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Abstract

With the development of performance-based earthquake engineering, the risk-informed assessment frame-
work has received broad recognition over the world, of which the probability seismic fragility analysis is an
important step. The classic seismic fragility adopts the lognormal assumption and forms a parametric
derivation. With the development of fragility theory, researchers are hoping to seek out non-parametric
approaches to express the intrinsic fragility in a pure analytical form without any distribution assumptions.
Besides, how to keep the calculation efficiency (e.g., combining with cloud approach) and how to consider
the non-stationary stochastic responses (e.g., combining with non-stationary stochastic excitation model)
are critical aspects in fragility that deserve further attention of researchers. In this paper, a kernel density
estimation (KDE) based non-parametric cloud approach is proposed for efficient seismic fragility estimation
of structures under non-stationary excitation. First, the methodology framework of the efficient approach is
illustrated. Then, the procedures of non-stationary stochastic seismic response of structures and KDE-based
non-parametric cloud approach for efficient seismic fragility are demonstrated. After that, an application
example via a three-span-six-story reinforced concrete frame is given for implementation, followed with a
parametric analysis of critical factors. During the process, the classic parametric linear-regression based
cloud approach (cloud-LR) and benchmark Monte-Carlo-simulation based cloud approach (cloud-MCS) are
also incorporated for validation. In general, the analysis verifies the effectiveness of the non-parametric
cloud-KDE approach without requiring more computation work (i.e., same as the parametric cloud-LR
approach and much less than the benchmark cloud-MCS approach). Meanwhile, the non-parametric cloud-
KDE approach indicates a comparable accuracy with the classic fragility approaches (i.e., less deviation
than the parametric cloud-LR approach and much closer to the benchmark cloud-MCS approach), and with
the increase of stochastic cloud-point number, the corresponding fitting degree of cloud-KDE approach is
growing better. The research provides a new sight for the development of non-parametric seismic fragility
approach, and the corresponding findings can be further combined with the probabilistic hazard and risk
analysis for a non-parametric assessment procedure in performance-based earthquake engineering.
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1. Introduction1

Performance-based earthquake engineering (PBEE) is an emerging theoretical framework that strives to2

transcend the traditional design methods and to address structural issues from the perspective of structural3

safety, functionality, and economics for all investors [1, 2, 3, 4, 5, 6]. At this stage, it has become a4

research hot issue and future development direction in the field of earthquake engineering over the world.5

The PBEE develops with the times, and nowadays the risk-informed PBEE framework has received broad6

recognition. Cornell et al. [7] first proposed the risk-based PBEE procedure, and during the process the fully7

probability-based theory is well incorporated. At this stage, the risk-informed PBEE framework primarily8

focuses on the risk assessment of the concerned physical object (e.g., loss, maintenance, reparability), and9

it commonly involves three important links (i.e., probabilistic seismic hazard analysis, probabilistic seismic10

fragility analysis, and probabilistic seismic risk analysis), among which the probabilistic seismic fragility11

analysis is the most critical step that has formed a connecting link between the preceding and the following12

steps [8, 9, 10, 11, 12, 13]. With the accurate seismic fragility assessments, the subsequent construction13

strategies for new structures and retrofitting approaches for aged structures can be appropriately given14

[14, 15, 16, 17, 18, 19, 20].15

The probabilistic seismic fragility reflects the exceeding probability of structures under earthquake for a16

specific limit state, and it depicts the uncertain performance of structures between the demand and capacity17

from a probabilistic perspective [21, 22, 23, 24, 25, 26, 27]. The accuracy of fragility is largely affected by18

the adopted earthquake excitations and spectral features. Commonly, the earthquakes are selected from the19

database according to the local site conditions, fortification level as well as the target spectra [28, 29, 30, 31].20

However, according to Chopra [32], historical data have proved that earthquakes possess lots of randomness,21

and even under the same site, the potential earthquakes in the adjacent time periods may have different22

spectral features. In another word, the selected earthquakes from the database may not appropriately23

characterize the potential hazards and seismic properties of the target regions. Against this background, the24

stochastic earthquake model is proposed by researchers, and the stochastic theory is adopted to treat the25

whole earthquake excitation process as a stochastic process. The stochastic earthquake model commonly26

contains a series of random functions and variables (e.g., power spectral density function, phase angle27

function, intensity modification function), and the corresponding values are randomly generated in terms of28

the stochastic process theory as well as the target site characteristics. Kaul [33] modelled the earthquake29

as a stochastic process, and the corresponding stochastic characterization as well as the extreme values30

were well captured through response spectrum. Both the approximate scheme and iterative scheme were31

given after connecting the power spectral density with the response spectrum, which verified the significance32

of the stochastic process to characterize the earthquake input. Rezaeian and Kiureghian [34] presented a33

generating approach for stochastic ground motion via a modulated and filtered white noise process. A series34

of parameters were included (i.e., evolving intensity, fundamental frequency, acceleration bandwidth), and35

the proposed approach was proved to be superior for dynamic analysis of engineering system in comparison36

with the pure recorded earthquakes. Scozzese et al. [35] employed a stochastic ground motion model to37

perform the multiple stripe assessments during the probabilistic seismic fragility analysis. The stochastic38

ground motion model was well compared with the traditional earthquake approaches, which gave useful39

insights for the stochastic structural dynamic evaluation.40

Apart from this, the early stochastic earthquake model generally adopts the stationarity assumption41

and ignores the time-varying effects of earthquake excitations. For an instance, the stationary stochastic42

earthquake model generally takes the power spectrum as a constant or takes the frequency parameter as43

a constant, but does not treat as a time-varying variable. With the further development of the stochastic44

earthquake model, researchers found that the non-stationary property of earthquake is a quite significant45

aspect and may obviously affect the structural response after excitation (e.g., in space, frequency and46

intensity) [36, 37, 38, 39, 40, 41]. Amin and Ang [42] first proposed the non-stationary stochastic earthquake47

model, and proved the importance of non-stationary random process in earthquake modelling. During the48

process, a second-order Gaussian-induced non-stationary process with shot-noise was well proposed, which49

laid a significant basis for the future research. Srinivasan et al. [43] proposed a critical non-stationary50

stochastic earthquake model, and a filtered shot-noise procedure was well incorporated for implementation.51

2



Both the frequency non-stationarity and time non-stationarity were given in response statistics, and its52

sensitivity to pulse-arrival rate was also well compared with the recorded strong earthquakes. Conte and53

Peng [44] further developed the non-stationary stochastic earthquake model and proposed an intensity-54

frequency non-stationary form (i.e., fully non-stationarity). Two actual records were adopted for validation55

based on the second order statistics, and the results proved the accuracy and applicability of the fully non-56

stationary form. Besides, Stewart et al. [45], Mavroeidis and Papageorgiou [46], Jalayer and Beck [47],57

Gidaris et al. [48], and Kwong et al. [49] also made great contributions to the development of stochastic58

earthquake generation and non-stationary dynamic property in the corresponding field.59

Another factor that obviously affects the accuracy of fragility is the fragility assumption and calculation60

approach. At this stage, the most commonly adopted approach is by introducing the lognormal assumption61

of random variables [50, 51, 52], i.e. Eq. 1, in which C and D represent the structural capacity and62

seismic demand, respectively, and the two random variables are both lognormally distributed. Sd|IM and63

Sc represent the seismic demand median and structural capacity median, respectively, and ln(βd|IM ) and64

ln(βc) represent the logarithmic standard deviation of seismic demand and structural capacity, respectively.65

Commonly, the strategies to obtain the demand-to-capacity pairs include the incremental dynamic analysis,66

multiple stripe analysis, or cloud analysis, and the strategies to obtain the above-mentioned coefficients67

include the least squares regression, maximum likelihood estimation or safety factor method [53, 54].68

P [D > C|IM ] = Φ
[
ln(Sd|IM/Sc)/

√
ln(βd|IM )2 + ln(βc)2

]
(1)

The lognormal-based assumption is classic in seismic fragility and has been widely recognized. It is69

also a parametric approach relying on the accurate values of the above-mentioned coefficients [i.e., Sd|IM ,70

