach we allow target nodes to overlap into the contactor but prevent
the entry of contactor nodes into the target. Thus in the contact region a set of displacement
constraint equations coupling the motions of the contactor and target nodes is defined as follows:

Lu=O	 (2)

where L is an m x n constraint coefficient array, n is the number of degrees of freedom in the
complete finite element model and m is the number of nodal contact variables. Since the contactor
nodes are not allowed to penetrate the target then the element nodal defiections in the contact
region are constrained according to the shape functions as

uc = NT(, ) uT 	(3)

Here subscripts C and T refer to the contactor and the target. Vector ii contains the defiections of
all contactor nodes incident upon a target element. 11T contains the full set of nodal displacements
on a target element. Thus, in the case illustrated in Figure 1, U contains the defiections of node k
and the defiections of nodes a, b and c (which are contained in u 1 ) are constrained such that a
parabola passing through a, b and c also passes through k. Equation (2) is formed by re-arranging
equation (3).
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Figure 1. Displacement constraints in the contact region

Having implemented a constraint linking the deflections of the contactor and target bodies it is
necessary to ensure equilibrium of forces over the complete structure. This will also provide a
mechanism whereby separation of previously connected meshes can be achieved. We return to
equation (1) but now include the interface forces acting between the contactor and the target.
Thus,

Ku+Jc=f	 (4)

where c is a vector containing the contact forces governing sticking/sliding conditions in the
contact zone. Since node-on-node contact is unlikely to occur the contact forces must be
distributed along the target element nodes. The contact forces can be distributed according to the
target element shape functions

CC = NT(, 17)CT	 (5)

The elements of the force coefficient array J in equation (4) are then given according to the shape
function distribution of forces defined by (5). Alternative schemes for the distribution of contact
forces on target nodes have been implemented but the authors have observed that the shape
function distribution provides reliable results. The shape function distribution also yields a
symmetric system of equations for computation of displacements in the case of sticking friction.

Combining equations (2) and (4) we obtain a set of algebraic equations which can be solved
using the conventional finite element displacement routines,

[KIJ'lJul Jf	
6

[Lio]lc'Jlo	 ()

c' and J' are condensed versions of C and J. When c' is of order m it contains all the non-zero
terms contained in c. J' is an n x m force coefficient array. The contact forces c' are identical to the
Lagrange multipliers which appear in References 5 and 6.

The approach taken in this work with respect to forces and displacements in the contact
zone has been to separate them into normal and tangential components. This involves a co-
ordinate transformation, affecting the elements of L and J' but has significant advantages in the
treatment of contact problems because tangential sliding then becomes easy to implement.
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Further discussion of the transformation to normal and tangential components can be found
in Appendix I.

In the sticking contact regime the following condition applies to the normal and tangential
contact forces at the contactor nodes,

Ic,I < IPs c I	 (7)

where p, represents the static coefficient of friction and the subscripts n and t indicate normal and
tangential directions. When the threshold for the onset of sliding has been overcome by large
tangential contact forces, then

c= ±PdCn	 (8)

depending upon the direction of sliding. Pd is the dynamic coefficient of friction.
The relationship (8) can be implemented in equation (6), thereby eliminating one column in J'

for each contactor node in sliding contact. Consequently for each column eliminated in J' a
corresponding row in L must be deleted if the 'stiffness' matrix is to remain square. The rows to be
deleted in L are those defining the tangential displacement constraints which must be released if
sliding is to occur between the contactor and target bodies. The explicit inclusion of (8) in (6)
enables a direct (non-iterative) solution of sliding, frictional contact problems but it has the
disadvantages that the 'stiffness' matrix becomes non-symmetric. A scheme for improving the

rK Ji.
bandedness of the 'stiffness' array [L

	
] is presented in Appendix II.

SOLUTION ALGORITHM

The solution algorithm uses a progressive application of the external loads. Initially the full
external load is applied and changes in the state of interference of the contactor and target nieshes
are noted. The load is then scaled back to the point where the first contactor node just touches the
surface of a target element. Contact constraints are then applied at this contactor node and the
remaining load is reapplied. The loading is again scaled back to allow new contact constraints to
be imposed or released. Then the remaining load is reapplied, and so on until the contactor and
target meshes are fully loaded and the contact region is fully defined. For each node on the
contactor surface there are four changes of boundary condition which may occur during this
process:

(a) nodal state change, e.g. sticking to sliding;
(b) penetration of a new node into the target body;
(c) separation of a node; and
(d) sliding of a contactor node from one target element to another.

If the state of contactor node is found to change from sticking to sliding then a complete re-
solution of the previous loading stage is undertaken with new contact constraints. The state of a
contactor node cannot change within a load stage because the friction angle remains constant in
each stage.

If a contactor node penetrates the target mesh then a scaling factor, y, is applied to the
computed displacements and forces. This situation is illustrated in Figure 2. y is given as follows:

(9)
Uk
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Figure 2. Scaled penetration model

Separation of a contactor node is identified when the normal force at that node becomes
negative (i.e. tensile). y is then calculated such that separation of the node just occurs. In this casey
is given by the ratio of the sum of the compressive (positive) normal contact forces computed at
previous load stages to the absolute value of the tensile (negative) normal force computed in the
current load stage, i.e.

- compressive normal forces from previous stages 	
10

-	 I tensile normal force in current stage I
Values of y which are greater than unity indicate that separation is not occurring.

When a contactor node slides from one target element to another then it is necessary to allow
for a change of equation of the target surfaces (defined by the position of the nodes on the second
element and its shape functions). This situation is illustrated in Figure 3 and it can be seen that the
scaling factor is given by

'1k

I	 I - I 1k I

a.1

--

- -

(11)

Figure 3. Sliding from one target element to another
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Figure 4. Computation of modified sliding direction

where k represents the initial point of contact on a target surface defined by = ± 1. represents
the contact point at completion of the load stage.

In the case of sliding over curved targets contactor nodes are constrained to move in directions
tangential to the target surface. In cases where the curvature of the target element is shallow this
linear approximation may be satisfactory if relative displacements are small. The final pos-
itional error of the contactor node may then be very small in comparison with the relative
displacements. For cases where the curvature is significant or where displacements are large an
improvement is necessary. This is achieved in the solution algorithm by using the positional error
of the contactor node to calculate a new direction of sliding, as shown in Figure 4. Thus the
displacement constraint equations are modified by adjusting the definition of the normal and
tangent and a re-solution is performed. This method gives an improved estimate of sliding over
curved surfaces since the modified direction represents an average tangent of the target surface
over which the sliding node has moved.

RESULTS

In this section two problems illustrating the cases of sticking and sliding contact are solved using
the finite element method and the results are compared with results obtained from classical
methods available in the literature.

Sticking contact

To demonstrate the performance of the method in the treatment of sticking contact problems
we consider the case of a pin in a hole with small radial clearance. This problem is illustrated in
Figure 5 where a concentrated load is applied at the centre-line of the pin.

It is known' that when the arc of contact, 2, occupies an appreciable fraction of the
circumference of the hole then the classical Hertz treatment is invalid. Persson'° provided a more
representative model of the problem by using stress functions appropriate to a circular disc and to
a circular hole in an infinite plate assuming frictionless contact.

