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Thesis Abstract 

Title of thesis: Epistasis within the arabinose operon and its regulatory sequences 

Bacteria have evolved to fill almost every niche on the planet, ranging from sea ice to thermal vents. 
These organisms can be used to our advantage to break down pollutants and produce industrially 
relevant enzymes but can also be harmful to us, by rapidly developing antibiotic resistance and 
increased virulence in short timeframes. Bacteria evolve through many different mechanisms, one 
such mechanism is epistasis. Epistasis, or gene interactions, is the phenomenon by which the effect 
on fitness of a gene is dependent on the genetic background in which it is present. In this thesis I aimed 
to study epistasis within the arabinose operon and its regulatory regions, specifically, the cis-
regulatory element (CRE) of the pBAD promoter. 

In the second chapter, I investigated whether patterns of epistasis amongst double mutants in the 
pBAD CRE would be consistent when measuring fitness when compared with expression 
measurements from a previous study. I adapted the mutant library from the previous study and 
inserted the araBAD genes in place of the fluorescent protein on the plasmid construct. I then 
measured the growth rate of mutants on arabinose as a sole carbon source and calculated epistasis 
values from the relative growth rates of mutants. I found that, when using growth rate data, no 
significant epistasis could be detected. I concluded that this was likely due to limitations of the 
approach and equipment used. 

In the third chapter, I wanted to see if patterns of epistasis for the previously created mutant library 
differed between environments. I grew the mutant library in four different environments, varying in 
either sugar or temperature and used growth rates to calculate epistasis. I found that some epistatic 
effects changed between environments but others remained constant. I concluded that some epistatic 
interactions were strong enough to resist changes in the environment, whilst others were affected 
non-additively by environmental factors. 

In Chapter 4 I took a different approach and searched for ‘footprints’ of epistasis within the arabinose 
operon genes. Horizontal gene transfer (HGT) usually indicates an absence of epistasis and so I wanted 
to find evidence of the occurrence of HGT or the absence of HGT within the arabinose operon. I firstly 
analysed the gene neighbourhood of the arabinose operon in multiple bacterial species and found 
large amounts of conservation in the Enterobacteriaceae family, with less conservation when 
analysing the Gammaproteobacteria class. I then undertook gene cluster analysis to study the 
chromosomal organisation of the arabinose genes. I found that araA and araB often occur together 
and are co-linear, however, the synteny araC and araD was less conserved. I suggest this could be due 
to the presence of epistatic interactions between araA and araB, reflecting the roles of the encoded 
enzymes in arabinose catabolism. I also analysed the phylogenetic trees of the arabinose genes 
compared to a core species tree to identify incongruence which can be an indicator of HGT. I generated 
branch score values for each gene tree but these provided limited insight and I concluded that there 
may not be enough diversity in the arabinose genes to provide an accurate phylogeny for comparison. 

Taken together, my findings provide insight into the epistatic forces that shape the evolution of the 
arabinose operon and its regulatory sequences. I find that epistasis, both environment-dependent and 
environment-independent, shape the evolutionary potential of the pBAD CRE and that epistatic 
interactions between select genes of the arabinose operon are likely to limit potential rearrangements 
of gene co-linearity. Overall, epistasis is a significant evolutionary force that acts on the arabinose 
operon and this may extend to other bacterial operons, an interesting area to explore going forward. 
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CHAPTER 1  

General Introduction 

1.1.   Bacterial Evolution 

Bacteria are one of the most diverse groups of organisms, having evolved to adapt to various 

environments ranging from hot springs and sea ice to plant and animal microbiomes (Arrigo, 2014; 

Davenport et al., 2017; Marsh & Larsen, 1953; Trivedi et al., 2020). Indeed, bacteria provide some of 

the most important functions to sustain life on the planet such as oxygenating the atmosphere and 

fixing nitrogen for plants to use (Madigan et al., 2012). The diversity of bacteria on the planet can also 

be useful for human existence and we can often study and use them to our advantage. Examples 

include the use of thermostable enzymes from thermophilic bacteria. Thermophilic bacteria live in 

high temperature habitats and can grow at temperatures exceeding 100°C (Takai et al., 2008). Due to 

evolving in harsh environments, thermophilic bacteria have evolved enzymes that are extremely heat 

stable which can be isolated and harvested for industrial use (Chien et al., 1976; Kambourova, 2018). 

Not only can such heat stable enzymes be isolated directly but also studied to use directed evolution 

in the lab to create enzymes with very specific traits (Reeve & Fuller, 1995). However, not all bacteria 

are beneficial with some evolving to become pathogenic and infecting a wide diversity of hosts 

(Casadevall & Pirofski, 1999). This pathogenic evolution can prove detrimental to humans and has 

presented a unique challenge for societies throughout history. 

The study of bacterial evolution has historically presented greater challenges than that of plants and 

animals. Without the distinct morphological characteristics observed in modern animal and plant 

species and that of the fossil record it was difficult for scientists to phylogenetically classify bacteria, 

let alone investigate bacterial evolution. It was only the advent of DNA sequencing technology that 

allowed scientists to begin to decipher the relationships between bacteria and study the evolutionary 

steps involved (Woese, 1987). 

Studying bacterial evolution is key in helping tackle challenges such as antibiotic resistance and 

bacterial virulence. Antibiotic resistance is driven by rapid acquisition and spread of resistance genes 

amongst as bacterial population and understanding the mechanisms by which this spread occurs is 

crucial to preventing the long-term redundancy of antibiotics (Waclaw, 2016). Bacterial virulence can 

also be studied through an evolutionary lens, complementing the study of pathogenesis by viewing 

virulence as a factor in pathogen spread and survivability in the host (Diard & Hardt, 2017). Virulence 
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is the result of fitness trade-off between the host and pathogen so is intrinsically linked to bacterial 

evolution (Alizon & Michalakis, 2015). 

These examples highlight how the study of bacterial evolution can help better our understanding of 

bacterial ecology and pathogenicity, advancing the fields of biotechnology (Mavrommati et al., 2022) 

and medicine (Christaki et al., 2020). One aspect to consider when studying the evolution of bacteria 

is what mechanisms shape the evolutionary potential of organisms and how they restrict or allow 

organisms to evolve certain traits. One such mechanism is epistasis. 

1.2.   Epistasis 

Epistasis (genetic interactions) is the phenomenon by which the fitness effect of a given mutation 

depends on the genetic background on which the mutation appears (Domingo et al., 2019; Phillips, 

2008). A prime example of epistasis is in bacterial toxin-antitoxin systems. The toxin gene is lethal 

when present on a background lacking the anti-toxin gene and, conversely, the cell is wasting energy 

producing anti-toxin if no toxin is present, therefore decreasing its fitness. However, when both genes 

are present there is a marked fitness increase for the cell by eliminating its competitors (Unterholzner 

et al., 2013).  

Epistasis as a term has been around for many years and so there can be confusion when it is used in 

different contexts. Whilst the definition above is the most widely encompassing one, epistasis can also 

be considered to be an interaction between two mutations. In this way, epistasis is described as any 

interaction in which the fitness of the double mutant differs from the expected additive effects of the 

constituent single mutants (Fisher, 1919; Wong, 2017). This will be the definition of epistasis referred 

to in Chapter 3 and Chapter 4. 

Epistasis occurs in different forms, the most common being magnitude epistasis. This is where the 

fitness of a double mutant is greater or lesser than the additive expectation. Positive epistasis refers 

to an increase in fitness whereas negative epistasis refers to a decrease in fitness. Another form of 

epistasis is sign epistasis (Weinreich et al., 2005) where the fitness ‘sign’ of a mutation is reversed, 

going from positive to negative or vice versa. Reciprocal sign epistasis occurs when both mutants 

respectively change signs in the presence of one another (Phillips, 2008). Figure 1.1 shows the fitness 

landscapes of these forms of epistasis. 
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Figure 1.1 Graphical representation of different forms of epistasis and associated fitness landscapes. Alleles are denoted 
by a, b, A and B. Capitalised alleles indicate the mutant allele. No epistasis shows two alleles (A and B) conveying an increase 
in fitness which is additive when the alleles are combined. Magnitude epistasis shows two alleles that provide a greater 
increase in fitness when combined than the additive effects of each individual allele. Sign epistasis shows two alleles of 
opposing fitness effects coming together to provide an overall increase in fitness therefore changing the sign of one of the 
alleles. Reciprocal sign epistasis demonstrates two alleles which have negative fitness effects combining to give a fitness 
benefit. Adapted from: (Dawid et al., 2010). 
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Epistasis is inherently a complex process and is generally poorly understood due to the combinatorial 

nature of interactions. Epistasis can exist between mutations both within genes (intragenic) and 

between genes (intergenic), which generally occur at similar frequencies when studying compensatory 

mutations (Poon & Chao, 2005). Intergenic epistasis is extremely prevalent and affects quantitative 

traits among organisms through pleiotropy (Flint & Mackay, 2009). Intergenic epistasis is more easily 

conceptualised as it can be the result of two proteins physically interacting, this has been shown by 

observation of compensatory mutations appearing in the L19 protein of the large ribosomal subunit 

of Salmonella enterica serovar Typhimurium to compensate for fitness costs in the S12 protein of the 

small subunit arising due to antibiotic resistance (Maisnier-Patin et al., 2007). Intergenic epistasis is 

also evidenced in metabolic pathways where the activity of upstream enzymes is increased but the 

downstream enzymes create a bottleneck in the system and so the increased metabolic flux of the 

system is not realised. The increase can only be realised if both enzymes increase activity 

proportionally (Kacser & Burns, 1981).  

Intragenic epistasis is somewhat more complex than intergenic epistasis as intragenic epistasis 

involves interactions between individual mutations within genes. One form of intragenic epistasis is 

threshold epistasis, which relates to the fact that some proteins have a threshold of stability and that 

most proteins have excess stability beyond this threshold. Consequently, individual mutations would 

have little effect but in combination can affect the stability of the protein (Bershtein et al., 2006). It is 

proposed that threshold epistasis could be a defence against stochastic change to ensure protein 

stability (Lehner, 2011). Another major source of intramolecular epistasis is conformational epistasis, 

which occurs when a conformational change is required alongside a residue change to result in novel 

functionality. Conformational epistasis has been shown to occur in glucocorticoid receptors (Ortlund 

et al., 2007). Epistatic effects can also exist in the form of ‘global suppressors’ where a mutation acts 

to suppress the effects of all destabilising mutations by increasing protein stability universally (Shortle 

& Lin, 1985). Similarly, universal ‘enabling’ mutations have been found in bacterial toxins that enable 

several subsequent mutations to arise, allowing the toxin to resist disruption by the anti-toxin (Ding 

et al., 2022). 

Epistasis can also occur within non-coding regulatory sequences. The regulation and expression of a 

gene can often play an important role in the resultant phenotype and this explains why epistatic 

effects are observed in non-coding, regulatory sequences. An example of epistasis within non-coding 

regulatory sequences is where one mutation reducing the activity of an enzyme may be compensated 

for by a mutation in the promoter sequence causing increased expression levels. Regulatory epistasis 

has been shown empirically in relation to Salmonella enterica antibiotic resistance (Paulander et al., 

2010) and within E. coli enzyme evolution (McLoughlin & Copley, 2008). Epistasis also has effects on 
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global gene regulation through the action of global regulator proteins (Srinivasan et al., 2013) and so 

can influence gene regulation in different ways. 

1.3.   Fitness Landscapes 

Due to the effects of epistasis on fitness, epistatic effects could be expected to influence evolutionary 

outcomes. By nature, epistasis shapes the evolutionary landscape rendering some routes to higher 

fitness inaccessible due to unfavourable mutation combinations. Limiting evolutionary pathways can 

restrict the ways in which organisms can adapt and react to certain evolutionary pressures (Weinreich 

et al., 2005). 

It is generally accepted that natural selection works by selecting individuals that are the most well 

adapted to their environment and therefore have an increased chance to survive and reproduce (B. K. 

Hall et al., 2014). The measure by which suitability of an individual to an environment is quantified is 

termed ‘fitness’ (Thoday, 1953). The individuals with the highest fitness in a given environment are 

more successful and so natural selection favours mutations which increase the ability of an organism 

to survive and reproduce in its environment. It could therefore be expected that every beneficial 

mutation would be selected for unconditionally until an individual reaches the peak possible genotype 

for a given environment, thereby maximising its fitness.  

However, when epistasis is considered, the route to the highest fitness may not be a straightforward 

one. When the fitness of a mutation is dependent on the background the mutation appears on 

(meaning the other mutations that preceded them) then each mutation may situationally be adaptive 

or not, having a different fitness value depending on background (Phillips, 2008). These genetic 

interactions would then create a fitness ‘landscape’ where acquiring mutations would move species 

towards or away from fitness peaks and natural selection would favour movement towards peaks of 

higher fitness. The concept of fitness landscapes appears straightforward, however, multiple peaks 

can be present within a landscape, some being higher than others. Species could consequently 

become stuck on a local, sub-optimal peak as natural selection will not permit the species to move to 

a higher peak through a ‘valley’ of low fitness and so reaching the global optimum becomes a difficult 

task involving acquiring beneficial mutation in a specific order to navigate the fitness landscape and 

not become stuck on a sub-optimal peak (de Visser & Krug, 2014; Fragata et al., 2019; Wright, 1932).  

Following this logic, fitness landscapes can either be ‘smooth’, containing a single global peak where 

beneficial mutations can be gained in any temporal order to advance a species towards the peak. 

Alternatively, the landscapes can be ‘rough’, where multiple local peaks are present as well as fitness 
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valleys and the route to the global optimum requires precise ‘navigation’, gaining mutations in a 

specific order. Figure 1.2 demonstrates the types of fitness landscapes. 
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Figure 1.2 Various landscapes in the sequence fitness space. Black indicates low fitness proceeding through red, then yellow 
and finally white to represent the highest fitness achievable. a) A realistic fitness landscape where a large portion of possible 
sequences are non-functional. b) An extremely rough landscape containing many local optima surrounded by deep fitness 
valleys limiting movement through sequence space. c) A smooth landscape containing one global peak where every acquired 
mutation increases fitness no matter the order. d) A depiction of 2 possible evolutionary pathways through sequence space; 
one becoming stuck on a local optimum (red) and the other reaching the global peak (green). Taken from: (Romero & Arnold, 
2009). 
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1.4.   Operons 

Given that epistasis can occur both within genes, between genes and in regulatory sequences, an ideal 

system to study epistasis lies in bacterial operons which are clusters of colocalised genes that are 

transcribed from a single promoter. Bacterial operons were initially defined as ‘coordinated units of 

expression’ (Jacob et al., 1960) and the definition has since been expanded to include ‘clusters of co-

regulated genes with related functions’ (Osbourn & Field, 2009) and ‘any group of adjacent genes that 

are transcribed from a promoter into a polycistronic mRNA’ (Fondi et al., 2009). Operons are 

widespread amongst bacteria and archaea and are the most common form of gene organisation in 

prokaryotes (Koonin, 2009). Most operons are weakly conserved with a few significant exceptions 

including the ribosomal superoperon and proton ATPases which often encode proteins that physically 

interact (Brandis, 2021; Itoh et al., 1999; Wolf et al., 2001). 

