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Abstract

In this paper, we consider a risk process with deterministic growth and multiplicative jumps
to model the capital of a low-income household. Reflecting the high-risk nature of the low-income
environment, capital losses are assumed to be proportional to the level of accumulated capital at
the jump time. Our aim is to derive the probability that a household falls below the poverty line,
i.e. the trapping probability, where “trapping” occurs when the level of capital of a household
holds falls below the poverty line, to an area from which it is difficult to escape without external
help. Considering the remaining proportion of capital to be distributed as a special case of the
beta distribution, closed-form expressions for the trapping probability are obtained via analysis
of the Laplace transform of the infinitesimal generator of the process. To study the impact of
insurance on this probability, introduction of an insurance product offering proportional coverage
is presented. The infinitesimal generator of the insured process gives rise to non-local differential
equations. To overcome this, we propose a recursive method for deriving a closed-form solution of
the integro-differential equation associated with the infinitesimal generator of the insured process
and provide a numerical estimation method for obtaining the trapping probability. Constraints on
the rate parameters of the process that prevent certain trapping are derived in both the uninsured
and insured cases using classical results from risk theory.

JEL classification: G220; G520; O120.
Keywords— microinsurance; poverty traps; trapping probability; risk processes; proportional claims;

proportional insurance.

1 Introduction

Low-income households living close to, but above, the poverty line are extremely susceptible to entering extreme
poverty, particularly in the event of a financial loss. This problem, and the true nature of low-income loss
experience, must be studied in order to increase rates of poverty reduction. One indicator that can be used
to assess financial stability is capital. In the low-income setting, where monetary wealth is often limited,
the concept of capital should reflect all forms of capital that enable production, whether for trade or self-
sustaining purposes. This may include land, property, physical and human capital, with health a form of
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capital in extreme cases where sufficient health services and food accessibility are not guaranteed [Dasgupta,
1997]. With agricultural work often prevalent in low-income economies, the threat of catastrophic loss events,
including floods, droughts, earthquakes and disease, is of great concern, particularly under this broad definition
of capital. In contrast to losses relating to health, life or death, agricultural losses can immediately eliminate
a high proportion of a household’s ability to produce through loss of land and livestock, irrespective of their
level of capital.

In this paper, we study the behaviour of the capital of a low-income household under the assumption of
proportional capital loss experience. Proportionality in loss experience captures the exposure of households
of all capital levels to both catastrophic and low severity loss events. This is particularly relevant in the low-
income setting, where, in addition to low frequency, high severity events such as natural disasters, commonly
occurring events, such as hospital admissions and household deaths, can be detrimental. To do this, we adopt
the ruin-theoretic approach proposed in Kovacevic and Pflug [2011], using a ruin-type model with deterministic
growth and multiplicative losses to represent household-level capital. At loss events, accumulated capital is
reduced by a random proportion of itself, rather than by an amount of random value, as in Flores-Contró
et al. [2022]. Processes of this structure are typically referred to as a growth-fragmentation or growth-collapse
processes, characterised by their growth in between the random collapse times at which downwards jumps
occur. The randomly occurring jumps have random size dependent on the state of the process immediately
before the jump.

Our aim in adopting this model is to derive the probability that a household falls below the poverty line,
where this probability mimics an insurer’s ruin probability. To the best of our knowledge, only Kovacevic and
Pflug [2011] and Flores-Contró et al. [2022] have, so far, studied this problem in the ruin-theoretic setting. As
in this earlier work, in this paper, we consider the probability in two cases, one in which the household has no
insurance coverage, and the other in which they are proportionally insured. We introduce insurance to assess its
effectiveness as a measure of poverty reduction. Aligning with the low-income setting, proportional coverage is
assumed to be provided through an inclusive insurance product, specifically designed to cater for those excluded
from traditional insurance services or without access to alternative effective risk management strategies. This
type of product, targeted towards low-income populations, is commonly referred to as microinsurance. In
Flores-Contró et al. [2022], the risk process with deterministic growth and random-value losses is instead used
to assess the impact of government premium subsidy schemes on the probability of falling below the poverty
line.

Although important, we do not consider the behaviour of a household below the poverty line. Households
that live or fall below the poverty line are said to be in a poverty trap, where a poverty trap is a state of
poverty from which it is difficult to escape without external help. Poverty trapping is a well-studied topic in
development economics (the interested reader may refer to Azariadis and Stachurski [2005], Bowles et al. [2006],
Kraay and McKenzie [2014], Barrett et al. [2016] and references therein for further discussion; see Matsuyama
[2008] for a detailed description of the mechanics of poverty traps), however, for the purpose of this study, we
use the term “trapping” only to describe the event that a household falls into poverty, focusing our interest on
low-income behaviours above this critical line.

In Kovacevic and Pflug [2011], estimates of the infinite-time trapping probability of a discretised version
of the capital process adopted in this paper are obtained through numerical simulation. Azäıs and Genadot
[2015] perform further numerical analysis on the same model, discussing applications to the capital setting
of Kovacevic and Pflug [2011] and to population dynamics, where the critical level denotes extinction. In
both cases, derivation of analytical solutions of infinitesimal generator equations is not attempted. Our main
contribution is therefore in the derivation of closed-form solutions of the infinitesimal generator equations
associated with risk processes of this type and, in the case of proportional insurance, in the proposition of a
novel approach to deriving the trapping probability recursively.

Due to the proportionality of losses, generators of the capital process no longer directly align with those of
classical models used to describe the surplus process of an insurer. Obtaining the solution of the infinitesimal
generator equation is therefore non-trivial. Traditionally a sum of independent random variables, random
absolute losses are correlated with one another, and with the inter-arrival times of loss events. In addition, only
the surplus of a household’s capital above the critical capital grows exponentially. To ensure that the Lundberg
equation is well-defined, and thus mitigate certain trapping, constraints on the parameters of the capital growth
processes are derived. Laplace transform and derivative operators are then used to obtain the associated
trapping probabilities, under no insurance coverage and proportional insurance coverage, respectively.

Research on growth-collapse processes with applications outside the field of actuarial mathematics includes
Altman et al. [2002] and Löpker and Van Leeuwaarden [2008] for congestion control in data networks, Eliazar
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and Klafter [2004] and Eliazar and Klafter [2006] for phenomena in physical systems, Derfel et al. [2009]
for cell growth and division and Peckham et al. [2018] in a model of persistence of populations subject to
random shock. Aligning with the Laplace transform approach adopted in the case of no insurance, Löpker and
Van Leeuwaarden [2008] obtain the Laplace transform of the transient moments of a growth-collapse process,
while Eliazar and Klafter [2004] consider the state of a growth-collapse process at equilibrium, computing
Laplace transforms of the system and of the high- and low-levels of the growth-collapse cycle.

Previous research on the impact of microinsurance mechanisms on the probability of falling below the
poverty line from a non-ruin perspective has been undertaken through application of multi-equilibrium models
and dynamic stochastic programming [Ikegami et al., 2017, Chantarat et al., 2017, Carter and Janzen, 2018,
Liao et al., 2020, Janzen et al., 2021, Kovacevic and Semmler, 2021]. With the exception of the latter, each of
these studies considers the impact of subsidisation and the associated cost to the subsidy provider. Will et al.
[2021] and Henshaw et al. [2023] extend the problem to the group-setting, assessing the impact of risk-sharing
on the probability. Will et al. [2021] undertake a simulation-based study and Henshaw et al. [2023] propose
a Markov modulated stochastic dissemination model of group wealth interactions, using a bivariate normal
approximation to calculate the trapping probability.

Notably, Kovacevic and Pflug [2011], Liao et al. [2020] and Flores-Contró et al. [2022] suggest that purchase
of insurance and the associated need for premium payment increases the risk of falling below the poverty line
for the most vulnerable. Barriers to microinsurance penetration that exist due to constraints on product
affordability resulting from fundamental features of the microinsurance environment likely contribute to such
observations. Limited consumer financial literacy and experience, product accessibility and data availability
are examples of the unique characteristics that must be accounted for when designing effective and affordable
microinsurance products. Through our analysis, we further investigate the case of proportional loss experience
to assess the associated implications on the affordability of insurance.