A finite element model using eight-node quadrilateral elements is shown in Figure 6. The
analysis was performed at a section remote from the ends of the pin.
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Figure 5. Pin in a hole with small radial clearance

Figure 6. Finite element model of a pin in a hole

Although the problem appeared to be a wholly sticking one, with the static and dynamic
coefficients of friction set as zero, sticking nodes at which tangential contact forces were generated
were reset within the algorithm to sliding.

Plots of contact pressure versus contact angle are shown in Figure 7. Three load cases were
considered. The full lines indicate Persson's results for = 30°, = 600 and = 90°. The discrete
results were obtained using finite elements with =3O0, cx600 and x=82°. They represent
averaged pressure per element. Comparison of the 30° and 60° results shows close similarity
between the two methods and, although comparative results for 82° and 90° were not available, it
can be seen that the 82° results lie in the correct region. The pin variables (Young's modulus, E,
clearance, R, and load, F) are plotted against contact angle in Figure 8. It can be seen that the
finite element results are in very close agreement with Persson's solution despite the c9arseness of
the finite element mesh.
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Figure 7. Comparison of contact pressures
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Figure 8. Comparison of predicted contact angles for different pin conditions

Sliding contact

We consider the problem of a long cylinder subject to normal and tangential forces sliding over
a fiat frictional surface. The problem, which is illustrated in Figure 9, would appear to be
indeterminate since the cylinder is allowed to slide continuously. To overcome this problem the
cylinder and surface may be inclined as shown in Figure 10. A horizontal force is then applied to
the cylinder and vertical motion of the cylinder is prevented. This strategy naturally generates the
normal and tangential forces P and Q and sliding of the cylinder occurs until jamming prevents
further relative motion of the contactor with respect to the target. The finite element model of the
system, which uses eight-node quadrilateral elements, is shown in Figure 11.

The amount of sliding between the two meshes after application of a horizontal force of 1083 N
is shown in Figure 12. From Hertzian analysis of contact between a cylinder and a fiat surface a
semi-elliptical normal pressure distribution would be expected between the two bodies. Figure 13
shows the finite element results representing averaged pressure per contacting element under nine
contactor nodes. The finite element pressure results are compared with values obtained using
Hertzian theory in the figure.
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Figure 10. Inclined sliding model

-
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Figure 9. Sliding cylinder over flat surface

Figure II. Finite element model of sliding cylinder
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Figure 12. Magnified view of meshes in contact region after application of 1083 N.
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Figure 13. Comparison of contact pressures

An analytical solution exists for this sliding cylinder contact problem 1 whereby the thaximum
shear stresses in the target are found to be subsurface when /id <O25. Contact finite element
results using the mesh shown in Figure 11 confirmed that the maximum shear stresses were
subsurface but the magnitudes of the computed stresses were in error by a factor of two (over-
estimated). This latter error was found to disappear with mesh refinement. A comparison of
maximum shear stresses obtained analytically with the finite element stresses is given in Figure 14.
In order to avoid a complete resolution using a finer mesh the finite element results were obtained
using a refined target mesh alone. Prescribed nodal displacements were interpolated from the
displacement results given by the coarse mesh in Figure 11 and applied to the refined target mesh.
The refined target mesh used was a grid of 15 x 8 equal size quadrilateral eight-node elements. It
can be seen that, using this approach, the finite element results were generally in close agreement
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Analytic solution contours
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where tm - maxim. shear stress

P - maximum contaCt pressure.
Contnrt renm

Figure 14. Comparison of maximum shear stress

with the analytical results though the highest value of the maximum shear stress was in error by
about 20 per cent.

CONCLUSIONS

A finite element solution method has been presented for contact stress problems involving curved
surfaces and frictional effects. Using displacement and force constraints derived from the shape
functions and Coulomb's friction law a stiffness approach is employed whereby normal and
tangential forces are computed at the nodes on the contact surfaces. In the case of nodal sliding
the dynamic coefficient of friction is directly included in the solution matrix. Loading is
performed in stages, each stage introducing a change in the boundary conditions. The final mesh
displacements are given by summation of the contributions from each of the stages.

The results presented in the paper compare favourably with classical solutions although there
seems to be some sensitivity to mesh refinement.
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APPENDIX I

Nodal contact displacements expressed in normal and tangential directions

Element displacements in the global x and y directions can be obtained from the nodal
displacements and the shape functions. We consider the surface of an element where ç = ± 1. Then
for an eight-node quadrilateral element,

UxUxa( ?1(71 )/2)+Uxb(1?7 2 )+Uxc(?1(?1+1)/2)	 .	 (12)

Lly uya (7(l)/2)+uyb (1_PJ 2 )+uyc (?J(J+1)/2)	 (13)
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The normal and tangential displacements of a contactor node, k, in terms of its x and y
displacements are given by

Unk=?lnxUxk+flnyUyk	 (14)

Utkfl flyUXk+fl flX Uyk	 (15)

where n is the x-component of the unit vector normal to the surface, n,,, is the y-component of
the same unit vector.

Thus, to satisfy the condition of sticking of a contactor node, the normal and tangential
displacements of the contactor node must equal that of the point of contact on the target surface.
Consequently the normal and tangential constraint equations become

+ fl,,, U = U 0 n,((i - 1)/2) + u	 - 1)12)

+Uxb flflx(l —112)+uybnfly(1—?12)

+un(j(,1+ 1)/2)+ un(ii(,+ 1)/2)	 (16)

flnyUxk flnxUyk = Uxa n((j - 1 )12) -	 - 1)/2)

+ UXb fl flY( l —2)—uybnX(1 _2)

+un(ii(ii +	 + 1)/2)	 (17)

In the case of sticking contact both constraint equations (16) and (17) are applied but in the case of
sliding the tangential constraint (17) is released.

APPENDIX II

Bandedness of the 'stiffness' array

The contact constraints in this solution method are applied as extra rows and columns around
the usual global finite element stiffness matrix resulting, in general, in a sparsely populated,
unbanded matrix. However, by node numbering of the target and contactor bodies in a sequential
manner over the two contacting surfaces as shown in Figure 15 and by matrix manipulation as

Figure 15. Contact surface node numbering sequence
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Non-zero terms

p,---i	 r-i	 1
iA	 I	 I

	

Ii	 iI	 I

Initial solution matri* incLudw	 Re-arranged Solution

constraint terms,	 matrix.

Figure 16. Showing re-arrangement of solution matrix for improved bandedness

shown in Figure 16, it is possible to produce a banded matrix of half bandwidth.

'1 b(conact) = '1'b(stiffness) + N0

where
Hb(contact) contact half-bandwidth,
Hb(St l(rneSS ) = stiffness matrix half-bandwidth,
N0 =2 (number of sticking nodes)+(number of sliding nodes).
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Abstract—This paper details two symmetric finite element methods for the solution of two-dimensional
elastic contact problems. The methods are based on variants of an unsymmetric finite element method
introduced by the authors in an earlier paper. Overlapping of the meshes in the contact region is prevented
by the inclusion of displacement and force constraints, which are based on the finite element shape
functions and Coulomb's friction law. As a result of the application of these constraints, the stiffness
matrix, displacement vector and force vector become augmented with additional terms.

