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Abstract

Machine learning is a rapidly growing field of artificial intelligence that allows computers
to learn and make predictions using human labels. However, traditional machine learning
methods have many drawbacks, such as being time-consuming, inefficient, task-specific bi-
ased, and requiring a large amount of domain knowledge. A subfield of machine learning,
representation learning, focuses on learning meaningful and useful features or represen-
tations from input data. It aims to automatically learn relevant features from raw data,
saving time, increasing efficiency and generalization, and reducing reliance on expert knowl-
edge. Recently, deep learning has further accelerated the development of representation
learning. It leverages deep architectures to extract complex and abstract representations,
resulting in significant outperformance in many areas.

In the field of computer vision, deep learning has made remarkable progress, partic-
ularly in high-level and real-world computer vision tasks. Since deep learning methods
do not require handcrafted features and have the ability to understand complex visual
information, they facilitate researchers to design automated systems that make accurate
diagnoses and interpretations, especially in the field of medical image analysis. Deep learn-
ing has achieved state-of-the-art performance in many medical image analysis tasks, such as
medical image regression/classification, generation and segmentation tasks. Compared to
regression/classification tasks, medical image generation and segmentation tasks are more
complex dense prediction tasks that understand semantic representations and generate
pixel-level predictions.

This thesis focuses on designing representation learning methods to improve the per-
formance of dense prediction tasks in the field of medical image analysis. With advances
in imaging technology, more complex medical images become available for use in this field.
In contrast to traditional machine learning algorithms, current deep learning-based rep-
resentation learning methods provide an end-to-end approach to automatically extract
representations without the need for manual feature engineering from the complex data.
In the field of medical image analysis, there are three unique challenges requiring the de-
sign of advanced representation learning architectures, i.e., limited labeled medical images,
overfitting with limited data, and lack of interpretability. To address these challenges, we
aim to design robust representation learning architectures for the two main directions of
dense prediction tasks, namely medical image generation and segmentation.
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For medical image generation, the specific topic that we focus on is chromosome
straightening. This task involves generating a straightened chromosome image from a
curved chromosome input. In addition, the challenges of this task include insufficient
training images and corresponding ground truth, as well as the non-rigid nature of chro-
mosomes, leading to distorted details and shapes after straightening. We first propose
a study for the chromosome straightening task. We introduce a novel framework us-
ing image-to-image translation and demonstrate its efficacy and robustness in generating
straightened chromosomes. The framework addresses the challenges of limited training
data and outperforms existing studies. We then present a subsequent study to address the
limitations of our previous framework, resulting in new state-of-the-art performance and
better interpretability and generalization capability. We propose a new robust chromo-
some straightening framework, named Vit-Patch GAN, which instead learns the motion
representation of chromosomes for straightening while retaining more details of shape and
banding patterns.

For medical image segmentation, we focus on the fovea localization task, which is trans-
ferred from localization to small region segmentation. Accurate segmentation of the fovea
region is crucial for monitoring and analyzing retinal diseases to prevent irreversible vision
loss. This task also requires the incorporation of global features to effectively identify the
fovea region and overcome hard cases associated with retinal diseases and non-standard
fovea locations. We first propose a novel two-branch architecture, Bilateral-ViT, for fovea
localization in retina image segmentation. This vision-transformer-based architecture in-
corporates global image context and blood vessel structure. It surpasses existing methods
and achieves state-of-the-art results on two public datasets. We then propose a subse-
quent method to further improve the performance of fovea localization. We design a novel
dual-stream deep learning architecture called Bilateral-Fuser. In contrast to our previous
Bilateral-ViT, Bilateral-Fuser globally incorporates long-range connections from multiple
cues, including fundus and vessel distribution. Moreover, with the newly designed Bilateral
Token Incorporation module, Bilateral-Fuser learns anatomical-aware tokens, significantly
reducing computational costs while achieving new state-of-the-art performance. Our com-
prehensive experiments also demonstrate that Bilateral-Fuser achieves better accuracy and
robustness on both normal and diseased retina images, with excellent generalization capa-
bility.
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Chapter 1

Introduction

1.1 Overview

Machine Learning (ML) is currently the most rapidly developing area of Artificial Intelli-

gence (AI). ML enables computers to learn and make predictions utilizing limited human

labels. It demonstrates the ability to process large amounts of unstructured data and

address complex problems by designing mathematical models [124]. Many ML methods

have been proposed, such as k-nearest neighbors (KNN) [5], principal components analysis

(PCA) [105], scale-invariant feature transform (SIFT) [91] and support vector machines

(SVM) [31], for making accurate predictions and decisions.

ML methods have been extensively applied in many domains to solve real-life problems,

such as performing disease diagnosis (healthcare), personalizing product recommendations

(recommender systems), optimizing pricing strategies (e-commerce), and translating lan-

guages (natural language processing) [124]. However, in the traditional ML domain, ex-

perts usually use hand-crafted features to perform the target task with their domain-specific

knowledge. Although the manually selected features contain meaningful representations,

these features cost significant time and effort from the experts to design an appropriate

model for a given problem. Thus, traditional ML methods have many drawbacks, e.g.,

time-consuming, inefficient, highly task-specific biased and requiring a large amount of

domain knowledge.

Representation learning (RL), also known as feature learning, is a subfield of ML. It

facilitates the learning of meaningful and useful features or representations from input data.

The goal of representation learning is to transform data into more compact and expressive
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representations that capture underlying structures and patterns directly from the raw data.

Compared to traditional ML methods, RL aims to automatically learn relevant features

from raw data. Moreover, RL saves time, increases efficiency and generalization, and

reduces reliance on expert knowledge.

In recent years, advances in deep learning (DL) have accelerated the development of

RL. DL utilizes deep architectures, such as convolutional neural networks (CNNs) [77, 133],

recurrent neural networks (RNNs) [93, 125] and Transformers [151, 41], to effectively ex-

tract more complex and abstract high-dimensional representations. One major advantage

of DL-based representation learning is the elimination of the manual feature engineering

process. DL can train a model in an end-to-end manner. Researchers typically only need

to prepare input data, ground-truth, and specific objective functions based on the type of

tasks (e.g., regression/classification, segmentation or generation). During the DL training

process, the designed model can automatically learn intrinsic patterns and relationships

that may be difficult for human experts to identify manually. In addition, due to its signif-

icant superiority in handling large amounts of data in different modalities, DL is rapidly

growing in many areas, such as computer vision (CV), natural language processing (NLP),

autonomous vehicles, finance and gaming [80, 54, 71, 78, 19].

In particular, DL methods have evolved rapidly in the field of CV since the complexity

and amount of digital data have increased greatly with advances in imaging technology. CV

is a field that focuses on enabling computers to mimic the human visual system and gain

a visual understanding of the world. In the early stages of CV, researchers focused only

on low-level image processing problems, such as feature matching and edge detection [80].

Although the initial CNN (LeNet [81]) was applied to real-world handwritten digit recog-

nition task, the successful application of CNN (AlexNet [77]) on the large-scale dataset,

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [121] gathered more of at-

tention. Due to its ability to capture high-dimensional and hierarchical representations

from large-scale datasets, DL has achieved remarkable progress in addressing high-level

CV tasks, e.g., image segmentation, generation, and object detection [80, 54, 19].

Since DL enables machines to discard handcrafted features and to understand complex

and large amounts of visual information, it has facilitated researchers to focus on systems

that reduce the need for expert labor while automatically making accurate interpretations,

particularly in the field of medical image analysis (MIA). MIA is a field that develops

advanced technologies to analyze medical images and clinical data for therapeutic, diag-

nostic, and research purposes [87]. Since 2013, automated diagnostic systems using deep
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features have been designed in MIA [17, 144, 107]. In this early stage, deep belief networks

and stacked auto-encoders were utilized to analyze 3D brain magnetic resonance imaging

(MRI) data for classification. Starting from 2015, the research focus of MIA has been

clearly transferred to CNNs [130, 46]. U-Net [118] is the most popular architecture for ad-

dressing biomedical image segmentation. It contains an encoder and a decoder, and uses

skip connections to preserve detailed features, which is a fundamental structure usually

applied in recent DL architecture designs as well.

With advances in imaging technology, more complex medical images become available

for use in the MIA field, such as optical microscope, computed tomography (CT), MRI

and positron emission tomography (PET) images. These data, in 2D/3D formats, are

important modalities for medical imaging and provide unique advantages for monitoring

and diagnosing a variety of medical conditions. For example, CT is a type of 3D images

utilizing X-ray technology. It provides detailed anatomical information and is valuable for

detecting tumors and injuries in many parts, including the brain, chest and abdomen. MRI

utilizes a strong magnetic field and radio waves to reveal detailed internal body structures.

It provides the excellent demonstration of soft tissues and is therefore commonly used to

evaluate organs such as the brain, heart, liver, and kidneys. Since CT exhibits strong

contrast for dense structures and MRI provides exceptional soft tissue contrast, they can

scan the same organ to provide mutual information or detect different diseases depending

on the clinical scenario [14, 104]. These modern image acquisition techniques have produced

more high-resolution and complex clinical images with better contrast and clarity, resulting

in an increased demand for more experienced experts. However, it takes many years to train

an experienced clinician, so the number of clinicians is currently growing at a slower rate

than the number of patients [119, 29]. In this case, the demand for DL-based automated

diagnosis systems has grown significantly.

Recent studies indicate that DL has achieved state-of-the-art performance on many

tasks in MIA. The unique tasks in MIA are mainly categorized as three classes, i.e., (1)

regression/classification (rigid medical image registration, computer aided detection and di-

agnosis), (2) medical image generation (deformable registration, image reconstruction and

image enhancement), and (3) medical image segmentation. Beyond these major classes,

other medical tasks, such as landmark detection and report generation, are relatively in-

frequent [176, 128].

The regression/classification tasks aim to predict continuous numerical values or dis-

crete predefined classes from input medical images. These values can be transformation
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parameters, coordinates or probability distribution of interested diseases, such as align-

ing medical images taken from different modalities [106] or detecting and diagnosing lung

nodules in chest CT scans [88].

In contrast to regression/classification tasks, medical image generation and segmenta-

tion tasks require forming visual representations and generating dense predictions. The

dense prediction tasks focus on generating predictions for each element, requiring effi-

cient modeling of spatial relationships and processing of high-dimensional outputs. The

medical image segmentation task that predicts each pixel can provide accurate bound-

aries and capture fine-grained details in the segmented regions, which is an important

prerequisite [176]. For example, researchers have used DL technology to segment brain

tumors in MRI scans [115]. DL models can accurately segment tumor regions, enabling

clinicians to precisely measure tumor size, monitor its progression, and plan appropriate

treatment strategies. The medical image generation task focuses on synthesizing new med-

ical images that exhibit realistic and clinically relevant features. DL models can learn

the underlying patterns and distributions of the input dataset to generate novel images.

Researchers typically customize architectures and design novel loss functions from classical

generative adversarial networks (GANs), variational autoencoders (VAEs) or image-to-

image translation networks based on the target medical dataset to facilitate medical data

augmentation, deformable registration across modalities, super-resolution and motion ar-

tifact reduction [79, 39, 83, 173, 146].

1.2 Challenges and Motivations

In this Ph.D. research, we look into designing RL/DL-based methods to improve the perfor-

mance of dense prediction tasks in MIA field. Unlike traditional ML algorithms, RL/DL-

based MIA methods simplify the process to an end-to-end approach that can automatically

extract high-dimensional and hierarchical representations without the need for handcrafted

features. However, fewer advanced DL and RL architectures have been designed and ap-

plied in the MIA field compared to the general CV domain due to the following three

unique challenges:

1) The number of high-quality labeled medical images is limited. In DL, a substantial

amount of labeled data is required to train a robust neural network. Advanced images, such

as CT, MRI and PET, significantly increase the size of medical image datasets. While these

datasets provide valuable resources for training and evaluating DL models, annotating
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these datasets is extremely time-consuming and expensive, especially in the MIA field

where expert labeling is required. Although a large amount of clinical data exists, various

data acquisition protocols and privacy concerns at different hospitals have led to isolated

medical images, resulting in less available data and ground truth. For some rare diseases,

the size of datasets, labels and experts are all insufficient. Even some common diseases,

the training of experienced clinicians takes several years, much slower than the growth

of medical data, so experienced clinicians are often inadequate to provide enough labels

compared to the general CV domain.

2) With limited labeled medical data, training DL models faces the problem of overfit-

ting. Overfitting occurs when a model is too specialized in the training data. With limited

labeled data, DL models do not have enough examples to effectively learn the underlying

patterns and may excessively rely on specific examples. In this case, the model may have

poor generalization and reduced performance on unseen data.

3) Since the feature extraction and integration process of DL models is usually a black

box, the generated results lack convincing evidence. Especially in MIA field, excellent

interpretation is crucial. Due to transparency, explainability and ethics considerations,

DL models are currently used only to provide auxiliary predictions for clinician’s final

diagnoses and treatments. Therefore, models with excellent interpretability are desirable

for clinicians to make reliable diagnoses while saving time.

To address the above challenges, we aim to design robust representation learning archi-

tectures for MIA tasks. We shall look into two main directions of MIA, namely, medical

image generation and segmentation. The reasons are three-fold. First, since medical image

generation and segmentation tasks generate dense predictions, preparing labels for these

tasks is much harder than regression tasks, leading to fewer labels for training. Therefore, it

is important to improve the training efficiency of designed representation learning models,

which can generate robust results based on a limited number of labels. Second, except

for the limited labels, the architecture for image generation and segmentation basically

consists of an encoder, which extracts features from the input, and a decoder, which recon-

structs the features to the same size as the input. This complex architecture contains more

parameters to be optimized, which may exacerbate the overfitting problem. Therefore,

we aim to design architectures with excellent generalization capability which is essential

for downstream clinical applications. Third, since both the semantic content and edges

of dense predictions are important for diagnosis, these tasks require more interpretable

evidence in order for clinicians to understand the factors that influence outcomes. In this
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case, the trust of clinicians and patients in the model predictions increases, resulting in

better cooperation between human experts and computer-assisted intervention systems.

Therefore, the interpretability of RL models applied to MIA tasks is crucial to develop and

employ automated diagnosis AI systems.

We study a specific topic in each dense prediction task to design advanced represen-

tation learning models to improve training efficiency, generalization capability and inter-

pretability. For medical image generation, we focus on the topic of chromosome straighten-

ing. In this topic, we need to generate a straightened chromosome based on the correspond-

ing input curved chromosome image. In addition to the above challenges, the chromosome

straightening task has two unique challenges compared to general image generation tasks.

First, training images and corresponding ground-truth used to train a generative model are

insufficient. Due to random mutation, structural rearrangement, and different laboratory

conditions, it is almost impossible to find two visually identical chromosomes with the same

dyeing condition but different curvatures under microscopes. Second, due to the non-rigid

nature of chromosomes, distorted chromosome details and shapes after the straightening

process leads to different semantic contents in the same position.

For medical image segmentation, we focus on the topic of fovea localization. We transfer

this task from localization to small region segmentation as a dense prediction task. Ac-

curate boundaries of the target region are more important for treatment planning, disease

monitoring and diagnosis than for predicting localization points. The transferred task is

also different from general medical image segmentation task such as colonic polyp segmen-

tation and tumor segmentation. The fovea is an anatomical landmark of the retina, and is

a small region with the dark appearance that is indistinguishable from the color intensity

of the surrounding retinal tissue. Meanwhile, its local anatomical landmarks (e.g., blood

vessels) are also absent in the vicinity of the fovea. In this case, this task requires that the

proposed model has an ability to incorporate global features for identifying fovea region

with high efficacy, and to overcome the challenges of the occurrence of retinal diseases and

non-standard fovea locations. Therefore, this fovea region segmentation task can reveal

the representation learning capability of the designed model.

1.3 Contributions

To address the above challenges of efficient representation learning in MIA, we first present

a novel work that outperforms existing methods in each dense prediction task (i.e., Chap-
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ter 3 for medical image generation and Chapter 5 for medical image segmentation). After-

wards, we propose a subsequent study (i.e., Chapter 4 for medical image generation and

Chapter 6 for medical image segmentation) to address the limitations of the corresponding

initial method to achieve state-of-the-art performance, better training efficiency, general-

ization capability and interpretability for each task. The main contributions of this thesis

are summarized as follows,

• In Chapter 3, as the first work in medical image generation (i.e., chromosome straight-

ening), our study presents a novel framework for chromosomes straightening using

image-to-image translation. The framework addresses the problem of input defi-

ciency by proposing a pertinent augmentation approach to simultaneously increase

the variability of curvatures from chromosomes and corresponding labels. We apply

two effective image-to-image translation architectures, a U-shape network and con-

ditional GAN (Pix2Pix), to show the efficacy and robustness of our straightening

framework. We demonstrate that chromosomes straightened using our framework

outperform original curved ones and chromosomes straightened using geometric al-

gorithms in terms of accuracy of chromosome type classification.

• In Chapter 4, our subsequent work proposes a novel framework for robust chromo-

some straightening using Vit-Patch GAN. The framework consists of a self-learned

generator and a Vision Transformer-based patch discriminator. The generator learns

the motion representation of chromosomes for straightening, while the discriminator

helps to retain more shape and banding pattern details in the straightened chromo-

somes. The proposed method addresses the challenges of chromosome straighten-

ing, such as unavailability of training images, distortion of chromosome details and

shapes after straightening, and poor generalization capability. Our method achieves

state-of-the-art performance in preserving chromosome details and has excellent gen-

eralization capability to a large size dataset.

• In Chapter 5, as the first work for medical image segmentation (i.e., fovea local-

ization), this paper introduces a novel approach, Bilateral-ViT, for robust fovea lo-

calization in retinal images. We use a vision-transformer-based architecture that

incorporates global image context and blood vessel structure to achieve robust fovea

localization. The proposed Bilateral-ViT outperforms existing methods and achieves

state-of-the-art results on two public datasets (Messidor and PALM), especially in
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diseased retinal images. Its generalization capability is also demonstrated by cross-

dataset experiments. The proposed approach has potential applications beyond reti-

nal analysis and can be used in other areas of medical image segmentation.

• In Chapter 6, our subsequent work proposes a novel dual-stream deep learning ar-

chitecture, called Bilateral-Fuser, for accurate fovea localization in retinal images.

Bilateral-Fuser incorporates long-range connections of both global features of retinal

images and anatomical landmarks (i.e., vessel distributions) to achieve robust fovea

localization. It also introduces a spatial attention mechanism in the dual-stream

encoder to extract and fuse self-learned anatomical information, resulting in better

interpretability. The architecture focuses more on features distributed along blood

vessels and significantly reduces the computational cost by reducing token numbers.

Comprehensive experiments demonstrate that the proposed Bilateral-Fuser achieves

new state-of-the-art performance on two public datasets and one large-scale private

dataset at only 25% of the computational cost of our previous architecture, Bilateral-

ViT. Moreover, Bilateral-Fuser is more robust on both normal and diseased retina

images and has better generalization capacity in cross-dataset experiments.

The aforementioned contributions have been published or peer-reviewed in the follow-

ing journals and conference proceedings.

Published:

• Chapter 3:

Song, S., Huang, D., Hu, Y., Yang, C., Meng, J., Ma, F., Coenen, F., Zhang,

J. and Su, J., 2021, October. A novel application of image-to-image translation:

chromosome straightening framework by learning from a single image. In 2021 14th

International Congress on Image and Signal Processing, BioMedical Engineering and

Informatics (CISP-BMEI) (pp. 1-9). IEEE.

• Chapter 4:

Song, S.∗, Wang, J.∗, Cheng, F.∗, Cao, Q., Zuo, Y., Lei, Y., Yang, R., Yang,

C., Coenen, F., Meng, J., Dang, K. and Su, J., 2022. A Robust Framework of

Chromosome Straightening with ViT-Patch GAN. arXiv preprint arXiv:2203.02901.

(This paper has been accepted by 2023 IEEE 20th International Symposium on

Biomedical Imaging (ISBI).)
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• Chapter 5:

Song, S.∗, Dang, K.∗, Yu, Q., Wang, Z., Coenen, F., Su, J. and Ding, X., 2022,

March. Bilateral-ViT for Robust Fovea Localization. In 2022 IEEE 19th Interna-

tional Symposium on Biomedical Imaging (ISBI) (pp. 1-5). (This paper is selected

as the best-paper-award finalist.)

Under Peer-review:

• Chapter 6:

Song, S., Wang, J., Wang, Z., Wang, S., Su, J., Ding, X. and Dang, K., 2023.

Bilateral-Fuser: A Novel Multi-cue Fusion Architecture with Anatomical-aware To-

kens for Fovea Localization. arXiv preprint arXiv:2302.06961.