Operons account for a significant portion of protein coding genes within an average bacterial genome 

(Ermolaeva et al., 2001; Price, Huang, Alm, et al., 2005; Wolf et al., 2001). Escherichia coli has been 

predicted to have 700 operons in its genome which accounts for 55% of its gene content (Salgado et 

al., 2000). It has been speculated that operons exist to help co-regulate genes that are functionally 

related and would benefit from tight stoichiometric control (Rocha, 2008). The selection against 

rearrangement of operons supports this (Brandis, 2021; Rocha, 2006) although operons are not 

immune to rearrangement (Brandis, 2021). Operons often encode proteins within the same functional 

pathway, but not always (Rogozin et al., 2002), suggesting stoichiometric balance is not necessarily 

the lone driver behind operon formation and co-regulation of genes. One theory for the existence of 

operons which contain functionally unrelated genes is that functionally unrelated genes may be 

required as part of a holistic function such as growth and so still benefit from being co-regulated (Price 

et al., 2006; Rogozin et al., 2002). 

There is evidence that some orthologous operons are noticeably diverged from one another yet the 

operons still retain function (Buvinger & Riley, 1985; Leonard et al., 2015). Retention of function 

suggests that the genes within the operons may be coevolving together to maintain function (Dover 

& Flavell, 1984; Lovell & Robertson, 2010), thereby giving rise to epistasis. 

1.5.   Operon Promoters 

Promoters are the transcriptional start sites for all genes and operons and are responsible for binding 

RNA polymerase and unwinding the DNA duplex surrounding the transcription start site (Browning & 

Busby, 2004). There are two key sites involved in binding the RNA polymerase, the -10 site located 

10bp upstream of the transcription start site and the -35 site, located 35bp upstream. Both the -10 
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and -35 sites bind domains 2 and 4 of the σ subunit of RNA polymerase, respectively. Whilst there are 

thousands of promoter sequences within each genome (Salgado et al., 2001), there is an uneven 

distribution of RNA polymerase amongst said promoters. The unequal distribution of RNA polymerase 

indicates that mechanisms are present to control the balance of RNA polymerase between promoters 

at any given time. One of the ways promoters can regulate the availability of RNA polymerase is 

through trans-acting factors. There are several trans factors, including sigma factors, small ligands and 

transcription factors (Babu & Teichmann, 2003). Transcription factors are often DNA binding proteins 

and so have interactions with cis binding sites, meaning regulation via transcription factors is 

dependent on the DNA sequence of the cis-acting site and as a result, can be affected by epistasis. 

Mutations in regulatory regions have a marked effect on evolutionary outcomes (Stern & Orgogozo, 

2008) and so they can often be an important target for selection to act on.  

Promoters initiate transcription by interacting with transcription factor proteins (TFs), which can occur 

in one of two ways; the promoters either bind the transcription factor, which then helps to recruit 

RNA polymerase to the transcription start site by physically interacting with its subunits, or the 

transcription factor causes a change in conformation of the promoter region, allowing RNA 

polymerase to more easily recognise the transcriptional start site (Browning & Busby, 2004). 

Operon promoter sequences are often described as more complex than the sequences of individually 

transcribed genes (Hazkani-Covo & Graur, 2005; Price et al., 2006; Price, Huang, Arkin, et al., 2005). 

The increased complexity of operon promoter sequences could help to explain why genes within 

operons may cluster under the control of one promoter, as this saves each gene individually needing 

as complex promoter (Rocha, 2008). One example of a well-studied operon that is both repressed and 

activated by a transcription factor is the arabinose operon (Schleif, 2010). 

1.6.   Arabinose Operon 

One of the most well studied and widely used model operons in biology is the arabinose operon of 

Escherichia coli and this was the system chosen for study in this thesis. The arabinose operon was 

selected because it is inducible via a single, environmental factor; the presence of arabinose. The 

operon consists of one regulatory gene, araC and 3 metabolic genes, araB, araA and araD, collectively 

known as araBAD. The operon also contains several regulatory sites; araO1L, araO1R, araO2, as well 

as two component of the cis regulatory element (CRE) araI1 and araI2 (Schleif, 2000). AraC acts as a 

negative regulator of araBAD in the absence of arabinose and a positive regulator in the presence of 

arabinose (Englesberg et al., 1965; Schleif, 2010). The mechanism of regulation involves AraC forming 

a homodimer which in the absence of arabinose binds to araO2 and araI1 causing the DNA to loop 

and prevent transcription of the araBAD genes by blocking the polymerase binding. In the presence 
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of arabinose, the sugar binds to the AraC dimer, changing the conformation, and causing the dimer to 

preferentially bind to araI1 and araI2 allowing the DNA loop to relax, allowing access and also 

recruiting RNA polymerase to the pBAD promoter to transcribe the araBAD genes (Schleif, 2000). This 

is shown in Figure 1.3. The DNA binding regions araI1 and araI2 contain nucleotide sequences that 

specifically bind AraC depending on the presence of arabinose (Zhang et al., 2018). These regions were 

named ‘A-box’ and ‘B-box’. It was found that the araI1 region contained both an A-box and B-box, 

whereas araI2 only contained a B-box. Conversely, araO2, which binds AraC in the absence of 

arabinose, only contained an A-box. The current understanding is that the A-box is responsible for 

binding AraC when arabinose is present, whilst the B-box is responsible for binding AraC in the absence 

of arabinose (Niland et al., 1996). 

Arabinose catabolism has been shown to be important for pathogenesis as L-arabinose is a key driver 

for the proliferation of Salmonella enterica serovar Typhimurium in the gastrointestinal tracts of 

superspreader hosts (Ruddle et al., 2023). Arabinose catabolism results from 3 catabolic enzymes 

working in conjunction; AraA, AraB and AraD. The araA gene encodes L-arabinose isomerase which 

converts L-arabinose into L-ribulose. The araB gene encodes ribulokinase which phosphorylates L-

ribulose to give L-ribulose-5-phosphate. The araD gene encodes L-ribulose-phosphate-4-epimerase 

which converts L-ribulose-5-phosphate to D-xylulose-5-phosphate which can then enter the pentose 

phosphate pathway (Schleif, 2022). 

 

1.7.   Arabinose Transport Operon 

In contrast to the araBAD operon which is responsible for degrading arabinose, the araFGH operon 

facilitates the transport of arabinose into the cell (Horazdovsky & Hogg, 1987). The araFGH operon 

encodes the ‘high-affinity’ arabinose transport system, whilst the monocistronic araE gene encodes 

the ‘low-affinity’ system. AraE is a permease which is energized by proton motive force (Brown & 

Hogg, 1972). AraF is a periplasmic L-arabinose binding protein which is an important component of 

the high affinity system (Hogg, 1977). AraG is an ATP binding protein (Horazdovsky & Hogg, 1987). 

AraH is the permease component of the ABC transporter (Horazdovsky & Hogg, 1987). AraE, F, G and 

H are all membrane-bound proteins that channel arabinose into the cell (Luo et al., 2014) when 

glucose is absent. If glucose is present, AraC represses the transcription of the araFGH  and araE genes 

by the same mechanism as the araBAD operon, leading to a significant reduction in expression (Luo 

et al., 2014).  

Arabinose is a major component of hemicellulose, the major constituent of plant material (Holtzapple, 

2003). Consequently, arabinose is found in many environments including soil and becomes available 
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to soil microorganisms following hemicellulose degradation.  The human gut also contains arabinose 

following consumption of dietary plant material (Alam et al., 2022). Although arabinose itself is poorly 

absorbed in the gut, the sugar is described as a microbiota-accessible-carbohydrate (MAC) (Tomioka 

et al., 2022) that can be utilised as an energy source by the gut microbiota (Tomioka et al., 2022). 

 

1.8.   Thesis Aims 

In this thesis I aimed to investigate several questions regarding epistasis within the arabinose operon 

and its regulatory regions. These were: 

1: Are patterns of epistasis consistent when considering cell fitness versus gene expression? 

2: Are epistatic effects within the pBAD promoter consistent between different environments? 

3: Is there evidence of epistasis between genes of the arabinose operon and what can this tell us about 

operon evolution? 

Overall, these questions aim to investigate the effect epistasis has on the evolution of the arabinose 

operon and the associated regulatory sequences and could contribute to the wider understanding of 

operon evolution in bacteria.



30 

 

 

Figure 1.3 The arabinose operon. a) The araBAD operon being repressed in the absence of arabinose via a dimerised AraC protein binding to araO2 and araI1. The CRP site and the polymerase 
binding site are blocked and so no transcription can take place. The araBAD genes are not expressed. b) In the presence of arabinose, AraC changes conformation and binds to araI1 and araI2. 
The DNA loop relaxes exposing the CRP site allowing cAMP to bind promoting the binding of DNA polymerase which initiates transcription and subsequent expression of the araBAD genes. 
Adapted from: (Lagator et al., 2016). 
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CHAPTER 2  

 

2.1.   Chapter 3 Methods 

2.1.1.   Strains  

Escherichia coli JW0063.1 from the Keio collection (Baba et al., 2006) was used as the host strain in 

this study, as all the arabinose operon genes (araA, araB, araC and araD) were deleted from the 

chromosomal background of this strain and would therefore not interfere with the operon genes 

introduced on the plasmids. The strain carried a kanamycin resistance gene in place of the araC gene 

which was excised using lambda red recombination. 

2.1.2.   Culturing 

Strains were streaked on LB agar plates (with or without kanamycin 50μg/ml depending on 

requirement) and grown overnight at 37°C. Replicate colonies were then grown up in shaking LB broth 

(with or without kanamycin 50μg/ml) at 37°C to obtain saturated cultures and these were then placed 

at -80°c in 15% glycerol for long term storage. 

2.1.3.   Cloning of Mutant Library 

37 plasmids carrying mutant promoters were isolated from E. coli strain BW25113 obtained from 

Lagator et al. (2016) using [ZR plasmid miniprep – classic (Zymo Research)]. Plasmid constructs for use 

in this study were generated using the NEBuilder® HiFi DNA Assembly kit. Primers were created using 

the NEBuilder® assembly tool (Table 2.1). 

Table 2.1 Primers used for NeBuilder assembly tool 

Primer Sequence 

pZS*2-venus_fwd AATGAGTAAAGGAGAAGAACTTTTC 

pZS*2-venus_rev CTAGATTGAGCTCTTCCTCC 

araBAD_fwd GGAGGAAGAGCTCAATCTAGATGGCGATTGCAATTGGC 

araBAD_rev GTTCTTCTCCTTTACTCATTCATCAGCTGTTTCTCCTCTTTAATTTACTGCCCGTAATATGCCTTC 
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Briefly, the plasmid backbone was amplified using primers pZS*2-venus_fwd and pZS*2-venus_rev in 

a PCR reaction and the araBAD insert was amplified from E. coli MG1655 genomic DNA using primers 

araBAD_fwd and araBAD_rev. The recommended concentrations of insert and vector were added in 

a 1:2 ratio into the NEBuilder® HiFi DNA Assembly Master Mix and incubated at 50°C for 15 minutes. 

This was designed to create a plasmid containing the araBAD genes, complete with their ribosome 

binding sites, alongside Venus-YFP complete with its original RBS from the original plasmid construct. 

The resulting plasmid can be seen in Figure 3.3. The plasmids (Figure 3.3) were then electroporated 

into E. coli JW0063.1 cells. These cells were then added to prewarmed SOC broth and incubated for 

45 minutes. They were then plated on MacConkey agar base (without sugar) plates supplemented 

with 0.5% arabinose and kanamycin (50 µg/ml). Successful transformants were identified on agarose 

gel by PCR amplification to check for the expected plasmid size. The nucleotide sequence of about 

95% of the araCBAD region of plasmids from mutants 1-8 were verified using a primer walking 

approach which involves using Sanger sequencing to sequence short, overlapping region of the 

plasmid to determine the full sequence of a given plasmid (Benes et al., 1997). The DNA sequence 

confirmed the cloning strategy had been successful and no unexpected mutations were identified. 

Stocks were prepared for colonies carrying the correctly assembled plasmid in liquid LB supplemented 

with Kn50 and stored at -80℃ with 15% glycerol. 

2.1.4.   Growth Assays 

Frozen strain stocks for the 37 mutants were streaked on MacConkey agar base plates supplemented 

with 0.5% arabinose and 50 µg/ml kanamycin. The plates were incubated at 37°C overnight and then 

a single colony was picked from each plate and inoculated into M9 media (KH2PO4, 15 g/L, NaCl, 2.5 

g/L, Na2HPO4, 33.9 g/L, NH4Cl, 5 g/L) supplemented with 0.1% arabinose, 50 ug/ml kanamycin, MgSO4, 

CaCl2 and casamino acids. Strains were inoculated in 96 deep well plates using a total volume of 1ml 

and incubated at 220 rpm and 37℃ for ~18 hrs. A 1:100 dilution of the 18 hr old cultures were grown 

in 96 deep well plates at 200 rpm and 37℃ for 4 hours to ensure exponential growth. Two different 

machines were used to grow cultures in 96 well plates, as defined in chapters 3.2 and 4.2. 

After 4 hours of incubation, a 1:100 dilution of each mutant culture, in a total volume of 150µl, was 

added to a Corning® 96 well flat bottom black-walled plate (product code: 3603), with the position of 

each mutant being randomised, using a Python script to randomly allocate each strain to a well to 

avoid bias. Growth was measured in a Tecan Infinite® 200 PRO plate reader for 24 hours with OD600 

measurements taken every 20 minutes. Each experiment was repeated to produce five biological 

replicates. 
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2.1.5.   Growth Rate Calculation 

To calculate growth rates the GrowthRates package in R was used (Hall et al., 2013). GrowthRates was 

run using the parameters h=8 (sliding window of 8 data points) and quota=0.95 (extrapolate slope to 

windows within 95% confidence of highest growth rate window) to estimate the maximum growth 

rate for each mutant. Growth curves were visualised in R, using a panel plot, to check for abnormalities 

and to ensure growth rates were calculated from appropriate data points in the exponential section 

of the growth curves. Relative fitness was estimated by normalising the growth rate of the mutants 

with that of the ‘wild type’. This produced five replicate sets of normalised growth values from which 

an average and standard deviation was calculated for each mutant. 

2.1.6.   Epistasis Calculation 

Epistasis values of double mutants were calculated for each replicate, then a mean average was 

calculated. Formula for epistasis calculation is given below: 

ε = ωm12 – ωm1 x ωm2 

where ωm12 is the fitness value of the double mutant and ωm1/ωm2 are the fitness values of the 

respective single mutants. 

 

2.1.7.   Statistical Analysis 

To determine whether mutants had a different growth rate compared to the wild type, one-tailed one 

sample t-tests were performed using µ0 < 1 and µ0 > 1. The resulting p-values were corrected for 

multiple tests (Benjamini & Hochberg, 1995) and α = 0.05 was used as the level of significance. 

