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The processes of normal blood clotting are well established
(for example1–5). The terminal steps involve the self-assem-
bly of fibrinogen molecules that have been cleaved by
thrombin (which removes two “fibrinopeptides”6–8) into
long fibers with a diameter typically in the range of 50 to
100nm. Some time ago, we established that blood frequently
clotted into anomalous forms, referred to in earlier papers as
“dense matted deposits”9–12, that were also rather resistant
to fibrinolysis (proteolysis).13 It was subsequently recog-

nized14 that this anomalous form was in fact amyloid in
character15 and could be stained with well-established,
fluorogenic amyloid stains such as thioflavin T15–22 or the
oligothiophenes marketed as “Amytracker” dyes.16,19,21 We
used fluorescence microscopy imaging as our method of
choice. To distinguish them from the fibrils in established
amyloidosis23 (commonly with diameters less than
15nm24,25) and to recognize that they consist mainly of
fibrin aggregates (plus other trappedmolecules) in the range

Keywords

► microclots
► platelet

hyperactivation
► inflammatory

molecules
► vascular

complications

Abstract Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid
(fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may
also be induced by a variety of purified substances, often at very low concentrations.
These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike
protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of
the properties of these microclots might be used to contribute to differential clinical
diagnoses and prognoses of the various diseases with which they may be associated.
Such properties include distributions in their size and number before and after the
addition of exogenous thrombin, their spectral properties, the diameter of the fibers of
which they are made, their resistance to proteolysis by various proteases, their cross-
seeding ability, and the concentration dependence of their ability to bind small
molecules including fluorogenic amyloid stains. Measuring these microclot param-
eters, together with microscopy imaging itself, along with methodologies like proteo-
mics and imaging flow cytometry, as well as more conventional assays such as those for
cytokines, might open up the possibility of a much finer use of these microclot
properties in generative methods for a future where personalized medicine will be
standard procedures in all clotting pathology disease diagnoses.
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of 2 to 200 μm and with individual fibers with diameters
commonly in the range of 50 to 100nm or more, we refer to
them as fibrinaloid microclots.17 Such fibrinaloid microclots
or fibrin(ogen) aggregates, which “spontaneously” form in
the circulation (presumably under the action of thrombin’),
have recently been reported in the plasma of patients with
type 2 diabetes mellitus (T2DM),19,26 in those with acute
coronavirus disease 2019 (COVID-19)26–30 and in particular
in those with persistent symptoms related to postacute
sequelae of COVID (PASC), more commonly known31–33 as
long COVID.17,34,35

In addition, platelets in the hematocrit andwhole blood of
participants with various inflammatory conditions are well
known to be hyperactivated.27,36–42 For these studies, we

also used fluorescencemicroscopy imaging as our method of
choice for platelet imaging. (After centrifuging whole blood,
there are still platelets present in the hematocrit). These
platelets might in fact be considered as those that were most
fragile in vivo. These microclots and hyperactivated platelets
have been implicated in the thrombotic and systemic in-
flammatory complications of various diseases. In addition,
numerous well-known inflammatory molecules have been
found trapped inside these insoluble microclots present in
acute COVID-19 and long COVID.17,35 These particularmicro-
clots (whose formation can be catalyzed by the severe acute
respiratory syndrome coronavirus 2 [SARS-CoV-2] S1 spike
protein)34 are very resistant to digestion protocols.13,15,35

However,microclots fromT2DM (and the few that are always

Fig. 1 Visualizing various factors that influence disease to the understand the phenomena of the disease due to the response to an external
stimulus44 such as an infection. Figure created by authors using Biorender.com.
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present in plasma samples of healthy participants) digest
easily with standard protein digestion protocols. Important
questions from these differential results are raised regarding
the pathophysiological relevance of microclots and platelet
hyperactivation. These findings warrant a discussion to
determine if these pathologies are indeed a cause or a
consequence of disease and if they are indeed a predictor
of clinical thrombosis or contributors to disease pathologies
noted in the patient. Further, if these microclots and activat-
ed platelets are indeed a predictor of clinical symptoms,

including patient disease progression and, in particular,
thrombotic endothelialitis, could they ultimately then also
become a microscopy imaging monitoring tool to be used to
assess the effectiveness and progress of treatment regimens?
Finally, an arising question iswhether these variables are just
innocent bystanders, albeit present in all inflammatory
conditions, or a significant element of the etiology of these
diseases. In the latter case, one may anticipate significant
relationships between the nature and extent of fibrinaloid
microclot formation and the severity of the disease. In

