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ABSTRACT 

In practice, many pressure vessel and piping components are subjected to load 

combinations which can be quite complex. The standard design codes make a 

simplifying assumption that peak stresses for different loads occur at the same 

location, resulting in a conservative rule. 

A plain pipe, pipe bend, tee branch and torispherical head with nozzle were modelled 

using the P AT RAN code and stress analysis studies were conducted using the finite 

element codes AS AS and ABAQUS. The components were subjected to individual 

loads of internal pressure, axial thrust, bending moment and torque. A computer 

program was developed to examine the behaviour of the structures subjected to 

combined loads and to plot first yield load interaction diagrams for any combination 

of loads. A limited geometrical nonlinear analysis with combined loading was also 

carried out for two pipe bends and the branch junction to assess the effect of excessive 

deformation and nonlinear load coupling on load interactions. 

In general, the results showed that the load interaction relations predicted by the linear 

elastic finite element method (FEM) and linear superposition of stresses are less 

conservative than those proposed by the design rules. For the pipe bends, when the 

geometrical nonlinearity and nonlinear load coupling are taken into consideration, the 

present prediction becomes more unconservative than both the linear FEM and 

standard design rules. Proposals are being made for a change in the current British 

Standard design code. 
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NOMENCLATURE 

The nature of the study makes it impractical to standardise the symbols for all the 
components. The symbols which are unique to a component are defined under its own listing. 

R radius of pipe 
D diameter of pipe 
T thickness of pipe 
U normal stress 
T shear stress 
P internal pressure 
To torque 
M bending moment 
Faxial force 
y, Uy uniaxial yield stress 
~ = P/Py , non-dimensionalised first yield pressure 
To = TjToY' non-dimensionalised first yield torque 
M = M/My, non-dimensionalised first yield bending moment 
F = F/Fy , non-dimensionalised first yield axial force 
I second moment of area 
Z section modulus 
E elastic modulus 
JI Poisson's ratio 
C AS ME III secondary stress index 

Suffices 
h, a, r 
max 
x,y, z 
y 
1,2,3 
i, 0, m 
vM, TR 
n 

Note 

hoop, axial and radial directions of pipe 
maximum 
Cartesian coordinates 
at first yield 
principal values 
inner, outer and mean 
von Mises, Tresca 
nominal 

1. Diameters and radii without suffices are assumed to be mean values. 
2. Other notations are defined in the text as they appear. 
3. When quoting from a Code, the notation/definition of that particular Code will apply. 
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Pipe bend 

r 
R 
b 
A 
~ 
(J 

Tee branch 

D,R,T 
d, r, t 
~ 
e 

suffices 
b,r 
c, f 

mean radius of pipe 
bend radius of elbow 
= Rlr, bend radius ratio 
= TRlr, pipe factor 
axial direction, ~ =00 at elbow mid-section 
hoop direction, (J=O° at extrados 

diameter, radius and thickness of run pipe 
diameter, radius and thickness of branch pipe 
hoop direction of branch pipe 
hoop direction of run pipe 
height of weld, measured from intersection 
horizontal width of weld, measured from intersection 
moment about the x-axis, acting on the run pipe i.e. run pipe torsional 
moment (other moments can similarly be identified and defined by the 
suffices) 

branch, run 
crotch, flank 

definition of terms 
crotch line the intersection line between the branch and run pipes inside surfaces 
crotch corner the point where the crotch line intersects the longitudinal plane 
diameter ratio d.n/Dm 
thickness ratio tIT 

Torispherical head with nozzle 

D 
R 
d 
T 
t 
rk 

L 
H 

diameter of cylindrical shell 
radius of cylindrical vessel 
diameter of nozzle 
thickness of vessel 
thickness of nozzle 
knuckle radius 
crown radius 
head height (to mid-wall) 
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CHAPTER 1. INTRODUCTION 

In recent times, the severe operating conditions of power and process plants have become 

more demanding on the design of the piping systems and pressure vessels. The function of 

these components is to contain and transport fluids, sometimes under high pressure and 

temperature. The most important design aspect is to ensure satisfactory service of the 

component under a combination of loads. 

The design procedures are recommended by standard design codes such as the American 

ASME and British BS design codes. Although they have been used for many years, until 

recently a limited amount of stress analysis information existed by which the safety margin 

of the codes could be judged. Many attempts have been made to eliminate design weaknesses 

in the codes, with limited success over a narrow range of the geometric parameters. However 

the design procedures are constantly being revised as a result of many studies. The most rapid 

change in piping design criteria started in the 1950s which was brought about by the concern 

for nuclear accident safety and by the need to update the codes based on new understanding 

of piping behaviour. In cases where the data are still limited or the results are unsatisfactory, 

the finite element approach has been used to confirm or establish a more thorough 

understanding. 

The various codes contain simplified design formulae for placing bounds on maximum stresses 

in the piping systems. A simple equation is given in terms of stress indices or stress 

intensification factors which reflect the capacity of various piping components to carry load 

without a specific stress or deformation being exceeded. In the ASME code, the limit on the 

calculated stress is based on its location, distribution and origin. In the Codes, the rules for 

combining the maximum calculated stress for combined loads are set - in Section NB-3652 
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of ASME III and in Section 4.11 of BS 806. The equations aim to ensure that every point in 

the structure conforms to the limiting stress. However, the equations which are based on the 

simple pipe theory are too simplified for use with the more complex tee branch. The 

development of numerical techniques has made it possible to determine stresses in detail. It 

is not reasonable any more to retain the same values of stress factor, allowable stress or even 

the method of combining stresses, as had been used. The aim would be either to shift from 

the use of standard design rules toward detailed analysis or to improve on the existing set of 

rules. 

The stress state at any point in a structure may be defined by the three principal stresses by 

which the designer must compare and interpret against failure modes such as excessive 

deformation, fracture, creep deformation, incremental collapse or fatigue. The designer must 

also consider a suitable failure theory in order to define how the various stresses react and 

contribute to the strength of the structure. In relation to the ASME code provision on failure 

mode, the present first yield study is similar to limiting the primary and secondary stresses. 

The elastic analysis does not describe the full situation. Even in cases where yielding has 

occurred, the vessel could be successful in containing a higher load. On the other hand, there 

are cases where vessels show excessive distortion at a load lower than expected. In this study, 

the structures are assumed not to fail by other modes before initial yielding takes place. The 

linear elastic finite element method (FEM) has been applied to a range of piping components 

such as the plain pipe, pipe bend, tee branch and torispherical head with nozzle, and the results 

evaluated against relevant theories and design rules. The study provides a description of the 

procedure to determine the stress field in a structure and to verify its proximity to yielding 

when subjected to a series of combined loads. 
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The principle of superposition of stresses from individual loading has been applied to produce 

interaction curves. The method is questionable where large cross-sectional ovalization from 

bending affects pressure stresses. This non linear coupling has been studied in detail in pipe 

bends where the (Haigh) effect is most significant. The calculation of the yield loci are 

laborious, hence a computer program and curves are presented for all the components. 

The plain pipe is the simplest component with only one independent geometric parameter, i.e. 

orr, while the more complicated tee branch and the torispherical head have more than two 

independent parameters. For this study, four models of the plain pipe and sixteen models of 

the pipe bend were sufficient to evaluate the effects of geometric parameters on stress 

behaviour and load interaction. A single model of the tee branch and torispherical head was 

studied. Depending on the component, the models were subjected to separate loadings of 

internal pressure, torsion, bending moment and axial force. The individual stresses were then 

combined to determine the first yield behaviour of the model when subjected to the loads. 

In the plain pipe, four models were selected with Orr=5, 10, 15 and 24.5. After performing 

convergence tests on the thinnest model, a finite element mesh was chosen and implemented 

for all the plain pipe models. The moment loads were induced by nodal forces applied at the 

end the pipes. Together with internal pressure and axial force, the stresses from these 

individual loads were compared with the exact pipe solutions to verify the finite element 

model. The present study introduces a superposition method which uses the individual stress 

result to determine the yield behaviour when any two loads interact. In the plain pipe, the 

method of dealing with combined loads is well understood. The stresses are readily available 

from the theory of solid mechanics. The method was also compared to the BS code to evaluate 

its yield criterion and assumptions. The discussions in Chapter 4 assesses the results from the 

FEM in the light of the current design rules. 
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In the pipe bend, the models were grouped into four values of bend radius ratios, i.e. b=2, 3, 

5 and 7. For each value of b, there were four models with different pipe thicknesses, Le. 

Off=lO, 20, 80 and 150. The finite element mesh and the methods of loading of the pipe 

bends were based on the plain pipe. The elbow models were subjected to individual loads of 

internal pressure, torque and in-plane bending moment. The individual stresses in the elbows 

were compared to an energy method and the BS and ASME codes. The superposition method 

was again utilised to determine the first yield load interaction of the models. A computer 

program was written to interpolate stresses for any given intermediate values of b and Off. 

The superposition method which was incorporated into the program could determine the load 

interaction behaviour for any given elbow. A geometrically nonlinear FE analysis was carried 

out to investigate the extent of cross-sectional ovalization in two elbow models due to 

individual loads. The nonlinear analysis was then extended to include simultaneous application 

of in-plane bending moment and internal pressure to evaluate the nonlinear coupling between 

the two loads. An experimental test was also carried out to determine the stress behaviour of 

an elbow subjected to internal pressure and an opening in-plane moment. 

The tee branch and torispherical head with nozzle are more complex than the plain pipe and 

pipe bend in terms of finite element modelling and the geometric effects on the stress 

behaviour. However, a single particular geometry of both components were modelled and 

analyzed. Convergence tests were carried out to find a suitable mesh and element type. In the 

tee branch, two weld profiles were modelled to see the effect of the weld size on stresses at 

the intersection. In a preliminary study to determine stress convergence, a tee branch model 

with two layers of elements through the wall thickness was analyzed for pressure load. The 

hoop stress distribution on the inner surface of the intersection, from the 1-element and 2-

element thick models were compared. 

4(A) 



The torispherical head with nozzle was based on an experimental model which was tested at 

Liverpool. The load interactions of the tee branch and torispherical head were generated by 

the superposition method and compared to results compiled at Liverpool and to design codes. 

4(B) 



CHAPTER 2. STRESS ANALYSIS OF PIPING COMPONENTS 

2.1. GENERAL REVIEW 

2.1.1. Plain pipe 

The purpose of pipe design is to ensure that it is able to withstand deadweight, pressure, 

thermal load and bending stress caused by external loads. The present analysis is concerned 

with initial yield of straight pipes when subjected to combined loads which are often 

simplified to internal pressure, bending moment, torque and axial force on the pipe. For the 

various load categories, yielding occurs at specific locations but when these loads act 

simultaneously, the yield behaviour becomes more complicated because the location of initial 

yield shifts as the load combination varies. 

Stokey et al [1] and Larson et al [2] theoretically investigated yielding of thick- and thin

walled pipes subjected to internal pressure, axial force, bending and torsion; the analyses 

were done using the Tresca yield criteria. Franzen and Stokey's [3] work was concerned with 

the experimental elastic-plastic behaviour of pipes. 

Comparisons are made herein with thick-walled pipe theory using the von Mises strength 

criterion. Some of the results will be compared to the experimental results of Reilly [4] and 

BS 806 [5] code. Exact solutions are available for stresses in cylindrical straight pipes by 

which numerical methods and standard design rules can be assessed. 

It is desirable that during the loading process, the pipe should retain its circular cross-section 

and in the case of bending, the pipe should bend with a uniform radius of curvature. For 

pipes with (DfT < 40), it is known that departure from ideal bending is not of great 
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importance. Pipes with relatively thinner walls are more prone to the above problems and 

may develop local buckles. Pipes with DfT lower than 100 are commonly used in power and 

process plants and in offshore structures. 

2.1.2. Pipe bend 

Elbows are used in piping systems for layout requirements and to give additional flexibility 

which is achieved at the expense of higher stress levels than would be expected from simple 

bending theory. In the operating condition, various loads such as dead weight, anchor loads 

and thermal loads are transmitted to the curved region. It is important to be able to determine 

how the elbows behave under these loads. The geometrical aspect of the pipes, together with 

the loading conditions which are used in this study, are typical of those used in the chemical 

industry and power plants. 

The study will look at some parameters which affect the pipe performance such as the effect 

of variation of dimensions, the influence of attached pipes and the effect of various load 

combinations on yielding in elbows. This work considers in-plane bending, torsional moment 

and internal pressure. A torsional moment at one end of the elbow is converted to an out-of

plane bending moment on the other elbow end. Hence for this load it is also necessary to 

study the stress behaviour along the meridional direction of the elbow. The case of torsional 

moment load shall sometimes be referred to as out-of-plane moment load. 

Many studies on elbows have been reported. Early work on pipe bends was carried out by 

von Karman [6] who developed a theoretical formulation for in-plane moment on elbows 

using the Rayleigh-Ritz method. Later works have resulted in formulae for out-of-plane 

bending by Vigness [7] and combined in-plane bending with internal pressure by Barthelemy 

[8]. Within the geometrical limits of the elbow (A~0.5), the solutions of Karman and Vigness 
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still give sufficiently accurate design. The effects of internal pressure were studied by Kafka 

and Dunn [9] and the effects of attached pipes were investigated out by Rodabaugh, Iskander 

and Moore [10], Natarajan and Blomfield [11], Thomson and Spence [12], Thomas [13] and 

by Ohtsubo and Watanabe [14]. 

The energy methods developed by Von Karman [6] and Vigness [7] were extended by 

Rodabaugh and George [15] in an attempt to analyze the coupling effect of internal pressure 

on stresses when subjected to in-plane or out-of-plane moment. Using strain energy methods, 

they developed theoretical formulations to establish hoop and axial stresses which will be used 

in the present study. Prior to the above study, the effect of pressure was thought to be 

negligible because thick-walled pipes were being used commonly. 

Findlay and Spence [16] presented a theoretical solution for in-plane bending of pipe bends 

with flanged ends, based on energy methods. The solution of the problem with membrane 

theory was given by Flugge [17] and later by Ory and Wilczek [18]. In recent years, Lang 

[19] provided a complete description of stress fields in bend pipes based on the method of 

toroidal elasticity. Lang commented that a defect in the ASME code for pipe bends is the 

absence of compatibility equations to determine topologically correct deformation fields. The 

toroidal elasticity method [19] was said to give an accurate model of ovalization which is 

useful in determining the discontinuity stress fields between an elbow and the tangent pipe. 

For in-plane closing bending moment, the outer fibres on the extrados are displaced towards 

the neutral plane and the tube flattens so that the cross-section becomes oval in shape. It is 

well-known that the progressive ovalization of thin-walled elbows is more prominent than in 

thick-walled elbows. The deformation is less at the elbow ends where it is usually restricted 

by flanges or attached pipes. Unlike in-plane moment, torsional moment causes deformation 
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which is not symmetrical about the elbow mid-section; maximum ovalization occurs nearer 

to the end with pure out-of-plane moment. Many simple theories are based on the assumption 

that 'end effects' can be neglected. These theories assume that all cross-sectional planes of 

the elbow respond to applied loads in the same way, regardless of any end attachment. Dhalla 

[21], Kano et el [22] and Thomas [13] addressed the end effects of elbows and noted that the 

presence of constraints at the bend ends increases stiffness and reduces stresses in the elbows, 

similar to Spence and Thomson's [23] finding on flange-ended elbows. 

Hoffmann and Roche [24] and Solal [25] noted that the behaviour of thin-walled elbows is 

different when they are subjected to a closing or opening in-plane bending moment. In an 

experimental investigation, Wassermann [26] noticed that internal pressure increased the 

bending hoop stress by as much as 11 %. A closing moment gave a higher increase than an 

opening moment. 

Fujimoto and Soh [27] carried out finite element and experimental stress analyses on elbows 

with Dm/T~ 100 and 0.01 ~A~0.2, in an attempt to determine the stress indices of thin

walled elbows. These parameters are beyond the application limits of the ASME [28] code 

and the behaviour of such geometries are scantily reported. The problem of finite element 

analysis is the suitability of element formulation and meshing. 

There were many attempts to address the stress indices of the ASME [28] code. The 

flexibility of elbows has been studied extensively and has resulted in equations which form 

the basis of the present ASME [28] piping system design. A number of assumptions and 

approximations were used to simplify these formulae such as linear elastic material, linear 

shell theory, initially geometrically perfect pipe and no end effects. Natarajan [29] proposed 

empirical formula of stress indices due to moment loadings and so did Ohtsubo and Watanabe 
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[14] and Thomson [30]. All the authors gave values of 'C' indices which were lower than 

AS ME [28], very slightly for the in-plane and quite substantially for the out-of-plane moment. 

The aim of this study is to provide, by the use of the finite element method, an understanding 

of the elastic behaviour of elbows and to assess some standard design rules and analysis 

methods. The first part of the analysis is aimed at confirming the elastic behaviour of a wide 

range of elbows by comparing the results with those from theoretical analyses and design 

codes. The next part deals with the first yield behaviour of elbows when two types of load 

act simultaneously. The load interaction diagrams allow the engineer to assess the amount of 

conservatism of standard design rules. The structural behaviour of a sample carbon steel 

elbow was also investigated experimentally. The elbow was loaded with internal pressure 

or/and in-plane opening moment to study the effects of single and combined loads. 

2.1.3. Tee branch 

In power plants and petrochemical industries, a pressure vessel with a nozzle or a pipe 

intersecting another pipe is a common configuration. In pressure vessels, the nozzle diameters 

are comparatively small but piping tee connections of equal diameters occur commonly in 

many industrial applications. Standard design rules and theoretical formulations for junctions 

with large diameter ratios are either not available or do not predict actual stresses 

satisfactorily. 

In normal operation, a tee branch junction is mainly subjected to the pressure of the fluid 

which it transmits. The pressure loading generates one of the highest stresses. Other 

significant stresses may occur due to the pipe deadweight, thermal effects, anchor and hanger 

loads and seismic loads. In a tee branch junction, the external loads acting on the limbs 

transmit moments and forces to the intersection region. Very little is known about the 
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response of pipe connections to a complete set of all the moments and internal pressure. 

However, a fair amount of information exists on certain sets of loadings such as a 

combinations of moment loads on the branch pipe. 

This study is intended to provide the designer with a method of predicting the maximum von 

Mises effective stress at the intersection of a particular branch junction when subjected to a 

combination of internal pressure and external moment loads. The butt welding forms a weld 

fillet at the outer intersection between the branch and run pipes. The branch junction was 

assumed to be fully fixed at one end of the run pipe. External loads of in-plane, out-of-plane 

and torsional moment were applied at the free ends of the pipe limbs. Fig. 1 shows the 

'cantilever' method of supporting the structure and the moment loads. 

The present study is to present a finite element model to study the stresses near the 

intersection of the branch junction for a dID ratio of 0.8 and a D/T ratio of 20. The model 

utilised a single layer of 3-D isoparametric elements throughout the structure. The loads were 

assumed to produce small deformations of the structure shell, hence the solution of 

geometrically linear analysis was assumed. The terms 'tee', 'tee branch', 'branch junction', 

'tee junction' and 'tee connection' shall be used synonymously. The terms 'vessel' and 

'nozzle' are also used in a similar context to 'run pipe' and 'branch pipe' respectively. 

From the start, the stress analysis of tee branches was recognised to be complicated because 

of its non-axisymmetric nature and the number of variables involved. Any solution would 

require both theoretical and experimental efforts. Designers have used the American Pressure 

Vessel and Piping codes since the 1940s. Up to the 1970s, a large amount of information has 

been gathered which indicated that the design codes were conservative. Up to the mid 1970s 

most of the work on pipe intersections was experimental. From then on analytical treatment 
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has been given more serious attention. 

Before the 1980s, not much effort has been expended to look into branch junctions with 

dID> 0.5. The available results for such diameter ratios were limited to specific geometries 

of DIT and tIT. Hence even to this moment, there is a gap between theoretical and 

exoerimental results for various DIT and tIT ratios for branches with dID> 0.5. 

FIG. 1. CANTILEVER MODEL OF TEE BRANCH JUNCTION, SHOWING 

MOMENT LOAD VECTORS ACTING ON LIMBS. 
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Theoretical formulations, such as that developed by Bijlaard and Steele, have found their way 

into Welding Research Council [31][32] formulations and US design codes. The application 

of earlier formulations was limited by the assumptions made in their derivation. In the 1960s, 

the development of the finite element method increased the capability of solving complicated 

engineering problems. Nowadays this approach has been facilitated by advances made in 

computational methods to solve complex problems efficiently and economically. The finite 

element method is now considered to be the most useful method of analysis. The experimental 

method of analysis has been employed using electrical strain gauges or the photoelastic 

method. Very accurate results have been obtained on carefully prepared test specimens. The 

following literature review represents a brief summary of studies which have contributed to 

the development of the present state of understanding. More detailed surveys on the work of 

other investigators can be found in Refs. [33] and [34]. 

The experimental determination of elastic stresses in shell intersections has been the subject 

of numerous studies. In 1969, Gwaltney et al [35] combined finite element analysis and 

experimental tests to determine stresses on the inner and outer surfaces of machined tee 

branches (with DIT = 50 and 100 and dID of up to 1.0) undergoing six moment categories and 

internal pressure. In 1972, Corum et al [36] carried out theoretical and experimental analyses 

on thin piping tees of up to cla/Oo = 1.0, for forces, moments and pressure loads. 

Corum et al [36] reported the pioneering analytical solution of Reidelbach in 1961. In 1965 

under the sponsorship of ASME's Pressure Vessel Research Committee, Wichman et al [31] 

produced a document providing guidance for the evaluation of localized stresses in pressurised 

shells due to external loads. The analytical work was based on theoretical results derived by 

Bijlaard [37] using the 'flexible loading surface' approach, thus limiting the usefulness of the 

results to ~/DmS;0.25. In Bijlaard's model, the branch pipe thickness does not influence 
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stresses in the run pipe because he assumed that the branch pipe moments acted directly on 

the run pipe shell through a pad loading. In 1967 Bijlaard et al [38] formulated a solution to 

include the case where the vessel and nozzle were of equal diameter. 

In 1969, using Donnell's equations for both pipes, Eringen et al [39] improved on 

Reidelbach's solution and provided numerical results for tee branches when subjected to 

internal pressure, but the diameter ratio was limited to less than 113. In 1972 Lekkerkerker 

[40] treated the problem of thin-walled and small diameter branch pipe intersections using 

Flugge's equations. 

In 1980, McBride and Jacobs [41] proposed a simplified method for calculating membrane 

and bending stresses in branches with large diameter ratios. The method provided an estimate 

of average primary membrane and primary bending stresses, on which the proposed 

allowables in AS ME are based. 

In 1985, an experimental study at Liverpool by Moffat [34] on branches of equal diameter 

ratio and with D/T ratios ranging from 11.4 to 41.4, resulted in parametric equations for 

maximum stresses. Combining test results from other studies, Moffat presented a set of plots 

showing the effect of RmIT ratio on Tresca effective stresses, for external moment loads. 

Load interaction in tee branches was the subject of another experimental investigation by 

Moffat and Mistry [42] in 1988. In 1991, in an attempt to investigate the influence of dID, 

D/T and tIT ratios on the stress levels due to seven load categories, Moffat et al [43] 

presented effective stress factor (ESF) values for a wide range of branch junctions using the 

finite element method together with the experimental test results in Ref. [34]. Moore and 

Rodabaugh [44] realised the complexity of the problems of interacting loads. They mentioned 

13 



the theories of Schroeder and Ellyin and Turkkan [45] which required computer programs for 

evaluation. 

The AS ME and BS codes on tee branches are the result of many studies. Boyle [46] quoted 

the works of Money, Leckie and Penny, Decock and Markl that had contributed to the present 

BS formulations. The pressure loading stress indices in ASME were developed by Rodabaugh 

and Moore [47] from the correlation of experimental and finite element analysis data. 

A theoretical and experimental investigation into pressure and branch pipe bending moment 

interactions was carried out by Schroeder et al [48] in which theoretical curves for limit 

interaction were presented and compared with test data. In Schroeder's test, the branch 

intersection was at a distance of 2.5 Dm away from the ends and the tests were done with the 

run pipe limbs fully fixed. 

Most theoretical methods described in the literature were based on the shallow shell theory 

which was applied to junctions without fillets at the intersection. In the shallow shell theory, 

the problem was simplified by having the branch pipe diameter comparatively small to that 

of the run pipe. The curve of the intersection is then nearly a circle in the developed shell 

surface as long as the diameter ratios are less than 114. Many analytical equations were based 

on this shallow shell assumption, among others, the solutions which were presented by Leckie 

and Penny [49], Donnell [50] and Flugge [17]. The solutions by Donnell and Flugge formed 

the basis of many later works which extended the limitations to include wider ranges of 

thickness and diameter ratio. An example is Bijlaard et aI's [38] work which presented results 

for thick tee branches with equal diameters using Flugge's equations for both shells. The 

shallow shell theory gives doubtful results in connections with large diameter ratios because 

the assumptions ofaxisymmetric nozzle and circular vessel cutout no longer holds. Analytical 
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solutions for diameter ratios with less than 113 have been obtained satisfactorily but ratios 

greater than 0.5 are still being studied. 

Ref. [31] was updated in 1984 by Mershon et al [32] who provided further improvements in 

the methods for determining local stresses in branch junctions of up to ~/Dm~0.5. Mershon 

indicated that Bijlaard's solutions could be inaccurate for axial thrust and out-of-plane nozzle 

load when dID ratios are large. Mershon's design proposals were based on Steele and Steele's 

[51] theory using Flugge-Conrad and Sanders-Simmonds' shell theory solutions. Later Steele 

[52] extended the analysis to include large diameter ratios and flexible nozzles. 

In 1991, Mokhtarian and Endicott [53] presented formulations for maximum bending and 

membrane stresses in the vessel and nozzle, due to pressure, from a parametric study 

performed with a computer program developed by Steele and Steele [51]. Within the limits 

of the program, the results were reported to be accurate up to dID =0.5. 

More recently, the problem of externally applied loads on tee branches has been investigated 

using finite element procedures to verify and supplement experimental and theoretical results. 

Without proper criteria to assess the quality of finite element solutions, errors in element 

selection and setting up the model, can lead to undetected errors. Most earlier analyses using 

shell or flat plate elements gave reasonably good agreement with experimental data in areas 

away from the pipe junction, but the comparison was poor at the junction. In 1969, Prince 

and Rashid [54] demonstrated the use of triangular plate elements in tee branches subjected 

to internal pressure. 

During the 1970s, a number of studies called for improved element formulations and for finer 

meshing at the pipe junction. In 1972, Corum et al [36] used flat plate shell elements to 

15 



model thin intersecting cylinders subjected to all load categories. They found that the finite 

element predictions agreed well for cases involving loadings on the nozzle, except for nozzle 

torsional moment. Subsequent analyses employing 3-D elements gave better results in the 

vicinity of the junction. The use of such higher order 3-D elements was not common due to 

lack of the element in some packages. In 1973, Bakhrebah [55] modelled the structure by 

using 3-D elements in the critical intersection region and 2-D curved shell elements in regions 

away from the intersection. In 1978, a study by Gantayat and Powell [56] on the 

characteristics of different elements showed that the use of unmodified 8-node elements on 

thick- and thin-walled tubular tee gave poor performance. 

The use of the finite element method to study tee branches of equal diameter was carried out 

by in 1985 by Lock et al [57]. They studied in-plane moment loadings and internal pressure 

using 20-node brick elements. The program was extended to include out-of-plane and twisting 

moments by Kirkwood et al [58]. Rodabaugh and Moore [59] compared several FEM results 

with those from experimental test and cautioned about the accuracy of both methods. They 

noted that the stress gradients on nozzle corners were quite steep and needed accurate 

placement of suitable gauges, and the finite element mesh would have to be extremely fine 

to provide accurate results. In 1991, Zhixiang et al [60] carried out experimental and finite 

element analyses on equal diameter tee branches and presented the relation between OfT and 

the stress concentration. 

2.1.4. TorisphericaI head with nozzle 

The most common method of sealing the ends of cylindrical pressure vessels is by means of 

using torispherical or ellipsoidal heads. When pressure vessels need to be connected to a 

piping system, the attachment of nozzles to the crown sometimes becomes inevitable. There 

have been numerous detailed analyses of torispherical shells with radial nozzles, undergoing 
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various loadings. In this configuration the nozzle has been singled out as a potential source 

of weakness in the sense that high stresses occur at the crown-nozzle intersection. 

Many studies have been initiated by the failure of thin-walled pressure vessel heads under 

hydrostatic pressure. The design of pressure vessels requires a careful study of many 

important factors. In principle, the most difficult is the design of the knuckle region. 

Torispherical heads with various knuckle radii (for each head height) have been investigated 

by other researchers to establish the geometrical proportions of the torispherical heads which 

had the lowest maximum stresses, i.e. an 'optimum' torispherical head. For torispherical 

heads of constant head height to cylinder radius ratio, Batchelor and Taylor [61] found a peak 

in limit pressure when plotted against knuckle radius, indicating 'optimum' values of the 

geometrical parameter H/R in the range of 0.33 to 0.5. For a given head height to cylinder 

radius ratio, H/R, there is an infinite number of torispherical heads having different dome and 

knuckle radii. Torispherical head design may achieve the optimum head height but cannot 

produce biaxial tension in the knuckle; the knuckle must carry circumferential compression. 

If the knuckle wall is thick enough compared to the knuckle radius, buckling is avoided. 

However, for thin heads, buckling in the knuckle region is now recognised as a classical 

failure mode. A thin-walled sharply curved knuckle region is much weaker than the spherical 

portion of the dome or the cylindrical vessel. On the other hand, if the knuckle is less sharply 

curved and the wall is relatively thick compared to the knuckle radius, the knuckle region is 

strong and acts as a stiffening ring between the cylindrical vessel and the spherical cap. 

The design of nozzles in pressure vessels subjected to internal pressure is sometimes provided 

for in the Codes by the 'area replacement' method. The radial nozzles which are welded to 

the vessels are designed by considering pressure loading but not the external loadings imposed 
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by the piping system onto the nozzle. The external loads on the nozzles are not generally 

included because the configuration of the attached piping system is not established yet. 

However, stresses due to the external loads on the nozzle can be more critical than those due 

to internal pressure. The piping system which is connected to the nozzle is often redesigned 

several times at later stages to reduce the reactions at the nozzle, so that the resulting stresses 

at the nozzle are within acceptable limits. It is therefore useful to know the behaviour of the 

vessel under the nozzle loads, if they can be predetermined. This procedure can then be 

incorporated into the nozzle design. The design of nozzles in shells also depends on the nature 

of the loading. If a constant pressure were applied, the limit factor would be the logical basis 

of design. For cyclic pressure, shakedown or fatigue is the relevant design criterion. 

The present structure consists of a torispherical shell of revolution attached to a radial nozzle 

at the crown and to a cylindrical vessel at the torus end. The nozzle is flush with the inside 

surface of the vessel. Apart from internal pressure, the external loadings considered were 

axial force, F, bending moment, M, and torsional moment, To, acting at the free end of the 

nozzle. In practice, it is common for the above loads to act simultaneously. 