Sc, ln(βd|IM ) and ln(βc)]. Nielson and DesRoches [55] proposed an expanded approach to generate the71

seismic fragility of highway bridges, and the approach was directly correlated to the individual components72

of bridges. The research found that the bride system was more fragile in comparison with the individual73

components. Ghosh and Padgett [56] developed the time-dependent seismic fragility curves and incorporated74

the aging-deterioration factors into the analysis framework. The changes of lognormal-based parameters75

were also proposed in fragility expression, and the research indicated a 32 % shift in the fragility medians76

for the complete-damage state. Zentner et al. [57] performed a comprehensive review of the lognormal-77

based fragility approaches in the nuclear industry, including the safety factor, regression analysis, maximum78

likelihood estimation, and incremental dynamic analysis. The characteristics of these approaches were well79

compared and the corresponding impacts in the lognormal assumptions were well evaluated. Bakalis and80

Vamvatsikos [58] gave an elaborative generating procedure of lognormal-based seismic fragility through the81

nonlinear dynamic results, and all the necessary information involved was well discussed. The incremental82

dynamic analysis was combined during the whole process, and the effects of response coefficients as well as83

intensity measures were comprehensively outlined. Besides, lognormal-based approaches have been broadly84

used into various civil infrastructures [59, 60, 61, 62] and have presented an important role in structural85

performance assessment.86

Although the lognormal-based assumption in seismic fragility shows huge superiority, it also indicates87

some limitations. According to Karamlou et al. [63], the lognormal-based assumption may lose certain88

accuracy when the real material-geometric nonlinearity of environment is considered. Bradley et al. [64]89

found that the effectiveness of lognormal-based assumption is dropped due to the collapsing cases of struc-90

tures, especially when the seismic intensity is in a large level. Mangalathu and Jeon [65] also got the91

similar findings that the lognormal-based assumption may lead to unrealistic fragility results under the92

multivariate coupling conditions. Moreover, the lognormal-based assumption is ideally parametric, which93

means that the obtained fragility is sensitive to the assumed parameters. However, the true fragility value94

should be linked to the intrinsic characteristics of structural system while not to the assumed parameters95

in calculation. Thus, researchers are hoping to seek out a non-parametric approach to express the seismic96

fragility in recent years [66, 67, 68]. Lallemant et al. [69] discussed the statistical procedures for seismic97

fragility curves and compared the limitations between the parametric models and non-parametric models98

(i.e., Gaussian kernel smoothing model and generalized additive model). The research also analyzed the99

applicability and accuracy of various fragility approaches for the further selections. Trevlopoulos et al. [70]100
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proposed an enhanced Monte Carlo procedure to calculate the non-parametric structural fragility. The data101

of intensity measure were clustered via an enriched earthquake database, and the classic parametric models102

were averaged for optimized evaluation. The results of non-parametric approach indicated a smaller confi-103

dence interval and a satisfactory estimation even with 100 dynamic calculations. Gentile and Galasso [71]104

proposed a non-parametric fragility approach for structural assessment, and during the procedure, the sur-105

rogate model was well combined by means of the Gaussian-based regressions. The results revealed that the106

non-parametric approach possessed an accurate predicting capacity in structural performance, which proved107

the feasibility in practice and the potentials for further decision making. Altieri and Patelli [72] developed a108

non-parametric approach to perform the analytical seismic fragility of structures. During the procedure, the109

subsets were identified, the failure region was mapped, and the generated samples were associated with the110

classification score for fragility calculation. The proposed method also avoided the rare failure domains in111

the existing parametric methods. Moreover, Jalayer and Cornell [73], Naess [74], Echard et al. [75], Baker112

[76], Mangalathu et al. [77], Lee [78], Ghosh et al. [79] and Iervolino [80] also contributed greatly to the field113

of non-parametric fragility approaches and their researches have provided a solid basis for the subsequent114

explorations.115

It can be concluded from the above reference review that the non-stationary stochastic responses of struc-116

tures reflect the stochastic properties and time-varying effects of earthquake excitations, and the adoption117

of non-stationary stochastic earthquake can be a more objective strategy for seismic fragility assessment of118

engineering structures. Meanwhile, although the lognormal-based assumption in seismic fragility is classic,119

it also indicates some limitations and constraints in actual analysis, thus a non-parametric approach to120

express the intrinsic seismic fragility may be more objective and real. At this stage, although a series of121

non-parametric approaches are developing, the kernel density estimation (KDE) based approach is unique122

and superior for its pure analytical expression of fragility without any distribution assumptions [81]. Most123

importantly, compared with the other non-parametric approaches that commonly require the same or even124

more number of samples in analysis as the classic parametric approach, the KDE-based fragility approach125

indicates a great potential to connect with the cloud analysis approach in sample generations (i.e., cloud-126

KDE), which sharply reduces the calculating burdens and improves the analyzing efficiency. However, at127

this stage, the framework for non-stationary stochastic seismic fragility assessment of structures via the128

non-parametric cloud-KDE approach has little implementation.129

In this paper, a KDE-based non-parametric cloud approach is proposed for efficient seismic fragility130

estimation of structures under non-stationary excitation. First, the methodology framework of the efficient131

approach is illustrated. Then, the procedures of non-stationary stochastic seismic response of structures132

and KDE-based non-parametric cloud approach for efficient seismic fragility are demonstrated. After that,133

an application example via a three-span-six-story reinforced concrete frame (RCF) is given for implemen-134

tation, followed with a parametric analysis of critical factors. During the process, the classic parametric135

linear-regression based cloud approach (cloud-LR) and benchmark Monte-Carlo-simulation based cloud ap-136

proach (cloud-MCS) are also incorporated for validation. In general, the analysis verifies the effectiveness137

of the non-parametric cloud-KDE approach without requiring more computation work (i.e., same as the138

parametric cloud-LR approach and much less than the benchmark cloud-MCS approach). Meanwhile, the139

non-parametric cloud-KDE approach indicates a comparable accuracy with the classic fragility approaches140

(i.e., less deviation than the parametric cloud-LR approach and much closer to the benchmark cloud-MCS141

approach), and with the increase of stochastic cloud-point number, the corresponding fitting degree of cloud-142

KDE approach is growing better. The research provides a new sight for the development of non-parametric143

seismic fragility approach, and the corresponding findings can be further combined with the probabilis-144

tic hazard and risk analysis for a non-parametric assessment procedure in performance-based earthquake145

engineering. The detailed contents and implementary principles are introduced in the following sections.146

2. Methodology framework147

This section introduces the methodology framework of the KDE-based non-parametric cloud approach148

for efficient seismic fragility estimation of structures under non-stationary excitation, and Fig. 1 presents149

the schematic view of the specific procedure. In general, the methodology framework is consisted of two150
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major parts, i.e., (1) Non-stationary stochastic seismic response of structures; and (2) KDE-based non-151

parametric cloud approach for efficient seismic fragility. In the first part of the framework, the stochastic152

parameters of structures and earthquakes (e.g., material, load, and phase angle) are first determined. Then,153

the number of earthquake for each intensity bandwidth and for the subsequent cloud-based probabilistic154

seismic fragility analysis (PSFA) is determined. After that, the total cloud points for PSFA (i.e., number155

of structural models and non-stationary earthquakes) are obtained, and the Latin hypercube sampling156

(LHS) is adopted to generate the samples of stochastic parameters. With the generated parameters, the157

stochastic structural numerical models for PSFA are established based on the numerical softwares, and the158

non-stationary stochastic earthquakes for PSFA are also established based on the stochastic process theory159

as well as the spectral representation theory. The deterministic time-history analysis is performed to acquire160

the engineering demand parameter (EDP), and the intensity measure (IM) of the generated non-stationary161

stochastic earthquakes is also calculated, with which the stochastic cloud points for PSFA are then formed.162

In the second part of the framework, the first important step is to calculate the optimal one-dimensional163

bandwidth of IM (i.e., via the recommended equation in Sec. 4) and the optimal two-dimensional bandwidth164

between EDP and IM (i.e., via the R procedure in Sec. 4). Then, the marginal probability density function165

(PDF) and the marginal cumulative distribution function (CDF) of IM are calculated via the one-dimensional166

Gaussian KDE approach, and the joint-PDF between EDP and IM is calculated via the two-dimensional167

Gaussian KDE approach. After that, the joint-PDF is integrated from the threshold of EDP to the +∞ under168

all the IM levels (i.e., joint-CDF), and the results are further combined with the marginal PDF to derive the169

PSFA via the non-parametric cloud-KDE approach. During the process, the classic parametric cloud-LR170

approach and the benchmark cloud-MCS approach are also incorporated for comparison and validation.171

