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Abstract

Machine learning research has attracted an enormous amount of attention in recent years,
both in academia and in the wider media. This, coupled with the creation of large datasets
of materials and materials properties, has led to a boon in research at the intersection
between machine learning and materials science. Much of this research has focused on
prediction of materials properties; if the properties of a material are known before its
synthesis, then the discovery of new materials becomes inexpensive, fast, and efficient.

This thesis explores methods for the prediction of material properties, and how these
methods can be evaluated, improved, and incorporated into the discovery of new materials.
By focussing on computational research (as opposed to experimental) the thesis explores
several case studies on the use of machine learning on non-structural descriptors to predict
properties. This non-structural approach is coupled with the novel use of deep learning to
directly interpret electronic band structure data, for the prediction of materials properties.

The examples presented are grounded in the process of material discovery. Workflows
are suggested to incorporate machine learning models into collaborative projects. These
collaborations result in the synthesis of new materials and the production of an online web
platform that enables easy sharing of computational tools.

These proposed methods are complimented by in-depth analysis of the complexities
of analysing machine learning models in a materials science context. Evaluation methods
such as r2

comp are suggested, which quantifies the predictive power of models in the context
of substitutional studies, where the unknown properties of a new material are predicted in
comparison to the known parent material.

Leave one cluster out cross validation (LOCO-CV) is an existing method for quantifying
models’ abilities to extrapolate predictions to classes of materials unlike those on which the
model was trained. Following observations that clusters of materials used in LOCO-CV
cause unreliable results, an adaptation is proposed “kernelised LOCO-CV” which applied
a non-linear function a priori to LOCO-CV to improve reliability.

Overall, varying uses of computational and machine learning methods for the prediction
of materials properties are explored. This interdisciplinary approach enables new compu-
tational methods to be discussed in the context of materials science and new methods of
interpreting materials to be discussed from the perspective of the data used to represent
them.
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Chapter 1

Introduction

1.1 Thesis background and research question

Machine learning (ML) has gained widespread recognition in recent years, revolutionis-

ing many areas of life. Accordingly, the intersection between ML and materials science,

sometimes referred to as materials informatics, has rapidly gained momentum in the past

decade [193, 166]. With the increasing availability of datasets of materials [78, 32], re-

searchers have sought to leverage data science techniques to advance the field [166]. These

investigations have largely focused on predicting properties of materials. This is often used

as a screening method to identify materials with desirable properties as candidates for

chemical synthesis.

At the time this thesis was initiated, the materials informatics revolution was already

underway and, while significant progress had been made, the development of new materials

had not yet been fully realised; the ratio of papers discussing ML to those discussing ML

and producing actual materials remained (and remains) low. Many research papers suggest

candidates for synthesis, but without that synthesis being carried out, these candidates

remain suggestions.

The challenge lies in bridging the gap between ML and materials synthesis, as both

require specialised but largely disparate skill sets. A ML expert could learn basic synthesis

(or a synthetic chemist could learn ML skills). But both fields are fast moving, it would be

somewhere between unrealistic and conceited to believe one could be at the cutting edge

of both fields.

It is conceivable to go from that premise and produce a thesis which tries to balance

1
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learning both computational and synthetic skillsets and lies somewhere on a Pareto front

between the fields of synthetic chemistry and data science. However, this is not that

thesis. Instead, this thesis explores the collaboration between ML developers and synthetic

chemists as a means to achieve progress.

Against this backdrop, the research question driving this thesis is as follows: How can

ML be used effectively to enhance materials discovery? Although an ultimate goal could be

to develop a fully automated system for materials discovery, the current state of technology

necessitates the collaborative approach discussed. As such, this thesis concentrates on the

methods and rationale behind ML. Specifically, explorations focus on how to formulate

appropriate questions to make precise predictions and how to assess the efficacy of these

predictions.

The evaluation will ask whether existing models are being justified based on their

performance compared to alternative ML approaches or their performance compared to

the lack of ML in traditional materials science literature or if there are opportunities for

improvement. Models may offer novelty in performance on test datasets, but candidate

predictions from a model are of little practical value if synthesis is not performed. Millions

of candidate materials can be predicted (and millions of candidates will be predicted over

the course of this thesis), but in the rapidly evolving landscape of ML in materials science,

there is no reason that existing predictions will be used for synthesis over newer predictions.

Thus, it is critical to consider how to use models in collaborative projects. This requires

models to be thoroughly justified and for data to be well explored.

Rather than solely focussing on developing state-of-the-art models and trying to reach

top benchmarks, this thesis aims to explore how ML can be used more effectively to drive

materials discovery. Through a critical evaluation of existing models and the develop-

ment of novel approaches, this thesis seeks to contribute to the broader goal of advancing

materials science through the application of ML.

1.2 Thesis structure

Each chapter will contain a section that describes how that chapter fits the larger narrative

of the thesis. Despite this, it is helpful to begin with an outline of the thesis.

The thesis begins with a brief overview of the fundamental machine learning techniques

relevant to the research. This will serve as a foundation for understanding the subsequent

discussions. As classes of materials investigated throughout vary, explanations of materials
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will be given in the relevant chapters rather than focused on at the start of the thesis.

The thesis then examines the application of random forests in materials science. A spe-

cific focus is given to how the phrasing and scope of the questions posed to the algorithms

can significantly impact their effectiveness. The emphasis is not on improving algorithms,

but on incorporating elements unique to the materials science domain to improve appli-

cability. In limiting the scope of the prediction task, performance is improved without

increasing computational cost and while keeping the predictions relevant for a synthesis

environment. RFs are widely used, as such, considering ways in which they can be adjusted

for more effective use in a materials context serves the overall research question outlined

above.

The subsequent chapter focusses on the prediction of the superconducting critical tem-

perature of materials. The existing literature on this topic is sometimes problematic and

vague, so this chapter aims to provide a more comprehensive understanding of the sub-

ject matter. Techniques such as garbage in are poorly explored in the literature [88],

and research has been published with clear data leaks [64] Rather than chasing numerical

performance, the chapter considers how to facilitate successful synthesis. Workflows for

screening predictions, incorporating feedback, and working with chemists with differing

interests and motivations are considered. Through incorporation of feedback loops into

workflows, random forests were able to inspire the synthesis of various materials despite

not being considered state-of-the-art in this field. By focussing on justifying techniques,

and implementing them into a synthetic workflow, this contribution serves the overarching

research question by addressing a lack of emphasis on synthetic results in the literature.

One way to streamline collaboration is by deploying models in formats accessible to

people without coding experience, such as web applications. ML experts may not possess

sufficient networking or web development knowledge to create such applications, as such

templates and frameworks are created to ease development. By encouraging the use of ac-

cessible formats for ML models, the organisational overhead associated with collaboration

is reduced, which in turn contributes towards answering the outlined research question.

The next chapter scrutinises the assumptions underlying the random forest models

from the first chapter. Methods for representing materials as vectors are investigated, and

it is found that, for many materials science tasks, feature engineering is unnecessary, in

many cases. This work serves the overall research question by investigating underlying

assumptions in current literature.

Methods for evaluating these models are also examined. A method for evaluating
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models’ performance on predicting new classes of materials, leave-one-cluster-out cross-

validation (LOCO-CV), was noted in previous chapters to produce unreliable results.

Specifically, the LOCO-CV algorithm relies on clusters of data used to be similar in size

to produce reliable results, but the algorithm does not provide mechanisms to ensure this.

This work presents findings suggesting that many areas of materials science would result

in unreliable LOCO-CV application. A mechanism for improving the evenness of clusters,

radial basis function approximation, is suggested. It is observed that application of radial

basis function approximation results in more evenly sized clusters in all of the datasets

investigated. By improving evaluation methods proposed for this domain, the effective use

of ML is encouraged (as per the research question above) by enabling researchers to better

scrutinise their ML algorithms.

One aspect of clusters that the radial basis function approximation was qualitatively

observed to change was the shape of the clusters. After applying the radial basis function

approximation, clusters are seen to be more isotropic. The next chapter focuses on methods

to quantify this observation.

Drawing on methodologies from the fields of medical imaging and natural language pro-

cessing, two different methods are found to be candidates for this quantification: isotropy

measure Ic,vec and fractional anisotropy (FA). Ic,vec is adjusted to make it more mathe-

matically sound, and a variant, Ic,rnd which is more computationally efficient in higher

dimensions is suggested. Further adaptation is suggested to allow FA, Ic,vec, and Ic,rnd to

measure isotropy across a set of clusters rather than only one cluster. Investigations were

conducted in the use of these measures in both a data science and a materials science con-

text. FA was observed to behave counterintuitively in high dimensions, and explanations

for this behaviour were mathematically derived using random matrix theory.

In the context of inorganic chemistrty, crystal structures are often described as being

“isotropic” or “anisotropic”, based on their unit cells. As such explorations of mathematical

measures of isotropy in a materials science context would be lacking without attempting to

quantify the isotropy of the unit cell of a material. As such, the applicability of FA, Ic,vec,

and Ic,rnd in measuring the isotropy of materials was investigated, finding no evidence

of efficacy. While this work does link investigations of isotropy to the materials science

domain, overall work in this chapter is somewhat tangential to the research question. This

said, techniques explored may serve the purpose of enhancing ML for discovery of materials,

by enhancing ML more generally (by enabling quantitative analyse of learnt embeddings).

Outside of the research question outlined above investigations into isotropy remain highly
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interesting and a significant (if low impact) contribution to the scientific domain.

The final experimental chapter explores unutilised data in electronic band structures

and how ML techniques can be applied to extract valuable information from these data.

The chapter addresses potential caveats associated with band structures and explores how

ideas from other areas of ML, such as image recognition and natural language processing,

can be adapted for use in this context. This chapter serves the question of how to effec-

tively use ML to enhance materials structure, by examining, and proposing methods for

processing underutilised data.

Before the thesis is complete, reflections are made on this work and on the field as a

whole. Future exploration areas are suggested, and closing remarks are considered.

This thesis offers a comprehensive examination of the application of ML in materials

science and provides insights into how to optimise the process of collaborating with syn-

thetic chemists. In such an exciting and rapidly moving field, it is hoped that this work

will be as interesting and fun to read as it was to research.

1.3 Broad contributions of this thesis

Having outlined the structure of the thesis, it is useful to cement how that structure

translates to the scientific contribution of this thesis. While, smaller, specific contributions

are detailed both later in this chapter and throughout the thesis, broader (but more consise)

contributions can be described as follows:

• Suggesting an exploring ways to adapt substitution chemical studies into machine

learning tasks (Chapter 3).

• Exploring how the presentation of ML tasks (as regression, or classification tasks)

impact performance in a materials context (Chapter 3)

• Further justifying the “garbage in” technique, for providing negative examples a

dataset of positive examples (Chapter 4).

• Providing workflows for generating and screening large numbers of candidate mate-

rials, while focussing on creating outputs which are useful for synthetic chemists to

use (Chapter 4).

• Creating a web platform for increasing acccess to novel computational tools, and

providing information to encourage others to do the same (Chapter 4).
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• Added to a body of evidence suggesting that in many cases feature engineering may

not significantly impact the performance of ML algorithms in this field (Chapter 5).

• Explored use of random projection as featurisation for ML algorithms in this field

(Chapter 5).

• Suggested a simple technique (kernel approximation methods) to address the problem

of uneven cluster sizes in application of LOCO-CV (Chapter 5).

• Explored, adapted, and improved measurements for the isotropy of clusters (Chap-

ter 6).

• Provided mathematical explainations for trends seen in use of the fractional anisotropy

measure in high dimensions (Chapter 6).

• Explored numerous paradigms by which electronic band structure data can be inter-

pretted (Chapter 7).

• Developped novel, high performing models to process electronic band structure data

to extract properties (Chapter 7).

1.4 Publications

In the writing of this thesis numerous works were published in peer-reviewed journals.

As such, many of results in presented in this thesis were previously published. Sections

which contain results which were partially or wholely published are preceeded by notes to

credit the publications that the results are from. For conveinience, and as demonstration of

scientific contribution, the list of peer reviewed publications which contain results discussed

in this thesis are as follows (listed in order of publication):

• Philip A. E. Murgatroyd, Kieran Routledge, Samantha Durdy, Michael W. Gaultois,

T. Wesley Surta, Matthew S. Dyer, John B. Claridge, Stanislav N. Savvin, De-

nis Pelloquin, Sylvie Hébert, Jonathan Alaria. “Chemically Controllable Magnetic

Transition Temperature and Magneto-Elastic Coupling in MnZnSb Compounds.”

Advanced Functional Materials, 2100108 (2021). [125].

• Rémi Pétuya, Samantha Durdy, Dmytro Antypov, Michael W. Gaultois, Neil G.

Berry, George R. Darling, Alexandros P. Katsoulidis, Matthew S. Dyer, and Matthew
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J. Rosseinsky. “Machine-Learning Prediction of Metal–Organic Framework Guest

Accessibility from Linker and Metal Chemistry.” Angewandte Chemie International

Edition 61, no. 9 (2022) [144].

• Samantha Durdy, Michael W. Gaultois, Vladimir V. Gusev, Danushka Bollegala,

and Matthew J. Rosseinsky. “Random projections and kernelised leave one cluster

out cross validation: universal baselines and evaluation tools for supervised machine

learning of material properties.” Digital Discovery 1, no. 6 (2022): 763-778 [45].

• Samantha Durdy, Cameron J. Hargreaves, Mark Dennison, Benjamin Wagg, Michael

Moran, Jon A. Newnham, Michael W. Gaultois, Matthew J. Rosseinsky, and Matthew

S. Dyer. “The Liverpool materials discovery server: a suite of computational tools

for the collaborative discovery of materials.” Digital Discovery 2, no. 5 (2023): 1601-

1611 [46].

In addition to the above, the following paper is published as preprint, and is currently

under peer review for publication:

• Metrics for quantifying isotropy in high dimensional unsupervised clustering tasks in

a materials context [44] (under peer review for publication in Applied Intelligence).

1.5 Published Code Repositories

Throughout the investigations in this thesis, several code repositories were published.

These publications were made not only for transparancy and reproducibilty purposes, but

also as a contribution to the scientific community. As such, review of these code reposito-

ries is welcomed with review of this thesis. Each code repository is intended to be easy to

use, and code should be understandable and documented to a high standard. Criticisms

of this code or pull requests are welcomed.

Repositories are cited in the places relevant to their contents. For ease of access and as

evidence of scientific contribution, they are also listed here. Repositories associated with

this thesis are as follows:

• A demonstration of using random forests to predict unit cells properties [41].

• A web app for the prediction of MOF porosity from SMILES string and metal

species [164].
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• An implementation and demonstration of the kernelised LOCO-CV method [40].

• An impletation and demonstration of tools to measure the isotropy of clusters [43]:

• A web app for modelling the heat of a material [47].

• Scripts to set up a basic reverse proxy and service to manage Flask applications [42].

1.6 Specific contributions

Specific contributions will be listed in each chapter. For convenience, all lists of specific

contributions contained in this thesis have been compiled, but note that points in this list

will be repeated in the context of their respective chapters. The specific contributions are

as follows.

1.6.1 Chapter 3: Use of random forests for prediction of material prop-

erties

• Exploration of solutions to problems with duplicated and conflicting data points

which can arise when using ML for materials property prediction, particularly, but

not exclusively in the organic synthesis domain (demonstrated in Section 3.2.1 and

further discussed in Section 3.2.4).

• Exploration of use of sequential application of RFs for a well performing yet simple

to implement model (Section 3.2.2).

• Discussion of the advantages and disadvantages of simplifying tasks to classification

tasks (Section 3.2.4).

• Discussion of the benefits and drawbacks of models which aim to demonstrate datasets

(Section 3.2.4).

• Investigating the ability of RFs to predict the c
a ratio of a conventional unit cell.

• Presenting a comparative prediction method for using ML algorithms. This method

is particularly suited for substitutional synthesis studies.

• Presenting and investigating performance metrics r2
comp and ordinal accuracy which

examine the performance of a machine learning algorithm in the context of compar-

ative predictions.
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1.6.2 Chapter 4: Collaborative workflows for discovery of superconduc-

tors and other functional materials

• A thorough investigation of literature surrounding the prediction of superconducting

critical temperature.

• Exploring the “garbage in” method found in the literature, and questioning its under-

lying assumptions (namely that the Crystalographic open database does not contain

any superconducting materials) and investigating the effects of those assumptions.

• Definition of a workflow to allow for collaboration and feedback with experimentalists.

• Screening of over 1 billion candidate materials for superconductivity using ML meth-

ods.

• Collaborating with experimentalists to identify areas of interest in the chemical space,

helping to rationalise results from the screened materials.

• Creation of a filter to identify materials which could be potentially arc-welded.

• Inspiring the synthesis of possible candidate materials in the Sr-Cu-Sn and Sr-Cu

phase fields.

1.6.3 Chapter 5: Random projections and leave one cluster out cross val-

idations: improving evaluations of machine learning for materials

properties

• Comparing the influence of composition based feature vectors (CBFVs) on ML model

performance in practical tasks (explained further in Section 5.2.1, before being car-

ried out in section Section 5.2). It was found that CBFVs with engineered features

(i.e., imbued with domain knowledge) do see some benefit in certain tasks, partic-

ularly band gap prediction tasks. While magpie representations [194] were seen to

outperform other CBFVs in many tasks, this finding was not universal across tasks.

• Examining the effectiveness of random projections as featurisation methods for prop-

erty prediction from chemical composition. Random projections can be used as a

baseline against which to justify more involved featurisation methods (explained fur-

ther in Section 5.2.1 before being carried out in Section 5.2). It was found that in
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many tasks, CBFVs with engineered features do not perform substantially better

than random projections.

• Studying the effect of kernel approximation functions (explained further in Sec-

tion 5.3) on the application of K-means clustering to materials data, and presenting

a workflow to incorporate these methods into the LOCO-CV algorithm (Section 5.3).

It was found that kernel approximation functions are a good way to reduce the vari-

ance between sizes of clusters found by K-means clustering on materials data. Using

kernel approximation functions in the suggested workflow (kernelised LOCO-CV)

results in a more robust evaluation method than LOCO-CV with no kernels.

• It can be recommended to use radial basis function (RBF) approximation when

clustering for LOCO-CV, as clusterings found after application of RBF are seen to

be more even in size than with no kernel method applied, and models are trained

more reliably for property prediction. This helps to reduce the risk that performance

differences on predicting an unseen cluster of data are caused by the training set size

as opposed to the intrinsic inability of a model to perform well on that cluster of

data.

• It was found that the use of RBF approximation in clustering for LOCO-CV leads to

more reliable and consistent model training, compared to using LOCO-CV without

any kernel approximation methods.

• Use of random projections as a baseline against which to compare engineered feature

vectors is recommended. It is noted that commonly used CBFVs have little to no

advantage over random projections in most tasks investigated.

• The use of random projections as a featurisation method for clustering composi-

tions in LOCO-CV was investigated, finding that random projections have no clear

advantage over other CBFVs tested here.

1.6.4 Chapter 6: Mathematically quantifying isotropy

• Exploring how metrics used for measuring isotropy in 3 dimensions [10] generalise to

higher dimensions.

• Providing a new implementation for an isotropy measure based on an existing math-

ematical derivation (Section 6.3.1).
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• Proposing adaptions to the measures of isotropy for single clusters such that one can

measure the average isotropy across a set of clusters (Section 6.3.2).

• Highlighting the need for analysis of representation when clustering datasets relating

to materials (Section 6.4.1).

• Demonstrating analysis of isotropy in a supervised learning context using a founda-

tional data science dataset (Section 6.4.2).

• Examining the robustness of the metrics under random noise perturbations (Sec-

tion 6.4.3).

• Using random matrix theory to prove that the measurements of isotropy are related

to the dimensionality of data, especially if the data are noisy (Section 6.4.3).

1.6.5 Chapter 7: Machine learning with electronic band structures

• Creation of a dataset of relating EBS data to resistivity.

• Exploration of the caveats surrounding using machine with EBS data.

• Suggesting numerous paradigms through which EBS data can considered. This allows

easy adaptation of ML algorithms intended for those paradigms.

• Novel implementation of deep learning algorithms across datasets of EBS data.

• Creation of two RNNs to interpret EBS data.

• Use of a set transformer model in two different arrangements to interpret EBS data.

• Improving performance in predicting resistivity, and band gap by several orders of

magnitude compared to a RF.



Chapter 2

Background and Related Work

This chapter aims to provide an overview of fundamental concepts in both data sci-

ence/machine learning (ML) and materials science, which will be necessary to understand

the subsequent chapters of this thesis. While pertinent background knowledge will be

briefly revisited when used in context, the reader is encouraged to refer back to this sec-

tion as needed throughout the thesis.

Basic concepts of ML, including types of ML, and ML evaluation, are covered. The most

important algorithms for this thesis are explored, including principal component analysis,

random projections, K-means clustering, random forests (RFs), and neural networks.

2.1 Machine Learning theory and related work

This section will outline basic ML concepts before describing several classes of algorithms

that will be relevant to the thesis. Note that where other areas of ML, computer science,

or mathematics are prerequisite knowledge to the thesis, those concepts are introduced

and explained in context rather than in this chapter.

What is machine learning?

ML at its heart is the use of algorithms to understand and take advantage of data. A key

difference in ML and other forms of artificial intelligence is that ML focusses on performing

a task without explicit programming on how that task should be done. Instead, ML models

identify trends in the data to learn how to complete the task. In ML, trends learnt by

models are stored in parameters, not to be confused with hyperparameters, which control

12
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aspects of how a model is trained, or a more traditional definition of parameters which

would imply that parameters are passed as arguments to the model. Machine learning tasks

can generally be categorised into one of four categories: supervised learning, unsupervised

learning, reinforcement learning, and semi-supervised learning.

Supervised learning involves input data and a corresponding target value. Algorithms

are trained on labelled data, where the correct output, or ground truth, is known for each

input. The goal is to learn a mapping between the input data and the target values to

accurately predict the target values for new unseen input data. In the field of materials

science, a typical supervised learning task would be predicting a property of a material after

having been trained on a dataset of materials and corresponding values for that property.

Algorithms in this category that will be investigated include random forests (RFs) and

neural networks (often called deep learning).

Unsupervised learning deals with data that do not have target values associated with

it. Instead, algorithms must identify patterns and relationships within the data. A typical

example of unsupervised learning in the field of materials science would be to identify

clusters of materials in a dataset, which can help explore data. Unsupervised algorithms

include K-means clusterings and principal component analysis (PCA).

Semi-supervised learning combines supervised and unsupervised learning. Some data

have target labels, while the rest are unlabelled. Algorithms must use the labelled data in

conjunction with the unlabelled data to perform a task. A typical example in the field of

materials science is iterative label spreading, which can be used to cluster materials based

on a few labelled data points.

Throughout this thesis, machine learning algorithms that fall into one or more of these

categories will be discussed. Depending on the specific task and dataset at hand, different

algorithms may be more appropriate and effective than others.

2.1.1 Bias in machine learning

The trends identified in the data can be helpful in allowing ML models to complete tasks.

But some trends are considered bias, which can introduce unwanted features into a ML

model. ML faces the ongoing challenge of distinguishing between helpful trends in data

and those that introduce bias.

Unwanted biases in the data often reflect biases in society, such as sexism, racism,

homophobia, and transphobia. In the context of predicting the properties of the materials,
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Figure 2.1: An example of 1-hot and n-hot encoding for a 3 class classification problem.

a large bias is publication bias. Publication bias arises from the tendency of researchers to

publish only positive results. Negative results, such as materials that were not successfully

synthesised or were found to be uninteresting on synthesis, are much less likely to be

published. Data for these materials are more scarce, which means that entire areas of the

possible chemical space are not seen in datasets. This means existing datasets are skewed

towards popular, or easy to explore materials.

A common way to address this in materials science is by using uncertainty estimates [1].

Uncertainty estimates are a class of algorithms which aim to quantify how sure a model

is about its predictions. Several of these algorithms exist, some of which are only applica-

ble to certain types of ML models [153]. Areas of chemical space that are more sparsely

represented in a model’s training dataset will result in more uncertain predictions. Mea-

surement of uncertainty allows these areas to be avoided or explored. In ML, the trade-off

between avoiding or exploring certain areas of a domain is often called exploration versus

exploitation.

2.1.2 Types of tasks in machine learning

Algorithms in ML can often be grouped according to the tasks they are performing. The

groups do not always align with whether the task is considered supervised or unsuper-

vised. Three tasks that occur multiple times in this thesis are classification, regression,

and clustering. Classification involves taking an input piece of data and performing dis-

crete predictions. This can be two discrete classes (binary classification) or more (multiclass

classification). The target classes can be represented as integer indices (i.e. outputting

0 is a prediction of class 0, outputting 1 is a prediction of class 1 etc.). A problem with

representing output classes as integers is the implication that the classes are sequential.
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This would imply a distance metric between classes, which may not accurately reflect their

relationship. As such, “one-hot” encodings are a common representation of the targets for

these tasks. One-hot encodings are vectors with one entry for each class, and the vector

will all be zero-valued, except for the column of the class which that vector is meant to

represent, which will be one (Figure 2.1). Where a single data point can be in multiple

classes, a one can be present in each class that data point represents. This is sometimes

called “n-hot” encodings. An example classification task in materials science might be

predicting whether a material has conductivity above or below a desired threshold.

Regression tasks are tasks in which an algorithm needs to produce a number in a

continuous output domain. An example regression task in materials science is to predict

the resistivity of a material.

Clustering involves separating data into groups (clusters) on the basis of some geomet-

ric criteria. Whereas classification separates points based on what that point represents,

clustering separates points on how they exist in relation to each other. Clustering algo-

rithms often require the number of target groups to be input. An example of clustering in

materials science would be to cluster a dataset into different classes of materials to see if

the resulting clusters are in line with expectations.

2.1.3 Unsupervised machine learning

This subsection will explore several unsupervised ML algorithms that will be recurrent or

relevant to this thesis. The evaluation of unsupervised algorithms in ML is highly task

dependent, as without target labels it can be unclear what can be considered successful.

As such, the specific evaluation metrics for these algorithms will be discussed throughout

this thesis in the context of their use, rather than in this section.

First, dimensionality reduction techniques will be discussed. Specifically, principal

component analysis (PCA) and random projections. Then clustering algorithms K-means

clustering and iterative label spreading (ILS) will be explored. Only algorithms particularly

relevant to the thesis will be discussed; other notable algorithms that fall under these cat-

egories, such as t-distributed stochastic neighbour embedding [180], Density-Based Spatial

Clustering of Applications with Noise [49], or hierarchical agglomerative clustering [111],

will be left for the reader to explore in their own time.
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Principal Component Analysis

PCA is a dimensionality reduction algorithm commonly used to visualise high-dimensional

data, while retaining as much relevant information as possible [56]. Intuitively, PCA finds

the set of orthogonal axes which best describe the variation seen in the data. To perform

PCA, first a covariance matrix, C, is calculated for the data. For a dataset of n data points

existing in m dimensions, represented as a n×m matrix, X, this can be expressed as:

C =
1

n− 1
XXᵀ (2.1)

C represents the variance relationship between each dimension of the dataset. The next

step in PCA is to apply singular value decomposition (SVD) to C. This decomposes C

into three matrices of the form:

C = USVᵀ (2.2)

Where U is a m×m matrix representing unit vectors of the principal components of the

data. That is, the rows of U represent a set of orthogonal unit vectors (known as orthonor-

mal vectors) that point in the directions in which X vary the most. S is a diagonal matrix

containing the singular values of X. Singular values represent the amount of variance in

the data that is explained by each principal component. The diagonal entries of S are

ordered from the largest to the smallest, so the first few singular values capture most of

the variance in the data, and the remaining singular values capture less and less variance.

Although V is not used at any point in this thesis, it is interesting to note that V is a

n × n matrix whose rows represent how much of each principal component is present in

each data point in X. There are several SVD algorithms (and implementations of SVD

algorithms) available [140, 139, 68]. How these implementations work and the differences

between them will not be explored in this thesis. In practise, an application of SVD is

done by calling a code library.

Once the principal components have been found, the first k principal components can

be used to project X into lower dimensions. The result is a representation of the dataset

that is in fewer dimensions than the original dataset, while minimising the amount of

information lost.
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Random Projections

Another technique which will be in this thesis is random projections. Random projection

is a dimensionality reduction technique that uses the observation that in high dimensions

random vectors approach orthogonality [154, 83]. A dataset of n data points existing in

m dimensions, represented as a n ×m matrix, X, can be projected into k dimensions by

multiplying it by a random matrix, R, of shape m× k:

Random Projection = X ·R (2.3)

When the columns of R are normalised to be unit vectors, X ·R becomes an approximately

linear projection of X. Another way to closely approximate normalisation of the columns

of a random matrix, such as R, is to sample the values of that matrix from a Gaussian

distribution of mean 0 and variance 1
k (∼ N

(
0, 1

k

)
) where k is the size of the projection.

This is mathematically justified by the Johnson-Lindenstrauss lemma, which states that

for a set of M dimensional data points there exists a linear mapping that will embed these

points into an k dimensional data space while preserving distances between data points

within some error value, ε. This value of ε is shown to decrease as k increases [33].

In other words, since random matrix multiplication is approximately a linear projection

and linear projections maintain distances between data points (within some error value),

by multiplying a dataset by a random matrix, one can change the number of dimensions

in a dataset, while maintaining the distance relationships between points. Thus, a random

projection allows for the reduction in dimensionality of a dataset.

K-means clustering

K-means clustering [108] is an unsupervised clustering algorithm which iteratively groups

data into K different clusters. The algorithm is very simple:

1. Place K points (centroids) randomly.

2. Group the dataset into clusters based on which centroid they are closest to.

3. Redefine the centroids as the mean of the points in their clusters.

4. Repeat steps 2-3 for a fixed number of iterations or until the clusters or centroids no

longer change between iterations.
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Figure 2.2: An example of an elbow plot. K-means has been applied to data with values
of K between 2 and 10. The sharp change in gradient when K is 4 indicates that there
are 4 clusters.

This algorithm results in a Voronoi diagram representing the data space; thus this process is

sometimes called a Voronoi tessellation of the data. The parameter K can be chosen by the

researcher if it is already known. If K is unknown, it is often established by repeating the

algorithm with several different values of K, and measuring the average distance between

a point and its centroid. The average distance between a point and its centroid can then

be plotted against K, in what is called an “elbow plot” (Figure 2.2). The point at which

increasing K no longer causes a large decrease in the average distance between a point in

a cluster and its centroid is a good choice for deciding K.

Iterative label spreading (ILS)

ILS [138] is a clustering algorithm which can be used in an unsupervised or semi-supervised

manner. Given a set of labelled points, L in a dataset, D, ILS can be described as follows:

1. Let Rmin(x, y) the smallest distance (by some measure) between any unlabelled point

x in D to any point, y in L

2. Let x have the same label as y
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(a) (b)

Figure 2.3: An example of clustering 2D clusters using iterative label spreading (ILS). (a)
The clusters, coloured by the order in which they were labelled (b) Rmin plotted against
the iteration. The two peaks indicate points at which the label spreading has jumped from
one cluster to another, suggesting that there are three clusters (as is the case).

3. Repeat steps 1-2 until all points are labelled.

To use ILS in an unsupervised manner, a random point is chosen to be the only labelled

point. Rmin can then be plotted against the iteration (Figure 2.3b). The number of peaks

seen in the plot can represent the number of different clusters. Assign the lowest points

between each peak to a different label and rerun ILS using these labels as the set L

In materials science, datasets are often not fully labelled, or it may not be clear whether

a representation reveals clusters that would be expected based on assigned labels. As such,

ILS allows both issues to be investigated.

While iterative label spreading is not examined in detail in this thesis, it is included here

for two reasons. Firstly, it is an excellent example of how general algorithms can come

from the materials science domain because of the specific issues with materials science

data. Secondly, parts of this thesis do relate to clustering, so it is pertinent to note related

literature in the field.
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2.1.4 Evaluation metrics in supervised machine learning

Table 2.1: Regression metrics to measure the similarity between the true value x and the
predicted value y. Including whether the metric has lower bounds (LB) or upper bounds
(UB), what the optimal value is, and the formula for each metric.

Metric Formula Bounded Optimum

Mean Absolute Error
1

n

n∑
i=1

|xi − yi| LB = 0 0

Mean Relative Error
1

n

n∑
i=1

∣∣∣∣xi − yixi

∣∣∣∣ LB = 0 0

Mean Squared Error
1

n

n∑
i=1

(xi − yi)2 LB = 0 0

r2 correlation coefficient

( ∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

)2

UB = 1 1

Evaluation of supervised ML is non-trivial, particularly in the context of materials

science. A notable choice is which measures (or metrics) are used to quantify success; this

section will explore this choice.

There are a variety of metrics which can be used to quantify ML performance, though

the choice of metrics is largely defined by the task at hand. For regression tasks, common

metrics include the mean absolute error, the mean relative error, the mean squared error,

and the correlation coefficient, r2 (Table 2.1).

Choosing which regression metrics are considered most important imparts a bias, as

the best performing model in one metric may not be the best performing in all metrics.

Consider two models, a and b, that perform a regression task to predict the resistivity

of two materials. One material, material w, has a resistivity of 10 Ωm and the other

material, x, has a resistivity 1 Ωm. Model a predicts w and x to have resistivities of 11 Ωm

and 2.0 Ωm, respectively. The model b predicts that w and x have resistivities of 12 Ωm

and 1.2 Ωm. Using the mean absolute error as a metric model, a appears to be better

(Table 2.2), but using the mean relative error model b appears to be better. Neither model

is inherently better than the other; instead it is up to a researcher to decide which model

would be better suited to their needs.
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Table 2.2: Example of how different metrics for success favour different models. Here, two
models a and b predict the resistivity for two materials, w and x. The true and predicted
(pred.) values are compared as well as the absolute (Abs.) and relative (Rel.) errors.

Model a Model b
Material True Pred. Abs. Error Rel. Error Pred. Abs. Error Rel. Error

(Ωm) (Ωm) (Ωm) (%) (Ωm) (Ωm) (%)

w 10 11 1 10 12 2 20
x 1 2 1 100 1.2 0.2 20
Mean 1 50.5 1.1 20

Table 2.3: An example confusion matrix for a binary classification task. The contents
of the matrix are usually numbers that relate to the quantity of each type of prediction,
although sometimes these are expressed as percentages.

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

When assessing classification performance, many metrics can be considered. The choice

in metrics does depend on whether the task is a binary classification task, or a multi-class

classification task.

In binary classification, predictions are often split into “positive” or “negative” predic-

tions. For example, consider the task of predicting whether a material is a superconductor,

a positive result would be a prediction that a material is a superconductor, and a negative

result is that a material is not a superconductor. It can then be said that a true positive

(TP) prediction would be a positive prediction where the material is indeed a supercon-

ductor. A false positive (FP) would be a material given a positive prediction that turns

out not to be a superconductor. A true negative (TN) would be a negative prediction for

a material that is not a superconductor, and a false negative (FN) would be a negative

prediction for a material that actually was a superconductor. From these measures many

informative metrics can be derived. These measures can also be put into a table, called

a confusion matrix, indicating the number of each type of results that were present in a

given task (Table 2.3).

Measures derived from these four measures (TP, FP, TN, and FN) include sensitivity

(or recall), specificity, precision, F1 score, and accuracy (Table 2.4). Further measures such
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Table 2.4: Binary classification metrics derived from the true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) rates. Whether the metric has an is
bounded and what it’s optimal values are also included.

Metric Formula Bounded Optimum

Recall
(Sensitivity)

TP

TP + FN
0, 1 1

Specificity
TN

TN + FP
0, 1 1

Precision
TP

TP + FP
0, 1 1

F1 Score 2 · Precision ·Recall
Precision+Recall

0, 1 1

Accuracy
TP + TN

TP + FP + TN + FN
0, 1 1

Matthew’s
corr. coef.

TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

-1, 1 1

Balanced
accuracy

1

2

(
TP

TP + FN
+

TN

TN + FP

)
0, 1 1

as the Matthew’s correlation coefficient or balanced accuracy control for class imbalance,

which can be a particular problem in materials science. For example, if 99% of the data in a

dataset are in the positive class, then a model could get 99% accuracy by always returning a

positive prediction. Many of the same quantification techniques used in binary classification

can be used in multi-class classification. Confusion matrices can be constructed Table 2.5.

Similarly, previously discussed metrics (Table 2.4) can be adapted for multi-class use.

This is done by adapting the problem into a binary classification problem. Two different

methods of adaptation are commonly used, the macro and micro averages. In macro

averaging, the prediction of each class is considered a binary classification task, binary

classification metrics are used, and a mean of the result is taken. In micro averaging, each

prediction is considered as a binary classification problem, and the total number of TPs,

FPs, TNs, and FNs are aggregated before the calculation of the metric. The result is that

micro-averaging controls for class imbalance, where macro averaging does not.
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Table 2.5: Confusion matrix for multiclass classification. Here nij is the number (or
sometimes the percentage) of data points that were predicted to be in class i, but were
actually in class j. The correct predictions in this case would be seen in cells n1,1, n2,2,
and n3,3.

Predicted class
1 2 3

Actual
Class

1 n11 n12 n13

2 n21 n22 n23

3 n31 n32 n33

Table 2.6: Prominent classification loss functions for machine learning given a target value,
y, a predicted value, ŷ, and n possible target classes. All loss functions shown here have
a lower bounds of 0, no upper bounds. All loss values here are designed to be minimised,
thus, for all loss functions here the optimum value is 0.

Loss Function Formula

Cross Entropy −
n∑
i=1

yi log ŷi

Binary Cross Entropy −y log ŷ − (1− y) log(1− ŷ)

Kullback–Leibler Divergence
n∑
i=1

yi log
yi
ŷi

Similarly to how choice in regression metrics imparts bias, so does choice of classifi-

cation metrics. Although accuracy may seem the easiest to explain, other options may

be more appropriate. For materials science, recall or precision may be more important.

Consider the example of a model that predicts whether a material is a superconductor. If

an experimental chemist will take a prediction and synthesise it to test the result, choosing

models with the highest recall will minimise the chances that a superconductor is missed.

In contrast, if the aim is to minimise the number of experiments carried out before any

superconductor is found, the model with the highest precision would instead be a better

choice. This example will be revisited (Chapter 4). This is not to say that any choice in

metric is better than any other, but instead that the advantages and disadvantages of each

metric should be considered in the context that the metric is due to be used in.
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2.1.5 Loss functions

Loss functions in supervised ML are considered metrics but tend to be selected such that

they are convex, as convex loss functions have a single global optimal soultion and thus

are easier to optimise than non-convex functions. While, at times, the phrase loss function

and metric can be used in similar situations, in the context of this thesis a loss function

will always refer to a metric which is used as part of the training process.

Because of the non-convex requirement often put on loss functions, different metrics to

the ones outlined above are more common. Prominent loss functions not previously men-

tioned previously include the cross-entropy, binary cross-entropy, and Kullback-Leibler

divergence loss [94], which all measure the difference between the true and predicted prob-

ability distributions for classification problems (Table 2.6).

Prominent loss functions for regression functions have largely been discussed already.

Specifically, the mean squared, mean relative, and mean absolute error are all convex and

thus are used as loss functions (Table 2.1).

2.1.6 Evaluation schema for supervised machine learning

Having detailed several metrics for evaluating supervised ML, this section investigates how

to use these metrics to gauge model performance. Another notable choice is how those

metrics are applied. By definition, ML requires data to learn from, and testing on the same

data from which it has learnt will give no insight into how well it has learnt to complete

a task, just how well it has learnt the input data. If a model can only complete a task

on the training data and fails to generalise to other data, this is known as overfitting;

failing to learn at all is known as underfitting, and a large part of creating effective ML

models is balancing the trade-off between the two (Figure 2.4a). This is sometimes called

the bias-variance trade-off, but to avoid confusion with the social biases outlined above

(Section 2.1.1) the terms overfitting and underfitting will be used here.

Most data points will include some amount of random noise, which can be caused by

many different factors. In materials science, this is often instrument noise. An overfit

model will learn the noise and data trend.

To test whether a model is overfit, or underfit, and to test the generalisability of a model,

it is necessary to define processes to separate the data on which the model is trained from

the data that are used to test the model. A common method of doing this is to separate the

dataset into train, test, and validation sets. Models are trained with training data, tested,
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(a) (b)

Figure 2.4: (a) An example of models overfitting and underfitting to a noisy data trend.
(b) An example of a training/test process for a ML model. Depending on the type of
ML model being considered, the x axis could be training time, number of parameters
in a model, or it could be amount of regularisation (with the left hand side being more
regularisation).

and have hyperparameters optimised on the test set, and final models are evaluated on the

validation set. Where models are not going into a production environment, the validation

set is often left out. By establishing when increasing numbers of parameters, or training

time does not result in improved performance on the test set, overfitting can be avoided

(Figure 2.4b).

It could be that a test set is not representative of the entire dataset. K-fold cross

validation is an alternative evaluation schema that aims to address this. In K-fold cross-

validation, data is split into K random sets (or folds). K different models are trained,

each using a different fold as the test set (and being trained on all data points). The final

evaluation scores are the mean measurements taken at each fold. If classes in a dataset

are imbalanced, the stratified variant of K-fold cross-validation ensures that each class is

represented equally in all folds.

Evaluating the generalisability of ML models is a known challenge across data science,

and is of particular concern in materials science, where data sets are of limited size com-
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Figure 2.5: A flow chart demonstrating how the leave one cluster out cross validation
(LOCO-CV) algorithm is used to measure the effectiveness of a ML model at extrapolating

pared with other application areas for ML, and often biased towards historically interesting

materials or those closely related to known high-performance materials for certain perfor-

mance metrics. Typically, models are evaluated on test sets separate from their training

data, through a consistent train:test split or K-fold cross validation. However, this does

not consider skew in a dataset. In chemical datasets, families of promising materials are

often explored more thoroughly than the domain as a whole, which introduces bias and

reduces the generalisability of ML models because the data they are trained and tested on

are not sampled in a way representative of the domain of target chemistries to be screened

with these models. Investigations into how such skew can affect ML models has seen that

this skew can result in overfitting [184] and that more skewed datasets require more data

points in order to train models to achieve achieve similar predictive performance when

compared to models trained on less skewed datasets [149].
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Figure 2.6: An example random forest classifier for classifier types of animals. Note that
if this was a regression task the mean result would be returned rather than the mode.

Leave one cluster out cross validation (LOCO-CV) [117] is an evaluation schema devel-

oped in the materials science domain. The schema aims to measure the ability of models

to extrapolate to data that are unlike data that it has seen before. To do this, rather than

splitting data into random folds, data are clustered, and then clusters of data are left out

as training sets (Figure 2.5). Clusters may be predefined or may be found using K-means

clustering. Where the number of clusters is unclear, K can be iterated between 2 and 10.

2.1.7 Random Forests

RFs [19] are supervised ML algorithms that excel in a variety of fields [11, 179]. Although

they are more than 20 years old, they are still a popular and useful tool. They have been

used extensively in materials science [170, 144, 166] and are seen to perform well on data

which are considered to be “tabular” (i.e., data where each column represents a different

feature describing a data point, and the order of the columns does not matter). They are

fast, easy to use, and readily implemented [140].

RFs can be described as an ensemble of decision trees where each tree trained with

bagging, and each decision is made with boosting (Figure 2.6). That is, each tree is trained
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with a random sample of all of the training data (sampled with replacement), and each

decision is made with a random sample of all of the features. Classification and regression

RFs return (respectively) the modal and mean results of their constituent trees.

Descision trees are ML algorithms which recursively split their training data based on

which features best discriminate between target results. This is usually done by measuring

differences in entropy between potential splits. Predictions are then made by applying

these discriminations to input data, and return the training data which was discirminated

in the most similar way. So, at each point in a decision tree a definite and explainable

reason can be extracted as to the decision tree’s performance (Figure 2.6).

RFs ensemble application of decision trees does reduce their explainability, but individ-

ual trees can still be extracted to explain performance. Introduction of randomness means

that noise is (to an extent) cancelled out because problematic data points or features of

data are excluded in at least some of the trees in a RF. This leads to the claim from the

author that they are “impervious to overfitting” with a succinct accompanying proof [19].

More precisely what it means is that adding more trees to the RF will never cause that

RF to overfit to the data. This is in contrast to neural networks, in which adding more

parameters can cause overfitting if there are limited data.

Other aspects of overfitting (for example, the ability of a single incorrect datapoint

to throw off accuracy) do affect RFs. As such, several strategies have been suggested

to reduce these effects and improve performance on small and/or noisy datasets. These

modifications include setting a maximum on the depth of the decision tree, specifying the

minimum number of samples required on a leaf node to stop the recursive splitting process,

or specifying the maximum number of leaf nodes. These modifications to the algorithm are

considered (in the scope of this thesis), to be hyperparameters. Other hyperparameters

include the number of trees in the forest, the number of sample of the data set used to

train each tree, and the number of features available in each split of a tree.

2.1.8 Deep Learning and Neural Networks

Neural networks are a wide and varied class of ML algorithms [165]. This subsection will

discuss high-level concepts needed for understanding appropriate uses of neural networks,

specific architectures will be discussed in the context of their use in this thesis.

At their most basic, neural networks can be seen as a successive application of weighted

sums, and non-linear (activation) functions, where the weights, w, of the sums are learnt
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(Figure 2.7). As many weighted sums are taken at once, in practise these weighted sums

are often implemented as matrix multiplications, where inputs are multiplied by matrices

of learnt weights before the activation function. Each matrix multiplication and activation

function pair are referred to as “layers”. Deep learning is a broad term used to refer to

neural networks with many layers. After all layers have processed an input (known as

the forward pass), the output is compared to the ground truth with a differentiable loss

function, and the result is known as the loss, l of the network. l can be differentiated with

respect to the weights of the matrix to get ∂l
∂w , and by successive application of the chain

rule, the loss caused by each weight in each layer, ∂l
∂w , can be passed back through the

network (known as the backward pass) (Figure 2.7b).

