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A B S T R A C T
In recent years, deep transfer learning techniques have been successfully applied to solve RUL
prediction across different working conditions. However, for RUL prediction across different
machines in which the data distribution and fault evolution characteristics vary largely, the
extraction and transition of prognostic knowledge become more challenging. Even if fault mode
information can assist in the knowledge transfer, model bias will inevitably exist on the target
machine with mixed or unknown faults. To address this issue from a transferability perspective,
this paper proposes a novel selective transfer learning approach for RUL prediction across
machines. First, the paper utilizes the tensor representation to construct the meta-degradation
trend of each fault mode and evaluates the transferability of source domain data from fault mode
and degradation characteristics through a new cross-machine transfer degree indicator (M-TDI).
Second, a Long Short-Term Memory (LSTM)-based selective transfer strategy is proposed using
the M-TDIs. The paper designs a training algorithm with an alternating optimization scheme
to seek the optimal tensor decomposition and knowledge transfer effect. Theoretical analysis
proves that the proposed approach significantly reduces the upper bound of prediction error.
Furthermore, experimental results on three benchmark datasets prove the effectiveness of the
proposed approach.

1. Introduction
The evaluation of a machine’s failure time, known as remaining useful life (RUL), has been a noticeable research

topic in the field of prognostics and health management [1]. In the past decade, with the rapid development of machine
learning, various algorithms have been employed for model construction, including shallow models like support vector
machine (SVM) [2], Gaussian process regression (GPR) [1], as well as deep neural networks such as deep belief net
(DBN) [3], long short-term memory (LSTM) [4], and convolutional neural network (CNN) [5].

Recently, transfer learning techniques have been introduced to address the RUL prediction problem across
different working conditions, also known as RUL transfer prediction [6; 7]. For a detailed survey, please refer to
Section 2. Aiming to evaluate how much prognostic knowledge from source domain data is beneficial for target
domain tasks, transferability is becoming a crucial issue in RUL transfer prediction. However, different from fault
diagnosis, transferability analytics for RUL prediction have unique requirements. Specifically, temporal degradation
characteristics are more significant than discriminative characteristics, and the negative impact of randomness in
the degradation process should be reduced when extracting prognostic knowledge. Existing methods, such as those
presented in [5; 7], assume that machines with the same manufacturing specifications have similar degradation
processes when operating under different working conditions. This assumption enables the transfer of prognostic
knowledge. However, RUL prediction across different machines or platforms, which is more practically significant,
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Figure 1: Schematic diagram of RUL transfer prediction across different machines, where (a) and (b) are the degradation
processes with similar shapes but different fault modes, and with the same fault mode but dissimilar shapes, respectively;
(c) is the sketch map of selective knowledge transfer proposed in this paper. Here the XJTU-SY rolling bearing dataset is
chosen as an example.

poses greater challenges due to the greater discrepancy in degradation characteristics compared to those across working
conditions. For instance, for complex machines like a shield or high-speed train, it is not easy to collect actual run-
to-failure data. Manufacturers usually collect whole-life data on test machines in a factory or laboratory to estimate
performance. Nevertheless, since test machines are a simplification of real-world machines in terms of boundary
conditions and models, their degradation processes may differ significantly in terms of data scale and degradation
characteristics. As a result, evaluating the transferability across different machines is becoming a significant concern.

Although some previous works [8; 9] attempted to address this problem by obtaining degradation characteristics
(such as geometric shape and tendency) from monitoring data, they failed to consider the intrinsic degradation
mechanism, such as fault mode information. As depicted in Figure 1(a), different fault modes may have similar
degradation trends, but their essential prognostic knowledge would differ. In addition, this is study [10] that utilized
fault mode information to improve RUL prediction, but it is not appropriate for RUL prediction across machines where
the target machine may have mixed or unknown fault modes. Moreover, due to the drift of working conditions, the
same fault mode may result in degradation processes with noticeably different shapes, as demonstrated in Figure 1(b).
Hence, using only fault mode as a transferability measure can lead to negative transfer, causing a deviation in knowledge
transfer.

Based on the aforementioned analysis, the main challenges of RUL transfer prediction across machines can be
summarized as follows: 1) How to evaluate the transferability of data with large distribution divergence; and 2) How to
build a knowledge transfer channel when the target machine’s fault mode is unknown. To tackle these challenges,
the transferability is evaluated in this paper from two aspects: degradation characteristic and fault mode. Then a
selective transfer learning model is constructed to transfer the prognostic knowledge using the transferability analysis,
as illustrated in Figure 1(c).

Specifically, the technique of tensor representation is introduced to facilitate the transferability analysis. Tensor
tucker decomposition is able to extract the intrinsic information from the original data, which helps to represent
the common degradation trend of each fault mode, named by meta-degradation trend. The geometry and tendency
similarity between the degradation sequences of the two domains can be also calculated to evaluate transferability. The
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proposed selective transfer learning model uses weighted initialization and adaptive freezing to adaptively transfer
prognostic knowledge. Theoretical analysis shows that the proposed model can significantly reduce the upper bound
of prediction error on the target task.

To validate our approach, rolling element bearings are taken as the test object and set a series of cross-machine
prediction tasks using three benchmark datasets: the XJTU-SY bearing dataset, the IEEE PHM Challenge 2012 bearing
dataset (PHM for short), and the University of New South Wales (UNSW for short) bearing dataset. These three datasets
are all from run-to-failure experiments, in which the fault modes in XJTU-SY and UNSW are provided and the fault
mode in PHM is unknown. The experimental results demonstrate the rationality of the proposed transferability metric
and the effectiveness of the proposed approach. The implementation code of our approach can be found on GitHub
(https://github.com/unikz22/Selective-transfer-learning-based-on-tensor-representation).

The main novelty and contributions of this research work can be summarized as follows:
• The paper introduces a novel metric, M-TDI, for assessing the transferability of RUL predictions based on tensor

representations. Unlike existing methods, M-TDI offers a dynamic evaluation of the relevance of prognostic
knowledge in the context of alternate optimization. Notably, this metric demonstrates robust performance in
handling degradation randomness. To the best of our knowledge, this is the pioneering work in exploring
transferability analytics within the realm of RUL prediction.

• This paper introduces an innovative method for predicting RUL transfer across different machines. Leveraging
a transferability evaluation, the proposed approach can effectively transfer knowledge despite significant
disparities in data distribution. Remarkably, this method performs admirably even when confronted with
situations where the target machine’s fault mode is absent, underscoring its substantial potential for practical
application and deployment.

• This paper establishes an upper limit on prediction errors for the proposed approach. This upper limit is a
theoretical guarantee that the approach will enhance the reliability of RUL transfer learning. Furthermore, this
bound provides robust support for the rationale behind regression transfer learning with fine-tuning. To the best
of our knowledge, this study represents the initial endeavor to provide a theoretical analysis of the reliability of
RUL transfer learning.

The remaining sections of this paper are organized as follows. In Section 2, a thorough analysis of related works on
RUL transfer prediction is presented. Section 3 introduces the proposed approach, including the tensor representation
and transferability analysis. The selective transfer learning model with weighted initialization and adaptive freezing
is also described. Section 4 presents the experimental results and comparisons to demonstrate the effectiveness of the
proposed approach. Finally, Section 5 concludes this paper and outlines potential future research directions.

2. Preliminary works
Deep transfer learning has been proven promising for RUL prediction across different working conditions, by

learning and transferring prognostic knowledge from one distribution (called source domain) to a related but different
task (called target domain). With end-to-end modeling capability, this approach has been explored in various transfer
strategies, such as domain-adversarial training [11], feature adaptation [12], and parameter fine-tuning [13], to
address the domain shift problem between different working conditions. However, these methods do not apply to
the cross-machine scenario since a large distribution divergence can hinder the extraction of domain-invariant feature
representation. In the last year, the RUL transfer prediction across different machines has started to gain attention and
new research is emerging. Zhu et al. [14] designed an active querying-based transfer learning strategy on Bayesian
deep learning framework to relieve data distribution discrepancy from different machines. Deng et al. [15] designed a
calibrated-based hybrid transfer learning framework by combining physical model parameters into adversarial learning
to transfer the most informative knowledge across different machines. By setting the cross-machine task in an online
scenario, Mao et al. [16] proposed a self-supervised deep regression adaptation for online RUL prediction. This paper
first built a pre-training model with adversarial training and then extracted tendency information from sequentially-
collected online data to reduce domain shift. Although these works all introduced extra information to facilitate the
domain adaptation with large distribution divergence, the used information is too less comprehensive to support reliable
transfer learning. More importantly, these works are just with algorithmic study, without a theoretical guarantee on the
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transfer effect. Degradation knowledge from different dimensions or scales is demanded for solving RUL prediction
across different machines.