The cloud-LR approach is the most-commonly adopted parametric strategy for seismic fragility in light of172

the lognormal assumption, and its analytical expression is given in Eq. 1. The cloud-MCS approach is a173

non-parametric approach which requires mass statistical data, and it is commonly used as a benchmark for174

validation of unknown variable. The obtained PSFA results of all the cloud-KDE, cloud-LR and cloud-MCS175

approaches are discussed and analyzed correspondingly. Besides, if the number of cloud points lowers than176

the required number, the number is then increased for a repeated analysis, and if the number of cloud points177

exceeds the required number, the analysis is ended and the procedure is finished. More details and specific178

equations of the methodology framework are displayed in the following section.179

3. Non-stationary stochastic seismic response of structures180

Without the loss of generality, an engineering system is commonly assumed to include diverse stochas-181

tic structural variables [e.g., geometry sizes, material strength, construction quality, herein reflected as182

∆s = (∆1,∆2, ...,∆x)
T ] and diverse stochastic force variables [e.g., phase angles, force points, tempera-183

ture stresses, herein reflected as ∆f = (∆x+1,∆x+2, ...,∆n)
T ]. Then, the systematic stochastic variable184

∆ = (∆s,∆f ) is given, which contains n groups of mutually independant sub-matrices (e × 1), where e185

represents the sample number for every stochastic variable. Based on this, the dynamic balance equation186

for an arbitrary engineering system and a realizable stochastic variable condition (∆) can be given as Eq. 2:187

Q1 · G̈(∆, t) +Q2 · Ġ(∆, t) +Q3 ·G(∆, t) = −Q1 · g̈ip(∆, t) (2)

in which the mass, damping and stiffness matrices of the engineering system are expressed as Q1, Q2188

and Q3, respectively. Meanwhile, the acceleration, velocity and displacement matrices of the engineering189

system are expressed as G̈(∆, t), Ġ(∆, t) and G(∆, t), respectively. The dimensions of Q1, Q2 and Q3190

are e × e, and the dimensions of G̈(∆, t), Ġ(∆, t) and G(∆, t) are e × 1, respectively. g̈ip(∆, t) denotes191

the non-stationary stochastic earthquake as external excitation. The systematic uncertainties in Eq. 2 are192

incorporated into the stochastic variable ∆, and G(∆, t) embodies the non-stationary stochastic seismic193

response of the engineering system for any concerned physical object (e.g., maximum inter-story drift,194

maximum inter-story force, energy coefficient), depending on each ∆ from a broad perspective [82].195

The non-stationary stochastic earthquake [g̈ip(∆, t)] commonly contains the frequency non-stationarity196

and intensity non-stationarity, and it is commonly generated in light of the stochastic process theory as197
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Figure 1: The methodology framework of the non-stationary stochastic cloud-KDE approach for fragility assessment
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well as the spectral representation of stochastic functions. The non-stationary stochastic earthquake is198

believed to better reflect the stochastic characteristics of earthquake excitation and generally indicates a199

more advantageous analyzing accuracy in performance evaluation [83, 84, 85]. In this paper, the bilateral200

evolutionary power spectral density (EPSD) function is adopted for stochastic earthquake generation, and201

during the process the Clough-Penzien model is introduced, which reflects the non-stationary properties202

of both frequency and intensity [86]. Eq. 3 presents the generation procedure of non-stationary stochastic203

earthquake [g̈ip(∆, t)], in which the required number of stochastic variables is 2Ntr (i.e., ∆1k and ∆2k, k =204

1, 2, ..., Ntr) [87]:205

g̈ip(∆, t) =

Ntr∑
k=1

√
2S ¨gip(t, βk) · βif ·

[
cos(βkt) ·∆1k + sin(βkt) ·∆2k

]
(3)

in which βk = k ·βif , and βif indicates the interval frequency that is related to the truncated items (Ntr)206

and truncated frequency (βc). {∆1k,∆2k} (k = 1, 2, ..., Ntr) denotes the standard orthogonal stochastic207

variables, and it is worth noticing that {∆1k,∆2k} should be obtained through a stochastic mapping from208

two sets of the same stochastic variables {Ψ1n,Ψ2n} (n = 1, 2, ..., Ntr), as shown in Eq. 4. In a certain sense,209

the stochastic mapping can be regarded to be a constraint to reasonably reduce the difficulty in dynamic210

analysis and to effectively guarantee the stochastic characteristics in the generation process [88].211

∆1k = Ψ1n, ∆2k = Ψ2n, k or n = 1, 2, ..., Ntr (4)

Through this operation, the generated non-stationary stochastic earthquake avoids the discontinuous212

amplitude and ensures the ideal time-history process. Eq. 5 indicates the Gaussian-oriented orthogonal213

form of {Ψ1n,Ψ2n} based on two independent stochastic phase angles (P1 and P2). Both P1 and P2214

conform to the uniform distribution form (ranging from 0 to 2π) and are independent mutually. The total215

number of stochastic variables during the generation process is sharply reduced after the stochastic mapping,216

and the dynamic analysis efficiency of the stochastic engineering system is obviously improved from a macro217

perspective [89].218

Ψ1n = Φ−1

[
1

π
arcsin(

sin(n · P1) + cos(n · P1)√
2

) +
1

2

]
, n = 1, 2, ..., Ntr

Ψ2n = Φ−1

[
1

π
arcsin(

sin(n · P2) + cos(n · P2)√
2

) +
1

2

]
, n = 1, 2, ..., Ntr

(5)

in which Φ denotes the standard normal distribution function, and arc denotes the inverse function.219

The most critical step in the generating procedure depends on the adopted Clough-Penzien bilateral EPSD220

model in Eq. 3 [i.e., S ¨gip(t, β)], which combines the impact of both frequency non-stationarity and intensity221

non-stationarity. Eq. 6 displays the analytical expression of S ¨gip(t, β) [90]:222

S ¨gip(t, β) = A
2

amp(t) · Samp(t) ·
β4
g(t) + 4ξ2g(t)β

2
g(t)β

2[
β2 − β2

g(t)
]2

+ 4ξ2g(t)β
2
g(t)β

2

· β4[
β2 − β2

f (t)
]2

+ 4ξ2f (t)β
2
f (t)β

2

(6)

in which the frequency non-stationarity of S ¨gip(t, β) is reflected by βg(t), βf (t), ξg(t) and ξf (t), respec-223

tively, as displayed in Eq. 7. The intensity non-stationarity of S ¨gip(t, β) is reflected by Aamp(t) and Samp(t),224

in which Aamp(t) and Samp(t) denote the amplitude adjustment function and spectral amplitude coefficient,225

with the recommended forms in Eqs. 8 and 9, respectively.226

βg(t) = β0 − µ1
t

T
, βf (t) = 0.1βg(t), ξg(t) = ξ0 + µ2

t

T
, ξf (t) = ξg(t) (7)

Aamp(t) =

[
t

µ3
· exp(1− t

µ3
)

]µ4

(8)
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Samp(t) =
ā2max

γ2πβg(t) ·
[
2ξg(t) + 1/(2ξg(t))

] (9)

in which µ1 denotes the field classification coefficient, µ2 denotes the seismic group coefficient, µ3 denotes227

the average peak acceleration arrival coefficient, and µ4 denotes the shape control coefficient. β0 denotes the228

primary angular frequency coefficient, and ξ0 denotes the soil damping coefficient. āmax denotes the average229

peak ground acceleration, γ denotes the equivalent peak coefficient, and T denotes stochastic earthquake230

duration. These coefficients are all affected by the site types and design groups of the analyzing object [91].231

Moreover, an iteration and modification equation is also introduced to improve the accuracy of the generated232

non-stationary stochastic earthquake with the target spectral requirements, as displayed in Eq. 10.233

S ¨gip(t, β)|i+1 =

{
S ¨gip(t, β), 0 < β ≤ βc

S ¨gip(t, β)|i ·
STar
a (β,ξ)2

SAve
a (β,ξ)2|i , β > βc

(10)

in which S ¨gip(t, β)|i+1 and S ¨gip(t, β)|i indicate the (i + 1)th EPSD function and ith EPSD function234

after iteration. STar
a (β, ξ) indicates the target spectral acceleration, and SAve

a (β, ξ)|i indicates the ith235

average spectral acceleration of generated stochastic earthquakes after iteration. βc represents the truncated236

frequency, ξ represents the damping ratio, and T0 represents the natural structural period (T0 = 2π/β).237