A Pearson rank correlation was done to give an indication of the relationship expression level and 

fitness. This indicated whether there was a positive correlation between the two measurements. All 

statistical analysis were carried out using R software (4.1.1) in R Studio (Version 1.4.1717). 
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2.2.   Chapter 4 Methods  

2.2.1.   Stains, Culturing and Cloning 

All methods for this chapter were taken from Section 2.1.    as the same mutant library was used for 

assays. Please refer to Section 2.1.    for these experimental details (Sections 2.1.1.    to 2.1.3.   ). 

2.2.2.   Growth Assays 

Four conditions were tested; 0.1% arabinose + 37°C, 0.25% arabinose + 37°C, 0.5% arabinose + 37°C 

and 0.1% arabinose + 30°C. The first condition was treated as the baseline as the conditions were the 

same as used in the previous chapter. The sugar concentrations were selected as we theorised that 

below 0.1% the growth rate would be reduced and limit the ability to obtain accurate measurements 

due to assays needing to be run for much longer periods. Also, approaching 1.6% glucose has been 

shown to reduce bacterial growth rate (Kazan et al., 1995). As no literature could be found describing 

arabinose toxicity levels, glucose toxicity levels were used as an estimation. A recent study found that 

mice provided with water containing 1% arabinose were able to demonstrate a phenotypic change in 

enteric Salmonella enterica serovar Typhimurium (Ruddle et al., 2023), as it is unlikely that the 

concentration in the gut would be this high after imbibing, it was decided to use concentrations below 

1%. As for temperature, the Growth profiler 960 platform (Enzyscreen) could only provide growth 

temperatures between room temperature and 42°C. Therefore, 37°C and 30°C were selected as they 

were within the equipment’s capability and the temperature interval was sufficiently large so as to 

increase the likelihood of detecting a difference in epistasis values. 0.1% arabinose was used for the 

30°C condition as this was the arabinose concentration used in the previous chapter and by Lagator 

et al. (2016). 

Strains were streaked from freezer stocks onto MacConkey agar base (Difco) plates supplemented 

with 0.5% arabinose and 50 ug/ml kanamycin. The plates were incubated at 37°C overnight and then 

a single colony was picked from each plate and inoculated into M9 media supplemented with the 

appropriate concentration of arabinose (0.1%, 0.25% or 0.5%), 50 ug/ml kanamycin, MgSO4, CaCl2 

and casamino acids. Each strain was inoculated into 1ml of the media within an individual well of a 96 

deep well plate. The cultures were incubated overnight for 18 hours. After incubation the cultures 

were passaged into a fresh deep well plate using a 1 in 100 dilution and grown for four hours to ensure 

exponential growth. After incubation a 1 in 100 dilution of each well from the four-hour culture was 

added to 250µl of media in a randomized well (using the same python script as in Section 2.1.4.   ) in 

five independent Polystyrene greyish-white square 96-half-deepwell microplates (CR1496dg, 

Enzyscreen) and the position of each strain within each plate was recorded. The five plates were then 

placed in the Growth Profiler 960 platform (Enzyscreen) and incubated at either 37°C or 30°C, 
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depending on the condition being tested, for 48 hours. The Growth Profiler captured images from the 

underside of the plates every 20 minutes and these images were stored for analysis as described in 

Section 4.2.3.    

2.2.3.   Image Analysis 

Images were converted into OD600 equivalent values by converting the green values from well images 

and fitting them to a calibration curve. The calibration curve was created by measuring the green 

values of a series of serially diluted cultures of which the OD600 values were known. The equation 

Gvalue = b*0D600/a was used where a and b were selected to give the best fitting curve for the 

calibration. Green values over the 48 hours were then converted to OD600 values and these data were 

saved for growth rate analysis. 

2.2.4.   Growth Rate Calculation 

To calculate growth rates, the R GrowthRates package (Hall et al., 2013) was used. The data was 

imported into R and GrowthRates was run using the parameters h = 8 (sliding window of eight data 

points) and quota = 0.95 (extrapolate slope to windows within 95% confidence of highest growth rate 

window). Growth curves were visualised in R, using a panel plot, to check for abnormalities and to 

ensure growth rates were calculated from appropriate data points in the exponential section of the 

growth curves. Slope values were produced for each growth curve and these values were recorded in 

a new spreadsheet including the five plates from each assay. The growth rates were then normalised 

against the wild type growth rate by dividing all values from an individual plate by the wild type value 

from the same plate. This produced five replicates sets of normalised growth values per condition 

from which an average and standard deviation could then be calculated for each mutant. 

2.2.5.   Statistical Analysis 

All average relative fitness values were compared against the wild type using a Student’s one sample 

T-test comparing against a value of 1 and then FDR corrected. All epistasis values were tested for being 

significantly different from zero using a Student’s one sample T-test and FDR corrected. 

2.2.6.   Epistasis Calculations 

Epistasis values of double mutants were calculated for each replicate plate within each condition and 

a mean average was calculated for each condition. Formula for epistasis calculation is given below: 

ε = ωm12 – ωm1 x ωm2 
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where ωm12 is the fitness value of the double mutant and ωm1/ωm2 are the fitness values of the 

respective single mutants. 
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2.3.   Chapter 5 Methods  

2.3.1.   Gene Neighbourhood Analysis 

Gene neighbourhood figures (Figure 5.1, Figure 5.2) were created using GeCoViz online software 

available at (https://gecoviz.cgmlab.org/) (Botas et al., 2022). The KEGG Orthologous group (KO) for 

araB (K01804) was selected as the anchor gene as this is the first gene in the araBAD operon and is a 

required enzyme for the arabinose pathway (Cribbs & Englesberg, 1964) so must be present in all 

functional version of the arabinose operon. The list of genomes selected were the 58 genomes 

available within GeCoViz for the Enterobacteriaceae family (Figure 5.1) and the 29 genomes from 19 

families available within the Gammaproteobacteria class (Figure 5.2). 

2.3.2.   Genome Selection 

A list of strains to be used in analysis were selected from the NCBI genome webpage [July 2022] using 

the following parameters: Bacteria, complete, reference, representative. This returned 3838 

candidate genomes which represented the broadest available set of bacterial genomes. 

2.3.3.   Gene Clustering Analysis 

Using the genomes selected in Section 2.3.2.   , a database was created using Diamond v2.0.15 

(Buchfink et al., 2015) for use in Cblaster. To search for the arabinose operon CBAD gene cluster across 

species, Cblaster v1.3.15 (Gilchrist et al., 2021) was used against the database. The query sequence 

was the E. coli K12-MG1655 araCBAD operon sequence [which can be accessed here: RegulonDB 

(unam.mx)] and the following parameters were specified: minimum identity = 70%, minimum hits = 2, 

minimum unique hits = 2, minimum coverage = 80%. 103 genomes were returned as having Cblaster 

hits. The output from Cblaster was input into clinker v0.0.25 (Gilchrist & Chooi, 2021) to produce 

visualisations of the arabinose operon gene clusters (Appendix 1). 

A separate analysis was done using the core genome output from Panaroo (Tonkin-Hill et al., 2020). 

For each species, arabinose genes were identified and cross referenced with Cblaster results to define 

them as syntenic or not. These were then plotted against the core genome phylogeny to identify clade 

specific patterns of synteny (Figure 5.3) 

2.3.4.   Phylogenetic Tree Analysis 

A core phylogenetic tree was required for comparison to the phylogenetic trees of the arabinose 

genes. The 103 genomes from Section 2.3.3.    were input into Panaroo (Tonkin-Hill et al., 2020) by Dr 

Charlotte Chong and a core gene alignment was produced. Dr Chong then passed the core alignment 

to IQ-TREE (Chernomor et al., 2016) and a phylogenetic tree was produced. 
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For the arabinose gene trees, Panaroo was run by Dr Chong with a lower threshold of 70% so the 

arabinose genes would be included in its analysis. The list of genes found were then manually checked 

against data from Cblaster to determine which genes were part of the canonical operon in each 

species. The resulting genes were then extracted from their respective genomes and aligned using 

MAFFT (Katoh et al., 2002) before being passed to IQ-TREE by Dr Chong for phylogenetic tree creation. 

To compare the phylogenetic trees of the arabinose genes with the core genome tree, branch score 

(Kuhner & Felsenstein, 1994) values were calculated for each gene phylogeny when compared to the 

core phylogeny. 
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CHAPTER 3  

 

3.1.   Introduction 

Changes to regulatory sequences can have a dramatic impact on organismal evolution, comparable or 

even exceeding the innovations achievable through mutations in coding sequences (King & Wilson, 

1975; Wray, 2007). In fact, homologous coding sequences are often highly conserved or even identical, 

while their respective regulatory sequences often show substantial levels of variation (Carroll, 2008; 

Joshi et al., 2021). Cis-regulatory elements (CREs) are among the most significant contributors to this 

regulatory divergence (Osada et al., 2017; Wittkopp & Kalay, 2012). Promoters and enhancers are two 

of the most well studied CREs, with promoters being found in close proximity to the transcriptional 

start site while enhancers are often located further upstream or downstream. The primary source of 

regulatory divergence are enhancers (Brown & Feder, 2005; Lewis et al., 2019; Wittkopp & Kalay, 

2012; Wray, 2007), as they are more likely to acquire mutations compared to promoters (Naidoo et 

al., 2018). Promoters bind to a group of highly conserved, global regulatory molecules including 

transcription factors and RNA polymerase, thereby having less freedom for evolutionary innovation 

(R. P. Brown & Feder, 2005). However, promoters can still play a significant role in evolution as 

mutations within these regions directly influence binding specificity and hence the expression levels 

of the associated gene(s) (Hammarlöf et al., 2018; Islam et al., 2011; Jacob & Monod, 1961). Gene 

expression has been shown to be a major driving force in evolution and so mutations in promoters 

can have marked effects on the evolutionary trajectory of an organism (Friedensohn & Sawarkar, 

2014). 

The non-additive effects of double mutants are defined as epistatic interactions. Epistasis is the 

phenomenon by which the fitness effect of a mutation is dependent on the genetic background in 

which it is present (Phillips, 2008). This definition can be applied to interactions between point 

mutations or interactions between individual mutations on varying genetic backgrounds; this study 

focuses on the former. Studying pairwise interactions between mutations allows for a more precise 

estimate of epistatic interactions that can be quantitatively measured (de Visser & Krug, 2014). Due 

to the effect of epistasis on phenotypic outcome and therefore fitness, epistasis can shape fitness 

landscapes. Negative or positive epistasis leads to single fitness peaks achievable by mutations 

independent of one another, whilst sign epistasis can limit evolutionary pathways. In contrast, 
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reciprocal sign epistasis creates multiple fitness peaks allowing for sub-optimal genotypes to become 

fixed in a population (Poelwijk et al., 2011; Weinreich et al., 2005). Epistasis can determine the 

evolutionary pathways that are available to genetic elements such as CREs by creating either a ‘rugged’ 

epistatic landscape, where only specific mutational pathways lead to the global fitness peak and local 

optima can cause populations to become ‘stranded’ at a sub-optimal genotype. Alternatively, epistasis 

can create a ‘smooth’ landscape where all beneficial mutations lead to the global fitness peak 

regardless of the order in which they are gained (de Visser & Krug, 2014; Wright, 1932).  

Significant empirical evidence suggests that changes in regulatory regions can affect fitness thus 

impacting traits including morphology, physiology, and behaviour (Jiang et al., 2019; Wen et al., 2016; 

Wray, 2007; Young et al., 2022; Zheng et al., 2019). The impact of regulatory changes upon the binding 

specificity of various trans-acting factors has been studied experimentally in vitro (Geertz et al., 2012; 

Maerkl & Quake, 2007) and the distribution of mutational effects have been examined in vivo 

(Brewster et al., 2012; Kinney et al., 2010; Patwardhan et al., 2009; Sharon et al., 2012). The 

aforementioned studies mainly focused on characterising the binding dynamics of CREs and their 

associated transcription factors (TFs) but did not study the pairwise nucleotide effects within CREs and 

how these nucleotide interactions affect expression. One investigation of the pairwise interactions 

between nucleotides within a mammalian CRE found that 86% of single nucleotide substitutions 

within the CRE had a significant impact on regulation, with double mutants showing nucleotide-

specific interactions even when constituent mutations were located in separate TF binding sites 

(Kwasnieski et al., 2012). Lagator et al. (2017) studied pairwise interactions in the lambda promoter 

and found that most pairwise interactions exhibited negative epistasis (Lagator, Paixão et al., 2017). 

Subsequently, Lagator et al. (2017) found that double mutants caused more phenotypic variation than 

single mutants could achieve alone (Lagator, Sarikas et al., 2017). 

To date, studies involving epistasis in CREs have focused on characterising the effects of epistasis on 

gene expression levels (Lagator et al., 2016; Lagator, Paixão et al., 2017; Lagator, Sarikas et al., 2017) 

but have not investigated whether such epistatic effects on expression have concomitant effects on 

organismal fitness. The evolutionary goal of a catabolic operon would be to have low levels of 

uninduced expression, limiting wasted resources in the absence of a given carbon source, and high 

levels of induced expression increasing metabolic output in the presence of a carbon source conferring 

increased growth and, by extension, fitness (Schleif, 2000). But post transcriptional effects can restrict 

the effect that expression has on fitness (Romeo et al., 2013; Yang et al., 2010). 

Lagator et al. investigated epistasis within the pBAD CRE of the arabinose operon (Lagator et al., 2016) 

(Figure 3.1) which is one of the most studied operons and the first example of positive regulation 



41 

 

found in bacteria (Hahn, 2014). The pBAD promoter was also the first example of DNA looping ever 

studied (Dunn et al., 1984) and helped define the ‘light switch’ mechanism of regulation which is a 

simple yet effective method of ligand regulation (Saviola et al., 1998).
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Figure 3.1 Workflow from A) Lagator et al. (2016) and B) This study. Lagator et al. (2016) created mutant promoters 
driving venus-yfp and measured fluorescence levels to infer gene expression values. In this study the promoter was driving 
the arabinose operon genes (araBAD) and growth rates of the mutant strains were calculated as a representation of 
fitness. Lagator et al. calculated epistasis from expression values. This study used fitness values to calculate epistasis. 
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They examined epistatic interactions by placing the arabinose operon promoter on a low copy plasmid 

that included the regulatory gene araC with the metabolic operon genes (araB, araA and araD) 

replaced with a venus yfp fluorescent reporter gene. A single mutant library that spanned both the 

araI1 and araI2 promoters was generated and double mutants were created through random 

combinations (Lagator et al., 2016) of the single mutant library. Single mutants were selected based 

on work from Niland et al. which reported that mutations at the given sites resulted in at least a 10-

fold reduction in AraC binding, as both araI1 and araI2 bind AraC in either the presence or absence of 

arabinose (Niland et al., 1996). Expression values were estimated by normalising the fluorescence 

measurements of mutants against the wild type to generate values that were then used to calculate 

epistatic interactions based on their divergence from the expected expression of the double mutant. 