Forward and backward passes of the whole training dataset are done in batches (also

called mini-batches). After each batch has been procesed the mean ∂l
∂w across the batch

can be calculated, and the gradient of the loss function can be descended by adjusting

the w (various weight adjustment schema exist [37, 85, 109]), hopefully reducing loss for

future predictions. After all batches have been processed, a forward pass is done on the

test data, and performance is measured. This process is then repeated for a number of

cycles (epochs) until the model stops improving on the test set (Figure 2.4b).

The above process describes “dense” networks (also called linear or fully connected

networks). But variants which apply different linear and non-linear functions are specialised

for different functions. Some examples which will be explored in this thesis include:

• Convolutional neural networks apply sliding windows (“kernels”) across data, weights

of these kernels are learnt. These are commonly used for image processing. [98]

• Recurrent neural networks (RNNs) are applied to series of data. The series is pro-

cessed in time steps, and each recurrent layer takes in the input at the current time

step and the output of the layer at the previous time step. These networks are

commonly used in tasks where a sequence needs to be considered. [70]

• Encoder-decoder networks take in a sequence of data, and use networks (such as

RNNs) to encode data into a single representation and then a separate network to

decode the data (sometimes into another sequence of data). [82]

• Auto-encoders are encoder decoder networks which are trained by taking an input,

encoding it through some bottleneck, and then trying to reconstruct the original

input. [165]
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(a)

(b)

Figure 2.7: (a) The forward pass of a layer of a neural network. (b) The backward pass of
a layer of a neural network. The gradient of the loss function with respect to the weights,
∂l
∂w , is calculated and passed back to the previous layer. Note that line 2 of the derivation
is the application of the chain rule, and line 3 involves application of the product rule.
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• Variational auto-encoders are similar to auto-encoders but learn a distribution of

data, rather than a single vector. This distribution is then sampled from to pass to

the decoder. [86]

• Transformer networks consider a sequence but introduce the possibility of non-sequential

interaction between points in the sequence. The process of deciding which parts

of the sequence interact with each other is learnt. Transformers are often in an

encoder-decoder layout and are currently considered the state of the art in many

fields including natural language processing. [181]

.

Neural networks are a rapidly evolving field and are commonly used in the literature.

As such, areas of this thesis will explore their use.

2.1.9 Repeatability in machine learning

Most machine learning algorithns (including all of the supervised algorithms examined

in this thesis), require some degree of stocastic input. Whether that be the bagging and

boosting of RFs, or the random initial weights of neural networks. As such when evaluating

these models, performance will differ between runs. There is some evidence that this is

particularly relevant in the materials domain with, differences in r2 of up to 0.15 seen

dependant on the train, test split [187].

Differences in performance between runs, train/test splits, or test folds is important to

communicate and is often done either with seperate tables or using error bars on graphs.

While this information can be seen in a couple of points in this thesis (Sections 3.2.2

and 5.4), generally the reporting of this uncertainty is not in this thesis. Performance

numbers, may be taken with a grain of salt and readers rellying on these results are

encouraged to recreate any findings using provided resources.

2.2 Key chemistry and materials science theories and re-

lated work

While most of the required background knowledge on materials science will be introduced

in the context of its use, this section serves as background knowledge that may prime a
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reader with a computer science background. Broad categories of materials will be intro-

duced, as will methods of representing these materials. Pitfalls with material representation

and background about types of superconductors will also be introduced. The materials

examined in this thesis fall into two broad categories, inorganic crystals, and metal organic

frameworks (MOFs).

Inorganic crystals are lattices which do not contain carbon in combination with hyrdo-

gen, oxygen or nitrogren. They are varried in properties and, as such, most description of

specfic classes of materials will be given in the context for their use throughout the thesis.

Information about these materials are often stored digitally in crystallographic informa-

tion file (CIF) format [62]. The regular arrangements of atoms result in unique properties

such as high hardness, high melting points, and excellent electrical conductivity. Inorganic

materials include metals and non-metal.

Inorganic materials may also exhibit interesting electronic phenomena, some of which

will be explored in this thesis. In particular, two phenomena which will be explored are

megneto-caloric materials and superconductors.

MOFs feature metal metals, in regular arrangements joined together by organic molecules

reffered to as linkers or ligands. These ligands are often characterised by long chains of car-

bon atoms as well as other elements such as hydrogen, oxygen, nitrogen, and sulphur. Or-

ganic materials have wide-ranging applications depending on their molecular structure [55].

2.2.1 SMILES strings

Simplified Molecular Input Line Entry System SMILES is a string format used to represent

the structure of organic molecules (such as MOF linkers) in a concise and unambiguous

way (Figure 2.8) [198]. SMILES strings consist of a sequence of characters that represent

atoms, bonds, and other molecular features.

In an SMILES string, the atoms are represented by their atomic symbols, and the bonds

between atoms are represented by their order. Additional characters give information about

types of bonds between atoms (e.g., single bond is represented by “-”, double bond by ‘=”).

The SMILES string also includes additional symbols to represent ring structures and other

molecular features.

SMILES strings provide a compact and standardised way of representing molecular

structures that can be easily read and parsed by code. As such, they are commonly used

in datasets of organic materials.
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Figure 2.8: Examples of SMILES strings for popular chemicals. SMILES strings allow
the encoding of structural information, even when two organic compounds have the same
chemical formulae.

2.2.2 Unit Cells and Lattices

A lattice (or bravais lattices) can be said to be “a set of points where the environment of

any given point is equivalent to the environment of any other given point.” [167]. In the

context of materials the set of points would be atoms, equivalent environments would be

the atoms of the same elements in another part of the crystal structure.

This allows for deffinition of a unit cell as “a region of space such that when many

identical units are stacked together it tiles (completely fills) all of space and reconstructs

the full structure” [167]. In the context of materials, this would be the region of space

surrounded the atoms which is repeated throughout a crystal.

The smallest possible unit cell is referred to as the primitive unit cell. However, often

a different unit cell is picked to better show the symmetry of the matterial; this is called

the conventional unit cell [167]. There is some subjectivity as to which unit cell is the

conventional unit cell, as the strictness of the symmetries to include means that some

materials could be considered to have multiple conventional unit cells. The conventional

unit cell is widely used in materials science to describe the structure and properties of

crystalline materials.

As unit cells exist in 3 dimensions, they are quantified by three lengths, listed in size

order as a, b, and c. These, together with angles are α, β, and γ that are the angles

between lengths a, b, and c, can define the volume of a cell, V .
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Figure 2.9: Example of an electronic band structure.

The Niggli reduced unit cell reduced unit cell [61] is a way of simplifying the description

of a crystal lattice by reducing the size of the unit cell while preserving the symmetry of

the lattice. It is obtained by a sequence of operations that transform the lattice into a

simpler lattice that has the same symmetry, but with a smaller unit cell volume.

2.2.3 The Reciprocal Lattice

As wave properties of electrons are causes of electronic phenomena, it is normal to consider

the reciprical lattice of a material. The Brilliouin zone is “any primitive unit cell of

the reciprocal lattice” [167]. By describing a wave K in terms of the reciprocal lattice,

translating K by a reciprocal lattice vector G will result in the same wave (as waves are

preiodic).

This means that in reciprocal space, an area can be defined that describes a set of waves

such that each wave occurs once and only once. In other words: “Start with the reciprocal

lattice point G = 0. All K-points which are closer to 0 than any other reciprocal lattice

point define the first Brillouin zone. Similarly, all K-points where the point 0 is the second

closest reciprocal lattice point to that point constitute the second Brillouin zone, and so

forth. Zone boundaries are defined in terms of this definition of Brillouin zones.” [167].

2.2.4 Electronic band structure

The previous subsection outlined the way that a set of waves can be considered to be a set

of points that lie within the first Brillouin zone, which is in the reciprocal space. Electrons
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form standing waves, and it is possible to compute the energy levels that an electron could

have at a given point in the reciprocal space (K-space) [167]. This is done using density

functional theory (DFT) [80], which is considered beyond the scope of this thesis.

Electornic band structures are often displayed in two dimensions, with one dimension

being a path through the K-space, and the other dimension being the energy levels at

which electrons can exist (Figure 2.9). These are normalised to the Fermi level, EFermi,

which is “is the chemical potential at temperature T = 0.” [167]. This means that when

temperatures are above 0 K, electrons may occupy bands above 0 on the plot and may.

Bands below 0 on this plot are considered to be valence bands, with bands above 0 being

conduction bands. Bands crossing 0 implies that a material is electrically conductive. The

gap between bands above and below the Fermi level is called the band gap, and large band

gaps result in very insulating materials. Where band gaps are small electrons do not need

to have much energy to cross from occupying valence bands to conduction bands, and as

such the material will be a semi-conductor.

2.2.5 Composition-based representations of materials

Numerous suggestions for suitable representations have been made, both including and ex-

cluding structural information. Examples of these include Coulomb matrices (and variants

there of), density of states fingerprints [22].

Although representations of materials will be explored in more depth (Chapter 5), a

basic introduction is needed to provide context to the rest of the thesis. Composition-based

representations are representations of a material based solely on composition and do not

include any structural information.

As structural information is usually not known a priori to chemical synthesis, the

ML predictions made using structural information are of more limited use than those

made using a composition-based representation. Using composition as the basis for the

representation in an ML model means that arbitrary compositions can be generated and

screened.

The caveat to this is that materials with the same composition can have vastly different

structures and properties. In the most extreme case, diamond and graphite are both made

of carbon and have very different properties (it would be unusual to propose to someone

with a graphite ring). The consequence is that no composition-based predictor will be

perfectly accurate.
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Many composition-based representations exist [124, 192, 195, 27]. There are several

libraries that exist to easily create such representations [192, 121, 38], in a process often

called featurisation. As such, many ML papers create bespoke representations to tackle

problems [170]. However, as will be discussed (Chapter 5) this reduces repeatability if

the creation of these bespoke representations is not properly detailed and leads to many

representations that have not been well justified by advantages over competing represen-

tations [124].

A common representation for a material is magpie. While initially being the name of

the library used to create a representation [192], magpie has become synonymous with a

representation of 115 elemental based attributes. The minimum, maximum, range, stan-

dard deviation, mode (property of the most prevalent element) and weighted average of

23 elemental properties taken across the elements present in a composition. The remain-

ing features are derived from valence orbital occupation and ionic compound attributes

(which are based on differences between electronegativity between constituent elements in

a compound).

Although featurisation is common, another popular way of representing a composition

is an n-hot encoding of its elements [124, 79, 45]. This results in a (usually) 119 long

sparse vector, with each entry in the vector corresponding to an element and the value of

that entry representing the proportion of that element in a composition. Sometimes this

composition is normalised so that the sum of the values in the vector is 1 [124, 45], other

times this is not the case [79].

2.3 Thesis Context

Having provided a comprehensive examination of the background information relevant to

the research presented in this thesis, the groundwork has been established to transition

towards the contributions.
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Use of random forests for

prediction of material properties

Random forests (RFs) are strong and versatile predictors which often outperform more re-

cent and computationally intensive algorithms [155, 144]. They provide good out of the box

performance, with little hyperparameter tuning needed, and are readily implemented [140].

RFs are supervised machine learning (ML) algorithms, which take a fixed sized input

vector and a target value, with each value in the vector having a fixed meaning across

vectors. As such data suited to RFs is often referred to as being “tabular,” with each row

representing a data point and each column representing a feature. RFs are an ensemble

of decision trees, with each tree being trained on a subset of the training data, which is

sampled with replacement (this subset is referred to as the tree’s bag). At each node in the

decision tree a random subset of features are used and of those the one which is calculated

to be the most discriminatory to the target labels (Figure 2.6). Data is then split into

two partitions based on the most discriminatory feature, with each partition being used to

create child nodes. Child nodes are recursively added, until the tree reaches a fixed depth,

until the leaf nodes are left with a pool of data of prespecified size, or until the bag has been

fully discriminated. Depending on whether an RF is being used as a classifier or regressor,

it will return the modal or mean value returned by its decision trees, respectively. More

details can be found in Section 2.1.7.

RF’s robust nature has made them often used in materials science [170, 166]. This

chapter explores two examples of their use and discusses issues that arise when applying

RFs in this field.

37
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3.1 Predicting the shape of unit cells

Note: This section is adapted from results published in Advanced Functional Materials [125]

3.1.1 Motivation and background

The magneto-caloric effect is phenomena of a material to change temperature when exposed

to a magnetic field [125]. In the PbFCl family of materials this has been seen to correlate

to the ratio of lengths within the conventional unit cell (further explored in Section 2.2.2),

namely the transition temperature, Tc correlates to c
a ratio [125, 20].

This is pertinent as datasets of compositions and associated unit cells are widely avail-

able [69, 78, 134], unlike datasets associating magneto-caloric materials with their Tc. A

lack of magneto-caloric datasets makes direct prediction of Tc infeasible. As such c
a was

seen as useful descriptor to calculate as proxy for the Tc value in the PbFCl family of

materials.

Using chemical intuition, or physical formulae, predicting the c
a ratio of structures

from a wide variety of bonding characters (e.g., ionic, covalent, metallic) can be difficult.

Standard models for such a prediction are often limited to a specific structure-type and

often fail without prior knowledge of the adequate descriptor to use [20]. Owing to the

importance of the c
a parameter [20], RFs were used to predict c

a using the experimental data

available in the ICSD [69] as well as a hand curated dataset of 65 PbFCl type structures

obtained from Pearson’s database. [134].

RFs were used as they have been used successfully in a wide variety of applications

both chemical and non chemical [166, 58]. This combined with their simplicity, relative hy-

perparameter ambivalence, and computational simplicity when compared with competing

supervised machine learning algorithms such as deep neural networks led to the choice use

the sci-kit learn [140] implementation of RFs with default hyperparameters (as of sci-kit

learn version 0.22) for the following investigations. While improvements could be made

to metrics for success by tuning hyperparameters, the novelty of this investigation comes

from its apathy towards what are often focused on in papers (algorithms, representations,

hyperparameters), in favour of focusing on applicability to the problem at hand.

Properties such as the c
a ratio are can targeted by substituting one element in a similar

(parent) composition with another, and adjusting ratios of elements so that the result is

a charge balanced (child) composition. In the absence of machine learning, the Shannon

ionic radius may be used by chemists as a predictor of how the unit cell will change
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with substitution elemental substitution in a compound. This proxy is compared to the

predictive ability of RFs.

The context of such substitutional studies allows use of RFs as binary classifiers to

measure the direction of change of the target property between parent and child compound,

rather than regressors to predict the value of the target property in the child compound.

In this case, that would mean predicting whether a chemical substitution would result in

an increase or decrease in the c
a ratio between the parent and child, rather than predicting

the c
a ratio of the child compound.

The introduction of a parent compound creates new opportunities to analyse the per-

formance of an ML model. Inclusion of parent compounds in measuring performance of ML

can help inform experimental chemists as to the expected performance of that model in the

desired context [125]. New performance metrics, the ordinal accuracy and the comparative

r2 (r2
comp) which incorporate the parent compound are defined and examined here.

The key investigations and contributions of this section are:

• Investigating the ability of RFs to predict the c
a ratio of a conventional unit cell.

• Presenting a comparative prediction method for using ML algorithms. This method

is particularly suited for substitutional synthesis studies.

• Presenting and investigating performance metrics r2
comp and ordinal accuracy which

examine the performance of a machine learning algorithm in the context of compar-

ative predictions.

3.1.2 Comparative machine learning models for substitutional chemistry

studies

Although the contributing factors that determine c
a of a conventional unit cell cannot be

easily enumerated, they are present to such an extent in data that ML methods can be

used to approximate them. One approach to making such an approximation would be

choosing a representation for a material and training an RF to predict known values of c

and a either separately or in the form c
a (Figure 3.1a). This could then be used to screen

potential candidates for chemical synthesis.

However, most functional properties are tuned through substitution studies, where

the researcher wishes to alter a known (parent) compound to find a better performing

child compound. If prediction of the value of this child’s functional property is framed
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(a)
(b)

(c)
(d)

(e)

Figure 3.1: Strategies for property prediction using RF. (a) Directly predicting the prop-
erty. (b) Supplying information about a parent compound to directly predict the property
of a child compound. (c) Using knowledge of a parent compound in comparison to the
prediction of a child compound. Using that comparison as an indicator for the direction of
change of that property. (d) Predicting a property for both a parent and child compound,
comparing the output and using that comparison as an indicator for the direction of change
of that property. (e) Comparing known statistics about the constituents of a compound
and using that comparison as an indicator for the direction of change of a property.

as a regression task, the inclusion of information from the parent compound allows the

reframing of this task(Figures 3.1b and 3.1c). The ML algorithm being used could be used
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to trained as a regressor to find the child property relative to that of its parent, or the

ML algorithm could be trained in binary classification task of whether the magnitude of

this property will increase or decrease between the parent and the child. This reframing

of the task is dubbed “comparative prediction” and is explored in this section. While this

comparative prediction has been developed for use in substitutional chemistry studies, it

can be generalised to any object where a perturbation is applied to a parent object to

create a child object whose properties are to be predicted.

For clarity, this comparative prediction method will first be defined for an arbitrary

property, y, in a parent-child system where the child is some parametric alteration of the

parent. y1 is the value of y in a parent object, and y2 is the value of y in a child object.

When examining a model trained in this paradigm, it is useful to examine whether

large changes in y between the parent and child in ground truth data are reflected by the

model’s predicted changes. The r2 metric (discussed further in Section 2.1.4) can be used

to examine these trends, allowing the definition of “comparative r2”, r2
comp as:

r2
comp = r2 ((y1,true − y2,true) , (y1,true − y2,pred))

Where yj,true is the true value of yj and yj,pred is the predicted value of yj and j ∈ {1, 2}.
When evaluating the comparative prediction paradigm, it could be helpful to also evaluate

models which just predict y2, without knowledge of y1. In such cases, it is unclear whether

the definitions of r2
comp should use the r2

metric defined above, or if knowledge of y1,true

should be ignored by the model (Figure 3.1d) (as similar errors in prediction of y1, pred and

y2, pred may cancel each other out, explored further in Section 3.1.4). Both definitions are

explored in this chapter, with the models evaluated with the latter schema will be referred

to as models which are “comparing to prediction”. Thus, the final definition of r2
comp is as

follows:

r2
comp =

{
r2 ((y1,true − y2,true) , (y1,pred − y2,pred)) , if model compares to prediction

r2 ((y1,true − y2,true) , (y1,true − y2,pred)) , otherwise

(3.1)

Although r2
comp provides a metric for investigating the comparative prediction paradigm

as a regression task, it is possible to simplify this task to a binary classification task. Rather

than training a ML model to predict y2, one can use a target value of y1 > y2,to limit

the output to a Boolean domain. The accuracy of this prediction can be said to be the
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proportion of predictions in which the direction of change was predicted correctly. We

label this metric the “ordinal accuracy.”

Consider the context of predicting c
a . If

(
c
a

)
1
>
(
c
a

)
2

then an ordinally accurate predic-

tion of
(
c
a

)
2

( ca of the child compound) would be less than the value of
(
c
a

)
1
. Conversely(

c
a

)
1
<
(
c
a

)
2

then a ordinally accurate prediction of
(
c
a

)
2

would be greater than the true

value of ( ca). For example, if the true value of y1 is 10 and the true value of y2 is 7, an

ordinally accurate prediction of y2 would be any value less than 10. Ordinal accuracy for a

dataset can thus be said to be the ratio of predictions which are ordinally accurate, divided

by the number of predictions made.

Similarly to the definition for r2
comp (Equation (3.1)), it is unclear if the definitions

of ordinal accuracy should ignore knowledge of y1,true (as similar errors in the prediction

of y1,pred and y2,pred may cancel each other out). Like r2
comp, this will be explored in a

schema labelled “comparing to prediction.” When considering the comparing to prediction

schema, an ordinally accurate prediction would be one where
(
c
a

)
1,pred

>
(
c
a

)
2,pred

in the

case where
(
c
a

)
1,true

>
(
c
a

)
2,true

.

Using elemental statistics for comparative studies

The above outlined the comparative paradigm that this investigation will examine and

noted two new metrics of success that can be used to evaluate this paradigm (r2
comp and

comparative accuracy). Although this investigation focusses on RFs, other models may be

more suited to this task. There is also no need for these models to be ML models. Simple

proxies can be used.

Although the use of ML for the comparison of parent and child materials in a chemical

substitution study is novel, the practise of using the chemical properties of the constituents

of the material as a proxy for its potential properties is prevalent in materials science [](Fig-

ure 3.1e). For example, when looking to increase the cell size of a material, one may target

a substitution of one element of the material for an element with a larger atomic radius.

The common practise of using elemental statistics can also be evaluated with the r2
comp

and comparative accuracy metrics discussed.

Shannon radius of an atom was suggested as a proxy for tuning the c
a ratio of PbFCl

type compounds. As such, this will be investigated and compared to the models developed

for this study.
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3.1.3 Material representation

To train RFs to predict c
a of a material, a representation for that material must be chosen.

Previous work used purely chemical descriptors to predict unit cell volume with some level

of accuracy [28]. Although this level of accuracy may be improved by including structural

information, this previous success justifies a focus on chemical descriptors when looking

at other unit cell parameters such as c
a . The literature has also reported predictions of

various chemical properties based only on elemental composition [79]. This seemed to be

the simplest possible chemical descriptor as it can be derived purely from chemical formulae

with no further domain knowledge required. This representation was used as a basis in all

investigations presented here on the prediction of unit cell properties. The results reported

in this chapter inspired a more thorough review of composition-based representation which

can be found in Chapter 5.

All the models examined took one of two inputs. The simplest models received the

elemental composition for a compound encoded as a vector of floating points, where each

floating point represented the number of atoms for an element divided by the total number

of atoms in the compound (this representation is referred to as compV ec). From this

vector, the models predict unit cell parameters for this composition.

This vector cannot be used with “comparative” models as information about the parent

compound must also be included. Comparative models were proposed for use in substitu-

tion studies where a “parent” compound is known and the researchers wish to examine an

altered “child” form of that compound. The input into the models was a vector encoding

of the composition of the parent and the child, and the parameters of the unit cells for the

parent compound (a, b, c, v, α, β, and γ).

Benchmarks, Data splitting, and Metrics

Data used

Data obtained for this study were split into 3 data sets depending on the origin:

1. ICSD - all compounds in the inorganic crystal database as of 2018 [69].

2. ICSD and Materials Project - a union of experimentally measured structures in the

ICSD and density functional theory (DFT) measured structures with a tetragonal

symmetry in the Materials Project [78].1

1While all models were tested with this dataset and consistently converged, none of the models performed
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3. PbFCl structure-type - All PbFCl type structures in Pearson’s Crystal Database[134]

Each data point (in the form of a cif) was preprocessed to extract the relative elemental

constituents of the compound from its formula, as well as the unit cell parameters. Data

were then split into training and test sets and into clusters for use with leave one cluster

out cross validation (LOCO-CV) [117].

For all datasets, most of the models were trained on a random 80% selection of the data

and tested on the remaining entries in all experiments. This split was consistent for all

experiments. For comparative models, which rely on data points being paired into parent

and child compounds, it was ensured that both parent and child compounds were either

both in the training set or both in the test set.

For a measure of the extrapolatory power of the models, LOCO-CV was also performed

with K-means clustering (clustered on the inputs to the model) for values of k between 2

and 10 inclusive (Figure 2.5). The implementation of K-means clustering used was that

found in sci-kit learn all but two hyperparameters set to default as of version 0.22 [140].

First, the number of clusters was varied (as required to perform LOCO-CV measurement),

and second, the initial placement of the clusters was set to random as opposed to the

default which is K-means++ [7].

Caution should be taken when analysing the LOCO-CV scores obtained as the clusters

were universally uneven in size. Although marginal (but not decisive) improvements were

observed using random placement rather than K-means++, cluster sizes almost always

varied by at least two orders of magnitude. The implications of this finding will be explored

more in the discussion section (Section 6.5).

3.1.4 Results

Models were tested for their ability to predict c
a . In total, five methods for estimating c

a

or change in c
a were tested:

• Using a RF to predict c
a of a material encoded with compV ec (the results are under

the subheading Random forest prediction).

better than when trained using data from the ICSD alone because of this time will not be spent analysing
these results. The most likely cause is due to the mixture of data of entirely different origin, as it is well
known there are significant and systematic differences between unit cell parameters generated by DFT
(in the Materials Project) and determined by experiment (in the ICSD).It is worthwhile noting here that
augmenting a dataset should be attempted with care and a critical eye, and does not necessarily result in
improved model performance.
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• Using a RF to predict c
a of a child material. As input, this RF takes compV ec

encodings of the child and parent material and unit cell parameters of the parent

material. The results are under the subheading Random forest prediction (trained

on parent and child compounds).

• Using a RF to predict c
a of a child material encoded with compV ec, comparing the

output of that with the knowledge of c
a of the parent material and examining that

comparison rather than the prediction itself. The results are under the subhead-

ing Comparing predicted unit cell values for a child to known unit cell values for a

parent.

• Using a RF to predict c
a of a child material encoded with compV ec, using the same

RF to predict c
a of the parent material and comparing the two predictions. An exam-

ination is done as to the effectiveness of the comparison of the predictions rather than

either of the predictions individually. The results are under the subheading Compar-

ing predicted unit cell values for a child to predicted unit cell values for a parent.

• Comparing the average Shannon radius of the elements in the parent compound to

the average Shannon radius of the elements in the child compound and examining

that comparison as a proxy for the change in c
a . The results of this are given under

the subheading Using Shannon radius as a benchmark.

Random forest prediction

Given the elemental makeup of a compound, using RFs to directly predict c
a was found to

be more effective when applied to the PbFCl structure-type compounds (dataset 3) than

ICSD (dataset 1) (Figure 3.2 and Figure 3.4a respectively), with a r2 of 0.79 compared

to 0.75. This could be explained by the more limited range of chemistries in the PbFCl

dataset. It is notable that while the prediction of a, b, and c separately often resulted in

a similar r2 and dividing the predicted c by the predicted a always resulted in a worse

performance than directly predicting c
a .

Also of note is that the prediction of unit cell volume from models trained with PbFCl

structure-type data to predict volume and on models trained to predict all unit cell param-

eters (a, b, c, α, β, γ, V ) both perform similarly to results found in previous work (which

also found a mean average error of 3.9%) [28]. However, this success was not found with
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(a) (b)

Figure 3.2: (a) Predicted c
a against true c

a using the model described in 3.1.4 on PbFCl
structure-type dataset (b) (lack of) correlation between Shannon radii and c

a as described
in Section 3.1.4

the ICSD data, where the models exhibited a mean error of 17% in predicting the volume

of units of cells. Previous work used data from the Materials Project [78] (for training) and

the score obtained is based on a restricted selection of just 309 structures from the ICSD

dataset. While performance on ICSD based data could be attributed a better machine

learning and featurisation method, it could equally be attributed to the use of a restricted

dataset with consistent chemistries. The full results found using this method are also listed

(Table 3.1).

Random forest prediction (trained on parent and child compounds)

Substitutional investigations, which take a known (parent) substance and wish to find the

properties of a variant (child), are common. One model which was investigated for such

a situation takes as input the elemental composition of the parent and child substance as

well as parental unit cell parameters. A RF was trained to predict c
a with an r2 of 0.95

(Figure 3.4b) and predicts the change in c
a with an r2 of 0.97 (this will be referred to as

the comparative r2 or r2
comp). The accuracy in predicting whether the child would have a

larger or smaller c
a than the parent (ordinal accuracy) was 0.97. This model was found to

be more effective in ordinal accuracy than a guess regardless of the size of the difference

in c
a between the parent and the child; however, r2

comp was only found to display a trend

when child c
a was more than 7% different from the parental c

a (Figure 3.3). It should be
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Table 3.1: Results of random forest regression (described in
Section 3.1.4: Random forest prediction). Models are trained on certain unit cell
parameters but are tested for prediction of c

a

metric train target
ICSD PbFCl

80/20 split LOCO-CV 80/20 split LOCO-CV

r2 c
a 0.75 −4.9 0.79 −2.5
a, b, c 0.75 −7.5 0.76 −1.4
a, b, c, V 0.76 −12 0.78 −1.3
a, b, c, α, β, γ 0.76 −11 0.77 −1.4
a, b, c, α, β, γ, V 0.76 −11 0.79 −1.3

MRE c
a 0.077 0.22 0.022 0.078
a, b, c 0.074 0.21 0.024 0.073
a, b, c, V 0.076 0.24 0.024 0.063
a, b, c, α, β, γ 0.075 0.21 0.024 0.074
a, b, c, α, β, γ, V 0.076 0.25 0.024 0.065

noted that this model was able to predict the volume of the child compound at an average

error of 7.2% on the ICSD dataset and 3.7% on the PbFCl structure-type dataset. The

full results found using this method are available (Table 3.2)

Comparing predicted unit cell values for a child to known unit cell values for

a parent

The RF discussed in 3.1.4 was just trained with the child compound but could still be used

for substitutional study by subtracting the model prediction for the parameters of the child

unit cell from the known parameters of the unit cell for the parent. Application of the

model in this way led to a good accuracy of 0.92 and an r2
comp of 0.91 (Figure 3.4d). When

the application of the model was changed, more knowledge was extracted. This would be

useful for a chemist doing a substitutional investigation, while adding almost no increase

in model complexity and no increase in the required training data and required training

time. The complete results found using this method are available (Table 3.3)
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Table 3.2: Results from prediction of c
a using model

trained on both parent and child compounds as described in
Section 3.1.4: Random forest prediction (trained on parent and child compounds). Mod-
els are trained on certain unit cell parameters but sometimes tested on other unit cell
parameters in order to evaluate different prediction strategies).

metric train target
ICSD PbFCl

80/20 split LOCO-CV 80/20 split LOCO-CV

r2 c
a 0.95 0.52 0.75 −2.3
a, b, c 0.95 0.44 0.74 −0.94
a, b, c, V 0.94 0.21 0.78 −0.68
a, b, c, α, β, γ 0.95 0.36 0.75 −0.95
a, b, c, α, β, γ, V 0.94 0.23 0.77 −0.68

r2
comp

c
a 0.97 0.88 0.87 0.21

a, b, c 0.97 0.88 0.87 0.19
a, b, c, V 0.97 0.89 0.89 0.24
a, b, c, α, β, γ 0.98 0.88 0.87 0.16
a, b, c, α, β, γ, V 0.97 0.88 0.89 0.23

MRE c
a 0.029 0.045 0.021 0.083
a, b, c 0.028 0.042 0.023 0.084
a, b, c, V 0.032 0.044 0.021 0.077
a, b, c, α, β, γ 0.029 0.043 0.023 0.08
a, b, c, α, β, γ, V 0.031 0.045 0.022 0.075

Ordinal
accuracy

c
a 0.97 0.94 0.95 0.75
a, b, c 0.97 0.94 0.94 0.73
a, b, c, V 0.96 0.94 0.94 0.73
a, b, c, α, β, γ 0.97 0.95 0.94 0.73
a, b, c, α, β, γ, V 0.97 0.94 0.94 0.73

Comparing predicted unit cell values for a child to predicted unit cell values

for a parent

Training a RF to directly predict c
a from a compound’s elemental makeup as in 3.1.4,

and then testing the model by predicting c
a for both a parent and child compound and

comparing the two yielded impressive results with r2
comp of 0.79 on the PbFCl structure-

type dataset and 0.91 on the ICSD dataset. Comparisons here were between the predictions

to investigate whether a RF’s inaccuracies could be taken advantage of. If the model was

wrong in similar ways for the parent and child, by comparing a model’s predictions for
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Table 3.3: Results from comparison of prediction of c
a of child to the true value of c

a of
parent as described in Section 3.1.4: Comparing predicted unit cell values for a child to
known unit cell values for a parent

.

metric train target
ICSD PbFCl

80/20 split LOCO-CV 80/20 split LOCO-CV

r2
comp

c
a 0.91 −2 0.79 −17

a, b, c 0.91 −2.5 0.77 −12
a, b, c, V 0.9 −4.8 0.79 −15
a, b, c, α, β, γ 0.91 −3.1 0.76 −15
a, b, c, α, β, γ, V 0.9 −3.9 0.8 −13

ordinal
accuracy

c
a 0.92 0.71 0.9 0.61
a, b, c 0.93 0.7 0.89 0.62
a, b, c, V 0.93 0.72 0.89 0.61
a, b, c, α, β, γ 0.93 0.71 0.89 0.62
a, b, c, α, β, γ, V 0.92 0.72 0.89 0.62

Figure 3.3: Performance of comparative models vs the distance between the compounds
being compared, where model 1 is described in 3.1.4 model 2 in 3.1.4 and model 3 in 3.1.4
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Table 3.4: Results from comparisons of predictions for c
a of parent and child compound

as described in Section 3.1.4: Comparing predicted unit cell values for a child to predicted
unit cell values for a parent

.

metric train target
ICSD PbFCl

80/20 split LOCO-CV 80/20 split LOCO-CV

r2
comp

c
a 0.91 −1.9 0.79 −17

a, b, c 0.9 −2.5 0.76 −16
a, b, c, V 0.9 −4.4 0.8 −16
a, b, c, α, β, γ 0.91 −3.2 0.76 −15
a, b, c, α, β, γ, V 0.9 −4.5 0.79 −14

Ordinal
accuracy

c
a 0.92 0.71 0.90 0.62
a, b, c 0.92 0.70 0.89 0.62
a, b, c, V 0.92 0.72 0.89 0.61
a, b, c, α, β, γ 0.93 0.72 0.89 0.61
a, b, c, α, β, γ, V 0.93 0.71 0.89 0.62

Table 3.5: Results from weighted average Shannon radius benchmark described in Sec-
tion 3.1.4: Using Shannon radius as a benchmark.

metric
ICSD PbFCl

80/20 split LOCO-CV 80/20 split LOCO-CV

r2 −1.1 −53 −13 −26

r2
comp −0.078 −1.1 −5.9 −8.9

ordinal accuracy 0.58 0.6 0.53 0.54

c
a of both parent and child could these inaccuracies cancel each other out if the parent and

child occupy a similar part of the data space?

However, this is not consistently the case, with almost identical performance between

these two models regardless of the distance between the parent and child compounds

(Figure 3.3). It is interesting to see that the introduction of more use of machine learning

into the method does not seem to increase the uncertainty (Figure 3.4e). It could be

argued that any uncertainty introduced in this method compared to that described in

3.1.4 is offset by taking advantage of similar model inaccuracies across parent and child

unit cell parameter predictions, however, with regard to this hypothesis these experiments

are inconclusive. The complete results for this model can be found in Table 3.4.
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Using Shannon radius as a benchmark

To demonstrate the models to predict c
a developed here are effective, RFs were com-

pared against a standard method that might be employed by a chemist (as described Sec-

tion 3.1.2). In particular, Shannon radii are commonly employed to determine the change

in unit cell volume when substituting an ionic species by another. If a larger species is

inserted, the unit cell generally expands. It is, of course, less clear whether there would be

a general rule for the influence on the c
a ratio. Thus, it is interesting to observe that there is

no correlation between the Shannon radius and c
a (Table 3.5 and fig. 3.2b). Although some

accuracy was found when using the change in the average Shannon radius to investigate

the change in c
a between the parent and child compound, this is far outperformed by all

other models discussed here.

To obtain values for the radius, the 6-coordinate Shannon radius was used for all

elements. Oxidation states were manually chosen to be chemically reasonable; the oxidation

states of transition metals were chosen based on the most common corresponding metal-

oxides. When high and low spin radii are present, the average is taken.

3.1.5 Discussion

Predicting c
a of a material from the compound’s formula was found to be effective using RFs

(the best r2 was 0.78 on PbFCl data, Figure 3.2; or 0.69 on ICSD data). This demonstrates

the ability of RFs to work effectively on small datasets, where larger datasets are not

available (i.e., datasets of hundreds, rather than hundreds of thousands of materials).

However, most functional properties are tuned through substitution studies, where the

researcher wishes to alter a known (parent) compound to find a better performing child

compound. A more effective application of RFs was developed to predict c
a of an arbitrary

child composition relative to the c
a of a known parent structure. Although the contributing

factors that determine c
a cannot be easily enumerated, the ability of ML models presented

here to predict them show that these factors are present in the training data.

The most effective model to predict the change in the c
a ratio between the parent

compound and the child compound used the paired prediction schema (Section 3.1.4).

This model was trained using 80,000 randomly selected parent-child pairs of compounds

in the ICSD. As input the RF received compositions of the parent and child structures, as

well as the lattice parameters for the parent compound. When evaluating such a model,

one could examine the relationship between the predicted child c
a ( c2a2 )pred and the true



52 Samantha Durdy

(a) Using Random forest to predict c
a of a

compound using model described in 3.1.4

(b) Predicted vs actual c
a of child compound

from model trained on parent-child pairs as
described in Section 3.1.4

(c) Predicted vs actual difference in c
a of child

and parent compound from model trained
on parent-child pairs as described in Sec-
tion 3.1.4

(d) The predicted change in c
a against

true change in c
a in model trained on just

the child compounds as described in Sec-
tion 3.1.4

(e) Change in predictions of c
a of parent and

child compounds against true change in c
a in

model trained on just the child compounds
as described in Section 3.1.4

(f) Difference in weighted average Shannon
radius in parent and child vs difference in
c
a in child and parent compound as described
in Section 3.1.4

Figure 3.4: Results of different models on ICSD dataset
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child c
a (c2/a2)true; this leads to r2 = 0.95.

Alternatively, one could examine the success of the model in making predictions for

the child c
a (c2/a2) compared to the parent compound (c1/a1), which is described as r2

comp;

this leads to r2comp = 0.97 (Figure3a). This model correctly predicted the direction of

change in c
a 97% of the time and is referred to as the accuracy, or ordinal accuracy. Also

reported is the mean error of these models’ ca relative to the size of the c
a predicted (MRE);

here, MRE = 0.03. Using just the PbFCl structure type and related families to train such

a model (a training set size of only 878), resulted in r2 = 0.87 and an accuracy of 0.95.

While substantial datasets such as the ICSD improve performance if they are available,

changing the application of ML methods (for example through comparative predictions)

can obtain comparable results. These methods are seen to work on smaller, more spe-

cialised datasets where chemistries and/or structures are more similar. The accuracy of

the prediction of the direction of change in a substituted compound was found to improve

with the size of the change in c
a (Figure 3.3). For very small changes, the ordinal accuracy

of the model is better than a guess (and also better than trying to use a naive model using

the weighted average of the Shannon ionic radii, Figure 3.2b), and this improves with larger

changes in c
a .

However, r2 of the model shows no correlation for small changes, but improves dramat-

ically after the difference in the values of c
a is greater than 7% (Figure 3.3). Although this

ordinal accuracy is always better than a guess, for small changes in c
a , the accuracy is not

sufficient to be assured of correct predictions, particularly where small numbers of chemical

reactions are involved such as in this case. This could be partially attributed to dataset

noise; the ICSD contains materials synthesised and measured using different protocols and

instruments. Changes of less than 1% of c
a could be attributed to instrument error, making

these data of insufficient precision to be helpful in many circumstances. Nevertheless, RFs

were shown to be viable tools to guide synthetic experiments and demonstrate reasonable

performance, producing a c
a ratio when given an arbitrary composition without the need

for researchers to enumerate contributing factors. In practise, an investigator will have

a parent compound in mind and is looking for chemical substitution to produce a child

compound. Accordingly, a tool was developed with input data well matched to these cir-

cumstances (taking parent and child compositions and parental lattice parameters); this

model also performs the best of all models tested.

These conclusions are drawn for the models trained and tested with an 80/20 train /

test split, and ignored measurements made with LOCO-CV, which were universally worse.
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Comparative models performed better in LOCO-CV than a guess (Tables 3.2 to 3.4), which

indicates that these models are able to extrapolate to domains different from those in which

they are trained. However, examination of the clusters generated for LOCO-CV revealed

that they vary a lot in size (by at least two orders of magnitude each), making it unclear

whether extrapolation performance is being measured, or the effect of differing train/test

set sizes. These differences in cluster sizes are an indication that the domains being studied

here are not linearly separable through Voronoi tessellation. Further, this shows that use

of LOCO-CV is not always appropriate and must be examined critically when being used

to evaluate the effectiveness of a model. Exploration of this effect and proposals on how

to fix it will be further explored (Chapter 5).

3.1.6 Conclusion

RFs clearly outperform average weighted Shannon radii as predictors of c
a (with r2 of 0.75

and -1.06 respectively). However, this improvement is overshadowed by the effectiveness

of comparative models (Figures 3.4d to 3.4f) especially comparative models that train on

both parental and child composition (where the parent compound is a known compound

and the child is a variant on the parent to be investigated).

Comparative models which only train on child compounds provide more useful met-

rics than their noncomparative counterparts, while adding no additional computational

complexity. Comparing the predicted child c
a to the true parent c

a results in a similar per-

formance to comparing predicted child c
a to predicted parent c

a however the latter performs

better when child and parent c
a are very similar.

Although comparative models performed better on the larger, more general ICSD

dataset, simpler models performed better on the smaller, domain specific, PbFCl structure-

type dataset. The c
a of child compounds were easier to predict as the distance from the

parent compound increased; however, even with very similar child and parent compounds,

the models still outperform a random guess as to which c
a is larger; parent or child. These

results show the clear applicability of these models in guiding chemists to make informed

decisions as to which compounds to test experimentally to obtain the desired c
a ratios.

As well as the aptitude of RFs to predict unit cell parameters just using the elemental

composition of a compound.

The above has evaluated the usefulness of comparative predictions in the context of pre-

dicting lattice parameters. However, the usefulness of comparative predictions depends on
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how well this method would generalise to other algorithms, datasets or material properties.

RFs by their nature have no mechanism of comparing features within a single feature

vector. As such it is expected that substituting RFs for a different algorithm which can do

this (such as neural networks or linear regression) would, in theory, be better able to take

advantage of comparative predictions.

It is not clear that there is any specific feature of lattice parameter prediction which

would lead to this method performing particularly well for this task. Thus, comparative

predictions can be suggested for any property prediction task concerning substitutional

chemical studies. However, as this method has thus far only been used in this context,

further research would be needed in other contexts to confirm the efficacy of this technique

for that task.

Similarly there is no reason why comparative prediction would not generalise to other

datasets, but efficacy of this technique should be checked in new contexts due to the limited

scope of this study. Since completion of this work, the elemental movers distance (ElMD)

has been suggested as a robust distance measurement between compositions [66]. Future

work using the comparative prediction technique may find it useful, and informative to

investigate how the ElMD between parent and child compositions effects the efficacy of

comparative predictions.

In short there is no reason why comparative predictions should not generalise to other

tasks concerning substitutional chemical studies. Due to the limitted scope of this study,

it would be recommended to investigate (rather than assume) efficacy in any new con-

texts. However, the good performance of this method in predicting lattice parameters is

promising.

3.2 Predicting the pore limiting diameter of metal organic

frameworks

Note: This section is adapted from results published in Angewandte Chemie [144]. No

credit is claimed for the conceptualising, or downloading of the dataset or featurising of

metal species.

Metal-Organic Frameworks (MOFs) are a class of porous materials consisting of metal

ions linked by organic ligands (often called linkers). MOFs offer a large surface area and

have properties highly dependant on the size of their pores. As such, the ability to predict
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porosity is critical for designing MOFs with optimal gas storage, separation, and catalytic

properties. ML offers a fast and scalable method of screening potential MOFs for desired

properties.

Use of ML for prediction of MOF properties has been recently reviewed [77]. Many

works [136, 50, 120] used feature vectors engineered for the description of MOFs (some

of these features, such as pore sizes, require a priori knowledge of the MOF structure)

to build a series of machine learning (ML) models for the prediction of CO2 and CH4

adsorption. At the earliest stage of MOF synthesis only the chemical identities of the

organic linker and metal species are known, as such feature vectors should ideally avoid

inclusion of information that can not be readily calculated from either the metal or linker.

Existing ML are trained either from databases of hypothetical MOF structures [199, 17,

18, 59] or from the Computation-Ready, Experimental (CoRE) MOF database of reported

structures [29]. However, databases of, or based on, existing structures only cover a limited

part of the potential design space [77] and new combinations of metal species and organic

linkers will lead to new MOF structures that arise from their coupled chemistries. As such

an experimental dataset of Metal-Linker combinations was derived from the Cambridge

Structural Dataset (CSD) [119]. The derived dataset, focused on three-dimensionally con-

nected MOF structures and associated one metal and one linker to a calculated pore

limiting diameter (PLD), was dubbed 1M1L3D [144].

PLD can be calculated from a known MOF structure, and deterimines the size of the

molecules which can be absorbed within a MOF structure (thus is helpful in designing

MOFs for specific applications). While chemists may have target structures in mind dur-

ing synthesis, whether that structure will be formed, or can be formed, as opposed to

another structure with the same metal-linker combination is unknown a priori to synthe-

sis. Therefore, prediction of the potential PLD from a given metal-linker combination is

a good candidate task demonstrating the capabilities of ML in conjunction with the new

1M1L3D dataset.

This section describes the creation of a RF based ML model which trained on the

1M1L3D dataset which classifies a MOF structure’s porosity into one of four categories

with 80.5% accuracy. Specifically, the contributions of this section can be described as

follows:

• Exploration of solutions to problems with duplicated and conflicting data points

which can arise when using ML for materials property prediction, particularly, but
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not exclusively in the organic synthesis domain (demonstrated in Section 3.2.1 and

further discussed in Section 3.2.4).