4. KDE-based non-parametric cloud approach for efficient seismic fragility238

Seismic fragility assessment reflects the exceeding probability of structures under earthquake excitation239

for a specific limit state, and it depicts the uncertain performance of structures between the demand and240

capacity from a probabilistic perspective. Commonly, the seismic fragility is expressed as Eq. 11:241

P (D > C|IM) = F (a, ωc) = P (Ω > ωc|IM = a) (11)

in which P represents the exceeding probability, D represents the structural demand, and C represents242

the structural capacity. F represents the fragility function, and it is the dependent variable of intensity243

measure (a) and median structural capacity (ωc). Ω is the representation of the specific structural demand244

(e.g., maximum inter-story drift, maximum inter-story force, energy coefficient), as indicated in Eq. 12, and245

it is the extreme value [i.e., Vextreme(·)] of G(∆, t) in Eq. 2. The extreme value is generally adopted as the246

maximum or minimum result of the concerned physical object.247

Ω = Vextreme(G(∆, t)), t ∈ [0, T ] (12)

Thus, the seismic fragility reflects the probability of demand variable Ω to exceed the capacity variable248

ωc when the intensity measure is determined in the a-level. Eq. 11 can be reformulated into Eq. 13 after249

introducing a conditional PDF of Ω and a conditional probability conversion formula [i.e., fΩ(ω|IM = a)]:250

P (Ω > ωc|IM = a) =

∫ +∞

ωc

fΩ(ω|IM = a)dω

=

∫ +∞

ωc

fΩ,IM (ω, a)

fIM (a)
dω =

∫ +∞

ωc

fΩ,IM (ω, a)dω

fIM (a)

(13)

in which fΩ,IM (ω, a) denotes the joint PDF between the structural demand Ω and intensity measure251

IM . fIM (a) denotes the marginal PDF of intensity measure IM . The seismic fragility can be given via a252

integration after the fΩ,IM (ω, a) and fIM (a) are calculated. More references related to this can be available253

from Mai et al. [92]. Then, the KDE-based approach is introduced, and for a univariate Θ, the corresponding254

KDE-based PDF can be written as Eq. 14:255
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fΘ(θ) =
1

Mλ
·

M∑
i=1

K(
θ − θi
λ

) (14)

in which K(·) represents the kernel-based function, and the classic kernel-based function contains a series256

of forms (e.g., normal form, triangular form, and uniform form). In this research, a Gaussian-based kernel257

function is selected due to its explicit expression and broad applicability. Besides, researches indicate that258

when the sample sets are large enough, the kernel type shows little impact in the estimation accuracy [92]. M259

represents the sample number, θi represents the individual sample of concerned variable Θ, and λ represents260

the indicator of bandwidth. Then, Eq. 14 can be further rewritten as Eq. 15 after introducing the standard261

Gaussian-based kernel function:262

fΘ(θ) =
1

Mλ
·

M∑
i=1

1

(2π)1/2
· exp

[
−1

2
(
θ − θi
λ

)2
]

(15)

The determination of bandwidth λ is important as the bandwidth directly affects the smoothness of PDF263

curves. The bandwidth λ is commonly recommended to be 1.059σ ·M−0.2 [93], in which σ represents the264

standard deviation of concerned variable Θ. Eq. 16 displays the multivariate-based KDE in a d-dimensional265

scale (Θ ∈ Rd):266

fΘ(θ) =
1

M |Λ|1/2
·

M∑
i=1

K
(
Λ

−1/2

(θ − θi)
)

(16)

in which Θ denotes a multivariate condition. Λ denotes a symmetric bandwidth matrix, and its definite267

determinant is calculated to be |Λ|. Eq. 17 displays the expression of joint PDF when a standard Gaussian-268

based kernel function is adopted for a multivariate condition:269

fΘ(θ) =
1

M |Λ|1/2
·

M∑
i=1

1

(2π)d/2
· exp

[
−1

2
(θ − θi)

TΛ
−1

(θ − θi)

]
(17)

in which θi reflects the individual sample of concerned variable Θ ∈ Rd. The multivariate bandwidth270

matrix Λ is a critical link for the accuracy of joint PDF and is recommended to use the cross-validation esti-271

mators or plug-in estimators in calculation [94]. Then, in light of the aforementioned theories, the marginal272

PDF of IM [i.e., fIM (a)] can be obtained via Eq. 15 [according to the univariate sets of IM for all the non-273

stationary stochastic earthquake input (i.e., IMi, i = 1, 2, ...,M) ], and the joint PDF between Ω and IM274

[i.e., fΩ,IM (ω, a)] can be obtained via Eq. 17 {according to bivariate sets between Ω and IM for all the non-275

stationary stochastic earthquake input and generated cloud points [i.e., (Ωi, IMi), i = 1, 2, ...,M ]}. Eq. 18276

displays the complete analytical form of non-parametric Gaussian-kernel-based cloud-KDE for fragility as-277

sessment, in which λIM and ΛΩ,IM reflect the univariate bandwidth coefficient of IM as well as the bivariate278

bandwidth matrix between Ω and IM , respectively [95].279

P (D > C|IM) = F (a, ωc) =
λIM

(2π|ΛΩ,IM |)1/2
·

∫ +∞

ωc

M∑
i=1

exp

[
−1

2
(
a− IMi

ω − Ωi
)T ·Λ−1

Ω,IM · (a− IMi

ω − Ωi
)

]
dω

M∑
i=1

exp

[
−1

2
(
a− IMi

λIM
)2
] (18)

5. Application example280

In light of the aforementioned framework, this section presents the application of the KDE-based non-281

parametric cloud approach for efficient seismic fragility estimation under non-stationary excitation via a282

three-span-six-story RCF. The building information, modelling approach, generated non-stationary stochas-283

tic excitation, and cloud-KDE result discussions are included. More details are illustrated as follows.284
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Figure 2: The dimension information in application and numerical strategy in modelling
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5.1. Building information285

The building information of the application example is shown in Fig. 2. The design span length is 5200286

m with a total span number of 3. The design story height is 4500 m for bottom story and 3600 m for other287

stories, with a total story number of 6. From the bottom to the third story, the cross section of column (i.e.,288

Sec-2) is 600 mm×600 mm, with four D22 reinforcements on both top sides and bottom sides. The cross289

section of beam (i.e., Sec-4) is 300 mm×400 mm, with four D18 reinforcements on both top sides and bottom290

sides. From the fourth story to the sixth story, the cross section of column (i.e., Sec-1) is 400 mm×400 mm,291

with three D20 reinforcements on both top sides and bottom sides. The cross section of beam (i.e., Sec-3)292

is 300 mm×400 mm, with three D18 reinforcements on both top sides and bottom sides. For the bottom293

connection (storey 1-3), the stirrups are adopted as D8, and for the top connection (storey 4-6), the stirrups294

are adopted as D6. The enhanced zones of stirrups (with an interval of 100 mm) are from the column295

surface to an extending distance of 1000 mm. The design grade of concrete is C30 with the standard cubic296

compressive strength of 30 MPa, the design grade of reinforcing steel is HRB335 with the standard tensile297

strength of 335 MPa, and the design grade of constructional stirrup is HPB300 with the standard tensile298

strength of 300 MPa. Worth mentioning is that the standard value herein represents a 95% guaranteeing299

rate and is not the same as the median value (i.e., 50% guaranteeing rate). The detailed random variables300

and statistical parameters in the application example are listed in Tab. 1.301

Table 1: The random variables and statistical parameters in the application example

Random variables Symbol Distribution Mean (unit) COV Reference

Earthquake phase angle1 P1 Uniform 3.142 (1) 0.577 [96]

Earthquake phase angle2 P2 Uniform 3.142 (1) 0.577 [96]

Concrete bulk density γ Normal 26.5 (kN/m3) 0.0698 [97]

Span length sb Normal 5200 (mm) 0.003 [98]

Bottom story height hf Normal 4500 (mm) 0.003 [98]

Standard story height ha Normal 3600 (mm) 0.003 [98]

Damping ratio ς Normal 0.05 (1) 0.1 [99]

Core concrete compressive strength fcp,core Lognormal 33.6 (MPa) 0.21 [99]

Core concrete peak strain εcp,core Lognormal 0.0022 (1) 0.17 [99]

Rebar yielding strength fy Lognormal 378 (MPa) 0.07 [99]

Rebar elastic modulus E Lognormal 201000 (MPa) 0.033 [100]

5.2. Modelling approach302

The modelling approach of the application example is also presented in Fig. 2. In this analysis, the303

