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Abstract 

PROJECTIONS OF LINKS 
Generalisations of some results on alternating diagrams 

P. R. Cromwell 

In this thesis I investigate which 3-dimensional properties of 
links can be easily observed in, or constructed from, link diagrams. 
Much of the previous work on diagrams of links has concentrated on 
alternating diagrams. This work extends some well-known results on 
alternating links. 

In chapter 1, the standard ideas of the classical theory of links 
are reviewed. Let D be a diagram of a link L, and let F be the 
orientable surface spanning L which is constructed from D by applying 
Seifert's algorithm. 

Chapter 2 introduces a new class of links which I have named 
homogeneous links. This class contains the alternating links as a 
subclass, and also the positive (or standard) links. A link diagram 
is called homogeneous if it can be decomposed as a planar *-product 
of alternating links. A link which possesses such a diagram is called 
homogeneous. (Homogeneous links are also defined in terms of F). 
Properties of the new polynomial invariants are investigated which 
include bounds on the degrees of the variables. Some of these 
properties prove to be effective for deciding membership of this new 
class. A range of examples is given showing which kinds of links this 
class contains and which it excludes. The homogeneities of all but 5 
of the 249 prime knots of orders up to 10 are determined, the 
classification being complete for knots up to order 9. Some of 
K. Murasugi's results on alternating links are shown to hold on this 
larger class. In particular, if D is a homogeneous diagram then the 
surface F is a minimal genus spanning surface for L. Also, if the 
leading coefficient of the Conway polynomial is 1 then L is a fibred 
link with fibre F. 

Chapter 3 is devoted to proving two theorems which imply that 
positive braid diagrams represent split or non-prime links only in the 
obvious ways. W. W. Menasco has proved corresponding theorems for 
alternating diagrams. More explicitly: a projection 1T(L)c[R2 is 
defined to be decomposable if 

(a) there exists a I-sphere S 1c[R2 and two connected components 
U, V such that UUV=[R2, UnV=au=av=sl 

(b) Sl meets 1T(L) in exactly two (non-double) points 
(c) neither Un1T(L) nor Vn1T(L) is a single embedded arc. 

Suppose the diagram associated to 1T(L) is a positive braid. Then 
(1) L is split if and only if 1T(L) is disconnected 
(2) L is non-prime if and only if 1T(L) is decomposable. 

It is shown that (1) holds whenever the projection surface constructed 
from 1T(L) has minimal genus, and it is conjectured that (2) also holds 
under these conditions. 
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FOREWORD 

"Our three-dimensional space is the only true reality we 
know. The two-dimensional is every bit as fictitious as the 
four-dimens ional. ... And yet we stick to the convention 
that a wall or piece of paper is flat, and curiously enough, 
we still go on ... producing illusions of space on just such 
plane surfaces as these. 

[M. C. Escher] 

This thesis is concerned with two-dimensional representations of 

three-dimensional objects. Any two-dimensional simulation of an 

object which of necessity requires three spatial dimensions to contain 

it always lacks the 'essence of three-dimensionality' which is 

intrinsic to the original, however cunning and ingenious the 

simulation may be. 

Since the purpose of a simulation is to simplify a situation in some 

way, a model can never capture all the properties of the original. 

Conversely, an object in the model space may have properties which are 

inconsistent so that the model does not correspond to anything in the 

simulated space. For example, at first glance the sketch on the title 

page seems to represent a situation spatially extended in three 

directions: a knotted framework supporting two chameleon type 

creatures. These creatures add to the illusion by helping to disguise 

the fact that the framework is not realisable in ordinary 

three-dimensional space. ~~~ framewo~k motif is repeated on the first 

page of each chapter as a reminder of the conflict between two and 
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three dimensions, and that two-dimensional representations of 

three-dimensional objects are only simulations. 

In more natural and more useful representations it is often possible 

to reconstruct the represented object. This is the case with the 

representations used here. Three-dimensionality is essential to the 

nature of phenomena like knots and links. This makes them difficult 

to describe, so they are usually represented by two-dimensional 

diagrams. 

A vital connection between a two-dimensional diagram and the 

three-dimensional link which it represents is provided by Seifert's 

algorithm. Starting from a diagram, the algorithm constructs an 

orientab1e surface which spans the represented link. Such surfaces 

are used throughout the thesis and play an important role in the 

theory. 

Much of the work on diagrams of links has concentrated on 

alternating diagrams (those where under and over-crossings alternate 

when following round the diagram). For many purposes these diagrams 

are the easiest ones to consider and are almost canonical 

representations of their object links. This thesis generalises some 

well-known results on alternating links. 

Chapter 2 introduces a new class of links which I have named 

homogeneous links. This class contains the alternating links as a 

subclass, and also the positive (or standard) links. Some properties 
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of the polynomial invariants prove to be effective for deciding 

membership of this class. A range of examples is given showing which 

kinds of links this class contains and which it excludes. The 

homogeneities of all but 5 of the 249 prime knots of orders up to 10 

are given, the classification being complete for knots up to order 9. 

Some of K. Murasugi's results on alternating links are shown to hold 

on this larger class. In particular, the surface constructed from a 

homogeneous diagram by Seifert's algorithm has minimal genus; and 

also, if the leading coefficient of the Conway polynomial is 1 then 

the link is fibred. Most of this chapter is to appear in the 

Proceedings of the London Mathematical Society. 

Chapter 3 is devoted to proving two theorems which imply that 

positive braid diagrams represent split or non-prime links only in the 

obvious ways. W. W. Menasco has proved corresponding theorems for 

al ternating diagrams. These results show an interesting connection 

between two and three-dimensional space: a 2-sphere which partitions 

a link in 3-space in a particular way is simulated by a I-sphere which 

partitions the link diagram in 2-space in an analogous way. Since the 

existence of a 2-sphere partition does not in general imply the 

existence of a I-sphere partition, the fact that it does so in this 

case shows the special nature of the diagrams in question. 

Finally, a few comments on the organisation of the thesis. Headings 

appear frequently and are numbered so that 2.1 denotes the first 

section of chapter 2; 2.1.4 denotes the fourth subsection of 2.1. The 

section number and section heading appear at the foot of each page, 
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and are also listed in the table of contents. There are many 

illustrations and these are numbered consecutively in each chapter so 

that figure 2.5 is the fifth figure in chapter 2. Each chapter is 

selfcontained with any appendices or references forming its final 

sections. In the body of the chapter, references to these papers are 

written in bold type between square brackets. The symbol 0 denotes 

the end of a proof, or, if it appears immediately after a statement, 

that no proof will be given. For other symbols there is a glossary 

which gives their meanings, and for the non-standard ones, a page 

reference is also given where the symbol is explained. There is also 

an index which gives page references to definitions. Many standard 

results and definitions have been included to make the thesis 

selfcontained to some extent, and these are collected together in 

chapter 1. 

Foreword X 



STANDARD IDEAS 

AND DEFINITIONS 



1.1 3-DIMENSIONAL CONCEPTS 

This chapter reproduces some of the standard definitions which are 

the foundations of classical knot theory. Good references which 

contain this material are [B-Z], [Ro]. Further definitions appear 

in later chapters. 

A link of multiplicity p is an embedding of p disjoint (possibly 

oriented) I-spheres into the oriented 3-sphere. If p = 1 then the link 

may also be called a knot. Two links are equivalent if they are 

ambient isotopic in the 3-sphere respecting any orientations. The 

definition of link can be extended to mean an equivalence class of 

embeddings as well as a representative element of that class. A link 

is tame if there is a polygonal (ie. piecewise linear) representative 

in its equivalence class. From here onwards, all links are assumed 

to be tame. A link is trivial if its components can be spanned by 

disjoint non-singular discs. A trivial link is also call an unlink. 

1.1.1 Remark. Under the conditions of the theory of classical links 

(I-dimensional objects in 3-space), the topological, smooth, and 

piecewise linear categories are the same [Mo]. 
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1.1. 2 Split and Product links ( decompos it ion by a sphere). 

A link of multiplicity ~2 is split if its components can be 

separated by a 2-sphere embedded in S3. 

Let S2 be a 2-sphere embedded in S3 which meets a link L 

transversely in precisely two points {p ,q}, and which separates S3 into 

two 3-balls B1, B2 . Choose an arc a c S2 joining p to q. For i=1,2 

let Li = (BinL)Ua. Then L is a product link or connected sum of links 

with factors L1, L2 . This is denoted L = L1#L2 . If the only factors 

of L are itself and the trivial knot then L is a prime link. 

1.1.3 Theorem (Hashizume). Every non-trivial link is a product of 

finitely many prime links, and these factors are unique up to order 

[Ha]. 0 

This theorem was first proved for knots by Schubert [Sc]. 

1.1.4 Satellite links (decomposition by a torus). 

Let V = SlxD2 be an unknotted solid torus and suppose K is a link 
p 

contained in V so that no 3-ball in V contains K. Let W c S3 be a 
p 

solid tubular neighbourhood of a knot K . Let h:V~W be a homeomorphism 
c 

and let K denote the image h(K). Then K is a satellite link with 
s p s 

companion K and pattern (V,K). For example, both factors are 
c p 

companions of a product knot: let W be the swallow-follow torus shown 

in figure 1.1 which follows one factor and swallows the other. 

1.1 3-D concepts 3 



figure 1.1 

If K is ambient isotopic in W to the curve in aw which is generated 
s 

by q preferred meridians and r preferred longitudes of W then K is 
s 

called a (q,r) cable link, and if Kc is trivial it is called a torus 

link. If the pattern is as shown in figure 1.2 then the satellite, 

K , is a double knot, and if h maps the preferred longitude and 
s 

meridian of V to the preferred longitude and meridian of W then K is s 

an untwisted double knot. 

1.1.5 Surfaces spanning links. 

A spanning surface for a link L is an orientable compact 2-manifold 

with boundary L. 

1.1.6 Theorem (Seifert). Every link has a spanning surface [Sel. c 

In the proof of this theorem, Seifert gives a method for 

constructing a spanning surface from a link diagram. This construction 
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figure 1.2 

is known as Seifert's algorithm. It is outlined in the appendix 

(§1.3). 

The genus of a link L is the minimum genus of all surfaces spanning 

L. This is clearly an invariant of L, and it is denoted g(L). Only 

the trivial links have genus zero. The Euler characteristic X(L) of a 

link L is defined as the maximum Euler characteristic over all spanning 

surfaces for L. 

A non-split link whose components bound disjoint spanning surfaces 

is a boundary link. 

1.1.7 Murasugi sum of s~rfaces. 

Let F be a surface in S3 which spans a link L. Let S2 be a 2-sphere 

embedded in S3 which separates S3 into two 3-balls B1, B2 so that 

B
1

UB
2 

= S3, and B
1
nB 2 = aB i = S2. Suppose FnS2 is a disc, D. Let 

Fi = FnB
i 

for i=1,2. Then F = F1 UD F2 · Say that the surface F is a 
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Murasugi sum of the surfaces F
1

, F2 . The example in figure 1.3 shows 

a Murasugi sum of two Hopf bands which form a surface spanning the 

figure-8 knot. This operation was first used by Murasugi to compute 

the genera of alternating knots [Mu]. 

figure 1.3 

1.1. 8 Fibrations. 

Let F be a surface in S3 which spans a link L. Suppose there exists 

a map M:(53_L)~Sl such that for all xe5 1
, there is a neighbourhood 

N(x) so that M"l(N(x)) is homeomorphic to a bicollar on F. Then the link 

complement 53 -L is fibred over S 1 with fibre F, and L is a fibred link. 

1.1 3-D concepts 6 



1. 2 2 -DIMENSIONAL CONCEPTS 

1.2.1 Projections. 

Let L c ~3 C ~3U{~} = S3 be a link in the 3-sphere, and let 

~:~3~~2 be a projection. Assume that L lies entirely on one side of 

~2. The projection ~(L) is regular if every self-intersection point 

is a transverse double point, and there are finitely many such double 

points. All of the projections referred to in this thesis are assumed 

to be regular. (This is consistent with the assumption that the links 

are tame.) The minimum number of double points over all possible 

projections of a link is called the crossing number or order. It is 

a link invariant and is denoted c(L). Only the trivial links have 

order zero. 

A projection ~(L) is irreducible if there is no double point p such 

that ~(L)-p is disconnected. If a projection is not irreducible then 

it does not have the minimum number of double points. 

In a projection of an oriented link, a neighbourhood of each double 

point can be altered as shown in figure 1.4. This operation is called 

smoothing. If smoothing is applied to every double point in the 

projection, it is transformed into a set of disjoint simple closed 

curves. These are called Seifert circles. The minimum number of 

Seifert circles c .-r all possible projections of a link is called the 

Seifert circle index (or braid index, see later) and is denoted s(L). 

1.2 2-D concepts 7 



figure 1.4 

1.2.2 Diagrams. 

A projection of a link may be marked at the double points to 

indicate which arc has pre image nearest to the projection plane. It 

is common practice to break the image of this undercrossing arc, and 

the figures in this thesis follow this convention. A projection 

annotated in this way is called a diagram. A link can be reconstructed 

from a diagram but not from a projection. Diagrams of prime knots up 

to order 10 and prime links up to order 9 can be seen in 

[Ro] (pp391-429). A subset of these is reproduced in appendix D of 

[B-Z]. The notation m refers to the nth prime knot of order m as 
n 

listed in these tables. For example 31 and 41 denote the trefoil and 

figure-8 knot respectively, and 819 is the (3,4) torus knot . 

• 

figure 1.5 
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A diagram is connected if its underlying projection is connected. 

Similarly, a diagram is irreducible if its underlying projection is 

irreducible. 

An operation on a diagram effects a local change in a neighbourhood 

of a few crossings leaving the rest of the diagram unaltered. The 

three operations shown in figure 1.6 are called Reidemeister moves. 

Two diagrams are equivalent if one can be obtained from the other by 

performing a finite sequence of Reidemeister moves. 

type I 

type II 

type III 
/~ 
/ 

figure 1.6 

/ y_/ 
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1.2.3 Theorem (Reidemeister). Two links are equivalent if and only 

if all their diagrams are equivalent [Re]. 0 

A diagram is alternating if when following round each component, 

the crossings are encountered alternately as under and over-crossings. 

A link which possesses an alternating diagram is called an alternating 

link. 

In an oriented diagram each crossing is one of two possible types 

which are shown in figure 1.7. If all of the crossings in an oriented 

diagram are of the same type then the diagram is positive or 

standard. A link which possesses a positive diagram is called a 

positive (or standard) link. 

1.2.4 Remark. Non-alternating and non-positive links do exist (see 

chapter 2). 

x 
figure 1.7 

1. 2 . 5 B raids and tangles. 

Let B be the group with the following presentation 
n 

° 1 I 0.0. = 0.0. for li-J'I~2; n- 1 J J 1 

0ioi+101 = 01+10i01+1 for 1~i~n-2 > 
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This group is called the n-string braid group. It can be interpreted 

geometrically: represent the generators 0. and (0, r1 by the elementary 
1 1 

braids shown in figure 1.8 where each braid contains precisely one 

crossing between the ith and (i+1)st strings. 

\ \ \ X \ \ \ \ 
\ ... I X I I I 

1 2 i Hl n 1 2 i i+l n 

O'i 
0'-1 

i 

figure 1.8 

A braid on n strings (or n-braid) is a word in B. It can be n 

represented by composing the elementary braids writing them below one 

another. For example, figure 1. 9 (a) represents the braid 

0201010202 (01r1 in B3 . A braid is positive if there are no occurrences 

of (0, )-1 for any 1. Following [St], a braid is homogeneous if for each 
1 

i, the exponents of all occurrences of 0, are the same. 
1 

{3 = 0' 0' 0' 0' 0' 0'- 1 
211221 

(a) 

figure 1.9 

(b) 
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A representation of a braid B e B can be closed to form a link 
n 

diagram by joining the top and bottom of the braid. This diagram is 

denoted B. The closure of the braid in figure 1. 9 (a) is shown in 

figure 1.9(b) and is a diagram of the tweeny knot, 52' 

The relations in B correspond to equivalences of diagrams. So 
n 

braid words which are equal in B have closures which are equivalent 
n 

as diagrams. 

1.2.6 Theorem (Alexander). Every link has a diagram which is the 

closure of a braid [AI]. 0 

The minimum number n such that a link L is the closure of a braid 

in B is called the braid index of L. This is the same as the Seifert 
n 

circle index [Ya], and can therefore be denoted s(L). 

An n-tangle is a subset of a diagram DC~2 which is contained in a 

rectangle RC~2 such that two opposite sides of R do not meet D, and 

each of the other two sides meets D transversely in exactly n points. 

All n-braids are examples of n-tangles. Tangles can be composed and 

closed in a manner similar to braids. 

figure 1.10 
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1.3 APPENDIX SEIFERT'S ALGORITHM 

This appendix outlines the proof of theorem 1.1.6 by giving a 

construction known as Seifert's algorithm. It also appears in 

[Ro] (p120), and [B-Z](p17). 

Let L be a link in ~3, and let Dc~2 be a diagram of L. If L is 

unoriented then choose an orientation for each component of L. The 

projection underlying D can be transformed into a set of Seifert 

circles. These simple closed curves in ~2 can be spanned by a set of 

discs. Although the Seifert circles may be nested, the discs can be 

made disjoint by lifting them out of ~2. The parts of D which are not 

parts of these Seifert circles are in neighbourhoods of the crossings. 

A twisted rectangle (or band) may be added at each crossing of D as 

shown in figure 1.11. This forms an orientable surface with boundary 

L. 0 

figure. 1.11 
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An application of this algorithm is indicated in figure 1.12. On 

the left is a diagram of the figure-B knot; in the centre, the discs 

spanning the Seifert circles are shown shaded; on the right the surface 

is completed by adding bands. The resulting surface is also shown in 

figure 1.3. 

figure 1.12 
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2.1 INTRODUCTION 

This chapter introduces the class of homogeneous links. The class 

contains the alternating and positive links as extreme cases. Some 

results which are known to hold on at least one of these subclasses 

are extended to the new larger class. 