Loading of the structure is in stages, with a new boundary condition included at each stage. The effects
of sliding friction are included by iteration, with friction forces added to the augmented force vector in
one method and normal gap terms added to the force' vector in the other method.

Sample problems include comparison of the two symmetric methods with the unsymmetric method and
a classical solution from the literature.

1. INTRODUCI ION

The solution of contact problems by the finite
element method has given rise to a variety of different
approaches. Papers by Böhm [I] and Chang et a!. [2],
contain good literature surveys into many of the
finite element methods available. Essentially all the
methods attempt to prevent overlapping of the finite
element meshes and to give a satisfactory pressure
distribution over the contact region.

Historically the first analytic contact solutions were
developed by Hertz [3]: however these methods were
restricted to non-conforming bodies and frictionless
contact. The use of finite elements to solve contact
problems was successfully implemented by Hughes
et a!. [4]. However, node on node contact was neces-
sary in the contact region, preventing sliding from
being modelled.

A recent area of research has involved the use of
contact constraints added as extra rows and columns
around the stiffness matrix, the corresponding pos-
itions in the displacement and force vectors represent-
ing contact nodal force terms and overlaps of the
meshes respectively.

Bathe and Chaudhary [5], using this approach al-
lowed node on node contact to be no longer necessary
between the contacting bodies. Linear displacement
constraints were applied in a Lagrange multiplier
method around the standard stiffness matrix. Pre-
defined load steps were implemented with iteration
necessary to determine the displacements, forces and
nodal states (sticking or sliding) in the contact region.
The overall solution was obtained by summation of
these results. The forces due to sliding friction were
included by assuming a constant frictional traction
over each contacting element and implemented as
extra force terms in the force vector. The authors of

this paper however noted that problems in the con-
vergence of the iterative solution were raised by this
method.

Pascoe and Mottershead [6] improved upon Bathe
and Chaudhary's method, by including curved con-
tact and sliding friction directly in the stiffness matrix.
Force and displacement constraints based on the
finite element shape functions were used. The solution
for a contact problem was obtained by initially
applying the full external forces. A checking routine
was then entered to identify if any new boundary
conditions had occurred, e.g. new nodal contact. If
so, then the forces and displacements were scaled
until the first new boundary condition just came into
effect. An accurate solution with this scaled load was
then obtained. The remaining force was then applied
with the new boundary condition included in the
stiffness matrix. The above procedure was repeated
until the structure was fully loaded, with the sum-
mation of each accurate stage giving the overall
solution.

A further advantage of this method was that the
complete loading history of the contact zone was
given. Unfortunately by including the constraints of
sliding friction directly in the stiffness matrix, a
non-symmetric matrix was produced. In most finite
element packages investment has been concentrated
in efficient routines for solving symmetric systems of
equations. Unsymmetric matrices demand greater
memory capacity and processing times are longer.

The current paper details two methods based on
variants of the unsymmetric method described above.
The important feature of symmetry of the stiffness
matrix is preserved, although iteration is necessary at
each load stage. The first method is a straightforward
variant, where initially frictionless contact is assumed
at sliding nodes. The normal forces obtained from

137



138
	

S. K. PASCOE and J. E. MOTFERSHEAD

this solution are used to calculate the 'missing' tan-
gential friction forces, which are then included in the
following iterations as extra terms in the force vector.
These tangential forces were only approximate, as the
normal forces were obtained assuming frictionless
contact. However, by iteration an accurate solution
was obtained.

The second method is based on a less obvious
variant of the unsymmetric method. In this method
sliding friction forces are included directly in the
stiffness matrix by applying incorrect displacement
constraints. Corrective gap terms are calculated
after each iteration and included in the next 'force'
vector.

2, ThE FINITE ELEMENT APPROACH

A typical contact problem to be solved is shown in
Fig. I, where the contacting bodies are arbitrarily
denoted as contactor and target. In the contact region
displacement compatibility and force equilibrium are
desired. From a previous paper by the authors [6], it
was shown that displacement and force constraints
could be derived from the finite element shape func-
tions. These constraints were inserted as extra rows
and columns around the stiffness matrix:

rK ji (u) ff1

[L o]lc}'loJ'	
(I)

where the usual finite element terms are:

K = stiffness matrix of the unconstrained meshes,
u = vector of unknown nodal displacements,
f = vector of applied external loads;

and the contact terms are:

J = force constraint matrix,
L displacement constraint matrix,
c = vector of unknown contact forces.

This system of constraints prevented any touching
contactor nodes from penetrating the target surface,
although target nodes could penetrate the contactor
surface. However the amount of penetration was
generally small.

Force

Contac tor

Target

The state of a touching contactor node could either
be sticking or sliding. The constraints included in the
stiffness matrix were dependent upon these nodal
states.

For each sticking contactor node, two displace-
ment constraints representing the normal and tangen-
tial directions were incorporated as two rows in L.
For a quadratic target element, this ensured that a
parabola passed through the contacting node and the
three target element nodes during all stages of stick-
ing contact, as shown in Fig. 2. The contactor nodal
forces were distributed over the target element nodes
in the ratio of the shape functions. This was im-
plemented within the stiffness matrix as normal and
tangential force constraints, which were symmetric to
the displacement constraints, i.e.

(2)

For each sliding contactor node, only one displace-
ment and one force constraint was applied. The
displacement constraint was in the normal direction,
with the tangential constraint released to allow slid-
ing. The force constraint combined the normal and
tangential friction forces. Hence in all sliding prob-
lems where friction was present, the displacement and
force constraints were not symmetric, i.e.

(3)

The solution for a contact problem was initiated by
defining touching contactor nodes as sticking. Appro-
priate constraints were included in eqn (1), and a
solution was obtained. From the normal and tangen-
tial forces generated in c, Coulomb's friction law was
applied for each touching contactor node as follows,

I c:I<IP, c I	 (4)

where

C, = tangential contactor nodal force,
c = normal contactor nodal force,

= static coefficient of friction.

K	 Contactor node

a,b,c Target nodes

ill_I I1 Contactor position
along target element

I	 a	
,_

- 'l	
\\

Unloaded

-- -- Loaded

Fig. 1. Notation of contact bodies. 	 Fig. 2. Unloaded and loaded sticking contact.
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If the tangential force exceeded this condition, then
the nodal state was changed to sliding and the
following equation was implemented by the force
constraints,

C,= ±UiC	 (5)

where Pd = dynamic coefficient of friction (sign
dependent upon the sliding direction).

If after a solution any new boundary conditions
were identified, for example new nodal contact.
Then the forces and displacements for that stage
were scaled, such that the new boundary con-
ditions just came into effect. An accurate solution
was then obtained with this scaled load. The remain-
ing load was then applied with the new boundary
conditions included in the stiffness matrix. This
scaling and re-solution procedure was repeated
for each new boundary condition until the structure
was fully loaded. The overall displacements and
forces were obtained by summation of each load
stage.