The degradation mechanism can provide valuable information for RUL prediction. For example, Xia et al. [10]
integrated fault mode information into a convolutional LSTM ensemble network for RUL prediction, which allowed
for weakly-supervised domain adaptation and the learning of degradation patterns for different fault modes. However,
this approach assumes that the fault mode of the target domain is known and related to the source domain, which may
not be the case in practical applications. Furthermore, the approach does not refine the prognostic knowledge during
prediction. In another study, Liu et al. [17] proposed a multi-task learning method for fault mode identification and RUL
prediction. However, the fault mode information was only used to reduce the risk of overfitting in RUL prediction, and
was not coupled with the extraction of fault knowledge. The role of fault mode information in RUL transfer prediction,
particularly in cross-machine scenarios, requires further investigation.

Various metrics and techniques have been introduced to evaluate transferability in recent years. Dong et al. [18]
pioneered this area by developing the knowledge aggregation-induced transferability perception adaptation network
(KATPAN) to determine where and how to transfer. To achieve better marginal and conditional distribution alignment
between different domains, Hu et al. [19] theoretically analyzed unbiased transferability learning. Yang et al. [20]
designed an optimal transport-embedded joint distribution similarity measure to assess the transferability of fault
diagnosis across machines. Besides these studies that are mostly on classification problems, the transferability analysis
of regression problems is also receiving attention. Mansour et al. [21] proved theoretically a series of adaptation bounds
for support vector machines and ridge regression based on the empirical discrepancy. Nguyen et al. [22] proposed two
MSE-based transferability estimators to evaluate the transferability between regression tasks. These works mostly focus
on the discrepancy between two regression tasks and their generalization bounds for the expected loss. Nevertheless,
current studies generally neglect consideration of regression characteristics, e.g., temporal information, and cannot
directly apply to the degradation modeling on rotating machines which focuses more on the monotonicity and tendency
characteristics. Moreover, transferability, representing the volume of domain knowledge to be transferred, is supposed
to be dynamic with different feature representations or models. However, current methods conduct transferability
analysis only at a relatively static level, lacking in-depth combination with a specific model.

To the best of our knowledge, there have been very few works in RUL prediction that have adopted a similar concept
of transferability. In terms of feature selection, Cao et al. [23] utilized dynamic time wrapping (DTW) and Wasserstein
distance to select transferable temporal features and improve RUL prediction accuracy. He et al. [24] developed an
online RUL prediction method that is transferable to sequentially-collected data blocks by minimizing the marginal
and conditional probability distribution. However, the term "transferable" is mainly used to describe the concept drift
phenomenon in online prediction, rather than evaluating the degradation of knowledge to be transferred. Furthermore,
these works did not consider prior information on fault mode.

Another similar concept to transferability is interpretability which focuses on how the model approaches the data
and how it functions [8]. Interpretability can be analyzed on neurons, network structures, and samples by means of
attention mechanisms, saliency evaluation, rule/concept analysis, etc., which can also be utilized in transferability
analysis. In general, interpretability pays more attention on which elements affect learning process (including transfer
learning) and why the prediction results can be obtained. With an easily-overlooked difference, transferability dedicates
to estimating what volume of domain knowledge can be learned from a source task and how it works for a target task.
The work in this paper is just exploring how to analyze and utilize transferability in the process of transfer learning,
especially with a large data distribution discrepancy.

Tensor decomposition [25] is a type of higher-order principal component analysis (PCA) that decomposes a higher-
order tensor into a core tensor and a series of factor matrices. Currently, tensor decomposition is mainly applied to
classification problems. For instance, Hu et al. [26] employed tensor representation to align subspaces and developed
a CNN model for cross-domain fault diagnosis. However, these studies use tensor decomposition only as a data
preprocessing technique, and the factor matrices are usually initialized randomly. To our best knowledge, there has
been no prior application of tensor representation to RUL prediction.

To summarize, the current studies on RUL prediction suffer from several limitations. Firstly, most methods are
unable to handle the significant distribution discrepancy across different machines, and they also lack fault mode
information in the target domain. Secondly, the current transferability analysis methods mainly focus on feature
similarity, distribution alignment, and parameter significance, but they do not sufficiently represent domain knowledge
to be transferred for a specific transfer learning task. Finally, transferability is evaluated independently without joint
analysis with the prediction task, which can lead to biased knowledge transfer and reduced reliability of transfer
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Figure 2: Flowchart of the proposed approach.

learning. This paper tries to address these limitations from theoretical and practical aspects. From the theoretical aspect,
this paper utilizes tensor optimization to seek essential degradation information and effective transfer channels, which
can set up a new research paradigm of transferability analysis, i.e., transforming the static transferability metric to a
dynamic one and then optimizing it with a prediction task. From the practical aspect, this paper designs a selective
transfer strategy, which helps to evaluate RUL values with large data distribution discrepancy even if the fault mode
information in the target task is unavailable.

3. Proposed approach
This section presents a new RUL transfer prediction approach across different machines, as shown in Figure 2.

This approach is composed of three parts: (1) Tensor representation-based meta-degradation trend extraction; (2)
Construction of transferability metric based on fault mode and degradation characteristic; (3) Selective transfer learning
network with an alternating optimization-based training algorithm. The detailed implementation is introduced as
follows.
3.1. Problem description

Assume that the source domain 𝐷𝑆 contains 𝑁𝑆 machines with the degradation data {𝑋𝑆
𝑖 , 𝑌

𝑆𝐶𝑙𝑎𝑠𝑠
𝑖 , 𝑌 𝑆𝑅𝑈𝐿

𝑖 }𝑁𝑆
𝑖=1,

where the superscript S indicates the source domain, 𝑌 𝑆𝐶𝑙𝑎𝑠𝑠
𝑖 and 𝑌 𝑆𝑅𝑈𝐿

𝑖 are the fault mode labels and RUL values of
the i-th source machine, respectively. The target domain 𝐷𝑇 has 𝑁𝑇 machines for training with the degradation data
{

𝑋𝑇
𝑖 , 𝑌

𝑇𝑅𝑈𝐿
𝑖

}𝑁𝑇

𝑖=1
, where the superscript T indicates the target domain, 𝑌 𝑇𝑅𝑈𝐿

𝑖 are the RUL values of the i-th target
machine. There are test data 𝑋𝑇𝑡𝑒𝑠𝑡 in the target domain.
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Figure 3: Illustration of tensorization along sample direction using MDT.

𝐷𝑆 consists of the sample space 𝜒𝑆 =
{

𝜒𝑆1 ,⋯ , 𝜒𝑆𝑀
} of total 𝑀 fault modes under the source machine

and its marginal probability distribution 𝑃
(

𝜒𝑆) =
{

𝑃
(

𝜒𝑆1
)

,⋯ , 𝑃
(

𝜒𝑆𝑀
)}, i.e., 𝐷𝑆 =

{

𝜒𝑆𝑚 , 𝑃
(

𝜒𝑆𝑚
)}𝑀

𝑚=1.
𝐷𝑇 consists of the sample space 𝜒𝑇 under the target machine and its marginal probability distribution 𝑃

(

𝜒𝑇 ),
i.e., 𝐷𝑇 =

{

𝜒𝑇 , 𝑃
(

𝜒𝑇 )}. The machine types in the source domain 𝐷𝑆 and target domain 𝐷𝑇 are the same, but
the machines’ models and sizes are different. The data collected from different machines have different distribution
characteristics, i.e., 𝑃 (

𝜒𝑆) ≠ 𝑃
(

𝜒𝑇 ).
Since the target domain data is on a small scale, it is not easy to directly build the mapping relationship from 𝜒𝑇 to

the RUL label space 𝛾𝑇 , i.e., 𝑓𝑇 𝑎𝑟𝑔𝑒𝑡 ∶ 𝜒𝑇 ↦ 𝛾𝑇 . The RUL transfer prediction problem to be solved aims to improve
the prediction performance of 𝑓𝑇 𝑎𝑟𝑔𝑒𝑡 by using the nonlinear mapping 𝑓𝑆𝑜𝑢𝑟𝑐𝑒 ∶ 𝜒𝑆 ↦ 𝛾𝑆 from 𝜒𝑆 to the RUL label
space 𝛾𝑆 in the source domain.
3.2. Tensor representation-based meta-degradation trend

To utilize the fault mode information, an effective way is to extract the common degradation trend of each fault
mode, i.e., the meta-degradation trend. According to the degradation mechanism of typical rotating machines [27], the
same fault mode is believed to contain identical prognostic knowledge for the machines with the same manufacturing
specifications and under identical working conditions. Tensor decomposition is introduced in this section to extract the
meta-degradation trend of each fault mode in the source domain.