In theorem 2.3.1, the technique which Lickorish and Millett use to 

prove the existence of the two variable polynomial P(v,z) is refined 

to show that a resolution can be completely determined by the choice 

of ordered basepoints on a diagram. This result, and a graph 

associated with the surface constructed by Seifert's algorithm, are 

. used to prove the two main theorems in §2. 4 (which are 2.4.4 and 

2.4.10). As their corollaries show, these theorems concern the genus 

of a link and the possible fibration of the link complement. 

In §2.5 various techniques for determining the homogeneity of a link 

are given with many kinds of links being used as examples. The 

homogeneity of each of the prime knots of orders up to 10 is given in 

§2.7. (It is undetermined in only five cases.) The question of whether 

other properties of alternating links can be generalised to 

homogeneous links is raised in §2.6 where the problem of minimal order 

diagrams is examined. The information about link polynomials which 

is quoted in the text of the chapter is collected in §2.8. 
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2. 2 PRELIMINARIES 

Let D be an oriented diagram of a link L. An orientable surface F 

spanning L can be constructed from D using Seifert's algorithm. A 

surface constructed in this way is named a projection surface 

associated to the diagram. 

The spine of this surface is a graph, r. The vertices of r 

correspond to the discs in F which span the Seifert circles of Dj the 

edges of r correspond to the twisted rectangles in F, and hence to the 

crossings in D. Thus, two vertices of r are joined by an edge if and 

only if their associated Seifert discs are connected by a rectangle. 

Since r is a deformation retract of F, H1cr) = H1CF). Let 

rkCr) = r~nk H1cr). 

Each edge in r can be given a sign according to the sense of its 

associated crossing using the convention shown in figure 2.1. 

+1 -1 

figure 2.1 
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A signed graph constructed from a diagram in this manner is named 

a Seifert graph. I shall assume that links are non-split. This 

implies that the Seifert graphs are connected. 

Let r be any connected graph. An edge e in r is an isthmus if r-e 

is disconnected. A vertex v in r is a cut vertex if r -v is 

disconnected. Suppose r contains a cut vertex, v, and let r ... r 
l' 'n 

be the connected components of r-v. Then the n subgraphs 

r
1
uv,'" ,rnuv are obtained from r by cutting r at v. Cutting r at each 

of its cut vertices produces a set of connected components, each one 

being a subgraph of r containing no cut vertices. Such a component 

is called a block. 

A block of a Seifert graph is homogeneous if all its edges have the 

same sign. A Seifert graph is homogeneous if each of its blocks is 

homogeneous. A diagram is homogeneous if its Seifert graph is 

homogeneous. A link is homogeneous if there is some diagram of the 

link which is homogeneous. 

Suppose that a diagram D is a presentation of a link as the closure 

of a braid, B. If B is a homogeneous braid in the sense of [St] then 

D is a homogeneous diagram. (This is the origin of the name.) The 

converse is not true, however. There are homogeneous links which 

cannot be presented as homogeneous braids, just as there are 

alternating links which cannot be presented as alternating braids. 

2.2 Preliminaries 20 



Let H denote the class of homogeneous links; let A denote the class 

of alternative links in the sense of Kauffman [Ka1]; let P denote the 

class of pseudo-alternating links in the sense of Murasugi and Mayland 

[M-M]. Then A £: H £: P. Kauffman conjectures in [Ka1] (p12S) that 

A = P implying that all three classes are identical. 

obvious. The two diagrams in figure 2.2 show 

This is not 

(a) a homogeneous diagram which is not an alternative diagram 

(b) a pseudo-alternating diagram which is not a homogeneous diagram. 

(a) 

(b) 

figure 2.2 
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The Seifert circles of a diagram can be separated into two kinds: 

a circle is of type I if it does not contain any other Seifert circles, 

otherwise it is of type II. Let D c ~2 be a link diagram, and suppose 

that C is one of its type II Seifert circles. Then C separates ~2 into 

two components U, V such that UUV = ~2, UnV = au = av = C. Let 

Dl = DnU and D2 = DnV. If both (U-C)nD ¢ ¢ and (V-C)nD ¢ ¢ then the 

type II circle C decomposes D as a *-product of the two diagrams Dl 

and D
2

• This is written D = Dl * D2 [Mu1]. Let r, r l' r 2 be the Seifert 

graphs of D, Dl , D2 respectively. Then r = r lur 2' and the single vertex 

v = r
l
nr

2 
is a cut certex of r and is associated to the disc spanned 

by C. Thus, type II Seifert circles in D which decompose it as a 

*-product are associated to cut vertices in r. 

A diagram which contains no decomposing type II Seifert circles is 

called a special diagram. A special diagram has at most one type II 

Seifert circle which (if it exists) contains all the other Seifert 

circles. 

Each block of a Seifert graph is associated to a special diagram. 

If the block is homogeneous then all the crossings in the diagram have 

the same sign. A special positive diagram is alternating. These 

observations show the following. 

2.2.1 Theorem. A homogeneous link is a *-product of special 

alternating links. 0 
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2.3 RESOLUTIONS 

Let D+, D_, DO denote three diagrams which are identical except 

within a small neighbourhood where they differ as in figure 2.3. 

D 

figure 2.3 

The two variable link polynomial, P, [F-Y-H-L-M-O], [P-T] can 

be defined using a recursive relation between diagrams differing in 

this way, together with a normalising relation: 

V-I P(D+) - v P(D_) = z P(DO) 

P(unknot) = 1. 

This polynomial depends on a link L and has variables v and z. It is 

variously denoted P(L)(v,z), PL(v,z), peL) according to context. 

A resolution of a diagram, D, is a parsing tree with a diagram 

associated to each node such that 

(1) D is at the root 

(2) there is a trivial link at each terminal node 

(3) each triple (parent, leftchild, rightchild) is of the form 

(D+, D_, DO) or (D_, D+, DO)' 
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Each edge of the parsing tree can be labelled with a monomial in v 

and z as shown in figure 2.4. 

o 

figure 2.4 

Let ~. denote the product of the edge labels for the edges on the 
l. 

(unique) path between a terminal node T. and the root of the parsing 
l. 

tree. Let IT.I denote the number of components in the trivial link 
l. 

associated to T., and let cS = (v-1-v)/z. Then 
l. 

In their proof of the existence of P(v,z), Lickorish and Millett 

[L-M] use based ordered diagrams of oriented links to construct 

ascending diagrams and then induct on the number of crossings. This 

induction introduces ambiguity into the resolution. The following 

theorem refines their technique to show that a complete resolution is 

determined by the choice of basepoints and ordering of components. 

Furthermore, no crossing need be altered more than once. 
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2.3.1 Theorem. It is possible to construct a resolution for a diagram 

so that in a path from a terminal node of the parsing tree to the root 

no crossing is changed more than once. 

Proof. Let L = UL. be a link with p components. Let D be a diagram 
~ 

of L and let Di be subdiagrams of D so that each Di is a diagram of 

Orient the link and choose a basepoint on each D. distinct from any 
~ 

crossing in D. For each i in sequence follow round the diagram in the 

direction of the orientation until a crossing, c, is reached which is 

first encountered as an over-crossing. Let A(D) denote the subset of 

D traversed before reaching c. This is the ascending set. Let 

N(D) = D - A(D) denote the non-ascending set which contains both over 

and under-crossing arcs at c. Let IA(D) I denote the number of 

crossings of D through which A(D) passes, each crossing counted at most 

once; and let IN(D)I denote the number of crossings where neither arc 

is in A(D). Then IA(D)I + IN(D)I = c(D), the number of crossings in 

D. The theorem is proved by induction on IN(D)I. 

If IN(D) I = 0 then c(D) = IA(D) I and the diagram is ascending, 

hence trivial. 

If IN(D)I ~ 0 then N(D) contains a crossing, c, which separates D 

into A(D) and N(D). Let D' be the diagram obtained from D by switching 

the sense of c. The orientation, basepoints and ordering on the 
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components can be taken to be the same as those for D since the 

underlying projections of D and D' are identical. Then A(D') :J A(D) 

and IA(D')I > IA(D)I. Also c(D') = c(D). So 

IN(D')I = c(D')-IA(D')1 < c(D)-IA(D)1 = IN(D)I· 

Let DO be the diagram obtained from D by removing crossing c. The 

orientation of DO is induced from that of D. The number of components 

in DO is one more or one less than in D depending on whether the arcs 

at c are (i) from the same subdiagram or (ii) from different 

subdiagrams. 

To put an ordering on the subdiagrams of DO give the unaltered 

subdiagrams the same index in the ordering and the same basepoints as 

they have in D. For the altered subdiagrams, consider cases (i), (ii) 

separately. 

case (i): Let D be the subdiagram which has been disconnected. One 
r 

connected component will contain the basepoint of D . 
r 

Let this 

component be given rth place in the ordering, and give it the same 

th basepoint as D . Place the other component (~+1) in the ordering and 
r 

place a basepoint on it where c has been removed. 

case (ii): Let D , D be the ·two subdiagrams which have been joined r s 

and suppose r<s. Place this new subdiagram rth in the ordering and give 

it the same basepoint as D. (Note that the ordered set of subdiagrams 
r 

now has no element of index s.) 
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Now A(Do) 2 A(D) and IA(Do)1 ~ IA(D)I. Also c(Do) = c(D)-l. So, 

If g(c) denotes the sign of crossing c then 

The diagram has been partially resolved into two diagrams D' and DO 

with IN(D')I and IN(DO)I less than IN(D)I without changing the sense 

of any crossing in A(D), and such that both A(D') and A(Do) contain 

A(D). This step can be repeated inductively to complete the required 

resolution. 0 

A resolution constructed according to this algorithm is called a 

based diagram resolution. Once the basepoints have been chosen, the 

resolution is completely determined. 

A resolution constructed in this manner may contain some redundant 

operations. Let c be a crossing in a diagram D which is associated 

to an isthmus in the Seifert graph of D. If an ascending diagram is 

constructed from D, switching crossing c does not alter the link type 

of D. When constructing a resolution for D all such operations can 

be ignored. A based diagram resolution reduced in this way is named a 

standard resolution. 
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It is known [vB] that positive braids have positive Conway 

polynomial, that is all the coefficients are non-negative. (An 

introduction to the Conway polynomial which contains the results used 

below is [Ka2]. It is denoted V and is obtained from P by setting 

v = 1. Thus V(z) = P(l,z).) 

2.3.2 Corollary. A positive link has positive Conway polynomial. 

Proof. A positive diagram has a based diagram resolution in which each 

triple (parent, leftchild, rightchild) is of the form (D+, D_, DO)' 

Hence, each stage in the parsing tree has the form 

At every terminal node there will be a trivial knot or a split link 

which have V = +1 or 0 respectively. Therefore, V for a positive link 

is a sum of positively signed monomials in z. 0 

The following corollary does not have much intrinsic interest, but 

is of use later. 

2.3.3 Corollary. If a link L has a diagram in which every cros sing 

except one is positive then VeL) is positive. 

Proof. Suppose D is a diagram of L with subdiagrams D. and let c be 
1. 

the only negative crossing in D. Choose a basepoint for D on the 

undercrossing arc at c so that when following round this component of 

the diagram in the given orientation, the basepoint is reached just 

before c. Choose a basepoint for each of the other subdiagrams 
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distinct from any crossing of D. Put an ordering on the components so 

that the undercrossing arc at c is in the subdiagram of index 1. Then 

the undercrossing arc at c is contained in the ascending set, A(D), 

and c need not be altered. The result now follows as in 2.3.2. 0 
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2.4 PROPERTIES OF HOMOGENEOUS LINKS 

Seifert graphs are a useful tool when considering resolutions. This 

is because smoothing a crossing in a diagram (and hence removing it 

from the diagram) corresponds to deleting its associated edge from the 

Seifert graph. The 'simplicity' of the graph can have some resemblance 

to the 'simplicity' of the link. 

2.4.1 Theorem. Let D be a homogeneous diagram with Seifert graph r. 

Then D represents the trivial knot if and only if r is a tree. 

Proof(~). If r is a tree then the surface spanning the link is a disc; 

hence the link is a trivial knot. 

Proof(~) . Suppose that r is a homogeneous graph of a diagram D 

representing the trivial knot. Choose a basepoint so that D is not an 

ascending diagram with respect to this basepoint. Construct a standard 

resolution of D. The diagrams of the trivial links associated to all 

but the leftmost terminal node will have fewer crossings than D. If 

any of these diagrams has a Seifert graph which is connected and is 

not a tree then repeat this procedure. 

Label the resolution as before, then set v=l. This is equivalent 

to considering the Conway polynomial, V(D), of D [Ka2]. Consider the 

terms of degree rk(r) in z in V(D). These occur only at the terminal 
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nodes where the Seifert graph is a tree since deleting rk(r) edges from 

r leaves either a tree or a disconnected graph. Where the Seifert 

graph has become disconnected the contribution is zero since 

V(split link)=Oj where the Seifert graph is a tree the diagram is of 

the trivial knot, hence V=l. 

Write r as a union of its blocks r = UB., and let E(B.) denote the 
J. J. 

sign of the edges in the (homogeneous) block B .. When r is reduced to 
J. 

a tree, so is each block. So the sign of any term of degree rk(r) in 

. II (B )rk(B.) z J.S E. J. • 
J. 

Hence all terms of degree rk(r) have the same sign 

and do not cancel. Thus, there is a term of degree rk(r) in z in V(D). 

But D is a diagram of the trivial knot so V(D)=lj hence rk(r)=O and r 

is a tree. 0 

The following result is known for alternating links [Au], and for 

positive links [MuS]. 

2 • 4.2 Corollary. A link with a connected homogeneous diagram is 

non-split. 

Proof. If D is a connected homogeneous diagram of a link L with Seifert 

graph r then VeL) contains a term of degree rk(r) in z. Hence, 

VeL) # 0 and L is non-split. (If D is disconnected then clearly L is 

split.) 0 
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2.4.3 Notation. Let maxdeg P denote the highest degree of z in the z 

polynomial P, and mindeg P denote the lowest degree of v in P. Other 
v 

combinations are defined similarly. 

2.4.4 Theorem. Let L be a homogeneous link and let X(L) denote the 

maximal Euler characteristic over all orientable surfaces spanning L. 

Then 

(a) maxdeg peL) = l-x(L) z 

(b) mindeg peL) ~ l-x(L) with equality if and only if L is positive. 
v 

2.4.5 Remark. In [Mol], Morton conjectures for all links L that 

mindeg peL) ~ l-X(L). 
v 

Proof. Let D be a homogeneous diagram of L with Seifert graph r. If F 

'is the projection surface constructed from D then rk(r) = l-X(F). 

Construct a standard resolution of D labelled to give P(L), and 

consider the terms of degree rk(r) in z. The diagram associated to 

each of the terminal nodes has a connected Seifert graph (since 

isthmuses are never deleted when constructing a standard resolution). 

If rk(r) non-isthmus edges are deleted from r then the result is a 

tree. Hence, only terminal nodes where the Seifert graph is a tree 

contribute a term of degree rk(r) in z to peL). 

Let T be such a terminal node and let n be the path in the resolution 

from T to the root. Since the Seifert graph of the diagram associated 

to T is a tree, the diagram represents the trivial knot (theorem 
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2.4.1). Hence, the term contributed to peL) by T is the product of the 

monomials labelling the edges of ~. Let this term be denoted PI . 
~ 

When r is converted into a tree, so is each block B. of r. Let 
1 

E(B.) denote the sign of the edges in block B .. Deleting rk(B.) edges 
1 1 1 

from Bi corresponds to removing rk(B i ) crossings from D. These changes 

correspond to the monomials labelling ~ whose product is the following 

factor of PI: 
~ 

rk(Bi)E(B.) rk(B.) . v 1 . Z 1. 

This factor does not depend on the choice of edge deletion. Each 

block contributes a factor, so PI can be written 
~ 

() IT (B )
rk(B.) rrk(B.)E(Bi) rk(r) mv' E. 1'V 1 'Z • 

1 

The monomial m(v) is derived from the leftchild edge labels in ~ 

which correspond to switching the sense of crossings in D. Thus, m(v) 

is a product of v 2 and v-2
, and hence is positive. 

All terms of degree rk(r) in Z have the same sign and do not cancel. 

Hence, setting v=1 in peL) shows that VeL) has degree rk(r). The 

degree of VeL) ~ 1-X(L) where x(L) runs over all orientable surfaces 

spanning L [Kal], [B-Z]. Hence (a) follows. 

Furthermore, there is at least one term with m(v) = 1 obtained from 

the rightmost terminal node of the resolution. So there is a term in 
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peL) with degree lrk(B.)s(B.) in v. Now lrk(B.)s(B.) ::: rk(r) with 
~ ~ ~ ~ 

equality if and only if all s(B i ) = +1 for all i, that is if and only 

if D is a positive diagram. So (b) follows. 0 

2.4.6 Corollary. Let L be a homogeneous link with 1.1 components, and 

let geL) denote its genus. Then 

geL) = t [maxdeg peL) -1.1+1 ]. z 

The projection surface associated to a homogeneous diagram is a 

spanning surface of minimal genus. 

