1	
2	Zircon double-dating, trace element and O isotope analysis to decipher late Pleistocene
3	explosive-effusive eruptions from a zoned ocean-island magma system, Ascension Island
4	
5	Jane H. Scarrow ^{1,2} *, Axel K. Schmitt ^{3,4} , Martin Danišík ³ , Katy J. Chamberlain ⁵ , Bridie V. Davies ² ,
6	Jeremy Rushton ⁶ , Richard J. Brown ⁷ , and Jenni Barclay ²
7	
8	1. Department of Mineralogy and Petrology, University of Granada, 18071, Spain
9	(*corresponding author: jscarrow@ugr.es)
10	2. School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
11	(J.Barclay@uea.ac.uk, Bridie.Davies@uea.ac.uk)
12	3. John de Laeter Centre, Curtin University, Perth, WA 6102, Australia
13	(axel.schmitt@curtin.edu.au, M.Danisik@curtin.edu.au)
14	4. Institute of Earth Sciences, Heidelberg University, Heidelberg 69120, Germany
15	5. Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow
16	Street, Liverpool, L69 3GP, UK (K.J.Chamberlain@liverpool.ac.uk)
17	6. British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
18	(jere1@bgs.ac.uk)

- 19 7. Department of Earth Sciences, University of Durham, DH1 3LE, UK
- 20 (richard.brown3@durham.ac.uk)
- 21

22 H	lighlights

- 23
- U-Th-Pb dating has identified recurrent felsic volcanism (1.34 Ma, 0.6 Ma, 95 ka).
- Eruption ages of the Echo Canyon explosive-effusive deposits converge at ca. 95 ka.
- Pre-eruptive zircon crystallisation occurred over ca. 10^3 – 10^4 from ca. 111–98.5 ka.
- Zircon trace element compositions indicate melt storage in discrete, zoned, lenses.
- Deposits of the most explosive phases sample lithic clasts from previous eruptions.

29 Abstract

30	In this first detailed study of zircon from Ascension Island, South Atlantic, we take a novel
31	approach combining trace element and O isotope compositional data with double-dating
32	(disequilibrium ²³⁸ U– ²³⁰ Th and (U–Th)/He) to decipher timescales and dynamics of magmatic
33	processes. The Echo Canyon (EC) sequence comprises small-volume explosive-effusive
34	eruptions of trachyte that tapped a compositionally zoned magma system. Associated volcanic
35	hazards may be constrained from the age of volcanism, duration of magma storage, and
36	magma source and plumbing system character. Zircon U–Th–Pb dating of lithic lava clasts has
37	revealed recurrent evolved volcanism at 1.34 and 0.6 Ma, and 95 ka. The (U–Th)/He zircon
38	cooling ages indicate that most of the EC explosive-effusive sequence erupted in a brief
39	episode at ca. 95 ka. Additionally, uniform ²³⁸ U– ²³⁰ Th zircon crystallisation ages suggest
40	moderately protracted magma storage with melt present at depth for at most 10^3 – 10^4 years
41	before eruption. The enriched character of zircon trace element compositions, relative to
42	MORB, in the absence of a continental crustal signature in the oxygen isotope values ($\delta^{18}O$
43	range 2.67–5.63‰), suggests the presence of an enriched component in the EC magma source.
44	Furthermore, low $\delta^{18}O$ zircon compositions imply assimilation of high temperature
45	hydrothermally altered country rock by the source magma. The mineral assemblage in crystal-
46	poor pumices indicates equilibrium storage conditions: zircon saturation and Ti-in-zircon
47	crystallisation temperatures are consistent with alkali feldspar-melt temperatures. Significantly,

48	zircon crystals were preserved both as macrocryst inclusions and in the groundmass of EC
49	explosive and effusive deposits. These rocks preserve evidence of magma evolution by
50	fractional crystallisation. This process led to pre-eruptive compositional stratification, which is
51	evidenced in the range of whole-rock major and trace element compositions and zircon Zr/Hf
52	values. Notably, zircon crystallisation and cooling ages derived from pumice, lava, and
53	accidental lithic lava clasts in highly explosive pyroclastic deposits, have revealed episodes of
54	evolved magmatism that would otherwise have gone undetected. In addition, the zircon trace
55	element and isotope compositions, in combination with the range of crystallisation ages,
56	evidence progressively deeper tapping of less evolved magma stored in discrete lenses. Thus, a
57	combined zircon geochronological-geochemical approach can place constraints on the
58	recurrence ca. 0.6 Ma, millennial to decamillennial duration, enriched source and explosive-
59	effusive style of past eruptive pulses. This information is relevant for assessing hazards and
60	informing monitoring and forecasting efforts to assist in managing associated risks for small
61	ocean island volcanoes with particularly vulnerable populations and infrastructure.

- Keywords: Quaternary, South Atlantic, tephrochronology, chronostratigraphy, radiogenic
 isotopes, U-series, (U–Th)/He, ocean island volcanism, trachyte, pumice.

65 Graphical abstract

67 **1. Introduction**

68 Dating Quaternary magmatism is a geochronological challenge. The application of available methods, including radiocarbon ¹⁴C, ⁴⁰Ar/³⁹Ar, fission-track and luminescence dating, can be 69 70 complicated by the lack of (i) available datable materials (e.g., preserved organic material or K-71 rich minerals, Hughen, 2007), (ii) open-system processes (e.g., post-magmatic hydration or Ar 72 loss, Albarede et al., 1978), and (iii) difficulties in precisely measuring low intensity signals (e.g., 73 low Th and Pb concentrations in zircon, Schaltegger et al., 2015; also see Dosseto et al., 2011, 74 and references therein, for an overview of dating methods applications and limitations). Nonetheless, forecasting when and how a volcano may erupt is informed by its past behaviour, 75 76 and thus reliable ages for previous eruptions are critical to long-term planning and hazard 77 mitigation. In this context, we focus on the chronostratigraphy and pre-eruptive magmatic 78 character of the only documented explosive-effusive transition on Ascension Island, South 79 Atlantic. This British Overseas Territory (Fig. 1) is a key strategic staging point for ships and aircraft and hosts a population of ~1000 along with British and US military bases and key 80 communications assets. In-depth study of volcanism on the island is particularly timely because 81 82 the magmatic system has recently been classified as active based on an ⁴⁰Ar/³⁹Ar basalt 83 groundmass age of 0.51±0.18 ka (Preece et al., 2018, 2σ analytical uncertainty, here and 84 throughout unless otherwise stated).

85	When deciphering magmatic processes, the accessory mineral zircon, commonly present in
86	intermediate-felsic igneous rocks, is particularly useful because (i) it records both
87	geochronological and compositional information, and (ii) it is chemically and physically
88	resistant to subsequent magmatic and post-eruptive processes (Hanchar and Hoskins, 2003).
89	Consequently, one potential pathway to characterise Quaternary volcanic activity is to combine
90	zircon compositional analysis and geochronology. Magma source character and system
91	processes are constrained by O isotope and trace elements; whereas, timing of zircon
92	crystallisation and eruption is determined by zircon double-dating (ZDD), i.e., U–Th–Pb or
93	disequilibrium ²³⁸ U– ²³⁰ Th crystallisation ages linked to (U–Th)/He cooling ages (Schmitt et al.
94	2006; Danišík et al., 2017). This methodology has the ability to date zircon grains to ca. 2 ka
95	(Marsden et al. 2021). Therefore, it can be applied to a gap in Quaternary geochronology to
96	determine the age of samples that are: older than the upper limit of 14 C dating, >50 ka, and
97	younger than the lower limit, ca. 1 Ma, of traditional dating methods (Dosseto et al., 2011).
98	Furthermore, the U–Th–Pb and (U–Th)/He systems have different closure temperatures, >900 $^{\circ}$ C
99	and ~180°C, respectively (Cherniak and Watson, 2001; Reiners et al., 2004). These differences
100	permit estimation of zircon residence times in magma systems constraining their longevity and
101	cyclicity. Hence, volcanic hazard assessment, monitoring and forecasting and so risk mitigation
102	can be informed by ZDD studies (e.g., Danišík et al., 2020; Friedrichs et al., 2020; Marsden et al.,
103	2021; Cisneros de León et al., 2023).

104 In recent years, several studies have investigated zircon as a geochronometer and indicator 105 mineral for igneous processes in oceanic island settings such Ascension (e.g., Carley et al., 106 2011; Sagan et al., 2020; Rojas-Agramonte et al., 2022). However, to date ZDD has only been 107 used for one ocean island, Piton des Neiges, Réunion Island (Famin et al. 2022), as part of a 108 multi-pronged geochronological approach combining zircon U–Pb, phlogopite ⁴⁰Ar/³⁹Ar, and 109 zircon and apatite (U-Th)/He dating. Zircon crystallisation is principally promoted by decreasing 110 magmatic temperature and melts reaching evolved compositions (e.g., Watson and Harrison, 111 1983; Shao et al., 2019). However, because basalts (OIBs) are often predominant in ocean island settings, rocks from these regions are commonly zircon undersaturated. Nonetheless, zircon is 112 113 increasingly detected in ocean island settings, where it falls into three main categories, each of 114 which has potential to be applied to evaluation of geochronological changes in the system if 115 interpreted within an appropriate compositional and textural context: (i) part of the stable 116 mineral paragenesis as microcrystic zircon in volumetrically minor evolved alkaline magmas and 117 grains crystallising from late-stage segregations of felsic melt (Carley et al., 2011; Padilla et al, 118 2016; Rojas-Agramonte et al., 2022; Scarrow et al., 2022); (ii) antecrysts recycled from precursor 119 plutonic or volcanic rocks which are often significantly older than the host rocks but clearly 120 related to OIB magmatism (Vazquez et al., 2007; Bindeman et al., 2012; Banik et al., 2021; 121 Rojas-Agramonte et al., 2022); and (iii) exotic zircon, xenocrysts, inherited from extraneous and 122 ancient sources for which mantle asthenosphere (Rojas-Agramonte et al., 2022) or continental

123	lithosphere (Torsvik et al., 2013; Sagan et al., 2020; Greenough et al., 2021; Rolim, 2022) have
124	been suggested. Clearly, remobilisation and reinitiation of zircon crystallisation in (ii) and (iii)
125	may result in a progression of ages within a single grain with potential to reach (i) stable
126	mineral paragenesis. In the third case care must be taken to determine that such crystals are
127	not derived from sampling- or laboratory-based contamination but instead truly inherited and
128	heated by their host magmas. The latter can be identified, for example, from evidence of
129	radiation damage detected by Raman spectroscopy (e.g., Bjerga et al., 2022) or age resetting
130	identified by (U–Th)/He dating (e.g., Famin et al., 2022). The majority of zircon crystals from
131	Ascension Island considered here fall in the first category with a few grains from the second.
132	In this first detailed study of Ascension Island zircon, originally identified by Daly (1925), we
133	combine data from fieldwork, petrographic study and mineral and whole-rock analysis with
134	ZDD and zircon O isotope and trace element compositional analyses to constrain the temporal
135	association of the Echo Canyon (EC) explosive-effusive stratigraphic sequence and characterise
136	its pre-eruptive magma evolution. By shedding light on the longevity of magma storage,
137	source character and magma plumbing processes, our data place constraints on the
138	chronostratigraphy and petrogenesis of this Pleistocene explosive-effusive volcanic sequence.
139	The EC deposits contain exclusively Pleistocene-aged zircon which crystallised shortly before
140	eruption; whereas zircon in the accidental lithic clasts from the deposits record earlier felsic
141	magmatic phases that had previously gone undetected.