Fig. 2 Platelet receptors and interactions with cells and proteins in circulation. Figure created by authors using Biorender.com.
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addition, variants such as omicron that are far less virulent
(albeit more transmissible) are—as we have recently shown43

—far less able to cause microclots. This implies strongly that
themicroclots are part of the disease pathway. If the latter is in
fact occurring, then a naive view might be that all microclots
are “the same” and that platelet hyperactivation is universally
similar in all conditions. As with any quantitative determina-
tion (likemicroscopy imaging), this isalmost certainlynot true,
and the purpose of the present commentary is to rehearse the
evidence for the kinds of differences that are either known or
may be anticipated. We also point out the usefulness of
microscopy imaging, as such a method allows for a fast and
reliable snapshotofclotting pathology, to studybothmicroclot
formation and platelet hyperactivation.

The General Pathway of Inflammation,
Platelet Hyperactivation, and Microclot
Formation in Chronic Disease

►Fig. 1 shows the broad swathe of phenomena on which we
focus, as they occur in response to an external stimulus44

such as an infection. It recognizes that a chief set of pathways
necessarily involves an external event—commonly an infec-
tion—that leads to inflammation (assessed via increases in
the levels of inflammatory cytokines) and directly or indi-
rectly to the formation of microclots and the hyperactivation
of platelets. These phenomena can then feedback in a kind of
autocatalytic cycle (in very unfavorable cases leading to a
“cytokine storm”45,46).

Variations in Patterns of Cytokines

The presence and concentration of molecules,47 including
pro- (and anti-) inflammatory molecules vary considerably

between individuals, even in “health”48–51, not least because
of variations in age52 and in the gut microbiome.53 Consid-
erable variation similarly exists in those with the “same”
disease,54 such as an infection55 (including by SARS-CoV-
256–60), the patterns often correlating with severity and/or
outcome. The same is true in myalgic encephalitis/chronic
fatigue syndrome61 and long COVID.62 Consequently, the
presence of a soup of inflammatory molecules in circulation
that individually might bind to the numerous receptors on
platelets, and have direct protein–protein interactions, may
therefore be a crucial predictor of the detailed effects of any
systemic inflammation. These interactions should be seen as
central to the cause and effect of disease development and
presentation of both diverse and overlapping symptoms.
Clotting and platelet pathologies should therefore not simply
be seen as a predictor of clinical thrombosis. Such assump-
tion would be oversimplifying the pathophysiological value
of both identifying and studying the underlying causes of the
presence of the inflammatory molecules in circulation.

Differences in the Extent of Platelet
Activation

There aremany reasonswhywemight anticipate that platelet
activation in chronic inflammatory diseases might havemany
origins, not least the plethora of receptors onplatelets that can
be activated individually by numerous circulating inflamma-
tory molecules (see►Fig. 2 and►Table 1 for a basic list of the
types of membrane receptors and their functions). Platelets
aremostly seenasparticipating “only” in clot formationduring
wound healing, but they are actually most important as
signaling entities in immuno-thrombosis. Signaling through
different receptors can lead to different degrees of platelet
activation; however, when a platelet is activated, it cannot

Table 1 Receptor types found on the membranes of platelets and their various functions. For a discussion see37

Receptor type Membrane receptor and function References

Receptors associated
with antigen
presentation

• CD40 and CD40L (CD154, also known as CD40 ligand) - is a member of the tumor
necrosis factor (TNF) family and CD40-mediated platelet activation is well known in
the development of thrombosis, inflammation, and atherosclerosis. Human
platelets carry preformed CD40L molecules, which rapidly appear on the platelet
surface following stimulation by thrombin. CD40L is on the platelet surface for a
short time and does participate in an immune reaction, although mainly by being
released in soluble form and being a cytokine and not so much a receptor when the
strict definition of a receptor is considered.