Proof. Let F be the projection surface associated to a homogeneous 

diagram of L. Then 

2g(F) = 2-(x(F)+1.I) = 1+(1-x(F))-1.I = maxdeg peL) -1.1+1. z 

2.4.7 Corollary. Let T(p,q) denote the (p,q) torus link. Then 

g(T(p,q)) = t [ (p-1)(q-1)-1.I+1 ]. 

o 

Proof. Let a be a positive braid presentation of the (p,q) torus link, 

and let r be the Seifert graph constructed from the closure of a. Then 

rk(r) = (p-1)(q-1). 0 

2.4.8 Remark. Let L be any link. If L possesses a positive diagram 

then maxdeg peL) = mindeg peL). 
z v 

This provides another method of 

deciding whether a link can be presented as a positive braid, and 

completes the classification of prime knots of orders :::10 given in 

[vB]. None of the four undecided cases have positive braid 

presentations. 
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For any link L of multiplicity ~, mindeg P(L) = 1-~ [L-M]. . z 

Suppose that the polynomial P(v,z) is written in the following form: 

r 

P(v,z) = r 
i=1-~ 

i 
a. (v) z 

1 

where ~ is the number of components in the link, each a
i 

(v) is a 

polynomial in v, and r = maxdeg P. Define h(P)(v) to be the polynomial z 

a (v). 
r 

2.4.9 Corollary (Traczyk). It follows from the construction used in 

proving theorem 2.4.4 that, for homogeneous links, the coefficients 

of h(P) are all non-negative or all non-positive. 0 

Recall that V(z) denotes the Conway polynomial. Murasugi has shown 

that an alternating link where the leading coefficient of V is ±1 is 

a *-product of (p,2) torus links [Mul]. 

2.4.10 Theorem. Let L be a homogeneous link. Then the leading 

coefficient of V(L) is ±1 if and only if L is a *-product of (p,2) torus 

links. 

Proof. By theorem 2.2.1, L is a ~'r-product of special alternating 

links, L .. 
1 

polynomial V. 

Let h(V) denote the term of highest degree in the 

It is sufficient to show that each L. has leading 
1 

coefficient of V(Li ) = ±1 if and only if it is a (p,2) torus link since 

h(V(L
1
*L

2
)) = h(V(L

1
))'h(V(L2)) [Mu3]. (Murasugi and Przytycki have 
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used theorem 2.3.1 to generalise this result to P(v,z). Thus 

(proof ~) Claim: if L is a (p,2) torus link then 

;p>o 

;p<o 

Proof of claim: Suppose p>O. The (1,2) torus link is trivial and so 

has V=I. The (2,2) torus link is a Hopf link and has V = z. Now, for 

p>2 

V(p,2) = V(p-2,2) + z V(p-l,2). 

By the inductive hypothesis the two polynomials on the right hand side 

have highest terms zp-3 and zp-l respectively, so h(V(p,2)) = zp-l. 

Similarly for p<O: replace z by -z. 

(proof ~) Let D be a special projection of L. so that r, the Seifert 
l. 

graph of D, is a I-block graph. If L. is a (p,2) torus link then r 
l. 

consists of two vertices joined by p edges. 

Let C be a circuit in r such that ICI, the number of edges in C, 

is maximal. Suppose that D is not a (p,2) torus link'then ICI>2. Since 

r is homogeneous, all the edges in C have the same sign. Assume, 

without loss of generality, that this is +1. 

Choose an edge e in r-c such that rkCr-e) < rkCr). Let c be a 

crossing in D which is associated to e and let DO' D be the diagrams 
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obtained by removing c from D, and by reversing the sense of c in D 

respectively. Then 

Now D is a diagram with all crossings except one positive, so VCD_) 

is a positive polynomial Cby 2.3.3). 

This process can be repeated rkCr)-l times to reduce r to a graph 

r' which spans r and contains C as its only circuit. The isthmuses 

of r' correspond to twists in the diagram which can be undone by 

applying type I Reidemeister moves. Hence, the diagram D' associated 

to r' is equivalent to the (p,2) torus link with oppositely oriented 

strings which has C as its Seifert graph. It can be seen inductively 

that VCD') = lie I z. Now 

V(D) = zrk(r)-l V(D') + positive polynomials in z 

= llelozrk(r) + positive polynomials in z. 

The contribution of V(D') is not cancelled and is a term of highest 

degree. Also lie I # 1 since lel>2. Hence, the leading coefficient 

of VeL) # ±1. 

If DI denotes the diagram obtained from D by switching the sense 

of every crossing then V(DI)(z) = V(D)(-z), so the result holds for 

diagrams in which every crossing has sign -1. 0 

The first two of the following corollaries are generalisations of 

some results in [Mull. 
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2.4.11 Corollary. If L is a homogeneous link and the leading 

coefficient of VeL) is ±1 then L has order at most 2'maxdeg VeL). 

Proof. The link L possesses a homogeneous diagram D with Seifert graph 

r such that each circuit has exactly 2 edges. By theorem 2.4.4, 

rk(r) = maxdeg peL) and the maximum number of edges in r (hence the z 

maximum number of crossings in D) is 2rk(r). 0 

2.4.12 Corollary. Let L be a homogeneous link and let D be a special 

homogeneous diagram of L. Then the leading coefficient of VeL) is ±1 

if and only if L is a connected sum of Cp,2) torus links. 

Proof. Let F be the projection surface associated to D and let r be 

its Seifert graph. 

A diagram can be chessboard shaded with two colours so that two 

regions of the same colour meet only at crossings. A graph can be 

formed from this shading as shown in figure 2.5. If the edges of the 

graph are signed according to the sense of the crossings then the 

diagram and shading can be reconstructed from the graph. The Seifert 

graph obtained from a special diagram is the same as its chessboard 

graph. Hence, for special projections, the diagram can be 

reconstructed from its Seifert graph. 

If D is a connected sum of diagrams then r must contain a cut vertex 

and hence, more than one block. Conversely, if r contains a cut vertex 

then D is a connected sum of diagrams. 
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figure 2.5 

The leading coefficient of Vel) is ±l if and only if each block 

reconstructs a (p,2) torus link. 0 

It is known that the Conway polynomial of a fibred knot has leading 

coefficient ±l [Ra], and that the converse holds for alternating knots 

[Mu3] . The following corollary shows that this result extends to 

homogeneous links. 

2.4.13 Corollary. Let L be a homogeneous link. Then L is fibred if 

and only if the leading coefficient of VeL) is ±l. 

Proof. The leading coefficient of Vel) is ±l if and only if 

L = L * ... * L where each L. is a (p,2) torus link. L is fibred 
1 n l. 

if and only if each Li is fibred [Gal]. The (p,2) torus links are 

fibred [Mu3]. 0 
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2.4.14 Corollary. Let L be a homogeneous link. If L can be presented 

as a braid whose closure is a homogeneous diagram (ie: as a homogeneous 

braid in the sense of [St]) then the leading coefficient of VeL) is 

±1. 0 

It was remarked in §2.2 that there are homogeneous links which do 

not have homogeneous braid presentations. This corollary shows that 

the prime knot 52 is one example since the leading coefficient of 

V(5 2) is 2. 

2.4.15 Corollary. Let L be an alternating link. If L can be presented 

as a braid whose closure is an irreducible alternating diagram, and 

hence as a braid with the minimum number of crossings [Ka3] , [Mu2] , 

[Th], then the leading coefficient of VeL) is ±l. 0 
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2.5 EXAMPLES 

The simplest examples of homogeneous links are those which possess 

a diagram in which all the crossings have the same sign. These are 

the standard or positive links. They include the torus links, Lorenz 

links, and the links associated with complex algebraic singularities 

[Mi]. The alternating links are homogeneous since they are alternative 

[Ka1] and all alternative links are homogeneous. The knot 9
43 

is a 

homogeneous knot with the least number of crossings which is both 

non-alternating and non-positive. 

The homogeneity of a link is orientation dependent. For example, 

of the two links shown in figure 2.6, (a) is homogeneous since the 

diagram is positive, but (b) is non-homogeneous (this is a corollary 

of theorem 2.5.7 - see also appendix II, §2.8). 

(a) (b) 
figure 2.6 
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The rest of this section shows various techniques for determining 

the homogeneity of links. Examples are taken from the arborescent, 

double, boundary and pretzel links. The homogeneity of the prime knots 

of orders ~lO are given in appendix I, §2.7. 

2.5.1 Arborescent links. 

Let T be a tree whose vertices are weighted with elements of Z. 

Choose a root vertex, vET of weight A and let v
1

' ... v denote the , n 

vertices adjacent to v in cyclic order. Associate to v the 2-tangle 

of figure 2.7 where A is the signed number of half-twists (shown for 

positive X), and each vi represents a 2-tangle of similar form. 

figure 2.7 

This can be repeated recursively associating a 2-tangle to each 

vertex, with the leaves of the tree contributing twists only. The 

closure of the resulting 2-tangle is an arborescent link. This 

construction is best illustrated with an example: see figure 2.8(a) 

and (b) (see also [Ga2]). 
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(a) 

2 -2b 

-4a 

3 -3 -3b -3a 

(b) (c) 

figure 2.8 

When the link is oriented the vertex labels of T can be replaced 

by labels in Z{a,b}, figure 2.8(c). Suppose a vertex VET is weighted 

with AEZ. The new label depends on sense of the half-twists, and on 

the the orientations of the strings in the 2-tangle as shown in figure 

2.9. 
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-1').la l').la l').lb -1').lb 

figure 2.9 

Let r denote the Seifert graph of the oriented arborescent link 

diagram which is associated with a vertex-labelled tree, T. Two 

adjacent vertices of T cannot both be labelled a, otherwise an 

inconsistency in the orientation arises. Also, the 2-tangles 

associated to two adjacent vertices of T give rise to different blocks 

of r if and only if both of the vertices are labelled b. Therefore, 

to ensure that an arborescent link constructed from a tree T is 

homogeneous, it is sufficient that, for all pairs of adjacent vertices 

in T with labels Aa, ~b; A,~eZ, the coefficients A, ~ have the same 

sign. 

2 .5.2 Double knots and boundary links. 

If L is a homogeneous link then the coefficients of h(PL)(v) have 

h(PL) (1);=0 and constant sign (by corollary 2.4.9), hence 
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If K is a homogeneous knot such that PK=l then K has a rank zero 

Seifert graph, and (by theorem 2.4.1) K is the trivial knot. Thus~ 

non-trivial knots which have V=l such as all the Kinoshita-Terasaka 

knots [K-T] are non-homogeneous. 

2.5.3 Theorem. An untwisted double knot with non-trivial companion 

is non-homogeneous. 

Proof. Such a knot has V=l [Mo2] , and all satellite links are 

non-trivial [B-Z](p37). 0 

2.5.4 Theorem. A double knot with non-trivial non-cable companion 

is non-homogeneous. 

Proof. Let K be a double knot with non-trivial non-cable companion. 

A minimal genus surface F spanning K is obtained by plumbing a Hopf 

band to a knotted annulus. The surface F is knotted (that is IT 1 (S3_F) 

is not free). By [Wh], K possesses a unique isotopy type of minimal 

genus spanning surface. A projection surface is unknotted. Hence, F 

is not isotopic to a projection surface. The projection surface 

associated to a homogeneous diagram has' minimal genus. So, the 

existence of a homogeneous diagram of K would contradict the uniqueness 

of F. 0 
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2.5.5 Theorem. A (non-split) boundary link is non-homogeneous. 

Proof. Let L be a boundary link. Then Vel) = 0, so hePL) contains both 

positive and negative terms. Hence, L is non-homogeneous. 0 

2.5.6 Classification of prime knots up to order 9. 

Let D be a homogeneous diagram of a link L. Construct a based 

diagram resolution of D, and consider the rightmost terminal node. Let 

r denote the total number of crossings which have been removed, and 

let n denote the number of these that have negative signs. Then 

r = maxdeg pel), and the term contributed by the rightmost terminal 
z 

node is 

Let s=r-2n. Then the expression becomes 

(_l)l(r-s) Vs zr. 

Since D is homogeneous, this term is not cancelled. This observation 

proves the following. 

2.5.7 Theorem. A link L is non-homogeneous if pel) has no terms of 

the form 

for Ae~, r = maxdeg pel), s~r. z 

o 
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. 

2.5. 8 Corollary. The prime knots 820' 821 , 942 , 944 , 945 , 946 are 

non-homogeneous. 

Proof. These knots do not have polynomials of the above form (see 

appendix II). 0 

This trick does not work for the prime knot 948 , However, 

maxdeg V(9
48

) = 4 (see appendix II). So if 948 were homogeneous then 

(by corollary 2.4.11) it would have order at most 8 - a contradiction. 

2.5.9 Classification. The non-homogeneous prime knots of order at most 

9 are 820' 8
21

, 942 , 944 , 945 , 946 , 948 , For all of the other knots 

the diagrams in appendix D of [B-Z] are homogeneous. 0 

These techniques can be applied to the prime knots of order 10 and 

are sufficient to determine the homogeneity in all but eleven cases . 

Of these, 1°129 , 1°130 , 1°135 , 1°146 , 1°147 , 10164 are shown to be 

non-homogeneous by the following theorem of Murasugi [Mu4](p170). 
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2.5.10 Theorem (Murasugi). Let D, D1 , "', Dn be diagrams of links 

L, L
1

, "', Ln where D = Dl * ... ,'r Dn and each D i is a standard 

(positive or negative) diagram. Let f(L) = breadth VL(t) -~(L)+1 

where V denotes the Jones polynomial [Jo] and ~ the number of 

components. Then 

f (L) ~ r f (L .) . 
1. 

o 

. As an example, consider the knot 1°129' It can be decomposed as a 

*-product of a trefoil and a trivial knot (see figure 2.10). Now 

f(unknot) = 0-1+1 = ° 

f(trefoil) = 3-1+1 = 3 

= 8-1+1 = 8. 

So this decomposition of 10129 fails to satisfy theorem 2.5.10 and 

hence 10129 is not homogeneous. 

10 129 
unknot trefoil 

figure 2.10 
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2.5.11 Remark. The homogeneity of a link cannot be determined from 

P(v,z) alone since 8
8 

and 10129 have the same polynomial, and the 

former is homogeneous where-as the latter is not. 

2 .5 .12 Pretzel knots. 

Let (a
1

, ... , an) denote the pretzel knot comprised of 2-tangles 

each having a
i 

signed half-twists where the a i are odd (see figure 

2.11) . 

figure 2.11 

Clearly, if all a. have the same sign then the knot is homogeneous. 
1 ' 

For non-standard pretzel knots we have the following. 

2.5.13 Theorem. Let (-p,q, r) be a pretzel knot with q, r ~ p ~ 3. Then 

(-p,q,r) is non-homogeneous. 
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The proof of this theorem consists of calculating P(v,z) for the 

pretzel knots in question, and applying corollary 2.4.9. This is done 

in several steps. 

Step 1. 

2 P(p,l) = v P(p-2,1) + vz 

P(-p,l) 

Hp-l) 

= vz r 
i=O 

Hp-l) 

= vz r 
i=O 

2i 
v 

2i 
v 

-2 P(-(p-2),1) = v 

Hp-3) 
-1 r -2i 

= -v z v 
i=O 

Hp-3) 
-1 r -2i 

= -v z v 
i=O 

P+1 + v P(-l,l) 

p+l ~ + v u. 

-1 - v z 

+ v -(p-l) 

+ v -(p-1) 

P(-l,l) 

6. 

o 

Remark. Notice that (p,l) is a (p+1,2)-torus link with the components 

having opposite orientations. 
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Step 2. 

PC-p,l,p) = v2 PC-p,1,p-2) + vz PC-p,l) 

Hp-l) 

= vz r v2j 

j=O 
PC -p, 1) 

pH + v PC-p,l,-l). 

Now C-p,l,-l) is the trivial knot so hCP) comprises the terms 

and 

h(P) 

Hp-l) 

= ( - r 
j=O 

= 
Hp-l) 

r 

v J • 2' ) 

2i v A. 
1 

i=-Hp-3) 

Hp-3) 

( r v-2i 

i=O 

where the coefficients Ai = l(p - 12i-ll). 0 

) 

2 in z , 

Remarks. Note that v -l'hCP) is a symmetric polynomial. For any odd 

q,reZ the knot (q,l,r) is homogeneous, see figure 2.12. Hence, 

C-p,l,p) is homogeneous. 

figure 2.12 
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Step 3. 

P(-p,p,p) = v2 P(-p,p,p-2) + vz P(-p,p) 

Hp-3) 

= vz r 
i=O 

2i v 6 p-1 + ~ P(-p,p,l). 

The only terms in z2 which are contributed to h(P) come from P(-p,p,l). 

So, 

h(P) = 

= 

f(p-1) 
p-1 t' 

-v .. 
2i v A. 

l. 

i=-f(p-3) 

(p-1) 

r 
i=l 

2i v A. 
l. 

where the coefficients A. = t(p - 12i-pl). D 
1. 

Remarks. v -P. h(P) is a symmetric polynomial. 

negative and there are no terms of lower degree in v in h(P). Therefore 

(by theorem 2.5.7), (-p,p,p) is non-homogeneous. 

Step 4. 

P(-p,p,r) = v2 P(-p,p,r-2) + vz P(-p,p) 

f(r-p) -1 

= vz r v
2i 

6 
i=O 

r-p + v P(-p,p,p). 

The only terms in z2 which are contributed to h(P) come from P(_p,p,p). 

So, 
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p-1 

h(P) 
r-p l 2i A. = -v V 

]. 

i=1 

where the coefficients A. = t(p - 12i-rl). 0 
]. 

Remarks. -r v 'h(P) is a symmetric polynomial. Since there are no 

terms of degree 2 or less in h(P), (-p,p,r) is non-homogeneous. 

Proof (of theorem 2.5.13). 

P(-p,q,r) = v2 P(-p,q-2,r) + vz P(-p,r) 

i(q-p)-1 

= vz l 
i=O 

2i 
v P(-p,r) + vq-p P(-p,p,r) . 

Now P(-p,r) = P(r-p-1,1). 

i(q-p)-1 

= v
2 

( r v
2i 

i=O 
Let A(v) 

and B(v) 
q-p r-p 

= v v 

p-l 

l 
i=1 

iCr-p)-1 

) . ( . r v
2j 

) 
J=O 

2i 
v A. 

]. 