143 **2. Geological setting and field relations**

144 Ascension Island is a small composite ocean island volcano located in the south Atlantic (7° 145 56 'S; 14° 22 'W) (Fig. 1). It lies ~100 km west of the Mid-Atlantic Ridge and 50 km south of 146 the Ascension Fracture Zone. Built on 5-7 Ma ocean crust it has subaerial dimensions of 8 km 147 by 12 km; the last 1 Myr of subaerial volcanism represents a fraction of the 5–6 Ma volcanic 148 edifice (Klingelhofer et al., 2001). It is unclear whether the magmatism is related to, although 149 not centred on, a diverted shallow low flux mantle plume (Gaherty and Dunn, 2007) or to 150 anomalously enriched, relative to MORB, Mid-Atlantic Ridge type mantle displaced by 151 westward plate movement (Paulick et al., 2010). Compositionally diverse picrites-comendites 152 have erupted as effusive and explosive volcanic deposits (Weaver et al., 1996; Chamberlain et 153 al., 2019; Davies et al., 2021) with mafic-felsic volcanic and plutonic clasts (Harris, 1983; Kar et 154 al., 1998). Our focus is on what is currently considered to be the youngest known felsic volcanic deposit on the island, recently dated at 59±4 ka by feldspar ⁴⁰Ar/³⁹Ar (Preece et al., 155 156 2021): the EC explosive-effusive sequence. 157 Davies et al. (2021) presented a detailed textural study of EC juvenile pumice clasts and lavas 158 to characterise the transition from explosive to effusive eruptive activity. From the base to the 159 top, the sequence comprises a proximal pumice cone with rare decimetre-scale trachyte and 160 rhyolite lava clasts embedded between the clasts in the pumice deposits, an endogenous

161	effusive post-cone lava dome, brecciated lava, and a capping orange-brown pumice deposit
162	(Fig. 2). A lack of field evidence for temporal breaks in the sequence and distinctive large alkali
163	feldspar macrocrysts in all the rocks led Davies et al. (2021) to interpret the deposits as
164	products of a single eruption with an estimated dense rock equivalent volume of 0.01–0.3 km ³ .
165	The lower cone comprises ~10 m of angular to sub-angular, clast-supported, pumice fall with a
166	modal clast size that increase up sequence from 2–3 cm to 4 cm diameter (maximum 30 cm)
167	and rare angular fragmented bombs up to 50 cm diameter. Conformably overlying these
168	deposits, the middle cone is composed of \sim 2 m of angular sub-angular clast-supported
169	pumice fall that becomes ashier, matrix-supported, upwards then transitions into an uppermost
170	clast-supported layer. The middle cone clasts are smaller, having a modal diameter of 0.5–2 cm
171	(maximum \sim 30 cm) near its base, reducing to 0.5–1 cm higher up; again, angular-fragmented
172	bombs, which are uncommon, are up to 30 cm in diameter. The lower section of the upper
173	cone deposits is ~30 m thick varying from ash-rich containing only ~20% pumice clasts to
174	clast-rich with ~60% ~sub-rounded to rounded juvenile lapilli; the modal clast size is 5 cm and
175	bombs have up to 40 cm diameters. The uppermost upper cone is \sim 15 m thick comprising
176	angular pumice clasts which decrease in diameter from 12–4 cm up sequence and bombs that
177	are elongated up to 70 cm. Directly above the cone, the post-cone deposits include the 30-40
178	m thick, fine-grained, brecciated porphyritic trachyte dome and ~10 m thick brecciated lava. At
179	the top of the EC sequence the 3–10 m thick clast-supported orange-brown-pumice is formed

of larger, ~10 cm diameter, angular clasts and sparse bombs (maximum diameter ~45 cm). See
Davies et al. (2021) for detailed descriptions of all units.

182

183 **3.** Samples, materials and methods

184 Supplementary material includes full details of methods, precision, and accuracy as well as

- 185 complete data sets for whole-rocks (major and trace elements) and zircon (U–Th–Pb, ²³⁸U–²³⁰Th
- 186 disequilibrium, (U–Th)/He, O isotopes, and trace elements.
- 187 Detailed study was undertaken of seven samples of the EC explosive-effusive transition pumice
- 188 and lava units, each composed of composites of clasts collected from uniform horizontal layers,
- as well as three accidental lithic lava clasts excavated from within the juvenile pumice (Fig. 2).
- 190 From base to top of the stratigraphic sequence, following the nomenclature of Davies et al.
- 191 (2021) these samples are: lower cone pumices (samples 842, 843, 844), middle cone pumice
- 192 (sample 829); and post-cone dome (sample 871), lava breccia (sample 828) and orange-
- brown pumice (sample 827) (Fig. 2). Pre-cone accidental lava clasts (samples 844F1, 844F2 and
- 194 844F3) were sampled from a lithic-rich band between lower pumices 843 and 844.
- 195 Thin sections were made of samples for petrographic examination. Remaining material was
- 196 prepared for geochemical analyses and mineral extraction. Splits from all ten samples were
- 197 powdered for whole-rock major element X-ray fluorescence analysis in a tungsten-carbide ring
- 198 mill at the University of East Anglia, U.K.; for elements with concentrations >0.5 wt.% analyses

199	of multiple international standards yielded uncertainties $\leq \pm 0.5$ wt.% (2 σ), except for SiO ₂
200	which yielded uncertainties of ± 1.06 wt.% (2 σ). Major element data are plotted normalised to
201	100 wt % dry totals. Rare earth elements plus selected trace elements were analysed by ICP-
202	MS at the University of Granada, Spain, Scientific Facilities Centre (UGR-CIC); precision, as
203	determined from international standards, was better than $\pm 2\%$ and $\pm 5\%$ for concentrations of
204	50 and 5 ppm, respectively.
205	Zircon was extracted from seven samples by crushing, sieving using synthetic mesh, then
206	panning the 50-250 μ m fraction in water to concentrate heavy minerals. This concentrate was
207	refined by magnetic separation and dissolution of other silicates and phosphates with a
208	mixture of hydrochloric and hydrofluoric acid before hand picking using a binocular
209	microscope. Grains were mounted in epoxy, polished, coated with carbon and then imaged
210	using a scanning electron microscope (SEM). The SEM contrast and brightness settings were
211	constant for all cathodoluminescence analyses permitting comparison of relative intensities
212	between samples. Semi-quantitative SEM compositional scans to locate accessory phases were
213	undertaken of thin sections at the British Geological Survey, U.K. Zircon was analysed for ²³⁸ U–
214	²³⁰ Th for two of the three lithic clasts analysed for major and trace elements as well as for
215	three pumice, one dome and one lava samples at the Heidelberg Ion Probe laboratory,
216	Heidelberg University, Germany. The two lithic clast samples with zircon in secular equilibrium
217	were also dated by U–Th–Pb methods at the same facility. Data accuracy is ascertained by

218	analysis of zircon references: for AS3 (Paces and Miller, 1993), secular equilibrium (²³⁰ Th)/ ²³⁸ U)
219	values within error of $\pm 2\%$ of unity were determined in two analytical sessions (n = 33),
220	whereas for 61308 a 206 Pb/ 238 U age of 2.65 ± 0.07 Ma (n = 10) was obtained in comparison to
221	the reported age of 2.5 Ma (Wiedenbeck et al., 1995). Four samples of the samples dated by
222	U–Th–Pb methods (lower pumice, orange-brown pumice, dome and lava) were also analysed
223	for (U–Th)/He at the John de Laeter Centre, Curtin University, Australia (Table 1); and two
224	samples for O isotopes (lower pumice, $n = 20$, and dome, $n = 20$) at the UGR-CIC Sensitive
225	High Resolution Ion Microprobe (SHRIMP) IBERSIMS laboratory with correlative trace elements
226	determined by LA-ICPMS at the UGR-CIC. Unless otherwise stated, all age uncertainties are
227	quoted at 2σ in the text; 1σ errors are plotted for clarity.

4. Results

230 *4.1 Whole-rock petrography and composition*

231 Detailed descriptions of the petrography of the EC pumice, dome and lava can be found in

- 232 Davies et al. (2021); whole-rock data for the seven volcanic deposits and three lithic clasts are
- 233 presented in Fig. 3. All pumices are hypohyaline whereas the lava and dome are
- 234 hypocrystalline. Microlites, <10–200 µm, which are predominantly albite, comprise ~1-2 modal
- 235 % in pumice, although there are patches of up to ~70 modal % in the dome, ~30 modal % in
- the lavas and >60 modal % in the orange-brown pumice (Davies et al., 2021). The glass-rich

237	pumices have rare, but distinctive, <1 modal %, 2–4 mm, crystals of albite to anorthoclase
238	feldspar and clinopyroxene that, in places, form 3-8 mm glomerocrysts; lavas have up to 5
239	modal % of these same minerals. Vesicularity varies from 65–95% at the base of the sequence
240	to 50–95% in the upper pumices (Davies et al., 2021). The cone pumices contain zircon and
241	other accessory phases including baddeleyite, barite, monazite, chevkinite and Fe sulphides;
242	apatite was not detected. The post-cone dome and lava breccia contain zircon and apatite as
243	well as the other accessory phases observed in the cone pumices. The post-cone orange-
244	brown pumice from the top of the sequence has the same accessory phases as the lower cone
245	pumices.
246	All the samples, except one rhyolitic lithic clast (RLC), are trachytic with an alkaline
247	metaluminous character (SiO ₂ 64.3–68.3 wt % and Na ₂ O+K ₂ O 10.8–12.4 wt %; RLC SiO ₂ 74.3 wt
248	% and Na ₂ O+K ₂ O 9.8 wt %) (Fig. 3A). Normalised to chondrite, all samples are enriched in light
249	rare earth elements (LREE) relative to heavy rare earth elements (HREE). The lower cone
250	pumices have higher concentrations of all REE than the upper cone deposits and a marked
251	negative anomaly in Eu which is absent in the samples from the top of the sequence (Fig. 3B);
252	the RLC has a lower concentration parallel REE pattern. Notably, the samples from the base of
253	the pumice cone sequence, below the lava breccia, have the highest SiO ₂ , K_2O , Zr, Hf, and Rb,
254	as well as lowest TiO ₂ , Al ₂ O ₃ , MgO, FeO, CaO, Na ₂ O, Sr, Ba and Eu. Major elements, except K ₂ O,
255	correlate negatively with SiO ₂ , whereas all trace elements, except Sr, Ba and Eu, correlate

positively (Fig. 3C-D). Both the orange-brown pumice and lithic clasts lie off the major and
trace element trends defined by the lower pumice to dome sequence (Fig. 3).

258

259 4.2 Zircon texture, composition and geochronology

260 4.2.1 Texture

261 Zircon grains in the volcanic lithic clasts are euhedral-subhedral, 50-100 µm in length, 262 transparent, colourless, unzoned and with intermediate cathodoluminescence intensities (see 263 supplementary material file Scarrow et al_supp mat_zircon CL images). Zircon grains in all explosive-effusive juvenile samples are euhedral-subhedral, equidimensional to tabular with 264 265 rare pyramidal terminations and are 50–150 µm in length and with comparable optical 266 properties to those in the lithic clasts. They have weak to intermediate cathodoluminescence 267 intensities, with both oscillatory and sector zoning (see aforementioned supplementary material 268 file). No textural evidence was detected in any of the zircon grains for more than one stage of growth, e.g., inherited cores, resorption surfaces or overgrowth rims. One larger grain, ~250 269 270 μ m in length, was found in the cone lower pumice and several grains up to 200 μ m in length 271 were identified in the dome samples. In addition to the 50–100 µm, subhedral grains present in 272 all juvenile explosive-effusive samples, the post-cone dome, lava breccia and orange-brown 273 pumice samples also have a second population of zircon grains of acicular euhedral 274 morphology and pyramidal terminations, but only ~20–30 µm in length. High-resolution SEM

imaging has revealed that in all samples, in addition to being present entrained as inclusions in macrocrysts, zircon is present in the glassy matrix of pumice and the microcrystalline lava groundmass.

278

- 4.2.2 Composition
- 280 O isotopes
- 281 Oxygen isotopes were measured in grains from two selected samples: the cone lower pumice
- and the post-cone dome (Fig. 4A). Values for δ^{18} O (reported relative to VSMOW) are
- 283 heterogeneous and range from well below to within the range of typical of mantle zircon
- 284 (5.3±0.6‰) (e.g., Valley, 2003). The lower pumice range is broader (2.67–5.20‰, n = 20)
- whereas the dome δ^{18} O range is more restricted (3.40–5.63‰, n = 20), but still larger than the
- analytical uncertainties of 0.14‰. The variations in δ^{18} O are uncorrelated with differentiation
- 287 indices such as (Zr/Hf), Eu anomalies, or age.