OpenSees software is selected [101], which is a widely-used procedure for the earthquake engineering and304

structural assessment. In this modelling, the structural beams and columns are characterized by the305

nonlinear-beam-column element [102], which is a force-based nonlinear element and is generated through306

the flexibility method. The static equilibrium condition of this element is stable even under the strong non-307

linearity environment, and even small number of elements can effectively capture the structural behaviors.308

At each integration point of nonlinear-beam-column element, the fiber sections (i.e., steel fiber of Steel02309

and concrete fiber of Concrete02) are assigned to characterize the mechanical properties [103, 104]. The310

influence of stirrups is well considered via the confined concrete model [105]. As the beam-column joint is311

the key section of frames, the Joint2D element is well used in this modelling, which is featured with one312

center spring and four interfacial springs. The center spring reflects the shear damage of core zones, and313

it is assigned with the Pinching4 material, whose parameters can be acquired via the modified compression314

field theory (i.e., joint moment-rotation relationship) [106]. The interfacial spring reflects the bond-slip315

effects of reinforcement, and it is assigned with the Hysteresis material, whose parameters can be acquired316

via the zero-length fiber-section analysis (i.e., interfacial moment-rotation relationship) [107, 108]. Both the317

Pinching4 and Hysteretic materials contain the coefficients to quantify the degradation, damage or pinching318

properties. Besides, the equalDOF is applied to each story (i.e., outer two nodes) to constrain the horizontal319

deformation and to conform to the rigid-floor assumption [109].320
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5.3. Generated non-stationary stochastic excitation321

In this analysis, the site type is chosen to be type-III, followed with an equivalent shear velocity between322

150 to 250 m/s. The seismic group is chosen to be type-I in consistent with the requirements in the323

Chinese seismic code [110]. The fortification intensity is 8 degrees (PGA=0.2 g) with a maximum exceeding324

probability of 10 % in fifty design years. Based on the procedure in Sec. 3, the Gaussian-oriented non-325

stationary stochastic excitations for structural response assessment are generated, and two independent326

stochastic phase angle variables in Eq. 5 (i.e., P1 and P2) are involved, as listed in Tab. 1. P1 and P2327

are sampled by LHS for each intensity bandwidth to generate the non-stationary stochastic excitation and328

to form the stochastic cloud points of structural response. The corresponding parameter values of non-329

stationary stochastic excitations adopted in this analysis can be found in Tab. 2. Fig. 3(a) presents the330

bilateral evolutionary power spectral density function, Fig. 3(b) presents the average acceleration with331

target (cloud points=1600), Fig. 3(c) presents the standard deviation with target (cloud points=1600), and332

Fig. 3(d) presents the typical non-stationary stochastic earthquake for the fortification intensity. Worth333

mentioning is that in the cloud analysis of this paper, the average peak ground acceleration āmax varies for334

different intensity bandwidth, and herein the fortification intensity is adopted as a demonstration.335

Table 2: The coefficient values in the non-stationary stochastic earthquake input

Coefficients µ1 (s−1) µ2 (1) µ3 (s) µ4 (1) T (s) β0 (s−1) ξ0 (1) γ (1) āmax (m · s−2) βif (rad · s−1) βc (rad · s−1) Ntr (1)

Values 5.0 0.2 6.0 2.0 25.0 16.0 0.6 2.85 1.96 0.20 1.57 1500
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Figure 3: Non-stationary stochastic earthquake excitation

5.4. Cloud-KDE result discussions336

In this analysis, the classic cloud-LR approach and cloud-MCS approach are also incorporated for com-337

parison with the cloud-KDE approach. The cloud-LR approach is the most-commonly adopted parametric338

strategy for seismic fragility in light of the lognormal assumption, and its analytical expression is given in339
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Eq. 1. The cloud-MCS approach is a non-parametric approach which requires mass statistical data, and it340

is commonly used as a benchmark for validation of unknown variable. As for the cloud-KDE approach, its341

procedure is illustrated in Sec. 4 and Eq. 18.342

During the research process, the random samples of variables are generated via the LHS, which is an343

efficient stratified sampling technique. As indicated in Fig. 1, the earthquake number for each intensity344

bandwidth and the total cloud points are needed to be determined in advance for the cloud-KDE approach345

of seismic fragility. In this study, the intensity measure is adopted as the peak ground acceleration (PGA),346

and totally 40 intensity bandwidths are considered (i.e., from 0.1g to 4.0g with an interval of 0.1g). Worth347

noticing herein is that the intensity bandwidth corresponds to the āmax in Eq. 9, and the actual PGA of348

the generated earthquake is stochastic due to the representation of stochastic functions (e.g., the intensity349

bandwidth is set as 0.1g, while the PGA of the generated non-stationary stochastic earthquake at this level350

may be 0.09g or 0.11g). This is also the principle to realize the stochastic cloud points of structural response351

in this analysis [111]. The engineering demand parameter is adopted as the maximum inter-story drift352

ratio (MIDR) in this analysis. The MIDR is the most-widely accepted index for performance assessment353

of building structures, and it is calculated by the deterministic nonlinear time-history analysis using the354

numerical model. Then, totally six groups of stochastic cloud points are considered, i.e., (1) 1 earthquake355

for each bandwidth and total 40 cloud points; (2) 3 earthquakes for each bandwidth and total 120 cloud356

points; (3) 5 earthquakes for each bandwidth and total 200 cloud points; (4) 10 earthquakes for each357

bandwidth and total 400 cloud points; (5) 20 earthquakes for each bandwidth and total 800 cloud points;358

and (6) 40 earthquakes for each bandwidth and total 1600 cloud points. Besides, four limit states are defined359

for seismic fragility assessment in this analysis, i.e., limit state 1 with the MIDR of 1% (LS1), limit state 2360

with the MIDR of 2% (LS2), limit state 3 with the MIDR of 4% (LS3), and limit state 4 with the MIDR361

of 6% (LS4). Herein the MIDR of each limit state corresponds to the median value of structural capacity362

[112, 113, 114].363

(a) Scattered point samples in cloud-MCS approach
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Figure 4: Scattered point samples and seismic fragility curves in cloud-MCS approach

Fig. 4 presents the scattered point samples and seismic fragility curves in cloud-MCS approach, and364

during the procedure, 10000 scattered samples are stochastically generated and calculated for each intensity365

bandwidth (i.e., from 0.1g to 4.0g with an interval of 0.1g). Fig. 5 presents the stochastic cloud points366

in logarithmic coordinate system for six groups (i.e., number of 40, 120, 200, 400, 800 and 1600), and367

linear regressions via the least-squares method are also obtained for the parametric cloud-LR approach.368

The corresponding regression coefficients and logarithmic variances are also displayed [e.g., in Fig. 5(a),369

ln(MIDR)=1.0929×ln(PGA)-3.646 with the logarithmic demand variance of 0.2259 when the stochastic370

cloud-point=40]. The logarithmic standard deviation of capacity is assumed to vary from 0.2 to 0.47 [115].371
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(d) For 400 cloud points
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(e) For 800 cloud points
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Figure 5: Linear regressions and cloud points in cloud-LR approach

Then, these parameters are taken into Eq. 1 to derive the lognormal-based parametric seismic fragility curves.372

Figs. 6 to 9 present the detailed procedure of cloud-KDE approach for all the six groups. Fig. 6 displays373

the marginal PDF (blue line) and marginal CDF (pink line) of intensity measure via the one-dimensional374

Gaussian cloud-KDE approach, as indicated in Eq. 15. The Gaussian kernels and histograms are also given375

for illustration. It can be found that with the increase of cloud points, the platform section of marginal PDF376

is more stable. In Fig. 6(f), the marginal PDF is almost formed by the envelops of histograms, although377

there exists small fluctuation near the PGA of 0 (i.e., intensity samples can be infinitely close to 0 but378

larger than 0). Fig. 7 displays the joint-PDF between engineering demand parameter (i.e., MIDR in this379

analysis) and intensity measure (i.e., PGA in this analysis) via the two-dimensional Gaussian cloud-KDE380

approach. It can be found that with the increase of cloud points, the joint PDF gradually changes from the381

flat condition to sharp condition, with the maximum joint value of 4 for 40 cloud points to the maximum382

joint value of 14 for 1600 cloud points. As mentioned in Sec. 2, the optimal one-dimensional bandwidth383

for PGA (i.e., λIM ) and optimal two-dimensional bandwidth between MIDR and PGA (i.e., ΛΩ,IM ) are384

important for the smoothness of PDF and accuracy of fragility results. The one-dimensional bandwidth is385

calculated via the recommended equation in Sec. 4, and the two-dimensional bandwidth is calculated via386

the plug-in estimators in R procedure in Sec. 4 [94]. Tab 3 summarizes the detailed bandwidth values of387

both one-dimensional and two-dimensional conditions for all the six groups. Fig. 8 presents the joint-PDF388

under certain MIDR (i.e., MIDR=0.01, 0.02, 0.03, 0.04, 0.05 and 0.06), and Fig. 9 presents the joint-PDF389

under certain PGA (i.e., PGA=0.1g, 0.2g, 0.3g, 0.4g, 0.6g and 0.8g). In general, the joint-PDF under MIDR390

moves towards right and becomes more flattened with the increase of MIDR, and fluctuation phenomenon391

appears in PDF value when the PGA approximates to a large level. Similarly, the joint-PDF under PGA392

also moves towards right with the increase of PGA, but the corresponding curve shape is relatively stable.393