Then h(P)(~) = A(v) - B(v), and v-a'A(v) and v-e'B(v) are both 

symmetric polynomials in v with positive coefficients; a = t(q+r-2p), 

e = r+q+p. The degree bounds of these polynomials are 

mindeg A(v) = 2 

maxdeg A(v) = (q-p)-2 + (r-p)-2 + 2 = q+r-2p-2 

mindeg B(v) = (q-p) + (r-p) + 2 = q+r-2p+2 

maxdeg B(v) = (q-p) + (r-p) + 2p - 2 = q+r-2 
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There is no term in h(P) of degree q+r-2p. All terms of a lower 

degree have positive sign, and all terms of higher degree have negative 

sign. Since h(P) contains terms of both signs, (-p,q,r) is 

non-homogeneous. 0 

2.5.14 Remark. The knot (-3,5,5) is the knot with the least number 

of crossings known such that h(P) contains both positive and negative 

terms (see appendix II). 
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2.6 COMMENTS AND QUESTIONS 

Many of the ideas in this chapter arose from trying to unify the 

known results about the genus of positive and alternating links, then 

trying to generalise other results about alternating links. To avoid 

giving the impression that all theorems generalise I conclude with some 

results on crossing number. 

It is known [Ka3] , [Mu2] , [Th] that any two connected irreducible 

alternating diagrams of a link have the same crossing number, and that 

this is minimal over all diagrams of the link. This statement is no 

longer true if it is generalised to homogeneous diagrams. A link can 

possess homogeneous diagrams of different crossing numbers, which may 

even construct non-isotopic projection surfaces. The diagrams of 74 

in figure 2.13 are an example [Ko], 

(a) (b) 

figure 2.13 

2.6 Comments and Questions 55 



However, if D is an irreducible homogeneous diagram then the 

Reidemeister moves which reduce the number of crossings cannot be 

performed on D. 

Proof. It is not possible to perform a type I Reidemeister move since 

D is irreducible. If a type II move is possible then D contains one 

of the patterns in figure 2.14. In case (a) D is not homogeneous, and 

in case (b) either D is not homogeneous or a type I move is possible 

- a contradiction in both cases. 0 

(a) (b) 

figure 2.14 

Murasugi also remarks that a non-alternating projection of a prime 

alternating link cannot have minimal crossing number. To generalise 

this poses two questions. 

Question 1. Is there a homogeneous link with a non-homogeneous diagram 

of minimal crossing number? 

Question 2. Does every homogeneous link possess a homogeneous diagram 

of minimal crossing number? 
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2.7 APPENDIX I 

819 h 1°131 nh 1°149 nh 

820 nh 1°132 nh 1°150 nh 

821 nh 1°133 nh 1°151 7 

942 nh 1°134 h 1°152 h 

943 h 1°135 nh 1°153 nh 

944 nh 1°136 nh 1°154 h 

945 nh 1°137 nh 1°155 nh 

946 
nh 1°138 h 1°156 h 

947 h 1°139 h 1°157 nh 

948 nh 1°140 nh 1°158 7. 

949 h 1°141 nh 1°159 nh 

1°124 h 1°142 h 1°160 7 

1°125 nh 1°143 nh 
lO161}h 

1°126 nh 1°144 7 
1°162 

1°127 nh 1°145 nh 1°163 nh 

1°128 h 1°146 nh 1°164 nh 

1°129 nh 1°147 nh 1°165 nh 

1°130 nh 1°148 nh 1°166 7 

The table gives the homogeneity of the non-alternating prime knots of 

orders ~10 using the notation h : homogeneous; nh : non-homogeneous; 

7 : undetermined. All alternating links are homogeneous. The knots 

10161 and 10162 are equivalent (they are the famous Perko pair). 
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2.8 APPENDIX II 

The polynomials of links referred to in chapter 2 are given below. 

the knot 52: 

the knot 820 : 

the knot 821 : 

the knot 942 : 

the knot 944 : 

V(z) = 1 + 2Z2 

P(v,z) = ( -1 + 4v2 2V4 

+ Z2 ( -1 + 4v2 - v4 

+ Z4 ( v2 

P(v,z) = 

P(v,z) = 
+ Z2 ( v·2 - 4 + v2 ) 

+ Z4 ( - 1 ) 

P(v,z) = 

) 

) 

) 

) 

) 
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the knot 9
45

: 

the knot 946 : 

the knot 948 : 

the pretzel knot (-3,5,5): 

the link in figure 2.6(b): 

P(v,z) = 

+ Z2 ( 2V2 - 2v4 + 2v6 ) 

+ Z4 (v4 ) 

P(v,z) = 

) 

P(v,z) = ( 

+ Z2 ( 1 - v2 + 3v4 ) 

+ Z4 ( _ v2 ) 

V(z) = 1 + 3z2 - Z4 

P(v,z) = 

P(v,z) = Z-l ( -v-1 + 3v 2v 3 ) 

+ z (-v-1 + 4v - v 3 ) 

v ) 

) 

2.8 Appendix II 59 



2.9 REFERENCES 

[Au] R. J. Aumann, Asphericity of alternating knots, Ann of Math (2) 

64 (1956) pp374-392 

[B-Z] G. Burde and H. Zieschang, Knots, de Gruyter (1985) 

[vB] J. van Buskirk, Positive knots have positive Conway polynomial, 

Springer lecture notes 1144 (1983) pp146-159 

[Gal] D. Gabai, l1urasugi sum is a natural geometric operation I, Amer 

Math Soc Contemporary Math 20 (1983) pp131-143 

[Ga2] ---- , Genera of arborescent links, Memoirs of Amer Math Soc 

339 (1986) 

[F-Y-H-L-M-O] P. Freyd, D. Yetter, J. Haste, W. B. R. Lickorish, 

K. C. Millett and A. Ocneanu, A new polynomial invariant of 

knots and links, Bull Amer Math Soc 12 (1985) pp239-246 

[Jo] V. F. R. Jones, A polynomial invariant for knots via von 

Neumann algebras, Bull Amer Math Soc 89 (1985) pp 103-111 

2.9 References 60 



[Ka1] L. H. Kauffman, Formal knot theory, Lecture notes 30 (1983) 

Princeton Uni Press 

[Ka2] 

[Ka3] 

The Conway polynomial, Topology 20 (1981) 

pp101-108 

_______ , State models and the Jones polynomial, Topology 

26 (1987) pp395-407 

[K-T] S. Kinoshita and H. Terasaka, On unions of knots, Osaka Math J 

9 (1957) pp131-153 

[Ko] T. Kobayashi, Uniqueness of minimal genus Seifert surfaces for 

links, preprint (1988) Osaka, Japan 

[L-M] W. B. R. Lickorish and K. C. Millett, A polynomial invariant 

for oriented links, Topology 26 (1987) pp107-141 

[M-M] E. J. Mayland and K. Murasugi, On a structural property of the 

groups of alternating links, Can J Math 28 (1976) pp568-588 

[Mi] J. Milnor, Singular points of complex hypersurfaces, Annals of 

Math studies 61 (1968) 

2.9 References 61 



[Mol] H. R. Morton, Seifert circles and knot polynomials, Math Proc 

Camb Phil Soc 99 (1986) pp107-109 

[Mo2] ___________ , M.Sc. course lecture notes, Liverpool (1986) 

[Mul] K. Murasugi, On alternating knots, Osaka Math J 12 (1960) 

pp277-303 

[Mu2] Jones polynomials and classical conjectures in 

knot theory, Topology 26 (1987) pp187-194 

[Mu3] , On a certain subgroup of the group of an 

alternating link, Amer J Math 85 (1963) pp544-550 

[Mu4] -------- , Jones polynomials of alternating links, Trans Amer 

Math Soc 295 (1986) pp147-174 

[Mu5] --------- , On the genus of the alternating knot I, II, J Math 

Soc Japan 10 (1958) pp94-105, pp235-248 

[M-P] K. Murasugi and J. H. Przytycki, Skein polynomial of planar 

*-product of two links, preprint (1988) Toronto, Canada and 

Warsaw, Poland 

[P-T] J. H. Przytycki and P. Traczyk, Invariants of links of Conway 

type, Kobe J Math 4 (1987) pp115-139 

2.9 References 62 



[Ra] E. S. Rapaport, On the commutator subgroup of a knot J Annals 

of Math (2) 71 (1960) pp157-162 

[St] J. R. Stallings, Constructions of fibred knots and linksJ Proc 

Symp Pure Math 32 (1978) pp55-60 

[Th] M. B. Thist1ethwaite, A spanning tree expansion of the Jones 

polynomial J Topology 26 (1987) pp297-309 

[Wh] W. C. Whitten, Isotopy types of knot spanning surfacesJ 

Topology 12 (1973) pp373-380 

2.9 References 63 



PROJECTIONS 

OF SPLIT AND 

NON-PRIME LINKS 

• 



3.1 INTRODUCTION 

Let L c ~3 C ~3U{~} = S3 be an oriented link in the 3-sphere. Let 

S2 be a 2-sphere embedded in S3 which meets L transversely and which 

separates S3 into two 3-balls B1 , B2 such that B
1

UB
2 

= S3, 

B1nB 2 = aB i = S2, and BinL ¢~; for i=1,2. If S2nL = ~ then L is a 

split link. Suppose S2 meets L in exactly two points: 

Choose an arc a c S2 joining p to q, and let Li= (BinL)Ua; for i=1,2. 

Then L is a product with factors L1, L2 · The factorisation is trivial 

if at least one factor is a trivial knot. If every factorisation of 

L is trivial then L is a prime link. 

Let TI:~3-4~2 be a projection such that TI(L) is regular, that is the 

self-intersection set is a finite number of transverse double points. 

Menasco has shown that alternating diagrams represent split or 

non-prime links only in the obvious ways [Me]. This chapter extends 

these results to other classes of diagrams. 

3.1.1 Theorem. Suppose that Seifert's algorithm constructs a minimal 

genus spanning surface for L when applied to the diagram associated 

with TI(L). Then 

L is a split link if and only if TI(L) is disconnected. 0 
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The projection TI(L) is irreducible if there is no double point p 

such that TI(L)-p is disconnected. Suppose the I-sphere Sl meets TI(L) 

transversely in exactly two (non-double) points. Let U, V be the two 

connected components of IR 2 such that uuv = IR 2, UnV = au = av = S 1. 

If neither UnTI(L) nor VnTI(L) is a single embedded arc, then TI(L) is 

decomposable. 

Let B denote the n-string braid group. A braid a E B which can 
n n 

be written 

a l (0'1"" 'O'r-l) a2 (O'r"" 'O'n_l) 

in terms of the standard generators is called a decomposable braid (or, 

confusingly, a split braid in [Bi], [Mo]). Clearly, the closures 

~l' ~2 of alE Br and a2
E Bn-r are factors of ~, and the standard 

projection of ~ is decomposable. 

Birman conjectured that a braid a E Bn with non-prime closure is 

conjugate in B to a decomposable braid [Bi](p99). In [Mo] , Morton 
n 

exhibits a counterexample in B5 , showing that the conjecture is false 

in general. However, the following theorem shows that the conjecture 

is true for the positive braids. 

3.1.2 Theorem. Let a be a positive braid such that ~ is an 

irreducible projection of a non-split link L. Then 

L is a non-prime link if and only if ~ is decomposable. 0 

The following corollary solves a problem raised by Williams in 

[Wi1](number 18.1 in the appendix of problems). 
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3.1.3 Corollary. Positive braids with a full twist are prime. 0 

The Lorenz links are of this type. Hence, the following result 

(which is already known [Wi2] , [B-W]). 

3.1. 4 Corollary. Lorenz links are prime. 0 

The positive braids belong to the class of diagrams from which 

Seifert's algorithm constructs a minimal genus spanning surface. So 

do the alternating diagrams. This observation motivates the following 

conjecture. 

3.1. 5 Conjecture. Let '!T(L) be an irreducible projection of a non-split 

link L. Suppose that Seifert's algorithm constructs a minimal genus 

spanning surface for L when applied to the diagram associated with 

'!T(L). Then 

L is a non-prime link if and only if '!T(L) is decomposable. 0 

This conjecture includes Menasco's result and theorem 3.1.2 above 

as special cases. The homogeneous diagrams also satisfy the conditions 

of the conjecture (see 2.4.6). 

With this conjecture in mind the definitions and lemmas of the first 

few sections are stated in a general context in the hope that the 

technique used here may be extended to other cases. 
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3.1. 6 The intuitive idea behind the proof. 

Since the proof of theorem 3.1.2 is fairly long, a few words on its 

general progession will be given. 

§3.2 This section contains preliminary definitions and lemmas: Let D 

be a diagram of a link L, and let F be an orientable surface 

spanning L which is constructed from D by applying Seifert's 

algorithm. Suppose S2 is a 2-sphere which meets F transversely 

and factorises aF = L as L1 #L2. The sphere S2 can be isotoped 

so that S2nF is a single arc, a, properly embedded in F. (Also, 

theorem 3.1.1 is proved in this section.) 

§3.3 An unusual pre~entation of IT 1 (S3_F) = G is derived. The group is 

actually free, but the added complication of the relations is 

offset by the increase in clarity in the sequel. 

§3.4 The surface F is replaced by one which is isotopic to it, and 

which can be separated in a natural way into pieces of similar 

shape. By listing the type of intersection that a makes with each 

of these pieces, the embedding of a in F can be completely 

described. Such a description is called the film of a. 

Let X be the loop (a+ua_) in S3-F. The presentation of G 

enables a word, wEG, represented by X to be read off directly from 

the film. 

§3.5 The connection between the embedding of a in F and the word w in 

G is made stronger with the statement of a fundamental lemma: 
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there is a unique shortest film for each homotopy class of 

embeddings. 

The above sections apply when D is any diagram satisfying the 

conditions of the conjecture. In the remaining sections attention is 

restricted to the case when D is a positive braid diagram. 

§3.6 Since A is contractible in S3-F, the word w collapses to 1 in G. 

The restrictions which this places on the film and on ware 

investigated in a series of lemmas. 

§3.7 In this concluding section, the above ideas are brought together 

and are used determine the possible films of a. In some cases 

the fibration of the link complement is also needed. The 

restrictions on the way that a can be embedded in F show that the 

diagram is decomposable. 
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3.2 PRELIMINARIES 

A height function h:~3~~ can be defined by projection onto the line 

normal to ~2. If ~2 is translated along this normal then ~(L) is 

unchanged, so assume that h(L) > 0, that is assume hex) > 0 for all 

XEL. The projection ~(L) can be converted to a diagram by altering a 

neighbourhood of each double point in the projection so that the arc 

with lowest pre image is broken. The crossings in an oriented diagram 

are of two types indicated in figure 3.1. Unfortunately, the 

conventions chosen by many previous authors ([Bi] for example) lead 

to the situation where every crossing in a positive braid is of 

negative type. In this chapter, however, a generator ~i of a braid 

group refers to an elementary braid in which the crossing is positive. 

With this definition (opposite to the usual one given in 1.2.5) a 

positive braid has positive crossings. This convention is becoming 

more common. 

positive negative 

figure 3.1 

Take a set of Seifert discs {~i} in ~3 such that ~(a~i) is one of 

the Seifert circles of ~(L) for each i, and so that h is constant on 
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each disc h(~.) = k. > 0, with k. > k. whenever ~(~.) c ~(~.). 
~ 1 ~ J ~ J 

Complete the construction of a surface F by adding a set of bands 

jOining the discs where each band is a rectangle twisted so that aF 

is equivalent to L, and ~(aF) = ~(L). Call F the projection surface 

constructed from ~(L). 

3.2.1 Remark. This notion of projection surface is stronger than the 

one used in chapter 2. It requires that the discs spanning nested 

Seifert circles are arranged so that all the discs are partially 

visible from above. 

3.2.2 Lemma. Let F be a surface of minimal genus spanning a link L 

in S3. If F is connected then L is non-split. 

Proof: Suppose (for a contradiction) that L is split. Let 52 be a 

2-sphere which separates the components of aF and which meets F 

transversely so that 52nF consists of disjoint simple loops. Isotop 

52 so that the number of such loops is minimal. S2 separates S3 into 

two 3-balls B
1

, B2 such that BinaF ¢ ~; i=1,2. If 52nF is empty then, 

since F is connected, F c Bl or F c B2 contradicting that 52 separates 

aF. 

Let ). be a loop in S2nF which bounds a disc ~ c 52 such that 

~nF = a~. If). is compressible in F then S2 can be isotoped to remove 

). from S2nF contradicting that the number of intersections is minimal. 

If ). is incompressible in F then let b:~x[-1,1]~S3 be a bicollar of 

~ in S3 such that b(a~x[-l,l]) c F and b(~xO) =~. Now 
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(F - b(~x[-l,l])) u b(~x{-l,l}) 

is a surface spanning L with genus less than F: a contradiction. 0 

3.2.3 Proof of theorem 3.1.1. Let L be a link in S3 and let F be the 

projection surface for L constructed from n(L) so that aF is equivalent 

to L. If n(L) is connected then F is connected. By hypothesis, F is 

a minimal genus spanning surface, hence, L is non-split. 

Clearly, if n(L) is disconnected then L is split. 0 

(3.2.4) Suppose L is a link in S3 and let F be a minimal genus surface 

spanning L. Let S2 be a 2-sphere which factorises aF non-trivially 

and which meets F transversely. The set S2nF consists of disjoint 

simple loops together with a single simple arc properly embedded in 

F. Let cx denote the arc component of S2nF. Any loop component of 

S2nF bounds two discs in S2 only one of which contains cx. Since F has 

minimal genus, the innermost loop argument of lemma 3.2.2 can still 

be applied. Therefore, S2 can be isotoped in S3 so that S2nF is a 

single arc. 

3.2.5 Lemma. Let F be the projection surface constructed from neL) 

and let S2 be a 2-sphere which factorises aF. Suppose that S2nF is a 

single arc which is contained in a Seifert disc ~ C F. Then n(L) is 

decomposable. 

Proof. Let S2nF = cx, and let F 1 and F2 denote the two connected 

components of F-cx. Since cx c ~, ~ is the only Seifert disc which meets 
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both Fl and F2 . All the other discs and all the bands lie entirely in 

either F1 or F2 . It now follows from the construction of F that 

~(aF1-a) n ~(aF2-a) = ~. 