1.4 Outlines

The rest of my thesis is organized as follows.

Chapter 2 describes the development and key designs of deep learning-based rep-

resentation learning. These designs are fundamental structures utilized in the following

chapters.

Chapter 3 presents a novel image-to-image translation-based chromosome straight-

ening framework that transforms the task of straightening into learning mapping depen-

dencies from a randomly augmented backbone to the corresponding chromosome. The

framework allows the generation of straightened chromosomes from vertical backbones

and outperforms geometric methods in more realistic images with uninterrupted banding

patterns.

Chapter 4 proposes an advanced framework, named ViT-Patch GAN, for robust chro-

mosome straightening, as a subsequent study of Chapter 3. The proposed framework

includes a self-learned motion transformation generator and a vision-transformer-based

patch discriminator, which together retain more shape details and banding patterns in the

straightened chromosomes. This novel framework achieves state-of-the-art performance in

preserving chromosome details and has excellent generalization for large datasets.

Chapter 5 proposes a novel two-branch architecture, Bilateral-ViT, which incorporates

features of retinal images and vessel distributions for robust fovea localization in retinal
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images. The proposed method achieves state-of-the-art results on two public datasets,

Messidor and PALM.

Chapter 6 proposes a novel dual-stream architecture, Bilateral-Fuser, for fovea local-

ization. As a subsequent study of Chapter 5, Bilateral-Fuser incorporates long-range con-

nections and global features using retina images and vessel distributions with self-learned

anatomical-aware tokens. The proposed architecture achieves state-of-the-art performance

on two public datasets and one large-scale private dataset, demonstrating excellent ro-

bustness, generalization capability and interpretability on both diseased retina images and

hard cases.

Chapter 7 concludes the main results of my Ph.D. thesis and provides possible direc-

tions in future research.



Chapter 2

Literature Review

Deep learning-based representation learning methods have revolutionized the CV field.

Compared to traditional machine learning algorithms, such as KNN [5], PCA [105], SIFT [91]

and SVM [31], representation learning algorithms focus on automatically learning repre-

sentations directly from raw data, eliminating or reducing the need for manual feature

engineering. Modern representation learning models are typically deeper and have more

complex architectures, such as deep neural networks, to learn hierarchical representations.

These architectures can capture more compact and higher-level features, and are poten-

tially more suited for downstream tasks [82]. Modern deep learning-based representation

learning has gained a significant impact in almost all CV-related fields, such as image clas-

sification/recognition, object detection, image segmentation and generation. Deep learning

has become an important approach to representation learning, pushing the boundaries of

visual understanding and analysis in CV.

In this chapter, we focus on describing the development and key designs of deep

learning-based representation learning methods. The first two sections review the classical

architectures of CNN (Section 2.1) and the design of skip connections (Section 2.2). These

sections are the fundamental structures widely used in our following chapters (Chapter 3

to 6). The next section (Section 2.3) describes two major popular branches of attention

mechanisms, i.e., CNN-based attention and multi-head self attention (MHSA). In partic-

ular, MHSA is exploited in Chapter 4, 5, 6 to capture global connectivity and improve

representation learning performance. Moreover, the spatial attention, one type of CNN-

based attentions, is applied in Chapter 6 to construct anatomical-aware tokens for MHSA

while reducing the computational cost. The last section (Section 2.4) reviews some impor-

11
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Figure 2.1: Architecture of AlexNet [77].

tant conditional generative adversarial networks for image generation. These methods are

relevant to Chapter 3 and 4 for dense prediction (image generation) task in MIA.

2.1 Classical Architectures in CNN

In the early stages of CNN development, AlexNet [77] and VGG networks [133] are some

of the most important architectures. AlexNet is the first popular CNN architecture to

achieve significant improvements in image classification in the ILSVRC 2012. AlexNet

achieves state-of-the-art performance of top-1 and top-5 on the ILSVRC 2010 and the

ILSVRC 2012 datasets, surpassing previous models by a large margin. AlexNet attracted

interest in the application of deep learning to image classification tasks, and then became

a classical and widely used architecture.

As shown in Figure 2.1, AlexNet consists of five convolutional layers and three fully-

connected layers. In addition to the combination of these layers, AlexNet has three key

innovations, the application of Rectified Linear Unit (ReLU) nonlinearity, training on mul-

tiple GPUs, and the use of pooling layers, which prevent researchers from training big

models on only a single GPU and allow the network to extract more complex features from

the input images. AlexNet also introduces data augmentation, such as random cropping

and horizontal flipping. Based on these varied data, AlexNet helps prevent overfitting

and improves the robustness of the neural network. AlexNet also uses dropout regular-

ization to randomly drop out neurons during training to reduce overfitting and improve

generalization.
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Table 2.1: The configuration of VGG networks, and conv(receptive field size)-(channel
number) represents detailed parameters

Block1m Block2m Block3m Block4m Block5m FC Blocks

VGG16
conv3-64 conv3-128 conv3-256 conv3-512 conv3-512 FC-4096
conv3-64 conv3-128 conv3-256 conv3-512 conv3-512 FC-4096

conv3-256 conv3-512 conv3-512 FC-1000

VGG19

conv3-64 conv3-128 conv3-256 conv3-512 conv3-512 FC-4096
conv3-64 conv3-128 conv3-256 conv3-512 conv3-512 FC-4096

conv3-256 conv3-512 conv3-512 FC-1000
conv3-256 conv3-512 conv3-512

m There is a maxpooling at the end of this block.
s There is a softmax at the end of this block.

VGG networks have become the standard CNN architecture and backbone, and achieved

state-of-the-art performance in a range of computer vision tasks, including image classifi-

cation and object detection [133, 117]. It is a deep CNN architecture with multiple layers

from the Visual Geometry Group (VGG) at the University of Oxford. With reference to

the detailed architecture given in Table 2.1, VGG16 consists of 16 layers, while VGG19

consists of 19 layers, and both networks use only ×3 with a stride of 1 convolutional filters

throughout the network, while AlexNet uses 11×11 kernel with a stride of 4. Another

innovations of VGG includes the use of maxpooling to downsample the feature maps and

reduce the input dimensionality, and the use of fully connected layers at the end of the

network to capture high-level representations of the input. In terms of accuracy, VGG16

and VGG19 outperform AlexNet on the validation and test sets of the ImageNet dataset,

and they are the top models in the ILSVRC 2014 competition.

AlexNet and VGG networks are CNN architectures that learn deep representations of

inputs, and are milestones in deep learning architectures that greatly surpassed the per-

formance of machine learning algorithms. They are some of the most important CNN

architectures that have made significant contributions to the field of CV [54]. Their key

features and innovations, such as the use of convolutional layers with large/small recep-

tive fields, normalization, pooling layers, and fully connected layers, remain fundamental

components and have been widely adopted and modified in subsequent CNN models.
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Figure 2.2: Structure of residual block of ResNet [57].

2.2 Skip Connections

Skip connections, also known as residual connections, are a type of connection in CNN

models that allow the input to bypass one or more layers as a shortcut and be added or

concatenated to the output of a subsequent layer. This design has significantly improved

the performance of computer vision tasks, such as image recognition and image segmen-

tation. Some of the most popular deep learning architectures utilize skip connections in

both image recognition tasks (e.g., ResNet [57] and DenseNet [64]) and dense prediction

tasks (e.g., U-Net [118] and DeepLab [22, 23, 24, 25]).

The residual network (ResNet) architecture [57] was first proposed and applied to image

recognition tasks to address the challenge of training deeper neural networks. To address

the problem of vanishing/exploding gradients, ResNet consists of a series of residual blocks,

each of which contains several convolutional layers with skip connections between them.

The residual features are the input features of each block and are added directly to the

output features of convolutional layers (Figure 2.2). By using skip connections, ResNet can

be trained more easily since it only needs to optimize the residual mappings instead of the

original, unreferenced mappings. ResNet also introduces the use of global average pooling,

which reduces the number of parameters in the model and improves its generalization

performance.

Due to the design of the residual block, ResNet architecture is the first extremely

deep CNN with both excellent robustness and generalization capability. In terms of num-

ber of layers, ResNet can be named as ResNet18, ResNet34, ResNet50, ResNet101 and

ResNet152. ResNet achieves state-of-the-art performance in the ILSVRC 2015 classifica-

tion competition (1st place). The ensemble of ResNet achieves a significant improvement

over previous models. Furthermore, the ResNet has been further developed as a backbone
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Figure 2.3: Architecture of DenseNet [64].

for various computer vision tasks and achieved state-of-the-art performance (1st place in

ImageNet localization, ImageNet detection, COCO segmentation and COCO detection of

the same year).

DenseNet [64] is another important architecture using skip connections in image recog-

nition field. DenseNet proposes dense connectivity pattern which makes it apart from

other popular architectures (e.g., ResNet). In DenseNet, each layer is directly connected

and concatenated to every other layer in a feed-forward neural network (Figure 2.3). This

dense connectivity improves feature reusability and enhances gradient flow throughout the

network, resulting in improved information and gradient flow. The dense connections also

alleviate the problem of vanishing gradients, enabling the model to effectively learn from

both shallow and deep layers. DenseNet achieved state-of-the-art performance on many

image recognition benchmark datasets, such as ImageNet, CIFAR-10, and CIFAR-100.

Furthermore, DenseNet has also been applied to dense prediction tasks, such as semantic

segmentation and object detection, demonstrating its versatility and effectiveness in dif-

ferent computer vision domains. However, one limitation of DenseNet is its relatively high

memory consumption during training. This constraint may require memory management

to train DenseNet on certain devices.

U-Net [118] is a notable model that uses skip connections and is originally designed for a

dense prediction task (medical image segmentation). To generate segmentation results, the

structure of U-Net consists of an encoder and a decoder for downsampling and upsampling

of features. As shown in Figure 2.4, its skip connections are between the corresponding
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Figure 2.4: Architecture of U-Net [118].

layers of the encoder and decoder. The skipped features are concatenated (instead of

element-wise summing) to the corresponding upsampled features, resulting in a doubling

of the number of channels. Without skipped connections, the result of upsampling directly

from the bottleneck does not recover detailed information. Skip connections enable the

network to preserve spatial information and improve the accuracy of segmentation. By

removing skip connections, features upsampled directly from the bottleneck structure are

also decreased by the lack of spatial information.

The design of U-Net has achieved state-of-the-art results on various biomedical image

segmentation tasks, including cell detection and organ segmentation. Using data augmen-

tation, U-Net can be trained on datasets with only a small number of samples and has

excellent generalization capabilities. At IEEE International Symposium on Biomedical

Imaging (ISBI) 2015, U-Net took first place in the cell tracking challenge by a significant

margin.

DeepLab architecture [22, 23, 24, 25] is another model that utilizes skip connections to

improve the performance of semantic segmentation. From DeepLabv1 [22], the design of

atrous convolution (also known as dilated convolution) is proposed to increase the receptive

field of the network without increasing the number of parameters. DeepLabv3+ [25] uses a

spatial pyramid pooling module to extract and combine multi-scale features. This module

allows the model to combine high level semantic features with low level spatial details
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Figure 2.5: Architecture of DeepLabV3+ [25].

to improve the accuracy of segmentation. DeepLabv3+ also utilizes skip connections to

pass these features from the encoder to the decoder to refine the segmentation output

(Figure 2.5). It achieved state-of-the-art results on many semantic segmentation datasets,

such as PASCAL VOC 2012 [43] and Cityscapes [30], outperforming other models of the

time.

The structure of skip connections enables CNNs to learn deeper and more useful repre-

sentations of the input. It has become a common design for current deep learning models,

especially in computer vision tasks [19]. ResNet, U-Net, DenseNet and DeepLab archi-

tectures are some of the most popular and fundamental models that use skip connections

to improve performance and address the vanishing gradient problem. By using shortcuts

from input features to pass through one or more layers and be added/concatenated to the

corresponding target features, skip connections enable networks to learn representations

more easily and efficiently, and to obtain state-of-the-art results in different tasks. There-

fore, the skip connections are widely utilized in the architectures proposed in the following

chapters (Chapter 3 to 6) to improve model performance and training efficiency of both

image generation and segmentation tasks.
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Figure 2.6: Architecture of a spatial transformer module [68].

Figure 2.7: Architecture of a squeeze-and-excitation block [63].

2.3 Attention Mechanisms

2.3.1 CNN-Based Attention

CNN-based attention is a type of attention mechanisms that are used in various deep

learning models to improve their performance in computer vision tasks. The attention

mechanism enables neural networks to focus on important regions of the input image

and assign higher weights to them. The weights of CNN-based attention are learnable

parameters that give more focus on more relevant features and ignore irrelevant ones.

The CNN-based attention mechanism is usually employed to learn spatial, channel and

combined attention.

Spatial Transformer Network (STN) [68] is one of the most important models for apply-

ing attention mechanism in CNNs. As shown in Figure 2.6, STN consists of a localization

network and a transformation network, both of which use convolutional layers to learn

spatial transformations of the input. The localization network learns the parameters of an

affine transformation, while the transformation network performs spatial transformations

on the input, such as translation, rotation, scaling and warping. The main innovation of

STN is the use of a differentiable method that enables the network to transform the in-
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Figure 2.8: Architecture of a block of BAM [103].

Figure 2.9: Architecture of CBAM [157].

teger as the focused region before classification prediction, thus improving computational

efficiency. In addition, the training process of STN does not require any additional su-

pervision or modification. STN demonstrates performance improvements in the accuracy

for computer vision tasks. STN was trained on MNIST and CIFAR-10 datasets and it

achieved higher accuracy on these datasets than models without the attention mechanism.

Squeeze-and-Excitation Network (SENet) [63] is a popular CNN model that exploits

the channel attention mechanism. SENet consists of squeeze-and-excitation blocks, each of

which contains a squeeze operation and an excitation operation (Figure 2.7). The squeeze

operation reduces the dimensionality of the feature map, while the excitation operation

learns the attention weight of each channel. The major contribution of SENet is the design

of channel-wise attention which enables the network to selectively emphasize informative

channels while suppressing irrelevant ones. The SE block can be considered as a plug-in

that is directly applied to ResNets (e.g., SE-ResNet-50 and SE-ResNet-152) as a backbone.

SENet achieved outperformance on many tasks, especially winning first place in ILSVRC

2017 image classification competition.
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Bottleneck Attention Module (BAM) [103] and Convolutional Block Attention Module

(CBAM) [157] are also important CNN-based attention designs. Both structures are pro-

posed in the same year (2018) and both effectively combine spatial attention and channel

attention to improve the performance of various computer vision tasks, such as image clas-

sification and object detection. They are both designed as lightweight and general modules

that can be seamlessly applied to CNN models.

The BAM is designed to generate spatial and channel attentions in parallel in the CNN

architecture. As shown in Figure 2.8, in each BAM, the channel attention is generated by

the global average pooling and FC layers, and the spatial attention is generated by the

continuous standard/dilated convolutional layers. The spatial and channel attentions are

then combined to generate a BAM attention of the same size as the input tensor. Finally,

the BAM attention is multiplied with the input tensor and added to the skip-connected

input tensor. BAM can be applied to every bottleneck before the pooling layer. In terms

of performance, all backbone networks (e.g., ResNet [57], ResNeXt [160], MobileNet [62]

and SqueezeNet [66]) with integrated BAM showed improvements in both classification

and object detection results.

Different from BAM, CBAM is designed to utilize spatial and channel attentions in a

sequence order (Figure 2.9). It can be directly integrated into convolutional blocks, such

as a residual block. The input feature first learns channel attention and subsequently

utilizes spatial attention. In both attention modules, maxpooling and average pooling

are utilized to extract features from different aspects. Comprehensive experiments and

ablation studies show that CBAM (channel+spatial attentions) is superior to SENet (only

channel attention) [157].

CNN-based attention has become a common design in deep learning models for im-

proving performance and interpretability, especially in computer vision tasks. By enabling

the network to focus on important regions (spatial, channel-wise or combined) of the input

and assigning higher weights, CNN-based attention mechanisms enable networks to learn

more effectively and achieve state-of-the-art results on various datasets.

2.3.2 Multi-Head Self-Attention and Transformer

Multi-Head Self-Attention (MHSA) and Transformer architectures [151] are powerful deep

learning techniques that have made significant contributions in recent years for their ability

to connect long-range dependencies and integrate global features. MHSA and Transformer
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Figure 2.10: Architecture of Transformer [151].

are originally used in the field of NLP and then applied to computer vision tasks by Vision

Transformer (ViT) [41]. Transformer architecture only utilizes self-attention blocks (i.e.,

MHSA) to construct long-range dependencies of different parts of the input sequence to

generate outputs. MHSA blocks enable the network to weigh the importance of different

words simultaneously, addressing the challenge of poor performance in processing long

sequential data.

Transformer architecture [151] is a pure attention-based neural network architecture

that eliminates the need for RNNs and CNNs to model sequential data. As shown in

Figure 2.10, Transformer includes an encoder and a decoder, both consisting of several

attention layers. The encoder receives the input word embeddings and processes them in

parallel. The decoder also incorporates the features of input sequences and captures the

relevant information using MHSA mechanism. Each layer has two sub-layers: a multi-

head self-attention layer and a fully connected feed-forward layer. In each MHSA layer,

every word is projected as three vectors, query, key and value. Subsequently, the query
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Figure 2.11: Architecture of Vision Transformer [41].

performs multiplication with each key (all pairs of positions) simultaneously to compute

the similarity of the two embeddings as an attention score. This score is utilized to assign

weights to the value of each embedding regardless of their distance. The calculation of

self-attention is expressed as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

where Q,K and V are packed queries, keys and values of embeddings for parallel compu-

tation. Transformer has achieved state-of-the-art results on various NLP tasks, including

language modeling and machine translation. Experiments on two machine translation

tasks demonstrate that Transformer outperforms traditional models by a large margin,

while requiring significantly less training time due to parallel computation. This architec-

ture represents significant outperformance relying only on the attention mechanism, and

its success demonstrates that the MHSA mechanism is an important tool for language

modeling.

MHSA and Transformer have also revolutionized the CV field. The ViT architec-

ture [41] is the first pure Transformer model for image classification tasks. Prior to ViT,

many studies had attempted to apply self-attention mechanisms to CNNs. However, due

to the computational requirements, ResNet and its variants still achieve state-of-the-art
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performance. ViT applies the Transformer architecture which is originally utilized for NLP

tasks directly to CV tasks with as few changes as possible, with the goal of eliminating

model differences between the NLP and CV tasks. The proposed ViT utilizes a standard

Transformer encoder (Figure 2.11), which uses an initial patch embedding layer to convert

the patches of the input image into a sequence of vector representations (tokens). Af-

ter a classification token and position embeddings are added, these tokens are processed

by a series of Transformer blocks. The self-attention mechanism enables ViT to capture

long-range dependencies between patches.

Due to incorporating global features and long-range connections from the entire input

image, ViT has achieved state-of-the-art performance on many benchmark datasets, such

as CIFAR10/100 [75], Oxford Flowers-102 [99], ImageNet-1K/21K [37]. Experimental

results show that ViT, an architecture constructed on pure attention mechanism, achieves

comparable or better accuracy than state-of-the-art convolutional networks, such as ResNet

and EfficientNet [148].

The ViT architecture demonstrates the effectiveness of Transformers in image recog-

nition at scale, and its success led to the exploration and adaptation for multi-modal

architectures, where it can handle both visual and textual inputs. Recently, some mod-

els, such as GPT series of models [113, 114, 18] (proposed by OpenAI), BERT [38] and

LaMDA [149] (proposed by Google), contain variants of the MHSA and Transformer ar-

chitectures to achieve a breakthrough in large language models and state-of-the-art perfor-

mance on various benchmarks. With ViT demonstrating the potential in bridging the gap

between visual and textual inputs, many multi-modal architectures [111, 42, 162] are pro-

posed to facilitate interactions between multiple modalities, aligning them and capturing

their interdependencies thought tokens. The design of ViT opens up new possibilities for

integrating visual and textual information in a unified framework, resulting in improved

performance on multi-modal tasks.

In addition to image classification/recognition tasks, the architectures of MHSA and

ViT have also been designed for a dense prediction (image segmentation) task. Tran-

sUNet [21] is the first segmentation work that combines the advantages of U-Net and

ViT architectures. Similar to U-Net, TransUNet was originally applied to medical im-

age segmentation tasks. As given in Figure 2.12, the proposed framework also includes

an encoder and a decoder. The encoder utilizes a hybrid version of ViT, and the input

image is first tokenized by a standard CNN architecture (e.g., ResNet). The tokens are

then fed into the Transformer to extract global connectivity and long-range dependencies,



24 Sifan Song

Figure 2.12: Architecture of TransUNet [21].

which is a limitation of U-Net due to its intrinsic locality of convolution operations. The

decoder upsamples the encoded features from the bottleneck and concatenates them to

the corresponding skip-connected CNN features. This hybrid design improves the utiliza-

tion of low-level details while still utilizing Transformer architecture for modeling global

context. Compared to pure CNN-based U-shape architectures (e.g., U-Net [118] and Att-

nUNet [100]), TransUNet achieves superior performance and more accurate segmentation

results. TransUNet provides an alternative framework for medical image segmentation

with significantly better performance and high efficacy of representation learning.