•Major histocompatibility complex (MHC) class I - MHC (class I) is present on platelets,
and platelets directly activate naive T cells in a platelet MHC class I-dependent
manner.

• Toll like receptors (TLRs)—TLR4 has a prominent functional impact on platelet
activity, hemostasis, and thrombosis.

• Fc receptor for IgG, [FcγRIIa or CD32])—human platelets express FcγRIIa, the
low-affinity receptor for the constant fragment (Fc) of immunoglobulin (Ig) G that is
also found on neutrophils, monocytes, and macrophages. Engagement by
circulating ligands results in immune complexes that further triggers intracellular
signaling events that lead to platelet activation and aggregation. An example of such
a complex may be FcγRIIa/Integrin αIIbβ3 that might bind immunoglobulin. FcγRIIa
may also be associated with GPIb-IX-V.

• Complement receptors—platelets contain complement factors and bear
complement receptors.

123–132
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Table 1 (Continued)

Receptor type Membrane receptor and function References

Activation and
modulating platelet
receptors

• CD63—this is a dense granule and lysosome membrane glycoprotein. After platelet
activation and granule exocytosis, CD63 translocates to the platelet membrane,
where it colocalizes with the αIIbβ3-CD9 complex and is incorporated in the
cytoskeleton. This allows platelet interactions with other cells, for example,
neutrophils. Both CD63 and CD9 are members of the tetraspanin superfamily of
integral membrane proteins that functions as signaling complexes.

• Glycoprotein VI[GPVI])—this receptor also signals through a immunoreceptor
tyrosine-based activation motif, and is involved in platelet activation. It is a
platelet-specific transmembrane type I receptor that non-covalently associates with
the immunoreceptor tyrosine-based activation motif (ITAM) containing Fc receptor
(FcR) γ-chain in the plasma membrane. It is the main collagen receptor. Activation
leads to stable platelet adhesion and degranulation of platelet granules.

• C-type-lectin-like receptor (CLEC2)—CLEC-2 is a C-type lectin-like type II
transmembrane receptor and is involved in platelet aggregate stabilization. It uses a
similar signaling pathway as the GPVI/FcRγ-(chain) complex but it involves tyrosine
phosphorylation of only a single cytoplasmic YXXL motif.

133–142

Adhesion receptors • GPIb-IX-V (sometimes also written as GPIb-V–IX or GP1b-IX)—This receptor can be
classified as both an adhesion and a major signaling receptor, expressed on the
surface of circulating platelets. It is composed of four subunits: GPIbα, GPIbβ, GPV,
and GPIX. GPIbα and GPIbβ are linked by disulfide bridges, while the GPV and GPIX
associate non-covalently with the complex. GPIbα subunit bears the binding site for
von Willebrand factor (vWF), leukocyte integrin αMβ2, P-selectin, and the
coagulation factors thrombin, and other factors like XI and XII, and Mac-1. GPIb-IX-V
may also be associated with FcRγ and with FcγRIIa.

• CD147—The extracellular matrix metalloproteinase (CD147) is a member of the
immunoglobulin superfamily and is also known as EMMPRIN, localized to the open
canalicular system (OCS), and potentially within the α-granules, as its stimulated
expression coincided with CD62P release to the platelet surface. Its expression is
upregulated in the coronary circulation in patients with stable coronary disease. Its
expression is upregulated in response to platelet agonists, including ADP, collagen
and thrombin.

• P-selectin—It is an important adhesion receptor, and is an adhesion molecule
(CD62P) component of the platelet membrane. After platelet activation, P-selectin is
translocated from intracellular α granules to the external membrane, therefore
α-degranulation results in increased surface expression of P-selectin. Shedding of
P-selectin from the platelet membrane can also happen as released soluble
ectodomain fragments that are also detectable in plasma. Plasma levels of soluble
P-selectin (sP-selectin) are often used to demonstrate platelet activation. P-selectin
mediates rolling of platelets and leukocytes on activated endothelial cells. Thrombin
may also cause exposure of activated P-selectin.