Hence, there is an S1 c ~2xO which separates ~(aF1-a) from ~(aF2-a), 

and which meets ~(L) in exactly two points, namely ~(aa). 0 

3.2.6 Definitions. Suppose F is an orientable surface spanning an 

oriented link. Let b:Fx[-1,1]-+S3 be a bicollar on F with b(FxO) = F. 

For any subset X £ F let X+ denote b(Xxl) and X_ denote b(Xx-l). Let 

!::. be a Seifert disc of F. Choose b so that the orientation on at::. 

(induced from aF) is as shown in figure 3.2. This notation will 

usually be applied to the whole surface F or to an arc a properly 

embedded in F, thus giving F± and a±. 

figure 3.2 

Suppose a is an arc properly embedded in F. There is a disc R 
a 

embedded in S3 with 

(1) R nF = a 
a 

(2) b(ax[l,-l]) c Ra 

(3) (a Ua ) c a(R ) c S3-F. , 
+ - a 

Call R the region around a, and call Aa 
ex 

= a(R ) the loop around a. a 
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figure 3.3 

3.2. 7 Lemma. Suppos e a is an arc proper ly embedded in F. Then a lies 

in a 2-sphere which factorises aF if and only if the loop around a is 

contractible in S3-F. 

Proof (~). Suppose that S2 is a 2-sphere which factorises aF and that 

a c S2. Isotop S2 in S3 so that R c S2. The loop around a, A , bounds 
a a 

the disc (S2-R ) in S3. Hence, it is contractible. 
a 

. Proof (¢:). Let N(F) be a regular neighbourhood of F in S3 so that 

Ra is properly embedded in N(F). The loop around a, Aa' is contractible 

in S3-N(F). If A is not essential in a(S3-N(F)) then it bounds a disc 
a 

A in a(S3-N(F)). The 2-sphere AURa bounds a ball in N(F), and 

factorises aF trivially. If Aa is essential in a(S3-N(F)) then, by 

Dehn's lemma, A bounds a disc A properly embedded in S3-N(F), and the 
a 

2-sphere AUR factorises aF non-trivially. 0 
a 
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3.3 A PRESENTATION FOR lll(S3_F) 

Suppose that the projection ~(L) can be written as a *-product of 

n links L ... L 
l' 'n 

~(L) = ~(Ll) * .... * ~(Ln)' 

Let F be the projection surface constructed from ~(L), and let Fi C F 

be the subsurface which is also the projection surface constructed from 

~(Li); l~i~n, so that 3(Fi ) is equivalent to Li . Then F is a Murasugi 

sum of the surfaces F .. 
1. 

Let G = lll(S3_F) and G.= lll(S3_F.); l~i~n. Then G is a free product 
1. 1. 

with factors G. 
1. 

G=G* .. ·~ ... G. 
1 n 

In order to describe a presentation for IT 1 (S3_F), it is sufficient to 

Suppose Fi is a projection surface with Pi bands and qi discs. For 

each band B.; l~j~Pi' let A. denote the loop around the co-core of B. 
J J J 

oriented as shown in figure 3.4. Choose a basepoint Xo in S3-F with 

h(xo) > h(F). Use the same basepoint for all F .. Let a. be an arc in 
1. J 

S3-F which connects A. to a point in the plane ~2xh(xo) c ~3, such that 
J 

~(aj) is a single point. Extend a j by an arc contained in ~2xh(xo) 

to connect A j to xo, denoting this extended arc also by a. , 
J 

and 

orienting it from Xo to A .. 
J 

The loop g. = a.uA.U(-a.) based at Xo 
J J J J 
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figure 3.4 

For each Seifert disc ~k c Fi ; l~k~qi' follow the boundary of ~k 

in the direction of its orientation and order the bands attached to 

~k consecutively l"'ri as each is encountered, for some ri~Pi' Then 

let Pk denote the relator 

r i 

Pk = n g. 
J 

j=l 

where g. is the generator associated to the band B .. 
J J 

3.3.1 ProposHion. The group lll(S3_F.) admits the presentation 
1 

G = < g.; l~j~p. I Pk ; l~k~q. >. 
i J 1 1 

Proof. It remains to check that Pk ; l~k~qi are defining relations. 

Let J
i 

denote the deformation retract of Fi formed by retracting 

the bands onto their respective cores, and the Seifert discs onto 

points. Then J. is a planar graph which is the spine of F. and 
1 1 

Embed J. in ~2xO c ~l, and recall that h(xo»O. Let w be a word 
1 

in the generators of G
i 

such that w=l. (Each generator is now a loop 
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circling an edge of J .. ) There is a loop A in ~3_J. which represents 
l. l. 

w. Regard ~3 as a simplicial complex I containing J.x(-oo,O] as a 
l. 

subcomplex. Let I* denote the dual complex. The loop A can be 

approximated by a loop in the I-skeleton of I*. 

Since A is contractible in ~3_J., there is a sequence of cellular 
l. 

moves which deform A so that An(J.x(-oo,O]) =~. Let one such cellular 
l. 

move be across a 2-cell C1EI7'c' which replaces An3C1 by 3C1-L If 

C1nJ.x(-oo,O] = ~ then the deformation has no effect on the word w which 
l. 

A represents. If C1nJ.x(-oo,O] is an arc then the deformation either 
l. 

inserts or deletes a word gg-l or g-lg in w. This results in an element 

of Gi equivalent to w. If C1 meets J.x(-oo,O] in a wedge of lines then 
l. 

the deformation inserts or deletes a conjugate of Pk or (Pk)~ for some 

k. [J 

3.3.2 Remark. Although the chosen generators are not free generators, 

the group G is actually a free group. 

In the special cas e of theorem 3. 1. 2, each of the links L i is a 

I~i~n. The projection surface 

constructed from 1T (L.) comprises two Seifert discs connected by p. 
l. l. 

bands. Follow the boundary of one of the two discs in the direction 

of its orientation and order the bands consecutively 1"'Pi as each 

is encountered. The ordering is independent of the choice of disc. 
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Pi 
(3.3.3) Pi = n gj 

j=l 

Thus 

G. = < g.; l~j~p. I Pi > . 
1. J 1. 

, 



3.4 PICTURES, FILMS AND THE MAP Q 

Let F be a projection surface spanning a link L. If a is an arc 

properly embedded in F then the loop around a represents an element 

of IT 1 (S3_F). A method of writing this element in terms of the above 

generators for G is now described. First F is repositioned. 

Suppose A is a Seifert disc of F. Let N(A) denote an 

£ -neighbourhood in A of at.. Choose £ small enough that 

~(N(A.)) n ~(N(t..)) = ~ for all i¢j. Let 
1 J 

Z = F - U(t..- N(t..)) 
1 1 

Thus Z is obtained from F by removing the interiors of all the Seifert 

discs. 

Let n c UN(t..) c Z be a simple arc connecting aF to (aZ-aF) such 
1 

that ~(aF) n ~(n) c an. There exists a disjoint set E of such arcs 

Which partition Z so that each component of Z- (EuaZ) is an open 

topological disc which contains exactly one band of F. The closure 

of each of these components is called an H-piece, and the elements of 

E meeting an H-piece are its ends. Each arc in E is an end of two 

distinct H-pieces because ~(L) is irreducible. By noting the 

orientation on aF, each of the four ends of an H-piece can be given a 

unique label in {NW,NE,SW,SE} as shown in figure 3.5. 
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Note: In figures, the edges of an H-piece drawn in smooth lines are 

in aF and those in ragged lines are in caZ-aF). 

The generators of G can be used to label the H-pieces in F since 

there is a one-one correspondence between the two sets. 

NW NE 

SW SE 

figure 3.5 

Choose a subset of ends E' cE so that every Seifert disc of F 

contains precisely one end in E'. Cut Z at each end in E'. This 

produces a surface r which is isotopic to F and which is composed of 

H-pieces. In figure 3.6 this procedure is applied to a surface 

spanning the figure-8 knot, 41 , 

-
F z F 

figure 3.6 
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An arc ex c r is ~-embedded in r if, for each H-piece B in r, 

(1) exnB is a finite set of disjoint simple arcs 

(2) a(exnB) = (EnB)nex 

(3) No component of anB has both its boundary components in 

the same end of B 

(4) anar £ exnaF £aex. 

Condition (1) ensures that ex is simple. Condition (2) implies that 

each arc-component of anB meets E exactly twice, only at its boundary 

POints. Condition (4) implies that if aex meets ar then it does so only 

at points of aF. If ex is H-embedded in rand arnex = aex then say that 

ex is properly H-embedded in r. 

H-embedded arcs non H-embedded arcs 

figure 3.7 

Any arc properly embedded in F is isotopic to an arc properly 

H-embedded in r. 
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A picture is a triple (g;n 1 ,n 2); n1¢n 2 which represents an oriented 

arc H-embedded in the H-piece associated to the generator g. The arc 

connects the ends n1 ,n 2
EE, and is oriented from n1 to n

2
. Examples are 

shown in figure 3.9. 

3.4.1 Notation. A lower-case letter between square brackets will be 

used to denote pictures. If [p] denotes the picture (g;n
1

,n
2

) then 

[p] denotes (g;n 2,n 1), the arc having the reverse orientation. The 

symbol [Pl,"',Pr] is used to denote the picture [p] where 

For example [a,c,f] means one of [a], [c] or [f]. 

Also, [p]r denotes a sequence of r copies of the picture [pl. 

Using this notation, the symbols in column 1 of table 3.8 will be 

used throughout this chapter to denote the pictures in column 2, shown 

diagramatically in figure 3.9. 

symbol picture Q([p];w) Q([p] ;w) 

[a] (g;NW,SW) gw g-'w 

[b] (g;NE,SE) wg-1 wg 

[c] (g;NW,NE) gw g-'w 

[ d] (g;SW,SE) wg-1 wg 

[e] (g;SW,NE) w w 

[ f] (g;NW,SE) gwg-l g-'wg 

table 3.8 
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[a] [b] 

[c] [ d] 

[e] [ f] 

figure 3.9 
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Let a be an oriented arc H-embedded in r. There is a unique sequence 

of pictures which completely describes a. Such a sequence is called 

the film of a and is denoted ~a' When the square bracket notation is 

used, the element geG in the picture is suppressed. This loss of 

information means that the arc can no longer be constructed £rom the 

condensed form of the film. However, if the initial point of a is 

given, or the H-piece associated with the leftmost picture of ~a is 

identified, then the square bracket notation is sufficient to enable 

the arc to be reconstructed. The length of the film? denoted I~al, 

is the number of pictures in the sequence. The number of H-pieces in 

r equals the number of double points in n(L), and hence is finite. If 

a is properly H-embedded in r then a meets each H-piece a finite number 

of times (from (1) in the definition of H-embedded). Therefore 

1 ~ I~ I < co. a 

Let P be the set of the twelve possible pictures. Columns 3 and 4 

of table 3.8 define a map Q:pxG ~ G whose image is written Q([p);w) 

where [p) is a picture (g;n 1,n2) and w is a word in G. The mapping 

generates words in G ignoring the group structure of G, regarding it 

as a set only. 

Note. For clarity, the table gives the values of Q([p) ;w) only in 

the cases when [p) is associated to a positive crossing (the cases used 

later). The method of constructing the map is given below, and the 

description will enable the reader to provide the corresponding values 

for negative cro,~ings. 
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Let nCr) denote the composition of r copies of n. Define n on films 

inductively as follows: Q(r):prxG ~ G 

-(r) -(r-l) 
Q ([Pl][P2]'" [Pr]; w) = Q ([P2]'''[Pr]; Q([P1];w) ). 

3.4.2 Definition: Q. Let ~ be a film of length r. Then ex 

3.4.3 A geometric interpretation of Q. 

Consider the picture [p] = (g;n l ,n2). Let ex denote the arc in the 

H-piece associated to g oriented from end n1 to end n
2

. Extend ex by 

an arc in each end so that ex is properly H":embedded in r. 

Connect each point of aex+ to the basepoint Xo in S3_r in the same 

manner as were the loops A. in the construction of the generators. 
J 

This forms a loop in S3 -r based at xo, and which contains ex+ as a 

subarc. Orient the loop so that ex+ has the same orientation as ex. In 

n!CS3-r) this loop represents g, g-l, or 1. This is the element of G 

which is placed on the right of w in QC[p];w). 

Similarly, construct a loop containing ex_ oriented so that ex has 

the opposite orientation to ex. The element of G which this loop 

represents (also g, g-l, or 1) is placed on the left of w in Q( [p] ;w). 

The loop around ex is formed from ex + and ex _ ' and repres ents the 

element Q([p];l) in G. 
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Now consider a sequence of two pictures [P1][P2] each giving an arc 

aI' a2 respectively, and each arc extended in E to become properly 

embedded in r, Notice that aa
1 

n aa2 :f; <II, Construct four loops in 

Sl-r each containing one of a l +, a 1_, a2+, a2_, 

Then 

loop around (a
1
ua

2
), 

describing an arc a in r, 

by the loop around a, 

Similarly, for any sequence of pictures ~ 
a 

Q(~ ) is the element of IT 1 (Sl-r) represented a 

3.4.4 Notation. The notation rhs Q(~a) denotes the word in G formed 

on the right of the 1 in Q(r)( ~a; 1), represented in Sl-r by the loop 

Containing a+, Similarly, lhs Q(~a) denotes the word formed on the 

left represented by the loop containing a , 

r/lhs Q(~a) means 'rhs Q(~a) or lhs Q(~a)'· 

The next lemma is a corollary of lemma 3.2.7. 

Also the symbol 

3.4.5 Lemma. Suppose a is an arc properly H-embedded in r. Then a 

lies in a 2-sphere which factorises ar if and only if Q(~a) = 1 in G. 

[J 
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3.5 A FUNDAMENTAL LEMMA 

Suppose F is a minimal genus projection surface constructed from a 

projection TI(L) of a link L. Let r be a surface composed of H-pieces 

(as constructed in §3.4) which is isotopic to F. The following lemma 

shows that there is a unique shortest film for each homotopy class of 

arcs in r. 

3.5.1 Lemma. Let 6, 0 be two arcs each H-embedded in r with 

a6 = ao, and suppose that 1~61 and I~ol are minimal. If 6 is homotopic 

in r to 0 keeping as fixed then ~S = ~o· o 

3.5.2 Corollary. Let 6, 0 be two arcs H-embedded in r with a6 = ao, 

and suppose that 1~61 and I~ol are minimal. 

If rhs Q(~6) = rhs Q(~o)' or if 1hs Q(~6) = 1hs Q(~o)' then ~6 = ~o' 

Proof. Assume without loss of generality that rhs Q(~6) = rhs Q(~o)' 

Then the loop 6+UO+ = (6Uo)+ is contractible in S3_r. The surface r 

has minimal genus (2.4.6), hence 6Uo is contractible in F [Ne](p29). 

This implies 6 is homotopic in r to 0 keeping a6 fixed. 0 

A short digression passing through the realms of simplicial 

homotopy, graphs, and free groups which culminates in theorem 3.5.4 

precedes the proof of lemma 3.5.1. 
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Let I be a simplicial complex with IOcI the subset of a-simplices 

or vertices. An edge path in L is a finite sequence of vertices 

v ... v such that v.EIo a' 'n 1 
for each i, and v. 1 and v. span a 

1- 1 

a-simplex or a l-simplex of I for l~i~n. Two edge paths are equivalent 

in I if one can be derived from the other by applying a finite sequence 

of the following operations: 

(1 ) vv +---+ v where v is a a-simplex of L 

(2) uvu +---+ uu where u,v span a l-simplex of I 

(3) uvw +---+ uw where U,V,w span a 2-simplex of I 

The double-headed arrow indicates that if the sequence of vertices on 

the left (or right) of the arrow appears in an edge path then it can 

be replaced by what is on the right (or left). 

These operations preserve the first and last vertices of an edge 

path. Two edge paths are equivalent if and only if they are homotopic 

in I keeping their boundaries fixed. Thus, the equivalence classes of 

edge paths are in fact homotopy classes [C-V] (p375). 

Now consider the special case when I is a graph, r, which contains 

no loops. The above notation will be modified to take advantage of this 

restriction. 

Let I 1cI denote the set of ordered pairs of vertices (v. ,v.) which 
1 J 

span l-simplices or edges of I. If eEI1 denotes the edge (vi,v
j

) then 

let e-1 denote the reverse edge (v., v.) . 
J 1 
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Let 

l~i~n. 

Then, 

v . . . v be an edge path 0' , n in r such that v. 1 :f: v. for 
~- ~ 

(This can be ensured by applying operation (1) if necessary.) 

to each pair v. l'v. of vertices there corresponds an edge 
~- ~ 

e . E 1: 1, and the edge path can be written as a sequence of edges 
~ 

Of the above operations (1) cannot be applied by 

assumption; (3)·- cannot be applied since a graph contains no 

2-simplices; and (2) can be replaced by the following: 

(2') insert or delete e-1e or ee-1 from the sequence 

for any eE 1: 1 . 

Hence, two such edge paths in r are homotopic keeping their boundaries 

fixed if and only if they differ by a finite number of operations of 

the form in (2'). 

An edge path in r is reduced if it does not contain the patterns 

e-1e or ee-1, for any eE 1: 1 . 

This notation is isomorphic to that of [M-K-S] concerning free 

groups. In particular, a word in a free group G is freely reduced if 

it does not contain the patterns g-lg or gg-l for any gEG. Also, two 

words in G are freely egual if one can be obtained from the other by 

a finite sequence of insertions and deletions of the form g-lg or gg-l 

for gEG [M-K-S] (p34). 

3.5.3 Theorem (Magnus, Karrass and Solitar). Every word in a free 

group is freely equal to a unique freely reduced word. 0 
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Returning to the simplicial case, this theorem translates as 

follows. 