All in all, ViT and TransUNet are widely applied for recognition and dense prediction

tasks in modern neural networks design. Due to the abovementioned advantages, the ViT

and TransUNet architectures are utilized in Chapter 4, 5 and 6 to incorporate long-range

dependencies across entire images. In Chapter 6, the MHSA mechanism is used to globally

fuse and integrate features from multiple cues. Furthermore, since the computational cost

of MHSA blocks is quadratic in the number of tokens, spatial attention is utilized to MHSA

blocks, which significantly reduces the computational cost and improves the performance.

2.4 Conditional Generative Adversarial Network (cGAN)

Another dense prediction task, image generation, is a popular research field in deep learning

that focuses on synthesizing new images with high fidelity. Significant progress achieved in
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Figure 2.13: Framework of training a cGAN (Pix2Pix) [67].

this area with the development of various architectures and techniques to address the chal-

lenge of generating high quality images across different domains and styles [32]. DL-based

image generation has a wide range of applications, such as generating new photorealistic

images/faces, labelling street scenes, changing grey to color images and predicting future

frames. It aims to synthesize new images and transformation/translation of existing im-

ages.

Various network architectures have been proposed to generate realistic and diverse

images, such as generative adversarial network (GAN) [52] and variational autoencoder

(VAE) [73]. These architectures use different strategies to learn the underlying data dis-

tribution and generate images with distinct features and styles. The objective of GANs is

to train the generator to produce synthetic data that is indistinguishable from real data,

while the discriminator is simultaneously trained to accurately classify between real and

synthetic data. GAN consists of a generator and a discriminator. The generator utilizes

random noise as input and generates images, while the discriminator aims to differentiate

between real and generated images. These two components are trained in an adversarial

manner, where the generator learns to improve its output based on the results of the dis-

criminator. As a result, GAN learns to generate images that are visually indistinguishable

from real images. Many studies has also been proposed to improve the performance of

GAN, e.g., DCGAN [112] and WGAN [7]. VAE [73] is another popular architecture for

new image generation, and its objective is to learn a latent space representation that cap-

tures the underlying structure of the input data. VAE enables to control the generation of

images by modeling the latent space. It consists of an encoder and a decoder. The encoder

maps the input images to a latent space, while the decoder reconstructs images from the

latent space. The latent space is constrained to a specific distribution, which allows it
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Figure 2.14: Framework of training CycleGAN [177].

to control image generation tasks, such as image inpainting and interpolation. However,

some details may be lost when images are reconstructed from the latent space, leading to

slightly blurred outputs compared to GANs.

Different from new image generation, image-to-image translation aims to generate im-

ages in the conditional setting. This type of tasks usually synthesize images conditioned

on existing images, e.g., generating photographs from sketches, changing gray to color

images and transferring styles. Some of the most important designs are cGANs, such as

Pix2Pix [67] and CycleGAN [177].

Pix2Pix [67] aims to learn a mapping between input images and corresponding output

images based on a paired dataset. It consists of a generator and a discriminator. Unlike

previous GANs, it utilizes a U-Net-like network as the generator and propose a PatchGAN

classifier as the discriminator to focus more on the local details of style transfer. The

generator takes an input image and generates the corresponding output image, while the

patch discriminator differentiates the realism of the generated image (Figure 2.13). This

discriminator extracts features at the patch level rather than evaluating the entire image

as a whole. Pix2Pix assesses the realism of the generated image by classifying patches as

real or fake, so it generates images are highly detailed. It demonstrates excellent capability

to capture the global structure while preserving fine details. However, Pix2Pix requires

a paired dataset to learn a desired mapping. Preparing such paired dataset can be time-

consuming and labor-intensive, especially for certain specialized domains.

CycleGAN [177] is a cGAN model for unsupervised image-to-image translation tasks.

It is able to translate images from one domain to another without the need for paired

training data, which makes it suitable for many real-world applications where obtaining

paired data is challenging. The key novelty of CycleGAN is the cycle-consistency loss. As

shown in Figure 2.14, CycleGAN encourages that the output should be indistinguishable
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from the input (x → G(x) → F (G(x)) ≈ x, and y → F (y) → G(F (y)) ≈ y). This cycle-

consistency loss ensures that if an image is translated from one domain to another and

then back again, it should be reconstructed as close as possible to its original form. This

constraint helps to reduce the space of possible mappings. The fundamental architecture

of CycleGAN follows Pix2Pix, similar to the PatchGAN architecture. The discriminator

provides feedback (real or fake) to the generator at the patch level, encouraging the capture

of local details, styles, textures between image domains.

Since the cGAN-based models aim to learn the mapping between input and output

images in different appearances or styles, it is utilized in Chapter 3 to transfer the chromo-

some straightening task to a mapping dependency learning task, thus enabling the input of

a vertical chromosome backbone to generate the corresponding straightened chromosome.

Compared to previous chromosome straightening studies based on geometric methods, this

method generates continuous banding patterns and well-preserved details.



Chapter 3

A Novel Application of

Image-to-Image Translation:

Chromosome Straightening

Framework by Learning from a

Single Image

In our first work on chromosome straightening (medical image generation), we propose

a framework based on the conditional generative adversarial network (cGAN), which

can use a paired augmented dataset to train a converged model from only one curved

chromosome image. We also propose a two-step strategy, including a novel chromosome

backbone extraction approach and the following augmentation method, to prepare the

augmented dataset. Compared to existing geometric approaches, our proposed method

demonstrates superior straightening performance with uninterrupted banding patterns and

well-preserved edge details.

3.1 Introduction and Problem Statement

In medical imaging, chromosome straightening plays a significant role in the pathological

study of chromosomes and in the development of cytogenetic maps. Whereas different

28
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approaches exist for the straightening task, typically geometric algorithms are used whose

outputs are characterized by jagged edges or fragments with discontinued banding pat-

terns. To address the flaws in the geometric algorithms, we propose a novel framework

based on image-to-image translation to learn a pertinent mapping dependence for syn-

thesizing straightened chromosomes with uninterrupted banding patterns and preserved

details. In addition, to avoid the pitfall of deficient input chromosomes, we construct an

augmented dataset using only one single curved chromosome image for training models.

Based on this framework, we apply two popular image-to-image translation architectures,

U-shape networks and cGANs, to assess its efficacy. Experiments on a dataset comprised

of 642 real-world chromosomes demonstrate the superiority of our framework, as compared

to the geometric method in straightening performance, by rendering realistic and contin-

ued chromosome details. Furthermore, our straightened results improve the chromosome

classification by 0.98%-1.39% mean accuracy.

There are 23 pairs of chromosomes in a normal human cell, comprised of 22 autosomes

pairs (Type 1 to Type 22) and a pair of sex chromosomes (XX in females and XY in males).

In the metaphase of cell division, the chromosomes become condensed and can be stained

by the Giemsa banding technique [139] for observation under optical microscopes. The

unique presence of light and dark regions (banding patterns) of different chromosome types

are integrated into bars as cytogenetic maps. These banding patterns provide essential

evidence for uncovering chromatin localization, genetic defects, and abnormal breakages

[123]. For instance, human genetic diseases, such as cri-du-chat syndrome [60] and Pallister-

Killian mosaic syndrome [74], can be diagnosed by identifying structural abnormalities in

chromosomes.

With the advance in modern image acquisition techniques, digital images of chromo-

somes become fundamental to the construction of karyotypes (Fig. 3.1) and cytogenetic

maps for studying structural features [10]. Because such tasks are labor-intensive and

time-consuming, developing an automatic computer-assisted system has attracted signif-

icant research interest for the last 30 years. However, the condensed chromosomes are

non-rigid with randomly varying degrees of curvatures along their lengths (Fig. 3.1). Such

morphological features increase the difficulty of banding pattern analysis and abnormality

identification.

An automatic karyotype construction system typically consists several steps, chromo-

some segmentation, straightening, classification and arrangement [135, 129, 102, 136, 169].

Straightened chromosomes have a higher accuracy of chromosome type classification [129]
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Figure 3.1: Karyotype of human chromosomes consisting of 22 autosomes pairs and a pair
of sex chromosomes.

and they are pivotal in the development of cytogenetic maps [10]. The study of chromosome

straightening first begins with cutting paper-based curved chromosome photo into pieces

and arranging them into a straightened chromosome [142, 141]. To the best of our knowl-

edge, based on digital images, current straightening approaches mainly utilize geometric

algorithms which are broadly categorized by two approaches: (i) medial axis extraction

and (ii) bending points localization. For the first approach, Barrett et al. [13] requires user

interaction and manual labels. References [9, 69, 135] utilize thinning algorithms, such as

morphological thinning [55] and Stentiford thinning [143]. However, such algorithms are

not suitable for chromosomes with pronounced widths, resulting in many branches along

their central axes when thinned [69, 135]. Additionally, when chromosome features are

mapped or projected along straightened central axes, the jagged edges remain. The second

approach involves analyzing bending points. For straightening, the chromosome is seg-

mented by a single horizontal line from the potential bending point and its two arms are

stitched in the vertical direction [120]. Sharma et al. [129] proposes an improved straight-

ening method based on [120]. It fills the empty region between stitched arms by the mean

pixel value at the same horizontal level as reconstructed banding patterns between stitched

arms. However, this approach is also not suitable for the chromosomes whose arms are

morphologically non-rigid, since the banding patterns of stitched arms are actually rotated

rather than straightened along their central axes. Thus the reconstructed chromosomes
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contain distinct fragments with interrupted banding patterns, and the filled mean pixel

value cannot restore realistic banding patterns. Moreover, it has poor performance with

misidentifying bending points when there is more than one bending point in a chromosome.

To address the flaws in the geometric algorithms, we propose a novel framework based

on image-to-image translation for synthesizing straightened chromosomes with preserved

edges and unbroken banding patterns. Furthermore, we are the first to utilize deep learning

and generative adversarial networks for straightening chromosomes.

Many studies have shown the success of image-to-image translation in diverse domains,

examples including semantic segmentation [118], photo generation [164], and motion trans-

fer [1, 89, 20]. U-Net [118] is one of the most popular and effective architectures. Its

symmetrical contracting-expanding path structure and skip-connections are pivotal in the

preservation of features. Its U-shape architecture has been modified for applications in

many studies, such as a hybrid densely connected U-Net [86] and an architecture enhanced

by multi-scale feature fusion [40]. Pix2pix is a milestone which boosts the performance of

conditional generative adversarial networks based on image-to-image translation using a

U-shape generator and a patch-wise discriminator [67].

Most applications of image-to-image translation require a large number of paired im-

ages. For example, a recent study [20] proposes an effective pipeline for translating human

motions by synthesizing target bodies from pose extractions, and it is still trained using

large-scale input frames with corresponding pose labels. Based on the mature field of pose

detection, the pre-trained state-of-the-art pose detector is used to generate labels from a

large number of frames of a given video. Chan et al. [20] subsequently trains deep learning

models for mapping target body details from each body pose image.

In contrast, it is difficult to acquire sufficient training images and corresponding labels

in the research of chromosome straightening. Due to random mutation, structural rear-

rangement, the non-rigid nature of chromosomes, and different laboratory conditions, it is

almost impossible to find two visually identical chromosomes with the same curvature and

dyeing condition under microscopes.

The challenge in this work is to straighten a curved chromosome using only a single

chromosome image. Therefore, we propose a novel approach to first extract the internal

backbone of the curved chromosome and subsequently increase the size of the chromosome

dataset by random image augmentation. Instead of keypoint-based labels, we utilize stick

figures as backbones which can retain more augmentation information. The other challenge

of this research is to design a model that is able to render realistic and continued chromo-
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Figure 3.2: Seven types of images utilized in internal backbone extraction. (a) An example
of original chromosomes; (b) an approximate central axis; (c) the smoothed central axis; (d)
the smoothed central axis divided into 11 parts; (e) 10-point central axis; (f) the internal
backbone; (g) the straightened internal backbone with the same length.

some details. At the same time, the straightening algorithm should not be affected by the

non-rigid feature of chromosomes. Motivated by this, we innovatively apply image-to-image

translation models to learn mapping dependencies from augmented internal backbones to

corresponding chromosomes, resulting in high-quality outputs with preserved chromosome

details. We also observe that the optimal generator of image-to-image translation models

can complement banding patterns and edge details along with given internal backbones.

Thus a straightened chromosome is synthesized when we feed a vertical backbone.

The key contributions of this research are three-fold. First, to address the deficiency of

inputs, we propose a pertinent augmentation approach to increase the variability of curva-

tures from the given chromosome and corresponding label simultaneously. Second, using

the augmented dataset, we apply two effective image-to-image translation architectures,

U-shape networks and cGANs (pix2pix), which demonstrate the efficacy and robustness

of our straightening framework. Third, in terms of the accuracy of chromosome type clas-

sification, we demonstrate that chromosomes straightened using our framework actually

outperform the original curved chromosomes and the ones straightened using geometric

algorithms.

The rest of this paper is organized as follows. In Section 3.2, the methodology is

described in detail. In Section 3.3, we introduce the data preparation process and illustrate

the comparison of straightening results. In Section 3.4, we discuss the limitations of the

proposed approach and present some future research. Finally, we conclude our work in

Section 3.5.
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3.2 Methodology

In this section, we shall provide a detailed account of our framework. In Section 3.2.1, we

propose an approach to generate augmented images and internal backbones from a single

curved chromosome. In Section 3.2.2, we describe how the curved chromosome can be

straightened by means of its backbone.

3.2.1 Data Augmentation Using a Single Image

For our framework, we propose a two-step strategy to construct an augmented dataset

using only one curved chromosome image.

Algorithm 1 Chromosome internal backbone Extraction

Input: The digital image of a chromosome (C) whose width and height are W and H,
respectively. The background of the image is black (0 pixel values).
Output: The internal backbone of the chromosome.

1: for each h ∈ {1, 2, ...,H} do
2: if the current row contains positive pixel values then
3: find the first (w1) and the last (w2) positions whose pixel value is greater than

0;

4: compute the central point wh
c =

wh
1+wh

2
2 ;

5: record the y axis values of the first and the last rows containing positive pixel
values as h1 and h2, respectively.

6: end if
7: end for
8: connect all wh

c to form an approximate central axis extending from h1 to h2;
9: smooth all wh

c by a moving average algorithm (11-pixel window length), to obtain w
′h
c ;

10: divide the smoothed w
′h
c equally into 11 parts (i.e. 12 points) by y axis values in the

range of h1 to h2;
11: remove the first and the last parts to obtain a 10-point central axis;
12: connect the adjacent splitting points by 33-pixel width sticks to obtain a 9-stick internal

backbone;
13: generate a vertical 9-stick internal backbone with the same length between the the

adjacent splitting points from Line 11.

Step 1. We construct the label of a curved chromosome (Fig. 3.2(a)) by extracting a

pertinent internal backbone. The entire process is summarized in Algorithm 1. Considering

the chromosome image to be comprised of rows of pixels, the centers of each row are

connected to form an approximate central axis extending from top to bottom (Lines 1 to
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Figure 3.3: Examples of central axis extraction generated by thinning methods and our
approach.

8 of Algorithm 1, Fig. 3.2(b)). To alleviate small-scale fluctuations generated in Line 8,

this central axis is then smoothed by a moving average algorithm with an 11-pixel window

length [152] (Line 9, Fig. 3.2(c)). We divide this smoothed central axis equally into 11 parts

in the y axis. Since the first and the last parts may not be aligned in the same directions

with both sides of the chromosome (red boxes), these two parts are subsequently removed

(Lines 10 to 11, Fig. 3.2(d) to (e)). The remaining splitting points are connected by 33-

pixel width sticks, and these 9 sticks are filled with pixel values in series of equal difference

(23, 46, 69, 92, 115, 138, 161, 184, and 207) (Line 12, Fig. 3.2(f)). This stick figure

contains the information of curvature, length, and orientation of the original chromosome.

Finally, a vertical backbone is constructed with the same length of each stick (Line 13, Fig.

3.2(g)), and is fed into the fine-tuned image-to-image translation model for synthesizing

the straightened chromosome.

Fig. 3.3 illustrates that the morphological and Stentiford thinning algorithms may

cause branches and irregular rings when the chromosome features pronounced widths.

Thus the previous work directed at chromosome straightening [9, 69, 135], composed of

these thinning algorithms, cannot be utilized here. In contrast, our predicted 10-point

central axis are approximately in accordance with the actual chromosome backbone.

Step 2. We improve the performance of deep learning models by generating more aug-

mented chromosomes with different degrees of curvatures. We first apply random elastic

deformation [150] and random rotation (from -45 to 45 degree) to the curved chromosome

and its backbone simultaneously (Fig. 3.2(a) and (f)) until a sizeable number of aug-
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Figure 3.4: Examples of random data augmentation of a chromosome and corresponding
internal backbone.

(a)

(b)

Figure 3.5: The overall process of the proposed framework for chromosome straighten-
ing. (a) The training processes of pix2pix or U-Net (the generator part of pix2pix), where
XB, YB are augmented backbones and chromosomes and B ∈ {1, ...,K} where K is the
number of augmented image pairs; Xpred is the predicted chromosome image through the
generator, Gb. (b) The straightening process achieved by the optimal U-Net or generator
G∗

b . X
′
B and X

′
pred are the vertical backbone and the straightened chromosome, respec-

tively.
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mented chromosomes and backbones (1000 pairs in this research) are obtained for training

and validation (Fig. 3.4). Note that the setup of the elastic deformation algorithm [150]

is points = 3 and sigma = 18 for 256× 256 images, in order to generate plausible virtual

curvatures. Since we utilize 33-pixel width sticks, rather than key points to label inter-

nal backbones, the detailed augmentation information, such as stretching, rotation and

distortion, is retained and learned by the image-to-image translation models.

3.2.2 Image-to-Image Translation for Straightening

Since the objective of this study is to input a straightened backbone of a chromosome for

synthesizing the corresponding chromosomes with preserved banding patterns, our novel

image-to-image translation models are object specific. Therefore, it is essential to construct

an augmented dataset for each image-to-image translation model. Utilizing the approach

mentioned in Step 2, we generate 1000 augmented image pairs for each curved chromo-

some. The augmented dataset is then randomly split using a ratio of 9:1 for training

and validation, respectively. Under our framework, we shall utilize two image-to-image

translation models, U-Net and pix2pix (Fig. 3.5(a)). It should be noted that the U-Net

utilized in this research is identical to the generator part of pix2pix. The training process

of U-Net is a regular supervised learning method achieved by synthesized chromosomes

and corresponding ground-truths. In pix2pix, a generator Gb synthesizes chromosomes

from the augmented backbones to mislead Db. Meanwhile, a discriminator Db is trained

for discerning “real” images from “fake” images yielded by the generator. The Gb and Db

is optimized with the objective function:

G∗
b = argmin

Gb

max
Db

LcGAN (Gb, Db) + λLpix(Gb) (3.1)

whereG∗
b represents the optimal generator; λ is a coefficient to balance two losses; LcGAN (Gb, Db)

is the adversarial loss (Equation 2); and Lpix(Gb) is L1 distance to evaluate pixel-wise per-

formance between generated images and ground-truths (Equation 3):

LcGAN (Gb, Db) = ExB ,z[(Db(xB, Gb(xB, z))− 1)2] + ExB ,yB [(Db(xB, yB))
2] (3.2)

Lpix(Gb) = ExB ,yB ,z[∥yB −G(xB, z)∥1] (3.3)
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In the above: xB and yB represent augmented backbones and chromosomes, respectively;

B ∈ {1, ...,K} where K is the number of augmented pairs that we want; and z is the noise

introduced in the generator.

To straighten the chromosome, we input its vertical backbone (Fig. 3.2(g)) into the

optimal U-Net or optimal generator G∗
b , which will output the corresponding chromosome

(Fig. 3.5(b)).

3.3 Experiments and Results

3.3.1 Chromosome Dataset

To test our framework on real-world images, we extract 642 low-resolution human chromo-

some images from karyotypes provided by a biomedical company. Images in this research

have been cleaned so that connections between these images and their corresponding own-

ers have been removed. Since the chromosomes with relatively long arms and noticeable

curvatures require straightening (Figure 3.1), we collect Type 1 to 7 chromosomes in this

research. We invert the color of these grey-scale images and center them in a 256 × 256

black background. As described in Section 3.2.1, 1000 augmented image pairs were ob-

tained from each curved chromosome image before feeding into the U-Net and pix2pix

models. It should be noted here that each augmented dataset is individually trained for

straightening since our framework is object specific.

