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Abstract

In contemporary medicine, the continuous introduction of new medicines to the mar-
ket has significantly contributed to disease prevention and improved patient outcomes.
However, the administration of medicines is hindered by the emergence of unforeseen
adverse e↵ects, often observed during late-stage clinical studies or following authorisa-
tion. This has resulted in notable drug withdrawals due to these unexpected side e↵ects.
Of particular concern are the side e↵ects resulting from drug-drug interactions (DDIs).
The empirical study of DDIs before the drugs enter the market is challenging due to
the limited number of co-prescribed drugs typically included in late-stage clinical trials.
Also, computational methods for identifying potential DDIs during drug development
are not capable of successfully capturing all adverse DDIs that can occur in clinical
practice. Therefore, post-marketing surveillance plays a crucial role in detecting and
monitoring DDIs, making pharmacovigilance an integral part of the drug lifecycle.

To address these challenges, this thesis proposes a comprehensive approach consist-
ing of four stages to enhance signal detection activities for DDIs in the post-marketing
setting. Firstly, the level of agreement on DDI information across major online drug
information resources is assessed. The assessment results show considerable variation
in the interacting drug pairs of the examined resources, together with variability in
categorisation of severity and clinical management recommendations for the included
DDIs. Such variability presents potentially deleterious consequences for patient safety
and demonstrates a need for harmonisation and standardisation of the information avail-
able on drug information resources. In the second stage, a normalised reference set called
CRESCENDDI (Clinically-relevant REference Set CENtred around Drug-Drug Interac-
tions) is introduced. This publicly available dataset provides comprehensive information
on DDIs and the individual behaviour of interacting drugs, facilitating research in signal
detection methodologies and enabling quantitative performance evaluation. The third
stage seeks to investigate the impact of confounding factors on existing signal detection
methodologies. It is concluded that reference sets populated with some of the examined
confounding factors can significantly impact the performance evaluation metrics, poten-
tially altering the conclusions regarding which methodologies are perceived to perform
best. The final stage proposes a novel signal detection method built upon a Bayesian
hypothesis testing framework and combined with a systems pharmacology network to
refine potential DDI signals and assess their biological plausibility. The results of this
study showcase the potential of systems pharmacology to enhance signal detection in
pharmacovigilance, with DDIs being an important and promising area of application.

In conclusion, this thesis presents a comprehensive framework that addresses the
challenges of signal detection of DDIs. By focusing on data standardisation, reference
set development, signal detection method building and signal refinement using biological
plausibility aspects, the findings and tools developed in this thesis o↵er valuable insights
for enhancing pharmacovigilance and ultimately promoting better healthcare outcomes.
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Chapter 1

Introduction

1.1 Motivation

In contemporary medicine, medicines are utilised as front-line tools intended to prevent,

cure or mitigate diseases, with the aim of helping us live longer and better. With the

global pharmaceutical industry’s expenditure being more than 200 billion dollars per

year for research and development, there has been a continuous increase in the number

of new medicines that have been introduced to the market in the last few decades [1].

Although medicines are designed and administered to be beneficial, they can also turn

out to be harmful to patients. One apparent reason is that they can be given in the

incorrect dose, also according to Paracelsus’ famous dictum [2]:

What is there that is not poison? All things are poison and nothing is without poison.

Solely the dose determines that a thing is not a poison.

However, the fact that the dose of a medicine within the human body can end up causing

unintended harm to a patient could arise from complex behaviour involving the drug

molecule interacting with the metabolic and immunological pathways in unpredictable

ways. Medicines, and in particular small molecules, can interact within the human

body in multiple ways and get involved in various biological pathways that might not

always be just the intended or the ones that are predictable based on current knowledge.

Thus, apart from the desired e↵ects, there might be other e↵ects that arise from the

interactions of the medicine with targets other than the intended therapeutic target. Any

such unwanted and harmful response to a drug given at a therapeutic dose is described

as an adverse drug reaction (ADR) [3]. The therapeutic e↵ects are not always the same

for every patient, such that not every drug has a beneficial e↵ect for every patient; in a

similar way, the secondary e↵ects can also be subject to inter-individual variability.

This provides a rationale why so many candidate drugs fail during the development

process, with 90% of those entering clinical trials never making it to the market [4].

Hence, we realise that, although the aim of pharmacotherapy is to provide benefits

to patients, there are also potential risks. Nowadays, pharmacotherapy aims to strike a

balance between benefit and risk. The benefit depends on multiple factors, including the

1
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severity of the condition for which the medicine is used, the degree of beneficial impact

on the patient’s overall health and well-being, but also on the existence of alternative

treatments and how their e�cacy and safety compare to those for the drug in question.

The risk, on the other hand, is calculated by taking into account the probability of the

occurrence of the various potential side e↵ects as well as how serious these are. This

benefit-risk (BR) assessment for a drug is ongoing and extends beyond its marketing

authorisation. This process involves doctors, regulators, and marketing authorisation

holders who continuously collect evidence and evaluate the risk-benefit ratio of marketed

products. The activity of gathering and analysing data in the post-marketing setting

with an overarching aim of identifying previously unknown adverse drug e↵ects or any

other complications falls under the concept of pharmacovigilance.

The first and crucial point in pharmacovigilance activities following data collection

is called signal detection and includes the statistical analysis of gathered data to spot

any signals that could be indicative of a novel drug side e↵ect. The collected data,

traditionally in the form of reports submitted by health professionals or patients, contain

information on patient demographics, concomitant medications, suspected drugs and

adverse events (AEs) experienced following drug administration.

Increasing life expectancy rates worldwide contribute to rising multimorbidity rates,

along with more medicines being approved for use. As a result, the issue of polypharmacy

(i.e. regular simultaneous use of five or more medications) has become more prevalent

and more urgent year by year. This can lead to a massive and ever-increasing number of

potential interactions between administered drugs. There has lately been an increasing

amount of computational work with the aim of identifying potential DDIs in the drug

development stage, in an attempt to reduce rejection rates due to safety complications.

However, post-marketing surveillance (PMS) still remains essential and critical due to

the inherent complexity and the lack of complete understanding of drug behaviour and

interactions within the human body in the presence of other drugs. At the same time,

the statistical methods required to detect signals of potential DDIs in PMS are not as

mature as the respective ones for single drugs.

ADRs have been identified as a major cause of hospitalisation, with the number of

DDIs increasing from being accountable for one in six ADRs according to a study around

20 years ago [5] to being accountable for almost one in three in a more recent study [6].

More interestingly, a significant percentage of the DDIs identified in [6] were deemed

preventable. Computerised systems that provide information at the time of prescribing

aim to support decision-making and reduce the number of ADRs in clinical practice

caused by DDIs. However, when it comes to DDI management in clinical practice, there

is an issue of lack of standardisation and harmonisation among data resources. This

comes as no surprise and might be explained by multiple factors, such as: di↵erent

inclusion criteria that might a↵ect the number and nature of the qualifying DDIs for

consideration; decisions to be over-inclusive to limit legal liability; geographic variations
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etc. Hence, developing an understanding of the level of discordance in the various types

of information provided in di↵erent clinical resources is important.

The presence of a considerable degree of disagreement amongst existing resources for

DDIs can also impede our ability to rely on a single source to gather su�cient evidence

if we want to build a reference set with positive and negative controls to evaluate the

performance of novel methods for signal detection of DDIs. This realisation, combined

with the fact that the available evidence in drug safety is not static, means that definitive

controls in the form of a “gold standard” cannot exist, making the task of building a

reference set a challenging one. Traditionally, reference sets in pharmacovigilance have

been manually curated, custom-made, and often limited in size [7, 8, 9], with only a few

e↵orts having considered data standardisation practices so that the generated reference

sets could be compatible across di↵erent sources of data [7, 10]. In other cases, large

online databases containing potential DDIs (rather than clinically-relevant ones) have

been used to evaluate novel methodologies. Hence, the possibility to automate data

extraction, aggregate and standardise information from clinical resources on DDIs to

build a reference set seems intriguing and, based on recent technologies that have been

widely implemented in other scientific fields, also possible. At the same time, supporting

this resource with data pertinent to the behaviour of interacting drugs in isolation of

one another is an additional important consideration.

The use of small, custom-made reference sets that consider ad-hoc exclusion or in-

clusion criteria to define eligible controls complicates the comprehensive comparative

evaluation and benchmarking of various methodologies in the literature. As the di↵er-

ent choices that are made might a↵ect the performance of each quantitative methodology

for signal detection di↵erently, they can act as potential confounders. By having access

to a large and diversified reference set, it should be possible to assess the impact of

those design criteria that we have seen driving choices when building reference sets in

the literature on the relative performance evaluation of signal detection methodologies

for DDI surveillance.

Some of the existing signal detection methodologies for DDI surveillance have utilised

regression modelling [11], adapted shrinkage observed-to-expected ratios [12, 13], or as-

sociation rule mining [14] to unveil signals that might indicate a novel DDI in the

pharmacovigilance data. However, the inherent complexity of DDIs along with compu-

tational challenges have resulted in these e↵orts not being as mature as methodologies

that have been developed for the identification of single-drug safety complications. At

the same time, it is unfortunate that these e↵orts are not as developed considering the

complexity of the problem. In the case of DDIs, the careful enumeration, estimation,

and comparison of the di↵erent possible combinations of rates of occurrence of an AE

that could arise when a drug combination is given, as opposed to the respective rates

when the individual drugs are administered separately, could suggest the presence of a

signal of disproportionate AE reporting in the data attributed solely to the drug com-

bination, thus indicating the presence of a DDI. Furthermore, the potential of coupling
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of statistical methodologies in pharmacovigilance with other types of data that could

motivate the explanation of a predicted signal from a biological perspective has been

suggested previously [15]. However, it has not been adequately explored in the case of

DDIs. Multiple recent machine learning and deep learning approaches have attempted

to predict novel DDIs using disparate data sources [16]. In pharmacovigilance, signal

detection methods have been mainly disassociated from signal evaluation frameworks.

Also, the availability of trustworthy data for drug targets and drug safety complications

linked to target activity has not been leveraged so far for novel DDI identification. Open

Targets [17] is a very good example and its potential to aid pharmacovigilance has been

discussed in the literature [18, 19].

1.2 Thesis Aim & Objectives

The previous section has highlighted the landscape of opportunities and challenges re-

lated to the PMS of DDIs. The overarching aim of this thesis is to provide data, methods

and research outputs that could overall lead to improved detection of adverse DDIs in

the post-marketing setting. More specifically, the following objectives are proposed:

Objective I: Understand the existing evidence related to clinically rele-

vant and observable DDIs by exploring the level of agreement on infor-

mation listed in di↵erent drug information resources (DIRs).

This objective seeks to assess the concordance of leading clinical resources for DDIs

from three di↵erent countries of origin in terms of: (1) inclusion of interacting drug

pairs; (2) severity rating; (3) evidence rating and (4) clinical management recom-

mendations.

Objective II: Build a clinically relevant reference set for DDIs.

This objective aims to develop a reference standard that can be used to facili-

tate research and allow common ground for comparing methodologies used for DDI

surveillance in pharmacovigilance. Although a definitive reference standard includ-

ing the complete set of DDIs cannot exist, a scalable approach that requires less

manual e↵ort for future updates, considering the dynamic nature of data and evi-

dence availability, should be an adequate solution.

Objective III: Assess the impact of di↵erent choices on the nature of the

controls included in a reference standard on the performance assessment

of existing signal detection algorithms (SDAs) for DDI surveillance.

This objective aims to identify the relative impact of di↵erent factors that could be

potential sources of confounding on the performance evaluation of existing methods

for signal detection of DDIs. The utilisation of a large and diversified reference set

enables the generation of smaller, custom-made reference sets considering multiple

design criteria to assess any di↵erences observed in the quantitative evaluation of

SDAs for two-way DDIs.
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Objective IV: Evaluate the ability of a novel Bayesian hypothesis testing

framework to identify signals of disproportionate reporting indicative of

DDIs in PMS data and assess the potential for signal refinement using

biological plausibility aspects.

This objective is related to: (a) the development of a novel SDA for adverse DDIs

that could produce a pharmacology-driven output by detecting increasing reporting

rates in spontaneous reporting system (SRS) data while being able to distinguish

signals that might arise from constituent drugs; (b) the assessment of the developed

SDA in comparison to existing methodologies by utilising a large and diversified

reference set; and (c) the generation of a systems pharmacology framework of estab-

lished associations between biological nodes (i.e. drug targets, drug ingredients, and

AEs) to refine the signals of potential DDIs and assess their biological plausibility.

1.3 Thesis Structure

The remaining chapters are organised as follows: first, the thesis continues with a Pre-

liminaries chapter (Chapter 2); this is followed by four core chapters that are presented

in a journal paper format (Chapters 3-6), and a final discussion chapter (Chapter 7).

Chapter 2 provides the theoretical background of this thesis. The first part presents

the aims and importance of pharmacovigilance, along with current practices for collect-

ing, analysing, and leveraging data to identify drug complications in the post-marketing

phase. The second part introduces key concepts around DDIs from a pharmacological

perspective, including classification and clinical implications, as well as methods and

frameworks for their postmarketing surveillance.

Chapter 3, aiming to address Objective I, explores the level of agreement on DDI

information listed in three major online drug information resources (DIRs) in terms

of: (1) interacting drug pairs; (2) severity rating; (3) evidence rating and (4) clinical

management recommendations. By extracting and normalising the data included in the

di↵erent resources, the overlap of information pertinent to DDIs is assessed. Free text

provided in the DIRs related to clinical management recommendations is also anno-

tated, either manually, where possible, or through the application of a machine learning

algorithm, for nine di↵erent clinical management categories.

Chapter 4 proposes a scalable approach to address Objective II. It presents

CRESCENDDI (Clinically-relevant REference Set CENtred around Drug-Drug Inter-

actions), a normalised reference set for DDIs coupled with information on the individual

behaviour of interacting drugs. CRESCENDDI was built following the FAIR Data

Principles (Findable, Accessible, Interoperable, and Reusable). The automatic extrac-

tion and aggregation of information from multiple clinical resources on DDIs and the

individual behaviour of interacting drugs led to this publicly available data set that

can be used to facilitate research in SDAs and allow common ground for comparing

methodologies, requiring less manual e↵ort for future updates.
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Chapter 5 is linked to Objective III. This chapter investigates the impact of 14

criteria that could act as potential confounders (e.g. AE frequency) on three methods

that have been developed to detect signals of potential adverse DDIs. Given that each

method may be impacted to a di↵erent extent by those criteria, the assumption is that

the relative composition of reference sets can significantly a↵ect the evaluation met-

rics, potentially altering the conclusions regarding which methodologies are perceived to

perform best. This is particularly relevant when using custom-made and small-in-size

reference sets, which in many cases represent published work in the area of signal detec-

tion methods in pharmacovigilance, impeding a comprehensive and “fairer” evaluation.

Chapter 6 addresses Objective IV, by first introducing a novel signal detection

method for adverse DDIs that could produce a pharmacology-driven output by detecting

increasing reporting rates in spontaneous reporting system data while being able to

distinguish signals that might arise from constituent drugs. It then utilises a systems

pharmacology framework of established associations between biological nodes (i.e. drug

targets, drug ingredients, and AEs) to refine the signals of potential DDIs and assess

their biological plausibility.

Finally, Chapter 7 provides a discussion of the thesis contributions and conclusions,

also suggesting future directions for research and areas for improvement.

At the beginning of each chapter, there is a short introduction that tries to iden-

tify the connections between the material presented in the chapter and the remaining

chapters, as well as connections to the overarching aim of this thesis.

1.4 Contributions

The four core chapters of this thesis (Chapters 3-6) are presented in the form of

scientific journal publications and have been either published or are being prepared for

submission.

Chapter 3 is a reproduction of a publication in the British Journal of Clinical

Pharmacology [20]. I would like to thank Prof Simon Maskell and Prof Sir Munir Pir-

mohamed for their contribution to the conceptualisation of the original method and the

analysis design. In this chapter, I performed all analyses and produced all writing and

figures while taking into account comments and critical feedback from the co-authors.

I would like to extend my appreciation to Dr Amina Bensalem for her contribution to

the data analysis by independently annotating and validating French language free text

from ANSM Thesaurus for clinical management recommendations.

Chapter 4 is a reproduction of published work in Scientific Data [21]. I conducted

the data extraction, developed the analysis code, produced all data sets and wrote

the manuscript while taking into account comments and critical feedback from the co-

authors.

Chapter 5 is a reproduction of published work in the Pharmacoepidemiology and

Drug Safety journal. I conceived the work and designed the analysis, with contributions



Chapter 1. Introduction 7

from the other two publication co-authors. I conducted the data extraction, developed

the analysis code and produced all writing and figures while taking into account com-

ments and critical feedback from the co-authors.

Chapter 6 is currently the draft version of a manuscript that is intended to be

submitted to the Nature Communications journal. Prof Simon Maskell and I jointly

developed the novel method for Bayesian signal detection of DDIs in PMS. I designed the

biological plausibility framework, performed all analyses and produced all writing and

figures while taking into account comments and critical feedback from the co-authors.



Chapter 2

Preliminaries

This chapter provides the theoretical foundations for this thesis. The first part presents

an overview of current pharmacovigilance processes and discusses the concepts, goals,

practices, and methodologies in the field. The second part of this chapter introduces

the main concepts of DDIs from a pharmacological perspective and explains how DDI

surveillance is performed.

8
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2.1 Pharmacovigilance

2.1.1 Aim and Importance

In the 1950s, thalidomide was increasingly used in Europe to treat morning sickness

in pregnant women. However, doctors started to notice limb malformations and other

severe birth defects in newborn children associated with maternal exposure to thalido-

mide during pregnancy. These observations were reported to scientific journals [22] and,

by early 1960s, thalidomide was withdrawn from multiple countries. The thalidomide

tragedy indicated the urgent need for a data collection system of suspected side e↵ects

to medicines and the establishment of an orchestrated surveillance system that could

capture future adverse drug reactions that are not understood before a drug reaches the

market.

As drug development is a lengthy process that includes several steps across multiple

years, it is often falsely perceived that a medicine’s safety profile is fully understood by

the time it gets approved for human use. Given the complexity of the human body, it

is expected that a molecule can have multiple e↵ects when administered by binding to

multiple proteins and being involved in various biological pathways before it is excreted

from the human body. Some of these e↵ects are therapeutic and intended while others are

called side e↵ects and have the potential to cause harm. Hence, it is important to stress

that, despite the popular public misconception that exists, no drug comes without side

e↵ects nor is it 100% safe. With the average time from drug discovery to drug approval

being around 10 years nowadays [4], multiple pre-clinical as well as clinical assessments

try to gather su�cient evidence that the candidate molecule meets the safety and e�cacy

requirements to be released onto the market. Safety is tested in multiple ways, such as

laboratory (in vitro) experiments, animal models and computational models, followed

by clinical studies in humans [23].

Regulatory bodies in the respective countries are responsible for interpreting the

collected data to decide whether the perceived benefit of the drug outweighs its perceived

risk [24]. Benefit-risk (BR) assessment is a complex procedure that takes into account

multiple parameters to evaluate whether there is a balance between a drug’s benefits

and risks. Over the years, it has been considered a subjective process in its nature

[25, 26]. It was only in the late 1990s when the need for more systematic and consistent

frameworks and guidelines on how to perform BR assessment for regulatory decision-

making was highlighted [27, 28]. The European Medicines Agency (EMA) has adopted a

combination of qualitative and quantitative approaches to conducting BR evaluation. In

the United States, the FDA has traditionally leaned towards the adoption of a qualitative

approach, suggesting that this would be more appropriate and capable of including

expert judgement, while it can accommodate quantitative elements if needed. In the

past ten years, the Medicines and Healthcare products Regulatory Agency (MHRA)

in the United Kingdom has emphasised the significance of making better-informed BR

decisions. They have stressed the need to consider patient experiences, utilise real-time
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data, enhance tools for continuous BR evaluation, and improve understanding of these

decisions [29, 30]. But, inevitably, subjectivity is a component in BR evaluation that

should be acknowledged and embraced [31].

Pre-approval clinical trials involve three di↵erent phases (Phase I-III), which aim

to gather evidence that could inform the BR assessment of drugs. Provided that the

BR profile of a candidate drug remains favourable throughout the multiple steps of pre-

marketing clinical trials, marketing authorisation is granted. Subsequently, BR evalua-

tion continues to ensure that there is no notable divergence from the original assessment

back when the drug was approved [24, 31]. To be able to do that, the first step is

to collect data that could enable the reevaluation of the drug’s perceived BR ratio by

analysing the collected data. These activities fall under the concept of post-marketing

surveillance (PMS), or pharmacovigilance (PV). Manufacturers alongside national au-

thorities that are responsible for marketing authorisations of the medicines are primarily

responsible for PMS activities. Additionally, the World Health Organisation (WHO) has

established a monitoring system called Programme for International Drug Monitoring

since 1968, which today counts 151 member countries and aims to promote PV at the

country level and enhance patient safety through cross-country collaboration.

PMS data are invaluable and essential, as we need to take into account that clinical

trials are inevitably limited in size and also not fully representative of the population

that utilises the drug in the real world. This happens for multiple reasons, including the

inadequacy of some patient groups to participate in clinical trials due to reasons such as

multimorbidity, lack of eligibility due to age (e.g. paediatric use of medicines), minority

ethnic groups being under-represented in clinical trials, variations in drug responses

due to genetic makeup (pharmacogenomic factors) and the inability of clinical trials

to capture long-term e↵ects due to their necessarily limited length. Hence, we need to

recognise that patient recruitment processes, eligibility criteria, and the design of clinical

trials might lead to BR assessments that require updating following drug approval.

In case the additional data support the change of the BR ratio, there are multiple

possible outcomes. The decisions, apart from merely considering the incidence rates of

the various ADRs that occur in the general population as well as in specific subgroups,

also rely on other factors. Some of these include: the existence of other therapeutic

alternatives in the market and how their safety profile compares to the medicine in

question; the intended benefit from drug use, given that some ADRs might remain

acceptable if the benefits from using the medicine are significant and cannot be achieved

otherwise; and the exposure (i.e. how many people take the medicine). There are cases

where there is evidence that specific subgroups should avoid taking a specific medicine,

which leads to an update of the patient information leaflet. On the other hand, it is also

possible that the medicine is withdrawn from the market, as it poses a significant risk

to the patients. For example, rofecoxib, widely known by its brand name Vioxx, is a

cyclooxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drug (NSAID) that

was withdrawn from the market in early 2000. Similarly, rosiglitazone (an antidiabetic
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agent) was withdrawn in 2010. In both cases, other alternative treatments existed from

the same therapeutic class that supported the decision to withdraw.

Hence, PMS includes multiple activities and entails a number of possible implications

for medicines in the post-marketing setting. Since these range from revealing safety

issues in specific sub-populations that might lead to patient information leaflet updates

to even drug withdrawal, it is important to ensure that the mechanisms in place are up

to date and supported by the most recent scientific evidence so that patient safety is

maximised.

2.1.2 Spontaneous Reporting System Databases

The reporting of suspected adverse drug reactions and other complications that might

be linked to the administration of the approved drug that remains unidentified is called

spontaneous reporting [32]. This process involves the submission of Individual Case

Safety Reports (ICSRs) by health professionals, drug manufacturers, but also patients

and consumers. ICSRs are maintained in spontaneous reporting system (SRS) databases.

The collection of spontaneous reports and maintenance of the SRS databases are

performed by the national authorities who are responsible for the authorisation of the

drugs in the respective countries. In the United Kingdom, the Yellow Card Scheme

was established in 1964 [33]. ICSRs for suspected ADRs can be filed by health profes-

sionals (Figure 2.1) or patients (Figure 2.2). Today, online reporting through the

Medicines and Healthcare products Regulatory Agency (MHRA) Yellow Card app or

website (https://yellowcard.mhra.gov.uk/) are the most common ways to submit a re-

port to the MHRA. In the United States, MedWatch is the FDA’s PMS programme,

with the FDA Adverse Event Reporting System (FAERS) database representing one of

the largest SRS databases worldwide [34]. The FAERS database is available online via

a public dashboard1 that provides descriptive statistics dating back to 1968 or in down-

loadable data files, with quarterly updates available since 2004. As of a recent update

(June 30th, 2022), the database contained a total of 24,809,611 reports.

OpenFDA2 is an application programming interface (API) that functions as a plat-

form for accessing open FDA data. It provides an endpoint to extract drug adverse

events reported to FDA and stored in FAERS since 2004, allowing easy FAERS data

extraction in JSON format. This API simplifies the extraction process by providing

the data in JSON format, facilitating integration with other platforms. This allows for

building applications that can also perform data mining tasks, such as predicting the

seriousness of ADRs, by combining features from FAERS with drug molecule structure

and pharmacological class information from other data sources [35].

Apart from national SRS databases, there exist e↵orts from multiple countries to

aggregate their reports into a centralised database. VigiBase is the WHO Uppsala

1https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-
adverse-event-reporting-system-faers-public-dashboard

2https://open.fda.gov/

https://yellowcard.mhra.gov.uk/
https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard
https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard
https://open.fda.gov/
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Figure 2.1: A healthcare professional Yellow Card reporting form from the Medicines
and Healthcare products Regulatory Agency (MHRA).
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Figure 2.2: A completed member of public Yellow Card reporting form from the
Medicines and Healthcare products Regulatory Agency (MHRA).



Chapter 2. Preliminaries 14

Monitoring Centre (UMC) SRS database that collates ICSRs from 151 countries and has

been in existence since 1968 [36]. As of January 2022, VigiBase contained over 30 million

anonymised reports of suspected ADRs su↵ered by patients. The aim of pooling data into

an international database is to identify signals that cannot be identified when screening

national databases due to, for example, a limited number of reports regarding a suspected

adverse reaction. Reporting policies for suspected ADRs vary in many cases between

di↵erent countries (i.e. reporting might be either voluntary, encouraged or mandatory).

Also, the types of information that are required from each responsible national authority

might vary in terms of the level of detail, reporting of concomitant drugs, follow-up

procedures etc. The types of eligible reporters can also be di↵erent. More specifically,

patients are not allowed to directly report suspected side e↵ects everywhere and this

has only been introduced in the last twenty years in many countries [37, 38]. Hence,

it is expected that national databases di↵er among countries in the data magnitude,

completeness, quality, etc, unavoidably leading to data heterogeneity that should be

taken into account when performing analyses using VigiBase.

In the European Union, the EMA is also responsible for collecting reports from

the member countries in a centralised database called EudraVigilance. As opposed to

FAERS, EudraVigilance is not publicly accessible and its access is restricted to national

competent authorities within the European Union and authorised personnel involved in

pharmacovigilance activities. However, some aggregated safety information and reports

are made available to the public through the EMA’s website3.

In addition, marketing authorisation holders also maintain their own proprietary

databases to collect safety reports related to their marketed products. These databases

are used to capture and store information on adverse events (either spontaneously re-

ported or collected from clinical trials), product complaints, and other safety-related

data. The purpose of these proprietary databases is to enable marketing authorisation

holders to monitor the safety of their products, detect emerging safety signals, and take

appropriate actions to ensure patient safety.

Spontaneous reporting enables everyone who wishes to report a suspicion regarding

the safety of a medication to do so. In this way, it becomes possible to gather data

from patient groups that are under-represented during clinical trials, including people

with multimorbidity, people who take multiple medications, ethnic minorities, etc. The

data collection process is also simple, non-interventional, and inexpensive. On the other

hand, spontaneous reporting has some clear drawbacks, as the process of data collection

is passive. First, the lack of a control group, as opposed to a randomised clinical trial

(RCT) impedes the data analysis. Furthermore, the reported information might be

of insu�cient detail or incomplete, with the option of follow-up being di�cult in some

cases. Other data quality issues include the presence of duplicate reports, where the same

occurrence of one or more AEs in the same patient is reported multiple times, probably

by di↵erent sources, with the reports not being linked to the same case [39, 40, 41]. The

3https://www.adrreports.eu/en/index.html
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Figure 2.3: Number of FAERS Reports received by: (a) Reporter Type and (b)
Seriousness (downloaded from the FAERS Public Dashboard).

issue of stimulated reporting is also important, as reporting processes might be driven

by public disclosure of a drug safety issue and publicity [42]. Generally, under-reporting

is problematic and might delay the detection of a novel signal [43].

SRS data volume has seen a sheer increase over the past 10 years (for example,

FAERS report counts by year are shown in Figure 2.3). This phenomenon could be

attributed to multiple factors, including: the ageing population; more people su↵ering

from multiple conditions, hence being treated with more medicines; the widening phe-

nomenon of polypharmacy; more new medicines reaching the market; clinicians and pa-

tients being more aware of the opportunity to report suspected adverse drug reactions

and complications, and the switch from paper-based reporting methods to electronic

methods. The increasing amount of data presents both a challenge and an opportunity

to come up with methods that could provide us with better answers, maximise the value

of the collected data, and promote patient safety.
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2.1.3 Other Data Streams

Apart from the traditional SRS databases that have been used for pharmacovigilance

purposes in the last few decades, alternative data streams have been considered to sup-

port the aim of timely and more accurate detection of safety issues related to medicines.

These categories include: (i) electronic health record (EHR) databases; (ii) adminis-

trative claims data; (iii) scientific literature; (iv) social media data; and (v) patient

registries.

2.1.3.1 Electronic health record databases

An EHR provides a comprehensive, up-to-date, and easily accessible collection of a pa-

tient’s health information in a digital format. EHRs are routinely used in the clinical

setting to help healthcare providers make informed decisions about a patient’s care.

EHR databases comprise a novel data stream that is increasingly used in pharmacoepi-

demiology and pharmacovigilance. This data stream can provide real-world evidence for

further support of the BR assessment and the evaluation of drug e↵ectiveness. Some of

the types of information contained in EHRs can provide important context and insights

into the patient’s health status and are valuable for pharmacovigilance, including pa-

tient demographics, medical history (i.e. any prior diagnoses, treatments, and prescribed

medications), laboratory test results, clinical notes (i.e. observations and assessments

made by healthcare providers), detailed medication information (e.g. dose, frequency,

and duration of use), and genomic data (e.g. targeted genotyping, next-generation se-

quencing) [44, 45].

EHR data o↵er the capability of estimating drug exposure and background incidence

rates of AEs, as opposed to SRS databases, by knowing how many people took the drug

but did not experience an AE. EHRs also enable the analysis of data over time (longi-

tudinal analysis), allowing the identification of changes in patterns or trends that may

indicate a safety signal in the context of pharmacovigilance. Changes in the incidence

or severity of ADRs can be used to determine whether there is a temporal relationship

between medication use and the manifestation of an AE. In addition to tracking the in-

cidence of AEs, longitudinal analysis can also be used to evaluate the potential e↵ects of

interventions, such as changes in dose or the addition of concomitant medication, on the

occurrence of AEs. This information can inform decisions about changes in treatment

strategies and help to optimise patient safety. Time-to-onset is another important aspect

of pharmacovigilance that can inform causality and explain links between medications

and AEs, with time-stamped patient records being suitable to provide information on

that end [46]. Especially in the context of drug-drug interactions (DDIs), analyzing the

sequence of medication introduction to a treatment plan and the subsequent occurrence

of AEs in a patient can o↵er valuable insights into identifying the drugs that may be

associated with those AEs potentially via a DDI. Long-term or delayed complications

from exposure to medicines can also be studied using routinely collected EHRs.
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On the other hand, challenges in utilising EHR data for pharmacovigilance purposes

might include the di�culty of performing data validation due to the anonymised nature

of the system, the inability to follow up patients that change practices, the inability

to retrieve data from linked external resources, or terminology inconsistencies among

di↵erent data streams [47]. Also, free-text clinical narratives might contain valuable

information which is not coded, thus requiring text mining methods [48]. Many reported

medical events that are mentioned in an EHR can be linked to drugs but are irrelevant

associations rather than AEs that represent potential ADRs.

In the United Kingdom, general practice (GP) electronic data resources are available,

such as the Clinical Practice Research Datalink (CPRD) or The Health Improvement

Network (THIN). Other examples in the US include the Sentinel Initiative and the

Veteran’s A↵airs (VA) system [49, 50]. These resources have been used for answering

research questions in pharmacovigilance and can be utilised alongside SRS data [51, 52].

For example, combining EHR with SRS data can support signal validation, with EHR

data having supported the early detection of signals that were later validated using SRS

data [53].

2.1.3.2 Administrative claims data

Administrative claims data refer to information that is collected by healthcare payers

(e.g. insurance companies) and is used to reimburse healthcare providers for the services

they provide to patients. This data stream has also been considered for surveillance

activities [47].

The advantage of administrative claims databases is that they are capable of provid-

ing longitudinal follow-up of patients across more than one health system (i.e. hospitals,

pharmacies, outpatient clinics, etc). However, they usually do not provide enough clini-

cal details, at least not to the extent that EHR databases do. At the same time, several

limitations should be taken into consideration when using this data stream for signal

detection in pharmacovigilance. An important challenge is the presence of incomplete

data that may not reflect the full extent of a patient’s medical history or the complete

list of medications taken. Additionally, administrative claims data are often generated

by healthcare providers who may not have the necessary training or expertise to ac-

curately code medical conditions and adverse events. This can result in coding errors

that can impact data accuracy. Being primarily used for billing purposes, administrative

claims data are also not designed to capture detailed clinical information, such as patient

symptoms or the severity of AEs. For this reason, information on dose, frequency, or

duration of medication use is missing in many cases.

Despite these limitations, administrative claims data remains a valuable resource for

pharmacovigilance. However, it is important to use this data in combination with other

sources of information, such as SRS, EHR or clinical trial data.
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2.1.3.3 Biomedical literature

The biomedical literature is an important source of information for pharmacovigilance

[48]. At the same time, it can be seen as challenging to use due to the unstructured na-

ture of the data. In the last 20 years, there is an increasing availability of methodologies

in the fields of text mining and Natural Language Processing (NLP) with astonishing

capabilities that enable the utilisation of this novel data stream. Initial e↵orts to mine

the literature for signal detection of novel ADRs mainly focused on biomedical text

annotation for biomedical vocabulary concepts (e.g. UMLS concept text annotation

with MetaMap [54, 55]), combined with rule-based approaches to defining relationships

between the detected concepts (e.g. SemRep [56, 57]). Other approaches considered

suitable Medical Subject Headings (MeSH) terms from the biomedical search engine

PubMed (http://pubmed.gov) (e.g. ‘chemically-induced’; ‘adverse e↵ects’) to filter sci-

entific papers containing drug-adverse event associations [58]. Other approaches have

considered the extraction of causal relationships between drug entities and AE concepts

from the title and abstract free-text using named entity recognition or syntactic pattern

extraction [59].

Di↵erent machine learning (e.g. support vector machines), and, more recently, deep

learning approaches (e.g. convolutional neural networks) have been considered for de-

tecting sentences relevant to potential ADRs [60, 61]. The development of annotated

benchmarks, such as the ADE corpus [62], can support the development and evaluation

of these methods aiming to improve the extraction of drug-related adverse events from

medical text. More recently, the development of more advanced methods to encode free

text from the biomedical literature (e.g. word embeddings) have further contributed

towards this direction [63, 64]. In the past few years, there has been significant progress

in language models, with pre-trained language models (e.g. BioBERT [65]) playing

a pivotal role and already having numerous applications in mining biomedical litera-

ture. Additionally, generative pre-trained transformers (GPT) [66] have primarily been

utilised for language generation but show promise in other areas such as document cat-

egorisation and relation extraction specifically for biomedical text mining [67]. These

advancements in language models o↵er exciting possibilities for various tasks in the field

of NLP specifically in the context of biomedical literature mining for pharmacovigilance.