• Exploration of use of sequential application of RFs for a well performing yet simple

to implement model (Section 3.2.2).

• Discussion of the advantages and disadvantages of simplifying tasks to classification

tasks (Section 3.2.4).

• Discussion of the benefits and drawbacks of models which aim to demonstrate datasets

(Section 3.2.4).

3.2.1 Data preparation

Featurisation

Much like magneto-caloric materials explored previously (Section 3.1), MOF’s unique prop-

erties are defined by a combination of their structure, and chemical make up. However,

MOFs, like other organic materials contain carbon atoms which can be arranged in chains

of varying topologies. Organic linkers can be represented as diagrams, or SMILES strings

(further discussed in Section 2.2.1), as is the case in the 1M1L3D dataset. While a ratio of

a MOF’s constituent elements could be extracted from this dataset, (similar to the ratio

used with magneto-caloric materials), the variation in linker topologies means that such an

approach is inappropriate to train ML models from, as it would discard valuable structural

data present in the linker.

However, as a baseline it is still interesting to consider only chemical (rather than

structural) information, so a fixed length vector was constructed to describe the chem-

ical composition of entries in the 1M1L3D dataset. All chemical elements encountered

throughout the entire dataset are accounted for in each entry: either by their number of

atoms in each linker or by a 0 if the element is not present. Similarly, for the metal, the

metal encountered in the given entry is marked as 1 whereas all other metals are marked

as 0. The total length of this vector encoding composition is 70, which corresponds to the

total number of distinct chemical elements encountered throughout the 1M1L3D dataset

(17 distinct chemical elements for the linkers and 53 distinct metals).

While the ratio of elements in a MOF was explored as a baseline, further exploration

of featurisation was needed. Six feature were previously selected to represent the metal

species:
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Figure 3.5: Creation of vector representations of MOFs

• Atomic number

• Atomic weight

• Atomic radius

• Polarizability

• Electron affinity

• Mulliken’s electronegativity

This feature vector for the metal was then concatenated with several representations for

a SMILES string (Figure 3.5). While more recent innovations have trained ML algorithms

using SMILES strings as inputs, SMILES strings are of variable length and thus are not

suited to as input to many algorithms. As this investigation was a preliminary demon-

stration of the capabilities of the 1M1L3D dataset, only algorithms that train from a fixed

sized input were considered due to their ease of use. Therefore, several representations for

SMILES strings, from two different software packages were considered:

• Molecular descriptors from Dragon6 using SMILES codes (Dragon 2D): Dragon6 [115]

is a commercial package that can calculate molecular descriptors relying on the 2D

molecular structures of the linkers. Using the SMILES codes provided as input,

Dragon6 returned 2,098 descriptors.

• Molecular descriptors from Dragon6 using 3D molecular conformations (Dragon 2D

& 3D): Dragon6 can also calculate molecular descriptors relying on the 3D molecular

structures of the linkers. To calculate 3D descriptors, linkers’ 3D molecular confor-

mations were provided as input, as well as information of atomic partial charges for

the linkers, which were assigned using Open Babel [129]. Dragon6 returned 3,582

descriptors using 3D structures.
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Figure 3.6: Performance of random forests in predicting MOF porosity using different
featurisation libraries

• Molecular descriptors from Mordred using SMILES codes (Mordred 2D): Mordred [121]

is a freely available package that can calculate molecular descriptors relying on the

2D molecular structures of the linkers. Using the SMILES codes provided as input,

Mordred returned 1,613 descriptors.

• Molecular descriptors from Mordred using 3D molecular conformations (Mordred 2D

& 3D): Mordred can also calculate molecular descriptors relying on the 3D molecular

structures of the linkers. To calculate 3D descriptors, the linkers’ 3D molecular

conformations were provided as input. Mordred returned 1,826 descriptors using 3D

structures.

While more descriptors could have been generated by both software packages, results shown

here filter out low-variance descriptors (excluding descriptors with a variance across the
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dataset of 0.0001 or lower).

Conflicting data entries in 1L1M3D

A common problem in ML for predicting properties of inorganic materials is that just

because two materials are constituted of the same elements, it does not mean they will

have remotely similar properties. One of the more prominent examples is the difference

between diamond and graphite, both of which are carbon. Similarly, just because a MOF

is made of the same metal and linker combination does not imply that they will have the

same PLD. As such, it is important to anticipate this to prevent potential data leakage

when training ML models.

The 1L1M3D dataset contains 14,296 metal linker combinations, but only 7,391 unique

metal-linker combinations. Often these duplicated combinations have vastly different

porosities: in it’s most extreme, there may be 179 different instances of a metal linker

combination with PLD ranging from 0.91 Å to 4.09 Å (Figure 3.7b). Three possible

courses of action were considered to account for repeated combinations:

• Removing any metal-linker combinations which occur more than once (leaving only

5,258 data points).

• Selecting one entry from repeated metal-linker combinations (such as the first entry)

and removing any recurrences of that combination.

• Aggregating repeated metal-linker combinations using, for example, the mean or the

median

All of these courses of actions have advantages and disadvantages. Removing any metal-

linker combinations which occur more than once not only reduces the dataset size, but also

induces a bias in the dataset. Metal-linker combinations which only occur once are likely to

be combinations that have been studied less, combinations for which successful synthesis is

hardest (and thus combinations which have been reported less), or combinations for which

only one possible MOF structure can result.

Selecting one entry from repeated metal-linker combinations allows for all 7,391 unique

metal-linker combinations to be investigated. However, the selection of which result to keep

is likely to be arbitrary as the dataset is too large to manually select the most appropriate

PLD for each repeated metal-linker combination. There is also no guarantee that a ”most
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appropriate” PLD exists, and this selection process induces the biases of the researcher

who is doing such manual investigation.

Aggregating repeated metal-linker combinations using the mean, or median systematic,

and can be done without manual interrogation of the dataset. However, the nature of these

aggregation functions means that reverse lookup of entries can become impossible. This

means that if a researcher wanted to look up the publication associated with a metal-linker

to PLD combination, such a publication may not exist.

For the purposes of this investigation, the median PLD for a metal-linker combination

was used. As this model was intended to be a demonstration of the dataset, reverse look-up

of publications was seen as a less important factor. Median was selected over the mean

PLD to ignore outliers. Following the aggregation by median PLD the dataset could be

split into a training set (of 5912 MOFs) and a test set (of 1479 MOFs) , without fear of

data leakage.

Categorising porosity

As a continuous value, porosity could be predicted using a regression model. However,

as discussed (Section 3.1) and will be noted as a theme for this chapter (Section 3.3)

classification is a simpler task, with a more limited range of outputs. As such many models

(and RFs in particular) will show improved performance in a classification task as opposed

to a regression task in the same domain. However, while training of a regression model

to predict porosity will be explored to demonstrate this point (Section 3.2.2), considering

prediction of porosity as a classification task will be the primary concern of this section.

In order to simplify this task from a regression task to a classification task, PLD

must be categorised. Following convention [29], MOF structures with a PLD larger than

2.4Å(approximately the van der Waals diameter of H2) were considered porous. This split

the dataset approximately in half (3629 porous and 3762 non-porous). In order to further

discriminate between porous materials further categories were created, splitting the at the

4.4 Åand 5.9 Å, creating four categories (Figure 3.7a).

3.2.2 Model creation

To justify RFs as the choice in classification algorithm, several models were tested in their

ability to predict where of MOF was porous (had a PLD larger than 2.4 Å). To do this, the

Mordred 2D descriptors were used. Algorithms were implemented with Scikit-learn [140]
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(a) (b)

Figure 3.7: (a) A histogram of the pore limiting diameters (PLDs) of MOFs in the 1M1L3D
dataset (b) A histogram the PLDs of the modal MOF in the 1M1L3D dataset, which has
ligand of OC=O linking magnesium atoms.

with diameters set to default unless otherwise specified, and their performance was com-

pared via a 3-repeated stratified 10-fold cross validation procedure. As the performance of

each algorithm depends on the number of features used to train the models, each of the

classification algorithms was tested with a range of different numbers of features selected

using the SelectKBest procedure [140].

The following classification algorithms were tested:

• logistic regression (LR): with a ‘liblinear’ optimization algorithm (solver=’liblinear’)

to perform (multi class=’ovr’).

• linear discriminant analysis (LDA): with default parameters.

• k-nearest neighbors (KNN): with default parameters.

• decision tree classifier (CART): with default parameters.

• Gaussian naive Bayes (NB): with default parameters.

• Support Vector Machine (SVM): with default parameters.
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Figure 3.8: Performance of MOF porosity classifiers with different numbers of features.
Random forests consistantly performed best using this feature set.
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• bagging classifier (BC): with default parameters.

• random forest classifier (RF): with default parameters.

• multi-layer perceptron classifier (NN MLP): with a maximum iteration number in-

creased to 500 (max iter=500). By default, this is configured to have one hidden

layer of size 100, and ReLU activation functions, optimised by the Adam gradient

descent algorithm.

The accuracy of each algorithm was used to assess its performance. RFs consistently

yielded the best accuracy across the entire range of features tested, from 20 to 1000 (Fig-

ure 3.8). The numerous reasons could be suggest for RFs’ robust performance. One may

be that RFs’ bagging and boosting make it resilient to outliers, this can be evidenced

that the second best performing algorithm (BCs) was also an ensemble that uses bagging.

Examining the distribution of data points suggests there are some outliers (Figure 3.7a).

Another explaination is taht RF’s perform well with little data. There are 5912 training

data points, which while a lot for the materials science domain is still relatively little for ML

more generally. In particular, the NN MLPs tested had a hidden layer of 100 parameters,

it may be that more data was required to addeqauatly tune these networks.. Regardless of

reason, RF’s good performance, resulted in the algorithm being chosen to train the models

that were tested in subsequent analyses.

Having selected RFs as the appropriate model, featurisation methods outlined in Sec-

tion 3.2.1 were investigated. Mordred 2D descriptors were found to be the most effective,

though the differences between all the featurisation methods tested were small (Figure 3.6).

For this reason, 50 Mordred 2D descriptors (chosen using the SelectKBest algorithm) were

used in model creation.

Once the ML algorithm and the set of features were chosen, the hyperparameters of

the RF algorithm were investigated using a grid search. The RF algorithm performs well

with the default settings, and the changes of the hyperparameters could produce only a

slight increase in performance. Therefore, the only change to the default hyperparameter

was to increase the number of trees in the forest. Thus RFs discussed in this section use:

• 2000 trees in the forest (chosen to balance performance with time complexity)

• at least 2 samples to split a node

• at least 1 sample per leaf
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• a minimum weighted fraction per leaf of 0.0

• a maximum number of features considered per node split of log2

• an unlimited number of leaves per node

As discussed (Section 3.2.1) gaining further insights to MOF porosity can be advan-

tagous. A sequential application of RFs was implemented, featurised inputs were sequen-

tially passed through three RFs. Each RF is trained as in binary classification of the

porosity of MOFs as above or below an increasing threshold of PLD. The first RF (re-

ferred to as model 1) classifies the porosity of a MOF as being porous or non-porous (PLD

of greater or less than 2.4 Å). The second RF (model 2) classifies porosity as having large

or small pores (PLD greater or less than 4.4 Å given porosity > 2.4 Å. The last model

(model 3) classifies the porosity pores as being large or very large (PLD greater or less

than 5.9 Å given porosity > 4.4 Å). In combination, these RFs assign a MOF porosity

as one of four categories (porosity < 2.4 Å, porosity < 4.4 Å, porosity < 5.9 Å, and

porosity ≥ 5.9 Å).

To establish the effectiveness of this sequential application of RFs, two further RFs

were trained:

• A multi-class classifier, categorising input into one of the 4 outlined categories.

• A regression model, whose output was then assigned into one of the four categories

(use of RFs as regressors is discussed further in Section 2.1.7).

3.2.3 Results

Using an 80/20 train/test split, model 1 successfully classified MOFs in being porous on

non-porous 80.5% of the time, with models 2 and 3 being accurate 76.3% and 68.5%

of the time respectively (Table 3.6). These decrease in performance between models 1

and 3 can be explained by the smaller training sets, as models 2 approximately half the

number of MOFs as model 1, and model 3 was trained with approximately a quarter of

the MOFs (Figure 3.7a). While binary confusion matrices can be presented for each model

individually (Figure 3.9), these can be combined into a multiclass matrix (Figure 3.10).

Similarly, further metrics for the performance of this model are also reported (Tables 3.6

and 3.7).
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Table 3.6: Summary of performance metrics for the task of Models 1-3 using The
validation dataset was used to measure performance at predicting whether whether
a MOF’s porelimiting diameter (PLD) was greater or less than a certain threshold.
For the 4.4Å and 5.9Å thresholds, the MOFs with PLDs less than 2.4Å and 4.4Å re-
spectively were removed from the test dataset. This allows for comparison of three
different approaches: Sequential (Seq.) (i.e., Models 1,2 and 3 separately), multi-class
(M.C.) and regression (Reg.) approaches described in the text (Section 3.2.2).

PLD≥2.4Å PLD≥4.4Å PLD≥5.9Å
Seq. M.C. Reg. Seq. M.C. Reg. Seq. M.C. Reg.

Accuracy 0.81 0.78 0.75 0.77 0.72 0.73 0.69 0.66 0.63
Cohen’s κ 0.60 0.55 0.51 0.54 0.43 0.47 0.38 0.32 0.26
Matthew’s* 0.60 0.56 0.52 0.54 0.46 0.48 0.38 0.34 0.30
F1 0.78 0.73 0.76 0.76 0.66 0.70 0.69 0.59 0.52
Hamming loss 0.20 0.22 0.25 0.23 0.28 0.27 0.31 0.34 0.37
Jaccard score 0.64 0.58 0.61 0.62 0.50 0.54 0.52 0.42 0.35
Precision 0.80 0.83 0.69 0.78 0.82 0.81 0.69 0.75 0.75
Recall 0.76 0.66 0.85 0.75 0.56 0.62 0.68 0.49 0.40
0-1 loss 0.20 0.22 0.25 0.23 0.28 0.27 0.31 0.34 0.37

* Matthew’s Correlation Coefficient

Assigning outputs of a regression model to a class performed worse than the sequential

and multi-class models with balanced accuracy of 51% compared to 58% and 54% accuracy

respectively (Table 3.6). While the multi-class model had equal accuracy to the sequential

models, when considering metrics which account for class imbalance in the overall dataset,

the sequential model performs better (Table 3.7). Each binary classification task described

in Section 3.2.2 was designed such that classes for each task were balanced. Thus, ex-

amining the performance of the multi-class model on each of these tasks highlights the

superior performance of the sequential approach (Table 3.6). This justifies the sequential

application of RFs as a successful approach to decompose the problem of predicting MOF

porosity.

3.2.4 Discussion

RFs are seen to provide a good indication of MOF porosity using pre-existing feature de-

scriptors. Mordred was seen to result in marginally better predictions than those generated

with Dragon6 (Figure 3.6. This is a good example of open source software being equally
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(a) (b)

(c)

Figure 3.9: Confusion matrices for predicting pore limitting diameter (PLD) using a se-
quential approach (a) Model 1 predicts whether a MOF has pores of greater or less than
2.4 Å. (b) Model 2 is trained on MOFs with a PLD of greater than 2.4 Åand predicts
whether a MOF has a PLD greater or less than 4.4 Å. (c) Model 3 is trained on MOFs
with a PLD of greater than 4.4 Åand predicts whether a MOF has a PLD greater or less
than 5.9 Å.

useful to commercial alternatives.

Due to long chains of hydrocarbons being very varied in structures, one would expect

composition of a MOF to not be informative as to it’s properties. However, representing

MOFs using chemical composition still allowed for prediction of MOF porosity with 73%

accuracy. As will be further explored (Chapter 5), the differences in prediction accuracy

between feature engineered vectors and encodings of the composition is surprisingly small

(approximately an 8% accuracy improvement).
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Table 3.7: Comparison of the sequential, multi-class, and re-
gression methods of predicting MOF porosity. While multi-
class and sequential approaches have the same accuracy, se-
quential approach outperforms multi-class when measuring
using metrics which account for class balance in the dataset.

Sequential Multi-class Regression

Accuracy 0.68 0.68 0.59
Balanced accuracy 0.58 0.54 0.51
Cohen’s κ 0.49 0.46 0.38
Matthew’s* 0.49 0.46 0.39
F1 0.68 0.68 0.59
Hamming loss 0.32 0.32 0.41
Jaccard score 0.52 0.51 0.42
Precision 0.68 0.68 0.59
Recall 0.68 0.68 0.59
0-1 loss 0.32 0.32 0.41

* Matthew’s Correlation Coefficient

The impact of better featurisation on prediction of whether a material was porous or

non-porous was not disimilar to the impact of using a sequential classification model over

a regression model, which improved performance by 8% (Table 3.6). While the sequential

application of RFs does increase the model training time, RFs are still fast to train when

compared to other approaches such as deep neural networks. This is in line with trends

from the literature which suggest that when using feature vector representations of ma-

terials, combining more, faster to train models will result in comparable if not improved

performance when compared to deep learning methods [39].

One advantage of modelling the task of PLD prediction as a classification task rather

than a regression task is more definite success critera. A classification prediction will either

be incorrect or correct. In contrast, a regression model may only be able to provide an

average level of accuracy (i.e., mean error), which can be more difficult to interpret and

may lead to lower adoption rates for the model. However, this also removes nuance from

predictions. For example, a classification model may be able to predict whether a MOF

is porous or not, but not the degree of porosity. This can be countered by introducing

more classes, such as presented here, but there is a clear trade-off to be made between the

nuance of prediction and the ease of model evaluation.
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This trade-off is perhaps the most generalisable finding from this study. Regardless,

of the property which is being predicted, or the ML model being used, the type of task

and the metrics chosen for evaluation are vital in communicating the importance, and

usefulness of an ML model.

Other findings are not so generalisable: It is not clear that sequential binary clas-

sification offers distinct advantages (or distadvantages) over multiclass classification for

materials properties outside of MOF porosity. Researchers could examine these methods

in other contexts, but as seen here impact seems to be minimal compared to other variables,

such as choice of algorithm, or use of regression or classification tasks.

In the case of MOF porosity prediction presented here, it would have made no difference

whether a regression or classification model was used, as no MOF’s were made based on

the prediction of this models. It is easy to conceive of a similar study to this that posed

the prediction of MOF porosity as a regression problem. The conceived study would have

chosen algorithms, and representations which resulted in the best regression performance,

and reported results suggesting how useful the regression model was. As seen from the

regression model trained for this study, such a model would likely perform well (Tables 3.6

and 3.7 and fig. 3.9). Metrics such as r2, or mean error, could be used to justify this

regression model, and the model would still have served the purpose of demonstrating the

usefulness of the 1M1L3D dataset.

Without a clear use case and without incorporation into experimental workflows, while

models such as the one presented here can at most demonstrate the potential of new

techniques or datasets. In isolation, an ML model can never discover a new material, only

predict the possible characteristics. Access to this dataset and the model’s code are made

free and open to the community so that researchers can incorporate this model into their

experimental workflows, or build on it to gain new insights [164]. However, some coding

knowledge is required to be able to use the model in this format. Improving access to ML

models, and better designing workflows with ML in mind is key for their justification and

will be discussed in subsequently (Chapter 4).

3.2.5 Conclusion

This section outlined the preparation of a new dataset for ML, and the implementation of

a sequential RF approach to classification of MOF porosity. It was noted that in different

MOFs may have the same linker and metal combination, but vastly different properties.



70 Samantha Durdy

While in all areas of materials science, compounds may contain the same elements but differ

in structure, this is particularly a problem for the fields of MOFs and organic chemistry,

where hydro-carbon chains can form large and complicated structures.

As such, featurisation methods to represent linkers were tested, finding marginally

better predictive performance for models trained using the open-source Mordred software’s

representations as opposed to the licenced Dragon6 software’s representations. The model

presented could be used to screen candidate MOFs for their predicted porosity, and is made

open-source for this purpose. However, without a clear method of integrating this model

into an experimental workflow this model is of limited use. Methods of integrating models

such as this into experimental workflows will be explored in the next chapter (Chapter 4).
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(a) (b)

(c)

Figure 3.10: Confusion matrices for predicting pore limiting diameter (PLD) as a multi-
class classification problem (a) Confusion matrix using a sequential model (combining
models 1, 2 and 3) (b) Confusion matrix using a multi-class random forest (RF) (c) Con-
fusion matrix for a regression RF who’s output has been assigned into converted assigned
to the relevant class.
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3.3 Considerations in using random forests for prediction of

material properties

This chapter has examined two examples of using RFs to predict materials properties, giv-

ing reflections on each. On their surface both examples are very different. One (Section 3.1)

concerns inorganic chemistry, the other organic chemistry (Section 3.2). One encodes the

materials using ratios of composition; the other uses an engineered feature vector. One

approaches the task from the view of chemical substitution studies, the other takes a more

general approach which only uses linker SMILES and metal ligand information.

A common theme between these two studies is that rather than using more complex

models, both simplify the prediction task at hand to a binary classification problem in

order to report improved results. The prediction of c/a ratio was simplified to binary

classification of a new material compared to the c/a of an existing material, and the

prediction of MOF porosity was simplified to three binary classification models used in

sequence. Were these models to be used for the screening of potential new materials, this

simplification would not have a substantial effect on the use cases of these models compared

to more complex regression models.

Another common theme is that none of the models presented in this chapter were used

to justify synthesis. While both of the studies here supplemented publications useful to the

community [125, 144], and could be used to inspire future research, no materials resulted

from the works discussed here. It is clear that for the discovery better accessibility for

these models are required, and more work is required to integrate models such as these

into the materials discovery process. In the following chapters this issue will be further

examined, and methods to address it will be suggested.

3.4 Thesis context

In this chapter, an exploration was conducted on the use of RFs for predicting materials

properties. The next chapter (Chapter 4) expands on this line of inquiry by examining

how RFs (and ML methods more generally) can be employed in collaboration with ex-

perimentalists to explore potential new superconductors within the context of materials

discovery.

Although the featurisation methods employed were briefly outlined, a more compre-

hensive investigation is warranted to justify the techniques used. Consequently, the subse-
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quent chapter (Chapter 5) undertakes a detailed examination of these methods, and further

methods to quantify model (and featurisation method) performance.



Chapter 4

Collaborative workflows for

discovery of superconductors and

other functional materials

This chapter explores two distinct approaches to using machine learning (ML) for material

discovery. The first involves direct collaboration with experimental chemists with the goal

of creating new superconductors. To achieve this, a basic random forest (RF) model was

trained to predict superconducting critical temperature, Tc, at the time RFs were the

most notable ML models for use in the prediction of superconductors [170]. A feedback-

driven workflow was established to enable effective collaboration, focussing on areas of the

chemical space that align with the chemists’ interests.

The second approach involves collaborating with computational researchers to improve

the accessibility of their tools. Specifically, these tools are transformed into web apps

that can be easily used by people without coding experience. This chapter provides a

comparative analysis of the two collaborations, examining the practicalities of translating

ML models into novel materials within an academic context.

Note that, as discussed (Section 1.1), this thesis was never intended to focus on chemical

synthesis, but rather to collaborate with highly specialised chemists to guide their work.

With this in mind, the following sections offer valuable insights into the various ways

in which ML can be used to facilitate meaningful collaborations and drive innovation in

materials science.

74
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Specifically the contributions of this chapter are as follows:

• A thorough investigation of literature surrounding the prediction of superconducting

critical temperature.

• Exploring the “garbage in” method found in the literature, and questioning its under-

lying assumptions (namely that the Crystalographic open database does not contain

any superconducting materials) and investigating the effects of those assumptions.

• Definition of a workflow to allow for collaboration and feedback with experimentalists.

• Screening of over 1 billion candidate materials for superconductivity using ML meth-

ods.

• Collaborating with experimentalists to identify areas of interest in the chemical space,

helping to rationalise results from the screened materials.

• Creation of a filter to identify materials which could be potentially arc-welded.

• Inspiring the synthesis of possible candidate materials in the Sr-Cu-Sn and Sr-Cu

phase fields.

4.1 Collaborating to create superconductors

This section documents the process of developing superconductors through the use of RFs

to predict Tc. The initial plan was to use the best published methods to predict whether a

material was superconducting and present predictions to experimental chemists for them

to possibly synthesise. Feedback was incorporated to guide the creation of a workflow that

was used to refine lists of candidate superconductors.

A thorough review of the relevant literature is conducted to determine a viable strategy

for predicting whether a material is a superconductor. When initial results were presented,

it became clear the importance of identifying candidate materials that were easy to syn-

thesise or that were within a chemical space closely related to an experimentalist’s existing

work and research interests. This prompted the development of a workflow that could

take into account these considerations. After several iterations and hyperparameter ad-

justments, the synthesis of new materials was attempted. This section will go into the

details of the process, including the models that were developed, the justification for these
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models, and the workflow that was produced to enable successful collaboration between

ML and chemistry experts.

4.1.1 What are superconductors?

Superconductors are materials that exhibit zero electrical resistance below a specific crit-

ical temperature, Tc. They have a wide range of potential applications in industries

such as healthcare, transportation, and energy. There are several known mechanisms

by which a material can display superconducting properties. Notable categories include

Bardeen–Cooper–Schrieffer (BCS) theory superconductors, cuprate superconductors (with

YBa2Cu3O7 as a notable example), iron pnictides, iron oxyarsenides, and hydrides.

BCS theory developed in the late 1950s and explains that superconductivity arises due

to the formation of electron pairs called Cooper pairs [172]. At low temperatures, the low

energy of the phonons in a material allow these Cooper pairs to move through a material

without resistance. BCS theory superconductors have low critical temperatures, usually

below 30 K.

Cuprate superconductors are a type of high temperature superconductor that have

critical temperatures above 30 K [147]. They are made of copper oxide layers and other

elements. The mechanism behind Curpate superconductivity is still not fully understood.

Iron-oxi-arsenide and iron pnictide superconductors were discovered more recently

than cuprate superconductors and are made of iron, oxygen, and either arsenic or ni-

trogen [133, 160]. The critical temperatures for these superconductors typically range

from 26 K to 55 K. It is thought that iron arsenide or nitride layers play a key role in the

superconductivity of these materials.

Hydrides are a new class of superconductors that were discovered in the last decade [53].

They are made of hydrogen and a metal such as lanthanum or yttrium. They can have

very high critical temperatures, up to 250 K, but they require extremely high pressures to

be produced. Hydrogen atoms are believed to play a crucial role in superconductivity, but

the exact mechanism is still being studied.

It should be noted that while these categories represent significant advances in the field

of superconductivity, it is still unclear whether they represent the full spectrum of super-

conducting materials or whether additional categories remain undiscovered. Additionally,

both pressure and electron doping can impact the superconducting properties of materials,

which are not fully addressed by the methods presented in this section. These issues will
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be explored further in Section 4.1.10.

4.1.2 Relevant literature

Before engaging with the literature, it is pertinent to say that the literature has changed

since this work was done. Changes will be noted in this section and how such changes

could have impacted this project will be noted in Section 4.1.10

A key part to understanding the nuances of the literature on using ML to predict

superconductors is understanding the dataset. All studies discussed here use the super-

conductors dataset from the Japanese National Institute of Materials (supercon) [130].

Supercon was available online on the National Institute of Materials website until approx-

imately mid-2021, when it was removed until it migrated to a different host in December

2022 [114].

Between these two dates the two versions of supercon were publicly available. The first

was in the GitHub repository associated with Stanev et al.’s work [170]. The second was

redistributed on Kaggle and associated with the work of Hamidieh [64]. Stanev et al.’s

work uses a RF to predict Tc of a material in three contexts:

• Training a regression to predict Tc.

• Training a classification model trained to classify whether a material with have

Tc greater or lower than 10K.

• Training a regression model to predict Tc for materials which have Tc greater than

10K.

Train and test sets were derived from the supercon dataset, with duplicate entries removed.

Compositions were featurised using a custom composition-based feature vector (CBFV),

implemented with the matminer package [194]. Due to a lack of specificity on the exact

constituents of this CBFV, exact reproduction of this study is not possible, although the

results reported are broadly in line with similar CBFVs and experiments (as will be seen

in this section and in Section 5.2). As this dataset is only materials with a reported Tc,

there is no negative data available to the model during training. That is, the model is

not trained on anything that is known to not be superconducting. For example, in order

for the regression model to consider a candidate material not to be a superconductor, a

prediction that Tc = 0 K should be returned. But non-superconducting materials are not
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just superconductors with a Tc of 0 K, as such any model trained with such a schema will

have a bias which is not indicative of the real world.

Further work used convolutional neural networks in the prediction of Tc [88]. This work

predicted Tc as a regression task and whether Tc > 10 K as a classification task, convolving

over a periodic table representation of the composition of materials. To address some of the

issues highlighted in Stanev et al.’s work a “Garbage in” method was proposed, in which

non-superconductors were considered to have a Tc of 0 K to provide more negative examples

to the ML models. Non-superconductors were considered to be structures reported in the

Crystallography Open Database (COD) that were not featured in the supercon dataset.

It is notable that the structures reported in the COD could be superconductors that have

not yet been identified or added to the supercon dataset. i.e., this assumes that the COD

are known negative data points, when they are just unknown data points. This work used

the GitHub redistribution of supercon, and thus any repeated entries were removed.

Two further studies propose general purpose prediction of Tc and use the supercon

dataset but do not remove duplicates [64, 158]. This means that the same composition

with different levels of electron doping could be present in both the training and data,

which is a clear source of data leakage. One of these studies used a variant of RFs and a

composition vector representation, the other, Hamidieh, used extreme gradient boosting

(XGBoost) with a custom CBFV [24]. Data associated with Hamidieh’s study are available

on Kaggle [178], which continues to lead to further confusion and publications with inflated

performance due to data leakage [203]. Since the work presented in this section was carried

out, Hamidieh’s ML model implementation has been reproduced using Stanev et al.’s

distribution of the supercon dataset [168], finding results to be marginally better than

those seen using RFs. However, as will be seen, partial recreations presented here will not

agree with this finding. Although recreations presented here (Figure 4.1) do not contain

any hyperparameter tuning, which likely explains the difference.

It is notable that other work focused on predicting the Tc for subsets of superconduc-

tors [74]. However, as no specific subset of superconductors was highlighted at the onset

of this study, these have been omitted from this review of the literature. Subsequent work

has tried different ML models [57], showing some improvement over Stanev et al.’s work.

Although structural information was not used in any of the experiments presented in this

chapter, the performance of the ML model has been seen to improve using structural in-

formation [201], including information extracted from band structures (this will become

relevant again in Chapter 7).
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(a) (b)

Figure 4.1: Two prominent algorithms used in the literature to predicting Tc. Two notable
representations are also compared. (a)The r2 correlation between predicted and and true
values of Tc. (b) The mean absolute error between predicted and and true values of Tc.

4.1.3 Initial experiments

Work was done to review the work of Stanev et al., using a RF to predict the Tc for a

range of superconductors. As the custom CBFV used in that work was not reproducible,

a composition vector, CompV ec [79] and the common CBFV magpie [192], were used

(see Section 2.2.5). CompV ec was found to be roughly as effective as the CBFV, which

prompted a further study on the effects of material representation on ML model perfor-

mance, which will be presented in Chapter 5. Both XGBoost and random forests were

tested and XGBoost was found to perform slightly worse (Figure 4.1). As the goal was

to minimise the number of experiments taken to successfully identify a superconductor,

precision was used as the metric for success.

The garbage in method was evaluated, but rather than using data from the COD,

the Inorganic Crystal Structure Database (ICSD) was used as it is a larger source of

data. It was found that garbage in resulted in a slight improvement in the performance

measured with a test set that had also been diluted using the same proportion of garbage

in (Figure 4.3), but it was observed that the ICSD may contain superconductors that have
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not yet been identified, as such could not constitute garabge. As such, further experiments

were carried out to see if the source of negative data for the garbage in method made a

difference to the resulting precision (Section 4.1.5).

After the initial models were trained. Predictions were made from 3 lists of candidates:

• The ICSD.

• A list of 1 billion charge neutral candidates generated using combinations of elements

sampled in order of the periodic table (i.e. first H, then He... then H and He....).

Charge-balanced combinations of these elements were found using an existing tool [34]

to create the candidate list.

• A list of 1 billion charge neutral candidates chosen from random combinations of

between 1 and 8 elements.

Having screened these lists, it became clear that further methods were needed to limit

the results to be analysed. Feedback also suggested that chemists would be more likely to

synthesise something which was easy to synthesise or was adjacent to their field of interest.

A filter was defined to find combinations of elements that could be smelted together in an

arc welder (Section 4.1.7), and further areas of interest were defined to help filter the list of

candidate predictions. To help inform chemists, different models were combined to create

uncertainty estimates of the predictions (Section 4.1.8). In addition to this, a workflow was

established to help communicate the results and ensure efficient work and communication

(Section 4.1.4).

4.1.4 Established Workflow

Explicitly stating the steps involved with the process of using ML for materials discovery,

each process can be individually optimised. For example, the workflow presented here

starts (Figure 4.2) with featurisation, which garbage in is discussed in Section 4.1.5, but

overall the featurisation process will be fully explored in chapter 5.

After data have been featurised, a model must be built. New ML models and evalua-

tions of types of models are a common source for investigation [57, 38]. In this thesis, the

evaluation of this step is mostly confined to Chapter 7.

After training an ML model, it should be evaluated, methods for this are introduced

in Section 2.1.6, but fully explored and expanded on in Chapter 5. Once the performance
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Figure 4.2: A workflow for discovering new materials

of a model has been established on a general dataset, candidate lists can be screened

as detailed above (Section 4.1.3). These candidate lists can then be filtered based on

criteria (Section 4.1.6 and Section 4.1.7). Performance can then be reevaluated on classes

of materials which are of interest, and predictions can be checked against the literature

to establish if the candidate list contained materials of interest which have already been

discovered. For example, in the search for superconductors described in this chapter, many

of the materials flagged to be of interest, were already investigated, and were found to be

superconducting but were not in the supercon dataset. Lists of candidates can be further

limited by grouping them by phase field, which can result in a digestible list of predictions

to be presented to experimentalists who may or may not choose to synthesise results.



82 Samantha Durdy

Crucially, this workflow contains many areas for feedback, where decisions different

choices can be made. This can be seen as a positive, as there are many opportunities to

improve the process, but also as a negative, as there are many opportunities to get stuck

in a feedback loop in which nothing ever gets synthesised.

4.1.5 Garbage in

It was observed that the garbage in process had a flaw in that there is an assumption that

anything in the ICSD was not superconducting if it was not in the supercon dataset. To

see if this impacted model performance, criteria that would preclude a material from su-

perconductivity were established. Sets of materials in the ICSD which fit that criteria were

used as the non-superconducting results for the garbage in process. Thus, the following

sets were defined as sources of garbage:

1. Insulators (experimentally measured): Materials that had been experimentally mea-

sured to have a band gap greater than 1eV. Insulators are not known to be super-

conducting and as such provide definite negative results.

2. Insulators (DFT calculated): Materials which had been calculated to have a band gap

greater than 1eV using density functional theory (DFT). Note that DFT is known

to underestimate band gaps.

3. Magnets: Materials which exhibit magnetism as determined by having a Curie tem-

perature reported for them. Magnets are not known to be superconducting and, as

such, they provide a good source of negative results.

4. Insulators and magnets: the union of the sets of experimentally measured insulators

and magnets described above.

5. ICSD: any member of the ICSD that is not reported in the supercon dataset

6. No garbage: No garbage in provided.

These garbage sources were combined with the supercon dataset in various proportions and

the performance of a RF in prediction of whether the Tc was greater than 0 was established.

The source of garbage was found to make little difference to the performance of the

models (Figure 4.3), with what impacted performance the most is the amount of garbage
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(a) (b)

(c) (d)

Figure 4.3: How garbage in affects performance depending on different sources of garbage
in. It is unclear whether garbage in should be evaluated using only the supercon test set,
or on a test which also is diluted with other results. Increasing the amount of garbage
in is seen to improve performance using the former schema. Using the latter schema,
performance in the test set decreases when the training set contains approximately twice
as much garbage as it does ground truth data points. Different sources of garbage do
not seem to affect performance. Results shown here are the mean of two RF models,
one trained using a CompV ec representation and the other a magpie. (a) r2 of models
trained with different proportions of garbage in as measured by a test set with the same
proportions of garbage in. (b) r2 of models trained with different proportions of garbage in
as measured by the supercon test. (c) Mean absolute error of models trained with different
proportions of garbage in as measured by a test set with the same proportions of garbage
in. (d) Mean absolute error of models trained with different proportions of garbage in as
measured by the supercon test set.
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present relative to the size of the supercon dataset. Depending on whether results were

measured with a test set diluted by non-superconductors changed whether garbage in was

beneficial. To balance observations made on test sets with and without garbage in, a ratio

of 2:1 garbage to superconductors was chosen for the training set for experiments going

forward. For sources of garbage which did not contain enough data points to make up that

ratio, all of that source was used as garbage.

This results in 12 different RFs: one magpie and one CompV ec model for each point

in the above enumeration. The 12 regression models were used forward, with the ratio of

agreement of these models being used as a proxy for confidence. This will be discussed

in Section 4.1.8.

4.1.6 Areas of interest

Discussion in the literature largely focusses on finding high-temperature superconduc-

tors [170, 117]. That is, the objective is often seen to be to find superconducting materials

with the highest Tc possible, with the ultimate goal being a material that is superconduct-

ing at room temperature.

As such tasks in the literature are modelled with this in mind. As noted earlier (Sec-

tion 4.1.2), work is often divided into two tasks, prediction of Tc and prediction of whether

Tc is above 10 K. Initial experiments reflected this (Section 4.1.3), focussing on the latter

of these tasks. However, it became clear that what was considered to be more interesting

were materials which fall into specific categories.

The following categories were identified as areas of interest:

1. The materials predicted to have Tc > 30 K, that do not contain cuprates, iron

arsenides, or iron selenides. High-temperature superconductors that fall into this

category are of interest as it would be unclear what mechanism would cause super-

conductivity.

2. Materials predicted to have Tc > 20 K, and less than 10% molar mass oxygen. These

materials were considered to be intermetalics, which tend not to be superconductors

at higher temperatures

3. Materials predicted to have 10 K < Tc < 30 K with one of chromium, manganese,

iron, cerium or nickel. Superconductivity with a Tc less than 30 K would be indicative
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of a superconductor of BCS theory, but the listed elements are not typical of such a

material. As such, these would be of interest.

4. Materials predicted to have 1 K < Tc < 20 K no oxygen. For reasons similar to the

above but with a lower threshold to exclude cuprates.

5. Materials predicted to have 1 K < Tc < 20 K no oxygen, and no iron arsenides or

iron selenides. For reasons similar to the above.

It is with the last three items that the disadvantage of the approach taken here and

in the literature becomes clear. As non-superconductors are represented to the model as

having a Tc of 0 K, any material with a Tc of 0 K must be explicitly avoided. The nature of

RFs involves taking a mean of different predictions; thus, any prediction in a constituent

tree that is greater than 0 will result in a prediction from that RF of greater than 0. As

such, a lower limit must be put on to filter out very low results. This was set at 1 K for

categories 4 and 5, but increased to 10 K for category 3 based on the number of phase

fields predicted to have a Tc between 0 K and 10 K (approximately 60,000)

4.1.7 Defining a filter for materials that can be arc welded together

The candidate lists defined in Section 4.1.3 were screened through the model and then

filtered to highlight candidates that fit into the above categories. However, it was further

helpful to screen through materials which are likely to be easily synthesised.

Specifically, materials that can be arc-welded were suggested. As such, the above

categories were further filtered using the following criteria:

• The minimum melting point of any constituent element must be greater than 1273 K

(1000 Celsius)

• The difference between melting points of the constituent elements must be less than

500 degrees.

• The material cannot contain oxygen.

By definition, none of the predictions which fit into categories 4 or 5 also passed this filter.

None of the candidates were discarded for not passing this filter, but candidates that did

pass this filter were presented separately for researchers who were interested.
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4.1.8 Ensembles models as a proxy for uncertainty

To further aid decision making when presenting lists of candidates, an associated uncer-

tainty was provided. As 12 RF models were presented (see Section 4.1.8), the amount of

agreement between them could be used as an uncertainty measure. Specifically, agreement

here is defined as the proportion of models which agree that a given candidate is predicted

to fall into one of the areas of interest listed above.

It is fairly typical to use the differences between predictions of constituent trees in an

RF as a proxy for the certainty of a prediction [19], however, in this case numerous different

RFs were compared for three reasons:

• Candidates are grouped by phase field but screened as individual compositions:

rather than finding a way to aggregate different predictions across candidates in

the same phase field, one can count how many models predicted candidates in a

phase field fell into one of the areas of interest. This number can then be compared

to the number of predictions that considered a candidate to not fall into that area of

interest.

• It would theoretically allow for differentiation between predictions based on the source

of garbage that was used. In practise, this was argued against; RFs expect some

deviation in predictions, and reading too much into this deviation is ill advised.

• It was requested by the collaborators.

This uncertainty was presented with the list of candidate phase fields.

4.1.9 Results

The screening process described above allowed the lists of screened candidates to be limited

to a reasonable number of interesting candidates (Figure 4.4). 242 predictions from the

ICSD candidate list that fell into areas of interest were further researched. Of these 226 had

been found to be superconductors which had been characterised already in the literature

but were not part of the supercon dataset, and 16 had been characterised and confirmed

not to be superconductive. While this is encouraging because it implies that the models

are accurate, it also means that no materials that have already been synthesised have

potential to be resynthesised and characterised based on the findings here. Presenting the

list of candidates in this way prompted synthesis investigations the Sr-Cu-Sn phase field,
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Figure 4.4: The process utilised to screen large numbers of materials.

as well as SrCu5 and SrCu. SrCuSn2 and SrCu9Sn4 have been successfully synthesised,

but neither compound shows signs of superconductivity above 2 K.

4.1.10 Discussion

Defining the workflow formally proved to be a very helpful tool for collaboration and by

successfully filtering the lists of screened candidates into manageable sizes. Although none

of the RFs presented perform particularly better than those presented in the existing liter-

ature, they are very simple and provide a good proof of concept for the workflow presented.

These results could likely be improved upon through the use of deep learning techniques

or different featurisation methods. If any researcher does choose to try and improve on



88 Samantha Durdy

results seen here and wishes to communicate these results, it may be advisable to outline

a workflow such as that presented here to separate model development, featurisation, eval-

uation, and screening of materials. However, any researcher looking to improve on results

here may be better advised to rethink the tasks that a ML model is trained to do and

differ more from existing literature than this work did.

The literature surrounding this topic is flawed [168] and the work presented here does

little to fix it. The task of predicting new superconductors cannot be adequately modelled

on the assumption that materials that are not superconducting have a Tc of 0. As such

a regression model alone is not a good choice for this task. A better approach may be

to train a classifier as was done to predict MOF porosity in Section 3.2, with a further

category being for non-superconducting materials.

These ML models for predicting Tc may also benefit from incorporating pressure into

the prediction in some way. Many of the superconductors that have been reported to have

high Tc only do so in a pressurised environment. Incorporating information in some way

into a model better reflects where state-of-the-art is currently with respect to discovering

high-temperature superconductors.

Although the workflow presented here may be helpful, it is fairly typical of the literature

not only for superconductivity prediction, but also for a variety of other materials science

tasks [35]. Methods (such as those discussed in Sections 4.1.6 and 4.1.7) for filtering

candidate predictions based on specific criteria are often not explicitly noted. In this

collaboration explicitly noting the filtering methods used was helpful for communicative

purposes, and without them attempts to synthesise materials would have been unlikely.

Although this workflow is typical (particularly at the time when this work was done),

more recent literature seems to be moving away from this approach in favour of generative

models [4] or Bayesian optimisation (BO) [188]. Generative models used in this setting

would typically be used instead to generate structures or compositions which the model

believes to be typical of a material with a certain target property. This effectively eliminates

the screening step and the need to find lists of candidates. BO works by balancing the

uncertainty of a prediction with the value of the prediction to explore a problem space

(in this case a chemical space). BO is not suitable for all areas of chemistry; for example,

it is sometimes easier to sample a phase field uniformly than it is to target a specific

structure [175]. BO also sometimes requires that points be sampled from an area of a space

that a chemist may know is unlikely to yield positive results. It may not be conducive to

collaboration to discount the knowledge of a chemistry expert by relying solely on the
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output of a ML model.

The situation in which a computational researcher is not synthesising materials is com-

mon. There are broadly two ways for an experimental chemist to synthesise a screened

candidate. Either that chemist chooses to take time and resources from their research

schedule and synthesise the material, or the chemist is told to synthesise the candidate

by a higher up (such as a supervisor). Although automated laboratories are the topic of

current research, at the time of writing, collaboration is required.

In a hierarchical setting such as academia, it is completely possible that an experimen-

talist is told to make a material by, for example, a supervisor. At this point the person for

whom candidates are screened is not the experimentalist, but the experimentalist’s super-

visor. Although this abstraction is not necessarily bad, it does mean that the interest of

that experimentalist may not be taken into account. The creation of phase-pure novel ma-

terials is not easy, and it may require many attempts, as such enthusiasm for collaboration

is important.

Where a chemist chooses to synthesise predictions, such enthusiasm is already implied.