Janzen et al. [2021] optimise the level of insurance coverage across the population, observing that those
in the neighbourhood of the poverty line do not optimally purchase insurance (without subsidies), instead
suppressing their consumption and mitigating the probability of falling into poverty. This aligns with the
increase in probability observed in the aforementioned studies, when those closest to the poverty line purchase
insurance. Similarly, Kovacevic and Semmler [2021] derive the retention rate process that maximises the
expected discounted capital, by allowing adjustments in the retention rate of the policyholder after each
capital loss throughout the lifetime of the insurance contract. In this paper, however, the proportion of
insurance coverage and the choice to insure is fixed across the population, as in Kovacevic and Pflug [2011],
Chantarat et al. [2017] and Flores-Contró et al. [2022].

An outline of the remainder of the paper is as follows. Section 2 introduces the capital growth model and its
alignment with the classical Crámer-Lundberg model. This connection enables derivation of constraints on the
parameters of the model that ensure the Lundberg equation is well-defined, thus preventing certain trapping.
Derivation of the trapping probability for uninsured losses and Beta(α, 1) distributed remaining proportions
of capital is presented in Section 3. The trapping probability for households covered by proportional insurance
coverage is derived in Section 4 for Beta(1, 1) distributed remaining proportions of capital. The non-locality
of the differential equations associated with the infinitesimal generator of the insured process is highlighted
and the recursive method for deriving the trapping probability proposed. Uninsured and insured trapping
probabilities are compared in Section 5 and are presented alongside additional findings of interest. Concluding
remarks are provided in Section 6.

Throughout the paper, we use the term “insurance” to refer to any form of microinsurance product. Our
analysis does not consider a specific type of product but can be tailored through the selection of appropriate
parameters.

2 The capital model

Construction of the capital model follows that of Kovacevic and Pflug [2011]. Consider a household with
accumulated capital (Xt)t≥0. Under the basic assumption that the household has no loss experience, their
growth in accumulated capital is given by

dXt

dt
= r · [Xt − x∗]

+
, (1)
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where [x]+ = max(x, 0). The dynamics in (1) are built on the assumption that a household’s income (It) is
split into consumption (Ct) and savings or investments (St), such that at time t,

It = Ct + St, (2)

where consumption is an increasing function of income:

Ct =

{
It, if It ≤ x∗

I∗ + a(It − I∗), if It > x∗
(3a)

(3b)

for 0 < a < 1. The critical point below which a household consumes all of their income, with no facility for
savings or investment, is denoted I∗. Accumulated capital is assumed to grow proportionally to the level of
savings, such that

dXt

dt
= cSt, (4)

for 0 < c < 1, and income is generated through the accumulated capital, such that

It = bXt,

for b > 0.
Combining (2), (3a), (3b) and (4) gives exactly the dynamics in (1), where the capital growth rate r =

(1 − a) · b · c > 0 incorporates household rates of consumption (a), income generation (b) and investment or
savings (c), while x∗ = I∗/b > 0 denotes the threshold below which a household lives in poverty. The notion
of a household in this model setting may be extended for consideration of poverty trapping within economic
units such as community groups, villages and tribes, in addition to the traditional household structure.

Reflecting the ability of a household to produce, the level of accumulated capital of a household Xt is
composed of land, property, physical and human capital. The poverty threshold x∗ represents the amount
of capital required to forever attain a critical level of income below which a household would not be able to
sustain their basic needs, facing elementary problems relating to health and food security. We refer to this
threshold as the critical capital or the poverty line. Since (1) is positive for all levels of capital greater than
the critical capital, all points less than or equal to x∗ are stationary, the level of capital remains constant if the
critical capital is not met. In this basic model, stationary points below the critical capital are not attractors of
the system if the initial capital exceeds x∗, in which case the capital process grows exponentially with rate r.

In line with Kovacevic and Pflug [2011], we expand the dynamics of (1) under the assumption that house-
holds are susceptible to the occurrence of capital losses such as those highlighted in Section 1, including severe
illness, the death of a household member or breadwinner and catastrophic events such as droughts, floods and
earthquakes. The occurrence of loss events is assumed to follow a Poisson process with intensity λ, where the
capital process follows the dynamics of (1) in between events. On the occurrence of the i-th loss, the capital
process experiences a downwards jump to XTi · Zi, where Zi ∈ [0, 1] is the random proportion determining
the remaining capital after loss i and XTi the level of capital accumulated up to the loss time. The sequence
{Zi}∞i=1 is a sequence of independent and identically distributed random variables with common distribution
function G(z), independent of the Poisson process. In this paper, the proportion of capital remaining after
each loss event Zi is assumed to follow a beta distribution with parameters α > 0 and β > 0.

A household reaches the area of poverty if it suffers a loss large enough that the remaining capital is attracted
into the poverty trap. Since a household’s capital does not grow below the critical capital x∗, households that
fall into the area of poverty will never escape without external help. Once below the critical capital, households
are exposed to the risk of falling deeper into poverty. However, in contrast to Flores-Contró et al. [2022] where
random-valued losses are considered, the dynamics of the model do not allow for the possibility of negative
capital due to the proportionality of loss experience.

The structure of the process in-between loss events is derived through solution of the first order Ordinary
Differential Equation (ODE) in (1). The stochastic capital process with deterministic exponential growth and
multiplicative losses is then formally defined as follows:

Definition 2.1 (Kovacevic and Pflug [2011]). Let Ti be the ith event time of a Poisson process (Nt)t≥0 with
parameter λ, where T0 = 0. Let Zi ≥ 0 be a sequence of independent and identically distributed random variables
with distribution function G(z), independent of the process Nt. For Ti−1 ≤ t < Ti, the stochastic growth process
of the accumulated capital Xt is defined as

Xt =

{(
XTi−1 − x∗

)
er(t−Ti−1) + x∗, if XTi−1 > x∗

XTi−1 , otherwise.

(5a)

(5b)
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At the jump times t = Ti, the process is given by

XTi =

{
[
(
XTi−1 − x∗

)
er(Ti−Ti−1) + x∗] · Zi, if XTi−1 > x∗

XTi−1 · Zi, otherwise.

As in Kovacevic and Pflug [2011] and Flores-Contró et al. [2022], the aim of this paper is to study the
probability that a household falls below the poverty line, i.e. the trapping probability. By Definition 2.1, the
capital level of the household follows a piecewise deterministic Markov process [Davis, 1984, 2018] of compound
Poisson-type, which is deterministic in-between the randomly occurring jump times at which large capital losses
occur.

The infinite-time trapping probability describes the distribution of the time at which a household becomes
trapped, referred to as the trapping time. Given a household has initial capital x, their trapping time, denoted
τx, is given by

τx := inf {t ≥ 0 : Xt < x∗|X0 = x} ,
where τx is fixed at infinity if Xt ≥ x∗ ∀t. It then follows that the trapping probability f(x) is given by

f (x) = P (τx <∞) .

Analysis of the trapping probability can be undertaken through study of the infinitesimal generator. The
infinitesimal generator A of the stochastic process (Xt)t≥0 as in Definition 2.1 is given by

Af(x) = r(x− x∗)f ′(x) + λ

∫ 1

0

[f(x · z)− f(x)]dG(z), (7)

for x ≥ x∗. The remainder of the paper works towards solving Af = 0, in line with the classical theorem of
Paulsen and Gjessing [1997]. Intuitively, the boundary conditions of the trapping probability are as follows:

lim
x→x∗

f(x) = 1 and lim
x→∞

f(x) = 0, (8)

such that under the assumption that f(x) is a bounded and twice continuously differentiable function on
x ≥ x∗, with a bounded first derivative, and since we consider only what happens above the critical capital x∗,
the theorem of Paulsen and Gjessing [1997] is applicable.

Closed-form expressions for Laplace transforms of ruin (trapping) probabilities are often more easily ob-
tained than for the probability itself. However, multiplication of the initial capital by the random proportion
in the integral function makes Laplace transform methods typically used in risk theory no longer straightfor-
ward. Solution of the integro-differential equation in (7) has so far only been undertaken numerically, see, for
example, Kovacevic and Pflug [2011]. In this paper, closed-form trapping probabilities are obtained through
solution of (7) for special cases of remaining proportions of capital.