There are several key challenges of using biomedical literature for signal detection

in pharmacovigilance [68]. First, identifying causal relationships (i.e. not just co-

occurrence) of medications and AEs in free-text is an important limitation [69]. Drug

names and AEs can be represented by multiple terms and appear uncoded in this data

stream. The large volume of input data for processing introduces computational chal-

lenges, making it hard to consider full-text articles, with many methods relying on the

extraction of terms from the title, abstract and related annotations. Also, the data

quality in the biomedical literature can be variable and may not always reflect the most

recent or accurate information in drug safety, hindering the support of signal detection

e↵orts. Biased reporting of AEs can impact the accuracy of the information contained in

http://pubmed.gov
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the biomedical literature. For example, studies with negative results may be less likely

to be published. Finally, the availability of relevant data in the biomedical literature

can be limited, particularly for rare or uncommon AEs.

Overall, it is clear that the biomedical literature in pharmacovigilance can be used

to identify new or unexpected ADRs associated with medications, as well as to provide

insights into the ADR mechanisms and risk factors. The biomedical literature can also

be used to evaluate the evidence supporting the use of specific medications, including

the strength of the evidence for their safety and e↵ectiveness.

2.1.3.4 Social media and patient forum data

Social media and patient forum data have been identified as promising sources of in-

formation for pharmacovigilance [70, 71]. Social media platforms, such as Twitter, can

provide real-time information on patient experiences and opinions related to medica-

tions, including AEs and other drug-related problems. Patient forums (e.g. Patients-

LikeMe, Ask a Patient, HealthUnlocked) are online platforms where patients can discuss

their health experiences, including the use of drugs and vaccines, and share information

with others. These platforms can be used by patients to discuss their experiences with

medicines and vaccines, including information on AEs and other drug- or vaccine-related

problems. Hence, analysing these data sources has the potential to add value in the con-

text of pharmacovigilance activities, as they may contain information that has not been

reported through traditional SRSs or other data sources.

The Innovative Medicines Initiative (IMI) WEB-RADR project was launched in 2014

and aimed to explore the potential of using data from general social media (i.e. Twitter,

Reddit, Facebook, Instagram) in pharmacovigilance [72]. The resulting recommenda-

tions of this project suggested not utilising this data stream for broad statistical signal

detection activities [73]. This conclusion was based on a comparative analysis of SRS

data and social media data and their relative ability to identify previously validated

signals. The level of fairness of this analysis could be questioned, considering that it

favoured the already established data stream based on the selected benchmark (i.e.

validated signals that most likely arose from SRS data) and the poor performance of

the applied methodology for AE recognition [74]. Also, the combination of both data

streams (i.e. SRS and social media) was not considered in the analysis framework that

was used for providing these recommendations. However, the project indicated the pos-

sibility of social media data adding value in specific niche areas (i.e. drug abuse and

pregnancy-related outcomes).

There are multiple areas of opportunity in social media and patient forum data for

pharmacovigilance purposes. This novel data stream is growing over time, considering

the increasing number of Internet and social media users and the amount of information

that they share on the Web. Also, there are areas that could be explored using these

data streams, which could not be adequately captured and are often poorly reported

in traditional SRS databases. These include, but are not limited to: more detailed
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patient experiences following medication use; the o↵-label use of drugs; AEs experienced

following the use of recreational drugs and herbal medicines (alone or in combination

with prescribed medications); and the ability to capture data related to patient groups

that would be less likely to report to traditional pharmacovigilance systems [74].

A clear challenge with this data source is again the need for text mining approaches

that could also manage to infer causality and not simply capture the co-occurrence

of terms [69]. The volume of this data stream entails computational e↵orts that also

need to be considered, while extracting patient-reported AEs from unstructured text is

challenging [74]. Furthermore, the quality of the data in these streams may not always

reflect accurate or reliable information. For example, social media users may misinterpret

the cause of an AE, or even provide false and misleading information. The scarcity of

appropriate benchmarks that can be used for performance assessment can also impede

the comprehensive evaluation and enhancements of the methods that consider social

media and patient forum data. However, some recent e↵orts have resulted in manually

generated reference sets that can be used to tackle this challenge [75]. Last but not least,

ethical challenges related to the absence of explicit informed consent and the presence

of potentially personally identifiable information, such as username, and geolocation,

should be taken into account and properly addressed if possible [70].

Overall, both social media and patient forums are promising data streams for the

future. By utilising appropriate text mining approaches and addressing the technical

and ethical challenges, it will become possible to better understand the areas where they

can provide added value and enable their real-world implementation.

2.1.3.5 Patient registries

Patient registries can be utilised in PMS for specific drugs, groups of drugs or diseases

[76]. For example, the British Society of Rheumatology Biologics Register has been used

to monitor long-term safety complications from the treatment of rheumatoid arthritis

with biological agents, such as tumour necrosis factor (TNF) inhibitors. Furthermore,

patient registries can be suitable for drug safety surveillance related to pharmacotherapy

in orphan diseases.

2.1.3.6 Other novel data streams

The use of wearable devices, such as smartwatches, fitness trackers, and mobile health

applications, can potentially play a role in PMS. Wearables can provide a continuous

and objective source of real-time data on patient health status and drug exposure, which

can be used to detect potential ADRs. Biomarker monitoring has been already applied

in the clinical trial setting, but could also be considered for PMS considering the volume

and variety of collected data on physical activity, heart rate, sleep patterns, and other

health-related metrics [77, 78]. For example, a change in physical activity levels or heart

rate could indicate, for example, a myocardial infarction that might be related to a

drug. Additionally, wearables can also collect patient-reported data on drug exposure,
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including information on drug dosing and timing. However, it is important to note that

wearable data also have limitations, such as the potential for measurement error and

bias, and they require advanced methods that can extract relevant information reliably.

2.1.3.7 Challenges and opportunities

The data streams that are covered in this section can be broadly categorised into three

groups: (i) established (i.e. SRS databases, biomedical literature); (ii) emerging (i.e.

EHRs, administrative claims data, patient registries), and (iii) experimental (i.e. data

from social media, patient forums, wearable devices and apps) [74]. The concept of

multimodality in pharmacovigilance describes the use of these diverse data sources to

enhance the detection of novel ADRs and other drug-related problems [79]. In view

of recent advances in the storage, retrieval, and analysis of distributed data that can

enable federated analyses across high-dimensional and multi-source data, using these

technologies in pharmacovigilance to improve patient safety is promising [80].

An increasing number of initiatives, such as the Observational Health Data Sciences

and Informatics (OHDSI) programme, the IMI PROTECT project and EU-ADR, have

attempted to tackle data heterogeneity. During the COVID-19 pandemic, the vaccine

roll-out was inevitably followed by a large amount of generated social media data with

relevant content, ranging from public sentiment [81] and vaccine hesitancy [82] to AE

experiences following vaccination. However, vaccine surveillance has almost entirely

been performed on traditional data streams [83]. Information from alternative streams

could also be harvested by building appropriate frameworks and methodologies that can

not only allow data harmonisation across disparate sources but also enable multimodal

analysis while taking into account the challenges related to the di↵erent data streams.

The integration of multiple disparate data systems is apparently not straightforward.

The increasing amount and complexity of collected data that further complicate the

pharmacovigilance ecosystem also requires being mindful of the principle of parsimony

[84]. Also, it is important to acknowledge that utilising the above-mentioned data sources

for PMS purposes is considered secondary use of data (i.e. use for purposes other than

the ones they were collected for), thus it entails apparent challenges given that these data

sources might not be well suited to answer the study question. At the same time, while

SRS databases remain an important source of information for PMS, complementary

data sources are also needed. Understanding how these novel data streams could be

utilised and combined with the established ones in the best possible way remains an

open challenge.

2.1.4 Signal Detection

Signal detection in pharmacovigilance is only the first step following data collection

towards a complex, time-consuming process that may end up in a drug label change or,

in rare cases, even drug withdrawal. The term signal detection arises from electronic

engineering, where there is a need to distinguish real signals (i.e. information-bearing
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patterns) from accompanying random patterns in the background (called noise) that

distract from the information.

The first definition [85] of a signal in the context of pharmacovigilance by WHO in

2002 is the following:

Reported information on a possible causal relationship between an adverse

event and a drug, the relationship being previously unknown or incompletely

documented. Usually, more than a single case report is required to generate

a signal, depending on the seriousness of the event and the quality of the

information.

An updated definition [86] was provided by the Council for International Organisa-

tions of Medical Sciences (CIOMS) in 2010:

Information that arises from one or multiple sources (including observa-

tions and experiments), which suggests a new potentially causal associa-

tion, or a new aspect of a known association, between an intervention and

an event or set of related events, either adverse or beneficial, that is judged

to be of su�cient likelihood to justify verificatory action.

The evolution of the original definition is clear in several aspects: first, multiple

sources are mentioned; beneficial events (apart from adverse ones) might also be consid-

ered in scope for signal detection activities; and, last but not least, moving from “usually

more than a single case report” to “association [...] judged to be of su�cient likelihood”

in light of the increasing magnitude and complexity of data. This last change also re-

flects the evolution of methods that have been used for signal detection from manual,

case-by-case clinical expert review to statistical tools and quantitative signal detection

(QSD). These methods emerged in the late 1990s and have turned into an indispensable

part of the pharmacovigilance life cycle [87].

It is important to note that safety signals do not necessarily indicate a causal rela-

tionship between drugs and the occurrence of AEs. They instead involve cases that need

further investigation to either be validated or rejected. Quantitative methodologies in

signal detection aim to classify drug-AE combinations based on cases of co-reporting

as either signals (which require further evaluation to be validated or refuted) or noise

(i.e. combinations that should not trigger any further evaluation), with the aim of re-

ducing the number of classifications characterised as false positives (i.e. calling noise a

signal) and false negatives (i.e. calling a true signal noise). A perfect signal detection

methodology would be able to perform a 100% accurate classification of the drug-AE

combinations between the two possible classes. However, this is never the case and this

challenging task is tackled by considering an adequate trade-o↵ between sensitivity (i.e.

the ability to correctly identify signals) and specificity (i.e. the ability to correctly iden-

tify non-signals) [88]. In the context of PMS, reduced specificity would result in more

cases needed for manual clinical review, while reduced sensitivity would keep real signals

unrevealed, thus prolonging their impact on patient safety.
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AE
Mentioned Not mentioned Total

Drug
Mentioned a b a+b

Not mentioned c d c+d
Total a+c b+d a+b+c+d

Table 2.1: A 2-by-2 contingency table in the case of one drug and one AE.

2.1.4.1 Disproportionality analysis in SRS Data

Disproportionality analysis is the cornerstone of QSD in pharmacovigilance and measures

the degree of unexpectedness in the reporting of a drug-AE association. In the simplest

case, the observed reporting rate of one single drug with an AE is compared to the

reporting of the same AE with other drugs in the same database. This observed to

expected approach is suitable given the inability to readily calculate from the SRS data

the rates of exposure to the drug (i.e. how many people took the drug) or the background

incidence of the AE in the general population.

By considering one single drug and an AE, reports from an SRS database could be

classified into four distinct categories using a case/non-case analysis: (i) reports that

mention both the drug and the AE (a); (ii) reports that mention the drug but not the

AE (b); (iii) reports that mention the AE but not the drug (c); and (iv) reports that

mention neither the drug nor the AE (d). These report counts are usually placed in a

2-by-2 contingency table (Table 2.1).

There are various disproportionality measures (Table 2.2), which are broadly cat-

egorised based on their statistical approach into frequentist and Bayesian methods.

Frequentist methods, such as the Proportional Reporting Ratio (PRR) [89] and the

Reporting Odds Ratio (ROR) [90], were the first to appear in the literature and are

still extensively used. For example, the PRR is used for routine screening of the Eu-

dravigilance database. In terms of Bayesian methods, the Information Component (IC)

was developed and is used to date as the preferred method for routine screening of the

VigiBase at UMC. IC is a measure of the observed-to-expected ratio that is based on

the Bayesian Confidence Propagation Neural Network (BCPNN) method [91]. Also, the

Multi-Item Gamma Poisson Shrinker (MGPS) is an empirical Bayesian method that

calculates the Empirical Bayes Geometric Mean (EBGM) measure [92, 93]. It has been

implemented and is still used by the FDA.

Frequentist methods assume repeated random sampling of data and fixed model

parameters, while Bayesian methods consider the data as fixed data and non-fixed (i.e.

uncertain) parameters that are described by a probability distribution [94]. Frequentist

methods can be computationally cheap for simple models and may be preferred in some

cases because they provide a straightforward way to estimate statistical significance and

confidence intervals. However, frequentist methods often require assumptions about the

underlying distribution of the data, which can be di�cult to specify correctly in practice.

Bayesian methods, on the other hand, can be more computationally intensive. At the
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Disproportionality
measure

Estimator
Probabilistic
interpretation

Relative Reporting (RR)
a/(a+ b)

(a+ c)/(a+ b+ c+ d)

P (AE|Drug)

P (AE)

Proportional Reporting Ratio (PRR)
a/(a+ b)

c/(c+ d)

P (AE|Drug)

P (AE|�Drug)

Reporting Odds Ratio (ROR)
a/c

b/d

P (AE|Drug)/P (�AE|Drug)

P (AE|�Drug)/P (�AE|�Drug)

Information Component (IC) log2
a/(a+ b)

(a+ c)/(a+ b+ c+ d)
log2

P (AE|Drug)

P (AE)

Table 2.2: Measures of disproportionality in pharmacovigilance for one drug-one AE:
formulas and probabilistic interpretation.

same time, they can be more flexible in modelling complex data structures, provide more

nuanced and probabilistic estimates of uncertainty, and allow for the incorporation of

prior information.

In the context of disproportionality analysis using SRS data in PMS, small sample

sizes, as are encountered with many drug-AE combinations with only a small number

of reports, result in highly variable estimates of the reporting rate. Empirical Bayesian

methods use prior distributions on these quantities that are estimated from the data

and observe the e↵ect that added information has on the posterior distributions [95].

However, the choice of prior can have a significant impact on the resulting posterior

distributions and should be carefully considered since a poor choice of prior can lead to

biased or inaccurate estimates.

Comparing the di↵erent available SDAs in a fair way is a challenging task. There

have been previous e↵orts in the literature to perform comprehensive comparisons of

SDAs by considering di↵erent SRS databases and multiple thresholds for the di↵erent

SDAs [96]. The main conclusion was that the choice of disproportionality measure does

not considerably influence the performance range of an SDA. For this reason, practical

considerations should be prioritised, including how easily a method can be implemented,

maintained and interpreted as well as computing resource requirements.

2.1.4.2 Method performance assessment

For classification tasks that consider the detection of signals based on the ability of a

method to classify drug-AE (or drug combination-AE) cases into known associations (i.e.

single-drug or DDI-related ADRs) (positive cases) and associations that are unlikely

to be causally related (negative cases) using a specific discrimination threshold, the

following counts are defined:

• True Positive (TP): the number of accurately classified positive cases;

• True Negative (TN): the number of accurately classified negative cases;
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• False Positive (FP): the number of actual negative cases that were classified as

positive;

• False Negative (FN): the number of actual positive cases that were classified as

negative.

Based on the above counts, a confusion matrix (Table 2.3) is constructed for the

specified threshold and the following evaluation metrics (which are frequently used also

in the context of pharmacovigilance) can be calculated (with the formulas for the calcu-

lation of the above metrics being displayed in Table 2.4):

• Sensitivity (or recall): measures the proportion of actual positive cases which

are correctly identified as such;

• Specificity: measures the proportion of actual negative cases which are correctly

identified as such;

• Precision (or positive predictive value (PPV)): measures the proportion of

accurately detected positive cases among all predicted positive cases;

• Accuracy: measures the proportion of correct predictions among all input cases;

• F1-score: the harmonic mean of the precision and recall.

By varying the discrimination threshold of the classification method using multi-

ple threshold values and plotting sensitivity (y-axis) versus 1 � sensitivity (x-axis),

a Receiver Operating Characteristic (ROC) curve is created and depicts the relative

trade-o↵s between TPs and FPs. A perfect classification method (i.e. 100% sensitivity

and 100% specificity) would give a point in the upper left corner, while a random guess

would yield a point along a diagonal line from the bottom left (0,0) to the top right (1,1)

corners.

The two-dimensional area underneath the entire ROC curve from (0,0) to (1,1), called

the Area Under the ROC Curve (AUC), is commonly used as an aggregate evaluation

metric of the classification method performance at multiple discrimination thresholds.

AUC values range from 0 to 1, with a perfect classification method having an AUC value

of 1 and a random one an AUC value of 0.5. The AUC values are often used for method

comparison.

Predicted Class

Positive Negative

Actual Class
Positive TP FN

Negative FP TN

Table 2.3: A confusion matrix.
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Evaluation metric Formula

Sensitivity sens = TP
TP+FN

Specificity spec = TN
TN+FP

Precision prec = TP
TP+FP

Accuracy acc = TP+TN
TP+TN+FP+FN

F1-score F1 = 2⇥ prec⇥sens
prec+sens = 2TP

2TP+FP+FN

Table 2.4: Formulas of evaluation metrics for binary classification methods.

2.1.4.3 Considerations for practical implementation

The real-world implementation of SDAs requires a very good understanding of the meth-

ods before these can be fine-tuned and used for safety surveillance. The first step follow-

ing the development of an SDA is the evaluation of its absolute, as well as relative (i.e.

compared to existing SDAs), performance. This is a crucial step considering the lack of

ground truth in this setting (i.e. definitive positive and negative controls), Also, it is dif-

ficult to establish suitable reference standards and to assess whether and to which extent

the demonstrated performance reflects the real-world performance of the methodology.

These challenges have been widely described in the literature [97, 98, 99]. Multiple

frameworks (e.g. prospective versus retrospective evaluation) and types of reference sets

have been explored to enable a better evaluation of SDA performance [7, 8, 10, 9].

Even once the SDA performance has been quantified using one or multiple reference

standards, the trade-o↵ between sensitivity and specificity for real-life implementation

still needs to be defined before selecting an appropriate operating point. Routine SRS

screening with an SDA should be set based on a careful consideration of the potential

implications of both the false negative rate as well the false positive rate of an SDA.

For an acceptable false negative rate, the severity and patient impact of a missed signal

should be determined. The inability of an SDA to capture signals of serious complica-

tions of medicines (i.e. high-risk signals) could have deleterious consequences for patient

safety. Prevalence of use for a specific medication is another valid point for consider-

ation, as larger groups of people are exposed to a potential risk in the case of missed

signals related to medications that are administered to a large population, Also, the

nature and vulnerability of the population that is exposed to a drug needs to be taken

into account (e.g. pregnant women, children) to define an appropriate false negative

rate. Considering, on the other hand, an acceptable false positive rate, we need to

factor in the available resources that can evaluate and perform a clinical review of the

signals that are generated by a database screening using an SDA. Also, too many sig-

nals arising from an SDA might lead to reviewers being overwhelmed and a lack of trust
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in the methodology assuming many of them are eventually refuted. In the context of

signal detection in routine pharmacovigilance, a high false negative rate could be more

problematic compared to a high false positive rate.

Another important element is to understand whether the SDA performance is com-

mensurate to the one quantified using a reference set. The real-world performance of an

SDA that is based on disproportionality analysis can also be a↵ected by the background

incidence (i.e. the expected rate of occurrence) of an AE. More specifically, it can be

more challenging to unveil signals related to AEs with high background incidence rates

using SRS data [8]. These AEs can be absent or insu�ciently represented in the reference

set that was used during SDA performance evaluation. The masking e↵ect and drug

competition bias can also impact the ability of an SDA to capture signals [100, 101].

To address these issues, it is possible to apply techniques such as the amendment of

the background by removing known signals before calculating the disproportionality

measures.

Apart from the applied methodology to an SRS database for signal detection, another

clear challenge in PMS is inherent to the nature of the SRS data and the data collection

process that is performed via spontaneous reporting. Under-reporting is a well-known

phenomenon in pharmacovigilance [43]. Data can be: missing completely at random;

missing at random but dependent on specific covariates; or missing not at random (i.e.

informatively missing). The latter category of missing data can impact signal detection

activities [102]. Also, the observed reporting rates of drug-AE associations in SRS

databases depend on multiple factors, including the severity of the AE, how long the

drug has been in the market [103], and any publicity of drug-related safety concerns [104].

Another challenge in the implementation of SDAs is related to how pharmacovigilance

data are coded to standard terminologies (e.g. MedDRA for AEs). Variations and

inconsistencies in the terms that are used to map the data have the potential to a↵ect the

signal generation process using an SDA. Finally, confounding is another factor that needs

to be considered, such as confounding by indication and confounding by co-medication

[105].

Finally, it is important to keep in mind that the signals identified by quantitative

signal detection methods are in principle signals of disproportionate reporting and are

not automatically considered safety signals [88]. There are also cases where safety signals

are triggered via qualitative methods. For example, signals arising from case reports

that involve rare and clinically severe complications, such as an AE from the EMA’s

Designated Medical Events list, are examples where urgent clinical review is needed to

identify whether it can be linked to medication exposure.

2.1.5 Signal Evaluation

Once a safety signal is detected, it needs to be evaluated by clinical specialists to be

either validated or rejected based on whether a causal association between the drug and

the adverse event can be established. There are multiple structured approaches and
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frameworks for causality assessment. The Bradford-Hill criteria were described back in

1965 for causality assessment in population studies [106] and consist of the following:

1. Strength (as determined by a suitable statistical analysis);

2. Consistency (through repeated observation of the association between the drug

and the manifestation of the AE);

3. Specificity (through isolation of the cause to a single outcome);

4. Temporality (where the drug exposure precedes the AE);

5. Biological gradient (where the dose is positively associated with the response);

6. Plausibility (through linking the AE to drug exposure via a reasonable pathway

from the existing biological knowledge);

7. Coherence (where the evidence does not critically contradicts the known natural

history and biology of the disease);

8. Experiment (through existing experimental evidence that supports the associa-

tion);

9. Analogy (where, in the case of pharmacoepidemiology, the e↵ect is also associated

with other drugs from the same pharmacological class).

In the context of pharmacovigilance, the main criteria for causality assessment in-

clude the following: (i) the strength of the association (i.e. the magnitude of the SDR);

(ii) data consistency; (iii) exposure-response relationship; (iv) biological plausibility; (v)

experimental findings (e.g. rechallenge, diagnostic markers); (vi) analogy (i.e. previous

experience with related drugs or event known to frequently be drug-induced); and (vii)

the nature and quality of the data [107, 108].

Other algorithmic approaches include the categorisation using theWHO-UMC causal-

ity system [109], the FDA’s causality algorithm [110], the Naranjo algorithm [111], and

the Liverpool ADR Causality Assessment Tool [112].

Regardless of the selected framework, signal evaluation is a challenging process and

a definitive judgement on causality is di�cult, if not impossible, to make. The in-depth

clinical review of reports is supported by drug target information, literature search, and

other types of evidence that are deemed su�cient to validate or refute a signal. Apart

from causality (i.e. clinical plausibility), other considerations in the context of signal

evaluation include frequency, clinical implications, and preventability [113]. Given the

advances in Information Representation and the increasing availability of information

via computerised systems, it is expected that additional automated filtering layers could

be added between signal detection and signal evaluation steps. These filters can limit

the amount of human e↵ort needed for in-depth clinical review by trying to support

some causality aspects such as biological plausibility using, for example, primary and
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secondary drug target information. Additional information can also be collected, for ex-

ample by performing analyses using complementary data sources or even conducting a

post-authorisation safety study. A pharmacoepidemiological study that utilises routinely

collected data (e.g. EHR data), is a reasonable approach. In the last decade, e↵orts

including the OHDSI project and the FDA Sentinel Initiative aim to combine disparate

data sources. The increased sample sizes and generalisability through the inclusion of

heterogeneous populations are promising building blocks for performing pharmacoepi-

demiological studies. Cohort studies are possible, but patient recruitment and follow-up

can be both challenging and costly. Disease registries can also be utilised [114].

Finally, if a safety signal is validated, this will result in regulatory action. This can

be a drug label change (i.e. an update on the Summary of Product Characteristics

and Patient Information Leaflet regarding precautions and contraindications), a referral

procedure or, in some cases, even urgent safety restrictions such as market withdrawal.

2.1.6 Summary

Pharmacovigilance is the practice of monitoring, detecting, assessing, and preventing

adverse e↵ects or any other drug-related problems to ensure the safe and e↵ective use of

medications, enabling the detection of previously unknown drug complications. Along-

side these databases, various other data sources, including electronic health records,

administrative claims data, biomedical literature, social media, patient registries, and

emerging novel data streams, have become increasingly important in supporting post-

marketing surveillance. However, utilising and combining these databases comes with

challenges that must be carefully considered. Signal detection methods, such as dis-

proportionality analysis in spontaneous reporting system data, form the foundation of

quantitative analysis in pharmacovigilance. The practical implementation of these meth-

ods should be preceded by their performance evaluation using suitable techniques and

should also take into account multiple considerations, including the nature of the anal-

ysed data sources and the fact that association does not necessarily infer causation.

Finally, signal evaluation is a critical step in pharmacovigilance, requiring a comprehen-

sive examination of data and supporting evidence from multiple perspectives.



Chapter 2. Preliminaries 30

2.2 Drug-Drug Interactions

The previous section covered the basic concepts and processes in pharmacovigilance.

This section presents DDIs from a pharmacological aspect, their clinical significance,

and the currently available PMS methodologies for the identification of novel DDIs once

drugs enter the market.

2.2.1 Definition

In real life, patients are often treated with multiple drugs at a time. Each drug molecule

can follow several biological pathways within the human body before its elimination. A

DDI is a clinically meaningful modification of the e↵ect of a drug (object drug) caused

by the presence of another drug (precipitant drug) [115]. Potential DDIs are assumed in

the case of many drug combinations, meaning that the drugs are predicted or known to

interact when they are concomitantly prescribed to a patient, regardless of whether harm

ensues. For a specific drug, the volume of potential DDIs is far greater compared to the

actual, clinically observable DDIs. The occurrence of a DDI with a clinically observable

e↵ect depends on multiple factors that are linked to either the drug administration

conditions or the patient characteristics and profile [116].

A DDI can lead to the modification of the therapeutic e↵ects of one or both inter-

acting drugs. An increase in a drug’s e↵ect can potentially lead to an ADR, while a

decrease in its e↵ect can result in a lack of e�cacy [117]. In some cases, DDIs are desired

[118] (e.g. synergistic e↵ects of concomitant drugs, where the overall e↵ect of interacting

drugs is greater than the sum of individual ones), but they can have severe implications

for patient safety.

Apart from DDIs, drugs also interact with food, drink, nutrients (e.g. vitamins),

herbal products, drug formulations (e.g. excipients) or environmental chemical agents

[116].

2.2.2 Classification

DDIs can be grouped into two main categories: (i) pharmacokinetic DDIs; and (ii)

pharmacodynamic DDIs [117].

2.2.2.1 Pharmacokinetic DDIs

Pharmacokinetic DDIs occur when one drug a↵ects the absorption, distribution, metabolism,

or elimination of another drug, thus causing alterations in its e↵ective concentration.

The drug that causes the interaction (perpetrator) alters the pharmacokinetic profile

(i.e. the way the human body behaves towards a drug) of the drug that is a↵ected by

the interaction (victim). These interactions can lead to changes in the blood levels of

the victim drug, which can a↵ect its e�cacy or toxicity [119]. Metabolism-based and

transporter-based DDIs are two important and well-studied categories of pharmacoki-

netic DDIs with clinically observable e↵ects.



Chapter 2. Preliminaries 31

Metabolism-based DDIs occur when one drug a↵ects the metabolism of another drug

by inhibiting or inducing metabolic enzymes in the liver (i.e. the primary site for drug

metabolism) or other tissues. Drugs that act as inducers or inhibitors of these enzymes

can a↵ect the concentrations of the victim drugs metabolised by the same pathway.

Metabolic inhibition causes accumulation of the victim drug, while induction results

in decreased victim drug concentrations. Depending on whether the metabolite of the

victim drug is active or inactive, as well as the toxicity of both the victim drug and its

metabolite, the clinical outcome of a metabolism-based DDI can vary and lead to either

elevated or decreased drug exposure.

One of the most common types of metabolism-based DDIs involves the cytochrome

P450 (CYP) enzymes, which are responsible for the metabolism of many drugs and other

xenobiotics (i.e. chemical substances not naturally produced or expected to be present

within the organism). Suppose a patient is taking a drug that inhibits a particular

CYP enzyme. In that case, it can slow down the metabolism of another drug that

is also metabolised by that enzyme, leading to an increase in the blood levels of the

victim drug. In cases where the victim drug is not converted to its active form via

this metabolic pathway, its increased concentrations can augment the risk of adverse

e↵ects and toxicity. On the other hand, a drug that induces the activity of a CYP

enzyme can speed up the metabolism of another drug that is also metabolised by that

enzyme, leading to a decrease in the blood levels of the victim drug. This can reduce

the e�cacy of the victim drug and result in subtherapeutic drug levels and treatment

failure if the parent form of the victim drug is the active one [120]. Five CYP family

enzymes, namely CYP3A4, CYP2D6, CYP2C19, CYP2C9 and CYP1A2, are implicated

in most prescribed drugs’ metabolism. Genetic variations of CYP enzymes do exist

among patients, causing di↵erences in drug responses [121, 122].

Transporter-based DDIs occur when one drug a↵ects the transport of another drug

across cell membranes by interacting with drug transporters. Drug transporters are

membrane proteins that can be found in most tissues of the human body, including

the intestine, liver, kidney, lung, and the blood-brain barrier. Transporters, apart from

serving various endogenous functions (e.g. transport of peptides, amino acids, etc), also

act as important players in the absorption, distribution, and elimination of both parent

drugs and their metabolites through either uptake or e✏ux of these molecules. Hence,

tissue uptake and e✏ux processes in drug dispositioncan be inhibited or induced by

perpetrators, changing in this way the victim’s pharmacological action. Several factors,

such as the relative substrate specificity and the distribution of drug transporters in

the di↵erent tissues, determine the overall e↵ect of transporter-based DDIs, making it

di�cult to predict [119].

P-glycoprotein (P-gp) is the most well-studied and understood drug transporter. It

can be found in the intestine, liver, brain, and other epithelial tissues. Acting as a

transmembrane e✏ux pump, it is responsible for the excretion of its substrates, which

include many drugs and other xenobiotics, from inside to outside the cell. Numerous
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drugs are P-gp inhibitors or inducers and account for interactions with other P-gp sub-

strates [119]. Other transporters that can be involved in transporter-based DDIs include

the breast cancer resistance protein (BCRP), organic anion-transporting polypeptides

(OATPs) (e.g. OATP1B1 and OATP1B3), organic cation transporters (OCTs) (e.g.

OCT2), and multidrug resistance-associated proteins (MRPs) [123].

2.2.2.2 Pharmacodynamic DDIs

Pharmacodynamic DDIs involve a direct influence on the e↵ects of interacting drugs, by

either enhancing or diminishing the e↵ects of one or both drugs. When the e↵ect of two

drugs is greater than the sum of their individual e↵ects, it is called a synergistic e↵ect.

On the other hand, when the e↵ect of one drug is reduced or inhibited by another drug,

it is called an antagonistic e↵ect and can result in decreased therapeutic e�cacy.

As an example of a pharmacodynamic DDI, the concomitant use of aspirin and

warfarin increases the risk of bleeding. Aspirin is an antiplatelet drug with a direct

hypoprothrombinaemic e↵ect, while warfarin is an oral anticoagulant drug. When taken

together, these two drugs act in a synergistic way as blood thinners through di↵erent

mechanisms[117]. Aspirin blocks the production of thromboxane A2, which is a platelet

activator, while warfarin inhibits the synthesis of vitamin K-dependent clotting factors

in the liver. Therefore, the risk of bleeding may be significantly increased due to the

additive e↵ects of the two drugs.

In some cases, synergistic drug e↵ects can be desired, such as the combination of

ampicillin and gentamicin in the treatment of infective endocarditis [116].

2.2.3 Clinical Significance

Polypharmacy rates are rising in recent years, which leads to increasing numbers of

potential interactions between administered drugs. According to a review from the

United Kingdom’s Department of Health and Social Care in 2021, over 1 out of 3 people

in England aged 60 and older are exposed to at least 5 medicines at the same time, with

more than a third of all people above 80 being on 8 or more medicines [124]. However,

while a DDI can occur based on pharmacological knowledge, these potential DDIs far

outnumber those leading to a clinically observable e↵ect [125]. The clinical manifestation

of a DDI can be either an ADR or a lack of e�cacy for at least one of the interacting

drugs. The prevention, identification, and management of DDIs in the clinic are not

straightforward. In recent years, computerised systems are increasingly used to provide

more detailed information on patient risk factors that can determine the occurrence of a

DDI, the severity and evidence associated with a particular DDI, as well as management

guidelines in cases when a DDI occurs.

There are several factors that can a↵ect the actual behaviour of drug molecules inside

the human body, making it di�cult to predict the occurrence of a clinically significant

DDI. They can be broadly categorised into drug-related and patient-related factors.
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In terms of the drug-related factors that specify the clinical manifestation of a DDI,

drug metabolism can play an important role. In some cases, a biologically inactive

compound known as a prodrug is metabolised in the body to produce an active moiety,

with this metabolite being involved in interactions with concomitant drugs, rather than

the parent drug molecule. Therefore, the characterization of metabolic pathways through

preclinical experimental models is particularly important. Also, for drugs that compete

for the same binding site of a metabolic enzyme in the case of pharmacokinetic DDIs,

the relative strength of their binding interaction with the enzyme (i.e. binding a�nity)

determines the presence and severity of a DDI [119, 126]. The therapeutic index is

another important factor that determines whether a DDI will have a clinically significant

e↵ect. The therapeutic index is a ratio used to compare the blood levels at which a drug

causes a therapeutic e↵ect to the ones that cause toxicity. If a drug has a narrow

therapeutic index, then there are small di↵erences between its therapeutic and toxic

dose, increasing the risk for serious DDIs [127, 126].

Patient-related factors also need to be considered to determine the clinical signifi-

cance of a DDI at the individual level. Patient characteristics (e.g, demographics, diet,

lifestyle), underlying diseases and polypharmacy are all important aspects that define

how likely it is for a patient to experience a clinically significant DDI [116]. Genetic

polymorphisms of drug-metabolising enzymes, drug transporters and drug receptors

also account for the appearance of some DDIs in specific genetic subpopulations [119].

For example, the activity of a metabolic enzyme is determined by the pairing of individ-

ual alleles a person has inherited from their parents. Alleles are grouped into wild-type

(WT) and mutant alleles. WT alleles are the predominant ones in the general popu-

lation and are most times related to normal rates of metabolism. Mutant alleles can

cause decreased activity or even complete inactivity of metabolic enzymes. There are

four categories of metabolisers, based on the type of alleles they carry: poor, interme-

diate, extensive and ultra-rapid [120]. These genetically determined variations in drug

response (e.g. di↵erences in e�cacy, ADR occurrence, dose specification, etc.) are stud-

ied in pharmacogenetics, serving as important factors for a better understanding of the

patient subgroups with a higher risk for DDIs and implementing personalised medicine

[128].