288

289 Trace elements

Zircon from the same two samples analysed for O isotopes show significant composition
 differences for trace elements (Fig. 4B). The REE concentrations in each of the two analysed
 samples vary by an order of magnitude, comparable with typical intra-grain and inter-grain
 compositional variations in other magmatic zircons (cf., Hoskin and Schaltegger, 2003) (Fig. 4C,

294	supplementary material 'Zircon trace elements'). The spread of REE is more restricted in the
295	lower pumice than in the dome (Fig. 4C). However, all the zircon chondrite-normalised REE
296	patterns are parallel-subparallel and have similar, typically igneous zircon concentrations:
297	depletion in LREE relative to HREE ([Gd/Yb] $_{ m N}$ 0.05–0.15) (cf., Hoskin and Schaltegger, 2003); and
298	positive Ce and negative Eu anomalies relative to adjacent REE, indicating, paradoxically, that
299	Eu ²⁺ and Ce ⁴⁺ can coexist in zircon-saturated magmas (Trail et al., 2012). The zircon Eu
300	anomalies in both samples are moderately negative with Eu/Eu^* between 0.08 and 0.39 (Eu =
301	Eu_N and $Eu^* = [Sm \times Gd]^{0.5}$). Trail et al. (2012) noted Eu anomalies of zircon crystallised from the
302	same melt composition are more negative at lower oxygen fugacities but, also, that such
303	anomalies may reflect melt compositions. Significantly, therefore, although Eu depletion has
304	typically been attributed to plagioclase fractionation under reducing conditions prior to zircon
305	crystallisation (Hoskins and Ireland, 2003; Cisneros de León et al., 2019), this is not required to
306	produce a negative Eu anomaly in zircon (Trail et al., 2012). The Eu/Eu* values of the EC dome
307	zircon are more heterogeneous than those of the lower pumice, although in the whole-rock
308	data, a negative Eu anomaly is only evident in the most evolved lower pumice sample. The EC
309	zircon Ce anomalies, on the other hand, are similarly strongly positive in both samples, Ce/Ce*
310	= 11.5–195.3 (where Ce = Ce _N and Ce [*] = $[La \times Pr]^{0.5}$) (Fig. 4C). Such anomalies increase with
311	higher oxygen fugacities and lower crystallisation temperatures in the magmatic system (Trail
312	et al., 2012) and are also dependent, to a lesser extent, on the melt water content and

313	composition (Smythe and Brenan 2015). The whole-rock data, on the other hand, show absent
314	or very weakly positive Ce anomalies (Fig. 4C). Some of the small, ~20 μm crystals in the dome
315	are exceptionally high in REEs (Ce 2–8 wt %) with elevated La values atypical of magmatic
316	zircon (Hoskin and Schaltegger 2003; Claiborne et al. 2010; Ni et al. 2020). This may reflect tiny
317	inclusions of LREE-rich minerals, e.g., allanite or chevkinite.
318	Other zircon trace element concentrations are also heterogeneous: ranging from evolved
319	compositions (U/Yb >0.7, Hf ~18,000 ppm, and Yb ~3000 ppm) in the lower pumice to almost
320	typical MORB zircon values in the dome with U/Yb <0.1 (Grimes et al., 2015), Hf \leq 9000 ppm
321	and Yb \leq 700 ppm. Uranium abundances are generally higher in the lower pumice than in the
322	dome, albeit with considerable overlap, 482–1023 ppm and 182–809 ppm respectively; the
323	Th/U ratio average, 0.9±0.3, is typical of igneous values \geq 0.5 (Hoskin and Schaltegger, 2003).
324	The MREE-HREE and Y show the same relative variation as U in the two samples, being higher
325	in the lower pumice than in the dome which reflects the differences in the whole-rock
326	compositions. Titanium values in the lower pumice range from 6.4–26.3 ppm but are
327	excessively high in the dome zircon. This suggests beam overlap onto microscopic inclusions of
328	Ti-rich minerals such as Fe-Ti oxides or titanite.
329	Zircon crystallisation and fractionation depletes Zr in the melt relative to the slightly less
330	compatible Hf, so as a zircon-saturated magma evolves, Hf concentrations increase in the melt
331	and in the crystallising zircon so that decreasing Zr/Hf is an index of differentiation (Claiborne

332	et al., 2006). The EC zircon range of Zr/Hf values is consistently less in the lower pumice than
333	the dome, with ratios of 27.4–38.6 and 45.5–90.4, respectively. Nevertheless, Zr/Hf only varies
334	systematically with a few elements: Sc shows a clear negative correlation (Fig 4B) as do Y and
335	the MREE-HREE. However, the relative concentrations of MREE and HREE, recorded by
336	$(Gd/Yb)_N$, remain constant as Zr/Hf changes with evolving melt composition. All EC whole-rock
337	Zr/Hf values are higher than chondrite between 42.7 and 56.2 (supplementary material, 'Whole-
338	rock majors and traces').
339	In the Grimes et al. (2015) tectonomagmatic discrimination diagram (Fig. 4D), the more
340	evolved, higher Hf, lower pumice zircon grains plot along a melt fractionation trend from the
341	dome compositions which fall predominantly in the high U/Yb Iceland-Hawaii hotspot 'crustal
342	input or enriched mantle source' field.
343	
344	4.2.3 Geochronology
345	²³⁸ U– ²³⁰ Th disequilibrium and U–Th–Pb data and crystallisation ages – volcanic clasts
346	High-resolution secondary ion mass spectrometry (SIMS) ²³⁸ U– ²³⁰ Th results indicated secular
347	equilibrium for zircon from two samples of rare decimetre-scale angular volcanic lithic clasts
348	sampled within the lower pumice with $(^{230}Th)/(^{238}U) = 1.004 \pm 0.070$ (MSWD = 0.67; n = 14; Fig.
349	5E). After 207 Pb-based common Pb-correction and accounting for initial deficit in 230 Th the U–
350	Th–Pb zircon dates yielded single grain dates that range from 0.47–0.65 Ma (sample 844F2),

and 1.01–2.34 Ma (sample 844F3), with weighted averages of 0.610 \pm 0.08 Ma (MSWD = 0.83, n 352 = 3) and 1.34 \pm 0.13 Ma (MSWD = 0.80, n = 11), respectively (Fig. 6).

354	²³⁸ U– ²³⁰ Th disequilibrium data and crystallisation ages – explosive-effusive sequence
355	Zircon SIMS ²³⁸ U– ²³⁰ Th disequilibrium dates (Table 1, Fig. 5) were calculated from free-fit
356	isochrons in $(^{230}\text{Th})/(^{232}\text{Th}) - (^{230}\text{Th})/(^{238}\text{U})$ space for each sample. Two-point model isochron
357	dates were computed using corresponding whole-rock U and Th abundances assuming secular
358	equilibrium for comparison, but the zircon isochrons are the most robust ages because they
359	are independent of assumptions on the melt composition from which zircon crystallised. The
360	²³⁸ U– ²³⁰ Th disequilibrium dates, interpreted as crystallisation ages, from the base to the top of
361	the sequence are: cone lower pumice (sample 842) 108 +10/-9 ka (MSWD = 0.79, n = 17),
362	lower pumice (sample 844) 113 +15/-14 ka (MSWD = 0.77, n = 16), and post-cone dome
363	(sample 871) 111 +4/-4 ka (MSWD = 0.68, n = 55). The overlying lava breccia (sample 828)
364	yields an isochron age of 108 +2/-2 ka (MSWD = 0.94, n = 34), whereas the orange-brown
365	pumice (sample 827) produced an isochron date of 98.5 +5.9/-5.6 ka (MSWD = 0.85, n = 39)
366	for the dominant zircon population. Notably there is no significant difference between the
367	large and the small zircon population dates. The only grains excluded from the isochron
368	calculations were in the orange-brown pumice 827 (two young model dates of ca. 60 ka as
369	well as two older dates at ca. 180 ka, Fig. 5A) and in lower pumice 844 (one older zircon

370	plotting on the equiline; Fig. 5D). Uniformity of the zircon crystallisation ages is indicated by
371	the near unity MSWD when averaging dates from all juvenile samples, only excluding the
372	aforementioned grains from samples 827 and 844. The resulting isochron age of 106 +2/-2 ka
373	(MSWD = 1.24, n = 162) suggests a brief interval of zircon crystallisation in the EC magma
374	system.
375	
376	(U–Th)/He data and eruption ages – explosive-effusive sequence
377	Zircon crystals from four representative samples of the explosive-effusive transition (Table 1)
378	were dated by the (U–Th)/He method. The (U–Th)/He dates, corrected for alpha-ejection and
379	for disequilibrium deficits in ⁴ He, are younger than their corresponding $^{238}U^{-230}$ Th ages for all
380	63 double-dated crystals (Fig. 7). The (U–Th)/He weighted mean ages (arranged in
381	stratigraphical order from bottom to top) are: cone lower pumice (sample 842) 81.7±8.8 ka
382	(MSWD = 1.4; n = 8); post-cone dome (sample 871) 91.7±6.2 ka (MSWD = 0.37; n = 10); post-
383	cone lava breccia (sample 828) 96.3 \pm 9.3 (MSWD = 6.1; n = 17; one crystal at ca. 57 ka
384	excluded as a statistical outlier, see section '5.1.3 (U–Th)/He zircon eruption ages' below for
385	discussion); and post-cone orange-brown pumice (sample 827) 96.9 \pm 3.8 ka (MSWD = 1.1; n =
386	24; three crystal averaging at ca. 43 ka excluded as statistical outliers, see section '5.1.3' below
387	for discussion). These (U–Th)/He weighted mean ages overlap within analytical uncertainties for
388	the three samples from the base of the stratigraphic section and for the three samples from

the top of the stratigraphic section, suggesting a single eruptive sequence lacking significanttime breaks.

391 To reconstruct a robust eruptive chronology for the dated deposits and to better estimate the 392 eruption ages and quantify uncertainties, we employed ChronoModel v. 2.0 software (Lanos 393 and Dufresne, 2019) to develop a Bayesian age sequence model that incorporates not only 394 ZDD geochronological data but also stratigraphic information (Danišík et al., 2020). Bayesian 395 age sequence modelling results integrate the measured (U-Th)/He weighted mean ages and 396 associated uncertainties and stratigraphic information. This modelling suggests the following 397 eruption ages and uncertainties for the dated samples (stated as maximum a posteriori 398 probability, MAP, ± 95% highest posterior density, HPD): lower pumice (sample 842) 99.7 +1.3/-399 8.2 ka; dome (sample 871) 96.6 +8.4/-9.2 ka; lava breccia (sample 828) 95.1 +6.8/-11.2 ka, and 400 orange-brown pumice (sample 827) 93.9 +5.9/-19.3 ka (Fig. 8). For interpretation purposes, we 401 will adopt these values as our best estimates for eruption ages. These eruption ages are in most cases within error of the ²³⁸U-²³⁰Th dates, which correspond to pre-eruptive crystallisation 402 403 in the melt. The only exception is the lava breccia where the eruption age of 95.1 +6.8/-11.2 ka 404 resolvably postdates the average zircon crystallisation age of 108 +4/-4 ka for this sample, 405 which has the lowest age uncertainty of the investigated samples.

406

407 4.2.4 Intensive variables

408 Zircon crystallisation temperatures and oxygen fugacity

409	Ti-in-zircon thermometry (Watson and Harrison, 1983; Ferry and Watson, 2007) could only be
410	undertaken for the lower pumice not the dome. The latter has excessively high Ti values,
411	attributed to microscopic inclusions of Ti-rich minerals such as Fe-Ti oxides and titanite. A silica
412	activity a(SiO2) of 0.75 was assumed for the calculations because angular quartz microcrysts
413	have been detected in the groundmass of both the dome and lava (Davies, 2021) but not in
414	the lower pumice. Furthermore, coexisting oxides have not been analysed in the EC rocks so Ti
415	activity, $a(TiO_2)$ cannot be calculated by this method. However, rutile is not present in the rocks
416	and titanomagnetite is markedly more abundant than ilmenite in other Ascension Island rocks
417	(e.g., Chamberlain 2016, 2019). Thus, a relatively low $a(TiO_2)$ may be assumed since, if Ti were
418	freely available in this Fe-rich system, ilmenite would crystallise in preference to magnetite.
419	Using the equations of Ghiorso and Evans (2008) for Fe-Ti oxides from a, geographically close
420	and compositionally similar, zoned pumice fall, Chamberlain et al. (2016) calculated: <i>a</i> (TiO2) =
421	0.37 (range 0.32-0.4). Using this value yields an average Ti-in-zircon temperature of 930°C with
422	a range of 850–1020°C (temperature calculated according to Ferry and Watson 2007, with
423	pressure dependence according to Ferriss et al., 2008). Higher Si activity would increase the Ti-
424	in-zircon temperature (a SiO ₂ = 1.0, ~40°C higher) whereas higher Ti activity would decrease the
425	calculated temperature (a TiO ₂ = 0.5, ~40°C lower).

426 Oxygen fugacity of the lower pumice magma as zircon crystallised was calculated to be in the 427 range Δ FMQ +1.38 to +3.77 using the Loucks et al. (2020) calibration based on zircon Ti, U 428 and Ce concentrations.