Figs. 10 and 11 present the fragility comparison of the cloud-MCS, cloud-LR and cloud-KDE approaches.394

The results of cloud-MCS are depicted in red, the results of cloud-KDE are depicted in blue, and the results of395

cloud-LR are depicted in black, respectively. All the four limit states and six cloud groups are incorporated.396
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(b) For 120 cloud points
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(c) For 200 cloud points
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(d) For 400 cloud points
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(e) For 800 cloud points
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Figure 6: Marginal PDF and CDF of IM via the one-dimensional Gaussian cloud-KDE approach

(a) For 40 cloud points (b) For 120 cloud points (c) For 200 cloud points

(d) For 400 cloud points (e) For 800 cloud points (f) For 1600 cloud points

Figure 7: Joint-PDF between EDP and IM via the two-dimensional Gaussian cloud-KDE approach

The fragility medians of all the three approaches are given, and a coefficient, namely the extent of fitting397

accuracy (FAE), is also derived to judge the deviation with the benchmark cloud-MCS approach. The FAE398
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Table 3: The detailed bandwidth values of both one-dimensional and two-dimensional conditions

Cloud number Optimal one-dimensional bandwidth of PGA Optimal two-dimensional bandwidth between
MIDR and PGA

40 cloud points 0.778974

[
0.555846, 0.012657

0.012657, 0.000669

]

120 cloud points 0.592391

[
0.236836, 0.004959

0.004959, 0.000251

]

200 cloud points 0.558141

[
0.161125, 0.003115

0.003115, 0.000161

]

400 cloud points 0.504974

[
0.131939, 0.002561

0.002561, 0.000122

]

800 cloud points 0.436482

[
0.082247, 0.001463

0.001463, 0.000072

]

1600 cloud points 0.387087

[
0.052286, 0.000927

0.000927, 0.000047

]

is calculated by evaluating the gaps between the target approach and cloud-MCS approach, and its principle399

can be found in Feng et al [38]. Tab. 4 lists the fragility medians for all the three fragility approaches and six400

groups of cloud points, and Tab. 5 lists the FAE of KDE-MCS and LR-MCS for all the six groups of cloud401

points and four limit states. In general, for both the cloud-LR and cloud-KDE approaches, the obtained402

seismic fragility curves show similar tendency with the cloud-MCS approach, and with the increase of cloud403

number, the corresponding fitting extent is more closer and indicates a better effect. Take the fragility median404

as an instance, the benchmark values via the cloud-MCS approach are given as 0.7079g, 1.0765g, 1.5396g405

and 2.0378g from LS1 to LS4. Utilizing the cloud-KDE approach, the corresponding fragility medians are406

obtained as 0.5828g, 0.9779g, 1.4463g and 2.0715g for 40 cloud points, with the changing ratios computed as407

17.67%, 9.16%, 6.06% and 1.65%, respectively. When the cloud points increase to 1600, the corresponding408

fragility medians are obtained as 0.6929g, 1.0637g, 1.5129g and 2.0235g, with the changing ratios computed409

as 2.12%, 1.19%, 1.73% and 0.70%, which are more closer to the cloud-MCS results than the condition of410

40 cloud points. The phenomenon can also be found in the coefficient of FAE. For the 40 cloud points, the411

FAE of KDE-MCS is given as 0.0864, 0.0606, 0.0405 and 0.0336 from LS1 to LS4, and the corresponding412

FAE of LR-MCS is given as 0.0468, 0.0711, 0.0836 and 0.0902, respectively. When the cloud points increase413

to 1600, the FAE of KDE-MCS is given as 0.0144, 0.0126, 0.0131 and 0.0097, and the corresponding FAE414

of LR-MCS is given as 0.0321, 0.0369, 0.0302 and 0.0292, respectively. The FAE drops for both approaches415

and all the four limit states, with an average reducing ratio of 75.33% for cloud-KDE approach and 52.75%416

for cloud-LR approach, which indicates a greater fragility result with the cloud number increasing.417

At the same time, the non-parametric cloud-KDE approach presents a comparable fragility with the418

benchmark cloud-MCS approach, and in most conditions, the cloud-KDE approach even shows less devi-419

ation in comparison with the classic parametric cloud-LR approach. Take the fragility median under the420

LS4 as an instance, the deviation ratios between the cloud-KDE and cloud-MCS approaches are calculated421

as 1.65% (cloud number=40), 4.73% (cloud number=120), 0.90% (cloud number=200), 2.70% (cloud num-422

ber=400), 0.43% (cloud number=800) and 0.70% (cloud number=1600), respectively. Correspondingly, the423

deviation ratios between the cloud-LR and cloud-MCS approaches are calculated as 10.67% (cloud num-424

ber=40), 9.84% (cloud number=120), 9.76% (cloud number=200), 5.49% (cloud number=400), 6.43% (cloud425

number=800) and 5.12% (cloud number=1600), respectively. It can be observed that for all the cloud num-426

ber conditions, the median deviations of cloud-KDE approach are smaller than the cloud-LR approach with427

the dropping ratios of 84.50%, 51.94%, 90.80%, 50.72%, 93.36% and 86.30%, respectively, which demon-428

strates a more reliable result of cloud-KDE approach in a sense. The same conclusions can be achieved from429

the FAE under the LS4. The FAE of KDE-MCS is computed as 0.0336 (cloud number=40), 0.0392 (cloud430
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number=120), 0.0254 (cloud number=200), 0.0201 (cloud number=400), 0.0118 (cloud number=800) and431

0.0097 (cloud number=1600), while the FAE of LR-MCS is computed as 0.0902 (cloud number=40), 0.0813432

(cloud number=120), 0.0560 (cloud number=200), 0.0431 (cloud number=400), 0.0345 (cloud number=800)433

and 0.0292 (cloud number=1600), respectively. For each cloud number condition, the average FAE of KDE-434

MCS is smaller than the LR-MCS, with the dropping ratios of 62.75%, 51.78%, 54.64%, 53.36%, 65.80%435

and 66.78% (average of 59.19%), respectively. Similar findings can be acquired for LS1 (average of 31.05%),436

LS2 (average of 37.40%) and LS3 (average of 51.96%). The analysis verifies the effectiveness of the non-437

parametric cloud-KDE approach without requiring more computation work (i.e., same as the parametric438

cloud-LR approach and much less than the benchmark cloud-MCS approach), and meanwhile it indicates a439

comparable accuracy with the classic fragility approaches (i.e., less deviation than the parametric cloud-LR440

approach and much closer to the benchmark cloud-MCS approach).441
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Figure 8: Development of joint-PDF along with PGA under certain MIDR

6. Parametric analysis of the critical factors442

In this section, the parametric analysis is further performed for the non-parametric cloud-KDE approach443

[116, 117, 118], and two critical factors that potentially influence the assessment result are elaborately444

discussed (i.e., the intensity measure and bandwidth). First, the intensity measure is changed to the spectral445

acceleration of the fundamental period [Sa(T1)], and the seismic fragility is given via the non-parametric446

cloud-KDE approach for all the six groups of stochastic cloud points as well as the four limit states, as447

implemented in Sec. 5. Then, the parametric analysis of both the one-dimensional bandwidth and two-448

dimensional bandwidth is conducted, as the determination of bandwidth is an important step in the non-449

parametric cloud-KDE approach for fragility. Fig. 12 presents the parametric analysis of intensity measure,450

in which the green lines are obtained via Sa(T1) through the non-parametric cloud-KDE approach, and red451

lines are obtained via Sa(T1) through the benchmark cloud-MCS approach. The corresponding medians and452
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Table 4: The fragility medians for all the three fragility approaches and six groups of cloud points