The stress behaviour in the vicinity of the vessel-nozzle intersection can be treated as a 

problem of a radial nozzle in a spherical segment. The stress is assumed not to be influenced 

by the knuckle geometry. Comparison of results with other authors is somewhat difficult 

because there are more than one basis of comparison. There are at least three interacting 

geometric parameters which influence the stress field at the junctures, and the maximum 

stress could occur at any of these junctures, namely, sphere-nozzle or cylinder-knuckle or 

knuckle-sphere. However, for the present study the maximum ESFs used to determine the 

first yield load interaction are taken from stresses at the juncture between the vessel and the 

nozzle. 
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Cylinders with torispherical ends have been the subject of numerous investigations over the 

last 70 years and satisfactory experimental and numerical correlations have been achieved. 

However the subject of nozzles in pressure vessels received considerable attention only in the 

late 1950s. The first theoretical work on sphere-cylinder intersections was done by Galletly 

[62] who utilized the theory of two intersecting thin shells. In 1959, Galletly [63] cautioned 

that torispherical shells designed according to the ASME code could lead to failure during 

testing, and the use of shell theory would result in poor results when applied to the toroidal 

region of the shell. This was because of the approximation of membrane forces and 

deformations in the differential equations. Most studies were concerned with determining limit 

pressures, such as studies by Onat and Prager [64] in 1954, Drucker and Shield [65] in 1959, 

Rose and Thompson [66] in 1961, Lind [67] in 1964, Leckie and Penny [49] in 1963, Gill 

[68] in 1964 and Rodabaugh and Cloud [69] in 1968. Elastic and shakedown analyses of 

spherical vessel with radial nozzle structures were presented by Penny and Leckie [49] and 

Leckie [70]. A good summary of past work on pressure vessels is briefly given by Bushnell 

[71]. 

Various investigators have used shell computer programs to determine the collapse behaviour 

of pressure vessels but theories which are based on thin shells neglect the influence of local 

geometry of the intersection. The early programs used small deflection shell theory but have 

been superseded by programs which uses large deflection theories, such as the BOSORS [74]. 
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2.2. STRESS ANALYSIS OF PLAIN PIPES 

2.2.1. Theoretical load interaction 

The analysis was carried out using the thick-walled theory where the calculation for properties 

of cross-sectional area was not simplified and Lame's equations were used to calculate 

pressure hoop and axial stresses. In thick pipes, the pressure and shear stresses (from torsion) 

are not uniform across the wall thickness. In Stokey et aI's [1] thick pipe analysis, these 

stresses were assumed to be uniform, although Stokey emphasized that the assumptions were 

not exact. The theory of solid mechanics was used to calculate the principal stresses 0"), 0"2 and 

0"3 which were then substituted into the von Mises strength criterion. Depending on the 

dominance of a load, the maximum von Mises effective stress may occur on either the inner 

or outer surface. The interaction relationships were evaluated for all possible load pairs. 

2.2.1.1. Torgue:Internal pressure 

When pressure is dominant, first yield occurs on the inner surface of the pipe. Since there 

is no contribution to the hoop stress from torque, the total hoop stress is comprised of the 

pressure stress. From Lame's equations, the pressure hoop stress on the inner surface is:-

O"h = P(Ra2 + Ri2)/(Ra2-R?) 

and the total axial stress is:-

O"a = PR?/(Ra2 
- R?) 

The total radial stress on the inner surface is:-

O"r = -P 

The associated shear stress is contributed by the torque load, i.e. 

l' = 2ToR/1r(Ro
4 - Ri4) 

The principal stresses, 0"1 and 0"2' are calculated from basic solid mechanics, i.e. 

0"1,2 = lh(O"h + O"J ± W/«O"h - O"J2 + 4r) 
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Yielding is assumed to occur when the maximum von Mises effective stress reaches the yield 

stress, i.e. 

(1) 

After calculating the principal stresses, substituting into Eqn. (1), gives:-

(2) 

From basic solid mechanics, the thick pipe theory gives first yield pressure and torque loads:-

(3) 

(4) 

Eqn. (2) can be made non-dimensionalised by combining with Eqns. (3) and (4), giving:-

- -
(R/Ri To2 + p2 = 1 (5) 

When torque is dominant, first yield occurs on the outer surface, with UI positive, U2=Ur=O 

and U3 negative. Substituting the principal stresses into Eqn. (1) gives:-

Combining Eqns. (3), (4) and (6) gives:

To2 + (R/Ra)4 p2 = 1 

2.2.1.2. Moment:lntemal pressure 

(6) 

(7) 

When pressure is dominant, yielding starts on the inner surface. The principal stresses UI 

( = uJ and U3 (= ur) remain unchanged from above while the total axial stress is:-
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The first yield moment load in a thick cylinder is given by:-

(8) 

Substituting the principal stresses into Eqn. (1) and then non-dimensionalised by combining 

with Eqns. (3) and (8), the load interaction is:-

- -
(R/R,)2 M2 + p2 = 1 (9) 

When moment is dominant, yield occurs on the outer surface, and the principal stresses are:-

Substitution of principal stresses into Eqn. (1) and combining with Eqns. (3) and (8), the load 

interaction is:-

- -M2 + (R/Ro)4 p2 = 1 (10) 

2.2.1.3. Axial force:Internal pressure 

When pressure is dominant, yield occurs on the inner surface. The principal stresses are:-

and U3 = Ur = -p 

The first yield axial force is:-

(11) 

Using similar procedure as before, the interaction is circular, i.e. 

(12) 

When the axial force is dominant, the magnitudes of Ut and U2 are reversed and a similar 

circular relation is obtained. 
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2.2.1.4. Moment:Torgue 

Irrespective of dominance of moment or torque, the formulation for principal stresses remain 

the same, and first yield occurs on the outer surface. The total axial and shear stresses are:-

The total hoop stress is zero. 

It is obvious that the principal stresses 0". is positive, 0"3 is negative and :-

Substituting the principal stresses into Eqn. (1) and combining with Eqns. (4) and (8), a 

circular relation is obtained, i.e. 

(13) 

2.2.1.5. Torgue:Axial force 

At all load combinations, yielding occurs on the outer surface and the formulations for 0". and 

0"3 remain unchanged, while 0"2=0. Substituting the principal stresses into Eqn. (1) gives:-

(14) 

to give a circular relation:-

- -
F2+T2=1 o (15) 

2.2.1.6. Moment:Axial force 

At all load combinations, yielding occurs on the outer surface from a uniaxial stress system. 

The von Mises yield criterion is reduced to 0". = Y, or:-

- -
M + F = 1 i.e. a linear relation. (16) 
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2.2.2. The BS code 

BS 806 [5] allows the calculation of combined stresses in a straight pipe when pressure, 

bending moment and torque act. The symbols are defined in BS 806, with the exception of 

To which is substituted for T. 

2.2.2.1. Torgue:lnternal pressure 

The total hoop, axial and shear stresses from pressure and torque loads are, respectively:-

fT = pd/2t + 0.5p 

fL = pd2/4t(d + t) 

and f. = To(d + 2t)/41 

Irrespective of whether pressure or torque is dominant, the hoop stress is always larger than 

the axial stress, i.e. 

hence the combined effective stress, fc' as defined in BS 806 (based on Tresca) is then:-

(17) 

Assuming that the design is based on the limitation of the effective stress by the yield stress, 

-
The first yield pressure is determined by setting To=O in Eqn. (17), giving:-

or 

pd/2t + 0.5p = Y 

Py = 2tY/(d + t) 

and the first yield torque is determined by setting p=o in Eqn. (17), giving:-

ToY = 2IY/(d + 2t) 

(18) 

(19) 

(20) 

Eqns.(17) and (18) can be made non-dimensionalised by combining with Eqns. (19) and (20) 

to give a circular relation, (21) 
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2.2.2.2. Moment:lntemal pressure 

When moment is dominant, the axial stress is larger than the hoop stress, Le. fL > fT' The 

total axial stress consists of pressure and moment stresses, Le. 

fL = pd2/4t(d + t) + (d + 2t)M121 

and the torsional stress, fs' is zero. 

The effective combined stress, fc' becomes:-

f = [ pd
2 

+ d+2tM] \0 
c 4t(d+t) 21 

(22) 

The first yield moment load is determined by equating fc=Y and setting P=O, i.e. 

My = 21Y /(d + 2t) (23) 

Limiting the effective stress, fc' from Eqn. (22) to Y and combining with Eqns. (19) and (23), 

the interaction is a linear plot which does not pass through P= 1, i.e. 

- -
d2/2(d +t)2 P + M = 1 (24) 

When pressure is dominant, the hoop stress is larger than the axial stress. The total hoop 

stress is then:-

fL = pd/2t + 0.5p 

and f.=O 

The combined effective stress, fc' becomes:-

f = [ pd +0.5P]
2 

c 2t 
(25) 

Limiting the effective stress, fc' to the yield stress Y and combining with Eqn. (19), results 

-
in a linear interaction which is independent of M, i.e. 

-
P = 1 (26) 
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2.2.2.3. Moment:Torgue 

Irrespective of the magnitude of torque, the axial stress is always larger than the hoop stress. 

The total axial and shear stresses are given by:-

fL = (d + 2t)M121 + 0 

and fa = To(d + 2t)/41 

The combined effective stress, fe' is then:-

f = [d+2tM] \4 [To(d+2t)]2 
c 21 41 

(27) 

Equating fe to the yield stress Y and combining with Eqns. (20) and (23), results in a circular 

- -
relation for all values of M and To, i.e. 

(28) 
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2.3. STRESS ANALYSIS OF PIPE BENDS 

2.3.1. Experimental investigation 

Experimental tests on elbows are usually concerned with establishing the limit load. The 

present test gave an opportunity to assess the stress levels from the yield curves generated 

from the finite element method. This involved measuring the strains at a few points at the 

elbow mid-section and obtaining the angular rotation between the ends of the elbow. The 

elbow was first loaded, step-wise, by a single load of in-plane moment or internal pressure 

and then by a series of combined loads. The rotation between the elbow ends provided an 

approximate means of determining the elastic limit of the elbow. The test provided a limited 

amount of information about the location and extent of elasticity which would confirm the 

adequacy of the FE method of prediction of yielding. The experimental test is briefly 

described. 

2.3.1.1. Test elbow dimensions 

The elbow was manufactured according to the requirements of ASTM WPB Schedule 40 of 

long radius welding elbow specifications. The pipe thickness, which was determined using 

the ultrasonic method, revealed non-uniform thickness in the hoop direction of the elbow mid

section. Thickness measurements taken at hoop intervals of 45° showed wall thickening at the 

intrados and thinning at the extrados, as shown in Table 1. At the crowns «(}= ±90'), the shell 

was of different thicknesses, i.e. 6.19 mm and 5.60 mm. The wall thickness at the intrados 

could not be measured accurately due to large shell curvature and unsuitably large measuring 

probe. The final thickness of the pipe was taken to be the mean value of all the measurements 

in Table 1. 
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Table 1. Wall thickness variation at elbow mid-section. 

(W) 0 45 90 135 

Thickness (mm) 5.74 5.65 5.60 6.23 

The nominal dimensions of the elbow were:-

Outer radius of pipe, Ra 
Wall thickness of pipe, T 
Deduced inner radius of pipe, Ri 
Bend radius of elbow, R 
Pipe factor, A 
Bend radius ratio, b 

2.3.1.2. Tensile test 

= 44.73 mm 
= 5.95 mm 
= 38.78 mm 
= 115.0 mm 
= 0.39 
= 2.75 

180 225 270 315 

- 6.35 6.19 5.92 

A tensile test specimen was cut out from the crown region of an elbow identical to the test 

elbow. The curved (from the pipe curvature) grip ends were flattened and the gauge section 

was ground. The specimen was heat treated at 650°C for 1 hour and then left to cool in the 

furnace. The faces were then lightly ground to the final dimensions. The tensile specimen had 

a gauge section 10.90 mm wide, 4.04 mm thick and 45.0 mm in length and was strain gauged 

with longitudinal and transverse gauges mounted on opposite sides of the gauge section. 

The test specimen was located in an Instron universal testing machine and the gauges were 

connected to a strain indicator. Testing was commenced by setting the machine platen speed 

at 2 mm1min. The plot of load and average strain (from two opposite surfaces) are shown in 

Fig. 2. The elastic modulus of the elbow material was calculated from this set of data. Fig. 

3 shows the complete stress-strain behaviour of the tensile test, from which the yield stress 

and other properties of the material were derived. 
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The following material properties were calculated from the tensile test:-

Yield stress, (Jy 

Elastic modulus, E 
Tensile strength, (JUTS 

Poisson's ratio 
Elongation at break point 

2.3.1. 3. The experimental setup 

= 337.6 MPa 
= 207.7 GPa 
= 457.5 MPa 
= 0.275 
= 28.2% 

Due to testing similarities, it was decided to utilise an existing rig. The in-plane bending 

moment was applied from a four-point loading acting on the tangents pipes. Pipe collars were 

used to transmit the loads (from actions and reactions of the rams and tensile links) to the test 

specimen. Rectangular strain rosettes were bonded on the outer surface of the elbow crowns 

and intrados. The 6 mm gauges in the rosettes were aligned along the hoop and longitudinal 

directions of the elbow. Elbow end rotations were measured indirectly by using a system of 

dial indicators mounted onto measuring arms. The measuring arms were situated 152 mm 

away from the end of the elbow to eliminate the recording of local deformations. The 

schematic diagram of the setup is shown in Fig. 4. 

2.3.1.4. The loading system 

The four point loading system consisted of a pair of hydraulic rams and a pair of tensile links 

which were strain gauged to act as load cells. This loading system provided pure in-plane 

opening bending moment on the curved pipe section. In the present experimental and FEM 

work, a closing moment is taken to be positive and an opening moment to be negative. 

Knowing that the distance between the ram and the tensile link was 0.5m, the moment applied 

to the elbow could be calculated from the load cell reading. 
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FIG. 4. SCHEMATIC DIAGRAM OF EXPERIMENTAL SETUP. (NOT TO SCALE). 
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The internal pressure was applied via a hand pump through an opening at the end of one of 

the tangent pipes. A pressure transducer connected to the pump gave indication of the 

pressure level. The critical components of the experimental rig such as the backing brace, 

tensile links, pins as well as the elbow tangent pipe were checked to ensure that at maximum 

load, the stresses in the components were acceptable. 

2.3.1.5. The testing procedure 

A series of 5 tests were conducted, with the last test carried out beyond the elastic limit of 

the elbow. Each test was conducted by applying the loads step-wise. At each load increment, 

the dial indicator readings were noted and the strains were recorded with an automatic strain 

gauge scanning and indicating system. 

From the dimensions and material properties of the elbow, a geometric nonlinear FE analysis 

was run in which the yield loads Py and My were determined, i.e. 

Py = 30.4 MPa and My = -3.18 kN-m (Le. opening moment) 

The elbow was loaded with an opening moment (Test No. 1) until the moment reached about 

70% of My. After unloading, the elbow was pressurised (Test No. 2) until the pressure 

reached about 70 % of Py. To account for any extraneous out-of-plane bending of the elbow, 

the mean strain from the two crown locations was taken. Assuming that the material was 

linear elastic up to the final load, the stresses could be calculated from the normal constitutive 

relations. 

When subjected to a combined load, it was assumed that the elbow would not yield below the 

most conservative linear relation. To study the elastic stress behaviour of the combined loads, 

the elbow was loaded to about 70% of this linear yield locus. In Test No. 3, the elbow was 
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pressurised to 15 MPa followed by an additional moment of -0.75 kN-m. In Test No. 4, the 

elbow was loaded with a pressure and moment load combination of about P:M =2: 1 until the 

maximum deduced effective stress achieved about 50 % of the yield stress which corresponded 

to a final load ofP=lQ MPa and M=-0.5 kN-m. 

In Test No. 5, the elbow was subjected to an incremental combined load of about P:M = 1:2 

until the maximum limitation of the loading ram travel. During the test, when the elbow 

started to yield, the elbow rotated by a large amount, causing the rams and tensile links not 

to be perpendicular to the tangent pipes. The perpendicular offset was measured before the 

specimen was unloaded. The next loading was compensated by the amount of offset. This 

ensured a satisfactory moment calculation when the elbow was subjected to the final load 

combination. 

2.3.2. Energy method 

W \~~J 
Rodabaugh and George [15] employed the thin shell theory, wherein the pipe thickness is 

small compared to the bend radius and the ratio Rlr is large compared to unity. The basis of 

Rodabaugh and George [15] series-type equations are similar to von Karman's [6] 

formulation. Rodabaugh's method is to express the integral term of the strain energy 

formulation in Fourier series by the use of trigonometric equivalents. For greater accuracy, 

higher order terms need to be included. The rate of convergence of the series expression for 

the various stresses is not uniform and depends on pressure and the factor A=TRlrv(1-v2). 

If the first order approximation on in-plane and out-of-plane moments is used, Rodabaugh's 

equations are reduced to von Karman and Vigness's [7] equations. The formulations are 

briefly described here. 
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The basic von Karman's and Vigness's equations for in-plane and out-of-plane moments 

express the elastic energy stored in a unit centre line of the curved pipe due to tangential and 

radial displacements. For in-plane moment, the energy, in Ref. [15] nomenclature, is:-

(29) 

The tangential displacement is assumed to be of the form:-

W t = L aosin(2n<l» (30) 
0-1 

Assuming inextensibility in the hoop direction, the radial displacement is given by:-

wr = -dw/d<l> (31) 
'\) \5", 

The assumption of inextensibility can be removed by using the 'Gross correctiori' [73]. The 

trigonometric series expression for wt can be substituted into the energy equation and the 

integral performed, to give:-

(32) 

Rodabaugh's analysis was to study the effect of internal pressure on the flexibility and stress 

factors of curved pipes. When internal pressure is considered, an additional work is done by 

the pressure acting against the change in volume. The energy per unit centre length is:-

(33) 

The coefficients ~ are determined by differentiating U (= UI-U~ with respect to each lin, and 

by the principle of least work, each resulting equation is set to zero. This gives a set of n 

linear equations with (n+ 1) unknown a's. By assuming ~+l =0, all the constants, a's, may 
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be calculated. 

The axial and hoop strains on which Eqn. (29) is based are:-

and 

The strains may be converted to stresses by the following equations:-

E 
(] =--(e +Jleh) 

a I-v2 a 

(34) 

(35) 

(36) 

(37) 

The computer program for calculating the hoop and axial effective stresses on the inner and 

outer surfaces is presented in the Appendix A. A tenth order approximation of solution is 

used for satisfactory convergence. The strain energy formulation for out-of-plane moment 

may be obtained in the same manner [15]. 

2.3.3. Hoop and axial stresses from ASME 't\(}~ \ 
Most simplified elbow analyses and the AS ME [28] code predict a more flexible response 

than the shell analysis because the end stiffening effects are neglected, resulting in 

overprediction of stresses. AS ME realises this and work to rectify this shortcoming is 

underway. 
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\Vf{~q) 
Table NB-3685.1-1 and NB-3685.1-2 of ASME III 'r~8] give the equations for the stress 

indices for the inner and outer hoop and axial stresses around the circumference of the elbow 

mid-section. When internal pressure acts, the hoop stress is given, in ASME nomenclature, 

by:-

U = [Do - 0.8 tm] [0.5 (2R+r sine!»] p 
o 2 t R+r sine!> 

m 

(38) 

and axial stress, 

(39) 

Due to in-plane and out-of-plane moments, the hoop and axial stresses, Uo and u"', are given 

by:-

on the outer surface, 
on the inner surface, 
on the outer surface, 
on the inner surface, 

For in-plane moment, 

Uo = (pum + unb)M/Z 
Uo = (pum - unb)M/Z 
u'" = (um + pUnb)M/Z 
U'" = (um - Jlunb)M/Z 

Um = sine!> + [(1.5X2 - 18.75)sin3e!> + 11.25sin5e!> ]/X4 
and Unb = A(9X2 cos2e!> + 225cos4e!»/~ 

For out-of-plane moment, 
Um = cose!> + [(1.5X2 - 18.75)cos3e!> + 11.25cos5e!>]/~ 

and Unb = -}..(9X2 sin2e!> + 225sin4e!> )/~ 

where XI = 5 + 6}..2 + 241/; 
X2 = 17 + 600}..2 + 4801/1 
X3 = XIX2 - 6.25 
X4 = (1-v)(X3-4·5X0 
).. = TRI(rV(1-v) 
1/1 = PR2/ErT 

The equations are valid for elbows with }"~0.2 only. \, 
, l,o~~ 

~\\ 
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2.4. STRESS ANALYSIS OF TEE BRANCH 

2.4.1. Stress concentration and classification 

Like other fittings such as reducers and elbows, branch junctions introduce stress 

intensification. The stress concentration factor (SCF) is defined as a multiplier to be applied 

to the nominal stresses in an equivalent plain pipe to account for geometric discontinuity 

effects of the connection. The stress concentration at the intersection is mainly due to the 

main shell being weakened by the intersection opening and varies with the shape and size of 

the opening. However, the intensified stresses are highly localised leaving the surrounding 

material lowly stressed. 

Due to internal pressure, the high stresses at the pipe intersection are a result of self

equilibrating discontinuity shear forces and moments which maintain compatibility at the 

junction. Together with membrane forces, the discontinuity forces give rise to high local 

stresses. The discontinuity effect which is caused by the change of direction between the run 

and branch pipes varies around the opening and is maximum along the longitudinal plane 

where the local stresses are maximum. 

Although the most critical stresses are usually caused by pressure, considerable stresses at 

pipe junctions may also occur from external nozzle loads. Stresses around the intersection 

produced by external loads must be classified into primary, secondary and peak stresses. 

These stresses have different degrees of significance and must be assigned different stress 

limits. 

The following definitions and behaviours of the stress categories are given by Smith and Van 

Laan:-
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" Primary stress is developed by imposed mechanicalloadings (forces). Primary stress 

is not self-limiting. Therefore, if the yield strength is exceeded through the entire cross section 

of the structural material used in piping design, then failure can be prevented only by removal 

of the loading or strain hardening in the material. 

Primary stresses canfurther be categorized as general primary membrane stress, local 

primary membrane stress, and primary bending stress. These three categories are of interest 

because the pipe will not fail until the entire cross section has reached the yield strength. 

Local primary stresses may exceed yielding; however, under this stress state they will behave 

as secondary stresses and redistribute themselves as the local pipe wall distortion occurs. The 

failing moment would be that required to put the entire cross section of the pipe in plastic 

behavior, not just the extreme fiber. Therefore, the permissible primary bending moment (and 

likewise the calculated stress) may be increased over the yielding moment by the shape factor. 

Secondary stress is developed in a structure owing to constraint of that structure 

against displacements, whether thermal expansion or imposed anchor and restraint 

movements. Under secondary loading the piping system must conform to imposed strains, 

rather than imposed forces, so that the loading can be satisfied by system distortions. 

Distortion of the piping system as well as local yielding tends to relieve the developed stresses 

due to imposed displacements, so these stresses are said to be self-limiting. 

Given that secondary stresses are classified as those stresses caused by constraints 

of displacements which cause distortion, peak stresses are those which cause virtually no 

distortion and therefore high stress levels. Examples would be thermal gradients through a 

pipe wall or stress concentration at a discontinuity such as a pipe fitting or a weld. Peak 

stress is the highest stress in a local region and is responsible for causing fatigue failure. H 

- Smith P.R. and Van Laan T.J. - Piping and Pipe Support Systems. Design and Engineering. 
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In general, pressure vessel and piping components exhibit both primary and secondary 

behaviour and it is not immediately obvious how the stresses should be categorised. A value 

of stress means little until it is associated with its location, distribution in the structure and 

the type of load producing it. The Codes have their own stress classification procedures on 

which the stress allowables are based. 
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The effective stress factor (ESF) at the junction was obtained by normalizing the Mises stress 

with the nominal stress, regardless of location of the maximum stress. Some uncertainty was 

encountered when Moffat et al [43] tried to determine the effect of tIT on ESF. For the 

branch pipe loads, the nominal stress Un would also have varied with tIT if Un was based on 

the actual branch pipe thickness. Following the argument of Moffat, it was decided that an 

effective thickness be used so that Un for the branch pipe would remain constant. The effective 

thickness t* is defined as, t*=(d/D)T. The nominal stresses of the branch pipe were based on 

the effective thickness, hence:-

for torsional run pipe moment, 
for torsional branch pipe, 
for run pipe bending moment, 
for branch pipe bending moment, 
for internal pressure 

Un = ToDj2Ir 
Un = Todj2Ib* 
Un = MDj2Ir 
Un = Mdol2Ib* 
Un = PDm/2T 

where 1* is based on the effective thickness. 

2.4.2. Load interaction 

A general moment load acting on a pipe limb can be resolved into three moments acting along 

3 mutually perpendicular axes of the limb, to give a total of 9 sets of moment, i.e. three in 

each of the three connecting limbs. Using the 'cantilever model', as in Fig. 1, with one of 

the run pipe limbs rigidly fixed, the 9 moments can be reduced to 6 independent moments 

acting at the free ends of the two limbs. If the pipe limbs are sufficiently long, the shear 

effects of force loads can be neglected. Including internal pressure, a total of 7 load categories 

can thus act on the tee branch, each giving a complex stress behaviour. In practice, these 

loads occur together in a combination of 2 or more load cases and the stress levels arising 

from the multiple load interaction must be considered. 

38 



2.5. STRESS ANALYSIS OF TORISPHERICAL HEAD WITH NOZZLE 

2.5.1. Experimental investigation at Liverpool 

In order to verify any theoretical formulation or numerical results, experimental tests on 

similar structures are needed. The experimental test was part of a test programme carried out 

by Drabble [74] at Liverpool to determine the shakedown behaviour of a torispherical head 

with nozzle, under the action of internal pressure, axial force and bending moment applied 

to the nozzle. The whole vessel was made of mild steel and had a uniform thickness. The 

weld formed a fillet, 0.5 inch high and 0.25 inch wide, at the juncture between the nozzle and 

the main vessel. From Drabble's report, there was no mention of initial geometric 

imperfections. 

The model was instrumented with 39 pairs (hoop and meridional) of 0.0625-inch foil 

rectangular strain gauges bonded to the outer and inner surfaces of the shell. These gauges 

were located between S=-0.1 and S=0.5 along an meridional plane. The non-dimensional 

meridional distance S is taken to be the ratio of the actual distance (measured along the shell 

surface) from the crotch corner to the inner radius of the spherical crown. On the outer 

surface, the distance was measured from the weld-crown juncture. The distance was taken to 

be positive in the main vessel and negative distance in the nozzle. 

The model was subjected to combinations of internal pressure, compressive axial force and 

bending moment. A detailed experimental procedure of the test is given in Ref. [74]. 
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FIG. 5. TORISPHERICAL HEAD WITH NOZZLE. (DRAWN TO SCALE). 

The torispherical head with nozzle is shown in Fig. 5. The dimensions of the vessel were as 
follows:-

Mean diameter of cylindrical shell, Dm 
Mean knuckle radius, rkm 
Mean crown radius, Lm 
Mean diameter of nozzle, dm 
Thickness of vessel, T 
Thickness of nozzle, t 
Head height (to mid-wall), H 
Length of cylindrical vessel 

which give parametric ratios:
dm/Dm 
Dm/T 
dm/t 
2L1T 
H/Dm 

A=Dm/2H 
P = (rm/L.JV(Lm/T) 

= 0.281 
= 32.0 
= 9.0 
= 64.0 
= 0.248 
= 2.017 
= 0.795 
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= 16.0 in. (406.4 mm) 
= 2.95 in. (74.93 mm) 
= 16.0 in. (406.4 mm) 
= 4.5 in. (114.3 mm) 
= 0.5 in. (12.7 mm) 
= 0.5 in. (12.7 mm) 
= 3.967 in. (100.8 mm) 
= 4.0 in. (101.6 mm) 



CHAPTER 3. THE FINITE ELEMENT METHOD 

The finite element modelling in all the piping components utilised the computer aided 

engineering software package PAT RAN [75]. Unlike the tee branch, the geometric modelling 

of the plain pipe, elbow and torispherical head was straightforward. The main difficulty for 

the tee branch lies in generating the non-axisymmetric weld profile and assigning a single 

layer of elements to the intersection region. For reference, the modelling of the tee branch 

is described in detail. 

The various ways of constraining and inducing bending loads on the tee branch are also 

detailed. For all the components, the models were constructed with PAT RAN [75] HEX20 

20-node isoparametric hexahedral elements. The element has nodes at the corners and mid

sides, and each node has three degrees of translational freedom. The element has the 

advantage of correctly representing the curved boundaries with a fewer number of elements 

and is known to converge rapidly with a lesser number of elements. In a convergence test, 

the plain pipe and tee branch were also modelled with two layers of the 20-node element 

through the wall thickness. 

The resulting finite element model was run through the PA TRAN features of automated nodal 

equivalencing, node removal, node compact ion and resequencing and element compaction. 

The elements were checked for free edge and crack to ensure structural integrity. All the load 

categories for a component used the mesh which was generated for that component, so that 

all the models would give identical node numbers at corresponding locations. The PATRAN 

[75] neutral output files were translated to make them readable by the ASAS [76] finite 

element analysis program. 
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Linear elastic and geometrically nonlinear finite element analyses were carried out on two 

elbow models, ELOl and EL07, to study the effect of geometric nonlinearity and nonlinear 

coupling between internal pressure and in-plane bending moment. The objective was to 

determine the extent to which the linear superposition method of load interaction could be 

used to predict first yield in thin elbows. Another pressure coupling investigation was carried 

out on the tee branch, with the out-of-plane branch pipe moment as the other interacting load. 

The effect on other components was not carried out because the cross-sectional ovalization 

is reported to be considerably lower than in the elbow. 

3.1. PLAIN PIPES 

3.1.1. Geometrical parameters and FE model 

The geometric parameters of the four pipe models PIPl, PIP2, PIP3 and PIP4 are shown in 

Table 1. Each model is 1 metre long and has the following material properties:-

E = 200 GN/m2 and 11 = 0.3 

Table 1. Geometric parameters of plain pipe models 

Model PIPl PIP2 PIP3 PIP4 

Ra 0.136 0.136 0.136 0.136 

Ri 0.125 0.119 0.111 0.091 

T 0.0107 0.0170 0.0247 0.0453 

OmIT 24.5 15.00 10.00 5.00 

(All linear dimensions are in metres) 

A preliminary convergence test was carried out on two models to establish a suitable mesh. 

