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Abstract

Cities are where the majority of the population live, the drivers of economic pro-
ductivity and the places where actions to address global challenges are taken. Increas-
ing urbanisation, changes in transportation, technological advancements, as well as the
evolving behaviour of residents have brought about changes in urban form and function
and therefore new challenges for researchers, administrators and planners. Alongside
these developments, new sources of data are becoming increasingly available to track
human interactions. Successfully using them can enable researchers to capture a more
comprehensive picture of urban reality and provide insights into both old and new
urban challenges.

This thesis combines new methodologies and new forms of data to analyse func-
tional land usage within cities, morphological and functional integration, as well as the
spatial distribution of people across different scales. The thesis consists of six chap-
ters, the core of which are three independent pieces of research, each dealing with a
specific aim. The other chapters are introduction, literature review and conclusion. A
core aim of the research chapters is to combine data and methodologies in novel ways,
in order to delineate areas of interest consistent with the phenomena under analysis.
The specific focus on delineations is driven by: first, the fact that delineating the areas
of analysis and the core units within them are one of the first steps researchers take in
studying numerous phenomena; second, changes to the units can have effects on all
subsequent analysis.

The first research chapter, delineates areas of similar activity using sound sensors,
in order to define usage profiles within a city. The results show that non-acoustic,
sound sensor data captures different patterns of human activity at high-temporal and
spatial scales. In the second research chapter, tax and residence data are used to de-
lineate economically integrated areas across (non-predefined) scales and examine the
spatial distribution of jobs within them. There are three scales of activity emergent
in the results - metropolitan-like, state-like and super-state-like - and decentralisation
patterns are present in the first level. The final research chapter uses machine-derived
building footprints to operationalise a minimalist definition of urban areas - areas of
high building density surrounded by areas of low density. The resulting urban delin-
eations differ locally in density, size and the types of urban features they contain, but
are on average most similar to functional urban areas.

When combined, the results from all three chapters show the importance of param-
eter choices in analysis, a relationship between urban form and function and highlight
the advantages and pitfalls of using new forms of data and data science methods for
quantitative delineations. Specifically, the results from the three chapters show that
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aspects of urban function are still reflected in urban form. They also show limited ev-
idence in support of the integration of cities in the United States into interconnected
large-scale clusters - megaregions and show more evidence, in line with the literature,
of the decentralisation patterns within large urban areas. Furthermore, the results show
the advantages and pitfalls of using novel data science methods and new forms of data
- the importance of tailoring algorithms to specific geographic purposes, testing and re-
producibility, as well as the viability and advantages of hierarchical based approaches
to delineations.
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1

Introduction

1.1 Background

Cities are increasingly seen as one of the most important structures through which to
address the numerous social and environmental challenges facing people. One of the
core reasons for this growing influence is that most of the human population currently
lives in cities and there is an expectation that an even greater proportion will live in
an urban area of one type or another (Batty, 2018, chapter 2). Cities are also the
main drivers of economic activity in both developed and developing countries (Zhang,
2016) and challenges and solutions to transportation, water and waste infrastructure,
as well as inequality, economics and other problems at the local and national level
are focused on cities (Lobo et al., 2020). Furthermore, numerous proposals and and
policies needed in order to respond to global problems such as climate change and
sustainable development, are being articulated in terms of local urban actions (UN,
2020).

Bounded territorial units are crucial in carrying out the research, planning and im-
plementation of solutions to all these challenges (Nelson, 2020). Bounded territorial
units delineate the space over which phenomena of interest occur, and thus affect data
gathering, analysis and theories (Wolf et al., 2020; Parr, 2007; Arcaute et al., 2015).
This importance and wide-spread use of delineations has led to debates about their
advantages, usefulness and limitations.

The impossibility of providing a single ’correct’ boundary that encapsulates the full
array of complex features which define human interactions, has long been recognised
by geographers (Hartshorne, 1939). Therefore, there exist numerous proposals about
the appropriate aggregation and delineation procedures depending on the specific phe-
nomena analysed (Duranton, 2021). Some geographers even suggest that there is a
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decreasing practical and interpretive value of bounded territorial units in light of the
changes brought about from globalisation and new forms of societal organisation (Har-
rison, 2013). The arguments center on how more emphasis should instead be placed on
the mobility patterns of ideas, capital, workers and commodities, analysed as a whole
without the need of defining explicit boundaries and units within them.

Nevertheless, spatial proximity plays a role in organising both formal and emergent
social, political, and cultural systems (Petrović et al., 2020; Nelson, 2020; Wolf et al.,
2020) and defining the extent of the basic units and the area under analysis is the first
step in quantitatively analysing spatial phenomena (de Bellefon et al., 2019; Nelson,
2020). Bounded units are also required for numerous practical purposes - defining
administrative regions, voting districts as well as implementing policies (Coombes,
2014).

The present thesis focuses on this problem - the delineation of boundaries and cre-
ation of typologies for the analysis of urban phenomena, across scales ranging from the
neighbourhood to the national level. Spatial scale is a multifaceted, core geographical
concept. As it is used in this theses it refers to the size or extent of a process, phe-
nomenon or investigation (Atkinson and Tate, 2000) and different urban scales such
as urban centres, cities, larger urban areas, regions and megaregions are emphasised,
whereas global or personal scales are discussed less. Similarly to changes in delin-
eations, changes affecting scale can have large effects on analysis and results (Möck
and Küpper, 2020).

To address these issues, researchers have developed numerous ways to define bound-
aries at different scales. A popular approach is to combine multiple smaller-scale fun-
damental units, in order to delineate boundaries for a larger-scale phenomenon. For
example, small-scale census administrative areas can be used used in order to define
the extent of urban areas (Khiali-Miab et al., 2019). Uniform cells or hexagons de-
rived from gridding the territory under analysis, is another type of unit that can be used
for the same purpose. These fundamental units can be combined in numerous ways -
based on functional relationships such as flows of goods or people (Nelson and Rae,
2016); spatial contiguity (Rozenfeld et al., 2008), various characteristics of the units -
population density, built density (Florczyk et al., 2019); or combinations of multiple
approaches.

With the rising availability of new forms of data researchers are able to use other
units and interactions such as tweets (Wei et al., 2020), mobile phone data (Secchi
et al., 2015), location-based social networks (Calafiore et al., 2021). In addition to
capturing new processes, these new forms of data can enable quantitative analysis
at higher temporal and spatial resolutions. However, they come with a set of disad-
vantages related to data gathering, validity, generalisability and bias (Arribas-Bel and
Tranos, 2018),. Additionally, processing and analysing the data requires the adoption
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of new methods and considerations about computing power. This thesis makes use of
new forms of data and attempts to address these challenges through the integration of
geography and data science (Singleton and Arribas-Bel, 2021).

The main focus of the thesis is to delineate areas at various scales, in order to anal-
yse three different urban phenomena - urban land use, large-scale functional integration
and the spatial extent and organisation of cities. A secondary aim, which is achieved
through the combination of results, is the analysis of the relationship between urban
form and function and the internal spatial form of the delineated areas. To achieve this
the analytical chapters of the thesis combine both traditional and new forms of data
with machine learning methods, and attempt to modify the machine learning methods
in accordance with the specific requirements of the phenomena analysed. The data
sources used are captured decibel patterns from sound sensors, satelite-derived build-
ing footprints and geo-referenced work and home address tax records. The method-
ologies used differ across the chapters, however in general, they are all a form of un-
supervised machine learning or clustering - the attempt to group data in a meaningful
way.

The first analysed phenomenon is urban land use and aims to characterize the pre-
dominant usage of areas within cities into profiles. Examples of such profiles are
industrial, residential or business. Identification of the different types of land use,
changes across time, as well as comparisons across cities play an important role in un-
derstanding urban dynamics (Batty, 2018, chapter 6). Furthermore, delineating areas
within cities with similar usage types is important for the analysis of the effects of zon-
ing regulations, planning efforts (Toole et al., 2012) as well as other urban processes
like sprawl (Zanganeh Shahraki et al., 2011). Land use pattern information also has
numerous commercial applications - for example, it can be used for balancing usage
on mobile phone networks (Cici et al., 2015).

The second phenomena is large scale-economic integration of urban areas into
megaregions. A megaregion is a large-scale conceptual unit which represent a cluster
of urban centres, integrated morphologically, culturally and economically (Glocker,
2018). A popular example of a megaregion in the United States is the ’Northeast-
ern Megalopolis’, which ranges from Boston in the North to Washington D.C. in the
South and spans numerous official administrative boundaries, hundreds of kilometres
of built environment and has tens of millions of residents. The importance of defining
and delineating megaregional boundaries stems from proposals to focus economic, in-
frastructure and sustainability planning at the megaregional scale in order to increase
economic competitiveness in global markets and to better tackle urban sustainability
problems (Ross et al., 2016; Nelson, 2017; Lang et al., 2020; Amekudzi et al., 2012).

The third area of focus is the delineation of urban boundaries. The spatial extent
of cities affect subsequent analysis results such as the calculation of unemployment,
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population, economic performance and density statistics (Parr, 2007). Consistent and
globally applicable city delineations and definitions capture the spatial extent of urban
phenomena more accurately and enable the creation of general urban theories, better
comparisons between cities and more accurate cost benefit analysis of policy outcomes
(Lobo et al., 2020; Roberts et al., 2017). To address this problem researchers have
developed numerous methods that define the spatial extent of cities based on economic
interactions, morphological features or population densities (Duranton, 2021).

A secondary focus is the spatial form of the delineated areas and the patterns be-
tween form and function. Due to technological and economic developments, there have
been patterns of employment decentralisation in North America and Europe (Dadash-
poor and Malekzadeh, 2021). The exact form, consequences and whether this phe-
nomena should be encouraged is an active area of research. The difficulty in consoli-
dating results across studies comes in part, due to the fact that definition, delineation
and scale choices have large effects on the analysis of urban form (Möck and Küpper,
2020; Barrington-Leigh and Millard-Ball, 2015). Lastly, the relationship between ur-
ban form - how cities are arranged spatially - and function - the human activity within
them - is analysed. Traditionally urban form has followed function, however the rela-
tionship is also evolving due to advances in transport and communication technology
(Batty, 2018, chapter 4).

1.2 Aims

The overall aim of the thesis is to delineate boundaries and create typologies in order
to analyse urban phenomena. This is broken down into three more specific main aims,
each dealing with one or more of the introduced urban processes - land use patterns,
large-scale functional integration and the spatial extent of cities. Each aim encom-
passes an individual paper, presented as a chapter in the thesis. The three aims are:

• To identify areas with different urban land use patterns at a high spatial and
temporal resolution using sound sensor readings.

• To identify potential megaregions, as well as to explore the distribution of people
within them.

• To delineate urban areas morphologically and to explore the spatial structure of
density variations within the resulting boundaries.

The firs aim complements recent developments in the land use analysis literature.
The use of new forms of data such as mobile phone records or tweets has allowed
researchers to explore land use patterns at high temporal and spatial resolutions (Cici
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et al., 2015; Calafiore et al., 2021). However, such data is not readily publicly avail-
able since it is owned by private companies. Furthermore, some types of these new
data such as footfall counters can only capture information about specific groups, due
to technological challenges (Lugomer and Longley, 2018). In contrast sound sensor
data from smart city projects, such as the Newcastle Urban Observatory, are publicly
available and capture all activity within their radius.

In tackling the first aim, this thesis explores the viability of detecting urban land
use from publicly available secondary datasets - sound sensors. Provided sound sen-
sors capture activity information about the areas they are place in, they represent an
additional source of data which could be used to infer land use patterns in place of
and in addition to other new forms of data. A secondary outcome, is a comparison
of methodologies that measure differences between pairs of sound sensor patterns. A
new approach - topological data analysis - is tested against other methodologies used
in the land use literature which focus on mobile phone and Twitter data. By carrying
out this comparison, the thesis gives insights into potential usage of new methods for
the analysis of new forms of data, and identifies areas of improvement for these new
methods.

The second aim is achieved by analysing the emergence of large-scale, integrated
structures in a tax records dataset in the United States. Previous work by Nelson and
Rae (2016) used clustering (or community detection) techniques and commuter data to
define megaregions and the approach taken in this thesis builds on that research. First,
it uses a complementary dataset to define and verify emergent functional structures at
several emergent scales. Functional here refers to the fact that the results are based on
actual economic interactions directly captured by the data, rather than on morphologi-
cal or built-environment information used as a proxy. Both the extent and scale of the
results are inferred from patterns in the data and are not defined beforehand. Second,
further analysis of the results is carried out following the exploratory spatial data anal-
ysis (ESDA) approach adopted by Arribas-Bel and Sanz-Gracia (2014). This is done
in order to analyse the spatial structure of the resulting areas. The results delineate
the spatial boundaries of potential emergent functional megaregions, and which cities
and census tracts fall within the megaregional extent. This is an important problem
since being part of a megaregion can result in significant benefits, provided megare-
gional planning agendas and policies are implemented, ie. Nelson (2017); Nelson and
Rae (2016); Amekudzi et al. (2012). Furthermore, the multi-scale approach allows
for the analysis of the spatial structure of employment patterns in the US - whether
employment can be characterised as monocentric, polycentric or scattered and at what
level.

The third aim is achieved by leveraging satellite-derived building footprints and
machine learning to define urban areas. While numerous approaches have looked at
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defining urban areas based on buildings (e.g. Arribas-Bel et al. (2021a); de Bellefon
et al. (2019)) the approaches either rely on aggregating spatial units into grid cells
or specifying explicit global density thresholds. Different choices of grid sizes and
parameters affect both spatial extent and the resulting scale of the boundaries (Möck
and Küpper, 2020; Statham et al., 2020, 2021; Balk et al., 2018). These issues are
circumvented by using individual buildings and a machine learning approach tailored
to the data. This leads to more stable urban definitions for the analysis and gathering
of economic and policy data. The approach and data can also be applied to multiple
countries, since building footprints themselves are a universal unit. Lastly, the analysis
results in a nested hierarchy of potential delineations at numerous scales. The hierarchy
can be used to analyse the potential integration of the final results into megaregions and
the spatial form of the delineations at lower scales.

Through the specific approaches taken to address the three main aims, the thesis
implicitly also shows the value of adopting new forms of data and methods to solve
urban challenges. The three analytical chapters address the problems of delineation
through the use of clustering methods derived from data science, as well as new sources
of data. Chapter three uses new forms of data, as well as new methods and emphasizes
the importance of good validation and comparison between methods. Chapter four is
an example of how traditional datasets can be analysed with methods directly created
for new forms of data. Chapter five one uses both ’new’ datasets and ’new’ methods.
All three chapters aim to be examples of Geographic Data Science (Singleton and
Arribas-Bel, 2021) - the explicit integration of quantitative geographical analysis with
data science.

A similarity between the chapters is in the specific analysis approach taken to ad-
dress the aims. All delineation methods used have no explicit scale requirements set -
boundaries and scales are emergent from the data and the analysis. Furthermore, there
are no spatial models or a predefined number of expected final delineations. Specify-
ing apriori, any of these of these parameters affects the results and poor choices can
lead to defining or defining away the phenomena under analysis (Möck and Küpper,
2020). Chapter three is limited to a inner-city scale only due to data availability, while
the other two chapters explore scales ranging from the local to the national. By suc-
cessfully applying these methods the papers show the viability of using unsupervised
machine learning methods, which infer emergent structure in the data from local vari-
ations.

Another commonality between the chapters is that they produce not only final
boundaries, but a hierarchy which shows how core units relate to each other. This
enables the exploration of phenomena at different scales and also provides a detailed
history of the creation of these final results and their structure. This feature of hierar-
chical methods is used in all chapters. Due to data limitations, chapter three only shows
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how the same hierarchical multi-scale approach can be used with different data types
such as sound sensors readings throughout time. The hierarchies are used extensively
in the last two analysis chapters for the analysis of urban form. Furthermore, the differ-
ent focuses of the two studies - home-workplace tax information and building polygons
respectively, provide insights into both the morphological and built environment urban
form spatial patterns and functional urban form spatial patterns.

1.3 Thesis structure

The structure of the rest of the thesis is as follows. The next chapter is a literature
review, providing the relevant background for the analytical chapters. Afterwards,
each of the three analytical chapters represents an individual paper, that address one of
the three main thesis aims. The last chapter provides a summary and discussion of the
results and concludes the thesis.

The next chapter of the thesis provides more background on the relevant urban
concepts, developments and methods. The literature review broadly covers:

• Cities, urban form and function, changes and challenges

• The importance and effects of bounded territorial units

• New forms of data and related developments in geography

• Quantitative delineation approaches

Particular emphasis is placed on the four concepts presented in the introduction - spa-
tial distribution, megaregions, urban spatial extent and land use. Additionally, there is
a brief general overview of the methodological approaches used for data analysis.

The following three chapters each address a core aim of the thesis and represent
independent pieces of research. They describe in detail the relevant literature, data,
methodology and results.

Chapter three focuses on urban land use detection within cities. It describes the
current approaches to land use and changes brought about by new forms of data, as
well as how sound sensors can be used to capture land use patterns. The analysis is
based only on the hourly recorded maximum level of noise, at the particular location
where a sensor is placed. This is in contrast to other urban land use studies which use
acoustic sound data - the actual record of the occurring sounds. The analysis in the
chapter also includes use of topological data analysis (TDA) methods to address the
challenges of processing new forms of data. Rather than directly using these novel
methods, the paper carries out a comparison between several TDA methods as well
as methods adapted from papers using other new forms of data, such as Cici et al.
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(2015). The comparison is based on both internal statistical measures of quality, as well
as external validation trough the use of POI and building data from OpenStreetMap.
Additionally, the best set of results are compared to similarly derived activity profiles
from tweets and mobile records.

Chapter four focuses on delineating megaregions using functional data. To this end
LODES jobs data is used, which provides information on the residence and workplace
of over 120 million Americans in the contiguous United States. This dataset is trans-
formed into a network of nodes and edges where nodes represent census tracts and
an edge between a pair of nodes - the number of people that live at one census tract
(or node) and are employed at the other. The delineation of spatial units at multiple
scales is based on the formation of communities within this network - groups of nodes
which are more strongly connected with each other than with other nodes. The ap-
proach taken results in a nested hierarchy of delineations, with no predefined number
of levels - all resulting scales are inferred from the data. The spatial structure of the
delineations at each hierarchical level are explored and comparisons to other existing
geographical units are carried out. Furthermore, the final results are compared to other
defined megaregions in the literature - Nelson and Rae (2016) and Hagler (2009).

The last analytical chapter explores a morphological definition of urban areas in the
United states, based on individual building footprints and no explicit density thresh-
olds. These building footprints are derived from satellite imagery using computer vi-
sion algorithms and capture 130 million buildings in the contiguous United States.
Similarly to chapter four, a hierarchy of nested units is created using a modified un-
supervised machine learning algorithm. However, this hierarchy extents from pairs of
individual buildings to megaregions and the whole country in scope. The final delin-
eations are defined as the most ’persistent’ that appear in the hierarchy. A comparison
between the final results and seven other datasets is carried out to contextualise the re-
sults. Furthermore, the hierarchy is used to explore the patterns of density within each
final delineations, as well as their potential morphological integration into megare-
gions.

The last chapter discuses the findings and draws overarching conclusions from the
results of the individual papers. It provides a short summary of the main results from
each paper and their limitations. It also combines the results with a focus on the re-
lationship between urban form and function and compares the results from the two
papers which use United States data. Furthermore, it discusses the appropriateness of
using unsupervised, non-model, density-based approaches for delineation and the use
of new forms of data and methods for addressing urban challenges.
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2

Literature review

This chapter provides an overview of the importance, challenges and changes affecting
urban areas with a focus on the issues relevant to chapters three, four and five. It is
structured in six main sections. The first section is a general introduction to the ur-
ban processes and properties, relevant to the rest of the thesis - urban growth, urban
density, city size and changes in urban form and function. It also discusses the re-
lationship between urban areas and processes defined at different scales. The second
section covers the effects of changes in boundary delineation on the above phenomena,
as well as the general use and criticisms of bounded territorial units in quantitative
geography. The third section describes the uses of new forms of data, the opportuni-
ties and challenges they present for urban analysis and approaches to using them. The
fourth section covers the general approaches to delineating boundaries. The discussion
is structured following the framework introduced by Duranton (2021), but adapted to
cover urban areas, megaregions and land use delineations using new forms of data. The
fifth section provides the background to the specific methodological approaches used
in chapters three, four and five - clustering. The last section draws on all the discussed
literature and broadly specifies the overall research gap that this thesis addresses. More
specific formulations for each aim are provided within the relevant chapters.

2.1 Changes, challenges and processes related to cities

Across the social sciences there exist numerous definitions of what a city exactly is and
what are its core features. These views range from cities as complex systems, or pri-
mary social and cultural, or economic and organisational structures to researchers who
question the concept of the city as a unit of analysis, planning and research (Williams,
2012). The definitions reflect specific underlying purposes and organising principles
of urban areas: as central places of service provision (Christaller, 1980); or facilitators
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of human interactions (Mumford, 1937), where the core of the city are group activ-
ities at different scales, whereas the physical and market organisation is secondary;
or other concepts. In turn these definitions of cities are tightly coupled to normative
theories about what an ideal city is and how it should operate (Lynch, 1984). These
theories speak to the organisation of form - the configuration of the built environment
- and function - the actual usage of the built environment- within cities. For example,
whether parts of the urban form should be specialised for particular functions such
as residential living (Mumford, 1937) or instead, mixed-usage should be encouraged
(Jacobs, 1961a). Others focus on what influence does form have on function and visa
versa, such as the distribution of economic activity, land prices (Alonso, 1960). There
also exist numerous questions about the appropriate way to manage urban growth and
to identify the correct scale to tackle pressing challenges, such as transportation (Ged-
des, 1915). It should be noted that many of these debates about form and function
go back thousands of years, due to the long-recognised importance of cities (Rykwert,
1988).

The diversity of views is also reflected in quantitative geography itself and more
specifically in the many ways in which researchers operationalise the idea of a city.
From minimalist definition of cities are places of high population density (O’Sullivan,
2011) to definitions incorporating aspects of the road network, and the distribution of
jobs and people (Bertaud, 2018). This diversity is also extended to how urban form
and function are quantified. There exist numerous measures of the built environment
(Kropf, 2009), as well as quantitative definitions of particular form-related phenom-
ena such as polycentricity (Derudder et al., 2021) or sprawl (Barrington-Leigh and
Millard-Ball, 2015). Similarly, different aspects of function are emphasised for differ-
ent applications - i.e. mobility (Moro et al., 2021).

The focus in this thesis is on urban definitions that can be quantitatively operati-
nalised, especially using new forms of data and methods. This is done since, the ana-
lytical chapters either use new forms of data directly - chapters three and five - methods
created for new forms of data - four and five - or combinations of both - chapter five.
The urban phenomena described in the next sections focus specifically on changes and
challenges to urban form and function, related to delineations and to the analytical
chapters. The discussion does not cover the full array of challenges and functions of
urban planning - inequality, segregation, crime, congestion, pollution, management
and others (Glaeser, 2011). Nevertheless, delineation choices also affect these and
other issues as is pointed later in section three of this chapter. For example, many of
these issues are related to urban growth (Cohen, 2006), the analysis of which is di-
rectly related to urban delineations and form (Roberts et al., 2017; Barrington-Leigh
and Millard-Ball, 2015).

Lastly, the discussion of scale is shaped by similar considerations. Scale is a core
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concept in geography and can range from the personal to the global (Campbell, 2018).
Generally, an urban phenomena under analysis is coupled with a scale of analysis and
important characteristics of the phenomena can change as the scale changes (Wang
et al., 2019). The discussion in subsequent sections is limited to different levels of
urban scales - urban centres and some smaller-scale delineations, urban areas, func-
tional urban areas, megaregions. This limits the large topic of planning and proposed
planning scales to only a discussion related to these phenomena.

2.1.1 Urban definitions and delineations

Quantitatively defining urban areas is a difficult problem. Countries have individual
political and administrative definitions for what a city is, however, using these for re-
search and analysis is problematic for several reasons. First, individual countries have
different official administrative designations. For example, in China a city officially
has to have at least 100,000 people, whereas in Spain the minimum threshold is 5,000.
Furthermore, a country’s own definitions can sometimes change across time. Second,
land size and land use within the units can be a mix of both rural and urban land and
their spatial extent is optimised for the purposes of surveying (Wolf et al., 2020). Third,
cities can extend beyond their borders into the surrounding area, however for political
or economic reasons their official boundaries do not necessarily reflect this (de Belle-
fon et al., 2019). Therefore, one of the core problems of urban research that affects all
analysis is how to provide a rigorous definition of urban areas and their spatial extent
which is both theoretically and practically useful. What further complicates this chal-
lenge are calls for globally applicable definitions, which would enable comparisons
across countries and time spans (Florczyk et al., 2019).

A core component of many urban definitions is the idea that cities are human set-
tlements with a higher density of people or connections than the surrounding areas
(O’Sullivan, 2011). This view captures an important aspect of cities, which many the-
ories use to explain particular outcomes. Examples of this are the higher levels of
innovation and economic productivity present in cities. As the density and number of
urban dwellers increases so do the possible types of interactions between people, lead-
ing to an environment of innovation and idea generation (Ahuallachain, 2012). Fur-
thermore, the increased population concentration creates the necessary consumption
market and the enables specialisation which leads to the emergence of economies of
scale (Glaeser, 2010). It should be noted that, cities cannot only be described in terms
of density of people - other important aspects are an internal structure, interactions and
perceptions (Lobo et al., 2020; Galdo et al., 2021). However, definitions which focus
on density of different types results in more easily quantifiable and globally applicable
definitions.
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There are different operalisations of the idea that cities are areas of high density sur-
rounded by lower density. These can take the form of defining the extent of cities as the
contiguous built up environment, high population density, the reach of commuters or
the extent of the local flows of services and goods (Parr, 2007). Other more complex
definitions combine multiple aspects of the transport system, the population density
and the economy - such as defining cities as the effective extent of the labour market
(Bertaud, 2018). There are also hierarchical definitions which describe different units
that encapsulate one another, such as urban centres within urban areas, (Florczyk et al.,
2019). These different datasets and definitions can led to differences in core aspects
such as the level of national urbanisation (Williams, 2012; Onda et al., 2019). In gen-
eral, there is a consensus that no single definition captures all aspects of a city, and
so definitions are context dependent (Lobo et al., 2020; Batty, 2018; Duranton, 2021;
Parr, 2007; Williams, 2012).

2.1.2 Urban processes and challenges

One of the urban main challenges facing researchers, which affects numerous other
phenomena, is analysing the process of urbanisation. Even though, there exists a con-
sensus that the global urban population is growing - the exact degree of urbanisation
and its rate of change are open questions (Balk et al., 2021; Duranton, 2021; Balk
et al., 2018; Jochem et al., 2020). A better understanding of these two phenomena
can shed more light on the effects of urbanisation on national and regional economies
(Roberts et al., 2017; Bosker et al., 2018). Furthermore, the exact spatial patterns
and consequences of increasing urbanisation are not well understood. This raises im-
portant questions about the future number of cities, their sizes and the distribution of
population within them (Batty, 2018, chapter 2).

There is evidence that city sizes are distributed following a power law distribution,
Zipf’s Law more specifically (Duranton, 2021). This type of distribution of city sizes
suggests that on average, the largest city is twice as large as the second largest city,
three times as large as the third largest city, etc. The distribution also suggests that as
the size of cities decreases the number of smaller cities raises exponentially. Further-
more, there is evidence that the distribution of city sizes has stayed constant over the
last 200 years, with the largest 100 cities only taking a slightly larger proportion of the
urban population recently (Batty, 2006). This is despite the fact that particular cities
have had large population shifts themselves.

Another changing aspect of cities are urban form and function and the relationship
between them. And furthermore how changes in form and function themselves, affect
outcomes of interest such as employment rate, health and transport costs (Ewing and
Hamidi, 2015). Form, most generally understood as the configuration of built envi-
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ronment, is an important concept in urban research, planning and the understanding of
cities (Kropf, 2009). In the past, most cities were compact and similar in shape, limited
in their possible development by the transport and communication technology of the
time (Batty, 2018, chap 6.). Currently, there is a wider diversity of urban form driven
by the growth of cities beyond their official boundaries, the building of low density de-
velopments (sprawl) and vertical development such as the construction of sky scrapers
(Batty, 2018, chap 6.).

Urban sprawl is a term that has many definitions and dimensions, similar to cities
themselves. It is usually defined on a continuum with compact, high-density or mono-
centric development on one side and sprawl - low density, single use development - on
the other (Ewing and Hamidi, 2015). The key management problem is whether low-
density development is sub optimal, and wastes energy and resources, and the same
quality of life can be achieved through better planning and development in denser
urban areas. Some researchers describe sprawl as an outcome of market forces and
resident preferences, whereas others argue that it a primarily a reflection of imper-
fections and externalised costs in land markets and regulations. The latter argue that
government unfairly subsidise sprawl development at the expense of taxpayers, i.e.
through housing subsidies and construction of highways, whereas the former say that
its an expected reaction to growing urban population (Ewing and Hamidi, 2015). Re-
search into sprawl is an active area of interest since there is a link between it and de-
velopment goals such as segregation, health, economic productivity and sustainability
(Lacy, 2016).

Similarly, there have been numerous changes in urban function - how the built
environment is being used by people. Before the 19th century most cities acted as
markets, comprehensive administrative and service centres for the surrounding farm-
lands, whereas currently, cities can emphasize and focus their economic development
towards tourism, industrial production, education and other specialisations (Glaeser,
2011). Furthermore, there are is an ongoing repurposing of existing buildings and
changes in usage patterns driven by changes in communication, transportation and
computer technologies (Purkarthofer et al., 2021). Studies based on mobile phone data
(Cici et al., 2015) or other smartphone data such as tweets (Frias-Martinez et al., 2013)
or location-based social networks (Calafiore et al., 2021), have enabled the capture of
more distinct types of specialised human activity than previously available. These shed
light on the internal dynamics of urban areas at an unprecendent temporal and spatial
scale.

These changes in form and function are reflected in the spatial distribution of ser-
vices, employment and population within urban areas. For the majority of human
history most cities were centred around a central business district, which contained all
services and acted as a commanding centre. This has been the case since ancient times
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- in Rome the forum acted as the central place, in Athens it was the agora. However,
there is an established general trend of employment and population decentralization
within urban areas in the 21st century (Dadashpoor and Malekzadeh, 2021) in Europe
and North America. The exact patterns of this decentralisation has been described by
different concepts - polycentricity, scatteration and edge cities. Polycentricity refers
to urban areas in which employment is concentrated in several centres, operating in a
complex network of interactions. There exist numerous ways of defining the centers
and quantifying the relationship between them, which have an effect on the analysis
of benefits and outcomes (Derudder et al., 2021). The “scatteration” view argues that
employment is scattered throughout areas with no concentration in centres (Manduca,
2020). Edge cities describe a development pattern where new peripheral urban devel-
opments which fulfil certain size, retail, perception and office space criteria are appear-
ing near established cities (Garreau 1991, p. 7.) Proponents of these developments and
theories argue that they should be encouraged and that more localised systems better
understand local needs and provide services better than a centralised and more dis-
tant authority. This would then lead to reduced strain on local governments and better
productivity, service availability (Kwon and Seo, 2018) and other desirable outcomes
such reduced traffic congestion(Wang and Debbage, 2021). Whereas criticisms focus
on the inability of local actors to address other types of problems such as public health,
sustainability development, global competitiveness which require more centralisation
and coordinated efforts (Yang and Zhou, 2020; Meijers, 2008).

Related to this topic is the question of whether, as technology continues to develop
and changes accelerate, the difference between form and function will increase. Nu-
merous theories and studies rely on the fact that human interactions within cities are
reflected in or influenced by the built environment (Batty, 2012). For example, the
flows of consumption and production within the national economy are highlighted by
the different types of transport networks and land use centres. Recent advances in
communication technology and the shift to a knowledge economy can bring about a
change in this relationship (Lobo et al., 2020). There is a chance that human inter-
actions would become more complex and placeless, and not reflected in the physical
form of cities. Therefore, digital and other traces of behaviours themselves become
more important than urban form features for the study of urban processes.

One manifestation of these trends are the changes in the urban retail system. Retail
centres, the places where retail activity is concentrated in urban areas, are currently fac-
ing long term structural pressures from online retail (Dolega and Celińska-Janowicz,
2015). In addition to being the focal points of physical consumption, the state of the re-
tail system is linked to the wider economic state of the urban area (Dolega et al., 2021).
As such there is a growing importance of using online sources of data e.g. - (Davies
et al., 2018) - in order to capture consumer behaviours in full and to better understand

14



local economic factors. These experienced disruptions, caused by the disconnect of
form and function - purchasing behaviour not reflected in physical shops and trips -
vary spatially, as well as functionally at a national and local scale (Dolega et al., 2016).
In some regions, larger and more attractive retail centres draw patrons from a more
extensive areas and adapt in different ways, such as placing more emphasis on leisure
offerings (Dolega and Lord, 2020). Therefore, there are still important aspects of the
function of consumption captured by urban form and density.

The effects of transport technology on the relationship of urban form and function
is similarly complex as evidenced by the ”death of distance” or metropolis paradox.
The core of the paradox is that accessibility to central locations in cities has become
more important even as average travel speeds have increased (Couclelis, 1996). In
light of this, core locations, such as city centres and place more generally, still play
an important role in urban economies and processes. This complexity is corroborated
by the rising numbers of supercommuters - people who travel very long distances of
100km or more for work, albeit less frequently than normal commuters (Rae, 2015).

2.1.3 Analysis, planning and scale

The changes in urban form and function are closely related to questions of urban plan-
ning - what types of urban development to encourage and how. There has been a wealth
of research on how different aspects of cities affect desirable outcomes such as income,
health, transport and sustainability. However, there do not seem to be conclusive re-
sults and as such the ideal of what a city should look like changes with time (Batty,
2018, p.113). In addition to determining causal and related factors, there are questions
about the best methods of intervention to achieve desirable outcomes. Typically, the
focus has been on changing urban form and transport as the least intrusive way to im-
prove the lives of citizens (Kropf, 2009). However, these types of interventions can
become less effective in the future, due to the growing differences between form and
function.

In addition to research into the describing urban processes, their desirability and
outcomes, there are questions about the appropriate level of coordination or scale at
which urban challenges should be managed and analysed. There are proposals to
focus planning and research at different scales for different tasks - at the individual
city level, at a larger city-region level which includes the surrounding towns and land,
at a regional level which encompasses several cities and the areas between them, at
a megaregional level which is made up of different parts of several regions or at a
national level (Purkarthofer et al., 2021). The effects of globalisation, international
transport and capital links also have an effect on urban form and function and further
complicate planning and analysis (Harrison and Hoyler, 2015a). It should be noted
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that units at these scales have little administrative and political power and mostly act
as statistical units for analysis. Even if any policies are inspired by analysis at these
scales, in practice they are implemented through already existing administrative units
and scales (Nelson, 2017).