Type and number LS1 (g) LS2 (g) LS3 (g) LS4 (g)

MCS-cloud (via PGA) 0.7079 1.0765 1.5396 2.0378

MCS-cloud [via Sa(T1)] 0.7539 1.1520 1.6416 2.1397

KDE-cloud for 40 points (via PGA) 0.5828 0.9779 1.4463 2.0715

KDE-cloud for 120 points (via PGA) 0.5743 0.9831 1.5298 2.1342

KDE-cloud for 200 points (via PGA) 0.6546 1.0431 1.4693 2.0195

KDE-cloud for 400 points (via PGA) 0.6810 1.0776 1.5303 2.0929

KDE-cloud for 800 points (via PGA) 0.6867 1.0693 1.5009 2.0465

KDE-cloud for 1600 points (via PGA) 0.6929 1.0637 1.5129 2.0235

LR-cloud for 40 points (via PGA) 0.6998 1.0756 1.5750 2.2552

LR-cloud for 120 points (via PGA) 0.7160 1.0883 1.5779 2.2384

LR-cloud for 200 points (via PGA) 0.7262 1.1238 1.6557 2.2367

LR-cloud for 400 points (via PGA) 0.6879 1.0454 1.5155 2.1496

LR-cloud for 800 points (via PGA) 0.6999 1.0604 1.5330 2.1688

LR-cloud for 1600 points (via PGA) 0.6392 0.9967 1.4782 2.1422

KDE-cloud for 40 points [via Sa(T1)] 0.6235 1.0464 1.5475 2.2165

KDE-cloud for 120 points [via Sa(T1)] 0.6146 1.0519 1.6369 2.2836

KDE-cloud for 200 points [via Sa(T1)] 0.7004 1.1161 1.5722 2.1608

KDE-cloud for 400 points [via Sa(T1)] 0.7335 1.1569 1.6393 2.2376

KDE-cloud for 800 points [via Sa(T1)] 0.7348 1.1441 1.6059 2.1898

KDE-cloud for 1600 points [via Sa(T1)] 0.7414 1.1381 1.6188 2.1652

Table 5: The FAE of KDE-MCS and LR-MCS for all the six groups of cloud points and four limit states

Type and number LS1 (1) LS2 (1) LS3 (1) LS4 (1)

FAE of KDE-MCS for 40 points (via PGA) 0.0864 0.0606 0.0405 0.0336

FAE of KDE-MCS for 120 points (via PGA) 0.0834 0.0551 0.0316 0.0392

FAE of KDE-MCS for 200 points (via PGA) 0.0484 0.0264 0.0276 0.0254

FAE of KDE-MCS for 400 points (via PGA) 0.0288 0.0096 0.0116 0.0201

FAE of KDE-MCS for 800 points (via PGA) 0.0143 0.0103 0.0141 0.0118

FAE of KDE-MCS for 1600 points (via PGA) 0.0144 0.0126 0.0131 0.0097

FAE of LR-MCS for 40 points (via PGA) 0.0468 0.0711 0.0836 0.0902

FAE of LR-MCS for 120 points (via PGA) 0.0438 0.0659 0.0760 0.0813

FAE of LR-MCS for 200 points (via PGA) 0.0281 0.0287 0.0481 0.0560

FAE of LR-MCS for 400 points (via PGA) 0.0229 0.0250 0.0261 0.0431

FAE of LR-MCS for 800 points (via PGA) 0.0209 0.0244 0.0266 0.0345

FAE of LR-MCS for 1600 points (via PGA) 0.0321 0.0369 0.0302 0.0292

FAE of KDE-MCS for 40 points [via Sa(T1)] 0.0908 0.0633 0.0437 0.0330

FAE of KDE-MCS for 120 points [via Sa(T1)] 0.0868 0.0566 0.0363 0.0439

FAE of KDE-MCS for 200 points [via Sa(T1)] 0.0518 0.0246 0.0320 0.0211

FAE of KDE-MCS for 400 points [via Sa(T1)] 0.0253 0.0081 0.0187 0.0328

FAE of KDE-MCS for 800 points [via Sa(T1)] 0.0157 0.0102 0.0209 0.0188

FAE of KDE-MCS for 1600 points [via Sa(T1)] 0.0131 0.0146 0.0200 0.0142
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Figure 9: Development of joint-PDF along with MIDR under certain PGA

FAE are also given in Fig. 12 and summarized in Tabs. 4 and 5. Fig. 13 presents the parametric analysis453

of one-dimensional bandwidth in the non-parametric cloud-KDE approach for fragility, and four scenarios454

are especially compared as an instance (i.e., 200 cloud points and LS2, 200 cloud points and LS4, 400 cloud455

points and LS2, 400 cloud points and LS4, respectively). Totally seven conditions are considered (i.e., one-456

dimensional bandwidth of 0.1, 0.2, 0.3, optimal value as in Sec. 5, 0.5, 0.6, and 0.7, respectively). Similarly,457

Fig. 14 presents the parametric analysis of two-dimensional bandwidth in the non-parametric cloud-KDE458

approach for four scenarios (i.e., 200 cloud points and LS2, 200 cloud points and LS4, 400 cloud points459

and LS2, 400 cloud points and LS4, respectively), and totally seven conditions are considered (i.e., two-460

dimensional optimal bandwidth multiplied by 0.1, 0.25, 0.5, 1.0 as in Sec. 5, 2.0, 4.0, and 6.0, respectively).461

For both Figs. 13 and 14, the MCS-based results are given with the dotted red lines, and the FAE is also462

calculated as indicated in the Tab. 6.463

In general, it can be observed from Fig. 12 that similar tendency between the non-parametric cloud-464

KDE approach and benchmark cloud-MCS approach is obtained via the measure of Sa(T1), which is in465

agreement with the conclusion of Fig. 10 via the measure of PGA. With the increase of stochastic cloud466

points, the FAE indicates a smaller value, which proves a better fitting accuracy against the benchmark467

cloud-MCS approach. For the 40 stochastic cloud points, the FAE from LS1 to LS4 is given as 0.0908,468

0.0633, 0.0437 and 0.0330, and for the 1600 stochastic cloud points, the FAE from LS1 to LS4 is dropped469

to 0.0131, 0.0146, 0.0200 and 0.0142, accompanied with the reducing degree of 85.57%, 76.94%, 54.23%,470

and 56.97%, respectively. From Figs. 10 and 12, it can also be found that the change of intensity measure471

shows little impact on the non-parametric cloud-KDE approach for seismic fragility, which provides some472

reference for the further non-parametric fragility investigation and demonstrates certain superiority than the473

classic parametric approach in a sense (e.g., classic parametric approach is more sensitive to the selection of474

intensity measure as introduced in [119, 120]).475

From Figs. 13 and 14, it is found that the change of one-dimensional or two-dimensional bandwidth476

leads to obvious variations of the generated fragility curves, from both the perspective of fitting accuracy477
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Figure 10: Comparison between the non-parametric cloud-KDE approach and the benchmark cloud-MCS approach

and curve smoothness. This also proves that the determination of bandwidth plays an important role in the478

non-parametric cloud-KDE approach for seismic fragility. When changing the one-dimensional bandwidth,479

the smallest FAE for the four conditions in Fig. 13 is marked as 0.0246, 0.0211, 0.0081 and 0.0328, which480

is in consistency with the results in Figs. 12(c) and 12(d). When changing the two-dimensional bandwidth,481

the smallest FAE for the four conditions in Fig. 14 is also marked as 0.0246, 0.0211, 0.0081 and 0.0328,482

which is also in consistency with the results in Figs. 12(c) and 12(d). The conclusion indicates that the483

procedure to calculate the one-dimensional and two-dimensional bandwidth in Fig. 1 and Sec. 5 is optimal484

and effective, and the variation of bandwidth can result in a larger FAE and lower accuracy against the485
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Figure 11: Comparison between the parametric cloud-LR approach and the benchmark cloud-MCS approach

benchmark cloud-MCS approach. The parametric analysis of intensity measure and bandwidth also provides486

some valuable insights for the further development of the non-parametric cloud-KDE approach for efficient487

seismic fragility assessment.488

7. Conclusions489

In this paper, a KDE-based non-parametric cloud approach is proposed for efficient seismic fragility490

estimation of structures under non-stationary excitation. First, the methodology framework of the efficient491
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(a) For 40 cloud points (change PGA to Sa(T1))
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(b) For 120 cloud points (change PGA to Sa(T1))
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(c) For 200 cloud points (change PGA to Sa(T1))
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(d) For 400 cloud points (change PGA to Sa(T1))
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(e) For 800 cloud points (change PGA to Sa(T1))
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Figure 12: Parametric analysis of intensity measure in the non-parametric cloud-KDE approach [change PGA to Sa(T1)]

approach is illustrated. Then, the procedures of non-stationary stochastic seismic response of structures and492