Models PIP1 and PIP4, with Dm/T=24.5 and 5 respectively, which represent 'thin' and 

'thick' pipes, were subjected to internal pressure. The pipes were first modelled with 8-node 
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isoparametric hexahedral elements with a single layer of elements through the thickness, 24 

elements in the hoop direction and 28 in the axial direction. The pipes were then modelled 

with two elements through the thickness and finally the 20-node element was used. The mesh 

was then refined to provide 40 elements in the axial direction and 36 elements in the hoop 

direction. It was found that the 20-node element models gave satisfactory agreement with the 

Lame's solutions, but did not significantly give better results with the finer mesh. Hence the 

coarser 1x24x28 (radial x hoop x axial) mesh with a single layer of 20-node elements was 

adopted for all the pipe models. A total of 672 elements and 4824 nodes was generated, and 

each uniform element measured 35.6mm x 35.7mm. 

The torsional moment on the end of the pipe was induced by means of 48 equal tangential 

nodal forces acting at the outer edge of the pipe end, at intervals of 0=7.5°, The uniform 

tangential nodal forces were obtained from:-

Force = Ti(R, x 48) (40) 

The bending moments on the pipe were induced by 48 graded axial forces applied at intervals 

of 0=7.5° on the nodes at the outer edge of the pipe end. The loading technique produced 

consistent nominal stresses within a distance of one pipe diameter from the loaded end. The 

graded nodal forces were calculated from:-

sin 11'(0-90°) 
2 180° Force=M(_)~ ____ _ 

D 270' (0 900) 
m E sin2 11' -

8-90' 180° 

(41) 

For the axial force, a total of 48 uniform nodal axial forces acted in the axial direction:-

Force = F/48 (42) 
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The methods of inducing the loads in a plain pipe by means of nodal forces are shown in 

Figs. 6. The methods are similarly utilised in the pipe bends, tee branches and the 

torispherical head at the pipe ends where the loads are needed. For internal pressure, an 

additional axial stress acted on the end of the closed pipe. To prevent rigid body motion of 

the structure, suppression of all displacements were applied at the other end of the pipe. 

Similar load modelling was used for other piping components. 

Ca) TORQUE 
Cb) BENDING 

MOMENT 

FIG. 6. LOAD MODELLING IN PIPES 
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3.2. PIPE BENDS 

3.2.1. Geometrical parameters 

The geometrical features of all sixteen models, representing a wide range of b and A, are 

given in Table 2. The models have a bend angle of 90° and mean pipe radius of r=O.l m. 

The elbows are grouped into four bend radius ratios b (=Rlr) of2, 3, 5 and 7. For each bend 

ratio, four elbow models of varying OmIT ratios were selected, i.e. OmIT = 150, 80, 20 and 

10. Model EL01 with A=0.0267 and OmIT = 150 may be considered a 'thin-walled' and 

'small-radius' elbow, while model EL16 with A= 1.4 and OmIT = 10, may be considered a 

'thick-walled' and 'large-radius' elbow. The categorisation of elbows into thin- and thick-

walled and into small and large radii varies with the authors; ASME categorises elbows with 

b ~ 3 to be large-radius elbows. 

Table 2. Geometric parameters of elbow models 

Model Ib A OmIT Model Ib A OmIT 

EL01 2 0.0267 150 EL09 5 0.0667 150 

EL02 2 0.05 80 EL 10 5 0.125 80 

EL03 2 0.2 20 EL 11 5 0.5 20 

EL04 2 0.4 10 EL12 5 1.0 10 

EL05 3 0.04 150 EL 13 7 0.0933 150 

EL06 3 0.075 80 EL14 7 0.175 80 

EL07 3 0.3 20 ELlS 7 0.7 20 

EL08 3 0.6 10 EL16 7 1.4 10 

3.2.2. The FE model 

The elbows, shown in Table 2, were modelled and subjected to identical loads of torque, in

plane moment and internal pressure. Figs. 7(a) and (b) show the basic geometry, boundary 

conditions and moment vectors, while Fig. 8 shows the finite element mesh at the curved 

section of model EL07. 
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FIG. 7. 

FIG. 8. 

Ux=Uy=Uz=o 

ELBOW MID-SECTION 

j 
AXIAL DIRECTION 

~--------------~ Mx Mz 

Ca) Cb) 
HOOP 
DIRECTION 

GEOMETRY, BOUNDARY CONDITIONS AND MOMENT VECTORS IN 
ELBOW. (Note: U = displacement). 

y 

Lx z 

FINITE ELEMENT MESH OF CURVED SECTION OF ELBOW EL07. 
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The choice of mesh, geometric and load modellings was partly based on the previous work 

performed on plain pipes. Initial pressure stress comparison with the toroidal theory of solid 

mechanics proved that the mesh was satisfactory. The length of the attached tangent pipes was 

four times the mean pipe diameter, and was considered to be adequate to prevent propagation 

into the curved section of the effects of boundary condition and applied loads at the free ends. 

It has been shown by Dhalla [21] that the effects due to end restraint and cross-section 

ovalization do not propagate for a distance of more than three times the diameter along the 

attached pipe. The curved section had 24 and 12 uniform elements in the hoop and axial 

divisions respectively. The tangent pipes had 10 and 24 axial and hoop divisions respectively. 

Altogether a total of 768 20-node hexahedral elements and 5496 nodes were generated. 

The elbows were loaded separately by internal pressure as well as a closing in-plane moment 

and torque applied at the free end of a tangent pipe. The load modelling was similar to that 

used in plain pipes. An opening moment is assumed to give identical stress result as a closing 

moment, but with reversed signs. Hence results from the positive model of the moment ~ 

was used for the negative opening moment. 

The full structure was analyzed because there was no common plane of symmetry of 

geometry and applied loads. Furthermore, the AS AS [76] brick element which does not 

restrain rotational displacements at the nodes would give dubious data along any plane of 

symmetry. The free end of the vertical tangent pipe, in Fig. 7(a), was constrained from linear 

displacement in three mutually perpendicular directions. 

3.2.3. Geometrical nonlinear FE analysis 

In the linear analysis, the stresses at each load step were not affected by the progressive 

geometric deformation as the elbow was loaded up to the final pressure or moment. In the 
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numerical solution of geometrical nonlinearity, the deformed configuration at every iterative 

increment is used for equilibrium conditions. 

A geometrically nonlinear stress analysis was carried out on two elbow models, EL01 and 

EL07. Model EL01 represents a thin elbow with a small bend radius and elbow model EL07 

represents a moderate elbow which is commonly used in industries. The analysis of the two 

models with separate loads of torque, in-plane moment and internal pressure was intended to 

assess the extent of geometrical nonlinearity. This was followed by an analysis with combined 

loadings to show the nonlinear coupling between pressure and moment loads. 

3.3. TEE BRANCH 

3.3.1. Geometrical parameters 

A tee branch piping is shown in Fig. 1. The four main parameters of a tee branch are the 

branch and run pipe mean diameters and thicknesses. In a welded branch junction, the weld 

details, i.e. the height and width, provide additional parameters. Hereafter, the term 'weld' 

will be used to denote a triangular weld fillet without transition rlldii. This geometry gives 

a sharp change in contour between the weld and the pipes. 

The geometric ratios are useful when comparing with other studies. In this study, one specific 

tee branch with ratios OmIT =20, ~/Om =0.8 and tIT = 1.0 was modelled, with weld details 

identical to the one used by Moffat et al [43]. Figs. 9(a) and (b) show the weld details used 

in the present FEM and Moffat et aI's [43] models. The following tee branch with the weld 

details shall be referred to as the FEM first model:-

mean diameter of run pipe, Om 
mean diameter of branch pipe, dm 
thickness of run pipe, T 
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= 200 mm 
= 160 mm 
= 10 mm 



thickness of branch pipe, t 
weld height at crotch corner, Wile 

weld height at flank, Whf 

weld width at crotch corner, Wlc 

weld width at flank, Wlf 

= 10 mm 
= 15.5 mm 
= 15.5 mm 
= 8.75 mm 
= 8.75 mm 

The material was assumed to be carbon steel with properties E = 200 GPa and" = 0.3. 

To study the stress level due to the intersection alone, other sources of stress concentration 

must be removed from the vicinity of the intersection. If the limb lengths are not sufficiently 

long, the end effects from the loadings applied at the free pipe ends may interfere with the 

stress concentration due to the intersection. Mokhtarian and Endicott [53] and ASME [28] 

suggested pipe lengths of not less than 2.sV(radius x thickness). Mershon et al [32] noted 

limb lengths of at least 2V(radius x thickness) for attenuation of other stress concentrations. 

The pipe lengths used in this study were taken to be four times the mean diameters, i.e. 

length of branch pipe 
length of run pipe limbs 

BRANCH PIPE 

FEM 1ST MODEL AND 

M'JFFAT 'S M'JDEL 

FEM 2ND MODEL 

RUN PIPE 

wlc 
0----+ 

= 640 mm from the run pipe centreline 
= 800 mm each side of the branch pipe centreline 

BRANCH PIPE 

FEM 1ST MODEL AND 

MOFFAT 'S MODEL 

FEM 2ND M'JDEL 

"fUN >.. ·I:.'i~ .' ~.",~ 
. . ,. f' ~'{ ;"-: t. .. 

RUN PIPE 

(b) TRANSVERSE PLANE 

FIG. 9. WELD DETAILS~~ TEE B~CH. COMPARISON BETWEEN FEM 
FIRST (AND MOFFAT'S) MODEL AND FEM SECOND MODEL. 
(DRAWN TO S\' ALE).-:') f 
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3.3.2. The FE model 

The basic concept of the finite element method is the idealization of the structure as an 

assemblage of subdivisions. Fig. 10 shows the various areas for subdivision of the structure. 

Two areas were identified for different meshing; the critical area around the intersection and 

the remote regions. The critical area is shown as region PBCDELKMN. The edge EL is of 

a distance of about 0.36Dm from the intersection at S, and the edge PB is 0.44dm from point 

S. 

The outer surfaces of regions RSEHJ and PBSR were generated first. Edges EH and PB were 

located at distances of 1rDm/4 along the run pipe from the centreline of the branch pipe and 

1.75Rm along the branch pipe from the run pipe centreline, respectively. The above 

dimensions also ensured that the elements in region RSELK were not much distorted. The line 

of intersection, RS, between the two outer surfaces formed a reference line from which the 

weld dimensions were measured. The weld horizontal width at the longitudinal plane was set 

to SD=w1c and at the flank and the horizontal projection of RM was set to W1f• These two 

weld bases, D and M, were connected by a quarter ellipse, MD, scribed along the outer 

surface of the run pipe. The weld height at both the longitudinal and transverse planes, i.e. 

SC and RN, was set to a value of wh, which is the greater of Whc and Whf. The weld toe line, 

NC, was formed by translating the intersection line, RS, by a distance wh along the branch 

pipe. The weld surface was then blended together with the run and branch pipe outer surfaces 

to form an outer patch. The inner surfaces of regions RSEHJ and PBSR were generated by 

using the inner pipes dimensions. These inner surfaces intersect at the crotch line. The inner 

and outer surfaces of the remote regions QABP and EFGH were formed in a more 

straightforward procedure. 
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FIG. 10. A QUARTER TEE BRANCH SHOWING REGIONS FOR SUBDIVISION. 
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A solid quarter model was created by joining the outer to the inner patches. The final full 

model was formed by mirroring the quarter model about the longitudinal and transverse 

planes. A full three-dimensional tee branch model was considered because there were no 

common planes of symmetry for all the seven load cases. 

The discretization of the tee branch into finite elements of suitable size and shape is no less 

important than the selection of the element itself. In the finite element method, the difficulty 

in obtaining accurate results is due to the high stress gradient in the intersection region. This 

may be overcome by using a fine mesh in the critical region where a coarse mesh may cause 

violation of local equilibrium and gives unsatisfactory results. It is known that the stress 

gradients in remote regions are low, thus justifying the use of coarser meshes. 

In the FEM, shell and beam elements have been specially written for thin geometries and are 

widely used in the analysis of shell structures. In tee connections, apart from nominal stress 

and stress concentration from the nozzle intersection, the local stress due to the weld profile 

must be considered. If shell elements are used, the intersection lies inside the wall thickness 

and the predicted stress at this location is a rough estimate of the stress at the weld toe. If the 

tee connection is thin walled the weld has significant stiffness which is ignored by a shell 

model. To compensate for this many methods have been devised such as the multi point 

constraint approach to create a rigid block representing the weld or using a stiffer shell 

element at this particular location. To model the weld reinforcement in cylinder-cylinder 

intersections, it is desirable to use solid elements because they give a more accurate 

representation of the structure geometry. 

A study was undertaken at Liverpool, by Mwenifumbo [77] and Moffat et al [43], on the 

performance of the solid elements in tee branches and the effect of mesh refinement. Working 
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with the 8-node and 20-node brick elements on tee branches, several finite element 

idealizations were carried out [43][77] for convergence tests. Mwenifumbo [77] showed that 

the 8-node model needed six times more elements in the critical region than the 20-node 

model for satisfactory convergence. A finer element mesh does not provide improvement if 

the finite element formulation is not properly developed. This was realised by Corum et al 

[36] who was using an analysis which was developed at the University of California, Berkeley 

by Clough. 

It is well known that when thin members are subjected to bending, the strain variation 

throughout the thickness is linear. The first order elements represent this variation poorly. 

With second order elements, one layer of elements through the shell thickness is adequate 

especially if the elements are rectangular in shape. Previous studies at Liverpool [43][77], as 

well as by Natarajan et al [78], on tee branches showed that the use of one element through 

the thickness of the branch was acceptable provided the mesh was well refined. For accurate 

radial stresses, Bryson et al [79] commented on the use of at least two layers when the 8-node 

element was used. Chen and Schnobrich [80] analyzed the use of 3-D multi-layered elements 

at the critical area of the intersection. To avoid the abrupt change of stiffness from the fine 

to the coarse mesh, they gradually reduced the number of layers of elements in transition 

regions. 

The number of elements in a region is governed by the criterion that the elements should be 

as cubical in shape as possible, and should be consistent with the degree of mesh refinement. 

The most awkward part of the model was the weld and intersection region where the strains 

and stresses must be predicted accurately. To ensure that no tetrahedron and wedge elements 

were utilised, proper modelling and division of the intersection region was thoroughly done. 

It was also ensured that any discontinuity such as the weld toe curve coincided with element 
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edges. 

The quarter model of the tee branch was divided into six mesh areas. The most critical 

regions were the weld and two areas along the pipe limbs adjacent to the weld. The weld 

NCDM had 4 elements along the weld width CD and 12 elements in the circumferential 

direction NC. The area PBCN had a one-way transitional mesh from 8 elements along PB to 

12 elements along NC, while the edge BC had 6 elements. The third critical region, MDELK, 

had edges EL and LK with 6 elements each, and were considered to be the opposing sides 

to edge MD, which also had 12 elements. This method ensured that the element mesh became 

finer nearer the intersection. The other opposing edges DE and MK had 6 elements each. 

Region KLHJ contained a uniform rectangular mesh of 6x6 elements. Regions QABP and 

EFGH were the least critical and contained non-uniform rectangular meshes of 8x6 and 6x6 

elements respectively. The non-uniform node spacings were in the longitudinal directions of 

the pipe limbs, with the mesh becoming finer nearer the intersection. 

The finite element representation at the intersection of the tee is shown in Fig. 11. Figs. 12 

and 13 show the meshes on the longitudinal and transverse planes of the tee branch. A total 

of 1328 elements were generated, 704 of which were in the critical intersection region. The 

total number of nodes was 9493. The structure had one element through the thickness. 

Further mesh refinement was not desirable since the thickness direction would have 

contributed to unacceptable aspect ratios. 

Mesh refinement and maintaining proper element aspect ratio are important in order to get 

good results. In Natarajan et aI's [78] study using 20-node brick elements, the hoop stress 

distribution along the run pipe gave poor agreement with experimental results. Increasing the 

number of elements near the intersection resulted in a much lower predicted stress peak. In 
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the next model they reduced the elements aspect ratio (near the intersection) from 1:3 to 1:2 

but still got poor results. They carried on refining the mesh while keeping the aspect ratio of 

1:2 and obtained good agreement. 
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FIG. 11. FINITE ELEMENT MESH AT INTERSECTION REGION OF TEE BRANCH 

FIG. 12. FE MESH ON LONGITUDINAL 
PLANE. 

FIG. 13. FE MESH ON TRANSVERSE PLANE. 
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3.3.3. Boundary conditions 

The response of the pipe connection to moment loads depends on how the loads are reacted 

at the end where the structure is fixed. The ASME code calls for every limb to be checked 

separately for the respective resultant limb moment but is unclear about boundary conditions. 

The 'cantilever' method of constraint was applied but not before other methods were 

considered. To prevent rigid body motion of the structure, suppression of all displacements 

were applied at one end of the run pipe. Similarly, there are many ways in which moment 

loads can be applied to the branch junction. Moffat [34] provided a detailed discussion on the 

subject and the effect on resulting stresses. The two most commonly used methods to 

constrain the branch are discussed below. 

Case (a) Cantilever model. One end of run pipe fixed 

The present study was based on the cantilever model. In this model, the tee branch is fully 

constrained at one end of the run pipe while the free ends are applied with moment loads. 

Experimental studies on tee branches with the cantilever model were carried out by Gwaltney 

et at [35], Moffat [34] and Zhixiang et at [60]. 

Case (b) Two ends of pipe fixed 

The resulting stresses from this case are sensitive to the short run pipe lengths, but otherwise 

the resulting stresses due to branch pipe moments are not different from the above case (a). 

The branch moments are reacted out through both run pipe limbs. The in-plane run pipe 

moment is obtained by a branch thrust. Rodabaugh [81] speculated that for branch moments, 

the difference in resulting stress factors between case (a) and case (b) would be small if rlR 

is less than 3/4, but if r/R= 1 the stress factor for case (b) is less than case (a). Among 

others, Mershon et al [32] and Fujimoto and Soh [27] based their analyses On this loading 

case. 
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Another method of constraining the structure is where the ends of the run pipe are simply 

supported. If the run pipes in case (b) are sufficiently long, the stress distributions in these 

cases would be similar, a point which was proven by Moffat [34]. In another method, if 

moment is applied at a pipe end, the other two pipe ends are fixed. Experimental studies in 

which two pipe ends are fixed were carried out by Hardenbergh and Zamrik [82], Riley [83], 

Ellyin [84] and Decock [85]. 

3.3.4. Load modelling 

The loads on the tee branch may consist of internal pressure, bending or torsional moments 

acting at the ends of the run or branch pipes. The in-plane and torsional moment loads were 

applied to ends of the pipes in a way similar to the plain pipes. For pressure, axial stresses 

were also applied to the ends of the pipes to model the close-ended condition. Fig. 1 shows 

the method of constraining the structure and the moment vectors being applied on the pipes. 

The hoop angular directions of the run and branch pipes 0 and ~ are defined in the figure. 

The branch pipe had 32 elements around the circumference, hence a total of 64 nodal forces 

acted at intervals of ~=5.625° to induce branch moment loads. For out-of-plane moment on 

the run pipe, the nodal forces are given by:-

• 7rO 
SIn--

2 1800 
Force=Myr(-)----D 180" 0 

m~'27r 
L.J SIn --
8-(1' 1800 

(43) 

The nodal forces to induce out-of-plane moment load on the branch pipe are similar to the 

above equation, except that the moment was replaced by Mxb, Dm was replaced by ~ and the 

angular direction in the run pipe 0 was replaced by ~ in the branch pipe. 
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3.4. TORISPHERICAL HEAD WITH NOZZLE 

3.4.1. The FE model 

To get a correct correlation with Drabble's [74] experimental results, it is necessary to model 

the loading, geometry and boundary conditions of the experimental test exactly. The 

experimental nozzle-shell geometry shown in Fig. 5 was adopted for the finite element 

analysis. One of the difficulties facing investigators is the lack of accurate knowledge of 

boundary conditions in experiment tests. The use of a flange for clamping at the cylindrical 

vessel was represented by a fully fixed boundary condition. The structure was loaded with 

internal pressure and external compressive axial force, bending moment and torsional moment 

at the nozzle end in a similar way as the plain pipe. 

At geometric discontinuities, the loadings could create high stress gradients in the radial, hoop 

and meridional directions. The FE mesh size in these directions was considered in a 

preliminary convergence test on the model subjected to internal pressure. The peak von Mises 

effective stress on the inner surface of the knuckle was compared. The number of elements 

in the hoop direction that will adequately model the structure is critical to the analysis. In the 

full hoop direction, 24- and 48-element models were carried out. The convergence of stresses 

due to meshing in the meridional direction was also considered. The number of elements in 

the meridional direction was increased from 2+2+ 1 (Le. number of elements in 

knuckle + crown + weld) to 5+4+1 and finally to 8+8+2, which will be referred to as 

coarse, medium and fine meshes respectively. Increasing the number of elements from 24 to 

48 in the hoop direction improved the result marginally but in the meridional direction, the 

coarse and medium meshes gave a lower peak stress by about 20 % than the experimental 

value. The final fine mesh was about 4 % higher than measured; Le. a good agreement with 

the test result. A model with two layers of elements in the wall was run but it did not give 
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significant improvement over the one-layer model; so the one-layer model was used 

subsequently. In the hoop direction, the 48-element model was selected mainly because it 

gave an aspect ratio close to unity at the critical intersection region. The results of the mesh 

investigations led to the selection of the final FE idealization in the meridional direction; 

8 + 8 + 2 elements in the knuckle, crown and weld regions, 6 elements in the main cylinder 

and 7 in the nozzle. A longitudinal section of the discretized geometry is shown in Fig. 14. 

The full model utilized 1488 20-node brick elements with a total of 10656 nodes. The vessel 

material was mild steel which is characterized by elastic modulus of 30xH1 psi and Poisson's 

ratio of 0.3. 

FIG. 14. 
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.----8 
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FINITE ELEMENT MESH ON MERIDIONAL PLANE OF 

TORISPHERICAL HEAD WITH NOZZLE. 
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3.5. STRESS AND LOAD INTERACTION CALCULATIONS FROM FEM DATA 

The numerical stress analysis was performed using the linear elastic finite element program 

ASAS [76]. For each loading category, the finite element results gave normal and shear nodal 

stresses with reference to the global X-, y- and z-axes. To eliminate undesired end effects 

from the boundary conditions and external loads, only the stress data around the region of 

interest was stored in a database. For the tee branch and torispherical head, the region around 

the intersection was the area of interest. For the pipe bends, only the curved pipe section was 

considered and in the plain pipes, it was the central area which was about one diameter away 

from the ends. 

The stresses were then normalised using the respective nominal stresses. For pressure, the 

nominal stresses are:-

Un = PRm/T for plain pipe, elbow and tee branch 

Un = PLm/2T for torispherical head 

and for torque and in-plane moment, the nominal stresses are, respectively:

Un = M X outer radius 11 

and Un = To X outer radius 11 

(44) 

(45) 

(46) 

(47) 

where 'outer radius' and I refer to the parameters of the pipe or nozzle on which the load 

acts. 

For each piping component, a computer program was written to manipulate the FEM stress 

data output, for load interaction and other calculations. It was based on the program 

TSTRESS written by Mistry [42]. The program FINALE.FOR which was used to analyze 

pipe bends is listed in Appendix B. The slight modifications to the programs for each 

component are due to different numbers of load categories and different locations of stress 
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distributions. The following procedure describes the program FINALE. FOR written for the 

pipe bends. 

From the FE analysis of an elbow. three subsets of stress data were obtained. one for each 

load category of torque. pressure and moment. Assuming a linear load-stress relation and the 

absence of nonIinear load coupling. the six stress components. O'x. O'y. O'z. Txy. Tyz and Tzx • at 

every node could be proportioned and summed algebraically for any combined load and 

loading category. These stresses were used to determine the von Mises effective stresses at 

all the nodes in the structure. The principal stresses 0'\. 0'2 and 0'3 at each node were obtained 

from the three equations of stress invariants. namely. 

(48a) 

(48J) 

and (4&:) 

from which the von Mises effective stress at each node, O'vM' could be obtained:-

(49) 

The computer program FINALE. FOR provides the following capabilities:-

1. Effective stress distribution on inner and outer surfaces, at elbow mid-section for any 
combined load. Determination of location and magnitude of the maximum effective 
stress. 

2. Two-load interaction diagrams. 
3. Three-load interaction diagrams. 
4. Distribution of von Mises ESF, from individual loads. 

The program is able to interpolate stresses for any given elbow geometry which is within the 

range of the present models under study. For a given elbow geometry, the program 

FINALE.FOR carries out a two dimensional cubic spline interpolation for the two 

interpolating parameters (OmIT and bend ratio, b), from sixteen sets of data which were 

obtained from the FE analysis of sixteen elbow models. If adequate data were obtained from 

the FE analysis on tee branches (27 sets at least), a similar three dimensional interpolation 
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could be done for any given tee branch. The three independent interpolating parameters would 

then be the ratios OfT, dfD and tiT. 

The main feature of the computer program is the ability to analyze load interaction behaviours 

of pipe bends. A load interaction diagram is drawn by combining the loads in various 

proportions to form a first yield locus. From the FEM stress data, the maximum von Mises 

effective stress for any load combination can be located and calculated by the program. By 

limiting the maximum effective stress to the yield stress of the material, the limiting 

combining loads can be found. 

For any two interacting loads, a vector is formed from the maximum resultant effective stress. 

A yield point on the vector is located by calculating the factor required for the resultant stress 

to equal the yield stress. Other yield points are obtained by rotating the vector in an 

incremental step of 1 degree (by combining the interacting loads in various proportions) to 

form a locus of first yield. Negative moments imply that the nodal loads needed to induce the 

moments are applied in the opposing directions. The stress data for the negative moments 

were not regenerated but instead were taken from the results of positive moments, with the 

signs of the stresses reversed. 
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1. PLAIN PIPES 

4.1.1. FEM stress results 

The accuracy of the load interaction depends entirely on results produced by the FEM. The 

stresses in the pipes from separate loads were calculated from Lame's theory. The comparison 

of the FEM results with the thick pipe solution for the models with extreme D/T ratios is 

summarised in Table 3. The difference between the two methods is negligible. 

Table 3. Stresses from FEM and theory. 

Stresses (MPa) 

Model Load Max. stress Theory FEM 

PIP1 Torque = 1 MN-m shear 909.36 909.41 

Moment = 1 MN-m axial 1818.73 1815.10 

Pressure = 1 MN/m2 axial 5.628 5.645 

hoop 11.256 11.273 

Axial force = 1 MN axial 114.25 114.25 

PIP4 Torque = 1 MN-m shear 316.15 316.16 

Moment = 1 MN-m axial 632.29 630.30 

Pressure = 1 MN/m2 axial 0.811 0.859 

hoop 1.621 1.658 

Axial force = 1 MN axial 31.027 31.026 
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4.1.2. Load interactions 

-------- --
Figs. 15-20 show the interaction curves for load pairs To:P, M:P, F:P, M:To, To:F and M:F 

for varying OfT ratio. Figs. 21-24 show the comparisons between the FEM, theoretical, BS 

and Reilly's [4] experimental results, for pipe models PIP! (OfT=5) and PIP4 (OfT=24.5). 

Table 4 shows the BS and the two yield formulations. The BS formulations are derived from 

the equations of hoop, axial, shear and equivalent combined stress. 

The finite element method of predicting first yield gives accurate results. The BS uses the 

Tresca yield criterion and hence the results differ significantly for some load pairs. From the 

effective stress formulations, the von Mises and Tresca stresses tend to be equal if the 

intermediate principal stress approaches zero. This condition is not met if pressure is one of 

the interacting loads, hence the difference in yield prediction of the load pairs To:P, M:P and 

F:P. 

When a combined load causes a uniaxial stress system over the whole load range, the 

interaction is linear, otherwise the interaction is at least (conservatively) circular. When the 

location of first yield shifts between the inner and outer surfaces of the pipe at different load 

combinations, the interaction is made up of two separate relations which are dependent of the 

OfT ratio. Out of six load pairs, only the To:P and M:P pairs are influenced by OfT as shown 

in Figs. 15 and 16. The interaction diagrams are symmetrical in all quadrants, indicating that 

the maximum effective stress behaviour of the pipe does not depend on the signs of the loads. 
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4.1.2.1. Torgue:Internal pressure 

When a pipe is subjected to torque and internal pressure, the first yield is dependent on the 

O/T ratio of the pipe. From Fig. IS, as the pipe becomes thicker (lower O/T ratio), yielding 

occurs at higher loads. The yield loci predicted by the finite element method (Fig. 21) agree 

excellently with the thick pipe theory, for both PIPl (O/T=24.5) and PIP4 (O/T=5). The 

location of yield shifts from the outer surface, when torque is dominant, to the inner surface 

when pressure is dominant and is marked by a sudden change of slope. Theoretically, the 

discontinuity may be explained by Eqns. (5) and (7) - it is more pronounced in thicker pipes 
. 

(Fig. 15). The BS gives a circular interaction which agrees well with thinner pipes but the 

discrepancy with FEM increases as the pipes become thicker. Fig. 21 also shows the 

comparison with ReiIly's [4] experimental tests on a pipe with O/T=26. When torque 

dominates, the test [4] indicated that yielding was reached earlier than predicted; this may be 

due to local buckling of the pipe. In fact, the trend of Reilly's results is closer to the Tresca 

criterion. The Tresca results in Fig. 22 are presented to show the difference between the FEM 

and the BS circular relation. The large discrepancy arises from the BS use of the mean 

diameter hoop stress, the neglect of radial stresses and the Code's assumption that the 

minimum stress is always zero. This means that the BS results will only approach the 

theoretical (and FEM) prediction when the pressure load dominates. 

4.1.2.2. Moment:Internal pressure 

The moment:pressure interaction from the FEM is identical to that oftorque:pressure. Eqns. 

(9) and (10) give two sets of curves, each of which is applicable for a range of combined 

load. Fig. 16 shows a set of curves which are dependent on the O/T ratios. The results agree 

excellently with the maximum von Mises effective stresses which use thick pipe stresses. The 

BS interaction is different because the Tresca yield criterion being used does not consider the 

intermediate principal stress. When compared with the FEM Tresca criterion (Fig. 24), the 
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agreement is good, unlike the above To:P interaction. In the M:P interaction, stresses 0"1 and 

0"2 are always positive so that the stress O"l =0) is taken into account in both the BS and finite 

element methods. The implied thin pipe theory from the BS gives slight conservatism which, 

as expected, vanishes as the pipe becomes thinner. The derived Eqn. (24) from BS shows the 

effect of D/T and the derived Eqn. (26) shows that yielding is unaffected by moment when 

pressure dominates. 

4.1.2.3. Axial force:Internal pressure 

The FEM and theoretical interaction for the von Mises criterion shows a circular relation 

(Fig. 17). The Tresca criterion results in a bi-linear interaction which is not influenced by 

D/T ratio, i.e. when the force load is dominant, the linear relation is:-

- -
F + 0.5P = 1 (50) 

and when pressure is dominant, the relation is:-

-
P = 1 (51) 

At all values of combined loads, yielding occurs on the inner surface because the axial tensile 

force does not give preference to any particular yield location. 

4.1.2.4. Moment:Torgue 

The FEM shows a circular interaction which is consistent with the theoretical von Mises. The 

BS (Eqn. (28» and Tresca criterion shows a similar circular interaction. Yielding at all loads 

occurs on the outer surface of the pipe. 