First, note that there exists a relationship between the capital model of Definition 2.1 and the classical
Crámer-Lundberg model. This enables specification of an upper bound on the trapping probability of the
capital growth process Xt through Lundberg’s inequality, derived in Lundberg [1926]. Consider an adjustment
of the capital process that is discretised at loss event times such that X̃i = XTi , i.e. the capital process studied
in Kovacevic and Pflug [2011]. Taking the logarithm of the adjusted process with critical capital x∗ fixed at 0
yields

Li = Li−1 + r(Ti − Ti−1) + log(Zi) = log x+ rTi +

Nt∑
i=1

log(Zi), (9)

where Li is the logarithm of the i-th step in the discretised process X̃i and log(Zi) < 0. The model on the
right-hand side of (9) is a version of the classical Crámer-Lundberg model introduced by Lundberg [1903]
and Cramér [1930], which assumes an insurance company collects premiums continuously and pays claims of
random size at random times. The corresponding surplus process is given by

Ut = u+ ct−
Nt∑
k=1

Xk,

where u is the initial capital, c the constant premium rate, X1, X2, ..., XNt the random claim sizes and Nt the
number of claims in the interval [0, t]. Claim sizes are assumed to be independent and identically distributed,
Nt a homogeneous Poisson process and the sequence of claim sizes {Xk}k∈N+ and Nt independent.
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The net profit condition is a constraint that ensures, on average, that the capital gains of a household are
superior to their losses. If this condition is not satisfied then trapping is certain. It is well-known in ruin theory
that if the net profit condition holds, the process Ut converges to infinity almost surely as t → ∞ and there
is a positive probability that Ut ≥ 0 for all t. As a consequence of the net profit condition, it also holds that
limu→∞ ψ(u) = 0, where ψ(u) is the ruin probability under the classical model. However, derivation of the net
profit condition from the drift of Ut to infinity is not always straightforward. The Lundberg equation provides
an alternative method for deriving the net profit condition. Assume that there exists a constant R > 0 such
that the process {e−RLi}i≥0 is a martingale. The resulting equation is the Lundberg equation, and is given by

E[e−R log(Zi)]E[e−RrT̃i ] = E[e−R(log(Zi)+rT̃i)] = 1,

where T̃i = Ti − Ti−1 and the unique solution R is the adjustment coefficient. Thus, for R to exist, it must
hold that E[log(Zi)+rT̃i] > 0. In fact, for R to exist the net profit condition must hold. As such, the existence
of R ensures that limu→∞ ψ(u) = 0.

Then, if E[log(Zi) + rT̃i] > 0, the logarithmic process in (9) converges to infinity almost surely, and

lim
log x→∞

P(Li < 0|L0 = log x) = 0.

Since log x→ ∞ implies x→ ∞ it holds that

lim
x→∞

f(x) ∼ lim
x→∞

f(x|x∗ = 0) ≤ lim
x→∞

P(Xt < 1|X0 = x) = lim
x→∞

P(Li < 0|L0 = log x) = 0,

where we have applied the equivalence of X̃i and Xt at loss event times and the fact that asymptotically, the
behaviour of the trapping probability f(x) remains unchanged for any x∗. The upper boundary condition in
(8) therefore holds if E[log(Zi) + rT̃i] > 0.

In Sections 3 and 4 we use the net profit condition to derive constraints on the parameters of the capital
model for uninsured and proportionally insured households, respectively. The closed-form trapping probabilities
are then derived through consideration of the associated infinitesimal generators for uninsured losses with
Beta(α, 1) distributed remaining proportions of capital (Section 3) and proportionally insured losses with
Beta(1, 1) distributed remaining proportions of capital (Section 4). Laplace transform methods are applied in
Section 3 and a derivative approach in Section 4, where a solution of the infinitesimal generator equation is
derived recursively.

3 Derivation of trapping probability under no insurance cov-
erage

Under the assumption of remaining proportions of capital with distribution Zi ∼ Beta(α, 1), letting u = x · z
reduces the infinitesimal generator of the capital growth process in (7) to

Af(x) = r(x− x∗)f ′(x)− λf(x) +
λα

xα

∫ x

0

f(u)uα−1du, (10)

for x ≥ x∗.

Proposition 3.1. Consider a household capital process as proposed in Definition 2.1 with initial capital x ≥ x∗,
capital growth rate r, loss intensity λ > 0 and remaining proportions of capital with distribution Beta(α, 1).
The adjustment coefficient of the corresponding Lundberg equation exists if

λ

r
< α. (11)

Proof. For remaining proportions of capital with distribution Beta(α, 1), given that Zi and T̃i are independent
and since E[log(Zi)] = α

∫ 1

0
log(z)zα−1dz, E[log(Zi)+ rT̃i] holds if and only if (11) is satisfied, as required.

As λ specifies the number of claims per unit time, accounting for the fact that the mean loss size under
Beta(α, 1) distributed remaining proportions of capital is 1 − (α + 1)−1, the ratio of capital loss to capital
growth is λα/(r(α+ 1)).

We now derive the trapping probability through solution of Af(x) = 0 in line with the discussion of Section
2. Since households face certain trapping if the net profit condition is violated, our analysis focuses only on
the region for which (11) holds.
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Proposition 3.2. Consider a household capital process as proposed in Definition 2.1 with initial capital x ≥ x∗,
capital growth rate r, loss intensity λ > 0 and remaining proportions of capital with distribution Beta(α, 1).
The closed-form trapping probability is given by

f(x) =
Γ(α)

Γ
(
λ
r

)
Γ
(
α− λ

r
+ 1

) ( x

x∗

)λ
r
−α

2F1

(
α− λ

r
, 1− λ

r
;α− λ

r
+ 1;

x∗

x

)
(12)

for λ
r
< α, where 2F1(·) is the Gauss hypergeometric function.

Proof. Fix Af(x) = 0 and take the Laplace transform, where the infinitesimal generator of the process for
x ≤ x∗ is zero. Then, denoting F (s) :=

∫∞
0
f(x)e−sxds,

s2F (α+1)(s) + s
((
α+ 1 +

λ

r

)
+ x∗s

)
F (α)(s) + α

(
x∗s+

λ

r

)
F (α−1)(s) = 0, (13)

where F (n) denotes the n-th derivative of F . Letting y(s) = F (α−1)(s), such that y′(s) = F (α)(s) and
y′′(s) = F (α+1)(s), and substituting y(s) = s−αw(s) reduces (13) to the second-order ODE

sw′′(s) +
((

1 +
λ

r
− α

)
+ x∗s

)
w′(s) = 0,

which solves to give

F (α−1)(s) = C1x
∗(λ

r
−α)

s−αγ

(
α− λ

r
, x∗s

)
+ C2s

−α, (14)

where λ
r
< α.

Since F ′(s) = −L(xf(x)) it is possible to prove by induction that F (n)(s) = (−1)nL(xnf(x)). As such,
application of the inverse Laplace transform to (14), see, for example, Section (3.10) of Prudnikov et al. [1992]),
gives that the general solution of Af(x) = 0 for Af(x) in (10) is

f(x) =


C2

(−1)1−α

Γ(α)
+ C1x

∗(λ
r
−α)Γ

(
α− λ

r

)
Γ(α)

(−1)1−α, 0 < x < x∗

C2
(−1)1−α

Γ(α)
+ C1

(
α− λ

r

)−1

Γ
(
λ
r

) (−1)1−αx
λ
r
−α

2F1

(
α− λ

r
, 1− λ

r
;α− λ

r
+ 1;

x∗

x

)
, x∗ < x,

for Re(−λ/r) < 1 and Re(α, x∗),Re(s) > 0.
Applying the boundary conditions on f(x) in (8) yields

C2 = 0 and C1 =
Γ(α)

Γ
(
α− λ

r

) (−1)α−1x∗
(α−λ

r
)
,

such that the closed-form trapping probability is given by (12), as required. The hypergeometric series corre-
sponding to the solution in (12) has domain of convergence |x∗/x| < 1, such that the solution converges for all
levels of capital in the domain of f(x).