This reflection on the importance of enthusiasm for material synthesis would be true regard-

less of whether ML was involved in a process, but it is still important for ML practitioners

to note when collaborating in this field. It is not the purview of this thesis to discuss how

to inspire enthusiasm, but the observation is made that enthusiasm in collaboration must

be reciprocated. That is, enthusiasm for the techniques presented is important from the

computational researcher.

RFs are an algorithm that produce good results, and were state of the art for this

specific task at the time this work was done. However, other areas of this thesis were seen

as more pertinent and, as such, received more enthusiasm. Without enthusiasm for the

work presented in this section, any collaboration based off this work was likely to fail.

4.2 Implementing a cloud platform to aid material discovery

This section contains results under peer review at Royal Society of Chemistry: Digital Dis-

covery. Note that while credit as co-author of the system architecture is taken, only the

metal organic framework (MOF) prediction tool is a production solely of this thesis. Orig-

inal scripts for thermal conductivity prediction and heat capacity modelling were adapted

into web applications (with varying levels of code rewriting), and no credit is claimed for

element movers distance (ElMD) based applications or the lithium ionic conductivity pre-
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diction applications.

4.2.1 Introduction

In recent years, substantial investment has been made in developing computational tools to

expedite experimental workflows in material discovery. However, the integration of these

tools into the materials discovery process remains an ongoing research field. Although

code repositories like GitHub or compiled code [194] sharing can facilitate tool sharing,

such approaches require technical proficiency, which can hinder experimental researchers

without the necessary know-how from using the tools. Thus, reducing the technical exper-

tise prerequisite for synthetic researchers to employ computational tools is vital to ensure

their successful adoption.

Direct collaboration with computational experts offsets this need for computational ex-

pertise. Computational chemists are able to identify state-of-the-art tools and can develop

bespoke applications where needed. This type of collaboration may require organisational

restructuring to most effectively accommodate computational developers and trained tech-

nical users identifying separate priorities.

Three distinct paradigms for sharing computational tools may be observed; the private,

shared, and cloud paradigms (fig. 4.5). Private tools are those described in the literature

but not made publicly available. Shared tools are accessible when running on local hard-

ware, and cloud tools are accessible for remote usage. Notably, both shared and cloud

paradigms may or may not be open-source and/or free. This section focusses on the cloud

and shared paradigms, with the aims to use cloud resources to ease collaboration between

experimental and computational chemists.

Often nebulously defined, “the cloud” typically refers to the global network of computer

servers on which computation. Cloud based tools (also called applications, apps, services,

or micro-services) described in this section are, broadly, algorithms or functions which take

user input communicated via web protocols (such as HTTP [51]), process these data, and

return the output to the user in a presentable fashion (i.e., in a graphical web browser).

For materials scientists, examples of such tools range from state of the art ML models

to predict material properties [174], and vast libraries of DFT calculations [78], to simple

utilities that assert the charge neutrality of a chemical formula [72]. Web applications are

a prominent example of software that promotes collaboration. The use of web browsers

is ubiquitous and graphical user interfaces (GUIs) are the typical method of interacting
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Figure 4.5: Paradigms of sharing computational tools

with software. As such, accessing computational tools through a GUI in a web browser

minimises the technical expertise required to use such tools.

It is possible for web applications to be run locally (and thus fall under the private or

shared paradigm), but this often demands programming and networking expertise, which

may be outside the past experience of researchers with familiarity in other technical do-

mains. Furthermore, designing bespoke applications for internal use clearly limits the au-

dience which can interact with a tool. Locally hosting python notebooks [81] is a common

solution to sharing tools within research groups; however, this still requires some technical

knowledge to setup, and does not provide an accessible interface for non-technical users.

Publicly accessible web applications [174, 72, 132, 32], which fall under the cloud paradigm,

can be designed towards a specific use case to improve usability and allow many researchers

to interact with an application.

A collection of these tools together forms a cloud platform. Cloud platforms offer

computational researchers the opportunity to share their tools with a wider audience.

These platforms can also include related resources, for example, both AFLOW [32] and

the Materials Cloud [174] platforms host datasets, and provide a front-end to access to

these datasets.

Cloud platforms offer many benefits, but they may not offer suitable extensibility for

computational researchers who want to share newly developed tools. Some platforms, such

as Materials Atlas [72], allow developers to upload new tools; however, developers may be

reticent to launch a tool with these platforms for a number of reasons. Vendor lock-in can

arise when relying on third parties to host tools, direct access to live code may be limited,

use of certain code libraries or programming languages may be restricted, there may be

limited control over end-of-life provisioning, and a culture of collaboration may not have

been established between teams. An alternative solution is to host applications in house.
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Using modern frameworks, this can be done easily and securely using while minimally

increasing maintenance duties for the research team.

This section presents a new cloud platform, the “Liverpool Materials Discovery Server”

(LMDS). Applications currently accessible on this platform will be detailed, as will the

approach employed to enable researchers flexibility when deploying new applications. The

aim of this platform is not only to share tools created by local researchers, but also to

provide frameworks for other research groups to launch bespoke platforms while minimising

the technical debt associated with such a task.

LMDS is designed to be simple and easily replicated, with an emphasis on reducing

technical overhead rather than computational overhead. Source code and architectural

information is provided, allowing easy adoption by other research groups to share their

ML models either on their local intranet or on a public facing website. Giving each team

personal ownership of their work promotes diversity in the field, and allows each group to

discover their own optimal workflow as well as share their findings to the wider community.

The approaches outlined in this section should allow the launch of new cloud platforms

with minimal time and financial investment. In the following discussion considerations are

addressed that must must be taken into account when sharing computational tools, and

the role of such tools in the materials discovery workflow.

4.2.2 Available tools

The tools currently available to the public on the LMDS (lmds.liverpool.ac.uk) are as

follows:

• ElMTree - An tool for finding structures most similar to an input, as measured by

the element movers distance (ElMD) [66], a mathematically justified composition

similarity metric

• ElM2D - A method of generating ElM2D scatter plots of compositional similarity is

provided, which allows the results of querying the ElMTree application to be visu-

alised in 2 dimensions, providing an intuitive representation of the chemical distri-

bution.

• MOF porosity prediction - an implementation of the model presented in Section 3.2.

• Lithium - ionic conductivity prediction - An implementation of CRABNet mod-

els [186] trained for Lithium ion conductivity prediction [67].
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(b)

Figure 4.6: (a) A screenshot of the MOF porosity prediction tool. (b) a screenshot of the
heat capacity modelling tool described.

• Thermal conductivity prediction - A front end to a RF model of thermal conductivity

of thermoelectric materials, which can predict thermal conductivity from a chemical

formula [31].

• A tool for modelling the thermal conductivity of structures to extract Einstein and

Debye temperatures. A linear combination of Einstein and and Debye functions are

plotted against observed data. Users can adjust the temperatures and prefactors

associated with each function in order to extract the relevant temperatures.
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Figure 4.7: A non-exhaustive demonstration of how different computational issues may
impact the ease of launching new tools to a web platform combined, with labels as to the
decisions that were made on each of these issues when creating the LMDS.

4.2.3 Considerations when launching cloud platforms

Architectural Considerations

A key consideration in the LMDS was was the ease of extending the platform through

publication of new tools. ML experts may have limited knowledge in computer networking,

but frameworks and examples (such as those found in the associated code repositories [42])

can reduce the technical complexity of deploying new tools. New web frameworks are

frequently released, and balancing the technical debt of learning how to interface and

maintain each new library with networking and computational resource issues becomes

non-trivial (fig. 4.7). This section outlines some of the technical design choices which were

taken when designing the LMDS architecture.

One such consideration was the level of restriction on the range of technologies that

technical users may employ in their development cycle. Constraining developers to certain

libraries enforces a greater degree of homogeneity in a codebase, allowing for a larger
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quantity of each application’s code to be reused and reducing the work required to deploy

new tools. However, restricting to specific libraries may impose limits on newer approaches,

which could be deployed, or may simply not align with developers’ personal preferences.

Each of the provided tools is written in Python (when applicable) owing to its popularity,

but otherwise collaborators are not constrained by which external libraries they may use.

Were researchers to propose tools based in other programming languages or frameworks,

existing HTML and styling are provided for reuse.

The degree of separation between applications in a cloud platform is a notable design

decision. Malfunction or security compromise of one tool should not effect other tools on

the platform. In the past, applications were isolated their own physical server, in a process

referred to as server segmentation. Current best practise is to isolate applications virtually

for efficiency purposes.

One such method to separate applications from each other is virtualisation, which al-

lows multiple virtual “machines” (VMs) to operate on a single physical machine through

the use of hardware emulation. A host operating system runs a virtualisation program

(hypervisor) which manages the computational resources of each VM. Each VM runs its

own operating system, which may be selected depending on the task at hand, with Linux

distributions often chosen for web applications. Virtualisation allows for dynamic schedul-

ing of resources, while ensuring that a single application’s malfunction does not affect

other tools on the platform. VMs are easy to deploy, and updating VMs remains similar

to updating to physical machines, although VMs are accessed through a hypervisor. Each

VM does carry some overhead, as each operating system needs to store its own data in

memory for each application, but the capacity of modern systems means this is generally

not a concern.

Where the capacity of a system is a concern, containerisation provides a similar method

of isolating applications from one another, with Docker [118] and Kubernetes [92] being

two popular tools for this. Containerisation comes with a lower computational overhead

than VMs (in particular with regards to memory consumption) [197, 103]. However this

becomes yet another technology for developers to learn when deploying new tools. As a low

barrier to entry for new application deployment is a key goal for the LMDS, containerisation

technology was not used.

To balance the increased memory cost of VMs over containers such as docker and the

need for the isolation of apps, the LMDS hosts smaller applications (for example, the MOF

prediction tool and heat capacity modelling tool) on a single VM. Meanwhile, individual
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VMs are allocated to larger tools (such as ElMTree) to provide a level of isolation.

Managing these different VMs requires a reverse proxy server to direct requests with

different web addresses to the correct tool without requiring a separate domain name or

subdomain for each tool. To create this reverse proxy, HTML requests to each application

are routed through a VM running Nginx [151], which enables each of the separate appli-

cations to be accessed through a single domain name. Internally, this server resolves each

request to the internal IP address the specific application is hosted on. The reverse proxy

provides some protection from direct denial of service (DDOS) attacks by enabling rate-

limiting functionality. This Nginx server also encrypts HTTP traffic in HTTPS traffic [52]

(fig. 4.8), which provides a security assertion to users that their data has not been seen or

interfered with by any third parties. Apache HTTP server is an application historically

popular for this task [173, 128], however, Nginx was selected due to its wide market adop-

tion, strong performance [95], and simple configuration. Nginx can redirect requests to

additional physical machines external to the hypervisor that the LMDS is currently hosted

on, providing flexibility in future expansion (fig. 4.8a). Setup scripts have been provided

to configure this proxy for new tools [42].

Research context and significance

As the user complexity and model complexity of ML projects grow, it is important that

access to, and understanding of, ML tools do not become a barrier for their use. Cloud

platforms such as the LMDS provide easier access to these tools, however it is on a per-

practitioner basis to portray the understanding of best use and interpretation of such tools.

For example many ML models (such as that used in the thermal conductivity pre-

diction model) take composition as input but have no mechanisms to check the chemical

viability of such compositions. Without adequately communicating this limitation with

the collaborators, the trust in such a model may be hindered, and the interpretation of

its results will be incomplete. While explainability and uncertainty estimates in ML are

active research areas [5, 105], a good understanding of the limits and correct usage of ML

models by those who use them is also important. Drawing up interesting counter examples

when presented with predictive models to demonstrate their limits is a valid method of

testing the capabilities of models. This may not be a particularly useful test in many cases,

as it is known that statistical models will underperform on chemical domains they have

never been exposed to, and this may not be how the model should be used in practise. For
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(a)

(b)

Figure 4.8: Architectures possible using provided tools (a) The architecture used in the
LMDS (b) A simpler architecture using Nginx reverse proxy security certificates to serve
a single AI model. This could be hosted on redundant hardware, such as an older work-
station, and expanded to additional hardware when required.
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example, the thermal conductivity model is trained only on thermoelectric materials; while

it may be used to predict thermal conductivity for other materials, it may underperform

outside the thermoelectric domain.

Similarly, it is a per-application question as to whether a tool will actually be useful

in the materials discovery workflow. While the MOF porosity prediction tool may offer a

variety of input options for flexible usage by experimental researchers, if no such researcher

exists, the usefulness of such a tool is limited. As such, while cloud based tools do provide

ease of access, it remains vital that collaborations between experimental and computational

researchers involve open communication channels.

Cloud platforms are excellent suppliment to existing communications methods, and

need not be prohibitively expensive to deploy. While ML models may be costly to train

and require significant compute resources, after training is performed, the models can often

be deployed using lower end hardware and still make inferences in a timely manner. Conse-

quently, the LMDS platform with the architecture outlined above may be deployed on rela-

tively inexpensive hardware. A minimum framework for the launch of platforms (fig. 4.8b)

is provided, as well as how this was expanded for isolation of applications (fig. 4.8). The

frameworks and implementation details provided here should provide a reasonable starting

point for other researchers to share their tools with the wider community.

While the LMDS is hosted in house, the frameworks provided could be used for plat-

forms deployed to commercial cloud providers, such as Amazon Web Services or Microsoft

Azure. Third-party cloud providers alleviate concerns over server maintenance and hard-

ware failure. However, each commercial cloud platform requires bespoke training to use,

which may be a niche skill for computational materials science researchers. Concerns may

be raised over vendor lock in, as such services may become more expensive or less reliable

in the future. Further, the monthly billing cycle commercial cloud providers often demand

is not compatible long term with the fixed consumable budgets that are typically provided

as part of a research grant. Depending on funding and available hardware, a commercial

cloud provider may be the best solution for rapid delivery. If the mission critical up time

that is guaranteed by server hardware is not a driving design choice, then many computa-

tional research groups may find they already have the necessary resources to hand, as this

architecture may be run on an underused workstation.

In house solutions, such as those presented here, may be deployed onto new or existing

hardware, and tailored to suit the team’s existing technical specialities, but this approach

is not without disadvantages. Local hardware needs ongoing maintenance in the case of
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equipment failure, such as hard drives, which will have an associated cost. Networked

applications operating under the framework of an institution will have to comply with the

organisation’s pre-existing networking and security protocols, especially if accessible from

the public internet, which may introduce further tasks which must be satisfied to launch

a new cloud tool. By working with the University of Liverpool’s servers and storage team

to test the architecture throughout the development process, it was ensured that the final

product is robust and secure.

Releasing the LMDS as a simple technology stack with limited functionality means

other research groups can extend this framework to rapidly prototype bespoke applica-

tions to suit their specific requirements. Cloud platforms enhance partnerships between

computational and experimental research teams, and provide an additional interactive

medium for accessing research.

However, monolithic platforms are by definition less integrated with experimental re-

searchers than bespoke platforms. Enhancing the interface between technical developers

and their expert users allows new tools to be integrated into materials discovery work-

flows. The process of constructing a new cloud platform requires technical expertise, but

the barrier to entry is low enough that many computational researchers do, in fact, possess

these skills. It is hoped that the tools provided here reduce this technical gap further

to make the creation of cloud platforms simpler for others. Future undertakings could

investigate methods of unifying multiple cloud platforms into singular portals or develop-

ing frameworks that require even less technical expertise to create new cloud applications.

Centralised or monolithic systems risk excluding researchers who wish to share computa-

tional tools with the wider community if the technical or organisational processes to host

such tools remain unclear.

Creating new methods to access computational tools through cloud platforms is one

way to explore how computational methods may be adopted by experimental researchers.

As computational methods continue to develop, so too will their place in the discovery

of new materials. Future research may lead to more cloud platforms, new frameworks to

ease the creation of such platforms, or focus on entirely novel collaborative techniques.

While advancing the accuracy of the predictions made by ML models remains a dominant

research area in this field, the concurrent development of tools which interface with these

models is a crucial piece of supporting work to ensure wide and effective adoption.

Cloud platforms offer a compelling solution to lack of model accessibility, but it re-

mains to be seen whether this accsssibility will trainslate into model usage. Anecdotally
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tools presented here (and in the accomponaying publication [46]), are seen as helpful with

the research group, however more thorough evaluation is required before this cloud plat-

form can be considered successful. Such evaluation may include qualitative surveyance

key stakeholders to the platform, quantitative investigations on telemetry taken by the

platform, and/or quantitive investigations into subsequent research citing this platform.

A survey of literature citing this platform could be performed, noting the ratio of papers

which actually use the platform in order to make materials (rather than review papers or

similar), though this method would introduce a publication bias. Overall evaluation of this

platform should be encouraged but is beyond the scope of this thesis.

4.2.4 Methods

All bespoke programs presented here are implemented in Python. The MOF poros-

ity prediction and thermal conductivity tools use random forests implemented in sci-

kit learn [140]. MOF porosity prediction tool was featurised using mordred and RD-

Kit [121, 150]. The Li-Ion conductivity tool uses CrabNet [186] to predict the conductivi-

ties of compositions. ElMTree uses the ElMD [66] library and a simple implementation of

the list of clusters. ElM2D uses the aforementioned ElMTree application with the UMAP

[116] and plotly [143] libraries. The modeling of heat capacity was carried forward using

the SciPy library [183]. Each of the web applications are implemented using Flask, with

the gunicorn process manager used to spawn Flask processes, examples of these implemen-

tations have been provided [164, 47]. VMs are run through VMWare vSphere ESXi 7 [185],

with Nginx used to serve HTTP responses to users and route URLs to each VM [151]. Ex-

ample setup scripts for gunicorn and Nginx can are available [42]. The linux utility crontab

is used to to ensure regular updates are executed and to remove temporary files in relevant

LMDS applications.

4.2.5 Conclusions

This section presented the LMDS, a cloud platform for experimental researchers to use in

discovering new materials, available at lmds.liverpool.ac.uk. The LMDS platform allows

for easy access to previously published computational models [142], as well as novel tools

to help experimental researchers.

Making computational tools easily accessible is crucial to maximise their benefit. Thus,

the LMDS platform was developed with the objective of simplifying the sharing of compu-
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tational tools, ensuring that they are readily available to researchers with minimal compu-

tational expertise. Considerations that lead to the production of this platform are provided

and key design considerations are justified.

The difficulties in applying computational methods in experimental research are dis-

cussed, as are the barriers for deployment of such methods to cloud platforms. Examples

of the tools discussed in this manuscript have been provided [164, 47], as well as scripts

setting these up with an Nginx reverse proxy server, and Python process manager [42], en-

abling other researchers to reproduce this tool chain and share their own methods, either

internally or on the open internet.

Minimising organisational overhead in collaborations between computational and ex-

perimental researchers promotes the incorporation of computational methods in the syn-

thesis of new materials. Access to state of the art computational methods, such as in ways

presented here, accelerates research and improves the prediction, analysis, and realisation

of new materials.

4.3 Discussion

Two methods for collaboration were seen in this chapter. Collaborations discussed with

regards to the discovery of superconductors (Section 4.1) were very active, and top down

collaborations. That is, multiple meetings and discussions were held, and there was a lot of

direct involvement between experimental chemists and the computational work presented.

Work was closely overseen, and because of this oversight an array of experts in experimental

chemistry and physics were able to give invaluable input. This also presented drawbacks:

work was very directed and also quite broad (as seen from the wide array of areas of interest

in Section 4.1.6), these two things in combination were not very conducive to collaboration.

The LMDS platform offers two distinct collaborations. Firstly, collaboration is done

with computational based researchers, offering a platform and method for easier sharing

of tools. Secondly, collaboration is done between the creators of tools on the platform and

anyone who chooses to use those tools.

Collaboration with computational based researchers was very organic. Research topics

relating to computational tools and collaboration are similar to this thesis. As such, a

culture of collaboration had already been established. This was still an active process and

each tool presented required a lot of communication.

The sharing of these tools though is somewhat more passive. Once a tool is available
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on a cloud platform such as the LMDS, it can be accessed by collaborators with very little

action required on behalf of that tools creator. This has both benefits and drawbacks as

discussed (Section 4.2.3). While cloud platforms may increase the reach of research and

ML models, they do not bring purpose to research that has no clear use.

4.4 Conclusion

The two collaboration methods presented here are not in competition with each other.

This chapter has presented two methods that were used, and presented findings related to

each of them.

Workflows were presented for the discovery of new superconductors. The literature on

predicting superconductors was reviewed, with methods such as garbage in being found to

be beneficial. The CBFVs used in existing work were not found to improve models and

as such a composition vector was used to as a representation for materials. 12 RFs were

trained and over a billion candidates were screened.

A cloud platform, the LMDS was developed, presenting 6 computational tools for use

by experimental chemists. Considerations were given as to it’s development, as well as

scripts and architectures to encourage research groups to produce similar cloud platforms.

Collaboration is key to achievement in academia. The aggregation of knowledge in

institutions instrumental to discovery across all fields. In applied ML this is no different.

This chapter has discussed cooperation at length, and it is hoped that the works presented

are able to help maximise the value of the scientific community.

4.5 Thesis context

This chapter explores the application of ML in the context of materials discovery, em-

phasising the practical considerations involved. This is both in terms of working directly

with researchers to establish suitable candidates for synthesis, and making tools available

researchers to empower them to screen materials directly. Understanding the realities of

this process is crucial for contextualising the subsequent work.

While the upcoming chapters may diverge from materials discovery workflows, the

processes and conclusions discussed in this chapter remain relevant. As a result, this

chapter serves as an anchor, bridging the practical aspects of material creation with the
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theoretical aspects of improving and exploring ML algorithms that will be explored in the

following chapters.



Chapter 5

Random projections and leave one

cluster out cross validations:

improving evaluations of machine

learning for materials properties.

5.1 Introduction

The previous chapter focused on ways to improve collaborations with synthetic chemists,

but for those chemists to want to spend time making materials which have been predicted

by machine learning (ML) models, those models must be well justified and well communi-

cated. This chapter examines justification and communication of supervised ML models

with respect to two aspects, material representation, and the validity of leave one cluster

out cross validation (LOCO-CV) measurements.

With the plethora of available ML models available (and the fast moving nature of the

field), ML models should be justified not just on their own performance, but in comparison

to competing methods. A key choice when building a ML model for predicting material

properties is the choice of representation for a material. The boom in supervised machine

learning (ML) research in materials science has seen a large number of possible representa-

tions for compositions suggested for use with ML algorithms (as discussed in Section 2.2.5).

Representations are often tested with different ML models, different implementations of

104
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those ML models, and on different datasets. Many libraries for creating representations of

materials exist [194, 32, 27] (this process is also called featurisation). Thus, composition

based feature vectors (CBFVs) generated using these libraries are common. There have

been some recent comparisons between these representations (some of which the chapter

aims to present) [124, 45], but it is still unclear that any particular CBFV is better than

alternative representations like CompV ec (see Sections 2.2.5 and 3.2). Because of this gap

in the literature, it is pertinent not only to evaluate the efficacy of CBFVs, but also to

discuss methods and best practice with which to evaluate CBFVs.

Evaluation of successful models is a problem in ML research generally [148, 110]. In ma-

terials informatics, a lack of applicable measurements can lead to scepticism from chemists

when time comes to synthesise predicted materials (as discussed Chapter 4). Other ML

research areas have domain specific metrics (such as the Bi-lingual evaluation understudy

score in machine translation [135]) and domain specific metrics that are suited to materials

science have already been discussed and proposed in this thesis (Section 3.1.2).

Similarly many domains have specific, commonly used evaluation datasets (such as the

ImageNet dataset in image recognition [36]). Owing to the large range of tasks undertaken

in materials science and the relative infancy of ML research in this field, such benchmarks

are still being established [30, 38], though the last few years have seen an increase in

their usage. This chapter explores possible benchmark tasks outside of those which are

being established as the norm. Firstly, because some of the experiments done here predate

the publication of such benchmarks and secondly, because the compilation of alternative

benchmark tasks can be seen as a positive contribution to the community. One evalu-

ation tool which has been proposed in materials science is LOCO-CV [117] (introduced

in Section 2.1.6). Data in materials science tends to be clustered around known families of

heavily studied materials, and LOCO-CV has been suggested as a technique to compare

the outputs of competing ML models by measuring extrapolatory power on unseen clus-

ters of data. LOCO-CV uses K-means clustering to exclude similar families of materials

from the training set to measure the extrapolatory power of an ML algorithm (its ability

to predict the performance of materials with chemistries qualitatively different from the

training set). The value of such an approach can be seen in the case of predicting new

classes of superconductors. One may choose to remove cuprate superconductors from the

training set, and if an ML model can then successfully predict the existence of cuprate su-

perconductors without prior knowledge of them, we can conclude that that model is likely

to perform better at predicting new classes of superconductors than a model which could
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Figure 5.1: A flow chart of the kernelised LOCO-CV process in a property prediction
task. The novel kernel application is highlighted in a bold frame. Note that representation
used for clustering is independent of that used for training the models. Consequently,
kernel methods can be easily integrated into existing property prediction workflows without
changes to how models are trained
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not predict the existence of cuprate superconductors. LOCO-CV provides an algorithmic

framework to measure the performance of models on predicting new classes of materials

by defining these classes as clusters found by the K-means clustering algorithm.

Clusterings are selected using the K-means clustering algorithm [108, 171], which infers

K clusters without the need for target labels (introduced in Section 2.1.3). This is done

by grouping data into clusters based on their Euclidean distance to K randomly chosen

“centroids”. The centroids are then redefined as the mean of all points in a cluster and

the data are regrouped based on these new centroids. This process is repeated until the

positions of centroids (or the contents of their associated clusters) converge. K-means is

quick, robust and readily implemented [140].

LOCO-CV as explored here uses K-means clustering with values of K between 2 and 10

(inclusive), taking the mean of the resulting metrics. This is the version of LOCO-CV most

thoroughly explored by the authors of LOCO-CV (though they use the median rather than

the mean). However, alternative methods of selecting a single value of K were suggested

in that work. Namely alternatives suggested were use of X-means [141], G-means [63], or

silhouette factor threshold [162] for selection of K.

Known problems with applying LOCO-CV include, non-determinism, uneven cluster

sizes (as discussed in Section 3.1.5), and measured performance being highly dependant on

choice of hyperparameters, which can make LOCO-CV measurements unreliable. These

problems make LOCO-CV hard to be seen as valid, hard to reproduce, and hard to com-

pare, respectively. This chapter aims to address these drawbacks of LOCO-CV, and demon-

strate how the use of kernel approximation methods and varying representations of compo-

sitions can be used to improve linear separability within materials data sets and improve

the general applicability of LOCO-CV in this domain.

It is unclear how the non-deterministic nature of LOCO-CV will affect the repeatability

of measurements taken using this evaluation method. This chapter (Section 5.4) details

experiments performed to test how repeatable LOCO-CV is, finding that while it is less

repeatable than using an 80:20 train:test split to evaluate a random forest, it is the deviation

between measurements made were not sufficient to substantially impact the interpretation

of the results seen in this paper.

A further consideration in use of LOCO-CV is that K-means does not guarantee the

size of any clusters, nor does it guarantee that clusters would be deemed chemically sensi-

ble (this is discussed further in Section 5.3.1). It has been observed that clusters taken on

materials data can vary in size by multiple orders of magnitude, which hinders the applica-
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tion of LOCO-CV [125]. While, sizes of clusters are expected to differ in this domain (for

example due to research bias in the generation of example materials), should the sizes of

the clusters found in LOCO-CV differ by orders of magnitude then LOCO-CV’s ability to

measure extrapolatory power is hampered. Intuitively, if one of ten clusters contains 90%

of the materials in the dataset, then a measurement made with this cluster left out may give

a measurement of algorithmic performance given a small fraction of the available training

data, rather than indicating extrapolatory power. K-means clustering by its nature can

only linearly separate clusters in a given data space. Clusters that are more distinct from

one another are more likely to be isolated than clusters of data points that overlap with

each other. There are other clustering algorithms, such as agglomerative clustering [111]

or DBSCAN [49], that could be explored for LOCO-CV applications on materials datasets.

This study measures the separability of clusters of compounds in materials science datasets

with K-means clustering.

One of the hyperparameters on which LOCO-CV depends is the representation of

materials. Data representation can play a major role in the performance of ML algorithms;

however, the optimum choice of representation is not always apparent. In materials science,

it is often difficult to choose an appropriate representation due to variability in the ML task

and in the nature of the chemistry, composition and structures of the materials studied.

Additionally, some properties of a material, such as its crystal structure in the case of

crystalline materials, may not be known until its synthesis. Accordingly, many studies

derive representations from either the ratios of elements in the chemical composition, or

from domain knowledge- based properties (referred to as features) of these elements, or

both, in a process called “featurisation.”

Given the ubiquity of featurisation methods in materials applications, it is important

to evaluate the statistical advantage of specific feature sets [124]. Section 5.2.1 overviews

different featurisation techniques and how their effectiveness has been previously reported.

This evaluation is expanded upon in Section 5.2.

Seven representations are investigated across five case studies from the literature to

explore how these representations perform in published ML tasks. These cases thus rep-

resent practical applications, rather than constructed tasks. Each of these representations

is also compared to a random projection of equal size to establish the performance benefit

of domain knowledge over random noise. LOCO-CV measurements is also taken for these

experiments in the appendix to this chapter.

In Section 5.3 the effect of representation on measurements made with LOCO-CV is
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investigated. Case study datasets will then be used to evidence methods to adjust LOCO-

CV to make cluster sizes more even. Kernel approximation methods, can be used to non-

linearly translate data into a data space that can then be linearly separated (Figure 5.4).

Such kernel approximation methods can serve as an a priori alternative to replacing eu-

clidean distance with kernel tricks in the application of an algorithm. Kernel approxima-

tion methods, such as radial basis function (RBF) approximation, were applied to chemical

datasets to improve the linear separability of data and reduce variance between cluster sizes

and thus increase the validity of LOCO-CV measurements (Figures 5.6 and 5.9), thus en-

hancing the assessment of performance found when using different representations as well

as assessment of model performance as a whole.

Experiments are then carried out to establish whether the two techniques of random

projections and kernelised LOCO-CV can be used together. These find no specific ad-

vantage in using random projections with LOCO-CV, but random projections were not

universally worse than other CBFVs either. These techniques can be used independently

or together depending on a researcher’s needs.

Having noted reproducibility concerns due to the non-deterministic nature of LOCO-

CV, an investigation into the repeatability of LOCO-CV is done. A subset of the ex-

periments presented are repeated five times, and standard deviations in results found are

noted. Results are seen to be reliable.

Finally, the findings and implications of this chapter are discussed. Conclusions are

drawn, use cases are suggested, and the motivations behind finding representations for

materials are questioned. The methods investigated in this chapter help to improve the

applicability of LOCO-CV, and help to justify choice of representation of composition for

ML models.

LOCO-CV evaluation is affected by representation of a compound and, conversely,

choice of compound representation is affected by the methods used to evaluate these repre-

sentations. Thus, it is pertinent to investigate these two issues simultaneously even though

the representation used in clustering does not need to be the same as that used to train

the model (Figure 5.1). Utility of LOCO-CV measurements was improved by using kernel

approximation methods to create a more separable data space. These measurements were

used to evaluate featurisation methods using practical supervised ML tasks found in the

literature. The key contributions and findings of this chapter are as follows:

• Comparing the influence of composition based feature vectors (CBFVs) on ML model
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performance in practical tasks (explained further in Section 5.2.1, before being car-

ried out in section Section 5.2). It was found that CBFVs with engineered features

(i.e., imbued with domain knowledge) do see some benefit in certain tasks, partic-

ularly band gap prediction tasks. While magpie representations [194] were seen to

outperform other CBFVs in many tasks, this finding was not universal across tasks.

• Examining the effectiveness of random projections as featurisation methods for prop-

erty prediction from chemical composition. Random projections can be used as a

baseline against which to justify more involved featurisation methods (explained fur-

ther in Section 5.2.1 before being carried out in Section 5.2). It was found that in

many tasks, CBFVs with engineered features do not perform substantially better

than random projections.

• Studying the effect of kernel approximation functions (explained further in Sec-

tion 5.3) on the application of K-means clustering to materials data, and presenting

a workflow to incorporate these methods into the LOCO-CV algorithm (Section 5.3).

It was found that kernel approximation functions are a good way to reduce the vari-

ance between sizes of clusters found by K-means clustering on materials data. Using

kernel approximation functions in the suggested workflow (kernelised LOCO-CV)

results in a more robust evaluation method than LOCO-CV with no kernels.

• It can be recommended to use radial basis function (RBF) approximation when

clustering for LOCO-CV, as clusterings found after application of RBF are seen to

be more even in size than with no kernel method applied, and models are trained

more reliably for property prediction. This helps to reduce the risk that performance

differences on predicting an unseen cluster of data are caused by the training set size

as opposed to the intrinsic inability of a model to perform well on that cluster of

data.

• It was found that the use of RBF approximation in clustering for LOCO-CV leads to

more reliable and consistent model training, compared to using LOCO-CV without

any kernel approximation methods.

• Use of random projections as a baseline against which to compare engineered feature

vectors is recommended. It is noted that commonly used CBFVs have little to no

advantage over random projections in most tasks investigated.
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• The use of random projections as a featurisation method for clustering composi-

tions in LOCO-CV was investigated, finding that random projections have no clear

advantage over other CBFVs tested here.
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(a)

(b)

(c)

Figure 5.2: Comparison of the creation of composition based feature vectors (CBFVs) and
random projections. (a) General workflow for creation of CBFV. Application of aggre-
gation function to each property of a material will result in a fixed sized vector for each
aggregation function, these are then concatenated together (merged sequentially) to form
the final CBFV. Both the properties in the CBFV and the list of aggregation functions
can be changed to create variants of CBFVs, which may influence algorithms that use the
resulting CBFV. (b) Calculation of the weighted sum of properties of a material. This
is equivalent to the matrix multiplication of the fractional representation of that material
and its properties. (c) Calculation of a random projection. Using random projection to
(approximately) linearly project a representation into a different number of dimensions
(N). The original M dimensional representation for our purposes may be a fractional
representation for the chemical composition of a material, but this technique can be used
for any input data, in domains outside of chemistry.
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5.2 Effect of representation on predictive ability of random

forest: Case Studies

ML algorithms require a consistent definition of a data point in order to analyse trends

within a dataset. For example, it would be hard to learn from a dataset in which “a

data point” may refer to a phase field, a specific crystal structure, or a composition.

One such algorithm is RFs, which are widely used in materials science as well as other

domains[19]. They are fast to train, readily implemented [140], and see a good performance

in a plethora of tasks without hyperparameter tuning. Experiments in this section will use

RFs for reasons outlined above, however, good evaluation methods for fixed dimensional

representations of materials are also important for the plethora of other ML algorithms

that use such representations as basis for predictions. This section investigates 7 different

representations across 10 different ML tasks seen in the literature. These representations

are compared to random projections, a dimensionality reduction technique from computer

science.

Representations, issues surrounding these representations, and random projections will

all be introduced. Following this results will be discussed of all ML tasks (Section 5.2.3).

The results are split by the study from which the tasks were taken and a summary of the

themes seen in the results will be noted. Discussion of the implications of these results will

be done in the discussion for the whole chapter (Section 5.6).

5.2.1 Composition based representations for materials property predic-

tion.

Representation learning, and feature engineering are the two main preprocessing meth-

ods to make data more interpretable to ML algorithms. Representation learning is a

fast-evolving field that uses deep learning in order to create representations, while fea-

ture engineering involves defining a set of features (or descriptors) for a data point that

adequately encapsulates all information needed [13].

Representation learning (the learning of the best representation by ML rather than

through experiment) is a highly active research area, with implications for transfer learn-

ing which could prove useful for materials science, where datasets are limited in size. As

such, notable investigations into using deep representation learning has been done in the
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form of Elemnet [79], CRABnet [186], and Roost [60] which use deep fully connected neural

networks, transformer networks, and graph neural networks, respectively, to learn prop-

erties from a one-hot style encoding of composition. Learnt representation is an exciting

area growth area of the literature, but is not the focus of this section.

As explored (Section 2.2.5), feature engineering has been used extensively in inorganic

chemistry and materials science. However, no set of features has emerged as the clearly

dominant representation for a material, likely due to the variety of tasks carried out in these

domains, which may require different input representations. Many of these representations

use only composition-based information, as this allows screening of materials without the

need for DFT calculations or synthesis, greatly reducing the costs associated with such

screenings. Composition-based screening is less powerful than the incorporation of struc-

ture, as both structure and composition control properties, but more general as structural

information is not required and is less widely available than composition (as structure is not

known until the material is realised by synthesis, whereas compositions can be proposed

without knowing structure). Composition-based feature vectors (CBFVs), which offer a

list of compositional attributes of a material, and a one-hot style (also called fractional)

encoding of composition [79], are widely used composition-based representations. Investi-

gations in this chapter will focus on composition-based representation. Composition-based

representations which are widely used in the literature, as will be seen from the case studies

explored in this section.

Notable CBFVs including magpie, Oliynyk, and JARV IS [192, 131, 27] (differences

between which are discussed further in Section 5.2.2) were recently investigated and found

to provide benefit over one-hot style representations. This benefit was measured using

neural networks predicting numerous properties, however the benefit became little to none

as the dataset size increased above 1000 points [124].

This chapter furthers the investigation into the use of CBFVs by examining their appli-

cability in five case studies. Namely, performance of examined using Oliynyk, magpie, and

JARVIS, a variant of random projection of size 200 (discussed more in Section 5.2.1) used

in a previous review on this topic [124], as well as one-hot style encodings of composition,

and random linear projection of the composition. The performance of RFs using differ-

ent representations are compared on ML tasks found in the literature, using the relevant

datasets for each study [170, 102, 195, 35, 84].

The representations were chosen as they are commonly used, and as these are the

non-structural representations investigated for their efficacy in neural networks in previous
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work [124]. Seeing whether previous results hold for RFs should help gauge whether

these results could be used as a rule of thumb for many ML algorithms or whether these

conclusions should only be applied to neural networks similar to those used in that study.

Can implementation details in CBFVs affect performance

It is common for a CBFV to be comprised of a list of elemental properties that are

combined using several “aggregation functions”, for example the weighted average, and

standard deviation of various elemental properties in a compound (Figure 5.2a). The

aggregation functions of a CBFV can vary between implementations [192, 124]. Using

different numbers of aggregation functions results in representations of different lengths

(Figure 5.2a), which may affect ML performance depending on the algorithm being used.

Problems associated with building statistical models using increasingly large data rep-

resentations without also increasing the number of data points are well documented, often

being described as the curse of dimensionality [12]. Strong correlation between different di-

mensions (known as co-linearity, or cross correlation between dimensions) can also impact

model performance. For example, RFs are affected by co-linearity between dimensions as

RF’s random bagging process is unlikely to select a subset of features that include none of

a set of cross corelated features. This would make the information in features with such

cross-corelates more likely to be available to discriminate with at any branch in a tree,

compared with those features without such cross-corelates. It is intuitive that different

aggregation functions may be cross-correlated, for example the maximum atomic weight

of an element in a compound is likely to correlate with the average atomic weight of an

element in that compound, thus RFs may be affected by additional aggregation functions.

Without investigation, it is unclear what effect different aggregation functions will have

on algorithm performance. Interrogation of the repository associated with the previous

review of featurisation methods indicates use of the weighted average, sum, range, and

variance of each feature [124]. This includes the features of the fractional (one-hot style)

representation, which uses only the ratios of each element in a material in its definition.

This implementation difference could affect the performance of a model that uses these

representations, so we distinguish between the two, using “fractional” to refer to a one-

hot style encoding that includes the average, sum, range, and variance of each element

and “CompVec” (for composition vector) to refer to an implementation of one-hot style
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Aggregation function Na Cl All other columns

weighted average 0.5 0.5 0
sum 1 1 0

range 1 1 0
variance 0.0042 0.0042 0

Table 5.1: Values that would occur in each column across different aggregation functions
for a composition fractional representation of NaCl. This demonstrates how the inclusion
of additional aggregation functions does not add additional information for this representa-
tion. These calculations assume a representation which allows for 118 different elements, a
smaller number of represented elements would result in the values in the variance columns
being larger.

encoding which contains just the ratios of elements in a compound.

The nature of the fractional representation means that a given compound would contain

the same representation three times, scaled by different amounts (depending on the number

of elements in the compound) in a single vector (four times if elements in a compound are

in equal ratios). This can be exemplified by examining a simple composition such as NaCl

(Table 5.1).

This offers an opportunity to investigate how increasing dimensionality (the number of

dimensions) of a representation while adding no new information affects performance. We

leave the investigation of the effect of information added by different aggregation functions

on different feature sets to future work. We experiment using both a (CompVec) one-hot

style encoding as proposed for use with ElemNet [79] (with no additional aggregation func-

tions), and the one-hot style approach used previously that includes different aggregation

functions (fractional) [124], to see how this increase in dimensionality above will affect

experiments.

While this increase in dimensionality will be seen to affect the clusterings found with

K-means clusterings, for most tasks investigated there was not an appreciable difference

between CompVec and fractional representations. In band gap prediction tasks fractional

representation outperformed CompVec; however, in regression tasks relating to bulk metal-

lic glass formation this trend was reversed (Figure 5.3).
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Random Vectors as featurisation methods

Each elemental property (for example covalent radius) aims to bring with it some sort of

information about that element. That property’s inclusion in a feature set aims to improve

an ML algorithm’s performance in a given problem. Every feature included either means

an increase to the dimensionality of a CBFV or the exclusion of an alternative feature.

Though the importance of a feature to an ML model can be measured [127, 3], it is hard

to take such measures of feature importance out of the context of the model that is trained

with it, or the dataset that the model is derived from [97].

As it is hard to distinguish the effects of dimensionality of a representation from the

effects of the information imbued in it, Murdock et al. introduce a set of vectors, one for

each element each consisting of 200 random numbers to represent nonsensical elemental

properties. From these vectors, they derive the CBFV RANDOM 200 to represent a

lower bound for feature performance. That is to say; rather than using features that

would be expected to give information about an element (covalent radius, atomic number

etc.), they instead assign each element a vector of random numbers. If these random

numbers can result in a well-performing model then whether the chemically-derived features

that are commonplace in the literature are justified can be called into question. When

the aggregation function is a weighted sum (discussed further in Section 5.2.1), this has

the same effect as a matrix multiplication of the one-hot style encoding of a compounds

formulae, C, (referred to in this paper as CompVec), and a random matrix, R which can

be noted as C ·R (Figure 5.2b). Thus, the weighted sum part of the RANDOM 200 can

be seen as a matrix multiplication of the random vectors and the fractional encoding of

the composition.

This matrix multiplication is similar to that used in a random projection. Random

projection is a dimensionality reduction technique that uses the observation that in high

dimensions random vectors approach orthogonality [154, 83]. When the columns of R are

normalised to be unit vectors, C · R becomes an approximately linear projection of C.

Another way to closely approximate normalisation of the columns of a random matrix,

such as R, is to sample the values of that matrix from a Gaussian distribution of mean 0

and variance 1
N (∼ N

(
0, 1

N

)
) where N is the size of the projection. This is mathematically

justified by the Johnson-Lindenstrauss lemma, which states that for a set of N dimensional

data points there exists a linear mapping that will embed these points into an n dimensional

data space while preserving distances between data points within some error value, ε. This
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value of ε is shown to decrease as n increases [33]

RANDOM 200 samples from ∼ N (0, 1) also included aggregation functions (namely

sum, range, and variance) [124], as discussed in Section 5.2.1. It is unclear what impact

this will have; however, preliminary investigations show little difference in performance

between sampling from ∼ N (0, 1) and ∼ N
(
0, 1

N

)
.

Use of random projection as an alternative to more widely used techniques is inves-

tigated by comparing each representation to a random projection of the same size (Fig-

ure 5.3). This should allows observations of improvements made by the quality of features

as opposed to the quantity. RANDOM 200 is included in this investigation. Notice the key

difference between RANDOM 200 and the random projection being that the random num-

bers are drawn from different distributions (as outlined above) and that RANDOM 200

includes aggregation functions, where a random projection does not.

5.2.2 Tasks and representations investigated

This section examines ten ML tasks across five case study publications’ datasets to com-

pare the representations used in them with a non-structural CBFV examined in previous

work [124], and with the composition vector (CompV ec) suggested for use with Elem-

Net [79] (introduced in Section 2.2.5). Case studies have been selected to incorporate the

prediction of a variety of material properties, research groups, and notable works that re-

flect the state-of-the-art. The original datasets are used to replicate studies, but with an

80:20 train:test split.

A consistent 80:20 train:test split is used across all datasets to enable conclusions to

be drawn about which representations work better generally. This should help to estab-

lish whether previous findings (i.e., that domain knowledge is more beneficial in smaller

datasets and that benefit diminishes as dataset size increases over 1000) [124], hold true

for RFs. LOCO-CV measurements for these experiments are are available and will be

discussed in Section 5.2.3, and the clusterings found for LOCO-CV are available in the

associated git repository [40].

Representations compared are:

• Oliynyk [131]. Originally designed for prediction of Heusler structured intermetallics [131],

the Oliynyk feature set as implemented in previous work includes 44 features [124].

For each of these, the weighted mean, sum, range, and variance of that feature

amongst the constituent elements of the compound are taken. Features include
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atomic weight, metal, metalloid or non-metallic properties, periodic table based prop-

erties (period, group, atomic number), various measures of radii (atomic, Miracle,

covalent), electronegativity, valency features (such as the number of s, p, d, and

f valence electrons), and thermal features (such as boiling point and specific heat

capacity).