429

430 Zircon saturation temperatures

431 Zircon crystallisation is controlled by temperature and magma composition, specifically, the Zr

432 content and the M value (cation ratio (Na + K + 2Ca)/(Al × Si)). The EC whole-rock zircon

433 saturation temperatures (ZST), calculated using the equations of Boehnke et al. (2013), are high:

434 cone pumices (920°C), which is comparable to the lower pumice average Ti-in-zircon temperature

435 of 930°C (Ferry and Watson 2007). A clear distinction is evident, though, between the cone pumice

436 ZST and the lower ZST values (845°C-865°C) of all the post-cone samples – effusive lava breccia,

437 orange-brown pumice and dome – as well as the older trachytic accidental volcanic lithic clasts.

438

439 **5. Discussion**

440 The zircon double-dating, trace element and O isotope results are combined with whole-rock

441 data to investigate the chronostratigraphy of the Echo Canyon explosive-effusive volcanic

- 442 deposits. In particular, the temporal association of the sequence requires discussion, as well as
- the magma source and pre-eruptive processes that may be inferred from the zircon data.

444

445 5.1 Insights into magmatic processes from zircon geochronology: magma storage –

446 crystallisation and eruption timing

447 5.1.1 U–Th–Pb zircon crystallisation ages

448	The U-Th-Pb crystallisation ages for zircon from the volcanic lithic clasts evidence earlier
449	phases of evolved effusive volcanic activity at EC: 1.34±0.13 Ma and 0.610±0.08 Ma (Fig. 6).
450	Based on the compositional similarity with the explosive-effusive deposits of the current study
451	(Fig. 3), these volcanic lithic clasts are interpreted to be derived from previous eruptive events
452	and because of their large size, their source must be proximal. The older age is coeval with the
453	most ancient Ascension Island subaerial volcanism (Weaver et al., 1996; Jicha et al., 2013).
454	However, it is the first identified record of such old activity in the east of the island.
455	A recent study by Preece et al. (2021) concluded the Ascension Island felsic subaerial eruptions
456	had marked geographical differences: ca. 1000—500 ka in the Central Felsic Complex and ca.
457	100—50 ka in the Eastern Felsic Complex where EC is located (Fig. 1). Therefore, the EC lava
458	clast ages, 60—1300 ka, indicate felsic volcanism was more widespread in the early sub-aerial
459	history of the east of the island than previously recognised as a result of lack of surface
460	exposure, warranting further investigation into volcanic lithic clasts. As noted by Preece et al.
461	(2021) the >80 identified felsic explosive eruptions are likely a minimum estimate because of
462	poor preservation related to erosion, covering of deposits by later volcanic activity, and
463	deposition of tephra in a marine rather than terrestrial context. Eruption cyclicity may be
464	elucidated by dating of zircon-bearing volcanic lithic clasts commonly found in explosive
465	deposits across the island (authors' unpublished data). Moreover, the age and distribution of

466	subsurface magmatism, recorded in plutonic lithic clasts, is of particular relevance because
467	crustal heterogeneity apparently exerted a significant control on the fractional crystallisation of
468	small-volume magma batches on Ascension Island (Chamberlain et al., 2019), thus, affecting
469	the evolution of this and, by inference, other similar ocean island systems. Notably, zircon
470	grains in secular equilibrium, i.e., >350 ka, were only detected in one of more than 160 crystals
471	analysed for ²³⁸ U– ²³⁰ Th in the five samples of EC explosive-effusive juvenile pumice and lava.
472	
473	5.1.2 ²³⁸ U– ²³⁰ Th disequilibrium zircon crystallisation ages
474	The EC explosive-effusive transition sequence displays zircon isochron dates of 108–113 ka that
475	represent a brief crystallisation interval, which also constrains the maximum eruption age for
476	these deposits (Fig. 5). Comparing crystallisation and eruption ages indicates preservation of
477	zircon formed over 10^3 – 10^4 a, and crystal residence ages of 19 ± 10 kyr for sample dome 871 for
478	which most data are available. Overlap, within error, of zircon ages from the EC juvenile
479	pumice, lava breccia and dome indicates that the explosive effusive transition sequence tapped
480	the same magmatic system. In addition, the lava breccia contains coeval smaller, 20–30 $\mu\text{m},$
481	zircon crystals which likely crystallised shortly before the eruption. These crystallisation ages are
482	contemporaneous with feldspar 40 Ar/ 39 Ar ages for a 110±13 ka zoned pumice-scoria fall
483	deposit (Chamberlain et al., 2016; Preece et al., 2021), that crops out on the coast ~1 km
484	northeast of EC and a 105 \pm 9 ka pumice fall, ~3 km to the southeast (Preece et al., 2021).

485	The EC sequence-capping orange-brown pumice, however, yielded a marginally younger zircon
486	²³⁸ U– ²³⁰ Th isochron age of 98.5 ka (Fig. 5A), which is consistent with the interpretation of this
487	deposit as a late-stage post-cone, post-effusive, short-lived explosive phase (Davies et al.,
488	2021). This unit is also distinctive in that it contains rare zircon crystals with older (ca. 180 ka)
489	and younger (ca. 60 ka) ²³⁸ U– ²³⁰ Th model ages. Synchroneity between the two younger zircon
490	²³⁸ U– ²³⁰ Th model crystallisation ages in the capping orange-brown pumice and the published
491	EC feldspar ⁴⁰ Ar/ ³⁹ Ar age, ca. 60 ka, which dates the lower pumice unit (K.J. Preece, pers.
492	comm.), indicates the presence of evolved melt in the Ascension Island magma system at that
493	time. This age also overlaps with explosive eruptions such as Devil's Cauldron with 62 \pm 8 ka
494	and 65 \pm 7 ka feldspar ⁴⁰ Ar/ ³⁹ Ar ages (Preece et al., 2021) that overlies the EC sequence 1.5 km
495	to the south.

497 5.1.3 (U–Th)/He zircon eruption ages

The (U–Th)/He dates mark the time since the zircon crystals passed below ~180°C, i.e., a cooling age, generally considered to be related to eruptive quenching or intermittent heating at the time of eruption causing older crystals to reset (Reiners et al., 2004). Measured (U-Th)/He dates were corrected for initial disequilibrium and potential crystal residence using the ZDD approach (Danišík et al., 2017), and together with available stratigraphic information used for Bayesian age sequence modelling to estimate eruption ages. The resulting eruption ages 504 for the EC volcanic deposits range from 99.7 +1.3/-8.2 ka to 93.9 +5.9/-19.3 ka, overlapping 505 within analytical uncertainties (Table 1).

506	The oldest deposits in this explosive-effusive sequence, the lower pumice, marks a maximum
507	age for the volcanic eruption which, based on the ZDD eruption age of 93.9 +5.9/-19.3 ka, is
508	coeval with a feldspar 40 Ar/ 39 Ar age for a lava flow cropping out ~2 km to the southeast of EC
509	(89 ±18 ka; Preece et al., 2021). Importantly, textural evidence for zircon in contact with melt in
510	pumice and lava support a juvenile, rather than entrained, origin for at least a proportion of
511	the crystals in the magmatic system. Uniform zircon ²³⁸ U– ²³⁰ Th isochron ages that overlap
512	within uncertainty with, or at most ca. 13 kyr older than, the ZDD eruption ages reflect tapping
513	of a common magma system.
514	The consistent relation between the ZDD eruption ages and the ²³⁸ U– ²³⁰ Th crystallisation ages
515	provides a first-order test for accuracy, because the former cannot predate the latter (Danišík
516	et al., 2017). There is, however, an alternative age model for the post-dome lava breccia and
517	orange-brown pumice eruptions of the EC sequence if validity is placed on the minority, two
518	younger crystals, that were excluded from the above calculations of crystallisation ages. In this
519	case, the lava breccia and orange-brown pumice deposits could have erupted as young as,
520	respectively, ca. 60 ka and 50 ka; comparable in age to the aforementioned nearby Devil's
521	Cauldron deposits, ca. 60 ka (Preece et al., 2021), and the Weather Post dome and rhyolite ~3
522	km southwest of EC dated at 54±2 and 52±3 ka (Jicha et al., 2013). Transient heating of zircon

523	can result in partial or complete resetting of (U-Th)/He systematics. This effect was detected,
524	for example, in 5–10 cm metasedimentary xenolith clasts preserved in a scoria fall deposit from
525	Çakallar volcano, Turkey (Ulusoy et al., 2019). Pyrometamorphism of two clasts by basaltic
526	magma resulted in a broad spread, tens to hundreds of ka, in the (U-Th)/He dates whereas
527	zircon from a comparable xenolith considered to be completely reset yielded a much more
528	restricted range consistent with, and having similar uncertainties to, cosmogenic ages of
529	4.7±1.2 ka (Ulusoy et al., 2019). By analogy, the main ca. 95 ka zircon (U-Th)/He age
530	population, along with two older ca. 180 ka crystals in orange-brown pumice could have been
531	derived from older disaggregated lithic clasts, not heated intensely enough in the effusive-
532	explosive upper sequence regime to drive out any accumulated He. However, the (U-Th)/He
533	age homogeneity in the essentially bimodal EC zircon population, albeit heavily skewed to ca.
534	95 ka, is inconsistent with He loss from older crystals that would be expected in a brief heating
535	event (cf., Ulusoy et al., 2019).
536	Textural evidence also leads us to infer that incomplete resetting was not the main process
537	controlling the upper EC sequence zircon eruption age distributions. Crystals are in contact
538	with pumice glass and lava groundmass representing former melt, which would have resulted
539	in effective heat transfer. In addition, the main zircon population is coeval with tiny acicular
540	euhedral grains interpreted to have crystallised shortly before eruption. Thus, we conclude it is
541	unlikely a significant eruptive hiatus is indicated after the ca. 95 ka cone pumice and dome

542	emplacement by: the three young, ca. 41–52 ka (U-Th)/He dates from the stratigraphically
543	highest deposits; and the youngest outlier, ca. 57 ka (U-Th)/He date, from the lava breccia. The
544	complete EC sequence shows depositional continuity and mineralogical similarities, e.g.,
545	distinctive crystals of albite-anorthoclase feldspar (Davies et al., 2021). Furthermore, the
546	dominant zircon population in the lava and orange-brown pumice consistently indicates ZDD
547	eruption ages that are indistinguishable from the dome and underlying cone pumices
548	emplacement. While the origin of the crystals yielding young (U-Th)/He dates and
549	crystallisation ages remains unresolved, we suggest that the composite multi-clast pumice and
550	lava breccia deposits sampled for this study may have been naturally contaminated by fall out
551	or windblown ash emitted by younger eruptions either on Ascension Island or from an externa
552	source.

554 *5.2 Insights into magmatic system evolution from zircon thermometry: saturation and* 555 *crystallisation temperatures*

556 5.2.1 Thermometry

557 The ZSTs are higher in the nearly aphyric lower and middle pumice than the more crystal-rich 558 lava and orange-brown pumice. These differences are, most likely, an artefact of temperatures 559 calculated with whole-rock rather than melt compositions, whereby actual melt Zr abundances 560 are underestimated due to the presence of Zr-poor crystals leading to an underestimation of

561	the real saturation temperature (Harrison et al., 2007). This highlights the problem of using ZST
562	with whole-rock data, limiting the utility of the parameter to glassy volcanic rocks. Accordingly,
563	the pumice ZST, 920°C, corresponds to the average calculated Ti-in-zircon crystallisation
564	temperature, 930°C (range 850–1020°C), other crystallisation temperatures are below the ZST,
565	consistent with the presence of zircon crystals in the samples.
566	The Ti-in-zircon thermometry average crystallisation temperature of 930°C is higher than the
567	EC Fe-Ti oxide temperature of 855°C (Davies, 2021) but in the range of alkali feldspar-melt
568	thermometry on EC low-K anorthoclase calculated at 250 MPa (9 km) in Thermobar (Wieser et
569	al., 2021), by Davies (2021) using equation 24b from Putirka (2008) with microlite-melt pairs
570	yielding 745–1046°C (H ₂ O 2.46–5.79 wt %). Our new temperatures also overlap with
571	plagioclase-melt thermometry temperatures calculated for microlite- and macrocryst-melt pairs
572	by Davies (2021) using equation 23 of Putirka (2008) in Thermobar (Wieser et al., 2021):
573	microlite-melt 1014–1067°C (H ₂ O -0.95 – 2.77 wt %) and micro/macrocryst-melt 968–1069°C
574	(H ₂ O -0.27–4.89 wt %). No crystallisation pressures were calculated in the current work, but
575	Davies (2021) estimated minimum depth of ~8.5 km for crystallisation of EC magmas from H_2O
576	contents of alkali-feldspar macrocrysts. Furthermore, from comparison with melt inclusion
577	entrapment pressures and best fit fractional crystallisation modelling of zoned, mingled and
578	island-wide fall deposits (Chamberlain et al, 2016; 2019; 2020) it may be inferred the parental
579	magma originally ascended from <11 km.