131,142–155

Intergrins • Integrin αVβ3—this is the vitronectin receptor. Vitronectin is a glycoprotein of the
hemopexin family. It is also known to assemble fibronectin fibrils on platelets and
mediates cell adhesion to the extracellular matrix.

• Integrin αIIbβ3—this is a receptor for fibrinogen and von Willebrand Factor (VWF),
and activation of this receptor induces platelet aggregation and may play an
important role in platelet spreading. Upon platelet activation, inside-out signaling
pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Inside-out
signaling therefore facilitates and initiates the conformational changes responsible
for ligand binding. Ligand binding and integrin clustering follows, resulting outside-in
signaling, which initiates and amplifies cellular events driving essential platelet
processes such as spreading, thrombus consolidation, and clot retraction.

• Integrin α2β1—this is a collagen receptor and collagen binds directly or indirectly to
both α2β1 (and αIIbβ3, via VWF).

• One of the main platelet activators is also thrombin that causes exposure of
activated αIIbβ3, αvβ3, α2β1 (also P-selectin as mentioned in the previous section).

137,155–161

G-coupled receptors • Protease-activated receptors (PAR1 and PAR4)—platelets contain both these
receptors and PAR1 and PAR4 acts as a dual receptor system for responding to
thrombin as ligand. Both PAR1 and PAR4 also signal via ADP.

• ADP receptors, P2Y1 and P2Y12—they are involved in platelet activation and
aggregation.

• The thromboxane A2 (TXA2) receptor—it exists as two isoforms, TPα and TPβ,
differing only in their C-terminal region.

162–171
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return to its original state. Different diseases and even individ-
uals with the same disease have a unique combination and
concentration of inflammatory molecules in circulation. It
would only need a few of these molecules to bind to any one
or more of the various receptors on platelets, to cause platelet
hyperactivation. The exact nature of the inflammatory mole-
cule trigger may be different, but the end results will be an
“outside-in” signaling activation that, in turn, results in “in-
side-out” platelet signaling and platelet hyperactivation. This
is therefore a casewhere platelet activation and the concept of
“cause and result” should be discussedwith care. Nonetheless,
microscopy imaging might be particularly useful in studying
platelet hyperactivation, as the preparation methods we em-
ploy in our research allows for minimal handling of samples

and short timeframes between obtaining the sample and
doing the analysis. ►Fig. 3 shows examples of microscopy
imaging of platelets from control and long COVID samples.

Ten Things We know about the Fibrinaloid
Microclots That Can Be Observed in Chronic,
Inflammatory Diseases

Wethink it will behelpful to rehearse some of theknown facts
about fibrinaloid microclot formation in the form of a “ten
things”63 style (►Table 2); alsoplease see►Fig. 4 for examples
of fluorescence microscopy imaging of microclots. Many pro-
teins can adopt a more thermodynamically stable microstate
with no change in the primary structure (sequence), in which

Fig. 3 Fluorescence microscopy imaging examples of the different stages of platelet activation and spreading that was used to score platelet
activation in long COVID patients. After centrifuging freshly collected samples, the hematocrit fraction of each sample was retained and
incubated for 30minutes at room temperature with the two fluorescent markers, CD62P (PE-conjugated) (platelet surface P-selectin) (IM1759U,
Beckman Coulter, Brea, CA) and PAC-1 (FITC-conjugated) (340507, BD Biosciences, San Jose, CA). 10mL of each exposed sample was placed on
microscope slide and viewed using a 63x oil objective. Stage 1, with minimally activated platelets, seen as small round platelets with a few
pseudopodia, seen as healthy/control platelets that progresses to Stage 4, with egg-shaped platelets, indicative of spreading and the beginning
of clumping (with permission from the CC-BY publication28).
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the more stable contains an ordered β-sheet “amyloid” struc-
ture15 (see ►Fig. 5). Normally, however, it is present in a less
stable state that is kinetically more accessible during and
following its synthesis. The more stable (labeled PrPSc) is
separated from the initial state (PrPC) via a large energy
barrier. This is true for amyloid proteins generally and is
illustrated here for classical prion proteins.17,64