3.3.2 Evaluation Metrics

We apply two evaluation metrics to quantitatively measure the performance of these

straightening methods. Due to the obvious morphological deformation between straight-

ened results and original curved chromosomes, traditional similarity measurement metrics,

such as Euclidean distance, structural similarity index (SSIM) [155] and peak-signal-to-

noise ratio (PSNR) [61], designed for evaluating image quality degradation generated by

image processing or compression, are not suitable for this task. Instead, Learned Percep-

tual Image Patch Similarity (LPIPS) [170] was used to evaluate straightening performance

of different methods in this paper. The LPIPS is an emergent deep neural network-based

method which is able to extract deep features of images for evaluating high-order structure

similarity. Compared to the results of these traditional metrics, its results are more in

accordance with human perceptual similarity judgment [170].
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Apart from LPIPS, to ensure the details of straightened results are preserved in prac-

tice, we also assess the effectiveness of different straightening methods based on chromo-

some type classification. If the banding patterns and edge details of chromosomes are

well preserved during straightening, the classification accuracy of straightened chromo-

somes should not decrease. In contrast, unpreserved details, such as broken bands, may

not provide enough information for the classification model. The original images (642

curved chromosomes, Type 1 to 7) are randomly split using the ratio of 3:1 for 4-fold

cross-validation. With a fixed random seed, this process is similarly carried out for the

straightened chromosomes generated by different methods.

3.3.3 Implementation Details

Our experiments are implemented using PyTorch and run on two NVIDIA RTX 2080Ti

GPUs. In each training process of chromosome straightening, the training and validation

sets are split by a fixed random seed. The input image pairs are first normalized by default

values (mean µ = 0.5 and standard deviation σ = 0.5), and these results are fed into

image-to-image translation models for learning the mapping dependence from backbones

to chromosomes. Models are trained with an initial learning rate lr = 0.00004. The

validation performance is checked three times per epoch, and the weights are saved when

the best validation performance is updated. When the validation performance does not

improve for 9 consecutive checks, the learning rate is reduced to 80% for fine-tuning. To

avoid overfitting, the training process is terminated when there are 27 consecutive checks

without updated validation performance. For each chromosome type classification model

(Alexnet [76], ResNet50 [57] and DenseNet169 [64]), the training process is initialized with

a learning rate of lr = 0.00004 and corresponding ImageNet pre-trained weights. We

utilize 12 and 120 consecutive checks for fine-tuning and avoiding overfitting, respectively.

Furthermore, we use identical random seeds, preprocessing and hyperparameter settings

for 4-fold cross-validation of the chromosome type classification.

3.3.4 Results

Comparison of Straightening Performance

Although there are two categories of geometric methods (medial axis extraction [9, 69, 135]

and bending points localization [120, 129]), we found that the morphological and Stentiford
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Figure 3.6: Three examples of straightening results. From left to right: original images, the
geometric method [120, 129], our framework using U-Net and pix2pix. Enlarged regions
demonstrate marginally improved details of pix2pix over U-Net.

thinning algorithms of medial axis extraction may cause many unexpected branches and

irregular rings. Therefore, we investigated the performance of chromosome straightening

using: (a) the geometric method (bending points localization) whose main component is

used by [120, 129], and our image-to-image translation model based framework with (b)

U-Net and (c) pix2pix models.

Fig. 3.6 gives three examples of the straightening results using the 642 curved chro-

mosomes. The five columns correspond to: (i) the original unstraightened images, (ii)

corresponding backbones extracted by our approach, (iii) outputs of the geometric method

[120, 129], as well as the results from our framework with (iv) U-Net and (v) pix2pix,

respectively. Although [129] additionally fills empty regions between stitched arms with

the mean pixel values at the same horizontal level, the main problem of [120] whose results

contain distinct segmented banding patterns between arms is still unresolved. In the third

column of Fig. 3.6, we illustrate results of the straightening algorithm whose key part

is used in [120, 129]. As examples in the third column of Chr 1 and Chr 2, the perfor-

mance of the geometric method further deteriorates if there are curved arms and more

than one bending point. Compared to these results, our framework demonstrates superi-

ority both in translation consistency and in non-rigid straightening results (the fourth and

fifth columns). The curvature of arms and the number of bending points do not decrease
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Table 3.1: LPIPS results on different chromosome datasets (mean ± std.). For LPIPS
lower is more similar.

Original Images vs. Geometric Method Original Images vs. U-Net Original Images vs. Pix2pix U-Net vs. Pix2pix

LPIPS 0.1621± 0.052 0.1356± 0.051 0.1318± 0.050 0.0239± 0.011

the performance of our framework because the image-to-image translation based frame-

work relies on backbones rather than through morphological analysis. Since the provided

chromosomes are low-resolution images, we notice that some straightened chromosomes

(e.g. Chr 1) of U-Net and pix2pix have indistinguishable synthesized internal details and

intensity. For many examples (enlarged area in Fig. 3.6), pix2pix marginally outperforms

the U-Net model with more preserved edge details achieved by the patch-wise discrimina-

tor and adversarial training method. Since the chromosome images in this research are

low-resolution (256 × 256), the ability to generate fine details using our framework with

cGANs may become more obvious in high-resolution chromosome straightening and could

be extended for use in the development of cytogenetic maps.

The average values and standard deviations (std.) of LPIPS are summarized in Table

3.1. Since LPIPS shows the perceptual distance between two images even there is obvi-

ous deformation, we quantify the similarity between curved chromosomes and straightened

ones. We can observe that the straightening results of the pix2pix model under our frame-

work achieves the best performance with a minimum LPIPS value (the third column of

Table 3.1). The measurement of Original Images vs. U-Net and U-Net vs. Pix2pix in-

dicates that the performance of U-Net is slightly worse than pix2pix due to the superior

translation consistency of cGANs to U-shape neural networks. As a comparison, straight-

ening results of the geometric method produced the highest LPIPS value, which may be

caused by the broken banding patterns between stitched arms.

Comparison of Chromosome Type Classification Results on Different Straight-

ened Datasets

We also performed experiments to determine if our proposed straightening framework en-

hanced the accuracy of the chromosome type classification. It is significant because the

assessment of classification accuracy is an indispensable step in automatic karyotyping

analysis [129, 171, 110]. Inaccurate straightened results may obscure the unique morpho-

logical features and banding patterns of different chromosome types.

Tables 3.2 and 3.3 give the comparisons between three standard state-of-the-art classi-



Chapter 3. A Novel Application of Image-to-Image Translation: Chromosome
Straightening Framework by Learning from a Single Image 41

Table 3.2: Comparison of averaged classification accuracy (4-fold cross-validation)

Accuracy (%) Alexnet ResNet50 DenseNet169

Original Images (Baselines) 90.47 85.31 86.09
Geometric Method [120, 129] 78.44 70.16 73.59
U-Net 91.51 85.65 87.65
Pix2pix 91.67 86.57 87.81

Table 3.3: Comparison of averaged AUC of chromosome type classification (4-fold cross-
validation)

AUC Alexnet ResNet50 DenseNet169

Original Images (Baselines) 0.9423 0.9163 0.9271
Geometric Method [120, 129] 0.8513 0.8317 0.8513
U-Net 0.9487 0.9204 0.9301
Pix2pix 0.9510 0.9293 0.9311

fication networks, AlexNet [76], ResNet50 [57] and DenseNet169 [64]. The accuracy scores

and their Area Under Curve (AUC) are the mean value of 4-fold cross-validation results.

We consider the scores trained by original curved chromosomes as baselines. We can see

that wrongly identified bending points and stitched chromosome arms with discontinued

banding patterns from the geometric method, reduce the classification results by a sig-

nificant margin (-13.23% accuracy, -0.084 AUC on average). In contrast, our framework

achieves top scores and marginally outperforms the baselines by 0.98% accuracy, 0.0045

AUC (U-Net) and 1.39% accuracy, 0.0085 mean AUC (pix2pix) on average. One possible

reason is that the straightened and uninterrupted banding patterns help neural networks

to learn uncurved and unrotated unique features of chromosomes. The superiority of our

proposed framework suggests that it may benefit banding pattern identification and abnor-

mality detection in the automatic pathological diagnosis of karyotypes. Fig. 3.7 depicts

the mean accuracy curves of different training/validation sets of these three models. It

illustrates that the chromosome type classification performance of datasets between orig-

inal images, chromosomes generated by U-Net and pix2pix display similar trends, which

is in accordance with the results of Table 3.2 and Table 3.3. This indicates the details

of chromosomes are well preserved after straightening. In contrast, the chromosome type

classification accuracy is severely affected by the discontinued banding patterns and un-

straightened arms generated by the geometric method.
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Figure 3.7: Training and validation accuracy curves of three CNN models for chromosome
type classification (4-fold cross-validation). Shadow regions represent the range over four
folds and solid lines represent mean accuracy.

3.4 Limitation and Discussion

3.4.1 Computation Time

To address the flaws, such as the broken banding patterns in geometric methods and ran-

dom stretching in elastic deformation algorithms, we propose a chromosome straightening

framework which is object specific. Therefore, it is time-consuming to train a separate

straightening model for every curved chromosome. In future research, a generalized chro-

mosome straightening model shall be designed. We would design an improved model for

disentangling the information of internal backbones and banding patterns.

3.4.2 Failure Cases

Under our framework, we notice two types of failure cases. First, the straightening per-

formance hinges on the accuracy of the central axes identified. When the curvature of a

chromosome is too large, the extracted internal backbone may not be aligned in a similar

direction with the original image (red arrows of Chr 4 in Fig. 3.8). In this case, the relation

between the backbone and corresponding banding patterns are still preserved. As a result,

that part may not be well straightened. Second, some irregular chromosomes may still cause

small-scale fluctuations of backbones even after the moving average algorithm, resulting in

blurred synthesized banding patterns and edge details (Chr 5 in Fig. 3.8). Because of this,

high-quality labels of chromosomes are still deficient in the augmented dataset. A plausible

direction would be an improvement of the backbone extraction method. A crowdsourcing
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Figure 3.8: Two examples of failure cases. From left to right: original images, the geometric
method [120, 129], our framework using U-Net and pix2pix.

Figure 3.9: Examples of synthesized results with a series of curved internal backbones
(generated by our framework with the pix2pix model).

database of labeled backbones could be established for developing a powerful deep learning

based backbone detector of chromosomes.

3.4.3 Potential Applications

Since the results of our straightening framework demonstrate a higher classification accu-

racy, it is worthwhile to incorporate the framework into automatic karyotyping analysis

and cytogenetic map construction. With the development of image-to-image translation

research, many advanced modules and architectures, for example, attention-based GANs

[167], may be integrated into our framework to further improve its efficacy and robustness.

Since our augmented datasets contain information concerning random deformation and

rotation, we observe that fine-tuned generators not only have an ability to straighten chro-

mosomes, but also can synthesize more chromosomes by inputting internal backbones with

different curvatures (Fig. 3.9). Therefore, our framework demonstrates the potentiality
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for generating augmented chromosomes with highly preserved detail along with customized

backbone images.

Compared to regular U-shape networks, cGANs have more potential in the applica-

tion of high-resolution chromosome straightening with higher translation consistency. In

the latest study, Artemov et al. [10] employs PhotoShop for straightening high-resolution

chromosomes when developing cytogenetic maps, so an automatic high-resolution chromo-

some straightening framework is still in demand. Similar to the evolution from pix2pix

to pix2pixHD [153], our straightening framework may also be further modified for high-

resolution chromosome images.

3.5 Conclusions and Future Work

In this study, we propose a novel image-to-image translation based chromosome straight-

ening framework which sets a new direction for object straightening. The framework trans-

forms the task of straightening into the learning of mapping dependency from randomly

augmented backbones to corresponding chromosomes. It allows straightened chromosomes

to be generated from vertical backbones. The straightening performance of our framework

is significantly better than the geometric approach with more realistic images of unin-

terrupted banding patterns. Under our framework, the average classification accuracy of

U-Net and pix2pix evaluated by state-of-the-art classification models is higher than the

baselines by 0.98% and 1.39%, respectively.

However, using this straightening framework it is still computationally expensive to

train separate models for different curved chromosomes, the framework also may generate

blurred results due to inaccurately identified internal backbones. Since the study of deep

learning based chromosome straightening is at its infancy, many improvements can be

made to our framework, such as a more accurate internal backbone extraction method,

and a generalized architecture which is not object specific.



Chapter 4

A Robust Framework of

Chromosome Straightening with

ViT-Patch GAN

In the previous chapter, we propose a standard image-to-image translation framework for

chromosome straightening. Compared to previous geometric chromosome straightening

methods, the proposed framework and backbone extraction method achieve significantly

better performance due to more realistic straightening results with continuous banding

patterns and edge details. However, this work has two major limitations: (1) Since the

model is trained by a dataset augmented from a single chromosome image, a separate model

requires to be trained for each chromosome. The learned representations are only mapping

dependencies from backbone images to their corresponding chromosome images. Therefore,

this approach is time-consuming and has poor generalization for further straightening

applied to other large datasets. (2) The internal backbone of chromosome requires to

be extracted to construct an augmented dataset, so inaccurate extraction may lead to

non-fully straightened or blurred results.

In this chapter, we propose an advanced chromosome straightening framework for more

efficient representation learning in the direction of medical image generation. To address

the above two limitations in our previous work, we design a novel and generalized chromo-

some straightening framework, named ViT-Patch GAN, which contains a generator and

a discriminator. The generator can self-learn the motion representation of chromosomes

45
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with different degrees of curvature. With the help of the designed ViT-Patch discrimina-

tor, the straightening performance of the synthesized results of the generator is improved.

We successfully convert this straightening task into a motion representation learning task.

This confers two advantages. First, learning motion transformation rather than map-

ping dependencies from backbone to chromosome improves the generalization capability of

model. A well-converged model has the potential to straighten all other chromosomes even

in cross-dataset experiments, whereas in our previous work, we need to train a separate

model for each chromosome images. Second, learning the motion representation avoids

the step of extracting chromosome backbones, so the accuracy of the backbone extraction

algorithm does not affect straightening results of this novel framework. Furthermore, this

novel framework addresses other challenges of chromosome straightening task. It allows

training on a small dataset and improves the preservation of straightening details.

4.1 Introduction and Problem Statement

Chromosomes carry the genetic information of humans. They exhibit non-rigid and non-

articulated nature with varying degrees of curvature. Chromosome straightening is an

important step for subsequent karyotype construction, pathological diagnosis and cytoge-

netic map development. However, robust chromosome straightening remains challenging,

due to the unavailability of training images, distorted chromosome details and shapes after

straightening, as well as poor generalization capability. In this paper, we propose a novel

architecture, ViT-Patch GAN, consisting of a self-learned motion transformation generator

and a Vision Transformer-based patch (ViT-Patch) discriminator. The generator learns

the motion representation of chromosomes for straightening. With the help of the ViT-

Patch discriminator, the straightened chromosomes retain more shape and banding pattern

details. The experimental results show that the proposed method achieves better perfor-

mance on Fréchet Inception Distance (FID), Learned Perceptual Image Patch Similarity

(LPIPS) and downstream chromosome classification accuracy, and demonstrates excellent

generalization capability on a large dataset.

In a normal human cell, there are 22 pairs of autosomes (Type 1-22) and one pair of

heterosomes (Type X & Y in male and two copies of Type X in female). By karyotype

analysis, chromosome aberrations can be detected in the diagnosis of many genetic dis-

eases, such as the Klinefelter syndrome [16] and specific cancers [4]. The banding patterns

of chromosomes (unique light and dark stained bands) provide important evidence for
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the development of cytogenetic maps. Due to their non-rigid nature, condensed chromo-

somes exhibit varying degrees of curvature under the microscope. Therefore, chromosome

straightening is an important upstream task for chromosome classification [171] and the

subsequent karyotype construction and cytogenetic map development [10].

Chromosome straightening has been studied for a long time and its development may

be described in three stages. (i) Printed images of bent chromosome are physically cut

and rearranged for straightening [142, 141]. (ii) Geometric algorithms are extensively de-

signed based on chromosome micrographs for automatic straightening, which consist of

two main categories: extraction of the medial axis [9, 69, 135, 158] and finding bending

points [120, 129, 169]. However, these geometric methods may extract inaccurate medial

axes when chromosomes have large widths. The methods of bending point localization

often use a cut line to separate chromosome arms, leading to discontinuous banding pat-

terns. (iii) A Single Chromosome Straightening Framework (SCSF) [138] using conditional

generative adversarial networks (cGAN) is proposed to straighten chromosomes with un-

interrupted chromosome banding patterns. However, it requires a large number of input

image pairs for training a model for each chromosome. ChrSNet [175] is proposed as

a two-module framework with self-attention mechanism, but some edge details are not

well-preserved. In addition, there are many studies on image deformation, such as medical

image registration [3, 8]. The image registration technique requires two real-world chromo-

somes with the identical shape details but different curvatures, which is almost impossible

to obtain. Thus it also fails in this chromosome straightening task. Recently, First Order

Motion Model (FOMM) [131] and PCA-based Motion Estimation Model (PMEM) [132] are

proposed by learning key point-based and region-based representations for motion trans-

fer, respectively. However, they still require to train on sufficient image pairs for robust

performance.

Challenges remain in the three stages of chromosome straightening. (1) Lack of of

training images. It is almost impossible to take micrographs of two chromosomes with

identical stained banding pattern but different curvatures due to the diversity of random

mutations, chromosome condensation and laboratory conditions. Thus, it is challenging

to train a robust deep learning-based model for straightening. (2) Distorted chromosome

details and shapes after straightening. The condensed chromosomes are non-rigid with

varying degrees of curvature. Straightened chromosome results require a high degree of

preservation of consistent shape and details in the source image. Image registration and

motion transfer methods tend to generate distorted results with driving image shapes. (3)
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Figure 4.1: Overview of the architectures of the proposed framework, including (a) motion
transformation generator and (b) our proposed ViT-Patch discriminator; (c) gives the
structure comparison of a basic patch discriminator.

Poor generalization capability. The recent cGAN-based chromosome straightening frame-

work [138] only learns mapping dependencies for each specific banding patterns, making it

very time-consuming for large-scale applications.

The main contributions of this research address the above problems and are as follows:

• We propose a robust cGAN-based framework for chromosome straightening on a small

dataset, by transfering the chromosome straightening task to the motion transfor-

mation task of non-rigid objects.

• We propose a novel architecture, ViT-Patch discriminator, to improve the detail

preservation ability of our framework. Compared with existing methods, straightened

chromosomes retain more shape and banding pattern details of the corresponding

source images.

• Different from SCSF [138], our trained model demonstrates excellent generalization

capability and is able to be applied to a large chromosome dataset for straightening.

4.2 Methodology

4.2.1 Network Architecture

Fig. 4.1 presents an overview of the proposed ViT-Patch GAN architecture. It is comprised

of two parts, a motion transformation generator (Fig. 4.1-a) and a ViT-Patch discriminator
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(Fig. 4.1-b). Compared to SCSF [138], ViT-Patch GAN requires a small dataset size for

training (642 images). It straightens chromosomes with highly preserved details, and has

high generalization capacity.

Generalized Framework of Chromosome Straightening. We apply PMEM [132]

as the generator part since it learns motion representations through self-learned region es-

timation. We can consider the chromosome straightening task as a motion transformation

task for non-rigid objects. In the training stage, the generator requires a training source and

training driving images with the same chromosome but different curvatures. As shown in

Fig. 4.1-a, using the Motion Estimation Module, the flow and confidence maps containing

a combination of region and background transformations are then fed into the Generation

Module to synthesize the straightened chromosome. Subsequently, the straightened chro-

mosome is supervised with the training driving image by a supervised reconstruction loss

(L1), consistent with PMEM [132]. One of the challenges of this task is the lack of training

driving data. However, PMEM was trained on sufficient image pairs (video clips containing

only the same object) [132]. On a small dataset, PMEM may inadequately transfer the

shape of the driving image to the source image, leading to inaccurate straightening results.

To alleviate this drawback, we propose a ViT-Patch discriminator (Fig. 4.1-b) that

encodes not only local details but also global feature connection. The final loss is the stan-

dard adversarial loss of the generator and discriminator in the cGAN-based framework [67].

During testing, the converged model straighten chromosomes by feeding test source and

test driving images. It is worth noting that the test driving can be a different straight

chromosome to the test source since the motion representation has been learned.