3.5.4 Theorem. Every edge path in a graph is homotopic keeping the 

boundary fixed to a unique reduced edge path. 0 

Proof (of lemma 3.5.1). 

An H-piece can be retracted onto a tree with five edges and two 

3-valent vertices. The reduced edge paths which start and finish at 

the leaves of the tree are in one-one correspondence with the pictures 

of arcs in the H-piece (see figure 3.10). The surface r can be 

retracted onto a graph r so that each H-piece is retracted as above. 

The film of an arc in r corresponds to an edge path in r. The edge 

path is reduced if and only if the length of the film is minimal. 

retract 

• 

HHHHHH 
tal [bl [el [dl tel [fl 

figure 3.10 
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The two arcs a, ~ in r correspond to two edge paths a', ~' in r. 

Since a is homotopic to ~ in r keeping aa fixed, and since r is a 

deformation retract of r, a' is homotopic to~' in r keeping a8' fixed. 

Also, a', ~' are reduced since 1 ~ ai, 1 ~ ~ 1 are minimal. There is a 

unique reduced edge path in each homotopy class (theorem 3.5.4), hence 

8' = ~' which implies ~a = ~~. 0 

3.5.5 Notation. Let 8, ~ be two arcs each H-embedded in r with 

aa = a~. If a is homotopic to ~ in r keeping aa fixed then the relation 

between their films is denoted ~a ~ ~~. 
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3.6 SPECIALISED LEMMAS AND DEFINITIONS 

The preceding sections dealt with the most general situation 

regarding the conj ecture (3.1. 5). The results are valid for any 

projection which has a minimal genus projection surface. In this 

section, attention is restricted to the case where the projection ~(L) 

underlies a closed braid diagram in which every crossing is positive. 

Let a e Bn+1 be a positive braid such that the closure ~ is an 

irreducible diagram of a non-split non-prime link, L. Let F be the 

projection surface constructed from 6. Form a subsurface ZcF compose~ 

of annuli and bands by removing the interiors of the Seifert discs as 

in §3.4. Each band in Z corresponds to a letter in the braid word a, 
and each annulus corresponds to a braid string which meets part of its 

boundary. Let A. denote the annulus corresponding to the ith string 
1. 

for l~i~n+1. To form the surface r read along the word a and, as each 

letter is encountered, locate the corresponding band in Z and the 

H-piece which contains it. Suppose the letter is a .. Then the H-piece 
1. 

will meet Ai which contains its NW and SW ends, and Ai +1 containing 

the NE and SE ends. If A. is still annular then cut it at the NW end 
1. 

of the H-piece; if Ai +1 is still annular then cut it at the NE end. 

Proceed in this manner until each annulus has been cut exactly once. 

The resulting surface is denoted r (cf. §3.4). Figure 3.11 shows the 
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figure 3.11 

Let r
i 

be the subsurface of r composed of the cut annuli Ai' Ai +1 

and all the bands corresponding to the letters a. in 8. Then r is a 
l. 

Murasugi sum of the surfaces r .. 
l. 

factors G. 
l. 

G = G 1 ~~ ... ~~ G
n

· 

Each of the r. contains p. bands and ar. is a (p.,2) torus link. (Note 
l. l. l. l. 

that Pi>1 since ~ is irreducible.) Assume each Gi is presented as in 

§3.3, and label the generators of G. from 1 to p. consecutively so that 
. l. l. 

the generator associated with the lowest band ~s labelled 1 (see figure 

3.12). Two generators gj' gk E Gi are adjacent if Ik-jl = 1. If 

k-j = 1 then say gk follows gj' Also g1' g are called the first, 
Pi 

3.6 "Specialised lemmas and definitions 93 



and last generators in G. respectively. They are considered to be 
1 

adjacent generators. 

figure 3.12 

Let S2 be a 2-sphere which factorises ar non-trivially and which 

meets r transversely. Assume that S2 is isotoped to remove all loop 

components of S2nr (3.2.4) leaving only a single arc which is denoted 

a. 

Isotop S2 such that a is properly H-embedded in r (recall that this 

requires anar = anaF), and so that I ~ a I minimal. Furthermo·re, isotop 

S2 without increasingl~al so that the. leftmost and rightmost pictures 

in ~ belong to {[a],[a],[b],[S]}. 
a 

3.6 Specialised lemmas and definitions 94 



Recall that all relations in G have the form in (3.3.3), and also 

from lemma 3.4.5 that Q(~ ) collapses to 1 in G. Trying to discover 
ex 

how these results restrict the embedding of ex in r is the motivation 

for the three following lemmas. 

3.6.1 Lemma. Suppose e is a word in G with e=l, and g is a generator 

of G. Then the patterns geg-1 and g-leg do not occur in r/lhs Q(~ ). 
ex 

Proof. Suppose (for a contradiction) that the pattern geg-1 appears in 

rhs Q(~). Then ~ contains the subsequence 
ex ex 

[5,a,!] ... [b,d,f]. 

The leftmost picture contributes g to rhs Q(~ ), and the rightmost 
ex 

picture contributes g-l. The sequence between represented as 

contributes a trivial word, e. 

This subfilm of ~ is the film of a subarc e c ex which is H-embedded ex 

in r. Each of the pictures [5], [a], [!] has the form (g;SE,·). 

Consequently, [b], [d], [f] all have the form (g;' ,SE). Let n denote 

the SE end of the H-piece associated to the generator g. Then 

ae c n. Let len be an arc with ae = al (see figure 3.13(a)). Then 

rhs Q(~e) = geg-1 = 1 in G and rhs Q(~l) = 1. 

3.5.2, I~el = I~ll = 0: a contradiction. 

Now suppose that the pattern g-leg appears in 

contains the subsequence 

[p ][5,a,!]. 
r 

Hence, by corollary 

rhs Q(~ ). 
ex Then ~ 

ex 
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(a) 

figure 3.13 

The subfi1m [Pl] ... [PrJ defines a subarc e c a H-embedded in r as 

before, with ae c n (figure 3.l3(b». Again corollary 3.5.2 implies 

that I~el = o. 

[b,d,f] [S,a,t]. 

Hence, r = 0 and ~ a contains the sequence 

Now I~ I can be reduced contrary to assumption. 
a 

For the two other proofs, note· that 1hs Q(~ ) is generated from a 

right to left. Consequent 1y, if geg-1 appears in 1hs Q (~ ) then ~ 
a . a 

contains the subsequence 

[a,c,t][Pl] ... [Pr][a,c,f]. 

And if g-leg appears in 1hs Q(~ ) then ~ contains the subsequence 
a a 

[a,c,f] ... [a,c,t]. 

The proofs now follow similarly to those above. 0 

3.6.2 Remark. This shows that both rhs Q(~ ) and 1hs Q(~ ) are 
a a 

reduced words in G. 
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3.6.3 Lemma. Suppose e is a word in G with e = 1, and g1' gk are the 

first and last generators in some factor G. of G. Then the patterns 
]. 

Proof. Suppose (again, for a contradiction) that gkeg1 appears in 

rhs Q(~). Then ~ contains the subsequence 
a a 

[s,a,t] [P1]'" [ps] [s,a,t]. 

Each of the pictures [S], [a], [t] has the form (g;SE,·). Let 

11
1

, 11k E E be the SE ends of the H-pieces associated with the 

generators g1' gk respectively. Then the subfilm 

[S,a,t][p1]'" [ps] is the film of a subarc e c a which is H-embedded 

in r and which runs from 11k to 11 1 , There is an arc l contained in 

A
i
+

1 
c r with al = ae and 

~ 0 = [a] r 1 [b] [a] r 2 [b ] ... [b] [a] r" -1 [b ] 

where r j ~ 0; for 1~j~k-1 (figure 3.14 with 0 oriented from 11k to 

11
1

) . 

Now 

in G. 
]. 

Hence (by corollary 3.5.2) ~e = ~o which is a contradiction since their 

leftmost pictures are different. 

contains the subsequence 
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figure 3.14 

Each of [b], [d], [f] has the form (g;. ,SE). Let 11 1 , 11k e E be as 

above. The subfilm [P1]··· [ps][b,d,f] defines a subarc B c a 

H-embedded in r which runs from 111 to 11 k . There is an arc 

rcA c r with ar = aB such that 
i+1 

~r = [S][a]rl[S][a]r2[S]··· [S][a]rK- 1 

where rj ~ 0; for 1~j~k-1 (figure 3.14 with r oriented from 111 to 

11 k). 

Now rhs Q(~r) = g1g2··· gk-1 

= (gk)-l in Gi 

= rhs Q(~B). 
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Again (by corollary 3.5.2) ~8 = ~r: a contradiction since the 

rightmost pictures differ. 

The proofs for lhs Q(~ ) are similar. 0 ex 

3.6.4 Lemma. Suppose e is a word in G with e = 1, and gj' gj+l are 

following g .. If 
J 

adjacent generators in some factor Gi of G with gj+l 

one of the patterns g.eg'+1 or (g'+I)~e(g.)~ occurs in r/lhs Q(~ ) then 
J J J J ex 

e = ~, and furthermore ~ contains one of the following sequences as ex 

a subfilm: 

(1) [S] [a]r[S,a,r] if gjegj +1 appears in rhs Q(~ ) ex 
r 

if (gj+l)-le (gj)-l appears in rhs Q(~ ) (2) [b,d,f] [a] [b] 
ex 

r if g.eg'+1 appears in lhs Q(~ ) (3) [a] [b] [a,c,f] 
J J ex 

(4) [a,2,r] [S]r[a] if (gj+l)-le (gj)-l appears in lhs Q(~ ). 
ex 

Proof. Suppose gjegj +1 appears in rhs Q(~ ). ex Then ~ contains the ex 

subsequence 

[s,a,r] [PI]'" [ps] [s,a,r]. 

Each of the pictures [S], [a], [r] has the form (g;SE,·). Let 

n n eE be the SE ends of the H-pieces associated with the 
j' j+l 

generators respectively. Then the subfilm 

[S,a,r][pl]"'[Ps] is the film of a subarc 8 c ex which is H-embedded 

in r and which runs from nj to nj +1· 

A
i
+

1 
c r running from nj to nj +1 such 

3.15 with r oriented from nj to .n j +1)· 

There is an arc r contained in 

A r . 
that ~r = [S][a] ; r~O (figure 
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Now rhs Q(~B) 

~B = ~l' 

g .. 
J 

figure 3.15 

Hence, by corollary 3.5.2, 

Now suppose the pattern (gj+1)~e(gj)~ appears in 

~ contains the subsequence 
ex 

rhs Q(~ ). Then ex 

[b,d,f] [P1]'" [ps] [b,d,f]. 

Each of [b], [d], [f] has the form (g;. ,SE). Let nj , nj +1 e E be as 

above. The subfilm [P1]'" [ps] [b,d,f] defines a subarc B C ex 

H-embedded in r which runs from nj +1 to nj . There is an arc 

l C Ai+1 C r with al = aB such that ~l = [ajr[b]; . r~O (figure 3.15 

with l oriented from nj +1 to nj ). 
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Now rhs Q(~8) = e(gjfl and rhs Q(~o) = 

3.5.2) ~8 = ~o' 

The proofs for Ihs Q(~ ) are similar. 0 
a 

Hence, (by corollary 

3.6.5 DefinitionCfactor word). A word w E G = G ~'r ••• * G can be 
1 n 

written as a product of subwords 

w = w w "'W 1 2 m 

such that there is a map between sets t; : Z -Z with w. E G r C . ) ; 
m n J ~ J 

l~j~m, and t;Cj) ¢ t;Cj+l); l~j~m-l. Call each w. a factor word of w. 
J . 

Thus, a factor word is a word in a factor of G and adjacent factor words 

are in different factors. 

3.6.6 Lemma-Definition Cantiword). For every non-trivial factor word 

in r/lhs Q(~) there is a (non-trivial) factor word in l/rhs QC~ ) 
a a 

which annihilates it. 

Proof. Let w = QC~ ), and let w be a factor word of rhs Q(~ ) such 
a s a 

that w ¢l in G. 
s 

Suppose w is a factor word of w. (This may not be the case if w 
s s 

is the leftmost factor word of rhs QC~ ).) Since w=l in G, there is a 

at least one factor word of w which cancels to 1. Let WI denote the 

word which remains when all such trivial factor words are deleted from 

w. Notice that wl=l in G, and that the factor words of WI are products 

of the factor words of w. 

contains w as a factor. 
s 

Let w I denote the factor word of WI which 
s 
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If w '~1 in G then repeat the above procedure on w'. So, assume 
s 

that w ' = 1. Let u, v be products of non-trivial factor words of w 
s 

such that w ' = uw v. Let wt denote the leftmost factor word in w of 
s s 

v, and let w denote the rightmost factor word in w of u. 
r 

Now 

,(r) = ,(s) = ,(t), . and from the definition of factor word 

,(s-1) ~ ,(s) ~ ,(s+1). Hence, 

r < s-1 and s+l < t 

~ r+1 < s < t-1 . 

Let g' denote the rightmost letter of wand gil the leftmost letter 
s 

Since w '=1, either g' = (g"rl, or g' and gil are adjacent. 
s 

Hence, the subword of rhs Q(~ ) given by g' ... gil has one of the 
IX 

following forms: 

where e=l in G, and k is the number of generators in G,(s)' The first 

two options are excluded by lemma 3.6.1, the second two by lemma 3.6.3. 

For the last two options, lemma 3.6.4 implies that e ; ~, hence g' and 

gil belong to the same factor word of w which is a contradiction. 

Therefore, v = ~. 

If the rightmost letter of w is in rhs Q(~ ) then a similar r IX 

contradiction is obtained. So, 

w £ lhs Q(~ ) r IX 

u £ lhs Q(~ ). 
IX 
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If u is a product of factor words of w then similar contradictions are 

obtained. So, u = w . 
r 

Thus, w and w are two factor words of w such that 
s r 

(1) w !; rhs rl(~ ) s ex 

(2) w !; Ihs rl(~ ) r ex 

(3) w w r s = 1 in G 

s-1 
(4) IT wk = 1 in G. 

k=r+1 

Define w to be the antiword of w , denoted anti (w ). 
r s s A similar 

definition follows if w is a factor word of w, and w !; lhs rl(~ ). 
s s ex 

Now suppose that w !; rhs Q(~ ) is not a factor word of w. Let w, 
s ex t 

be the factor word of w which contains w as a subword, and let s 

wt = w w . r s 

Note that w is a factor word of Ihs rl(~ ) and r ex 

If w = 1 then w , ware two subwords of w which satisfy (1), (2), 
t r s 

(3) above (in this case (4) has become an empty product). So define 

w = anti(w ). r s 

If w
t 

~ 1 then form w' from w by deleting all the trivial factor 

words of w as above. There are subwords u, v of w such that uw v = 1, 
. t 

and a similar analysis to above yields a contradiction. 0 
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3.6. 7 Definition (co -word) . Let w be a factor word of w = Q(~ ) with s a 

w = 1 in G, and suppose w £ rhs Q(~). Let [PI] be the picture in s s a 

~ a which generates the leftmost letter of w s' and let [p r] be the 

picture which generates the rightmost letter of w. The subfilm 
s 

[p ]"'[p] of ~ defines a subarc 8 c a H-embedded in r with 
1 r a 

rhs Q(~8) = ws' The complementary word lhs Q(~8) is the co-word of 

and is denoted co(w ). 
s 

A co-word is a subword of w. Since ~(L) 

is a braid, a co-word is a subword of a factor word of w, but may not 

itself be a factor word. A similar definition is made when 

w £ lhs Q(~ ). s a 
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3.7 PROOF OF THE MAIN THEOREM 

Though the main theorem of this chapter was stated in the 

introduction, its -statement is recalled here. 

Theorem 3.1.2. Let B be a positive braid such that ~ is an 

irreducible projection of a non-split link L. Then 

L is a non-prime link if and only if ~ is decomposable. 

Proof. 

Let w be the rightmost factor word of lhs Q(~ ) and let w
t be the s ex 

leftmost factor word of rhs Q(~ ). ex (For definitions see 3.6.5, 3.4.4, 

and 3.4.3.) In the proof, the following four cases are considered: 

(A) w = 1 and co(w ) = <1>, s s 

or wt = 1 and co(wt ) = <1>; 

(B) w = 1 and co(w ) = 1, s s 

or wt = 1 and co(wt ) = l' , 

(C) w = 1 
s 

and wt = 1, (cases A, B excluded); 

(D) w ¢ 1 or w
t 

¢ 1. 
s 

Case (A) is the one which leads to a decomposition of the diagram. 

Each of the other cases is shown to lead to a contradiction, or to a 

situation where case (A) can be applied. 
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In the first three cases, at least one of Ws and wt is a trivial 

word. Without loss of generality, suppose w = 1 in G. No subword of s 

w is trivial in G otherwise w would contain one of the following 
s s 

patterns 

where e = 1 in G, and k = p,(s)' the number of generators in G,(s) (or 

equivalently, the number of bands in F,(s))' Each of these 

possibilities is excluded by lemmas 3.6.1, 3.6.3, and 3.6.4. 

Recall from 3.3.3 that the only relation in G,(s) is 

k 
IT gj = 1 where k = p,(s)' 

j=1 

So, from lemma 3.6.3, 

Ws = g1g2" 'gk 

or Ws = (gk)~···(g2)~(g1)~· 

By lemma 3.6.4, ~ct. contains one of the following subsequences as a 

subfilm: 

or 

[ a] [b] r 1 [ a] [b] r 2 [a] ... [a] [b] r" -1 [ a, c , f] 

[ a , c , !] [S] r 1 [a] [S] r 2 [a] ... [a] [S] r" -1 [ a] 

where r. ~ 0; for 1~j~k-1. 
J 
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case CA): w = 1 and co(w ) = ¢. s s 

Suppose co (w ) = ¢. Then r. = 0; 
s J 

k-l A A ~ A k-l [a] [a,c,f] or [a,c,r] [a] as a 

l~j~k-l, and ~ contains 
a 

subfilm. These two films are 

descriptions of the same arc, which is indicated in figure 3.16(a). 