580	The high temperatures obtained for the zircon crystallisation are consistent with an initially
581	relatively dry magma (Kar et al., 1998). Some grains are entrained as inclusions in macrocrysts;
582	however, as noted above zircon is also present in the pumice glass and lava groundmass
583	consistent with it recording isotope and element concentrations in the melt at the time of
584	crystallisation (see section '5.3.2 Zircon O isotopes - source character' below for discussion).
585	
586	5.3 Insights into magmatic system evolution from whole-rock compositions and zircon mineral
587	chemistry: tectonomagmatic context, source character and system processes
588	5.3.1 Zircon trace elements - tectonomagmatic context
589	Zircon trace elements are reliable indices for the tectonomagmatic conditions under which it
590	crystallised (e.g., Grimes et al. 2015). Ascension Island formed in an oceanic intraplate setting,
591	~100 km west of the Mid-Atlantic Ridge and 50 km south of the Ascension Fracture Zone.
592	Nonetheless, as noted above, uncertainty exists whether the magmatism originated from a low
593	flux, shallow plume (Gaherty and Dunn, 2007) or anomalously enriched MORB (Paulick et al.,
594	2010). Likewise, in a plot of U/Yb vs Hf (Fig. 4D; Grimes et al., 2015), from which
595	tectonomagmatic setting may be inferred, the dome zircon straddle fields for high U/Yb of
596	'crustal input or enriched mantle source' and the low U/Yb N-MORB source; plotting in a
597	region of overlap between the Iceland and Hawaii hotspots as well as island arcs. The lower
598	pumice extends to higher Hf, more fractionated, compositions. Significantly more useful for

599	discrimination is Sc/Yb which divides continental and arc derivation from oceanic sources and
600	Nb/Yb that fingerprints an enriched component relative to typical MORB (Fig. 4E).
601	Unexpectedly, the EC zircon fall in the 'continental and arc' field based on their Sc/Yb, but we
602	suggest this ratio may be skewed to high Sc values by the absence of amphibole fractionation
603	from the magma that crystallised the zircon. On the other hand, clear, uniformly high Nb/Yb in
604	both the dome and lower pumice zircon, for which the relative immobility of Nb rules out the
605	possibility of enrichment by seawater alteration, indicate involvement of an enriched
606	component.
607	
608	5.3.2 Zircon O isotopes - source character
609	Ascension Island whole-rock evolved lava and granite δ^{18} O values as low as 4.4‰, i.e., below
610	mantle values, have been explained by sea or meteoric water infiltration into shallow rocks
611	resulting from caldera subsidence followed by stoping and assimilation of these lithologies by
612	the residual magma (Sheppard and Harris, 1985), or by assimilation of high-temperature
613	altered oceanic crust (Weis et al., 1987). Zircon δ^{18} O values also range from mantle to sub-
614	mantle compositions in both the EC dome and lower pumice (Fig. 4A). This is consistent
615	magma derived from the same mantle source with heterogeneity resulting from variable
616	assimilation of high-T, >300 °C hydrothermally alteration country rock prior to zircon crystallisation
617	(cf., Adams, 1996; Bindeman and Valley, 2001; Carley et al., 2014; Jo et al., 2016; Scarrow et al.,
618	2002). Latent heat of crystallisation may have facilitated assimilation as its effect is more

619	evident in the evolved lower pumice that represents the top of the magma system (Fig. 4A)
620	(cf., Thompson et al., 2002). Changes in magma volatile content may result in relatively
621	oxidising conditions, as recorded in the positive EC zircon Ce/Ce* anomalies (Fig. 4C) (e.g.,
622	Kelley and Cottrell, 2009). Negative Eu/Eu* anomalies in all EC zircons are consistent with prior
623	plagioclase crystallisation (Trail et al., 2012). Melt Ce content, on the other hand, is not affected
624	by crystallisation of any major mineral, so anomalies may be considered a more dependable
625	indication of oxidation state. Thus, the oxidizing conditions recorded by EC zircon (Δ FMQ +1.38
626	to +3.77) imply involvement of surface fluids, seawater or meteoric water.
627	Ascension Island mafic–felsic whole-rock ¹⁴³ Nd/ ¹⁴⁴ Nd values are uniformly high (0.5129–0.5131),
628	whereas whole-rock ⁸⁷ Sr/ ⁸⁶ Sr values are more primitive for the mafic rocks (<0.703) than felsic
629	ones (>0.704) (Weaver et al., 1996; Kar et al., 1998; Paulick et al., 2010). These data have been
630	interpreted as the result of either post-emplacement alteration or low-degree assimilation of
631	hydrothermally altered lithologies affecting the more evolved magmas (Kar et al., 1998). The
632	new zircon O isotope data presented here resolve this conundrum because the low $\delta^{\mbox{\tiny 18}}O$
633	component must have been present in the magma prior to zircon crystallisation; this is
634	consistent with the noted lack of correlation of $\delta^{18}O$ with differentiation or age. Furthermore,
635	the same assimilation process apparently affected the source magma for explosive lower
636	pumice and the endogenous effusive dome indicative of it being a primary characteristic of the
637	magma system. Extensive fracture permeability promotes efficient hydrothermal alteration of

country rock at high temperatures, thus imprinting a low- δ^{18} O signature that is typical for hot spot and rift tectonomagmatic settings as well as nested caldera complexes (e.g., Troch et al., 2020; Scarrow et al., 2022). Notably, whole-rock major and trace element compositions do not usually reveal assimilation of co-genetic hydrothermally altered rock but this process can be detected in zircon δ^{18} O (Troch et al., 2020).

643

5.3.3 Zircon trace elements and whole-rock compositions - fractional crystallisation 644 645 The EC zircon chondrite-normalised REE patterns being parallel-subparallel in both samples are 646 indicative, in agreement with the O isotope compositions, of crystallisation from magmas with 647 a common source. On the other hand, the range in zircon Zr/Hf reflects progressive melt 648 differentiation. The lower pumice zircon records more evolved compositions indicated by lower 649 Zr/Hf than the dome zircon, which is consistent with the variation in whole-rock compositions. 650 The dome zircon has somewhat more heterogeneous trace element compositions than the 651 lower pumice with the compositional variation in the upper sequence effusive deposits 652 indicating limited interconnectedness in the magmatic system. 653 Before considering the zircon trace element compositions in detail it is important to note that 654 EC whole-rock SiO₂ abundances decrease from 68 wt % for the most evolved lower pumice 655 deposit at the base of the sequence to 64 wt % at the less evolved top. Moreover, all major 656 elements, as well as Sr, Ba and Eu, correlate negatively with SiO₂, suggesting they fractionated
657	from the magma as it evolved, whereas K_2O and other trace elements correlate positively,
658	excluding fractionation of a K-rich mineral phase such as sanidine. More evolved lower
659	sequence deposits have a negative Eu anomaly whereas this is absent in the less evolved
660	deposits at the top of the sequence. Inverting this whole-rock compositional gradient reveals
661	progressive evacuation of a zoned magma system that was more evolved at the top and less
662	evolved at the base. Displacement of the orange-brown pumice and lithic clasts from the main
663	fractionation trend is indicative of their derivation from a spatially or temporally different
664	magma system, consistent with their distinct zircon ages. Lack of appropriate experimental data
665	makes it notoriously difficult to model alkaline systems with MELTS (Ghiorso and Gualda, 2015).
666	Nevertheless, the major and trace element whole-rock trends are consistent with fractionation
667	of the observed macrocryst assemblage: albitic plagioclase feldspar and fayalitic olivine with
668	minor amounts of Fe-Ti oxides, clinopyroxene and apatite. Least-squares modelling using
669	Petrograph (Petrelli et al., 2005) indicated a comparable crystallising assemblage for the
670	compositionally zoned fall deposit mentioned above (Chamberlain et al., 2016).
671	Crustal lithologies typically have whole-rock chondritic Zr/Hf ratios, i.e., ~35–40 (Ahrens and
672	Erlank, 1969; Hoskin and Schaltegger, 2003). Fractionation of zircon from evolved rocks such as
673	granites and rhyolites, tends to produce lower Zr/Hf values with segregation of other Zr-
674	bearing major minerals, e.g., amphibole, clinopyroxene, and garnet, augmenting this effect, but
675	to a lesser degree (Bea et al., 2006). High whole-rock Zr/Hf ratios are consistent with

676 accumulation of zircon grains by, we suggest, inefficient segregation hindering crystal

677	fractionation at all stages of EC magma differentiation (e.g., Claiborne et al., 2006); this effect
678	may have been amplified by the absence of amphibole fractionation which could result from
679	relatively shallow magma storage, and moderate water contents, 1–6 wt $\%$ (e.g., Kar et al.,
680	1998; Chamberlain et al., 2016, 2019, 2020; Davies, 2021).
681	A simple relationship between zircon trace element concentrations and degree of fractional
682	crystallisation would be expected for closed system evolution of a uniform melt, e.g., positive
683	correlations between zircon-compatible elements, for example, U, Th, Y and REE, and the
684	differentiation index Zr/Hf and negative correlations with zircon incompatible elements (Storm
685	et al., 2012; Troch et al., 2018; Cisneros de León and Schmitt, 2019). In the EC lower pumice
686	and dome Sc shows the clearest negative correlation with Zr/Hf indicating it was incompatible
687	in zircon during crystallisation and also that amphibole was not crystallising as the magma
688	differentiated (cf., Scarrow et al., 2022). Notably, amphibole has only been found in Ascension
689	Island volcanic rocks as xenocrysts from disaggregated plutonic clasts (Harris, 1982).
690	Weaker, albeit statistically significant, negative correlations are observed between EC zircon
691	Zr/Hf and Y as well as the MREE-HREE. However, expected positive correlations of Zr/Hf with
692	zircon-compatible elements such as U and Th are not detected. Thus, apparently paradoxically,
693	the lower pumice, with a more evolved whole-rock composition, contains zircon with higher
694	concentrations of ostensibly zircon-compatible elements. This may be explained, however, by

695	the increased compatibility these elements at lower temperatures typical for more evolved
696	magmas (e.g., Storm et al., 2014; Troch et al., 2018; Scarrow et al., 2021). Zircon from both
697	samples also display variable Eu/Eu* that may indicate differences in the degree of plagioclase
698	fractionation. On a cautionary note, we suggest that zircon trace element results should be
699	interpreted with care because of the possible influence of nanoscale inclusions. These affected
700	the dome zircon Ti contents and lower pumice zircon P values (supplementary material, 'Zircon
701	trace elements'). Exotic accessory phases, commonly found in alkaline rocks, have been
702	detected in both the lower pumice and dome: baddeleyite and REE-rich monazite, chevkinite;
703	as well as apatite in the latter. Constraining these effects is beyond the scope of the current
704	work, but merits further investigation.
705	It is evident that zircon geochronological-compositional data can provide an informative
706	independent control on timing of magma crystallisation and compositional evolution.
707	The differences in zircon Zr/Hf in the more evolved lower pumice and less evolved dome place
708	compositional constrains on the crystal sources, implying long-lived compositional segregation
709	as discrete magma batches in a static, non-convecting, magma system preceding explosive
710	evacuation of the pumice, dome exhumation and lava effusion.
711	

712 6. Petrogenetic model for the Echo Canyon magmatic plumbing system

713	Key questions raised above regard longevity of magma storage, source character and magma
714	plumbing processes. By combining new zircon age, isotopic and trace element data, whole-
715	rock geochemical and petrographic compositions with field observations, we construct a model
716	for the evolution of the EC ocean island magmatic plumbing system. Key aspects of this model
717	include (paragraph numbers refer to Fig. 9):
718	1. The presence of an enriched component in the EC mantle source is suggested by the
719	combination of high zircon trace element concentrations relative to MORB and lack of evidence for
720	a continental component in the zircon O isotope values. The latter are mantle-like and variably
721	depleted by open system heterogeneous assimilation of high-T hydrothermally altered country
722	rock before zircon crystallisation.
723	2. Recurrent evolved magmatism at EC at 1.34 Ma, 0.6 Ma and 95 ka was identified from U–
724	Th-Pb dating of volcanic lithic clasts that crop out in the most explosive pumices of EC
725	stratigraphy identified by Davies et al. (2021). These data indicate that felsic volcanism was
726	more widespread in the early history of the eastern island than previously recognised.
727	3. Eruption ages of the EC explosive-effusive deposits converge at ca. 95 ka – cone lower
728	pumice 99.7 +1.3/-8.2 ka, dome 96.6 +8.4/-9.2 ka, lava breccia 95.1 +6.8/-11.2 ka, and orange-
729	brown pumice 93.9 +5.9/-19.3 ka - confirming the temporal connection of the explosive-
730	effusive sequence. Pre-eruptive zircon crystallisation – cone lower pumices 108 +10/-9 ka and
731	113 +15/-14 ka; post-cone dome 111 +4/-4 ka, lava breccia 108 +2/-2 ka and orange-brown