In all contact problems where sliding of contactor
nodes occurs, the above method will yield a stiffness
matrix which is unsymmetric. This may present
difficulties of implementation in some existing finite
element programs.

However, two symmetric finite element methods
based on variants of the unsymmetnc method of
eqn (I) are detailed below.

One method is termed the tangential force method.
In this method, tangential friction force terms due to
sliding, are included in successive iterations in the
force vector. In the other method, termed the normal
gap method, incorrect sliding displacement con-
straints are initially applied. However corrective nor-
mal gap terms are included in successive iterations in
the 'force' vector.

3. THE TANGENTIAL FORCE METHOD

In this method the normal displacement constraint
of L is used as the normal force constraint in the
stiffness matrix as shown below,

rx LT1 fu	 (f')

L L OjcJOJ	
(6)

By applying this constraint to the sliding nodes, a
solution is obtained in which the tangential forces are
zero, i.e. frictionless contact has been imposed at
the sliding nodes. However from the normal forces
generated by the above equation, an estimate of
the tangential friction forces are calculated using
Coulomb's friction law, eqn (5). These tangential
forces are then distributed in the ratio of the shape
functions onto the relevant contactor and target
nodes. For a quadratic element with three nodes per
side, this gives tangential forces of

Ck, = +pdCk

Cal = — paC,,['1,,(l - '1k)!21

(7)

Cbl = —Pdck El - 'ii]

CCI = — Pa ['1k( l + '1k)!2]

where q = local positional co-ordinate of the touch-
ing contactor node along the target element surface,
with subscript k referring to the touching contactor
node and subscripts a, b and c to the target element
surface nodes.

The above tangential friction forces are resolved
into global x and y forces and then included in the
appropriate rows of the force vector. By iteration,
improved estimates of the tangential forces are in-
cluded until convergence occurs. The method of
including sliding friction terms in the force vector is
used by Bathe and Chaudhary [5] in their contact
algorithm.

The complete solution for a contact problem by
the tangential force method is obtained using the
same loading and scaling procedure as used by the
unsymmetric method.

4. THE NORMAL GAP METHOD

In this method the single sliding force constraint,
coupling normal and tangential forces is used for the
sliding displacement constraint in the stiffness matrix
as shown below:

rK J 1 (u) (f)
[Jr ]=ij'	

(8)

where,

[J] = [L} T + pd[L,]T	 (9)

and

(La ] = normal direction displacement constraint
array,

[L,] = tangential direction displacement constraint
array,

{& } = vector of contactor normal nodal gaps.

(NB. In the previous section for sliding nodes
L=L.)

In the stiffness matrix of eqn (8), It can be seen that
by using the sliding force constraint of eqn (9), an
extra term of pd[L,] has been included in the displace-
ment constraint, when compared with tbe unsymmet-
tic method, eqn (1). This term appears because the
algorithm enforces an unreal symmetry constraint. It
represents a displacement equal to the product of the
amount of sliding of each contactor node and the
dynamic coefficient of friction. Constraining a node
to slide in this manner results in it sliding along a
different slope to that of the true target surface, by an
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Final position of
sliding Contoctor

6kr,

Deformed target
surface

Tan 0-

ôkn	 X

Fig. 3. Effect of incorrect displacement constraint.

angle equivalent to the dynamic coefficient of friction,
as illustrated in Fig. 3. The forces generated by these
constraints are approximately correct as dynamic
friction is included.

Hence the initial solution yields approximately
correct forces and incorrect displacements. The dis-
placements result in normal gaps which appear
between the contactor nodes and the target surface.
The magnitude of the gaps is given by pd[L,]
as indicated in Fig. 3. If the exact amount of sliding
for a contactor node can be calculated, then a
corrective normal gap term can be placed in the
force vector and an accurate solution can be
obtained. However due to inter-nodal effects of
sliding along incorrect slopes, only an approximate
value of the amount of sliding can be calculated.
By including this approximate value in the 'force'
vector, a more accurate solution is obtained
from which a closer estimate of the amount of sliding
can be calculated. Iteration is continued in this
manner until convergence to an accurate solution is
achieved.

4.1. Calculation of the normal gap terms

After the first solution involving sliding contactor
nodes, positional gaps exist between the contactor
nodes and the target surface as illustrated in Fig. 3.
The amount of sliding, 5kt could be calculated for
each contactor node as

ök, = n,x,, - n, xk,ICkIflC	 (10)

where

= unit vector in the tangential direction
relative to the target surface,

Xk = final contactor co-ordinates of sliding
node k,

= final nodal co-ordinates of node k, as-
suming node as sticking (i.e. origin of
sliding).

However convergence to the accurate values of 5k,

was found to be slow because the positional gap was
not being accounted for. The authors have found that
the following method gave faster convergence, as
both positional gaps and inter-nodal effects were
taken into account together.

The method involves translation of the contactor
body in the direction of 'free movement' (i.e. the
direction it would move assuming a small force was
applied). The translation distance was constrained
such that the sum of the normal contactor gaps above
the target surface, equalled the sum of the normal
gaps beneath it, that is

(11)

The final position of the contactor body represent-
ing an average touching position, is shown in Fig. 4.
Using these translated contactor co-ordinates for Xk,

the amount of sliding can be calculated from eqn (10).
These values are multiplied by jz and inserted in the
appropriate position of the 'force' vector, (the row
position in the force vector is the same as the row
position of the sliding constraint in the stiffness
matrix).

By successive iteration with progressively more
accurate normal gap terms, convergence to the cor-
rect solution is obtained.

4.2. Decision on the direction of sliding

The decision of whether to update the state of a
sticking node to sliding is made by application of
Coulomb's friction law, eqn (4), to the normal and

• Contactor nodes before translation
Contactor nodes offer translation

Translation
Distancej

5kfl fl

61(n

Nodal positions after	 solution	 Nodal positions after translation

Fig. 4. Showing translation of contact nodes.
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Unloaded
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fl. Sticking position o contactor node

flt -Sliding	 •	 •

n

—	
kV'6	 _-ict

Fig. 5. Use of sticking and sliding nodal positions to decide sign of /1d

tangential nodal forces generated in the last solution.
If a node changes to sliding, then the direction and
appropriate friction forces are included directly in the
stiffness matrix by the sign of pt,. This procedure has
been found to be acceptable in contact problems
where only one contactor node is initially touching,
with the number of contacting nodes progressively
increasing with load. However, in problems where
more than one contactor node is initially touching,
the use of 'sticking forces' to decide the direction of
sliding is not necessarily correct. This is because of
inter-nodal sticking effects.

To overcome this difficulty, a checking stage has
been introduced after each solution. By this method,
the position of a sliding node is compared with its
position if it had remained as sticking on the target.
Hence, if a sliding node is in the positive tangential
direction relative to the sticking position, then posi-
tive sliding is defined as occurring, as illustrated in
Fig. 5, and a positive value of Pd 5 inserted in the
stiffness matrix for that node. Conversely, if negative
sliding has occurred, then a negative value of Pd is
inserted.

This positional check to decide the sign of Pd, is
applicable even when the previous value obtained
from the sticking forces was incorrect. This is because
the sign of Pd represents the direction of the tangential
friction forces imposed on the system and using
the incorrect sign for Pd' actually exaggerates the
true direction of sliding. This effect is illustrated in
Fig. 6.