2.2.4 Drug-Drug Interaction Surveillance

Considering the complex mechanisms leading to a DDI and the number of factors that

determine their manifestation in the clinical setting, it is easy to understand that de-

tecting and validating a novel DDI is a challenging task. At the same time, clinicians

should be able to access and utilise the latest evidence on the risks associated with the

concomitant use of drugs that can lead to a clinically significant DDI. In view of the

harmful consequences that DDIs can cause if they remain undetected, it is clear that

pharmacovigilance activities should adequately support the identification of complica-

tions arising from DDIs to ensure increased patient safety.
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The e↵orts to understand the safety profile of a candidate drug, including its potential

to interact with other drugs, begin at the early stages of drug development. There has

been a growing interest in using computational methods, such as in silico modelling

and machine learning methods, to identify potential DDIs based on, for example, the

chemical characteristics, target information, biological activity, and the pharmacokinetic

profile of a drug [129, 130, 131]. In some cases, it is relatively straightforward to flag

potential DDIs linked to a drug. An illustrative example includes pharmacokinetic DDIs

that are related to metabolic enzyme activity. However, it is hard to determine the

clinical significance of the predicted DDIs without having access to in vivo data. Apart

from animal models and non-clinical safety experimental setups to define a drug’s safety

profile in the pre-clinical setting, clinical trials are also used for assessing both the safety

and e�cacy of a candidate drug. However, eligibility criteria for patient recruitment

in clinical trials often limit the representation of patient groups more predisposed to

DDIs and hinder their identification at this stage. Therefore, the detection of a large

proportion of DDIs is performed following drug authorisation and PMS can play a critical

role in this process.

Both the collection of adequate data and the development of methodologies are im-

portant pillars that can support PMS activities for identifying novel DDIs. In terms of

available data, the resources that were previously presented for PMS in the case of single

drugs are relevant and important. The sheer volume of reported drug combinations in

SRS databases generates an apparent requirement for QSD methods that could filter

and prioritise combinations of drugs and AEs for causality assessment. However, quan-

titative methods for DDI surveillance in pharmacovigilance are not as mature as those

for single drugs. In terms of their chosen computational approach, they can be broadly

categorised into prediction and detection, but without a clear-cut distinction between

the two categories either in theory or in practice. Prediction methods focus on biological

and chemical knowledge bases, drug development, and identifying beneficial interactions,

whereas detection methods are mainly statistical and often based on disproportionality

analysis and more conventional data sources to reveal previously unknown harmful DDIs

between authorised drugs [132].

The disproportionality analysis is adapted to enable DDI surveillance using SRS data

by measuring the degree of ‘unexpectedness’ of associations between drug combinations

and AEs. The simplest scenario of two drugs and one AE considers a contingency table

with four rows and two columns (Table 2.5). Multiple SDAs for DDI surveillance have

been described in the literature [133]. One of the first e↵orts uses the ROR statistic with

logistic regression to model two-way DDI e↵ects along with the individual drug e↵ects

and demographic predictors (i.e. age and gender) [134, 135]. Another approach assumes

a binomial distribution for the baseline model (i.e. absence of interaction), with the

contributions of the individual e↵ect of each drug to the overall AE occurrence being

either additive or multiplicative. The departure from the baseline model is quantified

using log-linear regressions [11]. An empirical Bayes methodological framework based
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AE
Mentioned Not mentioned Total

Drugs

Drug A = Yes, Drug B = Yes n111 n110 n11.

Drug A = Yes, Drug B = No n101 n100 n10.

Drug A = No, Drug B = Yes n011 n010 n01.

Drug A = No, Drug B = No n001 n000 n00.

Total n..1 n..0 n...

Table 2.5: A 4-by-2 contingency table in the case of two drugs and one AE.

on the MGPS method is the Interaction Signal Score (IntsSS). The detection of two-

way DDI signals with IntSS is based on the EBGM values of a drug combination along

with the following conditions: (i) the lower bound of the 90% confidence interval (CI)

estimate (EB05 score) of the drug combination being over 1; and (ii) the magnitude of

the drug combination’s EB05 score being higher than the upper bound of the 90% CI

estimate (EB95 score) of each individual drug [13]. Last but not least, the Omega (⌦)

approach was developed by the WHO UMC and is based on a shrinkage measure, being

an extension of the IC method for two-way DDI surveillance [12].

The statistical measures that were mentioned above do not allow us to directly

infer whether, and which of, the individual drugs give rise to unexpected reporting on

their own compared to their expected background rate. However, we would expect

that modelling a pharmacokinetic DDI related to an AE, for example, would involve

disproportionate reporting rates for the victim drug and the drug combination, while

the respective reporting rate for the perpetrator drug would not di↵er from the AE

background rate. On the other hand, a pharmacodynamic interaction would involve

unexpected reporting rates for both individual drugs and a departure from the baseline

additive model when the two drugs are concomitantly used.

Apart from purely statistical modelling approaches for DDI PMS, custom machine

learning methods have also been proposed to detect signals of novel DDIs using SRS

data in combination with other data resources (i.e. EHR, chemical structure data, drug

target data).

Tatonetti et al. developed a method that utilised AE profiles of individual drugs

to deduce the existence of unknown AEs related to DDIs [53]. Their work considered

FAERS reports with up to two drugs, manually built phenotype classes for AEs by

grouping MedDRA PT terms, and fitted logistic regression models to single drug-AE

frequency values for model training. The trained model on single drug-AE data was

then applied to drug pair-AE FAERS data to predict putative DDIs. EHR data were

also used to screen for the putative DDIs originally identified in FAERS. Despite the

potential applicability of this method for capturing patterns in the data indicative of

a DDI signal, it cannot be considered flexible as it can only be applied to detect DDI

signals related to a specific number of pre-defined AE classes. It also filters only reports

from SRS data that contain up to two drugs and only drug pairs that appear in at least
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5 reports, thus limiting both the available data to be used for training and the possible

drug pairs for screening.

The aim of integrating biological plausibility aspects for novel DDI prediction has

also led to the development of computational approaches that take into account diverse

drug-related data resources. As an example, INDI is a method that aimed to predict

novel DDIs using multiple data types, including chemical similarity, drug targets, and

drug classes [136]. More recently, deep learning approaches have emerged to support the

prediction of novel DDIs. A convolutional neural network approach, for example, models

DDIs by considering protein-protein interactions, drug-protein target interactions, and

ADRs resulting from polypharmacy [16]. Interestingly, the method performed particu-

larly well with predictions of polypharmacy ADRs with a strong molecular basis.

It is noteworthy that the training of machine learning algorithms requires large

datasets. Also, independent datasets should be used for prediction to avoid overfit-

ting, where the algorithm performs well on the training data but poorly on new, unseen

data. The large volume of routinely collected EHR data o↵ers an opportunity towards

the development of novel machine learning methods with real-world applicability.

2.2.5 Natural Language Processing for Extraction and Identification

of Drug-Drug Interactions

The creation of knowledge databases extracted from the biomedical literature and the

identification of potential novel DDIs in free text as two important tasks that have been

investigated and multiple NLP and information retrieval techniques have been developed

[137].

In terms of DDI extraction from biomedical literature, methods have approached

DDI extraction as a classification task to distinguish between DDIs and non-DDIs. The

three main systems for relationship extraction from free text include: (i) co-occurrence-

based; (ii) rule-based (i.e., using linguistic rules to understand the meaning of a certain

relationship); and (iii) machine learning approaches. As the availability of unstructured

biomedical text grows exponentially, machine learning methods can play a pivotal role

in data extraction tasks. The DDIExtraction 2013 task [138] played a crucial role in

this domain, as it provided an annotated DDI corpus containing over 5000 DDIs [139].

This initiative led to the development of various DDI extraction methods, including

long short-term memory (LSTM) network models [140], feature-based approaches [141],

convolutional neural network (CNN)-based techniques [142, 143], recursive neural net-

works [144], and graph convolutional networks [145]. More recent e↵orts leveraging

this resource have ventured into integrating heterogeneous pharmaceutical knowledge

graph information, including molecular structure information, with transformer model

architectures utilising pre-trained weights from BioBERT [146].

Beyond extracting DDIs from literature for knowledge databases, data mining ap-

proaches are applied to detect potential novel DDIs that pose risks to patients. This

involves the extraction of DDIs from clinical notes [147], predicting novel DDIs based on
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gene-drug relationships in the literature [148], and incorporation of molecular structure

and target information into text data models [149]. There are also ongoing e↵orts related

to social media and online healthcare forums for identifying novel DDIs, harnessing the

experiences of patients and healthcare providers [150, 151].



Chapter 3

A similarity and consistency

assessment of three online

drug-drug interaction resources

The content of this chapter is published in The British Journal of Clinical

Pharmacology.

This chapter aims to understand the existing evidence relevant to clinically-relevant

drug-drug interactions (DDIs) in three well-known online clinical resources. The follow-

ing types of information are explored: inclusion, severity rating, evidence rating, and

clinical management recommendations.

The key contributions of this chapter are two-fold. From a clinical standpoint, the

analysis is performed on complete and clinically-relevant drug information resources,

thus allowing us to understand the level of variability in the information that can also

lead to a clinical impact. From a methodological standpoint, it already defines the

framework for web data extraction and data normalisation of the di↵erent data sources,

which is utilised in Chapter 4 to derive the DDI reference set.

38
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Summary

Aim

To explore the level of agreement on drug-drug interaction (DDI) information listed in

three major online drug information resources (DIRs) in terms of: (1) interacting drug

pairs; (2) severity rating; (3) evidence rating and (4) clinical management recommenda-

tions.

Methods

We extracted information from the British National Formulary (BNF), Thesaurus, and

Micromedex. Following drug name normalisation, we estimated the overlap of the DIRs

in terms of DDI. We annotated clinical management recommendations either manually,

where possible, or through the application of a machine learning algorithm.

Results

The DIRs contained 51,481 (BNF), 38,037 (Thesaurus), and 65,446 (Micromedex) drug

pairs involved in DDIs. The number of common DDIs across the three DIRs was 6,970

(13.54% of BNF, 18.32% of Thesaurus, and 10.65% of Micromedex). Micromedex and

Thesaurus overall showed higher levels of similarity in their severity ratings, while the

BNF agreed more with Micromedex on the critical severity ratings and with Thesaurus

on the least significant ones. Evidence-rating agreement between BNF and Micromedex

was generally poor. Variation in clinical management recommendations was also iden-

tified, with some categories (i.e. Monitor and Adjust dose) showing higher levels of

agreement compared to others (i.e. Use with caution, Wash-out, Modify administra-

tion).

Conclusions

There is considerable variation in the DDIs included in the examined DIRs, together with

variability in categorisation of severity and clinical advice given. DDIs labelled as critical

were more likely to appear in multiple DIRs. Such variability in information could have

deleterious consequences for patient safety, and there is a need for harmonisation and

standardisation.

What is already known about this subject

• There are a variety of online DIRs, which di↵er in coverage, content, and inclusion

criteria, that are available to clinicians and other prescribers, mainly for prescribing

decision support purposes.
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• Previous studies have described major discrepancies between widely used DIRs

on the inclusion of critical DDIs or interactions of specific therapeutic categories,

along with discordance in their severity and evidence ratings.

What this study adds

• To the best of our knowledge, this is the first study to concurrently compare the

similarity among complete datasets from DIRs in terms of inclusion of drug pairs,

recommendations for clinical management, severity, and evidence of DDIs.

• Considerable variation was identified in all types of information for DDIs, which

has important clinical implications for patient safety and requires e↵orts towards

harmonisation and standardisation.

3.1 Introduction

Coadministration of multiple drugs increases the risk of drug-drug interactions (DDIs).

A DDI can be defined as the modification in the therapeutic e↵ect of one or more

medications due to the presence of concomitant medications and can lead to clinically

significant events, caused by either an increase in the e↵ect of the interacting drug lead-

ing to an adverse drug reaction (ADR), or a decrease in its e↵ect that results in lack of

e�cacy. Previous studies have reported that DDIs are a significant cause of hospitali-

sation, being responsible for 16.6% of cases where the cause was an ADR and around

1% of all hospital admissions [5]. The risk for DDIs increases during hospitalisation and

after discharge, as there is a high prevalence of administration of potentially interacting

drug combinations [152].

As new medicines gain approval each year, the volume of possible drug combinations is

constantly growing. At the same time, the rising numbers of people with multimorbid-

ity together with increasing life expectancy around the world are associated with the

phenomenon of polypharmacy, which aggravates the impact of DDIs in clinical practice.

According to a recent review, over 1 out of 3 people in England aged 60 and older are

exposed to at least 5 medicines at the same time, with more than a third of all people

above 80 being on 8 or more medicines [124].

The clinical manifestation of DDIs depends on several factors. Potential DDIs, based

on pharmacological knowledge, far outnumber those which lead to clinically significant

adverse e↵ects [153]. Despite the theoretical potential for an ADR to occur due to a DDI,

there are several factors that can a↵ect the actual behaviour of drug molecules inside the

human body, including dosage and patient characteristics (e.g. age, number and type

of morbidities, etc). Also, genetic polymorphisms of drug-metabolising enzymes, drug

transporters or drug receptors may be responsible for the appearance of some DDIs [119].

Therefore, it is di�cult to accurately predict the occurrence of a clinically significant

DDI in an individual patient. To overcome this problem, clinicians are commonly aided

by drug information resources (DIRs) to assess the risk-benefit ratio of each drug added
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to the treatment schedule. DIRs can be either open source or commercial, and they are

often incorporated in computerised clinical decision support (CDS) tools.

The availability of DIR information related to severity, evidence availability, and clin-

ical options for the management of DDIs (e.g. entirely avoid the combination, monitor,

adjust dose, etc) are central to the development of CDS [154]. Inconsistencies between

DIRs may confuse clinicians and impact clinical decisions [155]. Previous studies have

assessed the level of agreement of DIRs, mainly in terms of listing of DDIs and severity

ratings. However, most of them were restricted to only DDI listing for a limited number

of drugs, specific therapeutic categories, or did not focus solely on clinical resources

[156, 157, 158]. Moreover, the ability of a DIR to identify clinically relevant DDIs or

capture critical DDIs (e.g. FDA black box warnings, ONC high priority list [159]) has

also been explored [160, 161, 162]. However, it remains unclear to what extent DIRs

from di↵erent geographic locations agree on their DDI listings as well as DDI-related

information.

The aim of this study was to assess the concordance of leading clinical resources for

DDIs from three di↵erent countries of origin in terms of: (1) inclusion of interacting drug

pairs; (2) severity rating; (3) evidence rating and (4) clinical management recommenda-

tions. To the best of our knowledge, this is the first comprehensive study that attempts

to compare multiple types of information pertinent to DDIs at the same time across

entire DIRs. To ensure clinical utility, only clinically relevant resources were included

in the present study (see Figure A.1 for an overview of online DDI resources). Data

sources of potential DDIs (e.g. DrugBank) that are mainly used for scientific research

purposes were not taken into consideration.

3.2 Methods

3.2.1 Data sources

DDI data from two open-source and one commercial online DIRs were included in our

evaluation: the British National Formulary [163] (hereafter called BNF), Interactions

Thesaurus [164] by the French Medicines Agency (Agence Nationale de Sécurité du

Médicament et des produits de santé, ANSM) (hereafter called Thesaurus) and IBM

Micromedex [165] (hereafter called Micromedex). The BNF is extensively used in the

United Kingdom [166, 167]. Thesaurus is maintained and updated annually by ANSM,

being considered as the o�cial source of information relevant to DDIs for French clini-

cians. Micromedex is a leading clinical information resource, listed as one of the statu-

torily named compendia in the Medicaid program and is widely used in the United

States (US) [168, 169]. The BNF and Thesaurus are publicly available online, while

Micromedex can only be accessed via subscription.
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3.2.2 Data extraction

Automated web data collection (web scraping) was executed for BNF and Micromedex in

Python 3.6 [170] with terms of use that permit data collection. Thesaurus is a Portable

Document Format (PDF) file that is curated and updated annually. An R package

(IMthesaurusANSM [171]) enabled the automatic data extraction from the original doc-

ument (version September 2019). The types of extracted information from each DIR

are summarised in Table 3.1.

We mapped DDIs from Thesaurus at the drug class level (e.g. beta blockers) to their

constituent individual drug ingredients using a mapping table available in the ANSM

website. We also excluded DDIs from Micromedex containing drug combinations (e.g.

hydroxyamphetamine/tropicamide), as those simply collated DDIs from the combina-

tion’s individual ingredients; hence, only single ingredient drug interactions were con-

sidered. Also, cases where drug names of an interacting pair were swapped (i.e. (D1,

D2) and (D2, D1)) were considered equivalent and duplicate entries were removed from

the tables that stored the extracted data (BNF original table, Thesaurus original table

and Micromedex original table).

3.2.3 Drug name normalisation

Initial drug names were normalised to RxNorm Ingredients (for US-marketed medicines)

[172] and RxNorm Extension Ingredients (for medicines not found in RxNorm) [173]

using the OHDSI Usagi tool [174]. Some names were too general to be mapped (e.g.

insulins) or were not present in either vocabulary. Thus, interacting pairs containing

at least one unmapped drug were excluded from the corresponding DIR table. As the

scope of this study was limited to DDIs, only interacting pairs containing drugs were

included in the final DIR tables and interactions with herbs, alcohol, food, etc were

excluded. The final tables (BNF final table, Thesaurus final table and Micromedex final

table) contained drug interacting pairs and associated information based on normalised

drug names. Any duplicate entries based on common normalised names were combined

into a single entry. For example, Metoprolol Tartrate and Metoprolol Succinate were

both mapped to the RxNorm entity Metoprolol, and their interactions were merged to

produce a single set.

3.2.4 Comparison of resources

3.2.4.1 Listing of DDIs

The pairwise and three-way overlaps of the final DIR tables were estimated by calcu-

lating counts of common drug pairs across the DIRs as well as coverage rates (i.e. the

percentage of a set A covered by B, where B is a subset of A). The directionality of

interacting drug pairs was not taken into account (i.e. (D1, D2) and (D2, D1) were con-

sidered equivalent). A DIR intersection list containing common interacting drug pairs
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among all three DIRs with their corresponding text descriptions from each source was

generated.

3.2.4.2 Severity and evidence ratings

All three DIRs included severity ratings (Table 3.2a), while only the BNF and Mi-

cromedex contained separate text fields regarding evidence ratings (Table 3.2b). Some

DDIs from Thesaurus appeared at the drug class level in the original source, which

was associated with multiple severity ratings; thus, individual drugs were assigned all

applicable ratings from the drug class during the mapping process. Also, some DDIs

were linked to multiple severity ratings, based on the clinical circumstances (e.g. route

of administration, dose, etc). In all cases where multiple ratings were available for an

individual DDI, the highest one was kept for further analysis.

To explore discrepancies among DIRs related to severity and evidence ratings for

DDIs, we calculated the subset size, pairwise coverage rates and Jaccard indices for all

possible pairs of DIR ratings.

3.2.4.3 Clinical management recommendations

We aimed to explore the consistency among the clinical management recommendations

provided by the DIRs by analysing text descriptions from the DIR intersection list. The

BNF provided a succinct description for each drug pair containing all types of available

DDI information in a text field, while Thesaurus and Micromedex contained separate

text fields (Conduit à tenir and Clinical Management, respectively) under each drug pair

related to clinical management options.

Basic pre-processing involved text conversion to lowercase, drug name blinding (i.e.

replacement of all drug names with a common string), and sentence tokenisation using

the Natural Language Toolkit (NLTK) in Python 3.6 [175].

The following advice categories were initially considered:

1. Avoid;

2. Use with caution;

3. Space dosing times;

4. Wash-out;

5. Monitor;

6. Adjust dose;

7. Modify administration;

8. Use alternative;

9. Discontinue.
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DIR Level Definition
(a) Severity

BNF 1 – Severe*
The result may be a life-threatening event
or have a permanent detrimental e↵ect.

2 – Moderate
The result could cause considerable distress or
partially incapacitate a patient; they are unlikely
to be life-threatening or result in long-term e↵ects.

3 – Mild
The result is unlikely to cause concern or
incapacitate the majority of patients.

4 – Unknown
Used for those interactions that are predicted,
but there is insu�cient evidence to hazard
a guess at the outcome.

Thesaurus 1 – Contraindicated*
2 – Not recommended*
3 – Precautions for use
4 – Take into consideration

Micromedex 1 – Contraindicated* The drugs are contraindicated for concurrent use.

2 – Major*
The interaction may be life-threatening and/or
require medical intervention to minimise or
prevent serious adverse e↵ects.

3 – Moderate
The interaction may result in exacerbation
of the patient’s condition and/or require
an alteration in therapy.

4 – Minor

The interaction would have limited clinical e↵ects.
Manifestations may include an increase in the
frequency or severity of the side e↵ects but generally
would not require a major alteration in therapy.

(b) Evidence

BNF Study

For interactions where the information is based on
formal study including those for other drugs with
same mechanism (e.g. known inducers, inhibitors,
or substrates of cytochrome P450 isoenzymes or
P-glycoprotein).

Anecdotal
Interactions based on either a single case report or
a limited number of case reports.

Theoretical

Interactions that are predicted based on sound theoretical
considerations. The information may have been derived
from in vitro studies or based on the way other members
in the same class act.

Micromedex
Established (Excellent)

Controlled studies have clearly established the existence
of the interaction.

Theoretical (Good)
Documentation strongly suggests the interactions exists,
but well-controlled studies are lacking.

Probable (Poor)

Available documentation is poor, but pharmacologic
considerations lead clinicians to suspect the interaction
exists; or, documentation is good for a pharmacologically
similar drug.

Table 3.2: Information contained in drug information resources on drug-drug interac-
tions relating to (a) the severity ratings (in descending order as displayed in the original

source); and (b) the evidence ratings.
(*): critical severity ratings
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Cases that recommended clinicians to refer to literature or other resources, without

mentioning any concrete clinical advice, were excluded.

The limited number of unique sentences sourced from BNF (N = 305) and Thesaurus

(N = 387) following drug name blinding enabled manual sentence labelling, with each

sentence being classified into one or multiple advice categories.

To annotate Clinical Management text descriptions in Micromedex (N = 4,507),

we developed a bespoke text classification process in Python using a methodology that

has been widely implemented in similar tasks and provided the desired functionality

while keeping the level of complexity low (Figure A.2). First, we annotated a subset

of randomly selected unique sentences (N = 200) by considering the above-mentioned

categories. Then, each labelled sentence was tokenised into its constituent tokens (i.e.

words) and stemming (i.e. reducing words to their word roots) was applied. We used

term frequency-inverse document frequency (tf-idf) to calculate weights for each word

in the annotated sentences. The goal of tf-idf is to reduce the impact of very commonly

occurring words in a corpus, assuming that they are less informative. Term frequencies

are calculated by counting the relative frequency of each word appearing in each of the

annotated sentences. Inverse document frequencies of each word (in its root form) are

estimates of the overall presence of the word across all sentences (i.e. how commonly or

rarely it appears). The formula for calculation of a word’s tf-idf is the following:

tfidfw,s = tfw,s ⇥ (log
N

dfw
+ 1) (3.1)

where tfw,s represents the term frequency of the word, w, in the sentence, s (i.e. the

number of times the word appears in the sentence divided by the total number of words

in the sentence); N is the total number of sentences in the corpus and, dfw is the

“document” frequency of the word, w (i.e. the number of sentences that contain the

specific word). Weights were applied for sentence encoding to feed classifiers that used a

supervised machine learning model called linear kernel Support Vector Machine (SVM)

for binary text classification (i.e. each sentence was classified as to whether it belongs to

each of the advice categories under consideration). We applied class weights to account

for the imbalanced training sets (i.e. disproportion between the number of positive and

negative instances) and used leave-one-out cross validation to evaluate performance of

the di↵erence classifiers through Receiver Operating Characteristic (ROC) analysis. By

estimating the positive predictive value (PPV) for the di↵erent thresholds, we excluded

sentence classifiers with a PPV below 80% due to poor performance; the remaining,

unannotated sentences from Micromedex were automatically labelled by the classifiers

using the threshold with maximum sensitivity for PPVs above 80%. A subset (N = 100)

of the automatically annotated sentences (validation set) was also manually annotated

to independently estimate the classifiers’ performance in the total set of Micromedex

sentences.
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DIR Initial drug names Normalised ingredients DDI counts
BNF 1,004 984 51,481
Thesaurus 1,049 1,001 38,037
Micromedex 2,602 1,967 65,446

Table 3.3: Number of initial drug names, normalised ingredients, and drug-drug
interaction counts per drug information resource.

3.3 Results

3.3.1 Comparative assessment in terms of listing

Micromedex contained the largest number of DDI drug pairs (N = 65,446), as well as

normalised ingredients involved in DDIs (N = 1,967), followed by BNF (N = 51,481) and

Thesaurus (N = 38,037) that covered 984 and 1,001 normalised ingredients, respectively,

in their DDI section. The collation of the three final DDI tables included 121,351 DDI

drug pairs. The counts of initial drug names, normalised drug ingredients, and unique

DDIs in each DIR are summarised in Table 3.3.

There were 690 common normalised ingredients involved in DDIs across all examined

DIRs, with BNF and Micromedex sharing the largest number (N = 906), followed by

Thesaurus and Micromedex (N = 894) and, lastly, the BNF and Thesaurus (N = 716)

(Figure 3.1a). Almost four out of five DDI drug pairs (78.04%, N = 94,708) in the

collated list were only mentioned by a single DIR, with 57.19% of BNF, 49.58% of

Thesaurus, and 70.91% of Micromedex DDI entries missing from the other two DIRs.

The percentage of DDIs mentioned in exactly two out of three DIRs was lower (16.21%,

N = 19,673). BNF shared 14,576 DDIs with Thesaurus (28.31% of BNF; 38.32% of

Thesaurus) and 14,433 DDIs with Micromedex (28.04% of BNF; 22.05% of Micromedex),

while Thesaurus and Micromedex had 11,574 common DDIs (30.43% of Thesaurus;

17.68% of Micromedex). The intersection of the three DIRs in terms of DDIs (N =

6,970) represented only 5.74% of the collated list, 13.54% of BNF, 18.32% of Thesaurus

and 10.65% of Micromedex (Figure 3.1b).

In terms of DDIs restricted to common ingredients across the three DIRs (N =

44,719), more than half (N = 24,951) were only found in a single DIR (33.74% in BNF

alone, in comparison to 12.86% and 9.20% in Micromedex and Thesaurus, respectively),

while 28.62% were present in two out of three DIRs. In the setting of ingredient-restricted

DDIs, the BNF intersected with large proportions of both Thesaurus (71.40%) and

Micromedex (59.76%), while Thesaurus overlapped with less than half of BNF (42.81%).

Finally, the intersection of the three DIRs represented 15.59% of the restricted DDIs

(Figure 3.1c).

3.3.2 Comparative assessment of severity rating

The categorisation of DDIs in each DIR in terms of severity rating is outlined in Table

3.4. Regarding critical severity rating categories, almost one quarter (24.56%) of unique
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Figure 3.1: Venn diagrams illustrating the intersections in terms of: (a) drug ingredi-
ents; (b) unique drug-drug interaction pairs included in the drug information resources;
and (c) drug-drug interaction pairs included in the drug information resources only
for the ingredient intersection subset. Each circle represents a drug information re-
source and their intersections show the number of ingredients/drug-drug interactions

they share with each one of the other drug information resources.
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Severity rating BNF Thesaurus Micromedex
1 12,644 (24.56%) 2,949 (7.75%) 5,730 (8.76%)
2 4,997 (9.46%) 12,779 (33.60%) 41,713 (63.73%)
3 273 (0.51%) 8,195 (21.54%) 15,890 (24.28%)
4 33,705 (65.47%) 14,114 (37.11%) 2,113 (3.23%)

Table 3.4: Number and percentage of drug-drug interactions by severity rating in
each drug information resource.

DDIs in BNF were labelled as Severe, compared to 7.75% from Thesaurus characterised

as Contraindicated, and 33.60% as Not recommended. In Micromedex, 8.76% of unique

DDIs were mentioned as Contraindicated, while Major was the most frequent category

(63.73%).

When considering the pairwise DIR overlap using coverage rates (Figure 3.2), the

number of DDIs jointly rated as critical was:

• 2,429 between BNF and Thesaurus, representing 19.21% of the BNF and 15.44%

of Thesaurus critical DDIs;

• 6,026 between the BNF and Micromedex (47.66% of BNF and 31.38% of Mi-

cromedex critical DDIs);

• 5,014 between Thesaurus and Micromedex, covering 78.39% of Thesaurus and

26.33% of Micromedex critical DDIs);

• 1,768 among all three DIRs (25.37% of the DIR intersection list).

The percentage of DDIs from the DIR intersection list that were considered critical

by BNF, Thesaurus, and Micromedex was 43.39% (N = 3,024), 52.32% (N = 3,647),

and 81.51% (N = 5,681), respectively.

A similarity matrix of the Jaccard index for all DIR severity rating combinations is

included in Appendix A (Figure A.3).

3.3.3 Comparative assessment of evidence rating

The BNF included evidence ratings in just around one third (30.66%) of its DDIs,

with the majority being flagged as Theoretical (16.99%), followed by Study (11.89%),

and Anecdotal (1.78%). In Micromedex, evidence ratings were consistently present

under each DDI description. Theoretical was the most common category (70.91%),

while Probable and Established included 20.36% and 8.73% of the DDIs mentioned in

Micromedex. Almost half (48.13%) of the DDIs from the DIR intersection list contained

no evidence rating in BNF; the remainder belonged to Study (28.05%), Theoretical

(19.94%), and, lastly, Anecdotal (3.87%) evidence categories. According to Micromedex,

most of them (64.51%) were Theoretical, with 19.94% and 15.55% being considered as

Probable and Established, respectively.
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Figure 3.2: Pairwise comparison tables for the di↵erent drug-drug interaction severity
levels. In each table, row labels contain the severity ratings of the drug information
resource under consideration, while column labels represent the severity ratings of the
remaining two drug information resources. A separate column has been added to in-
clude the numbers of unique drug-drug interactions missing from each of the other drug
information resources. Each row contains the number of unique drug-drug interactions
per severity rating of the drug information resource under consideration, subcategorised
by the severity ratings of the other drug information resources. The numbers in paren-
theses represent the corresponding percentages of the various sets per severity rating
of the drug information resource under consideration. The colour gradient shows the
relative di↵erences in the percentages mentioned among the various overlapping sets.
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Figure 3.3: Heatmap for evidence rating comparison between BNF and Micromedex,
including counts and coverage rates.

Figure 3.3 shows the overlap of the di↵erent evidence categories between the two

DIRs as a two-by-two grid with subset counts and coverage rates. Probable DDIs from

Micromedex and DDIs with no evidence rating from BNF were absent in higher per-

centages in the other resource. In both DIRs, the percentage of missing DDIs increased

as one moved towards DDIs with a “poorer” or no evidence rating in the other re-

source. Using the Jaccard index, the agreement between ratings was generally low in

all cases, with the BNF Study and Micromedex Theoretical categories being the most

similar (0.04662), while the BNF Anecdotal and Micromedex Established had the lowest

concordance (0.00573).

3.3.4 Comparative assessment of clinical management advice

In the BNF, no instances of the Discontinue advice category were identified in the DIR

intersection list, while in Micromedex, counts for seven out of the nine advice categories

are provided, as no sentence classifier was applied to extrapolate the remaining labels

(i.e. Space dosing times and Modify administration) due to poor classifier performance

(see Supplementary Tables A.1 and A.2 for associated metrics). The subset of

Micromedex descriptions associated with BNF cases that belonged to either of those

two advice categories was manually annotated as a surrogate measure of concordance.

The classification of DIR intersection list entries in each DIR in terms of clinical

management advice is shown in Table A.3. In BNF, no advice was available in over

half (56.41%) of the DDIs under consideration. The most common advice category was

Avoid (32.12%) and the least frequently mentioned was Use alternative (0.01%). In

Thesaurus, Monitor and Avoid jointly covered more than half of the total DDIs (34.89%
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and 30.82%, respectively), while recommendations related to Space dosing times, Use

with caution and Wash-out were only found in small percentages (1.98%, 1.15%, and

0.99%, respectively). In Micromedex, the labelling process that was facilitated by sen-

tence classifiers provided the following results: 63.43% of the DDIs were characterised

as containing advice related to Monitor, 47.02% related to Avoid, and 35.77% related to

Adjust dose; low percentages represented Use alternative (3.79%), Discontinue (2.74%),

and Wash-out (0.39%) categories. In 5.38% of the Micromedex DDIs, no advice label

was assigned.

The overlap in terms of the DDI-related advice labels for the DDIs found in the

DIR intersection list is illustrated using Venn diagrams (Figure 3.4). The BNF and

Thesaurus did not share any DDIs in their Modify Administration and Use with caution

categories, as opposed to the DDIs found in their Space dosing times and Adjust dose

categories that showed extensive overlap. Thesaurus and Micromedex did not have any

common DDIs classified into their Wash-out advice categories. Also, for Wash-out and

Use with caution advice categories, there was little agreement between any two DIRs.

The three DIRs overlapped to a high degree in the Monitor category. In the majority

of Space dosing times BNF cases (87.96%), Micromedex also contained the respective

advice. For Modify administration, Micromedex included this advice for less than half

(43.18%) of the BNF cases.

3.4 Discussion

This study reports on the consistency of DDI-related information included in three major

clinical DIRs from di↵erent geographic locations, namely the British National Formulary

(BNF), Thesaurus and Micromedex. The DIRs di↵ered in size and number of ingredients

mentioned in the DDI sections. The number of ingredients in Micromedex was almost

twice that found in the other two DIRs. This is most likely to have been due to the

fact that the BNF and Thesaurus only include medicines licensed in their countries of

origin (i.e. United Kingdom and France, respectively), while Micromedex includes a

broader set of medicines. Although DIR ingredients overlapped to a significant extent,

especially between BNF and Thesaurus, this overlap was not reflected in the DDI sets,

which generally showed poor agreement. The BNF and Thesaurus shared the largest

number of DDIs, in contrast with Thesaurus and Micromedex, which had the fewest

DDIs in common.

Our study represents the most comprehensive assessment of the overlap in content

and advice provided by di↵erent DIRs. However, our findings are consistent with pre-

vious studies. For instance, a study that analysed DDIs of fewer than 100 medicines

reported less than 7% overall agreement among the examined sources [156, 157]. A more

recent analysis that compared three commercial DIRs in terms of listing and severity

ranking of DDIs also identified very poor overlap (5%), although DDIs flagged as minor

were not considered [162].
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Severity ratings were not consistently reported in the BNF, as opposed to Thesaurus

and Micromedex, where ratings were available in all cases. DDIs labelled as critical

comprised approximately one-fourth of BNF and more than 70% of Micromedex, in

contrast to Thesaurus, where the least significant category was the most populous.

Micromedex and Thesaurus showed similarity in their ratings across the di↵erent levels

of severity. Between BNF and Thesaurus, their least significant categories (i.e. Unknown

and Take into consideration, respectively) appeared to have a higher level of agreement.

However, there was less concordance between BNF and Thesaurus on the classifications

of DDIs in the high severity ratings, with the DDIs classified as Severe in BNF being

spread across the di↵erent Thesaurus categories. In terms of BNF and Micromedex,

there was generally better agreement between their critical ratings than with the less

severe ones. Apart from the BNF-Thesaurus pair, the percentage of DDIs missing from

a DIR increased as one moved to DDIs characterised as less severe by another DIR (i.e.

increasing trend in the Not found column percentages as we go from top to bottom in

tables from Figure 3.2). Micromedex categorised the largest proportion from the DIR

intersection list as being critical compared to the other DIRs, while around one-fourth

of the DDIs in the DIR intersection list were simultaneously labelled as critical by all

three DIRs. Also, the pairwise intersections of DIRs covered larger proportions of the

DDIs from the critical severity levels compared to the corresponding proportions from

lower severity categories.

Although early studies concluded that significant discrepancies exist in severity rat-

ings between DIRs, Fung et al.’s study advocated the presence of higher levels of agree-

ment than previously reported, especially for the most severe DDIs [156, 157, 162]. Our

results, suggesting better agreement between critical severity ratings between BNF and

Micromedex, are partially in line with this observation.