732	pumice 98.5 +5.9/-5.6 ka – occurred over a more prolonged duration of ca. 10^3 – 10^4 a. Zircon
733	storage likely occurred under magmatic conditions because textures indicate contact with the
734	melt. This low-flux ocean island system (Chamberlain et al., 2020 and references therein) has
735	zircon residence time scales one to two orders of magnitude shorter than found in many
736	subduction-related transcrustal mush systems (e.g., Bachmann et al., 2007; Cisneros de León et
737	al., 2021; Scarrow et al., 2021).
738	4. The observed mineral assemblage was apparently in equilibrium, from agreement between
739	zircon saturation, Ti-in-zircon crystallisation and alkali feldspar-melt temperatures for the
740	crystal-poor pumices. Fractionated zircon trace element compositions indicate melt storage in
741	discrete, but chemically zoned lenses. The lack of textural evidence for zircon dissolution, i.e.,
742	predominantly euhedral morphology (cf., Scarrow et al., 2021; Friedrichs et al., 2020) in addition
743	to the absence of zoning in major mineral phases, supports volatile overpressure rather that
744	mafic magma recharge being the eruptive trigger.
745	5. Zircon recycling prior to eruption is indicated by small, but systematic differences between
746	zircon crystallisation and eruption ages and the higher-than-chondrite whole-rock Zr/Hf values.
747	Compositional stratification where early eruptions, lower pumice, tapped more evolved
748	magmas than late eruptions, lava breccia, is reflected in both whole-rock compositions and
749	zircon Zr/Hf ratios.

751 **7. Implications**

752 An understanding of past magmatic processes including mineral crystallisation is necessary to 753 develop models of eruption periodicity which is crucial for evaluating future volcanic hazards 754 and associated risks. In the EC rocks we identify the deposits of the most explosive phases in the tephrostratigraphic sequence as useful targets for sampling lithic clasts recycled from 755 756 previous magmatic events to establish the cyclicity. The increased energy of the eruptive 757 paroxysm has the most potential to mobilise material from the volcanic edifice. The eruptive 758 chronostratigraphy, and thus potential associated hazard, of the EC explosive-effusive transition sequence was not previously well-constrained. The new zircon crystallisation ages provide 759 760 previously unidentified indications that magmatic activity beneath EC may be recurrent and 761 prolonged. Significantly, zircon apparently crystallised during periods of eruptive quiescence, 762 indicating that melt presence at depth may be unrelated to eruptive events. Differences in zircon compositions, despite broadly similar crystallisation ages, and whole-rock 763 764 compositional variations reflect progressive tapping of deeper and temporally more 765 heterogeneous regions of the system, with magma compositions potentially controlling 766 eruptive style. 767 The joint geochemical-geochronological ZDD approach employed here provides important 768 insights into magma system timescales and processes that cannot be obtained from whole-

rock or major mineral phase chemistry alone. The ZDD zircon dating tracks temporal variation

770	in mineral assemblages in a way that is not possible for other silicate minerals, but which
771	should be borne in mind when interpreting the results of thermobarometric calculations.
772	Crystal provenance and residence times may be deciphered and related to sub-volcanic melt
773	distribution and the thermal structure of the crust to inform how hazards may be most
774	efficiently monitored. For example, unrest over sub-volcanic mush regions may be expected to
775	be geographically restricted and thus effectively detected by a limited number of localised
776	seismometer(s) whereas cold fractured crust may deform at a broader, regional, scale
777	necessitating tracking of deformation by a more widely distributed seismic network. The
778	recurrence of volcanism at EC identified by zircon from pumice and lavas as well as accidental
779	lithic clasts highlights the need for continued zircon-based geochronological research. This, in
780	conjunction with field-petrological-geochemical study, will constrain the past eruptive
781	timescales and thus potential future magmatic behaviour of Ascension Island explosive-effusive
782	felsic volcanism permitting evaluation of related hazards and risk.

783 Acknowledgements

784 This project received funding from the European Union's Horizon 2020 research and innovation 785 programme under the Marie Skłodowska-Curie grant agreement No. 749611 (JHS). The work 786 was also financially supported by the Spanish grant CGL 2017-84469-P (JHS). Funding for open 787 access charge: Universidad de Granada/CBUA. Alexander Varychev at the University of 788 Heidelberg, Germany, is thanked for help with analytical work. Giovanni Zanchetta is thanked 789 for efficient and positive editorial handling. We are obliged to two anonymous reviewers for 790 the time and effort they took to help us improve the clarity and rigour of our interpretations. 791 This is the IBERSIMS publication N°: 105.

References

793	Adams, M.C., 1996. Chemistry of fluids from ascension #1, a deep geothermal well on
794	Ascension Island, South Atlantic Ocean. Geothermics, 25, 561-579
795	Ahrens, L.H., Erlank, A.J., 1969. Hafnium. In K.H. Wedepohl, Ed., Handbook of Geochemistry, 2,
796	5, B–O. Springer
797	Albarede, F., Feraud, G., Kaneoka, I., Allegre, C. J., 1978. ³⁹ Ar- ⁴⁰ Ar dating: The importance of K-
798	feldspars on multi-mineral data of polyorogenic areas. The Journal of Geology, 86: 581–598
799	doi:10.1086/649726.
800	Bachmann O., Charlier B.L.A., Lowenstern J.B., 2007. Zircon crystallization and recycling in the
801	magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc). Geology, 35: 73–76
802	Banik, T.J., Carley, T.L., Coble, M.A., Hanchar, J.M., Dodd, J.P., Casale, G.M., McGuire, S.P., 2021.
803	Magmatic processes at Snæfell Volcano, Iceland, constrained by Zircon Ages, isotopes, and
804	trace elements. Geochemistry, Geophysics, Geosystems, 22. doi:10.1029/2020gc009255
805	Bea, F., Montero, P., Ortega, M., 2006. A LA-ICP-MS evaluation of Zr reservoirs in common
806	crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes. The
807	Canadian Mineralogist, 44, 693–714
808	Bindeman, I.N., Valley, J.W., 2001. Low- δ 18O rhyolites from Yellowstone: Magmatic evolution
809	based on analyses of zircons and individual phenocrysts. Journal of Petrology, 42, 1491–
810	1517

811	Bindeman, I., Gurenko, A., Carley, T., Miller, C., Martin, E., Sigmarsson, O., 2012. Silicic magma
812	petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen
813	isotope diversity and disequilibria between zircon and magma with implications for MORB.
814	Terra Nova, 24, 227–232. doi:10.1111/j.1365-3121.2012.01058.x
815	Bjerga, A., Stubseid, H.H., Pedersen, LE.R, Pedersen, R.B., 2022. Radiation damage allows
816	identification of truly inherited zircon. Communications Earth and Environment, 3.
817	doi:10.1038/s43247-022-00372-2
818	Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., Schmitt, A.K., 2013. Zircon saturation re-
819	revisited. Chemical Geology, 351, 324–334
820	Bohrson, W.A., Spera, F.J., Heinonen, J.S., Brown, G.A. Scruggs, M.A., Adams, J.V., Takach, M.K.,
821	Zeff, G., Suikkanen, E., 2020. Diagnosing open-system magmatic processes using the Magma
822	Chamber Simulator (MCS): part I—major elements and phase equilibria. Contributions to
823	Mineralogy and Petrology, 175, 104. doi:10.1007/s00410-020-01722-z
824	Carley, T.L., Miller, C.F., Wooden, J.L., Bindeman, I.N., Barth, A.P., 2011. Zircon from historic
825	eruptions in Iceland: Reconstructing storage and evolution of silicic magmas. Mineralogy
826	and Petrology, 102, 135–161. doi:10.1007/s00710-011-0169-3
827	Carley, T.L., Miller, C.F., Wooden, J.L., Padilla, A.J., Schmitt, A.K., Economos, R.C., Bindeman, I.N.,
828	and Jordan, B.T., 2014. Iceland is not a magmatic analog for the Hadean: Evidence from the
829	zircon record. Earth and Planetary Science Letters, 405, 85–97

830	Cisneros de León, A., Schmitt, A.K., 2019. Intrusive reawakening of El Chichón volcano prior to
831	its Holocene eruptive hyperactivity. Journal of Volcanology and Geothermal Research, 377,
832	53–68
833	Cisneros de León, A., Schindlbeck-Belo, J., Kutterolf, S., Danišík, M., Schmitt, A., Freundt, A.,
834	Pérez, W., Harvey, J., Wang, K.L., Lee, H.Y., 2021. A history of violence: Magma incubation,
835	timing and tephra distribution of the Los Chocoyos Supereruption (Atitlán Caldera,
836	Guatemala). Journal of Quaternary Science, 36, 169–179. doi:10.1002/jqs.3265
837	Cisneros de León, A., Danišík, M., Schindlbeck-Belo, J.C., Kutterolf, S., Schmitt, A.K., Freundt, A.,
838	Kling, J., Wang, KL., Lee, HY., 2023. Timing and recurrence intervals for voluminous silicic
839	eruptions from Amatitlán Caldera (Guatemala). Quaternary Science Reviews, 301, 107935.
840	doi:10.1016/j.quascirev.2022.107935
841	Chamberlain K.J., Barclay J., Preece K., Brown R.J., Davidson J.P., E.I.M.F., 2016. Origin and
842	evolution of silicic magmas at ocean islands: perspectives from a zoned fall deposit on
843	Ascension Island, South Atlantic. Journal of Volcanology and Geothermal Research, 327,
844	349–360. doi:10.1016/j.jvolgeores.2016.08.014
845	Chamberlain K.J., Barclay J., Preece K.J., Brown R.J., Davidson J.P., 2019. Lower crustal
846	heterogeneity and fractional crystallization control evolution of small-volume magma
847	batches at Ocean Island Volcanoes (Ascension Island, South Atlantic). Journal of Petrology,
848	60, 1489–1522. doi:10.1093/petrology/egz037

849 Chamberiain K.J., Barciay J., Preece K., Brown R., Micintosh I., E.I.M.F., 2020. Deep a	p and disturbed
---	-----------------

- 850 conditions for formation and eruption of a mingled rhyolite at Ascension Island south
- Atlantic. Volcanica, 3, 139–153. doi:10.30909/vol.03.01.139153
- 852 Cherniak, D.J. Watson, E.B., 2001. Pb diffusion in Zircon. Chemical Geology, 172, 5–24.
- 853 doi:10.1016/s0009-2541(00)00233-3
- Claiborne, L.L., Miller, C.F., Walker, B.A., Wooden, J.L., Mazdab, F.K., Bea, F., 2006. Tracking
- 855 magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An
- example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine, 70, 517–543
- 857 Claiborne, L.L., Miller, C.F., Flanagan, D.M., Clynne, M.A., Wooden, J.L., 2010. Zircon reveals
- protracted magma storage and recycling beneath Mount St. Helens. Geology, 38, 1011–1014
- B59 Daly, R.A., 1925. The geology of Ascension Island. Proceedings of the American Academy of
- 860 Arts and Sciences, 6, 3-80
- 861 Danišík, M., Schmitt, A.K., Stockli, D.F., Lovera, O.M., Dunkl, I., Evans, N.J., 2017. Application of
- 862 combined U-Th-disequilibrium/U-Pb and (U-Th)/He zircon dating to tephrochronology.
- 863 Quaternary Geochronology, 40, 23-32
- B64 Danišík, M., Lowe, D.J., Schmitt, A.K., Friedrichs, B., Hogg, A.G., Evans, N.J., 2020. Sub-millennial
- 865 eruptive recurrence in the silicic Mangaone Subgroup tephra sequence, New Zealand, from
- 866 Bayesian modelling of zircon double-dating and radiocarbon ages. Quaternary Science
- 867 Reviews, 246, 106517