ViT-Patch Discriminator. Fig. 4.1-b and Fig. 4.1-c give the comparison between

our proposed ViT-Patch discriminator and a basic patch discriminator. In a basic patch

GAN [67], the semantic content of the corresponding patches at the same position between

the source and generated images is generally the same. However, in this task, curvatures of

a chromosome change after straightening. As a result, patches at the same position before

and after straightening may contain significantly different chromosome patterns (e.g. the

concatenated patches with black arrows in Fig. 4.1-b and Fig. 4.1-c).

In training a basic patch GAN, two patches at the same position are concatenated and

fed into the discriminator network (DP ) that contains several consecutive convolutional

blocks to output the Feature Map2 for adversarial training (Fig. 4.1-c). Although adjacent

patches overlap according to the receptive field, long-distance patches are independent and

not informatively linked. This deficiency may lead to inaccuracy and limited performance
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in the chromosome straightening task. To address this, for the proposed ViT-Patch dis-

criminator, patches at the same position are fed into a convolutional patch embedding layer

(CPE), and then processed by N Multi-Head Self-Attention (MHSA) Blocks as ViT [41]

(4-16 used for ablation experiments). Afterwards, the encoded features contain long-range

dependencies across the image to compensate for information loss. Thus the Feature Map1

contains not only the local semantic content but also the information connectivity of the

entire chromosome.

4.2.2 SL-matching Scheme

In addition to proposing a ViT-Patch discriminator to improve generalization, empirically,

we found a large shape difference between the test source and test driving chromosome,

leading to significant distortion. To alleviate this problem, we propose a Size-LPIPS match-

ing scheme (SL-matching) to select a test driving with a similar size and shape for each

test source image. The SL-matching scheme is comprised of two phases. In Phase 1 we

perform a line-by-line scan of the chromosome image and record the midpoint of each line

containing non-zero pixels. The resulting set of midpoints is first smoothed using a moving

average algorithm, and its length calculated. Next, we perform a column-by-column scan,

where we take the x -axis coordinates of all non-zero pixel columns as the width. The

top three candidates whose lengths and widths are most similar to the corresponding test

source are selected. In Phase 2 we calculate the perceptual score between a test source

and each candidate chromosome. This score is the average result generated by LPIPS with

AlexNet and VGG backbones [170]. Finally, the selected image has the largest size and

perceptual similarity.

4.3 Experiments

4.3.1 Experiment Setup

Datasets and Implementation Details. A total of 16696 chromosome micrographs

were used for the evaluation as provided by [138]. All data had been desensitized, and

patients’ personal information has been removed. Since 642 out of the 16696 chromosomes

were straightened by SCSF [138], these 642 chromosomes were used as the dataset (Dtrain)

for training and testing the ViT-Patch GAN in a 4:1 ratio. In the training stage, the

original chromosomes and corresponding straightened results in Dtrain were utilized as
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Table 4.1: Comparison with existing studies, the best and second best results highlighted
in bold and underlines. The DCA result is the average score of each experiment with
cross-validation.

DCA (%) FID↓ LPIPSA↓ LPIPSV ↓ DCAR34 DCAR50 DCAD169

Original - - - 91.72 85.63 83.59
SCSF [138] 54.90 0.1272 0.0974 90.63 86.87 85.31
FOMM [131] 53.71 0.1310 0.0982 92.19 85.16 88.28
PMEM [132] 43.80 0.1196 0.0897 92.03 86.09 84.69
ViT-Patch 42.21 0.1160 0.0874 93.91 90.16 89.06

↓ represents that lower results are better.

training source and training driving images, respectively. Our clinical experts select 1200

real-world straight chromosomes of different lengths from all chromosome types as the

dataset, Ddriving. In the testing stage, Ddriving was used to select test driving for each test

source utilizing the SL-matching scheme. A large dataset was employed in this study to

assess generalization capacity: the remaining 14854 chromosome images provided by [138]

(Dlarge).

All experiments were implemented using one NVIDIA GeForce RTX 2080Ti GPU and

coded using PyTorch. The Adam optimizer and a batch size of 1 were used. The total

training epoch was 50 and the ratio of the training and test sets was 4:1 (5-fold cross-

validation). The initial learning rates of the generator and discriminator were 5e−5 and

1e−5, respectively. We used MultiStepLR for the generator and discriminator with mile-

stones 30 and 45. After completing cross validation, all 642 chromosomes of Dtrain were

straightened. Subsequently, we performed downstream classification experiments (7 chro-

mosome types) using initial learning rate of 4e−5 and ReduceLRonPlateau with patience 5

and early stopping protocol with patience 20. All input images were preprocessed to png

format (256×256).

Evaluation Metrics. To quantitatively assess the quality of straightened chromo-

somes, we used the following three evaluation metrics: (i) Fréchet Inception Distance (FID)

(ii) Learned Perceptual Image Patch Similarity (LPIPS) and (iii) Downstream Classifica-

tion Accuracy (DCA). FID [59] assesses the quality of generated images by comparing the

distribution between the real and generated images. LPIPS [170] estimates the perceptual

similarity. Its results are closer to human judgment than many traditional metrics, such as

L2, PSNR and SSIM, especially for deformed objects (between original and straightened

chromosomes) [170]. LPIPSA and LPIPSV represent the scores generated by AlexNet and
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Figure 4.2: Visual results of chromosome straightening generated by different methods.

VGG backbones. Since chromosome classification is an important downstream task of chro-

mosome straightening for subsequent karyotype construction and pathological diagnosis,

the DCA can be used to assess the performance.

4.3.2 Comparison with State-of-the-Art Methods

Table 4.1 gives the quantitative assessment of chromosome straightening on Dtrain. We

compare the ViT-Patch GAN with state-of-the-art studies, SCSF [138], FOMM [131] and

PMEM [132]. These results are the average scores using 5-fold cross-validation on Dtrain.

The FID value of ViT-Patch GAN decreases from 54.90 to 42.21, implying that the straight-

ening quality of our method is closest to the real-world chromosome images. Moreover,

ViT-Patch GAN achieves the best LPIPS scores on both AlexNet and VGG backbones,

demonstrating the clear advantages of our proposed method in this task.

We perform downstream classification experiments using 642 chromosomes straightened

by these state-of-the-art methods in exactly the same configuration. Each DCA is the

average best result generated by 4-fold cross-validation classification experiments with

commonly used models, ResNet34 (R34), ResNet50 (R50) and DenseNet169 (D169) [57,

64]. Although there is overfitting with the increasing depth of classification networks, we

observe that ViT-Patch GAN significantly outperforms other methods by a large margin

on DCAR34, DCAR50 and DCAD169. The proposed method achieves gains of 2.19%, 4.53%

and 5.47% on DCA compared to the original bent chromosomes (baselines). Such results
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Figure 4.3: Comparison of straightening performance (a) of ablation study and (b) on a
large-scale dataset (Dlarge).

highlight that our proposed ViT-Patch GAN has an excellent reconstruction quality of

straightened chromosomes.

Fig. 4.2 gives the comparison between two straightened chromosomes. Compared to

SCSF and PMEM, ViT-Patch GAN achieves the most accurate straightening details (green

arrows) with fewer reconstruction errors. These errors are generally of two types: (i) bend-

ing is not well recovered (blue arrows with boxes), and (ii) the chromosome shape and

details are not well preserved (red arrows). This inadequate straightening is mainly caused

by inaccurate motion representation. For SCSF, only a backbone responsible for straight-

ening results in a lack of features. The estimated regions of PMEM are wide and mostly

located on the background, resulting in the curvature being almost not straightened (blue

arrows). In contrast, ViT-Patch GAN estimates more meaningful and accurate motion

representation for straightening, resulting in highly reliable straightening results.

4.3.3 Ablation Study and Cross-Dataset Experiments

We conduct ablation experiments to compare the performance of different architectures.

We also implement PatchGAN, which uses a basic patch discriminator with PMEM as

the generator. Blocks 4-16 are experiments for our proposed ViT-Patch discriminator

with a series number of MHSA blocks. Fig. 4.3-a demonstrates that the performance on

all metrics increases from Blocks 4 to 12, and Blocks 12 of our method achieves the best
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Figure 4.4: Comparison of straightening performance based on different test driving images
selected by random and our proposed SL-matching schemes.

results (black arrows). In contrast, Blocks 16 may lead to overfitting, resulting in decreased

performance.

We further conduct experiments with the exactly same ViT-Patch GAN model (Blocks

12), but only with different test driving images picked by random selection and the proposed

SL-matching scheme. Fig. 4.4 demonstrates that the SL-matching scheme is important to

drive source images for generating accurate straightening results.

We perform cross-dataset experiments to evaluate the generalization capability of ViT-

Patch GAN (Fig. 4.3-b). The models (those used in Section 4.3.3) are trained on Dtrain.

The performance relationship between Fig. 4.3-b and Fig. 4.3-a is consistent. Our ViT-

Patch GAN with Blocks 12 outperforms the others on all metrics, suggesting its robustness

in the cross-dataset setting. Although our proposed chromosome straightening framework

is trained on only 642 chromosomes (Dtrain), the ViT-Patch GAN learns the global motion

representation rather than only mapping dependencies of specific patterns (i.e., SCSF).

The converged model can further straighten chromosomes of all types on the large dataset,

Dlarge. Thus, it may be further utilized for large-scale applications of chromosome straight-

ening.

4.4 Conclusion and Future Work

In this paper we propose a novel robust chromosome straightening framework, which in-

cludes a generator for learning chromosome motion representation and a ViT-Patch dis-

criminator for generating more realistic straightened results. The ViT-Patch discriminator

encodes both the local detail and long-range dependency. Qualitative and quantitative
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results demonstrate that the efficacy of our proposed method in retaining more chromo-

some shape and banding pattern details. Our framework also has excellent generalization

capability in chromosome straightening for a large size dataset.

In our experiments, we note that this method achieves excellent performance on chro-

mosomes with relatively long arms. Thus Ddriving may be continuously updated based on

more training and driving images to obtain better performance on short-armed chromo-

somes, thus training a more robust and generalized model. In this case, the potential of

applying ViT-Patch GAN for large size datasets can be further improved.



Chapter 5

Bilateral-ViT for robust fovea

localization

In our first work on fovea localization (medical image segmentation), we propose a novel

multi-cue fusion architecture, named Bilateral-Vision-Transformer (Bilateral-ViT), which

consists of two branches, a main branch that exploits long-range context and a vessel

branches that encodes structure information from the blood vessel segmentation map.

The encoded global context across the entire fundus image and the segmentation map

are subsequently decoded by a customized Multi-scale Feature Fusion (MFF) module.

Compared to previous studies that integrate features from the fundus image only, our

proposed architecture focuses more on features distributed along anatomical structures

(blood vessels) associated with fovea locations, achieving new state-of-the-art results on

public datasets and significantly improving generalization in cross-dataset experiments.

5.1 Introduction and Problem Statement

Fovea is an important anatomical landmark of the retina. Detecting the location of the

fovea is essential for the analysis of many retinal diseases. However, robust fovea lo-

calization remains a challenging problem, as the fovea region often appears fuzzy, and

retina diseases may further obscure its appearance. This paper proposes a novel Vision

Transformer (ViT) approach that integrates information both inside and outside the fovea

region to achieve robust fovea localization. Our proposed network, named Bilateral-Vision-

Transformer (Bilateral-ViT), consists of two network branches: a transformer-based main

56
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network branch for integrating global context across the entire fundus image and a vessel

branch for explicitly incorporating the structure of blood vessels. The encoded features

from both network branches are subsequently merged with a customized Multi-scale Fea-

ture Fusion module. Our comprehensive experiments demonstrate that the proposed ap-

proach is significantly more robust for diseased images and establishes the new state of the

arts using the Messidor and PALM datasets.

The macula is the central region of the retina. The fovea is an important anatomical

landmark located in the center of the macula, responsible for the most crucial part of a

person’s vision [156]. The severity of vision loss due to retinal diseases is usually related to

the distance between the associated lesions and the fovea. Therefore, detecting the location

of the fovea is essential for the analysis of many retinal diseases.

Despite its importance, robust fovea localization remains a challenging problem. The

color contrast between the fovea region and its surrounding tissue is poor, leading to a

fuzzy appearance. Furthermore, the fovea appearance may be obscured by lesions in the

diseased retina; for example, geographic atrophy and hemorrhages significantly alter the

fovea appearance. Such issues make it more difficult to perform localization based on the

fovea appearance alone. Fortunately, anatomical structures outside the fovea region, such

as blood vessels, are also helpful for localization [85, 6]. For this reason, we propose a novel

Vision Transformer approach that integrates information both inside and outside the fovea

region to achieve robust fovea localization.

Our proposed network, named Bilateral-ViT, consists of two network branches. We

adopt a transformer-based U-net architecture [21] as the main branch for effectively

integrating global context across the entire fundus image. In addition, we design a vessel

branch that takes in a blood vessel segmentation map for explicitly incorporating the

structure of blood vessels. Finally, the encoded features from both network branches

are merged with a customized Multi-scale Feature Fusion module, leading to significantly

improved performance. Thus, our key contributions are as follows:

• We propose a novel vision-transformer-based network architecture, that explicitly

incorporates global image context and structure of blood vessels, for robust foveal

localization.

• We demonstrate that the proposed approach is significantly more robust for chal-

lenging settings such as fovea localization in diseased retinas (over 9% improvements

for specific evaluations). It also has a better generalization capability compared to
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the baseline methods, as shown in cross-dataset experiments.

• We establish the new state of the arts on both the Messidor and PALM datasets.

5.2 Related Work

Earlier work usually utilize hand-craft features to encode anatomical relationships among

optic discs (OD), blood vessels, and fovea regions for fovea localization. Deka et al. [36]

and Medhi et al. [92] generate the region of interest (ROI) using processed blood vessels

for macula estimation. Certain methods utilize OD in the prediction of ROI and fovea

center by selecting specific OD diameters [97], estimating OD orientations and minimum

intensity values [127, 11]. Other applications use combined OD and blood vessels features

to improve the performance of fovea localization [85, 6]. These methods generally perform

less competitively than more recent deep-learning-based approaches.

Many deep learning-based methods formulate the fovea localization as a regression

task [2, 94, 65, 159]. Some methods utilize retinal structures, such as OD and blood

vessels, as constraints for inferring the location of the fovea. For example, Meyer et al. [94]

adopt a pixel-wise distance regression approach for joint OD and fovea localization. Besides

the regression-based approaches, Sedai et al. [126] propose a two-stage image segmentation

framework for segmenting the image region around the fovea. Our work also belongs to

the image segmentation paradigm [21, 126, 118, 109, 165]. Unlike all previous works, we

customize the recent transformer-based segmentation network [21] to incorporate blood

vessel information and demonstrate its superior performance compared to the existing

approaches.

5.3 Methodology

5.3.1 Network Architecture

The overall architecture of Bilateral-ViT is illustrated in Fig. 5.1. The proposed Bilateral-

ViT is based on a U-shape architecture with a vision transformer-based encoder (the main

branch) for exploiting long-range contexts. In addition, we design a vessel branch to

encode structure information from blood vessel segmentation maps. Finally, Multi-scale

Feature Fusion (MFF) blocks are designed to effectively fuse data from the main and vessel

branches.
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Figure 5.1: The overall architecture of our proposed Bilateral-ViT network.
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Figure 5.2: The structures of SIG blocks and MFF blocks. The subscript C denotes channel
depths. Cin, Cmid and Cout represent channel depths of input, intermediate, and output
feature maps for the MFF blocks, respectively. We set Cmid of three MFF blocks to small
numbers, i.e.128, 64, 32, for improving the efficiency of multi-scale feature fusion.

Main Branch. We adopt the TransUNet [21] as the main branch due to its superior

performance on other medical image segmentation tasks. In the main branch, we utilize

a CNN-Transformer hybrid structure as the encoder. The CNN part is used as the initial

feature extractor. It provides features at different scales for the skip connections to com-

pensate for the information loss in the downsampling operation. The extracted features are

then processed by 12 consecutive transformer blocks at the bottleneck of the UNet archi-

tecture. The transformer encodes the long-range dependencies of the input fundus image

due to the multi-head self-attention structure. The output features of the last transformer

block are then resized for later decoding operations.

Vessel Branch. In the vessel branch, we aim to exploit the structure information

from the blood vessels. Unlike the main branch, where the input is a fundus image, we

put in a vessel segmentation map generated by a pre-trained model. The pre-trained

vessel segmentation model is built on the DRIVE dataset [140] with the TransUNet [21]

architecture. Four identical Spatial Information Guidance (SIG) blocks are utilized in the

vessel branch to extract multi-scale vessel-based features. The rescaled vessel segmentation

maps are fed into the SIG blocks, the details of which are illustrated in Fig. 5.2-a. The
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design of the SIG blocks makes extensive use of customized ReSidual U-blocks (RSU). Qin

et al. [109] indicate that the RSU block is superior in performance to other embedded

structures (e.g., plain convolution, residual-like, inception-like, and dense-like blocks), due

to the enlarged receptive fields of the embedded U-shape architecture.

Multi-scale Feature Fusion (MFF) blocks. In contrast to the plain convolutional

decoder blocks of the basic TransUNet, we use three Multi-scale Feature Fusion (MFF)

blocks as the decoders for effective multi-scale feature fusion. The input to each MFF block

is the concatenation of three types of features: (1) the multi-scale skip-connection features

from the main branch, (ii) the hidden feature encoded by the last transformer block or

the previous MFF block, (iii) the multi-scale SIG features from the vessel branch. The

architecture of the MFF blocks is illustrated in Fig. 5.2-b, which is similar to one of the SIG

blocks. From MFF block 1 to MFF block 3, we gradually increase the number of network

layers in each MFF block. In this way, the later MFF blocks can capture more spatial

context corresponding to larger feature maps. In the end, the concatenated feature maps

of MFF block 3 and SIG block 4 are passed to two convolutional layers for outputting the

fovea region score maps.

5.3.2 Implementation Details

We first remove the uninformative black background from the original fundus image, then

pad and resize the cropped image region to a spatial resolution of 512× 512. We perform

intensity normalization and data augmentation on the input images of the main branch

and the vessel branch. To train our Bilateral-ViT network, we generate circular fovea

segmentation masks from the ground-truth fovea coordinates. During the testing phase,

we apply the sigmoid function to network prediction for the probabilistic map. We then

collect all pixels with significant probabilistic scores and calculate their median coordinates

as the final fovea location coordinates.

All experiments were coded using PyTorch and conducted on one NVIDIA GeForce

RTX TITAN GPU. The weights of convolutional and linear layers were initialized by

Kaiming initialization protocol [58]. The initial learning rate was 1e−3 which gradually

decays to 1e−7 over 200 epochs using the Cosine Annealing LR strategy. The optimizer

was Adam [72] and the batch size 2. We employed a combination of dice loss and binary

cross-entropy as the loss function.
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Table 5.1: Comparison of performance on normal and diseased retinal images using the
Messidor and PALM datasets. The best and second best results are highlighted in bold and
italics respectively.

1/8 R(%) 1/4 R(%) 1/2 R(%) 1R(%) 2R(%)
Messidor Normal Diseased Normal Diseased Normal Diseased Normal Diseased Normal Diseased

UNet (2015) [118] 82.65 79.00 95.15 93.33 97.76 95.00 97.95 95.33 97.95 95.33
U2 Net (2020) [109] 86.19 81.33 98.51 97.33 99.63 99.50 99.63 99.50 99.63 99.50

TransUNet (2021) [21] 87.31 84.33 98.32 97.67 100.00 99.83 100.00 99.83 100.00 99.83
Bilateral-ViT (Proposed) 87.50 84.00 98.51 98.67 100.00 100.00 100.00 100.00 100.00 100.00

1/8 R(%) 1/4 R(%) 1/2 R(%) 2/3 R(%) 1R(%)
PALM Normal Diseased Normal Diseased Normal Diseased Normal Diseased Normal Diseased

UNet (2015) [118] 57.45 9.43 74.47 18.87 76.60 41.51 76.60 50.94 76.60 64.15
U2 Net (2020) [109] 70.21 11.32 93.62 28.30 95.74 60.38 95.74 77.36 97.87 84.91

TransUNet (2021) [21] 82.98 5.66 95.74 18.87 97.87 43.40 97.87 52.83 97.87 75.47
Bilateral-ViT (Proposed) 82.98 13.21 95.74 37.74 97.87 69.81 100.00 81.13 100.00 92.45

Figure 5.3: Visual results of fovea localization predicted by different methods.

5.4 Experiments

We performed experiments using the Messidor [34] and PALM [44] datasets. The Messidor

dataset is for diabetic retinopathy analysis. It consists of 540 normal and 660 diseased

retinas. We utilized 1136 images from this dataset with fovea locations provided by [48].