4.1.2.5. Torgue:Axial force 

The FEM results show circular interaction which is confirmed by thick and thin pipe analyses 

for both von Mises and Tresca criteria. Yielding occurs on the outer surface. 
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4.1.2.6. Moment:Axial force 

The FEM shows a linear interaction. The thick and thin pipe analyses for both von Mises and 

Tresca criteria give a similar linear interaction. Yielding occurs on the outer surface. 

4.2. PIPE BENDS 

For initial stress verification, two models were considered in detail. The models EL05 and 

EL07 (see Table 2, page 45) have a bend ratio b=3 but with extreme D/T ratios of 150 and 

20 respectively. The results of other elbows in the series are taken into consideration in the 

general discussion. Comparison with the energy method and standard design codes will reveal 

the adequacy of the FEM in predicting stresses in thick- and thin-walled elbows. 

4.2.1. von Mises effective stresses 

The von Mises ESFs are characterized by three factors, i.e. thickness, bend radius and mean 

diameter, which can be grouped into two parameters, b (=Rlr) and D/T. The von Mises 

effective stress factor (ESF) distributions around the circumference at the elbow mid-section 

of elbows EL05 and EL07 are shown in Figs. 25-27. Due to torque (Fig. 25), maximum 

stresses occur on the outer surface with ESF peaks on either side of the crown, at 0 = 75° and 

120°. The peaks are more pronounced in thinner (D/T~80) elbows. At the intrados and 

extrados, the ESFs do not vary much with elbow thickness but elsewhere the stresses increase 

with thinner elbows, with stresses on the outer surface greater than on the inner surface. 

In Fig. 26, an in-plane moment gives the same response as in torque except that maximum 

stresses occur at 0=90°. However, in thicker elbows, there is a tendency for stresses on the 

outer surface at the intrados to approach the high stresses at the crown. Increasing the 

thickness and bend radius result in levelling of the peaks and reduction of stresses. For 
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internal pressure (Fig. 27), the stresses on both surfaces increase gradually from the extrados 

to the intrados, with stresses on the inner surface higher than on the outer surface but the 

stress gradient across the wall becomes smaller as the elbow gets thinner. 

The pipe factor A is defined as:-

A = (T/r)(Rlr) or A = (T/r)b 

If b is constant, the pipe factor A is then inversely proportional to the O/T ratio. On many 

occasions, in trying to show the effect of the bend ratio and pipe factor on stresses, many 

analysts present the stress variation with A and b, as in Figs. 28-30. For torque and moment 

loads, the stresses increase with decreasing A, but there is no definite trend of stress variation 

with b because A is not an independent parameter which affects stress. If A is kept constant, 

varying b results in a change of O/T too. This may explain the conflicting reports on the 

effect of A on stress although the effect from O/T ratio and b (=Rlr) is very clear. Fujimoto 

and Soh [27], Natarajan and Blomfield [11] and Thomson and Spence [86] reported a slight 

increase of stress with increasing bend radius when the pipe factor is kept constant. On the 

other hand, the stress indices from BS [5] as well as Turner and Ford [87] show the opposite 

trend of stress increase. When the ESF results are presented as functions of D/T and b (Figs. 

31-33), a definite trend is observed, i.e. the ESFs increase with decreasing bend ratio b. For 

torque and moment loads, when the pipe becomes thicker (low O/T), the ESFs becomes less 

affected (in absolute terms only) by the pipe bend, as shown in Figs. 31 and 32. It is also 

observed that in very thin pipes (O/T> 150), the maximum ESFs tend to be less affected by 

the O/T ratio. For pressure loading, the O/T ratio does not influence maximum ESFs but 

when the pipe becomes thicker (O/T> 40), the ESFs increase appreciably with decreasing 

OIT (Fig. 33). A tabular comparison of maximum ESFs due to the three load cases is shown 

in Table 5. 
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Table 5. Maximum von Mises ESFs of elbows ELOl to EL16. 

Model Max. Mises ESF Model Max. Mises ESF 

Torque I Moment I Pressure Torque I Moment I Pressure 

ELOl 7.74 13.39 1.35 EL09 6.48 9.5 1.0 

EL02 6.33 10.8 1.36 EL 10 5.19 7.44 1.0 

EL03 3.17 3.8 1.47 ELll 2.10 2.44 1.07 

EL04 2.17 2.56 1.57 EL12 1.32 1.53 1.15 

EL05 7.25 11.79 1.11 EL13 5.65 7.99 0.95 

EL06 6.05 9.33 1.12 EL14 4.45 6.24 0.96 

EL07 2.61 3.25 1.20 EL15 1.74 1.93 1.03 

EL08 1.74 2.14 1.28 EL16 1.16 1.30 1.11 

If the von Mises yield criterion is used, yield occurs in the elbow when the maximum Mises 

effective stress at any location approaches the yield stress of the material. This is on 

assumption that elastic buckling does not precede first yield. In Lang's [88] theoretical 

analysis of elbows subjected to in-plane moment, he attempted to define thick and thin elbows 

from the locations of first yield. In thick elbows, Ref. [88], yielding is initiated by the 

maximum hoop stress on the inner surface at 8=90" and in thin elbows, initial yielding starts 

either on the inner surface at the extrados or on the outer surface at the intrados because of 

maximum axial stress at this location. By equating the stresses at these locations, Lang 

defined thick and thin elbows by the transition point given by the equation, 

2E- V,,2 [144v2-399v+165] -~(6+5y2-6v) +15v,,=O 
24E3 64v 32E 

(52) 

where E=T/2r, l1=r/R and pis Poisson's ratio. 

A thick elbow mode of yielding occurs when the left hand side of the above equation is 

greater than zero, otherwise a thin elbow mode of yielding occurs. However, Lang's finding 

does not agree with the present study. From the present study, the axial stresses at the 

intrados or extrados approach zero values. 
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4.2.2. Hoop and axial stresses 

The hoop and axial stress distribution at the elbow mid-section of models EL05 and EL07 are 

shown in Figs. 34-45. Although the stresses are plotted for the range of 0=00 to 1800, it may 

be taken that the stress distribution is symmetrical about the intrados-extrados plane for 

moment and pressure loadings, and antisymmetrical for torque loading. The FEM results are 

compared to the theoretical analysis of Rodabaugh and George [15] and the AS ME [28] 

design code. 

For torque loading, the hoop and axial stresses for models EL05 and EL07 are shown in Figs. 

34, 35, 40 and 41. In general, stresses are higher in thinner pipes and the hoop stresses are 

slightly higher than axial stresses but all the stresses are negligible at the intrados and 

extrados. The largest stress is the hoop stress on the outer surface which peaks at hoop 

locations of (J = 600 and (J = 125° but in thicker pipes, the hoop stress on the inner surface at 

0= 1250 may approach the maximum stress. The maximum axial stress occurs on the outer 

surface at (J = 105°. Longer bend radius does not change the distribution trend but lowers the 

overall stress magnitude. 

Due to in-plane closing moment, the maximum stress is the hoop stress at the outer surface 

of the crown. As the elbow becomes thicker, the hoop stresses at the outer surface of the 

intrados as well as at the inner surface of the crown may approach the maximum stress. The 

maximum axial stress occurs on the outer surface at (J = 75° but in thicker elbows, the outer 

axial stress at about (J = 135° may approach the maximum value. The stresses at the intrados 

and extrados of thin elbows approach zero but reach peak values in thick elbows. When the 

bend radius becomes larger, the main difference occurs at the intrados and extrados of the 

elbows. In elbows with large b, the outer fibres are not easily displaced towards the centre 

of the pipe (compared to small radius elbows), thus the fibres at the extrados and intrados 
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experience higher additional tensile and compressive axial stresses respectively. The hoop 

stresses at these locations are not lowered because of the Poisson's effect of axial stresses. 

Elsewhere, the effect of increasing b results in lowering of stresses. 

Due to pressure loading, the hoop and axial stresses are not affected significantly by pipe 

thickness and bend ratio. The hoop stresses increase very slightly from the extrados to the 

intrados, with stresses on the inner surface higher than on the outer surface. The axial stresses 

on the inner and outer surfaces are equal and remain unchanged in the hoop direction. 

The FEM hoop and axial stresses are compared to theoretical results which are computed 

from the energy method of Rodabaugh and George [IS] and Subsection NB-3685 of AS ME 

Section III [28] design code. The energy method [15] has been described in Section 2.3. For 

moment loading (Figs. 36, 37,42 and 43), the FEM results for the thicker model EL07 are 

in good agreement with theory but for the thinner model EL05, the energy theory [1S] can 

overpredict stresses by more than 100%. For torque loading, the theoretical stresses are 

higher than the FEM especially for the thinner model. For pressure, the stresses predicted by 

ASME [28] are satisfactory. Thin elbows are likely to suffer from geometric nonlinear 

behaviour when subjected to moment and torsional loads, resulting in higher stresses than 

predicted by the present linear analysis. Elbow EL05 has geometric parameters ),=0.04 and 

OfT = 150, which accounts for the large stress discrepancies with theory [15]. The agreement 

with model EL07 is satisfactory for moment and pressure loads but fair with torsional 

moment. 

77 



15 

10 

0: 
0 5 I-
U 
<{ 
u.. 

0 
(/) + 
(/) 
W 
0: -5 l-
(/) + 

-10 

• 
-15 

0 30 60 90 120 150 e 180 

FIG. 34. HOOP AND AXIAL STRESSES ON OUTER SURFACE. 
MODEL EL05 SUBJECTED TO TORQUE. 

20 

15 

0: 
0 10 I-
U 
<{ 
u.. 

5 
(/) 
(/) 
W 
0: 0 l-
(/) 

-5 

-10 

0 30 60 90 120 150 e 180 

FIG, 36, HOOP AND AXIAL STRESSES ON OUTER SURFACE, 
MODEL EL05 SUBJECTED TO MOMENT, 

0: 
o 
t; 
<{ 
u.. 
(/) 
(/) 

W 
0: 
l
(/) 

o 30 60 90 120 150 e 180 

15 

10 

0: 
0 
l- S 
U 
<{ 
u.. 

0 
(/) 
(/) 
W 
0: -5 l-
(/) 

-10 

-15 
0 

FIG. 35, 

20 

15 

0: 
0 10 t; 
<{ 
u.. 

5 
(/) 
(/) 

W 
0: 0 l-
(/) 

-5 

-10 

FIG. 

0: o 
I
U 
<{ 
u.. 
(/) 
(/) 

W 
0: 
l
(/) 

0 

37, 

o 

• • + + + 

+ + 
+ • • 

+ 
• 

• 
30 60 90 120 150 e 180 

HOOP AND AXIAL STRESSES ON INNER SURFACE, 
MODEL EL05 SUBJECTEO TO TORQUE. 

• 

lIf 

• • 
• + 

• 
30 60 90 120 150 e 180 

HOOP AND AXIAL STRESSES ON INNER SURFACE, 
MODEL EL05 SUBJECTED TO MOMENT, 

30 60 90 120 150 e 180 

FIG. 38, HOOP AND AXIAL STRESSES ON OUTER SURFACE, 
MODEL EL 05 SUBJECTED TO PRESSURE, 

FIG. 39. HOOP AND AXIAL STRESSES ON INNER SURFACE. 
MOOEL EL05 SUBJECTED TO PRESSURE. 

Key to markers - FEM hoop - - - FEM axial 
+ ASME [28] axial ... Rodabaugh [15] hoop 

• AS ME [28] hoop 
• Rodabaugh [15] axial 

78 



'I 

3 
I 

!If • 
0: 2 
0 
ti 1 
« 
lJ.. 

... ... 
0 / en ... / en 

~ -1 / 
I- */ 
en -2 

-3 * lIE 

-'I 
0 30 60 90 120 150 e 180 

FIG. '10. HOOP AND AXIAL STRESSES ON OUTER SURFACE. 
MODEL ELD7 SUBJECTED TO TORQUE. 

5 

'I 

0: 3 
0 

ti 2 
« 
lJ.. 

en 
en 
~ 0 
I-
Ul -1 

-2 

-3 
0 30 60 90 120 150 e 180 

FIG. '12. HOOP AND AXIAL STRESSES ON OUTER SURFACE. 
MODEL ELD7 SUBJECTED TO MOMENT. 

0: 
o 
I
U 
« 
lJ.. 

en 
Ul 
W 
0: 
Ien 

o 

+ + + ±._+_-+-'t"'"""l'""-t-'±'-t.. ------

30 60 90 120 150 0 180 

'I 

3 

0: 2 
0 

ti 1 
« 
lJ.. 

0 en en 
~ -1 
I-en -2 

-3 

-'I 
0 

FIG. '11. 

3 

2 

0: 1 
0 

ti 0 
« 
lJ.. 

-1 
Ul en 
~-2 
I-
en -3 

-4 

-5 
0 

FIG. '13. 

0: 

~ 
U « 
lJ.. 

en en 
w 
0: 
Ien 

o 

j 

• • • j 

~ 

30 60 90 120 150 e 180 

HOOP AND AXIAL STRESSES ON INNER SURFACE. 
MODEL EL07 SUBJECT EO TO TORQUE. 

, 
30 60 90 120 150 0 180 

HOOP AND AXIAL STRESSES ON INNER SURFACE. 
MODEL EL07 SUBJECTED TO MOMENT. 

_t.....t_.±_ .. ....t_ ... _t._t_ t + t -----

30 60 90 120 150 0 180 

FIG. '1'1. HOOP AND AXIAL STRESSES ON OUTER SURFACE. FIG. 'IS. HOOP AND AXIAL STRESSES ON INNER SURFACE. 
MOOEL EL07 SUBJECTED TO PRESSURE. MODEL EL07 SUBJECTED TO PRESSURE. 

Key to markers - FEM hoop - - - FEM axial 
+ ASME [28] axial ... Rodabaugh [15] hoop 

• ASME [28] hoop 
• Rodabaugh [15] axial 

79 



Due to torque or moment loading on thick elbows, the hoop stress distributions on the inner 

and outer surfaces have approximately the same magnitude but opposite signs, whereas in thin 

elbows the hoop stresses are equal in sign. The stress difference between the outer and inner 

surfaces can be used to interpret bending and membrane stresses induced by external loads. 

Hence, thicker elbows are subject to more bending and the thinner elbows to more membrane 

stresses in the hoop direction. 

Some authors place great importance on the exact location of maximum axial or hoop stresses 

and how the stress peaks move along the hoop direction as the geometric parameters vary. 

It is detected here that the stress peaks shift closer to the crown as the elbow becomes thinner. 

With respect to this, the FEM shows good agreement with the findings of Fujimoto and Soh 

[27] and Sobel and Newman [89]. Chan and Boyle [90] compared their simple analysis with 

Thomson's [30] theoretical and experimental results and remarked on a 7° shift of the 

maximum axial and hoop stresses. In the FEM, the exact locations of the stresses may vary 

with the meshing and mesh refinement. Findlay and Spence [16] performed theoretical and 

experimental tests on elbows with in-plane moment loading. Their experiments were limited 

to long radius elbows with>. between 0.1 and 1.0. Their finding of the positions of the 

maximum hoop stress is consistent with the present study. In another analysis, Thomson and 

Spence [86] found that due to in-plane bending, the maximum hoop stress occurs at 0=950 

which was said to increase with radius ratios. The FEM shows that depending on >., this 

location is either at 0 = 900 or at 0 = 180° but other authors specifically give the location at 

0=90°. The ASME [28] code implies that the position to be 0=90° and experimental works 

ofImamasa and Uragami [91] gave 0=85°. 
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Figs. 46 and 47 shows the variation of outer hoop stresses (at the crown and elbow mid-

section) with band X. In fact the variations of hoop and axial stresses with X and b from the 

three load cases are similar to the ESF variation. The graphs are presented in a similar way 

as other analysts to show the reversal of maximum stresses in long and short radii elbows for 

different ranges of X. For torque and moment loadings, when X is small, maximum hoop 

stresses occur in short radius elbows whereas if X is high, they occur in long radius elbows. 

Table 6 shows the range of X when the maximum hoop stress changes over between short and 

long radii elbows. For torque and moment, the hoop stress is taken at the outer surface of the 

crown and for pressure, the inner surface of the intrados. A similar observation was also 

reported by Fujimoto and Soh [27]. Their finite element analysis of elbows with b=2 and 3 

resulted in a changeover point of X=0.03. The same analysis was carried out to see the effect 

of D/T and b on hoop stresses. Similar to the case of maximum ESF, the hoop stress 

increases with decreasing b or increasing D/T. 

Table 6. Effect of b and X on O'b.:. 

Load Range of X Maximum hoop stress in:-

Torque X < 0.12 short radius elbow 
X > 1.4 long radius elbow 

Moment X < 0.04 short radius elbow 
X >0.18 long radius elbow 

Pressure all values of X short radius elbow 
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4.2.3. von Mises ESFs along axial direction of bend 

The end conditions of the curved section affect elbows with small pipe factors. The tangent 

pipes resist ovalization of the cross-section so that the stresses near the ends of the elbow are 

lower than at the mid-section where deformation is largest. When torque acts on the elbow, 

maximum stresses occur between the mid-section and the end which has pure out-of-plane 

moment. For pressure loading there is no ovalization and the stresses do not increase along 

the axial direction of the curved section. 

Figs. 48 and 49 show the von Mises ESF distributions, on the outer surface, along the axial 

(meridional) direction of the bend. For torque and moment loads, the stresses are taken along 

the crown and for pressure, along the intrados. Due to torque loading, the ESF peaks at a 

section nearer to the elbow end which experiences pure out-of-plane bending moment. For 

both elbow models, these stress peaks, which occur at cb =::; -20°, are about three times those 

at the torque end. The ESF peaks shift slightly towards the elbow mid-section as the elbow 

becomes thinner and as b decreases. In-plane moment load produces symmetrical distributions 

about the elbow mid-section with ESF peaks at 4> = 0°. These peaks are about Ilh times those 

at the end of the bends, irrespective of pipe thickness. For pressure loading, the ESFs do not 

vary along the axial direction of the bend, although in thicker pipes there is a tendency for 

the overall ESF in the bend to be slightly higher than in the tangent pipes. 

The ASME [28] rules do not consider the effects of tangent pipes, resulting in overprediction 

of stresses, i.e. more conservative stresses, but if geometrical non-linearities are considered 

in the FEM, these results should agree well. The bend radius too affects the interaction 

between the end effects and the ovalization at the curved section. The ESFs (at the outer 

surface of the crown) in elbows EL13 and EL16 are reduced by about 50% from the mid-
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section to the elbow ends, while in models ELOt and EL04, the reduction is about 35 %. The 

pipe thickness does not significantly affect the stress reduction from the curved section to the 

tangent pipe junctions. 
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4.2.4. Stress indices from Codes 

The stress indices Cl and Cz in ASME [28] are essentially maximum elastic stress factors due 

to pressure and moment loads respectively. They are expressed in terms of the elbow 

geometric parameters. The symbols used are defined in ASME [28]. From Subsection NB-

3683.7 of AS ME III [28] code, the stress indices Cl and Cz, for pressure and moment loading 

respectively, are:-

Cl = (2R-rm)I2(R-r.J 

Cz = 1.95/A2I3 

(53) 

(54) 

The BS 806 [5] code presents the axial and hoop stress factors for in-plane and out-of-plane 

moments in graphical forms. For the BS code, the hoop stress factors are selected as they are 

the larger values for the range of elbows under study. Table 7 compares the maximum ESF 

from the FEM with the stress indices from the ASME and BS codes. 

From Table 7, the ASME and BS results are quite similar in the way they differ from the 

FEM results at various values of O/T and b. The table shows the overall conservatism of the 

Codes especially for torque loading. The discrepancies between the FEM results and the 

Codes become larger as the elbows get thinner and the bend radii get smaller. For in-plane 

moment, for elbows with O/T;:: 80 and b s 3, the Codes stress factors are always higher than 

the FEM values by 17.5-72%. From Fujimoto and Soh's [27] examination, the ASME code 

formulae overestimate stress by about 40 % for lower values of the pipe factor. For torque 

loading, for O/T;:: 80, the Codes stress factors are higher by at least 40%, for all bend radius 

ratios. The Codes emphasise the increase of stress index as A decreases because of 

progressive flattening of the cross-section. The AS ME stress index for pressure Cl does not 

differ much with the FEM results; the stress varies with D/T but not with b. 
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4.2.5. FEM first yield load interaction 

Figs. 50-52 show the first yield interaction diagrams for load pairs M:To, To:P and M:P 

drawn from linear superposition of individual effects. For each load pair, the elbows are 

grouped into their respective bend ratio b, hence the curves in each graph show the effect of 

OfT ratio on first yield. From Fig. 50, the pipe thickness does not seem to affect first yield 

in a particular trend nor does it result in an appreciable increase or decrease of the maximum 

ESF. The bend radius slightly affects the maximum ESF, with larger values of b result in a 

lower ESFs. The interaction is best represented by a circular relation:-

(55) 

Table 7 Maximum stress factors from FEM and the Codes 

Model Method Max. stress factor I 

Torque f Moment- f Pressure 

EL01 FEM 7.74 13.39 1.35 
ASME 21.85 21.85 1.5 
BS 19.5 23.0 

EL02 FEM 6.33 10.8 1.36 
ASME 14.37 14.37 1.5 
BS 14.0 15.0 

EL03 FEM 3.17 3.8 1.47 
ASME 5.7 5.7 1.5 
BS 6.2 6.2 

EL04 FEM 2.17 2.56 1.57 
ASME 3.59 3.59 1.5 
BS 4.3 4.0 

EL05 FEM 7.25 11.79 1.11 
ASME 16.67 16.67 1.25 
BS 14.5 17.0 

EL06 FEM 6.05 9.33 1.12 
AS ME 10.96 10.96 1.25 
BS 10.0 11.5 

EL07 FEM 2.61 3.25 1.20 
ASME 4.35 4.35 1.25 
BS 4.4 4.5 

EL08 FEM 1.74 2.14 1.28 
ASME 2.74 2.74 1.25 
BS 2.9 2.9 
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Table 7(contd.). Maximum stress factors from FEM and the Codes. 

Model Method Max. stress 

Torque I Momenta 

EL09 FEM 6.48 9.5 
ASME 11.86 11.86 
BS 10.7 11.5 

EL10 FEM 5.19 7.44 
AS ME 7.8 7.8 
BS 6.6 7.8 

EL 11 FEM 2.10 2.44 
ASME 3.1 3.1 
BS 2.9 3.0 

EL12 FEM 1.32 1.53 
AS ME 1.95 1.95 
BS 1.9 1.8 

EL13 FEM 5.65 7.99 
AS ME 9.48 9.48 
BS 8.4 9.6 

EL14 FEM 4.45 6.24 
ASME 6.23 6.23 
BS 5.4 6.0 

EL15 FEM 1.74 1.93 
ASME 2.47 2.47 
BS 2.1 2.2 

EL16 FEM 1.16 1.30 
AS ME 1.56 1.56 
BS 1.3 1.2 

for FEM, maximum Mises effective stress factor 
for BS, maximum hoop or axial stress factor 
for ASME, maximum hoop stress factor 

factor' 

I Pressure 

1.0 
1.25 

1.0 
1.25 

1.07 
1.25 

1.15 
1.25 

0.95 
1.08 

0.96 
1.08 

1.03 
1.08 

1.11 
1.08 

a closing moment is taken to be positive, and an opening moment to be negative 
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Similarly, the To:P load pair in Figs. 51 is not much affected by D/T and b except when 

b=2. In the case of b=2, the stresses are lower when internal pressure dominates, giving a 

slightly larger yield locus. The interaction is best represented by a linear relation:-

- -
To + P = 1 (56) 

The interaction between pressure and in-plane bending moment is different from the two 

previous interactions because it can result in a maximum stress lower than that given by the 

individual load. From Figs. 52, the bend radius does not influence maximum stresses as much 

as the D/T ratio. Different D/T ratios result in different load capacities being increased 

beyond their first yield individual value. In thin elbows, such as ELOl, EL02, EL05, EL06, 

EL09, ELIO, EL13 and EL14 (where D/T~80), the first yield opening moment capacity is 

increased by at least 22 % when P =::: 0.4. In thick elbows (D/T S 10), the closing moment 

-
capacity is increased by as much as 9% when P=:::0.15. In addition, thick elbows (D/TS20) 

show a 15 % increase in first yield pressure capacity when an opening moment of if =::: 0.2 is 

present. Taking into consideration the behaviour of the range of elbows being studied, the 

best interaction is a linear relation:-

- -
M + P = 1 (57) 

In reality, the load interaction behaviour is more complex than the linear superposition from 

the individual loadcases because of the effect of flexibility of one loadcase upon the other. 

Spence and Boyle [92], Rodabaugh and George [15] and Wassermann [26] analyzed the effect 

of in-plane moment on stress behaviour due to stiffening from internal pressure. 

92 



4.2.6. Nonlinear coupling of in-plane moment and pressure 

A detailed analysis of load interaction which involves moment and internal pressure is 

complex. It is well known that especially in thin elbows, an in-plane or torsional moment 

causes severe ovalization of the pipe cross-section. The stresses in an elbow subjected to 

internal pressure departs from simple pipe theory if the cross-section is not circular. This 

results in a nonlinear coupling between pressure and moment loads, and in a reduction of 

flexibility and stresses. Rodabaugh and George [15] studied the influence of internal pressure 

on the in-plane and out-of-plane moment stresses, and formulated reduced stresses when 

pressure is present. The reduction of stresses is also noted by Spence and Boyle [92]. 

However experimental investigation by Wassermann [26] on thick and long radius elbows 

(b> 6 and DfT:::: 10) showed a reverse effect i.e. an increase of hoop stress when pressure 

is present. Wassermann also showed that with pressure the closing moment causes a larger 

increase of hoop stress than an opening moment. The following results from the nonlinear 

analysis should be read as a supplement to the linear analysis results. 

Torque 

Both elbow models EL01 and EL07 show a very slight effect of geometric nonlinearity. In 

model EL01, the maximum von Mises effective stress increases with torque but the increase 

is reduced progressively (see Fig. 53), whereas in model EL07 the effect is reversed (see Fig. 

54). The trend of whether the stress increases progressively or not depends on the location 

on the elbows. This is due to the effect of cross-section ovalization on shell bending at 

different locations. 

In-plane moment 

From Figs. 55 and 56, the elbows behave differently when subjected to an opening or closing 

in-plane bending moment. A closing moment on the elbows causes the maximum effective 
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stresses at the crown to increase progressively with the load, compared to the linear analysis, 

but an opening moment causes a progressive reduction in the stress increase. Although small, 

the effect of geometric nonlinearity in model ELOl is about twice that of EL07. Tables 8 and 

9 give an example of the reduction or increase of the maximum von Mises effective stress 

from various loadings, when compared to the linear analysis. 

Pressure 

In both elbow models, the maximum effective stresses increase linearly with pressure. There 

are no signs of geometric nonIinearity, as shown by the coincident lines in Figs. 57 and 58. 

Pressure:Moment interaction 

Tables 8 and 9 show the differences between the stresses obtained from linear and nonIinear 

analyses. The particular magnitude of pressure was chosen to cause a maximum stress of 

about 100 MPa in the elbows, while the choice of magnitude of the positive moment would 

cause an arbitrary maximum stress (of 617.26 MPa) in both elbows. The stresses were 

evaluated at the nodes where the combined stresses are maximum. 
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FIG. 53. 

FIG. 54. 
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FIG. 56. 

FIG. 57. 

FIG. 58. 
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Table 8. Elbow model EL01. Effective stresses from linear and nonlinear FEM analyses. 

Max'O"vM from linear and nonlinear analyses 

Loadings Lineatt Geometric nonlinearb Geometric nonlinear and 
pressure interactionC 

Max'O"vM Max'O"vM % difference Max'O"vM % difference 
from linear from linear 
analysis analysis 

pt 62.7 62.7 0 - -
MC 617.3 673.6 9.1 - -
_Mc 617.3 535.4 -13.3 - -
P+M8 679.9 736.2 8.3 454.1 -33.2 

P+(_M)h 554.6 490.7 -11.5 272.4 -50.9 
All the stresses III Table 1 occur at node 2744, at the crown. 

Table 9. Elbow model EL07. Effective stresses from linear and nonlinear FEM analyses. 

a 

b 

c 

d 

e 

I 

h 

k 

Max'O"vM from linear and nonlinear analyses 

Loadings Lineatt Geometric nonlinearb Geometric nonlinear and 
pressure interactionC 

Max'O"vM Max'O"vM % difference Max'O"vM % difference 
from linear from linear 
analysis analysis 

pt 70.()k 70.()k 0 - -
80.Si 80.Si 0 

MC 617.3k 651.7k 5.6 - -
_Mc 579.']) 553.Si -4.4 - -
P+Mg 687.3k 721.7k 5.0 664.2k -3.4 

P+(_M)h 659.6i 634.3i -3.9 598.0 -9.3 
geometncally lmear FEM for smgle loads and use of hnear superpoSltlOn (from sm 
loads data) for combined loads 

ge 

geometrically nonlinear FEM for single loads and use of linear superposition (from 
single loads data) for combined loads 
geometrically nonlinear FEM for combined loads (Le. includes pressure interaction) 
internal pressure to cause maximum O"vM = 100 MPa in elbow 
closing in-plane moment = 1.9 kN-m in EL01, =57 kN-m in EL07 
opening in-plane moment = 1.9 kN-m in EL01, =57 kN-m in EL07 
pressure + closing in-plane moment, Le. a combination of d and e 

pressure + opening in-plane moment, i.e. a combination of d and e 

at node 2745 
at node 2739 
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In general, due to internal pressure, the maximum effective stress occurs at the inner surface 

of the intrados, while an in-plane moment causes a maximum stress at the outer surface of 

the crown. When the two loadings occur together, the maximum stress in the elbow can 

happen at other locations, depending on the magnitude of the loads and the geometric 

parameters of the elbow. As an example, Figs. 59 and 60 show the maximum stress occurring 

at different nodes when the moment is increased, while the internal pressure is being kept 

constant. The node locations of the elbows are listed in the Appendix C. In model ELOl (see 

Fig. 59), when pressure acts alone, the maximum stress is just on the inner surface of the 

intrados, and when the moment is increased, the location shifts to the outer surface at a hoop 

location of 8= 135°, at node 2719. Finally, when the moment load predominates, the location 

of the maximum stress moves, as expected, to the outer surface of the crown. 

In the elbow model EL07, Fig. 60 shows that when pressure acts alone, the maximum stress 

is at the inner surface of the intrados, but after that as the moment increases, the maximum 

stress occurs at the inner surface of the crown. There is no indication of the stress peaking 

at the outer surface of the crown, even at large moment loads. 