One popular example of a scale for research and analysis are functional urban areas
(Möck and Küpper, 2020; Rappaport and Humann, 2021; Lobo et al., 2020). Func-
tional urban areas are operationalised in different ways, but the overall goal is to cap-
ture local labour and consumption markets (Schiavina et al., 2019). Typically these are
centred on a major urban centre, which expands outwards from its official urban bound-
aries, reflecting the fact that modern cities have expanded considerably (Rappaport and
Humann, 2021). Examples of these are statistical areas in the US - metropolitan, mi-
cropolitan and combined statistical areas, in Europe - functional urban areas developed
by Milego et al. (2019) and worldwide functional urban areas developed by Schiavina
et al. (2019). An example of a metropolitan area is the Boston-Cambridge-Newton,
which is centred at the city of Boston and covers all census tracts (a census unit in the
US) which have a high proportion of commuters related to it. Employment decentrali-
sation and urban economic performance is mainly studied at this scale as it represents
local markets (Möck and Küpper, 2020; Dadashpoor and Malekzadeh, 2020; Bosker
et al., 2018; Wang et al., 2019), however other types of research such as public health
(Meijers, 2008) and inequality (Shen and Batty, 2019) are also regularly carried out at
this scale.

There are also planners that seek to address challenges at a larger scale - the re-
gional and megaregional. Regionalists argue that the analysis and governance of phe-
nomena is best carried out at a large sub-national scale, reflecting changes in the current
economic system that cover both urban and rural land (Harrison and Hoyler, 2015a).
For example, regions such as California’s Silicon Valley, England’s South or Italy’s
North exhibit different patterns of development than those at their respective national
level. Similarly to cities, defining and operationalising the spatial extent of regions is
an active area of research, with criticisms aimed at the inability to define exact bound-
aries (Harrison, 2013).

There is also interest in delineating existing or future large urban agglomerations -
which would contain millions of people and large percentages of the national economic
activity (Hagler, 2009). An example of this area is the ’Northeastern Megalopolis’
which spans the entire area from Boston in the North to Washington D.C. in the south.
Numerous conceptualisations of these areas started being developed such as megare-
gions or megalopolitan areas - areas that cover parts of multiple regions (Lang et al.,
2020). The interest was driven by the fact that these areas could act as focus points
and increase the competitiveness of national economies in the global market (Glocker,
2018), as well as act as the right scale to tackle sustainability and other large-scale
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cross-regional challenges (Ross et al., 2016). However, in order to reap the benefits,
planning and collaboration between numerous partners is required (Wheeler, 2015).
Critics of megaregions point out that attempts for collaboration at this scale has suf-
fered from low stakeholder commitment and focus on single-issues, rather than a fully
articulated vision (Glass, 2014). Nevertheless, there is evidence that the concentration
of population and economic activity, as well as the functional integration between pre-
viously markedly more self-contained urban areas will continue and therefore, research
at this scale remains relevant (Nelson, 2017).

On the other hand, there is also increasing interest in the analysis of smaller-scale
intra-urban processes and the involvement of the local community in planning. On
the analysis side, the interest is driven by new forms of data and an increasingly digi-
tised world, which enable research at lower temporal and spatial scales. At the core
of this development is the ability to capture the actual experienced behaviours of peo-
ple, which means that fewer assumptions have to be made or modeled (Singleton and
Arribas-Bel, 2021). Data such as movement trajectories or spatial social networks,
link peoples behaviors directly to urban places and enables the exploration of short-
term urban dynamics at precise locations. Furthermore, fusing these new forms of data
to other more traditional datasets such as census information or surveys augments the
results in other types of analysis such as geodemographics and land use studies.

These developments offer the chance of a new type of urban planning and smarter
cities. As mentioned previously, urban planners have been able to exert limited influ-
ence over resident behaviours in order to improve the lives of citizens (Batty, 2018).
The devices which collect new types of data can act as real-time sensors which can
drive urban development at more granular and temporal scales . Analysis can range
from information about the effectiveness of local government-provided services or
gathering direct information about how people use public spaces. Furthermore, new
forms of data also allow for studies into aspects of urban life which are less related
to place. These can provide important information about how to influence desirable
outcomes in the context of the changing relationship between urban function and form
(Yang and Yamagata, 2020).

2.2 Boundaries in quantitative geography

Defining bounded territorial units is one of the crucial steps in quantitatively analysing
the discussed urban phenomena. Generally, spatial boundaries are tightly coupled to
the phenomena under analysis and the method used to operationalize it. Changes in
the size and spatial extent of the core units - their scale and shape - affects subsequent
statistics, analysis and results (Openshaw, 1979; Arribas-Bel et al., 2021a; de Bellefon
et al., 2019; Balk et al., 2018; Parr, 2007).
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This section focuses on how delineated units affect the urban phenomena previ-
ously discussed. The first subsection, shows the effects on basic properties such as
city sizes, as well as more complex statistics like productivity and unemployment. The
second subsection covers the advantages and disadvantage of using boundaries for the
analysis and planning of urban phenomena in general. It highlights the criticisms of
bounded territorial units, as well as their importance in various areas of research and
administration.

2.2.1 Bounded territorial units and urban phenomena

Definitions of urban areas emphasise different aspects of urban life, depending on the
goals of particular studies. At the most basic level, rates of national urbanisation, urban
population counts and city size distributions are affected by these choices. Within
the same country, different delineations can lead to differences of calculated urban
population proportions of more than 10 percent (Roberts et al., 2017). Similarly, they
can lead to excluding and including different areas into the urban delineation, or even
to breaking up or combining urban areas (Duranton, 2021). These basic properties
- size and population counts - have an effect on more complicated urban statistics -
density, productivity, employment and others - which all effect subsequent analysis and
theorizing (Parr, 2007). For example on the national scale, increased urban population
has been associated with an increase in size of the service economy relative to the
agricultural sector and generally better national economic performance. However, the
applicability of this theory to all countries depends on the exact definition of urban area
(Roberts et al., 2017). The analysis of economies and diseconomies of scale within
cities and regions are also dependent on the exact operational definitions of a city and
the area of study (Arcaute et al., 2016; Duranton, 2021).

The analysis of all the phenomena related to urban form and function, discussed
previously, are also affected. There is a trend of decreasing urban density in the United
States and United Kingdom, however the exact numbers depend on definitions and
some researchers even point to evidence in the opposite direction (Dijkstra et al., 2021).
Defining where sprawl begins and what is the structure of it are one of the core chal-
lenges in analysing it (Barrington-Leigh and Millard-Ball, 2015), made more difficult
by the fact that population density in cities is hard to measure, since changes in the
delineated extent of cities can cause large shifts in density calculations (Henderson
et al., 2021). Analysis of urban function, at different scales can suffer from poor data
quality, methodology or inappropriate definitions which result in the delineations of
many small areas due to noise in the data (Furno et al., 2017). Research into employ-
ment and population decentralisation patterns is affected by both changes in the spatial
extends of the areas of under analysis - e.g. the boundaries of a metropolitan area - and
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centres within it (Möck and Küpper, 2020). Planning proposals at the megaregional
level need to identify the exact beneficiaries and stakeholders within each megaregion,
which are affected by the operational definition and delineated spatial extent (Nelson,
2017). The spatial extent of retail centres also affects subsequent functional analysis
and the relationship to wider theories such as Central Place Theory (Ballantyne et al.,
2022).

In the worst case, inappropriate delineations can erase or even reverse the impacts
of the phenomena under analysis (Roberts et al., 2017; Batty, 2018; Möck and Küpper,
2020).

Similarly to changes in spatial extent, changes in scale affect subsequent analysis
and results (Parr, 2007; Coombes, 2014; Möck and Küpper, 2020; Wang et al., 2019).
A complicating factor is that scale can also be implicitly defined based on operational
definition of spatial boundary delineations (Arcaute et al., 2015). For example, if cities
are defined as contiguous areas of high population density, the threshold choice for
high has an effect on the scale of the results. If the value is very low multiple cities are
merged together resulting in the final delineation of large regions, whereas if the value
is very high - individual cities will be split apart into neighbourhoods. Additionally,
there are different strands of research which use the emergence of coherent spatial units
at a particular scale as evidence of emergent underlying behaviour and interactions.
Some research in megaregions, where the scale is not explicitly defined beforehand,
are an example of this - i.e. Nelson and Rae (2016); Lang et al. (2020); Florida et al.
(2008). There, strong economic ties at super regional scale, covering many cities and
millions of people, is used as evidence of emergent economic behaviour which requires
specialised planning and governance. However, in those and other cases scale and scale
properties are again tightly coupled to specific definitions of phenomena and choices
of parameters (Arcaute et al., 2015; Lang et al., 2020; Duranton, 2021).

2.2.2 Advantages and disadvantages of bounded territorial units

Geographers have long argued that no single boundary can fully capture all types of
human interaction at a specified location (Hartshorne, 1939). Due to this and all of
the effects delineation choices have, there are numerous criticisms against defining
bounded regions of space for analysis and planning. Some focus on problems in spe-
cific operational definitions or quantitative analysis challenges. Other criticisms focus
on the nature of bounded territorial units themselves. And some researchers go as far
as saying that delineations are not useful at all.

Operational criticisms raise questions about the stability of results, the appropriate-
ness of data sources, methodologies or combinations of these factors. These criticisms
aim at improving delineations approaches and the validity of results obtained using
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delineations. In general, they highlight the modifiable area unit problem - the fact that
aggregating and disagregating data based on different spatial units affects the calcu-
lation of statistics (Openshaw, 1979). For example, if a city is ethnically segregated
at the postcode level, aggregating the data at the neighbourhood level could yield the
reverse results using the same dataset and methodology. More specific methodological
criticisms focus on the choice of parameters for delineation methods such as density
thresholds (Statham et al., 2021, 2020; de Bellefon et al., 2019; Duranton, 2021; Balk
et al., 2018). Others highlight the use of limited datasets and methodologies that do
not capture all aspects of the phenomena under analysis and argue for data fusion ap-
proaches (Ewing and Hamidi, 2015).

More conceptual criticisms focus on the structure of boundaries. One famous argu-
ment is that of Christopher (1965) which aims to show that non-overlaping boundaries
are not appropriate units to capture functional reality in urban areas. For example, is
not possible to draw boundaries around distinct neighbourhoods within cities, due to
the numerous overlapping functions that exist between units such as schools, parks and
retail spaces with common catchment areas (Alexander, 2017). Therefore, any analy-
sis and especially planning proposals should incorporate these multi-faceted overlaps
as core parts. In response to these criticisms, researchers have aimed to adjust existing
or adopt new methodologies and datasets (Batty, 2018; Nelson, 2020).

Other geographers argue against the use of bounded territorial units for specific
purposes. One area of research where this has been applied is urban population density
analysis, where small changes in parameter thresholds for delineation methods lead to
large changes in population density estimates (Duranton, 2021). In order to avoid
using delineations, (Henderson et al., 2021) propose to measure population densities
by using radii around expected populations locations on a grid without aggregating the
grid cells into cities.

Finally, some researchers go further and suggest dropping boundaries all together.
They suggest that disentangling the patterns of social and economic interaction into
coherent units is becoming harder, but more importantly, is not necessary insightful
(Nelson, 2020). Instead, more focus should be placed on the analysis of specific phe-
nomena, analysed as a whole without the need of defining explicit boundaries or units
within them (Bergmann and O’Sullivan, 2018; Gibadullina et al., 2021).

However, in spite of all these raised issues, delineated spatial units remain an im-
portant structure for analysing social, political and cultural systems (Petrović et al.,
2020; Nelson, 2020; Wolf et al., 2020; Batty, 2018). They are a core part of research,
administration, governance and planning and have always been practically important
and widely used, even though how much they have been emphasised over time has var-
ied (Harrison and Hoyler, 2015a; Paasi and Zimmerbauer, 2016; Purkarthofer et al.,
2021). In fact, interest in urban research, dedicated towards delineating appropriate
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spatial boundaries to analyse different phenomena, is growing (Duranton, 2021). This
has resulted in the development of numerous new methods dedicated to addressing
both technical and conceptual issues, as well as reflecting more facets of functional re-
ality (Nelson, 2020; Duranton, 2021; Gibadullina et al., 2021; Wolf et al., 2020). This
has in part been driven by new forms of data, which enable new aspects of urban life
to be captured and analysed at novel spatial and temporal scales (Arribas-Bel et al.,
2021a; Batty, 2018).

2.3 New forms of data

As human activity becomes increasingly digitised, people are leaving more digital
trails which can be mined for insights. Initially, analysis of these datasets was fo-
cused on the balancing and monitoring of server logs and digital advertising, however
these uses were outgrown as people realised more and more the value of these data
(Singleton and Arribas-Bel, 2021). In quantitative urban research, this led to an ex-
plosion of ’new forms of data’ used to analyse urban phenomena and processes. This
section introduces examples of new forms of data and applications, their effects on
delineation tasks and finally, covers their advantages and disadvantages. As with other
sections, the focus is on examples of new forms of data relevant to the three analytical
chapters, especially datasets and examples relevant to chapter three.

2.3.1 Examples of new forms of data

One of the most popular examples of new forms of data are mobile phone records
and associated information (Cici et al., 2015). Mobile phone operators have long used
the data in order to optimize load distribution and detect customer profiles. With in-
creasing collaboration between telecom companies and universities, as well as public
projects such as D4D and the Milan Telecom challenge (Italia, 2015), researchers have
found many applications of mobile phone data to urban problems (Naboulsi et al.,
2016). Time-series of calling records have been used to explore the frequencies and
distribution of how people move within a city (Csáji et al., 2013), in the prediction of
socio-economic indicators (Frias-Martinez et al., 2013) and studying urban dynamics
at different temporal scales (Arribas-Bel and Tranos, 2018).

In addition to the mobile phone records themselves there is a wealth of data avail-
able from smartphone apps. Social media data, such as geo-tagged twitter data is
another type of widely used ’new forms of data’. It has been used to infer land uses
within urban areas (Lenormand et al., 2015; Frias-Martinez and Frias-Martinez, 2014),
identifying natural disaster zones (Bruns and Liang, 2012), analysing tourist sentiment
(Curlin et al., 2019), health analysis and public administration (Hu, 2019).
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Other widely used app data has been different types of mobility traces from apps.
These data represent full trajectories of human movement at specific times and loca-
tions or location-based services data which links social networks to physical locations.
Movement trajectories have found applications in transport planning, retail analysis,
inequality and activity spaces analyses (Toch et al., 2019). Whereas, location-based
services data has been used in urban geography to analyse urban neighbourhood char-
acteristics and create comparisons between cities (Calafiore et al., 2021).

Different types of sensors, which similarly capture various aspects of urban life,
have also seen increasing adoption (Lau et al., 2018). These sensors capture informa-
tion such as mobility counts, noise, pollution levels, temperature and others. Sensors
which count the number of people in a vicinity have found extensive usage in retail
analysis and neighbourhood analysis (Lugomer and Longley, 2018), whereas sound
sensors are used to analyse noise pollution, sound pattern analysis and detection of
anomalous events (Virtanen et al., 2018). Furthermore, different types of sensor data
has been combined for transport analysis (Brambilla et al., 2019; Lau et al., 2018).

Another source of data comes from specialized card traces such as retail loyalty
cards and transport cards such as Ouster cards. These datasets represent purchasing
behaviours for people within different contexts - retail loyalty card data captures pur-
chasing behaviours of individuals at specific stores and time, whereas transport card
data captures public transit movements. In addition to the analysis of consumer be-
haviour for the retail sector (Rains and Longley, 2021), loyalty card data has been used
to analyse various health outcomes (Davies et al., 2018). Similarly, in addition to be-
ing directly used for transport planning, transport card data have been used to analyse
spatial and temporal mobility patterns relevant to urban planning more generally (Sulis
et al., 2018).

2.3.2 Applications of new forms of data

New forms of data have enabled the operationalisation of new theories, as well as the
integration of results across different timeframes. One such example is the effects of
land use and urban vitality on urban health. Urban vitality broadly, is the notion that
mixed land usage is related to better outcomes for urban residents and is further associ-
ated with higher levels of activity within neighbourhoods throughout the day (Jacobs,
1961b). De Nadai et al. (2016); Sulis et al. (2018) provide empirical support for this
theory using travel card and mobile phone data respectively, as a measure of human
activity. In addition to opening existing theories for analysis, these of data enable the
development of new theories. For example, it allows the relationship between short-
term resident behaviour and long-term urban outcomes such as changing land uses, to
be explored for the first time (Arribas-Bel and Tranos, 2018).
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Similarly, new forms of data have enabled the analysis of residents’ movements and
interactions within cities at increasing spatial and temporal scales, This has led to nu-
merous analysis of short-term urban dynamics - the pulse of the city (Batty, 2018) - and
how population density and land use changes during the day. Previously, movement
data for all types of mobility studies related to transport or planning, were generally
gathered through surveys and later GPS tracers (Shen and Stopher, 2014). The high
cost of these information gathering methods meant that they were not employed often
and at scale. New spatial datasets - transport cards, GPS traces and social networks
- have enabled analysis at more precise locations, across different time spans and the
capture of previously unexplored behaviours. Generally, research has been carried out
in two ways: first, by extracting semantically meaningful behaviours from the raw
trajectory data then analysing the resulting sequences; second, by linking the raw tra-
jectory data to places and treating it as a feature of the places themselves (Shen and
Stopher, 2014).

Examples of the first types of studies focus on common behaviours between groups
and the factors that guide them. Example of this type of analysis are Schneider et al.
(2013) which find that people within the same social group exhibit more similar move-
ments patterns than people of other groups. By combining this data with socio-economic
census data it is possible to look for factors which affect the inequality of access to high
quality urban spaces. Wang et al. (2018) find that lower income groups spend more
time during the day in low-income places and have less access to parks and business
centres. Similarly, Shen and Batty (2019) find that higher managerial groups have ac-
cess to spatially larger and more diverse places, compared to people in lower-earning
occupations who have more segmented and local access. Recently, this type of analy-
sis has even been extended to the point of interest level - parks, cinemas, retail outlets,
etc. - with similar results (Moro et al., 2021) None of the results of these analysis are
conclusive yet, not least because they all suffer from data availability and preprocess-
ing issues, however they show the potential of new forms of data to capture the actual
experienced urban life of different people.

The second way this type of data has been used is by treating it as a feature of
places themselves. Examples of areas which have benefited from this development are
geodemographic classifications and land use studies. Geodemographic classification
groups geographical areas into clusters based on socioeconomic features, such that ar-
eas within a group are more similar to each other than to other areas. An underlying
assumption behind these types of classifications is that people in the same group be-
have more alike than people in different groups. They are widely used both in Europe
and the United States, in academia - to explore segregation, for example and in indus-
try - for marketing and customer analysis (Singleton and Spielman, 2014). With the
increasing availability of new forms of data, new facets of human behaviour such as
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the exact purchasing patterns have been incorporated leading to a more accurate rep-
resentation of the behavior of people within groups. Similarly, new forms of data have
enabled the creation of granular temporal and spatial geodemograhic classifications,
e.g. (Calafiore et al., 2021).

New forms of data also make it possible to improve delineation procedures. They
have the potential to ameliorate established problems and biases, such as the modifiable
area unit problem (MAUP), by providing data at very high spatial scales(Wolf et al.,
2020). Due to this, granular new forms of data data have found a variety of purposes
- i.e. creating urban delineations (Schiavina et al., 2019) and approximating popula-
tions at high spatial resolutions (Florczyk et al., 2019). Furthermore, developments in
computer vision have enabled advanced image analysis of both satellite images such
as extraction of building footprints (Huang et al., 2019) to analysis of crowd-sourced
images to understand spatial leisure patterns (Chen et al., 2019).

2.3.3 Geographic data science

As they found adoption in the field of quantitative geography new forms of data are
generally distinguished from other data sources by their origin, size and processing
requirements (Arribas-Bel, 2014a). One of their most important characteristics is the
secondary nature of the data - these datasets are not carefully collected and curated for
the research or analysis purpose they are often used for. This is in contrast to other data
like surveys which have a higher level of control that ensures better data quality. Thus,
new forms of data are a ’byproduct’ of some process and can have many issues re-
lated to representativeness and quality (Rains and Longley, 2021; Arribas-Bel, 2014a).
However, they come with advantages such as more granular spatial and temporal cov-
erage, which open up new avenues for research. Furthermore, with increased adoption
the data becomes more representative and the results of the analysis improve (Batty,
2018; Cici et al., 2015; Arribas-Bel and Tranos, 2018).

Another differentiating aspect of these data are their handling. In many cases the
secondary nature of the data leads to extended pre-processing which is not needed
when using more traditional survey or census data (Arribas-Bel, 2014a). This is fur-
ther exasperated by the fact that some types of data are guarded and have to be accessed
through secure infrastructure which also prolongs the analysis process (Calafiore, 2021).
Furthermore, the sheer amount of data and type of data can have an effect on the vi-
able methodology and processing - due to computational requirements many methods
simply cannot be applied to certain datasets (Duranton, 2021).

Geographic Data Science is one emerging practice aiming to address these issues
by combining data science and geography (Singleton and Arribas-Bel, 2021). Data
science approaches dealing with new forms of data have not necessarily been created
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with geographic applications in mind and therefore this has resulted in limited tools
available to social scientists. Similarly, the tools and GIS approaches available to ge-
ographers are not usually suitable for the volume and problems that new forms of data
present. Geographic Data Science proposes to address this with the development of
methods which place geographical concepts at the heart of new data science compu-
tational methods, thus encouraging quantitative geographers to engage more with data
science tools and methods, in order to achieve richer analysis outcomes (Singleton and
Arribas-Bel, 2021; Arribas-Bel et al., 2021b). An example of this approach is Chapter
five of this thesis which modifies existing data science algorithms to achieve the spe-
cific aim of delineating urban areas with few explicit thresholds. Similarly, with the
development of new methods and the growth of available computing power new, more
computationally expensive methods can be applied to other foundational and widely
used datasets such as census data, road networks or tax addresses. The analysis in
Chapter Four is an example of this - it uses community detection approaches, devel-
oped to analyse phone calls, to regionalise the United States, based on tax records,
without specifying a priori scale.

2.4 Quantitative approaches to delineating units

This section introduces the general quantitative approach to delineating urban areas at
different scales, followed in chapters three, four and five. The literature review and
methodology sections of each of these chapters provide more specifics, relevant to the
respective analysed phenomena. The discussion follows an adapted framework used
by Duranton (2021) to analyse approaches used to define urban areas specifically. This
was done since, the Duranton (2021) framework is general enough and has overlapping
stages with other frameworks used in the literature of land use delineation using new
forms of data (Furno et al., 2017), as well as delineating megareigons (Glocker, 2018).
However, in order to accommodate megaregions, urban areas and land use delineation
approaches into a single narrative the third and fourth steps ”Normalising a definition
of urban” and ”Aggregating units into urban areas” from Duranton (2021) are gener-
alised and merged. Therefore, the discussion of delineation approaches is structured
as follows:

• Deciding on the core units under analysis

• Determining the area under analysis and classifying units

• Aggregating units

• Verification of the results
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Lastly, a final sub-section provides an overview of the specific methodology used in
chapters three, four and five - clustering.

2.4.1 Deciding on the core units under analysis

The first step of delineation approaches deals with selecting the core units of analysis.
This is a crucial step and limits the subsequent available classification and aggregation
approaches.

Urban areas

Numerous units have been used in order to delineate urban areas - small-scale admin-
istrative units, roads networks, hexagon or grid cells and even individual buildings
directly. These units are then associated with data, which could be morphological such
as built-up density or street intersections; or functional - population counts, flows of
goods and people; or even more specialised such as phone calls or app interaction data.
The data can be associated with the units either as features of the units themselves or
as relations between the units. An example of the former is population per census tract
and of the latter - number of commuters between a pair of two census tracts.

Megaregions

The units and data used for defining megaregions are similar to those used to delineate
cities - administrative units, grid cells, etc. The difference is typically in the expected
scale of the results and initial size of the core units - quantitative megaregional defini-
tions can directly use already delineated urban areas as initial core units to be aggre-
gated. For example, Lang et al. (2020) directly uses metropolitan statistical areas as the
core units. Similarly, flows of goods between cities can be used as the data associated
with the units (Ross et al., 2009).

Land use delineations

The general procedure for delineating land use areas is similar to the delineation of
cities, however the scale of the units is smaller, the scope of the analysis is more limited
and temporal variation plays a more important role. Many of the new forms of data
already discussed are used for this purpose - location-based social networks (Calafiore
et al., 2021), mobile phone data (Cici et al., 2015), app data such as twitter (Frias-
Martinez and Frias-Martinez, 2014) or flickr (Chen et al., 2019) and others. Examples
of units are specific points of interest - cinemas, shops, etc (Re Calegari et al., 2015) or
mobile operator tower catchment areas (Grauwin et al., 2015). And examples of data
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for the former are visitation statistics and of the latter - number of processed mobile
phone calls in the area.

In addition to being generally of smaller scale, the data is more limited in scope
compared to megaregional or urban delineations. Typically, the data does not cover
the whole territory of a country but is limited to one or more major cities. This limits
the types of analysis which researchers can carry out. It is impossible to carry out
comprehensive international analysis, or to study the whole typology of results within
a country to derive statistical patterns such as those relating to city size (Zipf’s law).
Some international comparisons do exist, however they are limited to comparing the
results between major cities in different countries (Grauwin et al., 2015; Furno et al.,
2017). With the growing adoption of such datasets and their increased availability
to researchers there are some examples addressing these issues such as Blondel et al.
(2008).

2.4.2 Determining the area under analysis and classifying units

A further step some approaches take is to the classify the core units into groups. For
example, Florczyk et al. (2019) use grid cells as base units and population, as well
as built-up density as features with the goal of delineating several types of urban ar-
eas. The grid cells are classified into urban and non-urban based on minimum popula-
tion density and percentage of built-up area thresholds. The appropriate classification
thresholds for this and other methods are an active area of research (Duranton, 2021;
Arcaute et al., 2015; Batty, 2018; Statham et al., 2021, 2020).

Duranton (2021) identifies several widely used approaches to selecting thresholds
- global, relative, statistical, model-based and ambiguous for urban areas. This classi-
fication is applicable for megaregions and land use grouping approaches as well, since
they describe ways of classifying or discarding core units and not specific thresholds
or models.

When using a global threshold, all units are grouped, based on a single value re-
gardless of their location, whereas relative thresholds take into account the local con-
text such as the region or country. For example, Florczyk et al. (2019) use a global
minimum of 1,500 people or atleast 50% built up area to classify a grid cell as urban.
These thresholds are applied to all cells regardless of their location. Global thresh-
olds such as these have the advantage of providing more consistency across the results,
however there is difficulty in specifying an agreed upon value (Onda et al., 2019). Rel-
ative thresholds address this issue, but they make comparisons between subsequently
delineated cities more difficult.

Model and statistical approaches can use the data itself to define different types of
thresholds. One example of a statistical approach is the methodology used in Chapter
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5, where the core units are building footprints and are classified based on the sur-
rounding building density. An example of a model approach is the one carried out by
Taubenböck et al. (2019) where grid cells are classified based on density, following a
monocentric urban model. However statistical and model approaches are not always
possible and can sometimes lead to inconsistent and hard to interpret results (Duranton,
2021; Coombes, 2014).

Because of these difficulties and trade offs, the last type of classification methods
embrace ambiguity. This could mean researchers and planners splitting or merging
groups based on non-quantified political and cultural context such as (Hagler, 2009;
Nelson and Rae, 2016; Hamilton and Rae, 2018). Or incorporating non-expert opin-
ions, for example local residential knowledge to create the classifications (Galdo et al.,
2021).

2.4.3 Aggregation

The next step in the analysis aggregates all or subsets of units into delineated areas.
The types of methodologies available for doing this depend on the underlying data
and features. If the basic units capture non-relational information at a particular place,
as such population within a grid cell, the aggregation method uses some notion of
contiguity. Examples of this are Florczyk et al. (2019); Glocker (2018); Schiavina
et al. (2019); Georg et al. (2018); Balk et al. (2021). There also exist approaches such
as Arribas-Bel and Schmidt (2013), which delineate the areas based on differences in
features and ignore geographic space. On the other hand, if the basic units contain
relational data, e.g. flows of goods between two grid cells, there are two options. The
aggregation method could ignore any spatial contiguity information and aggregate the
units based only on patterns in the network of flows (Nelson and Rae, 2016). Or the
approach could take into account both spatial and relational data (Ross et al., 2009).

Similarly to the unit classification there are important parameter decisions which
have to be make at this stage. These concern how to define the limits to the aggrega-
tion of units and could also be categorised into - fixed, statistical and combined. Fixed
define the aggregation criteria for the entirety of the data - these could be contiguity
matrices or radii which determine that all units within them are to be aggregated -
(Arribas-Bel et al., 2021a; Statham et al., 2021, 2020; Glocker, 2018; Florczyk et al.,
2019; Schiavina et al., 2019). Aggregating small administrative units based on a fixed
percentage of commuters, e.g. metropolitan areas, is another example of this approach.
Statistical and model-based methods compare the distribution of the data itself against
a model to determine whether the units should be aggregated. For example, Nelson and
Rae (2016) uses such a method to aggregate census tracts based on commuter flows be-
tween them. If two census tracts have more commuter flows than is expected between
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two tracts of the same size, assuming a uniform distribution of flows, then they are
grouped together. de Bellefon et al. (2019) uses a similar approach with different data
- grid cells with building density. The tradeoffs between the two types of methods are
similar to those of classifying units, already discussed. Fixed thresholds and limits are
more easily interpretable and have lower computational requirements, whereas statis-
tical methods take into account patterns in the data itself, but are not always applicable
and can be hard to interpret. Other approaches can combine fixed and some inferred
aspects and even take into account expert or local opinion (Galdo et al., 2021).

Additionally, it should be noted that the scale of the final results of an analysis,
using the same data, can be implicitly or explicitly chosen depending on methods or
parameters used. For example, Florczyk et al. (2019); Schiavina et al. (2019); Glocker
(2018) all use the same datasets - grids of population density and built-up levels to
define core urban areas, functional urban areas and megaregions respectively. The
difference between the three approaches is in the selection of parameters or methods to
aggregate the core units. Similarly, Rappaport and Humann (2021); Lang et al. (2020)
define metropolitan areas and megaregions respectively, using the same commuter flow
census data. More technical analysis such as Balk et al. (2018); de Bellefon et al.
(2019); Arcaute et al. (2015) show how varying parameter choices can also affect the
scale of the resulting delineations implicitly.

Land use

Many land use aggregation approaches are similar, but a differentiating aspect is the
prominent role temporal variations play in these types of delineations, which in turn
affects the types of aggregation methods used. When delineating megaregions or urban
areas the data typically covers one specific period or instance of time. Examples of this
are population in a year, or commuter flows for a particular quarter gathered through a
survey. In contrast, land use analysis with new forms of data incorporate much more
temporally granular information such as hourly, daily or weekly activity, which is one
of the core advantages of using new forms of data. However, this temporal variation
makes the aggregation process more difficult since it requires more advanced methods
to measure the similarity between units (Furno et al., 2015). Different approaches can
treat temporal variations in the information as independent features or they can incor-
porate them into the analysis using more specialised time-series methods. For example,
if the core units are grid cells and the data associated with them is hourly population
over a year, approaches of the first type could aggregate all the temporal data into an
average population per hour across the whole year (Soto and Frı́as-Martı́nez, 2011).
Approaches of the second type would take into account temporal patterns such as the
seasonality, noise and variation across the entire time span and would not use temporal
aggregates, but compare hourly differences directly (Cici et al., 2015).
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2.4.4 Verification

The last step in the analysis is the verification of the results.

Urban areas

Duranton (2021) identifies two common approaches across the literature to validate the
quality of the results - comparisons with other existing delineations and comparisons
against widely-studied properties of cities. The former type compares aggregation
agreement between sets of delineations using similarity metrics such as Jacard index
or Rand score. Another similar approach is to directly measure spatial statistics such
as overlap percentages (Arribas-Bel et al., 2021a).

The second type of comparisons can take the form of comparing aggregate statistics
- total delineated urban population or land, or they can be more granular and complex
- the distribution of delineated city sizes against theoretical expectations such as Zipf’s
law. The verification of delineated urban units is an active area of research and large
differences in comparisons are common (Duranton, 2021). This is due to the variety of
data and methodological approaches used and the fact that there doesn’t exist a single
delineation which captures all aspects of urban activity (Duranton, 2021; Batty, 2018;
Lobo et al., 2020; Hartshorne, 1939; Parr, 2007).

Another approach is to rely on expert evaluation of the results such as Florczyk
et al. (2019); Hagler (2009); Galdo et al. (2021); Hamilton and Rae (2018), which
makes it possible to evaluate the quality of delineations from multiple perspective,
something the other tests cannot achieve. However, it takes considerable resources and
time to carry out and furthermore, there is the potential for inconsistencies.

Megaregions

The validation process for megaregional delineations is similar overall - there is a re-
liance on comparisons and expert opinion. However, the validation is more limited due
to three problems. First, there are no well-studied statistical properties of megaregions
such as Zipf’s law. Second, there are less readily available polygons of megaregions.
Third, even if some comparisons are carried out - Lang et al. (2020); Glocker (2018);
Nelson and Rae (2016) - they are not consistent and do not employ similarity metrics
such as rand score, but are more ad hoc.

Land use delineation

Similar to the other types of delineations discussed, the final results of land use anal-
ysis are validated using different types of comparisons and aggregations. A popular
approach is to compare the delineation results against official zoning plans and land
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use types (Soto and Frı́as-Martı́nez, 2011). Another popular approach is validating the
results through properties within the delineated areas, which are not directly used in
the aggregation process. For example, Furno et al. (2015) use the number of registered
businesses within delineated areas to show that areas, designated as ’bussiness areas’
by their methodology, have more business activities on average than other delineated
areas. However, direct comparisons between derived sets of results is more difficult
due to data availability and processing issues. For example, many of the approaches
use data from private companies which is not readily available (Grauwin et al., 2015;
Soto and Frı́as-Martı́nez, 2011; Furno et al., 2015; Lugomer and Longley, 2018).

2.5 Clustering

All the delineation approaches presented in subsequent chapters are based on cluster-
ing - an unsupervised machine learning approach. Clustering is the attempt to group
data in a way that meets with human intuition, however intuitive ideas of what makes a
‘good’ grouping are not formally defined and depend on the application context (Hen-
nig, 2015). Clustering is a type of unsupervised machine learning, due to the fact that
there is no predefined classification of interest in the dataset such as a target category.
Instead, a common target is to group the data in such a way so that members of a group
are more similar to each other, than to members of other groups.

The choice of clustering as the main methodology for delineating boundaries in the
thesis is guided by two principles. First, the motivation behind clustering algorithms
maps directly to the motivation for delineating coherent spatial units and typologies.
In both cases the goal is to separate groups, where members within the group are more
similar to each other than to members of other groups. Second, the two particular
algorithms used make no assumptions about the number of final delineations needed
or their scale. The number of final delineations and thresholds for grouping items
together are inferred from the data. In none of the three cases where clustering is
used, do the algorithms assume what size or how many of the final results there should
be. Furthermore, both methods provide information about the internal structure of the
delineations. In addition to placing items in groups, the final results of both algorithms
produce a hierarchy that shows how each cluster is constructed.

There are two types of clustering algorithms used in this thesis: HDBSCAN in
chapter three and five, and Louvain community detection in chapter four. HDBSCAN
is a density clustering algorithm which requires the specification of only one parameter
- the minimum number of elements within a group to consider it a clusters. Density-
based clustering is a family of clustering algorithms which take into account not only
the similarity between the data but the number of observations as well (Campello et al.,
2020). A group of items is considered a cluster, only if it has ’sufficient’ density for
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some algorithm specific definition of ’sufficient’. When using such an algorithm not
all items in a dataset would necessarily be assigned to clusters, in contrast to other
approaches which partition the dataspace.