Corollary 3.1. The closed-form trapping probability in (12) is equivalent to

f(x) = 1− Γ (α)

Γ
(
λ
r
+ 1

)
Γ
(
α− λ

r

) (
1− x∗

x

)λ
r

2F1

(
λ

r
, 1 +

λ

r
− α; 1 +

λ

r
; 1− x∗

x

)
(16)

for λ
r
< α, where 2F1(·) is the Gauss hypergeometric function.

Proof. Apply the hypergeometric transform:

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
z−a

2F1

(
a, a− c+ 1; a+ b− c+ 1; 1− 1

z

)
+

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−bza−c

2F1

(
c− a, 1− a; c− a− b+ 1; 1− 1

z

)
,
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which holds for | arg z| < π and | arg(1 − z)| < π, to (12), where we extend the gamma function to negative
non-integer values by the relation

Γ(x) :=
1

x
Γ(x+ 1),

for x < 0, x /∈ Z. The two series corresponding to the resulting hypergeometric solutions have domain of
convergence |1− x/x∗| < 1, such that the solutions diverge where x > 2x∗. Applying the relation

2F1(a, b; c; z) = (1− z)c−a−b
2F1 (c− a, c− b; c; z)

and transforming via the formula

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z

z − 1

)
adjusts the domain of convergence of the corresponding hypergeometric series to |1− x∗/x| < 1, such that the
solution converges over all x > x∗, and gives (16), as required.

For details of the hypergeometric solutions, their relation and transformation formulas and domains of
convergence that are used throughout this paper, see Abramowitz and Stegun [1972] and Kristensson [2010].

Remark 3.1. Substitution of α = 1 into (12), or equivalently (16), yields the closed-form trapping probability
under uniformly distributed remaining proportions of capital, i.e. the case Zi ∼ Beta(1, 1).

The closed-form trapping probability for households susceptible to proportional losses with Beta(α, 1)
distributed remaining proportions of capital, as derived in Proposition 3.2, is presented in Figure 1a for varying
initial capital x and shape parameter α. Note that the trapping probability tends to 1 as λ/r tends to α in
line with the constraint of Proposition 3.1. The low value of the rate parameter λ reflects the vulnerability
of low-income households to both high and low frequency loss events, while aligning with the constraint in
Proposition 3.1. Increasing α increases the mean of the distribution of the remaining proportion of capital.
Observation of a decreasing trapping probability with increasing α is therefore intuitive and aligns with the
reduction in loss. Figure 1b presents the same trapping probability for varying loss frequency λ and fixed
α = 1. In this case, remaining proportions of capital are uniformly distributed as in Section 4. Increasing
the frequency of loss events increases the trapping probability, as is to be expected. Parameters a, b and c are
selected to correspond with those in Flores-Contró et al. [2022].
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Figure 1: Trapping probability f(x) in (12) for x∗ = 1 and Zi ∼ Beta(α, 1), considering: (a) λ = 1
and different values of α, (b) α = 1 and different values of λ. The value of the capital growth rate
r = 0.504 is computed with a = 0.1, b = 1.4, c = 0.4.

Particularly high levels of accumulated capital are not relevant in the microinsurance and poverty trapping
context. However, the asymptotic behaviour of the analytic trapping probability at infinity is interesting for
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understanding the behaviour of the function. Since limz→0 2F1(a, b; c; z) = 1, (12) behaves asymptotically like
the power function

Γ (α)

Γ
(
λ
r

)
Γ
(
α− λ

r
+ 1

) ( x

x∗

)λ
r
−α

, (17)

such that the uninsured trapping probability has power-law asymptotic decay as x→ ∞.
We now compare the decay of the household-level trapping probability under proportional losses and no

insurance coverage with that of the exponentially distributed random-valued loss case of Flores-Contró et al.
[2022]. The equivalent uninsured trapping probability under random-valued losses for x ≥ x∗ is given by

f(x) =
Γ
(
λ
r
;µ(x− x∗)

)
Γ
(
λ
r

) , (18)

where Γ(a; z) is the upper incomplete gamma function: Γ(a; z) :=
∫∞
z
e−tta−1dt. The probability in (18)

follows
µ

λ
r
−1(x− x∗)

λ
r
−1e−µ(x−x∗)(1 +O(|µ(x− x∗)|−1)) (19)

asymptotically, where µ is the exponential loss parameter. The limiting behaviour of the ratio of (19) to (17)
is

Cxα−1e−µ(x−x∗)(1 +O(|µ(x− x∗)|−1)),

for constant C = x∗λ/r−αµλ/r−1Γ (λ/r)Γ (α− λ/r + 1)Γ (α)−1. The trapping probability in the random-
valued case therefore decays at a faster rate than when a household experiences proportional losses, with
the severity of this difference dependent on the parameters of the loss distributions. This result is intuitive,
since proportional losses are more risky than random-valued losses at high capital levels due to the non-zero
probability of a household losing all (or a high proportion) of its wealth. This is particularly severe in the
uniform case of the following section, where high and low levels of proportional losses are equally likely. When
α = 1, the trapping probability in the random-valued case decays exponentially faster than in the proportional
case. A comparison of the decay of the trapping probability under proportional losses against that of random-
valued losses is provided in the inset of Figure 2, where the probabilities are plotted on the logarithmic scale.
Here, the slower rate of decay under proportional losses is clearly observable.

Figure 2 compares trapping probabilities under proportional (12) and random-valued (18) losses for a given
set of parameters. Trapping probabilities for a number of exponential claim size distributions are compared
with the trapping probability under proportional losses with an expected value of approximately 16.7% of
accumulated capital. For random-valued claim sizes with an expected value of 0.5 (µ = 2) the trapping
probability is greater than for proportional losses for the most vulnerable, however, as capital increases the
trapping probability under proportional losses exceeds the random-valued case. If the expected claim size
increases to 1 (µ = 1) the trapping probability for proportional losses is significantly lower than in the random-
valued case at all levels of initial capital. Compared to the mean loss associated with beta distributed remaining
proportions with α = 5, an expected claim size of 1 is low with respect to high levels of initial capital. For
x = 6 the two loss rates coincide. This therefore suggests that for equivalent loss size, the trapping probability
for proportional losses is reduced in comparison to random-valued losses. However, for capital levels below this
point random-valued losses account for a greater proportion of capital than the proportional loss case selected
for comparison and thus the increased trapping probability is intuitive. Further analysis would be needed to
validate the consistency in the reduction of the probability for equivalent losses.
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Figure 2: Comparison between the trapping probability f(x) in (18) for random-valued losses with
distribution Exp(µ) for different values of µ and the trapping probability f(x) in (12) for proportional
losses with distribution Beta(5, 1), with parameters x∗ = 1, λ = 1 and r = 0.504 computed with
a = 0.1, b = 1.4, c = 0.4. The inset presents the same curves on the logarithmic scale and on a wider
domain.

4 Derivation of trapping probability under proportional insur-
ance coverage

In line with Kovacevic and Pflug [2011] and Flores-Contró et al. [2022], in this section, we extend the model
under the assumption that capital losses are covered by a proportional insurance product. Consider the
presence of a fixed premium insurance product that covers 100 · (1− κ) percent of all household losses, where
1− κ for κ ∈ (0, 1] is the proportionality factor. Assume that coverage is purchased by all households. Under
proportional insurance coverage, the critical capital (or poverty line) and capital growth rate associated with
an insured household must account for the need for premium payments. As such, define

r(κ, λ, θ) = (1− a) · (b− π(κ, λ, θ)) · c and x∗(κ, λ, θ) =
I∗

b− π(κ, λ, θ)
, (20)

where π(κ, λ, θ) is the premium rate and is calculated according to the expected value principle:

π(κ, λ, θ) = (1 + θ) · (1− κ) · λ · E [1− Zi] .

For ease of presentation, throughout the remainder of the paper we denote the capital growth rate r := r(κ, λ, θ)
and the critical capital x∗ := x∗(κ, λ, θ).

Parameters a, b and c are household rates of consumption, income generation and investment or savings as
defined in Section 2 and the parameter θ is the loading factor specified by the insurer. We assume that these
parameters, and the critical income I∗, are not changed by the introduction of insurance. However, due to
the need for premium payments, the critical capital in the insured case is greater than that of an uninsured
household, while the capital growth rate is reduced.