Many researches have been devoted to the study of combined pressure and in-plane moment 

loads on elbows. The influence of pressure on combined loadings can be seen in Tables 8 

and 9 where the combined stresses are derived from three methods. In the linear analysis, the 

combined stresses are obtained from linear elastic finite element analyses on individual 

loading. The second method combines the stresses which are obtained from geometrically 

nonlinear finite element analyses on individual loading. The third method is the result of 

geometric nonlinear analyses on combined loadings, thus automatically including any 

nonlinear load interaction. 
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FIG. 60. 
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The third method evidently shows the stiffening effect of internal pressure on in-plane 

moment, especially on the thinner model ELOt. With the specified combination of pressure 

and opening moment, the stress is reduced by 50.9%, and with a closing moment the 

reduction is 33.2 %. The thicker model EL07 shows smaller corresponding reductions of 9.3 % 

and 3.4%. 

The effect of geometric nonlinearity with stiffening of the cross-section shows interesting 

results. A closing moment increases the maximum effective stress, and an opening moment 

reduces the stress. Although small, the stress increase and decrease in elbow ELOl are larger 

than in elbow EL07. When the results from both geometric and interaction nonlinear analyses 

are examined closely, the trend of the stress increase and decrease becomes apparent. In the 

geometric nonlinear analysis, the increase is due to the tensile stresses from the closing 

moment being added to the tensile pressure stresses at the outer surface of the crown. An 

opening moment produces compressive stresses at the same location, hence providing a 

reducing effect to the pressure stresses. When the load interaction is taken into account, the 

stiffening effect from internal pressure reduces ovalization and has a cancelling effect on the 

stress produced by geometric deformation. The effects of load interaction nonlinearity are 

quite large in the thinner model. 

Fig. 61 helps to explain the large difference between the effects produced by opening and 

closing moments especially in elbow ELOt. Internal pressure loading loads the elbow to a 

particular stress level. When a small magnitude of in-plane moment is then introduced, the 

maximum stress increases or decreases, depending on whether a closing or an opening 

moment is applied. An opening (negative) moment introduces a cancelling effect so that the 

effective stress at node 2744 (outer surface of the crown) is reduced to zero, whereas a 

closing (positive) moment increases the stress beyond the initial stress caused by internal 
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pressure. In addition, the different stress behaviour between an opening and a closing moment 

determines whether the stresses increase progressively with the moment. Hence, for an 

opening moment, the difference between linear and nonlinear analyses is larger for the same 

magnitude of moment which eventually accounts for the opening moment stress to be less 

than for a closing moment. 

Fig. 62 shows the first yield locus, from the linear analysis, when the two loadings Occur 

together in different combinations of magnitude. The yield points at selected load 

combinations are also plotted to emphasize the effect of nonlinear interaction on yielding at 

yield stresses of 200, 300 and 400 MPa. Since the nonlinear analysis results in lower 

maximum stresses, the yield envelopes are larger. Elbows with higher yield stresses have 

larger yield envelopes because the stresses become progressively reduced as the moment is 

increased. The key to the markers used in Fig. 62 as well as Figs. 64, 69 and 70 are defined 

in Appendix C. 

The M:P interaction of model EL07, shown in Fig. 63, does not exhibit much nonlinear 

interaction. Unlike model ELOt, the maximum effective stress in the thicker model Occurs 

at different locations for the closing and opening moments. For the same magnitude of closing 

and opening moments, the maximum stresses are quite close and the nonlinear analysis gives 

Slightly lower maximum stress values than in linear analysis. Comparing the curves of Fig. 

63 to those in Figs. 56 and 58, it can be seen that the reduction in maximum stress is due to 

a small contribution of geometric nOnlinearity and nonlinear interaction. Fig. 64 shows the 

linear analysis yield envelope to be only slightly more conservative (Le. overestimation of 

maximum effective stress) than the nonlinear envelope. 
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FIG. 65. 

FIG. 66. 
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FIG. 68. 
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Table 10 shows the approximate maximum increase in the (opening) first yield moment-

carrying capacity of the elbows due to both geometric and nonlinear load interaction. The first 

yield closing-moments also show increases but not as high as the opening moments. The yield 

locus trends indicate that for the thicker elbow, there is a slight increase in the opening 

moment-carrying capacity at very low internal pressures. There are also increases in internal 

pressure capacity at low values of opening moment, which are not shown by the thinner 

elbow nor for closing moments. 

Table 10. Increase in moment carrying capacity of elbows. 

Limit Magnitude of pressure and maximum % 
increase in first yield moment (absolute) capacity 

stress Model EL01 Model EL07 

200 MPa At P=0.5Py , opening moment At P=0.05Py , opening moment 

increase by = 88 % increase by < 5 % 

300 MPa At P=O.4Py , opening moment At P=0.05Py , opening moment 

increase by. = 130 % increase by < 5 % 

400 MPa At P=0.37Py , opening moment At P=0.05Py , opening moment 

increase by = 160 % increase by < 5 % 

Py denotes the pressure to cause first yield in the respective elbows. 

Pressure:Torgue interaction 

In model ELO 1, with constant internal pressure, the maximum effective stress changes 

location with torque, as shown in Fig. 65. As the torsional moment is increased from zero, 

the location shifts from the inner surface of the intrados to the outer surface at (8=24CY and 

</>=-15°) and finally to the outer surface at (8=75° and </>=0°) as the torque predominates. In 

model EL07, the maximum stress starts at the inner surface of the intrados and finally moves 

to the outer surface at (8=2400 and </>=-22.5°) at large values of torque, as shown in Fig. 66. 

From the analysis on other elbow models, these maximum locations depend on elbow 
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,geometric parameters. 

le phenomena of geometric and nonlinear load interaction is similarly encountered in the 

o:P interaction. When subjected to torque, the thinner model ELOl again shows larger 

eometric and interaction nonlinearity and than the thicker elbow. 

Comparing the graphs in Fig. 53 to Fig. 67 and Fig. 54 to Fig. 68, it can be seen that the 

reduction in maximum stress is due to a combination of both phenomena. Fig. 69 shows the 

nonlinear yield envelope of the thinner model to be very conservative compared to a slight 

conservatism in the thicker model, shown in Fig. 70. In model EL01, since the effect of 

geometric and interaction nonlinearity becomes increasingly large at higher limit (yield) 

stress, the torque-carrying capacity of the elbow increases with the stress limit. At all stress 

-
limits, the torque is increased beyond ToY at P::;;0.5 Py , as can be seen from Fig. 69. 

4.2.7. Load interactions from Codes 

4.2.7.1 BS 806 

In the BS 806 [5], the hoop, axial and shear stresses are based on the thin cylinder theory. 

To make the procedure more conservative, the effects of pressure and moment are not 

coupled. The stress factors, FTi and FLi were derived by Turner and Ford [87], while the 

factors FTo and FLo by Smith [93]. The symbols refers to those used in the BS. 

i. Torque:Pressure 

The total hoop stress, fT' is the sum of separate effects from internal pressure and torque 

loadings and is given by:-

fT = pd/2t + 0.5p + 0 

and similarly, the total axial stress is:-
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Since there is no contribution of shear stress from pressure, the total shear stress is:~ 

Since fT> fL' the effective stress is:~ 

fe = v(fi + 4f/) = Y 

or (pdl2t + O.5p)2 + 4[MT(d + 2t)/41]2 = y2 

to give a circular interaction between pressure and torque, Le. To2 + p2= 1 (58) 

ii. Moment: Pressure 

Similarly, when internal pressure and in-plane moment act on the elbow, 

Total fT = pd/2t + O.5p + rMjFT/I 

Total fL = pd2/4t(d + t) + rMjFLi/1 

For a given value of pipe factor A, FTi> FLi, so that fT> fL. 

Since MT is not acting, the shear stress fs = O. 

Substituting for the value of fT into the equation for fc:-

- -
The above equation gives a linear relation, Le. M + P= 1 

iii. Moment:Torque 

And similarly, 

As before, fT> fL' hence giving F = fT' 

From the torque loading, fs = MT(d + 2t)/41 

The effective stress, fe = V(F2 + 4fs2) = y 

or (rMjFT/I)2 + 4[MT(d + 2t)/41]2 = y2 
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- -
The above equation gives a circular relation, i.e. M2 + To2= 1 (60) 

4.2.7.2. AS ME III 

Equation (10) of Subsection NB-3653.1 AS ME III [281 code is meant to control primary plus 

secondary loads so as to place an upper bound on defonnations. Neglecting thennal effects, 

Equation (10) of ASME [281 is:

C1PoDj2t + ~DoMl21 S 3Sm 

where the resultant moment Mi =V(Mx2 + M/ + Mz2). 

It can be shown that the M:To interaction is circular and the To:P and M:P interaction are 

linear. 

In the Codes, the maximum stresses due to the individual loads are summed up, regardless 

of the location on the pipe. In the ASME code, the interactions are similar to the FEM but 

in the BS code, only the circular To:P interaction is different from the FEM. 

4.2.8. Experimental test. 

4.2.8.1. Strain behaviour 

Figs. 71 and 72 show the strain behaviour for the single loading of increasing pressure and 

moment, while Figs. 73 and 74 show the plots for the combined loadings. 

From the figures, it can be seen that within the elastic limit of the material, in all loading 

conditions, the maximum measured strain occurs in the hoop direction at the intrados. It must 

be remembered that due to the limited number of gauge locations, the strain behaviour on the 

inner surface and other locations could not be detennined. The strains at the locations which 

were not gauged could be higher than the test results. 
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Fig. 75 shows the strains and rotation between the elbow ends for the incremental combined 

load for Test No.5. The curves show initial elastic response and the gradual transition to 

predominantly plastic behaviour. From the finite element linear load interaction analysis, it 

was calculated that the elbow would have experienced first yield at a load combination of 

pressure = 13.23 MPa and moment =-2.646 kN-m; a combination which is shown in Fig. 75. 

At this load combination, neither the strains nor the rotation of the elbow indicate any sign 

of nonlinearity. In fact the strains and rotation start to become nonlinear at a much higher 

load combination of pressure=20 MPa and moment=-4 kN-m. This is not unusual; an 

experiment carried out by Kirkwood and Moffat [94] to determine the plastic loads in branch 

pipe connections also showed first yield moment and pressure well before any sign of 

deviation from nonlinear response. In another similar experimental investigation by 

Greenstreet [95], an elbow (>.=0.25, b=2.84 and tP=0.0045) indicated a first yield load of 

2193lb and a load of 2450 lb at onset ofnonlinearity, and another elbow (>'=0.167, b= 1.89 

and tP=0.OOI9) gave corresponding loads of 1065 lb and 2500 lb, again proving the point 

made earlier. tP is a pressure parameter which is equal to PR2/RmT. 

In Test No. 5, as shown in Fig. 75, at high loads, the strains at two locations levelled off and 

then dropped, which could be due to stress redistribution. 

4.2.8.2. Effective stress 

In Test Nos. 1-4, the elbow was assumed to be in the elastic regime. In Test No.S, the elbow 

was elastic up to a load combination of Pressure = 13.23 MPa and Moment=-2.646 kN-m. 

Table 11 compares the von Mises effective stress obtained from experiment to the theoretical 

energy method [15] and geometrically linear FEM. Rodabaugh and George's [15] method 

accounts for the stiffening effect of pressure on the pipe cross-sectional ovalization brought 

about by in-plane bending moment. Rodabaugh's theory and formulation is thoroughly dealt 
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with in a previous work. From Table 11, the effective stresses are larger at the intrados but 

the maximum effective stresses do not necessarily occur at the gauged locations. 

The FEM results cannot strictly be compared to the experimental results because of the effects 

of incremental deformation from single loads, and stiffening of cross section ovalization due 

to pressure in the case of combined loadings. When internal pressure and moment occur 

together, the stresses at the intrados are lower than the FEM results. The Rodabaugh and 

George's [15] method gives lower effective stresses in both the single and combined loadings. 

This result cannot be used to confirm finding from earlier nonlinear FE analysis concerning 

the slight stiffening effect in thick elbows because the difference may be due to the 

experimental elbow which may not be modelled exactly in the FE analysis. With respect to 

this, Greenstreet [95] reported that the pretest ovality of elbows can be as high as 2 %. 

However, the stiffening effect of internal pressure can be seen by combining the experimental 

data of the single loads and comparing them with the combined loadings, as shown in Table 

12. In Test No. 5, an elastic point is taken for comparison. In this study, the discussion is 

limited to quoting the stresses from only two gauged locations. The larger of the effective 

stresses occurs at the intrados. When the elbow is subjected to combined loadings, the larger 

effective stresses are reduced by an amount which is influenced by the ratio P:M of the 

combining loadings but at other locations the stresses may increase. 
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Table 11. Comparison of von Mises effective stress. 

Test 

No. 

1 

2 

3 

4 

5 

Combined Location Stresses (MPa) 
loads 

M (kN-m) Experiment Rodabaugh FEM 
[15] 

P (MPa) O'h and O'a O'vM O'vM O'vM 

crown O'h= 141.0 122.1 123.4 101.6" 

M=O O'a=71.3 103.1 + 

P=20 intrados O'h=160.3 144.2 160.6 135.6" 

O'a=41.2 136.0+ 

crown O'h=-147.0 128.5 152.9 147.0" 

M=-2.0 O'a=-91.2 146.6+ 

p=o intrados O'h= 163.6 143.1 117.0 151.2" 

O'a= 102.0 161.7+ 

crown O'h=55.9 48.8 40.7 22.3" 

M=-0.75 O'a=21.9 26.0+ 

P=15 intrados O'h= 176.4 154.2 161.6 156.8" 

O'a=67.2 158.8+ 

crown O'h=35.0 30.6 26.3 14.9" 

M=-0.5 O'a= 13.4 16.1 + 

P=lO intrados O'h=119.2 104.2 108.3 104.5" 

O'a=45.7 106.3+ 

crown O'h=-62.7 56.6 84.7 96.7" 

M=-2.0 O'a=-47.3 89.2+ 

P=lO intrados O'h=208.3 180.4 192.3 216.9" 

O'a=105.6 222.5+ 

geometrically linear FEM for single loads and use of linear superposition 
(from single loads data) for combined loads 
geometrically nonlinear FEM for single loads and pressure load interaction 
included for combined loads 
hoop stress 
axial/longitudinal stress 

112 



Table 12. Stiffening effect of pressure on effective stress in combined loadings. 

Test Combined loads Location From single Combined % reduction 

No. M (kN-m) loads loads 

P (MPa) O'vM 

3 M=-0.75 crown 51.9 58.5 ·12.7 

P=15 intrados 193.8 184.7 4.7 

4 M=-0.5 crown 34.6 36.6 -5.8 

P=lO intrados 129.2 124.8 3.4 

5 M=-2.0 crown 80.9 67.8 16.2 

P=lO intrados 257.8 216.1 16.2 

4.2.8.3. Load interaction 

The experimental load interaction for first yield could not be determined from tests on a 

single elbow. An experimental load interaction diagram could only be obtained from tests 

beyond the elastic limit on several identical elbows which are extensively strain gauged. Fig. 

76 shows the deduced interaction diagram for the experimental elbow using the FEM data of 

a range of elbow models. The proximity to first yield for the tests shown in Table 11 are also 

plotted (numbered 1-5) on the interaction diagram. In addition, a point, which is numbered 

6, is also plotted. This point corresponds to a combined loading of pressure =20 MPa and 

moment=-4 kN-m, which from Fig. 75 is the start of rotation nonlinearity. This shows that 

even when a response (in this case, rotation) indicates the beginning of nonlinearity, the 

elbow has already yielded. 

A 2-load curve for the first yield locus can be simplified by either a square, circular or linear 

interaction. From Fig. 76, the P:M interaction in both quadrants can simply and 

conservatively be represented by a linear relation, i.e. 

- -IPI + IMI =1 (61) 
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4.2.8.4. Stress concentration factor from Codes 

The stress concentration factor (SCF) is defined as the ratio of the maximum stress in an 

elbow to the nominal stress of an equivalent straight pipe subjected to the same loading. The 

BS 806 Code is considered for comparison. Due to in-plane moment, from the elbow 

dimensions (pipe factor A=0.393 and bend ratio b=2.75), the BS 806 Code gives separate 

SCF values in the transverse and longitudinal directions. The correlation between the 

measured and BS values of SCF is satisfactory. Table 13 shows a comparison between the 

experimental results and the BS Code. The experimental value of SCF=3.8 is the larger 

between two locations, so the maximum SCF in the elbow could be higher. 

Table 13. SCF from experimental and BS Code. 

Transverse SCF Longitudinal SCF Maximum SCF 

BS 806 3.7 2.4 3.7 (Transverse SCF) 

Experimental at crown, 3.4 at crown, 2.1 3.8+ (intrados-out-
at intrados, 3.8 at intrados, 2.4 transverse) 

+ The larger of the stresses between intrados-out and crown-out 

4.2.9 Location of yield 

Unlike the procedures of the Codes where the maximum hoop stresses from individual loads 

are added, the stresses from the present method are determined for nearly every load 

combination followed by the location of the maximum stress. Hence, the resultant maximum 

stresses may not be at the locations which are predicted by the individual loads. Table 14 

shows the yielding locations in EL07 (thick elbow) and EL05 (thin elbow) for different load 

combinations. The load combinations can be represented in quadrants which are similar to 

those in the interaction diagrams. The change of yield location is especially pronounced when 

there is a sudden change of yield locus slope. 
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Due to torque, the yield location along the axial direction of the curved portion of the elbow 

is if>::::: -200 whereas an in-plane moment causes yield at the elbow mid-section. When these 

loads acts simultaneously, yielding is likely to occur between if> = -200 and if> = 00 and between 

Generally, internal pressure causes yielding on the inner surface but as the elbow gets thinner, 

the difference between the ESF on the inner and outer surfaces is minimal. Furthermore, the 

ESF distribution along the axial direction and across the thickness is not much affected by 

OfT. Moment and torque cause yielding on the outer surface. Therefore when any two loads 

interact in a thin elbow, yielding is most likely to occur on the outer surface at a location 

dictated by torque or moment loading. Thick elbows do not have pronounced stress peaks and 

hence the yield locations are not as definite as thin elbows. 

Table 14. Location of first yield due to two interacting loads. in thick and thin elbows. 
Quadrant 1 - Both loads positive. 
Quadrant 2 - First load negative and second load positive. 

In-plane moment CM) + Pressure (P) 

Quadrant Thick/Thin Load cl> 8 Surface 

(deg.) (deg.) in/out 

1 Thick M alone 0 90 out 
Thin 0 90 out 

Thick M dominates 0 90 out 
Thin 0 90 out 

Thick P dominates 0 180 in 
Thin 0 90 out 

Thick P alone 0 180 in 
Thin 0 180 in 

2 Thick P dominates 0 105 in 
Thin 0 135 out 

Thick M dominates 0 90 in 
Thin 0 135 out 

Thick M alone 0 90 out 
Thin 0 90 out 
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Torque (To) + Pressure (P) 

1 Thick T alone -22.5 120 out 
Thin -15 75 out 

Thick T dominates -22.5 135 out 
Thin -22.5 120 out 

Thick P dominates -22.5 135 in 
Thin -22.5 120 out 

Thick P alone 0 180 in 
Thin 0 180 in 

Moment (M) + Torque (Tol 

1 Thick M alone 0 90 out 
Thin 0 90 out 

Thick M dominates -22.5 135 out 
Thin -15 90 out 

Thick T dominates -22.5 135 out 
Thin -22.5 90 out 

Thick T alone -22.5 120 out 
Thin -15 75 out 

4.3. TEE BRANCH 

4.3.1. Maximum stresses - comparison with Codes and other methods 

The present stress factors in the Codes are the results of recommendations from many studies. 

If the design stress factors are too high the economic penalty is in providing expansion loops 

and additional supports and if too low then the stress limit is not sufficient to prevent 

'failure' . 

The ASME III [28] code uses stress intensity as a measure of stress concentration. Depending 

on the mode of failure, the stress intensity is based on the primary, secondary or peak stress. 

If the primary-plus-secondary stresses are to be limited, the 'C' stress index is used, in which 

case the stress intensity is twice the maximum shear stress. The ASME code is applicable for 

branch jun~tions with ~/Dm~0.5 and Dm/T~ 100 and the stress index is intended to be 
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conservative to account for the effects of transverse shear forces on the pipe. The BS 806 [5] 

stress factors are presented as a set of curves for in-plane and out-of-plane branch moments, 

for varying pipe factor A where, for welded branch junctions, A = (T/RJ(1 + t/RJ. 

If the maximum stress occurs at the weld junction, the magnitude of the maximum stress is 

likely to be sensitive to the weld details as well. A second, nominally identical tee branch was 

modelled with a smaller weld seam (Wh= 15.0 mm, wlc=6.0 mm, Wlf=3.2 mm) based on the 

BS and Babcock [96] design. Hereafter the model with the smaller weld seam shall be 

referred to as the second FEM model. The weld details of the two FEM models are shown 

in Figs. 9(a) and (b). In the ASME code, the formulations have been modified to describe the 

weld as best as possible. The unreinforced nozzle design in ASME III Fig. NB-3643.3(a)-I(d) 

has the closest geometry to the present FEM model. A minimum weld, with fillet radius r2 

= TI2, is assumed. 

The ASME stress factors for Mzb and MXb (see Fig. 1) include the three geometric parameters, 

given in the form of:-

stress factor = Q(RlT)8(r/R)b(tlT)C 

If a single geometric parameter, (RlT), is used, such as:

stress factor = Q(RlT)n 

(62) 

(63) 

as in Ref. [34], the values of 'Q' and 'n' are usually given for a set of diD and tiT values. 

From finite element analysis on a wide range of welded tee branches (tiT = 1, tlT=d/D, 

0.2< (diD) <0.8 and 1O«D/T)<60) and experimental data from equal diameter tee 

junctions, Moffat et al [43] produced fitted ESF curves for various D/T and diD ratios. Their 

results in Table 15 are calculated from the following associated polynomial which was used 

to plot the curves:-
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(64) 

where x= diD and the coefficients 'a' are dependent on the geometric parameters. From 

Moffat et aI's [43] ESF curves, there is not much difference in the general trend between the 

curves of t=T and tld = T/D. The main difference is when diD approaches zero; the ESFs 

are different between t=T and t/d=T/D, except for pressure and Myr loads. For the case of 

t=T, the lowest limit of diameter ratio is diD = T/D. For the case oftld = T/D, the lowest. 

limit of diD is when the nozzle aperture and nozzle thickness tend to zero values, and 

Moffat's ESFs at diD =0 were extrapolated from values estimated by using solid mechanics 

principles. 

The comparison between the FEM and other methods are shown in Table IS, even though 

the present tee branch falls outside the range of applicability of some of the equations. 

Table 15. Stress factors from FEM. the Codes and other methods. 

Loads 

Mxr 

Mzr 

Myr 

MYb 

MZb 

MXb 

p 

FEM" FEM" FEMe Decode ASMEd Fujimoto 

ESFYM ESFYM SCF C Clb 

3.95 4.11 4.19 - - -
3.58 3.85 3.84 - 1.93 -
1.46 1.55 1.55 - 1.93 -
2.65 2.77 2.83 - - -
2.66 3.32 2.69 - 11.72 4.48 

4.51 5.77 5.40 - 11.72 14.66 

4.08 4.13 4.06 4.17 2.47 -
FEM 1st model 
FEM 2nd model; smaller weld seam than first model 
based on maximum principal stress 
based on twice maximum shear stress 
based on Tresca criterion 
BS value of Bj 

BS value of Ba 
BS value of stress multiplier, m 
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Moffat[43]' 

ESF 

4.00 

3.81 

1.41 

2.77 

2.92 

5.01 

4.36 

BSC 

1.0 

6.2f 

7.7" 

1.0 

6.2f 

7.71 

3.91h 



4.3.1.1. Internal pressure 

In most practical applications, internal pressure is the basic loading for a tee branch. 

Therefore the study of stress concentration and the influence of geometric parameters on 

stresses in the shell for this loading is of great importance. It has been reported that the 

locations of maximum ESF due to moment loads may vary with rlR and D/T ratios but due 

to internal pressure the location in most pipe connections is at the crotch corner. 

From various studies, the general effects of the geometric parameters can be generally 

summarized. In thin shells, the maximum effective stresses peak prominently at about 

dm/Dm::::: 0.4. The maximum stresses peak at higher values of dm/Dm as the shells become 

thicker and in shells where Dm/T < 30, the stresses are maximum when dm/Dm = 1. If the 

thickness ratio tiT is small, the maximum effective stress occurs in the branch pipe, otherwise 

it occurs in the run pipe. 

Mershon [97] presented a compilation of SCF data around openings in shell intersections 

subjected to internal pressure. For equal pressure strength of the run and branch pipes and 

for constant Dm/T ratio, Mershon noted that in most cases, the stresses increase in magnitude 

up to a diameter ratio of 0.8, after which the stresses either level off or are reduced. Studies 

by other analysts show that the effect of diD is not very significant, especially when D/T is 

small. The following subsections briefly summarise various formulations of stress factor, with 

their validity of application. Some of the symbols used in the various methods have been 

modified to suit the present notation system. The results from various formulations are 

compared to the corresponding stress factors from the first FEM model. The AS ME and 

Moffat's use the Tresca effective stress factor and the rest use maximum stress factor. 

Based on a compilation of available experimental data, Decock [98] formulated an empirical 
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equation for maximum stress in tee branch junctions due to pressure loading. The relationship 

is:-

(65) 

d d t d 2+2- (_._) +1.25_ 
SCF= D D T D 

t~ 
1 +r J (O'T) 

Later, Decock [99] compared his equation with experimental results from 8 different welded 

tee branches. The maximum deviation was about 19 % but the deviations did not correlate 

with the geometric parameters, except that higher deviations came from smaller tIT ratios. 

Rodabaugh [100] reported an experimental pressure test on a pipe connection (with D/T=230, 

dID =0.529, tlT=0.981 and fillet radius == 118 inch) where the maximum stress occurred on 

the weld at cp=68°. The maximum SCF was reported to be about twice that at the crotch. The 

above Decock's equation correctly predicted the magnitude of the maximum SCF but the 

formulation was derived for stresses at the crotch corner. 

The rules in BS 806 are based on Money's [101] empirical relation of SCF based on 

maximum stress and give a two-step value of SCF which is independent on dID. The BS 

equations are:-

or 

SCF = 2.5(r/t)o.4084(T/R)o.241s for 0< (d/D)~0.7 

SCF = 2.5(r/t)o.4829(T/R)o.24IS for 0.7 ~ (dID) < 1.0 

(66) 

(67) 

The stress index in ASME III NB-3683.8 was incorporated from the SCF formulation 

developed by Rodabaugh and Moore [47]. The ASME code formulation is:

Cl = 1.4(D/T)o.I82(d/D)o.367(T/t)o.382(t/rJ°.l48 ~ 1.2 

with 0.5 < (rit) < 12.5 

(68) 

From Table 15, the Decock and the BS formulae agree well with the FEM results, while 
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Moffat's value was higher by nearly 10%. In the finite element analysis, Moffat et al [43] 

modelled a branch junction with weld seam identical to the present model. Moffat used a 

lesser number of elements than the present model and remarked of a further stress increase 

if the number of elements was increased. 

Using the 'area replacement method' and the maximum normal stress failure theory, Lind 

[102] derived two SCF formulations, the larger of which gives the maximum stress factor:-

SCF = [1 + 1.77), + (d/OI 1
.
6(t/Tlo.6]Z 

1 + (d/Olo.6(t/TI 1.6 

SCF = [1.67 [(d/O)(OITI/(tITIf'6 + 0.565(d/OI]Z 

0.67 ((d/O)(OITI/(tITI,,6 + 0.565 (tiT) 

where Z = 1 + [(t/TI/(d/Ollo.6/(O/TI and )'''(T/R)(1 +t/RI 

(691 

(701 

Lind's analysis assumes that the influence of corners and fillets are small. The larger of the 

two gives a maximum SCF of 4.10, which agrees well with the FEM result. 

From 184 experimental data, Xie and Lu [103] proposed an empirical equation for predicting 

maximum stress factor, in the form of a polynomial obtained by the least square method. 

Their equation for the stress concentration factor, K, is:-

K = 2.87 + [1.38 - 0.72(t/T)o.S](D/T)o.43(d/D)o.9-(t/T)o.s (71) 

and gives a value of 4.83 for the present model. For the curve fitting, Xie used data in the 

ranges of:- 1.4 < (D/T)240, 0.004 < (diD) < 1.0 and 0.048 < (tiT) < 2.8 

4.3.1.2. Out-of-plane branch moment, MXb 

For out-of-plane branch moment loading, Words worth and Smedley [104] showed that the 

maximum stress is strongly influenced by diD and reaches a peak value at d/D::= 0.75. 
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Although the study was on tubular joints, Wordsworth offered an explanation on the variation 

of the maximum stress with dID. For dID =:: I, the bending stress in the branch pipe is said 

to be smoothly transferred to the run pipe in the transverse plane, thus minimizing the run 

pipe shell bending. For dID approaching zero, the branch pipe is too small to impose large 

bending in the run pipe. When dID =::0.75 Words worth explained that the bending stress in 

the branch pipe is transferred to the run pipe through severe geometric discontinuity, thus 

creating large shell bending and maximum stress. In the longitudinal plane the change in 

geometry between the run and branch pipes does not vary with dID so that when the load Mzb 

acts, there is no significant stress peak. Decock's [99] results for both in-plane and out-of

plane branch moments also show the trend of the stress peaking between dID =0.5 and 1.0. 

On the contrary, Moffat et al [43] suggested that the stress keeps increasing up to dID = 1. 

Fujimoto and Soh [27] observed a different trend, for in-plane and out-of-plane branch 

moments; the values of Czb increase with increasing D/T but are not much affected by dID. 

Fujimoto's equation for the branch moment stress factor is:-

C2b = 1.8(D/T)o.7 (72) 

based on maximum principal stress, limited to 0.5 < (dID) < 0.95, 

50 < (D/T) <300 and t=T 

The ASME Cb and Cr stress indices are fictitious stress concentration factors because they are 

multipliers to the resultant branch and run pipe moments. Strictly, these indices cannot be 

compared to the individual effective stress factors from the present study. The AS ME Section 

III NB-3863.8(c) stress index for Mxb is:-

C2b = 3.0(RlT)213(r/R)112(t/T)(r/ro) ~ 1.5 (73) 

based on twice maximum shear stress, limited to (r/R)~0.5, (DJT)~ 100 

and 0.09«tlT)<4.3 
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The BS 806 formulation for the out-of-plane SCF, Bo, is:-

Bo = 1.8/X2I3 (74) 

based on maximum hoop or axial stress. X = (T/R)(1 +t/R) 

It must be noted that the definition of X as used in the above BS formulation is different to 

that used by authors such as Money, Lind and Oecock. Moffat's result is higher than the 

present result by about 11 % and the BS result agrees well with the present FEM value. The 

ASME code and Fujimoto overpredict by more than twice the FEM value. 