►Fig. 6 offers a comparativeexaminationofmicroclot areas
reanalyzing fluorescence microscopy data, previously publi-
shed,26 extending our prior analysis to include healthy
participants, individualswith T2DM, and those currently expe-
riencing acute COVID-19. Reexamining some of our previously
collected micrograph data from previously published papers,
we alsoprovide evidence thatmicroclots arevisible in scanning
electron microscopy (SEM) of whole blood samples. ►Fig. 7

showcases a selection of SEM micrographs of healthy whole
blood and conditions where clotting pathologies are well-
known. In ►Fig. 7A, a few plasma deposits (microclots) are
discernible among or on the erythrocytes, while►Fig. 7B to F

show whole blood SEM micrographs of samples from an
individual diagnosed with systemic lupus erythematosus
(►Fig. 7B), acute COVID-19 during the initial wave in 2020
(►Figs. 7CandD), rheumatoidarthritis (►Fig. 7E), andasample
from a patient diagnosed with Alzheimer’s-type dementia
(►Fig. 7F). We only realized that these deposits were of
significant importance during the last few years.

Variation in Microclot Properties

We remain relatively ignorant of the details of precisely what
governs fibrin self-assembly following fibrinopeptide release
(e.g., why it stops at a certain and nonconstant fiber diameter,
even inhealth,65andwhy it canvarywithdisease66).One thing
we do know, however, is that microclots covary with (and in
our view are thus largely responsible for) the severity of
disease in both acute and long COVID67 and in fact contribute
to widespread thrombotic endothelialitis in long COVID.62

What Kind of Molecules can Promote
Fibrinaloid Formation?

Since the early discoveries that molecules such as oestro-
gens68,69 could induce the formation during clotting of
“dense matted deposits” (that we now refer to as fibrinaloid
microclots, because of their amyloid character), we have
also found that low concentrations of molecules such as
bacterial lipopolysaccharide,14 lipoteichoic acid,21 serum
amyloid A,70 and SARS-CoV-2 S1 spike protein34 can also
do so. These dense matted deposits could be induced using
both whole blood and platelet-poor plasma. It is moderately
to highly unlikely that they are binding in the same loca-
tions as each other (the binding site of spike is known71),
and thus, the morphology of the clots they induce will be
the same. In a similar vein, nonamyloid substances can also
bind to and induce the aggregation of established amyloid
proteins such as bacterial DNA promoting tau72 or β-amy-
loid73 aggregation.

Consequences of Microclot Formation

The fibrinaloid microclots that we discovered and that can
be induced my miniscule amounts of molecules such as
bacterial LPS or the SARS-CoV-2 spike protein are resistant
to normal fibrinolysis for a least two reasons: (1) amyloid-
type proteins are inherently more resistant to proteoly-
sis35,74 because of their crossed-β structure,15,75,76 and (2)
because they also entrap inhibitors of normal proteolysis
such as α2-antiplasmin and plasminogen activator inhibitor
1 (PAI-1).74 Consequently, they are able to block micro-
capillaries, leading to tissue ischemia and hypoxia, from
which the great majority of symptoms can be seen to
follow.17,77 Importantly, our analysis provides a mechanis-
tic link between external trigger events and the pathologies
of present interest, as well as a candidate set of targets for
treatment.

Table 2 The “big picture” of microclots and ideas for future research related to microclots

Fibrinaloidmicroclots are widely present in all chronic, inflammatory diseases studied to date, and to amuch greater extent than
in ‘healthy’ controls.

These diseases include Alzheimer’s, Parkinson’s, rheumatoid arthritis, and infection with SARS-CoV-2 leading to acute or long
COVID-19.