Since the target domain data has no fault label, the feature extraction should run in an unsupervised learning
mode. In this paper, a deep autoencoder (DAE) is used to extract features. Certainly, the other unsupervised learning
methods can also work. Let the encoder and decoder of DAE consist of L layers, respectively, and the network
parameters of the encoder and decoder are expressed as {𝜃𝑒𝑛, 𝜃𝑑𝑒

}. Minimizing the loss function 𝓁𝐴𝐸 = ‖

‖

𝑋 − 𝑋̃‖

‖

2
𝐹

can make the reconstructed data 𝑋 =
{

{

𝑋𝑆
𝑖
}𝑁𝑆
𝑖=1 ,

{

𝑋𝑇
𝑖
}𝑁𝑇
𝑖=1

}

⊆ ℝ𝑛×𝑑 . Then a deep feature set can be obtained as
⌢
𝑋 = 𝑓𝑒𝑛

(

𝑋; 𝜃𝑒𝑛
)

=

{

{

⌢
𝑋

𝑆
𝑖

}𝑁𝑆

𝑖=1
,
{

⌢
𝑋

𝑇
𝑖

}𝑁𝑇

𝑖=1

}

⊆ ℝ𝑛×𝑣.
To represent the temporal information in the degradation sequence, the multi-way delay embedding trans-

form(MDT) [28] is used to transform ⌢
𝑋 into a high-order block Hankel tensor 𝕏 =

{

{

𝑆
𝑖
}𝑁𝑆
𝑖=1 ,

{

𝑇
𝑖
}𝑁𝑇
𝑖=1

}

⊆

ℝ(𝑛−𝜏+1)×𝑣×𝜏 with smooth characteristics along the time dimension, as shown in Eq. (1). The MDT operation can
also be illustrated in Figure 3 for a better understanding.

𝕏 = 𝜏

(⌢
𝑋
)

= Fold
(⌢
𝑋×1𝑆1 ×⋯×𝐻𝑆𝐻

)

(1)

where S is the duplication matrix, H is the order of ⌢
𝑋, 𝜏 is the embedded dimension. The core tensor 𝐺 =

{

{

𝐺𝑆
𝑖
}𝑁𝑆
𝑖=1 ,

{

𝐺𝑇
𝑖
}𝑁𝑇
𝑖=1

}

⊆ ℝ(𝑛−𝜏+1)×𝜍×𝜏 can be obtained by Tucker decomposition [28]:

𝐺 = 𝕏×1𝑈 (1)T×2𝑈 (2)T ×⋯×𝐶−1𝑈 (𝐶−1)T

𝑠.𝑡.
(

𝑈 (𝑐))T𝑈 (𝑐) = I, 𝑐 = 1,⋯ , 𝐶 − 1
(2)
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where C is the order of 𝕏, 𝜍 is the feature dimension of G, {𝑈 (𝑐)}𝐶−1
𝑐=1 are the projection matrices that usually have

orthonormal columns, 𝐶 − 1 indicates no tensor expansion at the last dimension, i.e., the time dimension.
To calculate the meta-degradation trend, 𝐺 needs to be transformed back to the original sample space. Here the

inverse MDT is adopted to get ⌢
𝐺 =

{

{

⌢
𝐺

𝑆
𝑖

}𝑁𝑆

𝑖=1
,
{

⌢
𝐺

𝑇
𝑖

}𝑁𝑇

𝑖=1

}

⊆ ℝ𝑛×𝜍 :

⌢
𝐺 = −1

𝜏 (𝐺) = Unfold (𝐺) ×1S†
1⋯×𝐻S†

𝐻 (3)

where † is the Moore-Penrose pseudo-inverse. With the obtained ⌢
𝐺, the meta-degradation trend𝑀𝑒𝑡𝑎 = {𝑀𝑒𝑡𝑎𝑆,𝑚}𝑀𝑚=1for the total M fault modes and the target domain can be obtained, where 𝑀𝑒𝑡𝑎𝑆,𝑚 is the meta-degradation trend of

the m-th fault mode in the source domain and can be solved by using PCA:

𝑀𝑒𝑡𝑎𝑆,𝑚 =

{

𝑃𝐶𝐴

(

[

𝑃𝐶𝐴
(

⌢
𝐺

𝑆
𝑖

)]

𝑖=1,⋯,𝐾𝑚

)}

(4)

where 𝐾1 +⋯+𝐾𝑀 = 𝑁𝑆 , [⋅] represents the sequence concatenation, and 𝑃𝐶𝐴 (⋅) calculate the sequence of the first
principal component. Eq. (4) determines the first principal component of each degradation sequence from the source
domain, and then re-calculates the first principal component of all the obtained sequences that all belong to the m-th
fault mode, i.e., the meta-degradation trend of the m-th fault mode. The calculation process for 𝑀𝑒𝑡𝑎𝑇 is identical to
Eq (4).

It is worth noting that {𝑈 (𝑐)}𝐶−1
𝑐=1 in Eq. (2) is randomly initialized. To seek the optimal 𝐺 that can retain

the essential information from 𝕏 to the greatest extent, {𝑈 (𝑐)}𝐶−1
𝑐=1 should be optimized by minimizing the loss

𝓁𝑇 𝑢𝑐𝑘𝑒𝑟 = 1
2

𝑁𝑆+𝑁𝑇
∑

𝑖=1

‖

‖

‖

‖

𝑆,𝑇
𝑖 −

⌢


𝑆,𝑇
𝑖

‖

‖

‖

‖

2

𝐹
, where ⌢

𝕏 =

{

{

⌢


𝑆
𝑖

}𝑁𝑆

𝑖=1
,
{

⌢


𝑇
𝑖

}𝑁𝑇

𝑖=1

}

⊆ ℝ(𝑛−𝜏+1)×𝑣×𝜏 is calculated by:

⌢
𝕏 ≈ 𝐺×1𝑈 (1)×2𝑈 (2)⋯×𝐶−1𝑈 (𝐶−1)

=
[[

𝐺 ; 𝑈 (1), 𝑈 (2),⋯ , 𝑈 (𝐶−1)]]
(5)

The optimization process will be elaborated in Section 3.4. Compared to direct feature extraction from original data,
the meta-degradation trend with tensor representation can reduce the disturbance by noise and degradation randomness
and express more accurately the degradation mechanism information under different fault modes.
3.3. Construction of transferability metric

Based on the meta-degradation trend of each fault mode, transferability is further studied. In an ideal scenario, the
meta-degradation trend of all fault modes can be directly weighed to evaluate the transferability. But if the fault mode in
the target domain is unknown, the weight of each fault mode in the source domain is unresolvable. To integrate the fault
mode information, it is necessary to determine the fault probability of the target domain data. Moreover, as indicated
by Figure 1, some characteristics of the data, such as geometric shape and tendency, should also be considered.

Specifically, a CNN classifier, as a popular technique in fault diagnosis, is first built to identify the fault probability
of the target domain data, as shown in Figure 4. With the concern about data distribution discrepancy, the MMD
distance is added after the first fully-connected layer of the CNN classifier to realize domain adaptation. Certainly, the
CNN classifier, which only provides a rough fault probability for the target domain data, is not the most important issue
in the proposed methodology. Degradation characteristic information is going to be further incorporated to guarantee
the effect of knowledge transfer. The detailed structure of the CNN model will not be discussed. Here the CNN classifier
can be built directly using raw signals instead of core tensors. The role of tensor representation is to extract the meta-
degradation trend and calculate the transferability metric. The classification model training will be computationally
expensive once applying core tensors to train the fault classifier. Please note that the CNN model can be replaced by
any other classification model with probability output.