The associated capital growth process has an analogous structure to that of Definition 2.1, with the re-
maining proportion of capital after each loss event instead denoted Yi, where Yi = 1 − κ(1 − Zi) ∈ [1 − κ, 1].
As such, in between loss events, where Ti−1 ≤ t < Ti, the capital growth process follows (5a) and (5b). At
event times t = Ti, the process is given by

XTi =

{
[
(
XTi−1 − x∗

)
er(Ti−Ti−1) + x∗] · Yi, if XTi−1 > x∗

XTi−1 · Yi, otherwise.

(21a)

(21b)

Note that for κ = 1, the capital model in (21a) and (21b) and the parameters r and x∗ exactly correspond to
those of an uninsured household, as discussed in Section 3.
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Proposition 4.1. Consider a household capital process defined by (5a) and (5b) in between loss events and
by (21a) and (21b) at loss event times, with coverage proportionality factor 1 − κ ∈ (0, 1]. For initial capital
x ≥ x∗, capital growth rate r, loss intensity λ > 0 and remaining proportions of capital Zi with distribution
Beta(α, 1), the adjustment coefficient of the corresponding Lundberg equation exists if

r

λ
>

κ

α(α+ 1)(1− κ)
2F1

(
1, α+ 1;α+ 2;− κ

1− κ

)
, (22)

where 2F1(·) is the Gauss hypergeometric function.

Proof. The condition that must hold for the adjustment coefficient R to exist under proportional insurance
coverage, and thus for the net profit condition to be satisfied, is

E[rT̃i + log(1− κ(1− Zi))] > 0 ⇐⇒ E[log(1− κ(1− Zi))] > − r

λ
.

For Zi ∼ Beta(α, 1), using integration by parts,

E[log(1− κ(1− Zi))] = −κ

α

∫ 1

0

(1− κ+ κz)−1zαdz,

the right-hand side of which is the integral representation of a Gauss hypergeometric function, giving exactly
(22), as required.

Remark 4.1. For Zi ∼ Beta(1, 1), the constraint for existence of the adjustment coefficient reduces to

r

λ
> 1 +

1− κ

κ
ln(1− κ). (23)

The constraint on λ in (23) is presented in Figure 3a for varying θ and Figure 3b for varying α. Note that
the sensitivity of the constraint to the loading factor θ increases for decreasing κ and thus increasing insurance
coverage. In the experiments considered in Figure 3b, the constraint is bounded above by the uniform case,
where α = 1. This indicates that the parameter region in which certain trapping is prevented is greater for
uniformly distributed remaining proportions of capital. In a similar manner, 3a implies that lowering the
loading factor θ increases the region in which certain trapping is prevented when remaining proportions are
uniformly distributed.
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Figure 3: Upper boundary of the region defined by the constraint on λ/r in (23) for a = 0.1, b = 1.4,
c = 0.4 with (a) fixed α = 1 and different values of θ and (b) fixed θ = 0.5 and different values of α.

Remark 4.2. For κ = 1, since 2F1(a, b; c; 1) = Γ(c)Γ(c− a− b)/(Γ(c− a)Γ(c− b)), applying the identity

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z

z − 1

)
,

(22) reduces to the uninsured constraint in (11).
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We approach the derivation of the trapping probability of the insured process in a manner analogous to that
described in Section 2, noting the adjustment in the domain of the random variable capturing the remaining
proportion of capital. The infinitesimal generator corresponding to the capital process in (5a), (5b), (21a) and
(21b) is given by

Af(x) = r(x− x∗)f ′(x) + λ

∫ 1

1−κ

[f(x · y)− f(x)]dG̃(y), (24)

where G̃(y) = G (1− (1− y)/κ) is the distribution function of Yi. To derive the trapping probability under
proportional insurance coverage we consider only the case α = 1, i.e. Zi ∼ Beta(1, 1), where remaining
proportions of capital are uniformly distributed and dG̃(y) = dy/κ.

Solution of Af(x) = 0 is again sought to obtain the trapping probability of the insured process, where
f(x) is assumed to be a bounded and twice continuously differentiable function on x ≥ x∗ with a bounded first
derivative and boundary conditions as in (8). Using equivalent arguments to those presented in the discussion
of the net profit condition in Section 2, if (23) is satisfied the boundary condition limx→∞ f(x) = 0 holds.
Households face certain trapping if the net profit condition is violated, therefore our analysis focuses only on
the region in which (23) holds.

Taking the derivative of the infinitesimal generator equation Af(x) = 0 with respect to x for Af(x) in (24)
with dG̃(y) = dy/κ, yields

(x− x∗) f ′′ (x) +

(
1− λ

r

)
f ′(x) +

λ

κ
f(x) =

λ(1− κ)

κ
f ((1− κ)x) .

As such, even in the simple case of uniformly distributed remaining proportions of capital, application of the
differential operator induces a non-local term in the resulting differential equation. When taking the Laplace
transform of Af(x) = 0, as in Section 3, a non-local differential equation is also obtained. Derivation of the
trapping probability is therefore highly intractable when adopting classical approaches.

The non-locality is caused by the lower integral limit in (24). To overcome this, consider the following.
If y is such that x · y ≤ x∗ then f(x · y) is known. In fact, for all y ∈ [1 − κ, x∗/x] trapping occurs with
the first loss, such that f(x · y) = 1. For y in this interval, the integral in (24) is trivial. Exploiting this
observation, we redefine the infinitesimal generator as a piecewise function with boundary at x = x∗/(1− κ),
where 1 − κ is the lower bound of Yi. In this way, for x > x∗(1 − κ) a household cannot become trapped by
the first loss for any realisation of Yi. We therefore obtain a piecewise IDE that can be solved in a standard
manner for x < x∗(1 − κ), but for x > x∗(1 − κ) the problem of non-locality remains. Our approach, as
described below, partitions the domain of f(x) into subintervals such that the solution of Af(x) = 0 for x in
any given subinterval is informed by the solution in the previous subinterval. We begin by considering the two
fundamental subintervals, divided where x = x∗/(1− κ).

The behaviour of the capital process above the critical capital x∗ determines a household’s trapping prob-
ability, with only surplus capital above the critical capital growing exponentially. Thus, additionally consider
the change of variable h(x) = f(x + x∗) for x > 0. Then, for x̃ = x − x∗ > 0, the piecewise infinitesimal
generator Ah(x̃) is given by

r(x̃+ x∗)x̃h′(x̃)− λ(x̃+ x∗)h(x̃) +
λ

κ

∫ x̃+x∗

(x̃+x∗)(1−κ)

h(u− x∗)du, x̃ >
x∗κ

1− κ

r(x̃+ x∗)x̃h′(x̃)− λ(x̃+ x∗)h(x̃) +
λ

κ

∫ x̃+x∗

x∗
h(u− x∗)du+ λx∗ − λx̃(1− κ)

κ
, x̃ <

x∗κ

1− κ
,

(25a)

(25b)

where the subintervals on the domain of x̃ have interface at x = x∗(1− κ). Under this change of variable and
assuming r/λ satisfies (23), the trapping probability satisfies Ah(x̃) = 0, with boundary conditions:

lim
x̃→0

h(x̃) = 1 and lim
x̃→∞

h(x̃) = 0.