Evidence categorisation was not available in Thesaurus, thus preventing a compre-

hensive assessment of the concordance of evidence rating amongst all the DIRs. In BNF,

evidence ratings were available for around one-third of the DDIs, while they were consis-

tently reported in Micromedex. In both DIRs, Theoretical was the most frequent cate-

gory. However, the study revealed a lack of consistency between BNF and Micromedex,

with no cases of strong agreement between any pairs of evidence ratings. An interesting

observation was related to the DDIs included in one but missing from the other DIR, as

the percentage of Not found DDIs in both cases increased as the evidence rating in the

other DIR decreased. A study by Vitry that performed a similarity assessment of evi-

dence ratings also highlighted inconsistencies in the grading system for evidence among

the di↵erent sources [156]. In terms of clinical management recommendations, there

was significant disagreement among the DIRs related to some types of advice, such as

Use with caution, Wash-out, Discontinue and Modify administration. Other types (i.e.

Avoid and Use alternative) showed a moderate level of agreement, while Space dosing

time, Monitor and Adjust dose demonstrated higher levels of concordance.
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Drug Information Resource Ingredients Drug-drug interactions

BNF

Aprotinin
Dextromethorphan

Dibucaine
Dimercaprol
Filgrastim
Flumazenil
Goserelin

Methylphenidate – bupropion
Rasagiline – metoclopramide

Bortezomib – yellow fever vaccine
Ephedrine – midodrine

Midostaurin – lumacaftor
Pentamidine – domperidone
Flecainide - propafenone

Thesaurus

Abacavir
Beclomethasone
Dimercaprol
Diphenoxylate
Filgrastim

Levetiracetam

Ondansetron – salmeterol
Ondansetron – sunitinib

Micromedex

Adefovir
Dalfampridine
Daratumumab
Mifamurtide
Rupatadine

Zoledronic acid

Ephedrine – moclobemide
Tadalafil – voriconazole

Table 3.5: Some examples of ingredients and drug-drug interactions not included in
the drug-drug interaction sections of the three drug information resources.

3.4.1 Impact on clinical decision support

Examples of missed medicines and DDIs from the di↵erent DIRs can be found in Table

3.5. Some ingredients were surprisingly missing from the DDI section of some of the

DIRs, such as levetiracetam from Thesaurus and rupatadine from Micromedex. A few

ingredients were not licensed in the respective countries (e.g. enalaprilat, an intravenous

formulation of enalapril, is not available in the United Kingdom or France) or had been

discontinued (e.g. ketorolac in France or maprotiline in the United Kingdom) at the

time of data collection. Micromedex however contained drugs that were discontinued or

not approved in the US.

The di↵erence in size might also be partly related to the nature of the di↵erent DIRs.

Micromedex is a commercial knowledge base, while BNF and Thesaurus are maintained

by professional and regulatory bodies, respectively. Commercial knowledge bases may

be overinclusive to minimise potential legal consequences arising from their decision to

omit DDIs.

There were a few important DDIs missing from one of the three DIRs (Table 3.5).

Examples include: voriconazole (a CYP3A4 inhibitor) interacts with tadalafil (a PDE-

5 inhibitor) increasing its systemic exposure [176]; bupropion and methylphenidate,

indirect sympathomimetic agents that lower seizure threshold [177]; and sunitinib and

ondansetron, which both prolong the QT interval which predisposes to torsade de pointes

[178].

Severity ratings also varied for DDIs in the three DIRs which may impact patient

safety. For example, the combination of paroxetine and tramadol was categorised at
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the lowest severity level (Take into consideration) in Thesaurus while it was ranked as

Severe and Major in BNF and Micromedex, respectively. This is a complex interaction,

which leads to decreased plasma concentrations of the active metabolite of tramadol

(M1) because of CYP2D6 inhibition by paroxetine, and also an increased risk of sero-

tonin syndrome. Interestingly, the updated version of Thesaurus (2020) has upgraded

the severity level of the drug pair to Not recommended. Other examples include (a) the

interaction between cytarabine and flucytosine, which was categorised as Severe in BNF

(because of decreased concentrations of flucytosine), but at the lowest level in both Mi-

cromedex and Thesaurus; (b) the interaction between niacin and statins, which increases

the risk of myopathy and rhabdomyolysis, was characterised as Severe in BNF and Ma-

jor in Micromedex but was completely missing in Thesaurus; and (c) the combination

of non-steroid anti-inflammatory drugs with thiazide-type diuretics (e.g. chlorothiazide,

chlortalidone) was ranked as Severe in BNF and Major in Micromedex (but as Precau-

tions for use in Thesaurus) because of the risk of acute renal failure.

3.4.2 Strengths and limitations

As opposed to multiple previous e↵orts to assess the level of agreement among DIRs

in terms of DDI information, this study examined entire resources, thus revealing the

relative size of information in each of the DIRs and exploring the stratification of the

included DDIs in terms of severity, evidence, and clinical management recommenda-

tions. To the best of our knowledge, this is the first comprehensive e↵ort to compare

clinical advice for managing DDIs that is provided in multiple DIRs, with a clear focus

on clinically oriented sources compared to previous work [158]. While a previous study

expanded the comparison of DIRs at multiple levels (i.e. clinical drug, ingredient and

drug class) [162], our analysis was limited at the ingredient level. This standardisation

of DIRs enabled a “fair” comparison in terms of the volume of information listed. Also,

code availability for data extraction and standardisation will enable the reproducibility

of the analysis.

However, there are limitations to this study. First, no updates have been taken into con-

sideration since the date of data retrieval (i.e. o✏ine data). Therefore, the results and

conclusions of this study provide an overview of their similarity and consistency at that

specific point in time, although no major updates usually occur. Second, Thesaurus con-

tained a few DDIs originally reported at the drug class level, which were associated with

multiple severity ratings. Hence, some standardised DDIs at the ingredient level were

assigned more than one severity rating. In BNF, there was a limited number of DDIs

having multiple severity levels depending on the described clinical outcome. In both

cases, the highest severity rating was considered for further analysis. Another limitation

could be relevant to the di↵erent countries of origin for the DIRs that were considered

in this study, which might have contributed to a small extent to the discrepancies ob-

served. Other limitations include the comparison of clinical management options only

for the DDIs present in the intersection of the DIRs and the custom-made labelling
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process applied to Micromedex. Additionally, in the BNF, there were referrals to the

guidance section of the website for various drug categories that were left unmapped

during the annotation process, e.g. “For Faculty of Sexually and Reproductive Health-

care (FSRH) guidance, see contraceptives, interactions.”, or “See ’serotonin syndrome’

and ’monoamine-oxidase inhibitor’ under antidepressant drugs for more information and

for specific advice on avoiding monoamine-oxidase inhibitors during and after adminis-

tration of other serotonergic drugs.”. In this way, the overall advice support provided

by the BNF might have been underestimated, although no concrete clinical advice was

provided.

For future work, it would be interesting to evaluate a larger number of DIRs and

include DIRs (e.g. Medscape, Lexicomp, Stockley’s Drug Interactions) which could

not be accessed in this instance due to lack of a subscription or due to terms and

conditions that currently prohibit the type of analysis we have conducted. It would

also be interesting to explore the completeness of generic DIRs as opposed to resources

tailored to specific drug categories (e.g. the Liverpool Drug Interaction Checkers for

anticancer drugs, etc) that would be expected to provide more complete information.

The evaluation of agreement on various types of DDI-related information among DIRs

from the same country of origin would be another relevant topic for future research,

although significant levels of discordance would not be surprising, similar to previous

studies [162]. Additionally, more comprehensive e↵orts to compare clinical management

recommendations among entire resources would be beneficial from a clinical perspective.

3.4.3 Implications and conclusions

It is reasonable to assume that the inclusion of clinically significant DDIs in DIRs would

improve drug e�cacy and reduce adverse reactions. There is however a balance to strike

since the value of these tools could be diminished if too many minor or clinically in-

significant DDIs are included in an e↵ort to limit legal liability [179]. This leads to the

phenomenon of alert fatigue where practitioners ignore the alerts provided by the system

due to the sheer volume of generated alerts [180], with important clinical consequences

for patient safety.

The Evidence workgroup from the DDI CDS Conference Series has highlighted the im-

portance and need for higher-quality information related to DDIs and also suggested

the establishment of systematic DDI search criteria in order to determine the existing

evidence related to the information provided [181]. Our analysis also shows the need

for consistency in the definitions of severity and evidence ratings provided by the var-

ious DIRs. The availability of DDI evidence in a standardised format with adequate

literature support, where possible, can improve prescribing decisions by allowing the

prescriber to refer to appropriate resources and use clinical judgement in case of doubt.

The inclusion of clinical management options for DDIs in CDS tools is also quite im-

portant and especially useful in the clinical setting, as there is no single response to a

potential DDI. More focus on this aspect has been suggested in multiple studies, which



Chapter 3. DDI resource similarity assessment 58

advocate more detailed and actionable advice (i.e. what and when to monitor) and clear

indications of the strength of the recommendation [182, 183]. We recommend that, by

providing a dedicated section for clinical management recommendations that contains

clear, actionable recommendations, information retrieval in the clinic can be facilitated,

and potentially improve individualised risk-benefit assessment of a specific DDI. In cases

where the benefits of a drug combination outweigh its risks, strategies to mitigate po-

tential adverse outcomes (e.g. therapeutic drug monitoring, vital signs, discontinuation

of one of the drugs, etc) should be provided and will improve the benefit-harm balance

of the drug combination. In the future, information about specific patient risk factors

for DDIs, such as genetic polymorphisms, could also be included to enhance DDI pre-

ventability.

The use of pharmacologic drug classes in Thesaurus to summarise DDIs might become a

source of confusion for clinicians. In many cases, individual drugs from a drug class have

di↵erent pharmacological profiles (e.g. excretion, metabolism, etc), which contribute to

a markedly di↵erent DDI risk when considering the same interacting drug [183]. Con-

sequently, drug ingredient indexing may paradoxically impede searching rather than

achieve the aim of providing e↵ective DDI summaries.

In conclusion, there is a great deal of interest in clinical decision support systems provid-

ing information on DDIs to optimise medicines use so that the use of drug combinations

that a↵ect either e�cacy and/or safety can be avoided. However, there is a lack of

consistency and standardisation in the information provided by di↵erent DIRs. Our

study which has systematically compared three DIRs shows that there is considerable

variation in the DDI information provided in these resources. Such variability in infor-

mation could have deleterious consequences for patient safety, and there is a need for

harmonisation and standardisation.

3.5 Data availability statement

Data from the DIRs were derived from the following web sources: the BNF website1

(available in the public domain); ANSM website2 (available in the public domain). Re-

strictions apply to the availability of Micromedex data, which were used under license

for this study. Data are available at https://www.micromedexsolutions.com/ with the

permission of IBM Watson Health. The code that supports the web data extraction and

analysis is available at: https://github.com/elpidakon/CRESCENDDI.

1https://bnf.nice.org.uk/interaction/
2https://ansm.sante.fr/documents/reference/thesaurus-des-interactions-medicamenteuses-1

https://www.micromedexsolutions.com/
https://github.com/elpidakon/CRESCENDDI
https://bnf.nice.org.uk/interaction/
https://ansm.sante.fr/documents/reference/thesaurus-des-interactions-medicamenteuses-1


Chapter 4

Building a clinically-relevant

reference set for DDIs

The content of this chapter is published in Scientific Data and is licensed

under a Creative Commons Attribution 4.0 International License.

Building upon the methodology presented in Chapter 3, this chapter aims to gener-

ate a reproducible framework and a publicly available standardised reference set of DDIs

that can facilitate benchmarking and support the development of novel methodologies

for signal detection of DDIs. It focuses on building a methodology for automatically ex-

tracting web data from DIRs and a standardisation pipeline to align data from multiple

resources to a common framework using controlled vocabularies and terminologies.

Chapter 4 contributes to the thesis by presenting a scalable approach for building

a standardised resource by combining multiple clinical resources, thus supporting the

clinical relevance of the reference set. The output of this approach is utilised in the next

two thesis chapters (Chapters 5 & 6). The size of the reference set and the relatively

large number of included drugs and adverse events provides a common ground, which

was previously unavailable, for the comparative performance evaluation of multiple DDI

surveillance methods.

59
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Abstract

The accurate and timely detection of adverse drug-drug interactions (DDIs) during the

postmarketing phase is an important yet complex task with potentially major clini-

cal implications. The development of data mining methodologies that scan healthcare

databases for drug safety signals requires appropriate reference sets for performance

evaluation. Methodologies for establishing DDI reference sets are limited in the litera-

ture, while there is no publicly available resource simultaneously focusing on the clinical

relevance of DDIs and individual behaviour of interacting drugs. By automatically

extracting and aggregating information from multiple clinical resources, we provide a

scalable approach for generating a reference set for DDIs that could support research

in postmarketing safety surveillance. CRESCENDDI contains 10,286 positive and 4,544

negative controls, covering 454 drugs and 179 adverse events mapped to RxNorm and

MedDRA concepts, respectively. It also includes single drug information for the included

drugs (i.e. adverse drug reactions, indications, and negative drug-event associations).

We demonstrate the usability of the resource by scanning a spontaneous reporting sys-

tem database for signals of DDIs using traditional signal detection algorithms.

4.1 Background & Summary

Polypharmacy (i.e. the concomitant use of multiple medications in an individual) has

become a common phenomenon in the Western world. In the United States, between

2015 and 2018, it has been estimated that two out of three people over 65 take at

least three prescription medications during the course of a month (up from one-third

in the early 1990s), with four out of ten taking five or more medications [184]. As life

expectancy is increasing around the world, leading to more people living with multiple

chronic diseases, together with new medicines being launched onto the market each year,

giving rise to a growing volume of possible drug combinations, the implications of drug-

drug interactions (DDIs) in clinical practice have become a matter of concern. A DDI

can lead to the potentiation or antagonism of one drug by another, or cause another e↵ect

that is not related to the individual drug profiles. From a mechanistic perspective, DDIs

are classified into two main categories: pharmacodynamic and pharmacokinetic [126].

Predicted DDIs based on pharmacological knowledge (i.e. possible drug e↵ect alterations

caused when multiple drugs are simultaneously administered) far outnumber those with

clinically significant consequences, i.e. those ranging from lack of e�cacy to serious and

life-threatening adverse reactions [153]. The necessarily limited time and extent of pre-

clinical studies and pre-marketing clinical trials may burden the identification of adverse

drug reactions (ADRs) caused by single drugs or drug combinations (i.e. adverse DDIs).

Postmarketing safety surveillance (pharmacovigilance) is a vital stage in the lifecycle

management of a medicine: The number of people exposed to medicines after marketing

is substantially larger than the number of volunteers involved in pre-market clinical

trials. Spontaneous reporting system (SRS) databases, such as the US Food and Drug
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Administration (FDA) Adverse Event Reporting System (FAERS), are a particularly

useful source of information, with more recent e↵orts focusing on the integration of

multiple data sources [185, 186, 187]. Given the growing size and complexity of those

databases, automated statistical tools, known as signal detection algorithms (SDAs),

have become indispensable tools in an e↵ort to distinguish real signals (i.e. information-

bearing patterns) from accompanying random patterns in the background (called noise)

that distract from the information [188].

The early and e↵ective identification of drug safety signals is of paramount impor-

tance for the pharmaceutical industry and regulatory authorities. For adverse reactions

caused by DDIs, there is an increasing need for improved SDAs, with the existing state-

of-the-art being less mature compared to the well-established algorithms used for detect-

ing signals of ADRs caused by a single drug [12, 11, 13]. Even after approval, detection

of novel DDIs might be delayed and di�cult, due to the inherent complexity of DDIs,

dose-dependency (i.e. some interactions only become evident in elevated drug levels) and

natural human inter-variability (as well as intra-variability, in some cases) that accounts

for the onset of some DDIs (e.g. rapid and poor metabolisers, genetic subpopulations,

etc.). The growing volume of real-world health data presents both a challenge and an

opportunity for the pharmacovigilance community, making manual review impossible

and requiring a higher level of automation in the methods that are routinely used for

scanning such databases.

As the available evidence is not static, the lack of gold standards (i.e. definitive

positive and negative controls) poses a challenge when it comes to defining appropriate

reference sets in pharmacovigilance for performance evaluation. Also, much disagree-

ment exists in terms of the choices and criteria under consideration (e.g. well-established

versus emerging cases) [97, 98, 189].

For single drugs, a number of reference sets exist that include drug-event pairs that

are either well-established (e.g. OMOP reference set [7], Harpaz [8]), belong to recent

product labelling changes [10], or can be found in product labels (e.g. EU-ADR initiative

[9]). More recently, e↵orts to automate the generation of a reference set for single-drug

ADRs by combining multiple sources of evidence identified a number of limitations,

including: size; consideration of a single data source for extracting positive controls;

availability (i.e. not being open access); and inclusion of only a limited number of drugs

and adverse events (AEs) [190]. Our understanding is that a fair algorithm comparison

requires testing on a large reference set to derive performance metrics that are likely to

indicate performance in the context of novel signals.

To the best of our knowledge, there is no established reference set for DDIs coupled

with information on the individual behaviour of interacting drugs. Were such a reference

set to exist, it could enable the classification of positive controls based on the possible

underlying mechanism causing the interaction. Initial e↵orts for detecting signals in-

dicative of DDIs included test cases that were limited in either size [11] or a variety of

drugs and AEs [13]. A more advanced approach was implemented by Juhlin et al [191],
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although their reference set relied on a single clinical resource, which might not be a

good idea since discordance among DDI compendia has been identified in the literature

[156, 157, 160, 161, 192].

Although a definitive reference standard including the complete set of DDIs cannot

exist, the automatic extraction and aggregation of information from multiple clinical re-

sources on DDIs and the individual behaviour of interacting drugs, along with scanning

the scientific literature for negative controls, enabled us to construct, share and advocate

CRESCENDDI (Clinically-relevant REference Set CENtred around Drug-Drug Interac-

tions), a dataset that can be used to facilitate research in SDAs and allow common

ground for comparing methodologies. We propose a scalable approach for generating a

normalised reference set that requires less manual e↵ort for future updates, consider-

ing the dynamic nature of data and evidence availability, and for subset selection using

design criteria. Figure 4.1 outlines the main steps for generating the reference set.

4.2 Methods

The processing pipeline for the construction of CRESCENDDI included the following

steps: (1) web data extraction of information related to DDIs and single-drug ADRs

from 4 di↵erent online resources for DDIs, single-drug ADRs, and drug indications; (2)

mapping (normalization) of drug names appearing in the extracted data; (3) extraction

of the intersection of the DDI online resources; (4) manual annotation and mapping of

English language text descriptions for DDIs, single-drug ADRs, and drug indications to

MedDRA concepts; (5) generation of positive controls for DDIs using the normalised

intersection of the DDI online resources; (6) generation of negative controls using drugs

and AEs from the positive controls set combined with PubMed search; and (7) aggrega-

tion of information on single-drug ADRs and drug indications for the drugs appearing in

the DDI reference set (i.e. positive and negative control sets) and generation of negative

controls for single drugs with a process similar to the one followed in the previous step

for DDI negative controls.

4.2.1 Web data extraction

DDI data were derived from the following online resources: the British National Formu-

lary (BNF) website [163], the French National Drug Safety Institute (ANSM) Portable

Document Format (PDF) file (Thesaurus) [164] and the Micromedex platform [165]. For

BNF and Micromedex, web data extraction tools in Python 3.6 [170] enabled the extrac-

tion of the relevant fields into a Comma Separated Values (CSV) file (June-August 2018).

For Thesaurus, the R package IMThesaurusANSM [171] was used and the resulting R

dataframe from the 2019 update was converted to a CSV file.

The tables contained the following fields:

• interacting drug name 1 (D1) (e.g. Metoprolol Tartrate);
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• interacting drug name 2 (D2) (e.g. Lidocaine);

• text description for the DDI (e.g. Lidocaine is predicted to increase the risk of

cardiovascular adverse e↵ects when given with metoprolol. Manufacturer advises

use with caution or avoid);

• severity label (e.g. Severe);

• evidence label (if available) (e.g. Study).

For single-drug ADRs, the following sources were considered: the BNF website [163]

and SIDER dataset [193]. For drug indications, SIDER was used. BNF ADR data were

extracted in a similar way as previously with DDI data (automated web data extraction)

into a CSV file, while SIDER data for ADRs and drug indications were already available

in CSV files.

A table containing the following fields was constructed:

• drug name (e.g. Metoprolol Tartrate);

• event text description (e.g. Bradycardia);

• event type (e.g. ADR);

• source (e.g. SIDER).

4.2.2 Drug name mapping

To facilitate usability and ensure compatibility, a standardization process was followed

such that we could provide a resource with normalised concepts to standard terminologies

for drugs and medical events. Specifically, the Observational Health Data Sciences and

Informatics (OHDSI) Vocabulary version 5 was selected for mapping the drug names

occurring in each of the DDI online resources into RxNorm and RxNorm Extension

standard codes (at the Ingredient level) using OHDSI Usagi [174].

We removed combination drugs (as DDIs of their constituent drug ingredients were

separately mentioned), vaccines, vitamins, herbal medicines, food, beverages, supple-

ments, tobacco, and lab tests. Also, generic drug classes (e.g. combined hormonal

contraceptives, hormonal replacement therapy) appearing in the BNF were not mapped

to their individual drug ingredients, as there was no table on the BNF website specifying

the drugs belonging in each drug class. We mapped the remaining unique drug names

occurring in the DDI resources to OHDSI standard vocabulary concept identifiers. For

example, Metoprolol Tartrate was mapped to the RxNorm Ingredient concept metopro-

lol. For Thesaurus, a native French speaker (pharmacist) confirmed the drug mappings

of French drug names to English language OHDSI concepts.

A similar process was followed for drugs that appear in the single-drug data (ADR

and indications).
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4.2.3 Intersection of DDI online resources

By matching drug names to their mapped drug ingredients in the extracted DDI data

tables, we obtained the set of common drug pairs across the tables and generated a

new table that contains only the DDIs and associated information which could be found

in each of the DDI online resources under consideration. Cases where the interacting

drug mapping of D1 and D2 were swapped in the original data tables (i.e. (D1,D2) and

(D2,D1)) were considered equivalent.

The final table contained the following fields:

• drug_1 concept name (e.g. metoprolol);

• drug_2 concept name (e.g. lidocaine);

• bnf_description (e.g. Lidocaine is predicted to increase the risk of cardiovascular

adverse e↵ects when given with metoprolol. Manufacturer advises use with caution

or avoid);

• micromedex_description (e.g. lidocaine toxicity (anxiety, myocardial depression,

cardiac arrest));

• bnf_severity (e.g. Severe);

• ansm_severity (e.g. Précautions d’emploi (Precautions for use));

• micromedex_severity (e.g. major);

• bnf_evidence (e.g. Study);

• micromedex_evidence (e.g. probable).

4.2.4 Adverse event and indication mappings

For DDI-related text descriptions in English from BNF and Micromedex that could be

found in the DDI intersection table, a drug name blinding process was performed by

replacing the interacting drug names with a common token in all cases (i.e. ‘X’). In

this way, the number of unique descriptions was reduced, thus facilitating the mapping

process that followed. For example, the descriptions:

Both dexibuprofen and ibuprofen can increase the risk of nephrotoxicity.

and

Both polymyxins and streptomycin can increase the risk of nephrotoxicity.

were both mapped to the following blinded description:

Both X and X can increase the risk of nephrotoxicity.
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The set of blinded text descriptions for BNF and Micromedex was extracted from

the table and a semi-automated mapping process using OHDSI Usagi mapped them to

MedDRA PT concepts. We explicitly focused on text descriptions that included clini-

cal manifestations of DDIs, e.g. X may increase the risk of hypoglycaemia when taken

with X. Text descriptions containing a potential mechanism of the interaction were left

unmapped. In some cases, a single text description was linked to multiple concepts. For

example:

Interaction E↵ect: An increased risk of cardiotoxicity (QT prolongation, torsades de

pointes, cardiac arrest).

includes 3 di↵erent MedDRA PTs.

Also, serotonin syndrome was not mapped to its corresponding MedDRA PT and

was not further considered as an AE for inclusion in the reference set.

Text descriptions from the BNF regarding single-drug ADRs were mapped to Med-

DRA PTs (where possible), but only for the drug ingredients that could be found in the

DDI pair intersection table. SIDER ADR and indication data for the same list of drugs

were also mapped to OHDSI concepts; however, for this resource, MedDRA PT codes

were already available.

4.2.5 Positive controls

The set of positive controls was derived from the DDI intersection table, using mappings

of text descriptions to AEs that were generated in the previous step. It contained 10,286

drug-drug-event (DDE) triplets, 454 unique individual drug ingredients and 179 unique

AEs (as OHDSI concepts) in total.

4.2.6 Negative controls

The set of negative controls was generated by randomly pairing two drug ingredients from

the 454 unique drug ingredients that can be found in the positive controls normalised

drug name list (Data Record 4) and, in case the random drug pair did not appear

in any of the DDI online resources, then it was randomly paired with an AE from the

179 unique AEs present in the positive control set event (AE type, DDI sources) from

the normalised event list (Data Record 5). The choice of generating negative controls

with common drug ingredients and AEs as the ones appearing in positive controls aimed

to ensure the generation of a balanced reference set that does not contain added biases

by design. For each of the created DDE triplets, a customised query was submitted to

PubMed in an automated fashion and, if the search returned no results, the triplet was

added to the negative control set. This process aimed to provide more confidence, to

the best of our ability, about the absence of literature evidence of a potential DDI for

the triplet under consideration, rather than definitive evidence to support the lack of a

potential association.
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The process was repeated until the number of negative controls with non-zero counts

in the US Food and Drug Administration (FDA) Adverse Event Reporting System

(FAERS) database (see Usage Notes) was similar in size (N=4,544) compared to the

equivalent subset of positive controls. The negative control set included 161 unique AEs

and 435 unique drug ingredients.

4.2.7 Single-drug ADRs, indications, and negative controls

By replacing text descriptions from BNF (N=1,538) and MedDRA PT codes to their

corresponding mapped OHDSI concepts, a table with ADR and indication information

related to the drug ingredients of the DDI reference set was generated. The table

included: 438 unique drug ingredients, which could be found in at least one of the

resources under consideration (i.e. BNF and SIDER), 3,492 AEs and 1,557 indication

terms (as OHDSI concepts).

BNF and SIDER jointly contained 69,721 single-drug ADRs, with 12,318 common

instances; this set could be utilised as a source for single-drug positive controls. This set

covered 381 unique drugs and 835 unique AE concepts. Random pairing of those drugs

and AE concepts followed by submission of a customised query to PubMed (to ensure

absence of literature evidence of a potential ADR for the various drug-event associations)

enabled the generation of a negative control set for single drugs (N=12,141).

4.3 Data Records

CRESCENDDI is publicly available online through Figshare1 in 5 Excel spreadsheets.

The fields contained in each of the spreadsheets are outlined below. The output of the

methodology that was described in the previous section consists of 5 CSV data files and

a README.txt file.

The columns contained in each of the data files are described below:

4.3.1 Data Record 1: Positive controls

DRUG_1_CONCEPT_NAME: Name of the first drug (active ingredient) that comprises a test

case (DDE triplet).

DRUG_2_CONCEPT_NAME: Name of the second drug (active ingredient) that comprises

a test case (DDE triplet).

EVENT_CONCEPT_NAME: Name of the normalised event (as a MedDRA PT) that com-

prises a test case (DDE triplet).

MDR_CODE: MedDRA code associated with the PT specified in the EVENT_CONCEPT_NAME

field.

EVENT_SOURCE: Label indicating the resource where the event is mentioned (i.e.

‘BNF’, ‘Micromedex’, ‘BNF+Micromedex’).

1https://doi.org/10.6084/m9.figshare.c.5481408.v1

https://doi.org/10.6084/m9.figshare.c.5481408.v1
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BNF_SEV_LEVEL: Label with the values of ‘Severe’, ‘Moderate’ or ‘Mild’ that indicates

the severity level associated with the DDI as shown in BNF (if available).

ANSM_SEV_LEVEL: Label with the values of ‘Contraindicated’, ‘Not recommended’,

‘Precautions for use’ or ‘Take into consideration’ that indicates the severity level asso-

ciated with the DDI as shown in Thesaurus.

MICROMEDEX_SEV_LEVEL: Label with the values of ‘Contraindicated’, ‘Major’, ‘Mod-

erate’ or ‘Minor’ that indicates the severity level associated with the DDI as shown in

Micromedex.

BNF_EVID_LEVEL: Label with the values of ‘Study’, ‘Anecdotal’ or ‘Theoretical’ that

indicates the evidence level associated with the DDI as shown in BNF (if available).

MICROMEDEX_EVID_LEVEL: Label with the values of ‘Established, ‘Theoretical’ or

‘Probable’ that indicates the evidence level associated with the DDI as shown in Mi-

cromedex.

4.3.2 Data Record 2: Negative controls

DRUG_1_CONCEPT_NAME: Name of the first drug (active ingredient) that comprises a test

case (DDE triplet).

DRUG_2_CONCEPT_NAME: Name of the second drug (active ingredient) that comprises

a test case (DDE triplet).

EVENT_CONCEPT_NAME: Name of the normalised event (as a MedDRA PT) that com-

prises a test case (DDE triplet).

MDR_CODE: MedDRA code associated with the PT specified in the EVENT_CONCEPT_NAME

field.

4.3.3 Data Record 3: Single-drug ADRs, indications and negative con-

trols

Tab 1 – Positive drug-event associations

DRUG_CONCEPT_NAME: Name of the drug (active ingredient) that comprises a single

drug information case (drug-event pair).

EVENT_CONCEPT_NAME: Name of the normalised event (as a MedDRA PT) that com-

prises a single drug information case (drug-event pair).

EVENT_TYPE: Type of association between the drug and event of the single drug

information case (i.e. ‘Adverse event’ or ’Indication’).

SOURCE: Label indicating the resource of the single drug information case (i.e. ‘BNF’

or ‘SIDER’).

Tab 2 – Negative drug-event associations

DRUG_CONCEPT_NAME: Name of the drug (active ingredient) that comprises a single

drug negative case (drug-event pair).
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EVENT_CONCEPT_NAME: Name of the normalised event (as a MedDRA PT) that com-

prises a single drug negative case (drug-event pair).

4.3.4 Data Record 4: Drug mappings

DRUG_INITIAL_NAME: Unmapped name of the drug as extracted from the resource.

DRUG_CONCEPT_NAME: Normalised name of the drug (as an RxNorm Ingredient) ex-

tracted from the resource.

RXNORM_CODE/RXNORM_EXTENSION_CODE (OHDSI): RxNorm/RxNorm Extension code

associated with the normalised drug name specified in the DRUG_CONCEPT_NAME field.

SOURCE: Label indicating the resource where the drug is found (i.e. ‘BNF_DDI’,

‘Thesaurus_DDI’, ‘Micromedex_DDI’, ‘BNF_Single’).

4.3.5 Data Record 5: Event mappings

EVENT_INITIAL_TEXT: Text description (after drug name blinding) containing an AE as

extracted from the resource.

EVENT_CONCEPT_NAME: Mapped name of the event (as a MedDRA term) extracted

from the resource.

SOURCE: Label indicating the resource where the text description is found (i.e. ‘BNF_DDI’,

‘Micromedex_DDI’, ‘BNF_Single’).

4.4 Technical Validation

Given the inability to generate ‘gold standards’ in pharmacovigilance, the validation of

the reference set included steps that supported the technical quality of the procedures

followed to generate the dataset, rather than attempting to further ensure the validity

of each control. The process of validating the reference set was two-way.

First, we verified the original online data as well as the unmapped extracted DDI

data versus the curated reference set in order to validate the accuracy of the automated

extraction and concept mapping processes. A random sample of 40 positive and 40

negative controls was manually checked in each of the DDI online resources (i.e. BNF,

Thesaurus and Micromedex), to ensure the presence or absence, respectively, of the

DDE triplet in the information provided. No issues were identified. Due to the time lag

between data retrieval (June-August 2018) and validation (September 2021), there were

issues most probably related to di↵ering versions of the resources. More specifically, there

were 6 positive controls missing from one of the resources (5 from the BNF and 1 from

Micromedex), 2 of which were due to the complete removal of the drug monograph. Also,

one of the negative control samples had been added to the BNF. No issues were identified

during the validation of the random sample of controls from the curated reference set

against the unmapped extracted DDI data.



Chapter 4. DDI reference set 70

Second, the validation of text description mapping for AEs included independent

annotation of a random sample of 100 text descriptions for AEs to ensure agreement on

event mapping. Again, no issues were identified.

Expert manual review of a number of cases from the reference set could be potentially

performed as an additional layer of the technical validation procedure to confirm that

the included DDIs are worthy of note. We have attempted to replace this need for expert

manual review by combining information from multiple resources of clinical interest.

The next section outlines the application of the reference set for drug safety surveil-

lance in an SRS database using SDAs that have been described in previous studies, in

an e↵ort to showcase its validity through practical implementation as well as prove its

potential use in the real-world.

4.5 Usage Notes

This publicly available resource aims to provide a common ground for the evaluation

of SDAs related to DDI signals, with a focus on assembling information from disparate

sources that could provide support toward the clinical relevance of controls. The size

of the reference set alongside the relatively large number of drugs and AEs considered

enables a quantitative approach in algorithm performance evaluation in terms of SDAs

developed for DDI signals.

Also, the supplementary single-drug positive and negative control sets could be used

separately for signal detection in the context of adverse drug-event associations.

This reference set could be applied to a variety of data sources (e.g. electronic

health record data, social media, literature). Here, we illustrate applicability in one

such context.

4.5.1 FAERS screening for DDI signals

In pharmacovigilance, signal detection is largely based on methodologies that use dispro-

portionality analysis, meaning that the observed counts are compared to the expected

ones, assuming that the drug(s) and the events occur independently. For DDIs, similar

measures of disproportionality have been described in the literature. For our analysis,

the following statistical measures were considered:

1. An observed-to-expected shrunk interaction measure (Omega) [12]

2. The ‘interaction coe�cient’ of a multiplicative additive baseline model (delta add)

[11]

3. A measure based on an adapted version of Multi-Gamma Poisson Shrinker (MGPS)

model, called Interaction Signal Score (IntSS) [13].

A curated and standardised version of FAERS was used as the test data source.

In FAERS, each spontaneous report contains information on administered drugs, AEs



Chapter 4. DDI reference set 71

Medians
Citation SDA Performance analysis in the original source AUC (95% CI) Score+ Score-

Noren et al., 2008 [12] Omega
a. 5 positive examples (case studies);
b. World Health Organization (WHO) database-wide screen

0.5670
(0.5534, 0.5806)

-1.6173 -2.3151

Thakrar et al., 2007 [11] delta add 4 positive and 4 negative controls tested on FAERS
0.4211
(0.4110, 0.4312)

0.00078 0.00417

Almeno↵ et al., 2003 [13] IntSS

Beta blockers + Verapamil (as positive controls) and
Angiotensin-converting enzyme (ACE) inhibitors/ Angiotensin-2
receptor blockers + Verapamil (as negative controls) tested on
FAERS for impaired myocardial conduction

0.5041
(0.4921, 0.5162)

0.3669 0.3453

Table 4.1: Statistics related to the performance evaluation of three SDAs for DDIs us-
ing FAERS data. AUC, area under the receiver operating characteristic curve; Score+,
median signal score for the set of positive controls; Score-, median signal score for the

set of negative controls.

experienced, indications and demographic information (i.e. sex, age, etc). Using a slight

modification of the Adverse Event Open Learning through Universal Standardization

(AEOLUS) process that was described in published work [194], FAERS data files cor-

responding to the period 2004Q1-2018Q4 were standardised to the RxNorm Ingredient

level terms and MedDRA PTs, so that compatibility of the reference set with the test

data could be established. The total number of reports containing at least one drug and

one AE was 9,203,239.