In this sense, expression is equivalent to the amount of fluorescent protein within the cell, this is 

therefore not necessarily reflective of direct levels of transcript but is affected by post-transcriptional 

effects. Significant negative epistatic interactions were found for half (10/20) of the double mutants 

(Figure 3.2 (b)), and significant positive epistasis found in three double mutants; one in the presence 

of arabinose (mutant positions ‘12,14’ in araI1 and araI2, respectively) and two in the absence of 

arabinose (mutant positions ‘1,6’ and ‘4,10’ in araI1 and araI2, respectively). 60% of double mutants 

exhibited sign epistasis where a constituent mutation changed sign from positive to negative. For 

example, mutant 4 in the presence of arabinose has increased expression but double mutant ‘4,10’ 

has a decreased expression value, changing the sign from positive to negative (Figure 3.2). 
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Figure 3.2 Relative Expression of mutants in different environments. a) Relative fluorescence of single mutants in the 
presence of arabinose. b) Relative fluorescence of double mutants in the presence of arabinose. c) Relative fluorescence of 
single mutants in the absence of arabinose. d) Relative fluorescence of double mutants in the absence of arabinose. 
Fluorescence was measured to represent expression levels. All values are relative to the wild type value which is indicated 
by the horizontal line at a value of 1. Asterisks indicate significant difference from 1. Figures modified from previously 
published data (Lagator et al., 2016). 
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These results indicate that the epistatic landscape for the pBAD CRE is fairly smooth showing mostly 

negative epistasis in both the presence and absence of arabinose. Whilst some sign epistasis was 

present, which can restrict evolutionary pathways, no reciprocal sign epistasis was found resulting in 

only one global fitness peak (Poelwijk et al., 2011). Lagator et al. (2016) concluded that these fitness 

landscapes could be the result of the competing goals of optimal expression in the presence of 

arabinose versus tight repression in its absence with mutations either increasing or decreasing binding 

affinity therefore both goals are in contradiction. 

The results from Lagator et al. (2016) are useful in elucidating the evolutionary landscape of bacterial 

promoters and are key to understanding the role of epistasis in microbial evolution. However, epistasis 

is often multifactorial and can be influenced by several factors beyond the raw expression values 

shown by the mutant promoters. The experimental system set up by Lagator et al. (2016) had 

significant limitations as it measured the genotype – phenotype interaction of the pBAD promoter 

using a fast-maturing yellow fluorescent protein - Venus (Nagai et al., 2002), which only reflected the 

immediate phenotypic effect on gene expression. This system was tightly controlled and so could not 

detect any post-transcriptional effects. Furthermore, changes in gene expression do not necessarily 

result in changes in fitness (Signor & Nuzhdin, 2018). It has been demonstrated that, at high growth 

rates, ribosome synthesis is the rate limiting step for growth (Gourse et al., 1996; Nomura, 1999) and 

so greater expression of metabolic genes may not cause a proportional increase in growth rate and 

therefore not produce greater fitness. This may result in lower penetrance of epistasis. 

In natural environments, promoters experience selection pressure from several different sources and 

the fitness landscape may be affected by higher order epistasis (Weinreich et al., 2018) when the 

promoters are driving the canonical metabolic genes (for example araBAD). Therefore, whilst absolute 

expression data is useful in showing epistatic effects on base promoter function, it does not necessarily 

reflect the effect on fitness that would be realised in nature. For example, sugar catabolism can have 

a significant effect on cellular response and the presence of metabolic genes can influence the 

fluorescence response of a reporter gene (Afroz et al., 2014). Consequently, the epistatic landscape 

may differ when promoter mutations are investigated in the context of the complete operon 

background and the wider fitness of the cell is taken into consideration. 

2.1.1. Aims 

I wanted to discover if epistatic effects on the expression levels of the pBAD promoter (measured as 

total levels of fluorescent protein and therefore affected by post-transcriptional effects) were 

reflected when measuring a proxy for cell fitness directly; the ability of a cell to grow on arabinose as 

the sole carbon source. To investigate this, I introduced the catabolic araBAD genes into the constructs 
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from Lagator et al. (2016) and measured growth rates on arabinose as a proxy for fitness to determine 

whether epistatic effects on the expression level would be reflected at the fitness level. Due to there 

being no direct competition interaction between strains or any obvious way to differentiate strains, 

competition assays were deemed unnecessary (Hibbing et al., 2010; Ram et al., 2019; Wiser & Lenski, 

2015). 
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3.2.   Results 

To investigate the effects of epistasis on expression versus fitness it was important to first understand 

the effects of the individual mutations on fitness alone. Comparing the mutational effects between 

this study and published expression data (Lagator et al., 2016) made it possible to determine whether 

the mutations were having similar effects on fitness as they were on expression. Epistasis was then 

calculated from fitness data to compare with epistasis values based on expression. Fitness here is the 

ability of the cell to grow on arabinose as a sole carbon source and expression is the relative 

fluorescence level of Venus-yfp. 

Information about the mutants used in this study is outlined below (Table 3.1). Mutants were labelled 

in numerical order to simplify the comparison between fitness and expression datasets. The genetic 

construct within the pZS*2 plasmid created for this study is shown in Figure 3.3.
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Table 3.1  Mutant information. Underlined regions in the sequence column indicate araI1 and araI2, 
respectively (see Figure 1.3). Coloured nucleotides show the individual mutations present in each strain. 
A= red, C= blue, T= green and G= yellow. 

Mutant Genotype Mutant 

Type 

Operator Sequence 

M1 1 Single I1 CCAGAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGAC 

M2 2 Single I1 CCATACCATTTTTATCCATAAGATTAGCGGATCCTACCTGAC 

M3 3 Single I1 CCATAGGATTTTTATCCATAAGATTAGCGGATCCTACCTGAC 

M4 4 Single I1 CCATAGCCTTTTTATCCATAAGATTAGCGGATCCTACCTGAC 

M5 5 Single I1 CCATAGCATTTTTAGCCATAAGATTAGCGGATCCTACCTGAC 

M6 6 Single I1 CCATAGCATTTTTATTCATAAGATTAGCGGATCCTACCTGAC 

M7 7 Single I1 CCATAGCATTTTTATCAATAAGATTAGCGGATCCTACCTGAC 

M8 8 Single I1 CCATAGCATTTTTATCCGTAAGATTAGCGGATCCTACCTGAC 

M9 9 Single I1 CCATAGCATTTTTATCCAAAAGATTAGCGGATCCTACCTGAC 

M10 10 Single I1 CCATAGCATTTTTATCCATTAGATTAGCGGATCCTACCTGAC 

M11 11 Single I2 CCATAGCATTTTTATCCATAAGATGAGCGGATCCTACCTGAC 

M12 12 Single I2 CCATAGCATTTTTATCCATAAGATTCGCGGATCCTACCTGAC 

M13 13 Single I2 CCATAGCATTTTTATCCATAAGATTACCGGATCCTACCTGAC 

M14 14 Single I2 CCATAGCATTTTTATCCATAAGATTAGTGGATCCTACCTGAC 

M15 15 Single I2 CCATAGCATTTTTATCCATAAGATTAGCGGATCCTAGCTGAC 

M16 16 Single I2 CCATAGCATTTTTATCCATAAGATTAGCGGATCCTACATGAC 

M17 17 Single I2 CCATAGCATTTTTATCCATAAGATTAGCGGATCCTACCTGTC 

M18 1,6 Double I1 CCAGAGCATTTTTATTCATAAGATTAGCGGATCCTACCTGAC 

M19 1,2 Double I1 CCAGACCATTTTTATCCATAAGATTAGCGGATCCTACCTGAC 

M20 5,7 Double I1 CCATAGCATTTTTAGCAATAAGATTAGCGGATCCTACCTGAC 

M21 3,9 Double I1 CCATAGGATTTTTATCCAAAAGATTAGCGGATCCTACCTGAC 

M22 4,10 Double I1 CCATAGCCTTTTTATCCATTAGATTAGCGGATCCTACCTGAC 

M23 12,14 Double I2 CCATAGCATTTTTATCCATAAGATTCGTGGATCCTACCTGAC 

M24 11,13 Double I2 CCATAGCATTTTTATCCATAAGATGACCGGATCCTACCTGAC 

M25 14,17 Double I2 CCATAGCATTTTTATCCATAAGATTAGTGGATCCTACCTGTC 

M27 13,17 Double I2 CCATAGCATTTTTATCCATAAGATTACCGGATCCTACCTGTC 

M28 1,13 Double I1 and I2 CCAGAGCATTTTTATCCATAAGATTACCGGATCCTACCTGAC 

M29 2,15 Double I1 and I2 CCATACCATTTTTATCCATAAGATTAGCGGATCCTAGCTGAC 

M30 2,16 Double I1 and I2 CCATACCATTTTTATCCATAAGATTAGCGGATCCTACATGAC 

M31 5,13 Double I1 and I2 CCATAGCATTTTTAGCCATAAGATTACCGGATCCTACCTGAC 

M32 6,15 Double I1 and I2 CCATAGCATTTTTATTCATAAGATTAGCGGATCCTAGCTGAC 
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M33 7,14 Double I1 and I2 CCATAGCATTTTTATCAATAAGATTAGTGGATCCTACCTGAC 

M34 8,16 Double I1 and I2 CCATAGCATTTTTATCCGTAAGATTAGCGGATCCTACATGAC 

M35 8,17 Double I1 and I2 CCATAGCATTTTTATCCGTAAGATTAGCGGATCCTACCTGTC 

M36 9,15 Double I1 and I2 CCATAGCATTTTTATCCAAAAGATTAGCGGATCCTAGCTGAC 

M37 9,17 Double I1 and I2 CCATAGCATTTTTATCCAAAAGATTAGCGGATCCTACCTGTC 
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Figure 3.3 Plasmid construct pZS*2-araBAD created using NEBuilder® HiFi DNA Assembly Kit. Each mutant 
strain contains mutations in the pBAD promoter (Table 3.1) show in red. araC promoter is also shown in red. 
Arabinose operon genes are shown in green. Kanamycin resistance gene is shown in maroon. The origin of 
replication is shown in blue. 
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3.2.1.   Relative Fitness of Single Mutants 

‘Fitness’ of double mutants is the product of epistatic interactions between constituent single 

mutants. To measure the magnitude of epistasis between mutants a relative fitness value was 

calculated using growth rate data. For expression data, the relative fluorescence value from (Lagator 

et al., 2016) was used. For this study, relative growth rate was used. Growth rate was selected as the 

measurement for fitness as exponential growth rate is a reliable measure of the ability of a cell to 

grow on a particular carbon source (Schaechter et al., 1958; Wang et al., 2019). Examples of the 

growth curves observed for wild type and mutant strains are shown below (Figure 3.4). The strains 

were grown in M9 minimal media with arabinose as the sole carbon source to ensure that growth was 

driven by arabinose catabolism. The resulting fitness distributions of single mutants are shown in 

Figure 3.5.  

Figure 3.4 Example growth curves from wild-type and Mutant 1 strains. Wild-type OD600 values are plotted in red, while 
the Mutant 1 (Table 3.1) data are plotted in blue.
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Figure 3.5 Relative fitness of single mutants varies less from wild type value than relative gene expression. A) The 
relative fluorescence of pBAD CRE single mutants compared to the wild type strain indicated with the blue line. 
Data from (Lagator et al., 2016). Error bars represent standard deviation. B) Relative growth rates of pBAD CRE 
single mutants compared to the wild type (methods and media outlined in Section 2.1.4.   ) indicated with the 
blue line. Error bars represent standard deviation. Asterisks signify significant difference from wild type value (p < 0.05). 
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When measuring relative fluorescence, 15 out of 17 mutants were found to be significantly different 

from the ‘wild type’. Of those 15 mutants, 12 had significantly lower fluorescence than the wild type. 

Mutants 1, 4 and 16 showed higher fluorescence than the wild type suggesting the mutations within 

the promoter led to higher expression. When observing growth rates, most mutants did not 

significantly differ from the wild type, with the exception of mutant 13. The comparison between the 

two datasets (Figure 3.5) indicates that single mutation effects are more pronounced when measuring 

absolute expression levels but are heavily masked when measuring a more general trait of cell fitness, 

such as growth rate. An ANOVA test was performed that identified statistically significant differences 

between both expression and fitness values of individual mutants (p-value <0.001), and between the 

expression and the fitness of mutants overall (p-value <0.001). The ANOVA also showed that there 

was a significant interaction between mutants and the variable being measured (expression vs growth 

rate) (p-value <0.001).  

3.2.2.   Relative Fitness of Double Mutants 

To determine epistasis, the expression and fitness of double mutants needed to be measured to 

determine if the values differed from the additive expectation. When measuring expression of double 

mutants, 18 out of the 19 mutants (M30) had a statistically significant difference from the wild type 

(Figure 3.6 (a)), this is a similar proportion to that of the single mutants where 15 out of 17 mutants 

were significantly different (Figure 3.5 (a)). However, when measuring fitness of double mutants there 

were 10 of the 19 mutants showing a significant difference from the wild type (Figure 3.6 (b)). This 

finding was in marked contrast to the single mutant fitness data where only one mutant showed a 

significant difference (Figure 3.5 (b)). 
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Figure 3.6 Relative fitness of double mutants. A) The relative expression of pBAD CRE double mutants compared to the 
wild type strain indicated with the blue line. Error bars represent standard deviation. B) Relative fitness of pBAD CRE double 
mutants compared to the wild type indicated with the blue line. Error bars represent standard deviation. Asterisks signify 
significant difference from wild type value (p < 0.05). Methods and media outlined in (Section 2.1.4.   ). 



55 

 

Although the fitness values of double mutants seem to differ less from the expression values than in 

the case of single mutants, there are still some which are notably different. For example, mutant 31 

shows a dramatic difference between fitness and gene expression and indicates the magnitude of the 

differences that can be observed when comparing fluorescence to growth rate (Figure 3.6). On the 

contrary, mutant 30 showed almost no difference relative to the wild type in both studies. While 18 

mutants were significantly different from the wild type when measuring expression, it is important to 

note that eight of these show no significant difference when measuring growth rates. This means 

several mutants are no longer significantly different from the wild type when measuring growth rate, 

further emphasising the difference in the effects of mutations on fitness versus expression. 

3.2.3.   Positional Effects 

One of the interesting factors to consider with the above data is whether the location of the mutations 

influence the differences we see between measuring expression versus fitness. Considering whether 

araI1 or araI2 have stronger mutational effects, or indeed whether mutants containing mutations in 

both sites show larger changes, is important for understanding the epistatic landscape of the pBAD 

promoter. Fluorescence values were plotted against growth rate fitness and a Pearson correlation test 

produced a correlation of 0.49 (p=0.002) (Figure 3.7).
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Figure 3.7 Fitness of mutants is weakly correlated with expression values. The blue dashed line represents a theoretical correlation of 1. The black dotted lines represent the respective wild 
type values for each measurement. Individual data points represent mean values for mutants and are coloured based on their operator location. Shapes represent single or double mutants. 
Red line shows the correlation of the data points (Pearson correlation = 0.49). Expression data from (Lagator et al., 2016). Fitness data from (Section 2.1.4.   ). 
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Figure 3.7 plots all 37 mutants from Table 3.1 and shows that double mutants with mutations in both 

operators (purple dots) were clustered together except for a single mutant (M30). These mutants are 

seen to have lower expression with respect to their fitness. This trend is also echoed in Figure 3.6. 