• JARVIS [27]: JARVIS combines structural descriptors with chemical descriptors

to create “classical force-field inspired descriptors” (CFID). Structural descriptors

include bond angle distributions neighbouring atomic sites, dihedral atom distribu-

tions, and radial distributions, among others. Chemical descriptors used include

atomic mass and mean charge distributions. Original work generated CFIDs for tens

of thousands of DFT-calculated crystal structures [27], and subsequent work adapted

CFIDs for individual elements to be used in CBFVs for arbitrary compositions with-

out known structures (i.e., Figure 5.2a) [124].

• magpie [192]: While the Materials-Agnostic Platform for Informatics and Explo-

ration (MAGPIE) is the name of a library associated with Ward et al.’s work, it this

has become synonymous with the 115 features used in the paper and, as such, we will

use magpie refer to the feature set. These features include 6 stoichiometric attributes

which are different normalistion methods (LP norms) of the elements present. These

capture information of the ratios of the elements in a material without taking into

account what the elements are, 115 elemental based attributes are used, which are

derived from the minimum, maximum, range, standard deviation, mode (property of

the most prevalent element) and weighted average of 23 elemental properties includ-

ing atomic number, Mendeleev number, atomic weight among others. Remaining

features are derived from valence orbital occupation, and ionic compound attributes

(which are based on differences between electronegativity between constituent ele-

ments in a compound).

• RANDOM 200 [124]: a random vector featurisation used by Murdock et al. to

represent a lower bounds for performance.

• fractional [124]: An implementation of a one-hot style encoding of composition which

includes average, sum, range, and variance of each element.

• CompVec a one-hot style encoding of composition as used in ElemNet [79] (containing
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only the proportions of each element in a composition). Differences between this and

fractional are further discussed in Section 5.2.1.

Each of these representations are compared to a random projection of equal size. This

controls for the size of a representation when investigating the advantage of the domain

knowledge built into a CBFV. Several of the five case studies investigated contain multiple

applications of ML within a single publication. The tasks which were recreated in this

comparison (and their relevant case study references) are as follows:

• Tc: Using a regressor to predict the superconducting critical temperature (Tc) of a

material (12666 data points in training set) [170].

• Tc > 10K: Classifying if the Tc of a material is greater than 10 K (12666 data points

in training set) [170].

• Tc|(Tc > 10K): Regressing to find Tc given Tc > 10K K (4833 data points in training

set)[170].

• HH stability: Predicting the stability of half-Heuslers (8948 data points in training

set) [102].

• Egap(oxides): Predicting the band gap of oxides found in the Computational Mate-

rials Repository database (599 data points in training set) [35].

• Glass Forming Ability (GFA): predicting the ability of a bulk metallic glass alloy

(BMG) to exist in an amorphous state (5051 data points in training set) [195].

• Dmax: Predicting the critical casting diameter of a BMG (4724 data points in training

set) [195].

• ∆Tx: The supercooled liquid range of a BMG (495 data points in training set) [195].

• Egap(DFT): Predicting the band gap of materials calculated using DFT (35653 data

points in training set) [84]. This dataset combines data from the materials project

and Duke University’s AFLOW [78, 32].

• Egap(exptl): Predicting the band gap of materials measured experimentally (1986

data points in training set) [206]. This was used in experiments as to the effect of

transfer learning from DFT to experimental band gap prediction [84].
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• Egap(DFT) ∪ Egap(exptl): Predicting the band gap of a dataset consisting of both

DFT calculated and experimentally measured band gaps (37639 data points in train-

ing set) [84].

Performance in regression tasks was measured using r2 correlation and classification task

performance is measured using accuracy. Therefore, the percentage improvement over

random projections can be considered to be:

100

(
M(y, ŷ)

M(y, ŷp)
− 1

)
Where y is the target label for a prediction, ŷ is the label predicted by a model that uses

a given representation, ŷp is a label predicted by a model that uses a random projection

of equal size to the given representation, and M is accuracy for classification tasks and

r2 for regression tasks. Measurements found using other values of M can be found in the

supplementary information. To investigate repeatability of these results, a large subset of

these experiments have been repeated 5 times and the standard deviations of these results

calculated (Section 5.4).

5.2.3 Results

Observations for each individual case study will be considered before a summary of

the results is given. For each ML task investigated attempts were made to recreate the

representation used in that study, and train a RF on this representation to compare to

representations listed above. When recreation proved infeasible, alternatives have been

noted. Full tables of results for each case study are provided, including (LOCO-CV) and

kernelised LOCO-CV measurements (Tables 5.10 to 5.12). The featurisation used in K-

means clustering for LOCO-CV and kernelised LOCO-CV measurements was done using

magpie representation, as it generally demonstrated balanced clustering across the datasets

and tasks investigated here (Figure 5.7a), and resulted in more models learning trends more

consistently (Figure 5.9b).

As noted, these papers were selected for interesting use of ML, not for the choice of

representation which was used in each paper. Several of these case studies mention that

representation could be improved through further feature selection and none make any

claims that their representation is advantageous over existing other representations such
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Figure 5.3: Performance of composition-based feature vectors (CBFVs) on predictive
tasks compared to random projections.Random projections exhibit similar performance
to CBFVs for most tasks. This is not true for band gap prediction tasks, where CBFVs
with domain knowledge demonstrate marked improvement.
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as those being examined here.

Machine learning modelling of superconducting critical temperature (2018)

This study uses data from the Japanese National Institute of Materials Science supercon-

ductivity dataset (total training set size 13077) [170]. They use random forests to predict

superconducting critical temperature (Tc) in three contexts:

• Tc: Using a regressor to predict the superconducting critical temperature (Tc) of a

material.

• Tc > 10K: Classifying if the Tc of a material is greater than 10 K.

• Tc|(Tc > 10K): Regressing to find Tc given Tc > 10K.

Stanev et al. derive a custom CBFV from the magpie package. In recreating all three of the

above tasks, their custom CBFV performs similar to the CBFVs discussed in Section 5.2.2

(tables 5.2 to 5.4). This is in line with the suggestion that a dataset of this size will see

little benefit from domain knowledge. Due to limited reproducibility, results shown here

are compared to their results as published, rather than as recreated.

Materials screening for the discovery of new half-Heuslers: Machine learning

versus ab initio Methods

Legrain et al. use random forests to predict whether a half-heusler is stable or unstable

using a custom made descriptor containing structural information of a compound [102].

The dataset they use contains 164 stable vs 11022 unstable half-heuslers which introduces

some difficulties when applying LOCO-CV.

A dataset which is overwhelmingly one class is no longer suitable for LOCO-CV mea-

surements as it is possible for all of the outlier class will lie in one cluster, which breaks

many metric formulae which require all classes to have at least one example to avoid

division by zero. For example in binary classification the specificity can be measured by

Specificity =
tn

N

where tn is the number of true negative predictions and N is the total number of negative

observations in the dataset. Where N = 0, even if you were to tweak the formula to stop
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division by zero (such as by adding a small number to the denominator), such a metric

would be meaningless. In experiments ran here LOCO-CV failed due to all of the classes

ending up in one cluster for all featurisation methods.

While LOCO-CV will not allow for extrapolatory measures of algorithms trained on

these data, given a random split it is highly unlikely that all stable Heuslers end up in

test dataset. The performance of CBFVs listed above (Section 5.2.2) was compared to

the featurisation used in this case study. F1 score and precision were considered the most

important metrics for success, as the unbalanced nature of the dataset makes accuracy

and recall are approximately 1 for all models measured. CBFVs with domain knowledge

resulted in more precise predictions than both the structural representation used by in this

paper and representations without domain knowledge (table 5.5).

This is in contrast to previous suggestions that there would be little benefit for domain

knowledge in CBFVs for a dataset of this size [124], however, those findings had no stip-

ulations on dataset balance, which likely affected results. CBFVs with domain knowledge

outperforming the representation used in this case study is surprising given that CBFVs

are made using no structural information, suggesting that just because a representation

should contain more knowledge does not mean such a representation will outperform others

without such information.

Data-driven discovery of photoactive quaternary oxides using first-principles

machine learning

This case study predicts band gaps found in the Computational Materials Repository

database, using the 799 oxides as training/test data [35]. The representation used in the

paper is a CBFV of 148 features generated with matminer, most (132) of which are derived

from the magpie descriptors, with the rest constituting information on the highest occu-

pied molecular orbital and lowest unoccupied molecular orbital, norms of stoichiometric

attributes, ionic properties (including maximum and average ionic character between two

atoms), and an estimation of absolute position of band centre. Some of these features are

repetitions of those in the magpie feature set for example the average number of s, p, d,

and f valence electrons. The aggregation functions implemented included the mean mean

absolute deviation and modal value for magpie descriptors as well as the mean, sum, range,

and variance of magpie descriptors which are used in previous work (and the main text of

this work).
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The representation used in this study resulted in better predictions than those found

using no domain knowledge, performing equivalently to other CBFVs with domain knowl-

edge, and performing significantly better in LOCO-CV measurements (table 5.6). This

would fit the suggestion that inclusion of domain knowledge improves performance for ML

methods when dataset size is smaller than 1000. It is notable that the representation used

in this study did not outperform magpie as implemented for this and previous work[124].

This suggests that including the aggregation functions mode and mean absolute deviation

of a feature does not meaningfully impact performance.

A machine learning approach for engineering bulk metallic glass alloys

This study uses ensemble learning methods for three separate prediction tasks related to

the engineering of bulk metallic glass alloys (BMG) [195]. The following are predicted:

• Glass Forming Ability (GFA): predicting BMG’s ability to exist in an amorphous

state.

• Dmax: Predicting the critical casting diameter of a BMG.

• ∆Tx: The supercoooled liquid range of a BMG.

The work uses a CBFV derived from the magpie descriptors with a total of more than

200 features, the exact number varying depending on prediction task. This is compared to

the originally proposed 145 features [192] and the variant used here with 88 features [124].

This is applied to custom datasets collected from 41 different papers and one handbook,

they used subsets of these for each task as GFA, Dmax, and ∆Tx were not available for all

compounds.

In regression tasks (Dmax and ∆Tx prediction), the custom CBFV used in this study

marginally outperforms the representations being investigated here in some metrics (ta-

ble tables 5.7 and 5.8). The performance difference between the representation used in

this work and the other CBFVs investigated (both with and without domain knowledge)

was significantly smaller in the Dmax dataset. This fits previous findings that specialised

domain knowledge becomes less important as dataset size increases [124], as the Dmax

training dataset size was almost an order of magnitude larger than that of the ∆Tx (4725

and 497 respectively). Regardless of the CBFV used all RFs failed to predict reliably in

LOCO-CV (Tables 5.7 and 5.8), this may suggest that RFs should not be used for extrapo-

lation in this task, however this is likely due to uneven cluster sizes used in the LOCO-CV
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process. Methods for adressing this problem are explored later in the chapter (Section 5.3).

As will be seen once cluster sizes are made more even, RFs manage to perform similarly

in extrapolation as they on an 80/20 train/test split. .

In recreation of the GFA classification task, the representation used in this study per-

formed similarly to other CBFV’s investigated (table 5.9). This fits with the hypothesis

that for larger datasets CBFV domain knowledge becomes less important with size as the

training dataset was size 5053.

Extracting knowledge from DFT: Experimental band gap predictions through

ensemble learning

This work focusses on the use of neural networks to predict DFT calculated band gaps and

transferring this knowledge to retrain them on a smaller set of experimental measurements,

finding the transfer learning to be advantageous [84]. They use magpie featurisation on

DFT data extracted from the Materials project and AFLOW as well as experimental data

compiled in previous work [78][32][206].

As the transfer learning approach used in the case study is not applicable to RFs, in

recreating this case study these are considered to be 3 separate datasets:

• Egap(DFT): Predicting the band gap of materials calculated using DFT.

• Egap(exptl): Predicting the band gap of materials measured experimentally.

• Egap(DFT) ∪ Egap(exptl): Predicting the band gap of a dataset consisting of both

DFT calculated and experimentally measured band gaps.

Experiments on which CBFV is most effective on these datasets showed that datasets Egap(exptl)

and Egap(DFT)∪Egap(exptl) yielded similar results, which is logical as they are very similar

datasets. In these datasets domain knowledge based CBFVs outperformed those without

domain knowledge, with JARV IS slightly outperforming all other CBFVs (tables 5.11

and 5.12).

The larger datasets saw the performance difference caused by different CBFVs become

smaller with the range of r2 between different CBFVs becoming 0.050 smaller (the range

was 0.16, 0.15, and 0.21 in the datasets 1, 2, and 3, respectively). While a dataset size

increase usually sees the benefit of domain knowledge decrease, here the decrease of that

benefit is less. Here datasets of more than 35,000 compounds still showing a notable benefit

to domain knowledge.
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5.2.4 Summary observations of effect of representation on predictive

ability of random forests

Overall, recreation of these tasks shows that, broadly, changes in CBFV made little differ-

ence to performance when compared to a random projection of the same size (Figure 5.3).

Featurisation methods inspired by domain knowledge do show advantages in some datasets.

These advantages seem to be task-specific as opposed to based on dataset size, specifically

band gap-based tasks seem to see benefit from knowledge-based features, however most

other tasks do not see noticeable improvement from this feature engineering (Figure 5.3).

This could be because vast amounts of band gap data can be acquired through DFT

calculations [78] and as such band gap prediction is a widely available benchmark that

researchers could use when testing a newly proposed CBFV[30].

Intuition may suggest introducing more dimensions that do not contain any additional

information would result in worse algorithmic performance. However, despite having 68%

more dimensions, RANDOM 200 performs within 5% of the fractional representation. On

large enough data sets (more than approximately 3000 data points) the random represen-

tation does not perform appreciably differently to the magpie representation. Notably, on

tasks outside of band gap prediction there is little advantage to domain based represen-

tations over a random projection. Random projection can be seen as an alternative to

CBFVs, it can be used as a comparative measure against CBFVs. If a feature set can-

not appreciably outperform a random projection of the same size or smaller, then, while

there may still be benefits to analysis of the feature importance of such a feature set, that

feature set does not enrich the representation of a material when it comes to algorithmic

performance.
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Figure 5.4: A visualisation of how application of kernel functions can affect the data in an
example dataset. Here, we show the radial basis function (RBF) approximation so f(x) =
exp(−x2). There is no clear way to linearly separate classes before application of RBF
approximation; however, non-linear translation of each point with the RBF approximation
yields a data space through which a straight line can be drawn to separate the classes.

5.3 Improving the linear separability of chemical data spaces

for more applicable measurements of extrapolatory power

As noted above, uneven cluster sizes pose problems for the LOCO-CV assessment of the

extrapolatory power of ML models, but such issues with K-means clustering are not only

found in materials science. K-means clustering attempts to linearly separate clusters (i.e.,

draw a straight line between them); some clusters cannot be separated this way (Fig-

ure 5.4). In classical computer science problems, methods have been applied to datasets

on which a linear discriminator (such as K-means or support vector machines) exhibits

poor performance. In many cases, measuring distances between points using a non-linear

function rather than the Euclidean distance can resolve these issues. Known as the “ker-

nel trick”, this can be applied to many methods but does require modification to existing

algorithms. Examples of kernels used in this way are the radial basis function (RBF)

and the χ̃2 kernels. In many cases, algorithms are implemented in such a way that these

modifications are easy or are considered a hyperparameter of the algorithms [140].

However, graphing changes made by kernel tricks are difficult, and some kernel tricks

may be more computationally expensive (or just less well optimised) than the Euclidean
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distance. Linear discrimination can be improved by incorporating kernels into the ML

algorithms rather than Euclidean distance. However, where algorithms may be run multiple

times, it can be easier or more efficient to apply an approximation of this a priori. Applying

a non-linear transformation to every data point in a dataset can transform the data so

that it is more amenable to linear discrimination (Figure 5.4). To perform this non-linear

translation of data points, kernel approximation methods can be used. These methods

approximate the kernel methods by transformation of the original data points using a set

of basis functions, such as the radial basis function (RBF), additive χ2, and skewed χ2.

These basis functions map the original data points to a higher-dimensional feature space,

where they can be more easily separated by a linear classifier.

For an example of how kernel tricks relate to kernel approximation, consider the RBF.

The RBF kernel is defined as:

k(x, x′) = exp(−γ||x− x′||2) (5.1)

where γ is a hyperparameter and || · || denotes the Euclidean (l2) norm. The RBF

kernel can be expensive to compute, especially for large datasets.

One RBF approximation (which is also known as random kitchen sinks) [146] approx-

imates the RBF kernel by using n:

f(x) =

√
2 cos(x · w + o)√

l
(5.2)

where l is the number of components, w is an l× d matrix with i.i.d. standard normal

entries, b is a vector of random phases uniformly distributed in [0, 2π], and d is the dimen-

sionality of the input. This equation maps the input vector x to a l dimensioned feature

space using the RBF kernel.

The intuition behind this approximation is that random projections can preserve pair-

wise distances between data points with high probability, especially in high-dimensional

spaces. By randomly projecting the input data to a lower-dimensional space and applying

a nonlinear function (such as cosine), the RBF kernel can be approximated in a computa-

tionally efficient way. The number of random projections required depends on the desired

approximation accuracy and can be determined empirically. As with random projections,

the error in this approximation is inversely proportional to the number of dimensions. In

the studies presented here, 100 dimensions were always used, as this is the default hyper-
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parameter in the code library used [140].

Having established that RBF approximations could be a suitable tool to improve linear

discrimination (such as in the materials datasets explored in Section 5.2), it remains un-

clear whether this will result in more even clusters (as is desirable for LOCO-CV). Radial

basis, additive χ̃2, and skewed χ̃2 approximations were applied across several datasets and

material representations to see if these non-linear translations will reduce the cluster size

unevenness found by K-means clustering. Reduced cluster size unevenness found with

K-means would improve the applicability of LOCO-CV measurements, addressing one of

the problems previously highlighted.

After an exploration of how success could be measured in K-means clustering (Sec-

tion 5.3.1), cluster size uneveness was quantified by using the standard deviation between

the cluster sizes in a single run of K-means clustering. The representations of the material

and the tasks investigated were those described in Section 5.2.2. Data normalisation affects

both K-means clustering and kernel approximation methods. As such, tests were carried

out to determine which normalisation methods lead to the greatest reduction in standard

deviation between clusters (Section 5.3.2).

With the chosen normalisation methods, the kernel approximation methods were tested

for their ability to make clusters found with K-means clustering more even (Section 5.3.3).

Finally, the impact of these methods are discussed when used in LOCO-CV is discussed

(Section 5.3.3).

This section investigates the effect of kernel approximation methods, χ̃2, and skewed

χ̃2 and RBF approximation on materials science data, specifically studying their use to

improve the suitability of leave-cluster-out cross-validation (LOCO-CV) by addressing the

problems of uneven cluster sizes. Kernel approximations reduced the variance of class sizes

in clustering, regardless of input feature representation. This resulted in more reliable

model training when using these clusterings for LOCO-CV.

5.3.1 Performance metrics in K-means clustering

Without prior knowledge of the expected clusters for each data point, the results found

with K-means clustering are difficult to interpret, although expert inspection can yield

insight into what different clusters can represent. Expert inspection of results may be

justifiable with less than 10 clusters (each of which could have thousands of materials);

however, when using K between 2 and 10 (as originally proposed [117]), the LOCO-CV
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algorithm presents 54 different clusters (
∑10

n=2 n), making such expert inspection infeasible.

Thus, metrics must be used to quantify the success of a clustering.

Where target labels exist, metrics such as mutual information score, homogeneity, and

completeness score can be used. Without labels, Euclidean distance-based measures such

as sum-squared distance to cluster centroid or average distance between each point and

the other points in its cluster can be used, however, this does not intrinsically tell us how

much information is in a clustering, just how tightly packed a cluster’s members are. The

average distance between each point and the other points in its cluster is computationally

prohibitive, so it will not be used in this study.

Euclidean distance-based measurements such as these lack comparability in our use

case, as each dataset and each featurisation technique should be considered independent.

Identifying trends in these measurements with different numbers of clusters and looking at

the effect of kernel methods on Euclidean distance-based measurements are both valid uses.

However, as Euclidean space is affected by dimensionality, it is important that conclusions

into the effect of different featurisation approaches are not drawn from such measures.

While noting these caveats, the mean distance from a point in a cluster to the centroid

of the cluster is used as a measure of how tight the clusters are in Euclidean space, this

metric is labelled the spread of cluster.

As the aim of this investigation is to improve the validity of the measures taken with

LOCO-CV, specifically to address issues with vastly uneven cluster sizes, the standard

deviation in cluster sizes is used as a metric for success (the unevenness in cluster sizes).

Material science datasets may have uneven cluster sizes due to research bias towards ex-

ploration of promising materials, and identically sized clusters would be unexpected for

materials data; identically sized clusters were, in practise, never observed in this study.

Using the unevenness of the cluster sizes serves as a measure of whether the cluster sizes

differ by many orders of magnitude, which would affect the validity of the measurements

taken using LOCO-CV. This does not imply that more even clusters are more chemically

sensible groupings of materials, just that they may be more sensible for use with LOCO-

CV, as uneven cluster sizes raise questions about measurements taken with LOCO-CV

(Section 3.1.5).

The ease of clustering is expected to vary between datasets. Accordingly, to appropri-

ately compare standard deviation in cluster sizes, max-min normalisation was performed

across different featurisation techniques and numbers of clusters in the same dataset. Con-

sequently, for each dataset, the most uneven cluster size measurement found is 1 and
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the least uneven cluster size measurement is 0. These normalised values are used when

comparing cluster size unevenness between datasets.

5.3.2 Normalising inputs for kernel approximation methods

Various normalisation methods were tested to establish which is the most appropriate.

As skewed χ2 and additive χ2 are only well defined for a positive input, the data were

scaled between 0 and 1 using min-max normalisation before use with these functions. As

the RBF approximation (and K-means without kernels) can be affected by the disparity

of scale between the axes, different normalisation methods were investigated. The data

normalisation which most often resulted in the lowest cluster size uneveness could then be

used for further experimentation into the effects of kernel approximation methods.

When performing K-means clustering with either the radial basis function (RBF) or

no kernel method at all (the identity function), the following normalisation methods were

considered:

• l2 : l2 normalisation.

• min-max -1:1 : Min-max normalisation to scale data between -1 and 1.

• min-max 0:1 : Min-max normalisation to scale data between 0 and 1.

• standard : Standardisation of each dimension to mean 0 and unit variance.

• none: No normalisation method.

Every dataset discussed in Section 5.2.2 was normalised using each normalisation method.

The normalised data were then used as input to RBF and the identity function, the result-

ing data were clustered using K-means clustering (K used between 2 and 10 inclusive).

For each kernel, dataset, and value of K, the normalisation method which resulted in the

lowest standard deviation between cluster sizes (cluster size unevenness) was recorded.

Normalisation methods which most frequently resulted in the lowest cluster size uneveness

were used in the results reported in the main text. For RBF no normalisation was used,

and when testing without a kernel, data were scaled between -1 and 1 using Min-Max

scaling (fig. 5.5)
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Figure 5.5: The frequency for which different normalisation methods resulted in the lowest
cluster size uneveness (standard deviation in cluster size), grouped by kernel usage.

5.3.3 Do kernel methods result in more even clusters in materials science

data?

The three investigated kernel approximation functions resulted in clusters of a more

even size than when no kernel function being applied at all. On average, the RBF approx-

imation resulted in the largest reduction in standard deviation of cluster size (fig. 5.6).

Furthermore, note that application of any of these kernel methods generally resulted in a

reduction in the distance between points in a cluster and their centroids (spread of cluster),

indicating more tightly packed clusters (fig. 5.7b). On average, application of skewed χ̃2

saw the greatest reduction in the spread of the cluster. As this investigation looks to create

more even cluster sizes for use with LOCO-CV, we focus on impacts of RBF, as, of the

kernel methods tested, it resulted in the greatest impact on this metric as defined by the

largest reduction in standard deviation of cluster size.

Before application of a kernel function, cluster sizes are more even in domain knowledge-
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(a) (b)

(c) (d)

Figure 5.6: Demonstration of the effect of kernel methods on clustering of compositions in
the ICSD. (a) Changes in standard deviation of cluster size found by K-means clustering
of ICSD (k=5) with application of kernel methods. Most of the time, application of kernel
methods reduces the variation between cluster sizes. This effect is most pronounced with
the basis function (RBF) kernel. (b) Variation in cluster spread for K-means clustering of
ICSD (k=5). Application of kernel methods reduces the spread in Euclidean space within
a cluster. This effect is most pronounced with skewed χ2 and RBF. (c) To visualise these
results, PCA was used to generate the first three principal components of all compositions
in the ICSD featurised using a CompVec. Colours correspond to clusters found by K-
means (k=5) clustering on this representation. Inspection of these clusters reveals highly
anisotropic clusters with no meaningful boundaries in the data to unambiguously separate
clusters. (d) The first three principal components found when examining an RBF trans-
lation of the ICSD (featurised using CompVec), points are coloured according to clusters
found by K-means (k=5) applied to the kernelised data. The application of an RBF (as
defined in Section 5.3) to every composition vector in the ICSD (before clustering) leads
to clusters that are more isotropic with more clearly resolved boundaries between clusters.
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(a) (b)

Figure 5.7: Effect of radial basis function (RBF) on standard deviation of cluster sizes
(cluster size unevenness) and spread of cluster sizes. This is performed using K-means
clustering with different values of k. (a) RBF leads to more evenly sized clusters for
all featurisation methods and nearly all values of k. (b) RBF leads to more compact
clusters (i.e., smaller average Euclidean distance between points within a cluster) for all
featurisation methods and all values of k

based representations, as measured by the standard deviation in cluster sizes. CompVec

representation resulted in a larger standard deviation between the sizes of the clusters

(i.e., less evenly sized clusters) than all other representations investigated, likely due to

the sparse nature of this representation, with the magpie representation resulting in the

most even cluster sizes (fig. 5.8a). The two one-hot based representations, fractional and

CompVec, generally did not result in as even cluster sizes as other representations. The

application of CompVec resulted in substantially worse performance than that of fractional

despite their very similar nature, only differing in the use of the aggregation functions (as

discussed in section 5.2.1).

RBF universally resulted in more even clusters. The smallest change (as a percentage

of the standard deviation in the size of the cluster prior to the application of the RBF)

was seen in fractional and CompVec representations (two of the representations that re-

sulted in the worst performance in this metric) (fig. 5.7a). However, outside these two

representations, the proportional impact of RBF on this measure did not correlate with

the performance of a CBFV in this measure prior to application of RBF.

Without the use of kernel functions, there is a clear correlation between the size of
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(a) (b)

Figure 5.8: Mean cluster size unevenness and spread of clusters found by K-means when
clustering different representations of datasets. Measurements are normalised to between
one and zero on a per dataset basis, as different datasets would be expected to cluster
with different amounts of ease. The normalised values are then averaged across different
datasets for each representation and value of k. (a) Clusters are generally more even in
domain knowledge based representations as measured by the standard deviation in cluster
sizes. (b)Without application of kernel function, spread of clusters as measured by the
average distance between a point in a cluster and its centroid correlates to the size of the
representation with the exception of CompVec which has the tightest clusters. Application
of radial basis function makes this trend insignificant.

a representation and the spread of the clusters found using that representation, with the

exception of CompVec, which saw the tightest clusters (Figure 5.8b). This trend is no longer

seen after applying the RBF approximation. The application of the RBF approximation to

a CBFV before K-means clustering reduced the spread of the clusters found (Figures 5.7b

and 5.8b). The relative size of the change seen after applying the RBF approximation was

correlated with the spread of clusters found when no kernel method was used. The higher

the spread of clusters found using a CBFV without a kernel method, the larger the change

seen when clustering using that CBFV and a RBF approximation.

Use of kernel methods in featurisation results in more even cluster sizes when using

that featurisation for K-means clustering. As featurisation used for clustering in LOCO-

CV is independent of that used for learning, incorporating these kernel approximation

methods into LOCO-CV is simple and applicable regardless of the ML algorithm, the
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chosen metric, and the initial representation (Figure 5.1). Therefore, it is recommended

to use kernel approximation methods when using clustering of K-means for LOCO-CV to

address the issue of uneven cluster sizes. Addressing this issue results in models that are

more reliably successful in learning trends in data using LOCO-CV (Figure 5.9).

(a) (b)

Figure 5.9: Performance of random forests in regression tasks to compare evaluation reg-
imens, measured using r2. These random forests are evaluated with LOCO-CV (labelled
with the CBFV used for K-means clustering), as well as a traditional 80:20 train:test
split (labelled “Not LOCO-CV”). Importantly, in LOCO-CV, the representation used for
K-means clustering is independent of that used for training. Accordingly, all models are
trained using CompVec CBFV to remove training representation as a confounding vari-
able. (a) Without the application of RBFs, the same random forest model which performs
well in traditional 80:20 split training regimen often fails to learn trends in the data when
evaluating with LOCO-CV, leading to low values of r2. (b) Application of RBF to CBFVs
before K-means clustering for LOCO-CV results in fewer models failing to learn trends in
the data, leading to higher values of r2.

5.4 Experiments in repeatability

As theK-means clustering part of LOCO-CV (and kernelised LOCO-CV) is non-deterministic,

experiments were carried out to investigate whether this would significantly impact the
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repeatability metrics taken using these techniques. All tasks investigated in section Sec-

tion 5.2 were repeated 5 times for all representations measured that have less than 500

dimensions (since larger representations were prohibitively expensive to train multiple

times). Exclusion of representations larger than 500 dimensions meant that the repre-

sentations investigated for these experiments in repeatability were:

• magpie (88 dimensions)

• CompV ec (119 dimensions)

• Oliynyk (176 dimensions)

• Random Projection (88 dimensions)

• Random Projection (119 dimensions)

• Random Projection (176 dimensions)

Random forests trained using these representations were evaluated with LOCO-CV, ker-

nelised LOCO-CV and a traditional 80%/20% train/test split. By comparing the standard

deviations of measurements across different repeats of a task, it is possible to compare

the repeatability of LOCO-CV and kernelised LOCO-CV to that of an 80/20 80%/20%

train/test split. Clustering for LOCO-CV and kernelised LOCO-CV in these experiments

was performed using the representation magpie (as in Section 5.2).

In both the regression and the classification results, the application of the RBF ap-

proximation improved the repeatability of LOCO-CV (fig. 5.10). Although LOCO-CV

and kernelised LOCO-CV are less repeatable than a 80%/20% train/test split, the de-

crease in reliability is small enough to not substantially impact the interpretation of the

results.
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(a) (b)

Figure 5.10: The standard deviation of LOCO-CV, kernelised LOCO-CV, and 80/20 train
test split scores for 5 repeats of a task. The mean of these standard deviations is taken
across all tasks and all representations. Tasks tested here are all those explored in Sec-
tion 5.2, and representations are those explored in Section 5.2 which are less than 500
dimensions. (a) Standard deviation of performance in classification tasks across 5 repeats.
Further breakdowns of these data can be seen in the appendix to this chapter. (b) Stan-
dard deviation of performance in regression tasks across 5 repeats. Further breakdowns of
these data can be seen in tables S4-S6. As r2 is unbounded below 0, results shown here is
calculated by excluding and r2 measurement less than 0.
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5.5 Clustering Random Projections with and without kernel

methods

Figure 5.11: Reduction in cluster size unevenness (standard deviation in cluster size) of
different CBFVs when compared to equal sized random projections of composition vectors
across different datasets with no kernel applied. While random projection consistently
outperformed CompVec, all other CBFVs form more even clusters than an equally sized
random projection.

Having established that random projections perform similarly to engineered feature

vectors in many tasks (Section 5.2) and that kernel approximation methods can be used

to reduce cluster size variance in K-means clustering on materials datasets (Section 5.3),

experiments were carried out to measure the cluster size variance of random projections of

compositions both with and without application of kernel methods. As noted (Section 5.1)

the RBF approximation does include a random projection, so it is unclear if it is suitable
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to apply this RBF approximation to a random projection.

Without application of kernel approximation, when each CBFV was compared to a

random projection of equal size (Figure 5.11), using random projections of composition

vectors did, more often than not, resulted in more evenly sized clusters than CompVec, but

less evenly sized clusters than all other CBFVs investigated. However, no representation

(either random projection or CBFV) universally resulted in more even clusters. Comparing

the best performing size of random projections (88 dimensions) with other CBFVs without

any kernel methods did narrow the differences in cluster size uneveness (Figure 5.12b),

however other CBFVs still outperformed random projections in several datasets.

Radial basis, additive χ2, and skewed χ2 approximation functions were applied to

these projections before clustering using K-means. The resulting clusters were compared

to those found without any kernel methods, showing that RBF and skewed χ2 reduced

the unevenness of the cluster size (Figure 5.13). However, these results do not create a

consistent pattern of either outperforming or underperforming the cluster size unevenness

found by applying RBF approximation to CBFVs (Figure 5.12a). As no representation

universally results in more even clusters, a variety of CBFVs and random projections should

be investigated when choosing the best representation for clustering a dataset. Application

of kernel approximation methods such as RBF are advantageous in this context regardless

of representation.
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(a) (b)

(c)

Figure 5.12: Performance advantage of different CBFVs against Random Projections
of composition vectors across different datasets as measured by cluster size unevenness
(standard deviation in cluster size) (a) CBFVs are compared wtih Random Projections of
equal size and a RBF kernel is applied. (b) CBFVs are compared to Random Projection
of size 88 with no kernel applied (c) CBFVs are compared to Random Projection of size
88 with a RBF kernel applied
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Figure 5.13: Average cluster size unevenness found using K-means clustering on datasets
featurised using random projections of various sizes. Cluster size variances are normalised
between 1 and 0 for each dataset (as different datasets would be expected to cluster with
different amounts of ease), and then averaged for each size of random projection and each
kernel. RBF and skewed χ2 is seen to reduce cluster size uneveness, with the projections
of approximately 100 dimensions performing better than larger projections.

5.6 Discussion

Recreation of the studies discussed in Section 5.2 shows that, broadly speaking, featurisa-

tion methods used in research are not necessarily advantageous over random projections,

especially on tasks that are not related to band gaps. ML-led materials science research,

including research presented here (Chapter 3), often aims to highlight the success of a ML

model either in a materials discovery pipeline, as a proof of concept that a model can learn

from a given dataset, or a proof of concept that a property can be predicted; this thesis

is not outside of this criticism. As such, the exact implementation of a CBFV and its

effectiveness compared to other CBFVs are often not included in the main text of a paper.

Comparison studies thus facilitate evaluation of the impact of CBFVs on ML performance.

With modern libraries such as matminer [194], creating new featurisation methods and

changing existing ones is straightforward. The engineered featurisation methods show no
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advantage over more widely used, or simpler alternatives, in the tasks considered here.

Both the findings here and in previous work suggest that for sufficiently large and bal-

anced datasets, domain knowledge in CBFVs yields only a small advantage [124]. Promis-

ing results in representation learning could further reduce these advantages [60], which

means the question as to whether these small advantages of feature-engineered CBFVs

justify the difficulty in comparison between the models using them is an open one.

The choice of representation for a supervised ML algorithm may be influenced by the

degree to which the goal of the algorithm is to maximise predictive accuracy for a property

(e.g., to screen potential candidates for synthesis), and the extent to which the goal is to

gain insight into the causes of that property. Linked to this consideration is the question

of whether domain knowledge features are being used as a proxy for the composition, or

whether the composition is a proxy for the properties of a material which are quantified

by the domain knowledge features.

For example, a model trained to predict whether a superconductor has a Tc greater

than 30 K could be trained on a feature engineered CBFV and find that the number of

d electrons is an important indicator for this property. A similar model could be trained

using a CompVec representation and find that containing Cu is an important indicator for

this property. Whether the number of d electrons serves as a proxy for the presence of

Cu in a material or the presence of Cu in a material serves as a proxy for the number of

d electrons is a matter of perspective. Bearing this difference in perspective in mind may

help guide towards use of a representation which is best suited for the workflow in which

a ML algorithm is being used. If ML is used to gain insight into the causes of properties

and phenomena, then examining the importance of different domain knowledge areas in

a CBFV for an algorithm will allow for that. This would suggest that the task becomes

a matter of finding the best set of features for an element to adequately explain how a

property interacts with the chemistries of a compound. At this point, experimenting with

various combinations of elemental properties becomes appealing. However, to justify this

approach, an adequate analysis of which properties are important is needed.

When choosing a representation to maximise predictive accuracy, domain knowledge

seems to provide some advantage for some tasks examined here (particularly band gap

prediction tasks). However, neither this evidence, nor that found in previous work [124],

is sufficient to reject featurisation methods without domain knowledge, such as fractional

encoding of composition or random projections, for more complex or parameter dependant

algorithms. When using a CBFV, random projection offers a helpful baseline for perfor-
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mance, as it is simple to implement and works fairly well. Their single hyperparameter is

the size of the projection, which allows one to draw conclusions as to the usefulness of a

CBFV under investigation without introducing the size of a representation as a contribut-

ing factor for its performance.

Extrapolatory power is particularly pertinent in the field of materials discovery; there-

fore, previous work presented LOCO-CV as a way to estimate the extrapolatory power of a

supervised ML algorithm [117]. LOCO-CV (along with many other linear algorithms such

as principal component analysis), relies on linear separability in the data. This chapter has

shown that, regardless of representation being used, kernel approximations such as RBF

are advantageous in reducing cluster size unevenness and so should be strongly considered

where such linear algorithms are applied. This reduction in cluster size unevenness tack-

les previously discussed caveats to LOCO-CV and results in more reliable model training

(Figure 5.9).

Examination was done into the use of random projections to featurise chemical com-

positions to be used with kernelised LOCO-CV. As for other CBFVs examined, random

projections used in conjunction with kernel methods produce more even clusters than with-

out kernel approximation methods. However, no representation (either CBFV or random

projection) consistently resulted in more even clusters than all other representations. Al-

though most of the time CBFVs found more even clusters than random projections (with

the exception of CompVec), these findings were not universal across datasets tested. Kernel

approximation methods applied to random projections resulted in cluster sizes being even

enough to be usable in the LOCO-CV algorithm without negatively impacting conclusions

drawn from measurements taken using this method.

Random projections and kernelised LOCO-CV can be used together to create a gener-

alised workflow to evaluate the extrapolatory power of a supervised ML algorithm (such

as seen in Figure 5.1), which can be used regardless of the input representation to the

ML algorithm in question. This can be combined with using a random projection as input

representation to the ML algorithm to see a baseline measure of extrapolatory power which

prospective CBFVs can be compared against to measure their usefulness.

5.6.1 Conclusion

Random projections are a generic and powerful way to featurise compositions for mate-

rial property prediction. This is motivated by fundamental principles discussed in the



146 Samantha Durdy

Johnson-Lendenstrauss lemma [33]; randomly projecting a composition vector can be used

to move such vectors into a different dimensional space while preserving relationships be-

tween points in a dataset (within some error). These random projections have only a

single hyperparameter (the size of the projection), which allows isolation of the relation-

ships between the dimensionality of a representation and the predictive performance of

algorithms trained using that representation. Random projections can be used as a base-

line representation to examine what benefit is added by domain knowledge imbued into

CBFVs.

Common CBFVs were investigated for use in ten property prediction tasks from the lit-

erature to establish what advantage domain knowledge offers in constructing such vectors.

With the notable exception of band gap prediction tasks, CBFVs engineered to incorporate

domain knowledge do not substantially outperform an equal-sized random projection for

most prediction tasks investigated here. If the purpose of an ML model is to maximise

predictive performance, the choice of using one of many complex representations (e.g.,

CBFVs) should be justified by demonstrating an advantage over a random projection of

the same size.

Kernelised LOCO-CV was presented to overcome issues with imbalanced cluster sizes

that often occur when performing linear clustering on material sciences datasets. The ap-

plication of kernel approximation methods, such as the RBF examined here, to data before

K-means clustering leads to more even cluster sizes across many different datasets and in-

put representations. Furthermore, using these kernel approximation clusters in LOCO-CV

led to more reliable model training in the models examined here. Applying kernel approxi-

mation in LOCO-CV is independent of representations used by a supervised ML algorithm,

so it is suggested that researchers looking to deploy LOCO-CV use the kernelised version

presented here. Both random projections and kernelised LOCO-CV can be implemented

independently or together.

More than 70 RF models were trained across ten property predictions tasks found in

the materials science literature to show that random projections are a reliable baseline

to use when evaluating a CBFV. More than 36,000 K-means clustering applications were

evaluated, on the datasets used in these tasks and on the ICSD, and have shown that

applying kernel functions to these data before K-means clustering results in more evenly

sized clusters, and more reliable model training when these clusters are used in LOCO-CV.

Findings presented here provide a basis for materials scientists in selecting and evaluating

representations and laying out evaluation workflows.



Chapter 5. Random projections and leave one cluster out cross validations: improving
evaluations of machine learning for materials properties. 147

5.7 Methods

Above experiments were implemented in Python using RF, K-means clustering and kernel

method algorithms from the sci-kit learn library [140]. Hyperparameters of all sci-kit learn

algorithms were set to default as of version 2.4.1, with the exception of the value of k

for K-means clustering which was varied between 2 and 10 as needed for the LOCO-CV

algorithm. While data standardisation was sometimes done before application of K-means

clustering (as detailed in the supplementary information section S1), data standardisation

was not done before application use of RFs as by their nature RFs consider dimensions

independently making such standardisation redundant.

Graphs were plotted with the MatPlotLib library [73] with the exception of Figure 5.9

which was also uses the Seaborn library [196]. Featurisation was done using the utilities

provided with the github associated with Murdock et al. [124], with the exception of Com-

pVec which was implemented from scratch, and case study specific featurisations, which

were obtained in supplementary information for the relevant case study. All implemen-

tations, are made available through the associated git repository as are data used in this

study [40].

5.8 Thesis context

This chapter questions the assumptions about featurisation which were used in previous

chapters (Chapters 3 and 4). This concludes most of the thesis’ discussion about the uses of

non-structural discriptors for materials properties prediction. Although non-structural de-

scriptors are mentioned in subsequent chapters, their primary role becomes contextualising

the work presented.

Similar to how this chapter discusses assumptions made in previous chapters (that fea-

turisation methods may have a large effect on algorithmic performance), the next chapter

examines assumptions and observations in this chapter. Namely, an exploration of the

clustering such as that used in kerenlised LOCO-CV, examination of the shapes of clusters

and discussion of methods which could be used to quantify clusters of unlabelled data.

5.9 Appendix
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Table 5.2: Full table of results for the task of predicting Tc. Clusterings for LOCO-CV
were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation
with RBF kernel.

80%/20% train/test split

CBFV dimensions r2 mse rmse mae

magpie 88 0.83 120 11.0 5.37
CompV ec 119 0.82 125 11.2 5.17
Stanev 145 0.88
Oliynyk 176 0.83 122 11.1 5.33
fractional 476 0.82 130 11.4 5.24
RANDOM 200 800 0.83 121 11.0 5.47
JARV IS 1752 0.83 117 10.8 5.21

Random Projection

88 0.81 134 11.6 5.88
119 0.81 132 11.5 5.86
176 0.80 140 11.8 5.97
476 0.81 132 11.5 5.78
800 0.82 129 11.4 5.74

1752 0.82 128 11.3 5.71

LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.39 199 12.7 7.89
CompV ec 119 0.48 192 12.1 6.91
Oliynyk 176 0.25 204 13.0 8.18
fractional 476 0.49 180 11.9 6.87
RANDOM 200 800 0.49 177 11.9 7.28
JARV IS 1752 0.44 197 12.4 7.77

Kernelised LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.83 127 11.2 5.59
CompV ec 119 0.83 123 11.1 5.32
Oliynyk 176 0.84 120 10.9 5.50
fractional 476 0.84 119 10.9 5.25
RANDOM 200 800 0.84 119 10.9 5.60
JARV IS 1752 0.85 114 10.7 5.36
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Table 5.3: Full table of results for the task of predicting Tc|(Tc > 10 K). Clusterings for
LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie
featurisation with RBF kernel.

80%/20% train/test split

CBFV dimensions r2 mse rmse mae

magpie 88 0.87 109 10.4 6.36
CompV ec 119 0.86 118 10.9 6.44
Stanev 145 0.88
Oliynyk 176 0.88 99.3 9.96 6.24
fractional 476 0.87 108 10.4 6.26
RANDOM 200 800 0.87 109 10.4 6.47
JARV IS 1752 0.88 103 10.1 6.25

Random Projection

88 0.84 134 11.6 7.05
119 0.86 116 10.8 6.76
176 0.85 124 11.1 6.82
476 0.87 109 10.5 6.49
800 0.86 113 10.6 6.66

1752 0.86 119 10.9 6.70

LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.45 222 13.8 9.29
CompV ec 119 0.47 198 12.9 8.27
Oliynyk 176 0.47 195 13.0 8.84
fractional 476 0.50 183 12.3 8.01
RANDOM 200 800 0.27 214 13.8 9.33
JARV IS 1752 0.44 197 13.1 8.87

Kernelised LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.88 105 10.2 6.42
CompV ec 119 0.88 108 10.4 6.36
Oliynyk 176 0.88 103 10.1 6.35
fractional 476 0.88 103 10.1 6.22
RANDOM 200 800 0.87 109 10.4 6.57
JARV IS 1752 0.89 98.7 9.92 6.24
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Table 5.4: Full table of results for the task of predicting Tc > 10 K. Clusterings for
LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie
featurisation with RBF kernel.