ROC analysis was performed using MATLAB function perfcurve. 95% confidence

interval (CI) estimates for the Area Under the Receiver Operating Characteristic Curve

(AUC) were calculated using leave-one-out cross-validation.

Table 4.1 shows statistics related to the performance of the SDAs in FAERS using

our advocated reference standard. For each algorithm, the table provides the AUC scores

with 95% CI estimates. As opposed to expectations, only two out of three SDAs for

DDIs (i.e. Omega and IntSS) performed better than random guessing. Median signal

scores for the set of positive controls were larger compared to those of negative controls

in those two cases, which provides support for the validity of CRESCENDDI. Limited

performance analyses in the studies describing the SDAs for DDIs as well as the absence

of other e↵orts in the literature for quantitative performance assessment across multiple

thresholds did not manage to provide an appropriate benchmark for this study.

4.5.2 FAERS screening for single-drug ADRs

For the single-drug reference set, empirical support was provided by applying three

well-established SDAs to FAERS data. Positive controls (at the MedDRA PT level)

were sourced from either the intersection (N= 12,318) or the union (N= 52,637) of the

resources under consideration (i.e. BNF and SIDER) and ROC analysis for performance

evaluation similarly to the previous section (Table 4.2).

Table 4.2 shows that EBGM outperformed PRR, which is in line with the results

of other studies [7]. Also, improved performance was noticed in the case of resource

intersection for all SDAs, which advocates the use of information that appears in multiple

resources rather than relying on a single data source for deriving positive controls.
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Resource union
Positive controls: 52,637
Negative controls: 12,141

Resource intersection
Positive controls: 12,318
Negative controls: 12,141

Citation SDA AUC (95% CI) AUC (95% CI)

Evans et al., 2001 [89] Proportional Reporting Ratio (PRR)
0.5791
(0.5746, 0.5835)

0.5959
(0.5884, 0.6033)

DuMouchel, 1999 [92] EBGM (Empirical Bayes Geometric Mean)
0.6308
(0.6259, 0.6356)

0.6593
(0.6510, 0.6675)

Bate et al., 1998 [91] BCPNN (Bayesian Confidence Propagation Neural Network)
0. 7063
(0.7008, 0.7117)

0.7495
(0.7401, 0.7588)

Table 4.2: Statistics related to the performance evaluation of three SDAs for single
drugs using FAERS data. AUC, area under the receiver operating characteristic curve;
Score+, median signal score for the set of positive controls; Score-, median signal score

for the set of negative controls.

4.5.3 Flexibility of the resource

This reference set has been mapped to standard vocabularies using the OHDSI frame-

work, thus enabling linking to other ontologies and/or vocabularies, based on research

needs, test data resources format, etc.

Considering the changing nature of available evidence for both positive and negative

controls, reproduction of the resource in the future would be recommended to ensure

that it is up to date. Although specific products (e.g. vaccines) were excluded given our

focus on generating a reference set relevant to DDIs, slight modifications on the drug

mapping process can allow the inclusion of controls pertinent to any additional products

of interest.

The incorporation of additional information (e.g. shared indication, single-drug AE

under the same High Level Term (HLT)/High Level Group Term (HLGT) MedDRA

level, evidence levels) enables filtering and stratification of controls. The e↵ect of strat-

ification using those design criteria is outside the scope of this paper but is explored

elsewhere.

4.6 Code Availability

The code used to generate this dataset is publicly available on a GitHub repository2.

This code was developed and tested using: OHDSI standard vocabulary version v5.0

18-JAN-193, which includes: RxNorm version 20181203, RxNorm Extension version

2019-01-17, and MedDRA version 19.1. Database storage and operations were enabled

using PostgreSQL 9.3. Drug and event mapping steps were performed using OHDSI

Usagi version 1.2.74. Web data extraction was performed using Python 3.6. Scores for

the SDAs were calculated using Python 3.6 (Omega), SAS (delta add) and R version

4.0.0 (IntSS, PRR, EBGM and BCPNN); AUC scores and CI estimates were calculated

using MATLAB R2020b (perfcurve function).

2https://github.com/elpidakon/CRESCENDDI
3https://athena.ohdsi.org/
4https://github.com/OHDSI/usagi

https://github.com/elpidakon/CRESCENDDI
https://athena.ohdsi.org/
https://github.com/OHDSI/usagi


Chapter 5

Exploring the impact of design

criteria for reference sets on

performance evaluation of signal

detection algorithms: The case of

drug-drug interactions

The content of this chapter is published in Pharmacoepidemiology and Drug

Safety.

This chapter aims to identify the relative impact of di↵erent factors that could be

potential sources of confounding on the performance evaluation of signal detection al-

gorithms for DDI surveillance. It utilises the reference set of clinically-relevant DDIs

that was developed in Chapter 4, leveraging its size and diversity to create smaller,

custom-made reference sets considering multiple design criteria. These reference sets are

then used to assess any di↵erences observed in the quantitative evaluation of SDAs for

two-way DDIs.

The key contribution of this chapter is the exploration of the impact of the relative

composition of reference sets on evaluation metrics, which can potentially lead to mod-

ified conclusions regarding which methodologies are perceived to perform best. This is

particularly relevant when using custom-made and small-in-size reference sets, which in

many cases represent published work in the area of signal detection methods in pharma-

covigilance, impeding a comprehensive and “fairer” evaluation. A modified version of

the reference set that was established in Chapter 4 is also developed and presented in

this chapter as a supplementary resource. This is to accommodate the detection at the

medical concept level, rather than just the MedDRA Preferred Term (PT) level which

was directly possible using the original version of the reference set. The outcomes of the

analysis presented in this chapter are taken into account for the method development

73
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and evaluation in Chapter 6 and act as a validation of the original assumption that

large and diversified reference sets can support method benchmarking.
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Abstract

Purpose

To evaluate the impact of multiple design criteria for reference sets that are used to

quantitatively assess the performance of pharmacovigilance signal detection algorithms

(SDAs) for drug–drug interactions (DDIs).

Methods

Starting from a large and diversified reference set for two-way DDIs, we generated

custom-made reference sets of various sizes considering multiple design criteria (e.g.

adverse event background prevalence). We assessed di↵erences observed in the perfor-

mance metrics of three SDAs when applied to FDA AdverseEvent Reporting System

(FAERS) data.

Results

For some criteria, the impact on the performance metrics was neglectable for the dif-

ferent SDAs (e.g. theoretical evidence associated with positive controls), while others

(e.g. restriction to designated medical events, event background prevalence) seemed to

have opposing and e↵ects of di↵erent sizes on the Area Under the Receiver Operating

Characteristic Curve (AUC) and positive predictive value (PPV) estimates.

Conclusions

The relative composition of reference sets can significantly impact the evaluation met-

rics, potentially altering the conclusions regarding which methodologies are perceived to

perform best. We therefore need to carefully consider the selection of controls to avoid

misinterpretation of signals triggered by confounding factors rather than true associa-

tions as well as adding biases to our evaluation by “favouring” some algorithms while

penalizing others

Key points

• Performance assessment of SDAs in pharmacovigilance has often relied on the gen-

eration of custom-made reference sets of limited size that consider ad-hoc exclusion

or inclusion criteria to define eligible controls.

• SDA performance assessment might be biased based on the selected benchmarks,

as each methodology can be impacted to a di↵erent extent by di↵erent confounders.

• We tested 14 design criteria for reference sets in the case of DDIs, showing that

some of them considerably a↵ected the performance and comparative evaluation of

di↵erent SDAs for DDI surveillance while others did not have a significant e↵ect.



Chapter 5. Existing SDA performance and impact of design criteria 76

• Overall, this analysis advocates the utilization of large, to the extent possible, ref-

erence sets that are less likely to su↵er from the overrepresentation of controls that

make di↵erent SDAs behave in di↵erent ways due to confounding. Any decision

to restrict the evaluation set using specific criteria should be carefully justified.

Plain Language Summary

Reporting of suspected side e↵ects experienced by patients following drug approval is

a key component to identifying novel drug safety issues. Statistical methods are then

used to analyze reports and reveal signals of novel associations between drugs and side

e↵ects. Performance evaluation of those methods traditionally relies on custom-made

reference sets of limited size that consider ad-hoc exclusion or inclusion criteria to define

eligible controls. However, each method can be impacted to a di↵erent extent by those

criteria, as they can act as potential confounders. This study investigated the impact

of 14 criteria on three methods that have been developed to detect signals of poten-

tial adverse drug–drug interactions, showing that some of them had opposing e↵ects

or e↵ects of di↵erent levels of magnitude on the performance of the di↵erent methods.

The relative composition of reference sets can therefore significantly a↵ect the evalu-

ation metrics, potentially altering the conclusions regarding which methodologies are

perceived to perform best. The selection of controls should be carefully performed to

avoid misinterpretation of signals triggered by confounding factors rather than true as-

sociations as well as adding biases to our evaluation by “favouring” some algorithms

while penalising others.

5.1 Introduction

Monitoring drug safety issues during the post-approval phase requires reporting of sus-

pected drug-related adverse reactions by healthcare professionals, patients, and phar-

maceutical companies. The reports are collected in spontaneous reporting system (SRS)

databases, such as the FDA Adverse Event Reporting System (FAERS) database in the

US, the Eudravigilance database in the EU, and the Yellow Card database in the United

Kingdom. These databases form an important part of the pharmacovigilance strategy

since they not only contain information on adverse events (AEs) and suspected drugs,

but also details regarding concomitant medications, indications, and patient demograph-

ics.

By applying statistical methods known as signal detection algorithms (SDAs), novel

associations between drugs and AEs (i.e. signals) that have not been identified in clinical

trials can be identified in the SRS data. Given the absence of a control group, SDAs

predominantly rely on disproportionality analysis, which calculates the degree of dis-

proportional reporting of drug-AE combinations compared to what would be expected

if there were no association between them [195]. However, the presence of synthetic



Chapter 5. Existing SDA performance and impact of design criteria 77

associations (i.e. causative covariates that have not been taken into account or remain

unobserved) can lead to confounding, either upward or downward, thus generating faulty

associations between the drug and the AE and complicating the detection of safety sig-

nals [196, 197, 198]. For example, reporting quality issues arising from a poor distinction

between symptoms of disease-related AEs and treatment e↵ects of drugs (or drug combi-

nations) is a result of a synthetic association called confounding by indication [199, 105].

The practice of using larger clusters of medical terms to perform quantitative signal

detection in pharmacovigilance has been widely discussed in the literature [195, 200].

Many previous e↵orts investigated the impact of the Medical Dictionary for Regulatory

Activities (MedDRA) granularity on signal detection tasks [201, 202]. Also, many studies

have considered the use of term grouping to identify relevant reports [203, 204]. However,

recommendations from the IMI-PROTECT project suggest that signal detection at the

PT level should be considered the standard approach in real-life pharmacovigilance

[202, 205].

The development of novel SDAs in pharmacovigilance requires the existence of ap-

propriate reference sets that can be utilised both for absolute performance evaluation as

well as for comparison with existing methodologies. Given that each SDA, depending

on the applied modelling, might be impacted to a di↵erent extent by a confounder, the

performance evaluation might be biased based on the selected benchmarks. The chal-

lenge of building appropriate reference sets in pharmacovigilance has been previously

acknowledged in the literature [206, 97, 98, 207]. Most studies have attempted to com-

paratively evaluate SDAs by testing their performance against custom-made reference

sets, often limited in size [13, 8, 191] or not publicly available [208, 209] which com-

monly consider ad-hoc inclusion or exclusion criteria to generate positive and negative

controls. Examples of such criteria include those related to AE background prevalence

(given that, in disproportionality analysis, the denominator signifies the expected rate

of occurrence) [7], disease-related AEs [210], AE seriousness [210, 211] or evidence as-

sociated with positive controls [7, 210, 211, 212, 9]. The criteria are typically used to

attempt to address the limitations of disproportionality analysis and to tackle issues

with potential confounders.

In the case of adverse drug–drug interactions (DDIs), signal detection is considered

more complicated, with the existing methodology being less mature compared to the one

in the case of signals for single drugs. A previous study has suggested that the detection

of DDI-related signals might su↵er from multiple confounders [14]. For example, con-

comitant medications appear to be a significant source of con-founding (i.e. the signal

associated with a drug combination triggered by drugs that are usually given concomi-

tantly but not signifying true adverse drug–drug-event associations). In addition, only

limited e↵orts exist in the literature to generate reference sets related to two-way DDIs

[13, 191, 14, 147].

In this study, we aim to explore the relative impact of di↵erent factors that could be

potential sources of confounding on the performance evaluation of existing methods for
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signal detection of DDIs. By utilising a large and diversified reference set, we were able

to create custom-made reference sets considering multiple ia to assess any di↵erences

observed in the quantitative evaluation of SDAs tailored for two-way DDIs.

5.2 Methods

5.2.1 Data sources

5.2.1.1 FAERS data - spontaneous reports

We used a curated and standardised version of the publicly available FAERS database.

The data pre-processing pipeline was based on the Adverse Event Open Learning through

Universal Standardisation (AEOLUS) process and included removal of duplicate reports,

drug name normalization at the RxNorm ingredient level, and AE mapping to MedDRA

Preferred Terms (PTs) [194]. The curated data set included 9,203,239 reports contain-

ing at least one drug and one AE between 2004 (Q1) and 2018 (Q4), with 3,973,749

(43.18%) reports mentioning more than one drug. Each drug was considered equivalent

in the analysis irrespective of its reported role (i.e. primary suspect; secondary suspect;

concomitant; and interacting).

5.2.1.2 Reference sets for DDIs

CRESCENDDI, a reference set for two-way DDIs, was the primary source of controls

[21]. This reference sets covers 454 drugs and 179 adverse events mapped to RxNorm

Ingredient and MedDRA PT concepts, respectively, from the Observational Medical

Outcomes Partnership (OMOP) Common Data Model (version 5). We used 4455 posi-

tive and 4544 negative controls from CRESCENDDI that were also present in the curated

FAERS dataset (hereafter called PT Reference Set).

To accommodate and test the impact of MedDRA granularity to detect signals at

the medical concept (MC) level, we extended CRESCENDDI by building PT groups

(event groups), where possible, that are relevant to the adverse events described in the

original reference set. These groups were formed by examining Standardised MedDRA

Queries (SMQs) and event definitions from a time-indexed reference standard by Harpaz

et al. [10] and were manually reviewed for clinical relevance. In total, 20 adverse events

from CRESCENDDI were deemed suitable for extension to the MC level (Table 5.1).

A full list of the event groups is available online1 in the Supporting Information of the

publication (Appendix S1). The new reference set (hereafter called MC Reference Set)

contained 1,097 positive and 614 negative controls and is also available online2 in the

Supporting Information of the publication (Appendix S2).

1https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpds.5609&file=pds5609-
sup-0002-AppendixS1.xlsx

2https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpds.5609&file=pds5609-
sup-0003-AppendixS2.xlsx

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpds.5609&file=pds5609-sup-0002-AppendixS1.xlsx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpds.5609&file=pds5609-sup-0002-AppendixS1.xlsx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpds.5609&file=pds5609-sup-0003-AppendixS2.xlsx
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpds.5609&file=pds5609-sup-0003-AppendixS2.xlsx
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Name
Acute kidney injury Drug-induced liver injury Myopathy
Acute psychosis Hypoglycaemia Priapism
Angioedema Hypertension Rhabdomyolysis
Arrhythmia Hypoglycaemia Tachycardia
Bradycardia Hyponatraemia Thrombocytopenia
Cardiac failure Hypothyroidism Torsade de pointes
Drug withdrawal syndrome Lactic acidosis

Table 5.1: Medical Concepts in the MC Reference Set.

5.2.2 Data mining

We performed the case/non-case analysis at two di↵erent levels, based on the reference

sets that we utilised. The first one was restricted to the reports that included the PT

that was related to each control from the PT Reference Set. The second one considered

as cases all the reports that contained any of the PTs that were part of the MC linked

to the control in the MC Reference Set.

For example, the case/non-case analysis for a control related to torsade de pointes

resulted in two contingency tables: the first one only considered the PT “Torsade de

pointes” to retrieve case reports, while the second one included the following terms (as

PTs): “Electro-cardiogram QT interval abnormal”, “Electrocardiogram QT prolonged”,

“Long QT syndrome”, “Torsade de pointes”, “Ventricular tachycardia”. Non-cases in-

cluded the reports without the aforementioned PTs, while reports containing more than

one of the relevant PTs linked to the MC were not double-counted.

5.2.3 Design criteria

Table 5.2 shows the design criteria that were considered as potential confounding fac-

tors, which fall into the following categories: (i) evidence level; (ii) event seriousness;

(iii) event frequency; (iv) potential confounding by indication; and (v) potential con-

founding by concomitant medication. PT Reference Set controls were stratified based

on each of the design criteria, forming suitable restricted sub-sets of di↵erent sizes in

each case, depending on the criterion under consideration. MC Reference Set could not

be stratified using categories (ii) and (iii).

5.2.4 PT prevalence

The impact of reference set restriction by PT prevalence on the Area Under the Curve

(AUC) estimates was also examined. The PT prevalence was calculated in the curated

FAERS data set as the frequency of PTs from reports containing at least one drug.

We grouped the 179 PTs from the PT Reference Set using quartile binning of their

prevalence. The controls were then stratified into four groups (Groups Q1–Q4) based

on their PTs by considering the respective PT prevalence quartile.
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Category Design criterion (DC) Description

Evidence level BNF - Study

Interactions where the information is based on formal study
including those for other drugs with the same mechanism,
for example, known inducers, inhibitors, or substrates of
cytochrome P450 isoenzymes or P-glycoprotein.

BNF - Theoretical

Interactions that are predicted based on sound theoretical
considerations. The information may have been derived from
in vitro studies or based on the way other members of the same
class act.

BNF - Anecdotal
Interactions based on either a single case report
or a limited number of case reports.

Micromedex - Established
Controlled studies have clearly established
the existence of the interaction.

Micromedex - Theoretical

The available documentation is poor, but
pharmacologic considerations lead clinicians to
suspect the interaction exists; or documentation
is good for a pharmacologically similar drug.

Micromedex - Probable
Documentation strongly suggests that the interactions
exist, but well-controlled studies are lacking.

Event seriousness* EMA Important Medical Event (IME) Terms

Any untoward medical occurrence that at any dose:
- results in death,
- is life-threatening,
- requires inpatient hospitalization or prolongation
of existing hospitalization,
- results in persistent or significant disability/incapacity, or
- is a congenital anomaly/birth defect.

EMA Designated Medical Event (DME) Terms

Medical conditions that are inherently serious and often
medicine-related (e.g. Stevens-Johnson syndrome). This
list does not address product-specific issues or medical
conditions with high prevalence in the general population.

Event frequency* Common PTs
PT prevalence � 90th percentile of the prevalence of PTs
reported in FAERS.

Rare PTs
PT prevalence  10th percentile of the prevalence of PTs
reported in FAERS.

Potential confounding
by indication

AE is an indication - True
The AE is also an indication for at least one of the two drugs
from the drug–drug-event triplet under consideration.

AE is an indication - False
The AE is not an indication for either of the drugs from
the drug–drug-event triplet under consideration.

Potential confounding
by concomitant medication

Shared indications - False Drug pairs that share at least one indication are excluded.

Shared indications - True Only drug pairs that share at least one indication are considered.

Table 5.2: Categories and descriptions of design criteria for reference sets that could
a↵ect performance evaluation of SDAs for DDI surveillance. Note: The categories
marked with an asterisk (*) contain design criteria that were not applicable to the MC

Reference Set.
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5.2.5 SDAs

Three SDAs that have been previously described in the literature were considered:

1. An observed-to-expected shrunk interaction measure (Omega) [12];

2. The “interaction coe�cient” in a linear regression model with additive baseline

(delta add) [11];

3. measure based on an adapted version of Multi-Gamma Pois-son Shrinker (MGPS)

model, called Interaction Signal Score (IntSS) [13].

5.2.6 Impact of MedDRA granularity on SDAperformance evaluation

To assess the impact of MedDRA granularity on the SDAs that were considered in this

study, we performed a Receiver Operating Characteristic (ROC) analysis to examine

the di↵erence in AUC when considering matched controls from the two reference sets.

5.2.7 Estimation of design criteria impact on SDA performance eval-

uation

For each reference set and design criterion, we simulated the generation of a constrained

reference set by randomly drawing an equal number (1:1) of positive and negative con-

trols from the restricted control subset that used the specified design criterion for control

stratification. An unconstrained reference set of equal size was generated in each case

by following a similar process but using the original reference set. This sampling gener-

ation process took into account the correlation between the two sets, as the probability

of drawing one control for the constrained reference set did not a↵ect the probability

of drawing any control for the unconstrained reference set. The size of the simulated

reference sets varied from 100 to 2 ⇥ Nmax, where Nmax was determined by either the

number of positive or negative controls (depending on which one was smaller) in each

of the restricted subsets. For each SDA, we calculated: (i) AUC scores; and (ii) positive

predictive value (PPV) for fixed sensitivity values (i.e. 0.60, 0.75, and 0.90) for both

reference set types (i.e. constrained and unconstrained) by performing 1000 simulations.

The statistics of the samples were summarised by fitting a Normal distribution, for which

we report the mean and variance. The di↵erence of the means of AUC (AUCdiff ), and

PPV (PPVdiff ) (with 95% confidence intervals) were the target measures. The prob-

ability of AUCdiff being non-zero, P (|AUCdiff | > 0), was also estimated under the

normality assumption:

|AUCdiff | ⇠ N (|µAUCRestricted ROC
� µAUCUnrestricted ROC

|,
q
�2
AUCRestricted ROC

+ �2
AUCUnrestricted ROC

)
(5.1)

where µ is the mean, � is the standard deviation, and FAUCdiff
is the normal cumu-

lative distribution function (CDF) of AUCdiff . Figure 5.1 illustrates the simulation



Chapter 5. Existing SDA performance and impact of design criteria 82

Figure 5.1: (A) Initial positive and negative control sets (P and N) and their re-
spective restricted subsets (DC-restricted, p and n) when applying a design criterion;
(B) Simulation workflow for the di↵erences in AUC (AUCdiff ) and PPV (PPVdiff )

when considering the specified design criterion.

workflow for the calculation of di↵erences in AUC scores and PPV when considering the

various design criteria.

5.3 Results

The total number of positive and negative controls when applying each of the design

criteria to the PT Reference Set is presented in Figure 5.2. In cases where restricted

subsets contained both positive and negative controls (Figure 5.2A), the maximum

number of controls considered from each type (i.e. positive or negative) to form simu-

lated reference sets (Nmax) is denoted with white colour in the respective bar. For the

design criteria under the Evidence level category, where the restriction was only applied

to positive controls (Figure 5.2B), Nmax was defined as the total number of positive

controls in the respective restricted subsets. Apart from two cases (i.e. Shared indica-

tions - False and AE is an indication - False), positive controls out-numbered negative

controls in the restricted subsets. The simulated reference sets varied in size, with Nmax

ranging from 131 to 3,568. Hence, more than 250 positive and negative controls were
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SDA
PT Reference Set AUC

(95% CI)
MC Reference Set AUC

(95% CI)
Omega 0.6011 (0.5704, 0.6317) 0.5406 (0.5150, 0.5662)
delta add 0.4645 (0.4408, 0.4882) 0.4956 (0.4721, 0.5191)
IntSS 0.5374 (0.5100, 0.5648) 0.4885 (0.4654, 0.5117)

Table 5.3: Statistics related to the performance evaluation of three SDAs for DDIs
using matched controls from the PT Reference Set and MC Reference Set.

considered for every design criterion. For the MC Reference Set, the restricted sub-

sets were smaller in size (Table A.4). Three design criteria (BNF - Anecdotal, BNF

- Theoretical, and AE is an indication - True) were not tested with the MC Reference

Set, as their Nmax was less than or equal to 100. Figure 5.3 provides the frequency

distribution of PT prevalence in: (a) the set of unique PTs in the PT Reference Set; (b)

PT Reference Set positive controls; and (c) PT Reference Set negative controls. The

right-tailed distribution of unique PTs in CRESCENDDI shows that the data set was

populated with less common PTs, with only a small number of them having a prevalence

over 0.01 in FAERS. Similar trends were present in the curves of the positive and neg-

ative controls, with the latter consisting of more cases with a higher PT prevalence in

FAERS. The 1st, 2nd, and 3rd quartiles for the PT prevalence were 0.000343, 0.00135,

and 0.00410, respectively. The total number of positive and negative controls for each

group formed using PT prevalence quartile binning is shown in Figure 5.4. Group Q3

contained the largest volume in the case of positive controls, with Group Q1 and Group

Q2 being considerably smaller, while negative controls showed an increasing trend while

moving to groups of higher PT prevalence.

The MedDRA granularity a↵ected the SDA performance metrics in di↵erent ways

(Table 5.3). Omega and IntSS performed worse at the MC level as opposed to the

PT level, with their mean AUC score dropping by 0.0605 and 0.0489, respectively. For

Omega, there was a statistically significant decrease in the AUC between the PT and

MC level evaluations. In the case of delta add, the mean AUC slightly increased (0.0311)

when considering the MC level, however without outperforming Omega.

By plotting AUCdiff for a fixed constrained reference set size of 100 and ordering

design criteria by increasing range of AUCdiff values among the three SDAs (Figures

5.5 and A.4), points that lie above the x-axis signify positive estimates for AUCdiff ,

meaning that the design criterion had a positive e↵ect on the calculated AUC. Con-

versely, points below the x-axis were associated with a negative e↵ect on the AUC when

the specific design criterion was applied to constrain the reference set. Also, for the

di↵erent sizes of restricted reference sets using the PT Reference Set and the MC Refer-

ence Set, AUCdiff value estimates and associated probabilities of a non-zero AUCdiff

estimate were plotted (Figures A.5 and A.6). With the PT Reference Set, the largest

AUCdiff values were associated with the EMA Designated Medical Event Terms crite-

rion (between 0.071 and 0.095), while Common PTs resulted in negative values in the

range of -0.041 to -0.021 for the AUCdiff measure for all SDAs. In the case of the MC
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Figure 5.2: (A) Number of positive and negative controls from the PT Reference
Set for each of the di↵erent design criteria when the restricted subsets contained both
control types. The maximum number of controls considered from each type to form
simulated reference sets (Nmax) is denoted with white colour in the respective bar;

(B) Number of PT Reference Set positive controls for the Evidence level design criteria,
where the restriction could not be applied to negative controls.

Reference Set, BNF - Study had the largest positive impact on all AUCdiff values (be-

tween 0.098 and 0.051), while negative AUCdiff values derived from Shared indications

- True and AE is an indication - False (up to -0.043). Some design criteria a↵ected the

performance evaluation of all three SDAs in a similar way and level of magnitude (e.g.

BNF - Anecdotal, BNF - Study), while others (e.g. Shared indication - False) seemed

to have opposing and di↵erent in size e↵ects on AUC estimates.

Tables A.5 and A.6 report the PPVdiff estimates (with 95% CIs) for the di↵erent

design criteria, and a fixed reference set size of 100, for the PT Reference Set and MC

Reference Set, respectively. For both reference sets and sensitivity equal to 0.60, some

design criteria a↵ected PPV in opposing ways among the di↵erent SDAs. For example,

Shared indications - False resulted in negative PPVdiff estimates for Omega and IntSS

(in the range between -0.029 and -0.021) as opposed to positive ones for delta add

(around 0.051). For other design criteria (i.e. BNF - Study and EMA - Designated

Medical Events), PPVdiff estimates were positive across the di↵erent sensitivity values
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Figure 5.3: Frequency distribution of PT prevalence in FAERS for: (A) the set of
unique PTs in the PT Reference Set; (B) PTs contained in the PT Reference Set
positive controls; and (C) PTs contained in the PT Reference Set negative controls.

Figure 5.4: Number of positive and negative controls for groups Q1–Q4 that were
formed using PT prevalence quartile binning, with Q1 containing the controls with the

lowest prevalence and Q4 the highest one.
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for all three SDAs. For a sensitivity value of 0.90, PPVdiff for the di↵erent design

criteria were close to zero in all cases (values between 0.029 and -0.009).

With the PT Reference Set, we identified three main categories:

(i) Positive AUCdiff values

(a) BNF - Anecdotal

(b) EMA IME Terms

(c) BNF - Study

(d) Micromedex - Probable

(e) EMA DME Terms

(f) Rare PTs

(ii) Negative AUCdiff values

(a) Common PTs

(b) Micromedex - Theoretical

(iii) Mixed e↵ect on AUCdiff values

(a) AE is an indication - False

(b) AE is an indication - True

(c) Micromedex - Established

(d) BNF - Theoretical

(e) Only drug pairs that share at least one indication are included

(f) Drug pairs that share at least one indication are excluded.

With the MC Reference Set study, Omega and IntSS were a↵ected in a similar

way by the di↵erent design criteria. BNF - Study and Micromedex - Established had

a positive impact on the target measure for all SDAs, while excluding AEs related to

drugs’ indications (AE is an indication - False) or only considering drug pairs with

shared indications as controls (Shared indications – True) negatively a↵ected the SDA

performance in all cases. In terms of PT prevalence (Figure 5.6), there was a similar

trend for Groups Q1–Q3, with AUCdiff metric increasing for all algorithms as we moved

to more common PTs. However, this relationship appears to be reversed in Group Q4,

which contains the most frequent PTs in FAERS from the original data set, for Omega

and delta add, showing a negative impact on their AUC.
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Figure 5.6: AUCdiff values for Groups Q1–Q4 relevant to PT prevalence. The dot

size represents the probability of the estimated score, AUCdiff , being non-zero.

5.4 Discussion

This study provides a systematic evaluation of the impact of multiple design criteria

for reference sets on the comparative assessment of signal detection methodologies of

adverse DDIs in SRS data. Performance assessment of SDAs in pharmacovigilance has

often relied on the generation of custom-made reference sets that consider exclusion or

inclusion criteria to define eligible controls. Thus, the motivation behind this research

was to examine how di↵erent criteria could a↵ect the evaluation, potentially altering the

conclusions regarding which algorithms perform best. Our study highlighted that the

relative composition of reference sets might significantly impact the evaluation metrics.

Some criteria a↵ect the comparison of di↵erent methodologies, such as the restriction

of controls to only include PTs from the EMA’s designated medical event list. Other

criteria that were thought to have a potential e↵ect on the evaluation process (e.g. anec-

dotal evidence supporting a positive control) were not found to significantly change the

observed di↵erence in metrics among the methodologies, as all of them were influenced

in a similar way (Figure 5.5). Moreover, we found that the size of the reference set did

not have a considerable e↵ect on the AUCdiff , although the associated probability of

that metric being non-zero increased when considering larger sizes (Figures A.4 and

A.5). Apart from the AUC, commonly applied sensitivity values were considered to

identify the impact of design criteria on PPV. For most of the design criteria (e.g. EMA

Designated Medical Events, Micromedex evidence categories), PPVdiff values were af-

fected consistently with the AUCdiff estimates across the three di↵erent SDAs. For the

highest sensitivity that was considered (0.90), the di↵erence in PPV was in most cases

neglectable.

Given the inability of SDAs to account for all potential confounding factors that are

present in SRS data, each methodology might be impacted to a di↵erent extent by a
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confounder. At the same time, there might be cases where signals are triggered by those

confounding factors. As an illustrative example, the majority of DDI signals identified

using IntSS in the original research paper were composed of drug pairs that are usually

given concomitantly (e.g. antibiotics) [14].

We therefore need to consider the selection of appropriate controls to avoid misin-

terpretation of signals triggered by confounding factors rather than true associations as

well as adding biases to our evaluation by “favouring” some algorithms while penalising

others. On the other hand, by attempting to completely remove all potential sources

of confounding in our evaluation sets, we are more likely to fail to demonstrate their

utility in real-life application, which should be determined by their ability to perform at

a commensurate level when it is applied prospectively to identify novel signals in SRS

databases [97, 98]. Overall, this analysis advocates the utilization of large, to the extent

possible, reference sets when it comes to comparative performance assessment, that are

less likely to su↵er from the overrepresentation of controls that make di↵erent SDAs

behave in di↵erent ways due to confounding. Also, regarding novel reference sets, the

decision to restrict the evaluation set using specific design criteria should be adequately

supported.

A major concern about reference sets used for prospective signal detection in pharma-

covigilance revolves around the validity of established (i.e. well-known) positive controls

to test the performance of algorithms. This aspect has been widely discussed in the

literature [97, 98, 99]. It has been acknowledged that the combination of established

and emerging positive controls might be a better choice when we try to evaluate the

prospective performance and compare di↵erent methodologies because merely emerging

positive controls (i.e. recently detected ADRs) cannot establish a reliable reference stan-

dard [8]. Especially for DDIs, the establishment of reference sets by only using emerging

positive controls turns out to be particularly challenging, as we would end up having a

very limited number of controls to be able to quantitatively assess di↵erences in the per-

formance of the SDAs under comparison. A solution to this issue would be to perform

a backdated analysis to detect the time point that a signal of a true positive association

(positive control) was first highlighted, as proposed in previous studies [213]. However,

this back-dated analysis was not possible in this study due to the lack of a time-indexed

reference set for DDIs. A previous study compared the performance of SDA algorithms

for DDI surveillance between established and emerging positive controls, with Omega

and delta add showing increased specificity but diminished sensitivity in the latter case

[191]. In our analysis, the results related to the evidence level are consistent with what

we would expect to see. In terms of theoretical DDIs, it is common for drug interaction

compendia to extend the included DDIs to the drug class level, therefore covering drugs

under the same drug class that sometimes, but not necessarily, have a similar interac-

tion profile. Our results showed declining AUC values when considering theoretical DDIs

(i.e. Micromedex - Theoretical) as opposed to improvements with established ones (i.e.

BNF - Study and Micromedex - Established). On the other hand, all three examined
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methodologies demonstrated enhanced performance against anecdotal DDIs from BNF

and probable DDIs from Micromedex. However, the former category represented only a

small fraction of the overall positive cases contained in the PT Reference Set (2.94%).

In terms of event background prevalence, the simulation results suggest that, if we

restricted the evaluation set to specific ranges of PT prevalence, the conclusions would

change, that is, the sole choice of common PTs would have an inverse impact on the

comparative evaluation as to rare AEs. We know that SRS data are predominantly

used in the post-marketing setting to spot rare adverse reactions that ave not been

revealed during clinical trials. However, the use of SRS data for the detection of DDIs

can be considered a di↵erent scenario, given that clinical trial data are not su�cient to

detect adverse reactions of drug combinations due to inherent limitations (e.g. patient

recruitment processes that exclude people taking multiple medications). Hence, the

detection of novel DDI-related adverse reactions, even with a common background rate,

in SRS data should be of special interest.

Disease-related AEs are a challenging issue in the e↵ort to generate signals using

SRS data, as confounding by indication can occur. A previous study reported that

around 5% of the total reports for any drug in FAERS mention a drug’s indication as

an adverse event [214]. This might be related to poor reporting quality or intended to

report a disease’s exacerbations due to a drug. Our results support that the choice of

excluding disease-related AEs (i.e. AE is an indication - False) did not have a significant

e↵ect on the AUC across the SDAs with the PT Reference Set, while it decreased

the performance of all SDAs with the MC Reference Set. On the other hand, Omega

demonstrated deteriorated performance in the scenario of detecting controls with AEs

that were drugs’ indications at the same time (i.e. AE is an indication - True), while

the other two SDAs did not seem to be substantially a↵ected by this design criterion.

Event seriousness has been used to build reference sets and assess SDA performance,

as it could be utilised to filter signals in real-life pharmacovigilance settings [210, 211].