The degradation characteristic, in terms of geometric shape and tendency, is further considered. Then a transfer-
ability metric, named cross-machine transferrable degree indicator (M-TDI), is constructed to indicate the similarity
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Figure 4: Sketch map of CNN-based fault classifier for calculating the fault probability of target domain data. One can
modify the network structure following specific requirements. The degradation characteristic, in terms of geometric shape
and tendency, is further considered.

degree of prognostic knowledge between the source domain data and the target domain data, as follows:

𝑀 - 𝑇𝐷𝐼 (𝑚) =

1
𝑁𝑇

𝑁𝑇
∑

𝑖=1
𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑋𝑇
𝑖
)

DTW (

𝑀𝑒𝑡𝑎𝑇 ,𝑀𝑒𝑡𝑎𝑆,𝑚
)

× |MIC(𝑀𝑒𝑡𝑎𝑇 )−MIC(𝑀𝑒𝑡𝑎𝑆,𝑚)|
MIC(𝑀𝑒𝑡𝑎𝑇 )∗MIC(𝑀𝑒𝑡𝑎𝑆,𝑚)

(6)

where 𝑋𝑇
𝑖 is the 𝑖-th degradation sequence in the target domain, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑋𝑇

𝑖
) is the fault probability of 𝑋𝑇

𝑖which comes from the Softmax layer, DTW (⋅, ⋅) indicates the dynamic time warping (DTW) distance between the
two sequences with unequal length, MIC (⋅) indicates the maximal information coefficient (MIC) value of a sequence
that is used to represent the correlation between the sequence and its own degradation time. The detailed calculations
of DTW and MIC can be found in [23] and [29], respectively.

In Eq. (6), a larger DTW value indicates that the two meta-degradation trends are more geometrically divergent,
i.e., with smaller geometric similarity. The MIC value can measure the variation of tendency information in a meta-
degradation trend. The larger the MIC value is, the better the sequence’s tendency will be. |MIC(𝑀𝑒𝑡𝑎𝑇 )−MIC(𝑀𝑒𝑡𝑎𝑆,𝑚)|

MIC(𝑀𝑒𝑡𝑎𝑇 )∗MIC(𝑀𝑒𝑡𝑎𝑆,𝑚)measures the difference between the two meta-degradation trends’ MIC value and the MIC value of each meta-
degradation trend itself. Specifically, if the MIC value of one meta-degradation trend is smaller, which indicates the
degradation trend is not significant, the similarity of two meta-degradation trends should decrease, i.e., the tendency
similarity will be smaller. Obviously, the denominator of M-TDI is able to measure the geometric similarity and
tendency similarity between two meta-degradation trends (called degradation characteristic in this paper). Therefore,
M-TDI comprehensively considers the fault probability and degradation characteristic and can accurately evaluate the
transferrable degree of the source domain data.

To apply M-TDI practically, a transfer weight is further built for the 𝑚-th fault mode in the source domain:
𝑇 - 𝑊 𝑒𝑖𝑔ℎ𝑡𝑚 = 𝑀 - 𝑇𝐷𝐼(𝑚)

𝑀
∑

𝑚=1
𝑀 - 𝑇𝐷𝐼(𝑚)

. A larger value of 𝑇 - 𝑊 𝑒𝑖𝑔ℎ𝑡𝑚 indicates a greater significance of the prognostic

knowledge of the 𝑚-th fault mode’s data to the target domain.
3.4. Selective transfer learning approach
3.4.1. Transfer strategy based on M-TDI

This section presents a new M-TDI-based transfer strategy to transfer the prognostic knowledge selectively. Since
the target domain has a small amount of training data, freezing and fine-tuning are adopted as the baseline transfer
strategy. To extract temporal information from degradation sequences, a three-layer stacked LSTM network is utilized
as the prototype prediction model. In the past decade, LSTM has been widely used as the backbone network to extract
temporal features for RUL prediction [4; 10; 24]. LSTM has several merits in capturing long dependency and alleviating
gradient vanishing or exploding. Obeying the designed transfer strategy, the other temporal neural networks can also
be applied. Please note that the LSTM network runs on the degradation sequence in the core tensor instead of raw
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signals. The network parameters 𝜃𝐿𝑆𝑇𝑀 can be optimized by minimizing the empirical loss 𝓁𝐿𝑆𝑇𝑀 = ‖

‖

‖

𝑌 −
⌢
𝑌 ‖‖
‖

2

𝐹
,

where ⌢
𝑌 = 𝑓𝐿𝑆𝑇𝑀

(

𝐺; 𝜃𝐿𝑆𝑇𝑀
) is the predicted RUL value. The transfer strategy contains two parts:

1) Weighted initialization: One LSTM network is separately trained for each fault mode in the source domain. Then
there is a total of 𝑀 LSTM networks. The LSTM network of the target domain is set with an identical structure to the
network of the source domain, and its parameter 𝜃𝑇𝐿𝑆𝑇𝑀 is initialized by:

𝜃𝑇𝐿𝑆𝑇𝑀 =
𝑀
∑

𝑚=1

(

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀 × 𝑇 - 𝑊 𝑒𝑖𝑔ℎ𝑡𝑚
)

(7)

where {𝑇 - 𝑊 𝑒𝑖𝑔ℎ𝑡𝑚
}

𝑚=1,⋯,𝑀 and
{

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀

}

𝑚=1⋯𝑀
are the transfer weights and LSTM parameters of the total 𝑀

fault modes in the source domain. Here the value of 𝑀 is usually not too large since the proposed approach mainly
involves the major fault modes that cause machines to fail. Also, the prognostic knowledge to transfer has no need to
be fine-grained. Otherwise, the knowledge might be less representative. If too many fault modes are considered, one
can first adaptively allocate all degradation sequences to 𝑀 clusters in order to avoid extra training burden.

2) Adaptive freezing: After initialization, the first few layers of the target LSTM network should be frozen to
keep the source domain’s knowledge. Then the remaining parameters are fine-tuned using the target domain data. The
number of frozen layers determines how much the prognostic knowledge from the source domain is retained. It is
critical to determine the frozen layers utilizing the transferability analysis.

An adaptive freezing strategy is designed to determine the frozen layers by estimating the contribution dis-
crepancy between the two fault modes that are respectively with the maximum value and the minimum value of
T-Weight. Here a simple threshold 1/M is introduced for the determination. For instance, if the value of 𝑠𝑝𝑎𝑛 =
max

𝑚=1,⋯,𝑀

{

𝑇 - 𝑊 𝑒𝑖𝑔ℎ𝑡𝑚
}

− min
𝑚=1,⋯,𝑀

{

𝑇 - 𝑊 𝑒𝑖𝑔ℎ𝑡𝑚
} is greater than 1/M, the largest contribution discrepancy would

go beyond the average level. In this case, it means that there is a fault mode whose data have better transferability than
the others. More layers are required to be frozen to transfer the knowledge of this fault mode. On the contrary, if the
value of span is less than the threshold 1/M, all of the fault modes in the source domain have a close contribution to the
target domain task, which indicates the target domain data do not particularly belong to any fault mode. Fewer layers
need to be frozen in order to learn more prognostic knowledge from the target domain itself. Following this idea, the
number of frozen layers can be determined by:

𝐹𝑟𝑜𝑧𝑒𝑛_𝑙𝑎𝑦𝑒𝑟 =
⎧

⎪

⎨

⎪

⎩

{

0, 1,⋯ ,
⌊𝑁
2

⌋}

, 𝑖𝑓 𝑠𝑝𝑎𝑛 < 1
𝑀

{⌊𝑁
2

⌋

+ 1,⋯ , 𝑁
}

, 𝑖𝑓 𝑠𝑝𝑎𝑛 ⩾ 1
𝑀

(8)

where ⌊⋅⌋ represents the down-rounding operation, and N is the total layer number. Certainly, the threshold 1/M is just
roughly defined and can be further optimized according to task requirements, e.g., the amount of target domain data,
and the degradation similarity between two domains. Moreover, Eq. (8) merely provides a proper set of the number of
frozen layers. One can run cross-validation or add a validation set to determine the most suitable layers to freeze.