For this purpose, we consider the derivative of the piecewise IDE in (25a) and (25b). Fixing Ah(x̃) = 0 and
taking the derivative with respect to x̃ gives

x̃(x̃+ x∗)h′′(x̃) +

((
2− λ

r

)
x̃+ x∗

(
1− λ

r

))
h′(x̃) +

λ(1− κ)

rκ
h(x̃) =

λ(1− κ)

rκ
h((1− κ)x̃− x∗κ), (26)

for x̃ > x∗κ/(1− κ) and

x̃(x̃+ x∗)h′′(x̃) +

((
2− λ

r

)
x̃+ x∗

(
1− λ

r

))
h′(x̃) +

λ(1− κ)

rκ
h(x̃) =

λ(1− κ)

rκ
(27)

12



for x̃ < x∗κ/(1− κ), where, as mentioned, we observe the non-local term h((1−κ)x̃−x∗κ) for x̃ > x∗κ/(1− κ).
First consider the homogeneous parts of (26) and (27), noting their equivalence. Under the change of vari-

able m(z) := h(x̃), where z = −x̃/x∗, this homogeneous differential equation is exactly Gauss’ hypergeometric
differential equation:

z(z − 1)m′′(z) +

((
2− λ

r

)
z − 1 +

λ

r

)
m′(z) +

λ(1− κ)

rκ
m(z) = 0, (28)

with known solutions. We construct a general solution of (28) of the following form:

m(z) =C1 (1− z)−a1
2F1

(
a1, c1 − b1, c1;

z

z − 1

)
+ C2z

1−c1 (1− z)c1−a1−1
2F1

(
1 + a1 − c1, 1− b1, 2− c1;

z

z − 1

)
,

where 2F1(·) is the Gauss hypergeometric function and

a1 + b1 = c1, a1 · b1 =
λ(1− κ)

rκ
and c1 = 1− λ

r
.

The parameters a1 and b1 are complex conjugates:

a1 =
1

2

(
1− λ

r

)
± 1

2

√(
1 +

λ

r

)2

− 4λ

rκ
and b1 =

1

2

(
1− λ

r

)
∓ 1

2

√(
1 +

λ

r

)2

− 4λ

rκ
,

with positive real part where λ/r < 1.
Returning to the inhomogeneous differential equations in (26) and (27), let

L = r(x̃)
d2

dx̃2
+ p(x̃)

d

dx̃
+ q(x̃),

where r(x̃) = x̃(x̃ + x∗), p(x̃) = (2 − λ/r)x̃ + x∗(1 − λ/r) and q(x̃) = λ(1 − κ)/rκ, denote the linear, second
order operator for which

u(x̃) =

(
1 +

x̃

x∗

)−a1

2F1

(
a1, a1, 1−

λ

r
;

x̃

x̃+ x∗

)
,

v(x̃) =

(
x̃

x̃+ x∗

)λ
r
(
1 +

x̃

x∗

)−a1

2F1

(
λ

r
+ a1,

λ

r
+ a1, 1 +

λ

r
;

x̃

x̃+ x∗

)
, (29)

forms the fundamental solution set, and let

G(x̃, x′) =
u(x′)v(x̃)− u(x̃)v(x′)

r(x′)W (x′)
(30)

be the Green’s function corresponding to L, where W (x) = u(x)v′(x) − u′(x)v(x) is the Wronskian of u and
v. The hypergeometric series corresponding to the functions u(x̃) and v(x̃) are well-defined on the domain
|x̃/(x̃ + x∗) < 1|. Since this holds for all x̃ > 0, the functions are well-defined over the whole domain. The
system in (25a) and (25b) that is to be solved can therefore be characterised as follows:

L[h](x̃) =


λ(1− κ)

rκ
h((1− κ)x̃− x∗κ), x̃ >

x∗κ

1− κ

λ(1− κ)

rκ
, x̃ <

x∗κ

1− κ
.

(31a)

Now, let the surplus of capital above the critical capital x̃ ∈ [0,∞) be separated into subintervals Ij =
[x̃j , x̃j+1], where {x̃j}j∈N0 is an increasing sequence and x̃0 = 0. Define a set of kernels recursively by{

g1(x, s1) = G(x, s1)

gj+1(x, s1, ..., sj+1) = G(x, sj+1)gj(l(sj+1), s1, ..., sj),

for j ≥ 1. Then, the following theorem holds, where the proposition of a solution of the type (33) is informed
by the solution of (27).
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Theorem 4.1. Consider a household capital process defined by (5a) and (5b) in between loss events and by
(21a) and (21b) at loss event times, with coverage proportionality factor 1− κ ∈ (0, 1]. Assume initial capital
x such that x̃ ≥ 0, capital growth rate r and loss intensity λ > 0 such that λ/r satisfies (23), and remaining
proportions of capital with distribution Beta(1, 1). Then, a solution of Ah(x̃) = 0 for the infinitesimal generator
Ah(x̃) in (25a) and (25b), that satisfies limx̃→0 h(x̃) = 1, is given by the piecewise function

h(x̃) = 1 +Ayj(x̃), x ∈ Ij (33)

for any constant A, where the functions yj(x̃) are defined for x̃ ≥ x̃j and are given by the recursion:
y0(x̃) = v(x̃)

yj+1(x̃) = yj(x̃) + cj+1

∫ x̃

x̃j+1

∫ l(sj+1)

x̃j

· · ·
∫ l(s2)

x̃1

gj+1(x̃, s1, .., sj+1)v(l(s1))ds1 · · · dsj+1,

(34a)

(34b)

where c = λ(1− κ)/rκ, x̃j+1 = (x̃j + x∗κ)/(1− κ) and l(x) = (1− κ)x− x∗κ.

Proof. First consider the integro-differential equation for the solution in the first interval I0 = [x̃0, x̃1] given in
(25b), where we define x̃0 and x̃1 to be the lower and upper limits of the first interval, namely 0 and x∗κ/(1−κ),
respectively. Proposing an Ansatz hp(x̃) = C for the particular solution yields C = 1, such that the general
solution of h(x̃) for x̃ ∈ I0 is exactly

h(x̃) =C1u(x̃) + C2v(x̃) + 1.

The lower boundary condition for h(x̃) in this interval: limx̃→0 h(x̃) = 1, then holds if and only if C1 = 0.
Letting A = C2 and y0(x̃) = v(x̃), h(x̃) = 1 +Ay0(x̃) for x̃ ∈ I0, as required.

To solve in the upper part of the infinitesimal generator IDE, i.e. for intervals Ij = [x̃j , x̃j+1] where j ≥ 1,
consider (25a). By the solution in the interval I0, h((1− κ)x̃− x∗κ) is known where

x̃0 < (1− κ)x̃− x∗κ < x̃1 ⇐⇒ x̃1 < x̃ <
x̃1 + x∗κ

1− κ
.

As such, letting x̃2 := (x̃1 + x∗κ)/(1− κ), a solution for (25a) can be obtained in the interval I1 = [x̃1, x̃2]. In
fact, for any interval Ij+1, a solution can be determined by observing the value of the function in the previous
interval, since h((1 − κ)x̃ − x∗κ) for x̃ > x̃j+1 is known, up to a point, by the solution in Ij . It is simple to
prove by induction that the upper limit of the j-th interval is given by

x̃j+1 =
x̃j + x∗κ

1− κ
. (35)

Suppose that ∀x̃ ∈ Ij for j ≥ 1, ỹj(x̃) = h(x̃) = 1 +Ayj(x̃). Then, by (31a), it must hold that

L[ỹj+1](x̃) =
λ(1− κ)

rκ
ỹj((1− κ)x̃− x∗κ) ⇐⇒ L[yj+1](x̃) = cyj(l(x̃)) (36)

∀x̃ ≥ x̃j+1, denoting c = λ(1− κ)/rκ and l(x) = (1− κ)x− x∗κ. It therefore remains to prove that (36) holds
when yj+1(x̃) is given by the recursion in (34b). To prove by induction, consider the case j = 0:

L[y1](x̃) = L
[
y0(x̃) + c

∫ x̃

x̃1

G(x̃, s1)v(l(s1))ds1

]
.

By definition, L[y0](x̃) = 0 when y0 is in the solution set and L[
∫ x̃

G(x̃, s)ϕ(s)ds] = ϕ(x). As such,

L[y1](x̃) = cv(l(x̃)) = cy0(l(x̃)),

as required. Assume (36) holds for j = k − 1. Then, L[yk](x̃) = cyk−1(l(x̃)) for x̃ ≥ x̃k. Finally, consider the
case j = k. By (34b),

L[yk+1](x̃) =cyk−1(l(x̃))

+ ck+1L

[∫ x̃

x̃k+1

G(x̃, sk+1)

∫ l(sk+1)

x̃k

· · ·
∫ l(s2)

x̃1

gk(l(sk+1), s1, .., sk)v(l(s1))ds1 · · · dsk+1

]
,
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which, by definition of the Green’s function, is equivalent to

cyk−1(l(x̃)) + ck+1

∫ l(x̃)

x̃k

· · ·
∫ l(s2)

x̃1

gk(l(x̃), s1, .., sk)v(l(s1))ds1 · · · dsk+1 = cyk(l(x̃)),

as required.