Our study suggests that, by only considering “significant” events, bias is introduced to

evaluating SDAs that could be potentially used in routine pharmacovigilance to detect a

broader set of events. Also, given that DMEs are rare events (i.e. have low prevalence)

with a high drug-attributable risk, it is important to note that this category might have

been confounded to an extent by other design criteria categories that were considered

in our study, such as the event frequency.

Quantitative signal detection is only one aspect of the more complex framework

before a safety signal is validated. In the case of adverse DDI surveillance, previous

studies have considered triage filters alongside disproportionality analysis to direct pre-

liminary signal assessment [215, 216]. These filters might be less suitable depending

on the type of DDI. For example, there are more filters relevant to pharmacokinetic

DDIs (e.g. cytochrome P450 activity) as opposed to pharmacodynamic interactions.

Although the clinical significance of the di↵erences between SDAs that are reported

in this study might be questioned, it is important to note that quantitative methods
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for adverse DDI surveillance remain way less mature compared to those for single-drug

safety surveillance, also considering the additional complexity that is inherent to DDIs.

In this way, the potential impact on real-world pharmacovigilance could not be refuted,

as even small changes in the performance of an SDA might have a considerable impact

on the number of generated signals that are captured for further evaluation, leading to

either missed signals or large amounts of potential signals that need to be evaluated,

thus increasing the manual e↵ort needed. It is also important to note that the three

SDAs that were included in our study are not implemented to the same extent in the real

world. Omega and IntSS are two of the major methods that we understand to be used

for routine pharmacovigilance screening for DDIs. delta add is a less mature method

that is described in the literature, for which, as far as we are aware, is not as widely

used in practice. Although this study provides a novel framework for studying how SDA

performance may change by considering di↵erent criteria for eligibility of controls, there

are some limitations worth mentioning. First, only a single test data set (i.e. FAERS)

was utilised for the purposes of this study. Also, CRESCENDDI was the only refer-

ence set utilised to generate estimates of the impact on AUC, in the absence of another

comprehensive data set that could be used as a comparative source. We acknowledge

that, by modifying the CRESCENDDI data set to consider adverse events at the MC

level, we ended up with a smaller reference set that only included controls that could

be represented by event groups (e.g. angioedema). This can have an impact on the

extrapolation of the results and conclusions drawn from our analysis when considering

single PTs as opposed to event groups. Additionally, for the determination of hit versus

miss, it is important to consider how the results calculated at the PT level can depict

the signal generation at the MC level. For example, if one SDA signals polymorphous

ventricular tachycardia and another one signals torsade des points at the PT level, they

have both made the same classification in real-world pharmacovigilance, as both would

have triggered the same case review by a diligent pharmacovigilance organization. The

performance of SDAs was only assessed using the default values provided in the origi-

nal research papers describing those methods (e.g. tuning parameter for shrinkage, ↵,

equal to 0.5 in the case of Omega). Finally, the aspect of unbalanced reference sets was

not explored in this study (i.e. positive to negative control ratio di↵erent from 1:1),

since previous studies in pharmacovigilance have evaluated SDAs using asymmetrical

reference sets [8, 211, 10].

5.5 Conclusions

This study revealed a varying impact of design criteria for reference sets on the perfor-

mance metrics of three SDAs that are used for DDI post-marketing surveillance. This

analysis showcases that the design of reference sets should be performed carefully, as the

comparison of SDA performance might be a↵ected by the choices made when building a
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reference set and the decision to restrict the evaluation to specific controls. Also, it high-

lights the need to establish frameworks that can make use of large and disparate data

sources to support the generation of open-source, flexible benchmarks in pharmacovigi-

lance. These benchmarks can not only ensure transparency and enable a fair evaluation

of SDA performance, but also provide a strong foundation that promotes productive

research in pharmacovigilance signal detection methodologies.

5.6 Data availability statement

The CRESCENDDI data set that supports the findings of this study is openly available

in Figshare at https://doi.org/10.6084/m9.figshare.c.5481408.v1.

https://doi.org/10.6084/m9.figshare.c.5481408.v1


Chapter 6

Identifying drug-drug interactions

in spontaneous reports utilising

signal detection and biological

plausibility aspects

The content of this chapter is a manuscript under preparation for submission

to Clinical Pharmacology and Therapeutics

Building upon the reference set that was developed in Chapter 4 and the explo-

ration of existing approaches for quantitative signal detection of DDIs from Chapter 5,

this chapter aims to develop and evaluate a novel framework for identification of drug-

drug interaction (DDI) signals in post-marketing surveillance data. This framework

combines disproportionate reporting with a signal refinement step to assess the biologi-

cal plausibility of the generated signals. Signal refinement is based on the establishment

of a network that aims to leverage both pharmacokinetic (enzyme and transporter) and

pharmacodynamic (drug target) information to inform biological plausibility, which had

not previously been explored in the scope of DDIs.

The key contributions of this chapter are: (i) a novel signal detection method for

DDIs based on Bayesian hypothesis testing aiming to produce a pharmacology-driven

output; (ii) the development of a systems pharmacology framework of established as-

sociations between biological nodes (i.e. drug targets, drug ingredients, and AEs) that

is used to refine the signals of potential DDIs and assess their biological plausibility;

and (iii) the exploration of two case studies demonstrating the applicability of the novel

approach for real-life detection and refinement of potential signals of DDIs linked to QT

interval prolongation and rhabdomyolysis.
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Abstract

The identification of safety signals in the post-marketing setting largely relies on signal

detection algorithms (SDAs) to reveal disproportionally reported adverse events (AEs)

following drug exposure. In the case of drug-drug interactions (DDIs), the detection of

novel signals is complex, with SDAs being less mature. At the same time, drug-target

associations have not been adequately utilised to enhance signal detection and evalua-

tion processes in this setting. This research aims to detect signals of disproportionate

reporting that are attributed to drug combinations and discern those from signals arising

from the constituent drugs by applying a Bayesian hypothesis testing framework. For a

subset of AEs of interest, potential DDI signals generated by a FAERS database-wide

screening were evaluated in terms of biological plausibility, with the aid of drug-target,

target-AE, as well as metabolism (i.e. enzyme and transporter) information.

6.1 Introduction

Polypharmacy rates have been increasing in the Western world over the last few decades,

with important implications for patient safety and a higher risk of drug-drug interactions

(DDIs). A DDI occurs when a drug’s e↵ect on the body changes in the presence of

another drug and can be categorised as either pharmacodynamic (i.e. at the level of

drug receptors or other drug targets) or pharmacokinetic (i.e. due to changes in the

drug absorption, metabolism or excretion) [118]. DDIs can be beneficial or adverse. For

the remainder of this paper, we will focus on adverse DDIs.

When a DDI is clinically observable, the possible outcome is either a lack of drug

e�cacy or an adverse drug reaction (ADR) that cannot be attributed to the individual

drugs separately. Pre-marketing clinical trials and drug interaction studies during drug

development are inadequate to fully capture adverse e↵ects linked to DDIs, which seem

to contribute to a significant proportion of drug-related adverse e↵ects in clinical practice

[5, 217]. The prediction of clinically-relevant DDIs is also a di�cult task due to human

inter-individual variability (e.g. poor versus rapid metabolisers, genetic susceptibility)

and di↵erences between how the human body acts compared to animal or in silico

models. Thus, post-marketing surveillance is essential to identify complications due to

interacting drug combinations.

Post-marketing safety surveillance databases, called spontaneous reporting system

(SRS) databases, collate reports that contain information on suspected drug complica-

tions. Examples include VigiBase (maintained by the Uppsala Monitoring Centre), the

US Food and Drug Administration Adverse Event Reporting System (FAERS) database,

and Eudravigilance from the European Medicines Agency. Disproportionality analysis is

a popular approach for signal detection in SRS data that aims to identify ‘unexpected-

ness’ in reported data by comparing the observed rate of adverse event (AE) occurrence

to the expected one using the background of the rest of the database [195]. While these
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databases and methods remain at the forefront to identify drug safety issues in the post-

marketing setting, there are multiple inherent challenges. Those include the inability to

get an accurate estimate of the incidence or reporting rates of AEs, the potential pres-

ence of reporting biases due to the voluntary nature of reporting (i.e. either under- or

over-reporting), stimulated reporting, duplicate reporting arising from multiple sources

reporting the same adverse incident, data quality issues, data loss when moving from an

unstructured to a structured format of information in SRS data, data incompleteness,

etc [218].

For DDI surveillance, existing SDAs test the degree of ‘unexpectedness’ of asso-

ciations between two drugs and an AE, assuming that the baseline model (i.e. the

contributions of the individual e↵ect of each drug in the absence of an interaction) is

either multiplicative [11] or additive [11, 12]. Other approaches have compared the dis-

proportionality measure for a drug combination (e.g. EB05 and EB95 scores) relative

to the measures for the individual drugs for a specific AE to identify signals of poten-

tial DDIs [13]. At the same time, the calculated measure does not allow us to directly

infer whether, and which of, the individual drugs give rise to unexpected reporting on

their own compared to their expected background rate. However, we would expect that,

for example, a pharmacokinetic DDI would involve disproportionate reporting rates for

the victim drug and the combination, while the reporting rate for the perpetrator drug

would not di↵er from the background rate. On the other hand, a pharmacodynamic

interaction would involve both unexpected reporting rates for the two drugs individu-

ally, plus a departure from the baseline additive model when the two drugs are used

concomitantly. The drug safety signal lifecycle involves several steps following the de-

tection of a signal, such as signal prioritization, signal evaluation and, if appropriate,

risk communication and management interventions [113]. The processes of signal evalu-

ation rely heavily on in-depth manual clinical review to assess the biological plausibility

of the identified signal. The well-known Bradford-Hill criteria are traditionally used

at this stage [106, 219]. Some previous e↵orts attempted to integrate some biological

aspects into the signal generation process for DDIs by considering metabolic enzymes

and transporters to assess the plausibility of a signal from a mechanistic perspective

[215]. However, as DDIs, apart from pharmacokinetic, can also be pharmacodynamic,

leveraging supporting information relevant to the biological mechanisms that might be

involved in the generation of this signal in the first place could enable mechanism-based

filtering of signals [220].

Recent e↵orts aimed to integrate systems pharmacology aspects into pharmacovigi-

lance signal detection, such as connections between drug targets and AEs as putative AE

mechanistic pathways to identify signals of single-drug side e↵ects [15, 18]. Other studies

have attempted to predict drug safety profiles in the post-marketing setting based on

target similarity with comparator drugs that have known safety profiles [221, 222, 196].

In the context of DDIs, the number of possible drug combinations in the clinical set-

ting and the amount of data that are constantly accumulating indicate the potential
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of coupling data mining and biological plausibility aspects to incorporate a mechanistic

understanding of the associations in our data mining methodologies. However, target-

AE associations have not been utilised in related studies to assess the performance of

SDAs for DDI surveillance. This approach could potentially limit the number of spuri-

ous associations that are identified as signals and help uncover novel DDIs that cannot

be solely detected in SRS data.

The aims of this study were: (a) to advocate an SDA for adverse DDIs that could

produce a pharmacologically-motivated output by detecting increasing reporting rates

in SRS data while being able to distinguish signals that might arise from constituent

drugs; and (b) to utilise a systems pharmacology framework of established associations

between biological nodes (i.e. drug targets, drug ingredients, and AEs) to refine the

signals of potential DDIs and automate an assessment of their biological plausibility.

6.2 Methods

6.2.1 Data sources

6.2.1.1 CRESCENDDI reference set

We used CRESCENDDI, an open-access reference set for adverse DDIs, as the source

of positive and negative controls for DDIs [21]. All controls were additionally stratified

using information from CRESCENDDI regarding their individual drug safety profile

(i.e. single-drug ADRs). For example, the combination of paroxetine and ibuprofen can

lead to an increased risk of bleeding. At the same time, both drugs are individually

associated with haemorrhagic events as adverse e↵ects. Thus, it was possible to classify

the control based on both the combined behaviour (i.e. whether there is evidence that

the drug combination interacts leading to a specific AE) and the individual ones (i.e.

whether each of the drugs is separately associated with the AE).

For a DDI control to be classified for the behaviour of either of its constituent drugs

(Table 6.1), we checked whether the ADR list of the drug contained any closely related

MedDRA Preferred Terms (PTs) to the DDI control’s PT. These ‘closely related’ PTs

were found under the same SMQ groups as the PT under consideration. For example, if

a DDI control was associated with Hypertension (PT), the ADR lists of the constituent

drugs were checked for the presence of any PTs from the SMQ ‘Hypertension’ (e.g. hy-

pertensive crisis). This classification enabled a stratified analysis to assess the ability

to detect disproportionate reporting for the di↵erent categories of individual drug be-

haviour: (i) Both (i.e. both drugs are independently related to the AE), (ii) One (i.e.

only one of the constituent drugs is linked to the AE), and (iii) None (i.e. neither of the

drugs is related to the AE).
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Category Description

00,0
A DDI negative control where the adverse event (AE)
is not a side e↵ect for either of the drugs

00,1
A DDI positive control where the AE is not a side e↵ect
for either of the drugs.

10,0
A DDI negative control where the AE is a side e↵ect
only for the first but not the second drug.

10,1
A DDI positive control where the AE is a side e↵ect
only for the first but not the second drug.

01,0
A DDI negative control where the AE is a side e↵ect
only for the second but not the first drug.

01,1
A DDI positive control where the AE is a side e↵ect
only for the second but not the first drug.

11,0
A DDI negative control where the AE is a side e↵ect
for both drugs.

11,1
A DDI positive control where the AE is a side e↵ect
for both drugs.

Table 6.1: Categories of individual drug behaviour for control stratification.

6.2.1.2 FAERS database

We curated and standardised the publicly available version of the FAERS database1

using the Adverse Event Open Learning through Universal Standardization (AEOLUS)

process [194] and considered spontaneous reports covering the period from the 1st quar-

ter of 2004 through to the 4th quarter of 2018. Drug concepts were standardised to

the RxNorm Ingredient level terms and AE concepts to MedDRA PTs, to ensure com-

patibility with the reference set. The curated dataset contained 9,203,239 reports that

included at least one drug and one AE, with 3,973,749 (43.18%) reports mentioning more

than one drug. Each drug was considered equivalent in the analysis irrespective of its

reported role (i.e. primary suspect; secondary suspect; concomitant; and interacting).

6.2.1.3 Open Targets

Open Targets [17] is a freely available resource that combines multiple public data sources

regarding potential therapeutic drug targets and associated information, including ev-

idence regarding target safety (i.e. associations between drug targets and potential

unintended adverse consequences). After downloading the core annotations for drug

molecules and targets as Parquet files2, we extracted the following information:

i Drug-target associations

ii Target-AE associations representing target safety liabilities.

Drugs were mapped to RxNorm Ingredients, while target mappings were available

as both Ensembl stable IDs (e.g. ENSG00000157764) (as the primary identifiers) and

UniProtKB accession numbers (e.g. P15056). In Open Targets, AE terms were reported

1https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-
adverse-event-reporting-system-faers-latest-quarterly-data-files

2https://platform.opentargets.org/downloads
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inconsistently in various ontologies3, thus we retrieved relevant MedDRA synonym terms

where possible via querying the OLS WEBAPI4 or using a manually curated mapping

table5 for Human Phenotype Ontology (HPO) [223] entities.

6.2.1.4 DrugBank

DrugBank [224] is an open-access knowledge base that contains information related to

drugs and drug targets. We downloaded DrugBank version 5.1.9 as an XML file6and

extracted drug enzyme, transporter, and target data. Apart from therapeutic (i.e. pri-

mary) targets, DrugBank also included secondary ones that were considered to comple-

ment primary target information for drugs from Open Targets.

6.2.1.5 Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)

STRING 11.5 [225] is an open-access database that contains protein-protein interactions

(PPIs) in various organisms mined from multiple evidence channels. Each PPI is as-

sociated with a confidence score in the dataset, which is computed by combining the

probabilities from the di↵erent channels and correcting for the probability of randomly

observing an interaction. We only selected PPIs of higher confidence in humans (i.e.

scores over 700 out of a maximum score of 1,000) for further consideration.

6.2.2 Development of a pharmacology-driven signal detection algo-

rithm for adverse DDIs

This approach can be also adapted to detect signals of two-way DDIs. Considering a

drug-drug-event (DDE) triplet, D1�D2�AE, FAERS reports can be categorised based

on the presence or absence of: (i) the first drug (D1); (ii) the second drug (D2); and

(iii) the event (AE), thus enabling the storage of the various category counts in a 4-by-2

contingency table (Figure 6.1a). We developed a novel SDA for detecting signals of

DDIs in SRS data (Figure 6.1b). The focus of this novel approach is on detecting signals

related to two-way DDIs in SRS data and distinguishing them from signals that arise due

to individual complications of the constituent drugs. Given the presence or absence of

either of the drugs, D1 and D2, there are four (potentially identical) rates of occurrence

of the event (AE). There are eight distinct hypotheses for which of the rates di↵er (and

which, if any, are identical): each hypothesis relates to whether each of the individual

drugs gives rise to complications and whether a two-way DDI exists. By assuming

a Beta-Binomial model, we assigned Beta prior distributions to the di↵erent rates in

the context of each hypothesis. We defined the hyperparameters of these priors by

maximising the likelihood of the AE counts in FAERS for all AEs that are mentioned in

3Experimental Factor Ontology (EFO), Human Phenotype Ontology (HPO), Gene Ontology (GO),
Mondo Disease Ontology, Orphanet Rare Disease Ontology, National Cancer Institute thesaurus (NCIt)

4https://www.ebi.ac.uk/ols/docs/api
5https://github.com/elpidakon/BANet/blob/main/appendix/Appendix S1.xlsx
6https://go.drugbank.com/releases/latest#full

https://github.com/elpidakon/BANet/blob/main/appendix/Appendix_S1.xlsx


Chapter 6. Signal detection and biological plausibility for DDI identification 99

the database (n = 19,931). For each DDE triplet, we calculated the posterior probability

(and so log-likelihood) for a DDI being present by summing the probabilities related to

all hypotheses that relate to the rate of the AE being reported when both drugs are

present being di↵erent to the rate of the AE being reported in all cases other than

when both drugs are present. The log-likelihood ratio and log posterior odds ratio were

the chosen metrics to observe a changing or an increased probability of AE occurrence

indicative of a DDI. A detailed mathematical description of the algorithm and the prior

hyperparameter estimation method are available in Appendix B.1.

6.2.3 Performance assessment - Model validation

To assess the performance of the novel SDA, we implemented the following evaluations

using Receiver Operating Characteristic (ROC) analysis: (1) a sensitivity analysis to

check the impact of the hyperparameters of the prior distributions on the SDA per-

formance (see Appendix B.2); (2) a comparison of the novel SDA with three other

existing methodologies for DDI surveillance, namely Omega [12], the Interaction Sig-

nal Score (IntSS) [13], and delta add [11]; (3) PT-restricted analysis for specific AEs

of interest with a su�cient number of controls (see Table A.7): bradycardia; gas-

trointestinal (GI) haemorrhage; haemorrhage; hypertension; hypoglycaemia; myopathy ;

QT prolongation; rhabdomyolysis ; and torsade de pointes; and (4) stratified analysis

based on the individual drug safety profile by utilising the classification of controls from

CRESCENDDI.

6.2.4 A systems pharmacology framework for signal refinement

We constructed the Biological Attribute Network (Figure 6.2) by integrating mul-

tiple types of information pertinent to systems pharmacology. The network included

the following types of nodes: (a) drug ingredients (RxNorm/RxNorm Extension con-

cepts); (b) AEs (MedDRA PT concepts); (c) targets (ensembl/UniProt/HGNC IDs);

(d) enzymes; and (e) transporters (UniProt/HGNC IDs). The links between the nodes

represented: (a) drug-target information from Open Targets and DrugBank; (b) target-

AE associations from Open Targets; and (c) target-target associations (i.e. PPI) data

from the STRING database.

We considered three di↵erent measures using the Biological Attribute Network

for signal refinement of signals for DDIs. For a DDE triplet, D1 �D2�AE:

• if the network contained all three nodes (D1, D2, AE) and links connecting each

node with any number of targets, we calculated the total number of nodes that

were included in the union of the individual shortest paths between each drug and

the AE under consideration (hereafter called shortest path measure);

• if the network contained the drug nodes (D1, D2) and links connecting each drug

node with any number of enzymes or transporters, we calculated the number of
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(a)

(b)

Figure 6.1: (a) Contingency table for signal detection of two-way DDIs (two drugs
and an adverse event); (b) Illustrative presentation of the Bayesian hypothesis testing
framework for two drugs. Hypotheses marked with red indicate that no signal related
to a DDI is detected, while hypotheses marked with green indicate the presence of a
signal indicative of an interaction between D1 and D2. If we consider two drugs, D1
and D2, then we can assume that one of the following scenarios will hold: (1) The
probability of AE reporting is equal irrespective of the presence of D1 and D2; (2)
The rate of occurrence of AE only changes when both D1 and D2 are present; (3) The
rate of occurrence of AE changes when D1 is present, irrespective of the presence of
D2; (4) The rate of occurrence of AE does not change when only D2 is present, but it
changes when only D1 is present and it is di↵erent to the one where D1 and D2 are
both present; (5) The rate of occurrence of AE changes when D2 is present, irrespective
of the presence of D1; (6) The rate of occurrence of AE does not change when only D1
is present, but it changes when only D2 is present and it is di↵erent to the one where
D1 and D2 are both present; (7) The rate of occurrence of AE changes to a di↵erent
degree when either D1 or D2 is present, with the rate being equal to an independent
risk assumption of no interaction when both D1 and D2 are present; (8) The rate of
occurrence of AE changes to a di↵erent degree when either D1 or D2 is present and
di↵erent to the independent risk assumption of no interaction when both D1 and D2

are present.
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Figure 6.2: Illustrative presentation of the Biological Attribute Network.

common enzymes and transporters between them (hereafter called enzyme measure

and transporter measure, respectively, and collectively called PK measures).

We then estimated via ROC curve analysis the combined performance of each of the

three types of measures with the log-likelihood ratio metric using logistic regression.

6.2.5 Novel signal evaluation – Case studies

We selected two AEs of interest (QT interval prolongation, rhabdomyolysis) to run a

FAERS-wide screening of signals. For each AE, we extracted all drug pairs found in at

least 5 FAERS reports and generated suitable contingency tables. We calculated the

log-likelihood ratios, shortest path measures and both PK measures to rank the DDE

triplets. We removed DDE triplets that were present in any of three established DDI

online resources (i.e. the British National Formulary [163], IBM Micromedex [165], and

the French Medicines Agency Thesaurus for DDIs [164]). We also did not consider drug

pairs that were under the same Anatomic Therapeutic Class (ATC) 4th level category,

as those belonging to the same chemical/pharmacological class and are not taken con-

comitantly. We then extracted the top 20 associations: (a) when only applying the SDA

(i.e. log-likelihood ratio); and (b) when applying a binary logistic regression model that

considered the SDA and either of the signal refinement framework measures (i.e. short-

est path measure for QT interval prolongation and PK measures for rhabdomyolysis)

to estimate predicted probabilities by utilising the logistic regression model coe�cients
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derived from the reference set (see previous section). We compared the rankings of the

top associations from either approach to assess the impact on the relative change of

ranking of the drug pairs.

For rhabdomyolysis, we calculated the log-likelihood ratio scores related to drug

pairs containing a statin (ATC code: C10AA), which is a drug class known to cause

an increased risk of rhabdomyolysis due to interaction with other drugs (i.e. fibrates,

macrolides, and fusidic acid) and compared them with the scores of ezetimibe (i.e. an-

other lipid-lowering agent) with the same drugs.

6.3 Results

6.3.1 Evaluation of the novel signal detection algorithm for adverse

DDIs

We assessed the novel SDA performance in FAERS using 4,455 positive and 4,544 nega-

tive DDI controls from CRESCENDDI that involved 442 drug ingredients and 168 AEs

as MedDRA PTs in total. The log-likelihood ratio, detecting a changing probability

indicative of a DDI, performed slightly better compared to the log posterior odds ra-

tio, which monitored increases in that probability (AUC: 0.574 and 0.548, respectively).

Thus, the log-likelihood ratio was then used for comparison with other SDAs. By taking

the subset of controls from the evaluation set that were found in at least 5 FAERS reports

(3,507 in total; 2,213 positive and 1,294 negative), the AUC score of the log-likelihood

ratio increased to 0.614 (Figure 6.3).

The selection of beta prior’s hyperparameters impacts the results produced by the

novel SDA. We investigated the e↵ect of the chosen prior hyperparameter set (↵0 and �0)

on the SDA performance assessment using ROC curve analysis. The AUC scores varied

between 0.502 and 0.599, with the lowest performance corresponding to a Beta prior for

the null hypothesis with hyperparameters ↵0|00,0 = �0|00,0 = 4 and the highest one to a

Beta prior with hyperparameters estimated from the FAERS AE rate distribution (see

Appendix B.2).

In terms of comparison with other SDAs for DDI surveillance, the log-likelihood ratio

outperformed Omega, which showed the highest performance (AUC: 0.569) among the

existing SDAs, followed by IntSS (AUC: 0.489) and deltaadd (AUC: 0.417). Also, the

log-likelihood ratio achieved better specificity for high sensitivity values compared to

Omega (Figure 6.3).

From the selected AEs that were individually considered for ROC curve analysis, the

novel approach produced the following AUC scores: hypoglycaemia (AUC: 0.742), rhab-

domyolysis (AUC: 0.674), bradycardia (AUC: 0.652), myopathy (AUC: 0.628) (Figure

6.4). The SDA performance was lower for haemorrhage (AUC: 0.528), GI haemorrhage

(AUC: 0.542), hypertension (AUC: 0.546), QT prolongation (AUC: 0.568), and Torsade

de pointes (AUC: 0.515).
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(a)

(b)

Figure 6.3: ROC curve analysis for: (a) log-likelihood ratio, using the whole eval-
uation set (red line) or the subset of controls that were found in at least 5 FAERS
reports (blue line); (b) comparative assessment of SDAs for DDI surveillance: Omega
(red line); Interaction Signal Score (green line); delta add (blue line); and log-likelihood

ratio (purple line).

The stratified version of the reference set in terms of individual drug behaviour

contained 4,212 controls in the Both category, 2,312 in the One category and 1,365 in

the None category. With this reference set, the overall log-likelihood ratio performance

was higher in the None category (AUC: 0.645) compared to the One (AUC: 0.578) and

Both (AUC: 0.533) categories (Figure 6.5a). The relative performance among the three

di↵erent categories was similar in the case of log posterior odds ratio (Figure 6.5b).

6.3.2 Improving signal detection of DDIs using systems pharmacology

aspects

The number of nodes and links from the individual data resources that were added to the

Biological Attribute Network are provided in Table 6.2. In total, the network contained

1,311 drugs, 351 AEs, 16,814 targets, 325 enzymes and 204 transporters. There were
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Figure 6.4: Receiver Operating Characteristic (ROC) curve analysis for specific Med-
DRA Preferred Terms (PTs): (a) rhabdomyolysis; (b) QT interval prolongation; (c)
myopathy; (d) hypertension; (e) hypoglycaemia; (f) haemorrhage; (g) gastrointestinal

haemorrhage; and (h) bradycardia.

Type Source Count
Nodes

Drugs Open Targets 1,311
Targets Open Targets 819
Targets DrugBank 2,180
AEs Open Targets 351

Targets STRING 16,814
Enzymes DrugBank 325

Transporters DrugBank 204
Links

Drug-Target Open Targets 3,663
Drug-Target DrugBank 10,035
Target-AE Open Targets 1,060

Target-Target STRING 505,968
Drug-Enzyme DrugBank 4,966

Drug-Transporter DrugBank 2,108

Table 6.2: Number of nodes and links contained in the Biological Attribute Network.

3,663 drug-target and 1,060 target-AE links from Open Targets, while the number of

drug-enzyme and drug-transporter links was 4,966 and 2,108, respectively. The number

of high-confidence STRING target-target associations was 505,968.
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(a)

(b)

Figure 6.5: Individual drug behaviour Receiver Operating Characteristic (ROC)
curves (a) using log-likelihood ratios; (b) using log posterior odds ratios.

The application of the systems pharmacology framework for signal refinement pro-

duced ROC curves with higher AUC values when the log-likelihood ratio was com-

bined with any of the three measures (shortest path, enzyme, and transporter mea-

sures) (Figure 6.6). The shortest path measure combined with the log-likelihood ratio

produced an increase to the AUC score from 0.620 to 0.722 using the relevant controls

with nodes that were present in the Biological Attribute Network. Similarly, for

both PK measures, the AUC scores of the combined models (i.e. log-likelihood ratio +

enzymes; log-likelihood ratio + transporters) were higher to the ones considering only

the log-likelihood ratio (from 0.580 to 0.673 for consideration of enzymes; from 0.568 to

0.653 for consideration of transporters).

6.3.3 Exploring signal evaluation for selected AEs

For QT interval prolongation, the top 20 associations using only the log-likelihood ratio

were consistently ranked lower using the combined approach with the shortest path
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(a)

(b)

(c)

Figure 6.6: Receiver Operating Characteristic (ROC) analysis that considers the use
of the log-likelihood ratio combined with: (a) the shortest path measure; (b) the enzyme

measure; and (c) the transporter measure.
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measure (Figure 6.7). Only one positive control from CRESCENDDI was present in

the top 20 associations using the log-likelihood ratio for ranking, while 6 drug pairs were

found in at least one of the clinical resources that were considered in this study (i.e.

BNF, Micromedex, or ANSM Thesaurus). On the other hand, the top 40 associations

using the combined approach contained 5 positive controls from CRESCENDDI, while

only 6 drug pairs out of 40 did not belong to any of the clinical resources (Figure

6.8). For the top 31 drug pairs when applying the combined approach, the di↵erences

in rankings ranged from 981 to 7,809. For the remainder of the associations (32-40),

small ranking di↵erences were observed. The combination of amlodipine with dofetilide

has not been reported in any clinical resource but was ranked 14th when considering

the shortest path measure (and moved 4,279 positions up). Similarly, the combination

of clonazepam with acamprosate also moved 70 positions (36th) with the application of

the combined approach.

For rhabdomyolysis, we compared the rankings using the log-likelihood ratio scores

of statins, which is a drug class known to cause an increased risk for rhabdomyolysis

due to interaction with other drugs (i.e. fibrates, macrolides, and fusidic acid) as op-

posed to rankings of ezetimibe, which is another lipid-lowering agent, with the same

drugs. In the ranking of the 16,799 filtered drug pairs (i.e. with at least 5 FAERS

reports) that were screened for rhabdomyolysis, drug pairs that contain statins consis-

tently populated the top places in the ranking table (e.g. simvastatin with gemfibrozil

or clarithromycin, atorvastatin with fusidic acid), while drug pairs that contain the com-

parator drug (ezetimibe) were lower in rankings (below 1,000) (Table 6.3). In all four

cases of interacting drugs, simvastatin and atorvastatin were placed above ezetimibe,

with a very high log-likelihood ratio (values between 3.69 and 241.2).

6.4 Discussion

Signal detection in pharmacovigilance encounters multiple challenges due to the nature

of the data and reporting, leading to methodologies either producing falsely generated

signals or being incapable of spotting relevant ones. This issue is also augmented by

the fact that SDAs mainly rely on disproportionality analysis and do not involve any

pharmacological considerations. As this is particularly relevant in the case of DDIs,

the main goal of this study was to assess a novel SDA for identifying novel DDIs using

a Bayesian hypothesis testing framework and adding a signal refinement step utilising

systems pharmacology data. First, we performed a quantitative comparison of existing

SDAs along with the novel one using a large and diversified publicly available reference

set. The novel method outperformed all three existing ones in terms of AUC scores.

We also noticed adequate or above-average algorithm performance for specific AEs of

interest, especially for DDI surveillance, such as QT interval prolongation, rhabdomy-

olysis, bradycardia, and hypoglycaemia. The novel SDA showed enhanced performance

when combined with any of the three measures derived from the Biological Attribute
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Figure 6.8: Top 40 associations using the shortest path + log-likelihood ratio approach
and their respective rankings with the log-likelihood ratio approach. The di↵erence be-
tween the two rankings for each drug pair is denoted in the label on the right side of the
plot. Drug pairs in green represent the ones that were positive controls for QT interval
prolongation in the CRESCENDDI reference set. Drug pairs in orange represent the
ones that were mentioned as known to interact in any of the clinical resources that
were considered in this study (i.e. BNF, Micromedex, or ANSM Thesaurus), although
those drug pairs could be associated with other medical events apart from QT interval

prolongation.
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Drug 1 Drug 2 Log-likelihood ratio Drug pair ranking

GEMFIBROZIL

SIMVASTATIN 241.2192869 2
CERIVASTATIN 15.45426136 1315
PRAVASTATIN 9.746103259 2301
ATORVASTATIN 3.687716196 4656
ROSUVASTATIN -1.424158741 13149
LOVASTATIN -1.444116569 13200
EZETIMIBE -1.902040641 14046

CLARITHROMYCIN

SIMVASTATIN 148.8437063 12
ATORVASTATIN 11.26737274 1967
EZETIMIBE 2.523279591 5574
PRAVASTATIN -0.449481203 9767
ROSUVASTATIN -0.767005855 10653

FUSIDIC ACID

ATORVASTATIN 105.3754776 22
SIMVASTATIN 88.46783535 34
PRAVASTATIN 4.715557493 4082
EZETIMIBE 1.187202838 6968

ROSUVASTATIN -0.301944238 9388

FENOFIBRATE

SIMVASTATIN 37.277021 263
ATORVASTATIN 26.35263041 518
EZETIMIBE 17.91501155 1054

ROSUVASTATIN -0.620035622 10189
PRAVASTATIN -1.915656202 14065

Table 6.3: Drug pair log-likelihood ratio scores and rankings from screening rhab-
domyolysis FAERS cases that contain: and (i) a fibrate, macrolide or fusidic acid (i.e.
potentially interacting drug) (Drug 1) and (ii) a statin or ezetimibe (as a comparator
drug) (Drug 2). Rankings were calculated out of the 16,799 eligible drug pairs (i.e. at

least 5 FAERS reports) that were screened for rhabdomyolysis.

Network (i.e. shortest path, enzyme, and transporter). Also, two case studies demon-

strated the applicability of the novel approach for real-life signal detection purposes: the

first one was related to signal prioritization for QT interval prolongation; the second one

showed the relative magnitude of rhabdomyolysis signals of the novel SDA associated

with statins and other lipid-lowering agents.

Systems pharmacology can support signal detection in pharmacovigilance to identify

more signals with biological plausibility. While this is important for single drugs, it is also

particularly relevant for the detection of novel DDIs, considering the even larger number

of potential drug combinations that can arise, many of which can be flagged as potential

signals. The increasing availability of data related to the mode of action of drugs, and

their metabolic and elimination pathways, and the human protein interactome can allow

the incorporation of this knowledge to inform statistical models that can flag potential

novel drug(-drug) complications. However, appropriate methods are needed to be able

to transform this knowledge into quantitative evidence that can be fed into a statistical

framework.

The strength of this study includes the use of a comprehensive and clinically relevant

reference set. By having access to a large set of controls that also considers multiple

AEs, a quantitative comparison of existing SDAs with the novel approach was possible.
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The novel SDA provides outputs that could be utilised in combination or separately to

monitor the di↵erent probabilities that could provide a pharmacology-driven framework.

Also, the signal detection framework could be extended to consider higher-order drug

interactions. The use of open data (SRS database, reference set, systems pharmacology

data) is another strength of this study. This study introduced the concept of incorporat-

ing biological plausibility aspects as a signal refinement step, which has been explored

in other studies but not in the scope of DDIs.