Another point of interest is that out of the five mutants whose expression values are greater than their 

fitness (below the blue dashed line), four are single mutants with two each in operator araI1 and araI2.
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Figure 3.8 Fitness of mutants with mutations in both operator sites have a weaker positive correlation with expression 
than mutants located within a single site. A) Operator araI1. B) Operator araI2. C) Operator araI1 and araI2. Blue dotted 
lines represent theoretical correlations of 1. Red lines represent linear regression of data points. (Pearson correlation = A) 
r = 0.57, B) r = 0.66; and, C) r = 0.31). 
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Figure 3.8 plots mutants on separate graphs based on their operator locations outlined in Table 3.1. 

These figures show that mutants within either araI1 or araI2 had a positive pearson correlation (any 

value greater than 0) between expression and fitness with similar values of 0.57 and 0.66 respectively. 

However, mutants with mutations in both operators had a weaker positive correlation of 0.31. This 

suggests that the mutants spanning both operators show a greater disparity between expression and 

fitness values. 

Table 3.2 Mutants with mutation in both operator sites have a larger proportion of significant differences 
between their expression and fitness. 

Operator Significant Changes Non-significant changes 

araI1 7 8 

araI2 7 4 

araI1 and araI2 9 1 
 

 

A Fisher’s exact test was performed on the number of mutants with significant differences between 

expression and fitness in each of the operators and those within both (Table 3.2). It was observed that 

the location of mutations does not significantly affect the likelihood of having significant differences 

between expression and fitness measurements (p > 0.05).  

3.2.4.   Epistasis 

Epistasis values were calculated (Section 2.1.6.   ) from fitness data and compared against epistasis 

values from expression data from (Lagator et al., 2016) (Figure 3.9) to determine if epistasis was 

consistent between these measurements. A noticeable trend observed was the error values for 

growth rate epistasis which were larger on average than the expression phenotype epistasis values. 

Consequently, there were fewer significant epistasis values from the growth rate data compared to 

data from Lagator et al. (2016). As epistasis only results from double mutations, mutants 18-37 (Table 

3.1) were analysed (Figure 3.9).
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Figure 3.9 Fitness data does not show the same pattern of epistasis as gene expression data. Points represent mean 
epistasis values of double mutants (18-37). Epistasis values were calculated from each replicate plate and then averaged. 
Error bars are standard deviation. Dotted lines represent an epistasis value of zero on the respective axes. Blue dashed line 
indicates correlation of 1, signifying if epistasis is consistent between expression and fitness. Formula for epistasis calculation 
is ε = ωm12 – ωm1 x ωm2 where ωm12 is the fitness value of the double mutant and ωm1/ωm2 are the fitness values of the 
respective constituent single mutants. 
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Epistasis values from fitness data were not found to be significantly different from zero meaning no 

epistasis was detected using fitness data. This suggests the approach used to measure growth rates 

may not have been sensitive enough to detect the changes in fitness required to calculate epistasis. 

3.3.   Discussion 

In this study, I aimed to build upon the work from Lagator et al. (2016) which decoupled expression 

from post-translational fitness effects to ascertain the epistatic landscape of the expression levels of 

the pBAD promoter. For this, the arabinose operon genes were cloned into the construct under the 

control of the mutant promoters, in order to determine the extent of differences in epistasis between 

expression and more general fitness. I found that, whilst many significant epistatic interactions were 

seen when measuring expression alone, those same interactions were not preserved when measuring 

fitness using growth rates. These findings suggest that epistatic effects on phenotypes such as 

expression do not translate into effects on organismal fitness (Figure 3.9) when using growth rate to 

assess fitness. 

3.3.1.   Fitness Differences 

3.3.1.1.   Single Mutants 

One of the most striking observations when measuring fitness compared to expression was that out 

of the 17 single mutants, only one was found to have significantly different fitness than the wild type, 

whereas 15 mutants had significantly different expression than the wild type. This indicates that single 

mutation effects are heavily masked by external factors beyond expression levels as the relative 

fitness of the cell is not compromised as much as would be expected. The fact that the expression 

levels of mutants showed significant differences from the wild type suggests that the difference does 

not lie at the transcriptional level, but the difference may lie at the translational or post-translational 

level, where higher or lower expression of a protein does not necessarily translate to changes in 

metabolic rate (Liu et al., 2016). 

It has been shown that expression levels are subject to strong stabilising selection in Caenorhabditis 

elegans (Denver et al., 2005) which suggests natural selection favours expression levels surrounding 

the average level rather than those at extremes. This phenomenon could explain why there are no 

mutants with significantly positive fitness as, if the high level of expression does not result in a marked 

increase in fitness, it would be seen as a waste of energy and resources and therefore be selected 

against. One possible reason for increased expression not resulting in an equivalent increase in fitness 

is the heterogeneity of metabolism at the population level. It has been shown that at certain 

concentrations of inducer (arabinose in this case) some cells are induced to metabolise a carbon 
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source whilst others do not reach a threshold for induction. This is due to the exponential nature of 

positive feedback and has been coined ‘multistationarity’  (Novick & Weiner, 1957; Smits et al., 2006). 

If not all the individuals in a population are induced to metabolise a carbon source, then the increase 

in expression levels may not be proportional to an increase in growth rate or ‘fitness’. 

Another possible contributing factor is that a major constraint on metabolism can be intracellular 

crowding, where cytoplasmic space limits maximum flux attainable by the cell, which could suggest 

that there is a post transcriptional bottleneck in the ability of the cell to convert a carbon source into 

growth potential (Beg et al., 2007). Another example of a possible bottleneck in the system is the rate 

of uptake of a carbon source from the environment, regulated by the araFGH operon (Kolodrubetz & 

Schleif, 1981). Higher expression levels will not result in increased growth if there is an excess of 

metabolic enzyme and not enough substrate to saturate the system. 

3.3.1.2.   Double Mutants 

Out of the double mutants, 10 retained a significant difference from the wild type in the fitness data 

compared to 18 in the expression data. This is a marked increase from the single mutants, suggesting 

that the combinatoric effects on expression of mutations in the pBAD CRE are strong enough to be 

present in the measurement of fitness, although to a significantly lower effect (Figure 3.5).  A plausible 

explanation for this could be that the masking effects on single mutations are similarly affecting the 

double mutants but because they had stronger effects on expression to begin with, they still differ 

significantly from the wild type. This aligns with the fact that Lagator et al. (2016) found strong 

negative epistatic effects between most mutations and so the non-additive effects of double mutants 

are more resistant to masking than the single mutants. 

3.3.2.   Epistatic Effects 

Statistical tests showed that there was no significant epistasis found in any of the double mutants in 

the fitness data and this may be a limitation of the study (Section 3.4.   ). This is an interesting finding 

as it suggests that epistatic interactions between mutations are lost when measuring fitness versus 

expression which implies the fitness landscape of the pBAD CRE is smoother than expected when 

considering what natural selection can act upon. Something to consider is the fact that all mutations 

having fewer extreme effects in the growth rate data likely means that the combinatoric effects would 

also be milder and so harder to detect statistically. This finding is important when considering what 

evolutionary pathways are available to promoters as mutations that would initially seem inaccessible 

when considering expression data may be accessible in the wild as the landscape is made less 

restrictive by incomplete phenotypic penetrance.  
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One concept that could explain the differences we see between expression data and fitness data is 

that, when measuring expression, the epistatic interactions are limited to those of the two interacting 

mutations. That is to say, no external factors are affecting the phenotype in question; yfp fluorescence. 

However, when measuring growth rate, we introduce the potential of wider physiological effects as 

lower expression of metabolic enzymes does not necessarily mean decreased sugar catabolism. As 

mentioned previously, uptake of arabinose was not changed in the system and so if the uptake operon 

araFGH and unlinked araE gene (Macpherson et al., 1981) were already a bottleneck to the metabolic 

flux then reducing the amount of araBAD enzymes may not affect total flux as drastically as expected. 

Metabolic enzymes are also heavily regulated to manage sugar catabolism (Reid & Abratt, 2005) and 

thus, if the araBAD enzymes were regulated to limit flux previously then lowering the expression of 

the enzymes may not have an effect if regulation is reduced to ameliorate the effect. 

3.4.   Limitations 

Although this study was designed to be as robust as possible there are still some limitations to the 

study design. Firstly, although five repeat growth curves were assessed for each mutant, due to the 

natural variability of growth curves the standard deviation of the means was particularly large (Hall et 

al., 2013). This unfortunately limited statistical power when assessing whether the mutants’ relative 

growth rate was different from the wild type growth rate. This then had consequences for epistasis 

calculations as there were also large standard deviations which resulted in most epistasis values being 

non-significant. Performing several large-scale assays to increase the sample number would 

potentially reduce these standard deviations and allow for better statistical power. There is also the 

possibility that the approach of using growth rates to assess fitness was not sensitive enough to detect 

the changes in fitness and using a competition assay approach may yield more significant results. 

Another point to consider is single time point fluorescence measurements and average growth rate 

measurements are not interchangeable metrics. The measuring of a single time point will not account 

for differences in lag phase duration and so may not be measuring the same relative point in the 

growth curve of a given strain. Following the previous point, measuring average growth rate accounts 

for any differences in lag phase or stationary phase but these data are informative in other ways (Rolfe 

et al., 2012) which is not picked up when measuring average growth rate. Both methods have pros 

and cons and it is important to keep in mind that neither incorporates the full picture of microbial 

expression or growth, respectively. 

The system that was designed for the experiment also had its own limitations. Due to the operon being 

present on a plasmid background, multiple copies of the operon would be present (3-4) (Lutz & Bujard, 

1997) whereas on the native chromosome there would only be a single copy of the operon. There are 
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also differences between chromosomal expression and plasmid expression which are detailed in this 

review (Mairhofer et al., 2013). 

The use of ANOVA was also limited as the ANOVA analysed all possible comparisons within the 

dataset. This resulted in non-meaningful comparisons such as comparing the fluorescence of M1 to 

the growth rate of M2. This resulted in a significant ‘difference’ but the comparison is not scientifically 

meaningful. 

3.5.   Conclusions 

Overall, these findings point to the fact that, when considering evolutionary pathways and fitness 

landscapes, there can be drastic differences when observing the difference between expression and 

fitness. Whilst expression epistatic landscapes may be less smooth with strong epistatic effects, fitness 

landscapes may be a lot smoother and therefore allow certain mutations to occur without the 

expected detriment to the cell. For this system, it implies that epistatic effects can be ameliorated via 

buffering in other levels of cell metabolism. To determine which levels contribute to this buffering 

would be interesting for further work in this area. 

 These findings emphasize the fact that when thinking about evolution of microbes we must consider 

the contributions of all factors that affect cell metabolism and fitness and must not place too much 

emphasis on one contributing factor such as expression levels. Although it should be noted that this 

system may differ from other promoters and metabolic pathways so researching the landscapes of 

other regulatory systems would be an interesting way to build on this work. However, the key findings 

may reflect technical limitations associated with growth rate measurements and the equipment used. 

This important issue is addressed in Chapter 4 and in the general discussion (Chapter 6). 

 

  



65 

 

CHAPTER 4  

 

4.1.   Introduction 

Organisms evolving in the wild will likely be exposed to a multitude of environments across their 

lifespan. Whether this be changes in temperature, nutrient availability, or presence of competitors to 

name a few, the ‘goalposts’ of evolution are constantly being moved by a changing environment Lahti 

et al., 2009; Siepielski et al., 2009). Microbes such as E. coli experience this in their natural 

environment which can affect the molecular evolution of their genome (Blount et al., 2020). It could 

therefore be expected that changing environments affect the evolution of regulatory sequences due 

to their significant impact on evolution (Wray, 2007). Lagator et al. (2016) suggested that the 

arabinose operon CRE experiences competing selective forces for higher expression in the presence 

of arabinose alongside tighter regulation in its absence (Lagator et al., 2016). To understand the full 

extent of regulatory sequence evolution we must study these sequences under different 

environments to elucidate the evolutionary forces shaping them. 

As the fitness effects of mutations are environment dependent, so may be the interactions between 

these fitness effects. Whilst it is widely known that the effects of mutations on the fitness of an 

organism are dependent on the environment the organism finds itself in, less thought has been given 

to the effects of environment on the epistatic interactions between mutations. Phenotype has long 

been studied as a product of gene x environment (G x E) interactions and gene x gene (G x G) 

interactions (Epistasis), but less attention has been given to the concept of gene x gene x environment 

(G x G x E) interactions (Domingo et al., 2019). Given that fitness landscapes are used to visualise 

fitness of genotypes within the sequence space, and that fitness is a direct product of environment, 

there is evidence that fitness landscapes can vary between environments (Anderson et al., 2021); yet 

most studies have only characterised fitness landscapes under single environments due to technical 

limitations (Li & Zhang, 2018). Therefore, to fully understand the fitness landscapes of genes and the 

potential evolutionary trajectories of sequences, epistasis interactions must be studied in multiple 

environments to reflect the ever-changing environment organisms find themselves in. One significant 

consequence of fitness landscapes varying between environments can be allowing populations 

stranded on sub-optimal local fitness peaks to migrate through fitness valleys due to a change in 

environment (de Vos et al., 2015; Steinberg & Ostermeier, 2016). Recent studies have begun to 

explore how environments interact with epistasis (Lagator, Paixão, et al., 2017; Lagator, Sarikas, et al., 

2017; Li & Zhang, 2018). 



66 

 

Previous studies have found environmental effects on epistasis within phage (You & Yin, 2002), yeast 

(Harrison et al., 2007), Arabidopsis Thaliana (Kerwin et al., 2017) and even insects (Arnqvist et al., 

2010). Environmental epistasis has also been evidenced in E. coli (Remold & Lenski, 2004) showing 

that mutation’s effects on fitness were not only dependent on genetic background but also on which 

environment (maltose or glucose) the cells were grown in. One study also showed that the mutational 

pathways available to a metalloenzyme can vary depending on which metal ions are present in the 

environment. This had significant effects on the evolutionary pathways available to the enzyme 

causing it to become stranded on a suboptimal peak in certain environments, demonstrating the 

importance of environment on epistatic interactions (Anderson et al., 2021). 