KDE-based non-parametric cloud approach for efficient seismic fragility are demonstrated. After that, an493

application example via a three-span-six-story RCF is given for implementation, followed with a parametric494

analysis of critical factors. During the process, the classic parametric cloud-LR approach and benchmark495

cloud-MCS approach are also incorporated for validation, from which the following conclusions may be496

drawn:497

1. The non-stationary stochastic responses of structures reflect the stochastic properties and time-varying498

effects of earthquake excitations, and the adoption of non-stationary stochastic earthquakes can be499
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Figure 13: Parametric analysis of one-dimensional bandwidth in the non-parametric cloud-KDE approach

a more objective strategy for seismic fragility assessment of structures. At this stage, although the500

lognormal-based parametric assumption is classic in seismic fragility , it also indicates some limita-501

tions and constraints in actual analysis, thus a non-parametric approach to express the intrinsic seismic502

fragility may be more objective and real. The non-parametric KDE-based fragility approach is unique503

and superior for its pure analytical expression of fragility without any distribution assumptions. Most504

importantly, compared with the other non-parametric approaches, the KDE-based fragility approach505

indicates a great potential to connect with the cloud analysis approach in sample generations (i.e.,506

cloud-KDE in this paper), which sharply reduces the calculating burdens and improves the analyzing507

efficiency. Thus, how to implement the non-parametric KDE-based approach for structural fragility508

assessment deserves attention, and in this paper, a framework of non-parametric cloud-KDE approach509

is proposed for the non-stationary stochastic seismic fragility assessment of structures. The methodol-510

ogy framework of the approach is introduced, and the procedures of non-stationary stochastic seismic511

response of structures and KDE-based non-parametric cloud approach for efficient seismic fragility512

are illustrated. From Secs. 2 to 4, the corresponding derived formulas demonstrate the feasibility and513

applicability of the KDE-based non-parametric cloud approach for fragility assessment in an analytical514

form.515
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Figure 14: Parametric analysis of two-dimensional bandwidth in the non-parametric cloud-KDE approach

2. An application example via a three-span-six-story RCF is given for illustration, and during the process,516

both the classic parametric cloud-LR approach and benchmark cloud-MCS approach are incorporated517

for validation and comparison. For both the cloud-LR and cloud-KDE approaches, the obtained seismic518

fragility curves show similar tendency with the cloud-MCS approach, and with the increase of cloud519

number, the corresponding fitting degree is more closer and indicates a better effect. The FAE drops520

for both cloud-LR and cloud-KDE approaches under all the four limit states, with an average reducing521

ratio of 75.33% (cloud-KDE) and 52.75% (cloud-LR), which indicates a greater fragility accuracy with522

the cloud number increasing. At the same time, the non-parametric cloud-KDE approach presents523

a comparable fragility with the benchmark cloud-MCS approach, and in most conditions, the cloud-524

KDE approach even shows less deviation in comparison with the classic parametric cloud-LR approach.525

For each cloud number condition, the average FAE of KDE-MCS is smaller than the LR-MCS, with526

the average dropping ratios of 31.05%, 37.40%, 51.96% and 59.19% from LS1 to LS4, respectively.527

In general, the analysis verifies the effectiveness of the non-parametric cloud-KDE approach without528

requiring more computation work (i.e., same as the parametric cloud-LR approach and much less529

than the benchmark cloud-MCS approach), and meanwhile it indicates a comparable accuracy with530

the classic fragility approaches (i.e., less deviation than the parametric cloud-LR approach and much531
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Table 6: Parametric analysis of bandwidth in the non-parametric cloud-KDE approach

Change of bandwidth 200 cloud points
and LS-2

200 cloud points
and LS-4

400 cloud points
and LS-2

400 cloud points
and LS-4

One-dimensional bandwidth of 0.1 0.0451 0.0383 0.0285 0.0359

One-dimensional bandwidth of 0.2 0.0297 0.0279 0.0165 0.0341

One-dimensional bandwidth of 0.3 0.0253 0.0256 0.0106 0.0332

One-dimensional bandwidth of optimal 0.0246 0.0211 0.0081 0.0328

One-dimensional bandwidth of 0.5 0.0265 0.0236 0.0129 0.0385

One-dimensional bandwidth of 0.6 0.0345 0.0326 0.0249 0.0464

One-dimensional bandwidth of 0.7 0.0456 0.0429 0.0389 0.0555

Two-dimensional bandwidth of optimal × 0.1 0.0629 0.0627 0.0319 0.0556

Two-dimensional bandwidth of optimal × 0.25 0.0403 0.0444 0.0276 0.0454

Two-dimensional bandwidth of optimal × 0.5 0.0257 0.0321 0.0174 0.0391

Two-dimensional bandwidth of optimal 0.0246 0.0211 0.0081 0.0328

Two-dimensional bandwidth of optimal × 2.0 0.0473 0.0253 0.0197 0.0382

Two-dimensional bandwidth of optimal × 4.0 0.0847 0.0379 0.0506 0.0437

Two-dimensional bandwidth of optimal × 6.0 0.1137 0.0629 0.0744 0.0455

closer to the benchmark cloud-MCS approach), which provides a new path for the development of532

non-stationary stochastic seismic fragility assessment via non-parametric approach.533

3. A parametric analysis is further performed for the non-parametric cloud-KDE approach, and two534

critical factors that potentially influence the assessment result are elaborately discussed (i.e., the535

intensity measure and bandwidth). The intensity measure is first changed to Sa(T1) for comparison,536

and then the variations of both the one-dimensional and two-dimensional bandwidth are performed537

for discussion. In general, similar tendency between the non-parametric cloud-KDE approach and538

benchmark cloud-MCS approach is obtained via the measure of Sa(T1), which is in agreement with539

the conclusion via the measure of PGA. With the increase of stochastic cloud points, the FAE indicates540

a smaller value, which proves a better fitting accuracy against the benchmark cloud-MCS approach.541

The change of intensity measure shows little impact on the non-parametric cloud-KDE approach for542

seismic fragility, which demonstrates certain superiority than the classic parametric approach in a543

sense. The change of one-dimensional or two-dimensional bandwidth leads to obvious variations of the544

generated fragility curves, from both the perspective of fitting accuracy and curve smoothness. This545

also proves that the determination of bandwidth plays an important role in the non-parametric cloud-546

KDE approach for seismic fragility. The parametric analysis indicates that the procedure to calculate547

the bandwidth in Secs. 2 to 4 is optimal and effective, and the variation of bandwidth can result in a548

larger FAE and lower accuracy against the benchmark cloud-MCS approach. The parametric analysis549

of intensity measure and bandwidth provides some valuable insights for the further development of550

the non-parametric cloud-KDE approach for efficient seismic fragility assessment.551

4. Some limitations are also listed herein for the further investigations. (1) Six scenarios (i.e., cloud552

points of 40, 120, 200, 400, 800 and 1600) are adopted in this analysis to validate the effectiveness553

and accuracy of the KDE-based non-parametric approach. As for determining the optimal value of554

stochastic cloud-point number, the corresponding discussions are not given in this paper. In the future555

work, a comprehensive performance index combining both the efficiency and accuracy in calculation556

can be proposed. (2) In the application example, only a RCF via the two-dimensional model is given557

to perform the KDE-based non-parametric fragility analysis, and in the future work, more complex558

structures with more detailed models (e.g., three-dimensional model considering spatial and torsional559

effects) can be adopted. (3) The intensity measures of PGA and Sa(T1) are both adopted in this560

analysis to verify the applicability of the KDE-based non-parametric approach. In the future work,561

more sophisticated intensity measures such as average spectral acceleration can be used for a more562

comprehensive analysis. (4) When the earthquake intensity is in a large level, the obtained results563
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may be deviated (e.g., for collapse cases) and the derived fragility curves may be affected (e.g., for564

LS-4). In the future work, the influence of these factors in the KDE-based non-parametric approach565

can be further investigated.566
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