The SDA yielded reasonable results in terms of ranking drug pairs for signals of

rhabdomyolysis based on existing pharmacological knowledge. These findings suggest

that the novel SDA could be useful in screening SRS data in real-world applications.

In terms of the signals of ezetimibe (that was used as a comparator drug), those were

always below the respective signals from atorvastatin and simvastatin. Simvastatin and

atorvastatin are predominantly metabolised by CYP3A4 and their levels increase sig-

nificantly when co-administered with strong CYP3A4 inhibitors, such as clarithromycin

[226]. Moreover, both statins are substrates of the organic anion-transporting polypep-

tide (OATP)1B1, which is responsible for their hepatic uptake and is also inhibited

by clarithromycin. Therefore, the presence of the macrolide substantially a↵ects the

concentration of both statins [227]. Another example is the signal of cerivastatin with

gemfibrozil, which ranked high in the analysis. Cerivastatin was withdrawn from the

market worldwide in 2001 due to its association with rhabdomyolysis, with a higher

risk observed when taken concurrently with gemfibrozil [228]. Furthermore, although

most statins generated relatively strong signals with gemfibrozil, the same was not ob-

served with fenofibrate. In fact, according to clinical guidelines and literature, of the

two fibrates, gemfibrozil has a higher risk of interacting with statins and leading to

rhabdomyolysis [229, 230]. A surprising finding was the rhabdomyolysis signal of fenofi-

brate with ezetimibe, which was in a higher ranking (1054th) in comparison to signals of

other statins. Previous studies have examined the safety of this combination and have

reported no clinically important elevations in creatine phosphokinase (CPK) (which are

indicative of rhabdomyolysis) or additional risk of myopathy due to the combination

therapy [231, 232].

This study also identified two potential signals of novel DDIs linked to QT interval

prolongation (amlodipine – dofetilide and clonazepam – acamprosate), which are cur-

rently unknown but are supported by both statistical screening and biological informa-

tion. More precisely, both clonazepam and acamprosate are positive modulators of the

anion channel of the GABA-A receptor GABRG3. In the Biological Attribute Net-

work , GABRG3 is linked to the potassium voltage-gated channel KCNH2 that is associ-

ated with QT interval prolongation (target-AE association) via two nodes (GABARAP

and AMK2)7. In terms of the combination of amlodipine and dofetilide, the associated

nodes in the network are interconnected. Amlodipine blocks the voltage-gated L-type

calcium channel (CACNA1C), while dofetilide blocks the voltage-activated potassium

7https://string-db.org/cgi/network?taskId=byHEDTBYX46p&sessionId=bZwf7vZ81xl7&allnodes=1
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channel (KCNH2). These two targets are directly linked and KCNH2 is also associated

with QT interval prolongation8.

A systematic evaluation of di↵erent SDAs for DDI surveillance was missing from

the literature. A previous study used Stockley’s as a source of positive controls, but

the resulting reference set was not made available, hindering the reproducibility and

extension of the study and the possibility to further dive into the nature of the controls

[191]. Other e↵orts have used benchmarking only for a very limited number of AEs of

interest to measure and compare SDA performance [11, 12, 53]. In our study, the con-

sideration of a large and diversified reference set enabled us to compare the performance

of the novel SDA across multiple AEs. We noticed substantial di↵erences in method

performance depending on the AE. As an illustrative example, for common AEs, such

as haemorrhage, the masking e↵ect might have been responsible for lower performance.

Systems pharmacology has been incorporated in drug development. Multiple ma-

chine learning and artificial intelligence (AI) methodologies have also examined DDI

prediction by integrating various data types and information sources as features, such

as drug target profiles (i.e. drug-protein interactions), metabolising enzymes, and trans-

porters [196, 16, 233, 234]. However, systems pharmacology coupled with pharmacovig-

ilance has only been recently considered in studies and has not been explored in the case

of adverse DDIs. For single drugs, we have seen some recent e↵orts to develop similar

frameworks that, apart from main pharmacological targets, also consider o↵-targets to

aid the detection of drug-related side e↵ects [18, 235]. The use of o↵-target data might

be particularly relevant in the context of drug safety, as many drug complications lead-

ing to adverse drug reactions are related to secondary pathways and o↵-target activity

of the drug molecule.

6.4.1 Limitations of the study

The focus of this study was on two-way DDIs, although high-order DDIs (i.e. involving

more than two drugs) would be an area of focus for future studies. Some previous work

has already attempted to explore this area [236, 237].

The masking e↵ect that can be present in SRS data was not considered in this study

in the data mining step. Revising the concept of masking in the case of contingency

tables for two-way DDIs, which has been extensively described and explored in previous

studies for single drugs [101, 238, 239, 240], would also be interesting. The modifications

of the data mining step in an e↵ort to minimise the bias resulting from masking in SRS

data could potentially increase the performance measures of the di↵erent SDAs for DDI

surveillance. Additionally, it could have an impact on the signal prioritization step,

altering the drug pair rankings.

The existing evidence that currently appears in Open Targets regarding target safety

liabilities is limited to a small number of targets and only validated associations; thus

8https://string-db.org/cgi/network?taskId=bQeC3KyUtXJ6&sessionId=bocWSP6Up7f7
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it might correspond to well-known safety complications arising from drug combinations

that appeared in the reference set that was utilised for performance evaluation.

This study considered the combination of the di↵erent systems pharmacology mea-

sures with the SDA scores using binary logistic regression. However, non-linear ap-

proaches could also be relevant.

6.5 Conclusion

This study provides a novel framework for detecting DDI signals using disproportionate

reporting in FAERS combined with a biological information network. With an increasing

volume of systems pharmacology information now available, we show that this informa-

tion has the potential to enhance signal detection in pharmacovigilance, with DDIs being

an important and promising area of application. This study also identified two potential

DDI signals related to QT interval prolongation. Further studies, including the consid-

eration of additional SRS databases, real-world evidence, in vitro or in vivo experiments,

are needed to validate the potential signals.



Chapter 7

Conclusions

The first section of this chapter presents an overview of the research findings and contri-

butions discussed in the previous chapters of the thesis as per the objectives the thesis

objectives outlined in Section 1.2. The second section briefly discusses open problems

and potential future research directions based on the findings of this thesis.
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7.1 Summary of Thesis Findings and Contributions

Objective I: Understand the existing evidence related to clinically relevant

and observable drug-drug interactions (DDIs) by exploring the level of agree-

ment on information listed in di↵erent drug information resources (DIRs).

Chapter 3 addressed this objective by performing a similarity and consistency assess-

ment of three leading clinical resources for DDIs from di↵erent geographic locations,

namely the British National Formulary (BNF), Thesaurus and Micromedex. One of the

key findings was that, despite the considerable overlap in the listed ingredients of the

three resources, there was significant variation in the DDIs included. Additionally, there

was considerable variability in the other three examined types of information pertinent

to DDIs (severity rating, evidence rating, and clinical management recommendations).

This variability, which can have critical implications for patient safety, also emphasises

the necessity of using multiple data sources to establish a reliable dataset for scientific

research that represents the existing evidence on clinically relevant and observable DDIs.

This reference set could serve as a benchmark for evaluating the performance of signal

detection algorithms (SDAs) in pharmacovigilance.

This study stands out as the first comprehensive assessment that has considered both

complete and clinically relevant DIRs, rather than data sources of potential DDIs that

may not be observable. Moreover, the study presented a methodology for automatically

extracting web data from DIRs and a standardisation pipeline to align data from multi-

ple resources to a common framework using controlled vocabularies and terminologies.

Objective II: Build a clinically relevant reference set for DDIs.

Chapter 4 tackled the development of a Clinically-relevant Reference Set CENtred

around Drug-Drug Interactions (CRESCENDDI). CRESCENDDI is a publicly available

resource that adheres to the FAIR data principles (Findable, Accessible, Interoperable,

and Reusable). It was built by assembling information from disparate clinical resources

that could provide support for the clinical relevance of controls. CRESCENDDI consid-

ered a large number of controls related to multiple drugs and adverse events (AEs) that

were mapped to controlled vocabularies and terminologies.

Chapter 4 presented several key contributions. First, it described a scalable ap-

proach for building a standardised resource by combining multiple harmonised resources.

The pipeline can be re-run to get an updated reference set based on the latest modifica-

tions of the DIRs. Hence, this approach would require minimal manual e↵ort for future

updates. Also, CRESCENDDI was mapped to standardised terms from the Observa-

tional Health Data Sciences and Informatics (OHDSI) Common Data Model, allowing

it to be linked to other vocabularies and terminologies as needed based on the test

data resources, including, for example, electronic health records (EHRs) and patient

registries. Additionally, the size of CRESCENDDI and the relatively large number of
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included drugs and AEs provides a common ground for the performance evaluation of

SDAs for DDIs in pharmacovigilance. Finally, the inclusion of additional information

such as drug indications, single-drug adverse drug reactions (ADRs), and evidence levels

enables filtering and stratification of controls.

Objective III: Assess the impact of di↵erent choices on the nature of the

controls included in a reference standard on the performance assessment of

existing SDAs for DDI surveillance.

Chapter 5 utilised the CRESCENDDI reference set that was developed in Chapter 4

to address this objective. It systematically evaluated 14 design criteria for reference sets

as potential sources of confounding for signal detection of DDIs in pharmacovigilance.

The study revealed that certain criteria, such as restricting controls to only include Med-

DRA Preferred Terms (PTs) from the European Medicines Agency (EMA) Designated

Medical Event list or rare AEs, had a significant e↵ect on the performance and compar-

ative evaluation of di↵erent SDAs for DDI surveillance in spontaneous reporting system

(SRS) data. Conversely, other criteria, such as limiting the reference set to positive

controls associated with theoretical evidence, did not have a significant impact on the

absolute and relative performance metrics of the three SDAs.

The analysis highlighted the importance of considering the choices made when con-

structing a reference set and restricting the evaluation to specific controls when com-

paring SDA performance. Additionally, it emphasised the need for frameworks that can

leverage large and diverse data sources to generate open and flexible benchmarks in

pharmacovigilance.

Objective IV: Evaluate the ability of a novel Bayesian hypothesis testing

framework to identify signals of disproportionate reporting indicative of

DDIs in post-marketing surveillance data and assess the potential for sig-

nal refinement using biological plausibility aspects.

This objective was addressed inChapter 6 by presenting and evaluating a new approach

to identifying DDI signals in SRS data that combines disproportionate reporting with a

network of biological information. A Bayesian hypothesis testing framework was com-

pared against existing SDAs for DDI surveillance in SRS data using the CRESCENDDI

reference set that was built in Chapter 4. The novel method outperformed all three

existing SDAs in terms of the Area Under the Receiver Operating Characteristic Curve

(AUC) scores and achieved better specificity for high sensitivity values. Furthermore,

for specific adverse events of interest, such as QT interval prolongation, rhabdomyoly-

sis, bradycardia, and hypoglycaemia, the novel SDA showed adequate or above-average

performance. Additionally, by incorporating biological plausibility aspects as a signal

refinement step through the Biological Attribute Network, the novel SDA demonstrated
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enhanced performance when combined with any of the three network measures (shortest

path, enzyme, and transporter). Notably, two case studies demonstrated the applicabil-

ity of the novel approach for real-life signal detection purposes, including signal priori-

tization for QT interval prolongation and evaluating rhabdomyolysis signals associated

with statins and other lipid-lowering agents.

Chapter 6 introduced several novel contributions. First, it provided a systematic

evaluation of di↵erent SDAs for DDI surveillance that was missing from the literature.

It also introduced the Biological Attribute Network, which contains systems pharma-

cology data from two di↵erent publicly available resources (i.e. DrugBank and Open

Targets). The establishment of this network enabled the utilisation of both pharma-

cokinetic (enzyme and transporter) and pharmacodynamic (drug target) information to

inform biological plausibility aspects as a signal refinement step, which had not previ-

ously been explored in the scope of DDIs. Finally, the study highlighted potential signals

that require further investigation, such as utilizing other SRS databases or conducting

a literature search for validation.

7.2 Future Perspectives

The findings presented in this thesis can provide a valuable foundation for exploring at

least three possible directions for future research. Firstly, enhancing the existing evi-

dence and standards for clinical decision-making. Secondly, improving the quantitative

methods used for the detection of novel DDIs, by addressing computational challenges

and utilising disparate information sources to support quantitative analysis. Lastly, in-

tegrating biological knowledge and systems pharmacology evidence to gain a mechanistic

understanding of the signals identified.

Further exploration of the evidence related to clinically-observable DDIs can lead to

two important outcomes. It can first inform harmonisation e↵orts in information re-

porting across resources that are used in the clinical setting with the goal of improving

patient safety. Also, it can support pharmacovigilance activities by generating refer-

ence sets that aid in developing algorithms and statistical methods for detecting and

predicting novel DDIs.

From a clinical perspective, expanding the field of interoperable standards for DDI

information in clinical resources is an important direction for patient safety that requires

a combination of collaborative partnerships as well as data standardisation e↵orts. There

are multiple sensible activities that could draw upon the research and methodology

described in this thesis to further explore and understand the current situation and

practices with the aim of supporting the establishment of standards that can be adopted

for real-world implementation. For example, it is crucial to broaden the scope of analysis

to include clinical resources that are not readily accessible due to subscription or usage

restrictions. Investigating the completeness of generic resources for DDIs relative to

those tailored to specific drug categories, such as the Liverpool Drug Interaction Checkers
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for anticancer drugs, can also provide valuable insights. Conducting comprehensive

comparisons of clinical management recommendations across entire resources, rather

than subsets, can also help identify discrepancies in reported information.

The perspective of developing collaborative networks and partnerships between DIR

vendors, developers, healthcare providers, clinicians but also researchers would enable

the creation of information reporting standards that meet the requirements of various

stakeholders. These standards should comprehensively define the required data fields,

types, and ways of information reporting in clinical DIRs. Some important aspects

would be related to data provenance (e.g. information from drug labels, literature, etc),

information update procedures, as well as clear definitions and categorisation of evidence

and severity categories for clinically relevant DDIs that can be uniformly adopted. The

overall goal of these activities is to provide guidelines and frameworks for building more

comprehensive DDI information resources for clinical practice. In the context of po-

tential DDI data sources for scientific research, there is a recently developed minimal

information model [241] that could be utilised as an exemplar for clinically-relevant DDI

standards development.

In terms of data standardisation, while bioinformatics and cheminformatics resources

such as DrugBank and the Open Targets Platform use controlled vocabularies and on-

tologies to standardise their data where possible, clinical DIRs are considerably less

standardised to public terminologies. However, standardising the mapping of terms as-

sociated with the clinical manifestation of DDIs in DIRs could enable interoperability

with other resources, contribute to standards development in the field, but also facilitate

the integration of resources with routinely collected data. For example, the Systematised

Nomenclature of Medicine Clinical Terms (SNOMED-CT) could be used for mapping

medical events associated with the clinical manifestation of DDIs and RxNorm or WHO-

Drug for drug names.

From a methodological perspective, building reference sets that incorporate the most

current evidence by leveraging scientific literature through techniques such as identify-

ing causality patterns in free text using natural language processing (NLP) could help

in identifying eligible controls. Additionally, current reference sets only consider drug

interactions on a pair-wise drug combination basis and do not consider other patient-

specific contextual information (e.g. genetic polymorphisms) that can impact the risk

of experiencing a clinically observable adverse DDI [242].

A second direction for future research concerns quantitative methods for signal de-

tection of DDIs. A current gap in the literature concerns the development of data-

driven techniques to overcome the masking e↵ect in disproportionality analysis caused

by the one-versus-rest approach for the AE background estimation (see Chapter 6).

This would be particularly important in the context of processing data from novel data

streams, which may include true signals that have not been seen before. In principle,

such a data-driven approach could be developed by extending the hypothesis testing
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techniques considered in Chapter 6 but with a focus on hypotheses for the set of sur-

prising rates (across all AEs and drug combinations). Searching that space would be

likely to require sophisticated numerical Bayesian techniques (e.g. Markov Chain Monte

Carlo [243]).

Another opportunity lies in the use of more data streams. The inherent limitations

in SRS data place constraints on the scope of research that can be conducted using this

data source for PMS. One significant limitation lies in the SRS data’s incapability to

capture the temporal utilization of drugs, including the sequence of medication intro-

duction into a patient’s treatment regime and the time to onset of adverse events (AEs)

following drug administration. This deficiency in tracking temporal patterns hinders the

assessment of the causal relationship between drug interactions and the onset of AEs.

Also, the incomplete information available in SRS data regarding drug doses, durations,

and routes of administration, which relies on the details provided by the reporter, limits

the inclusion of these variables in data mining e↵orts. Furthermore, under-reporting

and selection bias are two other substantial challenges associated with SRS data [244].

Under-reporting skews the estimation of the prevalence of AEs within the population.

Additionally, SRS data may be susceptible to selection bias due to selective reporting

patterns. The awareness and publicity surrounding specific alerts can distort dispro-

portionality measures in spontaneous reporting databases. This notoriety bias may also

trigger a ’ripple’ e↵ect, altering the reporting patterns of other drugs associated with

the same e↵ect [245].

One avenue to address these limitations of SRS data is leveraging alternative data

streams, including EHR and administrative claims data that can enable longitudinal

analysis. EHR databases such as the Clinical Practice Research Datalink (CPRD) can

also assist in the causality assessment of potential signals by providing additional clinical

details. The combination of multiple data sources also requires more sophisticated and

flexible methods than the disproportionality measures for DDI surveillance that have

been previously described in the literature. The hypothesis testing framework devel-

oped in Chapter 6 would be a good starting point to enable consideration of data

coming from disparate data sources. Previous research (e.g. [53]) has used SRS data for

training and EHR data for prediction, but the combined use of multiple databases for

DDI surveillance has not been fully explored. The utilisation of contextual information

from EHR data can also provide further support and explanation of signal generation

processes that result in predicted novel DDIs and are triggered by statistical and other

computational methods. For instance, patient-specific factors, including renal function,

genetic polymorphisms, etc, can be available in EHR data and may influence the man-

ifestation of DDIs. In addition, non-conventional data sources, such as social media,

could also be investigated in combination with traditional data streams. However, text

mining and NLP techniques would be necessary for encoding free text from data sources

that are not coded to medical terms, including clinical notes in EHR data and social

media posts.
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Moreover, the signal detection framework that was developed and applied in Chap-

ter 6 can be extended to consider higher-order drug interactions. However, this activity

also requires appropriate reference sets of multi-way (e.g. three-way) drug interactions

for performance evaluation that have not been developed to date (as mentioned above).

Current research is also limited by the fact that DDIs are typically considered in-

dependently of each other. In other words, knowing about the existence of one DDI

provides no information about the signal detection of any DDI that can involve one of

the interacting drugs, drugs of the same class or drugs with similar mechanisms of ac-

tion. Grouping drugs using established terminologies and classification systems such as

RxNorm and ATC could help in identifying potential DDIs by utilising drug similarity

in terms of mechanism of action or therapeutic class. Previous research has consid-

ered similarity analysis in the context of cheminformatic data sets such as PubChem to

predict novel DDIs based on structural drug similarities with drug molecules that are

known to interact [246].

Finally, the integration of systems pharmacology aspects into signal detection for

DDIs can inform the statistical methods with the biological plausibility of the examined

associations. This thesis considered the combination of the di↵erent systems pharmacol-

ogy measures with the SDA scores using binary logistic regression. However, non-linear

approaches could also be relevant. Utilising additional data resources for constructing

the network of biological information, such as a recently developed knowledge graph

[247], could also be considered. Regarding graph mining approaches, apart from the

shortest path measure (Dijkstra’s algorithm) that was examined in this thesis, there are

other more sophisticated methods for graph mining tasks such as node classification and

link prediction, including random walks and neural networks.

Some of the above-described research directions can be potential areas to be ad-

dressed in the DynAIRx project [248], which is led by the University of Liverpool. Dy-

nAIRx aims to support medicines optimisation by leveraging artificial intelligence (AI)

and statistical methods for causal inference and prediction of clinical outcomes using

structured clinical data from general practice, hospitals, and social care.

In summary, the identification of novel complications of drugs related to DDIs in the

post-marketing setting is a complex task that requires a combination and appropriate

fusion of various sources of data using methods that can utilise existing biomedical knowl-

edge and integrate it with routinely collected healthcare data and voluntarily reported

safety data. With the advancement of computational methods capable of handling com-

plex problems, there is an opportunity to identify novel DDIs that could be a result of

more than a two-way interaction in the future.
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Figure A.1: An overview of drug-drug interaction online resources.
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Figure A.2: Pipeline for the clinical recommendation labelling.

Figure A.3: Similarity matrix of the Jaccard index for all drug information resource
severity ratings.
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Table A.1: Performance metrics and applied thresholds of the selected sentence clas-
sifiers for Micromedex descriptions. PPV: Positive Predictive Value

Advice label PPV Sensitivity Threshold

ADJUST DOSE 0.860000 1.000000 0.352397

AVOID 0.804878 0.750000 0.459679

DISCONTINUE 1.000000 0.500000 0.653243

MONITOR 0.892308 1.000000 0.356476

USE ALTERNATIVE 0.833333 0.714286 0.367563

USE WITH CAUTION 0.800000 0.923077 0.210383

WASH-OUT 1.000000 0.142857 0.858192

Table A.2: Evaluation of selected classifiers using an independent validation subset
in terms of positive predictive value (PPV), sensitivity, and F1-score metrics (%).

Classifier PPV Sensitivity F1-score

AVOID 78.26 85.71 81.82

USE WITH CAUTION 100.00 85.71 92.31

MONITOR 82.76 100.00 90.57

ADJUST DOSE 90.32 100.00 94.92

USE ALTERNATIVE 71.43 71.43 71.43

WASH-OUT N/A 0 N/A

DISCONTINUE N/A 0 N/A

Table A.3: Number and percentage of drug-drug interactions included in the DIR
intersection list by advice label for each drug information resource. (*) BNF cases for

Space dosing times ; (**) BNF cases for Modify administration

Advice label BNF Thesaurus Micromedex

AVOID 2,239 (32.12%) 2,148 (30.82%) 3,277 (47.02%)

USE WITH CAUTION 494 (7.09%) 80 (1.15%) 1,536 (22.04%)

MONITOR 511 (7.33%) 2,432 (34.89%) 4,421 (63.43%)

ADJUST DOSE 842 (12.08%) 1,075 (15.42%) 2,493 (35.77%)

WASH-OUT 27 (0.39%) 69 (0.99%) 27 (0.39%)

SPACE DOSING TIMES 108 (1.55%) 138 (1.98%) 95/108* (87.96%)

MODIFY ADMINISTRATION 44 (0.63%) 603 (8.65%) 19/44** (43.18%)

DISCONTINUE N/A 214 (3.07%) 191 (2.74%)

USE ALTERNATIVE 1 (0.01%) 139 (1.99%) 264 (3.79%)

NOT MENTIONED 3,932 (56.41%) 2,793 (40.07%) 375 (5.38%)
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Chapter 5

(A)

(B)

Figure A.4: AUCdiff for a fixed restricted reference set size of 100 with 95% con-

fidence intervals for: (A) the PT Reference Set; (b) the MC Reference Set. Design
criteria are ordered by increasing range of AUCdiff values among the three signal

detection algorithms.
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Figure A.5: AUCdiff values for the di↵erent design criteria, signal detection algo-

rithms, and sizes of restricted reference set for the PT Reference Set. In cases where
the number of available controls in the restricted subset using a design criterion was
smaller than 2,000, there are missing points in the respective graph. Points that lie
above the x-axis signify positive estimates for AUCdiff (i.e. the design criterion had

a positive e↵ect on the calculated area under the curve), while those below the x-axis
were associated with a negative e↵ect of the design criterion on the area under the
curve score. The dot size represents the probability of the estimated score, AUCdiff ,

being non-zero.
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Figure A.6: AUCdiff estimated values and associated probabilities of a non-zero

AUCdiff estimate for the di↵erent design criteria, signal detection algorithms, and

sizes of restricted reference set for the MC Reference Set. In cases where the number
of available controls in the restricted subset using a design criterion was smaller than
200, there are missing points in the respective graph. Points that lie above the x-axis
signify positive estimates for AUCdiff (i.e. the design criterion had a positive e↵ect

on the calculated area under the curve), while those below the x-axis were associated
with a negative e↵ect of the design criterion on the area under the curve score. The
dot size represents the probability of the estimated score, AUCdiff , being non-zero.

Table A.4: Number of positive and negative controls from the MC Reference Set for
each of the di↵erent design criteria. The maximum number of controls considered from
each type to form simulated reference sets (N max) is denoted with bold. The design
criteria marked with an asterisk (*) were not tested due to the small number of their

restricted sets.

Design Criterion N pos N neg

BNF - Study 184 N/A

BNF - Theoretical* 100 N/A

BNF - Anecdotal* 66 N/A

Micromedex - Established 235 N/A

Micromedex - Theoretical 498 N/A

Micromedex - Probable 364 N/A

AE is an indication - True* 248 97

AE is an indication - False 849 517

Shared indications – True 569 169

Shared indications – False 528 445
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Table A.5: PPVdiff values with 95% confidence intervals (CIs) for the di↵erent

design criteria, and a fixed restricted reference set size of 100 using the PT Reference
Set. Green colour represents estimates with a CI range containing only positive values.

Red colour represents estimates with a CI range containing only negative values.

Design

Criterion

(DC)

SDA PPVdiff (95% CI)

Sensitivity

0.60 0.75 0.90

Shared

indications -

True

Omega
-0.0089

(-0.0294, 0.0115)

0.0066

(-0.0096, 0.0228)

0.0064

(-0.0015, 0.0144)

delta add
-0.0122

(-0.0243, -0.0001)

-0.0075

(-0.0135, -0.0014)

-0.0039

(-0.0073, -0.0006)

IntSS
0.0177

(-0.0004, 0.0357)

0.0169

(0.0053, 0.0285)

0.0059

(0.0013, 0.0104)

Shared

indications -

False

Omega
-0.0225

(-0.0443, -0.0007)

-0.0135

(-0.0288, 0.0019)

-0.003

(-0.0105, 0.0044)

delta add
0.029

(0.0141, 0.0439)

0.0099

(0.0026, 0.0172)

0.0039

(0.0002, 0.0077)

IntSS
-0.027

(-0.0436, -0.0104)

-0.0148

(-0.0242, -0.0054)

-0.004

(-0.0076, -0.0005)

AE is an

indication -

True

Omega
-0.0056

(-0.0261, 0.0148)

0.0078

(-0.0083, 0.024)

0.0007

(-0.0069, 0.0083)

delta add
0.0193

(0.0072, 0.0314)

0.0216

(0.0144, 0.0288)

0.009

(0.0043, 0.0137)

IntSS
0.0358

(0.0174, 0.0542)

0.0251

(0.013, 0.0372)

0.003

(-0.0014, 0.0074)

AE is an

indication -

False

Omega
-0.0092

(-0.0311, 0.0128)

-0.0055

(-0.0213, 0.0103)

-0.0022

(-0.0095, 0.0052)

delta add
0.0021

(-0.01, 0.0143)

0.0011

(-0.0052, 0.0074)

0.0004

(-0.0033, 0.004)

IntSS
-0.0126

(-0.0301, 0.0048)

-0.005

(-0.0147, 0.0048)

-0.0007

(-0.0043, 0.003)

EMA IME Omega
0.0179

(-0.005, 0.0409)

0.0131

(-0.004, 0.0303)

0.0073

(-0.001, 0.0157)

delta add
0.0066

(-0.0074, 0.0206)

-0.0009

(-0.0071, 0.0054)

-0.0017

(-0.0052, 0.0017)
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IntSS
0.0263

(0.007, 0.0456)

0.017

(0.0056, 0.0285)

0.0032

(-0.0009, 0.0073)

EMA DME Omega
0.0545

(0.0316, 0.0775)

0.0517

(0.0344, 0.0689)

0.0292

(0.0195, 0.039)

delta add
0.0729

(0.0544, 0.0915)

0.0255

(0.0157, 0.0352)

0.0091

(0.005, 0.0133)

IntSS
0.0573

(0.0361, 0.0785)

0.0277

(0.0153, 0.04)

0.0047

(0, 0.0094)

BNF -

Anecdotal
Omega

0.0252

(0.003, 0.0475)

0.0097

(-0.0067, 0.0261)

0.0041

(-0.0038, 0.012)

delta add
0.0084

(-0.0047, 0.0215)

0.0012

(-0.0053, 0.0078)

-0.0004

(-0.0039, 0.003)

IntSS
0.0312

(0.012, 0.0505)

-0.0014

(-0.0129, 0.0101)

-0.007

(-0.01, -0.0041)

BNF - Study Omega
0.037

(0.0148, 0.0593)

0.0358

(0.0187, 0.0529)

0.0116

(0.0026, 0.0205)

delta add
0.025

(0.0101, 0.0399)

0.0109

(0.0036, 0.0182)

0.005

(0.001, 0.009)

IntSS
0.0449

(0.0255, 0.0642)

0.0312

(0.0196, 0.0428)

0.0112

(0.0061, 0.0163)

BNF -

Theoretical
Omega

0.0013

(-0.0205, 0.023)

-0.0052

(-0.0213, 0.011)

-0.0015

(-0.0085, 0.0055)

delta add
-0.0057

(-0.0177, 0.0064)

-0.0079

(-0.014, -0.0017)

-0.0029

(-0.0063, 0.0004)

IntSS
-0.0213

(-0.0377, -0.005)

-0.0096

(-0.0185, -0.0007)

-0.0029

(-0.0064, 0.0005)

Micromedex -

Established
Omega

0.0202

(-0.001, 0.0415)

0.0117

(-0.0057, 0.029)

0.0049

(-0.0032, 0.0129)

delta add
0.0077

(-0.0057, 0.0212)

0.0025

(-0.0044, 0.0094)

0.0022

(-0.0016, 0.006)

IntSS
0.028

(0.0095, 0.0465)

0.0254

(0.0138, 0.0371)

0.0117

(0.0069, 0.0165)

Micromedex -

Theoretical
Omega

-0.0159

(-0.0377, 0.0058)

-0.0076

(-0.0233, 0.008)

-0.0023

(-0.0096, 0.005)

delta add
-0.0016

(-0.0136, 0.0104)

0.001

(-0.0054, 0.0075)

0.0007

(-0.003, 0.0043)

IntSS
-0.0172

(-0.0343, -0.0001)

-0.0105

(-0.0198, -0.0012)

-0.0026

(-0.0059, 0.0007)

Micromedex -

Probable
Omega

0.0274

(0.0047, 0.05)

0.0148

(-0.0033, 0.0329)

-0.0013

(-0.0092, 0.0065)



Appendix A. Supplementary Figures Tables 129

delta add
0.0022

(-0.0109, 0.0152)

-0.0048

(-0.0111, 0.0015)

-0.0028

(-0.0062, 0.0006)

IntSS
0.0188

(-0.0012, 0.0388)

0.005

(-0.0063, 0.0164)

-0.0007

(-0.0045, 0.003)

Common PTs Omega
-0.031

(-0.0507, -0.0114)

-0.0078

(-0.0227, 0.0072)

-0.0037

(-0.0111, 0.0036)

delta add
0.007

(-0.0046, 0.0186)

0.0106

(0.0036, 0.0175)

0.0048

(0.0009, 0.0088)

IntSS
-0.0076

(-0.0244, 0.0092)

0.0049

(-0.0051, 0.0149)

0.0021

(-0.0016, 0.0059)

Rare PTs Omega
-0.0104

(-0.036, 0.0151)

-0.0182

(-0.0336, -0.0028)

-0.006

(-0.0128, 0.0009)

delta add
0.008

(-0.0066, 0.0225)

-0.0129

(-0.0194, -0.0063)

-0.0089

(-0.0117, -0.0062)

IntSS
-0.0266

(-0.0433, -0.0099)

-0.0137

(-0.0229, -0.0044)

-0.0037

(-0.0068, -0.0006)
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Table A.6: PPV diff values with 95% CIs for the di↵erent design criteria, and a fixed
restricted reference set size of 100 using the MC Reference Set. Green colour represents
estimates with a CI range containing only positive values. The red colour represents

estimates with a CI range containing only negative values.

Design

Criterion

(DC)

SDA PPV di↵ (95% CI)

Sensitivity

0.60 0.75 0.90

Shared

indications -

True

Omega
-0.0073

(-0.0376, 0.0087)

0.0067

(-0.0064, 0.0198)

0.0011

(-0.0051, 0.0073)

delta add
-0.0382

(-0.0685, -0.0127)

-0.0106

(-0.0149, 0.0005)

-0.0012

(-0.0056, 0.0032)

IntSS
0.0066

(-0.008, 0.0212)

0.0166

(0.0063, 0.0269)

0.0085

(0.0041, 0.0128)

Shared

indications -

False

Omega
-0.0203

(-0.0375, -0.003)

-0.0158

(-0.0283, -0.0032)

-0.0017

(-0.0081, 0.0047)

delta add
0.0506

(0.029, 0.0722)

0.0164

(0.0055, 0.0272)

0.0021

(-0.0026, 0.0068)

IntSS
-0.0288

(-0.0436, -0.014)

-0.0209

(-0.03, -0.0118)

-0.0054

(-0.0086, -0.0021)

AE is an

indication -

False

Omega
-0.01

(-0.0274, 0.0073)

-0.0093

(-0.0232, 0.0046)

-0.0044

(-0.0107, 0.002)

delta add
-0.0296

(-0.0459, -0.0133)

-0.0149

(-0.0231, -0.0067)

-0.0069

(-0.0108, -0.003)

IntSS
-0.0142

(-0.029, 0.0006)

-0.0067

(-0.0168, 0.0034)

0.0004

(-0.0033, 0.0042)

BNF - Study Omega
0.0789

(0.0602, 0.0976)

0.0621

(0.0448, 0.0793)

0.0143

(0.0065, 0.0221)

delta add
0.0917

(0.0708, 0.1126)

0.0417

(0.0276, 0.0558)

0.0096

(0.0045, 0.0147)

IntSS
0.0834

(0.066, 0.1008)

0.0477

(0.0315, 0.0639)

0.0082

(0.0039, 0.0125)

Micromedex -

Established
Omega

0.0404

(0.0216, 0.0592)

0.0329

(0.0179, 0.048)

0.0059

(-0.0012, 0.013)

delta add
0.0023

(-0.0156, 0.0202)

0.0112

(0.002, 0.0203)

0.0053

(0.0002, 0.0105)

IntSS
0.0531

(0.0354, 0.0708)

0.0424

(0.0311, 0.0537)

0.0203

(0.0144, 0.0261)
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Micromedex -

Theoretical
Omega

-0.0269

(-0.0438, -0.0099)

-0.0212

(-0.0338, -0.0086)

-0.005

(-0.0114, 0.0014)

delta add
0.0101

(-0.0091, 0.0293)

0.0043

(-0.0051, 0.0137)

0.0024

(-0.0023, 0.0071)

IntSS
-0.0275

(-0.042, -0.0129)

-0.0182

(-0.0277, -0.0087)

-0.0039

(-0.0071, -0.0006)

Micromedex -

Probable
Omega

0.0105

(-0.0069, 0.0279)

0.0148

(0.0005, 0.0292)

0.0044

(-0.0029, 0.0116)

delta add
-0.0183

(-0.0361, -0.0004)

-0.0111

(-0.0191, -0.003)

-0.004

(-0.0083, 0.0002)

IntSS
0.014

(-0.0034, 0.0314)

0.0037

(-0.0069, 0.0144)

0.0015

(-0.0023, 0.0053)
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Chapter 6

Table A.7: Number of positive and negative controls for the adverse events (as Med-
DRA PTs) that were used in the PT-restricted analysis.