The second algorithm used is Lovain community detection. Community detec-
tion is the notion of clustering extended to graph data such as flows of goods between
places. The only requirement for using this algorithm is specifying the notion of sim-
ilarity between two places. In chapter four the dataset used is a network where the
nodes are census tracts and the relationship between two tracts is the number of people
who have either work or home addresses registered in the pair.

2.5.1 Advantages and disadvantages of the methods used

In practice, clustering requires the specification of parameters, similar to the different
aggregation approaches. One of the first and most important decisions is defining
the metric which measures the similarity between the data items being grouped. This
choice is usually independent of the actual clustering algorithm used. Example metrics
are euclidean distance, which is a generalisation of geographic, ’as the crow flies’
distance to higher dimensions or ’great circle’ distance which is an approximation of
distance travelled along the earth’s surface. The other parameter choices depend on the
specific type of clustering algorithm being used.

Both of the algorithms used in the chapters are examples of statistical or model
aggregation, as discussed in the previous section. As such they have certain disad-
vantages related to the interpretation and consistency of the results and choice of hy-
perparameters. First, as discussed, it is more difficult to interpret why delineations
are calculated. The research chapters in the thesis aim to address this shortcoming by
analysing intermediate results and contextualising them within the existing literature
through comparisons with other delineations and phenomena. In all cases these in-
termediate results play a role in the analysis. Second, the choice of hyperparameters
can have a large effect on the final results. The comparisons, alongside the analysis
of the final delineations provide the justifications for specific parameter choices. Fur-
thermore, ranges of hyperparameters as well as different clustering configurations are
tested in the chapters.

Chapters three and five use the HDBSCAN clustering algorithm and euclidean dis-
tance as a distance metric. The advantage of HDBSCAN in particular is that it enables
the discovery of clusters with different shapes, densities and does not require speci-
fying the resulting number of clusters beforehand (McInnes and Healy, 2017). It was
directly developed to address the chaining problem and density problems present in
algorithms such as DBSCAN and single-linkage clustering and is widely used in dif-
ferent domains (Campello et al., 2020). Nevertheless, due to the local cluster extraction
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the algorithm can struggle with certain data distributions (Malzer and Baum, 2020) and
therefore careful validation of the results and testing out multiple hypterparameters is
needed.

The similarity metric used in chapter four is modularity, which is defined as the
difference between the observed and expected flows based on a random reallocation
(Newman, 2006). The advantage of the combination of Louvain and modularity is that
it is possible to feasibly process large amounts of data and it produces well-defined
groups of nodes in experiments with synthetic and real data (Lancichinetti and For-
tunato, 2009). However, disadvantages include the fact that all data is assigned to
communities and that changes of paramaters can have large effects on the final results
(Nelson and Rae, 2016). In chapter four this issue is addressed through an analysis of
the intermediate results, in order to verify that the final clusters are made up of units
which resemble other delineations in the literature, in addition to analysing the internal
spatial structure of the results.

2.6 Research gap

As a whole, the research carried out in the thesis broadly aims to create delineations
and typologies for the analysis of urban land use, economic integration, city size and
shape, using new forms of data and addressing previous shortcomings in definitions.
In the course of doing this the concluding chapter reflects on the relationship between
form and function, as well as urban decentralisation and large-scale morphological and
functional integration of urban areas.

More specifically, the third chapter addresses these two main gaps in the urban
land use and urban sound literature - first, sound typologies are mainly focused on
acoustic sound or those that are not such as Zambon et al. (2016) focus mostly on
traffic; second, high resolution urban activity analysis primarily uses data from private
companies. The fourth chapter, uses more recent large-scale data and focuses on a
hierarchical delineation of the constituent units of megaregions, in order to confirm that
they are made up of coherent units, in contrast to other research that directly produce
final results such as Nelson and Rae (2016); Lang et al. (2020); Hagler (2009). The
fifth chapter uses building polygons directly to delineate urban areas without having
specified global density thresholds. This ameliorates the problems of grid aggregation
and provides a real-time, globally applicable definition of urban areas, which is one
of the core features required for the generalisability of results (Wolf et al., 2020). The
literature review sections in each chapter contextualise these aims in more details.

In addition to this, the clustering procedures used in all research chapters are hi-
errarchical in nature and aim to show the advantages of these types of methods in
analysing new forms of data. The hierarchical approach enables the exploration of
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intermediate units of aggregation, as well as answering questions about why other po-
tential groupings did not occur. These properties are used in all chapters to link the
analysis to the wider literature.

Furthermore, the thesis shows the importance of contextualising results when us-
ing new forms of data and methods. This is done both in terms of comparing different
methods and results. In all chapters external data is used to contextualise the results and
to analyse what phenomena present in the wider literature are captured by the final clus-
ters/delineations. In chapter three this is done through the use of Openstreetmap data
and qualitative comparisons with urban sound and urban fabrics literature; in chapter
four - through the analysis of polycentricity and the comparisons with Nelson and Rae
(2016); Hagler (2009); lastly in chapter five - through the analysis of polycentricity as
well as comparisons with seven other datasets - Florczyk et al. (2019); Hagler (2009);
Leyk et al. (2020) and official boundaries.
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3

Urban land use detection through sound

Abstract: This paper aims to show that sound sensors are an important source of
secondary information for the analysis of urban dynamics. This is achieved through
the use of a clustering method to identify areas with distinct functions based on the
hourly sound patterns recorded by sensors throughout Newcastle and Gateshead.

Three methodologies from the new field of TDA, as well as a baseline approach are
adopted, in order to address the problem of measuring the differences between the

sound patterns captured by each sensor. A comparison is carried out which shows that
the baseline approach of comparing sound sensors patterns - normalizing the pattern
and using a correlation measure- produces the best results. These clusters show that
sound sensor patterns are strongly affected by the characteristics of the surrounding

area and its usage. In general, sound sensors that are placed alongside the same streets
are grouped together and the different clusters exhibit different sound patterns,

comparable to the detected clusters from mobile phone and app data research. There
are patterns that correspond to areas with significant nightlife, residential areas,

leisure areas like parks and mixed usage areas.



3.1 Introduction

Understanding the ways in which people interact with the urban environment is a key
challenge for urban planners and researchers. This information can be used to evaluate
the effects of zoning regulations (Toole et al., 2012), for sustainability and transporta-
tion planning as well as in analysing urban processes like sprawl (Zanganeh Shahraki
et al., 2011). Furthermore, there are numerous commercial applications available -
predicting land and house prices (Duranton and Puga, 2015) or balancing usage on
telecommunication networks (Cici, 2015). Within this context, urban land use detec-
tion aims to characterize the use of areas based on their functions such as business,
residential, mixed and others. A better understanding of the activity of people within
areas provides information about overall urban function and dynamics (Arribas-Bel
and Tranos, 2018; Batty, 2018, chapter 6) and generalisable approaches to this prob-
lem enable comparisons between cities (Furno et al., 2017).

Traditionally, data on land use patterns has been collected by remote sensing, con-
ducting surveys, or GPS tracking techniques. Each of these approaches comes with
with its own advantages and disadvantages. Commissioned surveys or GPS tracking
studies can have good experimental design - the collected data can be representative
and statistically robust. On the other hand, the disadvantages are the high cost, partic-
ipant misreporting their behaviour (in the case of surveys) and the collected data only
providing a static image of the researched phenomenon (Shen and Stopher, 2014). The
most popular land use detection approach has been remote sensing which relies on the
analysis of satellite images. It has the advantage that the data it provides covers larger
areas and the costs of obtaining and analysing it is comparatively low. However, such
techniques do not directly capture human activity data and there is a small variety of
urban land uses that can be identified. In fact a recent systematic review (Reba and
Seto, 2020), found that over 85 % of remote sensing land use studies identify only one
urban land use type, and highlighted the need to differentiate multiple urban classes.

Advances in technology and increased adoption of ’smart’ devices have created a
deluge of valuable ’new forms of data’ for research (Arribas-Bel, 2014b). Examples
of this type of data are mobile phone call records, app data , images, or sensor data
- such as footfall. These data have already had an impact on urban land use detec-
tion. For example, Cici et al. (2015) show that it is possible to use volume of cell
phone call records across time, in order to delineate the city of Milan into residential,
office, nightlife and other areas with a distinct land use type. Frias-Martinez and Frias-
Martinez (2014) use total volume of tweets per hour to the same effect. Furno et al.
(2017) expand the scope and create a global comparison, which finds that there are
common patterns among cities in different countries for transportation and business
areas, however residential areas have more heterogeneous patterns. Such studies show
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the advantages of new forms of data - through them it is possible to obtain a picture of
urban activity at higher temporal and spatial resolutions, thus giving insights into short
and medium term urban dynamics at various scales.

The main contributions of this paper are twofold. First, to the best of the authors’
knowledge, it is the first exploratory study into the use of sound sensors to detect
different functional land use areas within a city. The specific dataset used for the
analysis comes from the Newcastle urban observatory (James et al., 2014). It captures,
over a 30 day period, the hourly sound levels from 40 sensors placed alongside roads in
Gateshead and Newcastle in the United Kingdom. The sensor readings are not acoustic
sound recordings, widely used in the urban sound analysis literature, but represent
decibels levels at a certain location and time.

Urban sound sensor data offers several advantages when used for land use detec-
tion. First, sound readings are affected by both human activity (Groos and Ritter, 2009)
and built environment (Zuo et al., 2014), thus urban areas delineated based on noise
patterns capture aspects of both. Second, the analysis captures hourly, or even shorter
term, variations in land use dynamics due to the high temporal resolution of the data.
Third, sensor readings are affected by the activity of all people in the catchment area of
the sensor. Other ’new data’ sources, such as tweets or footfall counters detect only the
activity of users of a specific app or a certain type of mobile phone. Fourth, aggregated
sound sensor data, which does not record actual residents, can be made more read-
ily available to researchers in contrast to other sources. For example, mobile phone
records and app data could be limited by the willingness of private companies to share
the data and by privacy protection regulations such as the General Data Protection
Regulation (GDPR). Finally, sound sensors have the potential capture noise at a higher
resolution and more consistent areas than other sources, i.e. mobile phone records,
where the catchment areas are affected by tower placements and are of varying sizes.

The second contribution is that the paper carries out a comparison between meth-
ods from the emergent field of topological data analysis and the ’new forms of data’
land use literature. Similarly to other forms of data, the sound data used for the analysis
has problems of effective and accurate processing (Arribas-Bel, 2014b). Additionally,
the sensors have issues related to measurement, processing, battery and other types
of errors (Smith and Turner, 2019). In an effort to address these, this paper adopts
topological data analysis (TDA) methods. TDA techniques have found applications
in analysing signal or time series data, such as temporal sensor readings, in various
domains such as medicine (Emrani et al., 2014), finance (Gidea and Katz, 2018) and
epidemiology (Piangerelli et al., 2018). A main feature of TDA methods is their robust-
ness (Cohen-Steiner et al., 2007), which refers to their handling of missing or spurious
data during the analysis process. The successful applications, along with the methods’
robustness makes TDA techniques a good choice for the analysis of the sound sensor
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data, since they can account for the problems of missing or corrupted readings. The
comparison is carried out in order to validate TDA effectiveness and to create the best
performing set of clusters as measured by internal, external and spatial metrics.

The rest of the paper is structured as follows. The next section places this research
into the context of urban sound analysis, urban land use detection using new forms of
data and the topological data analysis literatures. The data and methodology section
describes the datasets used in detail and the approach taken to the land use problem.
Specifically, the methodological approach is to group together the different sensors
based only on the similarities between their sound patterns. A way to measure these
similarities, is chosen by a comparison between a TDA method and a quality baseline,
adopted from the literature. The TDA method itself is chosen based on a quantitative
comparison between candidate TDA methods, carried out in Apendix A. In the results
and discussion sections the best performing set of results are analysed based on their
sound patterns and the surrounding points of interest. Lastly, the resulting areas are
situated both in the urban sound analysis and the land use detection literature.

3.2 Literature review

3.2.1 Urban sound analysis

Advances in urban sensor systems have led to more aspects of city dynamics being
captured (Zanella et al., 2014). Projects such as Newcastle urban observatory1 and Ar-
ray of Things 2 record levels of CO2, noise, temperature and traffic among others with
the aim of providing data for more efficient decision making and urban management.

Urban sound analysis aimed at understanding the types, duration and impacts of
various sounds found in cities, has benefited from these advances. One of the primary
topics of research in this area is noise pollution, which aims to analyse the impacts of
noise on human activity and health and to propose ways to mitigate its harmful effects
(Zuo et al., 2014). Other topics include event monitoring and acoustic scene classi-
fication (Virtanen et al., 2018). Event monitoring deals with creating smart systems
that monitor for and respond to specific sound events - gunshots, fights breaking out or
home invasions. Whereas acoustic scene classification is concerned with classifying
urban sounds into categories based on their source - park, cafe, office, restaurants and
others. The difference between this paper and these types of research is that first, we
do not have predefined categories and second, actual acoustic sound records are not
used for the analysis, rather the data is the recorded max decibels volumes at a specific
time and place.

1https://urbanobservatory.ac.uk/
2https://arrayofthings.github.io/
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This paper is closely related to other noise pollution studies from the urban sound
analysis literature. Their aim is to classify the types of roads within urban areas, based
on traffic noise patterns for the purpose of noise pollution monitoring. Zambon et al.
(2016, 2017) group roads into two types based on their hourly sound patterns - one
cluster which has two peaks around the beginning and end of working hours and an-
other which has a similar pattern, but with a higher activity during the nighttime hours.
Furthermore, Orga et al. (2017) similarly analyse urban sound sensors and find two
clusters, identical to the ones described in Zambon et al. (2016, 2017). They also dis-
cover that one contains more noise samples related to pedestrians, whereas the other
contains more noise samples related to transport. This hints at the potential of the
sound sensors to capture underlying characteristics of different areas. Lastly, Bram-
billa et al. (2019) again find two clusters with similar patterns to the above, based on
a metric which measures adverse noise exposure. The consistent finding among all of
these studies is that urban sound near roads is dominated by two patterns with similar
peaks during working hours, but one cluster shows more activity during the nightime.

The focus of this paper is on a more granular grouping of the sound sensors than
the above work and one which captures functional information about the surround-
ing areas. First, the goal is not to classify streets, in order to find optimal placements
of sensors for the purpose of noise pollution monitoring. But rather, the focus is on
analysing the link between the functional usage of the surrounding area and the cap-
tured sound patterns. To this end, different methodological approaches are adopted -
Topological data analysis (TDA) methods to measure the differences between sensor
patterns and HDBSCAN clustering to achieve a finer grained, higher quality grouping
of the clusters. Second, the positions of the sound sensors used in this paper study were
not necessarily chosen for the monitoring of traffic noise. Placements were effected by
resident demand and by air pollution considerations (James et al., 2014).

In spite of these differences, the use of this type of sound sensor data for land use
detection is motivated by several developments in the urban sound literature. That
human activity has a large effect on sound sensor patterns has already been suggested
by Groos and Ritter (2009). In addition, studies from traffic analysis suggest that
the surrounding built environment affects the sensors readings. Hupeng et al. (2019)
show that different street characteristics affect sound propagation. Zuo et al. (2014)
finds ’ubiquitous traffic noise exposure across Toronto and that noise variability was
explained mostly by spatial characteristics’. These results suggest, that at the very
least, areas with varied functional usage and vastly different built characteristics, such
as parks and nighttime entertainment areas, are identifiable. Furthermore, there is
scope for future improvements in the field that would enable the better capture of
human activity directly. Recent experiments in sensor technology (Lau et al., 2018)
show that modified sensors are capable of capturing only sounds resulting from human
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activity.

3.2.2 Urban land use detection

Popular approaches to urban activity and land use detection include the use of survey
data, commissioning GPS trackers studies, and remote sensing. Remote sensing in a
land use context refers the analysis of satellite images through GIS techniques in order
to infer different land use types. The focus is not necessarily restricted to urban areas
and the extent of such studies can cover the entire landmass of a country deriving other
non-urban land use types such as forest, agriculture, watersheds. Remote sensing is
currently the most widely adopted method of land use detection. There is no single
methodology and the analysis can focus on different aspects captured by the satellite
images such as night lights, transport links or buildings. Advantages of this method are
it can be globally applied and that there is temporal data available, making it possible
to track changes in land use over time. Two related disadvantages of remote sensing are
that there is no actual functional data captured and that the majority of studies discern
only one urban land use class (Reba and Seto, 2020).

Activity surveys are a popular tool and have been used to address a variety of ur-
ban land use research questions. They require dispatching surveyors in order to collect
data either in person, though the mail or online apps. With the advancement of technol-
ogy GPS trackers are being adopted in addition or to entirely replace surveys . These
trackers give longitude–latitude at short time intervals and do not allow for participant
misreporting to affect the data. One of the main uses of both activity surveys and GPS
trackers has been for transport planning to better understand travel behaviour, route
choice and traffic safety (Shen and Stopher, 2014). Other uses include the characteri-
zation of neighbourhoods or city areas based on citizen activities. For example, Sung
et al. (2013) use activity surveys in the Seoul to evaluate whether diversity of func-
tions and activity within a neighbourhood has effects on its vitality, while Marquet and
Miralles-Guasch (2015) evaluate the importance of walkable environments to neigh-
borhood wellbeing in Barcelona. Data derived from these surveys has the advantages
of good experimental design - it can be representative of the studied population and any
inferences made from the data can be statistically robust. The main disadvantages of
surveys are the high cost and the complex planning required to carry them out success-
fully, as well as participants misreporting data. However, as a new method, the GPS
survey also has some shortcomings, such as unstable signal acquisition in certain areas
and difficulties in GPS data processing (Shen and Stopher, 2014). Additionally, it is
expensive to track large numbers of individuals and usually the scope is limited to the
low hundreds of participants (Frias-Martinez and Frias-Martinez, 2014). Additionally,
due to the high cost and complexity such surveys are not carried out frequently.
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As new forms of data have gained popularity, land use researchers have started
adopting them in order to address the disadvantages mentioned above. These new
forms of data are different in type and come from distinct sources such as street level
imagery (Zhang et al., 2019a), app data such as twitter or foursquare (Frias-Martinez
and Frias-Martinez, 2014), or mobile phone records (Cici et al., 2015). The advantages
of these data types over more traditional data are that they provides a real-time picture
of urban dynamics. With increased adoption the data becomes more representative and
the results of the analysis improve. It also address several of the issues of using sur-
veys to gather data, such as respondents misreporting activities. The disadvantages are
that this type of data might be subject to different privacy laws in different countries,
making it difficult to analyze or even collect. It can also be hard to get access to this
data, since it is closely guarded by companies due to its commercial value. Lastly,
preprocessing and analysing the data requires care, since the choice of methodology
and preprocessing can effect the results significantly.

There are two popular approaches to land use detection using these data: one where
the focus is on functional relationships and another where its on intensity of activ-
ity. Relational ’new forms of data’ include among others geolocated twitter mentions,
location-based social network (LBSN) data, ride sharing or hauling data, or mobile
phone calls between places. These have found applications at various scales and for
different problems. Calafiore et al. (2021) use location based social network to char-
acterize and compare the neighborhoods of different cities. A relevant paper to this
one is the study performed by Lenormand et al. (2015) in five Spanish cities. It delin-
eates four areas of different land use: residential, business, logistics/industry, nightlife.
These approaches are possible anywhere where there is enough data available and rep-
resent an important addition to traditional data sources, since they directly capture
functional relationships at high spatial and temporal resolutions.

The other type of data, focuses on intensity of activity at predefined places - cells
in a grid, streets, mobile operator tower catchment areas and others. This is in contrast
to studies that try to understand land use function from the position of the individual,
i.e. surveys or GPS. The most popular examples of this type of data are number of
tweets per hour or number of phone calls per minute recorded at a geographic location.
Sound sensor data is also an example of this data type.

Geo-tagged twitter data is one of the most widely used ’new forms of data’. It
has been used to infer urban land uses by clustering different areas in the city based
on profiles of tweet activity. With this methodology Frias-Martinez et al. (2012) and
Frias-Martinez and Frias-Martinez (2014) identify areas with specific tweet activity
signatures that corresponded to different types of land use. The analysis is carried
out in different places - Manhattan, London and Madrid , and both studies are able to
detect clusters that correspond to four urban land use types: business, leisure/weekend,
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nightlife and residential, while Frias-Martinez and Frias-Martinez (2014) detects an
industrial pattern of activity unique to London. Using a similar methodology, Zhan
et al. (2014) inferred four types of land use areas in New York City: residential, retail,
open space/recreation and transportation/utility. Other studies have been carried out
using other geolocated data similar to tweets, i.e. Chen et al. (2017) using the social
media “Tencent”.

Mobile phone records is another ’new form of data’ that has been used in order to
capture land use patterns in different cities (Pei et al., 2014; Toole et al., 2012; Furno
et al., 2015; Miao et al., 2018; Zhang et al., 2019b). The studies differ in scope with
some focusing on single cities, while others compare patterns identified in various
cities to each other. Similarly to results from twitter activity analysis, there are at least
four types of land use areas identified - residential, business, leisure and entertainment.
These show up across different methodologies and data types in the studies. It should
be noted that, there are papers that as a result of the specific clustering methodology
used end up with a significantly larger number of clusters, i.e. (Furno et al., 2015).

Each of these land use types is characterized by a temporal activity pattern - mea-
sured by the number of tweets per hour in the first case and the number of phone calls
per hour in the second . For example, business districts have an activity signature
characterized by high level of activity during working hours and low activity the rest
of the time (Cici et al., 2015). This activity pattern is reversed for residential areas
and there is altogether another usage pattern for entertainment or mixed usage areas.
Several papers have found areas with similar business patterns in different cities, but
different patterns for residential areas (Grauwin et al., 2015; Furno et al., 2017). Most
studies focus on the pattern of activity and completely ignore magnitude, with some
exceptions that give marginal improvements (Pei et al., 2014). This suggests that dif-
ferences in the areas are captured by the variations in the activity patterns, rather than
in population effects.

This paper aims to use sound sensor data for land use detection. Sound sensor
data is closely related to both the mobile phone activity data and the twitter activity
data types described above. Both measure the intensity of actions of different types,
related to human activity, at fixed places throughout an urban area. In addition to hav-
ing all of the general advantages of new forms of data already discussed, generalised
noise data as used in this paper, is more available to the public in contrast to other
sources. Sound sensor readings are not limited by the willingness of private compa-
nies to share the data or by privacy protection regulations such as the General Data
Protection Regulation (GDPR). Another advantage sound senors have over other data
sources, is that they capture human activity at a higher resolution, than say mobile
phone records. Furthermore, sound sensors capture the sounds generated by all people
in the respective sensor’s catchment area. This is in contrast to most mobile phone or
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twitter data, that capture only the activity of people that use a specific mobile opera-
tor or app. A disadvantage this data shares with other ’new forms of data’, is that it
requires additional effort to process and analyse, in order to get meaning full insights.
(Arribas-Bel, 2014b). Additionally, the specific sensors used to gather the sound data
suffer processing errors, battery issues and other problems (Smith and Turner, 2019).

3.2.3 Topological Data Analysis

In order to address the issues with processing and analysing the data and this paper
turns to methods of Topological data analysis. To effectively analyse the differences
between sound sensors, a way to compare the captured sound patterns is necessary.
In general, the sound patterns can be considered as time series or longitudinal data -
readings by the sensors, of the same phenomenon, at different points in time and TDA
techniques have been used to analyse signal or time series data in various domains such
as medicine, finance and engineering.

To measure the difference between two time series they are either analysed directly
or converted to a time-lagged representation (Perea et al., 2015) and persistent homol-
ogy is applied (Chazal and Michel, 2017). Persistent homology provides an object,
a ’persistent diagram’ that describes the multi-dimensional coarse shape of the time
series. The zeroth dimension corresponds to connected components or clusters, the
first - cycles present in the time series data. The second and above dimensions rep-
resent higher dimensional generalizations of cycles. This information is reflective of
various underlying periodic patterns in the time series, as well as critical points - peaks
and valleys. Persistent diagrams of different time series can be compared to each other
through ’bottleneck distance’, which is a measure robust to noise (Cohen-Steiner et al.,
2007). This approach has been shown to be capable of classifying volatile time series
data (Umeda, 2017). Costa and Škraba (2014) uses it to compare the spread of in-
fluenza like diseases in seasons of influenza in Italy and Portugal. Emrani et al. (2014)
uses it to classify breathing patterns according to the presence of wheezes, while Pian-
gerelli et al. (2018) successfully detect when a patient will have an epileptic seizure.
Gidea and Katz (2018) uses a similar method to predict transitional market events, like
financial crashes. There are also direct applications that show improvements in clus-
tering results when using TDA techniques (Perea et al., 2015). These results show the
potential of TDA techniques to capture differences between time series.
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3.3 Data

3.3.1 Sound data

The data used in the analysis comes from the Newcastle Urban Observatory Environ-
ment system of sensors (James et al., 2014). It collects data from numerous sensors
across across Newcastle and Gateshead in the UK. The sensors record continuously
quantities such as temperature, air quality and noise levels. For this analysis only the
maximum decibel levels at a particular time inteval are used. The sensors are generally
placed near central locations - city centre, business parks and others, however resi-
dents can apply for the placement of sensors in their neighbourhoods, parks or other
areas through the related project - ’SenseMyStreet’3. Some of the major projects the
sensors are already being used for is designing a visualization engine for smart cities
(Holliman et al., 2017) and monitoring of urban runoff (Jonczyk et al., 2016).

The downloaded raw data used for this paper covers all the available sound sensors
over the two month period between the 1st of January 2019 and the 1st of March 2019.
Figure 3.1 shows the geographical position of the sensors in Newcastle and Gateshead.
It can be seen from the figure that, most sensors come in groups along a specific street
and naturally form a clustering. There are readings from 62 sensors in the raw dataset,
which record the maximum captured sound level at similar time intervals. Figure 3.2
shows the processed sound patterns recorded by four sensors placed in different areas
- this is the only type of data that will be used for analysis. The preprocessing of
the sound patterns was necessary in order to address potential issues with the data
stemming from problems with the sensors - battery problems, data record problems
and measurement errors (Smith and Turner, 2019).

First, all readings were aggregated hourly. The data was then limited to a period
of one month - from 6th of January 2019 to 6th of February 2019. The period was
chosen since it was the timeframe that had available data for most sensors. Next, all
sensors with a higher proportion of missing to available data were dropped. For all
remaining sensors, the missing values were mean interpolated based on day of the
week and the hour. Lastly, all of the sensor data is normalised, in order to focus the
subsequent analysis on the patterns of sound rather than magnitude. The processed
dataset, consists of 40 sensors with hourly noise readings covering the entire 1 month
period.

3https://sensemystreet.uk/
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Figure 3.1: Sound sensor positions in Newcastle and Gateshead
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Figure 3.2: Sample sound patterns from four sensors

3.3.2 Openstreetmap data

Data from Openstreetmap (OpenStreetMap contributors, 2017) is used in the analysis
of the clusters and sound sensor placements in order to better characterize the areas
the sensors are in. Specifically, since each of the sensors is located on a street, char-
acteristics of the street and surrounding available Openstreetmap amenities, as well as
buildings in a 100m radius are gathered.

There are three types of roads the sensors are placed in - primary, secondary and
tertiary. The available points of interest in Openstretmap come in six broad categories.
In order to better understand these six categories, they are presented along with exam-
ple points of interest that would fall within them:

1. Sustenance - bars and restaurants

2. Education - schools and universities
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3. Transportation - bus and taxi stops

4. Financial - banks and change bureaus

5. Healthcare - hospitals and pharmacies

6. Entertainment - cinemas, nightclubs and theaters

3.4 Methodology

The methodological approach can be broadly broken down into two parts. The first part
is concerned with the building of the optimal grouping of sound sensors into clusters
that represent areas of similar functional usage. Two sets of clusters are derived in order
to evaluate the effectiveness of the new TDA approaches. The first set of clusters uses
a TDA method to differentiate sound patterns, while the second an approach developed
by Furno et al. (2015) for the analysis of mobile phone signals for land use detection.
These sets are then compared using external, internal and spatial coherence measures.
In the second part the best performing grouping is analysed in detail.

3.4.1 Clustering

The main aim of the paper is test the viability of sound sensor data as a secondary
source of information for urban dynamics. Specifically the goal is to see whether the
captured sound patterns differ, depending on how people use the surrounding areas.
First, there is no prior knowledge how many functional areas exist in the data and
second, it is expected that if the sensors do in fact capture activity data they will show
patterns similar to the core types of previous land use studies. A clustering approach
was chosen for these two reasons, and in accordance with other papers mentioned in
the previous section, e.g - (Pei et al., 2014; Cici et al., 2015; Furno et al., 2015; Miao
et al., 2018; Zhang et al., 2019b).

The methodological starting point in those studies is calling records, collected at
mobile tower stations or geo-tagged tweets in different parts of the city. This gives a
representation of activity patterns through time and space. These time series are then
pre-processed and prepared to be analysed using clustering methods. This is done with
the goal of finding out how many distinct activity patterns there are and where the
geographical places where these patterns occur are. As a last step, external data such
as nearby points of interest is used to validate the results.

This paper follows the same broad approach when analysing the sound sensor data.
The difference is that the choice of single-linkage hierarchical clustering and a choice
of cutoff metric will be replaced by clustering using HDBSCAN (Campello et al.,
2015). HDBSCAN offers improvement over hierarchical clustering in three ways.
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First, it takes into account the presence of outlier sensors - that is sensors that display
anomalous or very different behaviour. This is appropriate for the sound sensors data
due to problems such as measurement or processing errors, battery issues and others
(Smith and Turner, 2019). Second, it is able to detect clusters with a different number
of members (varying density). And lastly, it gives a flat clustering. Although the
approach is slightly different, the two methods are directly related and HDBSCAN was
developed as an extension of single-linkage hierarchical clustering, to address some of
its shortcomings (McInnes and Healy, 2017).

In order to make the comparisons between the TDA and the baseline methods more
exact, the same clustering method - HDBSCAN - with the same parameters will be
used. HDBSCAN requires only one choice of parameter and that is the minimum
number of sensors in cluster, in order to consider the group a valid cluster. The choice
for every method is two, due to the spatial dispersion and total number of the sensors.

Measuring differences in sound patters

In order to apply the HDBSCAN clustering algorithm, a measurement of the differ-
ence between sound patterns needs to be defined. This paper computes differences
between sound patterns in two ways - first using a TDA algorithm and second with
an already established approach. These differences are then used to create clusters of
sound sensors by applying HDBSCAN and the results are evaluated as described in the
next section.

As mentioned before, the captured sound patterns by the senors are a type of time
series data - readings of the same phenomena across time. Clustering of time series is
an active area of research and is done for exploratory data analysis, to get summaries of
large datasets or as a intermediate step in other methods (Aghabozorgi et al., 2015). As
this is an active area of research there exist numerous ways to measure the differences
between sound sensors. Furno et al. (2015) carry out a comparison between different
methods with mobile phone data for the purpose of functional land use detection. The
best performing method from that study is used as a baseline in this paper. It consists
of two steps. The first step is to extract a median, weekly activity for each sensor.
Afterwards, each of these typical weeks are normalised and the pairwise distance be-
tween all sensors are computed based on their correlation. These pairwise distances
are then used by the HDBSCAN algorithm to compute the clusters.

3.4.2 Cluster evaluations

Clustering is the attempt to group data in a way that meets with human intuition
(McInnes and Healy, 2017). In this paper we use numerous metrics that try and cap-
ture aspects of this intuition - internal clustering measure, external data and spatial
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autocorrelation.

Internal validation metrics measure desirable properties of the resulting clusters.
This paper uses one of the most widely metrics - silhouette score. It measures how
separated the clusters are - i.e. whether a sensor could reasonably fall within another
cluster as defined by the clustering method. It ranges in value from one to minus one,
where scores near zero indicate overlapping clusters. In general, negative values can
be interpreted as having sensors assigned to the wrong cluster, as there exists a more
appropriate assignment choice. Positive values close to one mean a perfect separation
of clusters.

Internal evaluation metrics are helpful in providing information about clustering re-
sults, however this information is not always practically relevant to the task (Campello
et al., 2015). To account for this, each set of clusters are further validated externally
and characterized with points of interest and building data data from Openstreetmap.
If the resulting clusters represent different functional area profiles, then this should
be reflected in the distribution of the amenities and buildings of the surrounding area.
This is a common assumption and validation approach among many twitter and mobile
phone data land use studies - (Cici et al., 2015; Furno et al., 2015; Miao et al., 2018;
Zhang et al., 2019b). To measure this difference for each set of clusters, the individual
clusters are treated as observations and the distribution of different types of amenities,
as described in section 2, are their characteristics. The differences between them is
measured by Euclidean distance. The larger the values the more functionally separated
the clusters are. This distance is based on external, not used in the formation of the
clusters data. Smaller values indicate similar clusters, meaning that different clusters
do not capture different functional information. For each set of clusters both the mean
and minimum distance is reported - large mean distances indicate that there is atleast
one cluster different than the others within the same set, whereas a large minimum
value means that the most similar clusters are dissimilar.

Another external validation metric used is spatial autocorellation. Since most of
the sensors are placed along the same streets, they capture similar or the same noise
patterns and a good cluster assignment should group at least some of the sensors in
a spatially coherent manner. To measure how much this is the case for each set of
results its clusters are compared against a naive spatial clustering. This naive spatial
clustering simply groups sensors on the same street into the same cluster. Adjusted
mutual information score (AMI) is used to measure how much each set of clusters
resembles this naive spatial clustering. The measure’s values range from zero to one,
with a score close to one meaning that there is strong spatial autocorrelation in the
analysed set of clusters.

It should be noted again that the only data used for the clustering is the sound
patterns captured by the sensors, (a sample is shown in in Figure 3.2). Neither spatial
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information, nor points of interest or building data will be used. If the analysis results
in clusters that respect the geography and street characteristics, then this is evidence
in support of the idea that sound readings can be used to capture distinct land usage
patterns.

3.4.3 Sound patterns and TDA

As used in this paper, Topological data analysis methods allow for another way of mea-
suring signals. The TDA method used in this paper is based on the ideas of persistent
homology, diagrams and bottleneck distance (Chazal and Michel, 2017). The specific
method used for the comparison is called ’Lowerstar’ and it focuses on the peaks and
valleys in the time signal. In applying the methodology to our data we follow the suc-
cessful application of this method by Knyazeva et al. (2016). We directly compute
the persistence diagram for each sound sensor based on its entire sound pattern. Each
persistence diagram describes the shape of the time series in terms of critical points -
local minimums and maximums. The diagram itself consists of components, equal to
the number of local minimums and each component has two values - a birth and death
times. The birth times correspond to local mins and the death times correspond to local
maxes. These diagrams are used to compute the differences between each pair of sound
sensors based on ’bottleneck distance’, which is a measure of similarity between per-
sistence diagrams that is robust to noise and sensitive to small changes (Cohen-Steiner
et al., 2007). These pairwise distances are then used by the HDBSCAN algorithm to
compute the clusters.

In addition to numerous successful applications, this TDA method was used since
it was the best performing TDA method in the comparison carried out in Appendix A.
This cluster evaluation comparison followed the same format as the one that is carried
out between the TDA and baseline approach, described in the previous section.