Therefore, the overall loss of the selective transfer learning approach can be expressed as:
𝐿 = 𝛽1

∑

1,⋯,𝑁𝑆 ,1,⋯,𝑁𝑇
𝓁𝐴𝐸+𝛽2

∑

1,⋯,𝑀
𝓁𝑆,𝑚
𝐿𝑆𝑇𝑀 + 𝛽3𝓁

𝑇
𝐿𝑆𝑇𝑀 +

∑

1,⋯,𝑁𝑆 ,1,⋯,𝑁𝑇
𝓁𝑇 𝑢𝑐𝑘𝑒𝑟 (9)

where 𝛽1, 𝛽2 and 𝛽3 are the regularization parameters. From Eq. (9), the solution covers optimizing the prediction
model and feature extraction. Minimizing Eq. (9) can not only determine the optimal core tensor representation (i.e.,
the meta-degradation trend) but also obtain the optimal effect of prognostic knowledge transfer.
3.4.2. Training algorithm

The optimization variables in Eq. (9) include not only the DAE parameters 𝜃𝑑𝑒, 𝜃𝑒𝑛, LSTM parameters
{

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀

}

𝑚=1⋯𝑀
and 𝜃𝑇𝐿𝑆𝑇𝑀 , but also the tensor factor matrix {

𝑈 (𝑐)}𝐶−1
𝑐=1 . The optimal 𝜃𝑑𝑒, 𝜃𝑒𝑛,

{

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀

}

𝑚=1⋯𝑀
and 𝜃𝑇𝐿𝑆𝑇𝑀 can be found by using a stochastic gradient descent (SGD) method, while the solution of {𝑈 (𝑐)}𝐶−1

𝑐=1 cannot
be solved in the same way. An alternately minimizing scheme is adopted to train the network: Fix {

𝑈 (𝑐)}𝐶−1
𝑐=1 , then
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update 𝜃𝑑𝑒, 𝜃𝑒𝑛,
{

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀

}

𝑚=1⋯𝑀
and 𝜃𝑇𝐿𝑆𝑇𝑀 ; Then fix 𝜃𝑑𝑒, 𝜃𝑒𝑛,

{

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀

}

𝑚=1⋯𝑀
and 𝜃𝑇𝐿𝑆𝑇𝑀 update {𝑈 (𝑐)}𝐶−1

𝑐=1 .
These two steps run alternately until reaching convergence. The optimization process is as follows.

1) Update 𝜃𝑑𝑒, 𝜃𝑒𝑛,
{

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀

}

𝑚=1⋯𝑀
and 𝜃𝑇𝐿𝑆𝑇𝑀 : The DAE feature extractor and the LSTM network can be jointly

optimized. For simplicity, the solution is expressed as solving Eq. (10):

min 𝐽 = 𝛽1𝓁𝐴𝐸 + 𝛽2
𝑀
∑

𝑚=1
𝓁𝑆,𝑚
𝐿𝑆𝑇𝑀 + 𝛽3𝓁

𝑇
𝐿𝑆𝑇𝑀

=
𝑁𝑆 ,𝑁𝑇
∑

𝑖=1

‖

‖

‖

‖

𝑋𝑆,𝑇
𝑖 − 𝑓𝐴𝐸

(

𝑋𝑆,𝑇
𝑖 ; 𝜃𝑒𝑛, 𝜃𝑑𝑒

)

‖

‖

‖

‖

2

𝐹

+
𝑀
∑

𝑚=1

𝐾𝑚
∑

𝑖

‖

‖

‖

‖

𝑌 𝑆𝑅𝑈𝐿
𝑖 − 𝑓𝐿𝑆𝑇𝑀

(

𝐺𝑆
𝑖 ; 𝜃

𝑆,𝑚
𝐿𝑆𝑇𝑀

)

‖

‖

‖

‖

2

𝐹

+
𝑁𝑇
∑

𝑖=1

‖

‖

‖

𝑌 𝑇𝑅𝑈𝐿
𝑖 − 𝑓𝐿𝑆𝑇𝑀

(

𝐺𝑇
𝑖 ; 𝜃

𝑇
𝐿𝑆𝑇𝑀

)

‖

‖

‖

2

𝐹

(10)

By combining Eq. (1) and (2), the core tensor can be obtained by:

𝐺 = Fold
(

⌢
𝑋×1𝑆1 ×⋯×𝐻𝑆𝐻

)

×1𝑈 (1)T×2𝑈 (2)T ×⋯×𝐶−1𝑈 (𝐶−1)T

= Fold (𝑓𝑒𝑛
(

𝑋; 𝜃𝑒𝑛
)

×1𝑆1 ×⋯×𝐻𝑆𝐻
)

×1𝑈 (1)T×2𝑈 (2)T ×⋯×𝐶−1𝑈 (𝐶−1)T
(11)

Since {

𝑈 (𝑐)}𝐶−1
𝑐=1 can be regarded as a constant variable, 𝜃𝑑𝑒, 𝜃𝑒𝑛,

{

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀

}

𝑚=1⋯𝑀
and 𝜃𝑇𝐿𝑆𝑇𝑀 can be updated

by:

𝜃𝑑𝑒 ← 𝜃𝑑𝑒 − 𝛼 𝜕𝐽
𝜕𝑓𝐴𝐸

𝜕𝑓𝐴𝐸
𝜕𝜃𝑑𝑒

(12)

𝜃𝑒𝑛 ← 𝜃𝑒𝑛 − 𝛼
(

𝜕𝐽
𝜕𝑓𝐴𝐸

𝜕𝑓𝐴𝐸
𝜕𝜃𝑒𝑛

+ 𝜕𝐽
𝜕𝑓𝐿𝑆𝑇𝑀

𝜕𝑓𝐿𝑆𝑇𝑀
𝜕𝑓𝑒𝑛

𝜕𝑓𝑒𝑛
𝜕𝜃𝑒𝑛

)

(13)

𝜃𝑆,𝑚𝐿𝑆𝑇𝑀 ← 𝜃𝑆,𝑚𝐿𝑆𝑇𝑀 − 𝛼 𝜕𝐽
𝜕𝑓𝐿𝑆𝑇𝑀

𝜕𝑓𝐿𝑆𝑇𝑀
𝜕𝜃𝑆,𝑚𝐿𝑆𝑇𝑀

(14)

𝜃𝑇𝐿𝑆𝑇𝑀 ← 𝜃𝑇𝐿𝑆𝑇𝑀 − 𝛼 𝜕𝐽
𝜕𝑓𝐿𝑆𝑇𝑀

𝜕𝑓𝐿𝑆𝑇𝑀
𝜕𝜃𝑇𝐿𝑆𝑇𝑀

(15)

where 𝛼 is the learning rate. It should be noted that 𝜃𝑇𝐿𝑆𝑇𝑀 is not all updated because the first few layers are frozen
according to Eq. (8).

2) Update {𝑈 (𝑐)}𝐶−1
𝑐=1 : The optimal {𝑈 (𝑐)}𝐶−1

𝑐=1 can be found by minimizing 𝓁𝑇 𝑢𝑐 ker =
1
2

𝑁𝑆+𝑁𝑇
∑

𝑖=1

‖

‖

‖

‖

𝑆,𝑇
𝑖 −

⌢


𝑆,𝑇
𝑖

‖

‖

‖

‖

2

𝐹
.

