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Abstract

We present our analysis of the deconfinement phase transition in the bosonic

BMN matrix model. The model is investigated using a non-perturbative lattice

framework. We used the Polyakov loop as the order parameter to monitor

the phase transition, and the results were verified using the separatrix ratio.
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The calculations are performed using a large number of colors and a broad

range of temperatures for all couplings. Our results indicate a first-order phase

transition in this theory for all the coupling values that connect the perturbative

and non-perturbative regimes of the theory.

1 Introduction

The main goal of this analysis is to explore the dependence of the critical transition

temperature (T̂c) of the bosonic BMN model on a deformation parameter (µ̂). The

lattice action of the model is obtained by discretizing it on a lattice with Nτ sites and

is given as
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The model has nine scalars, Xi and a gauge field is realized through the covariant

derivative. The finite-difference operator acting on a scalar has the form:

D+Xi(n) ≡ U(n)Xi(n+ 1)U †(n)−Xi(n), (2)

with U(n) denoting the gauge link field attached to the site n. The lattice action

is formulated using dimensionless parameters (µlat ≡ aµ, and λlat ≡ a3λ, with a

denoting the lattice spacing). An observable we use to find the phase transition in

the model is the susceptibility, χ, of the Polyakov loop magnitude |P |, which is

χ ≡ N2
(〈
|P |2

〉
− ⟨|P |⟩2

)
. (3)

Here are several parameters that are of particular relevance:
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Figure 1: The Polyakov loop scatter plot (top) and its eigenvalue distribution (bot-
tom) with µ̂ = 2, N = 32 for temperatures T̂ = 0.8 (red), 0.913 (green) and 1.3
(blue). The eigenvalue distribution for these temperatures corresponds to uniform,
non-uniform, and gapped phases, respectively.

2 Phase Diagram

In Fig. 1(top), we show the Polyakov loop scatter plots for a fixed deformation mass

µ = 2.0 for different temperatures. The corresponding eigenvalue distributions of

the Polyakov loop are also shown in Fig. 1(bottom). For different values of the

deformation parameter used, we calculated the transition point. In Fig. 2, we show

the corresponding phase diagram. This phase diagram smoothly interpolates between

the limits of the bosonic BFSS model and the gauged Gaussian model with first order

phase transition for all couplings, g = λ/µ3. The comprehensive analysis of this

work can be found in Ref. [1]. The results for the critical temperature over extreme

coupling regimes (g = 0 and g → ∞) match with previous studies [2, 3], and our

analysis shows that these extreme regimes can be connected using a smooth function.

3 Future Directions

We plan to continue exploring the strong coupling regime (g → ∞) with the larger

values of N to verify the results with other studies. We also plan to study the

ungauged versions of the bosonic and the full BMN models.
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Figure 2: The T̂ - µ̂ phase diagram of the bosonic BMN model from our Nτ = 24
results. The blue-shaded region in the diagram represents the deconfined phase, and
the red-shaded region represents the confined phase.
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