80%/20% train/test split

CBFV dimensions accuracy f1 precision recall

magpie 88 0.92 0.92 0.92 0.92
CompV ec 119 0.92 0.92 0.92 0.92
Stanev 145 0.91 0.89 0.87 0.92
Oliynyk 176 0.92 0.92 0.92 0.92
fractional 476 0.92 0.92 0.92 0.92
RANDOM 200 800 0.92 0.92 0.92 0.92
JARV IS 1752 0.92 0.92 0.92 0.92

Random Projection

88 0.91 0.91 0.91 0.91
119 0.91 0.91 0.91 0.91
176 0.91 0.91 0.91 0.91
476 0.91 0.91 0.91 0.91
800 0.91 0.91 0.91 0.91

1752 0.91 0.91 0.91 0.91

LOCO-CV scores

CBFV dimensions accuracy f1 precision recall

magpie 88 0.82 0.81 0.82 0.82
CompV ec 119 0.84 0.83 0.84 0.84
Oliynyk 176 0.82 0.80 0.81 0.82
fractional 476 0.83 0.82 0.83 0.83
RANDOM 200 800 0.82 0.80 0.81 0.82
JARV IS 1752 1.0 1.0 1.0 1.0

Kernelised LOCO-CV scores

CBFV dimensions accuracy f1 precision recall

magpie 88 0.91 0.91 0.91 0.91
CompV ec 119 0.91 0.91 0.91 0.91
Oliynyk 176 0.91 0.91 0.91 0.91
fractional 476 0.91 0.91 0.91 0.91
RANDOM 200 800 0.91 0.91 0.91 0.91
JARV IS 1752 1.0 1.0 1.0 1.0
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Table 5.5: Full table of results for the task of predicting HH stability. Clusterings for
LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie
featurisation with RBF kernel.

80%/20% train/test split

CBFV dimensions accuracy f1 precision recall

LeGrain 51 0.99 0.99 0.99 0.99
magpie 88 1.0 0.99 1.0 1.0
CompV ec 119 0.99 0.99 0.99 0.99
Oliynyk 176 0.99 0.99 0.99 0.99
fractional 476 0.99 0.99 0.99 0.99
RANDOM 200 800 0.99 0.99 0.99 0.99
JARV IS 1752 1.0 1.0 1.0 1.0

Random Projection

88 0.99 0.99 0.99 0.99
119 0.99 0.98 0.99 0.99
176 0.99 0.99 0.99 0.99
476 0.99 0.98 0.99 0.99
800 0.99 0.99 0.99 0.99

1752 0.99 0.98 0.99 0.99



152 Samantha Durdy

Table 5.6: Full table of results for the task of predicting Egap(oxides). Clusterings for
LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie
featurisation with RBF kernel.

80%/20% train/test split

CBFV dimensions r2 mse rmse mae

magpie 88 0.71 1.57 1.25 0.934
CompV ec 119 0.37 3.49 1.87 1.38
Davies 148 0.82 0.990 0.995 0.776
Oliynyk 176 0.77 1.26 1.12 0.854
fractional 476 0.45 3.05 1.75 1.32
RANDOM 200 800 0.42 3.22 1.79 1.41
JARV IS 1752 0.70 1.68 1.30 0.945

Random Projection

88 0.34 3.65 1.91 1.48
119 0.27 4.01 2.00 1.58
176 0.36 3.54 1.88 1.46
476 0.37 3.46 1.86 1.42
800 0.35 3.57 1.89 1.44

1752 0.31 3.80 1.95 1.47

LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.49 2.29 1.47 1.16
CompV ec 119 0.31 3.30 1.78 1.39
Oliynyk 176 0.53 2.05 1.40 1.10
fractional 476 0.27 3.45 1.83 1.43
RANDOM 200 800 0.23 3.51 1.85 1.47
JARV IS 1752 0.50 2.19 1.47 1.16
Davies 148 0.58 1.79 1.32 1.01

Kernelised LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.73 1.44 1.20 0.908
CompV ec 119 0.52 2.56 1.59 1.17
Oliynyk 176 0.75 1.34 1.15 0.868
fractional 476 0.52 2.55 1.59 1.18
RANDOM 200 800 0.52 2.57 1.60 1.25
JARV IS 1752 0.72 1.47 1.21 0.912
Davies 148 0.76 1.25 1.11 0.838
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Table 5.7: Full table of results for the task of predicting ∆Tx. Clusterings for LOCO-CV
were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation
with RBF kernel.

80%/20% train/test split

CBFV dimensions r2 mse rmse mae

magpie 88 0.61 191 13.8 10.8
CompV ec 119 0.64 177 13.3 10.2
Oliynyk 176 0.60 196 14.0 10.8
Ward 213 0.68 159 12.6 9.80
fractional 476 0.58 209 14.4 11.1
RANDOM 200 800 0.59 202 14.2 11.1
JARV IS 1752 0.61 193 13.9 10.8

Random Projection

88 0.68 160 12.6 9.93
119 0.65 172 13.1 10.3
176 0.64 178 13.4 10.5
476 0.67 163 12.8 10.1
800 0.67 164 12.8 9.99

1752 0.68 158 12.6 9.96

LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 -0.29 524 22.2 17.8
CompV ec 119 -0.11 450 20.9 16.8
Oliynyk 176 -0.20 478 21.4 17.3
Ward 213 -0.020 418 19.9 16.0
fractional 476 -0.19 471 21.5 16.9
RANDOM 200 800 -0.14 454 20.8 16.9
JARV IS 1752 -0.17 464 21.1 16.8

Kernelised LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.59 212 14.4 9.99
CompV ec 119 0.63 195 13.8 9.45
Oliynyk 176 0.61 202 14.1 9.94
Ward 213 0.65 184 13.4 9.29
fractional 476 0.60 208 14.3 9.92
RANDOM 200 800 0.60 212 14.4 10.2
JARV IS 1752 0.61 205 14.2 10.0
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Table 5.8: Full table of results for the task of predicting Dmax. Clusterings for LOCO-CV
were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation
with RBF kernel.

80%/20% train/test split

CBFV dimensions r2 mse rmse mae

magpie 88 0.69 0.904 0.951 0.271
CompV ec 119 0.64 1.06 1.03 0.271
Oliynyk 176 0.60 1.17 1.08 0.289
Ward 213 0.65 1.03 1.02 0.282
fractional 476 0.61 1.12 1.06 0.286
RANDOM 200 800 0.69 0.908 0.953 0.277
JARV IS 1752 0.55 1.31 1.15 0.308

Random Projection

88 0.57 1.29 1.14 0.407
119 0.64 1.09 1.04 0.389
176 0.62 1.13 1.06 0.377
476 0.56 1.31 1.14 0.397
800 0.59 1.21 1.10 0.399

1752 0.61 1.16 1.08 0.385

LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 -15. 6.46 2.14 1.22
CompV ec 119 -7.4 5.39 1.94 0.780
Oliynyk 176 -20. 8.49 2.54 1.55
Ward 213 -3.2 3.75 1.73 0.470
fractional 476 -9.1 5.21 1.92 0.758
RANDOM 200 800 -27. 10.9 2.77 1.54
JARV IS 1752 -50. 15.6 3.27 2.07

Kernelised LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.62 2.11 1.37 0.292
CompV ec 119 0.59 2.47 1.44 0.276
Oliynyk 176 0.57 2.45 1.46 0.299
Ward 213 0.64 2.06 1.34 0.273
fractional 476 0.61 2.32 1.40 0.285
RANDOM 200 800 0.57 2.54 1.47 0.308
JARV IS 1752 0.57 2.50 1.47 0.311
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Table 5.9: Full table of results for the task of predicting GFA. Clusterings for LOCO-CV
were done with magpie featurisation, and kernelised LOCO-CV was magpie featurisation
with RBF kernel.

80%/20% train/test split

CBFV dimensions accuracy f1 precision recall

magpie 88 0.88 0.88 0.88 0.88
CompV ec 119 0.88 0.88 0.88 0.88
Oliynyk 176 0.88 0.88 0.88 0.88
Ward 213 0.89 0.89 0.89 0.89
fractional 476 0.87 0.87 0.87 0.87
RANDOM 200 800 0.87 0.87 0.87 0.87
JARV IS 1752 0.89 0.89 0.89 0.89

Random Projection

119 0.87 0.86 0.87 0.87
176 0.87 0.87 0.87 0.87
476 0.87 0.87 0.87 0.87
800 0.87 0.87 0.87 0.87

1752 0.87 0.87 0.87 0.87

LOCO-CV scores

CBFV dimensions accuracy f1 precision recall

magpie 88 0.64 0.64 0.70 0.64
CompV ec 119 0.73 0.72 0.74 0.73
Oliynyk 176 0.65 0.66 0.71 0.65
Ward 213 0.74 0.74 0.77 0.74
fractional 476 0.66 0.66 0.72 0.66
RANDOM 200 800 0.63 0.61 0.70 0.63
JARV IS 1752 0.56 0.57 0.71 0.56

Kernelised LOCO-CV scores

CBFV dimensions accuracy f1 precision recall

magpie 88 0.88 0.88 0.88 0.88
CompV ec 119 0.88 0.88 0.88 0.88
Oliynyk 176 0.88 0.88 0.88 0.88
Ward 213 0.88 0.88 0.88 0.88
fractional 476 0.87 0.87 0.87 0.87
RANDOM 200 800 0.87 0.87 0.87 0.87
JARV IS 1752 0.88 0.88 0.88 0.88
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Table 5.10: Full table of results for the task of predicting Egap(exptl). Clusterings for
LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie
featurisation with RBF kernel.

80%/20% train/test split

CBFV dimensions r2 mse rmse mae

magpie 88 0.85 0.394 0.628 0.433
CompV ec 119 0.68 0.829 0.910 0.558
Oliynyk 176 0.85 0.397 0.630 0.422
fractional 476 0.75 0.633 0.796 0.513
RANDOM 200 800 0.63 0.947 0.973 0.575
JARV IS 1752 0.85 0.394 0.628 0.421

Random Projection

88 0.51 1.27 1.13 0.680
119 0.57 1.11 1.05 0.647
176 0.62 0.986 0.993 0.639
476 0.59 1.06 1.03 0.623
800 0.61 1.00 1.00 0.619

1752 0.60 1.04 1.02 0.623

LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.52 0.982 0.978 0.721
CompV ec 119 0.32 1.40 1.17 0.814
Oliynyk 176 0.60 0.810 0.892 0.673
fractional 476 0.35 1.33 1.14 0.807
RANDOM 200 800 0.38 1.29 1.12 0.828
JARV IS 1752 0.56 0.899 0.937 0.687

Kernelised LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.81 0.420 0.645 0.434
CompV ec 119 0.66 0.765 0.871 0.535
Oliynyk 176 0.81 0.416 0.641 0.424
fractional 476 0.71 0.648 0.802 0.501
RANDOM 200 800 0.64 0.825 0.904 0.566
JARV IS 1752 0.82 0.395 0.626 0.418
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Table 5.11: Full table of results for the task of predicting Egap(DFT). Clusterings for
LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was magpie
featurisation with RBF kernel.

80%/20% train/test split

CBFV dimensions r2 mse rmse mae

magpie 88 0.77 0.621 0.788 0.523
CompV ec 119 0.66 0.922 0.960 0.663
Oliynyk 176 0.78 0.605 0.778 0.513
fractional 476 0.71 0.790 0.889 0.552
RANDOM 200 800 0.70 0.819 0.905 0.616
JARV IS 1752 0.79 0.572 0.756 0.502

Random Projection

88 0.54 1.23 1.11 0.841
119 0.54 1.23 1.11 0.839
176 0.56 1.18 1.09 0.819
476 0.59 1.11 1.05 0.796
800 0.60 1.09 1.04 0.790

1752 0.61 1.04 1.02 0.769

LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.54 1.19 1.09 0.833
CompV ec 119 0.32 1.77 1.32 0.988
Oliynyk 176 0.57 1.12 1.05 0.803
fractional 476 0.40 1.56 1.24 0.922
RANDOM 200 800 0.42 1.51 1.22 0.953
JARV IS 1752 0.58 1.08 1.03 0.795

Kernelised LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.77 0.608 0.779 0.533
CompV ec 119 0.63 0.982 0.991 0.686
Oliynyk 176 0.78 0.584 0.764 0.520
fractional 476 0.73 0.708 0.841 0.561
RANDOM 200 800 0.71 0.763 0.873 0.634
JARV IS 1752 0.79 0.556 0.745 0.510
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Table 5.12: Full table of results for the task of predicting Egap(DFT) ∪Egap(exptl). Clus-
terings for LOCO-CV were done with magpie featurisation, and kernelised LOCO-CV was
magpie featurisation with RBF kernel.

80%/20% train/test split

CBFV dimensions r2 mse rmse mae

magpie 88 0.77 0.602 0.776 0.524
CompV ec 119 0.63 0.955 0.977 0.673
Oliynyk 176 0.78 0.581 0.762 0.513
fractional 476 0.74 0.679 0.824 0.551
RANDOM 200 800 0.73 0.728 0.853 0.614
JARV IS 1752 0.79 0.555 0.745 0.504

Random Projection

88 0.54 1.20 1.10 0.834
119 0.54 1.20 1.10 0.834
176 0.56 1.15 1.07 0.812
476 0.58 1.08 1.04 0.788
800 0.59 1.07 1.03 0.779

1752 0.60 1.03 1.02 0.765

LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.53 1.20 1.09 0.840
CompV ec 119 0.32 1.76 1.32 0.986
Oliynyk 176 0.56 1.13 1.06 0.805
fractional 476 0.39 1.56 1.24 0.925
RANDOM 200 800 0.42 1.50 1.22 0.950
JARV IS 1752 0.58 1.09 1.04 0.797

Kernelised LOCO-CV scores

CBFV dimensions r2 mse rmse mae

magpie 88 0.76 0.613 0.783 0.537
CompV ec 119 0.62 0.981 0.990 0.686
Oliynyk 176 0.77 0.592 0.769 0.524
fractional 476 0.72 0.721 0.849 0.567
RANDOM 200 800 0.70 0.775 0.880 0.635
JARV IS 1752 0.78 0.567 0.753 0.515
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Table 5.13: The mean and standard deviation of various metrics of classification tasks
across 5 repeats measured using an 80/20 train/test fit. Note that for the HH stability
task, the highly unbalanced nature of the dataset results in unusually repeatable and high
performing results.
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Table 5.14: The mean and standard deviation of various metrics of classification tasks
across 5 repeats measured using LOCO-CV without any kernels
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Table 5.15: The mean and standard deviation of various metrics of classification tasks
across 5 repeats measured using kernelised LOCO-CV (using radial basis function kernel)
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Dmax

magpie 88 0.68 0.020 0.97 0.031 0.27 0.0057

CompV ec 119 0.65 0.014 1.0 0.020 0.27 0.0032

Oliynyk 176 0.61 0.018 1.1 0.025 0.29 0.0039

Random

Projection

88 0.56 0.029 1.1 0.037 0.40 0.0069

119 0.63 0.012 1.0 0.017 0.38 0.0057

176 0.61 0.019 1.1 0.027 0.39 0.0060

Egap(DFT)∪
Egap(exptl)

magpie 88 0.77 0.000 93 0.77 0.0016 0.52 0.000 96

CompV ec 119 0.63 0.0011 0.98 0.0015 0.68 0.0015

Oliynyk 176 0.78 0.0012 0.76 0.0021 0.51 0.000 70

Random

Projection

88 0.54 0.0012 1.1 0.0014 0.83 0.0010

119 0.54 0.0012 1.1 0.0014 0.83 0.0012

176 0.56 0.0023 1.1 0.0027 0.81 0.0021

Egap(DFT)

magpie 88 0.77 0.0012 0.79 0.0021 0.52 0.000 76

CompV ec 119 0.66 0.0018 0.96 0.0025 0.66 0.0016

Oliynyk 176 0.78 0.0013 0.78 0.0022 0.51 0.000 58

Random

Projection

88 0.54 0.000 93 1.1 0.0011 0.84 0.0010

119 0.54 0.0015 1.1 0.0018 0.84 0.0019

176 0.56 0.0027 1.1 0.0034 0.82 0.0016

Egap(exptl)

magpie 88 0.84 0.0032 0.63 0.0065 0.43 0.0023

CompV ec 119 0.68 0.0052 0.91 0.0074 0.56 0.0044

Oliynyk 176 0.84 0.0035 0.64 0.0069 0.43 0.0021

Random

Projection

88 0.51 0.0060 1.1 0.0068 0.68 0.0045

119 0.58 0.0069 1.0 0.0085 0.64 0.0075

176 0.61 0.0059 1.0 0.0076 0.65 0.0036

This table is continued on the next page
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Egap(oxides)

magpie 88 0.71 0.0054 1.3 0.012 0.94 0.0081

CompV ec 119 0.36 0.019 1.9 0.027 1.4 0.022

Oliynyk 176 0.76 0.0051 1.1 0.012 0.86 0.012

Random

Projection

88 0.35 0.015 1.9 0.021 1.5 0.012

119 0.27 0.011 2.0 0.014 1.6 0.016

176 0.35 0.0099 1.9 0.014 1.5 0.019

Tc|(Tc > 10K)

magpie 88 0.87 0.000 84 10 0.034 6.3 0.039

CompV ec 119 0.86 0.0016 11 0.061 6.4 0.045

Oliynyk 176 0.88 0.000 34 10 0.014 6.2 0.028

Random

Projection

88 0.84 0.0018 12 0.064 7.0 0.050

119 0.86 0.0010 11 0.040 6.8 0.012

176 0.85 0.0016 11 0.061 6.8 0.041

Tc

magpie 88 0.83 0.0013 11 0.041 5.4 0.018

CompV ec 119 0.82 0.000 79 11 0.025 5.2 0.015

Oliynyk 176 0.83 0.000 47 11 0.015 5.3 0.021

Random

Projection

88 0.81 0.000 97 12 0.030 5.9 0.024

119 0.81 0.0013 12 0.040 5.9 0.019

176 0.80 0.0018 12 0.055 5.9 0.018

∆Tx

magpie 88 0.60 0.0049 14 0.086 11 0.040

CompV ec 119 0.65 0.011 13 0.20 10 0.19

Oliynyk 176 0.60 0.0058 14 0.10 11 0.044

This table is continued on the next page
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Random

Projection

88 0.67 0.0060 13 0.12 9.9 0.14

119 0.67 0.0069 13 0.13 10 0.18

176 0.65 0.0063 13 0.12 10 0.12

Table 5.16: The mean (x̄) and standard deviation (σ) of r2, mean squared error (mse),
root mean squared error (rmse) and mean absolute error (mae) of regression tasks across
5 repeats measured using an 80/20 train/test split. Unlike Tables 5.17 and 5.18, none of
the r2 values found using this method were less than 0.
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Dmax

magpie 88 −15 2.1 0.018 1.2 0.015

CompV ec 119 −7.4 2.0 0.027 0.78 0.013

Oliynyk 176 −21 2.6 0.039 1.6 0.021

Random

Projection

88 −510 4.6 0.13 3.7 0.12

119 −210 4.2 0.21 3.4 0.2

176 −240 4.2 0.18 3.4 0.18

Egap(DFT)∪
Egap(exptl)

magpie 88 0.53 0.000 36 1.1 0.000 48 0.84 0.000 48

CompV ec 119 0.38 0.000 46 1.3 0.000 46 0.93 0.0007

Oliynyk 176 0.56 0.000 65 1.1 0.000 86 0.8 0.000 35

Random

Projection

88 −0.12 1.5 0.0032 1.2 0.0023

119 −0.026 1.5 0.0039 1.2 0.0031

176 −0.05 1.5 0.0024 1.2 0.0013

Egap(DFT)

magpie 88 0.54 0.000 61 1.1 0.000 84 0.83 0.000 87

CompV ec 119 0.38 0.000 36 1.3 0.000 33 0.93 0.000 57

Oliynyk 176 0.57 0.000 65 1.1 0.000 92 0.8 0.001

Random

Projection

88 −0.13 1.5 0.004 1.2 0.0027

119 −0.022 1.5 0.0059 1.2 0.0044

176 −0.061 1.5 0.0054 1.2 0.0037

Egap(exptl)

magpie 88 0.52 0.0045 0.98 0.0034 0.72 0.0027

CompV ec 119 0.28 0.0033 1.2 0.000 64 0.79 0.0014

Oliynyk 176 0.6 0.0032 0.89 0.0024 0.67 0.0016

Random

Projection

88 −0.6 1.4 0.008 1.1 0.0057

119 −0.54 1.5 0.0076 1.2 0.0055

176 −1.2 1.6 0.034 1.2 0.034

This table is continued on the next page
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Egap(oxides)

magpie 88 0.49 0.007 1.5 0.0058 1.2 0.0052

CompV ec 119 0.3 0.0056 1.8 0.0057 1.4 0.0054

Oliynyk 176 0.53 0.0046 1.4 0.004 1.1 0.0027

Random

Projection

88 0.22 0.018 2.0 0.021 1.6 0.019

119 0.19 0.011 2.1 0.011 1.7 0.01

176 0.26 0.0041 2.0 0.0051 1.6 0.0064

Tc|(Tc > 10K)

magpie 88 0.45 0.026 14 0.048 9.3 0.053

CompV ec 119 0.45 0.025 13 0.087 8.3 0.07

Oliynyk 176 0.48 0.014 13 0.043 8.8 0.03

Random

Projection

88 −16 21 0.29 17 0.28

119 −21 23 0.24 19 0.15

176 −32 22 0.29 19 0.3

Tc

magpie 88 0.39 0.0059 13 0.089 7.9 0.054

CompV ec 119 0.48 0.0033 12 0.046 6.9 0.039

Oliynyk 176 0.23 0.0096 13 0.07 8.2 0.038

Random

Projection

88 −1.3 17 0.18 13 0.12

119 −0.97 16 0.14 13 0.12

176 −0.99 17 0.11 13 0.07

∆Tx

magpie 88 −0.31 22 0.12 18 0.1

CompV ec 119 −0.092 21 0.15 17 0.12

Oliynyk 176 −0.19 21 0.13 17 0.098

This table is continued on the next page
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Random

Projection

88 −1.7 27 0.21 22 0.16

119 −0.52 23 0.12 18 0.063

176 −0.66 23 0.17 19 0.14

Table 5.17: The mean (x̄) and standard deviation (σ) of r2, mean squared error (mse),
root mean squared error (rmse) and mean absolute error (mae) of regression tasks across
5 repeats measured using LOCO-CV. As r2 has no lower bound, standard deviations of
r2 were not included when calculating the standard deviation, where none of the repeats
found an r2 > 0, no standard deviation has been reported.
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Dmax

magpie 88 0.63 0.012 1.4 0.021 0.29 0.000 81

CompV ec 119 0.6 0.0075 1.4 0.0078 0.27 0.0021

Oliynyk 176 0.58 0.01 1.4 0.015 0.29 0.000 75

Random

Projection

88 −120 4.6 0.17 3.5 0.1

119 −61 4.1 0.18 3.1 0.099

176 −57 4.0 0.066 3.1 0.03

Egap(DFT)∪
Egap(exptl)

magpie 88 0.77 0.000 75 0.78 0.0012 0.54 0.000 41

CompV ec 119 0.71 0.001 0.87 0.0014 0.58 0.000 49

Oliynyk 176 0.77 0.000 44 0.77 0.000 69 0.52 0.000 39

Random

Projection

88 0.045 0.013 1.4 0.0084 1.1 0.0075

119 0.1 0.0083 1.4 0.0085 1.1 0.0069

176 0.083 0.0081 1.4 0.0056 1.1 0.0059

Egap(DFT)

magpie 88 0.77 0.000 13 0.78 0.0002 0.53 0.000 22

CompV ec 119 0.72 0.000 34 0.87 0.000 49 0.57 0.000 21

Oliynyk 176 0.78 0.000 25 0.76 0.000 42 0.52 0.000 34

Random

Projection

88 0.04 0.0032 1.4 0.0074 1.1 0.0071

119 0.11 0.01 1.4 0.0084 1.1 0.0082

176 0.083 0.0087 1.4 0.0069 1.1 0.0069

Egap(exptl)

magpie 88 0.81 0.0014 0.65 0.0025 0.43 0.000 97

CompV ec 119 0.69 0.0022 0.83 0.0022 0.51 0.000 69

Oliynyk 176 0.81 0.000 78 0.64 0.0019 0.42 0.000 94

Random

Projection

88 −0.38 1.4 0.0054 1.1 0.0062

119 −0.43 1.5 0.01 1.1 0.01

176 −0.6 1.5 0.013 1.1 0.014

This table is continued on the next page
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Egap(oxides)

magpie 88 0.72 0.004 1.2 0.0067 0.91 0.0054

CompV ec 119 0.51 0.0032 1.6 0.0049 1.2 0.0038

Oliynyk 176 0.75 0.0024 1.2 0.0046 0.87 0.0039

Random

Projection

88 0.24 0.011 2.0 0.021 1.6 0.022

119 0.21 0.012 2.0 0.022 1.6 0.018

176 0.26 0.015 2.0 0.024 1.6 0.02

Tc|(Tc > 10K)

magpie 88 0.88 0.0003 10 0.012 6.4 0.0091

CompV ec 119 0.87 0.0009 10 0.034 6.4 0.021

Oliynyk 176 0.88 0.000 76 10 0.03 6.3 0.013

Random

Projection

88 −16 21 0.12 17 0.074

119 −22 24 0.41 20 0.37

176 −39 23 0.35 19 0.26

Tc

magpie 88 0.83 0.000 83 11 0.028 5.6 0.013

CompV ec 119 0.83 0.000 62 11 0.021 5.3 0.011

Oliynyk 176 0.84 0.000 77 11 0.026 5.5 0.0092

Random

Projection

88 −1.4 17 0.11 13 0.08

119 −0.56 15 0.07 12 0.054

176 −0.92 18 0.14 13 0.077

∆Tx

magpie 88 0.6 0.009 14 0.11 9.9 0.057

CompV ec 119 0.64 0.011 14 0.11 9.3 0.057

Oliynyk 176 0.62 0.011 14 0.14 9.9 0.057

This table is continued on the next page
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task CBFV dims.
r2 rmse mae

x̄ σ x̄ σ x̄ σ

Random

Projection

88 −1.5 27 0.18 22 0.18

119 −0.5 23 0.22 18 0.21

176 −0.68 23 0.11 19 0.13

Table 5.18: The mean (x̄) and standard deviation (σ) of r2, mean squared error (mse),
root mean squared error (rmse) and mean absolute error (mae) of regression tasks across
5 repeats measured using LOCO-CV with radial basis function kernel. As r2 has no lower
bound, values of r2 lower than 0 were excluded when calculating σ. Where none of the
repeats found an r2 > 0, no σ has been reported.



Chapter 6

Mathematically quantifying

isotropy

This section contains results under peer review for Applied Intelligence [44]

6.1 Introduction

Clustering algorithms have become a vital tool in materials science for tasks such as ma-

chine learning evaluation [45, 159] and data exploration [204]. In the field of materials

science, datasets can often be high-dimensional and lack target labels, making the task of

clustering data a challenging one. The appropriate representation of a material is often

unclear (Chapter 5) [45, 124], and manual evaluation of identified clusters is infeasible due

to the size of the datasets [69, 38, 78].

The previous chaptered saw use of K -means clustering on materials data investigated.

As part of this analysis attempts were made to examine defference in clustering before

and after kernel approximation application. In visualisation of these results, it was noticed

that the shape of clusters after kernel approximation application was more isotropic with

no kernel approximation applied (Figures 5.6c and 5.6d). However it was unclear whether

this difference could be quantified. As such an investigation followed into measuring the

isotropy of a set of clusters, which is presented in this chapter. While somewhat tangetial

to the initial research question, it is hoped that this investigation remains interesting.

Recent publications in materials science have introduced new clustering techniques

that can work in a supervised or semi-supervised manner [138]. Although new techniques

171
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show promise and are seeing uptake [159, 137, 122, 14], like many other clustering algo-

rithms [108, 49, 191], these techniques rely on distance similarity metrics (usually Euclidean

distance) in order to cluster the data. Thus, these algorithms depend on the representation

of the materials. But it is unclear which material representation is most appropriate; thus,

evaluating the results of clustering is important, regardless of which clustering algorithm

is used. As datasets can be too large to evaluate manually, semi-automatic, or automatic

metrics must be used to quantify characteristics of clusters and the success of clustering.

This chapter discusses and presents such metrics.

Existing metrics for clustering unlabelled data, such as silhouette or Folkes–Mallows

scores, focus on quantifying the compactness of individual clusters, and the separation of

clusters from each other [107]. One aspect of sets of clusters, which remains difficult to

quantify, is their average shape. This chapter focusses on the isotropy of a cluster: Do the

points in a cluster form a round shape, or are they a “spikier” shape. Although other shape

markers, such as squareness or hexagonality, may be given more importance, isotropy could

still be a relevant factor to some researchers.

Isotropy of data representations has been associated with improved performance in

downstream machine learning tasks [123], and anisotropic clusters of data may be indica-

tive of representations dominated by specific features or correlations of features. Where

representation is unclear, such as in materials science, exploring the effects of representa-

tion on the isotropy of clusters can be informative to a researcher.

The shape of a cluster can be visually observed by projection of data onto a lower

dimensional space [56, 180], but this projection excludes significant amounts of information,

and observations about these projections are subjective. For example, previous work used

visual inspection of Principal Component Analysis (PCA) to project representations of the

Inorganic Crystal Structure Database (ICSD) in 3 dimensions and qualitatively described

changes in cluster shape upon application of different kernel approximation methods [45].

Although qualitative observation can be helpful, there is an unmet need for robust metrics

to quantify the isotropy of clusters and understand the underlying structure of the data. As

will be seen, such numerical analysis can highlight non-intuitive results, which are present

at higher dimensions.

The chapter expands on existing methods to quantify cluster shape by measuring the

isotropy (“roundness”) or anisotropy (“spikiness”). The robustness of existing metrics is

examined, and the metrics are then expanded upon from use on one cluster to use on a

set of clusters. Metrics of this kind are commonly used in three dimensions in the field of
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medical imaging to identify the diffusion of water in the brain [48]. In higher dimensions,

similar metrics arise in the context of data science to draw conclusions about the shape

of point clouds [123]. This chapter analyses of existing methods in high dimensions using

random matrix theory and describes an alternative implementation for an existing deriva-

tion of isotropy. The concept of measuring isotropy is extended to examine sets of clusters,

and example uses of this extension are provided in the material science and data science

domains.

After a brief introduction to metrics for unlabelled clustering and metrics for isotropy,

an existing derivation is expanded to define a new isotropy metric. The usefulness of this

new isotropy metric is demonstrated for quantifying the clustering of the ICSD, which

is one of the foundational datasets in inorganic chemistry and materials science. These

metrics of isotropy are used to quantify the shape of clusters within the ICSD when using

different representations and non-linear (kernel-approximation) transformations.

Although this technique was developed in a material science context, it has a broader

applicability wherever the shape of sets of clusters must be quantified. For example,

analysing learnt embeddings is a common task in machine learning [66, 177, 106] and often

relies on low dimensional visualisation methods [56, 180]. As such, the usefulness of this

metric is further demonstrated by using it to quantify differences in learnt embeddings

of images of digits using the Modified National Institute of Standards and Technology

(MNIST) dataset, a foundational data science dataset [99].

To examine the difference between the metrics for isotropy used, clusters of random

points are generated in various dimensionalities and their isotropy is measured. Using

mathematical tools from the field of random matrix theory [113] an explaination is offered

for the behaviour observed in the existing metrics.

In the field of materials science an “anisotropic material” is often used to describe ma-

terials with elongated conventional unit cells. However, conventional unit cells are decided

with some level of human judgment (Section 2.2.2). Having an objective mathematical

measure for this would be beneficial. As such, isotropy metrics presented here were used

on unit cells from Ruddlesden-Popper and Kagome type structures to see if they could

objectively measure what would be considered an isotropic material. However, this mea-

surement is found to be highly correlated with c
a ratio of the unit cell and, as such, depends

on the definition of the unit cell. Thus, when quantifying the isotropy of a material (rather

than that of a cluster of materials), the measures investigated here do not offer more

objective measures than existing methods.
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Finally, time complexity of the proposed metrics is examined, and the advantages and

disadvantages of each metric are discussed. Concluding remarks are then made.

The specific contributions of this paper are as follows:

• Exploring how metrics used for measuring isotropy in 3 dimensions [10] generalise to

higher dimensions.

• Providing a new implementation for an isotropy measure based on an existing math-

ematical derivation (Section 6.3.1).

• Proposing adaptions to the measures of isotropy for single clusters such that one can

measure the average isotropy across a set of clusters (Section 6.3.2).

• Highlighting the need for analysis of representation when clustering datasets relating

to materials (Section 6.4.1).

• Demonstrating analysis of isotropy in a supervised learning context using a founda-

tional data science dataset (Section 6.4.2).

• Examining the robustness of the metrics under random noise perturbations (Sec-

tion 6.4.3).

• Using random matrix theory to prove that the measurements of isotropy are related

to the dimensionality of data, especially if the data are noisy (Section 6.4.3).

6.2 Metrics for unsupervised clustering

While supervised clustering tasks allow the use of metrics such as the adjusted mu-

tual information score [182], Folkes–Mallows score [54], or homogeneity and completeness

scores [157], the selection for unsupervised clustering is more sparse. Unsupervised metrics

must rely on features present in the data, and thus are dependent on data representation.

Due to this dependency, such metrics can be referred to as “internal clustering validation

measures” [107]. Internal clustering validation measures aim to quantify the quality of a

set of clusters in an abstract sense, by focussing on either the compactness of each cluster

or the separation between clusters. To contextualise the new implementations presented

here, examples of prominent unsupervised clustering metrics are outlined in this section.
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Using distance metrics such as the Euclidean distance, one can compute the average

distance between each point and every other point in its cluster. This can become compu-

tationally expensive because the calculation of the pairwise distance matrix scales with the

square of the number of points (Table 6.1). Thus, the average distance between a point

in a cluster and its centroid can be used instead, which scales linearly with the number

of points in the cluster. These computations provide a measure of how tightly packed a

cluster is in the space distance is being measured over (for example, the Euclidean space).

This is useful for numerically comparing clusters and clusterings of points which exist in the

same space, such as comparing clusters found using different clustering algorithms. The

representation of data, and any transformations will affect the distance measurements,

so, this use of distance metric based quantification of clusters is inadequate for making

comparisons between sets of clusters found on different representations of data.

The silhouette score uses distance measurements to provide a number bounded between

-1 and 1 to measure how well a point is clustered [162]. Where 1 is considered a well

clustered point (i.e., according to this metric the point is in the correct cluster) and -1 is

considered a poorly clustered point (i.e., according to this metric this point should be in

a different cluster). It is calculated by comparing the mean distance between a point and

other members of that point’s cluster, to the mean distance of that point and all members

of its next closest cluster (the cluster who’s members are on average closest to that point).

By calculating the mean silhouette score for all points one can obtain a score for the quality

of a set clusters. This score can be compared to silhouette scores found using alternative

representations of data points or kernel transformations.

The Davies–Bouldin index provides a lower bounded metric of clusters without requir-

ing a pairwise distance between points in the dataset [96]. By comparing distances of points

in a cluster to its centroid and distances between cluster centroids, a score is calculated

with a minimum of 0, where lower scores indicate better clusterings.

The Calinski–Harabasz measure (or variance ratio criteron) [21] is a metric that con-

siders both the dispersion and the separation of the clusters. It is calculated by using

the sum of square distances between a point in a cluster and its centroid and the sum

of square distances of the cluster’s centroid from the mean data point in the dataset. In

other words, it compares the dispersion within clusters to the dispersion of centroids in

the representation space. Unlike the Davies–Bouldin index, a higher Calinski–Harabasz

measure indicates a more separated set of clusters.

Although evaluation based on dispersion and cluster compactness provides a metric
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of how “good” an application of clustering is, it does not provide information about the

clusters themselves. It can be relevant to the use case of clustering algorithms to have

evenly sized clusters (i.e. clusters should contain approximately the same number of data

points) [117]. In this case, the variance between cluster size has been used as a metric [45].

Another property which has been difficult to reason with about clusters is their shape.

We present a novel application of isotropy metrics in a clustering context.
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Table 6.1: A summary of metrics for unsupervised learning. Included are descriptions,
optimal values where applicable, whether their output has upper bounds and/or lower
bounds (L.B.), and approximations of time complexity. Where D is a set of clusters, |C|
is the size of a cluster, E is the set of all points in all clusters of D (thus |E| = ΣC∈D|C|),
n is the number of dimensions in which the cluster exists and r is the number of random
vectors used for Irnd.

Metric Description Optimal
value

Bounded Complexity

Mean distance
to centroid

Measures compactness of clus-
ters

Min L.B. = 0 O(|E|)

Mean distance
between points
in cluster

Measures compactness of clus-
ters

Min L.B. = 0 O (|E||C|)

Silhouette score Measures how close a point is
to other points in its cluster
compared to points in other
clusters

Max −1, 1 O
(
|E|2

)

Davies–Bouldin
index

Ratio of within cluster dis-
tances to between cluster dis-
tances

Min L.B. = 0 O(|E|) *

Calinski–
Harabasz
measure

Ratio of between and within
cluster dispersion, weighted
by the size of the cluster

Max L.B. = 0 O(|E|)

Cluster size
variance

Measures how evenly sized
clusters are

N/A † L.B. = 0 O(|D|)

Fractional
isotropy

Measures the shape of clusters N/A ‡ 0, 1 O(|E|n2) §

Isotropy (Eigen-
Vec)

Measures the shape of clusters N/A ¶ 0, 1 O(|E|n2) §

Isotropy (ran-
dom)

Measures the shape of clusters N/A ¶ 0, 1 O(|E|r)

* Assuming |D| > |D|2 otherwise O(|D|2).
† Lower indicates more evenly sized clusters.
‡ Lower indicates more isotropic.
¶ Higher indicates more isotropic.
§ Assuming n < |C| else O(|E||C|n).
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6.3 Metrics for Isotropy

As discussed above, the shape of the clusters is often an important consideration. A

cluster with an isotropic shape, where the distribution of points is roughly equal in all

directions, can be preferable to a cluster with a highly elongated shape [123]. Elongated

clusters could be indicative of outliers: In clustering methods that only consider single

linkage when creating clusters (e.g, hierarchical agglomerative clustering [111] or iterative

label spreading [138]), long chains of outliers can be grouped together [111]. This sections

discusses possible pitfalls when attempting to measure isotropy, and explore various metrics

for measuring the isotropy of clusters, providing a quantitative way to evaluate and compare

different cluster shapes.

One common pitfall when analysing the isotropy of a cluster of points is that it can

be highly subjective as to whether a cluster is anisotropic or isotropic. For example, a

spiral cluster (Figure 6.1a) may appear anisotropic if the spirals are loose. However, as

spirals become closer together, or longer it becomes more subjective as to whether this

cluster can be considered anisotropic or if the spirals have collapsed into a single isotropic

cluster. Similarly, an L-shaped cluster (Figure 6.1d) may seem anisotropic, but could

arguably be two isotropic clusters which have been wrongly grouped. Reducing complex

correlations to single numbers will necessarily remove some information. Isotropy may be

a secondary consideration compared to other markers of shape (for example, spiral, square,

or hexagonal). Nevertheless, when isotropy is a primary concern for a researcher, having

the ability to quantify isotropy is useful for analytical and descriptive purposes.

Although metrics such as kurtosis or variance may measure the spread of a cluster

in individual dimensions, anisotropy may occur between dimensions (Figure 6.1d) thus, a

more complex statistical analysis must be used. Two important properties that a mea-

sure of isotropy must have are (a) being invariant against uniform scaling and (b) being

invariant against linear isometries. In other words, applying linear transformations such

as translations, reflections, rotations or uniform scaling to a cluster of points should not

change its isotropy measurement. Confusingly, in the field of probability theory, functions

that satisfy the property of being invariant under linear isometries are sometimes referred

to as being “isotropic measures” or “isotropic processes” [16], not to be confused with the

measures for isotropy or metrics for isotropy, which are explored in this paper.

A simple way to incorporate invariance upon linear isometries as a metric for isotropy

is to base that metric on the principal components of a cluster. While the eigenvectors that
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(a) (b)

(c) (d)

Figure 6.1: Examples of two dimensional clusters of points, labelled with measurements
for Ic,vec and Ic,rnd. Unit vectors a which resulted in min(Z(a)) and max(Z(a)) are
shown, and colour coded according to the metric for which they have been used. Each
cluster consists of 300 points. As was the case for most other low dimensional experiments
(Section 6.4.3), in all the examples shown here, Ic,rnd is seen to be lower than Ic,vec and
thus is more accurate in these cases (Equation 6.11) (a) An s-shaped, or spiral cluster (b)
A cluster picked from a two dimensional Gaussian distribution (c) A cluster picked from
a two dimensional Gaussian distribution where the Y axis has a lower standard deviation
than the X axis (d) A reverse L shaped cluster.
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make up these principal components may change with rotation, their relationship with the

points in the cluster and the set of eigenvalues (Λ) associated with each eigenvector will not

change. Using the variance of these eigenvalues would be a simple proxy of isotropy. If the

variance between eigenvalues is large, there are large differences between the eigenvalues,

then there are principal components that are more significant, and thus a cluster will

become anisotropic. If the variance between the eigenvalues is small, then the eigenvalues

are similar, and the cluster extends evenly in each of the principal axes. If the eigenvalues

are normalised before measuring the variance (Var), then this proxy is invariant upon

uniform scaling and invariant upon linear isometries. These normalised eigenvalues are

usually denoted as the set λ:

λi =
Λi∑n
j=0 Λj

(6.1)

Where Λ are the eigenvalues of the principal components of a cluster. As uniform

scaling of points in the cluster will equally scale
∑n

j=0 Λj , Var(λ) is a simple measure for

isotropy which is invariant upon linear isometries and upon uniform scaling.

While this means that Var(λ) is theoretically bounded between 0 and 0.25 (Theo-

rem 1), Var(λ) is usually very small and does not use the whole range (Tables 6.2 and 6.3).

Consequently, Var(λ) is not a common measure of isotropy and will not be discussed here.

Similar measures for isotropy based on eigenvalues of the principal components are

widely used in the field of diffusion tensor imaging. In diffusion tensor imaging, isotropy

can be used as a proxy for the flow of water in the brain or spinal chord [48]. While many

metrics for isotropy have been proposed in the medical imaging field [2], the most widely

used of these is fractional anisotropy (FA) [10]. FA is defined as the square root of the

variance of the normalised eigenvalues of a covariance matrix, divided by the expected value

of the square of the normalised eigenvalues, given by Equation 6.3. Due to its application

in magnetic resonance imaging, this is often defined in three dimensions:

FA(λ) =

√
3

2

√√√√(λ1 − λ̂
)2

+
(
λ2 − λ̂

)2
+
(
λ3 − λ̂

)2

λ2
1 + λ2

2 + λ2
3

(6.2)

=

√
Var(λ)

E (λ2)
=

√
1− E(λ)2

E(λ2)
(6.3)



Chapter 6. Mathematically quantifying isotropy 181

Where λ̂ is the mean of λ (λ̂ = (
∑n

i=0 λ)/n). FA is bounded between 0 and 1 with 1

indicating a highly anisotropic cluster and 0 indicating a highly isotropic cluster. In medical

imaging λ is usually the set of normalised eigenvalues for the principal components of a

diffusion tensor. This diffusion tensor is a small voxel of a larger medical image that

allows mapping of water diffusion in parts of the brain [48]. We are unaware of any

higher-dimensional applications of this metric or applications on larger sets of points. This

chapter investigates the use of FA to quantify anisotropy in larger point clouds and in

higher dimensions. As will be seen shortly, special considerations are needed when using

FA in higher dimensions.

Although FA is popular in medical imaging, an alternative approach to measuring

the isotropy of a cluster was proposed in the natural language processing domain [123].

This research aimed to quantify the changes to high-dimensional word embeddings. This

research used a previously defined function to quantify the cosine similarity between a

vector and a cluster of points [123]:

Z(a) =
∑
d∈C

exp (aᵀd) (6.4)

In an isotropic cluster, C, of data points, d, the value of Z(a) should be approximately

constant with any unit vector a. The ratio between the largest and smallest values of Z(a)

for a cluster C can be used to define an isotropy measurement, Ic, with a range between

0 and 1. The true ratio of largest to smallest values of Z(a), would be calculated using

every a on the unit sphere [123]:

min|a|=1 Z(a)

max|a|=1 Z(a)
(6.5)

However, this definition is not invariant under linear isometries or uniform scaling:

moving a cluster away from the origin will result in a smaller measure for isoptropy (The-

orem 2). In order to make this definition invariant upon linear isometries and uniform

scaling, we adjust the Z(a) function used in previous work:

Z ′(a) =
∑
d∈C

exp

(
aᵀ

(
d− d̂

µ

))
(6.6)
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d̂ is the centroid (or mean) of C and µ is the mean magnitude of d− d̂:

µ =

∑
d∈C |d− d̂|
|C|

(6.7)

This allows the adjustment definition of a measure, Ic, for the isotropy of a cluster,

which is bounded between 0 and 1, and invariant upon linear isometries and uniform

scaling:

Ic,true =
min|a|=1 Z

′(a)

max|a|=1 Z ′(a)
(6.8)

While linear isometries applied to C may change Z ′(a) for a single value of a, intuitively

it will not change the value of Ic,true. Note that for Ic,true (and its non-invariant counter-

part in Equation 6.5) an isotropic cluster will result in a measurement close to 1 and an

anisotropic cluster will be close to 0. This is the opposite to FA which is 1 for anisotropic

clusters and 0 for isotropic clusters.