The PALM dataset was released for the Pathologic Myopia Challenge (PALM) 2019. It

consists of 400 images annotated with fovea locations, in which 213 images are pathologic

myopia, and the remaining 187 images are normal retinas. For fairness of comparison, we

keep our data split identical to [159].

To evaluate the performance of fovea localization, we adopt the following evaluation

protocol [48]: the fovea localization is considered successful when the Euclidean distance

between the ground-truth and predicted fovea coordinates is no larger than a predefined

threshold value, such as the optic disc radius R. For a comprehensive evaluation, accuracy
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Table 5.2: Comparison with existing studies using the Messidor and PALM datasets based
on the R rule. The best and second best results are highlighted in bold and italics respec-
tively.

Messidor 1/8 R (%) 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)

Gegundez-Arias et al.(2013) [48] - 76.32 93.84 98.24 99.30
Aquino (2014) [6] - 83.01 91.28 98.24 99.56
Dashtbozorg et al.(2016) [33] - 66.50 93.75 98.87 -
Girard et al.(2016) [51] - - 94.00 98.00 -
Molina-Casado et al.(2017) [95] - - 96.08 98.58 99.50
Al-Bander et al.(2018) [2] - 66.80 91.40 96.60 99.50
Meyer et al.(2018) [94] 70.33 94.01 97.71 99.74 -
GeethaRamani et al.(2018) [47] - 85.00 94.08 99.33 -
Zheng et al.(2019) [174] 60.39 91.36 98.32 99.03 -
Huang et al.(2020) [65] - 70.10 89.20 99.25 -
Xie et al.(2020) [159] 83.81 98.15 99.74 99.82 100.00
Bilateral-ViT (Proposed) 85.65 98.59 100.00 100.00 100.00

PALM 1/8 R (%) 1/4 R (%) 1/2 R (%) 2/3 R (%) 1R (%)

Xie et al.(2020) [159] - - - 87 94
Bilateral-ViT (Proposed) 46 65 83 90 96

corresponding to different evaluation thresholds (for example, 2R indicating the predefined

threshold values are set to twice the optic disc radius R) is usually reported.

5.4.1 Fovea Localization on Normal and Diseased Images

In Table 5.1, we evaluate the performance of normal and diseased cases separately. We

reimplement several widely used segmentation networks as comparison baselines, such as

UNet [118], U2 Net [109], and TransUNet [21]. Bilateral-ViT obtains 100% accuracy from

1/2R to 1R on all the Messidor images, and 100% accuracy from 2/3R to 1R on the

normal PALM images. Thus demonstrating that the performance of Bilateral-ViT is highly

reliable for normal fundus images.

For the diseased cases in the PALM dataset, Bilateral-ViT reaches 92.45% foveal localiza-

tion accuracy for the threshold of 1R and significantly outperforms the second-best results

by a large margin (7.54%). Fig. 5.3 provides some visual results of fovea localization on

diseases images from the PALM dataset. Our Bilateral-ViT generates the most accurate

predictions for the severely diseased images with large atrophic regions (see Fig. 5.3-a and

Fig. 5.3-b), or the heavily blurred image (see Fig. 5.3-c). In Fig. 5.3-d where the fovea is

close to the image border, the predicted fovea locations from baseline networks (UNet and
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Table 5.3: Top and Bottom: Performance of the ablation study using the Messidor and
PALM datasets respectively. VB refers to the vessel branch. The best and second best
results are highlighted in bold and italics.

Messidor 1/8 R (%) 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)

ViT+plain decoder (TransUNet [21]) 85.74 97.98 99.91 99.91 99.91
ViT+VB+plain decoder 85.56 98.33 99.74 99.91 99.91
ViT+VB+MFF (Proposed) 85.65 98.59 100.00 100.00 100.00
ViT+VB (fundu as the input)+MFF 85.65 97.89 99.91 100.00 100.00

PALM 1/8 R (%) 1/4 R (%) 1/2 R (%) 2/3 R (%) 1R (%)

ViT+plain decoder (TransUNet [21]) 42 55 69 74 86
ViT+VB+plain decoder 45 52 72 77 85
ViT+VB+MFF (Proposed) 46 65 83 90 96
ViT+VB (fundu as the input)+MFF 43 58 82 89 96

U2 Net) appear on the wrong side of the optic disc. However, TransUNet [21] and our

method still perform well, potentially due to their long-range modeling capability. Such

results highlight that our proposed Bilateral-ViT has a significant advantage for diseased

cases.

5.4.2 Comparison with State-of-the-Art Methods

From Table 5.2, the Bilateral-ViT achieves state-of-the-art performance for all the evalua-

tion settings. In particular, on the Messidor dataset, at 1/8R, our network reaches the best

accuracy of 85.65% with a gain of 1.84% compared to the second-best score (83.81%) [159].

It also reaches an accuracy of 100% at evaluation thresholds of 1/2R, 1R, and 2R; in other

words, the localization errors are at most 1/2R (approximately 19 pixels for an input image

size of 512 × 512). PALM is a considerably more challenging dataset due to fewer images

and complex diseased patterns. Our method achieved accuracies of 90% and 96% at 2/3R

and 1R, which is 3% and 2% better than the previous work [159], respectively.

5.4.3 Ablation Study and Cross-Dataset Experiments

We conducted a comprehensive set of ablation experiments to evaluate the effectiveness of

different components (see Table 5.3):

• ViT+plain decoder: the TransUNet architecture [21] comprised of a vision transformer-

based encoder and a plain decoder used as the comparison baseline.
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Table 5.4: Performance of cross-dataset experiments. The models used here are exactly
those in the Bottom of Table 5.3. They were constructed using PALM only and generated
the following results on Messidor. The higher results based on the R, and the lower results
based on distance errors, are better. VB refers to the vessel branch. The best and second
best results are highlighted in bold and italics respectively.

Cross-Dataset 1/8 R(%) 1/4 R(%) 1/2 R(%) 1R(%) 2R(%) Errors

Xie et al. [159] - - - 95.26 - 22.84
ViT+plain decoder (TransUNet) 77.82 95.95 98.59 99.03 99.30 10.76
ViT+VB+plain decoder 78.17 95.69 98.24 98.77 99.12 11.38
ViT+VB+MFF (Proposed) 81.78 96.48 98.42 99.38 100.00 8.57
ViT+VB (fundu as the input)+MFF 77.02 94.28 97.62 98.68 99.47 10.69

• ViT+VB+plain decoder: we add the vessel branch (vessel segmentation mask as the

input) to the baseline network.

• ViT+VB+MFF (the proposed Bilateral-ViT): we add the vessel branch (vessel

segmentation mask as the input) and MFF blocks to the baseline network.

• ViT+VB (fundus as the input)+MFF: we add the vessel branch (fundu image as

the input) and MFF blocks to the baseline network. This configuration compares

the performance differences between fundus images and vessel segmentation maps as

inputs to the vessel branch.

The performance of “ViT+plain decoder (TransUNet)” and “ViT+VB+plain decoder”

are similar on both datasets; a possible reason is that the plain decoder does not have ade-

quate capacity to fuse features from the vessel branch and transformer blocks. By further

adding MFF blocks, the proposed Bilateral-ViT (ViT+VB+MFF) demonstrates superior

performance, suggesting the significance of the customized MFF blocks. The performance

of “ViT+VB+MFF’ is much better than “ViT+VB (fundus as the input)+MFF”, demon-

strating the usefulness of the vessel segmentation map. On the other hand, we note that

“ViT+VB (fundus as the input)+MFF” outperforms all the existing works, implying our

network can achieve the state-of-the-art performance even without the input of a vessel

segmentation map.

We conducted cross-dataset experiments to assess the generalization capability of the

proposed Bilateral-ViT. The models were trained on the PALM dataset and tested on the

Messidor dataset. From Table 5.4, the accuracy is 99.38% at 1R, which is a 4.12% im-

provement over the best-reported result (95.26%). The average localization error for the
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original image resolution is 8.57 pixels compared to the previous best result of 22.84 pixels.

In addition, the proposed Bilateral-ViT outperforms the baselines by a significant margin,

especially for 1/8R, demonstrating its robustness for the cross-dataset setting.

5.5 Conclusion and Future Work

This paper proposes a novel Vision Transformer (ViT) approach for robust fovea local-

ization. It consists of a transformer-based main network branch for integrating global

context and a vessel branch for explicitly incorporating the structure of blood vessels. The

encoded features are subsequently merged with a customized Multi-scale Feature Fusion

(MFF) module. Our experiments demonstrate that the proposed approach has a significant

advantage in handling diseased images. It also has excellent generalization capability, as

shown in the cross-dataset experiments. Thanks to the transformer-based feature encoder,

the incorporation of blood vessel structure, and the carefully designed MFF module, our

approach establishes the new state of the arts on both Messidor and PALM datasets.

Although the proposed Bilateral-ViT surpasses all previous studies, it has two major

limitations. First, Bilateral-ViT has a large computational requirement since its encoder

is a standard ResNet50-based hybrid ViT architecture. Second, features from fundus and

vessel distribution are merged in the decoding stage, which may lead that these features

are not global incorporated to predict the location of fovea in hard cases. These limitations

will be addressed in Chapter 6.



Chapter 6

Bilateral-Fuser: A Novel Multi-cue

Fusion Architecture with

Anatomical-aware Tokens for

Fovea Localization

In the previous chapter, the proposed Bilateral-ViT models long-range connectivity by

proposing a two-branch segmentation architecture that exploits the multi-head self-attention

mechanism of transformer networks. However, the high computational requirements and

the limited receptive field when merging features remain problems for this approach.

To overcome these problems, we propose a novel dual-stream architecture, named

Bilateral-Fuser, for multi-cue fusion in fundus images in this chapter. The proposed archi-

tecture utilizes a transformer-based structure that globally incorporates long-range connec-

tions from multiple cues, including fundus and vessel distribution. We transfer the feature

merging process from decoder to encoder and design the Bilateral Token Incorporation

(BTI) module in the Bilateral-Fuser architecture. The BTI module includes TokenLearner

and TokenFuser for generating adaptive and learnable tokens and merge features of both

cues with long-range dependencies. The proposed method achieves state-of-the-art results

on two public datasets, Messidor and PALM, and one private dataset, surpassing previous

methods in terms of accuracy, robustness and generalization. It also reduces the computa-

tional cost by using an attention mechanism to reduce the number of tokens. Moreover, we

67
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show that, due to the guidance of the input vessel segmentation map, the learned tokens

are anatomical-aware and distributed along the vessel distribution.

6.1 Introduction and Problem Statement

Accurate localization of the fovea is a crucial step in analyzing retinal diseases since it helps

prevent irreversible vision loss. Although current deep learning-based methods achieve bet-

ter performance than traditional methods, they still face challenges such as inadequate uti-

lization of anatomical landmarks, sensitivity to diseased retinal images, and various image

conditions. In this paper, we propose a novel transformer-based architecture (Bilateral-

Fuser) for multi-cue fusion. The Bilateral-Fuser explicitly incorporates long-range con-

nections and global features using retina and vessel distributions to achieve robust fovea

localization. We introduce a spatial attention mechanism in the dual-stream encoder to

extract and fuse self-learned anatomical information. This design focuses more on features

distributed along blood vessels and significantly reduces computational costs by reducing

token numbers. Our comprehensive experiments demonstrate that the proposed archi-

tecture achieves state-of-the-art performance on two public datasets and one large-scale

private dataset. Moreover, we show that the Bilateral-Fuser is more robust on both nor-

mal and diseased retina images and has better generalization capacity in cross-dataset

experiments.

The fovea, an anatomical landmark of the retina, is responsible for sharp central vision

at the center of the macula [156]. Accurate detection of the macula and fovea is a crucial

prerequisite for the diagnosis of several retinal diseases, e.g., diabetic maculopathy and

age-related macular degeneration [6, 36, 92]. The severity of vision loss is often related

to the distance between the fovea and associated abnormalities, such as hemorrhages and

exudates [92].

Early detection of the fovea location is important to prevent the irreversible damage to

vision [35, 50, 36]. A robust method of fovea localization is crucial for downstream tasks

in automated fundus diagnosis. However, several challenges to fovea localization remain.

First, the dark appearance of fovea is indistinguishable from the color intensity of the

surrounding retinal tissue, and local anatomical landmarks (e.g., blood vessels) are absent

in the vicinity of the fovea [127, 11, 92]. Second, the accuracy of fovea localization may be

affected by the occurrence of retinal diseases [85, 97, 47, 53]. For example, dark pathology

caused by hemorrhages and microaneurysms may obscure the distinction between the fovea
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and retinal background. Bright lesions, such as exudates, may change the lightness of the

fovea to bright rather than dark, leading to erroneous localization results. Third, poor light

conditions and non-standard fovea locations during photography increase the difficulty

of robust fovea localization [101, 159, 137]. Specifically, blurred and poorly illuminated

photographs present challenges in estimating macula. For images where the optic disc

(OD), rather than the macula, is centrally located, symmetry may lead to predictions

opposite to the ground-truth. Therefore, a robust fovea localization method is necessary

to model features of the entire image at a global scale.

Fortunately, other anatomical structures outside the fovea, such as blood vessels, are

useful for localization [85, 97, 127, 11, 48, 49, 6, 36, 33, 51, 92, 95, 53, 137]. Previous

works have utilized morphological methods to model the anatomical relationships between

the fovea and blood vessels [85, 6, 36, 92, 53]. However, these morphological methods

may fail when the image has rare fovea position and color intensity, as described above.

Fovea localization is an important upstream task in clinical diagnosis, helping to diagnose

maculopathy and abnormalities [6, 36]. Although recent works have employed deep learning

methods to improve performance, they typically only utilize fundus images as input [126,

2, 47, 94, 101, 65, 159, 15]. These works are also implemented on datasets containing

few challenging images, resulting in three main pitfalls: 1) inadequate exploitation of the

anatomical structure outside the macula as only fundus images are used as input; 2) typical

convolution-based architectures lacking incorporation of global features; and 3) sensitivity

to challenging cases, such as rare fovea positions and severe lesions.

To address these challenges, we propose a novel architecture, Bilateral-Fuser, which

is an updated version of our previous work [137] (achieving best-paper-award finalist in

ISBI2022 ). Inspired by TransFuser[108], we design a dual-stream encoder to fuse multi-cue

features and a decoder to generate result maps. To utilize the anatomical structure outside

the macula, the encoder’s inputs are images from two different cues (i.e., fundus and vessel

distribution). We fuse the multi-cue features of fundus and vessel in four transformer-based

modules, named Bilateral Token Incorporation (BTI), in the encoder. This design allows

the modeling of global features and long-range connections for fovea localization, ensuring

robust performance even in challenging images. Unlike TransFuser, it directly reduces and

recovers token numbers, applying average pooling and bilinear interpolation methods, re-

spectively. Such operations may lead to information loss. Thus we avoid information loss

by applying TokenLearner [122] in the BTI module. The attention mechanism of Token-

Learner extracts self-learning spatial information from both cues. Our design effectively
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exploits structural features along the optic disk and vessel distribution, and the atten-

tion mechanism reduces the number of tokens in the BTI module, significantly reducing

computational effort.

Our work makes the following key contributions:

• We propose a novel dual-stream architecture for multi-cue fusion. Compared to typi-

cal convolutional-based fusion, this transformer-based structure globally incorporates

long-range connections from multiple cues.

• We introduce the BTI module with learnable tokens to improve the efficiency of

transformer-based fusion. The adaptive learning of tokens significantly reduces the

token number from 1024 to 64. The spatial attention mechanism of the learnable

tokens focuses more on features along the vessel distribution, leading to robust fovea

localization.

• The proposed Bilateral-Fuser achieves state-of-the-art performance on three datasets

(Messidor, PALM and Tisu) at only 25% computational cost (62.11G FLOPs) com-

pared to the best previous work [137] (249.89G FLOPs). It also offers better perfor-

mance and generalization capability in challenging cases.

6.2 Related Work

6.2.1 Anatomical Structure-based Methods

Previous studies have typically relied on traditional image processing techniques to estimate

fovea regions, as the approximate location of the macula is anatomically correlated with

the optic disc (OD) and blood vessels [85, 97, 6, 36, 92, 53, 45]. The fovea center is located

approximately 2.5 OD diameters from the center of the OD and is on the symmetric line of

the main vessel branches that pass through the OD. These two features have been widely

used for fovea localization [85, 97, 6, 92, 53, 45].

Some studies detect the fovea region based on OD location only. Narasimha et al. [97]

propose a two-step approach that incorporates the distance from the OD center and the

image intensity to update the region of interest (ROI), and then locates the fovea center.

Sekhar et al. [127] use the spatial relationship to select a sector-shaped candidate ROI.

The boundary of the sector is 30 degrees above and below the line through the center of

the image and OD. They then use a threshold to filter the intensity to estimate the fovea
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region. Blood vessels in color fundus images are relatively darker structures compared

with OD. Some works utilize only the extracted the skeleton image of vessels to estimate

ROI containing the macula. Deka et al. [36] and Medhi et al. [92] divide the image into

several horizontal strips and select the ROI with respect to the absence of blood vessels in

the neighborhood of the macula. They then utilize thresholds to detect macula. Guo et

al. [53] propose a morphological method to fit the segmented skeleton of major vessels

using a parabola. The line of symmetry of the parabola is used to localize the fovea region.

The OD and vessels have been widely utilized in fovea localization due to their anatom-

ical relationship. Asim et al. [11] estimate ROI based on the pre-detected OD location and

minimum intensity values, and exclude the ROI near the vascular tree to improve the ac-

curacy. Li et al. [85], Aquino et al. [6] and Fu et al. [45] also use a parabolic fit of major

vessels to detect the orientation of the macula and use the anatomical relationship (i.e.,

distance) between OD and fovea center to estimate the approximate location. The differ-

ence is that Fu et al. [45] use a deep learning method (U-Net [118]) rather than an image

processing method to detect OD and vessels. However, these methods based on anatom-

ical features may underperform when processing pathological images. Additionally, they

generally perform less competitively than more recent deep learning-based approaches.

Some attempts have been made to localize the macula without relying on anatomical

features. For example, GeethaRamani and Balasubramanian [47] propose an approach

to segment the macula using an unsupervised clustering algorithm. Pachade et al. [101]

directly select the square in the middle of the image as ROI and use a filter on intensity

for fovea localization. However, as these methods do not consider anatomical features,

they may fail when the illumination is different or the macula is not found in a standard

location (i.e., the center of the image).

6.2.2 Deep Neural Networks in Fovea Localization

Deep learning has demonstrated superiority over traditional image processing and mor-

phological techniques in many fields of medical image analysis, such as classification, seg-

mentation and object localization [145, 96, 109, 165, 163]. Regarding the task of fovea

localization, existing studies can be broadly classified into two categories: regression and

segmentation.

Many deep learning-based methods formulate fovea localization as a regression task.

Al-Bander et al. [2] and Huang et al. [65] propose a two-step regression approach that first
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predicts ROI and subsequently feeds the ROI into neural networks to localize the fovea

center. Meyer et al. [94] and Bhatkalkar et al. [15] adopt pixel-wise distance or heatmap

regression approaches for joint OD and fovea localization. Xie et al. [159] propose a hi-

erarchical regression network that employs a self-attention mechanism in fovea localiza-

tion [28, 167]. The network predicts the fovea center through a three-stage localization

architecture that crops features from coarse to fine.

In addition to regression, deep learning-based methods also employ the image segmen-

tation paradigm. Tan et al. [147] design a single 7-layer convolutional network to point-wise

predict the fovea region from input image patches. Sedai et al. [126] propose a two-stage im-

age segmentation framework for segmenting the fovea region from coarse to fine. However,

standard CNN-based architectures are limited by their fixed-size convolutional kernels, re-

sulting in a lack of incorporation of long-range features. Consequently, these CNN-based

architectures may fail when light conditions and fovea positions are abnormal, or when

information on the OD and vessels is lacking due to lesions.

To overcome the issue of limited receptive field, our previous work models long-range

connections by proposing a two-branch segmentation architecture (Bilateral-ViT [137]),

which utilizes a multi-head self-attention (MHSA) mechanism of transformer networks [151,

41, 21]. The main branch of Bilateral-ViT consists of 12 consecutive MHSA layers in the

bottleneck, constituting the global features for the decoder. An additional vessel branch

is designed to extract multi-scale spatial information from the vessel segmentation map

as the second input. The decoder of Bilateral-ViT simultaneously fuses multi-cue features

between the fundus and blood vessel distribution, achieving the best-reported results on

two public datasets, Messidor [34] and PALM [44]. However, the multi-scale convolutional

operation in the decoder has two main limitations, (1) non-global multi-cue feature fusion

and (2) computationally expensive. To overcome these limitations, we propose a novel

architecture, named Bilateral-Fuser, which includes an encoder for global-connected multi-

cue fusion and introduce adaptively learnable tokens to reduce computational amount.