Adverse Event (MedDRA PT) Positive controls (N) Negative controls (N) Total (N)

Rhabdomyolysis 65 40 105

QT interval prolongation 431 19 450

Myopathy 54 13 67

Hypertension 63 50 113

Hypoglycaemia 8 32 40

Haemorrhage 476 42 518

Gastrointestinal haemorrhage 70 48 118

Bradycardia 150 43 193

Torsade de pointes (TdP) 57 8 65



Appendix B

Mathematical description of the

novel signal detection algorithm

for drug-drug interactions -

Model calibration

B.1 Mathematical Description of the Signal Detection Al-

gorithm

To help define the notation and introduce the mathematics in a way that can be easily

extended to the context of DDIs, we begin by considering signal detection in the context

of a single drug.

B.1.1 Single Drugs

B.1.1.1 Counts

We assume we observe several counts. The counts reflect the fact that each individual

person may or may not experience an adverse event (AE) and may or may not take a

drug. We define the count, Ni|j , as the counts where:

• i = 1 for the count of people who took the drug and i = 0 for the count of people

who did not take the drug;

• j = 1 for the count of people who experienced the AE and j = 0 for the count of

people who did not experience the AE.

B.1.1.2 Detecting Changes

We assume two hypotheses:

• H0: the probability that an individual report relates to the AE is ✓0 irrespective

of whether the drug is taken;

133
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• H1: the probability that an individual report relates to the AE is ✓1 if the drug is

taken and ✓0 otherwise1.

Were each ✓ to be known then, assuming that the events contributing to the counts

are independent random events, the corresponding likelihood would be Bi (x; ✓m, N)

where this denotes a Binomial distribution of x positive examples from N events with a

probability of ✓m of a positive example occurring, where ✓m could represent any of the

parameters related to the hypothesis under consideration.

Since we don’t know ✓’s, we assume conjugate Beta priors on ✓0 and ✓1 in the context

of H1 as follows:

p (✓0|H1) =Be
�
✓0;↵0|1,�0|1

�
(B.1)

p (✓1|H1) =Be
�
✓1;↵1|1,�1|1

�
(B.2)

We have assumed a parameterisation such that Be
�
✓m;↵m|n,�m|n

�
is a Beta distribu-

tion for a probability of ✓m with hyperparameters ↵m|n and �m|n, where m and n are

indicative of the related probability (✓m) and hypothesis (Hn), correspondingly:

Be
�
✓m;↵m|n,�m|n

�
=

1

B(↵;�)
✓
↵m|n�1
m (1� ✓m)�m|n�1 (B.3)

with B(↵;�) = �(↵)�(�)
�(↵+�)

2.

We can then assume the prior for H0 is such that the total of the hyperparameters

in the prior is equal in the two hypotheses:

p (✓0|H0) =Be
�
✓0;↵0|0,�0|0

�
(B.4)

where

↵0|0 =↵0|1 + ↵1|1 (B.5)

�0|0 =�0|1 + �1|1. (B.6)

We then calculate the likelihood of observing the counts N0|0, N0|1, N1|0 and N1|1

(denoted as N0:1|0:1 for short) for each hypothesis given the total number of reports

(N.|.) and the number of reports that include (N1|.) and don’t include (N0|.) the drug as

follows:

p
�
N0:1|0:1|H0, N0:1|.

�
=BeBi

�
N0|1;↵0|0,�0|0, N0|.

�
BeBi

�
N1|1;↵0|0 +N0|1,�0|0 +N0|0, N1|.

�

(B.7)

p
�
N0:1|0:1|H1, N0:1|.

�
=BeBi

�
N0|1;↵0|1,�0|1, N0|.

�
BeBi

�
N1|1;↵1|1,�1|1, N1|.

�
(B.8)

1It is implicit that ✓1 6= ✓0.
2�(N) = (N � 1)!, if N is a positive integer.
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where Ni|. =
P

j Ni|j and where BeBi (x;↵,�, N) is the Beta-binomial (prior predictive

density) associated with observing a count of x positive examples and N � x negative

examples given previous experience of seeing ↵ positive examples and � negative exam-

ples (i.e. the likelihood of observing the counts given the experience of observing other

counts in the past):

p (x) =

Z
p (x|✓m) p (✓m) d✓m

=

Z
Bi (x; ✓m, N)Be (✓m;↵,�) d✓m

= BeBi (x;↵,�, N)

=

✓
N

x

◆
B (x+ ↵, N � x+ �)

B (↵,�)
. (B.9)

For each combination of drug and AE, we can calculate the log-likelihood ratio

(LLR):

LLR = ln

 
p
�
N0:1|0:1|H1, N0:1|.

�

p
�
N0:1|0:1|H0, N0:1|.

�
!

(B.10)

so that pairs can be ranked on the basis of their log-likelihood ratio.

Equivalently, we can utilise the log posterior odds ratio (LogPostOddsRatio):

LogPostOddsRatio = ln

 
p
�
H1|N0:1|0:1

�

p
�
H0|N0:1|0:1

�
!

(B.11)

where the posterior probabilities are calculated as follows:

p
�
H1|N0:1|0:1

�
=

p
�
N0:1|0:1|H1

�
p (H1)

p
�
N0:1|0:1|H1

�
p (H1) + p

�
N0:1|0:1|H0

�
p (H0)

(B.12)

p
�
H0|N0:1|0:1

�
=

p
�
N0:1|0:1|H0

�
p (H0)

p
�
N0:1|0:1|H1

�
p (H1) + p

�
N0:1|0:1|H0

�
p (H0)

(B.13)

and p(H0), p(H1) are the priors on the respective hypotheses.

B.1.1.3 Detecting Increases

We assume three hypotheses:

• H0: the probability that an individual report relates to the AE is ✓0 irrespective

of whether the drug was taken;

• H+: the probability that an individual report relates to the AE is ✓1 if the drug

was taken and ✓0 otherwise, where ✓1 > ✓0;
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• H�: the probability that an individual report relates to the AE is ✓1 if the drug

was taken and ✓0 otherwise, where ✓1 < ✓0.

We define the following terms:

p
�
H+|H1, N0:1|0:1

�
= 1� p

�
H�|H1, N0:1|0:1

�

= p
�
✓1 > ✓0|H1, N0:1|0:1

�

=

Z 1

0

Z 1

0
p
�
✓0|H1, N0:1|0:1

�
p
�
✓1|H1, N0:1|0:1

�
I✓1>✓0d✓1d✓0

=

Z 1

0
p
�
✓0|H1, N0:1|0:1

� Z 1

✓0

p
�
✓1|H1, N0:1|0:1

�
d✓1d✓0

⇡ 1

Ns

NsX

i=1

(1� I
✓
(i)
0
(N1|1 + ↵1|1, N1|0 + �1|1)) (B.14)

=

Z 1

0
p
�
✓1|H1, N0:1|0:1

� Z ✓1

0
p
�
✓0|H1, N0:1|0:1

�
d✓0d✓1

⇡ 1

Ns

NsX

i=1

I
✓
(i)
1
(N0|1 + ↵0|1, N0|0 + �0|1) (B.15)

where IX = 1, if X is true, Ns is the number of samples to be used in the Monte-

Carlo approximation to the integrals, Ix(↵,�) is the incomplete Beta function, and the

integrals are approximated by sampling as follows:

✓(i)0 ⇠ Be
�
✓0;N0|1 + ↵0|1, N0|0 + �0|1

�
(B.16)

✓(i)1 ⇠ Be
�
✓1;N1|1 + ↵1|1, N1|0 + �1|1

�
. (B.17)

We sample from the distribution with the lower variance so we use (B.14) if N0|1 +

↵0|1 +N0|0 + �0|1 > N1|1 + ↵1|1 +N1|0 + �1|1 and (B.15) otherwise.

We can then write:

p
�
H+|N0:1|0:1

�
= p

�
H+, H1|N0:1|0:1

�
= p

�
H+|H1, N0:1|0:1

�
p
�
H1|N0:1|0:1

�
(B.18)

such that we can replace p(H1|N0:1|0:1) with p(H+|N0:1|0:1) for the analysis that involves

the calculation of LogPostOddsRatio in (B.11).

B.1.2 Two drugs

B.1.2.1 Counts

We now define eight counts, Ni,j|k, as the counts where:

• i = 1 for the count of people who took the first drug and i = 0 for the count of

people who did not take the first drug;
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• j = 1 for the count of people who took the second drug and j = 0 for the count of

people who did not take the second drug;

• k = 1 for the count of people who experienced the AE and k = 0 for the count of

people who did not experience the AE.

B.1.2.2 Hypotheses

We assume eight hypotheses, Hij,k, with i, j, k 2 {0, 1}, where i = 1 implies the probabil-

ity that an individual report relates to the AE when the first drug is taken is surprising;

j = 1 implies the probability that an individual report relates to the AE when the sec-

ond drug is taken is surprising; k = 1 implies the probability that an individual report

relates to the AE when the two drugs are both taken is surprising;

such that:

• H00,0: the probability that an individual report relates to the AE is ✓0 irrespective

of whether either drug is taken;

• H00,1: the probability that an individual report relates to the AE is ✓1+2 if both

drugs are taken and ✓0 otherwise;

• H01,0: the probability that an individual report relates to the AE is ✓2 if the second

drug is taken (whether or not the first drug is also taken) and ✓0 otherwise;

• H01,1: the probability that an individual report relates to the AE is ✓2 if the second

drug is taken (if the first drug is not also taken), ✓1+2 if both drugs are taken and

✓0 otherwise;

• H10,0: the probability that an individual report relates to the AE is ✓1 if the first

drug is taken (whether or not the second drug is also taken) and ✓0 otherwise;

• H10,1: the probability that an individual report relates to the AE is ✓1 if the first

drug is taken (if the second drug is not also taken), ✓1+2 if both drugs are taken

and ✓0 otherwise;

• H11,0: the probability that an individual report relates to the AE is ✓1 if the

first drug is taken (if the second drug is not also taken), ✓2 if the second drug is

taken (if the first drug is not also taken) and ✓0 otherwise unless both drugs are

taken, in which case there is no interaction such that the probability is ✓1+2 =

✓1 + (1� ✓1)⇥ ✓2 if both drugs are taken;

• H11,1: the probability that an individual report relates to the AE is ✓1 if the first

drug is taken (if the second drug is not also taken), ✓2 if the second drug is taken

(if the first drug is not also taken), ✓1+2 if both drugs are taken and ✓0 otherwise.
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B.1.2.3 Priors

We assume conjugate Beta priors for one of the hypotheses, H11,1, as follows:

p (✓0|H11,1) =Be
�
✓0;↵0|11,1,�0|11,1

�
(B.19)

p (✓1|H11,1) =Be
�
✓1;↵1|11,1,�1|11,1

�
(B.20)

p (✓2|H11,1) =Be
�
✓2;↵2|11,1,�2|11,1

�
(B.21)

p (✓1+2|H11,1) =Be
�
✓1+2;↵1+2,1|11,1 + ↵1+2,2|11,1,�1+2,1|11,1 + �1+2,2|11,1

�
. (B.22)

We choose the total of the hyperparameters in the prior to be equal in all hypotheses,

starting with H00,0:

p (✓0|H00,0) =Be
�
✓0;↵0|00,0,�0|00,0

�
(B.23)

where

↵0|00,0 =↵0|11,1 + ↵1|11,1 + ↵2|11,1 + ↵1+2,1|11,1 + ↵1+2,2|11,1 (B.24)

�0|00,0 =�0|11,1 + �1|11,1 + �2|11,1 + �1+2,1|11,1 + �1+2,2|11,1. (B.25)

We then proceed to H00,1:

p (✓0|H00,1) =Be
�
✓0;↵0|00,1,�0|00,1

�
(B.26)

p (✓1+2|H00,1) =Be
�
✓1+2;↵1+2|00,1,�1+2|00,1

�
(B.27)

where

↵0|00,1 =↵0|11,1 + ↵1|11,1 + ↵2|11,1 (B.28)

�0|00,1 =�0|11,1 + �1|11,1 + �2|11,1 (B.29)

↵1+2|00,1 =↵1+2,1|11,1 + ↵1+2,2|11,1 (B.30)

�1+2|00,1 =�1+2,1|11,1 + �1+2,2|11,1. (B.31)

Then we consider H01,0:

p (✓0|H01,0) =Be
�
✓0;↵0|01,0,�0|01,0

�
(B.32)

p (✓2|H01,0) =Be
�
✓2;↵2|01,0,�2|01,0

�
(B.33)

where

↵0|01,0 =↵0|11,1 + ↵1|11,1 + ↵1+2,1|11,1 (B.34)

�0|01,0 =�0|11,1 + �1|11,1 + �1+2,1|11,1 (B.35)

↵2|01,0 =↵2|11,1 + ↵1+2,2|11,1 (B.36)

�2|01,0 =�2|11,1 + �1+2,2|11,1. (B.37)
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And then we consider H01,1:

p (✓0|H01,1) =Be
�
✓0;↵0|01,1,�0|01,1

�
(B.38)

p (✓2|H01,1) =Be
�
✓2;↵2|01,1,�2|01,1

�
(B.39)

p (✓1+2|H01,1) =Be
�
✓1+2;↵1+2|01,1,�1+2|01,1

�
(B.40)

where

↵0|01,1 =↵0|11,1 + ↵1|11,1 (B.41)

�0|01,1 =�0|11,1 + �1|11,1 (B.42)

↵2|01,1 =↵2|11,1 (B.43)

�2|01,1 =�2|11,1 (B.44)

↵1+2|01,1 =↵1+2,1|11,1 + ↵1+2,2|11,1 (B.45)

�1+2|01,1 =�1+2,1|11,1 + �1+2,2|11,1. (B.46)

Then we consider H10,0:

p (✓0|H10,0) =Be
�
✓0;↵0|10,0,�0|10,0

�
(B.47)

p (✓1|H10,0) =Be
�
✓1;↵1|10,0,�1|10,0

�
(B.48)

where

↵0|10,0 =↵0|11,1 + ↵2|11,1 + ↵1+2,2|11,1 (B.49)

�0|10,0 =�0|11,1 + �2|11,1 + �1+2,2|11,1 (B.50)

↵1|10,0 =↵1|11,1 + ↵1+2,1|11,1 (B.51)

�1|10,0 =�1|11,1 + �1+2,1|11,1. (B.52)

Penultimately, we consider H10,1:

p (✓0|H10,1) =Be
�
✓0;↵0|10,1,�0|10,1

�
(B.53)

p (✓1|H10,1) =Be
�
✓1;↵1|10,1,�1|10,1

�
(B.54)

p (✓1+2|H10,1) =Be
�
✓1+2;↵1+2|10,1,�1+2|10,1

�
(B.55)
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where

↵0|10,1 =↵0|11,1 + ↵2|11,1 (B.56)

�0|10,1 =�0|11,1 + �2|11,1 (B.57)

↵1|10,1 =↵1|11,1 (B.58)

�1|10,1 =�1|11,1 (B.59)

↵1+2|10,1 =↵1+2,1|11,1 + ↵1+2,2|11,1 (B.60)

�1+2|10,1 =�1+2,1|11,1 + �1+2,2|11,1. (B.61)

Finally, we consider H11,0:

p (✓0|H11,0) =Be
�
✓0;↵0|11,0,�0|11,0

�
(B.62)

p (✓1|H11,0) =Be
�
✓1;↵1|11,0,�1|11,0

�
(B.63)

p (✓2|H11,0) =Be
�
✓2;↵2|11,0,�2|11,0

�
(B.64)

where

↵0|11,0 =↵0|11,1 (B.65)

�0|11,0 =�0|11,1 (B.66)

↵1|11,0 =↵1|11,1 + ↵1+2,1|11,1 (B.67)

�1|11,0 =�1|11,1 + �1+2,1|11,1 (B.68)

↵2|11,0 =↵2|11,1 + ↵1+2,2|11,1 (B.69)

�2|11,0 =�2|11,1 + �1+2,2|11,1. (B.70)

B.1.2.4 Likelihoods

We then calculate the likelihoods of observing the counts N0:1,0:1|0:1 for each hypothesis

given the total number of reports (N.,.|.) and the number of reports that include (N1,.|.,

N.,1|.) and don’t include (N0,.|., N.,0|.) each drug as follows:



Appendix B. DDI SDA Algorithm 141

p
�
N0:1,0:1|0:1|H00,0, N0:1,0:1|.

�
= BeBi

�
N0,0|1;↵0|00,0,�0|00,0, N0,0|.

�

⇥BeBi
�
N1,0|1;↵0|00,0 +N0,0|1,�0|00,0 +N0,0|0, N1,0|.

�

⇥BeBi
�
N0,1|1;↵0|00,0 +N0,0|1 +N1,0|1,�0|00,0 +N0,0|0 +N1,0|0, N0,1|.

�

⇥BeBi
�
N1,1|1;↵0|00,0 +N0,0|1 +N1,0|1 +N0,1|1,�0|00,0 +N0,0|0 +N1,0|0 +N0,1|0, N1,1|.

�

(B.71)

p
�
N0:1,0:1|0:1|H00,1, N0:1,0:1|.

�
= BeBi

�
N0,0|1;↵0|00,1,�0|00,1, N0,0|.

�

⇥BeBi
�
N1,0|1;↵0|00,1 +N0,0|1,�0|00,1 +N0,0|0, N1,0|.

�

⇥BeBi
�
N0,1|1;↵0|00,1 +N0,0|1 +N1,0|1,�0|00,1 +N0,0|0 +N1,0|0, N0,1|.

�

⇥BeBi
�
N1,1|1;↵1+2|00,1,�1+2|00,1, N1,1|.

�
(B.72)

p
�
N0:1,0:1|0:1|H01,0, N0:1,0:1|.

�
= BeBi

�
N0,0|1;↵0|01,0,�0|01,0, N0,0|.

�

⇥BeBi
�
N1,0|1;↵0|01,0 +N0,0|1,�0|01,0 +N0,0|0, N1,0|.

�

⇥BeBi
�
N0,1|1;↵2|01,0,�2|01,0, N0,1|.

�

⇥BeBi
�
N1,1|1;↵2|01,0 +N0,1|1,�2|01,0 +N0,1|0, N1,1|.

�
(B.73)

p
�
N0:1,0:1|0:1|H01,1, N0:1,0:1|.

�
= BeBi

�
N0,0|1;↵0|01,1,�0|01,1, N0,0|.

�

⇥BeBi
�
N1,0|1;↵0|01,1 +N0,0|1,�0|01,1 +N0,0|0, N1,0|.

�

⇥BeBi
�
N0,1|1;↵2|01,1,�2|01,1, N0,1|.

�

⇥BeBi
�
N1,1|1;↵1+2|01,1,�1+2|01,1, N1,1|.

�
(B.74)

p
�
N0:1,0:1|0:1|H10,0, N0:1,0:1|.

�
= BeBi

�
N0,0|1;↵0|10,0,�0|10,0, N0,0|.

�

⇥BeBi
�
N1,0|1;↵1|10,0,�1|10,0, N1,0|.

�

⇥BeBi
�
N0,1|1;↵0|10,0 +N0,0|1,�0|10,0 +N0,0|0, N0,1|.

�

⇥BeBi
�
N1,1|1;↵1|10,0 +N1,0|1,�1|10,0 +N1,0|0, N1,1|.

�
(B.75)

p
�
N0:1,0:1|0:1|H10,1, N0:1,0:1|.

�
= BeBi

�
N0,0|1;↵0|10,1,�0|10,1, N0,0|.

�

⇥BeBi
�
N1,0|1;↵1|10,1,�1|10,1, N1,0|.

�

⇥BeBi
�
N0,1|1;↵0|10,1 +N0,0|1,�0|10,1 +N0,0|0, N0,1|.

�

⇥BeBi
�
N1,1|1;↵1+2|10,1,�1+2|10,1, N1,1|.

�
(B.76)

p
�
N0:1,0:1|0:1|H11,0, N0:1,0:1|.

�
= BeBi

�
N0,0|1;↵0|11,0,�0|11,0, N0,0|.

�

⇥BeBi
�
N1,0|1;↵1|11,0,�1|11,0, N1,0|.

�

⇥BeBi
�
N0,1|1;↵2|11,0,�2|11,0, N0,1|.

�

⇥
Z

Bi
�
N1,1|1; ✓1 + (1� ✓1)⇥ ✓2, N1,1|.

�
Be
�
✓1;↵1|11,0 +N1,0|1,�1|11,0 +N1,0|0

�

Be
�
✓2;↵2|11,0 +N0,1|1,�2|11,0 +N0,1|0

�
d✓1d✓2 (B.77)

p
�
N0:1,0:1|0:1|H11,1, N0:1,0:1|.

�
= BeBi

�
N0,0|1;↵0|11,1,�0|11,1, N0,0|.

�

⇥BeBi
�
N1,0|1;↵1|11,1,�1|11,1, N1,0|.

�

⇥BeBi
�
N0,1|1;↵2|11,1,�2|11,1, N0,1|.

�

⇥BeBi
�
N1,1|1;↵1+2|11,1,�1+2|11,1, N1,1|.

�
(B.78)
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where the integral in Equation B.77 is approximated via Monte-Carlo integration using

1000 simulations for the Beta distributions.

The log-likelihood ratio is calculated as follows:

LLR = ln

 P
i

P
j p
�
N0:1,0:1|0:1|Hij,1, N0:1,0:1|.

�
P

i

P
j p
�
N0:1,0:1|0:1|Hij,0, N0:1,0:1|.

�
!

(B.79)

and the log posterior odds ratio is equal to:

LogPostOddsRatio = ln

 P
i

P
j p
�
Hij,1|N0:1,0:1|0:1

�
P

i

P
j p
�
Hij,0, N0:1,0:1|0:1

�
!

(B.80)

where the posterior probability in the case of H00,0, for example, is calculated as follows:

p
�
H00,0|N0:1,0:1|0:1

�
=

p
�
N0:1,0:1|0:1|H00,0

�
p (H00,0)

p
�
N0:1,0:1|0:1

�

=
p
�
N0:1,0:1|0:1|H00,0

�
p (H00,0)P

i

P
j

P
k p
�
N0:1,0:1|0:1|Hij,k

�
p (Hij,k)

. (B.81)

B.1.2.5 Detecting Increases

We now consider the following twelve hypotheses, Hij,k, with i, j, k 2 {0,+,�}, where:

• i implies the probability that an individual report relates to the AE when the first

drug is taken is not surprising (0), higher (+) or lower (-) than expected;

• j implies the probability that an individual report relates to the AE when the

second drug is taken is not surprising (0), higher (+) or lower (-) than expected;

• k implies the probability that an individual report relates to the AE when the two

drugs are both taken is not surprising (0), higher (+) or lower (-) than expected;

as follows:

• H00,0: the probability that an individual report relates to the adverse event is ✓0

irrespective of whether either drug is taken;

• H00,+: the probability that an individual report relates to the adverse event is

✓1+2 if both drugs are taken and ✓0 otherwise, where ✓1+2 > ✓0;

• H00,�: the probability that an individual report relates to the adverse event is

✓1+2 if both drugs are taken and ✓0 otherwise, where ✓1+2 < ✓0;

• H10,0: the probability that an individual report relates to the adverse event is ✓1

if the first drug is taken (whether or not the second drug is also taken) and ✓0

otherwise;
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• H10,+: the probability that an individual report relates to the adverse event is ✓1

if the first drug is taken (if the second drug is not also taken), ✓1+2 if both drugs

are taken and ✓0 otherwise, where ✓1+2 > ✓0 and ✓1+2 > ✓1 (it might hold that

✓1+2 > ✓1 > ✓0 or ✓1+2 > ✓0 > ✓1);

• H10,�: the probability that an individual report relates to the adverse event is ✓1

if the first drug is taken (if the second drug is not also taken), ✓1+2 if both drugs

are taken and ✓0 otherwise, where ✓1+2 < ✓0 or ✓1+2 < ✓1;

• H01,0: the probability that an individual report relates to the adverse event is ✓2

if the second drug is taken (whether or not the first drug is also taken) and ✓0

otherwise;

• H01,+: the probability that an individual report relates to the adverse event is ✓2

if the second drug is taken (if the first drug is not also taken), ✓1+2 if both drugs

are taken and ✓0 otherwise, where ✓1+2 > ✓0 and ✓1+2 > ✓2 (it might hold that

✓1+2 > ✓2 > ✓0 or ✓1+2 > ✓0 > ✓2);

• H01,�: the probability that an individual report relates to the adverse event is ✓2

if the second drug is taken (if the first drug is not also taken), ✓1+2 if both drugs

are taken and ✓0 otherwise, where ✓1+2 < ✓0 or ✓1+2 < ✓2;

• H11,0: the probability that an individual report relates to the adverse event is ✓1

if the first drug is taken (if the second drug is not also taken), ✓2 if the second

drug is taken (if the first drug is not also taken) and ✓0 otherwise unless both

drugs are taken, in which case there is no interaction such that the probability is

✓1+2 = ✓1 + (1� ✓1)⇥ ✓2 if both drugs are taken;

• H11,+: the probability that an individual report relates to the adverse event is ✓1

if the first drug is taken (if the second drug is not also taken), ✓2 if the second

drug is taken (if the first drug is not also taken), ✓1+2 if both drugs are taken

and ✓0 otherwise, where ✓1+2 > ✓0 and ✓1+2 > ✓1 and ✓1+2 > ✓2 (it might hold

that ✓1+2 > ✓0 > ✓1 > ✓2 or ✓1+2 > ✓0 > ✓2 > ✓1 or ✓1+2 > ✓1 > ✓2 > ✓0 or

✓1+2 > ✓1 > ✓0 > ✓2 or ✓1+2 > ✓2 > ✓1 > ✓0 or ✓1+2 > ✓2 > ✓0 > ✓1);

• H11,�: the probability that an individual report relates to the adverse event is ✓1

if the first drug is taken (if the second drug is not also taken), ✓2 if the second

drug is taken (if the first drug is not also taken), ✓1+2 if both drugs are taken and

✓0 otherwise, where ✓1+2 < ✓0 or ✓1+2 < ✓1 or ✓1+2 < ✓2.
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To focus our attention on the probability of increased rates of occurrence rather than

simply changes to those rates, we now need to define the following terms:

p
�
H00,+|H00,1, N0:1,0:1|.

�
= 1� p

�
H00,�|H00,1, N0:1,0:1|.

�

= p
�
✓1+2 > ✓0|H00,1, N0:1,0:1|.

�

=

Z 1

0

Z 1

0
p
�
✓0|H00,1, N0:1,0:1|.

�
p
�
✓1+2|H00,1, N0:1,0:1|.

�
I✓1+2>✓0d✓1+2d✓0

=

Z 1

0
p
�
✓0|H00,1, N0:1,0:1|.

� Z 1

✓0

p
�
✓1+2|H00,1, N0:1,0:1|.

�
d✓1+2d✓0

⇡ 1

Ns
⇥

NsX

i=1

(1� I
✓
(i)
0
(N1,1|1 + ↵1+2|00,1, N1,1|0 + �1+2|00,1))

(B.82)

=

Z 1

0
p
�
✓1+2|H00,1, N0:1,0:1|.

� Z ✓1+2

0
p
�
✓0|H00,1, N0:1,0:1|.

�
d✓0d✓1+2

⇡ 1

Ns
⇥

NsX

i=1

I
✓
(i)
1+2

(N1,0|1 +N0,1|1 +N0,0|1 + ↵0|00,1, N1,0|0 +N0,1|0 +N0,0|0 + �0|00,1)

(B.83)

where IX = 1, if X is true.

Again, we can approximate the integrals by sampling as follows:

✓(i)0 ⇠ Be
�
✓0;N1,0|1 +N0,1|1 +N0,0|1 + ↵0|00,1, N1,0|0 +N0,1|0 +N0,0|0 + �0|00,1

�
(B.84)

✓(i)1+2 ⇠ Be
�
✓1+2;N1,1|1 + ↵1+2|00,1, N1,1|0 + �1+2|00,1

�
. (B.85)

In a similar way, we have that:

p
�
H10,+|H10,1, N0:1,0:1|.

�
= 1� p

�
H10,�|H10,1, N0:1,0:1|.

�

= p
�
✓1+2 > ✓0|H10,1, N0:1,0:1|.

�
⇥ p

�
✓1+2 > ✓1|H10,1, N0:1,0:1|.

�

(B.86)

where
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p
�
✓1+2 > ✓0|H10,1, N0:1,0:1|.

�
=

Z 1

0

Z 1

0
p
�
✓0, ✓1+2|H10,1, N0:1,0:1|.

�
I✓1+2>✓0d✓1+2d✓0

=

Z 1

0
p
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✓1+2|H10,1, N0:1,0:1|.
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(i)
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p
�
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Z 1

0

Z 1
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and

✓(i)1+2 ⇠ Be
�
✓1+2;N1,1|1 + ↵1+2|10,1, N1,1|0 + �1+2|10,1

�
. (B.89)

It also follows that:

p
�
H01,+|H01,1, N0:1,0:1|.
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(B.90)

where
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(B.91)
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and

✓(i)1+2 ⇠ Be
�
✓1+2;N1,1|1 + ↵1+2|01,1, N1,1|0 + �1+2|01,1
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. (B.93)

Finally, we have that:
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where

p
�
✓1+2 > ✓0|H11,1, N0:1,0:1|.

�
=

Z 1

0

Z 1

0
p
�
✓0, ✓1+2|H11,1, N0:1,0:1|.

�
I✓1+2>✓0d✓1+2d✓0

=

Z 1

0
p
�
✓1+2|H11,1, N0:1,0:1|.

� Z ✓1+2

0
p
�
✓0|H11,1, N0:1,0:1|.

�
d✓0d✓1+2

⇡ 1

Ns

NsX

i=1

I
✓
(i)
1+2

(N0,0|1 + ↵0|11,1, N0,0|0 + �0|11,1) (B.95)
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and
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We can then write:
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such that we can replace the posterior probabilities for changing rates for the analysis

that involves the calculation of LogPostOddsRatio in Equation B.80.

B.2 Prior parameter estimation

B.2.1 Observed adverse event rate calcuation

The observed rate of an AE that was reported in FAERS, ObservedRate, can be esti-

mated as follows:

ObservedRate =

1P
i=0

1P
j=0

Ni,j|1

1P
i=0

1P
j=0

1P
k=0

Ni,j|k

(B.103)

A histogram that shows the observed rates in FAERS for the AEs that are mentioned

in more than 10 reports is shown in Figure B.1.
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Figure B.1: Histogram of observed AE rates in FAERS.

For H11,1, we can estimate the hyperparameters ↵0|11,1 and �0|11,1 from the mean and

standard deviation of the observed AE rates in FAERS using the method of moments3:

E(✓0) =
↵

↵+ �
(B.104)

V ar(✓0) =
↵⇥ �

(↵+ �)2 ⇥ (↵+ � + 1)
(B.105)

↵+ � =
E(✓0)⇥ (1� E(✓0))

V ar(✓0)
� 1 (B.106)

The estimated Beta prior hyperparameters are equal to:

↵? = 0.0171 and �? = 112

and can be used to run the hypothesis testing framework in the case of two drugs, as it

can be seen as reflecting the observed AE rates across all reports.

The following hyperparameter set was selected to run the analysis:

3Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., & Rubin, D.B. (2013). Bayesian
Data Analysis (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b16018
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↵0|11,1 = ↵?

↵1|11,1 = 1

↵2|11,1 = 1

↵12,1|11,1 = 0.5

↵12,2|11,1 = 0.5

�0|11,1 = �?

�1|11,1 = 1

�2|11,1 = 1

�12,1|11,1 = 0.5

�12,2|11,1 = 0.5.

B.2.2 Sensitivity analysis

As part of model checking, it is important to check how much the predictions change

when modifying the hyperparameters of the prior distribution. Therefore, we selected

six di↵erent sets of hyperparameters (Table B.1) to test the above-described hypothesis

testing framework for two drugs and performed receiver operating characteristic (ROC)

analysis.

Hyperparameter set

Hyperparameter 1 2 3 4 5 6

↵0|11,1 1 1 3 ↵? ↵? 0.95⇥ ↵?

↵1|11,1 1 1 1 1 1 1

↵2|11,1 1 1 1 1 1 1

↵12,1|11,1 0.5 0.5 0.5 0.5 0.5 0.5

↵12,2|11,1 0.5 0.5 0.5 0.5 0.5 0.5

�0|11,1 1 0.5 0.5 �? �? 0.95⇥ �?

�1|11,1 1 1 1 1 0.01 1

�2|11,1 1 1 1 1 0.01 1

�12,1|11,1 0.5 0.5 0.5 0.5 0.005 0.5

�12,2|11,1 0.5 0.5 0.5 0.5 0.005 0.5

Table B.1: Tested hyperparameter sets for the Beta prior distributions.

In Figure B.2, we can observe that the hyperparameter set (4) that is used in the

analysis produces a better area under the curve (AUC) score than the sets 1-3.
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Figure B.2: ROC curves for the di↵erent hyperparameter sets (from Table B.1).

B.3 Recommendations for future research

The above-described framework could be extended in the context of multiple (i.e. three

or more) drugs to detect signals of disproportionate reporting indicative of an interaction

caused by any pairwise or multi-wise combination of the individual drugs under consid-

eration. However, extending the framework to accommodate N drugs would require

several considerations:

• Defining the number of hypotheses: Given the consideration of N drugs, a com-

binatorial enumeration approach is necessary to carefully define the number of

hypotheses to be tested. This involves systematically considering all possible com-

binations of the individual drugs under investigation.

• Automating the prior and likelihood construction: Instead of hardcoding prior

distributions and likelihoods for each drug combination, an automated approach

seems necessary for more than two drugs, thus allowing for e�cient and scalable

analysis.

• Defining or estimating prior hyperparameters: With N drugs, there is a need to

define or estimate a large number of prior hyperparameters associated with the

multiple enumerated hypotheses. A strategy should be devised to determine these

hyperparameters, potentially using data-driven techniques.

• Obtaining contingency tables and database counts: In the context of N drugs, a

method needs to be devised to obtain contingency tables and associated FAERS

(or other) database counts specifically tailored to the multiple drug combinations

being investigated.
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Bégaud, and Antoine Pariente. A potential event-competition bias in safety signal

detection: Results from a spontaneous reporting research database in france. Drug

Safety, 36:565–572, 2013.



Bibliography 175

[241] Harry Hochheiser, Xia Jing, Elizabeth A. Garcia, Serkan Ayvaz, Ratnesh Sa-

hay, Michel Dumontier, Juan M. Banda, Oya Beyan, Mathias Brochhausen, Evan

Draper, Sam Habiel, Oktie Hassanzadeh, Maria Herrero-Zazo, Brian Hocum, John

Horn, Brian LeBaron, Daniel C. Malone, Øystein Nytrø, Thomas Reese, Katrina

Romagnoli, Jodi Schneider, Louisa Zhang, and Richard D. Boyce. A Minimal In-

formation Model for Potential Drug-Drug Interactions. Frontiers in Pharmacology,

11, 3 2021.

[242] Eric Chou, Richard D. Boyce, Baran Balkan, Vignesh Subbian, Andrew Romero,

Philip D. Hansten, John R. Horn, Sheila Gephart, and Daniel C. Malone. De-

signing and evaluating contextualized drug-drug interaction algorithms. JAMIA

Open, 4(1), 1 2021.

[243] Don van Ravenzwaaij, Pete Cassey, and Scott D. Brown. A simple introduc-

tion to Markov Chain Monte–Carlo sampling. Psychonomic Bulletin and Review,

25(1):143–154, 2 2018.

[244] Meera M. Dhodapkar , Joseph S. Ross , and Reshma Ramachandran. Spontaneous

reporting of post-market safety signals: what evidence should support regulatory

action? BMJ, 10 2022.

[245] Antoine Pariente, Fleur Gregoire, Annie Fourrier-Reglat, Fraņcoise Haramburu,
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