Remark 4.3. For κ = 1, since limκ→1 x
∗κ/(1− κ) = ∞, the upper limit of the first subinterval x̃1 = ∞. The

integro-differential equation in (25b) therefore holds over the whole domain x̃ > 0 and the solution in Theorem
4.1 reduces to h(x̃) = 1+Av(x̃), the solution in the first interval I0. In this case, the constant A can be derived
analytically such that the upper boundary condition on the trapping probability: limx̃→∞ h(x̃) = 0, holds. The
resulting trapping probability is exactly that of the uninsured case in (16) of Corollary 3.1.

The characterisation of the trapping probability f(x) satisfying (24) in the case of uniformly distributed
proportional losses will follow from Theorem 4.1 if it can be shown that a solution of the form (33) tends to
zero as x̃→ ∞, in line with the upper boundary condition. Specifically, we define the piecewise function

y(x) = yj(x− x∗), x− x∗ ∈ Ij (37)

with yj and Ij as in Theorem 4.1, and pose the following:

Conjecture 4.1. The limit L := limx→∞ y(x) exists and is different than zero.

If Conjecture 4.1 holds, then (33) yields that

f(x) = 1 +Ay(x), A = − 1

L
(38)

is the unique solution to Af(x) = 0, f(x∗) = 1, and limx→∞ f(x) = 0, as desired. Numerical computation of
y(x) in (37) for large x is not a trivial matter, as the functions v and G in (29) and (30), respectively, are highly
oscillatory for large values of x̃. Nevertheless, our numerical experiments appear to indicate that Conjecture
4.1 holds. Moreover, if Conjecture 4.1 is assumed to hold, there exists a practical method for estimating the
true value of A in (33) and for obtaining a very good approximation to f(x).

Note that, by (34a)
f(x) = 1 +Av(x+ x∗), x ∈ [x∗, x∗/(1− κ)] (39)

which is easily computed for any value of A. In addition, the process (Xt)t≥0 can be simulated to obtain
estimates of the trapping probability for any initial capital x ∈ [x∗, x∗/(1 − κ)]. As such, an estimate Â for
the conjectured value of A can be estimated by fitting f(x) to the simulated data. A comparison between the
trapping probability estimated via f(x) in (38) and simulated data is presented in Figure 4 for a given set of
parameters.
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Figure 4: Comparison between the trapping probability estimated via f(x) in (38) and simulations
of the capital process Xt. Each simulation point is obtained from an ensemble of 2000 realisations
of {Xt : 0 ≤ t ≤ 500} for different values of the initial capital X0 = x. The vertical lines mark the
subintervals x∗+Ij , 0 ≤ j ≤ 3 used in the construction of y in Theorem 4.1. The estimate Â = −3.556
is obtained by fitting 1+Av(x+x∗) to the simulated data for x in the first subinterval, as shown in the
inset. Parameters used are λ = 1 and κ = 0.3. The values of r(κ, λ, θ) and x∗(κ, λ, θ) are computed
via (20) with a = 0.1, b = 1.4, c = 0.4, x∗ = 1 and θ = 0.5.

The trapping probability for proportionally insured households susceptible to proportional losses with
Beta(1, 1) distributed remaining proportions of capital, estimated via (38), is presented in Figure 5a for varying
initial capital x and proportionality factor κ. For small values of κ and at higher subintervals, calculation of
the trapping probability is highly computationally intensive. In Figures 5a and 5b, trapping probabilities are
estimated for the first four subintervals, i.e. Ij for 0 ≤ j ≤ 3. The limits of Ij in (35) are functions of κ. As
such, changing the value of κ causes the trapping probability curves to terminate at different points, determined
by the upper limit of I3, as can be observed in Figure 5a.

Note that, in Figure 5a, as κ tends to zero the trapping probability tends towards a step function. This is
indicative of the fact that for κ = 0 households have full insurance coverage and do not experience loss events,
inducing a trapping probability that is zero-valued for all levels of capital above the critical capital due to the
restriction on the premium that ensures positive capital growth. Increasing κ and thus decreasing the level
of insurance coverage intuitively causes an increase in the trapping probability. Figure 5b presents the same
trapping probability for varying loss frequency λ and fixed κ, where half of every loss is insured. Increasing the
frequency of loss events increases the trapping probability. For λ = 0.5, under the parameter set considered in
this figure, λ/r is extremely close to one. Therefore, in the case of no insurance, households exhibiting this loss
behaviour would be close to certain ruin. As presented in Figure 3, purchase of insurance eases this constraint,
significantly reducing the probability of trapping. The fact that both figures presenting the estimated trapping
probability are intuitive, provides further evidence for Conjecture 4.1.
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Figure 5: Estimation of the trapping probability f(x) via (38) assuming Conjecture 4.1 for (a) λ = 1
for different values of κ and (b) κ = 0.5 for different values of λ. Each curve is computed with the
first three iterates of (34b) via numerical integration, the value of A is then estimated as explained in
Figure 4. For each case, the values of r(κ, λ, θ) and x∗(κ, λ, θ) are computed via (20) with a = 0.1,
b = 1.4, c = 0.4, x∗ = 1 and θ = 0.5 and λ is selected such that (23) holds.

5 Discussion

Figure 6 presents a comparison of trapping probabilities for the uninsured and insured capital processes as
derived in (12) and (38), respectively, for two values of the parameter λ. For λ = 0.25, the insured trapping
probability lies below the uninsured at almost all levels of initial capital, decaying at a much faster rate. Only
for initial capital extremely close to the critical capital does the uninsured probability lie below the insured.
At the higher loss frequency of λ = 0.5, the uninsured trapping probability lies close to 1 throughout the range
of initial capital considered, significantly higher than the equivalent probability for insured losses at all capital
levels. Note that in this case, λ/r lies close to the uninsured constraint preventing certain trapping in (11).

Sensitivity analysis on the trapping probabilities in (12) and (38) is presented in Figure 7 for low levels
of initial capital and varying κ and λ. Specifically, trapping probabilities for households with capital between
x = x∗, the uninsured poverty line, and x = x∗/(1−κ), the upper limit of the first subinterval I0, corresponding
to the trapping probability in I0 given in (39), are presented. At this more granular level, the intersection
point of the curves can be observed more clearly. This intersection point indicates when proportional insur-
ance coverage is beneficial for reducing poverty trapping. In the estimation of the insured trapping probability,
the increase in critical capital associated with the need for premium payment is accounted for through spec-
ification of x∗(κ, λ, θ), where an insured household is deemed to be trapped when their capital falls below
I∗/(b− π(κ, λ, θ)), where the critical income I∗ = b under the assumption of no change in the basic model
parameters due to the purchase of insurance. Thus, in the insured case, households with initial capital slightly
above x∗ have already become trapped.

As in Kovacevic and Pflug [2011] and Flores-Contró et al. [2022] the increase in the trapping probabilities
of the most vulnerable households when proportionally insured is observed in all cases considered. However,
importantly, this increase occurs for a much smaller proportion of the low-income sample. Denoting the in-
tersection point of the uninsured and insured trapping probabilities by xc, the significance of the distance
between the intersection point and the critical capital x∗ is presented in Figure 8 for varying κ and λ. Con-
sidering three levels of the loading factor θ, the distance is positive under all sets of parameters tested. The
depiction of xc − x∗ in this figure highlights that the level of capital at which insurance becomes beneficial lies
much closer to the poverty line than for more extreme [Kovacevic and Pflug, 2011] and random-valued losses
[Flores-Contró et al., 2022], with only small distances between the intersection point and the critical capital
observed. These results suggest that purchase of proportional insurance for proportional losses is beneficial
for a larger proportion of those closest to the poverty line. In particular, proportional coverage appears to be
more affordable than classical coverage for random-valued losses.