6.3 Methodology

In this study, we propose a novel multi-cue fusion architecture, Bilateral-Fuser (Fig. 6.1),

for accurate and robust fovea localization. Bilateral-Fuser utilizes a U-shape architecture,

where the encoder is a dual-stream structure comprising a main stream, a satellite stream,

and four intermediate Bilateral Token Incorporation (BTI) modules for exploiting and
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Figure 6.1: The overall architecture of our proposed Bilateral-Fuser network.

fusing global features from different cues. For the decoder, we employ several ReSidual

U-blocks (RSU) [109] to effectively incorporate features from both the main and satellite

streams.

6.3.1 Overall Architecture

The overall architecture of Bilateral-Fuser is illustrated in Fig. 6.1. In the encoder, the

backbones of the main and satellite streams are ResNet34 and ResNet18, respectively.

The main stream extracts detailed features from fundus images, while the satellite stream

extracts anatomical structure information from the distribution of blood vessels. Unlike

the main stream, which takes fundus images as input, the satellite stream takes a ves-

sel segmentation map generated by a pre-trained model as input. This pre-trained vessel

segmentation model is built on the DRIVE dataset [140] using the TransUNet [21] archi-

tecture, which is identical to that used in [137].

The dual-stream encoder with four intermediate modules for multi-cue fusion is in-

spired by PVT [154] and TransFuser [108]. Each stream’s backbone is divided into four

convolutional blocks, consisting of convolution and downsampling layers (Conv+Down).

The resulting intermediate tensors (Fmain and Fsatellite) are then fed into the BTI module,

which includes a TokenLearner, T consecutive Multi-Head Self-Attention (MHSA) layers,

and a TokenFuser. The BTI module fuses multi-cue features and encodes long-range depen-

dencies from both the fundus and vessel distribution. The output features are element-wise
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Figure 6.2: The structure of BTI module used in our Bilateral-Fuser. It contains Token-
Learner, T× MHSA layers and TokenFuser. The h, w and c are height, width, and channel
of the corresponding input features. The n represents the number of learned tokens.

summed with skip-connected features and fed into the next convolution and downsampling

layers. In addition, these output features from the BTI module are also forwarded to RSU

blocks for subsequent decoding operations.

Unlike the commonly used plain convolutional blocks in the basic UNet decoder, four

customized ReSidual U-blocks (RSU) [109] are utilized in the decoder of Bilateral-Fuser for

effective multi-scale feature incorporation. The design of the RSU blocks is identical to that

used in our previous work [137]. As shown in Fig. 6.1, RSU B4 is the bottleneck between

the encoder and decoder. The input to the other three RSU blocks is a concatenation

of three types of features: (i) multi-scale skip-connection features from the main stream,

(ii) multi-scale skip-connection features from the satellite stream, (iii) the hidden feature

decoded by the previous RSU block. Qin et al. [109] demonstrate that the RSU block is

superior in performance to other embedded structures (e.g., plain convolution, residual-like,

inception-like, and dense-like blocks), due to the enlarged receptive fields of the embedded

U-shape architecture. Moreover, the superiority of the RSU structure as the decoder for

incorporating multiple features has also been assessed by [137].

6.3.2 Bilateral Token Incorporation (BTI) modules

Standard transformer/MHSA-based architectures, such as Vision Transformer (ViT) [41]

and TransUNet [21], typically split the input image into 2D windows (e.g., 16 × 16 grid)
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to generate tokens. The tokenization output is then fed into subsequent MHSA layers to

model long-range feature connectivity. However, these tokens are extracted individually

from a fixed-size grid. Recent architectures with multiple transformer stages [154, 108]

have several times more MHSA layers than the standard ViT. The naive tokens extracted

from the grids may contain uninformative or irrelevant features for visual understanding,

which is computationally expensive.

To alleviate these pitfalls, the Bilateral Token Incorporation (BTI) module is intro-

duced in the Bilateral-Fuser architecture (Fig. 6.2). The BTI module includes the Token-

Learner [122], which adaptively learns tokens using a spatial attention mechanism. After

being processed by MHSA layers (head = 8 and layer = 12 for each BTI module), the to-

kens are remapped by TokenFuser [122] to the original input tensor dimensions (Fig. 6.2).

Therefore, the BTI module has two main advantages: (1) generating adaptive and learn-

able tokens to reduce token numbers, and (2) merging and fusing features with long-range

dependencies of both cues with high efficacy.

TokenLearner

Let Fin main ∈ Rh×w×c and Fin satellite ∈ Rh×w×c be the input tensors of the two streams,

where h, w and c represent the height, width and channel of the corresponding BTI mod-

ule. As shown in Fig. 6.2, the concatenated feature Fin ∈ Rh×w×2c is first fed into the

TokenLearner. We customize the TokenLearner from [122] to generate Fattn ∈ Rh×w×n

using two consecutive point-wise convolutional layers to reduce the dimensionality, where

n is the number of learned tokens. After applying the flatten and softmax functions, spa-

tial attention maps with a dimension of hw× n are generated. Moreover, Fin is processed

by a point-wise convolutional layer, which is then flattened and transposed to become

F′
in ∈ R2c×hw. To adaptively learn tokens using the spatial attention mechanism, the

tokenization function is given by:

TL = F′
inFSAM (6.1)

FSAM = softmax(flatten(Fattn)) (6.2)

where the learned tokens are denoted asTL ∈ R2c×n. Because of the spatial attention mech-

anism, the learned tokens are modeled using an informative combination of corresponding

spatial locations. In comparison to the 1024 tokens used in ViT and TransUNet [41, 21],
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we only retain 8× 8 tokens for each BTI module (given an input size of 512× 512). Since

the computation of MHSA is quadratic to the number of tokens, the computational cost

is significantly decreased. Therefore, TokenLearner enables us to not only significantly

reduce the number of tokens but also extract features related to the anatomical structure,

i.e., vessel distributions in this fovea localization task.

TokenFuser

As shown in Fig. 6.2, the resulting tokens from the the MHSA layers are recovered to their

original tensor resolution (h × w × 2c) for further processing by Bilateral-Fuser. To fuse

the information, we first utilize a fully-connected (linear) layer and output F′
L ∈ R2c×n.

By processing Fin simultaneously, the output tensor Fout is given by:

Fout = (T′
LF

′′
in)

T (6.3)

F′′
in = σ(MLP(flatten(Fin)

T )) (6.4)

where tensors Fin, Fout ∈ Rh×w×2c and F′′
in ∈ Rn×hw. σ(·) is a sigmoid function and MLP

represents two dense layers with an intermediate GeLU activation function. In this case,

the modeled tokens T′
L are remapped to Fout which has the same resolution as the initial

Fin. Following this, Fout is equally split to Fout main&Fout satellite and added element-wise

to the skip-connected features (i.e., Fin main&Fin satellite).

6.4 Experiments

6.4.1 Datasets and Network Configurations

We first conduct experiments using the Messidor [34] and PALM [44] datasets. The Messidor

dataset was developed for analyzing diabetic retinopathy and comprises 540 normal and

660 diseased retinal images. For this dataset, we utilize 1136 images fovea locations pro-

vided by [48]. The PALM dataset was released for the Pathologic Myopia Challenge (PALM)

2019, which contains 400 images with fovea locations annotated. Of these, 213 images are

pathologic myopia images, and the remaining 187 are normal retina images. For fairness

of comparison, we follow the same data split as in the existing studies [159] and [137].

We also use a large-scale dataset (4103 images, named Tisu) which is collected from

our cooperating hospital. All data have been desensitized with patients’ personal informa-
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Table 6.1: Configuration Comparison of Bilateral-ViT models and the proposed Bilateral-
Fuser.

Methods Tokens Image Size FLOPs GPU/Ta GPU/Ib

Bi-ViT [137] 32× 32 5122 249.89 16873 5459
Bi-ViT/Lit [137] 8× 8 5122 83.05 8653 3093
Bi-Fuser (Ours) 8× 8 5122 62.11 8083 2727

a The GPU usage when training (MiB)
b The GPU usage when inferencing (MiB)

tion removed. Compared to the Messidor and PALM datasets, Tisu is more challenging as

it contains a larger number of fundus images with various abnormalities besides hemor-

rhages, microaneurysms, and exudates. The ground-truth fovea centers are determined by

averaging the labels provided by three medical experts. The dataset is split into training

and testing sets in a 4:1 ratio.

One of our main contributions is the considerable reduction in FLOPs and GPU us-

age of our proposed Bilateral-Fuser. Specifically, compared to the previous state-of-the-

art Bilateral-ViT [137], our proposed Bilateral-Fuser consumes approximately 0.25 times

FLOPs, 0.48 times GPU usage during training and 0.5 times GPU usage during inference.

To evaluate whether the performance of Bilateral-ViT is caused by its large computational

requirements, we have introduced a light version, Bilateral-ViT/Lit (i.e., Bi-ViT/Lit in

Table 6.1). The basic architecture of Bilateral-ViT has been maintained, but we have re-

duced the number of middle channels in every convolutional block by half and decreased

the number of tokens from 32×32 to 8×8. In this case, Bilateral-ViT/Lit has comparable

FLOPs and GPU usage to our Bilateral-Fuser for a fair evaluation.

6.4.2 Implementation Details and Evaluation Metrics

To preprocess the fundus images, we first remove the uninformative black background, and

then pad and resize the cropped image region to 512 × 512. We simultaneously perform

normalization and data augmentation on the input images of the main branch and the

vessel branch. To train our Bilateral-ViT model, we generate circular fovea segmentation

masks from the annotated fovea coordinates. During inference, we obtain a probabilistic

map from the model’s output by applying the sigmoid function. The final fovea location

coordinates are obtained by calculating the median coordinates of all pixels in the map.

All experiments are implemented in PyTorch and conducted on one NVIDIA GeForce

RTX TITAN GPU. We use the Adam optimizer [72] with a batch size of 2. The loss
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function is a combination of dice loss and binary cross-entropy. The experimental setup

for the Bilateral-ViT architectures on Messidor and PALM datasets is the same as reported

in [137]. For our proposed Bilateral-Fuser, we set the initial learning rate to 1e−3, which

is gradually decayed to 1e−9 using the CosineAnnealingLR strategy over 300 epochs on

Messidor and PALM. For the Tisu dataset, we set the initial learning rate to 6e−5 for all

related experiments.

In accordance with the standard evaluation protocol, we adopt the following evaluation

metrics to assess the performance of fovea localization [48, 94, 159, 137]: we consider the

fovea localization to be successful if the Euclidean distance between the ground-truth and

predicted fovea coordinates is no greater than a predefined threshold value, such as the

radius of the optic disc R. To provide a comprehensive evaluation, we report the accuracy

for different evaluation thresholds from 2R to 1/4R (e.g., 2R indicating that the predefined

threshold values are set to twice the radius of the optic disc R).

6.5 Results

6.5.1 Comparison to State of the Art

In Table 6.2, we compare the performance of Bilateral-Fuser with existing methods on the

public dataset, Messidor and PALM. Methods are classified based on whether they use deep

learning techniques and whether they incorporate multi-cue features. We observe that the

traditional morphological methods [48, 49, 6, 33, 51, 95] rely on landmarks outside the

macula, such as vessels or the optic disc. Bilateral-ViT [137] is the only previous deep

learning-based method that incorporates fundus and vessel features. However, in most

deep learning-based studies [2, 94, 47, 101, 65, 159, 15], only fundus images are used,

resulting in poor incorporation of anatomical relationships throughout the entire image,

leading to failure in more challenging cases.

The proposed Bilateral-Fuser, which combines a transformer-based multi-cue fusion en-

coder and adaptive learning tokens, outperforms all previous studies in terms of fovea local-

ization accuracy on the Messidor and PALM datasets. Specifically, in Table 6.2, Bilateral-

Fuser achieves the highest accuracy of 98.86% at 1/4R, with gains of 0.71% and 3.53%

compared to previous works [159] and [15], respectively. Our network also achieves better

performance than Bilateral-ViT [137] and its light version. At evaluation thresholds of

1/2R, 1R, and 2R, Bilateral-Fuser achieves 100% accuracy, indicating a localization error
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Table 6.2: Comparison with existing studies using the Messidor and PALM datasets based
on the R rule. The best and second best results are highlighted in bold and italics respec-
tively.

Messidor DLa MFb 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)

Gegundez-Arias et al.(2013) [48] % ✓ 76.32 93.84 98.24 99.30

Giachetti et al.(2013) [49] % ✓ - - 99.10 -

Aquino (2014) [6] % ✓ 83.01 91.28 98.24 99.56

Dashtbozorg et al.(2016) [33] % ✓ 66.50 93.75 98.87 99.58

Girard et al.(2016) [51] % ✓ - 94.00 98.00 -

Molina-Casado et al.(2017) [95] % ✓ - 96.08 98.58 99.50

Al-Bander et al.(2018) [2] ✓ % 66.80 91.40 96.60 99.50

Meyer et al.(2018) [94] ✓ % 94.01 97.71 99.74 -

GeethaRamani et al.(2018) [47] ✓ % 85.00 94.08 99.33 -

Pachade et al.(2019) [101] ✓ % - - 98.66 -

Huang et al.(2020) [65] ✓ % 70.10 89.20 99.25 -

Xie et al.(2020) [159] ✓ % 98.15 99.74 99.82 100.00

Bhatkalkar et al.(2021) [15] ✓ % 95.33 99.74 100.00 -
Bi-ViT (2022) [137] ✓ ✓ 98.59 100.00 100.00 100.00
Bi-ViT/Lit (2022) [137] ✓ ✓ 98.50 100.00 100.00 100.00
Bi-Fuser (Ours) ✓ ✓ 98.86 100.00 100.00 100.00

PALM DLa MFb 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)

Xie et al.(2020) [159] ✓ % - - 94 -
Bi-ViT (2022) [137] ✓ ✓ 65 83 96 98
Bi-ViT/Lit (2022) [137] ✓ ✓ 55 80 94 96
Bi-Fuser (Ours) ✓ ✓ 69 85 97 98

a Whether the method is based on deep learning (DF).
b Whether the method is based on multi-cue features (MF), e.g., fundus images, vessels or optical discs.

Table 6.3: Comparison of performance on normal and diseased retinal images using the
Messidor and PALM datasets. The best and second best results are highlighted in bold and
italics respectively.

Messidor MFa FLOPs↓ Err↓ 1/4 R(%) 1/2 R(%) 1R(%) 2R(%)
Normal Diseased Normal Diseased Normal Diseased Normal Diseased

UNet (2015) [118] % 193.31 12.39 95.15 93.33 97.76 95.00 97.95 95.33 97.95 95.33

U2 Net (2020) [109] % 151.00 7.31 98.51 97.33 99.63 99.50 99.63 99.50 99.63 99.50

TransUNet (2021) [21] % 168.73 7.61 98.32 97.67 100.00 99.83 100.00 99.83 100.00 99.83
Bi-ViT (2022) [137] ✓ 249.89 6.81 98.51 98.67 100.00 100.00 100.00 100.00 100.00 100.00
Bi-ViT/Lit (2022) [137] ✓ 83.05 6.77 98.69 98.33 100.00 100.00 100.00 100.00 100.00 100.00
Bi-Fuser (Ours) ✓ 62.11 6.77 99.07 98.67 100.00 100.00 100.00 100.00 100.00 100.00

PALM MFa FLOPs↓ Err↓ 1/4 R(%) 1/2 R(%) 1R(%) 2R(%)
Normal Diseased Normal Diseased Normal Diseased Normal Diseased

UNet (2015) [118] % 193.31 149.30 74.47 18.87 76.60 41.51 76.60 64.15 78.72 73.58

U2 Net (2020) [109] % 151.00 62.62 93.62 28.30 95.74 60.38 97.87 84.91 97.87 98.11

TransUNet (2021) [21] % 168.73 104.38 95.74 18.87 97.87 43.40 97.87 75.47 97.87 84.91
Bi-ViT (2022) [137] ✓ 249.89 53.70 95.74 37.74 97.87 69.81 100.00 92.45 100.00 96.23
Bi-ViT/Lit (2022) [137] ✓ 83.05 62.47 87.23 26.42 93.62 67.92 97.87 90.57 97.87 94.34
Bi-Fuser (Ours) ✓ 62.11 48.72 95.74 45.28 97.87 73.58 100.00 94.34 100.00 96.23

a Whether the method is based on multi-cue features (MF), e.g., fundus images, vessels or optical discs.
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of at most 1/2R (approximately 19 pixels for an input image size of 512× 512).

The PALM dataset is more challenging, with a smaller number of images and com-

plex diseased patterns. Our proposed Bilateral-Fuser demonstrates superiority over all

other methods on this dataset in Table 6.2, achieving accuracies of 69% and 85% at 1/4R

and 1/2R, respectively, which are 4% and 2% better than Bilateral-ViT. In addition, our

method achieves a 14% improvement (1/4R) over Bilateral-ViT/Lit, and a 3% improve-

ment (1R) over both Bilateral-ViT/Lit and [159]. Therefore, our Bilateral-Fuser achieves

state-of-the-art performance on both Messidor and PALM datasets with high computational

efficiency.

6.5.2 Fovea Localization on Normal and Diseased Images

In Table 6.3, we separately evaluate the performance of fovea localization for normal and

diseased cases in Messidor and PALM datasets to assess the robustness of our method.

We compare our proposed Bilateral-Fuser to several widely used segmentation networks,

including UNet [118], U2 Net [109], and a hybrid version of TransUNet with ResNet50 for

patch embedding [21]. The models of Bilateral-ViT, Bilateral-ViT/Lit and our Bilateral-

Fuser are identical to those used in Table 6.2.

In Table 6.3, our proposed Bilateral-Fuser achieves the lowest error (Err) with the

smallest computational cost (FLOPs) on both datasets. Bilateral-ViT [137] and our pro-

posed Bilateral-Fuser both obtain 100% accuracy from 1/2R to 2R on all the Messidor

images, and achieve 100% accuracy of 1R and 2R on normal PALM images. Compared to

existing methods, Bilateral-Fuser demonstrates superior performance on almost all metrics

on Messidor. Although Bilateral-Fuser has only 0.25 times FLOPs (62.11G) compared to

Bilateral-ViT (249.89G), it achieves the best performance on diseased images of PALM from

1/4R to 2R, with up to 7.54% improvement compared to the other methods (1/4R, Dis-

eased). Its improvement is significantly increased to 18.86% (1/4R, Diseased) compared

to Bilateral-ViT/Lit (83.05G, i.e., the network with the closest FLOPs to Bilateral-Fuser).

Thus, our proposed Bilateral-Fuser is highly reliable in fovea localization on both normal

and diseased fundus images with high efficacy.

6.5.3 Comparison of Multi-Cue Fusion Architectures

To comprehensively assess the performance of models with input features from multiple

cues (fundus and vessel distributions), we implement a multi-cue fusion version for the
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Figure 6.3: Visualization of mean errors (Y -axis) of different multi-cue fusion models. X-
axis is the computational cost (FLOPs). The red and blue markers are results on PALM and
Tisu datasets, respectively. Numbers below the markers are corresponding mean errors.

baseline models, UNet, U2 Net and TransUNet. We utilize two identical encoders, each

with an input of a fundus image and a vessel map. The features are extracted independently

and concatenated at the bottleneck for decoding (similar to [134, 108]). These modified

baseline models are referred to as UNet-MF, U2 Net-MF and TransUNet-MF. The results

in Table 6.3 show that architectures using multi-cue features outperform typical networks

with fundus-only input. This is particularly evident in the more challenging PALM dataset,

where the improvement is more pronounced. Moreover, the Tisu dataset is more complex

than PALM, with more images (4103 vs. 400) and a wider range of disease types and severity.

Therefore, the results on PALM and Tisu demonstrate the potential of architectures that

can effectively handle complex datasets.

Fig. 6.3 shows a comparison of the described architectures (mean error against FLOPs)

on PLAM (red markers) and Tisu (blue markers). Below each marker, we provide the cor-

responding mean error, and dashed lines connect each standard baseline model with its
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Figure 6.4: Visual results of fovea localization predicted by different methods.
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multi-cue fusion architecture (MF). The multi-cue fusion versions (UNet-MF, U2 Net-MF,

and TransUNet-MF) outperform their standard versions at a considerably higher compu-

tational cost due to the additional encoder. In Fig. 6.3, we can see that the performance

comparison (MF versions vs. baseline models) is more apparent on PLAM since the dataset

size of PLAM is much smaller than Tisu (400 vs. 4103). For all multi-cue fusion archi-

tectures, our proposed Bilateral-Fuser achieves the best results with the smallest errors

on both PLAM (48.72 pixels) and Tisu (36.46 pixels). Moreover, it requires only 62.11G

FLOPs, which is four times less than Bilateral-ViT (249.89G). Compared to the model with

comparable FLOPs (Bilateral-ViT/Lit, 83.05G), Bilateral-Fuser demonstrates significant

advantages of 13.75 and 3.92 on PLAM and Tisu, respectively.