3.5 Results

3.5.1 Comparison results

Table 3.1: Clustering results

Number of clusters Number of Outliers Silhouette score AMI Mean difference in POI distribution Min difference in POI distribution
Baseline 5 12 0.558 0.365 0.425 0.107
TDA Lowerstar 3 17 0.304 0.128 0.104 0.075

Table 3.1 shows the results of the comparison procedures. The application of the Furno
et al. (2015) sound pattern differentiating procedure results in 5 clusters that capture
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28 sensors and 12 outliers. The ’Lowerstar’ TDA method on the other hand, splits 23
out of the 40 sensors into three clusters and 17 outliers.

Overall, the methodology adopted from Furno et al. (2015)(’Baseline’ in the table)
performs better than the ’Lowerstar’ TDA approach across all measures. The mutual
information score (AMI) measures the similarity between the resulting clusters and a
spatial grouping of the sensors. The higher mutual information score for the baseline
method shows that it captures the spatial dimension of the sensors better than the TDA
approach. Similarly, the higher silhouette score, means that clusters derived from this
methodology are more separate than the clusters resulting from the TDA comparisons.
Lastly, the mean and minimum external validation metrics show that the clusters differ
more in the distribution of points of interest for the baseline methodology. These higher
values suggest that the clusters capture areas with more distinct distributions of points
of interest, representing different functional usages. Since the baseline clusters perform
better against the metrics, the rest of the analysis focuses on them.

3.5.2 Clustering results

The baseline methodology produces five clusters that contain 28 out of the 40 sensors
and 12 outliers. An advantage of the HDBSCAN algorithm is that it enables the dis-
covery of distinct points based on the outliers. Table 3.2 presents the average distance
of the outliers to every other datapoint. As it can be seen two sensors have a noise
pattern that is on average almost twice as different as the rest. It is very likely that
these sensors represent a different type of behaviour to the other clusters, but cannot
themselves form clusters since they are lone sensors. The fact that they are outliers and
not clusters is a limitation of the data. These sensors are analysed along with the other
clustering results under the names ’Claremont Road’ and ’Baldwin Avenue’. The rest
of the outliers are discussed as a group.
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Table 3.2: Average distance to other points for each detected outlier

Sensor Average difference to other sensors
PER EMOTE 1004 0.078
PER EMOTE 1005 0.058
PER EMOTE 1171 0.127
PER EMOTE 1204 0.055
PER EMOTE 1205 0.061
PER EMOTE 1208 0.062
PER EMOTE 2601 0.122
PER EMOTE 2605 0.078
PER EMOTE 2606 0.076
PER EMOTE 2763 0.057
PER EMOTE 2766 0.048
PER EMOTE 2902 0.054

Figure 3.3 shows sensors colored by cluster membership, with the clusters named
after the street or place the majority of sensors are in. In general, sensors that are on
the same street are in the same cluster (with the exceptions of outliers). For example,
the ’High Street’ cluster covers the most area and all the sensors on its street. It is
interesting to note that most outliers lie on intersections, which suggests that that is
where the noise pattern changes on a street. There is also a cluster named ’Corner
sensors’ which contains 2 sensors on the corners of the ’Durham Road’ cluster.
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Figure 3.3: Baseline clusters
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Figures 3.4 and 3.5 show the normalized median weekly noise pattern for each clus-
ter. Most of the clusters have a similar dominant pattern that follows typical working
hours - with two peaks, followed by a drop in activity. The differences in the patterns
come from considering the relative times of the peaks as well as the differences be-
tween the weekend and weekdays. For example, the most distinct cluster stands out
because of the large spikes in noise during weekend nighttime hours.

Figure 3.4: Average week for the first 4 clusters
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Figure 3.5: Average week for the last 3 clusters

Tables 3.3 and 3.4 shows the distribution of points of interest and buildings, avail-
able from Openstreetmap, across the clusters. The number of residential buildings
varies greatly among the clusters, even though they cover geographical areas of differ-
ent sizes. For example, ’Baldwin Avenue’ a lone sensor has 44 residential buildings in
a 100 metre radius around it, whereas the ’High Street’ cluster covers a geographical
area, at least 5 times larger, but only has 16. There are also noticeable differences in
the POI data. For example, the city centre cluster is the only one with any entertain-
ment POIs. Another thing to note is that the sustenance and transport points of interest
dominate most clusters with varying levels.

Table 3.3: POI results

total sustenance education transportation financial healthcare entertainment sensors
City centre 102 0.470 0.009 0.460 0.019 0.000 0.039 6
Leazus Park Road 25 0.360 0.040 0.560 0.000 0.040 0.000 3
High Street 32 0.343 0.000 0.531 0.093 0.031 0.000 8
Durham Road 13 0.615 0.000 0.230 0.000 0.153 0.000 9
Baldwin avenue 1 0.000 0.000 0.000 0.000 1.000 0.000 1
Claremont road 7 0.000 0.142 0.714 0.000 0.142 0.000 1
Corner sensors 2 0.000 0.000 0.500 0.000 0.500 0.000 2
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Table 3.4: Building data

Residential buildings Total buildings Sensors
City centre 2 15 6
Leazus Park Road 14 16 3
High street 16 26 8
Durham Road 99 100 9
Baldwin avenue 44 44 1
Claremont road 0 0 1
Corner sensors 108 109 2

The two largest clusters are ’Durham road’ and ’High street’. In terms of the road
network ’Durham road’ is a traffic heavy secondary road, while ’High street’ is a pri-
mary road. This is reflected in the larger number of transportation POI around the
sensors on ’High street’, which feature a parking and a metro link. ’High Street’ also
has relatively less sustenance POIs than ’Durham road’ and is the only cluster with a
significant number of financial POI around it. ’Durham road’ on the other hand has a
high percentage of healthcare buildings such as doctors and pharmacies around it. In
terms of residential buildings ’Durham road’ has significantly more. These differences
suggest distinct primary usage of each area, however the noise patterns of the two clus-
ters are similar as seen in Figure 3.4. In order to better see the differences the average
week and weekend day are shown in Figure 3.6. Both clusters follow the same general
dominant patterns. On weekdays, there are peaks in the morning around 8:00 A.M. and
noise remains consistent until 19:00 and then starts to drop off. During the weekends
there is a peak at 12 and a leveling off, which indicates that sensors are placed near
areas that have high activity during working hours. ’High street’ overtakes ’Durham
Road’ at around 18:00 during the weekdays and 20:00 during the weekends. It is pos-
sible that this is a result of the high level of traffic POIs. The two cluster patterns
identified here are similar to the ones described in a number of studies in Italy (Zam-
bon et al., 2016, 2017) - similar working hours pattern, but the differences between
them come in the nighttime activity. Other than this, there are no clear differences in
the patterns of these two clusters. This suggests that general noise patterns dominate
busy traffic roads and make it hard to distinguish between the types of areas the sensors
are in.

One of the most present clusters in studies using twitter and mobile phone data
are the worktime or business areas identified in most studies - i.e. Pei et al. (2014);
Cici et al. (2015); Furno et al. (2015); Miao et al. (2018); Zhang et al. (2019b). These
are characterized by high activity during the working hours and low activity during
the weekends. In our dataset, one area has a lot of businesses and offices - ’High
Street’, however it is very similar to another one ’Durham road’, which is a primary
road with mainly houses, parks and shops. This speaks to some limitations of using
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sound sensors in that for sensors on or near heavy traffic roads, the type one traffic
noise pattern dominates and differences are hard to detect. Nevertheless, the algorithm
managed to detect the differences, which shows promise for future studies.

Figure 3.6: Average weekday and weekend comparison between the clusters on
Durham road and High street

The next cluster - ’City centre’ - consists of six sensors placed on three streets near
the Newcastle city centre. The sensors are located near busy primary roads, hotels,
transport links and the only nightlife present in the data. The cluster has the most
distinct pattern with high levels of noise during weekend nighttime hours. It is a rep-
resentative of the second type of roads found in the Dynamics studies (Zambon et al.,
2016). A cluster with a pronounced night activity and relatively similar daytime pat-
tern to the worktime clusters. The separation of sensors into city centre and others
is expected since there are results that suggest that in England city centres have more
urban vitality than other areas within the city, meaning more activity at all times (Sulis
et al., 2018). Furthermore, a city centre or nightlife cluster is present in other studies
that use mobile phone records or geo-tagged twitter activity profiles - i.e. Soto and
Frı́as-Martı́nez (2011); Frias-Martinez and Frias-Martinez (2014).

The next clustering group is ’Leazus Park Road’ and consists of 3 sensors. Leazus
Park Road is a tertiary road, which has some houses, a number of shops and restaurants
around it, as well as a football stadium nearby, but outside of the range of the sound
sensors. Figure 3.4 shows the median weekly noise patterns for the sensors in this
cluster. It can be seen that this cluster has a mixture of the patterns of the previously
discussed clusters. There is a general worktime activity, but there are also increases
during night time, as well as spikes of activity on the weekends starting at 20:00. There
is also a number of residential houses around the sensors. This suggests that the area
around the cluster has more of a ’mixed usage’ - there are houses as well as businesses
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in the area. This cluster type is present in many twitter or mobile activity studies (Miao
et al., 2018; Furno et al., 2017; Toole et al., 2012; Soto and Frı́as-Martı́nez, 2011; Frias-
Martinez et al., 2012; Frias-Martinez and Frias-Martinez, 2014). These cluster types
have an activity pattern that lies somewhere between residential and business or work
areas - constant usage during the weekdays and the weekend days. This is in contrast
to our case, where ’Leazus Park Road’ has high worktime activity, which increases
during night time, as well as spikes of activity on the weekends starting at 20:00.

The next cluster - ’Corner sensors’ - represents sensors placed on streets that inter-
sect ’Durham road’. It is difficult to analyse this cluster precisely since it has the same
building and POI characteristics as the ’Durham Road’ cluster, due to its proximity to
it. Its pattern is presented in Figure 3.5 and is again similar to the ’Durham road’ one.
The same is true for the other outliers - usually they lie on the corners as well or are
too close to the other sensors.

The last two clusters ’Baldwin Avenue’ and ’Claremont Road’, only have one sen-
sor each. Figure 3.5 shows the pattern of noise in the typical week for ’Baldwin Av-
enue’. It has three relative peaks during the workdays - the first occurring before
working hours start around 7:00 and the last smaller peak after working hours finish.
Another thing to notice is the drop of activity from 7 to 11 and from 16 to 20:00. On
the weekend there is a more activity during the working hours and the peaks start after
the workday peeks. The distribution of the POIs is different to the rest of the clusters,
and the only nearby amenity is a pharmacy. The pattern, the lack of points of interest
and the high number of residential buildings suggest that this is a residential area. This
is in contrast to the residential clusters defined from tweets and mobile phone records,
where the peak activity of residential areas is only after working hours. Examples of
these clusters can be found in most studies, i.e. Miao et al. (2018); Cici et al. (2015).

Figure 3.5 also shows the weekly pattern for the sensor on ’Claremont road’. It
can be seen that there is relatively low usage during the weekdays compared to the
weekend. It is different from the city centre cluster by the fact that the noise levels
peak at 1:00 and drop when approaching nighttime. The POI distribution for this
sensor is completely dominated by infrastructure points of interest, however most of
those are bike kiosks and parking. This sensor is identified as a representative of a the
weekend or leisure type of area. These groups, again present in new forms of data land
use studies - Furno et al. (2015); Frias-Martinez et al. (2012) - have sometimes been
defined to encompass museums as well as parks. However, in our dataset it refers only
to parks.
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3.6 Discussion

The results from the cluster analysis show that there is a strong spatial correlation in
sound patterns - most sensors placed on the same street are assigned to the same cluster.
However, sensors on different streets with similar sound patterns are also grouped
together. This is the case for the ’City centre’, ’High street’ and ’Leazus Park Road’
clusters. In other cases, sound sensors that lie on the same street are split - some
are grouped in a cluster, while others are identified as outliers. This happens for the
’Durham road’ cluster, for example - out of the eleven sensors on the street, two are
identified as outliers. Both of these results suggest that the delineations capture more
information, than simply the underlying geography of the sensors. The second result,
specifically indicates that sound sensors have the potential to identify areas of interests
at a higher than street level scale.

Another interesting spatial pattern is the existence of a ’Corner Sensors’ cluster,
as well as the fact that many sensors identified as outliers lie near street corners. This
result suggests that the sound patterns on some streets significantly change at the in-
tersection with other streets and that identified cluster boundaries lie on street inter-
sections. Since the sound levels on streets are effected by both the built environment
(Hupeng et al., 2019) and the types of amenities on them (Yildirim et al., 2019) it is
possible that street intersections present points of change - i.e. when a residential street
such as ’Shipcote terrace’ cuts into the ’Durham road’ clusters, which lie on a primary
road. However, this is not always the case, for example, ’Durham road’ contains at
least three sensors that lie near intersections with other streets.

The results also show that the sound patterns of the resulting clusters are all ef-
fected by the two cluster types found in traffic noise analysis (Zambon et al., 2016,
2017). The first pattern, with two peaks mimicking working hours, dominates the
’High Street’ and ’Durham road’ clusters - both of which are traffic-heavy roads. The
second pattern is present in the ’City centre’ and ’Leasuzes park road’ (to a lesser de-
gree) clusters - two daytime peaks with increased nightime activity relative to other
areas. However, there are other types of patterns that emerge from the analysis when
the focus is placed on relative peaks and differences between weekend and weekday
noise activity. This results in areas that have similar patterns to clusters derived from
’new forms of data’ such as mobile phone and twitter activity profiles. The distribu-
tion of points of interest and buildings in the area surrounding each cluster was used to
characterize what different functional urban areas they represent.

There were six activity profiles detected, excluding outliers. Clusters such as ’City
centre’ and ’Claremont road’ represent city centre areas and parks that have direct
analogs in the literature with identical activity profiles. A ’city centre’ or a mixed, high-
usage area is present in most studies that use mobile phone (Soto and Frı́as-Martı́nez,
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2011) and twitter records(Frias-Martinez and Frias-Martinez, 2014). In England, city
centres can be focal points of retail, dining and social activities, meaning more activity
at all times, which also contributes to the unique sound profile of this cluster type
(Dolega and Lord, 2020). Similarly, profiles representing parks like ’Claremont road’
are present in the literature (Frias-Martinez et al., 2012). Other clusters such as ’Leasus
park road’ and ’Baldwin Avenue’, identified as comprehensive and residential clusters,
show some differences in their activity profiles compared to their analogues from the
twitter and mobile phone data studies - e.g Soto and Frı́as-Martı́nez (2011); Furno et al.
(2015). Although the ’High Street’ and ’Durham road’ clusters are split, both their
activity patterns are heavily dominated by working hour traffic noise, or type one traffic
noise patterns. ’High street represents a office or work cluster with few residential
places, whereas ’Durham Road’ a traffic heavy road with more shops and houses.
This speaks to some limitations of using sound sensors for differentiating functional
areas based on sound sensors on or near heavy traffic roads, which is consistent with
the literature since noise pollution from road traffic dominates noise patterns and is a
major concern of urban planners (Morillas et al., 2018). However, it should be noted
that this is not the case for sensors near the city centres.

The resulting activity profiles and the two types of dominant sound patterns are also
related to urban sound typologies. Sound typologies are actively used in noise pollution
and urban soundscape research, however the studies typically focus on acoustic aspects
of sounds not just maximum decibel levels (Torija et al., 2013). The activity profiles
results in this paper are fewer and less granular than in urban soundscape literature,
which is reflective of the limited information used to form the clusters - maximum
decibels per hour. However, they are more numerous than the road noise typologies
that typically show fewer noise profiles - (Zambon et al., 2016, 2017) and and more
similar to most activity data studies that use mobile phone or twitter data. This is
due to both the position of the sensors and the methodology used. This positioning
of the results in the literature gives the indication that incorporating more aspects of
sound data is likely to result in a more granular typology of profiles. Alternatively,
the same methodology used in this paper, alongside more acoustic data can be used
to help classification of supervised acoustic sound sensors tasks in urban ’soundscape’
research (Virtanen et al., 2018).

Furthermore the results as a whole, highlight the unique value sound sensors offer.
First, they show the secondary benefits the sound sensors bring - capturing human
activity information at a high resolution - in addition to their usage for monitoring
noise pollution and anomalous events. Second, the granularity of the data is at the
sub-street level and in fact can be controlled using the effective range of the sensor.
Third, the data gathers aggregate information (which is not accoustic) and therefore
preserves the privacy of the public whose actions are recorded. The results suggest,
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that sound sensors could be used as a substitute for human activity data, for example,
as a proxy measure of ’urban vitality’, similar to how mobile data is used by De Nadai
et al. (2016). Furthermore, the effectiveness of this approach will continue to increase
given increased adoption (more sensors) and developments in sound sensors ( better
sensors) as well as machine learning methods (better methods) (Virtanen et al., 2018).

Lastly, another contribution of this paper was the comparison between the base-
line methodology, used in other land detection research, and the TDA techniques from
the new field of topological data analysis. As mentioned by Arribas-Bel and Tranos
(2018); Singleton and Arribas-Bel (2021) it is important to create and adopt methods
for the analysis of new forms of data that account for their specific properties. The
comparison between TDA approaches carried out in Appendix A, and the comparison
between the baseline and the best-performing TDA approach carried out during the
analysis, also show the importance of external clustering metrics and the benchmark-
ing of new approaches. The final results suggests that at least in the area measuring
differences between time series, TDA techniques show promise but should be further
refined in order to produce the best results.

3.7 Conclusion

New forms of data offer a dynamic view of urban life at great detail. Studies using
’new forms of data’ - mobile phone data with different methodologies (Soto and Frı́as-
Martı́nez, 2011; Furno et al., 2017, 2015), app data such as twitter or foursquare data
(Frias-Martinez and Frias-Martinez, 2014; Calafiore et al., 2021) - find there are dis-
tinct activity profiles of urban areas. This paper shows the value of sound sensors in
doing the same. This is achieved through the use of a clustering method to identify
areas with distinct functions based on the hourly sound patterns recorded by sensors
throughout Newcastle and Gateshead. The results represent six distinct activity pro-
files - mixed, residential, two types of business, nightlife, leisure are captured by sound
sensors. These definitions were ascribed with in accordance with POI data from Open-
streetmap. Some of these areas have a direct analog in other new forms of data land use
studies, while others are dominated by traffic noise patterns found in the urban sound
analysis literature.

In general, this work serves as another example of the potential of ’new forms
of data’ to enrich urban research. Given more sensors around different street types,
the current methodology could be used in order to classify different street types and
compare them against their official designations. The results also suggests that sound
characteristics could be used in supervised approaches to improve area classification
tasks, similar to Hermosilla et al. (2014). Furthermore, the clustering comparison can
guide future developments in TDA techniques. For example, it suggests that more
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focus should be put into developing more robust methods related to the Lowerstar
technique, since it came the closests to the baseline technique.

One limitation of the study is the number of available sensors. The spread of sound
sensors is currently not enough for a full coverage approach, similar to the ones where
data from phone towers is used. Although the data covers several streets with different
functions, the number of sensors is small relative to the studies done in other areas such
as tweets and mobile phone records. This impacts the generalisability of the results to
larger areas, or ,in fact, to the whole of the Newcastle area. The small number of
sensors, further limited the analysis of some interesting results such as the analysis
of the ’Corner’ and intersection outlier sensors. However, the results still show the
promise of combining sound data and our approach to capture different functional areas
within a city. The sound patterns of the detected clusters correspond to the activity
patterns of clusters derived from tweets or phone towers. It should be noted that the
analysis did not explicitly look for any specific cluster patterns previously identified -
residential, leisure, city centre or mixed. Rather these separate profiles were the result
of the unsupervised cluster analysis.
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4

Dynamics and emergence of megaregional

structure in US employment data

Abstract: . There are numerous definitions of megaregions, but the common thread
among them is that these new geographical units are made up of clusters of either

merging or closely interacting distinct urban centres and their surrounding areas and
that they represent an emerging economic and policy scale. This paper quantitatively
builds a hierarchy of functional spatial units to analyse emergence of megaregional

dynamics and structure in United States employment data. It does so by using
LODES, a large dataset of ’origin-destination flows’ aggregated at the census tract

level, and a community detection methodology to build up a hierarchical tree of
spatial units at different scales. The validity of these new units is tested against

several characteristics - spatial coherence, their population distribution and similarity
to established geographical units from the metropolitan to the megaregional level.

The results show that there is evidence of the emergence of 6 out of 11 widely popular
megaregions. With the exception of the Cascadia megaregion, all detected

megaregions in the employment data are in a single state. The rest of the megaregions
commonly discussed in the literature break down across state, but not metropolitan

boundaries. This suggests that there is limited evidence for the large-scale
cross-border economic interactions required to define megaregions.



4.1 Introduction

There are numerous proposals to focus planning, promote cooperation and to create
new political structures at a ’megaregional’ level in the United States (Friedmann,
2019; Ross et al., 2009; Lang et al., 2020; Nelson, 2017; Hagler, 2009; Ahuallachain,
2012; Ross et al., 2016). A megaregion is a large-scale unit that describes a cluster
of urban centres with high levels of economic output, population, as well as infras-
tructure and cultural integration (Glocker, 2018). Examples of proposed megaregions
are the ’Northeastern Megalopolis’ encompassing an area from Boston in the North to
Washington D.C. in the South, or the ’Piedmont Atlantic’ going from Raleigh, North
Carolina in the east to Birmingham, Alabama in the west. Each of these and other
megaregions, span many official administrative boundaries, hundreds of kilometres of
built environment and have millions of citizens.

The proposed advantages of focusing on this megaregional scale include an abil-
ity to better harness the benefits of economies of scale and to tackle problems with
rapid urbanization. The megaregions are almost always their country’s most important
economic, political, and cultural centres, and represent the key points linking regional
and national economies to global networks (Nelson, 2017). Their constituent parts can
share transport infrastructure for people and goods, enabling robust housing markets
and the development of offices, science and technology parks and are able to support
multiple and varied economies of scale (Florida et al., 2008). Furthermore, the megare-
gion can act as the appropriate scale for cities to align their policies to more effectively
reach common goals on resource depletion, environmental pollution and ecological
damage, which are increasingly becoming crossborder problems (Ross et al., 2016).

To achieve these benefits large scale planing and coordination efforts are required
across many existing administrative boundaries. At a smaller scale, there have been
problems with regional planning for sustainability, although there have also been some
successes in terms of environmental planning, growth management and transportation
planning (Wheeler, 2015). Planning at the megaregional level is even more challeng-
ing due to the exponential growth in the number of interested parties. For example,
Glass (2014) talks about a Midwest megaregion consisting of ”hundreds of competing
governance spaces, all with different legacies, authorities and sociospatial constituen-
cies”.

To address this issue researchers have looked to emergent or projected economic,
social or infrastructure interactions at a megaregional scale to provide the justification
behind a megaregion’s spatial extent, and the motivation to build the required collabo-
ration efforts between its constituent members (Sorensen and Labbé, 2020). This has
resulted in various operational definitions emerging. The commonality between them
is that they define megaregions as built up from established units - counties, metropoli-
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tan areas, etc - based on similarities in criteria such as population density, nightime
light intensity, overlapping built environment, commuter flows, business interactions
(Glocker, 2018).

This paper uses the LODES dataset of economic interactions (Graham et al., 2014)
to algorithmically build a hierarchy of nested delineations, in order to analyse the emer-
gence of megaregions in the US. LODES is a comprehensive dataset of residence and
workplace tax information derived from the records of 140 million people in the con-
tiguous 48 states. The hierarchy of delineations is created by appliying a community
detection approach, the Louvain algorithm (Blondel et al., 2008) to this data, result-
ing in delineations with non-arbitrary boundaries, which are nevertheless crossed by
numerous flows. Each level of delineations within the resulting hierarchy represents
a different scale of economic interaction, and gives a different meaning to its units.
In order to interpret these, the communities at each level are compared to established
geographical units - such as metropolitan areas, states or combined statistical areas and
megaregions. Furthermore, the paper explores the spatial patterns of employment in
the delineated areas, as it changes at the different levels.

The advantage of this approach is in the flexibility it affords. It does not require
setting up explicit thresholds, specifying urban models or using other additional data,
in contrast to other approaches (Kockelman et al., 2019). The units at each levels of
the hierarchy are built up from census tracts, based only on the relative strength of
the connections between them, compared to other existing connections. Similarly, the
levels of the hierarchy are not pre-defined and new levels emerge based on the relative
connections at lower levels. Therefore, this approach can detect emergent urban phe-
nomena at various scales, including the megaregional, however no scale requirements
are explicitly specified.

The rest of the paper is structured as follows. The next section provides a litera-
ture review of the concept of a megaregion and its operalisations. The ’Methodology’
section describes the data and community detection approach, the comparisons carried
out, as well as the way in which the spatial concentration of economic interactions is
explored. Finally, the results section describe the resulting hierarchy of delineations,
while the conclusion & discussion section place them within the context of the litera-
ture.

4.2 Literature review

4.2.1 Megaregions

The conceptualizations of large scale multi-city regions in America started in 20th
century, however these were mostly ignored by practicing urban planners and policy
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makers, until they gained more traction in the early 21st century with the release of the
millennial census (Lang et al., 2020). Geddes (1915) presented one of the first analy-
sis of merging ubran areas. He used the term ‘conurbation’ to describe the cluster of
Newark and Jersey City and New York’s Manhattan and Brooklyn, integrated via sup-
ply chains over 100 years ago. The French geographer Jean Gottmann first described a
long-extended metropolis in the entire Northeastern US. He argued that the large mor-
phological growth of the cities between Boston and Washington led to their suburbs
clashing into one another, and resulted in a unique cluster of metropolitan areas which
extended beyond traditional and political borders (Gottmann, 1957). There were also
calls to begin promoting transportation planning, such as intercity passenger rail ser-
vice in the Northeast Megalopolis, focused on this new scale of geography (Lang et al.,
2020). At the beginning of the 21 centrury, with the coming of the new census it was
discovered that many US metropolitan areas as measured by the census had grown to
such a large scale that they were running into one another. Combined statistical areas
(CBA) were introduced as a way of better understanding these areas and the underlying
trends that drove their creation.

There are 388 metropolitan statistical areas, 541 micropolitan statistical areas that
make up the 929 core-based statistical areas (CBSAs) and 169 Combined metropolitan
areas (CBAs) in the US census (Ross et al., 2016). CBSAs represent urban areas with
a metropolitan centre core and their surrounding commuter flows, subject to popula-
tion restrictions, while CBAs represent merging core-based statistical areas. These new
units, along with the underlying phenomenons, led to more interest from researchers as
well as urban planners, in the concept of megaregions and finding other megalopolises
in the US. One of the most influential sets of results came from the Regional Plan As-
sociation, where megaregions are defined as ’interrelated population and employment
centers or MSAs that share common transportation networks, cultures, and environ-
mental features’ (Hagler, 2009). The identified megaregions are shown in Figure 4.1.
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Figure 4.1: America2050 megaregions

In the following years many quantitative definitions, delineations, as well as con-
ceptualizations and critiques of super-urban areas emerged, building on the definitions
made by the America2050 project. However, a common theme across definitions is
that they represent large scale areas which encompass several urban centres along with
their surroundings, subject to qualifying properties such as population, build density,
infrastructure and cultural integration (Glocker, 2018). These definitions result in con-
ceptual marco-scale structures which capture the idea that large cities are merging to-
gether, spanning hundreds of kilometres of built environment and millions of citizens.

Some of the driving factors behind these changes are urban population growth, fric-
tionless capital flows, advances in technology, and changes in commuting behaviours.
Urban population is projected to continue to grow, however the spatial distribution of
this increase is not uniform (Batty, 2018). Nelson (2017) predicts that ten megaregions
specifically, ’will account for about 80% of the US’s total growth in population’ and
84% of the regional GDP growth. This concentrated growth has led to expansions of
city boundaries, and in some cases has meant that urban areas have started merging
into each other morphologically (Harrison and Hoyler, 2015b). Furthermore, it has
contributed to more complex commuting patterns (Rae, 2015).

Similarly, increases in digitisation and advances in information technology allows
for services and knowledge to be accessed without the need for mobility, increasing
the scale of potential economic transactions between cities (Georg et al., 2018). A
megaregion is defined as a polycentric cluster of urban areas which emerges within
this network, characterised by strong economic, cultural and infrastructural ties be-
tween its constituent urban centres (Hall and Pain, 2006; Feng et al., 2018; Glocker,
2018). Polycentric areas are those in which economic activity and employment is con-
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centrated in several centres, operating in a complex network of interactions (Möck and
Küpper, 2020). This is in contrast to monocentric urban areas where most activity is
concentrated on a single commanding place, e.g. a Central Business District (CBD) ,
which dominates local labor markets.

The importance of the megaregions comes from proposals that better coordination
within this complex structure can lead to better planning to tackle economic, trans-
portation, global competitiveness and sustainability challenges (Harrison and Hoyler,
2015b). This can take the form of more effectively sharing transport infrastructure,
science and technology parks and supporting the development of economies of scale
(Sassen, 2010). These benefits would be, more pronounced in the case of the smaller
cities in the megaregions, due to the fact that its easier for residents and businesses
to access services that would require much larger population densities and workforce
specializations - so called ’borrowed-size’ effects (Marull et al., 2013). In fact, Ahual-
lachain (2012) argues that cities already function within sets of related megaregions,
and policies aiming to improve manufacturing and production should focus at the
megaregional level. The megaregion can also act as the scale at which cities align their
policies to tackle sustainability and environmental issues since they are increasingly
becoming trans-border problems (Ross et al., 2016). There is also some precedent
for action at this scale – for example with regard to environmental protection in the
Great Lakes area and the Regional Greenhouse Gas Initiative (RGGI) consortium es-
tablishing a market in greenhouse gas emissions in the northeastern US and adjoining
Canadian provinces (Sorensen and Labbé, 2020).

4.2.2 Delineating Megaregions

Since megaregions describe a new geographic scale of social and economic interac-
tion that span over several administrative boundaries, it is important to know who the
potential partners and members could be and to engage with them at the right scale.
However,researchers disagree on many megaregional boundaries. For example, Ross
et al. (2009) proposes one combined California megaregion, while the America 2050
project by the Regional Plan Association (Hagler, 2009), identifies two separate North-
ern and Southern California mega regions. Ross also proposes a Central Plains mega
region that does not exist in the America 2050 typology, while the latter shows Front
Range and Gulf Coast mega regions not found by Ross. The two teams have sharply
different boundaries for Piedmont and Midwestern mega regions. Lang et al. (2020)
present a version of the America 2050 map with most of the mega regions divided into
sub-regions, for example ‘Twin Cities’, ‘Chicago’, ‘Michigan Corridor’, ‘Steel Corri-
dor’ and ‘Ohio Valley’ portions of the Great Lakes Megaregion. Given these problems,
evidence of emergent interactions at the megaregional scale, is still an important fac-
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tor for the megareginoal research agenda (Harrison and Hoyler, 2015a) and provides
important motivation to build collaboration efforts between potential partners.

To address these concerns researchers have developed different delineation method-
ologies. The commonality across these is that they assume that megaregions are not
simply a large scale city, but a agglomeration of cities and their lower density hin-
terlands, spatially and functionally linked through environmental, economic, and in-
frastructure interactions (Ross et al., 2009). It should be noted that there is overlap
in spatial extent of various definitions (Glocker, 2018), suggesting that they capture
different aspects of the same underlying phenomenon.

One group of definitions focuses on the characteristics of the areas within the po-
tential megaregion such as morphology, population size, travel time and others, e.g -
(Georg et al., 2018; Hagler, 2009; Glocker, 2018; Habitat, 2013; Ross et al., 2009). The
motivation behind this approach is that if the labour markets and business interactions
of distinct urban centres become so integrated that they overlap, the build environment
between them would also overlap. Thus contiguous development at a large scale re-
sults from an area functioning as a megaregion. However, many of the morphological
studies have the disadvantage that they completely discard interactions. Different land
use systems and regulations at the local level lead to very different ways in which the
built-up areas of cities relate to functional reality, while increasingly long and com-
plex commuting and economic patterns further complicate that relationship (Wu et al.,
2019).

These issues are addressed by explicitly using functional approaches to delineation.
They define the megaregions as made up of some type of functional units depending on
the choice of relationship. In most cases the focus is not on direct relationships between
all the constituent cities, since the distances at the megareigonal scale are too big, but
on continuous integration and strong chain effects. Examples of such relationships
are commuter flows or business interactions (Lang et al., 2020; Nelson and Rae, 2016;
Batten, 1995; van Oort et al., 2010; Geddes, 1915). The methodologies require treating
the origin-destination flows as a (usually non-spatial) network where nodes are some
geographical units such as counties, and the links between them represent functional
relationships such as commuter flows. This approach can result in spatial outliers and
depending on the geographical units used it can add a lot of excess landmass such as
farmland or hinterland to the megaregional definitions.

The third approach aims to reconcile both and be a compromise between functional
integration and morphological features. For example, (Ross et al., 2009) combine
both morphological dependencies and functional relationships (transportation links)
to better capture the extent of megaregions. More recently, advances in data analysis
techniques enabled the use of secondary data (Arribas-Bel, 2014a), which have led
to even more complex combined approaches, for example, based on satellite data and
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taxi cab rides (Wei et al., 2020). A disadvantage of this combined approach is the
data availability limitations, since large amounts of diverse data are needed, as well as
methodological problems of how to combine it (Glocker, 2018). The data validity in
the case of the new forms of data can also be a problem.

Most of the approaches in these three groups require setting up explicit thresholds
or parameters and expand already predefined large-scale units. For example, most of
them use the already pre-defined metropolitan and micropolitan areas from the census
and add the surrounding areas, subject to them having a stronger connection than a pre-
defined threshold. A disadvantage of this approach is that different thresholds lead to
different results, and the methods are biased towards already defined areas (Kockelman
et al., 2019). One way to mitigate some of these problems is to adopt ’bottom-up’
analysis techniques from network analysis such as community detection. Examples of
applications of this methodology in the US are Nelson and Rae (2016), in China - Wu
et al. (2019), in Central Europe - Khiali-Miab et al. (2019). The advantages of this
family of approaches is that they they build up the relevant units quantitatively form
the data, and require less structure imposed beforehand. For example, the polycentric
model that megaregions could follow does not need to be defined prior to the analysis.
An example of this method carried out in the US is Nelson and Rae (2016). It uses
commuter flows along with a community detection methodology to delineate the US
into self-contained areas. The results of the analysis are show in Figure 4.2. There
are 57 detected areas, centred around large cities. Lang et al. (2020) argues that the
detected communities more closely resemble his megalopolitan area concept, rater than
the megaregional concept as, for example, defined by Hagler (2009). And, in fact it
can be seen that the scale of the detected communities resembles extended CSAs and
that multiple areas are needed to cover a single megaregion defined in America 2050.
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Figure 4.2: Nelson and Rae (2016) megaregions

This paper builds on the results of Nelson and Rae (2016) by addressing some of
the issues raised by the authors and other researchers (Glocker, 2018) and by adding a
hierarchical aspect to the analysis. First, the LODES dataset used in this study is not
exactly commuter data and captures more business interactions than the commuter data
used by Nelson and Rae (2016). It is larger in terms of volume than the commuting
data used by Nelson and Rae (2016) and has a more complex structure - 140 million
people vs 100 million and 27 million links vs 4 million. Additionally, the data is newer
- it is collected in 2017 as opposed to 2010 and is not affected as much by the recession
in the late 2000s. Second, the exact community detection method used in this paper,
the Louvain algorithm (Blondel et al., 2008), produces a hierarchy of spatial units
at different levels for the entire US, not just a flat delineation. It is an algorithmic
combination of on the one hand the bottom up approach - by delineating small scale
regions based only on commuter flows, and on the other the top down approach - by
combining these regions based on interactions. This way it can produce insights into
large-scale phenomena present in the data. The hierarchy can also be compared with
other spatial units to show that at each level the delineated community actually capture
meaningful spatial entities, which reflect phenomena from the literature.
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4.3 Methodology

4.3.1 Data

Available interaction data

The main type of data used is a variant of origin-destination data. These datasets rep-
resent a functional relationship between two points - the origin and destination. Com-
mon types of these relationships are commuter flows, interactions between businesses
or even calls between people. In addition to an origin-destination pair, these data also
record a measure of the strength or ’weight’ between the origin-destination pairs - for
example, number of commuters. Generally, this data is analysed first by converting
it to a (usually non-spatial) network where nodes represent origins and destinations
and the flows are edges between them. This way tools from network analysis can be
applied to the data to gain insights.