4.3.1.3. In-plane branch moment, Mzb 

The location of maximum stress from Oecock's [99] experimental results for in-plane branch 

pipe moment, Mzb, varied from the weld toe in the longitudinal plane to cl> of between 4,50 and 

600
, without showing any particular trend with respect to the geometric parameters of the tee 

branches. The respective stress factors are:-

ASME: 

Fujimoto: 

BS 806: 

C2b = 3.0(R/T)213(r/R)1I2(tlT)(r/ro) ~ 1.5 

C2b = 0.7(0/T)0.62 

Bi = 1.35/X2f3 + 0.5 

where X is defined in Eqn. (74) and Bi is the in-plane SCF. 

(75) 

(76) 

(77) 

Moffat's result gives higher maximum stresses than the present model but the BS and 

Fujimoto's value are very conservative. 

4.3.1.4. Out-of-plane run moment, Myr 

In a branch junction where the branch pipe is small and an out-of-plane moment acts on the 

run pipe, the run pipe stress is the dominating factor in the design. Intuitively for (r/R) < 0.5 

the maximum stress would not be greater than MyrlZr. The Codes' stress factors are:-

ASME: C2r = 1.15(r/t)0.25 ~ 1.5 (78) 
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and the BS 806 formulation for out-of-plane SCF, Ba, is:

Ba = 1.8/}..213 (79) 

Moffat's value gives a good correlation with the present FEM prediction but the BS stress 

factor is too high . 

. 4.3.1.5. In-plane run moment, Mzr 

The Codes' stress factor formulations are:-

ASME: 

BS 806: 

~ = 1.15(r/t)o.2S ~ 1.5 

Bj = 1,35/}..213 + 0,5 

where Bj is the in-plane SCF. 

Moffat's result is slightly higher but the BS value is about 24% higher. 

(80) 

(81) 

In summary, due to Mxb , the present tee branch (dID =0.8, DIT =20 and t=T) gives a 

maximum effective stress factor which is markedly higher than any other loading. 

Surprisingly, the in-plane branch loading Mzb gives a smaller ESF than internal pressure 

loading. In fact the stress factor for Mzb is at the same level as the less critical Myb loading. 

The least critical Myr shows concentration of stress just above the nominal stress. Steele and 

Steele [51] reported the general discrepancies given by different approaches when vessels are 

subjected to nozzle loads. They found that the pad load method of analysis, the finite element 

method and their own method gave good agreement with experimental results for regions 

away from the intersection but underestimated the peak stresses at the intersection. Bijlaard's 

pad load method was said to seriously underestimate the peak stress and Steele's solution 

slightly underestimated the measured peak stress. 

The BS and AS ME codes assume there is no stress intensification from twisting branch and 
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run pipe moments but the results from other sources show the stresses for these loads, 

depending on geometrical parameter, can be quite substantial. Rodabaugh and Moore's [47] 

finite element results indicated that for d/D~0.5 and D/T~ lOO, the maximum stress factor 

for branch pipe twisting moment does not exceed 1.5, but has been shown to be as high as 

2.5 in a FE analysis by Carum et al [36]. Referring to this discrepancy, a report by 

Rodabaugh [81] indicates a need for a change. 

The AS ME stress index C2b is based on the out-of-plane branch moment. Moffat et al [43] 

extrapolated the ASME's values of C2b beyond the limit of application and compared the 

indices to their own ESF data. Beyond d/D=0.5, Moffat found the ASME values to diverge 

significantly. This probably explains the reason why ASME's stress indices are much higher 

than the present FEM ESF values, for branch moment loads. On the other hand, the ASME 

stress indices are low for internal pressure and Mzr• To supplement the AS ME stress index, 

Khan and Shah [105] proposed separate peak stress factors for the branch and run pipes, for 

tee connections subjected to out-of-plane branch moment. The equations which are applicable 

for the diameter range diD> 0.5 are:-

C2b = 1. 8917(d/D)-O·27S8(RlT)o.6503(t/T)o.1441 

and C2b = 1.3701 (d/D)-O·2816(RlT)o.7399(tlTl3S21 

for the branch pipe 

for the run pipe 

(82) 

(83) 

Eqns. (82) and (83) give peak stress factors of 8.99 and 8.02 in the branch and run pipe 

respectively. These high values (compared to 5.4 from present FEM study) can be attributed 

to the equations being derived for tee connections without a weld seam between the pipes, but 

the stress indices are at least less conservative than the extrapolated ASME values of 11.72. 

As for torsional moments, the ASME design guidance are not available. 

The BS 806 does not distinguish between bending moments applied at to the branch and 
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through the run pipes. From the values of the stress factors Ba and Bi , it seems that these 

stress factors are intended for branch pipe loads. From non-intensified shear stresses in the 

BS equation for the Tresca effective stresses, it is deduced that the BS stress factors for 

torsional moments is a very unconservative value of unity. 

4.3.2. Effects of weld 

The weld at the pipes intersection produces a significant local stress concentration. Effectively 

the weld fillet lowers peak stresses and smooths the stress distribution. The effect of the weld 

on the stress distribution is seldom reported. Ellyin and Turkkan [45] found that without the 

weld, branches in the range of 0.5 < diD < 0.6 suffer from higher stresses. In an experimental 

test on the effects of run pipe moments, Zhixiang et al [60] noted that when the butt-welded 

tees were subjected to branch moment loads, the ESFs were reduced by about 15-20%. The 

effect of the weld was lessened in thick tee branches. Mershon [97] remarked that minor 

details of the weld fillet at the intersection can have a major influence on the resulting stress 

level. This is due to the fact that even a small weld reinforcement can constitute a sizeable 

increase in the effective nozzle wall thickness at the critical location and is said to be more 

pronounced at small diameter ratios. The study by Bryson et al [106] also concluded that weld 

reinforcement at the intersection reduces maximum stresses. 

In a load interaction study, Schroeder et al [48] determined the branch limit moments for tee 

junctions with and without fillet. They noticed that fillets have a greater strengthening effect 

for in-plane than for out-of-plane bending moments, but Zhixiang found that the stresses were 

reduced more for out-of-plane moment. The present study supports Zhixiang's finding. 

Zhixiang et al [60] carried out tests on geometrically similar tees and observed that a specific 

welding seam gives greater reinforcing effects in relatively smaller tees. As a result the larger 
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tee apparently seems to give higher stress distribution. Moffat et al [43) too, noted that 

different sized welds at the junction resulted in a considerable difference in stress peaks 

especially when moment loads were applied. 

The weld details used by Moffat et al [43] generally follow a trend with respect to the pipe 

dimensions. The weld horizontal width increases as DIT and dID become smaller. The weld 

height increases as DIT becomes smaller but is not consistent with dID ratio. It is 

recommended here that although the BS code guide on weld details is adequate for a range 

of the branch dimensions, any finite element weld modelling should reflect the variation of 

dID and D/T. 

Due to Mxb, the present model with the smaller weld seam shows a dramatic increase of 

maximum effective stress by 28% (as in Table 15). Due to in-plane branch moment, the 

increase is 25 %. Other loadings too show substantial but lower increases. With reference to 

the stresses at the weld, Rodabaugh [81][100] looked at the weld toe as a source of peak 

stress which reduces the fatigue life of the tee branch. 

4.3.3. Hoop and axial stresses 

4.3.3.1. Internal pressure 

The term 'axial stress' shall be defined as the stress in the axial direction of the pipe it is 

referring to, and the 'hoop stress' acts in the hoop direction of the pipe. The free pipe ends 

were capped in the present model, which means that the axial pressure forces were taken into 

consideration. 

The stress field at the intersection of a tee connection is influenced by a combination of the 

weld around the intersection and three independent geometric parameters, namely, d.n/Dm• 
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OmIT (or dut/t) and tiT. The parameter dut/Om describes the weakening of the run pipe by the 

intersection and tiT indicates the relative stiffness of the run and branch pipes. In a tee branch 

in which internal pressure is acting, the prevalence of the hoop or axial stresses in the pipes 

is influenced by these parametric ratios. 

Concerning the locations of maximum stress, Taylor and Lind's [107] experiments on tee 

branches subjected to internal pressure showed two stress peaks along the crotch line; at the 

crotch corner and at the point where the crotch line intersects the transverse plane. The 

maximum stress at the crotch corner is the hoop stress and occurs because of the removal of 

material in the run pipe. The maximum stress in the transverse plane arises because the 

internal pressure acting normal to the run pipe needs to be balanced by a bending stress at 

the maximum location, and this bending stress increases with diameter ratio. The maximum 

stress at the transverse plane is seldom higher than at the crotch corner, hence the hoop stress 

in the latter case usually governs the design of the pipe. 

From the present FEM results, the axial and hoop stress distributions on the inner and outer 

surfaces of the run and branch pipes are plotted in Figs. 77(a) and (b). The distance S is 

defined as:-

S = distance from the weld centre or crotch line + Om 

and the stress factors are normalised as per Eqn. (44), on Page 60. 

In Fig. 77(a) the inner surface hoop stress results are also quoted for the 2-element thick 

model. The I-element thick model which was used in the present study shows insignificant 

difference compared to the 2-element model. The figures show that the maximum hoop stress 

factor of about 4.0 occurs at the inside corner of the longitudinal plane i.e. the crotch corner. 

The hoop stresses peak at the intersection and decay rapidly away from the junction, and level 
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off to a reasonably uniform stress within a distance of S = 0.5 (Le. 0.5Dm) from the crotch 

line. On the outer surface, the hoop stress peaks at the weld-run pipe junction. A maximum 

axial stress factor of about 1.5 occurs at the weld-run pipe junction. On the inner surface the 

axial stresses peak with a stress factor of about 1.2 at S =0.2 and, as expected, approach zero 

at the crotch corner. 

The radial stresses are satisfactory considering that only a single layer of elements was 

modelled. Half way along the length of the pipe limbs, the inner radial stresses were about 

10% lower than the magnitude of applied pressure. 
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FIG. 77. 
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4.3.3.2. Moment loadings 

The way various parameters influence the stress factors is complex. Decock [99] subjected 

tee branches (with diD =0.37 to 0.7) to in-plane branch moment loading and noted that when 

the parameter tiT was reduced from 1 to about 0.5, the maximum hoop or axial stress was 

decreased by about 10-20 %. For out-of-plane branch moment, with a tee branch of diD 

=0.37, the maximum stress increased with decreasing values of tiT. For tee branches of 

range D/T> 100, Corum et al [36] showed that (for r/R= 1.0 and t=T), the maximum stress 

was highest for torsional branch moment and lowest for in-plane branch moment. 

4.3.4. Bending and membrane stresses 

The stress categories of primary, secondary and peak stresses have been quoted in Section 

2.4.1. These stress categories are classified according to location in the structure, origin of 

stress and type of stress. The type of stresses are general membrane and bending stresses. 

Membrane stresses are relatively uniform across the wall, acting in either compression or 

tension. Bending stress distributions exhibit a maximum tension on one side and maximum 

compression on the other side of the wall, with a straight line distribution. In this study, the 

bending and membrane stresses at a section through the wall thickness are defined as (0'0 -

O'JI2 and (0'0 + uJI2 respectively. 

Mokhtarian and Endicott [53] presented equations for bending and surface stresses in branch 

junctions subjected to internal pressure; Since the branch pipe behaved differently from the 

run pipe, they developed separate equations as functions of diD, DIT and tiT. The equations 

were found to be fairly accurate within the limitations of DIT < 1000, dlt < 1000 and 

0.03 < diD < 0.5. For internal pressure, Lind [102] pointed out two locations where bending 

stresses are large; at the pipe junctures in both the transverse and longitudinal planes, shown 

as points A and B in Fig. 1. At point A, equilibrium in the direction normal to the run pipe 
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shell is maintained by bending action. The bending stresses at A are localised and are said 

to be seldom higher than the (run pipe) hoop stresses at B. 

The distributions of membrane and bending stresses, for the present model, for in-plane and 

out-of-plane moments and for internal pressure are shown in Figs. 78(a)-(d). The membrane 

and bending stresses due to torsional moment loads (not shown) are not as high as in bending 

moment loads. The term 'longitudinal' refers to the direction in the plane of the section under 

consideration and parallel to the boundary of the section and 'hoop' refers to the direction 

normal to the plane of the section. 

Moment loads cause higher shell bending than membrane stresses but for internal pressure, 

the membrane stresses are higher. However, Skopinsky [108] remarked that for pressure 

loading in thin shells, in the longitudinal direction, bending stress still prevails. For nozzle 

bending moments, Steele and Steele [51] described the variation of stress factors with TIt for 

dlt = 100. They found that for T/t:5: 2 the nozzle was essentially rigid as far as bending stress 

was concerned but for large Tit the most severe stress was the bending stress in the nozzle. 

From Figs. 78(a),(b) and (c), due to bending moments, the bending stresses are maximum 

at the weld edge but the membrane stresses start to dominate over bending stresses at a 

distance of S > O.IDm (20 mm) from the weld edge. In-plane moment loadings show a change 

in the direction of longitudinal bending just outside the weld edge. In Fig. 78(d) internal 

pressure causes the membrane hoop stress to peak at the weld edge. The other hoop and 

membrane stresses are not much intensified above their nominal stresses. 
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4.3.5. Maximum effective stresses 

The von Mises ESF distributions along the weld junctions and the crotch line of the tee 

branch are shown in Figs. 79(a)-(u). Although general comments about the effects of 

geometric parameters cannot be made with the present tee branch, Figs. 79(a)-(u) give a 

graphic comparison between the three critical locations and between individual loadings. 

Along the crotch line, the loads Mxr, Mzr and pressure cause high stresses. At both the weld

run pipe and weld-branch pipe junctions, the load MXb is the most critical loading. Similar 

comparison of locations of maximum stresses can be made from individual loading. 

Table 16 shows the absolute maximum von Mises ESFs, and their locations. The maximum 

ESFs on the transverse or longitudinal plane are also presented. The maximum ESF values 

occur at locations which are symmetrical about the x-y and y-z planes, hence the results from 

only one quadrant are shown in Table 16. 

Figs. 80(a)-(d) show the distribution of the ESF on the inner and outer surfaces, on the 

longitudinal and transverse planes. The non-dimensionalised distance S differs from the 

previous definition, i.e. it is measured from the weld centre. The maximum ESF along these 

planes are summarized in the second column of Table 16. Due to in-plane and out-of-plane 

run pipe moments, the absolute maximum von Mises ESFs coincidentally occur on the 

transverse plane at the crotch line. From Figs. 80(a)-(d), most of the stresses on the run pipe 

attenuate to reasonably uniform values within 1.5Dm • The maximum ESFs do not generally 

occur on the weld itself, but instead at the weld-pipe junctions. In a test on tee branches 

(diD = 1.0), Moffat [34] observed that in 2 (Mxr and Myr) of the 6 moment loads, the 

maximum stress occurs at different locations for different junctions, implying that these 

locations are influenced by pipe dimensions. From Moffat et aI's [43] fitted curves, for all 

moment loads, when the DIT and diD ratios are small the maximum ESFs do not differ much. 
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Table 16. Maximum ESFs and locations - absolute values and at transverse or 
longitudinal plane. 

Load Maximum ESFs at transverse Absolute maximum ESFs 

or longitudinal planea 

Mxr 3.69, weld-run, Tpb 3.95, 51°, crotch line' 

Mzr 3.58, crotch line, TP 3.58, 90", crotch line 

Myr 1.46, crotch line, TP 1.46, 90", crotch line 

Myb 2.39, weld-run, TP 2.65, 51°, crotch line 

Mzb 2.34, run pipe, 7.9 mm from 2.66, 730, crotch line 

crotch line, in, TP 

MXb 4.28, weld-branch, TP 4.51, 67.50, weld-run 

P 4.00, crotch corner, LP 4.08, 00, crotch corner 

a TP = transverse plane, LP = longitudinal plane 
b example: maximum ESF = 3 .69 on weld-run pipe junction in transverse plane 
, example: maximum ESF=3.95 at <fl=51° on crotch line 

4.3.6. Load interactions 

The load interaction diagram is a plot of a combination of two or more loadings that would 

cause the maximum effective stress in the tee branch to reach the yield stress of the material. 

For 2-10ad interactions, from 7 load categories, there are 21 possible pairs of load 

combination. The interaction diagrams for the tee branch are presented in Figs. 81(a)-(u). The 

data for these plots are calculated by the computer program FINALT. The load interactions 

are discussed in the following groups:-

i. dissimilar moment loads on same limb of the branch junction, as in Figs. 81(a)-(f). 
ii. similar moment loads on different limbs, as in Figs. 81(g)-(i). 
iii. dissimilar moment loads on different limbs, as in Figs. 810)-(0). 
iv. internal pressure plus moment load, as in Figs. 81(p)-(u). 

For the purpose of grouping the loading pairs, Mx:Mx, My:My and Mz:Mz are considered 

similar moment pairs, while dissimilar moments pairs are Mx:My, My:Mz and Mz:Mx• The 

discussion on load interaction is limited to the results obtained from the tee branch under 
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study. The interaction diagrams can be grouped roughly into two categories; by symmetry and 

by linearity of the yield loci. Symmetrical yield envelope means that in a combined loading. 

the sign of one of the loads does not affect the overall first yield. 

Out of 21 pairs of interacting loads. 13 pairs exhibit perfect symmetry and the other 8 pairs 

show tendencies for a reversed load to increase or decrease the maximum effective stress. The 

pairs which show unsymmetrical behaviour are Mxb:Myb• Mxr:MYb' Myr:Mxb, MZb:P, Mzr:P and 

all cases of similar moments on the run and branch pipes. The most extreme case of 

unsymmetry is Mzr:P, i.e. when in-plane moment on the run pipe interacts with pressure. In 

the Mzr:P interaction, a negative in-plane run pipe moment lessens significantly the tendency 

of the branch pipe to yield. The first yield internal pressure capacity can be increased by as 

much as 50 % and the negative moment can be increased by as much as 30 % . 

It is difficult to categorize the loading pairs by yield locus symmetry or linearity. There are 

no definite and simple trends, but simplified and conservative relationships have to be found 

for further classification. Fig. 82 shows how the various loading pairs can be grouped into 

5 simplified diagrams which are made up of circular, linear or square relations in each 

quadrant. The groups shall be referred to as cases (a)-(e) in Fig. 82. 

i. Dissimilar moment loads on same limb 

Out of six pairs of moment loads on the same limb, in Fig. 81(a)-(t), only the MXb:MYb 

interaction is sign dependent and is best represented by case (e) of Fig. 82. The two My:Mz 

- - --
loadings on the same limb (Myb:Mzb and Myr:Mzr) gives a linear relation and the other 

interactions in this group are close to circular. For simplicity and conservatism, the loading 

pairs in this group are best represented by a linear relation:-
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and 

where MI and M2 are any two of the three moments. 

ii. Similar moment loads on different limbs 

- - --

(84) 

(85) 

In this group, the Mxr:Mxb and Mzb:Mzr interactions are simplified by case (d) of Fig. 82, 

while the Myr:MYb pair is close to the linear case (b). This loading group can be best 

represented by a linear relation:-

- -
Mlr + Mlb S 1 (86) 

where MI is anyone of the three moments. 

iii. Dissimilar moment loads on different limbs 

The six pairs of moment combinations are shown in Figs. 81(j)-(0). Two (Mxr:MYb and 

Myr:Mxb) of the six pairs are sign dependent and four symmetrical pairs show almost linear 

or circular interaction. For this group, the most conservative relation to describe all the pairs 

is again a linear interaction:-

(87) 

iv. Moment + Pressure 

For the Moment:Pressure interactions in Figs. 81 (P)-(u) , the yield loci are not far from 

circular with the exception of the load pair Mu:P. If a linear relation is utilised for the whole 

group, with the exception of the interaction of positive Mzr plus pressure loading, the stresses 

from other load pairs would be much overestimated. A circular relation is thus considered:

p2 + M2 S 1 
(88) 
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In Schroeder et aI's [48] study on the limit behaviour of tee branches, the theoretical 

Moment:Pressure interaction was obtained by superimposing the velocity fields for bending 

moments onto that for internal limit pressure. Schroeder's limit load interaction for Mxb:P 

varied from a biIinear to a convex curve (tending to circular), depending on geometric 

parameters. For the Mzb:P interaction, they obtained a nearly straight line. 

To investigate pressure coupling effect, a geometrically nonlinear finite element analysis was 

carried out using ABAQUS [109] finite element code, with combined loads of M xb= 8.0 kN

m and Pressure = 4 MPa. The present linear finite element analysis gave a maximum Mises 

stress of 297.0 MPa at the junction between the weld and the run pipe, at c/J=75°. At the 

same location, the nonlinear analysis gave a corresponding effective stress of 290.9 MPa. A 

check was also made for stresses at a few critical locations on the longitudinal and transverse 

planes of the branch. The predicted stresses from the nonlinear analysis were lower by not 

more than 4 %, indicating a negligible influence of pressure coupling effect for this model. 
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4.3.7. Load interactions from Codes 

In branch junctions, the combined effect due to both run and branch moments and internal 

pressure must be added for stress evaluation. The Codes assume that the locations of the 

maximum stresses from internal pressure and external moments coincide. From Table 16, the 

maximum stresses occur at different locations, hence the method of combining stresses in the 

Codes is conservative. The ASME code allows run moments to be applied at both ends of the 

run pipes and can be misunderstood. The run moments are moments that exist in the run pipe 

that are not produced to balance the branch moments. Section NB-3683.1(d) shows how the 

run moments can be calculated. For the case of the cantilever model, the reaction moments 

at the fixed end are always equal and opposite to those applied at the run pipe free end. 

Hence the run moments are simply the moments that are applied at the free end. In ASME 

Section III NB-3683.1(c), the resultant branch and run pipe moments are determined from a 

combination of the three moment loadings on the limb, 

and 
Mb = V(Mxb2 + MYb2 + Mzb~ 
Mr = v(M,/ + My/ + Mz/) 

(89) 
(90) 

The closest resemblance to the study of first yield behaviour is the check on combined 

primary-plus-secondary stressing. The check ensures that the combined stresses due to 

nominal stresses and discontinuity effects at the branch junction are within acceptable limits. 

The combined stress relationship from Eqn. (10) of ASME Section III NB-3653.1(a) is given 

by:-

(91 ) 

where the coefficients C are the ASME secondary stress indices. 

To see how accurate the ASME code is, Eqns. (89), (90) and (91) are used with the loading 

groups in the above Section 4.5. When dissimilar moments interact on a pipe limb, Eqn. (89) 

or (90) combines with Eqn. (91) to give a circular relation:-
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or 

- -
where MJ and M2 are any two of the three moments. 

(92) 

(93) 

Similar calculation applied to the other loading groups by using Eqns. (89), (90) and (91) 

reveals linear interactions. This means that AS ME considers the combined moment load on 

a limb to be the least critical in the design of tee branches. From the FEM results, ASME 

seems to have underestimated the maximum stress from the linear M: b:M: and M: 'M-y zb yr' zr 

interactions. To ensure that a linear interaction is also obtained from dissimilar moment 

loadings on a limb, it is proposed that the following changes be made:-

replace Eqn. (89) with Mb = (Mxb + Myb + Mzb) 

replace Eqn. (90) with Mr = (Mxr + Myr + Mzr) 

(94) 

(95) 

From the FEM results, the Moment:Moment interactions can simply and conservatively be 

represented by a linear relation and the Moment:Pressure by a circular relation. From Section 

4.5 these representations can lead to slight unconservatism in some loading pairs. Eqn. (to) 

of AS ME is a linear relation between all loading pairs. When pressure is one of the 

interacting loads, a linear interaction causes the combined stress on the left hand side of the 

equation to be overestimated. Therefore, based on the FEM results, it is proposed that the 

ASME equation for combined stresses be modified to a less conservative equation:-

(96) 

i.e. a linear relation between interacting moments and a circular relation for Moment: Pressure 

. . h d resultant branch and run pipe moments (Eqns. (94) and (95» will InteractIOns. T e propose 

. . ~ dissimilar moment loads on a limb. The proposed interaction cause slIght conservatIsm 10r 

. l' h derestimation of maximum stresses in positive Mzr plus pressure 
Eqn. (96) wIll cause s Ig t un 
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interaction. 

In BS 806, using notations used by BS, the sum of the direct stresses due to pressure, in

plane and out-of-plane moments is given by:-

(97) 

The above Eqn. (97) indicates that the BS code does not consider interaction between 

moments on different limbs nor torsional moment as one of the interacting loads. The in-plane 

plus out-of-plane moment loads on the same limb is a circular interaction, compared to the 

proposed linear relation from FEM results. On the other hand, the Moment:Pressure 

interactions from BS is linear relation whereas it is proposed here to be a circular one. 

Moffat and Mistry [42] suggested combining a circular interaction between pressure and 

moment loads, with a linear interaction of resultant moment pairs to produce a conservative 

relation:-

[ C, ~~o 1 ' + [ [ c,. ~ 1 + [c" ~: 1] , "(35.1' 
(98) 

which is similar to the formulation being proposed here. The interaction diagrams of the tee 

branch under study resembles more of Moffat and Mistry's [42] tee branch with dID = 1.0. 

For the tee branch with dID =0.5, Moffat and Mistry found the interaction for branch 

moment plus run moment to be circular. For this range of tee branches, a less conservative 

circular relation was proposed by Moffat, Le.:-

[c, ~o l' + [C,. ~: l' + [c. i l' "(35.1' 
(99) 

However, Moffat and Mistry [42] suggested that the more conservative Eqn. (98) be adopted 

for all diameter ratios. 
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4.4 TORISPHERICAL HEAD WITH NOZZLE 

4.4. 1 Elastic stresses 

The stress factors used here are stresses which have been normalized according to each 

loading condition, using the normalizing factors listed below. For pressure loading, the 

normalizing factor is the membrane stress in the spherical shell; for the nozzle axial force and 

moments, the membrane stresses in the nozzle were used. The nominal stresses are:-

Un = P2Lm/4T 
Un = 32Mdj1r(do

4-dj4) 

Un = 4FI1r(do
2 

- dj
2
) 

Un = 32Todj1r(do4-dj4) 

for internal pressure P 
for nozzle bending moment M 
for nozzle compressive force F 
for nozzle torsional moment To 

Hence, the stress factor, U, is defined by u= u/un where U can be any hoop, meridional, 

maximum or the von Mises effective stress. 

In the elastic analysis, the usual procedure of determining stress is to add the simple 

membrane action to the effect of edge force and edge moment to ensure compatibility. Studies 

made by others on the effect on maximum stress of the nozzle-crown parameters found that 

in all load cases, the maximum stress occurs at the juncture. In the present FEM, the critical 

stresses for all loads occur in the hoop direction at the root of the outside fillet. 

Figs. 83 and 84 show the ESF distribution along the meridional plane due to the four load 

cases. The non-dimensional meridional distance S is consistent with Drabble's definition. 

Figs. 83(a) and 83(b) show the von Mises and hoop stress factors when the shell is subjected 

to internal pressure. Pressure loading gives an overall good correlation with the test except 

at the weld-crown edge and knuckle-cylinder juncture. The FEM results indicate that when 

subjected to internal pressure, the inner surface of the knuckle region E is the highest stressed 

area, but two other regions (the crotch corner and outer surface of the crown located at C) 
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approach the maximum stress. Internal pressure does not cause high stresses in the nozzle. 

At the location where the hoop stress changes sign near the sphere-torus juncture, the ESF 

approaches zero. At the crown, the ESF is greater on the outer surface than on the inside, 

but in the knuckle region the reverse is true. The critical hoop pressure stress distribution is 

often the subject of discussion, hence it is also included in Fig. 83(b). The points of interest 

of Fig. 83(b) is the high hoop stress at the crown-weld edge and the compressive hoop stress 

at the knuckle outer surface which is likely to cause unsymmetric inward buckling. For high 

D/T ratios, it is reported that internal pressure can also cause considerable compressive hoop 

stress on the inner surface of the torus portion and large diameter ratios (d/2L) can cause high 

meridional stress. A point worth noting is Drabble's pressure stress factor at the crotch 

corner. His value of 1.73 compares well with the FEM value of 1.82. Leckie and Payne's 

[110] presented stress concentration factor curves for first yield in spherical pressure vessels 

with cylindrical nozzles. Using p=(d/2L)V(LlT)=O.795 and t=T, the maximum ESF 

(defined by the maximum shear stress in terms of membrane stress in the sphere) due to 

pressure, gives about 2.8. 

Figs. 84(a)-(c) present the ESF on the inner and outer surfaces of the shell for the remaining 

load cases. The experimental results for torque are not available for comparison. The 

agreement with experiments from bending moment and axial force is good at the crown near 

the intersection but fair in other regions. From axial force and moment loads, the ESFs at the 

weld-crown junctures are much higher than other areas but due to torque the maximum ESF 

at the weld-nozzle juncture is not much higher than the stress in the nozzle. 

The way in which the model was discretized resulted from the main interest of study. It was 

decided that the stress peaks should be due to stress concentration from the main vessel 

geometric discontinuities and not from localized effects; hence the FE method gave lower 
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stresses at the weld toes. Had the stresses at the weld toes been the main concern, these 

regions would have been finely meshed. From above discussions, the experimental results 

from axial force and moment loads do not satisfactorily agree with the FEM results. This may 

be due to the loads not accurately applied. In Drabble's [74] tests, both loads were obtained 

from transverse forces applied to the ends of an I-beam which was clamped across the top of 

the nozzle. The most likely source of error in this method of loading is eccentric loading, and 

thus impure axial force or bending moment. 

Table 17. Predicted and experimental absolute maximum Mises effective stress factor. 

Load FEM BS 5500 [111]1 Experimental [74] Location from 
FEM 

Torque, To 1.11 - - nozzle-weld edge 

Moment, M 3.31 7.22 3.21 crown-weld edge, 
in plane of moment 

Pressure, P 1.95 2.2 3.13 inner surface of 
toroidal knuckle 

Force, F 5.27 9.62 5.87 crown-weld edge 

Maximum SCF at sphere-nozzle juncture 

Table 17 shows the comparison between predicted and experimental results [74] of maximum 

Mises ESF. The table indicates that the predicted results correlate fairly with the test. The 

axial force on the nozzle is the most critical load while torsional moment is the least critical. 

When subjected to nozzle torsional moment, the nozzle-weld edge is highly stressed while the 

cylinder and knuckle region are lowly stressed. When bending moment and axial force act 

on the nozzle of the vessel, the crown-weld edge is subjected to maximum stresses while the 

cylindrical vessel has low stresses. In Drabble's [74] experiment, the locations of first yield 

for the three load cases occur at the crown-weld edge. From Table 17, the FEM agrees 

reasonably with the experimental maximum locations for bending moment and axial force but 

differs by about 38 % for pressure loading. 
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4.4.2 Effects of weld fillet 

Experimental studies by other authors, [69][112] and [113], have indicated that the presence 

of even a nominal fillet at the nozzle-sphere juncture significantly influences stress results on 

the outer surface. This has been attributed to the added reinforcement at the juncture. The 

agreement between the thin shell theory and experiment has always been clouded by the large 

localized effect of the fillet at the juncture between the shell and the nozzle. In elastic thin 

shell analysis the highest stress at the nozzle base is still overestimated because the presence 

of the weld fillet in the actual vessel lowers the stress. This is not the case in finite element 

idealizations where the fillet can be accurately represented by 3-D elements. To model the 

effects of the weld, the conventional shell theory has been modified by O'ConneU and Chubb 

[114], where the normal forces (to the shell surface) at the juncture were replaced by 

equivalent bands of pressure. 