- 868 Davies, B.V., 2021. Critical Eruptive Controls of an Intra-plate Volcano: Ascension Island, South
- 869 Atlantic. PhD thesis, University of East Anglia, United Kingdom
- 870 Davies, B.V., Brown, R.J., Barclay, J., Scarrow, J.H., Herd, R.A., 2021. Rapid eruptive transitions
- 871 from low to high intensity explosions and effusive activity: insights from textural analysis of
- a small-volume trachytic eruption, Ascension Island, South Atlantic. Bulletin of
- 873 Volcanology, 83, 58, doi:10.1007/s00445-021-01480-1
- 874 Dosseto, A., Turner, S.P., A., Van Orman, J., 2011. Timescales of magmatic processes: From core
- to atmosphere. Wiley-Blackwell, Chichester (UK)
- 876 Famin, V., Paquez, C., Danišík, M., Gardiner, N.J., Michon, L., Kirkland, C.L., Berthod, C., Friedrichs,
- 877 B., Schmitt, A.K., Monié, P., 2022. Multitechnique geochronology of intrusive and explosive
- 878 activity on Piton des Neiges Volcano, Réunion Island. Geochemistry, Geophysics,
- 879 Geosystems, 23. doi:10.1029/2021gc010214
- 880 Ferriss, E. D. A., Essene, E. J., Becker, U., 2008. Computational study of the effect of pressure on
- the Ti-in-zircon geothermometer. European Journal of Mineralogy, 20, 745–755
- 882 Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-
- in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154,
- 884 429–437
- 885 Friedrichs, B., Atıcı, G., Danišík, M., Atakay, E., Çobankaya, M., Harvey, J.C., Yurteri, E., Schmitt,
- 886 A.K., 2020. Late Pleistocene eruptive recurrence in the post-collisional Mt. Hasan

- stratovolcanic complex (Central Anatolia) revealed by zircon double-dating. Journal of
- Volcanology and Geothermal Research 404, 107007. doi:10.1016/j.jvolgeores.2020.107007
- Gaherty, J. B., Dunn, R.A., 2007. Evaluating hot spot-ridge interaction in the Atlantic from
- regional-scale seismic observations, Geochemistry Geophysics and Geosystems, 8, Q05006,
- 891 doi:10.1029/2006GC001533
- 892 Ghiorso, M.S., Evans, B.W., 2008. Thermodynamics of rhombohedral oxide solid solutions and a
- 893 revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. American Journal of
- 894 Science, 3, 957–1039
- 895 Ghiorso, M.S., Gualda, G.A., 2015. An H2O–CO2 mixed fluid saturation model compatible with
- rhyolite-melts. Contributions to Mineralogy and Petrology, 169. doi:10.1007/s00410-015-
- 897 1141-8
- 898 Greenough, J.D., Kamo, S.L., Davis, D.W., Larson, K., Zhang, Z., Layton-Matthews, D., De Vera, J.,
- 899 Bergquist, B.A., 2021. Old subcontinental mantle zircon below Oahu. Communications Earth
- 900 Environment 2. doi:10.1038/s43247-021-00261-0
- 901 Grimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. "Fingerprinting" tectono-magmatic
- 902 provenance using trace elements in igneous zircon. Contributions to Mineralogy and
- 903 Petrology, 170, 46. doi:10.1007/s00410-015-1199-3
- 904 Hanchar, J.M, Hoskin, P.W.O., 2003. Zircon. Reviews in Mineralogy and Geochemistry, 53,
- 905 Mineralogical Society of America, Chantilly.

- 906 Harris, C., 1982. Coarse-grained rocks of Ascension Island. PhD thesis, University of Oxford,
- 907 United Kingdom
- 908 Harris, C., 1983. The petrology of lavas and associated plutonic inclusions of Ascension Island.
- 909 Journal of Petrology, 24:424–470. doi:10.1093/petrology/24.4.424
- 910 Harrison, T.M., Watson, E.B., Aikman, A.B., 2007. Temperature spectra of zircon crystallization in
- 911 plutonic rocks. Geology, 35, 635–638
- 912 Hoskin, P.W.O., and Ireland, T.R., 2000. Rare earth element chemistry of zircon and its
- 913 use as a provenance indicator. Geology, 28, 627–630
- 914 Hoskins, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and
- 915 metamorphic petrogenesis. In: Hanchar, J.M., Hoskins, P.W.O. (Eds.), Zircon. Reviews in
- 916 Mineralogy and Geochemistry, 53, 27–62
- 917 Hughen, K.A., 2007. Radiocarbon Dating of Deep-Sea Sediments. In Hillaire–Marcel, C., De
- 918 Vernal, A. (Eds.), Developments in Marine Geology, Elsevier.
- Jicha, B.R., Singer, B.S., Valentine, M.J., 2013. ⁴⁰Ar/³⁹Ar geochronology of subaerial Ascension
- 920 Island and a re-evaluation of the temporal progression of basaltic to rhyolitic volcanism.
- 921 Journal of Petrology, 54, 2581–2596
- Jo, H.J., Chang-Sik Cheong, A., Ryu, J.S., Kim, N., Yi, K., Jung, H. Li, X.H., 2016. In-situ oxygen
- 923 isotope records of crustal self-cannibalization selectively captured by zircon crystals from
- high-δ26Mg granitoids. Geology, 44, 339–342

925	Kar. A. Weaver, B. C.	Davidson, J. Colucci.	M., 1998.	Origin of	differentiated	volcanic and	plutonic
125		Javiuson, J. Colucci,	101., 1550.	Ongin Or	uncicitateu	voicanic and	plutoine

- 926 rocks from Ascension Island, South Atlantic Ocean. Journal of Petrology 39, 1009–1024.
- 927 doi:10.1093/petroj/39.5.1009
- 928 Kelley, K.A., Cottrell, E., 2009. Water and the oxidation state of subduction zone magmas.
- 929 Science, 325, 605–607
- 930 Klingelhofer, F., Minshull, T.A., Blackman, D.K., Harben, P., Childers, V., 2001. Crustal structure of
- 931 Ascension Island from wide-angle seismic data: implications for the formation of near-ridge
- 932 volcanic islands. Earth and Planetary Science Letters, 190, 41–56
- 933 Lanos P., Dufresne P., 2019. ChronoModel version 2.0 User manual. pp.84,

934 <u>https://ffhal02058018f</u>.

- 935 Loucks, R.R., Fiorentini, M.L., Henríquez, G.J., 2020. New magmatic oxybarometer using trace
- elements in zircon. Journal of Petrology, 61. doi:10.1093/petrology/egaa034
- 937 Marsden, R.C., Danišík, M., San Ahn, U., Friedrichs, B., Schmitt, A.K., Kirkland, C.L., McDonald, B.J.
- 938 Evans, N.J., 2021. Zircon double-dating of Quaternary eruptions on Jeju Island, South Korea.
- Journal of Volcanology and Geothermal Research, 410, 107171
- 940 McDonough, W.F., Sun S.-S., 1995. The composition of the Earth. Chemical Geology, 120, 223-
- 941 253

942	Ni, Z., Arevalo, R., Piccoli, P., Reno, B.L., 2020. A novel approach to identifying mantle-
943	equilibrated zircon by using trace element chemistry. Geochemistry, Geophysics,
944	Geosystems, 21, e2020GC009230.
945	Paces, J.B., Miller, J.D., 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions,
946	northeastern Minnesota: Geochronological Insights to physical, petrogenetic, paleomagnetic,
947	and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal
948	of Geophysical Research: Solid Earth 98, 13997–14013. doi:10.1029/93jb01159
949	Padilla, A.J., Miller, C.F., Carley, T.L., Economos, R.C., Schmitt, A.K., Coble, M.A., Wooden, J.L.,
950	Fisher, C.M., Vervoort, J.D., Hanchar, J. M., 2016. Elucidating the magmatic history of the
951	Austurhorn silicic intrusive complex (Southeast Iceland) using zircon elemental and isotopic
952	geochemistry and geochronology. Contributions to Mineralogy and Petrology, 171, 1–21.
953	Paulick H., Münker C., Schuth S., 2010. The influence of small-scale mantle heterogeneities on
954	Mid-Ocean Ridge volcanism: Evidence from the southern Mid-Atlantic Ridge (7°30'S to
955	11°30'S) and Ascension Island. Earth and Planetary Science Letters, 296, 299-310.
956	Petrelli, M., Poli, G., Perugini, D., Peccerillo, A., 2005. PetroGraph: a new software to visualize,
957	model, and present geochemical data in igneous petrology. Geochemistry Geophysics and
958	Geosystems, 6. doi:10.1029/2005gc000932

959	Preece, K., Mark, D.F., Barclay, J., Cohen, B.E., Chamberlain, K.J., Jowitt, C., Vye-Brown, C., Brown,
960	R.J., Hamilton, S., 2018. Bridging the gap: ⁴⁰ Ar/ ³⁹ Ar dating of volcanic eruptions from the
961	'age of Discovery'. 'Geology 46, 1035–1038. doi:10.1130/g45415.1
962	Preece, K.J. Barclay, J. Brown, R.J. Chamberlain, K.J. Mark, D.F., 2021. Explosive felsic eruptions
963	on ocean islands: a case study from Ascension Island (South Atlantic). Journal of
964	Volcanology and Geothermal Research, 416. doi:10.1016/j.jvolgeores.2021.107284
965	Putirka, K.D., 2008. 3. Thermometers and barometers for volcanic systems. Minerals, inclusions
966	and volcanic processes 61–120. doi:10.1515/9781501508486-004
967	Reiners, P.W., Spell, T.L., Nicolescu, S. and Zanetti, K.A., 2004. Zircon (U-Th)/He
968	thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et
969	Cosmochimica Acta, 68, 1857-1887.
970	Rojas-Agramonte, Y., Kaus, B.J., Piccolo, A., Williams, I.S., Gerdes, A., Wong, J., Xie, H.X., Buhre,
971	S., Toulkeridis, T., Montero, P., Garcia-Casco, A., 2022. Zircon dates long-lived plume
972	dynamics in Oceanic Islands. Geochemistry, Geophysics, Geosystems, 23.
973	doi:10.1029/2022gc010485
974	Rolim, J.M., 2022. First U-Pb age constraints from plutonic xenoliths preserved in alkaline
975	volcanic rocks of the Brazilian Fernando de Noronha Archipelago, Southwest Atlantic Ocean.
976	Masters thesis, Universidade Federal de Minas Gerais, Brazil

977	Sagan, M., Heaman, L.M., Pearson, D.G., Luo, Y., Stern, R.A., 2020. Removal of continental
978	lithosphere beneath the Canary archipelago revealed from a U-Pb age and Hf/O isotope
979	study of modern sand detrital zircons. Lithos, 362-363, 105448.
980	doi:10.1016/j.lithos.2020.105448
981	Scarrow J.H., Schmitt A.K., Barclay J., Horstwood M.S.A., Bloore A.J. Christopher T.E., 2021. Zircon
982	as a tracer of plumbing processes in an active magmatic system: insights from mingled
983	magmas of the 2010 dome collapse, Montserrat, Lesser Antilles Arc, Caribbean. Journal of
984	Volcanology and Geothermal Research, 420, 107390. doi:10.1016/j.jvolgeores.2021.107390
985	Scarrow J.H., Chamberlain K.J., Montero P., Horstwood M.S.A., Kimura JI., Tamura Y., Chang Q.,
986	Barclay J., 2022. Zircon geochronological and geochemical insights into pluton building and
987	volcanic-hypabyssal-plutonic connections: Oki-Dō zen, Sea of Japan—A complex intraplate
988	alkaline volcano. American Mineralogist, 107, 1545–1562. doi:10.2138/am-2021-7861
989	Schaltegger, U., Schmitt, A.K., Horstwood, M.S.A., 2015. U–Th–Pb zircon geochronology by ID-
990	TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical
991	Geology, 402, 89-110. doi: <u>10.1016/j.chemgeo.2015.02.028</u> .
992	Schmitt, A.K., Stockli, D.F. and Hausback, B.P., 2006. Eruption and magma crystallization ages of
993	Las Tres Vírgenes (Baja California) constrained by combined 230Th/238U and (U–Th)/He
994	dating of zircon. Journal of Volcanology and Geothermal Research, 158, 281-295