Fig. 6.4 provides visual results of fovea localization on images with severe diseases from

the PALM and Tisu datasets. These images in Fig. 6.4-a and Fig. 6.4-b suffer from poor

image quality and non-standard fovea locations, respectively. Our Bilateral-Fuser generates

the most accurate predictions for several challenging cases with poor lighting conditions

and blurred appearance (Fig. 6.4-a). For another challenging types (Fig. 6.4-b), where the

macula is close to the image boundary, the predictions of Bilateral-Fuser (green crosses) are

closest to the ground-truth (white crosses). In contrast, fovea locations predicted by other

architectures that cannot globally incorporate long-range multi-cue features may appear on

the wrong side of the optic disc (Fig. 6.4-b). These results suggest that the Bilateral-Fuser

architecture can adequately model fundus and vessel features of two streams, resulting in

superior performance compared to other networks.

6.5.4 Performance of Cross-Dataset Experiments

We conduct cross-dataset experiments to assess the generalization capability of the pro-

posed Bilateral-Fuser. In Table 6.4, models trained on Tisu (exactly the same ones in

Fig. 6.3) are tested on Messidor and PALM datasets. In Table 6.4-Top, Bilateral-Fuser

generally achieves similar accuracies as the other results from 1/4R to 2R on Messidor.

On the more challenging dataset, PALM, Bilateral-Fuser achieves an improvement of 5.52

and 11.93 pixels in average localization error at the original image resolution compared

to Bilateral-ViT (64.73 pixels) and its lighter version (71.14 pixels), respectively (Table

6.4-Bottom). Furthermore, Bilateral-Fuser outperforms the baselines (multi-cue fusion

version) by a significant margin (at least 10.25 pixels), demonstrating its excellent gener-

alization capability and robustness.
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Table 6.4: The performance of cross-dataset experiments. The models used here are exactly
those selected in Fig. 6.3 (blue markers). Top and Bottom: The models trained on Tisu

and tested on PALM and Messidor, respectively. The best and second best results are
highlighted in bold and italics respectively.

Tisu→Messidor Err↓ 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)

UNet-MF (2015) [118] 8.89 97.45 99.38 99.65 99.65
U2 Net-MF (2020) [109] 8.48 97.10 99.91 100.00 100.00
TransUNet-MF (2021) [21] 8.25 97.45 99.82 100.00 100.00
Bi-ViT (2022) [137] 7.30 98.59 100.00 100.00 100.00
Bi-ViT/Lit (2022) [137] 7.37 98.06 99.91 100.00 100.00
Bi-Fuser (Ours) 7.62 98.59 99.91 100.00 100.00

Tisu→PALM Err↓ 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)

UNet-MF (2015) 137.14 52.25 64.25 77.25 85.50
U2 Net-MF (2020) 69.46 55.00 73.25 90.00 97.25
TransUNet-MF (2021) 78.98 53.50 71.75 87.50 95.75
Bi-ViT (2022) [137] 64.73 56.00 72.75 90.00 97.75
Bi-ViT/Lit (2022) [137] 71.14 55.50 73.25 90.75 97.00
Bi-Fuser (Ours) 59.21 55.25 73.25 93.50 98.50

Table 6.5: Comparison of performance between different inputs for the main and satellite
streams on PALM and Tisu. The best and second best results are highlighted in bold and
italics.

PALM Err↓ 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)

Fundus+Vessel (Ours) 48.72 69 85 97 98
Fundus-only 54.46 64 85 95 98
Vessel-only 72.25 57 75 92 97

Tisu Err↓ 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)

Fundus+Vessel (Ours) 36.46 52.32 75.49 92.93 97.44
Fundus-only 37.48 52.32 73.78 91.10 96.95
Vessel-only 48.13 33.66 61.83 89.39 96.83

6.5.5 Ablation Study

Comparison of Inputs for Bilateral-Fuser

Table 6.5 compares the performance of Bilateral-Fuser when using different inputs. The

standard input configuration uses fundus images and vessel maps as inputs for the main

and satellite streams, respectively (Fundus+Vessel). These experiments achieve the best

accuracy on all metrics, with the smallest mean error on both PALM (48.72 pixels) and

Tisu (36.46 pixels). When using fundus images as the second input (Fundus+Fundus),

the model’s performance slightly degrades as feeding fundus images into the satellite stream

does not provide the explicit anatomical structure for TokenLearner to learn where to focus
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Figure 6.5: Visualizations generated from spatial attention maps, indicating the focus of
TokenLearner in BTI module. These visual results have been resized and superimposed
onto the the corresponding fundus.
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its attention. Experiments using vessel maps as both inputs (Vessel+Vessel) lead to sig-

nificant accuracy decreases on both PALM and Tisu by 23.53 and 11.67 pixels, respectively,

indicating a severe loss of information.

As spatial attention maps reveal the self-learning features extracted by TokenLearners,

we visually demonstrate these weight maps in Fig. 6.5. To visualize the attention of tokens

in an element-wise manner, we maximize the probability values along the channels of spatial

attention maps, and then normalize them. Finally, we superimpose these maps onto the

corresponding fundus to compare their structural relationships.

Our experiments using Fundus+Vessel inputs show that the spatial attention maps fo-

cus on structural features along the optic disk and the direction of vessel branches (Fig. 6.5-

a). This is feasible since these two structures have significant anatomical relationships with

the fovea region [85, 6, 97, 127, 11]. In contrast, although more detailed information is

available to the Fundus+Fundus experiments, these TokenLeaners, which are not guided by

explicit anatomical structures, fail to learn features along the vessel distribution (Fig. 6.5-

b). This leads to fewer tokens carrying useful features for fovea localization and may

restrict the effectiveness of the intermediate BTI modules in Bilateral-Fuser, resulting in

slight underperformance on PALM and Tisu datasets (Table 6.5). Therefore, the structural

information provided by vessel maps as the second input is crucial for achieving accurate

fovea localization.

Comparison of Methods for Reducing and Recovering Tokens

To evaluate the effectiveness of different components in reducing and recovering token

numbers, we perform a comprehensive set of ablation experiments on the PALM and Tisu

datasets. Instead of employing TokenLearner (TL) and TokenFuser (TF) with adaptively

learnable parameters, we alternatively test more straightforward methods used in [108],

average pooling (AvgPool) and bilinear interpolation (Interpolate), respectively.

In Fig. 6.6, we demonstrate a visualization of the mean error against the computa-

tional cost (FLOPs) on PALM (red) and Tisu (blue) datasets. Experiments using both

TokenLearner and TokenFuser (TL+TF) achieve the best performance on PALM and Tisu

with mean errors of 48.72 and 36.46 pixels, respectively. This is in contrast to using more

straightforward methods such as average pooling (AvgPool) and bilinear interpolation (In-

terpolate), which may lead to a loss of information and reduced performance. In the

proposed Bilateral-Fuser (TL+TF), total excess costs of FLOPs for the four BTI modules
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Figure 6.6: Visualization of mean errors (Y -axis) of ablation studies for reducing and
recovering tokens. X-axis is the computational cost (FLOPs). The red and blue markers
are results on PALM and Tisu datasets, respectively. Numbers below the markers are
corresponding mean errors.

utilizing TokenLearner and TokenFuser are only 0.85G and 0.61G, respectively. This

slight increase in computation leverages significant performance benefits, demonstrating

the high efficacy of the adaptively learnable parameters of TokenLearner and TokenFuser

in our architecture.

6.6 Conclusion and Future Work

Accurate detection of the macula and fovea is crucial for diagnosing retinal diseases. Al-

though anatomical structures outside the fovea, such as the blood vessel distribution, are

anatomically related to the fovea, relatively few recent deep learning approaches exploit

them to improve the performance of fovea localization. In this paper, we propose a novel
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architecture, Bilateral-Fuser, which fuses features from the retina and corresponding vessel

distribution with high efficacy for robust fovea localization. The Bilateral-Fuser contains

a two-stream encoder for multi-cue fusion and a decoder for generating result maps. In

addition, the Bilateral Token Incorporation (BTI) module in the encoder is designed to

incorporate global anatomical features of inputs (both fundus and vessel images). Compre-

hensive experiments carried out demonstrate that the advantages of using Bilateral-Fuser

with are more accurate localization results, insensitivity to diseased images, and low com-

putational cost. Our proposed architecture achieves new state-of-the-art on two public

datasets (Messidor and PALM) and one large-scale private dataset (Tisu) with metrics

from 1/4 R to 2R. It also outperforms other methods on cross-dataset experiments with

better generalization capacity.

Although our proposed Bilateral-Fuser outperforms all other previous studies, including

Bilateral-ViT, the process of this fovea localization task is an end-to-end supervised training

approach. The performance of the model remains highly dependent on the quality and

quantity of labels. In this case, unlabeled fundus images are wasted. Therefore, we would

attempt self-supervised learning methods to efficiently utilize these unlabeled data in future

research. For example, we could design a novel contrastive learning framework with a multi-

cue fusion module. The representations of numerous but unlabeled fundus images can be

learned as pre-trained weights to further improve the localization performance of fovea by

following downstream supervised training.
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Conclusions and Future Work

In this chapter, we shall present the conclusions of this Ph.D. thesis and discuss the key

findings of our proposed studies for dense prediction tasks in the field of medical image

analysis (Section 7.1). Additionally, we shall highlight two potential directions for future

research (Section 7.2).

7.1 Conclusions

Machine learning is a rapidly developing area in artificial intelligence that enables com-

puters to learn and make predictions using limited human labels. Many machine learning

methods have been used for accurate predictions in various domains. Deep learning-based

representation learning focuses on learning meaningful representations directly from raw

data using deep architectures, eliminating manual feature engineering in machine learning

area. In computer vision field, deep learning has made remarkable progress in high-level

tasks, such as image segmentation, generation and detection.

Deep learning has also revolutionized the field of medical image analysis (MIA) by

automating diagnosis and reducing the need for experts. MIA covers tasks such as regres-

sion/classification, medical image generation and segmentation. The regression/classification

task predicts values or categories from medical images, while the dense prediction tasks

(i.e., medical image generation and segmentation) synthesize pixel-level predictions to aid

in accurate medical analysis and treatment planning. While traditional machine learn-

ing algorithms in MIA rely on handcrafted features, deep learning-based representation

learning methods provide an end-to-end approach without the need for manual feature en-

89
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gineering. However, unique challenges remain in the field of MIA, including limited labeled

data, overfitting problems with limited data, and the need for interpretable results.

In this Ph.D. thesis, we propose advanced deep learning-based representation learn-

ing frameworks to address these challenges for dense prediction tasks in the field of MIA:

medical image generation and segmentation. We explore a specific topic, namely chro-

mosome straightening and fovea localization, for each direction of the dense prediction

task. Overall, the contributions of this thesis include the introduction of novel frameworks

and architectures that outperform existing methods, demonstrating improved training effi-

ciency, generalization capability, and interpretability in their respective tasks. The research

demonstrates state-of-the-art performance and highlights the potential applications of deep

learning-based representation learning in MIA field. Specifically, for each topic, we first

present a novel study and then propose its subsequent work with state-of-the-art perfor-

mance at the time of publication of their respective papers. These methods are summarized

as follows,

• In Chapter 3, we present a novel framework for chromosome straightening (medical

image generation) using image-to-image translation. Our proposed method addresses

the challenges of chromosome straightening, i.e., the non-rigid nature of chromosomes

and the difficulty in acquiring sufficient training image pairs. We propose a method

to extract the internal backbone of curved chromosomes and increase the size of the

dataset by random image augmentation. The backbone is composed of sticks with

different gray values, which allows for more effective retention of augmentation infor-

mation. The framework is then applied to two popular image-to-image translation

architectures, namely a U-shape network and a conditional generative adversarial net-

work, to synthesize straightened chromosomes with uninterrupted banding patterns

and preserved details. Experiments conducted on a dataset of real-world chromo-

somes demonstrate that our proposed framework outperforms traditional geometric

approaches in terms of straightening performance and the ability to generate realistic

and continued chromosome details.

• In Chapter 4, we propose a novel architecture for robust chromosome straightening,

named ViT-Patch GAN. In ViT-Patch GAN, a self-learned motion transformation

generator and a Vision Transformer-based patch discriminator work together to im-

prove the quality of the generated images. The experimental results demonstrate that

the proposed method achieves better performance on various metrics compared to
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other existing methods. The proposed method addresses the limitations of our previ-

ous study (Chapter 3) and has three advantages. First, it requires a small dataset size

for training, making it more efficient and cost-effective. Second, it retains more shape

and banding pattern details of the corresponding source images, which is important

for accurate analysis and diagnosis. Third, it has excellent generalization capacity

since it can be applied to a large chromosome dataset for straightening. These ad-

vantages make the proposed method promising for robust chromosome straightening.

• In Chapter 5, we propose a novel method for robust fovea localization (medical

image segmentation) based on the Vision Transformer architecture called Bilateral-

ViT. Our method integrates global context and blood vessel structure information

to achieve state-of-the-art performance on two public datasets, Messidor and PALM.

The proposed Bilateral-ViT architecture includes a transformer-based main network

branch and a vessel branch for explicitly incorporating the structure of blood vessels.

The encoded features are subsequently merged with a customized Multi-scale Fea-

ture Fusion module. Our experiments demonstrate that the proposed method has

significant advantages in handling diseased images and rare locations of the fovea.

In cross-dataset experiments, our method significantly outperforms baselines and

achieves better generalization capability than the best-reported method.

• In Chapter 6, we introduce a novel multi-cue fusion architecture, called Bilateral-

Fuser, for fovea localization as a subsequent study of Chapter 5. The Bilateral-Fuser

architecture incorporates anatomical-aware tokens to improve the robustness of fovea

localization on both normal and diseased retina images. Our comprehensive exper-

iments demonstrate that the Bilateral-Fuser architecture achieves state-of-the-art

performance on multiple datasets, outperforming existing methods. We demonstrate

the effectiveness of our approach on both normal and diseased retina images, showing

that our method is more robust to variations in image quality and disease severity.

Our experiments also show that the spatial attention of the self-learned tokens is fo-

cused on structural features along the optic disc and the direction of vessel branches.

This suggests that our method is effective in capturing relevant anatomical landmarks

for target region segmentation. In addition, our method has potential applications

beyond retinal disease analysis, as this architecture can be applied to other medical

imaging tasks. We believe that our method can contribute to the development of

more accurate and efficient multi-cue/modal systems in the field of MIA.
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7.2 Future Work

Although our proposed methods are superior to existing approaches, they still have the

potential to improve the performance and generalization capability in future work. We

believe that there are two possible directions, namely designing unified frameworks and

utilizing unlabeled data, for the dense prediction tasks and their specific topics focused in

this thesis (i.e., chromosome straightening and fovea localization).

7.2.1 Designing Unified Frameworks

Recently, with the rapid development of deep learning, unified frameworks have gained

attention in the CV field. The unified framework can handle multiple task types in a

single architecture. For example, the previous object detection frameworks, such as Faster

RCNN [117], SSD [90] and YOLO [116], while efficient, can only be utilized for a single

specialized task. Therefore, some research is moving towards task unification while aiming

at performance improvement. K-Net [172] is a framework that unifies semantic, instance

and panoptic segmentation tasks by a set of learnable kernels. Each kernel is learned and

updated to identify potential instances or semantic categories for pixels. Mask DINO [84]

is designed based on DINO [168] with an additional mask prediction branch. In contrast

to the original DINO only specialized for object detection, Mask DINO is also extended to

semantic, instance and panoptic segmentation tasks. OneFormer [70] is a recently popular

unified framework since it can be trained on universal data with a universal architecture,

while achieving state-of-the-art performance on all semantic, instance and panoptic seg-

mentation tasks. In addition, OneFormer is a multi-modal and prompt-based framework

that can generate separate results for different task types with the corresponding input

text prompts.

The reasons for designing a unified framework are three-fold. First, having a unified

framework eliminates the requirement of developing and maintaining separate architec-

tures for each task type. This simplifies the development process by reducing costs, such

as the amount of codes, time and labor. Second, a unified framework improves data uti-

lization efficiency by using shared model wights across task types, reducing memory and

computational consumption compared to training multiple individual models. Third, since

multiple task types are trained with universal data in a unified framework, the increased

amount of data has the potential to benefit from shared representations and more infor-

mative features. This may cause improved performance for all tasks compared to training
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individual models independently.

For the specific tasks of medical image generation (i.e., chromosome straightening) and

medical image segmentation (i.e., fovea localization), it is also worthwhile to design uni-

fied frameworks. Chromosome straightening plays an important role in the pathological

study of chromosomes, development of cytogenetic maps and karyotype analysis [129, 10].

Straightened chromosomes can improve the performance of chromosome classification and

abnormality detection [123]. Fovea is an important anatomical landmark of the retina.

Accurate detection of the fovea region is essential for the analysis of many retinal diseases,

such as diabetic maculopathy and age-related macular degeneration, to prevent irreversible

vision loss [156, 6, 36, 92]. These two tasks are both intermediate steps in pathological

studies and are important before the following steps in disease diagnosis. Therefore, newly

designed framework may unify each task with its following tasks. Specifically, for chro-

mosome straightening, a framework may be designed to combine chromosome straighten-

ing and chromosome type classification/abnormality detection. For fovea localization, a

framework may be designed to combine the tasks of fovea region segmentation and disease

identification in retina images. These unified frameworks are possible to be achieved by

designing novel architectures based on Vision Transformer structure [41], as its class token

containing holistic and semantic information may be used to recognize abnormalities, while

other tokens containing more detailed information may be responsible for generating dense

prediction results.

7.2.2 Utilizing Unlabeled Data

In contrast to the current research direction of proposing novel representation learning

frameworks to effectively utilize limited labeled data, another direction may focus on ex-

tracting representations from large amounts of unlabeled data. For the specific tasks

(chromosome straightening and fovea localization), it is valuable to research how to ef-

fectively utilize unlabeled data. There are three main reasons for this. First, unlabeled

chromosome and retina images are abundant and readily available, while labeled images

are insufficient and expensive to obtain. A framework based on self-supervised learning

(SSL) can autonomously learn meaningful representations from unlabeled data without

relying on explicit labels or annotations. Second, extracting representations from a large

number of unlabeled images enables models to leverage more information and capture

richer underlying patterns of the data. The pre-trained models can improve the efficiency
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of downstream supervised learning tasks. Third, training models using unlabeled images

can result in better generalization performance. By learning robust representations, the

models become more insensitive to variations in the input data, such as differences in il-

lumination and anomalous conditions. The enhanced generalization may improve model

performance on unseen or out-of-distribution data.

Since current topics can be considered as downstream tasks with dense predictions, a

possible direction is to apply SSL-based methods to pre-train models on unlabeled images

for performance improvement. Currently, popular SSL approaches can be classified into two

main categories according to their mechanisms, i.e., contrastive learning and masked visual

modeling (MVM). Contrastive learning frameworks, such as SimCLR [26], Simsiam [27] and

Barlow Twins [166], aim to learn useful representations by utilizing positive and negative

pairs or only positive image pairs. They use objective functions (e.g., InfoNCE or cosine

similarity) to learn meaningful embedding spaces during pre-training. Data augmentation

plays a crucial role in contrastive learning frameworks, improving the ability of model

to generalize and capture robust representations. In contrast, MVM frameworks, such

as SimMIM [161] and MAE [56], aim to predict occluded information by feeding images

with random masked regions. Such models encode the context information from unmasked

regions to infer the missing image content. By observing surrounding information, the

model learns to understand the relationship between different visual regions and generates

the missing dense context. Since contrastive learning extracts a single feature vector from

the input image, while MVM extracts features responsible for generating masked regions,

many studies have shown that representations extracted by MVM contain richer spatial and

detailed information [98, 12, 98]. Therefore, MVM generally surpasses contrastive learning

on detection and dense prediction tasks in transfer learning experiments. In this case,

MVM can be utilized as a pre-trained method for these dense prediction tasks in the field

of medical image analysis. By extracting more meaningful and informative representations

from unlabeled chromosome and retina images, the pre-trained models can be loaded to

our frameworks in this thesis to facilitate the model training process, improve the efficiency

of image utilization, and achieve better robustness and generalization capability.
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