The aims of this experiment were to test whether the epistatic interactions and ‘landscape’ of the 

araBAD CRE determined in Chapter 3 would be affected by environmental change. E. coli is commonly 

found in the microbiome of mammals (Hartl & Dykhuizen, 1984) where environmental traits such as 

temperature are consistent. However, gut microbes are frequently excreted into the environment and 

must adapt to the external environment to last long enough to be ingested again (van Elsas et al., 

2011). The natural environment fluctuates drastically, changing conditions such as temperature and 

nutrient availability (Savageau, 1983), therefore experimental conditions were chosen to best 

represent the conditions that may fluctuate in the external environment of E. coli. Arabinose is a sugar 

present in many natural environments and has been identified as a key carbon source affecting 

microbial metabolism (Wang et al., 2021). This means E. coli could encounter arabinose in many 

environments but most likely in soil around the rhizosphere (Habteselassie et al., 2010). The 

environmental factors selected were therefore arabinose concentration and temperature, two 

conditions likely to fluctuate in the natural environment. To determine the influence of temperature 

on epistasis, experiments were done at both 30oC and 37oC, previous studies have shown jumps in 

temperature from 23°C and 37°C to be physiologically relevant (Kanegusuku et al., 2021), but due to 

technical limitations, 30°C was the lowest temperature that could be achieved reproducibly. 
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4.2.   Results 

4.2.1.   Single Mutants 

To understand how environment affects epistasis it is important to first understand how environment 

affects fitness. To determine this, the fitness of single mutants was measured in four different 

environments, either varying in arabinose concentration, to simulate alterations in nutrient 

abundance, or temperature. The four environments were 37°C 0.1% arabinose (the ‘base’ 

environment), 37°C 0.25% arabinose, 37°C 0.5% arabinose and 30°C 0.1% arabinose. Growth rates 

were measured for all mutants and then normalised against the wild type growth rate within each 

environment (Figure 4.1). 
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Figure 4.1  Relative fitness of single mutants in different environments.  To determine whether increased concentrations of 
arabinose influenced epistasis, the base concentration of 0.1% (Section 2.1.4.   ) was compared with 0.25% and 0.5%. 
Environments are A) 0.1% arabinose - 37°C B) 0.25% arabinose - 37°C C) 0.5% arabinose - 37°C D) 0.1% arabinose - 30°C. Fitness 
values are mean growth rates relative to wild type (blue line) in the corresponding environment. Error bars are standard 
deviation. Asterisks indicate significant difference from 1. Media and growth conditions described in Section 2.1.4.    
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Figure 4.1 shows the fitness distribution of single mutants across four environments. In the 0.1% 

arabinose and 0.25% arabinose environments there were five and three mutants respectively that 

significantly differed from the wild type. In terms of fitness, all had lower fitness values than the wild 

type, with no mutant having increased fitness in either the 0.1% arabinose or 0.25% arabinose 

environment. In 0.5% arabinose there are 13/17 mutants with significantly lower fitness than the wild 

type suggesting that mutations in the pBAD CRE were more likely to have a negative effect on fitness 

in this environment. At 30°C there were four mutants with significantly negative fitness and a single 

mutant with significantly positive fitness. Across all environments mutants 12 and 13 had consistently 

lower fitness than the wild type. Mutants 6, 8, 9, 10 and 14 were negative in two environments 

although the specific environments varied. Several mutants were only significantly different from the 

wild type in the 0.5% arabinose environment.  

4.2.2.   Double Mutants 

To understand how environment affects epistasis, it was important to explore the effects of 

environment on the fitness of double mutants. The relative fitness of double mutants within the same 

environments (Section 2.1.4.   ) was measured and tested to see if the double mutants significantly 

differed from the wild type value (Figure 4.2).
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Figure 4.2 Relative fitness of double mutants in different environments. Environments were A) 0.1% arabinose B) 0.25% 
arabinose C) 0.5% arabinose D) 30°C. Fitness values represent mean growth rates relative to wild type (blue line) in the 
corresponding environment. Error bars represent standard deviation. Asterisks indicate significant difference from 1. Media 
and growth conditions described in Section 2.1.4.    
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Figure 4.2 shows that more than half of double mutants in all environments had fitness lower than 

the wild type. By contrast, in only the 0.5% arabinose - 37°C environment did more than half of the 

single mutants have significantly lower fitness than the wild type. An interesting observation is that in 

the 30°C environment there was a single mutant with increased fitness (M4) (Figure 4.1 (d)). However, 

there were no double mutants with increased fitness, indicating epistatic effects. 

4.2.3.   Epistasis 

To understand if environment affects epistasis, the distribution of epistatic effects was compared for 

each environment. Epistasis was calculated for all double mutants in each environment and checked 

for a significant difference from zero. 0.1% arabinose 37°C was used as the base environment as this 

was the environment used in the previous study (Chapter 3) and serves as the comparator for the 

other environments against (Figure 4.3).  An ANOVA test showed that epistasis values significantly 

differed between mutant strains (p-value <0.001), and between environments (p-value <0.05). The 

ANOVA additionally showed that the effect of environment on epistasis significantly varied between 

each mutant strain (p-value <0.001).
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Figure 4.3 Distribution of epistatic effects across four environments. Bars represent the mean epistasis value calculated for 
the respective double mutant. Colours of bars indicated operator location of the double mutant. Error bars are standard 
deviation. Asterisks indicate significant difference from zero. Four different environments were used; A) 0.1% arabinose 37°C, 
B) 0.25% arabinose 37°C, C) 0.5% arabinose 37°C and D) 0.1% arabinose 30°C. 
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Figure 4.3 showed contrasting distributions of epistatic effects between environments. The base 

environment of 0.1% arabinose 37°C showed seven double mutants with negative epistasis and five 

with positive epistasis. There were less epistatic interactions overall at 0.25% arabinose 37°C in which 

three mutants showed negative epistasis and two showed positive. In 0.5% arabinose there were 

more mutants with positive epistasis (four) than with negative (two) and at 30°C there was far less 

epistasis present, with only one mutant each showing positive and negative epistasis. An interesting 

observation is that mutant 22 consistently showed negative epistasis between environments and 

mutant 31 consistently showed positive epistasis (Figure 4.3). Mutants 22 and 31 having the largest 

epistasis values across all environments could indicate that these epistatic interactions are resistant 

to changes in environment.  

4.3.   Discussion 

For this study I aimed to elucidate the effects of environment on epistasis. To do this I used the mutant 

library from Chapter 3 and measured the growth rates of mutants under different conditions before 

calculating any epistatic effects. The conditions were chosen to represent variable environments that 

E. coli might experience in the wild (Savageau, 1983) and that were predicted to influence growth rate 

on arabinose (Ammar et al., 2018). It was hypothesised that mutants would have different fitness 

values in different environments and that epistatic interactions may differ between environments. 

4.3.1.   Fitness Effects 
4.3.1.1.   Single mutants 

Different distributions of mutant fitness values were observed across the four environments (Figure 

4.1). In the ‘base’ environment (0.1% arabinose, 37°C) five mutants significantly differed from the wild 

type, all having lower fitness than the wild type. This trend aligns with predictions from previous 

studies (Niland et al., 1996) that mutations in the pBAD promoter decrease AraC binding significantly. 

Decreased binding of AraC limits the ability of the cell to process arabinose which can, in turn, reduce 

growth rate. When tested in 0.25% arabinose - 37°C, there were fewer mutants that significantly 

differed from the wild type than in the base environment of 0.1% arabinose - 37°C. Mutant 8 had 

lower fitness which was not observed at 0.1% arabinose and mutants 12 and 13 retained their 

significantly lower fitness. 

In contrast to the other environments, at 0.5% arabinose there was a marked increase in the number 

of mutants showing significant differences in fitness. 13/17 mutants showed reduced fitness relative 

to the wild type which suggests that the mutations in the AraC binding region have more negative 

effects on fitness in this environment. One potential mechanism for this could be that sugar 

concentration was a limiting factor of growth in 0.1% and 0.25% arabinose concentrations but at 0.5% 
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the ability to process arabinose became the limiting factor. Consequently, the wild type strain could 

take full advantage of the extra arabinose available whereas the mutants were not able to capitalise, 

so the disparity became larger.  

When investigating the effects of temperature on the single mutant fitness, I found that the 30°C – 

0.1% arabinose environment also had five mutants with significant differences in fitness, similar to the 

base environment. However, only mutants 12 and 13 had similar fitness in both the 30°C – 0.1% 

arabinose and 37°C – 0.1% arabinose environments, the remaining three mutants differed between 

the base and 30°C – 0.1% arabinose environments. An interesting observation is M4 has significantly 

positive fitness in the 30°C environment which is the only case of significantly positive fitness across 

all environments. Data from Niland et al. suggested that mutations at the position of M4 had negligible 

effects on AraC binding so whilst it is not surprising that it has a higher fitness than other single 

mutants, it is surprising that it is higher than the wild type promoter, this suggests that at 30°C this 

position may enhance AraC binding. Pervasive G x E interactions (as defined in Section 4.1.   ) have 

been found in tRNA genes of yeast showing that single mutations can have drastically different fitness 

effects in different environments (Li & Zhang, 2018). The data shown in Figure 4.1 also reflects these 

findings. 

4.3.1.2.   Double Mutants 

When observing the effects on fitness of double mutants across the different environments, there is 

more consistency between environments than with the single mutants. The lower sugar 

concentrations of 0.1% and 0.25% had 13/19 and 10/19 significantly different fitness values 

respectively which is many more significant differences than when compared to the single mutants in 

the same conditions (Figure 4.2). The 0.5% sugar environment resulted in 18/19 mutants significantly 

differing from the wild type which was consistent with the trend seen in the single mutants where 

0.5% arabinose had the highest number of significant differences, however, there were still more 

significantly different double mutants than single mutants in this environment. The 30°C environment 

had 11/19 significant differences (Figure 4.2), which was a higher proportion than for single mutants 

in the same environment (Figure 4.1). The consistent trend seen when measuring double mutant 

fitness is that a higher proportion of mutants were significantly different from the wild type in all 

environments. This observation would support the additive expectation of double mutations where 

two mutations interact additively in the phenotypic outcome (Mani et al., 2008), however, even if 

epistasis were occurring, synergistic epistasis or weak antagonistic epistasis would still result in a 

greater reduction in fitness than the individual mutations alone (Phillips, 2008) so this could explain 
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why more significant differences are observed. The findings from Lagator et al. (2016) also found that 

the majority of double mutants showed negative epistasis which is reflected in the results of this study. 

4.3.2.   Epistasis 

When comparing epistasis between the four environments, there were some double mutants which 

showed consistent epistasis and others which vary drastically. This suggests that some epistasis is 

resistant to changes in environment whereas some epistasis is environment dependent. Other studies 

have found similar interactions of epistasis with environment, where epitasis interacts with 

environment in some but not all cases (Chen et al., 2022; Kerwin et al., 2017). There were two notable 

mutants which displayed consistent epistatic interactions between environments: mutant 22 showing 

negative epistasis and mutant 31 showing positive epistasis in all four growth conditions. These 

mutants consistently had the largest values of negative and positive epistasis, respectively, within 

each environment, with the exception of mutant 22 in the base environment (Figure 4.3). This 

observation is likely explained by the large variation in the data collected. The fact that these mutants 

often displayed the greatest values of epistasis could suggest that the interaction is sufficiently strong 

enough to resist changes in the environment, as the fitness is so drastically affected that the epistatic 

effects persist between environments.  

To put these findings in the context of relevant literature, Knijnenburg et al. (2009) found that the 

transcriptome of yeast cells was affected by ‘environmental’ epistasis meaning the non-additive 

effects of multiple environmental stimuli. Samir et al. (2015) then expanded on the idea of 

environmental epistasis, claiming that environmental factors can be treated as ‘analogous’ to genetic 

factors when affecting fitness (Knijnenburg et al., 2009; Samir et al., 2015). Although controversial, 

this claim would explain why the distribution of epistatic effects varies between environments as the 

given environment is interacting non-additively with the mutations to determine fitness. Temperature 

interacting analogously to mutations to determine fitness may explain why the 30°C – 0.1% arabinose 

environment showed less epistatic effects overall. 

4.3.3.   Limitations 

The limitations to this study include the use of relative growth rates to calculate fitness rather than 

using competition assays. It is often reported that competition assays allow for greater sensitivity in 

the detection of fitness differences (Hibbing et al., 2010; Ram et al., 2019) and this could account for 

why several non-significant fitness and epistatic effects were observed (Sections 4.2.   ). Another 

limitation of using a growth rates-based approach, even when using five replicates per mutant in each 

environment, there are still large amounts of variation in the data which reduces the statistical power 

of the analyses.  
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The use of ANOVA was limited as ANOVA compared all available data. This resulted in comparing 

different mutants between different environments such as M1 at 0.1% arabinose with M2 at 0.5% 

arabinose. This is not meaningful for this study. 

4.3.4.   Conclusions 

This work set out to determine whether patterns of epistasis for double mutants were consistent 

between environments to further understand the evolutionary forces influencing the pBAD promoter. 

The data shows that epistatic effects vary between environments even when only one environmental 

factor is altered. This demonstrates how complex G x G x E interactions (as defined in Section 4.1.   ) 

can become and supports the claim that environment can be treated as analogous to a genetic factor 

when determining fitness (Samir et al., 2015). One recent study showed that, when in a lactose rich 

environment, epistasis altered the evolutionary trajectory of the lac promoter, causing a different 

sequence of mutations to be necessary to reach the maximum fitness, due to the presence of a single 

mutation (Karkare et al., 2021). Although it was beyond the scope of this study to produce fitness 

landscapes, it would be interesting to precisely map the fitness landscape within each environment to 

provide a higher resolution of data on how environment affects mutational interactions within the 

AraC binding site. Similar approaches have been taken in other studies (Chen et al., 2022; Li & Zhang, 

2018). 
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CHAPTER 5  

 

5.1.   Introduction 

Horizontal gene transfer (HGT) has long been known to be a driving force in bacterial evolution. The 

acquisition of potentially large, novel fragments of DNA can provide a seemingly unparalleled 

substrate for evolutionary processes. A significant portion of prokaryotic genomes have been subject 

to horizontal transfer (Koonin et al., 2001; Sevillya et al., 2020) which highlights the impact HGT has 

on shaping the genomic landscape of bacteria. It has been suggested that HGT is so prevalent in 

microbes that the metaphor ‘tree of life’ should be changed to ‘web of life’ or rather comically the 

‘potato of life’, as that more accurately reflected the evolution of prokaryotic species especially in 

early stages of cellular life (Olendzenski & Gogarten, 2009).  

Due to its influence on the bacterial genomic landscape, HGT has been implicated in the transfer and 

creation of bacterial operons (Bundalovic-Torma et al., 2020; Omelchenko et al., 2003). Operons were 

initially defined as ‘coordinated units of expression’ (Jacob et al., 1960, 2005) and the definition has 

since been expanded to include ‘clusters of co-regulated genes with related functions’ (Osbourn & 

Field, 2009) and ‘any group of adjacent genes that are transcribed from a promoter into a polycistronic 

mRNA’ (Fondi et al., 2009). Operons are widespread amongst bacteria and archaea and are the most 

common form of gene organisation in prokaryotes (Koonin, 2009). Most operons are poorly conserved 

with a few significant exceptions including the ribosomal superoperon and proton ATPases which 

often encode proteins that physically interact (Itoh et al., 1999; Wolf et al., 2001). There are several 

theories attempting to elucidate the evolution and formation of operons and a significant contributor 

is the ‘selfish operon model’ described by Jeffrey Lawrence in 1996 (Lawrence & Roth, 1996). The 

selfish operon model asserts that operons are formed due to the clustering of ‘non-essential’ genes 

which conveys an evolutionary advantage in the form of gene linkage, consequently these genes are 

more likely to be horizontally transferred together and avoid extinction within a population. Opposing 

theories postulate that co-transcription or coadaptation may be plausible explanations for the 

presence of operons, however, these theories struggle to explain why almost all genes involved in 

central metabolic processes are found outside of operons (Lawrence, 1997).  There is, however, 

evidence against the selfish operon theory that posits that the selfish operon does not explain the 

mechanism of gene clustering, nor does it account for the fact that essential genes are more 

commonly found within operons than non-essential genes (Pál & Hurst, 2004). One of the main 

arguments for operon existence is that of co-transcription, it is asserted that co-transcription allows 
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for precise control over stoichiometry as well as eliminating translational noise. Transcribing all genes 

as one unit allows for each gene to be expressed in equal amounts, however, the optimal level of 

expression for each gene within an operon is often different (Rocha, 2008) which somewhat refutes 

this argument. 