- Tangenhnl friction force acting on n contactor nod.

5. RESULTS

In this section three contact problems are pre-
sented. The objective in the first two problems was to
identify which of the two symmetric methods was
fastest in terms of convergence. The best method was
then used for a more complex sliding problem.
Comparison of results are made with an analytical
solution and results obtained using the unsymmetric
method.

5.1. Flat sliding contact

The first problem analysed was of a sliding block
over a flat inclined surface. The contactor and target
were non-rigid with friction present along the contact
surface. To allow relatively easy comparison of the
results, a simple finite element mesh of four quadri-
lateral, eight-node elements was used as illustrated
in Fig. 7. In this model, five contactor nodes are
touching the target surface.

Finite element results by the two symmetric meth-
ods and the unsymmetric method are tabulated in
Table 1. In this table are listed the number of
iterations, the final contactor nodal states, the nodal
normal forces and the displacements at node 1. This
allows a full and direct comparison to be made
between the three methods.

100	 ______
13)21	 9	 Ev

	

E -60000	

1008®

V - 0.25

I- 0.20

	

- 0•15	 -.4	 J 
)/'7 

L_ E •

U*15ct	
I® 

20® 21

19

Correct c imposed	 Incorrect c imposed
(opposing direction of sliding)

Fig. 6. Effect of wrong tangential force on nodal displace-
ment.	 Fig. 7. Finite element mesh for fiat contact.
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Table 1. Comparison of finite element results for the flat sliding problem

Contactor
Method	 Iterations nodal states 	 c1	 c,,	 c,	 c,	 c5	 5.

Tangential	 8	 All positive
force method	 sliding

Normal gap	 6	 All positive
method	 sliding

Unsymmetric	 4	 All positive
method	 sliding

91.053 5.1929 69.549 156.03 47.102 0.66845E-4 0.49919E-4

91.053 5.1963 69.548 156.03 47.102 0.66847E-4 0.49921E-4

91.054 5.1935 69.546 156.03 47.104 0.66846E-4 0.49920E-4

The final contact surface profile is shown in Fig. 8.
A comparison in the rate of convergence between the
two symmetric methods is shown in Fig. 9, where the
normal force at node I is plotted for each iteration
(no values are shown for iterations 1 and 2 as sticking
nodes are present in these stages).

From Table 1, it can be seen that convergence to
the unsymmetric method results was achieved by
both of the symmetric methods. The gap method
however required less iterations than the tangential
force method. Interestingly, iterations 2 and 3 of the
unsymmetric and gap methods used the incorrect sign
of 11d for some of the sliding nodes. However, by stage
4, these signs had been corrected by the displacement
checking routine.

5.2. Curved sliding contact

To analyse the symmetric methods over a curved
contact region, the second contact problem consid-
ered was that of a sliding block over a sharply curved
contact surface. Again the contactor and target
bodies were non-rigid with friction present along the

Unloaded

- - - - Loaded

Displacements x (1. x 10°)

Fig. 8. Undeformed and deformed flat surface profiles.

96'S	 - Gap Method

It	 -- Tnnentin1 Force
-	 Method
I'

Exact Vu.-91'O53

contact boundary. The finite element mesh used
consisted of four quadrilateral, eight-node elements
as shown in Fig. 10.

Finite element results by the two symmetric meth-
ods and the unsymmetric method are tabulated in
Table 2. The final contact surface profile is shown in
Fig. 11.

From Table 2, it can be seen that convergence
to the unsymmetric results has occurred with
both of the symmetric methods. Again the gap
method has converged in less iterations than the
tangential force method. The surface profile has
resulted in the extreme right contactor node sep-
arating from the target, as indicated by C5,, = 0.
This occurred because the forces generated by the
other four touching contactor nodes deformed the
target downwards, resulting in separation of this
node.

The normal forces produced at the contactor nodes
may at first appear erratic. This is partially due to the
very coarse mesh and the lack of nodes in the contact
region. However, the deformed contact profiles show
approximate slope continuity between adjacent
elements, which is a desired feature. Also a check on
the average pressure exerted by each contactor
element confirms expected trends, i.e. in the flat
contact problem, the maximum pressure occurs at the
element 2 interface and in the curved contact problem
at the element I interface.

Fig. 10. Finite element mesh for curved contact.

E -60000

v-O'25

l 020

I'-0.15

Unloaded

- - - - Loaded

Displacements x (2x l0)

Iteration Number

Fig. 9. Comparison of convergence of normal force of
node 1.	 Fig. II Undeformed and deformed curved surface profiles
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Table 2. Comparison of finite element results for the curved sliding problem

Contactor
Method	 Iterations nodal states	 c1	 c,,,	 c3	 c4	 c

Tangential	 1	 73.262 193.54 107.19 89.607 	 0	 0.11156E-3 0.71023E-4
force method	 All positive

	

sliding except 
73.262 193.51 107.19 89.599	 0	 0.11155E-3 0.71026E-4Normal gap	 8 for node 5method which hasUnsymmetric	

j 
separated	 73.261 193.52 107.18 89.600	 0	 0.11155E-3 0.71016E-4

method

From the above results and other models com-
pared by the authors, the normal gap method has
proved faster in convergence than the tangential force
method.

5.3. Sliding cylinder problem

This contact problem consists of a cylinder sliding
up an inclined plane as illustrated in Fig. 12. This
same problem was analysed by the authors in a
previous paper [6], where results by the unsymmetric
finite element method were compared with a known
analytic solution. To allow comparison of results by
the gap method with this paper, the same finite
element mesh was used as shown in Fig. 13.

Comparative results between the symmetric gap
method and the unsymmetric method were obtained

Fig. 12. Sliding cylinder contact problem.

4s1L

Fig. 13. Finite element mesh for sliding cylinder

for the stage where nine contactor nodes were
touching the target surface. Listed in Table 3 are
comparative values of the number of iterations and
the load applied for the ninth node to just touch the
target surface, along with sample displacements in the
contact region.

From these results it can be seen that the nodal
displacements obtained by the two methods are
almost identical, resulting in the deformed meshes as
shown in Fig. 14. The shear stresses obtained by using
these displacements as prescribed values over the
surface of a refined target mesh (to allow more
accurate stress calculation) are also identica' to the
unsymmetric method results. Figure 15 shows com-
parison of the analytic shear stress contours in the
contact region with the finite element results. These
shear stresses by the finite element method have
confirmed the approximate position of the maximum
shear stresses, although the peak value is over-
estimated by about 20%.

Comparison of the number of iterations between
the symmetric gap method and the unsymmetric
method is interesting. Although about half as many
more iterations are required, the nett computer time

Fig. 14. Magnified view of meshes in contact region.