This problem can be reformulated by unfolding each tensor variable as:

𝓁𝑇 𝑢𝑐𝑘𝑒𝑟 =
𝑁𝑆+𝑁𝑇
∑

𝑖=1

‖

‖

‖

‖

𝑆,𝑇
𝑖 −

[[

𝐺𝑆,𝑇
𝑖 ; 𝑈 (1), 𝑈 (2),⋯ , 𝑈 (𝐶−1)

]]

‖

‖

‖

‖

2

𝐹
(16)

10



Then minimizing 𝓁𝑇 𝑢𝑐 ker equals the following problem:

min
{𝑈 (𝑐)}

‖

‖

‖

‖

𝑆,𝑇
𝑖 −

[[

𝐺𝑆,𝑇
𝑖 ; 𝑈 (1), 𝑈 (2),⋯ , 𝑈 (𝐶−1)

]]

‖

‖

‖

‖

2

𝐹

= ‖

‖

‖

𝑆,𝑇
𝑖

‖

‖

‖

2

𝐹
− 2

⟨

𝑆,𝑇
𝑖 ,

[[

𝐺𝑆,𝑇
𝑖 ; 𝑈 (1), 𝑈 (2),⋯ , 𝑈 (𝐶−1)

]]⟩

+ ‖

‖

‖

𝐺𝑆,𝑇
𝑖 ; 𝑈 (1), 𝑈 (2),⋯ , 𝑈 (𝐶−1)‖

‖

‖

2

𝐹

= ‖

‖

‖

𝑆,𝑇
𝑖

‖

‖

‖

2

𝐹
− ‖

‖

‖

𝑆,𝑇
𝑖 ×1𝑈 (1)×2𝑈 (2)⋯×𝐶−1𝑈 (𝐶−1)‖

‖

‖

2

𝐹

(17)

Since 𝑈 (𝑐) is orthogonal, Eq. (16) can be re-written as the following problem:

max
𝑈 (𝑐)

‖

‖

‖

𝑆,𝑇 (𝑐)

𝑖 ×1𝑈 (1)×2𝑈 (2)⋯×𝐶−1𝑈 (𝐶−1)‖
‖

‖

= max
𝑈 (𝑐)

‖

‖

‖

𝑈 (𝑐)𝑊 ‖

‖

‖

(18)

where 𝑊 = 𝑆,𝑇
𝑖

(𝑐) (

𝑈 (𝐶−1)T ⊗⋯𝑈 (𝑐+1)T ⊗𝑈 (𝑐−1)T ⊗⋯𝑈 (1)T
)

represents the c-th dimension expansion of 𝑆,𝑇
𝑖 .

The optimal 𝑈 (𝑐) can be determined using an alternating least squares algorithm [25], i.e., realize the singular value
decomposition (SVD) in all directions of 𝑆,𝑇

𝑖 and update 𝑈 (𝑐) iteratively.
With the obtained model parameters, the test data are fed into the target LSTM network to obtain the predicted RUL

value. By clarifying the transferable degree of the source domain data, the prognostic knowledge can be selectively
transferred to improve the effect of cross-machine transfer prediction.
3.5. Analysis of upper bound of prediction error for target model

Without loss of generality and for the ease of formula derivation, the LSTM model can be replaced by an RNN
model with linear activation, as shown in Eq. (19). LSTM can be viewed as a nonlinear extension of the RNN model,
so the following analysis and conclusion also apply to the proposed method.

𝑓 (𝑥𝑡) = 𝑉 𝑥𝑡 +𝑊 𝑠𝑡−1, 𝑠𝑡−1 = 𝑉 𝑥𝑡−1 +𝑊 𝑠𝑡−2 (19)
Definition 1 (Linear decoupling) [30]. For a linear model, let 𝑋 ∈ 𝑅𝑛×𝑑 be a row matrix from the input space D

and denote the empirical covariance matrix 1
𝑛𝑋

T𝑋 by ̃∑. Define 𝑃∥ to be the projection matrix into the row space of
X, and 𝑃⊥ to be the projection matrix into its orthogonal complement, i.e.:

𝑃∥ ≜ 𝑋𝑇 (𝑋𝑋𝑇 )−1𝑋, 𝑃⊥ ≜ I − 𝑃∥ (20)
Definition 2 (The optimal model). Set 𝜀 > 0 is a constant. By minimizing the loss L, s.t. 𝐿 ⩽ 𝜀, the optimal nodel

parameters 𝜃∗ for the prediction task can be obtained.
From Definition 2, there exists a constant 𝜀𝑆 > 0, then the optimal source model parameters 𝜃∗𝑆 =

{

𝜃∗𝑆,1,⋯ , 𝜃∗𝑆,𝑀
}

can be get by minimizing the loss 𝓁𝑆,𝑚
𝐿𝑆𝑇𝑀 in Eq. (9) subject to 𝓁𝑆,𝑚

𝐿𝑆𝑇𝑀 ⩽ 𝜀𝑆 . From Definition 1, the optimal parameters
can be expressed as {𝑉 ∗

𝑆 ;𝑊
∗
𝑆
}

=
{

𝑉 ∗
𝑆,1,⋯ , 𝑉 ∗

𝑆,𝑀 ;𝑊 ∗
𝑆,1,⋯ ,𝑊 ∗

𝑆,𝑀

}

, where M is the total number of fault modes.
Meanwhile, by Eq. (6), the transfer weight 𝑇 −𝑊 𝑒𝑖𝑔ℎ𝑡 =

[

𝑇 −𝑊 𝑒𝑖𝑔ℎ𝑡1,⋯ , 𝑇 −𝑊 𝑒𝑖𝑔ℎ𝑡𝑀
] can be calculated for

all emphM fault modes in the source domain.
Definition 3 (Fine-tuning for the target model). Let {𝑉𝑇 ,𝑊𝑇

}

∈ ℝ𝑑 be the ground-truth parameters of the target
task, and 𝑦 ∈ ℝ𝑛 be the real label of the target data 𝑋𝑇 =

{

𝑥𝑡
}𝑛
𝑡=1, i.e., 𝑦𝑖 = 𝑉𝑇 𝑥𝑡 +𝑊𝑇 𝑠𝑡−1. For a linear RNN model,

the optimal parameters of the target task with fine-tuning can be expressed as:
𝑉 ∗
𝑇 = 𝑃⊥𝑉𝑆 + 𝑃∥𝑉𝑇 , 𝑊 ∗

𝑇 = 𝑄⊥𝑊𝑆 +𝑄∥𝑊𝑇 (21)
Denote by  and  the target model parameters. These parameters can be initialized as 0 = 𝑇 - 𝑊 𝑒𝑖𝑔ℎ𝑡 × 𝑉 ∗

𝑆and 0 = 𝑇 - 𝑊 𝑒𝑖𝑔ℎ𝑡 ×𝑊 ∗
𝑆 . Then there is the following definition and proposition.
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Definition 4 (Population loss). With the target model parameters  and  the population loss can be defined as:
𝑅( ,) ≜ 𝐸𝑥∼𝐷

[

((𝑥T
𝑡 𝑉𝑇 + 𝑠T

𝑡−1𝑊𝑇 ) − (𝑥T
𝑡  + 𝑠T

𝑡−1))2
]

(22)
Proposition (Upper bound of prediction error for target model). For 1 ⩽ 𝑚 ⩽ 𝑑, 𝜆𝑚 > 0 and all 𝛿 ⩾ 1 with the

probability at least 1 − 𝑒−𝛿 . Assume the number of frozen layer is k, the population loss 𝑅 ( ,) of the proposed
method has the upper bound:

𝑅 ( ,) ⩽ 4
∑

𝑡
‖

‖

‖

𝑥T
𝑡 (𝑉𝑇 − 0)‖‖

‖

2

𝑙⩽𝑘

+8𝑔(𝜆, 𝛿, 𝑛)3
‖

‖

‖

𝑃⩽𝑚(𝑉𝑇 − 0)‖‖
‖

2

𝑙>𝑘

𝜆2𝑚

+8𝑔(𝜆, 𝛿, 𝑛) ‖‖
‖

𝑃>𝑚(𝑉𝑇 − 0)‖‖
‖

2

𝑙>𝑘

(23)

Please refer to Section Appendix for more derivation details.
Eq. (23) indicates that the upper bound of prediction error is composed of two crucial parts. The first is the function

𝑔(𝜆, 𝛿, 𝑛) that captures the extent of the covariance ∑, which indicates the upper bound depends on the number of
training samples. The second is the bias between 0 and 𝑉𝑇 . A smaller bias will raise a lower bound, and vice versa.
Optimizing the source tasks and target tasks together in Eq. (9) can definitely reduce the bias. Moreover, since the
transfer weights obtained from Eq. (6) can evaluate the transferability between every source task and the target task,
the weighted initialization for 0 can also reduce the bias. Since the last two terms on the right side of Eq. (23) are
updated via the fine-tuning process, this upper bound can provide a reliability analysis for the adaptive freezing strategy
shown in Eq. (8). The upper bound of prediction error for the target model can be reduced by means of the proposed
approach.