4.4.3 Effects of geometric parameters 

The str~ss distribution at the local shell-nozzle intersection is characterized by three non

dimensional parameters, i.e. tIT, LIT and (r/L)V(LlT). From parametric studies of other 

authors, these parameters influence the stress factors and are important in the design process 

of such pressure vessels. One such variation of stress factor from axial force loading on a 

nozzle in a torispherical head was described by Chao [115] who, using thin shell theory, 

varied the stress with tIT while keeping the ratios LIT and p=(rm/L.JV(Lm/T) constant. Chao 

found that the maximum ESF first decreases with increasing tIT, but reaches a maximum 

value prior to increasing with increasing ratio of tIT. This meant that a thicker nozzle does 

not always lead to a lower stressed structure. Similarly for nozzle bending moment load, there 

are optimum values of tIT that result in minimum stresses. According to Chao [115], the 

reason for the optimum tiT is the changeover of stress from hoop to meridional as tiT is 

increased. From Chao's [115] minimum stress curve of thrust and bending moment loading, 
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the present sphere-cylinder configuration gives minimum stress when tIT is between 0.55 and 

0.65. An optimum value of tIT does not apply for the case of internal pressure loading; a 

higher tIT ratio always results in a stronger structure. 

If the stresses in the knuckle were also considered, the magnitude and location of yielding is 

influenced by additional parameters of the knuckle. Many authors generalize the effects on 

stress at the intersection of pressure vessels by the sphere and nozzle parameters. According 

to Mershon [112], there is some evidence that in the reinforced condition, with 2L1T 

increasing, the hoop stress on the outer surface increases. According to Lind [116], the failure 

mechanism is restricted to certain ranges of the shape parameters. For a very thin nozzle in 

a vessel with very thick walls yielding will be entirely in the nozzle. Similarly for low values 

of the diameter ratio (d/2L less than 0.1) and for thick-walled nozzles, yielding will be in the 

main vessel. The diameter ratio (d/2L) affects maximum stresses at the nozzle-shell juncture. 

In general the stresses increase with increasing diameter ratio up to a dID ~ 0.8. after which 

the stresses either are reduced or level off. 

4.4.4 Load interactions 

Many stress analyses have been carried out for separate loadings of internal pressure, bending 

and thrust on the nozzle. In the present analysis torsional moment has been included to study 

the first yield behaviour at the vessel-nozzle intersection when two loads interact. From the 

4 load cases, 6 load interactions could be plotted. Figs. 85(a)-(t) show the first yield load 

interaction curves at the vessel-nozzle juncture. The applied loading on the nozzle could easily 

have been wrongly interpreted as a plain pipe problem. In fact, for the same load 

combination, some of the interaction curves are different from those of the plain pipe, 

especially if the maximum stress due to the load occurs on the vessel crown. 
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Two load pairs show the most critical linear interaction, namely, M:P and M:F, while three 

- - - -
load pairs of To: M, To: P and To: F can simply and conservatively be represented by a circular 

relation. The symmetry of these five pairs, shown only in first quadrant in Figs. 85(a)-(e), 

means that the yield behaviour is not affected by the sign of both interacting loads. The F:P 

interaction in Fig. 85(f) can be simply represented by a linear relation for the first and third 

quadrant and a square relation in the second and fourth quadrant. However if a general and 

consistent (with geometric parameters) relation is to be assigned to the F:P pair, a linear 

relation fits well. For the F:P combination, a tensile force on the nozzle plus internal pressure 

is a critical combination while a nozzle compressive force plus pressure results in low stress 

field. For this particular vessel configuration, the first yield compressive thrust on the nozzle 

and pressure can be increased by as much as 60 %, provided the interacting loads are of the 

proper magnitude. 

In general, the location of maximum stress from combined loadings can be predicted from 

the maximum location due to individual loads. From the load interaction curves, sudden 

changes in slope can be attributed to yielding moving from one location to another. These 

changes of location are marked on the load interaction diagrams. Point A in Fig. 14 

represents a section of the structure which passes through the weld-nozzle edge, and point B 

is contained in the section through the crown-weld edge. The F:P interaction is a case where 

the maximum stress can occur at a location which is not critical to either a thrust or pressure 

loading. From Fig. 85(f), a negative force on the nozzle interacting with internal pressure 

produces maximum effective stress at locations A or D in Fig. 14 .. 

Drabble [74] constructed a three-load initial yield locus from the available strain gauge 

readings. From the isometric plot, the general trend of his load interaction agrees well with 

the present result, but the load magnitude cannot be verified accurately. 
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As in the stress analysis of elbows, the method of superposition of stress data in some 

geometries is questionable. In one of the experimental tests, Witt et al [117] conducted a 

superposed loading on a spherical shell with protruded nozzle. The model which had 

geometric ratios d/2L=0.078, d/t=9.5 and 2L1T=81.33 was loaded simultaneously with 

axial force and internal pressure. From inspection of the larger stresses, they remarked that 

the method of stress superposition was accurate. Apart from the flush nozzle, the present 

crown geometry which differs slightly (d/2L=0.14, d/t=9.0 and 2L1T=64.0) from Witt's 

model should exhibit similar valid superposition characteristics. 

4.4.5 The BS 5500 code 

The high stresses at the intersection are caused by discontinuity shear stresses and moments 

which exist to maintain compatibility at the juncture. The conventional method of analysis and 

design of pressure vessels is the use of standard design codes, such as the ASME and BS, 

which are based on the classical membrane theory and hence involves many inconsistencies 

and inaccuracies at the geometric junctures. In BS 5500 [111], the design of the opening is 

carried out by applying a stress concentration factor (SCF) to the nominal stress in the 

spherical shell rather than in the nozzle. The SCF is based on the maximum principal stress 

theory and calculated with respect to the sphere membrane stress if the loading is internal 

pressure. The nominal stresses for other load categories are found in Sect. G.2.5 of BS 5500 

[111]. The SCF can be read off from SCF curves once the values of p (defined on Page 153) 

and tiT are known. The SCF does not make any distinction between the inner and outer 

surface stresses. The SCF values from the Code in Table 17 are therefore meant for the 

spherical shell, but normalized with the same factors as in the FEM and experimental results. 

From the comparison in Table 17, with the exception of pressure, the BS code overestimates 

the FEM values by a large margin. Under the action of combined loading, the BS suggests 

a conservative estimate of the combined stress by adding the maximum stresses for individual 
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loadings. 
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CHAPTERS. CONCLUSIONS 

The study describes the stress analysis of some commonly used piping components. Since 

only one specific geometry of the tee branch and torispherical shell with nozzle have been 

investigated, the conclusions apply to the particular vessel. The stress behaviour and load 

interaction were carried out by the application of the finite element method and for one 

particular elbow geometry, an experimental test was carried out. The following conclusions 

are drawn:-

5.1. PLAIN PIPES 

1. The finite element model with one layer of 20-node elements through the wall 

thickness is sufficient to give accurate hoop and axial stresses for both thick and thin 

pipes. 

2. The method of linear superposition of stresses from separate load effects is 

satisfactory for thick and thin pipes. If buckling does not precede yielding, the set of 

interaction curves can be used to predict yielding in pipes. With the present set of 

stress database obtained from four pipes, the computer program allows prediction of 

first yield interaction for any pipe dimension. 

3. For the T» and M:P load pairs, as the pipe gets thinner (larger DfT), yielding 

occurs at lower combined loads. For other load pairs, the interactions are not affected 

by DfT ratios. 

4. Comparison with the BS code shows mixed results because of different yield criteria. 

The derived BS yield formulations show a large difference for the M:P pair, slight 

conservatism for the To:P pair and identical circular relation for the To:M pair. 

5. Even when compared with the FEM Tresca criterion, the BS results differ because 

163 



of different assumptions. 

5.2. PIPE BENDS 

1. The FEM results were compared with those from analytical methods and it was 

shown that the results of thicker elbows (O/T:::;;20) agree well. 

2. For torque and moment loads, as the elbows get thicker, the maximum ESFs become 

less affected by b (=Rlr). For internal pressure, when D/T>40 and b>5, the 

maximum ESF is not affected by O/T and b. 

3. The ASME and Rodabaugh's results for torque loading are suspect. For moment 

loading, they are more conservative for low values of >.. 

4. The M:To and To:P first yield load interactions are not significantly affected by Rlr 

and D/T. The M:P interaction is not much affected by Rlr but significantly affected 

by O/T. 

5. In certain cases, a combined loading of internal pressure and in-plane moment causes 

a reduction in maximum ESF which can be quite considerable in thin elbows 

(O/T> SO). 

6. Compared to the FEM, the BS rules are conservative for To:P interaction. The AS ME 

load interaction agrees with the FEM. 

7. From the finite element method, it is proposed that the To:P and M:P load 

interactions be taken to be linear and the M:To to be circular. For the M:P 

interaction, if the linear relation is assumed, for some elbow geometries, the effective 

stresses can be significantly conservative. 

S. From the limited amount of information available on a thin elbow, the increase in in

plane moment- or torque-carrying capacity is mainly due to the nonlinear load 

coupling. 
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9. In both M:P and To:P load interactions, the maximum moment- or torque-carrying 

capacity is not necessarily achieved at high internal pressures. From the thinner elbow 

model EL01, the maximum von Mises stresses are greatly reduced between P=0.2Py 

-
and P=0.5Py • 

10. For the thick elbow, the results from the linear analysis give satisfactory correlation 

with an analysis which includes geometric nonlinearity and nonlinear coupling effect. 

Since all the linear load interaction curves are more conservative, the plots which are 

produced for elbows with about the same geometric parameters as EL07, can be used 

to predict first yield behaviour with high accuracy. 

11. Although slightly less conservative, the BS 806 Code is satisfactory in determining 

the maximum SCF for moment load. 

12. The most appropriate P:M interaction for a thick long radius elbow is linear one. 

5.3. TEE BRANCH 

1. The good correlation between the present finite element results and Moffat et aI's [43] 

empirical ESFs suggests that finite element method is capable of giving satisfactory 

results of a complex piping geometry. The resultant first yield load interaction results 

are also satisfactory provided the principle of superposition holds for the structure. 

2. In finite element modelling of the .branch junction, the lower order elements are 

unsuitable even after further mesh refinement. The use of a single layer of higher 

order 20-node brick elements, with moderate mesh refinement, is suitable. 

3. In every loading, except Mxb, the maximum ESFs occurred on the inside surface. 

Apart from pressure loading, the maximum ESF values occurred within ±45° of the 

transverse plane. Pressure loading produced a maximum effective stress in the 

transverse plane. 
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4. The stresses from the branch pipe loads are more intensified than from run pipe 

loads. The out-of-plane branch moment loading gives higher maximum stress intensity 

than by any other loading. 

5. For the six moment categories, the effective stress factor can be expressed in the 

form 

to reflect its dependence on the various geometric parameters. 

6. The effect of increased weld reinforcement is to reduce high stresses at the 

intersection, especially due to loads on the branch pipe. Due to internal pressure, the 

weld reinforcement does not play an important role in decreasing the maximum stress 

at the crotch corner. 

7. For all the load cases, the present results agree well with other FEM and 

experimental results, provided the weld details are nearly identical. 

8. The use of the AS ME III code beyond the limit of application can result in an 

overestimation of stresses. The design codes should consider the effects of twisting 

moments on the branch and run pipes because they are not negligible. 

9. For some load combinations, one of the interacting loads has a strengthening effect 

upon the other. In such cases, the tee branch is capable of sustaining higher loads at 

specific combinations before yielding sets in. The most prominent case is the negative 

M interacting with internal pressure. zr 

10. For simplification and conservatism, the interaction between moments on the run and 

branch pipes should be taken to be linear, and the interaction between moment and 

pressure loads to be circular. 

11. The ASME III general equations for checking combined stresses should be modified 

on two fronts. The proposed resultant moments are:-
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and Mr = (Mxr + Myr + Mzr) 

The proposed equation for combined stress is:-

12. The practical importance of the present load interaction analysis is in the design of 

similar tee branches. Tee branches of other parameters need further investigation. 

5.4. TORISPHERICAL HEAD WITH NOZZLE 

1. The agreement between calculated and experimental results was fair. 

2. For all the load categories, high stresses occurred at the vessel-nozzle juncture 

because of the geometric discontinuity. For internal pressure, the stress peaks at 

locations remote from the nozzle juncture were similar to a torispherical vessel 

without nozzle. 

3. When torque is one of the combined loads, a is circular interaction is proposed. For 

other load combinations a linear relation is proposed. 
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CHAPTER 6. SUGGESTIONS FOR FUTURE WORK 

1. The study assumes the small displacement theory. In reality, when thin-walled 

structures are subjected to moment loads, large geometric displacements influence the 

stress history and this has to be taken into account for a more accurate analysis. 

2. A study should be undertaken to develop more advanced design methods and rational 

design criteria to evaluate elasto-plastic structural behaviour of piping components. 

Is has been reported by Kirkwood and Moffat [118] that once the first yield limit has 

been exceeded in branch junctions, the load interactions using other approaches (such 

as three times elastic slope or five times elastic slope) are significantly different from 

first yield interactions. 

3. Research work should be carried out to investigate the effect of structural geometric 

imperfection on load interaction. Due to the nature of manufacturing, the pipe cross

sectional shape may not be perfectly circular and variation of wall thickness is not 

uncommon. In order to make specific changes to analytical or design procedures 

more work is needed to provide quantitative data. 

4. For the tee branch, an extension of FEM work on branches with diameter ratios of 

between 0.8 and 1.0 and D/T> 100 should be carried out to confirm the stress 

behaviour in tee branches in that range. The most likely problem encountered here 

would be modelling of the weld details at the flanks. Since it has been shown that the 

weld details highly influence the resulting maximum stresses, the size of the weld 

should reflect the other pipe dimensions. 
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APPENDIX 

APPENDIX A. THE ENERGY METHOD [15] COMPUTER PROGRAM 
c Rodabaugh's elasticity elbow equations for in-plane bending to calculate axial and hoop 
stresses. 
c Considers stiffening effect of pressure. Modified to include diametral extensibility. 
c Uses 10th order approximation. Stresses due to moment only. 
c theta=hoop direction, zero at extrados. 
c phi = axial direction, zero at mid-section of 90-deg elbow. 
c Input units in N-mm, will be converted to lbf-in in program. 

real d(20,21),ro,ri,rm,doo,di,r ,m,pr ,e,ni,t,s,pi,ii,lam,psi,rr, 
1 theta2,sum,sum1 ,sum2,sum3 ,sum4,sum5 ,sum6,sum7 ,kp,kf, 
2 sigtheo,sigthei,sigphio,sigphii,p,gam,ksi,sthep,sphip, 
3 stheo,sthei,sphio,sphii 
integer n,np1,i,j,k,theta 
write (6, *)' Outer radius, in mm. =' 
read(5, *)ro 
ro=roI25.4 
doo=ro*2 
write (6, *)' Inner radius, in mm. =' 
read(5, *)ri 
ri=ri/25.4 
di=ri*2 
write (6, *)' Bend radius, in mm. =' 
read(5,*)r 
r=r/25.4 
write (6, *)' In-plane moment, in N-mm. =' 
read(5,*)m 
m=mI(4.448222*25.4) 
write (6, *)' Internal pressure, in N/mm2=' 
read(5, *)pr 
pr=pr* 1.0e3/6.894757 
write (6,*), Elastic modulus, in N/mm2=' 
read(5,*)e 
e=e*1.0e3/6.894757 
ni=0.275 
n=10 
t=ro-ri 
rm = (ro + ri)/2 
gam=r/rm 
s=pr*rmlt 
pi=4.0*atan(1.0) 
ii=pi*(ro**4-ri**4)/4 
lam=t*r/«rm**2)*sqrt(1.-ni**2» 
psi =s*r**2/(e*rm**2) 

cd's are coeff. of c's 
d(1, 1) =5 +6*lam**2 + 24*psi 
d( 1,2) = -5.0/2 
d(10,9)=-(2*n-3)*(2*n+ 1)/2. 
d(10,1O)=«4*n**2+ 1) + (8*n**3-2*n)**2*lam**2/6 + 
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1 (8*n**2*(4*n**2-1»*psi) 
do 2 i=2,9 
j=i-1 
d(i,j) =-(2*i-3)*(2*i + 1)/2. 

2 continue 
do 3 i=2,9 
j=i+1 
d(i,j)=-(2*i-1)*(2*i + 3)/2. 

3 continue 
do 4 i=2,9 
j=i 
d(i,j)=«4*i**2+ 1) +(8*i**3-2*i)**2*lam**2/6 + 

1 (8*i**2*(4*i**2-1»*psi) 
4 continue 

d(1,11)=-3. 
do 5 i=2,1O 
d(i,l1)=O. 

5 continue 
c write(6, *)' The dU matrix is' 

do 111 i=l,n 
c write(6, *)(d(i,j),j = l,n) 
111 continue 
c Gauss-Jordan elimination-to solve simultaneous equations 

np1=n+1 
do 44 k=l,n 
p=d(k,k) 
if (p.ne.O.O) goto 55 
write(6, *)' Zero divide - rearrange equations.' 
goto 1 

55 do 77 j=1,np1 
77 d(k,j)=d(k,j)/p 

do 88 i= l,n 
if (i.eq.k) goto 88 
rr=d(i,k) 
do 99 j=1,np1 

99 d(i,j) =d(i,j)-rr*d(k,j) 
88 continue 
44 continue 
c stress calculation - strain energy method 

write(6, *),Theta Hoop stress Axial stress VM' 
write(6, *)' out in out in out in' 

c ksi is to change back from psi to N/mm2 
ksi =6.894757/1.e3 
kf=m*ro/ii 
do 100 theta=0,180,15 
theta2 = theta + 90 
theta2 = theta2 *pi/180. 0 
sum 1 =0. 
do 21 i= 1,n 
sum=0.5*(d(i, 11)*(1-2*i)+d(i + 1, 11)*(2*i + 3»*sin«2*i + l)*theta2) 
sum1 =sum1 +sum 
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21 continue 
sum2=O. 
do 23 i= l,n 
sum =0.5*ni *lam*d(i,ll )*(2*i-8*i **3)*cos(2*i *theta2) 
sum2 = sum2 + sum 

23 continue 
sum3=O. 
do 24 i= l,n 
sum =0.5*lam*d(i,ll)*(2*i-8*i**3)*cos(2*i*theta2) 
sum3 = sum3 + sum 

24 continue 
sum4=0. 
do 25 i= l,n 

c -- modification to include hoop extensibility -
sum=0.5*(lIgam)*(d(i,ll)*(1-2*i)+d(i + l,ll)*(2*i + 3»* 

1 cos«2*i + 1)*theta2)*cos(theta2)/(2*i + 1) 
sum4 = sum4 + sum 

25 continue 
sumS =0. 
do 26 i= l,n 
sum=0.25*d(i,ll)**2*(1-2*i)**2 
sumS = sum5 + sum 

26 continue 
sum6=0. 
do 27 i= l,n 
sum=(0.0833333*lam**2)*d(i,ll)**2*(8*i**3-2*i)**2 
sum6 = sum6 + sum 

27 continue 
sum7=0. 
do 28 i= l,n 
sum=psi*4*i**2*(4*i**2-1)*d(i,II)**2 
sum7 = sum7 + sum 

28 continue 
c kp = 1.1(1 + 3*d(1,II) +(9/4)*d(I,11)**2+sumS-2*d(lO,11)*d(1I,11)* 
c 1 (2* 10-1 )*(2 * 10+ 3) +d( 11,11)**2*(2* 10 + 3)**2 + sum6 + sum7) 

kp= 1.0/(1 4- 1.5*d(1,11» 
sigthei=(kp*m*rmI(ii*(1-ni**2»)*(-sum3-(lIgam)*(1 + 1.5*d(1,11»* 

1 (cos( theta2» * *2-sum4) 
sigtheo=(kp*m*rmI(ii*(1-ni**2»)*(sum3-(lIgam)*(1 + 1.5*d(1,11»* 

1 (cos(theta2»**2-sum4) 
sigphio=(kp*m*rmI(ii*(1-ni**2»)*«1 + 1.5*d(1, 11»*sin(theta2)+ 

1 suml +sum2) 
sigphii=(kp*m*rmI(ii*(I-ni**2»)*«1 + 1.5*d(1,11»*sin(theta2)+ 

1 suml-sum2) 
sthep=O 
sphip=O 

c stress factor due to moment only, but with pressure interaction 
write(6,930)theta,sigtheo/kf,sigthei/kf,sigphio/kf,sigphiiIkf, 

* (sqrt(sigtheo**2 + sigphio**2-sigtheo*sigphio »/kf, 
* (sqrt(sigthei **2 + sigphii **2-sigthei *sigphii»/kf 

930 format(i4,lx,f7 .2,lx,f7 .2, lx,f7 .2,lx,f7 .2, 1x,f7 .2, lx,f7 .2) 
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100 continue 
. 1 continue 

stop 
end 

APPENDIX B. FINALE.FOR - A PROGRAM TO INTERPOLATE STRESSES 
FOR A GIVEN ELBOW DIMENSION AND EVALUATE LOAD 
INTERACTIONS 

<:---------------------------------------------------------------------
<: A PROGRAM TO INTERPOLATE STRESSES AT ALL NODES FOR ANY GIVEN 
<: VALUES OF DmlT AND b OF ELBOWS. DETERMINATION OF STRESSES, 
<: FOR ANY GIVEN COMBINATION OF TORQUE, IN-PLANE MOMENT AND 
<: INTERNAL PRESSURE. 
<:-------------------------------------------------------------------
<: STRESS DATA FROM 16 ELBOWS HAVE BEEN PREVIOUSLY GENERATED BY 
<: LINEAR FEM. ASSUMES LINEAR SUPERPOSITION OF STRESSES. 
<:--------------------------------------------------------------------

<:OMMON L<:,WHE,BBN,DTN,RO,RI,KK2 
DOUBLE PRE<:ISION BBN ,DTN ,KK2,RO,RI,RR,KKK2,LAM 
INTEGER M 
<:HARA<:TER*10 FILENAME(21) 
DATA FILEN AMEI' e104. pop' , 'e103. pop' " e102. pop' , 'elO 1. pop' , 

* 'eIOS.pop' ,'eI07.pop' ,'eI06.pop' ,'eIOS.pop', 
* 'eIl2.pop' ,'eIl1.pop', 'eIlO.pop', 'e109.pop', 
* 'eIl6.pop', 'eIlS.pop', 'eIl4.pop', 'eIl3.pop', 
* 'intpe1.pop', 'intpe2.pop', 'intpe3.pop', 'intpe4.pop', 
* 'intpeS.pop'/ 

1507 WRITE(6,*)'VALID FOR DmlT=10 TO 150' 
WRITE(6, *)' AND b=2 TO 7' 
WRITE(6,*),OR LAMBDA = 0.0267 TO 1.4' 
WRITE(6,*)'-----------------------------------------------' 
WRITE(6, *),OUTER RADIUS, IN mm?' 
READ(S, *)RO 
WRITE(6, *),INNER RADIUS, IN mm?' 
READ(S, *)RI 
WRITE(6, *),BEND RADIUS, IN mm?' 
READ(S, *)RR 
DTN =(RO+ RI)/(RO-RI) 
BBN =2. *RRI(RO+ RI) 
LAM =2.0*BBN/DTN 
WRITE(6,*) 
WRITE(6, *)' NEW DmlT NEW b RATIO NEW LAMBDA' 
WRITE(6,1161)DTN,BBN,LAM 

1161 FORMAT(F9.4,10X,F7.4,lOX,F7.4) 
IF (DTN.LT.1O.0.0RDTN.GT.1S0.0.0RBBN.LT.2.0.0RBBN.GT. 7.0) THEN 
WRITE(6,*)' ELBOW DIMENSIONS OUT OF RANGE!! - PLEASE TRY AGAIN' 
GOTO 1507 
ENDIF 

<: STRESSES IN DATA FILES ARE STRESS FA<:TORS 
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C CREATING FILE intpel.pop 

OPEN(UNIT=lO,FILE='intpe1.pop' ,STATUS='UNKNOWN',FORM='FORMATTED') 
WRITE(lO,301)DTN 

301 FORMATC PIPE WITH NEW DmlT ',F7.3) 
M=4 
DO 1 I=I,M 
FILENAME(I) = FILENAME(I) 

1 CONTINUE 
CALL GENFILE(DTN ,BBN ,M,KK2,FILENAME) 
CLOSE(lO) 

C CREATING FILE intpe2.pop 
OPEN(lO,FILE = 'intpe2.pop' ,STATUS = 'UNKNOWN' ,FORM = 'FORMATTED') 
WRITE(10,301)DTN 
M=4 
DO 2 I=I,M 
FILENAME(I) = FILENAME(I +4) 

2 CONTINUE 
CALL GENFILE(DTN ,BBN ,M,KK2,FILENAME) 
CLOSE(10) 

C CREATING FILE intpe3.pop 
OPEN(10,FILE='intpe3.pop',STATUS='UNKNOWN',FORM='FORMATTED') 
WRITE(1O,301)DTN 
M=4 
DO 3 I=1,M 
FILENAME(I) = FILENAME(I + 8) 

3 CONTINUE 
CALL GENFILE(DTN ,BBN ,M,KK2,FILENAME) 
CLOSE(10) 

C CREATING FILE intpe4.pop 
OPEN(10,FILE='intpe4.pop',STATUS='UNKNOWN',FORM='FORMATTED') 
WRITE(1O,301)DTN 
M=4 
DO 4 I=1,M 
FILENAME(I) = FILENAME(I + 12) 

4 CONTINUE 
CALL GENFILE(DTN ,BBN ,M,KK2,FILENAME) 
CLOSE(10) 

C CREATING FINAL FILE intpeS.pop . 
OPEN(10,FILE='intpeS.pop',STATUS='UNKNOWN',FORM='FORMATTED') 
WRITE(1O,302)DTN ,BBN 

302 FORMATCPIPE WITH NEW DmlT=·,F7.3,' AND B='.F7.3) 
M=4 
DO 5 I=1.M 
FILENAME(I) = FILENAME(I + 16) 

5 CONTINUE 
CALL GENFILE(BBN ,BBN ,M,KKK2,FILENAME) 
CLOSE(lO) 
CALL STRESS 
STOP 
END 
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SUBROUTINE GENFILE(DTN ,BBN ,M,KK2,FILENAME) 
C READING DATA FROM 4 DATA FILES AND GENERATE INTERPOLATED FILE 

COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 
'" PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
'" ALOADT(3) 
CHARACTER"'10 TITLE,FILENAME(21) 
DOUBLE PRECISION BBB(4),X(4),F(4),YY,DT(4),STRE(9,858,3,4), 

'" ANS(9,858,3),DTN,BBN,KK2 
INTEGER M,MAXLOC,LOCASE 
DO 101 LL= 1,4 
OPEN(UNIT=20,FILE=FILENAME(LL),STATUS='OLD') 
REWIND 20 
READ(20,333)TITLE 

333 FORMAT(A 72) 
READ(20,200)MAXLOC 
READ(20,200)LOCASE 
READ(20, "') BBB(LL) 
READ (20, "') DT(LL) 
DO 13 KK=l,LOCASE 
DO 14 JJ = 1,MAXLOC 
READ(20, '" )(STRE(II,JJ,KK,LL),II= 1,9) 

14 CONTINUE 
13 CONTINUE 

CLOSE(20) 
101 CONTINUE 

WRITE(1O,200)MAXLOC 
WRITE(lO,200)LOCASE 

200 FORMAT(16) 
WRITE (10,445) DTN 
WRITE (10,445) BBB(1) 

445 FORMAT (F7.3) 
DO 506 KK=l,LOCASE 
DO 505 JJ = 1,MAXLOC 
DO 504 11=1,9 
DO 503 LL= I,M 
X(LL) = DT(LL) 
F(LL) = STRE(II,JJ ,KK,LL) 

503 CONTINUE 
CALL SPLlN(X,F,DTN,YY) 

C INTERPOLATING SEPERATELY FOR EVERY 4 SETS OF DATA 
ANS(II,JJ ,KK) = YY 

504 CONTINUE 
DO 1=3,8 
STR(I)=ANS(I,JJ,KK) 
END DO 
CALL SIGCAL 

11 FORMAT(3(lPE11.4, IX» 
C MISES STRESS IN intpe 1-5.pop CALCULATED IF SIGMA(6) USED 

WRITE(1O,601) STRE(1,JJ,KK,1),STRE(2,JJ,KK,1), 
'" (ANS(II,JJ,KK),II=3,8),SIGMA(6) 

C ABS(ANS(9,JJ,KK» THIS VALUE GIVES INTERPOLATED MISES STRESS 
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505 CONTINUE 
·506 CONTINUE 

601 FORMAT(F8.1,IX,8(F7.3,IX» 
RETURN 
END 
SUBROUTINE SPLIN(X, Y ,DTN ,ANS) 

C CUBIC SPLINE FIT TO N DATA POINTS. END CON = 1 SELECTED BUT 
C USER MAY SPECIFY ANY ONE OF 4 DIFFERENT END CONDITIONS. 
C DTN=NEW X VALUE FOR WHICH Y IS TO BE DETERMINED 
C END CON = 1 FOR A NATURAL SPLINE FIT 
C END CON = 2 FOR Yl" = Y2" AND YN" = YN+l" 
C ENDCON = 3 FOR EXTRAPOLATED Y"-S AT ENDS 
C ENDCON=4 FOR CASES 1 & 3 AVERAGED 

IMPLICIT REAL *8(A-H,0-Z) 
INTEGER ENDCON 
DIMENSION A(48),B(48),C(48),S(48),Z(48),X(50),Y(50),H(49),YPP(50) 
N=4 
ENDCON=1 
DO 26 I = I,N-l 
H(I) = X(I + 1) - X(I) 

26 CONTINUE 
DO 27 I = I,N-2 
S(I) = 6. *(Y(I + 2) - Y(I + 1»/H(1 + 1) - 6. *(Y(I + 1) - Y(I»/H(I) 

27 CONTINUE 
DO 28 I = I,N-3 
C(I) = H(I + 1) 
A(I + 1) = C(I) 

28 CONTINUE 
DO 29 I = I,N-2 
B(l) = 2. *(H(l) + H(I + 1» 

29 CONTINUE 
GO TO(33 ,30,31 ,32)ENDCON 

C CASE 2 (Yl" = Y2" AND YN" = YN-l") 
30 B(1) = B(1) + H(1) 

B(N-2) = B(N-2) + H(N-l) 
GO TO 33· 

C CASE 3 (EXTRAPOLATED Y"-S AT ENDS) 
31 B(1) = (H(I) + H(2»*(H(1) + 2. *H(2»/H(2) 

A(N-2) = (H(N-2)*H(N-2) - H(N-l)*H(N-l»/H(N-2) 
B(N-2) = (H(N-2) + H(N-l»*(2. *H(N-2) + H(N-l»/H(N-2) 
GO TO 33 

C CASES 1 AND 3 AVERAGED 
32 B(I) = (H(1) + H(2»*(H(1) + 4. *H(2»/(2. *H(2» 

C(I) = (2. *H(2)*H(2)-H(I)*H(I»/(2. *H(2» 
A(N-2) = (2. *H(N-2)*H(N-2) - H(N-l)*H(N-l»/(2. *H(N-2» 
B(N-2) = (H(N-2) + H(N-l»*(4. *H(N-2) + H(N-l»/(2. *H(N-2» 

33 CALL TRIDI(N-2,A,B,C,S,Z) 
GO TO(34,35,36,37)ENDCON 

C CASE 1 
34 YPP(I) = O. 