As the set of vectors on the unit sphere is infinite, previous work [123] approximated

Ic,true by measuring Z for the set of eigenvectors found in PCA. As an alternative ap-

proximation will later be proposed (Section 6.3.1), for clarity, this implementation of Ic is

labelled as Ic,vec. Ic,vec (adjusted for invariance under scaling and linear isometries) is thus

defined by:

Ic,vec(C) ≈ mina∈A Z
′(a)

maxa∈A Z ′(a)
(6.9)

where a is the set of eigenvectors found by applying SVD to CᵀC. Readers familiar with

PCA will note that this is the same process by which PCA is calculated (although PCA

here will be applied to the cluster). Thus, a is the set of eigenvectors that are the principal

components of the cluster.

6.3.1 Alternative interpretation of isotropy definition

Much like FA, Ic,vec assumes that isotropy originates from the principal axis of a cluster.

As seen empirically, this is often a valid assumption (Tables 6.2 and 6.3 and Figure 6.5b),

but it is possible to think of clusters for which this is clearly not the case (Figure 6.1d).
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The task of finding the set B for which Z ′(a) is measured can thus be approached as

an optimisation task. The set of points on the unit sphere is of infinite size, thus, a subset

of unit vectors B must be defined for which to calculate ∀a∈BZ ′(a):

Ic|B(C) ≈ minb∈B Z
′(b)

maxb∈B Z ′(b)
(6.10)

A good approximation of Ic,true must not incur excess computation and must be accurate.

The computational complexity can be estimated theoretically and stated using the “big

O notation” (examples in Table 6.1) or can be measured experimentally (Figure 6.5a).

Assessing which set B provides the most accurate Ic|B is also straightforward. Given our

definition of Ic,true (6.8), Ic|B will always be an upper bound for the true value of Ic,true

( Theorem 3):

∀c,B : Ic,true ≤ Ic|B (6.11)

From this it can be concluded that, given two sets of vectors to constitute B, the one for

which Ic|B is smaller will be the more accurate of the two. Thus, this task is framed as

finding a set B, which will result in the smallest value of Ic|B, while taking into account

the incurred computational costs.

As a possible solution, using a random set of unit vectors, r, to define the set B is

proposed. This solution is labelled Ic,rnd, which can be defined as:

Ic,rnd(C) ≈ minb∈r Z(b)

maxb∈r Z(b)
(6.12)

Here, r is a random set of unit vectors.

While Ic,rnd is non-deterministic, the random set r can be chosen a priori and used

to calculate Ic,rnd for multiple clusters with the same dimensionality. As in calculations

of Ig, Ic must be calculated for many different clusters (Equations 6.14 and 6.15). This

means that in many circumstances it is more computationally efficient to calculate Ig,rnd

than Ig,vec when B is pre-calculated (Table 6.1, Figure 6.5a).

The stochastic nature of this equation means that found values of Ic,rnd will slightly

differ for different values of r. However, since the number of random unit vectors sampled

is a hyper parameter of Ic,rnd, the ability of Ic,rnd to approximate Ic,true can be improved
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by sampling more random unit vectors. As per Theorem 4, we can find:

lim
|r|→∞

Ic,rnd = Ic,true (6.13)

Ig,rnd to Ig,vec are compared in two different contexts, to show an example use in the ma-

terials science domain, and a basic data science example to show the broader applicability.

6.3.2 Isotropy of sets of clusters

Both the internal clustering validation metrics and the measures of isotropy explored here

rely on features of data to produce a numeric measurement. To adapt the isotropy measure-

ments into an internal clustering validation metric, this section extends these measurements

to be defined globally for a set of clusters, G, rather than a single cluster of points. To

adapt Ic,vec and Ic,rnd to estimate average Ic,true for a G, a weighted sum of isotropy for

each cluster can be taken to establish a measure for a global set of clusters, Ig (weighted

by the number of data points in a cluster). Thus, Ig,vec can be defined as:

Ig,vec(G) ≈ 1

|E|
∑
C∈G
|C|Ic,vec(C) (6.14)

Where E is the set of all points in the dataset (|E| =
∑

C∈D |C|, where |C| is the number

of points in C).
Similarly, Ig,rnd can be defined:

Ig,rnd(G) ≈ 1

|E|
∑
C∈G
|C|Ic,rnd(C) (6.15)

Both Ic,rnd and Ic,vec are bounded between 0 and 1 where 0 represents a set of clusters that

are anistropic, and 1 represents a set of clusters that are isotropic.

FA can also be adapted for a set of clusters G. Taking the weighted sum of FA mea-

surements for each cluster allows us to define FAg:

FAg(G) =
1

|E|
∑
C∈G
|C|FA(C) (6.16)

FAg is bounded between 0 and 1, with 0 representing a highly isotropic set of clusters and

1 representing a highly anisotropic set of clusters.
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6.4 Results

6.4.1 Use of isotropy measurements in the context of materials science

To investigate the behaviour of FAg, Ig,vec, and Ig,rnd, two potential use cases for these

measures are examined. This is done using a canonical crystal structure dataset (e.g.,

the ICSD), and later in a more general context using a canonical data science dataset

(Section 6.4.2).

This exploration extends the previous work (Chapter 5) [45], which applied K -means

clustering to prominent representations of the ICSD before and after the application of

radial basis function (RBF) approximation [146]. This work qualitatively observed that

clusters of chemical compositions in the ICSD were more isotropic after application of RBF

approximation. This observation was made by visually inspecting 3 dimensional PCA pro-

jections of these high-dimensional representations (Figure 5.6). These PCA projections

inherently remove some of the information present in higher dimensions. Using the mea-

sures for isotropy of a set of clusters presented here, it is possible to quantify the changes

in cluster shape and ensure that all dimensions of a representation are considered.

This work represents the ICSD using two popular composition based representations

explored in Chapter 5: a fractional composition vector (CompV ec) encoding [79] and the

magpie composition based feature vector [192]. CompV ec is an n-hot style encoding of

composition where each entry in the vector corresponds to an element, the value of the

entry represents the molar proportion of that element in a material. Thus, CompV ec

is a sparse representation, with each entry being between 0 and 1, and the sum of all

entries being equal to 1. magpie is a feature engineered vector, using features such as

the covalent radius, electronegativity, or Mendeleev number observed for each element of

a composition. The features are then aggregated using weighted mean, sum, variance,

and range. As such, magpie is a dense representation, with the range of features varying

significantly (Section 6.4.1), and many features being highly correlated [45].

Min-Max scaling was used for both representations, to transform the feature values

to be between -1 and 1 before these data were clustered using K-means clustering [108]

(values of K set to 5 and 10). The RBF approximation was then applied a priori to the

data being clustered with K-means clustering (values of K set at 5 and 10).

While RBF and RBF approximation are distinct techniques (Chapter 5), for brevity,

(and in line with the previous chapter) RBF will be used in figures and that it is an
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approximation is mentioned in the text and captions. Changes observed in the previous

chapter are measured to validate visual findings and observe differences between measures

of isotropy, FAg, Ig,rnd and Ig,vec.

Visual inspection of PCA projections shows that applying an RBF approximation [146]

to the ICSD creates more isotropic clusters (Figure 6.2). However, due to the limitations

in the visualisation, it is difficult to determine which representation leads to the largest

changes upon application of the RBF approximation. The use of internal clustering valida-

tion metrics, including the isotropy measures developed here, allows quantification changes

in the clusters (Table 6.1).

Examining how metrics change with RBF approximation also allows reflection on which

metric may be most useful depending on the required application. For example, cluster

size variance was used in previous work, where more evenly sized clusters were sought to

reduce data imbalance for training machine learning models [45]. However, more evenly

sized clusters are not necessarily well separated, thus other applications seeking to measure

the distinctness of clusters may favour different internal cluster validation methods such

as the Davies–Bouldin or silhouette scores. In the task of quantifying the anisotropy (i.e.,

spikeyness) of clusters, no existing internal validation methods were suitable. Thus, the

methods presented here are pertinent in this case.

As was initially expected, applying RBF approximation has a consistent effect on most

existing measurements in both investigated representations. The only internal cluster

validation metrics in which CompV ec and magpie exhibited divergent behaviour with the

RBF approximation were the mean Euclidean distance to the centroid, and measures for

isotropy FAg, Ig,rnd and Ig,vec (Table 6.2). An explanation is offered for each of these. The

measures for isotropy introduced here (FAg, Ig,rnd and Ig,vec) display unique behaviour

from other internal cluster validation metrics. Ig were the only metrics for which applying

the RBF approximation magpie and CompV ec representations offered divergent behaviour

regardless of whether measurements were taken after normalising magpie.

While there are apparent divergent behaviours in the mean Euclidean distance between

a point in a cluster and its centroid, this divergence can be explained by a lack of normal-

isation in the magpie feature vector. The formula of the RBF approximation is examined

in order to demonstrate this.
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Apparent divergent behaviour in mean Euclidean distance to centroid

When measuring the mean distance between a point in a cluster and its centroid after the

RBF approximation, a magpie representation without normalisation exhibits behaviour

opposite to that of CompV ec. This behaviour can be explained by examining the formula

for the radial basis function approximation:

f(x) =

√
2 cos(x · w + o)√

l
(6.17)

l is length of vector. w and o are random weights, where w is mean 0 variance
√

2γ and o

is uniform between 0 and 2 π.

The input to this function is randomly projected and translated and then put through

a cosine function before being scaled relative to the length of the input.

In high dimensions, this random projection approaches a linear projection [154, 83].

This linear projection maps into a data space in which distance relationships between points

are preserved (with some error margin which scales inversely to the number of dimensions).

If the inputs to this function are not normalised, there could be large differences between

the scale of different axes in the new data space, which will be present after random

projection. However, as the cosine function is bounded [-1,1], these large differences in

scale of dimensions will be removed, akin to normalisation (Table 6.2).

Unlike CompV ec, magpie is not a normalised representation. Min-Max scaling was per-

formed on both representations before application of K-means clustering, however metrics

were measured with this scaling (as this scaling would effect these measurements). For

example, one of the features used in magpie is the sum of the melting temperatures of the

constituent elements, which ranges from 10 Kelvin to 43 million Kelvin. This large range

means that the magnitude of magpie feature vectors are on average very large (Table 6.2),

which results in large mean distances between a point in a cluster and that clusters centroid.

After the RBF approximation, the mean magnitude of the representation decreases, so in

turn the mean distance from the centroid; this is in keeping with the RBF approximation

having a bounded output domain (Equation 6.17).

As all values in a CompV ec representation range from 0 to 1, the mean magnitude

is smaller (0.66). Applying an RBF approximation results in a mean magnitude which

is larger, and in turn a larger mean Euclidean distance between a point and its centroid.

Thus, the divergence of behaviour between representations on application of an RBF ap-
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Table 6.2: Analysis of entire ICSD in CompV ec and magpie representations before and
after RBF approximation. Values here are means of those found with K-means clustering
aplied with K = 5 and K = 10

Metric
CompVec magpie magpie (normalised)

No RBF RBF No RBF RBF No RBF RBF

l2-norm
of repre-
sentation

0.660 1.01 8.21×105 1.00 7.59 1.00

mean dis-
tance to
centroid

0.397 0.52 2.33×105 0.987 2.91 6.98

silhouette 0.247 0.177 0.559 6.42×10−3 −2.06×10−2 6.34×10−3

Davies–
Bouldin

1.91 2.58 0.515 8.33 7.45 8.33

Calinski–
Harabasz

2.09×104 1.88×104 7.11×105 8.53×102 2.97×103 8.53×102

cluster
size
variance

9.26×108 6.33×108 6.34×108 3.15×105 6.34×108 3.15×105

fractional
anisotropy

0.855 0.870 0.994 0.182 0.951 0.182

Var(λ) 3.33×10−4 4.96×10−4 1.08×10−2 3.54×10−6 1.24×10−3 3.53×10−6

Ig,vec 0.942 0.923 0.180 0.993 0.894 0.993

Ig,rnd 0.992 0.988 0.682 0.999 0.981 0.999

proximation is due to changes in the magnitude of a representation that this function

entails.

Divergent behaviour between representations for measurements of isotropy

Applying an RBF approximation to all chemical compositions of the ICSD changes mea-

surements of anisotropy, depending on the representation of those compositions (Table 6.2).

The magpie representation is measured to be more isotropic after application of an RBF

approximation, whereas the CompV ec is more anisotropic. This difference in behaviour

is due to differences in the sparsity of the representations. While magpie is a dense rep-

resentation, CompV ec is a sparse representation, which has important consequences, as
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discussed below.

Unlike the mean distance to the centroid, the divergence in the effect of the RBF

approximation on isotropy cannot be explained by the bounded nature of the function

(Equation 6.17). Even when measuring Ig,rnd and Ig,vec of this clustering when magpie is

normalised (with Min-Max scaling), the isotropy increases after the RBF approximation,

whereas isotropy decreases in a CompV ec representation (Table 6.2).

As CompV ec is a sparse representation, the projection seen in the RBF approximation

will result in a sparse output. However, as this is over fewer dimensions, non-zero values

in single axis have a greater effect on the isotropy of a cluster, leading to more anisotropic

clusters.

As magpie is a dense representation, the opposite is true. Variations in any one di-

mension will be diluted, leading to more isotropic clusters.

This behaviour is not necessarily obvious when looking at the transformation performed

to both representations (Equation 6.17). In this case, the measures for isotropy Ig,vec,

Ig,rnd, and FAg are valuable to measure an effect and help identify changes that may not

be intuitive.

6.4.2 Example basic use of cluster isotropy measurements for data sci-

ence application

Examining learnt embeddings (also called learnt representations) is common in under-

standing how deep learning algorithms interpret input data [177]. However, this is often

qualitative analysis, based on 2D or 3D projections of the embeddings, which by their

nature remove some of the information present in higher dimensions.

Cluster isotropy measurements can be used to quantify differences between embeddings

without dimensionality reduction. This can be used in conjunction with qualitative analysis

to judge the differences between embeddings produced by deep learning models.

In order to demonstrate the broader applicability of measures of cluster isotropy, this

section presents quantitative analysis of learnt embeddings. Two models were trained on a

basic computer vision dataset, the Modified National Institute of Standards and Technology

dataset (MNIST) [99]. The MNIST is a widely used dataset of 70,000, 28x28 pixel images,

each depicting a handwritten number between 0 and 9. A common ML introductory task

is to create a model that can correctly classify these images.

Two types of models were trained to create low-dimensional embeddings MNIST im-
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(a) CompV ec (b) CompV ec with RBF

(c) Magpie (d) Magpie with RBF

Figure 6.2: 3 dimensional PCA representations of the ICSD (a random 20% subsample is
used for visual clarity) with clusters found with K-means clustering. Coloured according
to clusters found using K-means clustering on that data with K = 5 (i.e., the same point
may not be the same colour between subfigures) (a) Data was represented using CompV ec
with no RBF application. (b) Data was represented using CompV ec with RBF application.
(c) Data was represented using magpie with no RBF application. (d) Data was represented
using magpie with RBF application.
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Figure 6.3: Layout of auto-encoder and variational auto-encoder (VAE) used in the example
discussed in 6.4.2. Embeddings shown in red here are those seen plotted in Figure 6.4 and
measured in Table 6.3.

ages, and compare their embeddings of unseen test data using two different models. The

exact mechanics of these models is not vital to understand the novel analysis of isotropy

of clusters which is presented here. This section does not aim to present a novel model;

instead, it used isotropy of clusters to analyse models’ outputs in an interesting way. Re-

gardless; a brief overview is of these models given.

Auto-encoders are neural network models that learn a representation of a dataset by

passing each dataset through a neural network with an information bottleneck before trying

to reconstruct the input data point [90]. The part of the model up to and including this

bottleneck is called the encoder, and the part after the bottleneck is called the decoder
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(a) (b)

Figure 6.4: PCA transformations of latent space embeddings of MNIST training set. A
random 50% of the training set is shown for visual clarity. (a) Autoencoder embedding (b)
Variational autoencoder embedding

(as they, respectively, encode and decode a learnt representation). Once trained, output of

the bottleneck layer can be used as a lower-dimensional representation of the input (also

referred to as a learnt or latent space). Feeding random noise to a trained auto-encoder

should generate an output which is similar to existing data points, but is completely

fictional. However, in practise, when used in this generative fashion, auto-encoders can

give outputs identical to received training data.

Variational auto-encoders (VAEs) aim to be a more useful generative model by intro-

ducing randomness into the encoder [176]. This forces the model to learn the distribution

of points in a dataset, rather than the points themselves. As a result, a VAE tends to gen-

erate a data point which is harder to map on directly onto a data point in the training set.

In order to stop overfitting when learning the distribution of datapoints, a further term,

Kullback–Leibler divergence (KL divergence), is introduced into the loss function [94]. The

KL divergence measures the distance between the learnt distribution and either the true

distribution or the a distribution chosen a priori (often the normal distribution).

An auto-encoder and a VAE (Figure 6.3), were trained for 100 epochs on the MNIST
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dataset. Each features 3 fully connected layers in both the encoder and the decoder,

however, with rectified linear units (ReLUs) after each layer to provide non-linearity (with

the exception of the final layer which is followed by a sigmoid function). The KL divergence

in the VAE was measured between the learnt distribution and a normal distribution of mean

0 and standard deviation 1.

The encoder of each network produces embeddings of size 32 for an input image. The

latent space of these training set can be projected into 2 dimensions using principal com-

ponent analysis (PCA) to allow for inspection (Figure 6.4).

On visual inspection, it is difficult to discern differences between these latent spaces.

Measurements of FAg, Ig,vec, and Ig,rnd allows the quantitative observation that images

of the same label form more isotropic clusters when embedded with the VAE than when

embedded with the auto-encoder (Table 6.3). All three metrics for isotropy of clusters

conclude that VAE’s result in more isotropic clusters. FAg of the VAE’s is measured as

almost half that of the AutoEncoder, suggesting a very large change in isotropy. Ig,rnd,

and Ig,vec suggest a much smaller (but consistent) change in isotropy. However, as will

be discussed (Section 6.5) this seems to be indicative of how these metrics perform, with

changes of ∼0.001 being notable despite only being a very small part of the domain of

Ig,rnd and Ig,vec (which is 0, 1).

Conclusions as to the difference between these latent spaces can also be drawn from

other internal cluster validation metrics. The Calinski–Harabasz measure suggests that

clusters in the VAE’s embeddings are more dispersed than those of the Auto-Encoder.

This is in line with the silhouette score, which suggests that points embedded with VAE’s

are closer to points in other clusters than those embedded with auto-encoders. Davies–

Bouldin also suggests more poorly separated clusters in the VAE embeddings.

Existing internal cluster validation metrics all suggest a worse separation between

classes in VAE embeddings compared to Auto-Encoder embeddings. This makes sense

when considering how VAEs work; Gaussian noise is inherent to the model. For genera-

tive models such as these, isotropy in the embeddings has been linked to good generative

performance [123]. Thus, measurements of isotropy for sets of clusters are pertinent.

Using existing internal cluster validation metrics may suggest to a researcher that VAE’s

are worse for class separation than Auto-Encoders. Measuring the isotropy of embeddings

(and knowing that isotropy has been associated with good generative performance) gives a

more nuanced picture. When observed with other internal clustering validation measures,

metrics for the isotropy of clusters allows someone developing models such as these to gain
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Table 6.3: Metric measurements of the MNIST test set embedded with auto-encoder and
VAE

Metric Auto-encoder VAE

Ig,vec 0.991 0.998
Ig,rnd 0.942 0.984

Var(λ) 4.70e-3 2.76e-4
fractional anisotropy 0.901 0.451
Calinski–Harabasz 531 161

Davies–Bouldin 2.57 7.03
Silhouette 0.091 0.011

an intuitive understanding of the latent spaces produced by them.

6.4.3 Examining differences between measurements of isotropy using

random Gaussian point clouds

In experiments presented thus far, isotropy of sets of clusters have been measured in two

different situations (i.e., Auto-encoder vs VAE, RBF vs. no RBF). In both experiments,

all measures of isotropy have been consistent as to which of the two situations results in

more isotropic clusters (Tables 6.2 and 6.3) (note that a FA is expected to have an inverse

relationship to Ic). However, it has not been clear which approximation of Ic was more

accurate and if there were any advantages or disadvantages to approximating Ic as opposed

to using FA.

To further explore the differences between the approximations of Ic and FA, the isotropy

of randomly generated clusters of different dimensionalities were measured. Measurements

of Ic,vec, Ic,rnd, and FA were taken to explore how the accuracy and time complexity of

each algorithm varies with dimensionality.

Clusters of 100 points were generated, with each point having coordinates sampled

from a Gaussian distribution of mean 0 and standard deviation 1. Clusters were generated

between 10 and 10,000 dimensions and the Ic,vec, Ic,rnd, and FA were measured, with the

number of random unit vectors used in Icrnd varying between 10 and 10,000. For each

dimensionality, 10 different clusters were measured; the mean results are reported here.

The computational times of Ic,vec and FA are approximately exponential to the dimen-

sionality of the cluster (Figure 6.5a). As the computational time of Ic,rnd varies with the

number of random unit vectors used, Ic,rnd often performs faster (particularly for high-



Chapter 6. Mathematically quantifying isotropy 195

(a) (b)

Figure 6.5: Measurements of Ic using Ic,vec and Icrnd, across a random Gaussian cluster
of different dimensions. This was repeated for 10 different random clusters of 100 points,
with the mean results shown here (a) In higher (> 103) dimensions, Ic,vec becomes very
expensive to compute, the computational complexity Ic,rnd scales with the number of unit
samples taken. (b) When the cluster is 10 or fewer dimensions, Ic,rnd is a more accurate,
with Ic,vec performing better in higher dimensions. As expected (Equation 6.13), Ic,rnd

measurements are more accurate when more unit samples are used, though this effect is
less noticeable in higher dimensions. Regardless of the number of unit samples used, across
all dimensions all measurements of Ic,vec and Ic,rnd are within 10% of each other.

dimensional clusters). This is generally in line with the complexity calculated for these

algorithms (Table 6.1).

In line with expectations (Equation 6.13), as more random samples are used, Ic,rnd

becomes more accurate (Figure 6.5b). Even with the highest number of unit samples, Ic,rnd

was never measured as being more accurate than Ic,vec for these Gaussian clusters. Both

Ic,rnd and Ic,vec measurements increased slightly with dimensionality. This is inverse to

the relationship found with FA (Figure 6.6b), which would imply that in high dimensions

Gaussian clusters are highly anisotropic. The reason for FA’s observed increase in this

experiment can be found in the field of random matrix theory, and are explored below

(Section 6.4.3)
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(a) (b)

(c)

Figure 6.6: (a) The expected value of fractional anisotropy (FA) for a cluster of 100
points varying in dimensions, where the coordinates of each point are sampled from the
normal distribution ∼ N (0, 1). This E(FA) is calculated using the Marchenko–Pastur
distribution. Examining how E(FA) and E(Var(λ)) vary with dimensionality demonstrates
that clusters of different dimensionality cannot be compared using these measures. When
comparing high dimensional clusters, FA and Var(λ) may lead to counterintuitive results,
particularly when data are noisy. (b) Measurements of fractional isotropy (FA) compared to
the expected value as modelled with the Marchenko–Pastur distribution. Random matrix
theory successfully describes the behaviour of this measure. Points represent the mean FA
of 10 different random clusters of 100 points. (c) Measurements of Var(λ) compared to the
expected value as modelled with the Marchenko–Pastur distribution. Points represent the
mean Var(λ) of 10 different random clusters of 100 points.
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Why does fractional anisotropy of a Gaussian cluster increase with dimension-

ality?

Gaussian clusters are observed to have a high FA (and thus be considered very anisotropic)

in higher dimensions (Figure 6.6b). If FA is highly correlated with with dimensionality,

does this mean FA is not applicable in higher dimensions? In order to answer this, how

the expected value of FA for a Gaussian cluster varies with dimensionality of that cluster

was calculated.

To examine the expected value of FA of a point cloud with coordinates sampled from

the Gaussian distribution, one can consider this n dimensional point cloud of T points to

be represented as a matrix size n × T . The eigenvalues for the principal components of

this random matrix can be described using a probability density function. Assuming the

variance of the Gaussian distribution, σ2, to be finite, the probability density function of

the eigenvalues, Λ, is given by the Marchenko–Pastur distribution [113]:

PDFµ,σ2(Λx) =
1

2πσ2Λ

√
(Λmax − Λ)(Λ− Λmin) (6.18)

where λmax and λmin are respectively the largest and smallest possible eigenvalues of

the distribution, given by:

Λmax,min ≈ σ2

(
1±

√
T

n

)2

+ µ (6.19)

Where µ is the mean of the distribution and σ2 is the variance. To solve this for the

parameters in the experiment presented here (µ = 0, T = 100, σ = 1) it can be said:

Λmax,min =

(
1± 10√

n

)2

(6.20)

In order to find the expected value for the E(FA), we can calculate E(Λ2), and E(Λ)2,

the Marchenko–Pastur distribution can be integrated:
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.

E(Λ) =

∫ Λmax

Λmin

ΛPDFµ,σ2(Λ)dΛ (6.21)

Thus, in this case:

E(Λ) =

∫ Λmax

Λmin

Λ
1

2πσ2Λ

√
(Λmax − Λ)(Λ− Λmin)dΛ (6.22)

=

∫ Λmax

Λmin

1

2π

√
(Λmax − Λ)(Λ− Λmin)dΛ (6.23)

Similarly it can be said:

E(Λ2) =

∫ Λmax

Λmin

Λ

2π

√
(Λmax − Λ)(Λ− Λmin)dΛ (6.24)

FA is calculated with the normalised eigenvalues, λ (Equation 6.1), and so:

E(λ) =
E(Λ)

T
(6.25)

and

E(λ2) =
E(Λ2)

T 2
(6.26)

Note that when substituting these into the equation for FA(λ) (Equation 6.3), the denom-
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inators cancel out, thus E(FA(λ)) is equal to E(FA(Λ)):

E(FA(λ)) =

√
1− E(λ)2

E(λ2)
(6.27)

=

√
1− (E(Λ)/T )2

E(Λ2)/T 2
(6.28)

=

√
1− E(Λ)2/T 2

E(Λ2)/T 2
(6.29)

=

√
1− E(Λ)2

E(Λ2)
(6.30)

= E(FA(Λ)) (6.31)

Plotting E(λ) against E(λ2) shows that they converge in high dimensions, and thus

FA converges to 1 (Figure 6.6a). The expectation of FA to measure Gaussian clusters as

being anisotropic in high dimensions was reflected in our measurements (Figure 6.6b). A

similar process can be followed for Var(λ), showing that Var(λ) trends towards 0 in high

dimensions for Gaussian clusters (Figure 6.6c).

The implication of this proof is that comparing FAs for clusters that are not represented

in the same number of dimensions may not be applicable. This is particularly true where

clusters are noisy and thus will have Eigenvectors expected to more closely follow the

Marchenko–Pastur distribution. As will be discussed (Section 6.5) this does not mean that

FA is not a useful tool, but that this result should be taken into consideration, for example,

by avoiding the use of noisy data or checking conclusions drawn from use of FA agree with

those that would be drawn from the use of Ic,vec or Ic,rnd.

6.4.4 Using isotropy measures to quantify the shape of materials

Description of crystals as being “anisotropic” or “isotropic” is common in materials science,

this usually refers to the shape of the crystal lattice, with a large c
a ratio being that of an

anisotropic material. But this c
a ratio is that of the conventional unit cell, which is not a

mathematically sound concept, and is somewhat down to judgement. The c
a of the Niggli

reduced cell (see Section 2.2.2) could be used, but the origin choice of the Niggli reduced

cell is not fixed, and the cell is sensitive to small changes in angle (i.e., small changes in
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Table 6.4: Pearson’s correlation coefficients between c
a of the cell and the isotropy of

the fractional coordinates of the atomic sites, as measured with metrics presented here.
Although all coordinates are between 0 and 1 several of the mothods here still identify
trends in line with use of c

a . Note that Irnd and Ivec are expected to decrease as anisotropy
increases, so a negative corrolation is in line with expectations.

Conventional unit cell Scaled unit cell Niggli reduced cell

FA 0.13 0.22 0.14
Var(λ) 0.14 0.30 0.14
Irnd -0.23 -0.20 -0.23
Ivec 0.00 -0.15 0.00

α, β, and γ lead to discontinuous jumps between spacegroups) [156].

As such, a mathematical measurement of the isotropy of a crystal based on the atomic

sites within that crystal would be beneficial. The rest of this chapter, incidentally, concerns

measures of isotropy, and so an investigation was undertaken to establish the usefulness

Irnd, Ivec, FA, and Var(λ) in determining the isotropy of a material based on the locations

of atomic sites.

A preferable quality for a measurement for a material’s isotropy would be invariance to

different unit cells. If a supercell of an existing conventional unit cell was made (e.g. two

unit cells being joined together), the isotropy of the material has not changed, as such the

measurement for that isotropy should not change. This is different from the invariance to

uniform scaling discussed previously (Section 6.3), as a super cell may not be uniform. This

problem applies to use of c
a as a proxy for isotropy. This may be alleviated by applying

Niggli reduction to unit cells, but, as mentioned, Niggli reduced cells are instable to small

changes in angles of the cell. In the investigation of measuring isotropy using atomic sites,

two possible coordinate systems can be used: The cartesian coordinates (i.e., absolute

coordinates) or the fractional coordinates (i.e., express coordinates a fraction of the size

of the unit cell). Intuitively using fractional coordinates will make it hard to distinguish

between isotropic and anisotropic materials; however fractional coordinates may be more

likely to result in stability across different supercells. Both approaches are investigated.

The isotropy of two notably anisotropic structure types were investigated: the Ruddlesden-

Popper structures and the Kagome structures. Trends are examined and then these mea-

surements are compared to the PbFCl structure types discussed in Chapter 3. Irnd, Ivec,
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Table 6.5: Pearson’s correlation coefficients between c
a of the cell and the isotropy of the

Cartesian coordinates of the atomic sites, as measured with metrics presented here. Note
that Irnd and Ivec are expected to decrease as anisotropy increases, so a negative correlation
is in line with expectations.

Conventional unit cell Scaled unit cell Niggli reduced cell

FA 0.81 0.17 0.81
Var(λ) 0.81 0.27 0.81
Irnd -0.26 0.19 -0.23
Ivec -0.76 -0.17 -0.76

FA, and Var(λ) are compared to c
a ratios for these materials to compare methods proposed

here to more traditional proxies for the isotropy of a material. Niggli reduced and conven-

tional unit cells are compared as well as a super cell scaled from twice the a axis for the

conventional unit cell.

Applying measures of isotropy to the fractional and Cartesian coordinates of the atomic

sites is somewhat correlated with the use of c
a as a proxy of crystal isotropy (Tables 6.4

and 6.5). Using Cartesian atomic coordinates for these measures correlates more strongly

with c
a , than with fractional coordinates, when considering conventional, scaled, and Niggli-

reduced cells (Figure 6.7).

However, the use of Cartesian coordinates also results in decreased resilience to changes

in unit cell (Figure 6.8). The more traditional measure for isotropy, ca , by definition changes

with the unit cell used. However, these changes are predictable to when compared to the

change in the unit cell (in this case, doubling the a value, halves the c
a value).
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(a) (b)

(c) (d)

Figure 6.7: Using different measures of isotropy to quantify Crystal structure, using dif-
ferent atomic site coordinate systems. Use of Cartesian coordinates results in a stronger
correlation. Measurements were done on conventional unit cells, Niggli reduced cells and a
supercell of two conventional unit cells (scaling the a axis by 2) (a) Ivec measuring atomic
sites expressed as Cartesian coordinates. (b) Ivec measuring atomic sites expressed as frac-
tional coordinates. (c) FA measuring atomic sites expressed as Cartesian coordinates. (d)
FA measuring atomic sites expressed as fractional coordinates.
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(a) Ivec measuring atomic sites expressed
as Cartesian coordinates.

(b) Ivec measuring atomic sites expressed
as fractional coordinates.

(c) FA measuring atomic sites expressed
as Cartesian coordinates.

(d) FA measuring atomic sites expressed
as fractional coordinates.

(e) c
a halves as the width of the unit

cell doubles

Figure 6.8: Differences between conventional measurements of isotropy of materials when
measuring a conventional unit cell and a supercell of two conventional unit cells (scaling
the a axis by 2). An ideal measure for the isotropy a crystal would see no change, as
indicated by the diagonal line.
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6.5 Discussion

Analysis of isotropy of sets of clusters has used in two different settings to provide quan-

titative evidence that enhances observations of low-dimensional PCA projections. The

study of isotropy of a set of clusters has highlighted non-intuitive results (e.g., that RBF

approximations will result in changes in isotropy that depend on the sparsity of an input

representation) and helped interpretation of learnt embeddings, where low-dimensional

projections were unclear.

In real-world examples seen here, measurements for isotropy have agreed in all in-

stances. All measurements for isotropy investigated have a bounded output domain and

are invariant under linear isometries as well as under uniform scaling. Thus, any of Var(λ),

FAg, Ig,vec or Ig,rnd can prove useful and will likely lead to similar conclusions for the data.

One way in which these measures differed is in the use of their output domain. As

previously noted while Var(λ) has a theoretical output domain of 0, 0.25, in practise the

highest Var(λ) observed was 0.033 in synthetic data (Figure 6.6c) or 0.011 in real data. As

such and due to its lack of appearance in the literature, Var(λ) not the focus of this study.

Ig,rnd and Ig,vec also use a small amount of their output domain (0, 1) in the examples

measured; in most cases seen Ic > 0.9.

In contrast to Ic,rnd, Ic,vec and Var(λ), FA is observed across most of its output domain

(Table 6.3 and Figure 6.6). However, when measuring a Gaussian cluster, the nature of

random matrices means that high-dimensional measurements of FA will seem anisotropic

(Section 6.4.3). While this does not universally preclude the applicability of FA in high-

dimensional clusters, where data are noisy, this may provide a measurement that does not

align with intuitive understandings of isotropy.

One intuition about isotropy, which is common in the existing literature, is the use

of principal components to identify the axis of anisotropy [123, 10]. The implementation

introduced here Ic,rnd does not follow that intuition, yet still performs well as a measure of

isotropy. In Gaussian clusters Ic,rnd is a less accurate approximation of Ic,true than Ic,vec.

However, in both real-world and synthetic settings, examples have been observed in which

Ic,rnd is more accurate than Ic,vec (Figure 6.1d and Table 6.3). While differences between

sizes of principal components can be indicative of anisotropy, a lack of data between these

principal components can also contribute to anisotropy (e.g., Figure 6.1d). By prioritising

measurements on principal axes, existing measures deprioritise the latter of these causes

of anisotropy, which can lead to unintuitive results.
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Some aspects of whether a cluster of points is isotropic can be subjective (as discussed in

the Section 6.1). This chapter does not argue that any of the metrics for isotropy examined

here are the best, instead examining their differences and observing cases, which may give

unexpected results (e.g., FA being sensitive to noise in high dimensions). Describing the

shape of a cluster in a single number will by necessity remove detail and is no substitute

for visual inspection. This is even more the case when trying to describe sets of clusters.

However, when working with unlabelled data (as is often the case in materials science),

visual inspection may prove impractical. Clusters may be difficult to visually separate, or

there may be too many to feasibly inspect each of them. Thus, while simplistic, the tools

explored here may be helpful in a number of settings.

In materials science, the introduction of new clustering techniques [138], provides excit-

ing ways to apply clustering algorithms in ways which suit the unique aspects of materials

science data. However, if these clustering algorithms are dependent on distance metrics

such as the Euclidean distance, then they are also dependent on materials representation.

As there is no definitive representation of a material, it is important to have metrics to anal-

yse the resulting clusterings. Where no target labels exist, the metrics available for such

analysis are limited. The isotropy of clusters is linked to downstream performance bene-

fits [123], and is particularly pertinent for analysing different representations. Dominant

features or correlations of features may not be apparent in lower dimensions (Figure 6.2)

and identifying how such correlations may affect clustering is important when drawing

conclusions from data or choosing representations of data.

Experiments indicate that these isotropy measures can be used to measure the isotropy

of a crystal (Tables 6.4 and 6.5 and Figure 6.7). Which of c
a or the measurements presented

here are a better proxy for this intuition of isotropy is not seen from these experiments.

As that is a qualitative judgement; it should be done by a researcher with a stronger

background in chemistry than this thesis tries to appeal to. What can be said is that all

of the issues raised with use of shape of the unit cell for a proxy of crystal isotropy, also

apply to the measures of isotropy discussed here. As such, no clear benefit is derived from

the using these isotropy measurements on crystal structures. As these measures are more

numerically complex than the use of unit cell parameters, there is no reason to recommend

the use of these measures for this purpose.
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6.6 Conclusion

Analysing sets of clusters is a common task both in the materials science and broader data

science domains. While metrics (referred to as internal cluster validation metrics) exist to

analyse the compactness and separability of unlabelled clusters, analysis of the shape of

clusters has till now been qualitative.

This research offers a thorough exploration of metrics for isotropy (i.e. spikiness) of

a cluster of points. One such metric, FA was demonstrated on higher-dimensional data.

Through use of theorems from the field of random matrix theory [113], it is demonstrated

that in high dimensions this measure is susceptible to giving more anisotropic results than

expected for noisy data.

A separate measure for isotropy of a point cloud, Ic,vec, was examined. An alternative

implementation, Ic,rnd, was proposed based on the existing derivation of Ic,vec. The dif-

ferences between Ic,vec and Ic,rnd were discussed. Neither Ic,rnd, nor Ic,vec was seen to be

universally more accurate or faster to compute. However, for high-dimensional data, Ic,rnd

is orders of magnitude faster to compute than Ic,vec

Ic,rnd, Ic,vec, FA and a basic proxy for isotropy, Var(λ), were generalised to measure

isotropy unlabelled clusters of data. This chapter demonstrates two real-world applications

of these generalisations: One in the materials informatics domain and one in a broader

data science domain.

In materials science, understanding the output to clustering is particularly important.

Datasets are often heterogeneous, and clustering algorithms tend to perform poorly. The

usefulness of isotropy measures for clusters of data is demonstrated by exploring clusters

found in the ICSD, a canonical materials science dataset. Previous research qualitatively

described these clusters using low-dimensional visualisations; we quantify these findings by

measuring isotropy numerically.

Broader data science applicability of these measures are demonstrated on by analysing

learnt representations of a fundamental data science dataset (MNIST). Isotropy measures

for sets of clusters allow for more thorough exploration and description of these represen-

tations than would otherwise be possible.

Internal cluster validation measures are helpful tools for chemists and data scientists

to understand and quantify unlabelled sets of clusters. Isotropy is pertinent to machine

learning for materials science as appropriate material representation is often unclear, and

anisotropy in a cluster can be indicative of dominant features in a representation of a
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material.

This study does not set out to posit isotropy as being a “good” thing in data. Instead

it simply investigates how it may be measured. As isotropy is not necessarily a “good”

thing, the question emerges as to whether these tools have any purpose. The examples

(Section 6.4) shown here demonstrate two promising uses for these measures (and one use

case which was not promising, Section 6.4.4).

Measurements for isotropy were used to explore phenomenas seen in the previous chap-

ter, and help explain that behaviour (Section 6.4.1). This shows that these tools can be

used to help better explore data.

These measurement were also seen to be helpful for quantify observations in learnt

latent spaces (Section 6.4.2). While it is not suggested that isotropy measurements are

used in place of visual inspection, these tools are none the less helpful to provide quantitive

measurements to qualitative observations.

Implementations of these metrics are provided in the associate code repository [43].

The metrics for isotropy presented here are a helpful addition to existing metrics, which

allow researchers to richly explore their datasets.

6.7 Thesis context

The exploration of clustering metrics presented in this chapter is a slight divergence from

the property prediction discussed previously. Instead, this chapter levarages the context

of materials science to explore new ideas about quantifying clustering.

Clustering is a widely used technique, foundational to data science. This chapter has

used materials science as a setting to explore clustering. It is fascinating that the context

of materials science allows for further exploration of such concepts, both as presented here

and more widely in the literature [138].

The final experimental chapter takes the relationship explored in this chapter and

reverses it. Examining band structures from a data science perspective by discussing

the data structures through which band structures are can be represented. In exploring

the interaction between data science and materials science, these two chapters mark the

thematic culmination of the thesis.
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6.8 Appendix

Theorem 1. For a finite sized set of real numbers between 0 and 1, λ, the variance of λ

is bounded between 0 and 0.25.

Proof of 1. Let λ = λ1, λ2, . . . , λn be a set of real numbers such that 0 ≤ λi ≤ 1 for all i.

Let λ̄ = 1
n

∑n
i=1 λi be the mean of the set λ. Then, we have:

Var(λ) =
1

n

n∑
i=1

(
λi − λ̄

)2
(6.32)

As for all values of i,
(
λi − λ̄

)2 ≥ 0 the lower bound for Var(λ) is 0.

To prove the upper bound of Var(λ), observe that as λi ≤ 1 it can be said that:

n∑
i=1

λ2
i ≤

n∑
i=1

λi (6.33)

As nλ̄ =
∑n

i=1 λi:

n∑
i=1

λ2
i ≤ nλ̄ (6.34)

And so:

n ·Var(λ) =
n∑
i=1

(
λi − λ̄

)2
(6.35)

=
n∑
i=1

(
λ2
i − 2λiλ̄+ λ̄2

)
(6.36)

=

n∑
i=1

λ2
i − 2λ̄

n∑
i=1

λi + nλ̄2 (6.37)

=

n∑
i=1

λ2
i − 2λ̄ · nλ̄+ nλ̄2 (6.38)

=

n∑
i=1

λ2
i − nλ̄2 (6.39)
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Thus, as per Equation 6.34:

n ·Var(λ) ≤ nλ̄− nλ̄2 (6.40)

Thus:

Var(λ) ≤ λ̄− λ̄2 (6.41)

The maximum value of λ̄− λ̄2 occurs when λ̄ = 0.5 and so

Var(λ) ≤ 0.5− 0.52 (6.42)

≤ 0.25 (6.43)

Thus, the variance λ is bounded [0, 0.25].

Theorem 2. The ratio of minimal and maximal values Z(a) for any unit vector a:

min|a|=1 Z(a)

max|a|=1 Z(a)
(6.44)

is not invariant to uniform scaling or linear isometries.

Proof of 2. Consider a cluster of points, C, let C′ = αC+β where α and β are a scalar and

a translation vector, respectively. Were Equation 6.44 invariant under uniform scaling and

linear isomoteries, then the ratio for C′ would be the same as that of C. The value of Z(a)

for C′ would be: ∑
d∈C

exp (aᵀ(αd + β)) (6.45)

Neither α nor β can be factored out. Thus, the value of Equation 6.44 would change.

Therefore, Equation 6.44 is not invariant under uniform scaling or linear isometries.

Theorem 3. Any Ic|B is an upper bound for Ic,true:

∀c,B : Ic,true ≤ Ic|B (6.46)
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Proof of 3. Consider the formula for Ic,true:

Ic,true =
min|a|=1 Z

′(a)

max|a|=1 Z ′(a)
(6.47)

and the formula for Ic|B:

Ic|B(C) ≈ minb∈B Z
′(b)

maxb∈B Z ′(b)
(6.48)

where B is a set of unit vectors. B is a subset of the set of all unit vectors, |a| = 1. For it

to be the case that Ic|B > Ic,true, one or both of the following must be true:

min
|a|=1

Z ′(a) > min
b∈B

Z ′(b) (6.49)

and/or:

max
|a|=1

Z ′(a) < max
b∈B

Z ′(b) (6.50)

However, as ∀b∈B : |b| = 1 neither of these statements can be true. Thus

∀c,B : Ic,true ≤ Ic|B (6.51)

Theorem 4. As the size of the set of random unit vectors used approaches infinity, Ic,rnd

approaches Ic,true:

lim
|r|→∞

Ic,rnd = Ic,true (6.52)

Proof of 4. As the number of unit vectors in r approaches infinity, the probability that a

random unit vector is in r approaches:

Let b be a unit vector. The probability of choosing b from the uniform distribution of

the set of all unit vectors is:



Chapter 6. Mathematically quantifying isotropy 211

P (b) =
1

||a = 1||
(6.53)

where ||a = 1|| is the cardinality of the set of all unit vectors. If r is sampled uniformly

from the set |a| = 1 then:

P (b ∈ r) =
|r|

||a = 1||
(6.54)

Therefore:

lim
|r|→∞

P (b ∈ r)→ 1 (6.55)

and

lim
|r|→∞

r → |a| = 1 (6.56)

Consequently:

lim
|r|→∞

Ic,rnd = Ic,true (6.57)



Chapter 7

Machine learning with electronic

band structures

7.1 Introduction

Most of the machine learning (ML) presented so far in this thesis has focused on composition-

based prediction. As discussed (Section 2.2.5), by definition, composition-based represen-

tations cannot encapsulate all the properties of a material, as materials with the same

composition may have different structures and thus different properties. The electronic

band structure (EBS) of a material offers information that theoretically encompasses all of

the electronic properties of materials, by representing the ways in which electrons can exist

within that material (see Section 2.2.4). The EBS of a material can be approximated using

density functional theory (DFT), and although this is computationally expensive, the cost

of DFT is generally much lower than that of synthesis [23]. As such, if the properties of

the materials can be estimated from a DFT-calculated EBS, it would be possible to more

efficiently screen materials using DFT and ML than by using synthesis alone.

Interpreting an EBS by humans requires expertise [167] and is time consuming, making

it impractical to perform at scale. Thus, being able to algorithmically progress from an

EBS to electronic properties would be advantageous for mass screening of DFT-calculated

materials.

Large repositories of EBS data exist [78], which could provide ample training data for

ML algorithms. Using one such repository, the Materials Project, as a proof of concept,

this chapter will detail using ML to predict the electronic band gap given an EBS. This is

212
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used as a proof-of-concept for the algorithmic approaches examined. As the band gap can

already be algorithmically extracted from an EBS, this means there is a target value for

all materials for which an EBS is available.