4. Experimental results
Rolling bearing is chosen as the validation subject to conduct experimental verification on three benchmark

datasets: PHM, XJTU-SY, and UNSW. The programming environment is Matlab2014a and Python3.7, with computer
configuration i7-4790 processor and 16G memory.
4.1. Experimental Setup

Figure 5 shows the test platforms of the three datasets for run-to-failure experiments of rolling bearings. The PHM
dataset contains three working conditions with the motor speed 1800rpm, 1650rpm, and 1500rpm and the load 4000N,
4200N, and 5000N, respectively. The sampling frequency is 25.6k Hz, and the sampling interval is 10 seconds. The
XJTU-SY dataset also contains three working conditions with the motor speed 2100 rpm, 2250 rpm, 2400 rpm and the
load 12kN, 11kN, and 10kN, respectively. The sampling frequency is 25.6k Hz, and the sampling interval is 1 min. The
UNSW dataset contains four bearings with run-to-failure experiments, named Test 1-4. The motor speed is 6000rpm.
In Test 1 and Tests 3-4, a 10.5kN radial load is applied on the test bearing, and in Test 2, the load is 7kN. The sampling
frequency is 51.2k Hz. The sampling interval is set to 50000 cycles in the initial stage and decreased to 20000 cycles
when the spall started to grow.

The fault modes in the PHM dataset are unknown, while the fault modes in the XJTU-SY and UNSW datasets have
been given. Therefore, two sets of transfer prediction tasks across machines are built by setting the XJTU-SY dataset
as the source domain while the PHM and UNSW dataset as the target domain respectively, as listed in Table 1. Two
bearings (B2_1 and B2_2) in the PHM dataset are randomly selected as the test bearing alternately to build two specific
tasks. It is worth noting that only the fast degradation data are utilized for model training. The target bearings B2_2 and
B2_6 in Task 1 have 55 and 18 samples in the fast degradation state, respectively. In Task 2, the target bearing B2_1
has 41 samples for the model training. Although the bearings B2_1, B2_2, and B2_6 might have different distributions,
they still run under the same working condition, and their degradation characteristics have rather smaller divergence.
Compared to the other bearings under the second working condition, the bearings B2_1 and B2_2 both have a much
longer degradation process. So setting these two bearings as the target bearing in Task1 and Task2, respectively, is
expected to raise a better visualization effect for illustration.
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Figure 5: Testbeds used in this paper with (a) PRONOSTIA platform [31] for the PHM dataset, (b) XJTU-SY platform
[32] and (c) UNSW dataset platform [33]

.

The location of early fault occurrence can be firstly determined by using the state assessment method in the
reference [34]. Then the fast degradation data can be selected for training. Following the references [15; 34], we
linearly normalize the period between the early fault location and ending point for each bearing to a ratio range from 1
to 0, serving as the RUL labels. The ending point with complete failure can be determined using different thresholds.
For instance, the termination condition in the XJTU-SY dataset is set to 10Ah [32], where Ah is the highest vibration
amplitude in the normal state. For all data, the Hilbert-Huang transform (HHT) [35] is first run on the raw signal to
calculate the marginal spectrum: 𝐻(𝑤) = ∫ 𝐻(𝑤, 𝑡)𝑑𝑡. The HHT feature dimension is set to 2558. The HHT features
are first fed into the DAE encoder, whose structure is set [2558, 1024, 512, 128, 50]. Then tensor Tucker decomposition,
shown in Eq. (2), is conducted on the 50-dimensional hidden features to get the core tensor that is set with 3-order and
25-dimensional features. The core tensor is further fed into the LSTM network, whose hidden neuron number is set to
100, and the learning rate is set to 0.001. For the test bearings listed in Table 1, we also determine the starting point
of the degradation state and run HHT on the raw signals in the degradation period to obtain the test samples. The test
samples with HHT features are then fed into the trained prognostic model to predict their RUL values.
4.2. Validation results

Task 1 and Task 2 are mainly used for validation and performance evaluation. Figure 6 and Figure 7 show the RUL
prediction results and the box diagram of loss drop with freezing different layers. According to the T-Weight values
(see Figure 8), it is suggested to freeze two or more layers for the two tasks by Eq. (8). From Figure 6, the results of
freezing two layers are better than that of freezing different layers. From Figure 7, the convergence speed of freezing
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Table 1
Task settings of RUL transfer prediction across different datasets. The first number in the bearing name indicates working
condition, while the second number indicates index.

Source domain (XJTU-SY) Target domain
Fault mode Bearing name Specific task Data Bearing name

Outer race
X1_1 X1_2 X1_3 Task1 (PHM) Training B2_2 B2_6
X2_2 X2_4 X2_5 Test B2_1
X3_1 X3_5 Task2 (PHM) Training B2_1 B2_6

Inner race X2_1 X3_3 X3_4 Test B2_2
Cage X1_4 X2_3 Task3 (UNSW) Training Test1
Mixed X1_5 X3_2 Test Test2

two layers is also faster than the others. It indicates that freezing appropriate layers can improve the transfer prediction
performance. The results also demonstrate the adaptive freezing strategy is effective.
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Figure 6: RUL prediction results with freezing different layers on (a) Task1 and (b) Task2.

Eq. (6) is composed of two parts (numerator and denominator). Two new metrics (named fault probability and
degradation characteristic) are designed by separately using the numerator and denominator. Figure 8 shows the values
of the three metrics, and Figure 9 shows the corresponding feature distributions. When only fault mode is used, the
target domain data are categorized to outer race fault (78.11% for Task1 and 79.08% for Task2). But if the degradation
characteristic is used, the target domain data are more similar to the cage fault data in the source domain in terms of
geometric shape and tendency. On the contrary, the proposed metric M-TDI, as reflected by T-Weight, can leverage
fault mode information and degradation characteristic, then provides a comprehensive evaluation of transferability.
The numerical results can be precisely reflected by Figure 9. When only using fault probability, the feature distribution
of the target domain data is close to the distribution of the outer race fault data from the source domain, as visualized
by the purple line leaning on the blue line (outer race fault). In Figure 9(b) and (d), the purple line turns to lean on the
green line (cage fault), indicating the target domain data has better similarity with the cage fault data in degradation
characteristics. The contradictory effect is the same as the results in Figure 8. Regardless of which metric is used, the
prediction results are not satisfactory. M-TDI (T-Weight) can make a tradeoff between these two metrics and facilitate
the transfer of prognostic knowledge.

Besides Eq. (6), the proposed approach also includes tensor optimization. The following ablation experiments
are built: 1) Without tensor optimization; 2) Without the metric of degradation characteristic; 3) Without the metric
of fault probability; 4) Without M-TDI, i.e., merely fine-tune the prediction model using the target domain data.
The results of the ablation experiment are shown in Figure 10. The results without tensor optimization significantly
decrease, which indicates that high-quality feature representation can support knowledge transfer. However the purple
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Figure 7: Box diagram of loss drops with freezing different layers, where (a)-(d) are on Task1, (e)-(h) are on Task2.

Figure 8: Detailed calculation of T-Weight on Task1 and Task2. Since the difference between the maximum value and the
minimum value of T-Weight is greater than 1/4, two or more layers are suggested to freeze according to Eq. (8).
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line shows the worst prediction effect, indicating the necessity of an appropriate transfer strategy. Also, the transfer
without degradation characteristic (dark green line) does not achieve good performance. It means that only transferring
fault mode information will make the knowledge deviate. The transfer without fault probability has a similar effect. In
contrast, the proposed approach can exploit the transferability from the two aspects and achieve a favorable transfer
effect.
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Figure 9: Feature distributions corresponding to different metrics, where (a)-(c) are on Task1, (d)-(f) are on Task2.

The sensitivity of the three key hyper-parameters 𝛽1, 𝛽2 and 𝛽3 in Eq. (9) is further checked. 𝛽1 is set on 𝓁𝐴𝐸 , while
𝛽2 and 𝛽3 is set on 𝓁𝑆,𝑚

𝐿𝑆𝑇𝑀 and 𝓁𝑇
𝐿𝑆𝑇𝑀 respectively. These three parameters are used to control the tradeoff between

the DAE reconstruction error, the source domain/target domain LSTM prediction error, and the tensor reconstruction
error. Specifically, these three parameters are set by 𝛽1 = 1, 𝛽2 = 1, and 𝛽3 = 1 in turn, and test the prediction
performance with different values of the other parameter. The mean value of 30 repeated trials is calculated as the
final results, as shown in Figure 11. Please note that the curves in Figure 11 are not smooth enough, which is caused
by the noise. A smaller value of 𝛽1 will deteriorate the quality of initial DAE features, while a much larger one may
cause overfitting. When 𝛽2 and 𝛽3 become larger, the model tends to seek a lower training error of the LSTM networks,
relatively neglecting the adequacy of tensor representation, and vice versa. The ratio of 𝛽2 and 𝛽3 can also affect the
significance of the prognostic knowledge from the source domain and target domain. These three hyper-parameters
can be determined via cross-validation. In our experiment, the parameters are set 𝛽1, 𝛽2 and 𝛽3 to 1, 0.01 and 0.1,
respectively.