Our consideration of a poverty line that varies with the level of insurance coverage accounts for the fact
that premium payments limit a household’s level of capital. We therefore consider “extreme poverty” at
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Figure 6: Comparison between the trapping probabilities of uninsured and insured households for
κ = 0.5 and two different values of λ. Solid curves are computed via (38) assuming Conjecture 4.1 and
dashed curves via (12). For each case, the values of r(κ, λ, θ) and x∗(κ, λ, θ) are computed via (20)
with a = 0.1, b = 1.4, c = 0.4, x∗ = 1 and θ = 0.5. Recall that for uninsured losses, by (11) it must
hold that λ/r < 1.
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Figure 7: Comparison of the trapping probabilities of uninsured and insured households for small
values of initial capital, x ∈ [1, x∗/(1 − κ)] and different values of κ and λ, showing the existence
of a level xc > x∗ such that for 1 < x < xc it is better for households not to insure. Solid curves
are computed as in Figure 5b and dashed curves using expression (12). For each case, the values of
r(κ, λ, θ) and x∗(κ, λ, θ) are computed via (20) with a = 0.1, b = 1.4, c = 0.4, x∗ = 1 and θ = 0.5.
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Figure 8: Estimated distance between xc and x∗, i.e. xc − x∗, for different values of λ and κ for which
λ/r < 1 and (a) θ = 0.1, (b) θ = 0.5 and (c) θ = 0.9, where xc is the intersection point of the uninsured
and insured trapping probabilities. For each case, the values of r(κ, λ, θ) and x∗(κ, λ, θ) are computed
via (20) with a = 0.1, b = 1.4, c = 0.4 and x∗ = 1.

an individualised level. In Kovacevic and Pflug [2011] and Flores-Contró et al. [2022] the uninsured trapping
probability is instead compared with the insured trapping probability for a fixed critical capital x∗, irrespective
of the parameters κ, λ and θ. Such a specification could be used to consider trapping with respect to an
international poverty line, which is fixed for all households. Under this alternative assumption, the trapping
probability under proportional insurance coverage of Section 4 lies below the uninsured probability of Section
3 at all capital levels. In this case, the purchase of insurance therefore does not increase the probability of
trapping for any household above the poverty line.

Mathematical differences between the uninsured and insured capital processes and the associated parameter
constraints may also provide indications of the impact of insurance. In Figure 3, the constraint that ensures
existence of the Lundberg equation is presented. For uninsured losses with uniformly distributed remaining
proportions of capital (Zi ∼ Beta(1, 1)), by (11), an equivalent figure would display a horizontal line at λ = r.
For the case considered in Figure 3, r = 0.504. As such, for all levels of θ, there exists a region in which the
uninsured constraint in (11) is violated, while the insured constraint in (23) is not. This indicates that for
households without insurance, the Lundberg equation fails to be well-defined in more cases. Increasing the
level of insurance coverage therefore increases the loss frequency for which the net profit condition is satisfied.
As a result, certain trapping is avoided in more cases.

Due to the increasing complexity of (34b) the constant A appears in an increasingly convoluted manner
throughout the subintervals Ij . As we move through Ij for increasing x̃, estimation of the trapping probability
under proportional insurance coverage becomes computationally intensive, particularly for small values of
κ. However, analysis of the algebraic decay of the trapping probability can provide further insight into the
behaviour of the function at high capital levels. Solution of the transcendental equation

rγ − λ+
λα

κ

∫ 1

1−κ

yγ
(
1− 1− y

κ

)α−1

dy = 0, (40)

derived from Af(x) = 0 for Af(x) in (24) for Zi ∼Beta(α, 1) under the assumption of polynomial asymptotic
decay to zero at infinity: f(x) ∼ (x− x∗)γ as x→ ∞ for constant γ, highlights that for Beta(1, 1) distributed
remaining proportions of capital, as in Section 4, as κ increases and households maintain a higher risk level the
trapping probability decays more slowly as initial capital x approaches infinity. The same observation can be
found with less significance for fixed κ and decreasing λ/r. Solution of the transcendental equation in (40) for
α > 0 and κ = 1 yields that the trapping probability decays only if λ/r < α, providing exactly the Lundberg
condition in the case of no insurance coverage.
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6 Concluding remarks

We have considered an adjustment of the capital process of Flores-Contró et al. [2022] in which low-income
households are susceptible to losses proportional to their accumulated capital level, as in Kovacevic and Pflug
[2011]. Under the assumption of proportional losses we capture the exposure of households of all capital
levels to both catastrophic and low severity loss events, a feature particularly significant in the low-income
setting. Typically considered to be protected from capital losses, households with higher levels of capital are
still susceptible to large proportional losses on the occurrence extreme events, particularly in agriculturally rich
areas. In addition to high severity loss events, low-income households closest to the poverty line experience
large proportional losses due to events typically considered less severe in the high-income setting, such as
hospital admissions and household deaths.

Focusing on the probability that a household falls below the poverty line, referred to as the trapping
probability, in the analysis of this paper we have solved, for the first time analytically, infinitesimal generator
equations associated with a capital process with exponential growth and multiplicative jumps. We have con-
sidered two cases: (i) households with no insurance coverage and (ii) households with proportional insurance
coverage. In both cases, closed-form solutions of the infinitesimal generator equations associated with the
trapping probability were derived alongside constraints on the parameters of the model that prevent certain
trapping. Through the derivation of these probabilities we provide insights into the impact of proportional
insurance for proportional losses. Comparison between the proportional assumption of this paper and the
random-valued assumption of Flores-Contró et al. [2022] was additionally presented.

For households with no insurance coverage, explicit trapping probabilities for Beta(α, 1) distributed remain-
ing proportions of capital were obtained using Laplace transform methods. In comparison to the corresponding
trapping probability for random-valued losses, the proportional trapping probability exhibits a slower rate of
decay, in line with the non-zero probability of high-income households losing a large proportion of their wealth.

Consideration of proportional insurance coverage requires redefinition of the infinitesimal generator of the
process. Even under the assumption of uniformly distributed remaining proportions of capital the structure of
the proportional insurance product induces non-local functional terms in the derivative and Laplace transform
of the infinitesimal generator. Classical methods for solving the infinitesimal generator to derive the trapping
probability were therefore not applicable. To overcome this, we propose a recursive method for deriving a
solution of the IDE and estimate the unique solution numerically through the conjecture of the existence of
a limit. Although only analytic up to a constant, the estimated trapping probability performs well when
compared with simulations of the capital process and provides intuitive results under sensitivity analysis.
Future work will involve deriving a mathematical proof that this conjecture holds.

Comparing trapping probabilities under no insurance coverage and proportional insurance coverage suggests
that the increase in trapping probability observed under random-valued losses is less severe in this proportional
case. This finding is in contrast to that of Kovacevic and Pflug [2011], where an increase in trapping probability
similar to that of Flores-Contró et al. [2022] is observed under the same proportional model. However, this
result is likely highly dependent on the specification of parameters. It should be noted that the distribution of
the remaining proportion of capital considered in the numerical example of Kovacevic and Pflug [2011] is such
that losses have an expected value of 88%, an extremely high proportion given a loss frequency parameter of
1. In turn, the associated premium rates are high and will constrain capital growth more significantly. The
lower rate associated with the distribution selected for presentation in the analysis of this paper captures losses
of varying severity, as is the experience of a low-income population, and will necessitate reduced premiums.
Furthermore, when considering a critical capital that is fixed as in Kovacevic and Pflug [2011], irrespective of
a household’s insured status, the increase in trapping probability associated with purchase of insurance is not
observed at any level of capital.

Ultimately, the findings of this paper suggest that insurance for proportional losses is more affordable than
coverage for losses of random value. This aligns with the idea that premiums are normalised to wealth under
the proportional loss structure, thus improving the variability in the affordability of premiums characteristic of
insurance for random-valued losses. As such, if the assumption of proportionality is correct, in the context of
subsidisation, the proportion of the low-income population requiring full government support may be narrower
than anticipated. Under consideration of a universal poverty line, such as the international poverty line,
insurance is beneficial at all capital levels. However, when considering the impact of insurance at a more
granular level, where the critical level increases with increasing coverage, for those with capital just above the
critical capital, as in the findings of existing studies, insurance and the associated need for premium payments
increases their probability of falling below the poverty line.
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