YPP(N) = O. 
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GO TO 38 
. C CASE 2 
35 YPP(1) = Z(1) 

YPP(N) = Z(N-2) 
GO TO 38 

C CASE 3 
36 YPP(1) = (Z(1)*(H(1) + H(2» - Z(2)*H(1»/H(2) 

YPP(N) = (Z(N-2)*(H(N-2) + H(N-l» - Z(N-3)*H(N-l»/H(N-2) 
GO TO 38 

C CASES 1 AND 3 AVERAGED 
37 YPP(1) = (Z(1)*(H(1) + H(2» - Z(2)*H(I»/(2. *H(2» 

YPP(N) = (Z(N-2)*(H(N-2) + H(N-l» - Z(N-3)*H(N-l»/(2. *H(N-2» 
C ASSIGN VALUES OF Z(1) THROUGH Z(N-2) TO YPP(2) THROUGH YPP(N-l). 
38 DO 39 I = 2,N-l 

YPP(I) = Z(I-l) 
39 CONTINUE 
C WRITE OUT Y VALUES FOR X VALUES AS SPECIFIED 

XX = DTN 
XMAX=X(4) 

43 DO 44 I = I,N-l 
IF(XX .GE. X(I) .AND. XX .LE. X(I + I»GO TO 45 

44 CONTINUE 
45 ANS = YPP(I)/6. *«X(I + 1)-XX)**3/H(I)-H(I)*(X(1 + I)-XX» 

* + YPP(I + 1)/6. *«XX-X(I»**3/H(I)-H(I)*(XX-X(I») 
* + Y(I)*(X(I + 1)-XX)/H(I) + Y(I + 1)*(XX-X(I»/H(I) 

47 RETURN 
END 
SUBROUTINE TRIDI(N,A,B,C,S,X) 

C SUBROUTINE TO SOLVE A TRIDIAGONAL SYSTEM OF N EQUATIONS USING 
C GAUSSIAN ELIMINATION. 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION A(1),B(I),C(l),S(l),X(1) 
NMl = N-l 
DO 1 I = 1,NM1 
B(I + 1) = B(I + 1) - A(I + 1)*C(I)/B(I) 
S(I + 1) = S(I + 1) - A(I + 1)*S(I)/B(I) 

1 CONTINUE 
X(N) = S(N)/B(N) 
DO 2 L = 1,NM1 
1= N-L 
X(I) = (S(I)-C(I)*X(I + 1»/B(I) 

2 CONTINUE 
RETURN 
END 
SUBROUTINE RETR 

C SUBROUTINE TO RETRIEVE STRESSES AT THE PARTICULAR NODES. 
C 858 LOCATIONS, 3 LOADCASES, 25 POINTS OF INTEREST 
C ISURF=INNER SURFACE, OSURF=OUTER SURFACE 

COMMON LC,WHE,BBN,DTN,RO,RI,KK2 
DIMENSION STR(9,858,3),IM(858),OM(858),ISURF(25),OSURF(25) 
INTEGER K,L,P,N ,I,LC,MAXLOC,LOCASE,WHE 
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REAL ANG,FAC 
DOUBLE PRECISION RO,RI,BBN,DTN,PI 
DATA ISURF/2805,2800,2790,2780,2770,2760,2750,2740,2730, 

* 2720,2710,2700,2692,2694,2705,2715,2725,2735,2745,2755, 
* 2765,2775,2785,2795,28051 
DATA OSURFI2804,2799,2789,2779,2769,2759,2749,2739,2729, 

* 2719,2709,2699,2691,2693,2704,2714,2724,2734,2744,2754, 
* 2764,2774,2784,2794,28041 
OPEN(20,FILE='intpe5.pop',STATUS='OLD') 
REWIND 20 
READ(20,333) TITLE 

333 FORMAT(A 72) 
READ(20, *) MAXLOC 
READ(20, *) LOCASE 
READ(20, *) BBN 
READ(20, *) DTN 
READ(20, *) «(STR(L,P,N ),L = 1 ,9),P= 1 ,MAXLOC),N = 1,LOCASE) 
CLOSE(20) 
PI=4.0*ATAN(1.0) 
WRITE (6, *) 'WHICH LOADCASE?' 
WRITE(6,*) '1 = TORQUE 2 = IN-PLANE MOMENT 3=PRESSURE' 
READ (5, *) LC 
IF (LC.EQ.1) THEN 
LOCASE= LOCASE-2 
FAC= 1.0*4*RO/(PI*(RO**4-RI**4» 
ENDIF 
IF (LC.EQ.2) THEN 
LOCASE= LOCASE-1 
FAC = 1.0*4*RO/(PI*(RO**4-RI**4» 
ENDIF 
IF (LC.EQ.3) THEN 
LOCASE= LOCASE 
FAC= 1.0*(RO+ RI)/(2*(RO-RI» 
END IF 
ANG=O. 
OPEN (lO,FILE= 'elbvrn.pop' ,STATUS = 'UNKNOWN' ,FORM = 'FORMATTED') 
DO 200 K=I,25 
1=1 
J=1 

2001 CONTINUE 
IM(I) = ISURF(K)-STR(1 ,I,LOCASE) 
IF(ABS(IM(I».GT.(0.5» THEN 
1=1+1 
GOTO 2001 
ENDIF 

3001 CONTINUE 
OM(J) = OSURF(K)-STR( I,J , LOCASE) 
IF(ABS(OM(J».GT.(0.5» THEN 
J=J+l 
GOTO 3001 
ENDIF 
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ANG= 15.0*(K-l) 
. C MISES STRESSES IN elbvrn. pop ARE CALCULATED 

WRITE (10,222) ANG,STR(9,I,LOCASE),STR(9,J,LOCASE) 
222 FORMAT(F6.1,4X,F7.3,4X,F7.3) 
200 CONTINUE 

CLOSE(10) 
OPEN(20,FILE='elbvrn.pop',STATUS='OLD') 
CALL UNI1(LC) 
CLOSE(20) 
RETURN 
END 
SUBROUTINE UNI1(LC) 
RETURN 
END 
SUBROUTINE STRESS 

C PROGRAM TO CALCULATE AND GENERATE LOAD INTERACTION. 
C INPUT DATA FILE IS READ FROM INTERPOLATED OUTPUT 
C (2+7) STRESSES, 858 LOCATIONS AND 3 LOADCASES 

COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 
* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858),MAXLOC,LOCASE,ILOC,IX,IY ,IZ,NDEV 
COMMON/BLOCK3/TITLE 
COMMON LC,WHE,BBN,DTN,RO,RI,KK2 
DOUBLE PRECISION RO,RI,BBN,DTN 
CHARACTER*80 TITLE 
NDEV=20 
OPEN(UNIT=NDEV,FILE='intpe5.pop',STATUS='OLD') 
READ(NDEV,333)TITLE 

333 FORMA T(A 72) 
WRITE(6,333)TITLE 

C STRESSES IN DATA FILES ALREADY NORMALISED, HENCE 
ALOAD(1)= 1.0 
ALOAD(2) = 1.0 
ALOAD(3)= 1.0 
DO 1=1,3 . 
ALOADT(I) = ALOAD(I) 
END DO 
CALL DATA 

1011 CONTINUE 
1111 WRITE(6,101) 
101 FORMAT(, SELECT OPTION FOR ANALYSIS:',I, 

* ' 1 = MAX. MISES STRESS AND PLOT, AROUND ELBOW',!, 
* MID-SECTION, FROM COMBINED LOADS',I, 
* ' 2 = 2-LOADCASE INTERACTION DIAGRAM.',!, 
* DATA IN FILE elb2id.pop',I, 
* ' 3 = 3-LOADCASE INTERACTION DIAGRAM.',I, 
* DATA IN FILE elb3id.pop',I, 
* '4 = MISES ESF PLOT, AROUND ELBOW',!, 
* MID SECTION, FROM SEPARATE LOADS' ,I, 
* '5 = QUIT',!I) 
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READ(5, *)NOPT 
GOTO (l,2,3,4,5),NOPT 
GOTO 1111 

5 GOTO 200 
1 CALL STRES 1 

GOTO 1011 
2 CALL INTER2(O) 

GOTO 1011 
3 CALL INTER3 

GOTO 1011 
4 CALL RETR 

GOTO 1011 
200 CONTINUE 
300 RETURN 

END 
SUBROUTINE DATA 

C READ IN FROM DATA FILE 
COMMON/BLOCK1/STRES(9,858 ,3),ALOAD(3),SIGMA(6),STR(9), 

* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
COMMON LC,WHE,BBN,DTN,RO,RI,KK2 
DOUBLE PRECISION BBN,DTN,RO,RI,INA 
READ(NDEV, *)MAXLOC 
READ(NDEV, *)LOCASE 
READ(NDEV, *)BBB 
READ(NDEV, *)DT 
READ(NDEV, *)«(STRES(I,J,K),I= 1,9),J = 1,MAXLOC),K= 1,LOCASE) 
PI=4.0*ATAN(1.0) 
INA = (PII4. 0) *(RO**4-RI* *4) 

C STRESSES CHANGED TO ABSOLUTE STRESSES PER UNIT LOAD, 
C FOR NEW ELBOW 

DO 612 J=l,MAXLOC 
DO 613 1=3,9 
STRES(I,J, 1) = STRES(I,J, l)*RO/INA 
STRES(I,J ,2) = STRES(I,J ,2)*RO/INA 
STRES(I,J,3)=STRES(I,J,3)*(RO+RI)/(2.0*(RO-RI» 

613 CONTINUE 
612 CONTINUE 

DO 10 I=l,LOCASE 
DO 5 J=l,MAXLOC 
LOC(J) = STRES( 1 ,J ,1) 
DO 4 K=3,9 
STRES(K,J ,I) = STRES(K,J ,1)1 ALOAD(I) 

4 CONTINUE 
5 CONTINUE 
10 CONTINUE 

DO 1=1,9 
END DO 
CLOSE (20) 
RETURN 

187 



END 
SUBROUTINE RETR1 

C SUBROUTINE TO RETRIEVE STRESSES AT THE PARTICULAR NODES AND 
C PLOT THE GRAPH FOR COMBINED LOADINGS - ABSOLUTE STRESSES GIVEN 
C 858 LOCATIONS, 3 LOADCASES, 25 POINTS OF INTEREST 
C ISURF=INNER SURFACE, OSURF=OUTER SURFACE 

COMMON LC,WHE,BBN,DTN,RO,RI,KK2 
DIMENSION STR(9,858,3),IM(858),OM(858),ISURF(25),OSURF(25) 
INTEGER K,L,P,I,LC,MAXLOC,LOCASE,WHE,N 
REALANG 
DOUBLE PRECISION RO,RI,BBN,DTN 
DATA ISURFI 2805,2800,2790,2780,2770,2760,2750,2740,2730, 

* 2720,2710,2700,2692,2694,2705,2715,2725,2735,2745,2755, 
* 2765,2775,2785,2795,28051 
DATA OSURFI 2804,2799,2789,2779,2769,2759,2749,2739,2729, 

* 2719,2709,2699,2691,2693,2704,2714,2724,2734,2744,2754, 
* 2764,2774,2784,2794,28041 
OPEN(20,FILE='comelb.pop',STATUS='OLD') 
REWIND 20 
READ(20,333) TITLE 

333 FORMAT(A 72) 
READ(20, *) MAXLOC 
READ (20, *) LOCASE 
READ(20, *) BBN 
READ(20, *) DTN 
READ(20, *) «(STR(L,P,N),L= 1 ,9),P= 1 ,MAXLOC),N = 1,1) 
CLOSE(20) 
OPEN (10,FILE= 'elbvm.pop' ,STATUS = 'UNKNOWN' ,FORM = 'FORMATTED') 
ANG=O. 
WRITE(6,*)'COMBINED VON MISES STRESSES AT ELBOW MID-SECTION' 
WRITE(6,*)'THETA INNER SURFACE OUTER SURFACE' 
DO 200 K=1,25 
1=1 
J=1 

2002 CONTINUE 
IM(I) = ISURF(K)-STR( 1,1,1) 
IF(ABS(IM(I». GT. (0.5» THEN 
1=1+1 
GOTO 2002 
ENDIF 

3002 CONTINUE 
OM(J)=OSURF(K)-STR(1,J,1) 
IF(ABS(OM(J».GT.(0.5» THEN 
J=J+1 
GOTO 3002 
ENDIF 
ANG=15.0*(K-1) 
WRITE (10,222) ANG,STR(9,1,1),STR(9,J,1) 
WRITE (6,222) ANG,STR(9,1,1),STR(9,J,1) 

222 FORMAT(F6.1 ,4X, 1PE11.4,4X, 1PE11.4) 
200 CONTINUE' 
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REWIND 10 
CALL UNIlC 
RETURN 
END 
SUBROUTINE UNIlC 
RETURN 
END 
SUBROUTINE STRESST 

C CALCULATE SIGMA-1, SIGMA-2 AND TR EFF.STRESSES AT ONE LOCATION 
COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 
* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
DO 1=3,9 
STR(I) =0. 
END DO 
DO 10 1= 1,LOCASE 
DO 5 J=3,9 
STRS = STRES(J ,ILOC,I) 
STR(J) = STR(J) + STRS * ALOADT(I) 

5 CONTINUE 
10 CONTINUE 

CALL SIGCAL 
RETURN 
END 
FUNCTION FIND(IMAX) 

C FINDING VON MISES' MAX.EFF.STRESS AND LOC. 
COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 
* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) . 
COMMON/BLOCK2/LOC(858),MAXLOC,LOCASE,ILOC,IX,IY ,IZ,NDEV 
SMAX=O. 
DO 100 ILOC = 1,MAXLOC 
CALL STRESSV 
IF(SMAX.GT.SIGMA(6»GOTO 100 
IMAX=ILOC 
SMAX = SIGMA(6) 

100 CONTINUE 
FIND = SMAX 
RETURN 
END 
FUNCTION FINDT(IMAXT) 

C FINDING TRESCA'S EFF.STRESSES AND LOC. 
COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 
* PI,XV AL(361), YV AL(361),ZV AL(361),XV ALT(361), YV ALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
SMAXT=O. 
DO 100 ILOC = 1,MAXLOC 
CALL STRESST 
IF (SMAXT.GT.SIGMA(5»GOTO 100 
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IMAXT= ILOC 
SMAXT= SIGMA(5) 

100 CONTINUE 
FINDT= SMAXT 
RETURN 
END 
SUBROUTINE STRESl 

C SUBROUTINE FOR STRESS CALCULATION 
COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 
* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
COMMON LC,WHE,BBN ,DTN ,RO,RI,KK2 
DOUBLE PRECISION BBN,DTN,RO,RI 
character*20 fdat 
WRITE(6,5999) 

5999 FORMAT(, TOTAL MISES EFFECTIVE STRESS FOR COMBINED 
LOADINGS.' ,I) 

WRITE(6,6030) 
6030 FORMAT(, ENTER INTERACTING APPLIED LOADS.' ,11) 

WRITE(6,6031) 
6031 FORMAT(, TORQUE, IN N-mm='/) 

READ(5, *)ALOAD(I) 
WRITE(6,6032) 

6032 FORMAT(, IN-PLANE MOMENT, IN N-mm='/) 
READ(5, *)ALOAD(2) 
WRITE(6,6033) 

6033 FORMA T(' INTERNAL PRESSURE, IN N/mm2 = 'I) 
READ(5, *)ALOAD(3) 
WRITE(6,604)ALOAD 

604 FORMAT(lI,' APPLIED LOADS, IN N-mm UNITS, ARE : ',I, 
* ' TORQUE =',IPEIO.3,1, 
* ' IN-PLANE MOMENT =',IPElO.3,1, 
* ' INTERNAL PRESSURE =',IPElO.3) 

602 FORMAT(I,IX,'NODE NO. SIG-X SIG-Y SIG-Z (SIG-TR-CAL)', 
* ' SIG-VM-CAL ',1) 
SMAX=O. 
DO 100ILOC=I,MAXLOC 
CALL STRESSV 

C DO NOT USE STR HERE - INDIVIDUAL STRESSES PROPORTIONED AND 
SUMMED 

IF(SMAX.GT .SIGMA(6»GOTO 99 
SMAX=SIGMA(6) 
IMAX=ILOC 

99 CONTINUE 
100 CONTINUE 
601 FORMAT(I5,IX,6(F9.2,2X» 

WRITE(6,605) 
605 FORMAT(II,' MAXIMUM VM EQUIVALENT STRESS FOUND AT ',I) 

ILOC=IMAX 
CALL STRESSV 
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WRITE(6,602) 
WRITE(6,601)LOC(ILOC),STR(3),STR(4),STR(5), 

* SIGMA(5),SIGMA(6) 
C * SIGMA(5),SIGMA(6),STR(9)--STR(9) IS INTERPOLATED MISES STRESS 
C MISES STRESSES IN comelb.pop ARE CALCULATED 
C IF RUNNING MANY LOAD COMBINATIONS FOR AN ELBOW AND SEPARATE 
C DATAFILES ARE NEEDED FOR SPECIAL PURPOSES, THEN 
C WRITE(6,*)' DATAFILE TO BE OPENED?' 
C READ(5, *)FDAT 
C OPEN(15,FILE=FDAT,STATUS='UNKNOWN',FORM='FORMATTED') 

OPEN(1O,FILE='comelb.pop',STATUS='UNKNOWN',FORM='FORMATTE0') 
WRITE(1O, *)' ABSOLUTE STRESSES FROM COMBINED LOADINGS' 
WRITE(1O, *)MAXLOC 
WRITE(10, *)LOCASE 
WRITE(1O, *)BBN 
WRITE(1O, *)DTN 
WRITE(15,*)'ABSOLUTE STRESSES FROM COMBINED LOADINGS' 
WRITE(15, *)MAXLOC 
WRITE(15, *)LOCASE 
WRITE(15, *)BBN 
WRITE(15, *)DTN 
DO 1101 ILOC=1,MAXLOC 
DO 1=3,9 
STR(I) =0. 
END DO 
DO 10 1= 1,LOCASE 
DO 5 J=3,9 
STRS = STRES(J ,ILOC,I) 
STR(J) = STR(J) + STRS* ALOAD(I) 

5 CONTINUE . 
10 CONTINUE 

CALL SIGCAL 
C VON MISES STRESS CALCULATED FROM SIGCAL 

WRITE(10,56)STRES(1,ILOC, 1),STRES(2,1,1),STR(3),STR( 4),STR(5), 
* STR(6),STR(7),STR(8),SIGMA(6) 
WRITE(15 ,56)STRES(1 ,ILOC,1),STRES(2, 1,1),STR(3),STR( 4),STR(5), 

* STR(6),STR(7),STR(8),SIGMA(6) 
56 FORMAT(F8.1,1X,F5.1,1X,7(1PE11.4,1X» 
1101 CONTINUE 

CLOSE(1O) 
CALLRETR1 
RETURN 
END 
SUBROUTINE STRESSV 

C CALCULATE SIGMA-1, SIGMA-2 AND VM EFF.STRESSES AT ONE LOCATION 
COMMON/BLOCKlISTRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 

* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
DO 1=3,9 
STR(I) =0. 
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END DO 
DO 10 I=1,LOCASE 
DO 5 J=3,9 
STRS = STRES(J ,ILOC,I) 
STR(J) = STR(J) + STRS * ALOAD(I) 

5 CONTINUE 
10 CONTINUE 

CALL SIGCAL 
RETURN 
END 
SUBROUTINE INTER2(NALL) 

C INTERACTION FOR SELECTIVE AND ALL LOADCASES. 
COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 

* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858 ),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
COMMON/BLOCK3/TITLE 
CHARACTER*80 TITLE,FFNN 
OPEN(10,FILE='elb2id.pop',STATUS='UNKNOWN',FORM='FORMATTED') 

C IF WRITING DATA TO SEPARATE FILE FOR SOME PURPOSES, 
C WRITE(6,*) 'FILENAME TO WRITE STRESS INTERACTION DATA?' 
C WRITE(6,*) 'TAKE CARE NOT TO OVERWRITE EXISTING FILE!I' 
C READ(5, *)FFNN 
C OPEN(22,FILE = FFNN ,STATUS = 'UNKNOWN' ,FORM = 'FORMATTED') 

WRITE(6,601) 
601 FORMAT(, FOR INTERACTION DIAGRAM.',I, 

* 'LOADCASE 1 = TORQUE ',I, 
* 2 = IN-PLANE MOMENT ',I, 
* 3 = INTERNAL PRESSURE ',/1, 
* 'ENTER 2 INTERACTING LOADCASES, SEPARATED BY A SPACE.'I, 
* ' THE FIRST ENTRY WILL BE ON THE X-AXIS.') 
READ(5, *)IX,IY 
CALL INT ACT(2) 
OPEN(20,FILE= 'elb2id.pop' ,STATUS = 'OLD') 
REWIND 20 
CALL UNI2(IX,IY) 
RETURN 
END 
SUBROUTINE INTER3 

C INTERACTION FOR THREE LOADS 
COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 

* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858 ),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
COMMON/BLOCK3/TITLE 
CHARACTER*80 TITLE· 
OPEN(lO,FILE='elb3id.pop',STATUS='UNKNOWN',FORM='FORMATTED') 
WRITE(6,601) 

601 FORMAT(, LOADCASES 1 = TORQUE ',I, 
*' 2 = IN-PLANE MOMENT ',I, 
* . 3 = INTERNAL PRESSURE ''/1, 
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* 'ENTER 3 INTERACTING LOADCASES, SEPARATED BY A SPACE.',/, 
* 'THEY WILL CORRESPOND TO THE X-,Y- AND Z-AXES LOADS.',!, 
*' THE THIRD LOADCASE HAS NO NEGATIVE VALUES.') 
READ(5, *)IX,IY ,IZ 
CALL INTACT(3) 
OPEN(20,FILE='elb3id.pop',STATUS='OLD') 
REWIND 20 
CALL UNI3(IX,IY,IZ) 
RETURN 
END 
SUBROUTINE UNI3(IX,IY,IZ) 
RETURN 
END 
SUBROUTINE INTACT(NDIM) 

C INTERACTION DATA SUBROUTINE 
COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 

* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOq858),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
REAL MVM(361),MTR(361),BLOAD(3),BLOADT(3),SMAXT,SXT,SYT 
PI=4.0*ATAN(1.0) 
DO 1 1=1,3 
BLOAD(I) =ALOAD(I) 
BLOADT(I) = ALOADT(I) 
ALOAD(I) =0. 
ALOADT(I) =0. 

1 CONTINUE 
ALOAD(IX) = 1. 
ALOADT(IX) = 1. 
SMAX = FIND(IMAX) 
SMAXT= FINDT(IMAXT) 
SX=I.1SMAX 
SXT = I.1SMAXT 
WRITE(6,605)IX,SMAX,LOqIMAX) 

605 FORMAT(, LOAD NO.',12,'. MAX VM EFF.STR. PER UNIT LOAD IS', 
* IPElO.3,' AT NODE' ,15) 
ALOAD(IX) =0. 
ALOADT(IX) =0. 
ALOAD(IY) = 1. 
ALOADT(IY) = 1. 
SMAX = FIND(IMAX) 
SMAXT= FINDT(IMAXT) 
SY=1./SMAX 
SYT = 1.ISMAXT 
WRITE(6,605)IY,SMAX,LOqIMAX) 
IF(NDIM.EQ.3)GOTO 606 
WRITE(6,603) 

603 FORMAT(/!,' 2-D INTERACTION DIAGRAM STRESS DATA',!, 
* ' IN FILE elb2id.pop, IN THE FORM OF:-',!, 
*, X-LOAD Y-LOAD',/!) 
DO 10 1= 1,361 
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ANGLE=REAL(I-1)*1.0*(PII180.) 
X=COS(ANGLE) 
Y =SIN(ANGLE) 
ALOAD(IX)=X*SX 
ALOAD(IY) = Y*SY 
ALOADT(IX)=X*SXT 
ALOADT(IY) = Y*SYT 
SMAX = FIND(IMAX) 
SMAXT = FINDT(IMAXT) 
xv ALT(I) = X/SMAXT 
YV ALT(I) = Y ISMAXT 
MTR(I) = SQRT(XV ALT(I)**2 + YV ALT(I) * *2) 
XV AL(I) =X/SMAX 
YV AL(I) = Y ISMAX 
MVM(I) = SQRT(XVAL(I) * *2 + YVAL(I) * *2) 
ANGLE = ANGLE * 180.lPI 

C IF TRESCA STRESSES AND LOCATIONS OF MAX. STRESSES ARE NEEDED 
C WRITE(6,602)XVALT(I), YV ALT(I) ,LOC(IMAXT) ,XV AL(I) , YV AL(I) , 
C * LOC(IMAX) 

WRITE(10,666)XV AL(I) , YV AL(I) 
WRITE(22,666)XV AL(I) , YV AL(I) 

666 FORMAT(1X,F8.4,3X,F8.4) 
10 CONTINUE 
602 FORMAT(F7 .4,3X,F7 .4,3X,IS,3X,F7 .4,3X,F7 .4,3X,IS) 

GOTO 19 
606 CONTINUE 

S3 = FLOAT(IZ) 
S3 = S31 ABS(S3) 
IZ = IABS(IZ) 
ALOAD(IY) =0. 
ALOAD(IZ) = 1. 
SMAX = FIND(IMAX) 
SZ=l.1SMAX 
WRITE(6,60S)lZ,SMAX,LOC(IMAX) 
WRITE(6,604) 

604 FORMAT(/,'3-D INTERACTION DIAGRAM STRESS DATA, IN FILE',I, 
* ' elb3id.pop, IN THE FORM OF:-',I, 
* ' LOAD-X LOAD-Y LOAD-Z',II) 
NCASES=l 
FI=O. 
DFI= .48*PII20 
DO SOO K=1,21 
Z = SIN (FI)/COS(FI) 
ALOAD(IZ)=Z*SZ*S3 
DO 400 1= 1,33 
ANGLE = FLOAT(I-1)*PII16. 
X = COS (ANGLE) 
Y =SIN(ANGLE) 
ALOAD(IX)=X*SX 
ALOAD(IY) = Y*SY 
SMAX = FIND(IMAX) 
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xv AL(I) =X/SMAX 
YV AL(I) = Y ISMAX 
ZVAL(I)=Z*S3/SMAX 
ANGLE=ANGLE*180.!PI 

C IF LOCATIONS NEEDED 
C WRITE(6,607)XV AL(I), YV AL(I),ZV AL(I),LOC(IMAX) 

WRITE(10,608)XVAL(I), YVAL(I),ZVAL(I) 
608 FORMAT(1X,3(1PE12.3,1X» 
400 CONTINUE 

FI=FI+DFI 
500 CONTINUE 
607 FORMAT(1X,3(1PE12.3,3X),IlO) 

X=O. 
Y=O. 
Z=S3 

19 CONTINUE 
DO 20 1=1,3 
ALOAD(I) = BLOAD(I) 

20 CONTINUE 
CLOSE(10) 
RETURN 
END 
SUBROUTINE SIGCAL 

C STRESSES CALCULATIONS 
COMMON/BLOCK1/STRES(9,858,3),ALOAD(3),SIGMA(6),STR(9), 

* PI,XVAL(361),YVAL(361),ZVAL(361),XVALT(361),YVALT(361), 
* ALOADT(3) 
COMMON/BLOCK2/LOC(858),MAXLOC,LOCASE,ILOC,IX,IY,IZ,NDEV 
DOUBLE PRECISION Jl,J2,J3,B1,BO,Bll,PHI,Bl11, 

* BB,Y1,Y2,Y3,Sll,S22,S33,PHIl 
PI=4.0*ATAN(1.0) 
Jl = STR(3) + STR(4) + STR(5) 
12 =STR(3)*STR(4)+STR(4)*STR(5)+STR(5)*STR(3) 
* -STR(6)**2-STR(7)**2-STR(8)**2 
J3 = STR(3)*STR( 4)*STR(5) + 2 *STR(6)*STR(7)*STR(8)-STR(3)*STR(7)**2 

* -STR(4)*STR(8)**2-STR(5)*STR(6)**2 
B1 = (3*J2-11 **2)/3 
BO=(-2*Jl **3+9*Jl *12-27*J3)/27 
Bll =-3/B1 
PHIl = (-BO/2)*Bll **1.5 
IF (PHIl.GE.1.0) THEN 
PHIl = O. 999999999 
END IF 
IF (PHIl.LE.-1.0) THEN 
PHIl = -0.999999999 
END IF 
PHI = ACOS(PHIl) 
B11l=-B1I3 
BB=2*Bll1 **0.5 
Y1 =BB*COS(PHII3) 
Y2 = BB*COS(PHII3 + 2 *PII3) 
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Y3 = BB*COS(PHII3 +4*PII3) 
Sl1 =Yl +J1/3. 
S22=Y2+J1/3. 
S33=Y3+J1/3. 
SIGMA(1)=STR(3) 
SIGMA(2)= STR(4) 
SIGMA(3) = MAX(S 11 ,S22,S33) 
SIGMA(4)=MIN(SII,S22,S33) 
SIGMA(5) = SIGMA(3)-SIGMA( 4) 
SIGMA(6)=Sll **2+S22**2+S33**2-S11 *S22-S22*S33-S33*Sll 
SIGMA(6) = SQRT(SIGMA(6» 

11 FORMAT(6(lPE11.4,lX» 
RETURN 
END 
SUBROUTINE UNI2(IX,IY) 
RETURN 
END 

Note: 
1. Graph plotting subroutines not included. 

APPENDIX C. LOCATION OF IMPORTANT NODES IN ELBOW MODELS. 

Node locations 

Node number (J (in degrees) cl> (in degrees) Location 

2692 180 0 outer surface of intrados 

2719 135 0 outer surface 

2739 105 0 outer surface 

2744 90 0 outer surface of crown 

2745 90 0 inner surface of crown 

2754 285 0 outer surface 

2759 75 0 outer surface 

3060 240 -15 outer surface 

3218 225 U1.2Z~~:: j}( ~'a)~ . . ~ , .. .\., .l.j, _ ..... outer surface 

3233 120 
{Jr~' '\ t~ ):~:,~: r rOll" ,-t2.S, t, ';,V outer surface 
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