There are two high-quality large-scale datasets available for the United States,
which directly capture economic interactions spatially - American Community Survey
(ACS) and Longitudinal Employer-Household Dynamics Origin-Destination Employ-
ment Statistics (LODES). The differences between the two is in the collection proce-
dure, scope, definitions and coverage (Graham et al., 2014). ACS data comes from a
yearly nationwide survey of 2.5 million addresses and specifically asks for the address
where a person worked last week. LODES data is collected from various administrative
data and surveys and is available at the census block level. It has ’origin-destination
flows’ which might not correspond to an actual physical trip, but to registered home
and work addresses, inferred from sources such as tax forms. This distinction is es-
pecially important for industries like catering and construction where the actual work
location changes often. It is also important for businesses that have multiple offices,
since only the main one is considered as the work location. The LODES data also has
the disadvantage that the scheme is opt in, therefore states volunteer their data and not
all data is available for all states at the same time.

This paper uses the LODES data since it can capture more complex interactions at a
larger scale. This is because recorded links do not necessarily correspond to a physical
trip, but they represent an employment or economic interaction. This way the problem
of whether a person works from home or on location, or at a different location that the
registered or main one, becomes less important since the focus is on the connection
itself. A person living in D.C. and working from home for a firm in New York will be
captured by the data and will be an important contribution towards the existence of the
Norteast megaregion. This is reflected in the fact that the data has more links than the
ACS data and potentially more complex patterns.
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Preprocessing

The data used for the megaregions community detection is downloaded from Census
Bureau (Graham et al., 2014). It covers the 48 mainland US states and DC, excluding
Hawaii and Alaska. The data records 2017 residence and workplace information for
almost 140 million (139053815) people with approximately 120 million pairs of home-
work locations. Tables B.1 and B.2 in Appendix B show a breakdown of this data by
state and by the interactions between pairs of tracts that are within the same state and
between different states. The average percentage of interstate flows is around 13%
with 27 out of the 50 states having at least 10%. This is further evidence that the
LODES data captures more economic patterns than just commuting data, and that its
well suited when analyzing large scale economic units such as megaregions.

Before analysing the data only two preprocessing steps are taken. It should be
noted that no data was discarded with these preprocessing steps, neither because of
large distances, nor based on small commuter sizes. First, the data is aggregated to
the census track level. This was deemed necessary since at the block level over 70%
of links only recorded a single person. Furthermore, census tracts are a more robust
starting unit of analysis, since in general they are defined to be stable across time
and have an average population of 4000 people. This is in contrast to the block and
group level, where there is much more variability in physical size and population.
Additionally, it significantly reduced the required computational time and resources.

The second and final preprocessing step is to transform the resulting aggregated
datasets into an undirected weighted graph. Each census track is considered a node
and each ’origin-destination flow’ between tracks - an ’economic’ link. The fact that
the graph is undirected means that there is no difference which tract is the home loca-
tion and which is the work location. The direction of the flows is not important for the
detection of megaregions, what matters the most is the volume and pattern of interac-
tions. To this end incoming and outgoing links between pairs of tracts (or counties) are
added together to form a single undirected link. The weight of each link is therefore
equal to the number of people that use the ’origin’ node as a home place and the ’des-
tination’ node as a workplace, plus the number of people that have the ’origin’ tract
registered as a workplace and the ’destination’ as home. This step also addresses the
problem mentioned by Glocker (2018) that switching the home and work locations can
change the results of the algorithm.

Processed data

Figure 4.3 shows a map of a 1,000,000 random sample the processed data for the lower
48 states. There are some general patterns that emerge just with visual inspection.
First, some of the previously mentioned megaregions are visible. For example there is
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an outline of the Norheastern Metropolis corridor extending from Boston in the north
to Washington D.C. in the south. The outline of the Texas triangle - the area between
Houston, San Antonio and Dalas - is also visible. Second, the further west you go
from the Mississippi river the less economic links become visible, until the West Coast
is reached. This reflects the population density of the United States. Third, it is hard
to specifically delineate the exact boundaries of each region just by looking at the
map. For example, the entirety of California looks completely connected as one big
megaregion.

Figure 4.3: LODES origin-destination flows

4.3.2 Network analysis

Treating a set of relationships such as the ’origin-destination flows’ between spatial
units, calls between people, or social media interactions as an abstract graph makes it
possible to draw on the rich theory and tools of network analysis. The main idea is
that nodes can be grouped in such a way, where nodes within a group interact with
each other more than with nodes outside of the group. In network analysis community
detection is the problem of splitting the nodes of the graph in several ’similar’ commu-
nities based on the connections, in order to gain insights into the networks dynamics.

Community detection has been used in several works in order to delineate regions
or areas. Examples of applications of this methodology in the US are Nelson and Rae
(2016), in China - Wu et al. (2019), in Central Europe - (Khiali-Miab et al., 2019) and
in Scotland - (Hamilton and Rae, 2018). Glocker (2018) cites some disadvantages of
focusing solely on functional delineations such as our approach. One is related to the
quality and reliability of the available data. Often travel surveys and commuter surveys
are not 100 percent accurate. The data does not cover all types of work - project work,
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or home locations. The boundaries are effected by whether the network of commutes
is constructed using places of work or home locations. Lastly, transportation links
play an outsized role in the analysis since they directly influence commuter flows and
employment patterns.

These criticisms are addressed by the specific choice of methodology and data. The
LODES dataset covers the records of more than 140 million people in private sector
work, therefore problems of representability should have limited impact. Furthermore,
the focus is on megaregions where the density of the population is the highest. The
problem with transportation links is addressed by the methodology. It is possible for
two cities, say New York and Philadelphia to be in the same community even if poten-
tially they dont have any links between them, provided there are intermediary nodes
with sufficient links.

Furthermore, this paper uses a different community detection algorithm and mod-
ifies its output to produce a hierarchy of geographical units at various levels. This
hierarchy makes it possible to order the results by integration based on the level they
appear in. It also makes it easier to validate the results of the analysis, by comparing
the resulting delineations at various scales to other existing geographical units. Lastly,
the connections between tracts at different levels of the hierarchy have different inter-
pretations.

4.3.3 Louvain algorithm

The algorithm used in this paper is Louvain (Blondel et al., 2008). In several com-
munity detection comparison papers it is found to produce state of the art results
(Rahiminejad et al., 2019; Lancichinetti and Fortunato, 2009) . It finds structure in
the data based on a notion of similarity between census tracts called modularity (New-
man, 2006). Modularity is a measure of how much stronger the observed links within
a community are than it would be expected if the network was connected randomly.
Formally, it is defined as the difference between two fractions. The first is the fraction
of flows between a pair of nodes within the potential community to the total number
of flows in the graph. The second one is the expected fraction of flows between a pair
of nodes within the potential community to the total number of flows in the graph, if
the flows between census tracts were random and did not follow any specific pattern.
It ranges from -1 and 1 and a score of closer to one indicates a graph that has strongly
expressed communities, otherwise the network structure is close to random.

The Louvain algorithm works in two steps. In the first, each of the nodes is paired
up in the same community with immediate neighbours based on how much the assign-
ment increases modularity. This continues until no further assignments increase the
total modularity. The second step merges into a single node all of the nodes in each
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community. Then the first step is repeated on this new ’induced graph’ and after it the
second step. The whole process is repeated until there are no more modularity gains.
This process is illustrated in Figure 4.4.

Figure 4.4: Summary of the steps in the Louvain algorithm (Blondel et al., 2008)

In the case of the processed LODES data this means that as a first step the method
delineates, what Nelson (2020) calls ’conchronations’ - spatial units made up sets of
census tracts, that have a non-arbitrary boundary based on employment interactions.
The boundary is well-defined but is not strict, since the different conchronations still
interact with each other. Next, it repeats the same process, however for this step it
uses the conchronations as a base geographical unit, rather than the census tracts. This
results in a hierarchy that shows the interaction between sets of census tracts at various
scales.

4.3.4 Delineation analysis

The hierarchy is analysed at the various levels to see the extent to which the delin-
eations correspond to other geographical units and to explore whether there is megare-
gional integration and when it starts. To do this the detected areas at the different
scales are compared to the government defined statistical areas such as CBSAs and
CBAs, state boundaries, as well as megaregions identified in Nelson and Rae (2016);
Hagler (2009). The CBSAs and CBAs were chosen since the are widely used and
studied in practice. There are also two megaregional comparisons carried out. First,
with the megaregions defined in the America2050 project (Hagler, 2009), which are
chosen due to their wide usage and availability. There is academic (Stich and Webb,
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2019; Ross et al., 2009), federal 1 state and local level (Oden and Sciara, 2020; Bellis-
ario et al., 2016) research into them. Furthermore, most case studies that exist focus
on the regions specifically defined in the America2050 project. For example, Ross
et al. (2009) considers the whole of California as one big megaregion, however the
Bay Area economic council splits the state into northern and southern megaregions
(Bellisario et al., 2016) similar to the America 2050 project. Lastly, the shapefiles are
readily available online. The second comparison is with the results from Nelson and
Rae (2016), since they are the closest to this study in terms of methodology and data.

Two types of comparisons are carried out between the resulting set of delineations
from the hierarchy and the other areas - one based on rand score and one based on
spatial intersections. The latter treats the two sets of delineations which are being
compared as polygons and measures percentages of spatial overlap. The former, is a
standard measure of how similar two sets of assignments are and does not take spa-
tial information into account. The rand score measures the similarity in census tract
grouping, between the delineations and the other areas. It has a range from -1 to +1,
with higher values indicating more agreement between assignments.

Lastly, for each level of the hierarchy we analyse the spatial distribution of em-
ployment within the detected community at every level. This is done through the local
Moran’s statistic (Anselin, 1996), which constructs local spatial statistics to measure
“significant spatial autocorrelation for each location.” The method allows us to dis-
tinguish hotspot areas within each delineated community with high employment sur-
rounded by high employment values(HH), low value surrounded by low values (LL),
areas with low values surrounded by high values (LH) and high values surrounded by
low values(HL).

Similarly to Arribas-Bel and Sanz-Gracia (2014), we focus on the distribution of
employment based on employment centres : ”An employment center is a contiguous
set of spatial units within an urban region, conditional on each spatial unit exhibiting
a spatial concentration of high employment density that is significant at the p < 0.10

level”. Where spatial units that classify as high employment are those of high em-
ployment surrounded by areas of high employment, and areas of high employment
surrounded by areas of low employment. And contiguity is set by the queen criteria
- two units are considered spatially contiguous if they have a point in common. The
spatial units in each case are the units one level below in the detected hierarchy. For
example, the spatial units in the first level will be census tracts. The employment level
for each unit is derived by aggregating the number of employees within it, based on
the units’ spatial extent. This classification of the area within communities allows us
to analyse how spatially centralised or decentralised employment is at different scales.

The results from this spatial analysis allows for further verification of results and

1https://www.fhwa.dot.gov/planning/megaregions/what are/
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comparisons with the literature. A distribution of the economic activity similar to
those identified in the literature provides a further signal that the delineations represent
aspects of underlying economic processes and are not artefacts of the data or method-
ology. Furthermore, if some of the delineated units created resemble other units, such
as metropolitan areas, the comparison also highlights the effects of boundary delin-
eation choices on final results, which is an active area of research (Möck and Küpper,
2020). Lastly, if the delineated areas represent megaregions, the analysis of the spatial
distribution at multiple scales provides some insights into the polycentric structure of
megaregions.

4.4 Results

The algorithm converged after three iterations, producing a three-level hierarchy. There
are no spatial outliers, even though no spatial data was used in the detection procedure.
The communities detected in Figure 4.7 are built up from the communities at the sec-
ond level shown in Figure 4.6, which in turn are made up of the communities in Figure
4.5, which represent collections of census tracts. Level one has a modularity score of
0.673, level two - 0.905, while the last level has 0.949. It should be noted that there
exist numerous flows between pairs delineation which are not shown on the map. For
example in the third level, there are flows between pairs of delineated communities
shown in the map which represent millions of people.

4.4.1 Level one communities

The first level of community detection, shown in Figure 4.5, corresponds to areas built
up from census tracts based on the flows of the data. The census tracts are grouped
together in self contained communities that have more connections within them than
is expected based on the definition of modularity.

78



Figure 4.5: Level 1 communities based on LODES aggregated by census tract

The detected communities roughly correspond to a mixture of metropolitan/micropolitan
and combined statistical areas in terms of size. There are 1349 detected communities
and 929 official core statistical areas defined in the census respectively. For the most
part the algorithm merges census tracts into counties and merges the counties together,
however there are exceptions. Census tracts are grouped together into their official
county boundaries in 75% of cases. In the rest of the cases, official county boundaries
are split between detected communities. For example, only 10% contain numerous
communities, where the second largest community covers at least 30% of the of the
county.

The adjusted rand score between the level one communities and CBSAs is 0.86.
This value, close to +1, suggests that the majority of census tracts in our delineations
are assigned in a similar way to official metropolitan and micropolitan areas. If we
consider only detected areas that geographically intersect with defined CBSAs, 70 %
of core statistical areas have at least 80% of their geographical area falling within
a single community, further suggesting a close resemblance to CBSAs. Some of the
differences are related to places like Salt Lake City, whose community resembles more
its combined statistical area. On the other hand some densely populated CSAS like
New York-Newark-New Jersey are separated. Other differences can be explained by
the fact that there are no population restrictions placed on the data and that every
tract has to be part of a community. This means that low density places in states like
Montana and Texas, which do not have enough population to qualify for CSAs also
form communities.

Table 4.1 shows a summary of the areas with more than one centre, detected after
applying the LISA algorithm to each community at this level. There are 341 commu-
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nities which have more than one detected centre. They differ in the amount of workers
they account for, however together they account for over 120 million or 0.87 % of the
flows. Which suggests that employment within the delineated communities at this level
is decentralised. The rest of the areas are split into two groups - a group with no cen-
tres and one with a single centre. There are 297 communities with no detected cluster,
which have relatively sparse population with a mean of 10,000 population, where 75%
have a population less than 14,000. The last group consists of 710 communities with
a single cluster, again these are also sparse in terms of population. The mean of the
group is twenty thousand with 75% of the data having less than 24,000 people.

Table 4.1: Summary statistics for level one communities with more than one detected
centre

Census tracts Total Employment Centres Census tracts in centres Proportion of employment
within centres

mean 177.96 353812.32 5.41 16.98 0.33
std 396.42 820655.22 7.97 31.91 0.16
min 3.00 2470.00 2.00 2.00 0.03
25% 28.25 44244.00 2.00 4.00 0.22
50% 58.50 103560.00 3.00 7.00 0.31
75% 151.75 289184.50 5.00 15.00 0.41
max 4218.00 8319571.00 79.00 302.00 0.92

4.4.2 Level two communities

Figure 4.6 shows the second level of the hierarchy, which represents mergers of the
Level 1 communities. The resulting areas are in general much larger than core based
statistical areas and in fact, most are made up of more than one combined statisti-
cal area. At this level only 2% of officially defined counties encompass two different
communities, which shows that the communities at this level are almost always a com-
bination of official counties. There are 72 detected communities as opposed to the 48
states, however there are clear examples of detected states such as Wyoming or Col-
orado. The rand score between the states and the level two communities is 0.72 also
suggesting a close similarity. In terms of spatial overlap, there are 29 states that have
atleast 80% of their area covered by a single delineated community. The rest of the de-
tected communities correspond to a grouping of many states in a cluster (Maryland and
Virginia), while the others are places like Florida where the communities are centred
around major cities.
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Figure 4.6: Level 2 communities based on LODES aggregated by census tract

Table 4.2 shows the results of running the LISA analysis on the second level com-
munities. Here a centre is set of contiguous level 1 communities with high employ-
ment. There are 49 communities with a single centre, which account for 81 % of the
flows, 14 with no centres and 5% of the captured flows and 9 with multiple centres
which account for 14% of flows. In contrast to the distribution of the firs level, most
people reside in places with a single centre, suggesting that as the scale grows employ-
ment is concentrated to central areas within the delineation.

Table 4.2: Summary statistics for level two community centres

Number of level
one communities Total Employment Centres Census tracts in centres Proportion of employment

within centres
mean 18.71 1930493.49 0.94 1.56 0.37
std 14.41 2319694.73 0.60 1.24 0.30
min 2.00 15443.00 0.00 0.00 0.00
25% 6.75 329664.25 1.00 1.00 0.09
50% 15.00 1214232.00 1.00 1.00 0.31
75% 28.25 2641038.25 1.00 2.00 0.66
max 56.00 10402941.00 3.00 5.00 0.95

4.4.3 Level three communities

Figure 4.7, shows the last level of the community detection with 34 detected com-
munities. The communities group multiple states together and mostly respect state
boundaries. Exceptions are Idaho, Illinois, West Virginia, New York and California,
which have multiple communities crossing their borders. Population density also plays
a role in the delineation. The highest number of communities appears in the north east,
while the largest clusters in terms of area appear in the less populous mountain range.
There is a different pattern in the most populous states - in California there are two
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detected communities, and Texas and Florida form one community each. The detected
regions have within them as few as 500 thousand employees to well over 11 million,
with most being between 1 and 6 million.

Figure 4.7: US megaregions based on LODES aggregated by census tract

LISA analysis is not carried out at this level, since it will not yield useful results
due to the fact that most communities are created by merging zero, two, three, or at
most five spatial neighbours. This leads to a low number of spatial connections and
non-informative results.

4.4.4 America2050 comparison

The communities from the last hierarchical level are compared to the established megare-
gions from the America2050 project, shown in Figure 4.1. The rand score between the
delineations and the megaregions is only 0.2, in contrast the score between the de-
lineations and the state boundaries is .35. This result suggests that the delineations
resemble states boundaries more than megaregional boundaries. However, there is a
lot of regional variation in the results.

Table 4.3 shows what percentage of tracts from each America2050 megaregion
fall outisde the largest intersecting community overall. A low percentage means that
most of the census tracts of an America 2050 megaregion fall within a single com-
munity and that there exist strong connections, as measured by modularity, between
a megaregions’ constituent census tracts. Thus, a low percentage suggests evidence
of emergent economic interactions at a megaregional scale. On the other hand, high
percentages show a split of the megaregion between several communities and stronger
local preference - there are groups of census tracts that are not strongly connected to
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the megaregion, again as measured by modularity. The higher the value the more of
these groups there are.

Over 90% of all of the tracts from the Arizona Sun Corridor, Cascadia, North-
ern California, Southern California, Southern Florida and Texas Triangle fall within a
single community at the last super-state level of the hierarchy. Of these six, Arizona
Sun Corridor, Northern California, Southern California, and Texas Triangle appear at
the second hierarchical level, suggesting that they are more integrated than Cascadia
and Southern Florida. Furthermore, all of them, apart from Cascadia are megaregions
within a single state. The rest - Front Range, Gulf Coast, Midwest, Northeast and
Piedmont - are split between a number of communities at all levels.

Table 4.3: Percentage of tracts outside of largest intersecting community in each
megaregion

Megaregion Percentage of tracts outside of largest intersecting community
Arizona Sun Corridor 0.00 %
Cascadia 0.00 %
Front Range 0.21 %
Gulf Coast 0.40 %
Midwest 0.78 %
Northeast 0.58 %
Northern California 0.04 %
Piedmont 0.45 %
Southern California 0.09 %
Southern Florida 0.01 %
Texas Triangle 0.00 %

Additionally, we compare our delineations to Nelson and Rae (2016). There is a
.62 rand score similarity between our delineations and Nelson and Rae (2016), shown
in Figure 4.2. However, the rand score rises to .77 when compared with our sec-
ond level communities, which shows that our final communities are of a larger scale.
Some differences are the emergence of communities that almost fully correspond to
the Northern California, Southern California, Arizona Sun Coridor and Texas triangle
megaregions, which are not present in the Nelson and Rae (2016) delineations. Other
minor differences come from sparse density areas, where there are multiple possible
assignments due to the low number of flows.

4.5 Conclusion & Discussion

4.5.1 Large-scale economic interactions in the US

Overall, the analysis carried out in this paper show that large-scale economic con-
nections break down across state boundaries, whereas cross-state boundary interac-
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tion is more common at lower-scales. In the emergent communities, at the first level
75% of census tracts were combined into their official counties, whereas at the second
level that percentage was 98%. Afterwards, the counties were not necessarily com-
bined in their respective core-based statistical areas. This suggests that as the scale
increases official state boundaries played a more prominent role. Nevertheless, there
are multiple examples of pairs of states which have strong economic interactions and
were merged at the second or third level in the hierarchy. However, there is evidence
of functional integration at the megaregional level in only six out of the eleven pro-
posed megaregions by Hagler (2009). Arizona Sun Corridor, Texas Triangle, Southern
Florida, Southern California and Northern California are the single state megaregions
that have corresponding detected communities. Of these, Arizona Sun Corridor, Texas
Triangle, Southern California and Northern California appear earlier in the hierarchy
suggesting that they are better integrated than Southern Florida. Cascadia was the only
detected megaregion that crosses state boundaries. Even in the case of Cascadia, there
are stronger interstate preferances than megaregional, since communities that corre-
spond to the states appear first.

This does not mean that there are few interactions between the constituent parts
of the other proposed America2050 regions - Piedmont, Midwest, Northeast and Gulf
Coast. For example, the Midwest (or Great Lakes) megaregion is split between 9 com-
munities that roughly correspond to states. In over one fifth of census tracts that make
up the megaregion definition, 10% of the links point to different communities. Sim-
ilarly, the America2050 Northeast megaregion is split between 5 communities and a
quarter of the census tracts that define it, have more than 10% of their links pointing
to outside communities. In these two cases, the links represent millions of economic
interactions across state boundaries. However, relative to the number of interactions
within the individual communities, there are not enough connections to warrant merg-
ing them. There are even stronger connections in the Piedmont and Gulf Coast megare-
gions, however they are still not strong enough to cross all state boundaries. In the
case of the Piedmont, there are enough connections between its constituent parts in the
Carolinas, but not between them and the counties in Georgia, or between the parts in
Georgia and Alabama. Similarly the Gulf Coast megaregion has strong connections
between its parts in Louisiana and Mississippi, but not Alabama or Texas.

A megaregion that breaks the state boundary dependence is Cascadia, the megare-
gion in the north-west that has Seattle and Portland as its major cities. Cascadia is
also different from the other megaregions in that it a bioregion - an area with common
plants, animals and environment, unique at a global scale - and there was an effort to
unite Cascadia for tourism in 1996 2. However, this was not successful partly because
each state has its own marketing plans and budgets. Later, there has been a series of re-

2http://www.america2050.org/pdf/ecolopoliscascadia.pdf
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search papers looking at the megaregion starting with an extension of the America2050
project (Hagler, 2009). Recent attempts found evidence of an emergent industry at
the megaregional scale centred around electronics production, information technology
and communitication services (Ahuallachain, 2012). The results from the hierarchical
analysis, give further evidence that there is emerging employment behaviour that cor-
responds to the scale and definition of the Cascadia megaregion. However, there are
stronger interstate preferences than megaregional, since communities that correspond
to the states appear first. The fact that the megaregion only appears at the third level,
suggests that there are enough connection across the entire border between Oregon and
Washington, but not enough between the America 2050 counties or census tracts that
are supposed to define it.

Another finding is the communities that make up the two California megaregions.
Both appear in the second level of the community detection hierarchy. Even in the last
level, Nevada represents its own community and there are no parts of it in the other
megaregions. This is in contrast to most studies that group Las Vegas with Southern
California and Reno with the Northern California megaregion, e.g. (Hagler, 2009; Har-
rison and Hoyler, 2015b; Glocker, 2018). Again this result suggests that state bound-
aries play a very important role. The division between Northern and Southern Califor-
nian megaregions in the detected communities is consistent with the decision taken in
America2050 to split California in two. This is in contrast to other research, for exam-
ple Nelson (2017) that treats the whole state as one big megaregion. Another finding
is the difference in the hierarchical structure of the two megaregions even through they
are in the same state. The Southern California megaregion is highly polycentric and
mostly already present in the first level of the dataset. While the Northern megaregion
consists of more independent units that form up the megaregion at a later scale.

The analysis also showed that our level two communities are similar to the megare-
gions defined by Nelson and Rae (2016). Lang et al. (2020) argues that the Nelson and
Rae (2016) are more similar to ’megalopolitan areas’, rather than megaregions. How-
ever, our final delineations are larger than Nelson and Rae (2016) and by extension
’megalopolitan’ areas. Communities that encompass Arizona Sun Corridor, Texas Tri-
angle, Southern California and Northern California already appear at the second hierar-
chical level of our results, whereas the final third level communities represent an even
larger scale, with two other communities encompassing Hagler (2009) megaregions
emerging.

4.5.2 Spatial distribution at different scales

The results from the spatial analysis of employment suggest that at a scale, similar
to the metropolitan one, most employment in the US is decentralised. A general pat-
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tern of intra-metropolitan decentralisation is well-established in United States poly-
centricity research (Dadashpoor and Malekzadeh, 2021; Manduca, 2020). This corre-
spondence between our results and the literature is a further signal that the hierarchy
of delineations captures aspects of economic reality at different scales, which were
not pre-defined, but inferred from the data. More specifically, our analysis suggests
a strong pattern of employment scatteration or dispersion. The ’Proportion of em-
ployment within centres’ column in Table 4.1 shows the percentage of census tract
employment that the centers capture from the total number of workers in the rest of
the delineation. The mean percentage of workers within centres is 33 %. In 75%
of the level one delineations the proportion is below 41 % and communities with a
higher proportion capture just 22 million of the all workers. This means that for most
places, which account for 100 million workers, there is some degree of employment
scatteration, not just concentration within centres. This finding contrasts with previ-
ous research using the same dataset, which found decentralisation of employment but
heavy concentration in few centres (Manduca, 2020). Part of this difference can be
attributed to the differences in scale, which can have a large impact on polycentricity
results - the phenomenon can be defined or defined away depending on the initial de-
lineation of the territory under analysis (Möck and Küpper, 2020). For example, in our
analysis New Jersey and New York are areas, whereas in most polycentricity research
that uses metropolitan statistical areas they are parts of the same area.

The decentralisation pattern generally disappears when the scale is set to the sec-
ond level of the hierarchy, where communities are large state-like delineations. This
phenomenon - decentralisation and a lower scale and more centralisation as the scale
of the units increases - is present in studies of employment concentrations in both Eu-
rope and China (Hall and Pain, 2006; Liu et al., 2018). The exception to this general
pattern is the Phoenix Sun Corridor megaregion, for which the analysis showed there
is no identifiable centre at this larger scale. This result, combined with the fact that the
megaregion appears as early as the second level in the hierarchy, makes the Phoenix
Sun Corridor the most integrated and decentralised potential megaregion in the United
States.

4.5.3 Implications

Megaregions describe a new geographic scale of social and economic interaction that
span over several administrative boundaries. However, they do not map cleanly to any
jurisdictional element and the benefits of planning and administration at the megare-
gional scale requires collaborative efforts at various levels. Several papers, such as
Ross et al. (2016); Nelson (2017); Lang et al. (2020); Friedmann (2019), suggest that
formal administrative structure and cooperation between different governing bodies
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at the megareional scale will be necessary to drive megaregional creation and opti-
mization. This can take the form of better transportation links that lead to greater
megaregional coherence (Yu and Fan, 2018), coordinated economic policies aimed at
leveraging megaregional economies of scale (Marull et al., 2013) or large-scale sus-
tainability planning (Ross et al., 2016).

Such efforts are, however, not widely adopted. For example, Stich and Webb
(2019) find that planning in Lousianna counties, could be aimed to leverage the traffic
from the Gulf Megaregion, but no such initiatives exist. Similarly, research by the Bay
Area Council Economic Institute show that there are increasing flows of people, goods
and services within the megaregion, but there is a lack of cross-county collaboration
(Bellisario et al., 2016). Oden and Sciara (2020) find that at the national scale, only in
the case of the Arizona Sun corridor, Northern and Southern California megaregions,
the megaregional scale and language are used in transport planning. Evidence of al-
ready emergent megaregional interactions is one way to provide motivation to build
the required collaboration efforts between potential partners.

The results of the analysis show that there are two types of the proposed US
megaregions.

The first are the megaregions that are delineated in our analysis - Arizona Sun Cor-
ridor, Texas Triangle, Southern Florida, Southern California and Northern California.
The results suggest that there exist strong economic links between these regions, re-
flected in employment patterns. These results lend support to researchers, planners and
administrators’s suggestions to develop specific planning and administrative efforts for
these megaregions, in order to make the most out of the already emergent economic
interactions (Nelson, 2017; Lang et al., 2020; Purkarthofer et al., 2021). This includes
’Economic Development Structures’ which cross county lines as proposed by Bellis-
ario et al. (2016) for the Southern California megaregion. Additionally, infrastructure
projects, such as better transportation links, can further increase megaregional coher-
ence (Yu and Fan, 2018).

The second set of megaregions are those proposed in the literature but not present
in our set of results - Piedmont, Midwest, Northeast, Front Range and Gulf Coast. The
inability to delineate areas encompassing these regions suggests that the existing eco-
nomic interactions are more locally concentrated. Our analysis shows that if large scale
economic interaction are to be encouraged for these megaregion, the focus should be
on developing structures, both political and economic, that target neighbouring coun-
ties from different states that fall within the same megaregion. This is the case, since
megaregional integration breaks down across state boundaries.

Additionally, the results from the different scales could be used directly or com-
bined with other data sources for planning and research purposes. First, the results can
be combined with other data sources, such as the social interactions used by (Calafiore
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et al., 2021). Second, analysis that uses metropolitan areas, or focuses on local labour
markets, could use the first level of delineations from our results instead. Any differ-
ences in the resulting analysed phenomena will highlight the effects that the 25% fixed
cutoff used in delineating metropolitan areas have on the current results in the litera-
ture. The polycentricity analysis carried out in this paper is one example of this, and
studies that focus on health (Meijers, 2008), sprawl (Barrington-Leigh and Millard-
Ball, 2015) or scaling laws (Lobo et al., 2020) in urban areas could use our results in a
similar manner.

4.5.4 Future work

One limitation present in this and previous community detection approaches is the fact
that methodology relies only on one type of data. This could be business transactions
or commuter flows, but even if these flows implicitly capture some information about
historical and cultural ties important aspects are missing. Hamilton and Rae (2018)
show this in the context of Scotland, where historically separate areas are merged to
increase modularity, however for a variety of reasons, some of which political, this is
not desired. New forms of data (Arribas-Bel and Tranos, 2018) can help in addressing
this by capturing more varied interactions between people such as leisure and social
visits which reflect cultural cohesion.

There are also several limitations of the methodology. First, community detection
gives a separation of the graph, rather than a clustering - i.e. all communities have
to be assigned to a deliniation, even if this is not desirable. Second, sometimes as the
scale of the communities grows, problems arise from the definitions of modularity - the
value of edges between nodes increases as the scale increases. This means that there
are census tracts with a low number of associated employees that can be attached to any
community without it much effecting the overall modularity score. Also as the scale
increases the relative value of, for example 1,000 commuters between places increases.
This issue is somewhat mitigated in this paper, since the focus is on the megaregions
which represent high density areas and there is validation carried out at each level of
the hierarchy to ensure that all the intermediary results are valid. Nevetheless, advances
in methodology which specifically take into account this application can improve the
results and adress these limitations (Singleton and Arribas-Bel, 2021).

This study could be further extended by considering the evolution of megaregions
over time. This is possible since there is historical LODES data available. The chang-
ing megaregion boundaries could give even more information about the dynamics of
large scale economic units. Further the Lodes data can be broken down into income
levels to see what differences income makes to the emergence of megaregions in the
US.
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5

Delineating urban areas through

satellite-derived building footprints

Abstract: This paper takes advantage of new forms of data and delineates urban
boundaries in the United States, based only on the footprints of individual buildings

and a machine learning approach. For this purpose it uses 129 591 852 building
footprints, generated by applying computer vision algorithms on satellite imagery.

The delineation approach separates areas of high building density surrounded by low
density, where the exact values for low and high are locally inferred from the data.
Overall our results show that its possible to use building footprints, derived from

satelite imagery to define the extent of urban areas in place of population data The
resulting delineations are 4009 and capture urban areas with population ranging from

10000 to 17 million. In total they account for 82% of the population in the
Contiguous United States and 78% of all the building footprints. The number of

building footprints in the clusters is highly correlated with the actual census
population with statistically significant results - spearman .95 and pearson .95. On

average the resulting boundaries are most similar to census defined urban centres and
functional urban areas and are much larger than official city boundaries. The

delineated areas have varying internal densities, which change in different places –
LA has numerous dense cores, whereas the San Jose/San Francisco delineation has a

relatively consistent density. Furthermore, in addition to internal variations we
analyse the building density in the US at different scales



5.1 Introduction

The majority of people currently live in cities and it is projected that by 2050, there
will be an additional 2.4 billion to do so (Batty, 2018, chapter 2). Given the current
and projected growth, urban areas have become a principal driver of most social, insti-
tutional and technological innovations and are the focus of the solutions to numerous
pressing challenges facing society (Lobo et al., 2020). The growing levels of urban-
isation have led to new emergent urban phenomena and many challenges related to
transport, sustainability and urban management. Defining bounded territorial units for
quantitative analysis, at different scales, is one of the core steps in carrying out the nec-
essary research to address and manage these changes. At the most basic level, different
approaches to delineations of boundaries lead to a different number of cities, city sizes
and urban population (Roberts et al., 2017). Furthermore, the spatial extent of urban ar-
eas affects the calculations of numerous properties - employment, labour productivity,
population density - which in turn influence subsequent analysis at various scales (Ar-
caute et al., 2015; Batty, 2018; de Bellefon et al., 2019; Lobo et al., 2020; Parr, 2007).
Since relying on official urban designations is problematic, researchers have attempted
to provide consistent quantitative urban boundary definitions in numerous ways (Du-
ranton, 2021), aided by the rising availability of new forms of data and methods (Wolf
et al., 2020; Arribas-Bel et al., 2021a).

In general, these delineation approaches rely on combining fundamental units,
based on similarity of attributes or relationships. The attributes can either represent
functional - commuter flows or number of workers at a place - or form data such as
built environment characteristics. Popular choices of units are small scale administra-
tive areas - census tracts, counties (Nelson, 2020) - or cells and hexagons derived from
gridding the territory under analysis (Florczyk et al., 2019). These can be grouped
together to form urban areas in three ways: first, based on relationships such as com-
muter flows; second, on spatial contiguity and characteristics of the units - population
density or night lights; or third, on combinations of the previous two approaches. With
the rising availability of new forms of data (Arribas-Bel and Tranos, 2018), researchers
are able to look at other units and interactions such as tweets (Wei et al., 2020), mo-
bile phone data (Secchi et al., 2015), location-based social networks (Calafiore et al.,
2021).