995	Shao, T., Xia, Y., Ding, X., Cai, Y., Song, M., 2019. Zircon saturation in terrestrial basaltic melts
996	and its geological implications. Solid Earth Sciences, 4, 27–42. doi:10.1016/j.sesci.2018.08.001
997	Sheppard, S.M., Harris, C., 1985. Hydrogen and oxygen isotope geochemistry of Ascension
998	Island Lavas and granites: Variation with crystal fractionation and interaction with sea water.
999	Contributions to Mineralogy and Petrology, 91, 74–81. doi:10.1007/bf00429429
1000	Smythe, D.J., Brenan J.M., 2015. Cerium oxidation state in silicate melts: combined fO2
1001	temperature and compositional effects. Geochimica Cosmochimica Acta, 170, 173–187
1002	Storm, S., Shane, P., Schmitt, A.K., Lindsay, J.M., 2012. Decoupled crystallization and eruption
1003	histories of the rhyolite magmatic system at Tarawera volcano revealed by zircon ages and
1004	growth rates. Contributions to Mineralogy and Petrology, 163, 505–519
1005	Storm, S., Schmitt, A.K., Shane, P., and Lindsay, J.M., 2014. Zircon trace element chemistry at
1006	sub-micrometer resolution for Tarawera volcano, New Zealand, and implications for rhyolite
1007	magma evolution. Contributions to Mineralogy and Petrology, 167, 1–19.
1008	Thompson, A., Matile, L., Ulmer, P., 2002. Some thermal constraints on crustal assimilation
1009	during fractionation of hydrous, mantle-derived magmas with examples from central Alpine
1010	batholiths. Journal of Petrology, 43, 403–422. doi:10.1093/petrology/43.3.403
1011	Trail, D., Watson, B.E., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the
1012	oxidation state of magmas. Geochimica Cosmochimica Acta, 97, 70–87

- 1013 Torsvik, T.H., Amundsen, H., Hartz, E.H., Corfu, F., Kusznir, N., Gaina, C., Doubrovine, P.V.,
- 1014 Steinberger, B., Ashwal, L.D., Jamtveit, B., 2013. A Precambrian microcontinent in the Indian
- 1015 Ocean. Nature Geoscience, 6, 223–227. doi:10.1038/ngeo1736
- 1016 Troch, J., Ellis, B.S., Schmitt, A.K., Bouvier, A.S., Bachmann, O., 2018. The dark side of zircon:
- 1017 textural, age, oxygen isotopic and trace element evidence of fluid saturation in the
- 1018 subvolcanic reservoir of the Island Park-Mount Jackson Rhyolite, Yellowstone (USA).
- 1019 Contributions to Mineralogy and Petrology,173, 1–17.
- 1020 Troch, J., Ellis, B.S., Harris, C., Bachmann, O., and Bindeman, I.N., 2020. Low-δ¹⁸O silicic magmas
- 1021 on Earth: A review. Earth Science Reviews, 208, 103299
- 1022 Ulusoy, İ., Sarıkaya, M.A., Schmitt, A.K., Şen, E., Danišík, M., Gümüş, E., 2019. Volcanic eruption
- 1023 eye-witnessed and recorded by prehistoric humans. Quaternary Science Reviews, 212, 187–
- 1024 198. doi:10.1016/j.quascirev.2019.03.030
- 1025 Valley, J.W., 2003. Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry, 53,
 1026 343–385.
- 1027 Vazquez, J.A., Shamberger, P.J., Hammer, J.E., 2007. Plutonic xenoliths reveal the timing of
- 1028 magma evolution at Hualalai and Mauna Kea, Hawaii. Geology, 35, 695.
- 1029 doi:10.1130/g23495a.1
- 1030 Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition
- 1031 effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304

- 1032 Weaver B., Kar A., Davidson J., Colucci M., 1996. Geochemical characteristics of volcanic rocks
- 1033 from Ascension Island, South Atlantic Ocean. Geothermics, 25, 449–470
- 1034 Weis, D., Demaiffe, D., Cauet, S., Javoy, M., 1987. Sr, Nd, O and H isotopic ratios in Ascension
- 1035 Island lavas and plutonic inclusions; cogenetic origin. Earth and Planetary Science Letters, 82,
- 1036 255–268. doi:10.1016/0012-821x(87)90200-7
- 1037 Wiedenbeck, M., All e, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., Roddick, J.C.,
- 1038 Spiegel, W., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and
- 1039 REE analyses. Geostandards Newsleter, 19, 1–23
- 1040 Wieser, P. Petrelli, M. Lubbers, J. Wieser, E. Kent, A. Till, C., 2021. Thermobar: A critical
- 1041 evaluation of mineral-melt thermobarometry and hygrometry in arc magmas using a new
- 1042 open-source Python3 tool. Geological Society of America Abstracts with Programs, 53, 6,
- 1043 doi:10.1130/abs/2021AM-367080

1044	Figure	captions

1045	Figure 1
1046	Simplified geological map of Ascension Island, adapted from Chamberlain et al. (2016) showing
1047	distribution of mafic and felsic effusive and explosive products, and key infrastructure locations.
1048	1 Georgetown, 2 Two Boats Village, 3 Travellers Hill Royal Air Force station, 4 US air force base,
1049	5 Wideawake Airfield. Asterisk marks the location of Echo Canyon and cross the youngest
1050	basaltic lava flows. Inset: Location of Ascension Island relative to the Mid-Atlantic Ridge in the
1051	South Atlantic.
1052	
1053	Figure 2
1054	Composite stratigraphic log of the Echo Canyon (EC) section. Dashed grey horizontal lines
1055	mark the contact between explosive and effusive deposits. Clast types and key bed
1056	characteristics are detailed in the key. Sample numbers indicated to the right of each unit.
1057	
1058	Figure 3
1059	Whole-rock major and trace element data pumice and lavas from the Echo Canyon (EC)
1060	deposits. Analytical uncertainty is less than symbol size. A. Total alkalis vs silica diagram
1061	showing EC deposits plot in the trachyte field, except for one rhyolitic lithic clast; explosive

1062 pumices are more evolved than the dome, lava and orange-brown pumice. Alkaline (Alk) and

1063	calc-alkaline (Ca) plus tholeiitic (Th) fields indicated. Symbols are larger than analytical error. B.
1064	Trace elements normalised to chondrite showing pumices are depleted in Eu relative to the
1065	dome, lava and orange-brown pumice, normalisation values from McDonough and Sun (1995).
1066	C. MgO vs SiO ₂ . D. K_2O vs SiO ₂ . Note the orange-brown pumice lies off the trend defined by
1067	the dome, lava and pumices. Major elements expressed as wt % oxides. Comparative Ascension
1068	Island whole-rock data shown in A and B as a grey field (data from Weaver et al., 1996; Kar et
1069	al., 1998; Jicha et al., 2013; Chamberlain et al., 2019).
1070	
1071	Figure 4
1072	A. Zircon δ^{18} O values. The grey horizontal band marks the compositional range typical of
1073	zircon crystallised from mantle-derived magmas (Valley 2003). Note that values of $\delta^{18}O$ below
1074	4.7 are typical of magmatic systems that assimilated a significant component of high
1075	
	temperature hydrothermally altered crust. The 2σ errors on the δ^{18} O values are within the
1076	temperature hydrothermally altered crust. The 2 σ errors on the δ^{18} O values are within the symbol size; B. Zircon Sc concentration vs differentiation index Zr/Hf, symbols as in 4A, all trace
1076 1077	temperature hydrothermally altered crust. The 2 σ errors on the δ^{18} O values are within the symbol size; B. Zircon Sc concentration vs differentiation index Zr/Hf, symbols as in 4A, all trace elements expressed in ppm; C. Zircon chondrite-normalised rare earth element plots. All
1076 1077 1078	temperature hydrothermally altered crust. The 2 σ errors on the δ^{18} O values are within the symbol size; B. Zircon Sc concentration vs differentiation index Zr/Hf, symbols as in 4A, all trace elements expressed in ppm; C. Zircon chondrite-normalised rare earth element plots. All samples show parallel patterns with a pronounced positive anomaly in Ce and a negative
1076 1077 1078 1079	temperature hydrothermally altered crust. The 2 σ errors on the δ^{18} O values are within the symbol size; B. Zircon Sc concentration vs differentiation index Zr/Hf, symbols as in 4A, all trace elements expressed in ppm; C. Zircon chondrite-normalised rare earth element plots. All samples show parallel patterns with a pronounced positive anomaly in Ce and a negative anomaly in Eu. Normalisation values of McDonough and Sun (1995), symbols as in 4A; D.

- 1080 Zircon U/Yb vs Hf tectonomagmatic discrimination diagram of Grimes et al. (2015). The dome
- 1081 zircon plots in the enriched mantle source region of the overlapping Iceland and Hawaii fields;

1082	the lower pumice zircon plot along a parental melt fractionation trend from the dome, symbols
1083	as in 4A; E. Zircon Sc/Yb vs Nb/Yb tectonomagmatic discrimination diagram of Grimes et al.
1084	(2015). All analysed zircon has relatively high Nb/Yb indicative of an enriched mantle source,
1085	whereas the unexpectedly high Sc/Yb for an ocean island setting is attributed to lack of
1086	amphibole fractionation, symbols as in 4A.
1087	
1088	Figure 5
1089	Echo Canyon ²³⁸ U– ²³⁰ Th zircon crystallisation ages in isochron diagrams. Red solid line
1090	represents model isochron for the Bayesian eruption age estimates.
1091	
1092	Figure 6
1093	Echo Canyon U-Pb zircon crystallisation ages for lithic clasts in a Tera-Wasserburg isochron
1094	diagram. Isochron is drawn for a fixed intercept corresponding to anthropogenic common Pb
1095	on the surface of SIMS mounts, with ages derived from the concordia intercept accounting for
1096	disequilibrium (initial 230 Th/ 238 U = 0.2, 231 Pa/ 235 U = 3).
1097	
1098	Figure 7
1099	Rank order plots of α -ejection- and disequilibrium-corrected zircon (U-Th)/He dates displayed
1100	as 2σ error bars. Weighted mean (U-Th)/He age values and corresponding 95% confidence

1101	intervals are listed as numerals and displayed as solid black vertical lines through each
1102	population and outer dashed black lines. Red-pink bars indicate values considered for
1103	calculation of weighted mean for the main population; grey bars indicate statistical outliers
1104	identified by Isoplot 4.15 (Ludwig, 2012) based on a modified 2-sigma criterion.

1106 **Figure 8**

1107	Posterior distribution graphs for probability densities (curves) of the eruption ages predicted by
1108	Bayesian age sequence model in ChronoModel v. 2.0. The 95% highest posterior density (HDP)
1109	regions are represented by the horizontal bars above the curves and by the grey filled areas
1110	under the curves. Labels: name of the deposit; the mode of the posterior distribution (i.e.,
1111	maximum <i>a posteriori</i> probability or 'MAP') in ka; 95% HPD in ka. Numerical results can be
1112	found in supplementary material 'Zircon double dating ages'.
1113	
1114	Figure 9
1115	Schematic representation of timing and processes in the magma system beneath Echo Canyon
1116	(EC). Key aspects are labelled with numbers relating to the "Petrogenetic model for the Echo

- 1117 Canyon magmatic plumbing system" section of the text. The crustal cross-section highlights
- 1118 mantle input, the depth of melt evolution and the proposed position of previous eruptive
- 1119 products relative to the EC stratigraphic sequence. Irregular vertical blue lines represent

pathways for hydrothermal alteration. The magma system shows a variation in wt % SiO₂ with depth in the discrete magma lenses and zircon compositional and age ranges. The zoom lens shows zircon preserved both as inclusions in macrocrysts and in contact with the melt. Zircon colour composition and size age are schematic. The erupted EC stratigraphy summarises the inverse evacuation of the compositionally stratified magma system as alternating explosive and effusive eruptive deposits. Not to vertical scale. Figure

64 - 68 wt%

Figure

<u>*</u>

U-Th stratigraphic sample ZDD eruption age U-Th-Pb zircon petrographic XRF ICPMS O isotope position crystallisation crystallisation thin section major elements trace elements range trace elements isochron age age ‰ 827 93.9 +5.9/-19.3 ka 98.5 +5.9/-5.6 ka orangepost-cone --MSWD=0.85, brown n=39 pumice 95.1 +6.8/-11.2 ka 108 +2/-2 ka lava post-cone 828 -MSWD=0.94, breccia n=34 871 96.6 +8.4/-9.2 111 +4/-4 ka 3.40-5.63 dome post-cone -MSWD=0.68, n=55 lower cone 829 -_ _ pumice 844 113 +15/-14 ka lower cone _ _ MSWD=0.77, pumice n=16 843 lower cone ---pumice 108 +10/-9 ka 842 99.7 +1.3/-8.2 ka 2.67-5.20 lower cone -MSWD=0.79, pumice n=17 lithic clast pre-cone 844F1 0.610 ±0.08 Ma lithic clast 844F2 pre-cone _ MSWD=0.83, n=3 1.34 ±0.13 Ma lithic clast 844F3 pre-cone _ MSWD=0.80, n=11

Table 1. Stratigraphic, age and analytical information for the Echo Canyon deposits.