They can be stained with fluorogenic dyes such as thioflavin T or the Amytracker dyes.

They are commonly in the size range 2–200 μm.

They are comparatively resistant to the normal processes of fibrinolysis; some are even resistant to trypsin.

Their extent is often related to the severity of various diseases.

They can be induced in vitro (in both whole blood and platelet poor plasma) with a variety of substances, including bacterial
lipopolysaccharide, lipoteichoic acid, 17-b-oestradiol, and SARS-CoV-2 S1 spike protein.

In some cases (especially SARS-Cov-2 infection) they are prevalent even without the addition of thrombin.

The diameter of the fibers can vary fairly considerably.

They can exhibit considerable structural (and even spectral) heterogeneity, reflecting the molecules that were bound to the
fibrinogen before polymerization.

Abbreviations: COVID-19, coronavirus disease 2019; SARS-Cov-2, severe acute respiratory syndrome coronavirus 2.
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Anticipating Disease Diagnosis and
Prognosis fromMicroclot Measurements, as
Part of Disentangling Their Differences

To date, our microscopy imaging and analyses have mostly
been semiquantitative, showing the existence of different

microclots in various diseases. As with much of modern,
postgenomic biology,78 especially that influenced by “deep
learning”79, it is time tomove froma “discriminative” strategy.
We suggest a “generative” strategy, in which we seek to solve
the “inverse problem” (as in80) by using the observables
(microclot properties) to infer their “cause” (i.e., the diseases

Fig. 4 Fluorescence microscopy showing microclots in platelet poor plasma (PPP) with representative examples of the different stages of
different stages of microclot formation. Stored or freshly prepared platelet poor plasma samples were exposed to Thioflavin T (ThT), a
fluorogenic dye that binds to amyloid protein.15 A final concentration of 0.005mMwas used (Sigma-Aldrich, St. Louis, MO). Plasma was exposed
for 30minutes (protected from light) at room temperature, whereafter 3 µL stained PPP was placed on a glass slide and covered with a coverslip.
Stage 1 showsminimal microclot formation in healthy/control PPP which progresses to the presence of the severe microclotting Stage 4. Bottom
row represents examples of stage 4 microclots using (A) bright-field microscopy, (B) fluorescence microscopy, and (C) an overlay of fluorescence
and bright-field microscopy (with permission from the CC-BY publication28).
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with which they are associated). The observables include the
distribution of clot sizes and morphologies,26,81 the diame-
ter of individual fibers,82,83 their ability to cross-seed other
amyloidogenic proteins,84–89 the spectral properties of the
different stains when attached to fibers,90–96 the suscepti-
bility of the clots to proteolysis by different proteases,35,97

and the extent to which they are naturally present in
platelet-poor plasma versus being induced by the in vitro
addition of thrombin.17,34,98

The Power of Multivariate Data, and How the
Manner of Fibrinogen Clotting Effects
Dimensionality Reduction of the Various
Plasma ’omes

Each property of an individual example in a system of
interest can be seen as an element of a vector describing
that system or as a dimension in multidimensional
space.99–101 When we have a series of properties of both a

Fig. 5 Protein–protein interactionsmay result in proteinmisfolding and have been shown to cause amyloidogenic changes to all kinds of proteins. This is
illustrated in the upper part for the Prion protein PrP. The lower part shows electron micrographs of fibrin clots. Adapted in part from the CC-BY
publications.15,17,64 We also note that the spike protein is itself amyloidogenic.172 Figure created by authors using Biorender.com.
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sample “as awhole” and indeed of individual objects therein,
it becomes increasingly easy to discriminate them.100 Care is
needed, however,102 since even comparatively small random
variations in normal distributions can appear significant in
individual dimensions when there are many to choose from,
even in “unsupervised”methods (in which class membership,
suchasaparticulardisease, isnot known103). In favorable cases
(e.g.,104,105), though, these are entirely sufficient. Supervised
methods, inwhich amodel is “trained” to predict an output set
of properties (such as a particular disease) from “input”
variables such as omics data, are even more prone to over-
trainingandotherkindsofbias.102Thesolutionhere (e.g.,106) is
to assess any predictions taken from such a mathematical
model using separate “validation” exampleswhose classmem-
bership or other output properties are known but which are
not used in the construction of the model.