All of these approaches typically require that a number of parameters or models
be specified beforehand. Some approaches may require the assumption of a standard
urban form, e.g. a monocentric model (de Bellefon et al., 2019; Taubenböck et al.,
2019). Other approaches, for example delineations which rely on population grids,
require density thresholds or grid sizes to be explicitly set by the researcher. In gen-
eral, lower minimum density requirements increase the scale of delineated areas, while
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higher density values decrease it (Balk et al., 2018; Arcaute et al., 2015; de Bellefon
et al., 2019). Different parameter choices can lead to separating a city apart or merging
together metropolitan areas. Furthermore, the choices of parameters affect what types
of urban forms, such as suburbs, ex-urbs or towns are included in the delineations.
Overall, the different parameter choices have an affect on the final size and scale of
delineated areas, which in turn affect the subsequent analysis of phenomena (Möck
and Küpper, 2020; Balk et al., 2018). Currently, there is no agreement on an optimal
scale, specific optimal threshold values or whether a single value should be applicable
in all contexts (Statham et al., 2020, 2021; Duranton, 2021; Möck and Küpper, 2020).

The main aim of this paper is to operationalize a minimalist definition of what an
urban area is - a geographical area with a concentration of individuals and activities
higher, relative to the surrounding area (O’Sullivan, 2011) - and derive the spatial ex-
tent of cities across the whole United States. We aim to apply as few restrictions and
assumptions to this operational definition as possible by using a modified HDBSCAN
approach (Garcia-Pulido and Samardzhiev, 2022). Specifically, we do not explicitly
parametarise the number of areas, scale, density thresholds, CBDs, models or use in-
termediary aggregations such as grids. Instead we delineate areas through density
clustering of individual buildings polygons, based on variable density thresholds, in-
ferred locally from the data. Furthermore, we do not explicitly specify the final scale
of the units, the distinction of what is urban and what is not and instead derive these
quantities from the data. By doing this there are no explicit restrictions on what con-
stitutes part of an urban area - our results be a mix of units of different urban scales
and encompass multiple ex-urban and peri-urban components locally. The only pre-set
parameter is the minimum number of buildings within a delineated area, for which we
test several options.

To delineate the final areas, we place all the buildings in the contiguous United
States into a nested hierarchy of parcels of land, based on the location of individual
buildings and their local built environment density. The final results are derived by
extracting the most consistent delineations in this hierarchy and are compared against
six other research and administrative urban units of different scales. Furthermore, we
use the hierarchy to achieve two additional aims - first, to analyse the density varia-
tions within individual boundaries and second, to analyse the relationship between the
delineated units.

The main advantage of our approach is its flexibility. Urban areas are delineated
using relative values of ’high’ and ’low’ which vary locally as inferred from the sur-
rounding building footprints at a particular place. There is no single density, radius
or model requirements imposed on the identified boundaries. The final results can be
anything from highly dense and large scale polycentric urban areas such as metropoli-
tan areas, to sparser and smaller scale towns and they can be of a different scale in
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different parts of the country.

Furthermore, a second set of advantages comes from the use of the 129 591 852
individual building footprints, generated by applying computer vision algorithms on
satellite imagery (Heris et al., 2020). First, there is no need to aggregate administra-
tive units or grid cells. This means that the analysis minimises problems related to the
modifiable area unit problem (Openshaw, 1979) or issues related to the choice of con-
tiguity matrix selection (Statham et al., 2020, 2021). Second, there is no need to rely
on surveys or census to obtain population data, since the approach relies only on the
footprints. Third, the methodology can potentially be applied globally, since buildings
are homogeneous units across different countries and the footprints can be extracted
from satellite images. Fourth, the approach has the potential to track temporal changes
in real-time, provided there are up-to-date satellite images available.

The rest of the paper is structured as follows: Section 2 provides background on
related approaches to urban area delineation, for different problems and scales. Section
3 and 4 describe in detail the dataset and methodology respectively. Finally, Section 5
and 6 describe and discuss the resulting urban areas, comparisons to other delineations
and the results from the other analyses carried out.

5.2 Literature review

5.2.1 Urban delineations and scale

Different urban challenges are tackled using delineations of different scales and sizes.
Questions about the effects of urbanisation and urbanisation policies on national econ-
omy are tackled using delineations, which represent cities or dense urban centres
(Roberts et al., 2017; Florczyk et al., 2019). In these cases boundaries affect statistics
such as employment and labour productivity, which in turn influence theories about
the effects of urbanisation. For example, several analyses from Argentina, using de-
lineations based on local administrative units, challenge a long-held theory that as
urbanisation increases the proportion of services in the national economy also grows
(Roberts et al., 2017). In contrast, analysis using urban delineations based on night-
light intensity, which ignore local definitions of ’urban’, show a smaller percent of
urbanisation and therefore a proportion of the service economy in line with theoretical
expectations (Roberts et al., 2017).

Other types of analysis, which focus on for example, the spatial distribution of
employment patterns, use larger scale delineation units (Parr, 2007). These functional
urban areas, such as metropolitan areas, consist of cities along with nearby towns, and
in some cases other cities, with the goal of capturing the spatial extent of local labour
and activity pools. In addition to directly studying spatial labour patterns (Arribas-Bel
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and Sanz-Gracia, 2014), functional urban areas are also used to study the effects of spa-
tial urbanisation patterns on sustainability, culture, public health and social integration
outcomes (Meijers, 2008). In all of these cases, research into the above phenomena are
affected by the exact delineation methodology of both of the area under study and the
number and boundaries of proposed centres within it (Möck and Küpper, 2020).

There are numerous other proposals that the appropriate scale for analysis and
planning of economic and sustainability policies is larger still and should focus on
megaregions (Hall and Pain, 2006). Megaregions or related large-scale urban concepts
represent urban agglomerations - numerous cities, their surrounding towns and areas
- that capture huge areas of built up environment, population and economic activity.
In the US, it is estimated that over 80% of the population and economic growth until
2045 will happen in megaregions (Nelson, 2017). Due to the large population and eco-
nomic output, it is further stipulated that megaregions can support varied economies
of scale and can drive the competitiveness of national economies in global markets
(Glocker, 2018). Additionally, megaregions can act as the appropriate scale for sus-
tainable development, by tackling problems brought about by increasing urbanisation,
which cross current administrative boundaries (Ross et al., 2016). However, in order
to reap these benefits large scale planning and collaboration between numerous part-
ners is required (Wheeler, 2015). Different megaregional definitions and delineations
lead to different numbers of megareigons, spatial boundaries, sizes and scales (Hagler,
2009; Lang and LeFurgy, 2003; Ross et al., 2009; Glocker, 2018).

There is no agreed upon best delineation method, data or appropriate scale to
use for analysis of these and other aspects of urbanisation and cities (Statham et al.,
2020, 2021; Duranton, 2021; Lobo et al., 2020; Batty, 2018; Möck and Küpper, 2020;
Glocker, 2018). Additionally, the same datasets and methodologies can be used to
delineate units at different scales depending on explicit parameterasations. Different
delineation approaches come with advantages and drawbacks, which affect subsequent
analysis and calculations.

5.2.2 Delineation approaches

Local administrative and official city boundaries have proven to be sub-optimal for
quantitative analysis. Cities can extend beyond their borders into the surrounding area,
however for political or economic reasons their official boundaries do not necessar-
ily reflect their growth (de Bellefon et al., 2019). Furthermore, using administrative
boundaries makes comparisons across countries and even within the same country,
across time, difficult due to inconsistent definitions.

To address this, one popular group of delineations builds the urban areas based on
spatial contiguity and the characteristics of smaller scale administrative units. Such ap-
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proaches focus on attributes such as population size, built environment, travel time and
others. One example of this in the US is the Census Urban Centres (CUC) boundaries.
After each census, the Census Bureau delineates urban areas that represent densely
developed territory, encompassing residential, commercial, and other nonresidential
urban land uses based on local administrative and political units - census blocks and
block groups - and qualifying criteria. There are two types of urban areas delineated:
urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs)
that contain at least 2,500 people, but fewer than 50,000 people. The technical method-
ology is described in detail in the Federal Register of August 24, 2011.

Furthermore, local administrative units and associated characteristics can be used
to delineate much larger megaregions. One of the most influential sets of such delin-
eations came from the America 2050 study where megaregions are defined as ’interre-
lated population and employment centers or MSAs that share common transportation
networks, cultures, and environmental features’ (Hagler, 2009). The actual boundaries
were constructed by merging census counties based on spatial contiguity, projected
and existing population thresholds, as well as expert opinion.

Another approach researchers have taken relies on functional relationships such
as commuting patterns, taxi rides or flows of goods. The assumption is that if the
interactions between two places capture information about an economic system’s per-
formance and the daily life of individuals, it can be used to assess whether they form
part of the same urban area (Duranton, 2015). The most popular and widely-used
example in the US is metropolitan statistical areas which aim to capture local urban
labour markets, that expand beyond central urban cores. Metropolitan statistical areas
are constructed using urbanised areas, described above, as anchors and nearby coun-
ties which have a high percentage of commuters flowing into or out of them. The
commuter threshold for the 2010 census is set as 25 percent.

Additionally, flow data can be used to delineate larger scale megaregional or super-
metropolitan structures such as megaregions and megalopolitan areas. The delin-
eations are again based on the strength of relationships between the underlying units.
This can measured based on the density of connections using community detection ap-
proaches (Nelson and Rae, 2016) or by varying the commuter threshold calculations
(Lang et al., 2020).

The disadvantages of these approaches come from the aggregation units and the
methods used. First, land size and land use within local administrative units can be a
mix of both rural and urban land and their spatial extent is optimised for the purposes
of surveying, not delineations (Wolf et al., 2020). Second, concerns about urbanisation
phenomena and their impacts have led to calls for globally applicable and consistent
definitions (e.g., Florczyk et al. (2019)). Furthermore, when using explicit thresholds
different methods and values lead to different results and scales. Additionally, inter-
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action data such as commuter flows is not readily available globally or at all scales
(Glocker, 2018).

Grid delineation approaches aim to address some of these issues. One popular
example of delineations using population and built environment data, extrapolated to
grid cells, is the DEGURBA classification (Florczyk et al., 2019). This dataset repre-
sents urban areas derived by aggregating one square kilometre GHSL population and
built environment cells, where each group of cells has a population of at least fifty
thousand. Furthermore, each cell that makes up part of the urban centre has to have a
population of at least 1500 or it should have a built density of more than 50 %. The
delineated areas and accompanying datasets are widely used in the analysis of urban
phenomena at both a global and local scale (Florczyk et al., 2019). The advantages of
this approach is that it is spatially consistent due to the grid and it provides a globally
applicable definition of dense urban areas. There are other complimentary approaches
which also use population grids with different methodologies. Examples of such are
the city clustering algorithm (CCA) (Rozenfeld et al., 2008) or the approach taken by
Statham et al. (2020, 2021).

Grids can also be used to delineate larger scale areas such as megaregions or urban
functional areas, which aim to capture local labour markets similar to metropolitan sta-
tistical areas. A popular example is the combinations of multiple GHSL urban centres
into functional areas (GHS FUA), based on spatial contiguity, population thresholds
and a logit generalised linear model (Schiavina et al., 2019). Another example is Din-
gel et al. (2019), where the authors use a grid and contiguous nighlight intensity in
neighbouring cells to define metropolitan areas. At a larger scale, (Glocker, 2018)
combine the previously defined GHS FUA areas using a mean shift algorithm, popula-
tion thresholds and a distance threshold of 300km, as well as infrastructure calculations
to define megaregions. Similarly, Florida et all. (2008) uses grids and nigh light inten-
sity thresholds to define megaregions.

One of the main disadvantages of grid approaches are problems of aggregation
and contiguity choices. Different grid sizes can lead to different aggregation statistics
which affects subsequent calculations (Openshaw, 1979; Wolf et al., 2020; Arribas-
Bel et al., 2021a). Other disadvantages come from the usage of specific thresholds and
contiguity criteria. Both affect delineations and there is no universally agreed global
threshold or contiguity aggregation method (Statham et al., 2020, 2021; Duranton,
2021; Batty, 2018).

There are also other grid methods which focus on interaction data such as taxi
flows, human flows and mobile phone networks (Deng et al., 2019; Grauwin et al.,
2015; Wei et al., 2020). Similarly, there are approaches which aim to use both rela-
tionship data and morphological features. For example, (Ross et al., 2009) combine
both morphological dependencies and functional relationships (transportation links)

95



to delineate large scale urban areas. However, these approaches are rarer due to the
data availability limitations, since large amounts of diverse data are needed, as well as
methodological and theoretical problems of how to combine it (Glocker, 2018).

Other studies only focus explicitly on morphological features such as the patterns
of intersections of the road network without using grids or administrative units (Ar-
caute et al., 2015, 2016). The disadvantages of these approaches are similar - threshold
parameters have to be defined or aggregations have to be used, which in turn affect the
final results and global data availability is a problem. However, with the development
of satellite technology and computer vision algorithms, new forms of data have started
to better capture population distributions and activity (Roy Chowdhury et al., 2018).

This paper directly uses individual building footprints derived from satellite images
to delineate urban areas. There is prior research that show that individual buildings can
be used to delineate urban areas and analyse their spatial form. Such examples are the
studies carried out by Arribas-Bel et al. (2021a) in Spain, de Bellefon et al. (2019) in
France, Adolphson (2009) in Sweden, Krehl (2015) in Germany and Usui (2019) in
Japan. The difference between these studies and this paper are threefold.

First, the buildings used in this paper are derived from satellite images, whereas
the buildings footprints used in those studies come from government or private com-
pany records. As such, our approach has lower data requirements and is more globally
applicable. It should be noted as well that, satellite derived individual building foot-
prints have started being used in other areas of urban analysis. For example, Huang
et al. (2019) uses the same building footprints used in this study, enhanced by Open-
StreerMap data, to infer population at high spatial resolutions more accurately than by
using other data - nighlight intensity, land cover or impervious surface layer data.

Second, there are methodological differences in how we delineate urban areas. In
the cases of Arribas-Bel et al. (2021a), Chaudhry and Mackaness (2008) and Usui
(2019) there is use of a density threshold implicitly or explicitly defined through the
choice of one or more parameters. For example, Arribas-Bel et al. (2021a) use a mini-
mum number of buildings within a specified radius as a density threshold. In contrast,
our approach is based on a locally variable density threshold. Furthermore, where
de Bellefon et al. (2019); Adolphson (2009); Krehl (2015) use a a grid, we directly use
individual building locations and therefore avoid the need for spatial aggregation or
de-aggregation, such as population data to a grid cell or data grid cells to urban areas.

Third, due to the locally adaptable density threshold, our approach does not have a
fixed scale and it is possible to delineate areas of mixed scales. For example, the North
East of the United States is very densely populated and built up. As such, different
density thresholds set a priori can have large affects on the final delineations. By
changing preset density requirements, it is possible to attach peri-urban and ex-urban
areas to cities and even merge different dense urban cores together into larger scale
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units such as megaregions (de Bellefon et al., 2019; Arribas-Bel et al., 2021a; Arcaute
et al., 2016; Statham et al., 2021). In contrast, our approach allows for the detection
of urban footprints at the official city, dense urban core, functional area, megaregional
or other scales. However, there is no scale explicitly or implicitly defined and the final
results can have a mix of scales, reflecting the underlying building density in the data.

5.3 Data & Methods

5.3.1 Data

The data used in this study comes from the Microsoft Cognitive Toolkit (CNTK) and
consists of 129 591 852 computer vision generated building footprints extracted from
Bing imagery, covering all 50 US states. Each footprint is a polygon that represents
the geographical position of the building. The building footprints used in this study
cover the entire contiguous United States with 48 states (D.C included). The geome-
tries were projected using U.S. Albers equal-area conic projection (EPSG: 5071) to
obtain their areas in metric units and their centroids were used for pairwise distance
calculations. Figure 5.1 shows the available data for Washington D.C. The dataset is
a highly accurate representation of the built environemt in the US - a sample of five
million footprints were measured against Openstreetmap geometries which resulted
in 99.3% precision and 93.5% recall accuracy metrics (Heris et al., 2020). Similar
datasets were released publicly for Australia, Canada, Uganda and Tanzania showing
the global applicability of the computer vision approach.
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Figure 5.1: Building footprints data for Washington D.C.

In spite of the high accuracy the data comes with several limitations. First, the
dataset contains only the pure geometry of extracted building footprints, meaning that
information such as building height and building type is not included. Second, Bing
imagery is a composite of multiple sources, so the date of extracted building footprints
varies. Third, there are many errors in densely built city centres where entire blocks
are detected as a single building. Figure 5.1 is a demonstration of this - footprint
area increases as the building density increases. Sometimes this is representative of
the actual morphology of cities, however in many cases multiple buildings are repre-
sented as a single footprint. One of the worst cases in this regard is Manhattan, where
entire blocks are represented by one footprint. Similar problems arise for other city
centres. Despite the aforementioned limitations, this dataset provides comprehensive
open-source building footprints available for the entire U.S.

Additionally, we use six datasets to compare and evaluate our delineated areas. The
first one is the one square kilometre GHSL population grid (Florczyk et al., 2019). This
grid is derived from census and built environment information in different countries
and gives population estimates in cells for the whole world. The dataset is used to
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estimate the population for each set of delineated areas - both the reference ones and
the ones obtained from this paper. This is done to provide consistency across the
comparisons.

The second dataset is the GHSL Urban Centre boundaries (Florczyk et al., 2019).
The third - the Census Urban Centres (CUC) boundaries. The fourth - the megaregion
delineations from the America 2050 project (Hagler, 2009). The choice of this partic-
ular set of megaregions was motivated by the widely available research into the Amer-
ica 2050 megaregions, from different researchers (Oden and Sciara, 2020), the Federal
Highway Administration megaregions project1 and state authorities (Bellisario et al.,
2016). The fifth dataset is the GHS Functional Urban Areas (Petrović et al., 2020).
Lastly, the sixth dataset consists of the official local incorporated place boundaries in
the United States(towns and cities) and census metropolitan area delineations.

5.3.2 Clustering approach

This subsection describes how the building footprints will be analysed. Its sections
cover two areas - first, a focus on the specific methodological approach to delineations
and second, on the analysis of the results. The clustering sections focus on density-
based clustering, the details of HDBSCAN and the changes made to account for the
computational complexity and footprint size issues. The delineation sections describe
the comparisons between datasets and additional cluster analysis.

Density-based clustering & HDBSCAN

In order to define the urban boundaries this paper turns to machine learning clustering
algorithms. Specifically, the algorithm used in this paper is an extension of HDBSCAN
(Campbell, 2018), which is a method that produces state-of-the-art results for density
based clustering (Campello et al., 2020). Density-based clustering algorithms are a
family of clustering algorithms that focus on the counts of data items, in addition to
the distances between them and use this information to group together some or all of
the data items. One of the most popular density clustering methods is DBSCAN, which
is a precursor to HDBSCAN.

DBSCAN is a widely used algorithm in numerous fields (Schubert et al., 2017),
however parameter choices can have a large impact on its performance. Examples
of papers that have used DBSCAN or DBSCAN-like algorithms for delineations of
urban areas are the city clustering algorithm (CCA) (Rozenfeld et al., 2008), Statham
et al. (2020, 2021) and Arribas-Bel et al. (2021a). DBSCAN requires two parameter
choices - a distance radius and a minimum neighbours value. The combination of these

1https://www.fhwa.dot.gov/planning/megaregions/what are/
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parameters ensures that only similar data items in areas of high density are considered
clusters. The leftover data is labeled as noise.

There are two limitations of applying DBSCAN directly to our dataset. The DB-
SCAN parameters explicitly impose a minimum density threshold on all delineated
areas and implicitly define a scale of the final units. By decreasing the minimum den-
sity threshold otherwise different cities are merged together in the results, while by
increasing it parts of the same city can be separated (Balk et al., 2018; Arcaute et al.,
2015; de Bellefon et al., 2019; Duranton, 2021). Another issue is that these parameters
apply to the whole dataset and do not take into account local context. These two prob-
lems are especially evident in the North East of the US, which is very densely built,
and changes in parameters can lead to delineated areas of different scales.

HDBSCAN aims to limit these issues by computing all possible DBSCAN clusters
across all possible distance thresholds for a fixed minimum neighbours value (McInnes
and Healy, 2017). This way only one parameter a minimum neighbours value, instead
of two, has to be estimated. We chose the algorithm since it does not need the number
of urban areas or their scale specified beforehand and makes little assumptions about
the shape of the potential urban form areas. The algorithm separates data points in
areas of high density and groups them together based on proximity from data points in
areas of low-density. Additionally, it does not partition the whole datataset and it can
mark points in low-density areas as being outside any cluster (noise). In this paper the
data points represent individual buildings and the proximity is defined as geographical
distance. The application of HDBSCAN on this data, leads to an operational definition
of an urban area as a place with high levels of building density surrounded by areas
of low density. Both ’low’ and ’high’ are relative values inferred for specific locations
from the dataset itself.

HDBSCAN works in three steps - first it orders all points/buildings into a hierar-
chy, then it converts the hierarchy into a an approximation of the probability density
function of the data - a condensed tree, and finally, it uses the condensed tree to extract
the final clusters. The order and connections of points into the hierarchy is based on the
distance threshold value at which they have more than the specified minimum number
of neighbours. Figure 5.2 shows the top half of the hierarchy for the buildings in the
D.C. area, shown in Figure 5.1. Vertical lines are either individual buildings or groups
of buildings that fall under the same horizontal line. The horizontal lines represent
possible DBSCAN clusters. Horizontal lines appear at the distance threshold when
two or more points become mutually reachable and both have more than the specified
minimum number of neighbours, or in other words when they become part of the same
DBSCAN cluster.
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Figure 5.2: The top half of building hierarchy constructed for Washington D.C.

The second step converts the hierarchy into a condensed tree, by inverting it. This
turns the hierarchy into a an approximation to the probability density function of a ran-
dom variable, defined only over the existing data (McInnes and Healy, 2017). When
applied to the dataset used in the paper, the hierarchy approximates the probability of
the appearance buildings at specific locations in the continental United States. The
specific probability of a building appearing at a specific location is the inverse of the
distance it joins a DBSCAN cluster in the hierarchy. The condensed tree for all build-
ings in D.C. is shown in Figure 5.3.

101



Figure 5.3: The density tree constructed for Washington D.C.

The third step extracts the final clusters based on the condensed tree. A cluster
forms when more than the specified minimum number of buildings are mutually reach-
able. It disappears at the value (or horizontal line) when it is reachable by another clus-
ter. The final clusters are those that persist the most throughout the hierarchy, where
persistence is defined as the difference between the inverse distance threshold where
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the cluster forms and where it is merged with another cluster. There also exists the
restriction that if a cluster is picked as final, clusters it merges into cannot be final. In
this way the final clusters take into account local changes in density, making it possible
to merge groups of buildings together only if they have similar densities and are close
together. Therefore, the algorithm aims to separate densely built-up areas in the United
States, from sparsely built-up areas.

HDBSCAN extension

Directly applying existing HDBSCAN algorithms to our dataset is problematic due to
the large number of footprints and the size of the footprints in dense areas. To address
this, we extend the HDBSCAN algorithm, by incorporating the area of the buildings
into the hierarchy and cluster extraction calculations. The area is included to account
for the problems computer vision methods have in detecting individual buildings in
densely built cities (Jochem et al., 2020). Specifically, the area is included by defining
the median area of all buildings in the dataset. In the case of the Microsoft data this is
177.5968 square metres. Then the area of every building is divided by this number and
the result is rounded up. The resulting numbers are incorporated in the first and second
stages of HDBSCAN calculations by giving each building a ’size’ or ’multiplicity’.

Figures C.1 and C.2 in the Appendix, shows the differences this makes to the results
in Manhattan when running the HDBSCAN algorithm with the same parameters. In
the first case, where the area is not included in the calculations, New York is split
into parts by Manhattan. This is because blocks in Mannhathan are considered single
buildings and, based on the surrounding area and the number of detected buildings in
them, Manhattan is classified as a place of low density. When the area of the buildings
is taken into account this problem disappears,as shown in the Figure C.2. With our
adjustment a street block in Manhathan, which is erroneously classified as a single
building in the dataset, counts for 22 buildings if its area is 22 times larger than the
median building area.

Due to the large amount of data and the need to take into account building area,
we used a fast modified version of HDBSCAN in order to derive the cluster hierarchy
for the whole dataset (Garcia-Pulido and Samardzhiev, 2022). The modified algorithm
uses a fast, scalable DBSCAN implementation to separate the dataset into clusters
where HDBSCAN can be applied independently and afterwards integrates the parti-
tion results together. More detail, experiments and proof of correctness are available in
(Garcia-Pulido and Samardzhiev, 2022). The resulting hierarchy is then used as input
to the tree extractions and clustering procedures implemented in the HDBSCAN pack-
age developed by McInnes and Healy (2017). Finally, in order to delineate the urban
boundaries this paper uses the alpha shape complex to define a concave polygon that
encompasses all the buildings within the same cluster (Edelsbrunner et al., 1983).
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HDBSCAN parameter choices

HDBSCAN requires only one parameter to be specified - the minimum number of
buildings, within an area so its considered an urban area (or cluster). The choice of
parameter is guided by three considerations - interpretation, performance and accu-
racy. To account for interpretation we follow the approach set out by Arribas-Bel et al.
(2021a) - a minimum urban population is set and the parameter value is chosen based
on it. Furthermore, the value of the parameter has to be large enough not the be af-
fected by the local geography - low values lead to results that cut in half cities separated
by rivers, for example. Lastly, smaller parameter values are computationally easier to
process, while larger ones take more time or are currently impossible with the size of
the data and current implementations of the algorithm.

Arribas-Bel et al. (2021a) sets the minimum neighbours value based on the assump-
tion that a building accounts for 2.2 people and that urban areas have a minimum total
population of five thousand. This paper follows the same methodology and sets the
minimum size parameter based on minimum population considerations. The parame-
ter value is approximated using the number of persons per household, which according
to the 2010 census is 2.63. We run the delineation procedure five times with values of
2000, 2900, 3800, 7600, 19000 which aim to approximate urban areas with minimum
population sizes of 5,000, 7,500, 10,000, 25,000 and 50,000. A final set of results for
the rest of the analysis is chosen based on comparisons between these runs.

5.3.3 Delineations analysis

This paper uses both the hierarchy and the final clusters in the analysis of the results.
The final clusters are identified with a principle city, based on their geographic inter-
sections with official state boundaries. When more than one administrative boundary
intersects a delineation, the most populous city is chosen. The population and area of
each delineated urban centre are defined using the US conic projections and the GHSL
population grid. It should be noted that the population grid data is only used to count
the people within an area and plays no role in the delineations.

Afterwards a series of comparisons are carried out with other urban boundary defi-
nitions of different scales - GHSL, official administrative units, Census defined Urban
Centres and GHS Functional areas. First, the analysis is limited to the largest 15 de-
lineations from our results. They are compared to the largest 15 delineations from
the other sets in terms of population and size and their internal density variations are
analysed. Next, a more robust comparison is carried out using a random sample of
10 million buildings. Each building is assigned to a delineated official, GHSL, FUA
or CUC boundary based on its geographic location and a point in polygon test. Then
the similarity between each of these assignments and the HDBSCAN delineations are
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computed using the adjusted rand index. The rand index is a comparison metric that
ranges from -1 to 1 and describes how similar groupings of data are. A higher rand
index value indicates that the buildings in the assignment are similarly grouped to ours
and that the two sets of delineations overlap. Since different delineations have dif-
ferent minimum population thresholds we create a series of comparisons where only
areas above a certain threshold play a role in the rand index calculations.

In addition, the delineations are further analysed using polygon intersection tests.
Three sets of spatial intersections are calculated between the HDBSCAN and the most
similar set of delineations based on the above results. The first set consists of HDB-
SCAN areas fully encompassed in corresponding delineations of the other set. The
second set is the opposite - HDBSCAN areas which are fully within the other set. And
the last set contains polygons which overlap to varying degrees.

Lastly, the hierarchy is used to analyse the relationships between the delineated
areas, as well as their relationship to metropolitan statistical areas and megaregions.
The delineated areas are assigned to their corresponding metropolitan boundaries to
analyse the distribution of delineated urban land. Finally, the hierarchy is again used
in order to rank the megaregions based on relative morphological integration and to
explore how close the delineations are to achieving a megaregional scale.

5.4 Results

5.4.1 Consistency across parameter range

Table 5.1 shows the similarity between delineations with different minimum samples
using the adjusted rand score. When comparing two sets of delineations we assign
clusters with size smaller than the minimum size of the larger set to -1 (or noise).
For example, when comparing the 2000 and 2900 delineations all clusters in the 2000
delineation that have less than 2900 members are assigned to -1. This is done since
the minimum samples parameter controls the minimum size of delineated areas and
the lower this value is, the more clusters can get delineated in areas where there are no
clusters for higher values.

Table 5.1: Adjusted rand index between pairs of delineations with different minimum
sample parameter

2000 2900 3800 7600 19000
2000 1.00 0.78 0.72 0.65 0.60
2900 0.78 1.00 0.80 0.69 0.63
3800 0.72 0.80 1.00 0.73 0.64
7600 0.65 0.69 0.73 1.00 0.71
19000 0.60 0.63 0.64 0.71 1.00
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Table 5.1 shows that there is a large degree of agreement between the results. In
fact, an increase of an order of magnitude in the minimum samples parameter, 2000
versus 19000, results in delineations with a high similarity score of 0.6. Most of the
differences come from areas around the largest cities such as Denver, New York and
Orlando. With New York specifically, the differences are due to a split along the Hud-
son Bay, obtained using a minimum selection of 2000 buildings corresponding to 5000
residents. The New York example is shown in the Appendix in Figure C.3. Further-
more, the population in the largest fifteen areas based on 2000 minimum samples is
around 86 million, whereas for 19000 is 93 million. This shows that an increase in
the only required parameter of 1,000 % results in a population change of 10%, which
shows the robustness of our method.

For the rest of the analysis we pick 3800 which roughly corresponds to a minimal
population size of 10,000. This set of delineations is the middle of all values and is
the most similar to all other delineations on average. Furthermore, the value of 3800
is large enough to take into account natural barriers such as water bodies, and at the
same time is computationally feasible. 2

5.4.2 Number and size of delineated areas

The algorithm, with a minimum samples parameter of 3800, delineates 4039 urban
areas of various scales and sizes in the contiguous United States. The final delineations
are shown in Figure 5.4. Specific urban areas are shown in Appendix C. Table 5.2
shows descriptive statistics for the areas.

The population in the detected areas, as inferred from the GHSL population layer,
ranges from zero to more than seventeen million. This is in part due to problems with
missing values in the GHSL population data and due to groups of large buildings such
as warehouses or other places like camping sites being delineated as urban areas. We
propose several ways to address the latter issue below. The number of buildings ranges
from 3800 up to nine million. Their total area is 23895.98 square kilometres from a
total area of 32276.29 square kilometers of buildings for the whole US or 74 percent.
The population captured by the HDBSCAN boundaries is 263,852,178 or 82 % of
the contiguous US population captured in the GHSL grid. These close fractions sug-
gest that the number of buildings in the delineations closely capture population data.
In fact, there is a 0.91 Spearman and 0.95 Pearson correlation, between the building
medians(building area divided by the median building area) and the population, both
statistically significant with p-values of zero.

2For reference the set of results with a minimum samples parameter of 19,000 took more than a day
to process end to end.
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Table 5.2: Descriptive statistics for the delineated areas

Area Building medians Density Cluster size GHSL Population
mean 295.81 44204.83 170.28 21581.11 65814.96
std 644.42 257823.24 195.23 119552.13 509398.56
min 3.00 3800.00 1.21 77.00 0.00
25% 60.45 6055.00 45.37 3266.00 5955.64
50% 140.95 10404.00 96.74 5443.00 10744.91
75% 298.23 20827.00 219.50 10936.00 23798.59
max 19137.55 8915402.00 2885.53 4042986.00 17001425.48

Figure 5.4: Urban HDBSCAN delineations

One way to account for the issue with the zero population is to drop any areas
from the results with less than the specific minimum building size, in this case 3800.
Weighing the building footprints was done to account for the problems in very dense
city centres due to the data shortcomings discussed previously. By weighing the build-
ing footprints outside of urban centres, the algorithm can erroneously detect campsites
and much smaller urban areas than the desired minimum population of ten thousand.
There are 1307 delineated areas that have less than 3800 total footprints and 2702 that
have more. There is no need to know the population of the areas in advance, this
procedure only relies on the number of building footprints in each area.

The density column in Table 5.2 shows one additional problem. The density col-
umn represents the total building area divided by the area of the final alphashape de-
lineation. Low values in the column show that there exist large delineations in terms
of area, in sparsely populated places such as Nevada and Montana. This suggests that
very sparsely populated small towns in remote areas get delineated as a single entity,
which is a result of the algorithm not having a set minimum density threshold. De-
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pending on the application, such areas can be further processed or dropped altogether
if the analysis requires it. Again, this procedure relies only on information already
available and does not require population data. It should also be noted that both this
and the previous changes mostly affect areas population below 30,000.

For the rest of the analysis in this paper, the whole unprocessed set of delineations
is used. Even though the problematic areas represent a large number of the final delin-
eations, they are a much smaller percentage of the buildings or population which plays
a role in the subsequent analysis. Nevertheless, we aim to highlight the potential draw-
backs of applying our novel methodology to other researchers. Specific applications of
our methodology, for example for calculation of local economic productivity, can use
the above two methods to discard the problematic areas. Alternatively, our delineations
can be combined with datasets such as the GHSL population grid and problematic ar-
eas can be dropped. It should also be noted that increasing the minimum neighbours
parameter, decreases the number of problematic areas - for example, the 19,000 set
of results suffers less from these problems. Additionally, when calculating statistics
such as population density the polygons can be dropped altogether and the groups of
buildings can be used directly.

5.4.3 Most populous cities

We focus the first part of the analysis on the 15 largest areas, in order to provide a
more detailed view into the delineation process. This is done in two ways. First, we
compare them to the 15 most populous cities in the other four sets of urban boundaries
- Census Urban Centers (CUC), GHSL, GHS FUA and the official ones. Second, we
analyse the density variations within each of the areas to explore the way in which the
buildings were combined into clusters. Afterwards, we extend both types of analysis -
the comparisons and within density variations - to the whole set of delineations.

Table 5.3 shows the area and population for each of the largest fifteen cities by
population. The population is in millions and the area is in square kilometres. Our
delineated areas show the most resemblances to the Census Urban Areas and the GHS
Functional Areas, both in terms of population and area. It can be seen that 11 out of the
15 cities in our method appear in the top 15 Census Urban Areas. A noticeable differ-
ence is the city of Tampa, which in the HDBSCAN delineations is much larger since it
forms a large cluster with the the city of Orlando. Similarly, 13 of our delineations are
the same as the top 15 Functional urban areas, however the ordering is different.