The films differ because the initial point of the arc is taken at the 

different ends of-the arc. 

(a) (b) 

figure 3.16 

Suppose that ,(s) = 1. This means that there are no bands or discs 

~ k-1 on the left of a (figure 3.16(b)). If ¥'a contains [a] [c,f] then 
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the factorising 2-sphere S2 can be isotoped in S3 inducing an isotopy 

of a in r which leaves a properly H-embedded in r (although in the 

. intermediate stages, it is not since 3a moves along (ar-3F)) and which 

changes ~ in the following way: 
a 

[a]k-1[c] is replaced by [e) 

[a]k-1[f] is replaced by [d) . 

Since k>l, both of these isotopies reduce 

contradiction. 

I~al, which is a 

In the case when ~ contains [a] k-1 [a] there is 
a 

equality: ~ = [a]k because there are no H-pieces into which a can 
a 

continue, and since I~ I is minimal, a cannot reverse. This contradicts a 

the fact that the original choice of factorisation is non-trivial. 

Therefore ,(s) ~ 1. 

The case when a is oppositely oriented similarly gives ,(s) > 1. 

The projection 1TeL) is decomposable, and 6 can be conjugated in 

Bn+1 to be in the form 

61 (0'1"" 'O',(s)-l) 62 (0',(s)"" 'O'n)' 

The projection surface for ~1 is a Murasugi sum of the surfaces 

F
1

, "', F,(s)-l' and since 61 is a positive braid, it is a spanning 

surface of minimal genus (2.4.6). Since 1TeL) is irreducible, the genus 

is non-zero. Therefore, ~1 is a non-trivial link. Similarly, ~2 is 

non-trivial. Thus, the factorisation of L as ~1# ~2 is non-trivial. 
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case (B): w = 1 and co(w ) = 1. 
s s 

In this case 

k-l 
r 

j=1 

r. = 
J 

The corresponding situation is shown in figure 3.17. The argument used 

above to show that ,(s) ¢ 1 can be used here to show that either I~ I 
"'ex. 

can be reduced, or else the original factorisation is trivial, both 

of which are contradictions. 

A. 
1. 

figure 3.17 

The cases when wt = 1 and co(wt ) is ~ or 1 are similar. 
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case (C): w s = 1 and w t = 1. 

Assume that none of the above cases hold. 

Since w = 1, ~ contains one of the following subsequences as a 
s ex 

subfilm: 

or 

where r. ~ o· 
J 

, 

And since wt = 

or 

(1) 

(2) 

for 

1, 

(3) 

(4) 

[a] [b]r1 [a] [b]r2 [a]'" [a] [b]r"-l[a,c,f] 

[ a , c, t] [b] r 1 [a] [b] r 2 [a] ... [a] [b] r" -1 [ a] 

1~j~k-1, and k = p,(s)' 

~ also contains one of the following subfi1ms: 
ex 

[b,d,f] [a]q1 [b] [a]q2 [b]'" [b] [a]q"-l[b] 

[ b] [a] q 1 [b] [a] q 2 [b] . . . [b] [a] q" -1 [b , a, t] 

where qj ~ 0; for l~j~k'-l, and k' = p,(t)' 

If co(ws)nwt = ¢ then either co(ws ) = ¢ or wt is generated before 

w , implying that CO(Wt ) = ¢. Both of these possibilities are dealt 
s 

with above and are excluded here. Therefore, 

co(ws)nwt ¢ ¢ 

and also co(wt)nws ¢ ¢. 

This implies that the above subfilms of ~ must be interlaced. They 
ex 

can be combined in two ways. 

Combining (1) and (3) gives 

where 

r rj = p,(s) - 1 
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The picture [b,d,f] is leftmost in ~ and hence must be [b]. This 
a 

situation is shown in figure 3.18(a). 

Combining (2) and (4) gives 

where (again) 

r qj = p'(t) - 1 

The picture [a,C,!] is leftmost in ~a and hence must be [a]. This 

situation is shown in figure 3.18(b). 

(a) (b) 

figure 3.18 

Now the above argument can be used again. to show that either the 

factorisation is trivial, or else I~al can be reduced. So this case 

also leads to a contradiction. 
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case (D): Ws # 1 or wt # 1. 

Suppose, without loss of generality, that w # 1 in G. Then s 

anti(w ) is a factor word of rhs Q(~ ). Either wt = anti(w ) or else 
s ex s 

w = 1 t in G since it lies between wand anti(w ). s s 

Let g' denote" the rightmost letter of w , and let gil denote the 
s 

leftmost letter of anti(ws )' Notice that if wt # 1 then gil denotes 

the leftmost letter of wt ' 

The subword of Q (~ ) given by g' ... gil has one of the fo llowing 
ex 

forms: 

geg-1, g-leg, gkeg1' (gl)-le(gk)-l, gjegj +1, (gj+1)-le(gj)-1 

where e=l in G, and k = p'(s)' (In the case that anti(ws ) = Wt~ 

e = $.) Therefore, the leftmost end of ~ is one of the following 
ex 

subsequences: 

(1) ... [i,a,!]··· [S,a,!] 

(2) ... [s,a,!]··· [i,a,!] 

(3) ... [a,c,f]'" [b,d,f] 

(4) ... [b,d,f]'" [a,c,f] 

(5) ... [a,c,f]'" [S,a,!] 

(6) ... [s,a,!]··· [a,c,f] 

(7) ... [i,a,!]··· [b,d,f] 

(8) ... [b,d,f]'" [i,a,!] 

(9) ... [a,c,f]'" [s,a,!] 

(10) ... [s,a,!]··· [a,c,f] 

(11) ... [i,a,!]··· [b,d,f] 

(12) ... [b,d,f]'" [i,a,!] 

} 

} 

} 

} 

} 
} 
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The odd numbered cases are those where gl is generated before gil, the 

even numbered ones conversely. It will be shown that each of these 

cases leads to a contradiction or to a situation where case (A) can 

be applied. The cases are not dealt with in the order in which they 

appear above, but are grouped according to the method of proof, and 

in a rough order 6f increasing complexity. 

Consider first the even numbered cases. Let [pI], [p"] denote the 

. h' h tId II • 1 p1ctures w 1C genera egan g respect1ve y. Then the leftmost 

subsequence of ~ can be written 
0: 

[Pl]'" [PrJ [p"] ... [pI]. 

Let a c 0: be the subarc H-embedded in r defined by 

~a = [Pl]'" [PrJ· 

Suppose that r>O. The first contribution to anti(w ) is generated by 
s 

[p"], so w
t 

'# antiCws ) and wt c rhs Q(~a)' Each of the factor words 

between wand anti(w ) is trivial, therefore w = 1 in G. Also, since sst 

the first contribution to lhs Q(~ ) 
0: 

is generated by [pI] , 

lhs Q(~a) = <fl and hence co(wt ) = <fl. Therefore case (A) applies and 

the diagram is decomposable. 

So we can assume that r=O and hence that [p"] is the leftmost 

picture in ~ implying that [p"] E {[a],[a],[b],[S]}. 
0: 

case (2): [S]···[a,c,r]. 

The picture [S] is of the form (g;SE,·), and each of [a], [c], [1] has 

the form (g;·,NW). Let a c 0: be the subarc H-embedded in r defined 

by 
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Thus, a connects the SE end of the H-piece associated to g to its NW 

end. Also lhs Q(~a) = g-l. Let r be the arc H-embedded in r with 

ar = aa and ~r = [t] (see figure 3.19). Then lhs Q(~r) = g-l, and 

hence, by corollary 3.5.2, ~a = ~r: a contradiction. 

figure 3.19 

case (10): [S] [Py]'" [pz] [a,c,f] 

Let a c a be the subarc H-embedded in r defined by 

~a = [S] [Py]' .. [pz] . 

Then lhs Q(~a) =~. Let r be the arc H-embedded in r with ar = aa and 

~r= [a][b]r for some r~ 0 (see figure 3.20). Then lhs Q(~r) =~, 

and therefore (corollary 3.5.2) ~a = ~r: a contradiction. 

case (6): [S][Py]'" [pz][a,c, f) 

As in case (10), let a c a be the subarc H-embedded in r defined by 

~a = [S] [Py]" . [pz]' 

Then lhs Q(~a) =~. Let r be the arc H-embedded in r with ar = ~a such 

that ~r = [t] followed by a sequence of raj's and [S]'s so that the 

last picture is [a] and there are (k-1) raj's in total. Figure 3.21 
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figure 3.20 

depicts this situation. The [S] pictures do not contribute anything 

to lhs Q(~r)' The other pictures do contribute. 

lhs Q(~r) is generated from right to left. So 

lhs Q(~r) = (gk)~···(g2)~(gl)~ 

= 1 in G 

= lhs Q(~e)' 

Therefore (by corollary 3.5.2) ~e. = ~r' 

Recall that 

So ~ contains the pattern [a][a,c,f] which implies I~ I can be 
a a 

reduced: a contradiction. (Also, the leftmost picture of ~ cannot be 
a 

[!] . ) 
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figure 3.21 

The consideration of cases (4), (8) and (12) requires a different 

technique. 

represented 

In all three cases, the leftmost subfilm of ~ can be 
a 

[pill [pyl' .. [pzl [p' 1 

where [pill = [bl. Let 8 c a be the subarc H-embedded in r defined by 

~8 = [bl [pyl'" [pzl. 

Then lhs Q(~8) = q,. Therefore, every picture in ~8 must belong to 

{[bl,[Sl,[d],[a],[e],[~l}. 

Consider the automaton shown in figure 3.22. It takes a film ~ as 

input and checks whether lhs Q(~) = q, or not. The four states have 

the same labels as the ends of an H-piece, and the transition arrows 

are labelled with pictures. 
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figure 3.22 

Suppose the automaton is given the film ~ = [PI] [P2] ... [PrJ ~s 

input where [p.] = (g.;n. l,n i 2) for l~i~r, and the g1' are not 1 1 1, , 

necessarily in the same factor of G. The automaton starts in the state 

··labelled n I, I' The picture [PI] should label an arrow oriented away 

from this state '::"lld towarc1s the state labelled n2 ,1' The picture 

[Pi] should label an arrow oriented away from the state labelled ni,l 

and towards the state labelled ni +1,1 for l~i<r. If the input film ~ 

passes this test then lhs Q(~) = ~; the automaton recognises all films 

with this property. The transition arrows occur in pairs since only 

the N or S part of the next state can be determined from the current 

picture, the E or W part depends on the following picture. The 

pictures [Pi] and [Pi+l] refer to the H-pieces associated to gi and 

gi+l respectively. If gi and gi+l belong to the same factor of G then 

the transition arrow is labelled with the p·icture [Pi] only. If they 

are in adjacent factors however, then the symbol (~) or (~) is appended 
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to the label indicating that gi+l is in a factor of G which has lower 

or higher index (respectively) than the factor containing g .. 
1. 

In all three of the cases being considered, the leftmost picture 

is [b] so the initial state of the automaton is NE. The states which 

are accessible from this state are indicated in figure 3.23. Since 

there are no arrows oriented away from the NW state, the film ~B must 

be recognised by this subautomaton. 

figure 3.23 

In cases (8) and (12) the picture [pI] has the form (g;. ,NW). Since 

there is no picture (g;NW,NW), the only possibility which can follow 

~B is (g;NE,NW) = [c]. Thus the leftmost subsequence of ~a is ~B[c], 

and it must be recognised by the automaton shown in figure 3.24(a). 

In case (4), [pI] has the form (g;NW,·), and ~B[pl] must be recognised 

by the automaton shown in figure 3.24(b). 

In this case, the pictures [p" ] and [p I ] are (g. ;NE,SE) and 
J 

(gj+1;NE,NW) respectively. Each of the pictures between must be [b] 
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(a) (b) 

figure 3.24 

or [e], so 8 always moves 'vertically' S-wards or 'diagonally' SW-ward. 

Since 8 starts in the H-piece associated to g. it cannot finish in the 
. J 

H-piece associated to gj+l which is in the N-ward direction (see figure 

3.25). Thus, ~8 has properties which are inconsistent. 

figure 3.25 

case (8): [b][p ]"'[p ][i,S,t] y z 

In this case, the pictures [p"] and [pI] are (gk;NE,SE) and (gl;NE,NW) 

respectively. Again, each of the pictures between must be [b] or 

[e], implying that 8 always moves S-ward or S~-ward. The arc 8 starts 

at the NE end of the H-piece associated to gk and finishes at the NE 

end of the H-piece associated to gl' The only possibility for ~8 is 
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[b]k-l (see figure 3.26). If gl' gk ~ Gn then the diagram is 

decomposable, and if gl' gk e Gn then I~al can be reduced contrary to 

assumption. 

figure 3.26 

case (4): [b] [Py]'" [pz] [a,c,f] 

The pictures [p"] and [pI] have the forms (gj' ,SE), and (gjNW,') 

respectively. As in case (12), the arc B starts in the H-piece 

associated to g and proceeds strictly S-ward implying that it cannot 

finish at the NW end of the H-piece associated to g. 

All the even numbered cases are now dealt with, and attention is 

directed at the odd numbered ones. 
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At some stage in many of the foregoing arguments, the fundamental 

lemma of §3.5 was used. The applications of this lemma relied on the 

existence of contractible loops in the surface complement S3_r which 

arise as 'pushoffs' of loops in r. An embedded loop pushed off from 

r can can be laid flat onto r+ or r In the remaining cases, such 

convenient loops'- are not easily found. However, there are other 

contractible loops in S3_r which arise from curves in r and which prove 

to be useful. 

The required trick is provided by noting that the positive braids 

are fibred (2.4.10 and 2.4.13). The link complement S3-L is fibred 

over Sl with fibre r if there exists a map M:(S3_L)-+Sl such that for 

all XES1, there is a neighbourhood N(x) so that ~l(N(x)) i~ 

homeomorphic to a bicollar on r. The translation of the fibre surface 

r around the base space Sl determines a homeomorphism m:r_-+r+ which 

is well defined up to isotopy. The map m is called the characteristic 

homeomorphism of the fibration, or the holonomy map. 

Suppose that A is an embedded loop in r such that neither A+ nor 

A is contractible in S3_r. Suppose there exists an arc 6 embedded in 

r with a6nA"I: <1>, and such that (6+)U(A+)U(6_) is contractible in 

S3_r. The fibration supplies an isotopy of S3_r which carries 6 onto 

(m(6))+ in r+. Hence, (6UAum(6))+ is contractible in Sl-r and can be 

laid flat onto r+. 
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figure 3.27 

(3.7.1) As an example of laying 6_ onto r+, consider the case depicted 

in figure 3.28(a) where 

~ = [b] = (g;NE,SE) 
6 

or ~6 = [6] = (g;SE,NE). 

The arc 6_, shown in 3.28(b), is laid flat onto r+ in 3.28(c) wher~ 

it is identified with (m(6))+. Depending on the orientation of 6, 

~m(6) = [e] [c] 

or ~m(6) = [c]re] 

As an abuse of notation, write m([b]) = [e] [c]. For the other pictures, 

m([p]) is described below. 

~-

(a) (b) ( c) 

figure 3.28 
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The situation may not be as simple as depicted above. There may 

be bands in the adjacent column as shown in 3.29(a) which prevent the 

arc l) _ from being moved flat onto r +. In this case, the above procedure 

can be used recursively, since there are finitely many columns (see 

figure 3.29). 

( a) (b) 

figure 3.29 

The above figures do not apply when g is the first generator of a 

factor of G. In that case, mel)) is as shown in figure 3.30. 

To construct mel)) from ~l) in general, it is helpful to know how m 

behaves on each picture. Figure 3.31 shows the elementary cases of 

m([p]) (as in figure 3.28), where there are neither obstructions (as 

in figure 3.29) nor problems with the first and last generators of the 

factors of G (as in figure 3.30). These problems can be dealt with 

in a way similar to that of example 3.7.1. In the following figures, 

the arc mel)) is built up from these basic units, then reduced by 

deleting parts of the arc where it retraces itself. 
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figure 3.30 

Corollary 3.5.2 is central to the proofs of the above cases. The 

following lemma holds a similar position in the remaining cases. 

3.7.2 Lemma. Let 0, e be two arcs each H -embedded in ];I such that 

oue is a simple arc and 1~(oue)1 is minimal. Suppose there exists an 

end neE such that aecn. Let m:];I_~];I+ denote the holonomy map. 

If Q(~o)'rhs Q(~e) = 1 in G then ~m(o) ~ ~(OUe)' 

(ie. OUe is homotopic in ];I to m(o) keeping the boundary fixed.) 

Proof. The word Q(~o)'rhs Q(~e) 

= lhs Q(~o)'rhs Q(~o)'rhs Q(~e)' 

= lhs Q(~o)'rhs Q(~(Oue))' 
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m([a]) 

m([ c]) 

m([ e]) 

Recall from 3.4.3 that 

m([b ]) 

m([ d]) 

m([ f]) 

figure 3.31 

the word rhs Q(~(~ ) 
uU6) 

represents the loop in S3_r based at Xo which contains (ISU6)+ and which 

is oriented so that ( ISU 5)+ has the same orientation as (ISU5). Let AIS 

be the loop based at xo~which ,contains IS_ an~ is oriented so that IS 

has the opposite orientation to IS. Then AIS represents lhs Q(~IS)' Let 

m(IS)+ denote (m(IS))+, and let Am(lS)be the loop based at Xo containing 

3.7 Proof of main theorem 125 



m(tS)+ which is oriented so that m(tS)+ has the same orientation as 

m(tS). Thus Am(tS) represents rhs Q(~m(tS»· 

When the orientations are ignored, the loops AtS and Am(tS) are 

isotopic in Sl-r via the fibration. Since the loops are oppositely 

oriented 

rhs Q(~m(tS» 

= (lhs Q(~tS»-1 

= rhs Q(~(tSu8»' 

As in the proof· of 3.5.2, tSu8um(tS) is contractible in rand 

o 

(3.7.3) In all of the odd numbered cases, gl is generated before gil. 