Another modern trend is to recognize that the amount of
unlabeled data available normally vastly exceeds that of
labeled data and that such data can be used in the training
of a supervised model; these methods are known as “semi-
supervised.” They have become preeminent in deep learning
models79 based on variational autoencoders107–109 and
transformers,110,111 especially in natural language112,113

and image processing.114–116

In variational autoencoders, one essentially clusters
input examples into a (much) lower dimensional space.
This still allows considerable discrimination; however,
even a normalized vector of just 20 in which an individual
may be in the upper or lower half admits 220 (approximately
1 million) possibilities.109,117 In the case of microclots, we
consider that (distributions in) themany 1,000s of individual

Fig. 6 Comparison of microclot area in healthy participants, and participants with Type 2 diabetes and acute COVID-19. (Raw data reanalyzed,
and available in26).

Fig. 7 (A to F) Whole blood scanning electron microscopy of
micrograph data previously collected in published studies. (A) A few
plasma deposits are discernible within the blood sample of a healthy
participant173; (B) systemic lupus erythematosus174; (C and D) acute
COVID-19 during the initial wave in 202030; (E) rheumatoid Arthritis175;
(F) Alzheimer’s-type disease.176
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metabolites118–120 and proteins121 in serum or plasma can
potentially each affect the size and shape of the microclots.
This “harvesting” of all themolecules towhich thefibrinogen
is exposed, and which then determines how it polymerizes,
effectively concentrates the vast numbers of metabolites,
proteins, and even transcripts into a smaller number of
dimensions; the microclots essentially act as a surrogate
for themetabolome, proteome, and transcriptome present in
the plasma at the time of clotting. Consequently, we are
optimistic that an analysis of the detailedmorphological and
spectral properties of microclots will indeed serve to dis-
criminate, possibly quite finely, individuals with different
diseases.

Conclusion

In our previous work, we have focused more or less qualita-
tively on the presence of fibrinaloid microclots that we
discovered using microscopy imaging while recognizing
that some of their measurable properties differ in various
conditions or diseases. Within the terminology of the deep
learning agenda,79 this is to be seen as a “discriminative”
approach. The opposite strategy, amounting to the solution
of the inverse problem, is referred to in general as a “genera-
tive” strategy. Here the aim, now clearly worthwhile, is to
develop and exploit a more quantitative analysis in the
prediction of diseased states, and the success of any treat-
ment both in modifying the microclot properties and in
curing or ameliorating the diseases. Various laboratories in
the United States, United Kingdom, and Germany have
successfully implemented microclot imaging and will also
be publishing their results shortly. We have been using and
described here, fluorescence microscopy imaging (and also
briefly SEM methods) to visualize microclot presence and
platelet hyperactivation. In addition, we are also developing
imaging flowcytometrymethods thatmay, in future, direct a
meaningful translational outcome that could guide treat-
ment options. We also suggest that automation of our
microscopy imaging using software modalities like the
MetaSystems platform (https://metasystems-international.
com/), might be particularly useful for unbiased quantita-
tive analysis of microscopy imaging of both platelets and
microclots. Other research teams are developing innovative
strategies that integrate real-time one-dimensional-imag-
ing fluorescence with deformability cytometry within a
single instrument, denoted as RT-FDC.122 RT-DC techniques
are also currently being adapted to study and characterize
the mechanical classification of microclots in whole blood,
at rates of several hundred cells per second. We believe
that the research agenda, using various novel methods, as
set out here, will make the enterprise of unbiased quanti-
tative analysis of microclots, worthwhile. We suggest that
researchers direct increased attention toward a previously
disregarded fraction of the blood sample. Microclots
found in platelet-poor plasma could hold a significant
diagnostic value for clotting-related issues in inflammato-
ry diseases and other similar conditions, including post-
viral syndromes.
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