Evidence suggests that some orthologous operons have significantly diverged from one another while 

still retaining function (Buvinger & Riley, 1985; Leonard et al., 2015). According to Dover & Flavell 

(1984) and Lovell & Robertson (2010), this shows that the genes within the operons may be coevolving 

together to retain function, which can result in epistasis. Epistasis is the phenomenon where the 

fitness effects of a given mutation are dependent on the genetic background on which it appears 

(Phillips, 2008). Epistasis can shape the fitness landscape of operons rendering them either ‘smooth’ 

or ‘rough’ based on the type of epistasis present (Poelwijk et al., 2011), a smooth landscape would 

suggest operon genes can move promiscuously between species whereas a rough landscape would 

suggest only horizontal transfer of the whole operon is possible as the constituent genes rely on each 

other to confer a fitness advantage. Evidence of HGT can indicate that negative epistasis is present as 

the movement of genes increases the chances of favourable combinations of genes whereas a lack of 

HGT can indicate positive epistasis is present as there is selective pressure against the separation of 

genes in the operon (Muñoz et al., 2008). There is evidence for horizontal transfer of whole operons 

resulting in operon duplication which can act as an evolutionary substrate (Bundalovic-Torma et al., 

2020). 

Firstly, to understand whether within-operon HGT was prevalent I looked at the gene neighbourhoods 

of the arabinose operon. If the arabinose operon synteny and neighbourhood are conserved across 

multiple species this indicates there are low levels of horizontal transfer as a successful transfer event 

would need to replace the native orthologue of the gene being transferred which would involve 

insertion next to, and subsequent loss of the native gene; an unlikely scenario (Cornet et al., 2021; 

Rolland et al., 2009; Snir, 2016). 

I also looked at the clustering of genes within the operon across a wide range of species to understand 

if the genes are often clustered together, indicating linkage disequilibrium (Ramakrishnan, 2013). 

Linkage disequilibrium can be the result of epistasis acting on pairs or groups of genes (Pedruzzi et al., 

2018). Epistasis acting upon genes within the operon would limit potential HGT events as the operon 

genes would depend on the presence of each other to bring a selective advantage. 

When looking to identify specific HGT events, different approaches can be taken. The phylogenetic 

and parametric approaches are the two most common (Sevillya et al., 2020). I used the phylogenetic 

approach to compare the phylogenetic trees of the arabinose operon genes (araA, araB, araC and 
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araD) from a range of species in the Enterobacteriaceae family with a core genome tree of the same 

species to identify any possible HGT events. 

5.2.   Results 

To investigate whether the arabinose operon has been exchanged between bacterial species via 

horizontal gene transfer, it was important to use a whole genome-based approach and to consider 

several factors. Gene neighbourhoods can inform whether operon clusters occur in similar genomic 

contexts and can reveal whether co-linear grouping of genes may be regularly transferred or not 

(Cornet et al., 2021; Rolland et al., 2009; Snir, 2016). The CBlaster tool investigates gene clustering to 

provide information on whether the operon is always present as a whole unit or if individual genes 

can appear in other combinations, suggesting whether genes are affected by epistasis. Finally, 

comparing arabinose gene-based phylogenies with a core genome phylogeny enabled the detection 

of discrepancies that could signal whether a particular gene has undergone horizontal transfer 

(Sevillya et al., 2020), and if individual genes can be transferred independently of one another or not. 

5.2.1.   Gene Neighbourhoods 

To start understanding the evolution of the arabinose operon between bacterial species, it was 

important to understand the genomic contexts in which the operon is found and whether consistent 

patterns were observed between species. Using GeCoViz the genomic neighbourhood of the araBAD 

operon was visualised at two different taxonomic levels.
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Figure 5.1 Conservation of Arabinose operon gene neighbourhood is within the Enterobacteriaceae. The gene 
neighbourhood of araB within the Enterobacteriaceae family was investigated with GeCoViz (Botas et al., 2022). Colours 
denote orthologous genes. Gene names are shown in white text. Bacterial species names are listed in the left-hand column. 
Grey genes represent genes which were not present in at least 20% of genomes. Genome order was determined by GeCoViz 
software. Methods described in Section 2.3.1.    
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The gene neighbourhood of the araB gene shows the conservation of gene order within the arabinose 

operon and reveals that the genomic context is broadly consistent amongst members of the 

Enterobacteriaceae. Conserved neighbourhoods imply that horizontal transfer of the araC, araB, araA 

or araD genes is not prevalent within this taxon. This observation is consistent with the existence of 

epistatic interactions between genes of the arabinose operon (Section 5.1.   ).
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Figure 5.2 Reduced conservation of arabinose operon gene neighbourhood within the Gammaproteobacteria class than Enterobacteriaceae family. Gene neighbourhood of araB 
within Gammaproteobacteria class using GeCoViz (Botas et al., 2022). Colours denote orthologous genes. Gene names are shown in white text. Species names are listed in the left-hand 
column. Grey genes represent genes which were not present in at least 20% of genomes. Genome order was determined by GeCoViz software. Methods described in Section 2.3.1.    
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The gene neighbourhood of the araB gene within the Gammaproteobacteria class (Figure 5.2) is less 

conserved than within the Enterobacteriaceae (Figure 5.1). It is apparent that the four constituent 

genes of the arabinose operon (araC, araB, araA and araD) are not always syntenic or even in close 

proximity. Most species carry co-linear araA and araB genes which could suggest these genes are in 

linkage disequilibrium caused by epistasis. This phenomenon reflects the fact that epistatic 

interactions impose evolutionary constraints on the rearrangement of genes, and so strong linkage 

between genes can indicate epistatic forces at play (Pedruzzi et al., 2018). The presence of araD is 

sporadic between species, suggesting that araD may be transferred as a singleton gene between 

species as the other operon genes are not mutually dependent on araD. This observation suggests 

there may not be epistatic effects between araD and other genes within the operon as epistasis would 

act to prevent reassortment of the operon genes (Pedruzzi et al., 2018). 

5.2.2.   Gene Clustering 

Whilst gene neighbourhood analysis can inform whether the whole operon is often found in a similar 

genomic location, indicating whether it has experienced horizontal transfer, clustering of the operon 

genes can indicate whether the genes are in linkage disequilibrium. Whether the genes are 

consistently found in proximity to each other can reveal information about the evolutionary forces 

acting on this gene cluster (Pedruzzi et al., 2018). Using cBlaster the arabinose operon of E. coli K12-

MG1655 was compared with the database created in Section 2.3.3.    103 results were returned that 

had at least two arabinose genes in a cluster and these results were fed into the clinker software tool 

(Appendix 1). These results were used in conjunction with the Panaroo output from Section 2.3.4.    to 

analyse the gene clustering in the context of the core genome phylogeny (Figure 5.3). 
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Figure 5.3 Arabinose operon genes show variable syntenic conservation across different clades. Core genome phylogeny 
showing presence (green) and absence (white) of arabinose genes as well as whether they are syntenic (dark green) or 
non-syntenic (light green). Yellow, orange and red phylogenetic groups show common patterns of synteny. 99 core 
genomes produced using Panaroo as outlined in Section 4.2.4. Gene presence and absence detected using Panaroo, 
synteny determined as described in Section 4.2.3. Tree scale is mean number of substitutions per base of the core SNP 
alignment. 
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The gene clustering in Figure 5.3 shows two consistent trends, defined in red and orange. First, 

operons with all four genes present as a co-linear cluster that retains synteny (red group). Second, 

operons with only araB and araA in synteny whilst araC and araD are present but not co-linear (orange 

group). The data show that the synteny of araB and araA is highly conserved and the two genes 

experience strong linkage disequilibrium, meaning they do not segregate randomly. In contrast, araC 

and araD are less highly conserved and can be absent from the operon structure. There is one 

phylogenetic group, defined in yellow, which consistently deviate from the two common patterns of 

synteny found in other groups (orange and red) on the tree. Previous studies have found that there 

are phylogenetic groups that can be defined by operon organisation (Bundalovic-Torma et al., 2020) 

and these findings suggest this is the case for the arabinose operon as well. 

5.2.3.   Phylogenetic Analysis 

To further investigate the evolutionary history of the arabinose operon, gene phylogenies of each of 

the araCBAD genes were generated (Appendix 2 (a)-(d)) as well as a core genome phylogeny 

(Appendix 2 (e)) for all 103 species analysed (Section 2.3.4.   ).  

The gene phylogenies were compared against the core phylogeny to obtain branch score values 

(Kuhner & Felsenstein, 1994)(Table 5.1) which are defined as the square root of the sum of squared 

differences between the branches of two trees. Branch score values allow the topologies of the four 

phylogenetic trees to be compared.  

Table 5.1 Branch scores for araCBAD gene phylogenies compared to the core phylogeny. 

 araA araB araC araD 

Core Phylogeny 1.54 0.97 0.38 1.38 
 

The branch scores for each gene were different, with araC having the lowest value of 0.38 and araA 

having the highest of 1.54. This indicates the araA phylogeny is the least similar to the core phylogeny 

followed by araD. Having a higher branch score can indicate these genes have experienced more 

horizontal transfer events causing their phylogenies to differ more from the core genome than those 

genes with lose branch score values (Carruthers et al., 2022; Planet, 2006). 

5.3.   Discussion 

In this study I aimed to discover whether horizontal gene transfer of arabinose operon genes had 

occurred by looking at several traits of the operon including the gene neighbourhood, clustering of 

the operon genes and the individual gene phylogenies compared to a core species phylogeny.  
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5.3.1.   Gene Neighbourhoods 

The gene neighbourhood analysis shown in Figure 5.1 and Figure 5.2 showed that, in the 

Enterobacteriaceae family, there was very strong conservation of the operon with all 4 operon genes 

being present in the majority of species and, in most cases, being found in the same genomic contexts. 

This is evidence of vertical transmission and suggests that very low levels of HGT occur in this family 

(De & Babu, 2010). This high level of conservation can be indicative of ‘colinear syntenic blocks’ which 

are suggested to be essential to gene regulation as genes present in these blocks are strongly 

associated with co-transcription which aids in regulation of multiple genes associated with the same 

pathways (Junier & Rivoire, 2016; Svetlitsky et al., 2020). 

When the analysis was widened to include the class of Gammaproteobacteria, the araBAD operon 

neighbourhood showed greater divergence than within the Enterobacteriaceae family alone. There 

were several examples of species where the full operon was not present or where the genes were in 

a different order from the canonical E. coli operon (Schleif, 2000). The two genes that were 

consistently present and colinear were araA and araB, consistent with these genes being functionally 

dependent on each other to provide a fitness benefit, whereas araC and araD do not seem to be 

required. The fact that araD was not always present aligns with the fact that L-ribulose-5-phosphate 

4-epimerase is not a necessary component of the arabinose pathway for the utilisation of arabinose 

as a carbon source (Boulanger et al., 2021). AraA is L-arabinose isomerase which converts L-arabinose 

into L-ribulose which can only be metabolised via AraB. L-ribulose is converted to L-ribulose-5-

phosphate by AraB; Ribulokinase. araD encodes L-ribulose-phosphate-4-epimerase which converts L-

ribulose-5-phosphate into D-xylulose-5-phosphate. However, this step is not necessary as L-ribulose-

5-phosphate can be utilised in other metabolic pathways and so can still be utilised as a carbon source 

(Boulanger et al., 2021). This alternative pathway for L-ribulose-5-phosphate could explain why araB 

is necessary when araA is present but araD is not necessary. 

5.3.2.   Cluster Analysis 

When analysing the clustering of the arabinose genes across 103 species, clear patterns were 

observed. As in Section 5.3.1.   , araA and araB were co-linear in all but two of the genomes, suggesting 

a strong dependence on each other. araC and araD were syntenic in roughly half of the genomes and 

were often co-linear together completing the full complement of genes found in the canonical E. coli 

operon (Schleif, 2000). This pattern of synteny indicates that vertical inheritance may be responsible 

for these clusters as there was no evidence the operon genes were being transferred promiscuously 

between species. 
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5.3.3.   Phylogenetic Analysis 

When comparing the phylogenies of the arabinose genes to the core genome phylogeny of the 103 

species (Section 2.3.3.   ) the branch scores varied between the genes. araA and araD had the highest 

scores of 1.54 and 1.38 respectively (Table 5.1) meaning these trees were the most different from the 

core tree. A higher branch score can suggest these genes have experienced more horizontal transfer 

events than araC and araB. It is unexpected that araA had a higher score than the other genes as the 

gene neighbourhood and gene clustering analysis suggested it was highly conserved and commonly 

occurred in the presence of araB. araB, by contrast, had a lower branch score than araA, indicating 

less horizontal transfer. Due to the limitations of the trees themselves, the branch score can only 

provide limited insight into the discordance of the trees. 

5.3.4.   Limitations 

The analysis in this study was mostly investigative and was not designed to provide conclusive 

evidence of horizontal transfer and, consequently, epistasis within the arabinose operon. 

Nevertheless, there were several limitations to the approaches used, including the pool of genomes 

that were analysed as part of the GeCoViz software. The limited selection of genomes that are 

available to use in GeCoViz prevents the inclusion of potentially relevant genomes. As a result, not all 

possible species were analysed and some meaningful variations of the arabinose operon may have 

been missed, somewhat biasing the data.  

The clustering analysis performed by Cblaster provided information about genes in close proximity 

(Appendix 1). However, Cblaster did not provide information on whether the missing genes were 

found elsewhere in the genome. The genes of the operon were not always syntenic in some species 

but analysis via Panaroo indicated that they were still present in the genome (Figure 5.3). Limited 

conclusions can be drawn about whether the genes are experiencing epistasis, which can occur 

without collinearity, but is often associated with linkage disequilibrium. 

The phylogenetic analysis provides an indication of the similarity of the gene trees to the core 

phylogeny. However, upon visual inspection, some of the gene trees show such a high level of 

incongruence that it is possible they are not an accurate reflection of the true gene phylogeny. This 

could be due to the genes themselves not providing enough resolution to create a reliable phylogeny 

(V’yugin et al., 2003) as some of them have very short sequence lengths and could also be due to the 

difficulty of comparing closely related species (Adato et al., 2015). 
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5.3.5.   Conclusions 

The findings in this chapter provide a preliminary exploration of the conservation of the arabinose 

operon, and the evolutionary forces that may be at play. Both the gene neighbourhood and gene 

clustering analyses indicated a strong co-occurrence of araA and araB which can be explained by their 

roles in the arabinose metabolism pathway. This conserved synteny suggests there is positive epistasis 

between araA and araB as the two gene products cannot fulfil the function of utilising arabinose as a 

carbon source without one another. AraC is a regulatory protein and is known to have many 

homologues (Schleif, 2010) and so it not necessary for the expression of araA and araB which could 

explain why it is not always present. AraD is also not required for the metabolism of arabinose and 

therefore is most likely not linked via epistasis to the other operon genes. 