There are also some similarities to the GHS Urban Centres and official boundaries.
11 out of the fifteen most populous areas are in the set of 15 most populous official
boundaries. However, it can be seen that in all cases both the population and the area
of our delineated clusters are much larger than the official city boundaries. As before,
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Table 5.3: Descriptive statistics of the most populous 15 cities from each delineation

HDBSCAN TigerLine Urban Centres GHSL Functional Urban Areas GHSL Urban Centres City Boundaries
Name Population Area Name Population Area Name Population Area Name Population Area Name Population Area
New York 17 8154.5 New York 18.98 9468.8 New York 19.52 17489 New York 15.95 5384 New York 8.16 1212.62
Los Angeles 16.61 10722.7 Los Angeles 12.34 4558.83 Los Angeles 15.66 10407 Los Angeles 14.28 5633 Los Angeles 3.82 1302.05
Chicago 8.66 6877.21 Chicago 8.87 6431.43 Chicago 8.8 13185 Chicago 6.78 3830 Chicago 2.58 606.42
Washington D.C. 7.34 7009.75 Dallas 6.01 4701.97 Dallas 7.08 19826 Miami 5.41 3040 Houston 2.43 1724.87
Tampa 6.61 19137.5 Philadelphia 5.73 5259.33 Houston 6.44 15114 Dallas 5.17 3699 Phoenix 1.58 1343.99
Dallas 5.94 5303.56 Miami 5.72 3400 Philadelphia 6.11 11525 Houston 4.87 3418 Philadelphia 1.5 369.61
Miami 5.72 4368.81 Houston 5.7 4387.78 Miami 5.81 6494 San Jose 4.6 1717 San Antonio 1.46 1208.72
Houston 5.31 4294.67 Atlanta 5.4 6945.19 Washington D.C. 5.64 7446 Phoenix 3.61 2304 San Diego 1.37 963.35

Philadelphia 5.1 4163.61
Washington
D.C 5.04 3493.81 Atlanta 5.59 12348 Washington D.C. 3.37 1550 Dallas 1.24 996.67

Atlanta 4.79 7146.11 Boston 4.49 5054.24 San Jose 5.12 4038 Detroit 3.29 2545 San Jose 0.95 467.56
San Jose 4.72 2714.95 Phoenix 4.21 2981.52 Phoenix 4.57 9707 Philadelphia 3.13 1520 Austin 0.91 847.94
Phoenix 4.33 4858.01 Detroit 3.87 3554.79 Detroit 4.07 8184 Seattle 2.68 1885 Jacksonville 0.86 2265.3
Denver 3.55 8033.59 San Francisco 3.35 1380.99 Seattle 3.87 8328 Denver 2.23 1362 Charlotte 0.83 798.21

Detroit 3.33 2785.24 Seattle 3.31 2789.12
Minneapolis
[Saint Paul] 3.27 9833 Boston 2.06 936

Indianapolis
city (balance) 0.82 953.18

Boston 3.31 2973.01 San Diego 3.1 1971.57 Denver 2.93 6917 Las Vegas 2.03 878 Fort Worth 0.81 914.58

13 of our delineations are the same as the top 15 GHS Urban Centres, but the our
delineated areas and populations are again larger and closer to the GHSL functional
urban areas.

One of the core advantages of our methodological approach is that specific global
density requirements do not have to be set, but are inferred locally from the data. Table
5.4 shows a summary of density statistics within each of the 15 largest urban foot-
prints. The population column is again in millions, while the centres column refers to
dense cores within the deliniations that contains at least 3800 buildings. It should be
noted that this exact number is a consequence of the choice of parameter. The ’density’
columns refers to the number of buildings in a one kilometre radius around each build-
ing in the centre. A higher value indicates higher building density, whereas smaller
values - lower. For most areas the density standard deviation is around 500 buildings.
The ’rank difference’ column shows the difference in the ordering of HDBSCAN re-
sults, based on the number of dense cores compared to the ordering based on total
population.

Table 5.4: Density statistics within the 15 largest delineations

City Population Centres Rank
difference Density std Min. density Max. density

New York 17.00 94 -2 787 2538 5621
Los Angeles 16.61 151 1 758 2155 5407
Chicago 8.66 87 -2 911 2032 5430
Washington D.C. 7.34 63 -5 519 1539 3788
Tampa 6.61 114 3 718 1249 4170
Dallas 5.94 82 0 506 2110 4458
Miami 5.72 70 -1 537 1717 4719
Houston 5.31 90 4 599 2283 4784
Philadelphia 5.10 52 -3 882 2190 5918
Atlanta 4.79 54 -1 497 1697 3741
San Jose 4.72 38 -3 223 4178 5097
Phoenix 4.33 79 5 809 1671 4474
Denver 3.55 60 3 1092 997 4603
Detroit 3.33 41 1 488 2661 4517
Boston 3.31 31 0 758 2105 4666

It should be noted that in all cases the dense areas within a delineation exist in
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a complex relationship to each other. The lower density centres are not simply ex-
tensions to a central dominating one, but have various interactions in the density and
distance hierarchy. For example, in the case of New York, the 94 centres merge into 17
areas, which subsequently join together. It is not that case that density simply declines
concentrically from Manhattan, and all centres are joined to it.

This table further shows the advantages of using a locally adaptive value of high
and low density. Setting a global density threshold of equivalent to 900 buildings per
km, for example, is required to delineate the Denver area in its current form, however
this value if applied to the whole dataset, it will result in a delineation of the North-
eastern megalopolis, which encompasses the area from Boston to Washington D.C. as
shown in Table 5.5.

There are several other patterns that can be discerned from the table. In the case of
San Francisco/San Jose footprint there is a very small density standard deviation. This
suggests a consistent density throughout the area with no dominant centre. This is in
contrast to cases such as Phoenix where the standard deviation is larger, which suggests
that a lot of local centres are included in the delineation. Furthermore, it can be seen
that the Los Angeles footprint has the largest number of centres, at nearly double that
of the New York footprint which is slightly larger in population. This speaks to the
difference in the density patterns and urban form of the delineations.

5.4.4 Comparison with other delineations

The city comparisons suggest that the most similar delineations to ours are the Census
Urban Centre and the GHS Functional Area delineations. To verify this finding we
compare the HDBSCAN delineations with the other approaches using the rand index.
Since the reference delineations have different minimum thresholds, i.e. an urban area
in the CUC has a minimum population of 5000 whereas in GHS - 50,000, we compute
rand scores at different population thresholds. To do this, first we compute the popula-
tion deciles for each delineation type - GHS, CUC, GHS FUA and official boundaries.
Then all delineations below the threshold are assigned to the noise cluster, so as to not
play a role in the similarity (rand score) calculations. The results are shown in Figure
5.5. The Y-axis shows the similarity (rand score) between the delineations and is fixed,
while the X-axis shows the different population thresholds and varies depending on the
type of delineation.
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Figure 5.5: Rand Index comparisons between the different delineations at different
population thresholds

The results suggest that, similarly to the analysis of the 15 most populous cities, our
delineations overlap the most with the CUC and FUA ones. From the specific examples
shown in the previous section it seem that our delineations are in the middle in terms
of area - larger than GHSL and smaller than CUC and FUA - and as the population in
the delineations increases so does the similarity to our delineations. The comparisons
with Census Urban Centres show the highest overall rand scores, suggesting the most
overlap.

Additionally, as the minimum population size increases the scores get higher. This
suggests that our larger delineations are more similar to other types of large urban
areas, whereas less populous delineations are more different. Interestingly, this pattern
is reversed for the official boundaries - our larger delineations are much larger than
the official administrative boundaries of large US cities. The most similar boundaries
to the official ones are of small cities on average, with a population between 20,000
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and 40,000, since after 40,000 the similarity starts to drop, while it increases until that
point.

5.4.5 Spatial analysis across datasets

To further explore the set of delineations, three types of purely spatial comparisons
are calculated between the HDBSCAN and CUC delineations. The first type is the
number of HDBSCAN polygons that fully fall within corresponding CUC polygons.
The second set is the opposite - the CUC polygons which are within the HDBSCAN
ones. Third, the remainder of the polygons from the two types of delineations are
analysed using information about their intersections.

There are 313 HDBSCAN areas that fall fully within a corresponding CUC area.
This set of HDBSCAN delineations are mainly located within denser large areas, such
as the New York CUC area, evidenced by the fact that the CUC areas which contain
them have an average population size of 3,719,585. This result reflects a property of
our method that does not just merge cities based only on geographic proximity. These
313 areas are separate in the final results, since there exist large deviations in local
density.

There are 1810 areas in our delineations which fully encompass CUC delineations.
These are for the most part smaller areas with the exception of Miami, Florida and
Denver, Colorado. In fact, 75% of the CUC delineations have less than 11,318 thou-
sand population. This suggests that our method overestimate the spatial extent of small
urban settlements. The result can be attributed to our method strictly delineating areas
with high density apart from areas of low density. Due to the very low built environ-
ment density these areas are in, the methodology can merge several of them, such as
small towns, together. Furthermore, poor data quality can play a role as well, and a
large proportion of these delineations are the problematic areas discussed previously.

The last set of spatial intersections is the polygons that have intersection relation-
ships, and which are not part of the previous two sets. These were calculated as the
percent overlap between the clusters as measured by the intersection of the two poly-
gons to the ratio of the union. The percentage of overlap goes from a low of 8% to a
high of 90%, with more than fifty percent of the points having atleast 27 % overlap.
The mean population for these areas is around 381,200 thousand people, meaning that
they are larger in terms of population than the previous within set. In addition, there are
several larger boundaries that almost fully overlap such as Chicago, Atlanta, Houston
and Dallas all with ovelaps above 75%.
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5.4.6 Density variations within delineated areas

To generalise the analysis of density variations to the whole dataset and contextualise
the results, we limit the analysis to areas that cross metropolitan statistical areas (MSA)
boundaries. This is done since there is a known overall trend of employment decen-
tralisation within US metropolitan areas (Dadashpoor and Malekzadeh, 2021) and this
phenomena provides context against which we can compare our results.

Figure 5.6 shows the number of MSAs which contain delineated areas, where the
largest delineated area is at most a specified threshold of the total delineated land
mass within the metropolitan boundaries. The figure shows that for the majority of
cases there is one dominant urban footprint delineated for each MSA. Furthermore,
the MSAs without a dominant delineated area are smaller in terms of population. For
example, when the threshold is specified as 50% , only 95, or less than a third, of MSAs
have multiple large delineated areas within them. In other words, there are 281 MSA
where a single delineated area covers more than 50% of the total urban footprint land
mass within an MSA. The majority of the 95 areas have an estimated GHS population
under 231,170. Only 11 of the 95 areas from the first set have population more than a
million as opposed to 44 of the other type.

113



Figure 5.6: Number of Metropolitan areas, with a ratio of the largest delineated area
below a threshold

The clustering hierarchy makes it possible to explore the number of dense ar-
eas inside each urban footprint and their relative importance, as well as how they
evolve to form the whole footprint. The delineated areas themselves cross metropoli-
tan boundaries and can have a multi-modal density. For example, the metropolitan ar-
eas of Washington-Arlington-Alexandria, DC-VA-MD-WV and Baltimore-Columbia-
Towson, MD are delineated as a single cluster. Out of the 2259 urban footprints that
fall within metropolitan areas 258 cross two metro boundaries, 22 cross three, 3 cross
four and 1, the Tampa urban footprint crosses 8. And out of the 2259 urban footprints
themselves 388 are identified as having multiple dense cores in the clustering hier-
archy. A dense core is an area with at least 3800 buildings, which is denser than the
surrounding area, where ’denser’ again is a locally dependant value. The value of 3800
is due to the choice of parameter for the HDBSCAN algorithm. However, the majority
of the population in all delineated areas - 77% - are in delineations with multiple dense
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cores, whereas only 13% live in delineations with a single dense core. The rest of the
population is located in delineations that do not intersect metropolitan statistical ar-
eas, the majority of which contain only one dense core themselves. It should be noted
that this pattern holds across the range of different values of the minimum samples
parameter.

5.4.7 Megaregions

Functional areas, metropolitan areas and urban census areas are some of the building
blocks used to delineate larger scale units such as megaregions. In fact, the GHS, FUA
and CUC already almost overlap from Boston in the north to Washington in the South,
which corresponds one possible definition of the Northeastern megaregion. None of
HDBSCAN results, using any of the tested minimum samples parameters are of a
megaregional scale. This suggests that the local variability in the density of buildings
is too large for megaregions to be delineated. In other words there are sharp declines
in building density past the borders which resemble the functional area scale, since our
delineations are most similar to them. However, by using the megaregions definitions
from Hagler (2009), described in the data section, and the nested clustering hierarchy
we can rank the potential morphological integration of all buildings in the dataset into
megaregions.

Table 5.5 shows the megaregions and the corresponding density at which they
would cover all the counties identified in the America 2050 (Hagler, 2009) definition.
The entire set of building footprints was processed in order to calculate the densities,
not just the building footprints in the already delineated 4009 areas. The minimum den-
sity (minimum buildings per km) value was calculated using the hierarchy and growing
all delineations by individual buildings, or merging pairs of delineations together, until
a delineation covered or exceeded the extent of a specific (Hagler, 2009) megaregion.

Table 5.5: Number of delineated areas within megaregions and density statistics

Megaregion HDBSCAN delineations Minimum buildings per km
Northeastern Megalopolis 300 970.72
Atlantic Piedmont 182 736.91
Cascadia 94 578.93
Midwest 789 567.14
Florida 57 514.68
Texas Triangle 193 428.63
Arizona Sun Corridor 33 263.89
North California 125 225.52
Frontrange 36 197.15
South California 64 170.13
Gulf Coast 100 155.93
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Several interesting findings emerge from the exploration of the hierarchy which
suggest that is impossible to delineate some megaregions based only on the density
of built up area. The megaregions that can exist as morphological entities based on
our approach and data are Northeastern, Atlantic Piedmont, Arizona, Texas Triangle,
Cascadia, Florida and Gulf Coast. Out of those, the most morphologically integrated
region is the Northeastern Megalopolis, while the most disintegrated is the Gulf Coast
one. In order for an urban footprint to exist that covers the extent of the other megare-
gions it necessarily encompasses much larger areas. For example, the table shows
that for an urban footprint the size of the Midwest megaregion to emerge, parameter
choices have to correspond to approximately 567 buildings per km. However, at that
point the Midwest megaregion becomes integrated with the Northeastern Megalopolis.
This is also the case for the Front range megaregion - in order for it to exist the density
has to be set so low as to cover the whole of the eastern United States as one urban foot-
print. Similarly, for Southern California to exist and encompass Las Vegas the whole
of the Midwestern United states has to become one footprint. Lastly, in order for the
Northern California megaregion to exist it has to encompass the entirety of California.

5.5 Discussion

The results show that this approach is able to capture meaningfully urban settlements
in the United States of America, which in the absence of pre-specified thresholds, mod-
els or spatial aggregations, are much larger than official city boundaries. On average
they are most similar to Census Urban Centres and GHS Functional Urban Areas, de-
lineations designed to capture functional urban extent. However, the size and scale of
the delineations varies in different parts of the country. Furthermore, even the density
in different parts of an urban area varies. For example, there is so much consistently
dense built up area between Washington and Baltimore that there is no sharp drop in
local density which separates them, suggesting therefore that the cities have started
growing into each other. The dense areas within the Washington D.C/Baltimore delin-
eation, have different local densities of their own, whereas dense areas within the San
Francisco/San Jose delineation have consistent density.

An analysis at the metropolitan level found that majority of metropolitan areas con-
tain one dominant delineated area, however the majority of areas themselves contain
multiple cores - areas denser than their surroundings. The results also show that there
are large urban clusters forming at a scale larger than metropolitan areas and in some
cases combined statistical areas. Nevertheless, although some cities are merging mor-
phologically, in all cases the scale of the delineated areas is much lower than proposed
megaregions. In fact, further analysis showed that certain megaregions cannot be de-
lineated morphological based on our building data, since they are necessarily must
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include much larger areas.

In general, the delineated areas are much larger than the official boundaries, simi-
larly to the results of other delineation approaches (Duranton, 2021). The scale of the
resulting areas ranges from large clusters of cities - i.e. one area covers both Washing-
ton D.C., Alexandria, Fairfax and Baltimore - to small towns with populations of less
than ten thousand like Butler, New York.

Several studies have emphasized the difficulty of automatically detecting built-
density changes when using intermediary aggregated units (Duranton, 2021; de Belle-
fon et al., 2019). In addition, other studies emphasize the difficulty of selecting a popu-
lation or built-up density threshold manually. Balk et al. (2018) find that how much of
the official urban population in the US is captured by the GHSL delineations is affected
by threshold choices and that global thresholds have difficulty capturing peri-urban and
ex-urban areas and mid-sized cities as a whole. de Bellefon et al. (2019); Statham et al.
(2021); Arcaute et al. (2016) show similar results with different datasets and methods -
explicit or implicit density thresholds affect what urban forms are included in the final
results as well as their size. Table 5.1 showed that an increase of 1,000 % in the only
parameter which needs to be specified resulted in a difference of 10% in the number
estimated urban population, which demonstrates the robustness of our method.

Furthermore, the comparisons carried out in this paper show that our delineations
capture gradual local building density changes at different scales. The final delin-
eations are much larger on average, based on the comparison in Table 4.3, than the
official boundaries and even larger than dense urban cores delineated with explicit
thresholds. For example, in our results the cities of Baltimore and Washington D.C fall
within a single delineation. These results further echo findings that the peripheries of
some neighbouring urban areas have grown both in size and density so much that they
are clashing against each other forming much larger urban units (Hagler, 2009; Lang
et al., 2020).

The comparison results show that on average, the emergent scale from our analysis
is most similar to that of functional urban areas and census urban areas - delineations
designed to capture local economic activity and labour markets. Direct building com-
parisons showed that our delineations are highly similar to Census Urban Areas , with
a rand score ranging from .55 for the whole dataset to 0.7 for units with more than
100,000 population. There is also a high similarity with GHS functional urban areas -
with rand scores between 0.6 and 0.69 for places with more than 100,000 people.

The similarly between our delineations and other sets of results designed to capture
local economic activity, as well as the high correlation between population and build-
ings, suggests that building density variations captures some information about spatial
patterns of local labour markets. Employment patterns have a complex relationship
with city size, population, built environment and distance to central businesses districts
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(CBDs) (Craig et al., 2016). Nevertheless, detailed built environment data can provide
information about employment monocentricity, polycentricity and scatteration patterns
(Taubenböck et al., 2017; Krehl, 2015). Further comparisons showed that the majority
of metropolitan areas in the contiguous US contain one dominant delineated area with
many of these areas crossing the census defined metropolitan boundaries. However,
the majority of population is found in delineations built up from multiple dense cores,
which suggests that some form of population decentralisation dominates US urban life.
Our results also suggest that the majority of the population is found in areas built up of
multiple dense cores in a complex relationship to each other, even when the area un-
der analysis is delineated with no reference to other existing units or scales or explicit
density thresholds, which can affect polycentricity analysis (Möck and Küpper, 2020).
This finding agrees with extensive body of literature that directly measures decentral-
isation of US employment through other delineations, data and methods (Manduca,
2020; Dadashpoor and Malekzadeh, 2021).

In spite of the similarity with GHSL Functional Urban Areas and Census Urban
Areas, some of the results are more similar to other different types of delineations as
shown in the table of the top fifteen more populous areas - Table 5.3. For example, pairs
of major cities such as Baltimore and Washington D.C., San Francisco and San Jose,
Rayleigh and Durham are merged together and their combined population resembles
combined statistical areas rather than individual urban areas. In contrast New York and
Long Beach, Santa Cruz and Watson Ville, Vallejo and Fairfield are split into separate
areas smaller than metropolitan areas in population. Not all of these mergers or splits
are the same in the GHS Functional Areas or the Census Urban Centres. There are
also many cases where small towns are separated from the major urban aggregation,
as shown in the spatial overlap analysis. This shows that our results vary spatially and
show the advantage of out method in taking local context into account.

When looking at built density within individual delineations, shown in Table 5.4,
there is a complex gradation of built density changes. This means that our results in-
corporate diverse urban forms of varying densities, in contrast to methods that have
specified a priori density parameters which can exclude them. This is not possible to
capture with preset global thresholds without changing the scale significantly for at
least some delineations, e.g. the New York one. Furthermore, the density variations
within specific delineations, shown in table 5.4 are reflective of labour patterns in spe-
cific places. The Phoenix delineations has the highest number of dense cores relative
to its population, while the LA area is the one with the most total cores by far. This
is reflective of the both economic labour and sprawl patterns in those specific areas
(Dadashpoor and Malekzadeh, 2020; Ewing and Hamidi, 2015; Barrington-Leigh and
Millard-Ball, 2015; Arribas-Bel and Sanz-Gracia, 2014; Angel and Blei, 2016). How-
ever, further research is required in classifying all of the delineations. For example,
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some interesting cases are the San Francisco/San Jose delineated area which was has a
consistent density pattern, Washington and Baltimore which have less dense cores than
delineations with similar populations and Houston being one of the most polycentric
areas.

The final part of the analysis focused on the relationship between the delineated
units. The non-existence of delineated areas at the megaregional scale indicates that
there is too much variability in the local built environment density for these large urban
units to appear. This result holds for the full range of minimum size parameters tested.
Some cities such as Baltimore and D.C. merge together and form single delineations
which span thousands of square kilometres, however, the required large scale high-
density areas to cover proposed megaregions, such as those in Hagler (2009) do not
emerge in our results. The analysis shown in 5.5 suggests that based on our approach
and data, in order of relative morphological integration, the megaregions which can in-
dividually emerge are: Northeastern metropolis, Atlantic Piedmont, Cascadia, Florida,
Texas Triangle and Arizona Sun Corridor.

In addition, the densities analysis presented highlight the difficulty of selecting a
density threshold explicitly, similarly to other research (de Bellefon et al., 2019; Du-
ranton, 2021; Statham et al., 2020, 2021; Balk et al., 2018). This is especially evident
in the North East of the US. If the delineation procedure relied on explicitly defining
minimum density, relatively small increases of around 200 buildings per square kilo-
metre can result in large scale difference such as the emergence of megaregions or
even one area which covers the whole of the North East and Midwest. Overall, this
sensitivity to small parameter changes reflects the high-density of the area and its in-
terconnectedness, however the fact that there are no emergent megaregions shows that
more local density variations dominate.

Interestingly, our results also suggest that certain America2050 (Hagler, 2009)
megaregions cannot be delineated at all. These are the Midwest, South California,
Front range and Gulf Coast. In order for any of these to exist, based on our method
and data, it has to merge with other areas in the United States, much larger in scale
than megaregions. In total our results, echo other functional analysis delineations such
as Nelson and Rae (2016), that show that there are large-scale emergent patterns, but
at a scale, smaller that the one proposed in (Hagler, 2009). Furthermore, the results in
general agree with research (Glocker, 2018; Lang and LeFurgy, 2003; Nelson and Rae,
2016; Ross et al., 2009) that propose smaller scale megaregions than the America2050
project.
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5.6 Conclusion

The results from the paper have several implications for researchers and planners. First,
the inability to delineate the Midwest, South California, Front range and Gulf Coast
megaregions, suggest that the building density is lower within these proposed megare-
gions that between parts of them and parts of other megaregions. For example, there
is significantly higher building density between parts of the Midwest and Northeast,
than within the Midwest. This result is important for researchers and planners that use
other higher resolution morphological data such as population grids or census tracts to
delineate these megaregions - e.g Hagler (2009); Glocker (2018); Ross et al. (2009);
Georg et al. (2018), since it highlights potential MAUP problems (Openshaw, 1979)
and that at the highest resolution level there are signification density variations within
proposed megaregional boundaries. This inability to delineate the megaregions could
also be due to a breakdown in the relationship between form and function, in which
case, the results highlight the need for functional data such as commuter flows, to be
incorporated in megaregional delineation and analysis.

Second, the results highlight the fact that consistent building density is larger than
official city boundaries and that multiple delineations cross statistical areas boundaries.
Therefore, applications which emphasize morphological aspects of urban phenomena
could make direct use of our boundaries in order to contextualise their results and ex-
plore the influence of statistical boundary choices and fixed density thresholds - i.e
de Bellefon et al. (2019); Arribas-Bel et al. (2021b); Duranton (2021). The polycen-
tricity analysis carried out in the paper is an example of how this type of work could
be carried out.

Third, the results highlight the usefulness of buildings and provide a good case for
investment in building-level datasets for the purposes of urban planning and research.
The results from this paper speak to their usefulness in analysing the extent of cities,
megaregions and polycentricity. Other researchers have already used them to create
high resolution population density estimates (Huang et al., 2019). Developments in
this area - population estimation using building footprints - are particularly important
for developing countries where high-quality population data is unavailable (Wardrop
et al., 2018). Additionally, if building heights or building functional data are available
they can be incorporated in the delineations similarly to the polygon area, as (Arribas-
Bel et al., 2021b) and Huang et al. (2019) do respectively .

Fourth, the usage of buildings as the units of the delineations enables the global
applicability of the methodology with several considerations. First, the particular ad-
vantages and disadvantages of the specific buildings dataset have to be analysed. For
example in the case of the dataset used in this paper, the buildings in city centres were
of worse quality than the other buildings, whereas this will not be the case for offi-
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cial cadaster data (de Bellefon et al., 2019). Second, different parameter choices of
the algorithm need to be explored. In this paper, the parameter choices past a certain
threshold - 3800 - proved to be more stable than the results below it , which were af-
fected by natural barriers. However, in other geographies this result could be different.

Lastly, the identified limitations of the methodology have to be addressed. One
of the limitations discussed in the paper is the problems with merging small towns in
sparse areas together, due to the low surrounding built density. Both the spatial and
the population analysis showed that problem delineations are in very sparse areas and
have a population of less than 30,000 people. In this analysis the drawbacks of the
method were highlighted for the benefit of other researchers and problematic areas
were not dropped. However, for some applications for example scaling law analysis
(Batty, 2006) or anything to do with population density (Henderson et al., 2021), the
highlighted areas could be influential to the study. We proposed two ways to tackle
these, relying only on building polygons, however some analysis might benefit from
data fusion approaches that combine the delineations with other data such as popula-
tion or amenities. Another promising approach is to use a more sophisticated cluster
extraction scheme. Different methodologies have started being proposed such as ways
to speed up the calculations for a range of parameter values at once (Campello et al.,
2020).
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6

Conclusion

This chapter provides a summary of the results from the analytic chapters and dis-
cusses the outcomes, challenges and potential improvements of the thesis. The next
section broadly summarises the main results and limitations of each analytic chapter.
The two subsequent discussion sections combine the results from the thesis with a fo-
cus on the delineation problem and the interplay between spatial boundaries, urban
challenges and new forms of data. The last section concludes the thesis with a short
overall summary.

6.1 Summary of results

The third chapter addresses the first aim of the thesis - To identify areas with different

urban land use patterns at a high spatial and temporal resolution using sound sensor

readings.

There are two general findings and one limitations of chapter three. First, sound
sensor data, specifically maximum decibel recordings across time, capture activity pat-
terns of the area surrounding the sensor. Second, the novel topological data analysis
techniques performed worse than other methods in the comparison. The main limi-
tation of the chapter was the number of sound sensors analysed and their placement,
which limited the generalisability of the results.

The fourth chapter addresses the second aim of the thesis - To identify potential

megaregions, as well as to explore the distribution of people within them. There are
three main findings in chapter four and two limitations. First, three emergent scales of
interaction were identified in the origin-destination employment data (LODES) - one
corresponding to metropolitan/combined statistical areas, one corresponding to states
and one super-state scale. Second, there is evidence of emergent economic integration
at the megaregional level for six out of the eleven megaregions proposed by Hagler
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(2009). Third, the results from the spatial analysis of employment suggest that at
the first hierarchical level, where the scale is defined by the extent of the detected
communities and the units are the census tracts, the majority of employment in the US
is decentralised.

The first limitation is related to the data used in the study, while the second to the
methodology. First, the community detection approach used in this chapter relies only
on one type of functional relationship - employment. The second set of limitations
relates to the specific use of modularity as a measure of emergent community strength
and the limited set of comparisons carried out.

The fifth chapter addresses the third main aim of the thesis - To delineate urban

areas morphologically and to explore the spatial structure of density variations within

the resulting boundaries.

The main result of the analysis is that it is possible to capture accurate urban foot-
prints using only individual building polygons derived from satellite images. Further-
more, on average, there is a decrease in building density at a scale most similar to
functional urban units. A secondary result, is that the majority of delineated areas have
one dense core, however over 70% of population lives in delineations with multiple
dense cores which exist in a complex relationship to each other. Lastly, none of the
footprints were at the megaregional scale and interestingly, some megaregions cannot
be delineated based on building density at all.

Similarly, to chapter three the main limitations of the analysis are related to the
data - only two-dimensional building footprint data is used; and methods - issues with
delineating sparsely populated areas.

6.2 Urban delineations, form and function

The main focus of the thesis and a common theme across all three analysis chapters,
is the classification of data and delineation of boundaries, in order to facilitate the
analysis of different urban phenomena. Chapters three and four deal with functional
urban behaviour - captured sound patterns produced by urban activity and home and
tax addresses respectively, whereas chapter five deals with form - building footprints.
Integrating the different results into a coherent whole and drawing overall conclusions
is challenging due to the specific operalisation approaches, scales of the results and
types of data used. However, there are two ways in which the results from the chapters
can be combined.

First, the results provide a more detailed picture of large-scale economic integra-
tion, the growth of cities, population and employment decentralisation and the rela-
tionship between form and function. Chapters four and five show that overall, there
is only limited evidence of emergent megaregional structure in the US. Furthermore,
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in both chapters urban areas extent beyond official boundaries and have decentralised
urban spatial forms. Results from chapters three and five show evidence in favour of a
complex relationship between urban function and form - sound sensor patterns change
depending on their location on a street and building densities drop at the boundaries of
functional urban areas, on average. However, there exists multiple differences between
the two sets of results. These results are analysed in more detail in the next section.

Second, the results from the chapters provide insights into the disadvantages and
advantages of a specific approach towards delineation at different scales - one based
on density of connections, with few model restrictions. Furthermore, the analytical
chapters focus on building on the limitations of previous operationalisations of spe-
cific phenomena and the discovery of unexpected behaviour when constraints are re-
laxed. Chapter five operationalises a minimalist definition of urban areas based on
density without using intermediary aggregations or fixed density thresholds. In chapter
four, data sources and methods different to previous research - Nelson and Rae (2016)
and Arribas-Bel and Sanz-Gracia (2014) - are used in order to create comparisons for
megaregional delineations and labour spatial patterns respectively. Similarly, chapter
three uses novel data and methods - sound sensors and topological data analysis - to
detect profiles of urban activity.

Nevertheless, the interpretation of these results comes with caveats. Both chapters
four and five deal with data that spans the whole of the contiguous United States, how-
ever on average, chapter four detects much larger emergent units than chapter five and
furthermore, the two chapters differ in their conclusions regarding specific megare-
gions in the US. Part of the reason for this is the large difference in the core units of
analysis - chapter four uses census tracts, whereas chapter five - individual building
footprints. This is a data limitation issue since the flow data is not available at the
building level due to survey costs, privacy concerns and data accuracy problems. The
differences are also in part due to the focus of the analysis - functional versus mor-
phological. Integrating these results is still possible if all of these considerations are
taken into account and is further explored in the next section. In contrast, integrating
the conclusions of chapter three with chapters four and five is more difficult, even if
the same methodology is applied in the US instead of the United Kingdom. This is
because neither of these two chapters takes into account time, which plays a central
role in chapter three.

6.2.1 Urban form and function

There are three main conclusions which can be drawn from the combined results,
which relate to the urban form and function debate. First, sound patterns are affected
by urban form. Second, there is a general pattern of population decentralisation in
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the US, reflected in both the morphological and functional data. Third, for the United
States, chapters four and five show only limited evidence for the emergence of func-
tional integration at the megaregional level, and none for morphological integration.

Overall, the results from the thesis suggest that urban function is reflected in urban
form to various degrees, however the relationship is complex. Chapter three provides
evidence that some street sound sensor patterns, which are similar to other human ac-
tivity data, show strong spatial autocorrelation and change in activity patterns at street
intersections. This is an important result due to the wide usage of the street network
to infer functional behaviours, such as delineations of cities or population density esti-
mations (Arcaute et al., 2016). The fact that sensors along the same street are grouped
together, is inline with urban sound use literature that shows that the built environment
has an effect on urban sound (Zuo et al., 2014). Furthermore the analysis of the points
of interest present alongside different clusters, explicitly showed that the urban infras-
tructure - roads, transport stops, buildings, etc - differs based on the different identified
activity profiles. However, it should be noted again that the generalisability of these
results are limited due to data coverage.

The results from chapters four and five are also related to the function-form debate.
The delineations of chapter five are on average most similar to functional urban areas,
without incorporating any functional data. The first level of delineated units in chapter
four resemble MSAs. Both of these functional and morphological delineations are
larger than official city boundaries, which shows that the growth of cities is reflected in
both form and functional data. This is consistent with the general delineation literature
(Duranton, 2021) and is one of the core reasons for the importance and growing interest
in urban delineation approaches.

Furthermore, the results from chapter four and five also show that the concentration
of labour pools are at least somewhat reflected in building density fluctuations in the
United States. First, both chapters show general agreement about the spatial distribu-
tion of people within the delineated areas themselves. The results from chapters three
and four show that decentralised urban forms dominate in the US, and this is reflected
in both functional and morphological data. In chapter five, the majority of urban land
in the majority of metropolitan areas was contained within a single footprint. However,
the largest delineations, which account for more than 70% of the estimated population,
had multiple dense cores. Similarly, the majority of employment activity in chap-
ter four was decentralised at the first emergent scale, which is similar to the existing
metropolitan level. These results are consistent with the wider literature (Dadashpoor
and Malekzadeh, 2021; Arribas-Bel and Sanz-Gracia, 2014), even though polycentric-
ity analysis was not the main focus of the chapters and both of them had significant
methodological and data differences with other studies. Chapter four and five did not
specify a scale of analysis a priori, but instead inferred it from the data. In numerous
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studies, changes in scale lead to changes in characterisations of polycentricity - it can
increase, decrease or disappear (Möck and Küpper, 2020; Hall and Pain, 2006; Wang
et al., 2019). Therefore, the results from both chapters are an additional empirical
example in the literature in favour of urban decentralisation.

Additionally, in both chapters there is evidence that there is little morphological
or functional integration across state boundaries at the megaregional scale. This is an
important result for many researchers which take the emergence of economic or other
interactions at the megaregional scale, as evidence that focused planning at this scale is
required (Sorensen and Labbé, 2020). Furthermore, this result is also reflective of the
diverse administrative and political structures that exist within proposed megaregions
(Glass, 2014). The only delineated megaregion that crosses state boundaries is the
Cascadia megaregion, which is delineated in chapter four only. Furthermore, there
is agreement between the two sets of results, that two megaregions - Texas Triangle
and Arizona Sun Corridor - are relatively well-integrated compared to the rest. These
agreements show that the relatively limited cross border interactions present in the
home-tax functional data are similarly reflected in the density of the building polygons
data.

There are also differences between the two sets of results in chapters four and five,
reflective of the complex relationship between form and function, as well as the differ-
ences in data and methodology. First, the analysis of functional data shows stronger
signs of scatteration for the majority of people. Second, the number of centres iden-
tified in the fifth chapter is by and large greater than the number of centres identified
in the fourth chapter. This difference is reflected in other research which finds that
morphological decentralisation is larger than functional - (Burger and Meijers, 2012;
Taubenböck et al., 2017). In part, these differences are due to the particular methodol-
ogy, core units and modifiable area units problems. Another factor is that the morpho-
logical data does not differentiate between residential and office buildings. In spite of
these underlying differences, in some cases such as the Bay area, both approaches are
in agreement that there exist strong scatteration patterns.