E -60000
.025

025

ldOZO

F 1083

Table 3. Comparison of finite element results for the sliding cylinder problem

Contactor
Method	 Iterations	 nodal states Total load (N) 	 ö	 By

Normal gap	 100	 All positive	 1082.4	 0.80001E-1 0.27889E-1 0.28272E-1 0.16273E-1
method	 sliding

Unsymmetric	 84	 All positive	 1083.2	 0.80062E- 1 0.279l4E- 1 0.28287E- I 0.l6282E- 1
method	 sliding

CAS 32/I-J
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Fig. 15. Comparison of maximum shear stress.

is less as symmetry has been preserved. The number
of iterations may appear high, this is due to a strict
positional tolerance on contact included in the check-
ing routines. This is necessary as the large amount of
sliding of the contactor nodes in their initial tangent
direction, may result in their final position not lying
on the deformed target surface as illustrated in
Fig. 16. However by re-solution with a modified
tangent direction, the strict positional tolerance is
maintained.

6. CONCLUSIONS

The solution of curved friction contact problems
by two different symmetric finite element methods has
been presented. Both methods were based on variants
of an unsymmetric method and employed force and
displacement constraints related to the element shape
functions. Incorrect constraints were initially applied
with corrective terms included by iteration in the
force vector. One method used corrective friction
force terms and the other corrective normal gap

1oxc

Desired positioned
-	 tolerance

Fig. 16. Showing new tangent direction.

terms. Results showed that both of the symmetric
methods and the unsymmetric method converged to
the same solution, with convergence by the normal
gap method being significantly faster than by the
friction force method.

Further investigation is currently being undertaken
into the effect of relaxing the positional tolerance on
contacting nodes and thereby allowing less iterations
per solution.
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TABLES



Interface Materials	 Ud

(unlubricated)

steel on steel	 0.80	 0.50
steel on copper	 0.22	 0.20
steel on brass	 0.35	 0.20
steel on cast iron	 0.40	 0.30

(lubricated)

steel on copper	 0.15	 0.10
steel on brass	 0.20	 0.10
steel on cast iron	 0.25	 0.15

Table 3.1 Coefficients of friction, for sow,e
commonly used materials



'Easy'	 'Difficult'

Non-varying	 Varying contact
contact areas	 areas

Sticking only or	 Mixed sticking
sliding only contact	 and sliding
without friction	 with friction

Only OflC body	 Both bodies
deformable	 deformable

Two dimensional	 Three dimensional
contact	 contact

Node Ofl node	 Mis-aligned
contact	 nodal contact

Flat contact	 Curved contact

Small scale	 Large scale
sliding	 sliding

Table 4.1 Comparison of different contact features



Contactor node nurnbcr

Stagc	 1	 2	 3	 4	 5	 6	 7

1	 2	 0	 0	 0	 0	 0	 0
2	 1	 2	 2	 2	 2	 2	 0
3	 1	 1	 1	 1	 1	 0	 0
4	 1	 1	 1	 1	 1	 0	 0
5	 1	 1	 1	 1	 1	 0	 0

Table 10.1 Nodal contact states during
the Hertz solution



Contactor node number

	

Stage 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12 13

1	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
2	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
3	 1	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
4	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
5	 1	 1	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
6	 1	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
7	 1	 1	 1	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0
S	 1	 1	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0
9	 1	 1	 1	 1	 2	 0	 0	 0	 0	 0	 0	 0	 0
10	 1	 1	 1	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0
11	 1	 1	 1	 1	 1	 2	 0	 0	 0	 0	 0	 0	 0
12	 1	 1	 1	 1	 1	 1	 0	 0	 0	 0	 0	 0	 0
13	 1	 1	 1	 1	 1	 1	 2	 0	 0	 0	 0	 0	 0
14	 1	 1	 1	 1	 1	 1	 1	 0	 0	 0	 0	 0	 0
15	 1	 1	 1	 1	 1	 1	 1	 2	 0	 0	 0	 0	 0
16	 1	 1	 1	 1	 1	 1	 1	 1	 0	 0	 0	 0	 0
17	 1	 1	 1	 1	 1	 1	 1	 1	 2	 0	 0	 0	 0
18	 1	 1	 1	 1	 1	 1	 1	 1	 1	 0	 0	 0	 0

Table 10.2 Nodal contact states during the pin
in a hole solution (1 b.c.loading per stage)

Contactor node number
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Table 10.3 Nodal contact states during the pin
in a hole solution (incremental loading)



Method of Constraint Imposition

Sample Lagrange Trans'	 Penalty Method ()
disp's	 Multipliers Matrix	 10	 106	 l0	 LOW

i 3	 0.10069	 0.10069	 0.29299	 0.10261	 0.10071	 0.10069
i 3	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0

7x	 0.10251	 0.10251	 0.29481	 0.10443	 0.10253	 0.10251

	

i7y 0.00444	 0.00444	 0.00444	 0.00444	 0.00444	 0.00444

	

i1i 0.00470	 0.00470	 0.00470	 0.00470	 0.00470	 0.00470

	

' 0.00278	 0.00278	 0.00278	 0.00278	 0.00278	 0.00278
(5I3	 0.01741	 0.01741	 0.01741	 0.01741	 0.01741	 0.01741

O13	 .00941	 .00941	 .00941	 .00941	 .00941	 .00941

Table 10.4 Comparison of constraint imposition techniques



-2	 - Contactor element and surface indicator
-2	 Contactor element and surface indicator

3
	 -2	 Contactor clement and surface indicator

4
	 -2	 Contactor element and surface indicator

5
	 -2	 Contactor clement and surface indicator

6
	 -2	 Contactor element and surface indicator

7
	 -2	 Contactor element and surface indicator

S
	 -2	 Contactor clement and surface indicator

9
	

2	 Target element and surface indicator
10 2	 Target element and surface indicator
II
	

2	 Target clement and surface indicator
12 2	 Target clement and surface indicator
13 2	 Target element and surface indicator
14 2	 Target clement and surface indicator
15 2	 Target clement and surface indicator
16 2	 Target clement and surface indicator

0.2	 Static coefficient of friction
0. 1	 Dynamic coefficient of friction

Table D.1 Extra input data for contact modelling



Node	 Contact Mesh	 Standard Mesh
Results	 Results

lx	 0.0	 0.0
l	 -O.28415D-5	 -0.28415D-5
2	 0.0	 0.0
2	 -O.28415D-5	 -0.28415D-5

	

-0.42623D-6	 -O.42623D-6

	

-0.14208D-5	 -0.14208D-5

	

O.42623D-6	 0.42623D-6
4	 -O.1420SD-5	 -O.14208D-5

	

-0.42623D-6	 0.0
5.	 -O.1420SD-5	 0.0
6	 0.42623D-6	 0.0
6	 -0.14208D-5	 0.0

	

0.0	 -
7	 0.0	 -
8x	 0.0	 -
8y	0.0	 -

Table F.l Displacement results for the 'simple' sticking problem



Node	 Frictionless Sliding	 Frictional Sliding
Results Pd = 0.0	 Results Pd = 0.15

0.38342D-02	 0.21024D-2
0.0	 0.0

B	 0.39297D-2	 0.21202D-2
B1,	 O.19187D-3	 0.80863D-4
C	 0.16418D-3	 0.11639D-3
C,	 O.10332D-3	 0.73849D-4

0.41648D-3	 0.28347D-3
D	 0.2S326D-4	 0.29090D-3
E	 0.62567D-3	 0.41838D-3

•	 -0.33977D-3	 -0.19928D-3
F	 278.86	 136.88
F	 0.0	 20.53
Final £	 8.247°	 8.267°