The phylogenetic analysis, although limited, provided insight into the incongruence of the arabinose 

gene trees compared to the core phylogeny. This analysis indicated that araA phylogeny deviates more 

from the core tree than araB which is unusual if the two genes are linked via epistasis as this should 

mean they show similar evolutionary histories. However, more detailed analysis would need to be 

undertaken to truly elucidate the evolutionary histories of these genes. Possible further methods 

could involve reconciliation of gene trees with the species tree or using software such as GATC to infer 

gene trees (Noutahi & El-Mabrouk, 2018). 
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CHAPTER 6  

General Discussion 

6.1.   A Brief Introduction 

Genetic interactions are an important force influencing the evolution of both coding and non-coding 

sequences, termed Epistais (Domingo et al., 2019; Lagator et al., 2016; Lehner, 2011). With the 

advances of genetic techniques over the last few decades it has become easier to study epistasis as 

high throughput screening of double mutants has become standard (Anderson et al., 2021; Lagator, 

Sarikas, et al., 2017; Nghe et al., 2018). Recently, scientists have begun to investigate epistasis in 

greater detail, evaluating all permutations of specific sequences to generate fitness landscapes (Chen 

et al., 2022). This provides insight into the evolutionary potential of genetic systems and metabolic 

networks. In this thesis I set out to build upon this knowledge using the arabinose operon and 

associated regulatory regions as a model system. 

6.2.   Epistatic effects on expression versus fitness 

In Chapter 3, I investigated whether epistatic effects have a consistent impact upon gene expression 

values versus bacterial fitness. Using gene expression data and epistasis values from (Lagator et al., 

2016), I then set up a system to convert (Lagator et al., 2016) mutant library from a system that 

expressed the fluorescent protein Venus-YFP into a system that expressed the metabolic genes of the 

arabinose operon. My approach was designed to allow the mutants growth on arabinose to be 

measured as a proxy for fitness. The data were used to calculate epistasis values to compare with 

those of (Lagator et al., 2016). Significant difficulties were encountered in measuring epistasis using 

the equipment selected and large variances in the data were observed. Consequently, no statistically 

significant genetic interactions were detected meaning that a link between the impact of epistasis 

upon gene expression and fitness could not be determined. Although each measurement of growth 

rate (as a proxy for fitness) was measured five times, this was not sufficient to reduce the experimental 

variation. While considering whether there may be a fundamental problem with trying to detect 

epistasis via growth rate measurement, I noted that others have successfully used growth rate to 

detect epistasis in viruses and yeast (Poyatos, 2020; Sackman & Rokyta, 2018). 

An observation regarding the system used in this chapter is that, due to the plasmid being present in 

multiple copies, even at a very low copy number (3-4)(Lutz & Bujard, 1997), multiple copies of the 

araC gene could lead to more AraC protein being made by the cell. Because AraC autoregulates its 

own transcription (Schleif, 2010) and that of the araBAD genes, a greater amount of AraC in the cell 
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could lead to higher concentrations of arabinose being needed to bind all AraC molecules and cause 

a conformational change, resulting in expression of the araBAD genes. Therefore, a plasmid-based 

system could react to arabinose levels in a manner distinct from that of a chromosomally-based 

system.  

6.3.   Environmental effects on epistasis                                                                        

In Chapter 4, I used an alternative technical approach to investigate whether the distribution of 

epistatic effects was affected by environment. I used the mutant library created in Chapter 3 to help 

me answer this question. I grew the mutant library in different conditions, varying in either sugar 

concentration or temperature, and calculated epistasis values to compare to a ‘base environment’ 

used in (Lagator et al., 2016) namely 0.1% arabinose and 37°C. I discovered that certain epistatic 

effects remained consistent between environments whilst others varied dramatically. This implies 

some genetic interactions are strong enough to resist environmental perturbation whilst others are 

more susceptible to changes in environment. Other studies have shown that epistasis can be 

influenced by environment in bacteria and yeast (Anderson et al., 2021; Baier et al., 2022; Chen et al., 

2022; Li & Zhang, 2018) and so these findings are consistent with the literature. One study in particular 

found that, when in a lactose rich environment, epistasis created two evolutionary pathways to reach 

a maximum fitness, dependent on the presence of a single mutation (Karkare et al., 2021). I speculate 

that because certain epistatic interactions are not environmentally sensitive, these interactions could 

have an evolutionary impact, regardless of the environmental niche of the organism in question. 

Another factor affecting whether beneficial mutations such as M4 may become fixed in a population 

are the opposing forces of stimulation of the operon in the presence of arabinose and repression in 

the absence of arabinose. Whilst a mutation may be beneficial in one scenario, it may be detrimental 

in the other. Therefore, due to changing environments in nature, particular mutations may not 

become fixed in a population. This idea is also discussed by Lagator et al. (2016). 

Whilst environment may affect epistasis, it is also important to note that environmental changes affect 

the basal growth rate of any cell regardless of genetic makeup. Detailed in Table 6.1 are the relative 

growth rates observed for the wild type plasmid in each of the environments tested. It is clear that 

the 0.5% arabinose provides a small growth benefit, whilst the 30°C environment results in a much 

slower growth rate. 
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Table 6.1 Growth rates of the wild-type strain in the four environmental conditions tested (Section 2.2.2.   ). 

Environmental Condition Percentage Growth Rate of Base 
Environment 

37°C 0.1% arabinose (the ‘base’ environment) 100% 
37°C 0.25% arabinose 93% 

37°C 0.5% arabinose 107% 
30°C 0.1% arabinose 43% 

 

6.4.   Epistasis between genes of the arabinose operon 

In Chapter 5, to look for evidence of epistasis between the genes of the arabinose operon, it was 

important to look at several factors including horizontal gene transfer, linkage disequilibrium and 

syntenic conservation to understand whether genes within the arabinose operon may have been 

under the effects of epistasis. The findings could then shed light on the evolution of the arabinose 

operon and whether the gene cluster is largely inherited vertically or undergoes dynamic changes due 

to gene transfer and rearrangements. I found the operon was largely conserved in certain 

phylogenetic taxa such as Enterobacteriaceae and that the gene order of the operon fell largely into 

two, group specific patterns. The synteny of araA and araB was largely conserved across all species, 

indicating there could be genetic interactions between these genes, causing them to be co-dependent. 

On the other hand, araC and araD were only syntenic in one clade. In the other clade, araC and araD 

were not co-located on the chromosome. It is therefore unlikely that epistasis affects these genes. 

The clade in which araC and araD were syntenic were all gut residing bacteria which encounter 

arabinose through food ingested by the host, whilst the clade lacking araC and araD included various 

environmental bacteria, including plant pathogens and soil microbes. The two aforementioned clades 

are exposed to completely different environments which could reflect the evolution of the arabinose 

operon in these species. A further area of investigation could be to study the relationship between 

the arabinose metabolism of these organisms and their natural environment to shed light on the 

importance of various arabinose genes within species occurring in different environments. 

There was no significant evidence for horizontal transfer of individual genes in the Enterobacteriaceae, 

although the techniques used were limited. I conclude that epistatic forces are likely acting upon genes 

in the operon. This is because epistasis causes genes to display linkage disequilibrium (Pedruzzi et al., 

2018) and horizontal transfer of individual genes would act against this disequilibrium. If genes are co-

dependent, then the transfer of individual genes would be selected against. The lack of evidence for 

HGT of the arabinose operon genes is consistent with the existence of significant epistatic interactions. 
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The findings from Chapter 4, and Chapter 5 support the fact that epistasis affects the evolution of the 

arabinose operon, both in its encoding and regulatory sequences. Genetic interactions are therefore 

an important mechanism which affects how organism may acquire and adapt, operon encoded traits.  

6.5.   Techniques for measuring epistasis 

A common problem faced in several of the studies in this thesis was the suitability of the techniques 

used to detect epistasis to a sufficient level to make robust conclusions. In Chapter 3, the Tecan 

Infinite® 200 PRO plate reader was used to measure growth rates. Drastically different values were 

measured between repeat measurements of the same mutants in identical growth conditions (Section 

2.2.4). There is some evidence of successful optical density measurements being performed with this 

instrument (Dlugaszewska et al., 2016; Kuznetsova et al., 2013). However, the Tecan Infinite® 200 PRO 

is often used for fluorescence assays (Brigo et al., 2023; Correa et al., 2020) and no literature that 

demonstrated successful measurement of growth rates using this instrument could be found. 

Upon the commencement of the environment x epistasis assays in Chapter 4, the instrument was 

switched to the Growth Profiler 960 platform (Enzyscreen) which is an instrument tailored to 

performing multiple growth curves simultaneously. This instrument was installed in the   University of 

Liverpool microbiology labs in the final year of my PhD. The Growth Profiler 960 platform (Enzyscreen) 

provided highly reproducible growth rate data (Section 2.2.2.   ) which allowed statistically significant 

differences in fitness-based epistasis values to be detected (Section 2.2.2.   ). My findings highlight the 

importance of accurate growth rate measurements for the detection of epistasis. The determination 

of epistasis (Section 2.1.6.   ) involves multiplying the single mutant growth rates together to 

determine the additive expectation of fitness. Therefore, if the growth rates were inaccurate the 

variance was amplified in the additive value resulting in drastically inaccurate epistasis values being 

calculated. 

In Chapter 5 an approach was taken that did not involve experimental measurements, relying upon a 

comparative genomic investigation of ‘footprints’ of epistasis. The arabinose operon was analysed by 

studying conservation and gene synteny within a range of genomes from the Enterobacteriaceae. A 

phylogenetic analysis was done in parallel. The goal of these techniques was to identify any potential 

signs of horizontal transfer occurring within the arabinose operon, as HGT can indicate a lack of 

epistasis due to HGT reducing linkage disequilibrium which often correlates with epistasis (Cornet et 

al., 2021; Pedruzzi et al., 2018). Other studies that have successfully used synteny to infer HGT (Rolland 

et al., 2009; Snir, 2016) formed a starting point for the analysis. 
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Whilst the results indicated significant syntenic conservation, especially between closely related 

species, this did not disprove the occurrence of HGT events. Therefore, a phylogenetic analysis was 

performed because discordance between phylogenetic trees can indicate HGT (Carruthers et al., 2022; 

Planet, 2006). Several issues arose with this method, the first being that visual determination of tree 

incongruence by creating ‘tanglegrams’ resulted in extremely levels of incongruence with almost no 

branches showing congruence between the core genome phylogeny and the arabinose gene 

phylogenies. 

A quantitative method, using ‘branch score values’ (Kuhner & Felsenstein, 1994) was selected to 

assess the differences in the trees. This approach returned values which conflicted with the synteny 

analysis, suggesting that araA was the most incongruent gene tree even though it was one of the 

genes found to have the highest level of syntenic conservation. 

There is not extensive literature demonstrating the use of ‘branch score values’ for the comparison of 

gene-based phylogenetic trees. The approach of using tree incongruence to identify evolutionary 

events can be unreliable due to the innate level of incongruence generated when using different tree 

building methods as well as natural variations in incongruence between different genomic regions 

(Som, 2015). Although tree incongruence techniques have been used to identify HGT (Anselmetti et 

al., 2021; Kim et al., 2018; Sutherland et al., 2021), there may not have been enough diversity between 

the arabinose gene sequences to produce reliable phylogenies which could provide accurate 

phylogenies for incongruence analysis (Xi et al., 2015). 

6.6.   Concluding statements 

The studies in this thesis shed light on epistasis and its prevalence in the arabinose operon and the 

pBAD CRE regulatory region. It shows that epistatic interactions between mutations in the pBAD CRE 

region can be strong enough to resist changes in the environment which raises the possibility that 

these interactions could shape the evolution of this region more broadly. The identification of certain 

environmentally sensitive epistatic interactions indicates these interactions are likely to influence the 

evolution of the pBAD CRE dynamically depending on the environmental conditions affecting the cell. 

It is worth noting that in the presence of an araC mutant, in which AraC cannot bind araI1 or araI2, the 

epistatic interactions within the pBAD promoter would cease to exist as they depend on AraC binding 

to exert an effect on the cell. Evidence of strong syntenic conservation of some genes within the 

arabinose operon was found, indicating that there could be epistatic forces affecting specific genes 

within the operon but not necessarily others. These findings provide insight into how epistasis shapes 

the evolution of operons through not only gene interactions but also at the sequence level, 

determining mutational limitations affecting regulatory regions. 
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The studies also demonstrate how detecting epistasis is not a straightforward process and can be 

sensitive to the techniques used as well as the quality of data obtained. Studies are increasingly using 

high throughput methods to assess epistatic interactions across all possible mutational combinations 

and generating fitness landscapes of metallo-enzymes, β-lactamases and fluorescent proteins 

(Anderson et al., 2021; Chen et al., 2022; Sarkisyan et al., 2016) which gives the deepest insight into 

the evolutionary potential of both coding and non-coding sequences. 

Although generating an extensive fitness landscape was beyond the scope of the work in this thesis, 

this work provides the basis for understanding the evolutionary dynamics of operons and their 

regulatory sequences which in turn can help to understand the evolution of bacteria and the 

acquisition and evolution of traits such as antibiotic resistance and hydrocarbon degradation 

(Kunonga et al., 2000; Zylstra et al., 1988). 
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Appendix 1: Arabinose gene clusters show variable patterns of synteny and presence across 103 species analysed. Gene 
clusters found through Cblaster (5.2.4) visualised in clinker (5.2.5). Species names given to the left of each cluster. Genes 
are coloured to show orthologs. 
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Appendix 2: Phylogenetic trees showing all species containing the araA (a), araB (b), araC (c), and araD (d) genes, in 
addition to the core genome (e). 

 

(a)  araA Gene Phylogeny. Phylogenetic tree showing all species that contained the araA gene. Produced using 
IQTREE. Node labels are bootstrap values for 1000 bootstraps. Tree scale is mean number of substitutions per 
base of the core SNP alignment. 
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(b) araB Gene Phylogeny. Phylogenetic tree showing all species that contained the araA gene. Produced using 
IQTREE. Node labels are bootstrap values for 1000 bootstraps. Tree scale is mean number of substitutions per 
base of the core SNP alignment. 

 



99 

 

(c)  araC Gene Phylogeny. Phylogenetic tree showing all species that contained the araA gene. Produced using 
IQTREE. Node labels are bootstrap values for 1000 bootstraps. Tree scale is mean number of substitutions per 
base of the core SNP alignment. 
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(d)  araD Gene Phylogeny. Phylogenetic tree showing all species that contained the araD gene. Produced using 
IQTREE. Node labels are bootstrap values for 1000 bootstraps. Tree scale is mean number of substitutions per 
base of the core SNP alignment. 
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(e) Core Genome phylogeny of 103 species. Phylogenetic tree produced using IQTREE using the 103 species 
described in section 5.2.3.Node labels are bootstrap values for 1000 bootstraps. Tree scale is mean number 
of substitutions per base of the core SNP alignment. 
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