These similarities and differences are also reflected when a comparison is made at
the megaregional level. The Texas Triangle and Arizona Sun Corridor are the least
morphologically integrated of the possible megaregions in chapter five, whereas they
are as functionally integrated as the other single state megaregions. In chapter five,
the hierarchical analysis shows that of the proposed megaregions the ’Northeastern
Metropolis’, which spans nine states, is the most morphologically integrated one and
the second megaregion in the ranking is the ’Atlantic Piedmont’ which spans five
states. The analysis in chapter four, showed these megaregions as less functionally
integrated than any of the single-state megaregions or Cascadia.
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6.3 Delineation approaches and new forms of data

6.3.1 Hierarchical approaches

Although the methodological approaches used differ, their overarching aim is to define
final spatial boundaries based on a nested hierarchy. The position of constituent units
within this nested hierarchy is based on similarity and is central to the grouping of
units. None of the methods used in any of the three papers rely on global parameters -
there is no value specified beforehand, which determines whether two units should be
grouped together. The boundaries derived from buildings, sound sensors and employ-
ment/residence relationships are based on local variations, inferred from the data and
there are no spatial models or a final number of delineations specified. The results of
the three chapters show the viability of creating delineations without these constraints.
Furthermore, they show the advantages of calculating the final delineations and rela-
tionships between them based on hierarchies.

The hierarchy provides a readily available ’history’ of how the final delineations
were computed and why certain core units were excluded. The relationship between
the units in the hierarchy played an important role in all chapters. In the third chap-
ter, the hierarchy was used to analyse the sound sensors placed outside clusters. In the
fourth chapter the delineated units at the first level of the hierarchy, which are similar to
metropolitan statistical areas, were used to analyse the spatial patterns of commuters.
Similarly, in the fifth chapter, the hierarchy was used to analyse the variations of build-
ing density within the individual delineations, as well as integration of the delineations
into megaregions. A limitation of the third chapter was that there was not enough data
to create a national hierarchy. However, the land use delineations are derived in exactly
the same as in the fifth chapter and with more available data, the same types of analysis
can be applied.

Taken all together, the results also show the advantages these types of delineation
methods, and the importance of advances in this area. In chapter three, additional ar-
eas, representing different activity patterns, were found compared to analysis which
use Twitter and mobile phone data, such as Furno et al. (2017). The first level of de-
lineations derived in Chapter four, shows a different pattern of spatial distribution of
employment to that found by Arribas-Bel and Sanz-Gracia (2014). This is due in part
to the fact that spatial employment analysis and polycentricity research in particular
are affected by both the delineation of the areas of study (i.e. metropolitan statisti-
cal areas) and the delineation of the centres within them (Möck and Küpper, 2020).
Chapter five’s delineations of urban areas show differences in population counts and
density to even the most similar other delineations. All of these differences affect all
comparisons between cities and all downstream analysis such as policy evaluation or
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economic productivity research.

6.3.2 Bounded territorial units

Furthermore, the calculated hierarchies provide a way to address some criticisms of
bounded delineations in general, such as Christopher (1965); Alexander (2017), that
emphasize that no spatial process is completely isolated within its boundary. This is
most evident in the fourth chapter, where there are multiple links crossing the delin-
eated boundaries and connecting them into a larger network. In fact Nelson (2020)
argues that the resulting units explicitly ’retain the both practical and conceptual utility
of distinctly bounded entities without needing to assert that these territorial borders are
inimical to patterns of flow and connection’.

The delineations of chapters three and five can be adjusted to incorporate overlaps
in a similar manner. In the fourth chapter the notion of similarity is based on the
density of buildings in geographical space and their geographical distance (given a
map projection). In the third chapter similarity is measured by the density of sensors
in an ambient ’sound sensor data space’. The position of each sensor within this space
is based on the recorded sound pattern and similarity to other sound patterns, which
is defined by a correlation distance metric. In both chapters a hierarchical graph of
connections is built based on the density and distance between units (buildings or sound
sensors). The final delineations are based on positions of units within this hierarchy
and a minimum (local) density. In addition, the HDBSCAN approach leaves some
units as noise, which are in fact reachable within the hierarchy by the final delineations.
These can be potentially assigned to one or more final delineations, thus creating zones
of overlap. In chapter five examples of this could be less densely populated places
between two major urban areas and in chapter three - sound sensors on the intersections
of streets that have activity patterns patterns that fall between two neighbouring areas.
This approach can be further extended to define areas of overlapping density, centred
on core units, again based on the hierarchy at every step of the deliniation procedure.

6.3.3 Validation and reproducibility

Taken together, the results from the analytical chapters also highlight the importance
of validation and testing when creating delineations using new forms of data or ap-
proaches. Improvements in the availability and reproducibility of delineations can
improve research results and outcomes by making it easier to connect the outcomes
of an analysis to theory and other results from the literature (Wolf et al., 2020). In
this thesis, the majority of analysis time was spend on the validation and interpretation
of the results. Furthermore, as the analytic methods used become more complex, the
importance of validation, testing and comparisons grew. This was especially relevant
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in chapter three, where only OpenStreetMap data was available for external functional
validation of the results. Similarly, in chapter four although there are numerous de-
lineations of megaregions available in the literature, there are few publicly available
shapefiles of them. The introduction of more comparisons, which can provide richer
contextualisation, would strengthen the conclusions of the analysis in both cases. The
wider availability of urban delineations is what made the relatively more numerous
comparisons in chapter five feasible. The usage of data products and better tools,
such as coding libraries can help deal with these issues and save researchers computa-
tional costs and time spent doing data preprocessing (Singleton and Arribas-Bel, 2021;
Arribas-Bel et al., 2021b; Calafiore, 2021).

6.3.4 Advantages and disadvantages of using new forms of data
for delineations

In general, all delineation approaches followed the Geographic Data Science (GDS)
framework - integrating geographical knowledge, computational power, data and meth-
ods (Singleton and Arribas-Bel, 2021). In all three chapters numerous ideas and
methodological approaches could not be directly applied due to computational require-
ments. Therefore, a significant proportion of analysis time was spent on dealing with
computational complexity. This is one of the challenges of using new forms of data
identified by Arribas-Bel and Tranos (2018).

Chapter three adopted a novel dataset and novel methodologies. Through this ap-
proach, the analysis resulted in the detection of areas with activity profiles which sim-
ilar methodologies and research did not differentiate. Furthermore, the comparison
carried out demonstrated that new methods are not necessarily the best performing
when it comes to the analysis new forms of data - the results showed that TDA meth-
ods perform worse than other more widely adopted approaches. However, the sound
sensors dataset used was limited to two months of data across several neighbourhoods,
which limited the generalisability of the results.

Chapter four aimed to address the generalisbility issue through the use of the
LODES data. Out of all data used in this thesis, LODES is the most widely used and
tested dataset by the wider research community. The limitations of the TDA methods
influenced the choice of community detection algorithm as well. The Louvain algo-
rithm has found successful application in various fields and was explicitly designed for
new forms of data - to analyse large amounts of mobile phone calling records (Blondel
et al., 2008; Rahiminejad et al., 2019). Through this combination of data and method-
ology it was possible to identify emergent structures in US employment patterns at
various scales. However, the methodology suffered from several drawback identified
in the limitations section of the chapter. Issues stemmed from the direct application
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of methods not customised to the particular task of employment pattern analysis - the
similarity metric used by the Louvain algorithm itself was developed for abstract graph
comparisons (Newman, 2006),

The fifth chapter aimed to address both sets of limitations in chapters three and
four - the data set used has good coverage and the methodology is explicitly tailored
to the dataset and aim - to operationalise a definition of urban areas with few imposed
restrictions. The analysis is based on a novel dataset with national coverage in con-
trast to the limited dataset in chapter three. However, this data did not come without
issues - its large size and inaccuracies in dense urban areas. To address these a ma-
chine learning algorithm had to be adapted in accordance with the aim of the project.
Existing open source implementations of the clustering algorithm used - HDBSCAN
- could not be directly applied to the dataset due to its size, and the inability to in-
corporate building footprints’ areas. Furthermore, specific properties of geographic
distance and map projections had to be exploited in order to make the required calcula-
tions computationally feasible. Specifically, geohasing and planar projections helped
in calculating the nearest neighbours of the points and their first connections in the
hierarchy, which significantly reduced the computational time and resources required,
thus making the analysis possible to be carried out on a moderately powerful desktop
computer (Garcia-Pulido and Samardzhiev, 2022).

6.4 Empirical, theoretical, technical contributions

The combined results from the thesis have several empirical, theoretical, technical im-
plications. First, each chapter provides ready delineations, which can be directly used
for the analysis of different urban phenomena at various scales. The second set of em-
pirical contributions concerns the results of the analysis. Chapters four and five provide
further functional and morphological support respectively, for the decentralisation of
employment patterns in the United State (Dadashpoor and Malekzadeh, 2021), for the
growth of cities beyond their urban boundaries (Duranton, 2021), as well as for the
large scale integration of the Arizona Sun corridor and Texas Triangle megaregions.
Furthermore, the results from all chapters show the increasingly complicated relation-
ship between urban form and function - certain aspects such as decentralisation and
large scale integration and small scale functional activity are reflected in both, how-
ever differences do exist.

The theoretical contributions are primarily concerned with the usage of hierarchi-
cal methods and new forms of data. First, maximum decibels from sound sensors
aggregate into profiles similar to those in other activity data - mobile phones calling
records, app data, etc. As such this data could be used in place of other information and
captures patterns of human activities at high spatial and temporal resolutions. Second,

131



the thesis emphasized the usage of hierarchical clustering methods since they enable
the validation of, not just the final results, but also intermediary units. Furthermore,
the hierarchical methods provide less constrainted ways of operationalising different
theories - this was demonstrated in chapter five, where a definition of urban areas as
places of high density (O’Sullivan, 2011), surrounded by low density was used with-
out explicit density thresholds. Furthermore, it is possible to incorporate overlaping
ideas of places using hierarchical methods as discussed in the sections above. Lastly,
the research carried out in the thesis provides examples of how Geographic Data Sci-
ence (Singleton and Arribas-Bel, 2021) can be an effective approach to tackling urban
problems.

The main technical contributions are the processing of large scale polygon data and
the comparisons carried out between the TDA methods in chapter three. Garcia-Pulido
and Samardzhiev (2022) provides a fast and scaleable DBSCAN and HDBSCAN clus-
tering algorithms, alongisde extensions, which can be used by researchers when they
need to analyse spatial data with hundreds of millions of observations. In addition,
the comparisons of chapter three focused on three widely used TDA methods for find-
ing the differences in time series analysis. Topological data analysis is an emerging
paradigm and there are numerous methods developed in the literature, however the
aprroaches tested performed worse than a simpler baseline method and this points to
potential improvements TDA reaserchers can gain by switching to this methodology.

6.5 Implications and future work

These contributions have several pathways of impact in research and planning. First,
the results encourage the use of hierarchical methods for the creation of different delin-
eations and typologies for urban processes, using different types of data - relationships,
time series and tabular and can scale to handle millions of observations. Second, the
delineations produced could be used directly to identify the effects of fixed global
thresholds on the analysis of phenomena, as was done in chapters four and five for
polycentricity and in chapter three when the results were compared to the noise pollu-
tion typology literature. Examples of such applications are the effects of urban form
on health (Meijers, 2008), the identification of patterns of sprawl (Barrington-Leigh
and Millard-Ball, 2015) or the validity of the scaling laws hypothesis (Lobo et al.,
2020). Furthermore, the polycentricity analysis can readily be extended using the pro-
vided delineations by incorporating more complex decentralisation metrics (Derudder
et al., 2021). Third, all of the methodologies and datasets can be used to track changes
across time since all of the data used in the analysis is temporal with different release
periods. Fourth, the adopted approaches in chapters five can be used globally, since
buildings are universal units in all countries and the chapter explicitly outlines some of
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the challenges researchers may face in doing so. Similarly, chapters three and four can
be adopted, provided there is available data.

The results have several implications for planning as well. In general, urban plan-
ners and policy makers use bounded territorial units, even though how much they are
emphasised varies (Harrison, 2013). Therefore, the delineations created here can be
used by planners directly or can be adapted if more porous boundaries and units are
needed (Paasi and Zimmerbauer, 2016), using the hierarchy and the methods discussed
above. Example uses can be as evidence in favour of the adoption of new adminis-
trative units at different scales (Purkarthofer et al., 2021), new cross border initiates
(Bellisario et al., 2016) or to increase investments in new forms of data such as build-
ing polygons and sound sensors. The results show that these data sources are provide
useful supplementary information, that enable the analysis of previously inaccessible
aspects of urban form and function. These types of data could be especially good
for developing countries, due to their relative cheap cost of adoption (Wardrop et al.,
2018). Similarly, investments in data fusion approaches can improve data quality and
increase analysis options.

Furthermore, all delineations can be used to track real versus planned develop-
ment of urban phenomena. For example, the sound sensors can be directly used to
track the differences and similarities between actual activity and the urban land use
plans and regulations (Toole et al., 2012). Similarly, the methodology and data in
chapter five can be used for the analysis of sprawl (Barrington-Leigh and Millard-
Ball, 2015). The emergent megaregional boundaries and the proposed methodology
from chapters four and five can be used across time to validate the emergence of new
large-scale economically-integrated areas, and to track the predictions and proposals
of researchers and planners such as (Hagler, 2009; Nelson and Rae, 2016; Nelson and
Lang, 2018; Ross et al., 2016; Nelson, 2017, 2020; Ross et al., 2009) as well as the
changes in the relationship between form and function and its implications for planning
and research (Batty, 2018).

In order to facilitate this usage and improve results, these areas of future work
could be emphasized - enhancing and combining different data sources, as well as
developing methods and theories to integrate all results. First, data fusion and data
quality improvements can extend the analysis both in scale and function. For example,
more sound sensors in more areas could result in the discovery of new activity profiles
and it would enable the exploration of land use changes across different scales, similar
to the analysis carried out in chapters four and five. Additionally, the validity and
cluster characterisation can be enhanced through the use of other functional data which
enriches the OpenStreetMap POI and building data. For chapter five, different types
of building information could be incorporated into the delineation procedures, such
as the building heights used by de Bellefon et al. (2019) or Arribas-Bel et al. (2021b).
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Furthermore, the resulting final delineations could be additionally combined with other
widely available data sources such as population, vegetation or watergrids that could
directly help resolve some of the limitations discussed in chapter five. Different types
of relational data such as the one used by Calafiore et al. (2021) or Rowe et al. (2023)
can be used to augment the economic interactions used in chapter four.

In general integrating all of these new types of data, as well as results into coherent
theories and operalisations of these theories are crucial to increasing the impact of
the research. This thesis demonstrates that one promising avenue of achieving this is
through hierarchical methods. The advantages of this family of methods is that they
can handle different data types and can provide intermediate results which shed light
on the constituent units of the final clusters, which can themselves be used for analysis
and quality control. Chapter five is an example of implementing this in practice.

6.6 Concluding remarks

It is expected that cities will continue to grown and change in the future, giving rise to
new challenges for researchers, urban planners and policy makers (Lobo et al., 2020).
Alongside these changes, more data, reflective of the diverse human interactions tak-
ing place within them, will be become increasingly available (Arribas-Bel and Tranos,
2018). Successfully using this data to address new and existing challenges, alongside
the growing importance of cities, opens up opportunities for planners and policy mak-
ers to support to an unprecedented extent improvements in the lives of citizens (Batty,
2018; Singleton and Arribas-Bel, 2021). The results from the thesis show how ad-
vances in delineation approaches using new forms of data and approaches such as GDS
can help achieve this. First, by capturing different aspects of urban reality, which previ-
ously were obfuscated by data or methodological limitations and second, by analysing
phenomena across different scales and datasets. Combining these results and more tra-
ditional analysis, alongside historical, cultural and political context (Hamilton and Rae,
2018) as well expert and local resident opinion (Hagler, 2009; Galdo et al., 2021) into
coherent theories is the next step in achieving timely and varied urban interventions
and ensuring sustainable urban living.
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A

Comparison between clustering methods

TDA methods

A comprehensive mathematical introduction to TDA can be found in Wasserman (2011).
All three TDA methods used in this comparison are based on the ideas of persistent
homology, diagrams and bottleneck distance. As previously mentioned, persistent ho-
mology provides an object, a ’persistent diagram’ that describes the multi-dimensional
coarse shape of the time series - the zeroth dimension corresponds to connected com-
ponents or clusters, the first to cycles present in the time series data, while the second
and above dimensions represent higher dimensional generalizations of cycles (Chazal
and Michel, 2017). This information is reflective of various underlying periodic pat-
terns in the time series, as well as the time series’ critical points - its peaks and valleys.
Persistent diagrams of different time series can be compared to each other through
’bottleneck distance’, which is a measure robust to noise (Cohen-Steiner et al., 2007).

The first TDA method used in the comparison is called ’Lowerstar’. It focuses on
the peaks and valleys in the time signal as the most important part. This method is the
equivalent to basing the comparisons between different sound sensors on differences
at which their critical points - local minimums and maximums - occur. It is described
in more detail in the methodology section of this paper.

The second method is based on Perea et al. (2015). It is a particular implementation
of a class of TDA transformations for time signals that have seen successful applica-
tions in fields such as medicine and engineering. The main focus is on the regularly
repeated patterns in the sound signals, such as the daily and weekly periodicities. In
that the goal of the transformation is similar to the Fourier decomposition used in Cici
et al. (2015). To this end persistent homology is applied to a time lagged (delay em-
beddings) representation of the sound sensor pattern in order to obtain its persistent
diagram. The transformed data is constructed by using ’delay embeddings’ of the sig-
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nal. That is the representation on which persistent homology is applied. This method
is referred to as ’TDA Sw1pers’.

The last method is based on Pereira and de Mello (2015) and is similar to the
one above, however several topological features are extracted from the persistent dia-
gram manually - number of detected cycles, persistence of the most prominent cycle
and others. These extracted features are then used to directly cluster the points. The
methodology is followed as described in the paper, with the only difference being in
the choice of clustering methodology used at the end. This was done in order to make
the comparison between the different methods as close as possible. This method is
referred to as ’TDA Pointcloud features’.

Comparison results

Table A.1: Clustering results

Number of clusters Silhouette Adjusted Mutual Information Mean POI difference Min POI difference
TDA Lowerstar 3 0.304 0.128 0.104 0.075
TDA Sw1pers 3 0.271 0.140 0.098 0.057
TDA Pointcloud features 2 0.748 0.004 0.067 0.067

Figure A.1: Clusters obtained using TDA methods

Table 3.1 shows a summary of the number of clusters, silhouette score and mutual
information comparison with the naive spatial clustering for each of the methods. First,
it can be seen that the number of clusters varies from 2 to 5 for the different methods.
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The outliers are not included, only the clusters with more than 2 members. Looking
at just the silhouette scores the two best results are the baseline model and the TDA
Pointcloud features one. However when the the mutual information comparison with
the naive spatial clustering is considered the TDA Pointcloud features is the worst
clustering. It has a score of almost zero, whereas all the other results exhibit some
spatial patterns.

Figure A.1 shows the clustering results obtained by applying the TDA methods.
Using the Pointcloud method results in 37 out of 40 sensors in the same cluster, with
3 spatially random ones in another. This result is not informative, since almost all of
the data lie in a single cluster. Another problem is that there are no outliers detected,
whereas all the other clustering methods find at least some. Furthermore, the positive
mutual information scores of the other clustering methods suggest some degree of spa-
tial correlation. Their results are more inline with evidence that shows sound patterns
and propagation are spatially sensitive (Zuo et al., 2014). Therefore, this method doesn
not produce the best result.

The next set of results is the one obtained with the TDA Sw1pers algorithm. It has
positive values for both the mutual information comparison and the silhouette scores.
It ranks second in the mutual information comparison and third in silhouette score. It
splits the data into 3 clusters, with 2 outliers.

The last TDA method is the TDA Lowerstar. It has the second highest silhouette
score and second mutual information score. It splits 23 out of the 40 sensors into three
clusters and 17 outliers with strong spatial correlation.

Table A.2: Lowerstar features points of interest

total sustenance education transportation financial healthcare entertainment sensors
Cluster 1 118.0 0.542373 0.000000 0.406780 0.016949 0.016949 0.016949 7.0
Cluster 2 114.0 0.429825 0.026316 0.482456 0.008772 0.043860 0.008772 11.0
Cluster 3 75.0 0.466667 0.013333 0.453333 0.026667 0.000000 0.040000 2.0

Tables A.2, A.3, A.1 shows the distribution of the different types of types of interest
in the clsuters. The categories represent points of interest from Openstrepmap data in
a 100m radius around each pont in the cluster. The types of places that go into each
category are described in the introduction to the data used in this paper in section
3.4. All sets of clusters show a similar distribution of points of interest - a high level
of transportation and sustenance amenities. There are no discernible differences in the
clusters of the point cloud clustering, echoing the conclusion from the previous metrics
that this clustering does not provide much information. The Sw1pers clustering gives
one cluster, cluster 3 that, stands out with some entertainment and financial services
and a high level of sustenance in cluster 1. There is a similar pattern in the Lowerstar
clustering, however it is more pronounced.

Given this comparison the best performing TDA method is the ’Lowerstar’. The
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’TDA Pointcloud features’ clusters do not provide much information, since most sen-
sors get assigned to the same clusters. ’Lowerstar’ has the higher silhouete , and a
comparable mutual information score when compared to ’Sw1pers’. It also has the
highest values of Mean POI difference and Min POI difference, suggesting that the
amenities surrounding its sensors are the most distinct ones. Because of these results
is the TDA method used in the paper.

Table A.3: Sw1pers points of interest

total sustenance education transportation financial healthcare entertainment sensors
Cluster 1 14.0 0.571429 0.000000 0.428571 0.000000 0.000000 0.000000 2.0
Cluster 2 150.0 0.460000 0.020000 0.446667 0.020000 0.046667 0.006667 25.0
Cluster 3 121.0 0.479339 0.008264 0.413223 0.041322 0.024793 0.033058 12.0

Table A.4: Point cloud features points of interest

total sustenance education transportation financial healthcare entertainment sensors
Cluster 1 194.0 0.443299 0.015464 0.469072 0.025773 0.036082 0.010309 37.0
Cluster 2 52.0 0.442308 0.019231 0.423077 0.019231 0.038462 0.057692 3.0
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B

Overview of LODES data

Tables B.1 and B.2 provide an overview of the LODES Longitudinal Employer-Household
Dynamics Origin-Destination Employment Statistics (LODES) data for 2016. The ta-
bles show the total number and percentage of interstate and intrastate flows.
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Table B.1: Intra and Inter state flows

Name Total Intrastate flows Interstate flows
District of Columbia 657538.0 0.280227 0.719773
Delaware 506453.0 0.686417 0.313583
Rhode Island 559570.0 0.712567 0.287433
New Hampshire 765545.0 0.721107 0.278893
West Virginia 791563.0 0.750396 0.249604
Maryland 2942352.0 0.752729 0.247271
New Jersey 4617436.0 0.767449 0.232551
Kansas 1493999.0 0.817227 0.182773
Vermont 328214.0 0.818155 0.181845
North Dakota 427461.0 0.838287 0.161713
Connecticut 1809929.0 0.842953 0.157047
Mississippi 1230289.0 0.844524 0.155476
Kentucky 2001827.0 0.844710 0.155290
Virginia 3957518.0 0.845036 0.154964
Missouri 2935029.0 0.852597 0.147403
Wyoming 278620.0 0.871976 0.128024
Iowa 1641167.0 0.877136 0.122864
Massachusetts 3653350.0 0.878616 0.121384
South Carolina 2133140.0 0.878973 0.121027
Idaho 732118.0 0.880070 0.119930
Indiana 3197494.0 0.881589 0.118411
Pennsylvania 6098930.0 0.881943 0.118057
New York 9501484.0 0.884425 0.115575
Tennessee 3003119.0 0.891773 0.108227
Nebraska 1000596.0 0.894702 0.105298
Arkansas 1246375.0 0.896230 0.103770
South Dakota 428624.0 0.898174 0.101826
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Table B.2: Table B.1 continued

Name Total Intrastate flows Interstate flows
Oregon 1877248.0 0.902754 0.097246
New Mexico 832344.0 0.905638 0.094362
Alabama 1998093.0 0.907275 0.092725
Illinois 6139657.0 0.911857 0.088143
Wisconsin 2974121.0 0.916772 0.083228
Nevada 1308896.0 0.922300 0.077700
Maine 614770.0 0.922472 0.077528
Ohio 5431966.0 0.926383 0.073617
North Carolina 4392883.0 0.926953 0.073047
Georgia 4328510.0 0.929859 0.070141
Washington 3249909.0 0.931439 0.068561
Louisiana 1944373.0 0.931859 0.068141
Minnesota 2905656.0 0.932087 0.067913
Oklahoma 1615079.0 0.932413 0.067587
Montana 458437.0 0.948641 0.051359
Michigan 4303332.0 0.954900 0.045100
Utah 1376095.0 0.959478 0.040522
Arizona 2706420.0 0.960954 0.039046
Colorado 2526124.0 0.970203 0.029797
Texas 11827331.0 0.973138 0.026862
Florida 8346751.0 0.979197 0.020803
California 16639025.0 0.982980 0.017020
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C

Building area clustering

In Figure C.1 the HDBSCAN algorithm does not take into account the building ar-
eas, only the distances between them. Since the blocks in Manhattan are treated as
individual buildings, there are around 5000 of them and they are at a larger distance to
each other, relative to areas such as the Bronx where the median detected building has a
smaller area and distance to its nearest neighbouring building on average. This leads to
the analysis procedure treating the most densely populated of the five boroughs of New
York City as a sparsely populated area, separating the Bronx, Brooklyn and Queens.
In Figure C.2, the sizes based on the area replace the raw counts of the buildings and
the algorithmic procedure delineates all of the boroughs together.

Figure C.1: HDBSCAN boundaries for New York
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Figure C.2: HDBSCAN boundaries when area is incorporated into the methodology
for New York

Figure C.3 shows the difference between the New York delineation based on a
parameter choice of 2000 versus 19000. The split occurs along the Hudson bay, since
that is an area with no buildings.

Figure C.3: New York delineation based on a minimum parameter size of 2000 and
19000

Figures C.4, C.5, C.6 show the the delineations for three of the top 15 cities for
the HDBSCAN, GHSL and CUC delineations. GHSL urban delineations are in blue,
CUC in green, our HDBSCAN in red.
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Figure C.4: Atlanta extent for each of the three methods
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Figure C.5: Boston extent for each of the three methods
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Figure C.6: Chicago extent for each of the three methods
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Dolega, L. and Celińska-Janowicz, D. (2015). Retail resilience: A theoretical frame-
work for understanding town centre dynamics.

Dolega, L. and Lord, A. (2020). Exploring the geography of retail success and decline:
A case study of the liverpool city region. Cities, 96:102456.

Dolega, L., Pavlis, M., and Singleton, A. (2016). Estimating attractiveness, hierarchy
and catchment area extents for a national set of retail centre agglomerations. Journal

of Retailing and Consumer Services, 28:78–90.

Dolega, L., Reynolds, J., Singleton, A., and Pavlis, M. (2021). Beyond retail: New
ways of classifying uk shopping and consumption spaces. Environment and Plan-

ning B: Urban Analytics and City Science, 48(1):132–150.

Duranton, G. (2021). Classifying locations and delineating space: An introduction.
Journal of Urban Economics, 125(April).

Edelsbrunner, H., Kirkpatrick, D., and Seidel, R. (1983). On the shape of a set of
points in the plane. IEEE Transactions on Information Theory, 29(4):551–559.

Emrani, S., Chintakunta, H., and Krim, H. (2014). Real time detection of harmonic
structure: A case for topological signal analysis. ICASSP, IEEE International Con-

ference on Acoustics, Speech and Signal Processing - Proceedings, (3):3445–3449.

Ewing, R. and Hamidi, S. (2015). Compactness versus Sprawl: A Review of Recent
Evidence from the United States. Journal of Planning Literature, 30(4):413–432.

Feng, Y., Wu, S., Wu, P., Su, S., Weng, M., and Bian, M. (2018). Spatiotemporal char-
acterization of megaregional poly-centrality: Evidence for new urban hypotheses
and implications for polycentric policies. Land Use Policy, 77(129):712–731.

Florczyk, A. J., Melchiorri, M., Orbane, C., Schiavina, M., Maffenini, M., Politis,
P., Sabo, S., Freire, S., Ehrlich, D., Kemper, T., Tommasi, P., Airaghi, D., and
Zanchetta, L. (2019). Description of the GHS Urban Centre Database 2015. Tech-
nical report, Publications Office of the European Union.

Florida, R., Gulden, T., and Mellander, C. (2008). The rise of the mega-region. Cam-

bridge Journal of Regions, Economy and Society, 1(3):459–476.

154



Frias-Martinez, V. and Frias-Martinez, E. (2014). Spectral clustering for sensing urban
land use using Twitter activity. Engineering Applications of Artificial Intelligence,
35:237–245.

Frias-Martinez, V., Soguero-Ruiz, C., Frias-Martinez, E., and Josephidou, M. (2013).
Forecasting socioeconomic trends with cell phone records. In Proceedings of the

3rd ACM Symposium on Computing for Development - ACM DEV ’13, page 1, New
York, New York, USA. ACM Press.

Frias-Martinez, V., Soto, V., Hohwald, H., and Frias-Martinez, E. (2012). Charac-
terizing urban landscapes using geolocated tweets. Proceedings - 2012 ASE/IEEE

International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE

International Conference on Social Computing, SocialCom/PASSAT 2012, pages
239–248.

Friedmann, J. (2019). Thinking about complexity and planning. International Plan-

ning Studies, 24(1):13–22.

Furno, A., Fiore, M., Stanica, R., Ziemlicki, C., and Smoreda, Z. (2017). A Tale
of Ten Cities: Characterizing Signatures of Mobile Traffic in Urban Areas. IEEE

Transactions on Mobile Computing, 16(10):2682–2696.

Furno, A., Stanica, R., and Fiore, M. (2015). A comparative evaluation of urban fab-
ric detection techniques based on mobile traffic data. In Proceedings of the 2015

IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining, ASONAM 2015, pages 689–696, New York, New York, USA. ACM Press.

Galdo, V., Li, Y., and Rama, M. (2021). Identifying urban areas by combining hu-
man judgment and machine learning: An application to india. Journal of Urban

Economics, 125:103229.

Garcia-Pulido, A. L. and Samardzhiev, K. P. (2022). Geometric reconstructions of
density based clusterings.

Geddes, P. (1915). Cities in evolution: an introduction to the town planning movement

and to the study of civics. London, Williams.

Georg, I., Blaschke, T., and Taubenböck, H. (2018). Are we in boswash yet? A multi-
source geodata approach to spatially delimit urban corridors. ISPRS International

Journal of Geo-Information, 7(1):15.

Gibadullina, A., Bergmann, L., and O’Sullivan, D. (2021). For Geographical Network
Analysis. Tijdschrift voor Economische en Sociale Geografie, 112(4):482–487.

155



Gidea, M. and Katz, Y. (2018). Topological data analysis of financial time series:
Landscapes of crashes. Physica A: Statistical Mechanics and its Applications,
491:820–834.

Glaeser, E. L. (2010). Agglomeration economics. University of Chicago Press.

Glaeser, E. L. (2011). Triumph of the City. Macmillan.

Glass, M. R. (2014). Conflicting spaces of governance in the imagined Great Lakes
megaregion. Megaregions: Globalization’s New Urban Form?, pages 119–145.

Glocker, D. (2018). The Rise of Megaregions:Delineating a new scale ofeconomic
geography. Technical report, Organisation for Economic Co-operation and Devel-
opment.

Gottmann, J. (1957). Megalopolis or the urbanization of the northeastern seaboard.
Economic geography, 33(3):189–200.

Graham, M. R., Kutzbach, M. J., and McKenzie, B. (2014). DESIGN COMPARISON
OF LODES AND ACS COMMUTING DATA PRODUCTS.

Grauwin, S., Sobolevsky, S., Moritz, S., Gódor, I., and Ratti, C. (2015). Towards a
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Petrović, A., Manley, D., and van Ham, M. (2020). Freedom from the tyranny of neigh-
bourhood: Rethinking sociospatial context effects. Progress in Human Geography,
44(6):1103–1123.

Piangerelli, M., Rucco, M., Tesei, L., and Merelli, E. (2018). Topological classifier for
detecting the emergence of epileptic seizures. BMC Research Notes, 11(1):392.

Purkarthofer, E., Sielker, F., and Stead, D. (2021). Soft planning in macro-regions
and megaregions: creating toothless spatial imaginaries or new forces for change?
International Planning Studies, 0(0):1–19.

Rae, A. (2015). Mapping the american commute.

Rahiminejad, S., Maurya, M. R., and Subramaniam, S. (2019). Topological and func-
tional comparison of community detection algorithms in biological networks. BMC

Bioinformatics, 20(1):212.

Rains, T. and Longley, P. (2021). The provenance of loyalty card data for urban
and retail analytics. Journal of Retailing and Consumer Services, 63(November
2020):102650.

Rappaport, J. and Humann, M. (2021). The Size of U.S. Metropolitan Areas. SSRN

Electronic Journal, (May).

Re Calegari, G., Carlino, E., Peroni, D., and Celino, I. (2015). Extracting urban
land use from linked open geospatial data. ISPRS International Journal of Geo-

Information, 4(4):2109–2130.

Reba, M. and Seto, K. C. (2020). A systematic review and assessment of algorithms
to detect, characterize, and monitor urban land change. Remote Sensing of Environ-

ment, 242(May 2019):111739.

Roberts, M., Blankespoor, B., Deuskar, C., and Stewart, B. (2017). Urbanization and
Development: Is Latin America and the Caribbean Different from the Rest of the
World? Urbanization and Development: Is Latin America and the Caribbean Dif-

ferent from the Rest of the World?, (March).

162



Ross, C., Barringer, J., Yang, J., Woo, M., Danner, A., West, H., Amekudzi, A., and
Meyer, M. (2009). Megaregions: Delineating Existing and Emerging Megaregions.
Technical report, Federal Highway Administration.

Ross, C., Woo, M., and Wang, F. (2016). Megaregions and regional sustainability.
International Journal of Urban Sciences, 20(3):299–317.

Rowe, F., Calafiore, A., Arribas-Bel, D., Samardzhiev, K., and Fleischmann, M.
(2023). Urban exodus? understanding human mobility in britain during the covid-19
pandemic using meta-facebook data. Population, Space and Place, 29(1):e2637.

Roy Chowdhury, P. K., Bhaduri, B. L., and McKee, J. J. (2018). Estimating urban ar-
eas: New insights from very high-resolution human settlement data. Remote Sensing

Applications: Society and Environment, 10(October 2017):93–103.

Rozenfeld, H. D., Rybski, D., Andrade, J. S., Batty, M., Stanley, H. E., and Makse,
H. A. (2008). Laws of population growth. Proceedings of the National Academy of

Sciences of the United States of America, 105(48):18702–18707.

Rykwert, J. (1988). The idea of a town: the anthropology of urban form in Rome, Italy

and the ancient world. Mit Press.

Schiavina, M., Moreno-Monroy, A., Maffenini, L., and Veneri, P. (2019). GHSL-
OECD Functional Urban Areas. European Commission, Joint Research Centre

(JRC) Technical Report - Public Release of GHS-FUA.
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