Table F.2 Comparison of frictionless and frictional results
for the 'simple' sliding problem



- -

Iteration

1
'I

N

if

N

'F

F'

'F

'F

2
F'

I,

F,

'F

N

F,

F,

N

Overlap

-0.2250D-3
0.0

Position	 Disp'/Force

57y and L58y	 0.2252D3
54y and 56y	 4.4502D3

-0.2252D-3
F4	 0
F4	0

0
F5	5000
F	 0
F6	0

t5 and	 -O.0007D-3
54 and 56y	 0.2243D3

0.0006D3
F4	 20
F4	278.5
F-	 0
F5	4443
F6	 -20
F6	278.5

0.0
0.000ID-3

Table F.3 Sample displacements from the overlap model



Node

1,2,3,4,5,6,7,8
9
10
11
12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0.0
-0.1 34D-6
-0.13 ID-6
0.134D-6
0.13 1D-6

-0.23 0 D-8
-0.544 D-7
-0.796 D-7
-0.221 D-7
0.230D-8
0.544 D-7
0.796D-7
0.22 1D-7

-0.1 47D-6
-0. 132D-6
-0.1 72D-6
0.197D-7
0.147D-6
0.132D-6
0.172D-6

-0.1 97D-7
0.0

-0.429 D-7
0.0

0.429 D-7
0.572D-6

-0.480 D-6
-0.1 59D-5
-0.62 1 D-6
-0.5 72 D-6
0.480 D-6
0.159D-5
0.62 1 D-6

0.0
-0.1 34D-6
-0.131D-6
0.134D-6

-0.13 ID-6
-0.230D-8
0.221 D-7
0.796D-7
0.544D-7
0.230D-8

-0.221 D-7
-0.796D-7
-0.544 D-7
-0.1 47D-6
-0.1 97D-7
0.172D-6
0.132D-6
0.1 47D-6
0.197D-7

-0.1 72D-6
-0.1 32D-6

0.0
0.429D-7

0.0
-0.429 D-7
0.572D-6
0.621 D-6
0.159D-5
0.480D-6

-0.572D-6
-0.62 1 D-6
-0.1 59D-5
-0.480D-6

0.0
-0.242 D-6
-0.306D-6
-0.242D-6
-0.306D-6
-0.452D-6
-0.73 5 D-6
-0.688D-6
-0.735 D-6
-0.452D-6
-0.735 D-6
-0.688D-6
-0.73 5 D-6
-0.452D-6
-0.735 D-6
-0.68 8 D-6
-0.73 5 D-6
-0.452D-6
-0.73 5 D-6
-0.6SSD-6
-0.73 5 D-6
-0.744 D-6
-0.258 D-5
-0.744D-6
-0.25 S D-5
0.347D-6

-0. 192D-5
-0.61 6D-5
-0.1 92D-5
0.347D-6

-0.1 92D-5
-0.61 6D-5
-0.1 92D-5

Table F.4 3-D Frictionless sliding results
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Figure 2.1	 Typical finite element mesh



Figure 2.2	 The four noded, two dimensional quadrilateral element



Figure 3.1	 Example of conforniin contact



Figure 3.2a	 Point contact of a cylinder on a flat base

Figure 3.2b	 Area contact after application of load



Figure 3.3a
	 Slender beam resting on two wide supports

Figure 3.3b
	 Localised contact after app Iftat 1011 of load



Figure 3.4	 Wedge contact problem

F



Figure 3.5a	 Possible sliding directions in 2-D contact

Figure 3.5b	 Possible sliding directions in 3-D contact



Figure 4.1	 Example of aligned nodal contact



Figure 4.2	 Example of nodal mis-alignment due to

large scale sliding



Figure 4.3	 Examples of induced gaps or overlaps

due to large scale sliding



F

Figure 4.4	 Example of sliding from one element to another
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Figure 5.1	 Scaling procedure for one boundary condition loading



Figure 5.2	 Linear gap element connected across adjacent nodes
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Figure 5.3	 Contact of a single node



Figure 5.4	 Example where linear contact identification fails
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Figure 5.5	 Example of conversion from global to

local contact forces
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Figure 5.6	 Constant pressure loading for different

element types



=	 '• Ez	 -
A,.

=

7-

Figure 5.7	 Example of force averaging over an element face



Figure 5.8	 Element force calculation by integration

of equivalent pressures
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Figure 5.9	 Example of simple nodal overlap



Figure 6.1	 Contactor and target body definition
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Figure 6.2	 Examples f 'good' and 'poor' contactor

and target defiiiition
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Figure 6.3
	

Local isoparametric coordinate systems

for various elements
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Figure 6.4	 Area coordinates for triangular elements
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Figure 6.5	 Use of element outward normals to

automatically identify surfaces
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Figure 6.6	 Local point of contact for a single

contacting node



Figure 6.7	 Identification of position of initial surface

contact for overlapped nodes



Figure 6.8	 Normal contact forces between contacting bodies



Figure 6.9	 Sliding along incorrect slope due to application

of UI displacement constraint
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Figure 6.10
	

Induced normal gaps due to [JI constraint
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Figure 6.11	 Translated contactor nodes



Figure 6.12	 Definition of surface Gauss points



Read in 'standard' and contact F.E. data

i=1

Generate the standard stiffness matrix

nsert the full external loads into R }

Enter the initial geometric contact checking routine to identify
which nodes are contacting and where.

Form the constraint equations and add them to the relevant
positions of the stiffness matrix ( sticking, frictionless or
frictional constraint equations ).

Solve the constrained stiffness matrix for nodal displacements

1K JT1 ful'	 SRi'
IL OjUS	 loS

(If sticking or frictionless sliding j T = L T

Calculate the updated contact forces,
( R ) ' = ( R ) ' +{A}' if newly sliding impose
frictionless contact. If previously sliding identify the sliding
direction and impose friction directly. If sliding, re-solve until
friction has been directly included.

Temporarily update the nodal geometry (X temp	 = {X} + {u}'

Enter a displacement checking routine for all the sliding nodes, check for induced
gaps or overlaps due to large scale sliding. Calculate a modified direction cosine (i.e.
new sliding direction) to eliminate this gap. If the gap or overlap is greater than a
predcfincd tolerance, then re-solve with an appropriately modified slope and hence
constraint equation.

Scaling routines, ( set Pd = 1.0
i, if new contact, then calculate the minimum scale factor to first contact, fir' . Set

this mode to sticking.
ii, if sliding into a new element, then calculate the scale factor to just enter, p

Re-define the target element.
iii, if releasing, calculate the scale factor such that the nodal force just becomes

tensile, /7 . Remove this contact constraint in the next iteration.

Determine the minimum scale factor of Pd -, /3 Add this
fraction of the last displacements to the previous deforma-
tionshape{X)' = (X}'' +Pmin(U}'

Calculate the remainder of load, i.e.
R j+l = R ' Pmin R
11/? mm = 1.0 , then fully loaded and end.

i=i-4-1

Print out results
and end

Figure 7.1 Direct inclusion of friction algorithm



Read in 'standard' and contact F.E. data

i=l

Generate the standard stiffness matrix

Insert the fail external loads into R

Enter the initial geometric contact checking routine to identify
which nodes are contacting and where.