Let [p ] ... [p ][pl] denote the leftmost subsequence of ~ where [pI] 
1 r a 

is the picture which generates gl. Assume r>O and let ~ denote the 

sequence [Pl]'" [Prj· Now lhs Q(~) = ~ and rhs Q(~) is part of the 

trivial word denoted e in g leg" . Note that rhs Q(~) must be an 

incomplete factor word since if it is trivial or contains a trivial 

subword then there exists a trivial factor word of Q(~ ) which has a 

empty co-word, and so case (A) applies and the diagram is decomposable. 

Therefore, 

rhs Q(~) = g "'g 
1 r 

or rhs Q(~) = (gk)-1 ... (gj )-1 where k-r+l = j 

where gl' 
gk generate some factor of G. 

3.7 Proof of main theorem 126 



Since lhs n(~) = <1>, each in 

{[b],[S],[d],[a],[e],[e]}. Lemma 3.6.4 implies that 

~ = [S]r-l[S,a,~] 
r-l 

or ~ = [b,d,f][b] . 

belongs to 

The pictures [f] and [~] cannot appear in ~, and by assumption 

[PI] e {[a],[a],[b],[S]}. So there are three possibilities for ~: 

~ = [S]r 

or ~ = [S]r-l[a] 

or 
r 

~ = [b] . 

The odd numbered cases fall naturally into two sets: those for which 

[pI] is [a,c,f] which are (3), (5) and (9); and those for which [pI] 

is [a,c,~] which are (1), (7) and (11). 

case (3): [Pl]'''[px][a,c,f]'''[b,d,f] 

Let 6, 6 c a be the subarcs H-embedded in r defined by 

[p ]." [p ] 
1 x 

[a,c,f]"'[b,d,f] 

If ~6 = [f] then since 1~61 is minimal, ~6 = [f] (3.5.2). In this case 

the leftmost subsequence of ~ would be ~~, and rhs n(~ ) would contain a u a 

a trivial subword with empty co-word generated by ~6' So case (A) would 

apply. 

Let l be the arc H-embedded in r with al = a6 and ~l = [t]. Assume 

that l is not homotopic in r to 6· The film ~(6Ul) does not have minimal 

length since [b,d,f][t] can be reduced to [c], [a] or the null film. 

Assume that the arc 6ul is isotoped in r to effect this change. After 

3.7 Proof of main theorem 127 



this reduction, the resulting film, which will also be denoted ~~U~, 

has minimal length, otherwise if further reduction were possible, 

~~ ~ [fl. Now, ~(6U~U~)' which is ~6~(~U~)' is a film of minimal 

length, and 

lhs Q(~6)'rhs Q(~(6U~))'rhs Q(~~) 

= l' eg-1• g 

= 1 in G. 

Hence, (by lemma 3.7.2) ~m(6) ~ ~(6U~U~)' 

The possible forms of ~6 (which were listed in 3.7.3) are 

~6 = [S]r 

or ~6 = [S]r-1[a] 

or ~6 = [b]r. 

In the first case, r=O and ~6 is the null film otherwise there would 

be an inconsistency in ~ . ex The leftmost picture of ~~ thus becomes 

the leftmost picture of ~ and hence must be [a]. Applying the ex 

fundamental lemma to eU~ gives 

rhs Q(~ (~U~)) 

= eg-1g 

= 1 in G. 

Hence, by 3.5.2, ~e ~ ~~: a contradiction. 

The cases in the last two rows are illustrated in figures 3.32(i) 

and (ii). 
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(a) (b) 

figure 3.32(i) 
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(a) 
(b) 

figure 3.32(ii) 
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Figure 3.32(i). 

in the second row. 

Part (a) shows the arc 6 corresponding to the case 

The generator g cannot be the last generator in 
r 

a factor of G otherwise lhs S'2(~6) = e = 1 and rhs S'2(~6) = 4>, and so 

case (A) would apply. In part (b) the corresponding m(6) is indicated. 

There are places where m(6) is left on r_ and not laid flat onto r+. 

All of these possible obstructions are like the arc in the picture [b]. 

Example 3.7.1 shows how such arcs can be laid flat onto r+: m(6) moves 

in the W-ward direction only (ie: into columns on the left). 

When l~m(6)1 is minimised, the leftmost subfilm of ~m(6) is 

and since ~ r-1 a " ~(6UeUl)= [D] [][c]···, the two films are 

different. This is a contradiction. 

Figure 3.32(ii). Part (a) shows the arc 6 corresponding to the third 

case. The generator gk-r+1 is not the first generator in a factor of 

G otherwise lhs S'2(~6) = 1 and rhs S'2(~6) = 4>, and again case (A) would 

apply. The corresponding m(6) is indicated in part (b). The places 

where possible [b]-type obstructions may occur are indicated and again 

these are dealt with as in example 3.7.1. When l~m(6)1 is minimised, 

the leftmost picture of ~m(6) is [e], and the leftmost picture of 

~(6UeUl) = [b]. This is a contradiction since the two films must be 

equal. 

case (9): [PI]'" [p ] [a,c,f] [p ] ... [p ] [S,a,t] x y z 

Let 6, e c ~ be the subarcs H-embedded in r defined by 

~6 = [PI]'" [px] 

~e = [a,c,f] [Py]'" [pz]' 
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Then, 8 connects the NW end of the H-piece associated to g. to the SE 
J 

end of the H-piece associated to gj+l' If ~8 ~ [c][a]r then ~6 

generates the whole of e in gjegj +l . In this case rhs Q(~6) = land 

lhs Q(~6) = ~, so case (A) applies. 

Let r be the arc H-embedded in r with ar = a8 and ~r = [a]r[c] for 

some r~O (see figure 3.33). Assume 8Ur is not contractible in r 

otherwise ~8 ~ [c][a]r. Isotop 8ur so that 1~(6U8ur)1 is minimal. 

Now lhs Q(~6)'rhs Q(~6U8)'rhs Q(~r) 

= l'e'l 

= 1 in G. 

Hence ~m(6) ~ ~(6U8ur)' The result now follows as in case (3). 

figure 3.33 
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case (5): [PIJ'"[px](a,c,f](py]'"[pz][S,a,r] 

Let 6, B c a be the subarcs H-embedded in r defined by 

~6 = [PI]'" [px] 

~o = [a,c,f](p ]"'[p ] . .., y z 

Then, B connects the NW end of the H-piece associated to gk to the SE 

end of the H-piece associated to gl' Let r be the arc H-embedded in 

r with ar = aB and so that ~r is a sequence of raj's and [S]'s so that 

the first picture is [S] and there are (k-l) [S]'s in total, all of 

which are followed by [r]. This situation is shown in figure 3.34. 

If Bur is contracible in r then rhs Q(~ 6) = 1 and Ihs Q(~ 6) = <1>, 

so case CA) applies. So assume that Bur is not contractible in r. 

Isotop Bur so that 1~(6UBur)1 is minimal. 

Now Ihs Q(~6)'rhs Q(~6uB)'rhs Q(~r) 

= l'e'(g g "'g ) 
1 2 k 

= 1 in G. 

Hence ~m(6) ~ ~(6uBur)' The result now follows as in case (3). 

case (1): [P1]"'[a,a,r][py]"'[pz][S,a,r] 

Let 6, f) c a be the subarcs H-embedded in r defined by 

~6 = [PI]'" [a,a,r] 

~B = [p ] ... [p ] 
y z 

Let r be the arc H-embedded in r with ar = ae and ~r = [r]. . Then 

1~(6UeUr)1 is minimal, and 
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Q(~6)'rhs Q(~8ur) 

= g-l eg 

= 1 in G. 

figure 3.34 

Therefore (by lemma 3.7.2) ~m(6) ~ ~(6U8ur)' 

From the above argument (3.7.3), there are nine possibilities for 

~6 = [S)r[a,c,r) 

or ~6 = [S)r-l[a) [a,c,r) 

or ~6 = r A A r) [b) [a,c, . 

These reduce to four after eliminating those which are inconsistent 

(such as [a)[r)) and those which contradict the minimality of I~ I. 
a 

The possibilities which remain are 
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(i) ~6 = [S]r[a] 

(H) ~6 = [S]r[r] 

(Hi) ~6 = [S]r-l[a] [c] 

(iv) ~6 = [b]r[c] . 

The figures on ·the following pages show each of these cases. The 

part of each figure labelled (a) shows the arc 6. The other parts 

of the figures show (m(6))+ in the various circumstances described 

below. 
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(a) 

(c) 

(b) 

figure 3.35(i) 
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(a) (b) 

figure 3.35(ii) 
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(a) (b) 

figure 3.35(iii} 
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( a) 

(b) 

figure 3.35(iv) 

3.7 Proof of main theorem 139 



Figure 3.35(i). Part (a) shows the arc 6 corresponding to case (i). 

If g' is the first generator in a factor of G then part (c) shows 

m(6), otherwise m(6) is as shown in part (b). If g1,"',gr e Gi then 

g' e Gi +1. There are at least two generators in Gi +1 so g' cannot be 

both the first and last generators, and either (b) or (c) must apply. 

For the situation depicted in (b), l~m(6)1 is minimal. Since there 

is a unique shortest film for each homotopy class of arcs in r (3.5.1), 

these two films must be the same. But their leftmost pictures differ: 

~(6UBUI) = [6]"', 

~m(6) = [c] .. ·. 

This gives a contradiction. 

For the situation shown in (c) there are places where m(6) is left 

on r and not laid onto r+. These possible obstructions to m(6) are 

all like the arc in the picture [b]. The example above (3.7.1) shows 

how such arcs can be laid flat onto r+: m(6) moves into columns on 

the left (ie. in the W-ward direction) only. When ~m(6) is isotoped 

to minimise l~m(6)1, the rightmost picture remains [c]. The rightmost 

picture of ~(6UBUI) is [t]. Hence, the two films are different: a 

contradiction. 

Figure 3.35(ii). Part (a) shows the arc 6 corresponding to case (ii), 

and part (b) shows the corresponding m(6). If g ... g e G
i 

then l' , r 

, _ ( )-1 
g - gr+1 ' and g' is not the last generator of G. otherwise 

1. 

g1"' gr+1 is a trivial subword of wt . As in (i) part (c), there are 
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possible [b]-type obstructions to laying m(o) flat on r+. When these 

are dealt with, and I ~m(o) I is minimised, the leftmost subfilm of 

~m(o) is [S]r+1 .... Since ~(OU8U~) = [S]r[t]··· the two films differ: 

a contradiction. 

Figure 3.35 (iii) .. - Part (a) shows the arc 0 corresponding to case 

(iii), and part (b) shows the corresponding m(o). _ If gl'··· ,gr e Gi 

then g' e Gi - 1 Also, gr is not the last generator in Gi since wt has 

no trivial subwords, and co(wt ) ::F <1>. As before, possible [b]-type 

obstructions are indicated, and these can be dealt with as in 3.7.1. 

When I ~m(o) I is minimised, the leftmost subfilm of ~m(o) is [S]r ... , 

and ~ S r-1 a A since 'P(oU8U~) = [] [][c]··· the two films differ: a 

contradiction. 

Figure 3.35(iv). Part (a) shows the arc 0 corresponding to case (iv), 

and part (b) shows the corresponding m(o). If gk-r+1'··· ,gk e Gi then 

g' = gk-r' and g' is not the first generator of Gi otherwise there 

would be a trivial subword of wt which is impossible. The places where 

possible [b]-type obstructions may occur are indicated and these can 

be dealt with as before. When l~m(5)1 is minimised, the leftmost 

picture of ~m(o) is [a], and the leftmost picture of ~(OU8U~) is [b]. 

This contradicts the fact that the two films are equal. 

It was assumed above that r = 1~51 > o. If r=O then [a,c,t] is the 

leftmost picture in ~and so must be [a]. The argument incase (i) a 

can be applied without modification. 
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case (7): [PI 1 ••. [a,c, il [pyl ... [pzl [b ,d, fl 

Let 6, e c a be the subarcs H-embedded in r defined by 

~6 = [PIl··· [a,c,i], 

~e = [pyl··· [pzl [b,d,fl· 

Let l be the arc H-embedded in r with al = ae and where ~l is a sequence 

of [a] 's and (k-2)" [b] 's which terminates with [c] as the rightmost 

picture. (Recall that k is the number of generators in the factor of 

Gconcerned). Then 1~(6UeUl)1 is minimal, and 

rhs Q(~l) = (gk-I)~···(g3)~(g2)~· 

Now 

Q(~6)·rhs Q(~eUl) 

= (g )~e(g )~(g )~ ... (g )~(g )~ 
I k k-I 3 2· 

= 1 in G. 

Hence, (by lemma 3.7.2) ~m(6) :::: ~(6Ueun. The argument now follows 

in the same way as for case (1). 

case (11): [p
1
]···[a,c,i][py]···[pz ][b,d,f] 

Let 6, e c a be the subarcs H-embedded in r defined by 

~6 = [PI]··· [a,c,i], 

~e = [py ] ... [pz][b,d,f]. 

Let l be the arc H-embedded in r with al = ae and ~l = [S][a]r[i]; for 

some r~O. Then rhs Q(~l) = gjgj+l· 

The film ~(eUl) does not have minimal length. This is because the 

subfilm formed from the rightmost picture of ~e followed by the 

leftmost picture of ~l is [b,d,f][S] which can "be replaced by the null 
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film, [e] or [c]. Assume that Bul is isotoped in r to achieve this 

replacement. Then 1~(6UBUl)1 is minimal. Now 

Q(~6)'rhs Q(~BUl) 

= (gj+1)-le(gj r 1gj gj +1 

= (gj+1 r1egj+1 

= 1 in G. 

(before isotopy of BUl) 

(after isotopy of BUr) 

Hence, (by lemma 3.7.2) ~m(c5) = ~(6UeUr)' The argument now follows 

in the same way as for case (1). 

The cases when wt #l are analogous. This exhausts all the 

possibilities. The proof of theorem 3.1.2 is completed by noting that 

the converse follows directly from the definition of decomposable. 0 
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GLOSSARY OF SYMBOLS 

General Symbols 

~, z, ~ sets of natural, integer, real numbers 

Z set of integers mod n 
n 

~n n-dimensional Euclidean space 

sn topological n-sphere 

~ empty set 

B n-string braid group 
n 

e, B a braid and its closure 

X(F) Euler characteristic of the surface F 

aF boundary of the surface F 

IT 1 (X) fundamental group of X 

H1 (X) first homology group of X 

rk(X) rank of first homology group of X 

~(L) multiplicity of the link L 

c(L) order of the link L 

s(L) braid index (or Seifert circle index) of the link L 

g(L) genus of the link L 

X(L) Euler characteristic of the link L 

~(L) regular projection of the link L 

VL(z) Conway polynomial of the link L 

VL(t) Jones polynomial of the link L 

PL(v,z) two variable polynomial of the link L 

L
1

#L
2 

product or connected sum of two links 
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cCD) 

sCD) 

D ~':D 
1 2 

number of crossings in the diagram D 

number of Seifert circles in the diagram D 

*-product of two diagrams 

G1*G2 , 

[] 

free product of two groups 

end of proof 

Special Symbols 

7
4

, 9
43 

etc 8 

D+, D_, DO for diagrams 23 

X+, X where X is a subset of surface 

eg: F+, F , a+, a 73 

hCV), h(P) 35 

maxdeg, mindeg 32 

R , A region/loop around ~ 73 
a a 

r surface composed of H-pieces 80 

~ , I~ I where a is an arc 84 a a 

~a ~ ~6 where a, 6 are two arcs 91 

n the map which associates an element 
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band 
block 
braid 

closed 
composition 
decomposable 
elementary 
group 
homogeneous 
index 
positive 

cut vertex 
cutting a graph 

diagram 
alternating 
connected 
equivalence 
homogeneous 
irreducible 
positive 
special 
standard 

edge path 
equivalence 

-, reduced 
end 
equivalence of 

diagrams 
edge paths 
links 

Euler characteristic 

factorisation 
-, trivial 
film 

length 

genus 
generator 

adjacent 
first 
following 
last 

INDEX OF DEFINITIONS 

71 
20 
11 
12 
11 
66 
11 
11 
11 
12 
11 

20 
20 

8 
10 

9 
9 

20 
9 

10 
22 
10 

88 
88 
89 
79 

9 
88 

2 
5 

65 
65 
84 
84 

·5 
75 

93,94 
94 
93 
94 

graph 
cutting at a vertex 
homogeneous 
Seifert 

H-embedded 
properly 

H-piece 
holonomy 

isthmus 

knot 
(see also link) 
companion 
double 
-, untwisted 
pretzel 

link 
(see also knot) 
alternating 
arborescent 
boundary 
cable 
connected sum 
equivalence 
factor 
fibred 
homogeneous 
pattern 
positive 
prime 
product 
*-product 
satellite 
split 
standard 
tame 
torus 

, trivial 
loop around an arc 

multiplicity 
Murasugi sum 

20 
20 
20 

81 
81 
79 

121 

20 

2 

3 
4 
4 

49 

2 

10 
42 

5 
4 
3 
2 

3,65 
6 

20 
3 

10 
3,65 
3,65 

22 
3 

3,65 
10 

2 
4 
2 

73 

2 
6 
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order 7 index 7 
, type I, II 22 

picture 82 disc 70 
projection graph 20 

decomposable 66 smoothed crossing 7 
irreducible 7,66 surface 
regular 7 Murasugi sum 6 
surface 19,71 projection 19,71 

spanning 4 
region around an arc 73 
Reidemeister moves 9 tangle 12 
relator 76 
resolution 23 word 

, based diagram 27 anti 103 
-, standard 27 co- 104 

factor 101 
Seifert 

algorithm 5,13 
circle 7 
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