While predicting band gaps demonstrates the ability of ML algorithms to interpret

EBS data, it is desirable for these algorithms to predict properties that cannot be eas-

ily calculated using existing methods. However, there is a lack of data connecting EBS

repositories to experimentally measured properties. This chapter will detail a method for

connecting these repositories to a dataset of experimentally measured resistivities. The

resulting dataset of EBSs and resistivities is then used to train ML algorithms to predict

the resistivity of a material from its EBS.

Specifically, the contributions of this chapter are as follows:

• Creation of a dataset of relating EBS data to resistivity.

• Exploration of the caveats surrounding using machine with EBS data.

• Suggesting numerous paradigms through which EBS data can considered. This allows

easy adaptation of ML algorithms intended for those paradigms.

• Novel implementation of deep learning algorithms across datasets of EBS data.

• Creation of two RNNs to interpret EBS data.

• Use of a set transformer model in two different arrangements to interpret EBS data.

• Improving performance in predicting resistivity, and band gap by several orders of

magnitude compared to a RF.

7.2 Related Literature

Despite the large existing repositories of EBS data ([78, 32, 15]), the literature surrounding

machine learning from band structure data is sparse. A prominent example of learning from

EBS data is the use of the density of states (DOS) as a tool for machine learning [93, 91, 22].

This has been enhanced by including information about how DOS changes at different

points in the unit cell (specifically, each high symmetry point) [76, 87].

However, neither of these approaches based on DOS directly learn from EBS data.

One approach which learns directly from band structure data is TBHCNN [190], which
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uses a convolutional network in order to parameterise tight-binding Hamiltonians. This is

done by repeatedly using learnt parameters of a tight-binding Hamiltonian to reconstruct

an EBS, and using the reconstructed EBS to further train the model. TBHCNN is not

generalisable across EBS data, and needs to be re-trained on each band structure. This

means that many of the caveats related to the heterogeneous nature of EBS datasets (which

will be further discussed Section 7.3) are avoided, as only one EBS is considered at a time.

Other models take a similar approach, using Markov random fields to reconstruct EBS

data, considering only one EBS at a time [200]. While these models do not serve as an

example of the supervised property prediction discussed in this chapter, it is interesting

to note that machine learning could be used to improve the data which are learnt in

experiments presented here.

7.3 The nature of the Materials Project electronic band

structure data

While DFT calculations can be done for any point in the reciprocal lattice, convention is

often to perform calculations along lines of symmetry in the lattice (Figure 7.1a). This

collection of lines, sometimes called a K-path, can be laid out in two dimensions with

the X axis being a point (K-point) along the K-path and the Y axis being the energy

level (Figure 7.1b). This is usually normalised to the Fermi level Efermi, or the level to

which energy states are occupied by electrons at 0 K. While EBSs can be plotted, they can

equally be considered a matrix (Figure 7.2) with each row representing an electronic band

and each column representing a K-point. EBS data in the Materials Project do not sample

a uniform number of bands, ranging from 8 to over 1000, nor do they sample the same

number of k-points per high-symmetry line. The number of high-symmetry lines varies

depending on a materials space group, and the K-path between those lines may also vary.

Another caveat of these data is that the matrix of data for each point does not align

precisely with band theory. According to Bloch’s theorem, these are discrete functions,

which interact to give the properties of a material. However, when represented as a matrix,

energy states at a given K-point are arranged in strict descending order (Figure 7.2). Thus,

it is unclear which energy states belong to each function, and sorting energy states into

those which are generated by a given function is non-trivial (machine learning has recently

been used for this task, as discussed in Section 7.2). It is unclear what effect this will have
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(a) (b)

Figure 7.1: Diagrams of SiO2 generated with the materials project [78]. (a) The first
Brillouin zone shows a tetragonal structurre, the high symmetry path highlated is the K-
path along which the band structure is calculated. (b) The electronic band structure, with
K-path being represented across the x-axis, and energy states being seen along the y-axis.
Note that the final line in the K-path (X → P ) is disconnected from the line before it in
this case.
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Figure 7.2: EBS data can be represented in a matrix with one axis representing energy
and the other representing K-points. This has several caveats such as that a single row
might not be representative of a single function, and adjacent columns are not necessarily
contiguous.

on machine learning algorithms, but effects can be seen when operating strictly across

columns of the EBS matrix. For example, obtaining the maximum value of each row in

the EBS matrix will not result in the maximum value for each function.

Overall, while EBSs represent the underlying physics in the same way, each data point

can differ wildly and is not necessarily reflective of other discrete underlying functions

described in Bloch’s theorem. This makes them very interesting candidates for ML, as it

limits the models that can be used on the data directly without any preprocessing. In

introducing this limit, ML practitioners are forced to consider which paradigms and model

classes are suited to these data. But with the literature here being so sparse, a broad

horizon of research opportunities awaits.

The limitations imposed by the varying axes of EBSs can, of course, be overcome

through preprocessing rather than through use of appropriate models. As mentioned (Sec-

tion 7.2) there is precedent for this in the literature [161]. Examples of preprocessing steps

which might make these data easier to process include:

1. Cropping to bands near the fermi surface: Only considering a fixed number of bands

near the fermi surface fixes one axes of the matrix, however, discards information far
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above and below the fermi surface which may influence the properties of a material.

As bands closest to the fermi surface are likely to have the greatest impact on a

material’s properties, it is unclear what impact this will have (Figure 7.3).

2. Interpolation of K-points in the EBS: To deal with unevenly sampled K-points, or

different numbers of K-points, basic statistical or unsupervised learning methods

such as linear interpolation and K-nearest neighbours (Knn) can be used. The in-

terpolation of K points has previously been used to extract information from band

structures [161], and more recently, more complex methods of interpolation have been

suggested for these data [190, 200], so there is precedent for this in the literature.

This interpolation can be used to enforce a set number of K-points per line.

Figure 7.3: Cropping to a fixed number of bands near the fermi surface means that there is
a consistant number of bands in all structures in the dataset. This also means the dataset
is limitted by the band structure with the least band data available.

By enforcing across the entired dataset a fixed number of bands, and a fixed number of

K-points using the above processes, each EBS can be represented using a fixed sized vector.

By using a fixed sized input vector many algorithms can now be used, which were previously
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inappropriate, such as random forests (RFs), logistic regressions and Ridge regressions.

However, this process also removes a lot of data from the EBS. It is both more interest-

ing and perhaps more suitable to ask how do we choose algorithms to fit these data rather

than how do we adapt these data to fit readily implemented algorithms. Whether this is a

more suitable approach is subject to investigations such as those presented in this chapter.

The problem of extracting properties from band structures can be considered as pattern

recognition, a field in which deep learning is known to be very effective. There are also

various deep learning architectures that would be appropriate for these data. As such,

deep learning is a prime choice for use in this case.

The classes of machine learning algorithms investigated depend on the paradigm through

which one views EBS data. This chapter proposes the following paradigms are proposed

to be appropriate:

1. An EBS is a sequence of bands, each of which is a sequence ofK-points: A hierarchical

sequence processing task, analogous to a sequence of words making up a sentence and

a sequence of sentences making up a paragraph.

2. An EBS of K-points each of which has sequence of possible energy states: Similar to

the above but the order of hierarchy is switched.

3. An EBS is a set of k-points which consist of sets of energy states: Similar to a

hierarchical sequence, but the idea of bands existing in an order is removed.

4. An EBS is set of fixed-sized bands: By forcing a consistent number of K-points across

EBSs of all materials, one can consider a variable number of band structures, this

is analogous to the colour channels in a picture, which are not in a fixed order and

variations both between and within channels make a define features.

5. An EBS is set of K-points each with a fixed number of energy states: As above but

considering position in the reciprocal space as the channel rather than bands.

6. An EBS is an ordered list of fixed-sized bands.

7. An EBS is an ordered list of K-points, each with a fixed number of energy states.

8. An EBS is a 4 dimensional point cloud: Three dimensions represent the position in

K-space with a fourth representing the energy at which an electron can exist. This



Chapter 7. Machine learning with electronic band structures 219

has the added benefit of explicitly noting that the order of the rows in the EBS

matrix is not indicative of the discrete functions that dictate materials properties.

9. An EBS is a 3+N dimensional point cloud: By cropping data to the N bands nearest

the Fermi level, one can consider a much smaller point cloud (in a higher-dimensional

space).

This list is non-exhaustive and each of the above paradigms has its own advantages and

disadvantages. This chapter will investigate paradigms 1, 6, 8, and 9.

7.4 Creation of dataset

Peer reviewed experimental data were collected from the Materials Platform for Data Sci-

ence (MPDS) [15]. The resistivity measurements were extracted, and the results were then

aligned with materials from the Materials Project for which EBS data were available. As

resistivity is affected by temperature, it is important to consider the temperature at which

measurements were taken. Measurements between 280 K and 315 K were considered. The

measurement closest to 298 K was considered if multiple measurements were available, as

298 K was the modal temperature for resistivity measurements in the MPDS (Figure 7.5a).

When multiple measurements of the same material at the same temperature were available,

the mean was taken.

The resistivity in this data set varies by approximately 25 orders of magnitude (Fig-

ure 7.5b). As will be seen, this is a problem when trying to accurately predict resistivity

(Section 7.6), and will lead to problems with numerical stability. (Section 7.7) Entries in

the Materials Project and MPDS datasets with the same composition and space group

were considered to be the same material, allowing for the alignment of 2970 materials,

which were split into train/test/validation sets (of size 2227, 593, and 150 respectively)

(Figure 7.4a). A drawback of this method of alignment is that just because two entries

are in the same space group and have the same formula does not mean that they are the

same material. However, as this is exploratory work, this is considered to be a sufficient

approximation.

There remains a large repository of EBS data in the Materials Project repository (ap-

proximately 65,000 entries). As noted (Section 7.1) the prediction of the band gap can be

used as a proof of concept for these data. It would be completely possible to use these
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(a)

(b)

Figure 7.4: (a) Creation of the resistivity electronic band structure (EBS) dataset used in
this chapter. (b) Creation of the band gap EBS dataset used in this chapter.
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(a) (b)

Figure 7.5: Distribution of aspects of the resistivity training set (a) Temperatures at
which measurements were taken. (b) Resistivity measurements. The scale of resistivity
measurements vary widely.

data as a pre-training task and use transfer learning to then adjust model weights to pre-

dict resistivity. Although this will be suggested in future work (Section 7.7), this transfer

learning is beyond the scope of this chapter.

Instead of doing transfer learning with these data, the work presented in this chapter

will use a subset of the EBS data in the Materials Project to as a proof of concept of

whether it is possible to train deep learning algorithms using limited data on a task which

is known to be algorithmically possible (i.e., extracting band gap from EBS data). As

such, a data set was constructed from EBS data from the Materials Project repository

with associated band gaps. The size of this dataset was the same as the resistivity EBS

dataset (size 2227, 593, and 150 train, test, and validation sets, respectively). Any EBS

that was present in the resistivity dataset was also excluded so that future work can use

this dataset as pre-training if needed (Section 7.4).

7.5 Models investigated

Four types of models were investigated on these data:
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(a)

(b)

Figure 7.6: Recurrent neural network (RNN) based models for prediction, operating over
time steps (T ), on a band structure with n bands, each band containing m K-points. (a)
RNN 1D shown with the attention mechanism. As input at each time step must be of
fixed size, this means m must be fixed for the entire dataset. (b) RNN 2D architecture,
for visual clarity the netowrk shown here without an attention mechanism, though similar
to (a), an attention mechanism was added in some experiments. The second RNN allows
m to vary between points in the dataset.
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• As a baseline a RF was used, with magpie, jarvis, Oliynyk and fractional rep-

resentations, as well as random projections of size 25, 50, 100, and 200 (for more

information on these representations and random projections, see Chapter 5)

• A recurrent neural network (RNN), which iterates over a variable number of fixed

sized bands.

• A hierarchical RNN in which one RNN iterates over the energy states for a variable

number of bands, then a second RNN iterates over the K-points. This would allow for

the number of K-points sampled to vary between each EBS, but for a fair comparison

with the above, it was kept constant in all experiments seen here.

• A set transformer architecture taking in a set of 4D points, where the first 3 dimen-

sions represent a position in reciprocal space, and the final dimension represents an

energy level at that position.

• A set transformer architecture taking in a set of 11D points, where the first 3 dimen-

sions represent a position in reciprocal space and the final 8 dimensions represent the

8 energy levels closest to the Fermi level at which electrons can exist.

The deep learning architectures investigated will now be briefly explained before results

are conveyed.

7.5.1 Recurrent Neural Networks for band structures

Recurrent neural networks operate in sequences in time steps, each time step taking as

input an item in the sequence and the output of the previous time step (Figure 7.6a) [71],

this allows the input to be of variable length, with the output of the final time step

being used for some predictive purpose, such as classification. As basic RNN’s involve

backpropagation through many time steps, the gradient of loss with respect to the weights

at earlier time steps becomes very small. This is called the vanishing gradient problem and

is addressed by a recurrent architecture called long-short-term memory cells (LSTMs) [70],

which carry two different states between time steps, one of which is only combined in

an additive manner. The result is an RNN architecture that can be trained on longer

sequences.

One limiting factor for training RNNs can be the size of the associated computational

graph. The memory requirements grow with respect to sequence length, and as such long
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sequences can become expensive to process. This can be adjusted by reducing batch size,

or reducing the size of the network; however, both of these have other impacts on learning.

RNNs can be applied hierarchically, with outputs from one RNN being used as input

for another RNN. This further adds to computational complexity. This means that the size

of a network may need to be reduced in order to maintain compliance with any memory

constraints.

Attention mechanisms can also be introduced to emphasise earlier time steps [9]. An

example of such attention mechanisms, additive attention takes the sum, or mean of the

output of all time steps, and uses this in conjunction with the output to the last time step

to make predictions.

As noted (Section 7.3), an EBS can be considered to be a sequence of bands and a

sequence of k-points. Using preprocessing steps such as linear interpolation or cropping

of bands, either, or both, it is possible to force all EBS structures in the datasets to

have the same size. Without interpolation, the memory costs of both hierarchical and

non-hierarchical hierarchical processing across K-points were unfeasible. As such, linear

interpolation was used to normalise the number of k-points to various values ranging from

50 to 200 k-points per band.

This allowed for two architectures to be investigated; both were investigated with var-

ious interpolation densities, with various LSTM layer sizes (32, 64, and 128) and numbers

of LSTM layers (between 1 and 4). Both architectures were investigated with and without

an additive attention mechanism.

The first investigated architecture (dubbed “1D RNN”) took each band as a time step

and had a fixed number of K-points per band (Figure 7.6a). The output from the final

time step (and the attention mechanism, if used), was used as input to a fully connected

network which outputs a single value, which was then compared to a target value (either

band gap or resistivity), to generate a loss, which was then backpropagated to train the

network. The fully connected network had between 1 and 4 layers of sizes 32, 64 or 128.

The second investigated architecture (dubbed “2D RNN”) featured two different RNNs,

the first of which iterated over the energy levels at a single K-point, the second of which

iterated over the the outputs from the first RNN across all K-points (Figure 7.6b). The

output to the second RNN was then used as an input (sometimes including addative atten-

tion) to a fully connnected network. Again, the fully connected network was investigated

with layer sizes of 32, 64 and 128 and varying between 1 and 4 layers.

For both 1D RNN and 2D RNN dropout and layer normalisation, common techniques to
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improve performance were also tested. A hyperparameter search was done using Bayesean

optimisation, across the following hyperparameters:

• Attention mechanism: true, false

• Batch size: Multiples of 8 between 32 and 256

• Dropout [169]: 0.3, 0.4, 0.5, None

• Number of points that each band resampled to(interpolation done with linear

interpolation): 10, 50, 100, 500

• Layer normalisation [8] between layers: Either applied or not applied

• Learning rate: A uniform distribution between 1×10−07 and 0.1

• Fully connected layer size: 32, 64, 128, 512

• Number of fully connected layers: 1-4

• LSTM size: 32, 64, 128, 512

• Number of LSTM layers: 1-4

• Model type: RNN 1D or RNN 2D (for RNN 2D both LSTMs were the same size

and same number of layers)

• Optimiser: adam [85], adamw [109] or simple gradient descent [100].

RNN hyperparameters were optimised for the band gap, the best performing hyperparam-

eters of the RNN 1D and RNN 2D models hyperparameters were then used for networks

trained on the resistivity dataset. The exception to this was the optimiser for the RNN 1D

model, which was switched to AdamW (with the same learning rate), as simple gradient

descent was found to result in floating-point errors for the resistivity data.

7.5.2 Set transformers for band structures

Transformers are widely used class of deep learning models [104, 89], most commonly in

NLP settings, though they have also been seen to perform well in materials settings [205,

202]. The central mechanism of transformer architectures is self-attention heads. Inputs
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Figure 7.7: The multi-head attention block (MAB)

(Q, K, and V ) are passed through three separate, fully connected layers to produce three

matrices: query (q), key (k), and value (v), these are combined with the following function:

Softmax(qkᵀ)v (7.1)

Note that often Q = K = V , which allow each part of the sequence to align itself with other

parts of the sequence in a learnt way, rather than just through proximity in the sequence

order. Note that the activation function is not by definition a Softmax function [101, 181],

but for the purposes of this chapter it always will be. This process is often run multiple

times in different “heads” (Figure 7.7) and the output is then concatenated and used later

on in the network. Thus, a multi-head attention block (MAB) can be defined as:

MAB(Q,K, V ) = Softmax(q0k
ᵀ
0)v0 ++ Softmax(q1k

ᵀ
1)v1 ++ . . .++ Softmax(qik

ᵀ
i )vi (7.2)

Where ++ is a concatenation operator, i is the number of heads. How the network

uses MABs is network-specific, with most architectures having an encoder-decoder archi-
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tecture [181, 104, 89] (see Section 6.4.2 for more on encoder-decoder architectures).

A key drawback of these networks is that their memory requirements scale in a quadratic

relationship with the length of the input sequence (since each element of the sequence must

be compared to every other element of the sequence). This means that transformers can

be very costly to train, requiring a lot of memory. Various methods have been suggested to

combat this [189, 25, 112]. One such method to reduce the quadratic relationship between

sequence length and memory requirements involves using a fixed-sized random projection

of v and k in the self-attention process. This is not directly relevant to this chapter, but

is of tangential interest to the thesis (Chapter 5).

Transformer architectures also often include a positional encoding module on the input,

which assigns unique vectors to each position in the input sequence. Set transformer

architecture [101] adapts the transformer architecture by removing this module. This has

the effect of making the model invariant to the order input, thus suitable for processing

sets.

The Set Transformer also differs from other transformer architects by introducing an

alignment a learnt set of weights (Figure 7.8), which has the effect of reducing memory

constraints to be a function of the size of those weights (and thus a hyperparameter of the

model). In total the set transformer is made up of three main blocks, which are labelled

SAB (self-attention block), ISAB (ambiguous abbreviation [101]), and PMA (pooling by

multi-head attention)

SAB is considered to be MAB where Q = K = V , thus:

SAB(X) = MAB(X,X,X) (7.3)

ISAB (Figure 7.8) introduces a learnt set of weights, I of size l × h (l and h are hyper-

parameters), consists of two MAB, one of which takes in I as the query, resulting in an h

dimensional output for each member of the input set:

ISAB(X) = MAB(X,H,H) (7.4)

where H = MAB(I,X,X) (7.5)

Unlike SABs which scale with quadraticly in memory complexity with the size of the

input set, ISABs scale inline with h. i.e. they have memory complexing O(nh), rather

than O(n2) where n is the size of the set.
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Figure 7.8: The ISAB applies MABs in combination with a learnt matrix I such that
the memory constrains scale with the size of I (a hyperparamter) rather than scaling
quadratically with the length of the sequence. The sizes of matrices are shown in brackets.

PMA blocks act as the intermediary between the encoder and the decoder, and takes a

variable sized input and transforms it into a fixed-size output using a learnable seed vector

S, (note that S can be replaced with a set of seed vectors if multiple outputs are required

but that is not the case here.). PMA is defined as:

PMA(X) = MAB(S,X,X) (7.6)

By having an encoder made out of ISABs, and decoder made out of SABs, the scaling of

memory complexity of the network becomes controllable by hyperparameters (the size of l,

the size of S and the number of IMAB and SAB blocks). This allows the algorithm to run

with less memory (though in practise sampling to 100 points per band was still required

for feasible training for band structures).

The set transformer network used for the experiments here (Table 7.1) consisted of

an encoder of two ISAB blocks and a PMA, connected to a decoder of two SAB blocks

and a final linear layer to achieve the required output dimension (in our case 1 as we are

predicting a single property). Two inputs to this set transformer were tested:

• A 4 dimensional set where 3 of the dimensions where (fractional)K-point coordinates,
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Table 7.1: The full set transformer architecture [101]. Here for all experiments h was set
128, m is the number of points in the set and n is the dimensionality of the set, which was
either 4 or 11 depending on the specific run (labelled as “4D set transformer” and “11D
set transformer” respectively)

Block Name Output Size

Input n×m
ISAB n× h
ISAB n× h
PMA h
SAB h
SAB h

Fully Connected Layer 1

and the final dimension was an energy level at which an electron could exist.

• An 11-dimensional set where 3 of the dimensions where (fractional) K-point coordi-

nates, and the remaining 8 dimensions represented the 8 energy levels closest to the

Fermi surfice at that location.

These two set transformers will be labelled “4D set transformer”and “11D set transformer”

respectively and, other than the input dimension, no hyperparameters were changed be-

tween these networks.

Although these models could train on band structure data without interpolation of K-

points, in order to work with memory and time constraints, an interpolation of 100K-points

per band was used. By the definition outlined above, 11D set transformer considers only

the 8 bands closest to the fermi surface. Although a 4D set transformer could theoretically

work on an unlimited number of bands, a maximum of 50 bands per EBS was considered

to meet memory constraints.



230 Samantha Durdy

Table 7.2: Results of the different models on predicting band gap (Egap), resistivity (ρ),
and log10(ρ) from EBS data

Model
Model information Mean Squared Error

Type Value Egap (eV) ρ (Ωm) log10(ρ)

Random Forest

CBFV

fractional 1.17 6.97×1024 4.96
jarvis 0.957 1.41×1025 3.94
magpie 1.07 2.20×1025 4.12
Oliynyk 1.00 1.44×1026 3.79

Random
projection
size

25 1.26 7.95×1026 6.84
50 1.21 6.81×1024 6.43
100 1.16 6.98×1026 6.01
200 1.16 1.45×1026 5.86

4D set transformer
Number of
paramaters

423,000 0.0223 2.35×1022 0.141
11D set transformer 426,000 0.0225 2.35×1022 0.158
RNN 1D 20, 000 0.005 41 3.61×1021 † 0.0428
RNN 2D 63,600 0.005 43 6.39×1021 0.0526

†Using AdamW optimiser rather than simple gradient descent (see Section 7.5.1)

Table 7.3: Comparison of statistics regarding the values in the resistivity dataset (ρ) and
the logarithm of those values (ρ). By comparing the mean squared error (MSE) of each
value in the dataset to the mean (µ) of the dataset it is possible to gauge the MSE that
would be produced if a model trained on this dataset only predicted the mean.

Metric ρ log10 ρ

µ 8.24×1011 −3.75
Standard Deviation 3.67×1013 3.76

Median 4.15×10−6 −5.37
Minimum 1.00×10−12 −12.0
Maximum 1.73×1015 15.2

MSE comparing all entries to µ 1.34×1027 14.1
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7.6 Results

Table 7.4: Result of the Bayesian optimisation hyperparameter sweep for RNN models

Paramter RNN 1D RNN 2D

Dropout None None
Layer Normalisation None None

Fully Connected Layer Size 64 128
No. Fully Connected Layers 4 1

LSTM hidden size 32 32
No. LSTM layers 1 4

Attention Mechanism None None
Optimiser Simple gradient descent Simple gradient descent

Learning Rate 0.0013 0.026
Batch Size 224 256

No. points per band 50 100

All models managed to predict both band gap and resistivity with some degree of

accuracy. Resistivity predictions were universally very poor, though they were better than

a model which just guesses the mean of the dataset all the time (Table 7.3). Owing to

this poor performance, all models were retrained to predict the (base 10) logarithm of

resistivity (log10 ρ). log10 ρ was found to be more suited when considering the distribution

of target values in the dataset (Figure 7.5b), as such it resulted in more accurate (and

likely more useful) predictions.

Deep learning models based on EBS data universally outperformed RFs based on com-

positional data (Table 7.2). 4D and 11D set transformer models performed very similarly.

11D set transformer performed slightly better on band gap and slightly worse on log10 ρ

prediction.

RNNs universally outperformed set transformers by an order of magnitude in every

task, with RNN 1D marginally outperforming RNN 2D. The hyperparameter optimisation

for the RNN based models did not yield conclusive results (Figure 7.9). There were no

clear trends to indicate whether the wider or deeper models performed better. Simple

gradient descent was unrelliable but did manage to yield the best results (Table 7.4), while

Adam and AdamW were less likely to fail to converge and less likely to cause floating

point overflow issues (as will be discussed in Section 7.7 this was a problem for resistivity

prediction).
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Figure 7.9: Pearson’s rank correlation to mean squared error (MSE) on test set in the RNN
hyperparamter sweep. There is little correlation between MSE and the hyperparameters
chosen. While using simple gradient descent (SGD) to optimise weights did on average
result in a worse performance, the best performing models still used SGD (Table 7.4).
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Investigations presented here were done using the dataset laid out previously (Sec-

tion 7.4) in order to collate band structures with resistivity and band gap without data

leakage between band gap and resisistivity datasets (Figure 7.4). A downside of this is that

there are no easy comparisons to be made between the performance of models presented

here, and models seen in the literature.

With the caveat of different using datasets noted, models from the litterature can

compared to those seen here. The most apt comparison for the task of band gap predic-

tion is the mp gap matbench dataset [38], which extracts band gap from the Materials

Project [78], similar to the dataset start presented here, and uses crystal structure as an

input. Techniques presented here outperform the top three models on this benchmark by

an order of magnitude (Table 7.5). More notable still is that the mp gap dataset features

106,113 entries, compared to the 2227 structures in the dataset used in this study. With

more structures one would expect the models presented here to continue to outperform the

state of the art on the mp gap dataset.

Unfortunately for prediction of ρ and log10 ρ there are no clear comparisons to be made.

While other datasets featuring ρ exist [126, 152, 67], most of these (and all of these which

have associeted ML models) are specifically for thermoelectric materials [65, 6] and thus

do not present an apt opportunity for comparison to this study. Similarly other studies

which learn from band structure [91, 190], do not perform any supervised ML (only self-

supervised or unsupervised), and thus comparison of the efficacy of prior techniques to

those presented here are limited
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Table 7.5: A comparison of models presented here to methods and results from the lit-
erature for predicting band gap on DFT data. Noted are the datasets being used for
training/test, whether the model uses any sort of structure (including crystal structure or
band structure), whether the model uses electronic band structure (EBS) in any way, and
reported root mean squared error (RMSE).

Dataset Model
Uses
structure

Uses
EBS

RMSE (eV)

Resistivity
dataset
(Section 7.4)

4D set transformer
(Section 7.5.2)

Yes Yes

0.149

11D set transformer
(Section 7.5.2)

0.150

RNN1D (Sec-
tion 7.5.1)

0.0736

RNN2D (Sec-
tion 7.5.1)

0.0737

Random forest No No 0.978

Matbench mp gap [38]
coGN [163]

Yes No
0.340

coNGN [163] 0.427
ALIGNN [26] 0.464

7.7 Discussion

While EBS data has interesting qualities that make it difficult to use machine learning

with without pre-processing methods to make EBS data more uniform across a dataset

(Section 7.3). Despite this there are several deep learning architectures (such as those

explored in this chapter) which manage the complexities of these data with minimal or no

preprocessing.

RNNs were expected to outperform set transformers on band gap prediction tasks as

the structure of RNNs lends itself to comparison of adjacent bands. It was expected that

the set transformers would better incorperate interactions between bands which are further

away from eachother, resulting in better performance in resistivity prediction. However,

this was not the case, instead model performance had an inverse correlation with the

number of paramaters that a model had (Table 7.2). This would imply that there was

insuficient data to train the larger models.

Overall, deep learning methods show potential at interpretting EBS data, far out-

performing RFs on these data. This may be seen as unsurprising; EBS data contains



Chapter 7. Machine learning with electronic band structures 235

structural information, whereas RFs trained here used only composition based informa-

tion. RFs have no mechinism for dealing with variable sized input data, but RFs could be

trained on features extracted from band structures [76].

Perhaps where deep learning methods show the most potential over methods such as

RFs is in use of transfer learning. Large repositories of EBS data exist, which could be used

as a pre-training task before training a model on a smaller dataset relating band structures

to experimentally measured properties. This could be done by predicting a known property

(such as band gap) or by reconstructing (such as with an autoencoder; see Section 6.4.2).

The trained models could then be used on the smaller dataset to fine-tune the weights for

the experimentally measured property. By using transfer learning in this way future work

could overcome the limitations of the smaller datasets present in materials science.

The resistivity dataset explored here is an interesting example of such dataset. Direct

prediction of resistivity was found to be innapropriate for these data. Models trained to

predict resistivity performed better than just guessing the mean of the dataset (Table 7.3),

but the results were not good enough to be meaningfully useful. Predicting log10 ρ was

more appropriate to the dataset (Figure 7.5b), and resulted in both better results and more

numerically stable models. A specific (and interesting) instability noted when training deep

learning models on these data is that floating points would often overflow on the resistivity

data. As models were trained using 32 bit floating points [75], the exponent was represented

using just 8 bits, when considering the bias (allowing for negative exponents), this leaves

a maximum exponent value of 128. As batch sizes found to be optimal were above 200

(Table 7.4), considering the size of the mean squared errors (Table 7.3 and Table 7.2), such

overflows are not unsurprising.

This could have been alleviated by using 64 bit floating points, which have an 11 bit

exponent and thus have a maximum exponent value of 1024 ([75]). However, being orders

of magnitude is the source of the majority of the mean squared error between predictions

and true values. This means that the majority of the loss is being represented by only a

small minority of the data representation (either 8 of 32 bits or 11 of 64 bits depending on

floating point format). While the backpropogation process may move this loss from the

exponent of the mean squared error to the mantissa of the weights (depending on activation

functions used), the loss is still coarse in information (when compared to the if most of the

information was carried in the mantissa). This was addressed by taking the logarithm of

the resistivity as the target value and resulted in better learning.

Considerations such as these must be made when using deep learning; however, deep
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learning arcitectures’ ability to process EBS data is still exciting. By using paradigms

analogous to other popular fields of ML (Section 7.3), such as natural language processing

(NLP) or image recognition, the adaptation of existing algorithms becomes possible. These

algorithms are known to be effective in those fields, reducing exploratory investigations

needed to build deep learning algorithms for these data. While the experiments shown

here demonstrate algorithms developed for machine translation (RNNs) and point cloud

classification (set transformers), other potentially interesting classes of algorithms exist.

Future work may, for example, choose to look at convolutional networks, taking inspiration

from convolutional architectures used for image recognition [99] (there is evidence such an

approach would be applicable on these data [190]), or point cloud networks that explicitly

use distance for efficiency [145]. However, the assumptions underlying the algorithms in

other fields may not be applicable to EBS data.

Not only this but different fields of ML research are at different levels of maturity,

for example image recognition and NLP have received far more attention than point cloud

recognition, and as such are likely to have more refined algorithms that are ready to adopt.

That is to say, just because an algorithm developed in a particular field of ML research is

seen to have the most effect, it does not mean that a paradigm which draws analogy to that

field is “right” paradigm with which to consider ML on EBS data. There is no definitive

“right” paradigm, and EBS data can and should be considered an entity unto itself. EBS

data are compelling and thought provoking enough to merit their own research, and the

author anticipates this research eagerly.

7.8 Conclusion

This chapter has presented a novel approach to using deep learning to interpret EBS data.

A dataset mapping EBS data to experimental resistivity measurements was constructed,

and a second dataset mapping EBS data to the band gap was built. Eight RFs and four

different deep learning architectures were built to demonstrate different ways these data

could be interpreted using neural architectures. Two transformer-based models performed

well, but seemed to be limited by data. Two RNN based models performed the best,

managing to predict both resistivity and band gap with orders of magnitude more accuracy

than both set transformer models and the baseline RF models.

EBS datasets are non-trivial, each EBS may have different numbers of bands, numbers

(or density) of K-points, and different K-paths through the Brillouin zone. The approaches
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in this chapter are the first to use deep learning directly on entire datasets of band struc-

tures. Although this makes these approaches notable, better approaches no doubt exist.

Much space for future work has been highlighted. It is hoped that future research will

continue to explore EBS data as an avenue for creating accurate predictions of electronic

properties.

7.9 Thesis context

This final experimental chapter shows an example of property prediction using structural

(EBS) data. Linking back to prevous chapters which examined non-structural based pre-

diction (Chapters 3 to 5), this chapter shows how structural information can improve the

predictive ability of algorithms, and allow for better utilisation of deep learning approaches.

As noted (Section 6.7), this chapter also marks a thematic reversal on the previous

chapter. Where Chapter 6 examined data science from a materials context, this chapter

examines materials from a data science context by discussing the data structures which

could be used to represent band structures.

Such thematic analysis, will be further explored in the subsequent chapter. The final

chapter will give an overview of the thesis, discuss potential for future work, and make

concluding remarks.
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Discussion and conclusion

The conclusion offered in this chapter aims to provide a comprehensive overview of the

thesis. This will begin with a succinct summary of key findings and results in each chapters

as well sallient points which were observed. For each chapter, a critical reflection will be

offered, assessing the extent to which the research question outlined in the introductory

chapter has been effectively addressed. There will be discussion on alternative approaches

or methodological adjustments that could be considered should the research be repeated.

Following this overview, a discussion will be given. The thematic progression of the

thesis will be discussed and how perspectives changed over the production of the research

presented. The wider literature will be discussed, with reflections as to how well this

research is situated within this research landscape.

This discussion will lead into the future work section, where potential directions for

future investigation will be outlined, enabling subsequent researchers to build on the ideas

and experiments established in each individual chapter.

Finally, concluding remarks will be provided. These reflections will discuss the approach

taken in the thesis and honest thoughts as to the extent to which the project has been a

success.

8.1 Overview

The introductory chapter of this thesis sets out the research question “How can ML be used

effectively to enhance materials discovery?” Deffining the specific focus to be “the methods

and rationale behind ML” both in terms of formulating models and tasks to make precise

238
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predictions, but also in creating frameworks by which those models can be used to discover

materials. The research question concludes by stating “this thesis aims to explore how ML

can be used more effectively to drive material discovery. Through a critical evaluation of

existing models and the development of novel approaches, this thesis seeks to contribute

to the broader goal of advancing materials science through the application of ML.”

Chapter 2 delves into essential background knowledge required to understand the thesis.

The following chapter (Chapter 3) serves as an introductory exploration, showcasing two

examples of using random forests to predict material properties, specifically focussing on

MOF porosity and unit cell characteristics. However, it is noteworthy that the exploration

of the “unit cell” concept remains limited both in scope and in depth; if this were repeated,

further experiments would be taken to fully explore this concept, perhaps seeing how Niggli

reduction or various supercells affect results. Notable contributions of the chpater include

observation of the importance of task selection for ML, as well as the introduction of

the r2
comp metric for substitution studies. Although this chapter contributes to the peer-

reviewed literature on ML-based materials property prediction, it falls short in terms of

the evaluation of existing models or the actual creation of materials. Nonetheless, it makes

progress in developing novel approaches, aligning with the research question’s objectives.

Chapter 4 focusses on material discovery workflows, encompassing a review of the

literature on superconducting critical temperature and the development of collaborative

workflows. Existing methods from the literature were examined for their assumptions, and

over a billion compositions were screened as candidate superconductors. Predictions were

filtered into specific areas of interest as well as materials thought to be easy to synthesise,

enabling the large number of candidates screened to be presented to collaborators such

that predictions were feasible to manually interrogate. Although none of the materials

synthesised thus far were found to be superconducting, investgations are ongoing and the

chapter aligns well with the research question. To enhance future investigations, it is

recommended to shift the focus from predicting superconducting critical temperatures to

predicting whether a material exhibits superconductivity and, if so, in which temperature

range. Additionally, the inclusion of synthesis pressure as a parameter in the models

is suggested, as pressure can impact superconductivity and aligns with current research

trends.

The latter half of the chapter details the creation of the Liverpool materials discov-

ery server (LMDS), discussing structural decisions and highlighting specific applications

developped for the platform. This project aims to facilitate the sharing of computational
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apps among researchers, not only within the LMDS but also through similar platforms

which this research hopes to inspire. Overall, this chapter aligns closely with the research

question and is expected to yield further results in future endeavors.

Chapter 5 explores kernelised Leave one cluster cut Cross-validation (LOCO-CV) and

use of random projections to represent materials. It is notable that the observation regard-

ing the limited impact of feature-engineered composition based feature vectors (CBFVs)

on various tasks reported in the literature [124] after observation for as part of this thesis

(though before the research presented here was written). This both the timeliness of this

work, but also the encouraging progression and self-evaluation of present in literature.

Novely in this chapter is seen in the use of random projections and the observation that

the existing review on this topic overlooked the Johnson-Lindenstrauss lemma. One salient

point in this chapter is that the “correct” representation of materials remains subjective.

Specifically, it was noted that “whether domain knowledge features are being used as a

proxy for the composition, or whether the composition is a proxy for the properties of a

material which are quantified by the domain knowledge features.” This simultaniously un-

dermines and reinforces the importance of the research presented. Initially, investigations

were conceived as noting that domain knowledge based CBFVs seem of little use. However,

this observation emphasises that while CBFVs may not improve the performance of an ML

algorithm, does not mean they “lack use”.

The discussion on kernelised LOCO-CV acknowledges the limitations of LOCO-CV and

proposes kernel approximation methods as a potential remedy. In retospect application

kernels within the K-means algorithm would have improved clarity over using kernel ap-

proximation methods to process data a priori of the application of K-means clustering.

It is uncertain whether this modification have changed the outcome of the investigation.

Overall, the chapter successfully provides a comprehensive review of the literature, aligning

well with the research question and yielding satisfactory results.

Chapter 6, discusses the methods for measuring the isotropy of clusters. While this

is intriguing both within the themes of the thesis and in its own right, measurements for

isotropy lack substantial impact in relation to the research question. The measurement of

cluster shapes in high dimensions does not neatly align with materials science workflows,

and the use of isotropy measures for materials characterisation proved unsuccessful (Sec-

tion 6.4.4). Although the tools and observations presented are interesting and the chapter

delves into intriguing mathematical concepts such as random matrix theory, the concept of

measuring the shapes of cluster appears somewhat tangential. Although minimal changes
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would be suggested if this topic were revisited, the notion of measuring cluster shapes

remains somewhat frivolous within the context of the research question.

Finally, Chapter 7 discusses electronic band structure (EBS) and offers an exciting ap-

proach that views EBS through data structure paradigms and suggests algorithms based

on those data structures. The effectiveness of the Set Transformer and recurrant neural

network (RNN) algorithms is notable, but the more intriguing aspect lies in the consid-

eration of electronic band structures in terms of their underlying data representations. If

revisited, it would be preferable to use band-gap prediction as a pre-training task for resis-

tivity prediction, instead of solely using the band gap as a sanity check for whether deep

learning could be conducted on such small data sets. This novel approach is the first deep

learning approach on EBS datasets and aligns with the development of innovative methods

for material discovery outlined in the research scope.

8.2 Discussion

The above section takes the reader from introductory experiments (Chapter 3) which in-

troduce new tools for evaluating models to how such experiments may be adapted to work

within the academic context (Chapter 4). The context and assumptions underlying the

work are then questioned, by asking why feature engineered CBFVs are used (Chapter 5).

The same chapter which questions CBFVs also proposed kernelised LOCO-CV, a new tool

for evaluating models. Then discussion of measurements for isotropy allows for evaluation

of the methods being used to evaluate models before the thesis is regrounded in the task

of materials property prediction in a new (electronic structure based) context.

Through reading (and writing) of the above several themes emerge:

• ML models can be used for materials property prediction, and this can aid materials

discovery. While there is some deviation, the thesis starts and ends, very intention-

ally, with material property prediction.

• The intersection of data science and materials science presents unique opportunities

and requirements specifically regarding evaluation. From r2
comp to kernelised LOCO-

CV, this thesis emphasises the importance of using appropriate measures for success,

which are grounded in the way models will be used.

• Questioning of assumptions in and iterative improvement. This being a core tennet

of the scientific process, it is unsurprising, but fitting, that this is seen here.
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• The interdisciplinary perspective yields interesting insights for both computer science

and materials science.

Themes of this nature are subjective, and the above list is not meant to be deffinitive, nor

is it declarative of prior intention to consider these themes.

Reflection on the patterns which emerge from years of research also offers the oppor-

tunity to reflect on the perspective taken throughout the research. Initially an eagerness

was taken to conduct experiments and explore the power of ML on materials data. This

eagerness is reflected in the emphasis on tangeable, physicical, results set out in the re-

search question. However, the more projects that were undertaken, the more assumptions

that underpin the results were questioned and the more motivation behind the use of ML

was questioned. Why should a talented experimental chemist take time out of their day

to persue research interests of an ML algorithm and its engineer? Of course, the reasons

for undertaking research are complex, and often the research interests presented here align

well with those of experimental chemists. Goals of learning and discovery are common

among academics, regardless of discipline.

Overall, the thesis, as presented here, is reflective of trends seen in the literature.

Data are used to predict properties using off-the-shelf algorithms, and simple featurisa-

tion [170] (Chapter 3), work is done to make those tools more accessible and useful in ex-

perimental workflows [72, 78] (Chapter 4). The assumptions are questioned [124], and more

comprehensive evaluation standards are suggested [187, 39] (Chapter 5). Meanwhile, the

materials science context inspires new algorithms [138] (Chapter 6) and bespoke deep learn-

ing methods start being used to enhace materials properties prediction [60, 186] (Chap-

ter 7).

8.3 Future work

While future work may look to automate other parts of the materials discovery workflow,

as this thesis does not consider synthesis, it seems inappropriate to make suggestions of

that nature here. Instead, the suggestions made in this section will relate directly to work

done in this thesis.

Future work should follow the trends in the literature. That is to say, future work

involving materials property prediction would be better focused either on development of

bespoke algorithms suited to the data at hand or on creation of materials and ease of
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access for tools (or both). It should be noted that better workflows may not look like

those developed here. Recent trends in the literature towards generative models [4] and

Bayesian optimisation [188] would suggest that there are alternatives to the screeening

process suggested here (Chapter 4).

Kernelised LOCO-CV could further be explored through the use of kernel methods

within the K-means clustering algorithm rather than as an a priori approximation. Meth-

ods of implementing similar repeated word removed the extrapolatory power of ML models

in ways which are applicable to more computationally expensive models may also be useful,

particularly as trends continue towards larger deep learning models.

Band structure data remains a large underutilised source of data for ML models. There

are many suggestions for paradigms through which to explore such data in this thesis

(Chapter 7). Specifically, transfer learning would be an interesting experiment to do. The

conclusions in this thesis noted that larger models tended to perform worse than expected

and noted that only a small subset of available data was used for the experiments presented

here. Once models are trained on all available EBS data (while avoiding data leakage),

it will be easier to observe whether larger models are appropriate for these data. Further

work on linking specific experimentally measured electronic properties to available band

structure data would also help. Although this thesis presented resistivity as an example,

superconductivity or other exceptional electronic properties would also serve as prime

candidates for such models.

8.4 Concluding remarks

This work has covered a fast-evolving field (almost too fast). However, the speed at which

the literature in this space moves makes the intersection between materials science and

data science an exciting and deeply fascinating field to be a part of. It is encouraging

to note that flaws in the literature observed when starting this thesis have largely been

addressed, and the standard of current work in the field is (subjectively) very high.

The work presented in this thesis aims to meet that standard. Overall, while some of

the research present here could be improved, this thesis has aimed to be honest about that

and seek out underexplored niches, rather than being focussing on topping benchmarks.

While judgement of this thesis is left to the reader, it is with both pride and excitement

for the future of the field that this work is concluded.
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S Pilati, C Draxl, M Kuban, S Rigamonti, M Scheidgen, M Esters, D Hicks, C To-

her, P V Balachandran, I Tamblyn, S Whitelam, C Bellinger, and L M Ghiringhelli.

Roadmap on machine learning in electronic structure. Electronic Structure, 4:023004,

6 2022.

[94] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of

Mathematical Statistics, 22(1):79 – 86, 1951.

[95] Douglas Kunda, Sipiwe Chihana, and Muwanei Sinyinda. Web server performance

of apache and nginx: A systematic literature review. Computer Engineering and

Intelligent Systems, 8:43–52, 2017.

[96] Davies D L and Bouldin D W. A Cluster Separation Measure. IEEE Transactions

on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227, 1979.

[97] SciKit Learn. Scikit learn feature selection. https://scikit-learn.org/stable/

modules/feature_selection.html. Accessed: 2022-03-07.

[98] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1(4):541–551, 1989.

[99] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database.

ATT Labs, 2, 2010.

[100] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for

back-propagation. In Proceedings of the 1988 connectionist models summer school,

volume 1, pages 21–28, 1988.

[101] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye

Teh. Set transformer: A framework for attention-based permutation-invariant neural

networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings

https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html


Bibliography 255

of the 36th International Conference on Machine Learning, volume 97 of Proceedings

of Machine Learning Research, pages 3744–3753. PMLR, 09–15 Jun 2019.
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