Form the constraint equations and add them to the relevant
positions of the stiffness matrix ( sticking or frictionless
constraint equations ).

Solve the constrained stiffness matrix for nodal displacements

1K LT1 ful 1 - fRi1
L ojL&f — 101

Calculate the contact forces,if newly sliding impose
frictionless contact. If previously sliding check the frictional
forces ( R ) . If they are not equal to the coulomb relation,
then calculate the new ( R )' = ( R )' + ( R ) . Re-
solve until Coulomb relation is satisfied.

Temporarily update the nodal geometry (X temp	 = X} 
i-I + (u}'

Enter a displacement checking routine for all the sliding nodes, check for induced
gaps or overlaps due to large scale sliding. Calculate a modified direction cosine (i.e.
new sliding direction ) to eliminate this gap. If the gap or overlap is greater than a
predefined tolerance, then re-solve with a modified constraint equation.

Scaling routines, ( set Pd = 1.0
i, if new contact., then calculate the scale factor to first contact, fl
ii, if sliding into a new element, then dWculate the scale factor to just enter, fl
iii, if releasing, calculate the scale factor such that the nodal force just becomes

tensile, j

Determine the minimum scale factor of Pd -. fly, Add this
fraction of the last displacements to the previous deforma-
tion shape ( X }	 = ( X } '' + f? mm ( U }'

Calculate the remainder of load, i.e.
R'	 = RPmjnR'.
If P mn = 1.0 , then fully loaded and end.

11+l

Print out results
and end

Figure 7.2 Post inclusion of friction algorithm



Read in 'standard' and contact F.E. data

i = 1

Generate Lhe standard stiffness matrix

Insert the full external loads into {R

Enter the initial geometric contact checking routine to identify
which nodes are contacting and where.

Form the constraint equations and add them to the relevant
positions of the stiffness matrix ( sticking or sliding constraints).

Solve the constrained stiffness matrix for nodal displacements

1K 1T1 fu	 fR1
1, 1 ojtAI =

If sticking or frictionless sliding I 	 L ).

Temporarily update the nodal geometry (X mp 	 = {X j1 + u}'

Calculate the contactor translation distance to equalize the sum of the normal gaps
above and beneath the target surface. From this define the corrective cont actor
normal gaps to be imposed for sliding nodes in the next iteration. Re-solve until the
corrective normal gap values are beneath a pre determined tolerance value.

Enter a displacement checking routine for all the sliding nodes, check for induced
gaps or overlaps due to large scale sliding. Calculate the new direction cosines (i.e.
sliding direction ) to eliminate this gap. If the gap or overlap is greater than a pre-
defined tolerance, then re-solve with an appropriately modified slope and hence
constraint equation.

Scaling routines, ( set 136 = 1.0
i, if new contact, then calculate the minimum scale factor to first contact, fl . Set

this mode to sticking.
ii, if sliding into a new element, then calculate the scale factor to just enter, fl

Re-define the target element.
iii, if releasing, calculate the scale factor such that the nodal force just becomes

tensile, f?j . Remove this contact constraint in the next iteration.

Determine the minimum scale factor.

Calculate the remainder of load, If
fully loaded then end,

i=i+l

Print out results
and end

Figure 7.3 Post Inclusion of normal gaps algorithm



Figure 7.4 ncrementa1 loading algorithm



Figure 8.la	 Example of contact identification difficulty

I---------------I

Figure 8.lb	 Definition of envelope to overcome contact

identification difficulty
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Figure 8.2	 Procedure for calculation of local coordinates



CtLE.

PEi

F

element number

dof	 1	 2	 3	 4	 5	 6	 7

1	 *

2	 *	 *	 *

3	 *

4	 *	 *

5	 *	 *	 *	 *

6	 *	 *

7	 *	 *

8	 *	 *	 *

9	 *	 *

10	 *	 *

11	 *	 *	 *

12	 *	 *

13	 *

14	 *

15	 *

Figure 9.1 Typical element v d.o.f. table to permit
contact frontal elimination



Figure 10.1	 Hertz contact problem
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Figure 10.2	 Hertz contact finite elenient mesh
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Figure 10.3	 Displacenient plot of the F.E. Hertz contact results
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Figure 10.4 a stress results for the linear

Hertz mesh
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Figure 10.5 o stress results for the

quadratic Hertz mesh
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Figure 10.6
	

Principle shear stress results for the

linear Hertz mesh
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Figure 10.7	 Principle shear stress results for the

quadratic Hertz mesh
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Figure 10.8	 Comparison of maximum contat pressures between

F.E and Hertz results
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Figure 10.9
	

Comparison of contact areas between

F.E. and Hertz results
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Figure 10.10	 Finite element mesh for the Hertz contact

problem with a non-rigid base
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-	 Figure 10.11 a stress results for the deforniable

base 1-Iertz probleni
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Figure 10.12	 Pin in a hole contact problem
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Figure 10.13	 Finite element mesh for the pin in

a hole contact problem
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Figure 10.14	 Comparison of contact pressures for pin in a hole



_% cD(/-")

S

2.

.0

0

-0.2.

-
C 0.2.	 0.4, o.c0	 \.	 7_	 2.

Figure 10.15	 omparisoii of contact areas for pin in a hole
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Figure 10.18
	

Comparison of maxinluin shear stress results by the

one boundary condition loading method with theory
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Figure 10.19 Maximum shear stress results by the

incremental loading method
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Figure 10.20	 Finite element mesh for the sliding

wedge contact problem
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Figure 10.21	 Displacement profiles with varying coefficients

of friction for the wedge problem
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Figure 10.22
	

Normal and tangential contact pressures for the

sliding wedge problem
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Figure 10.23	 Effect of friction oii iterations for convergence



4

It.

LLI

0

z

-j

I-

a

o

0.2.0

Figure 10.24
	

Variation of displacement with slope angle
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Figure 10.25	 Variation of contact pressure with slope angle





12
'2

2

I-
113

I o.o

r.

CEF

Figure 10.27	 Comparison of displacements between the aligned

and mis-aligned meshes
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Figure 10.28	 Simple finite element model for comparison

of different constraint techniques
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Figure 10.29
	

Slope constraint model including

displacement results
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Figure 10.30	 Knee Prosthesis
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Figure 10.32 o contact stresses on the underside

of the meniscal component
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Figure 10.33	 Finite element mesh of the assembled brake





Figure A.1	 Cantilever and beam contact problem



Figure A.2	 Contact of complex surface geometries



Figure B.1	 Recommended minimum division for acurate modelling

of a 900 curved profile
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Figure F.lc	 Displacement results for both of

the above meshes
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Figure F.2	 Sliding contact mesh
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Figure F.3	 Simple overlap mesh
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Figure F.4	 Frictionless 3-D contact model
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Figure F.5	 3-D contact model with non-aligned mesh
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Figure F.6	 Three body contact model
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Figure G.1	 Slope continuity model
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