The sensitivity of the three key hyper-parameters: learning rate 𝛼, the hidden feature dimension of DAE and LSTM
is also evaluated. Specifically, two of the three parameters are fixed in turn, then the mean value of 30 repeated trials
is calculated as the final results, as shown in Figure 12. From the subfigures (a) and (d), the model is insensitive to
the learning rate 𝛼 except for the too-large or small values. Moreover, the hidden feature dimension of DAE has a
certain influence on the prediction results. The too-small dimension of DAE may ignore essential information, while
the too-large dimension would contain redundant information, both of which are harmful to the representation of the
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Figure 10: RUL prediction results of ablation experiments, where (a) is on Task1 and (b) is on Task2.
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Figure 11: Sensitivity evaluation of different hyper-parameters settings in Eq. (9) in terms of the MAE and RMSE, where
(a)-(c) are on Task1, (d)-(f) are on Task2.

meta-degradation trend via tensor decomposition. Due to random initialization, Figure 12(b) and (e) inevitably have
some fluctuations. For the hidden feature dimension of LSTM, a larger value will also raise redundant information,
while a smaller value may block extracting the prognostic information. According to Figure 12, the parameters are set
𝛼 = 0.001, the hidden feature dimension of DAE and LSTM, to be 50 and 100, respectively, in our experiment.

To evaluate the effect of DAE model’s bias, the following two experiments in the revised manuscript are designed
with: 1) different imbalance ratios of training samples, and 2) separated DAEs models in the two domains. Here only
the DAE part is modified, while the remaining parts of the proposed method remain unchanged. The experimental
settings are listed in Table 2. The prediction results and corresponding DAE features are shown in Fig. 13 and
Fig. 14 respectively. The DAE model in the proposed method is less susceptible to the different sample ratios. The
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Figure 12: Sensitivity evaluation of different network settings on prediction error in terms of the MAE and RMSE, where
(a)-(c) are on Task1, (d)-(f) are on Task2.

Table 2
Experimental settings on Task 2 with different ratios of bearing samples and separated DAE models. Trial 1 is just with
the same setting used in this paper.

Trial index Source domain Target domain Test bearing
Ratio

(source domain(S):target domain (T))
1

(The proposed
method)

XJTU (X1_1-X3_5) PHM (B2_1,B2_6)

PHM(B2_2)

Bearing number
S:T=15:2

2 XJTU (X1_1-X3_5) -
Bearing number

S:T=15:0

3 XJTU (X1_1,X1_5) PHM (B2_1,B2_6)
Bearing number

S:T=2:2

4 - PHM (B2_1,B2_6)
Bearing number

S:T=0:2

5 XJTU (X1_1-X3_5) PHM (B2_1,B2_6)
Separated DAEs

S: 4 DAEs & T:1 DAE

prediction results with different sample ratios are similar, while the feature sequences on the target bearing B2_1
show relatively identical degradation trends. These results indicate that the DAE model is devoted to dimensionality
reduction. Moreover, the model becomes more unstable when the sample size used for training is smaller. Once only the
two target bearings (B2_1 and B2_6) are used for the DAE training, the MAE error deviation becomes maximum (see
Figure 13(c)). In contrast, no matter of S:T=15:2 or S:T=15:0, the error deviation is much smaller. This phenomenon
indicates that the DAE model in the proposed method is sensitive to the whole volume of training data more than the
imbalance of training samples.

Also from Figure 13, we observe that running with separated DAEs can bring similar, but more unstable, prediction
results than only using one DAE. More DAE models to be optimized will probably increase model complexity.
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Figure 13: Prediction results on Task2 with (a) different ratios of bearing sample, (b) separated DAEs and (c) error box
diagram.

Figure 14: DAE features (left column) and their first principal sequence (right column) of the target bearing B2_1 from
the PHM dataset. Here PCA is used for one-dimensional visualization.

Meanwhile, training separated DAEs definitely raises extra computational costs. Since the DAE model is just for
dimensionality reduction, the proposed method prefers to adopt one DAE model, instead of separated DAEs, that are
trained directly using all samples from the source domain and target domain. We believe this design will not deteriorate
the feature extraction and prediction performance in the target domain, while the extraction of meta-degradation trends
will also not be influenced negatively.
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Table 3
Description of 14 classic methods for comparison.

Number Method name Method type Implementation
1 Deutsch’s method [3] Deep learning with

no transfer learning

DBN
2 Zraibi’s method [4] LSTM
3 Zhu’s method [5] Multiscale-CNN
4 KMM [36]

Transfer learning with
shallow model

Kernel mean matching
5 SA [37] Subspace alignment
6 GFK [38] Geodesic flow kernel
7 TCA [39] Kernel with MMD
8 Zhang’s method [6]

Deep transfer learning

Bi-LSTM with fine-tuning
9 Cheng’s method [40] LSTM with CNN and MMD features
10 Zhu’s method [7] Multilayer perceptron with MMD
11 Sun’s method [12] Sparse DAE with K-L divergence
12 Mao’s method [8] LSTM with interpretability-based fine-tuning
13 Peng’s method [41] Multi-source transfer learning with fine-tuning
14 Hu’s method [9] Weighted DANN with fine-tuning

4.3. Comparative experiments
For comparison, 14 typical RUL prediction methods are chosen, as shown in Table 3. Methods 8-14 can be regarded

as state-of-the-art (SOTA) RUL transfer prediction methods. Specifically, Methods 8-11 and 13-14 were designed for
the prediction across working conditions. Method 12 is an interpretability analytics work for RUL transfer prediction,
but it still tested the RUL transfer prediction across machines and provided the results. For the methods with shallow
models (Methods 4-7), DAE is first adopted to extract 25-dimensional features, and the grid search with cross-validation
is utilized to determine the optimal parameters. The average values of 50 repeated tests are used as the final results,
as shown in Figure 15. The corresponding numerical comparisons are shown in Figure 16 and Table 4. Here, the root
mean square error (RMSE =

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 −
⌢𝑦𝑖
)2), mean absolute error (MAE = 1

𝑛

𝑛
∑

𝑖=1

|

|

|

𝑦𝑖 −
⌢𝑦𝑖
|

|

|

) and Score = 1
𝑛

𝑛
∑

𝑖=1
(𝐴𝑖)

are selected for performance evaluation, where 𝐴𝑖 =
{

𝑒𝑥𝑝−𝑙𝑛(0.5)⋅(𝐸𝑟𝑖∕5) if 𝐸𝑟𝑖 ≤ 0
𝑒𝑥𝑝+𝑙𝑛(0.5)⋅(𝐸𝑟𝑖∕20) if 𝐸𝑟𝑖 > 0

and 𝐸𝑟𝑖 = 100 × 𝑦𝑖−
⌢𝑦 𝑖

𝑦𝑖
.

From Table 4, the proposed approach has the smallest RMSE & MAE and the highest Score.
For Task 1 and Task 2, Methods 4-7 get much worse results than the proposed approach due to the features

with less representative capability. For data with large distribution differences, it is not easy to map the data into
the same feature space to transfer the prognostic knowledge. Although Methods 1-3 adopt deep learning techniques
that can better reflect the degradation characteristics, they are still inferior to the proposed approach. An interesting
phenomenon is found that the prediction effect of these three methods is close to the effect of Methods 8 and 10-11.
It indicates that only fine-tuning or domain adaptation cannot significantly improve the prediction performance once
the feature representation is good enough. A more reasonable transfer strategy is required, verified by Method 9 that
adopts a strategy of subspace adaptation plus fine-tuning. For Methods 12-14, their results are superior to Method 8 and
Methods 10-11, which indicates that selective transfer of degradation knowledge is more beneficial to the target task
with large data distribution discrepancy. However, their prediction performance is still worse than ours because these
methods do not make a comprehensive information extraction and representation. Based on the sample saliency-based
interpretability analysis, Method 12 achieved the effective transfer of prognostic knowledge and improved the transfer
effect. But its results are still worse than ours because this method did not integrate fault mode information which is
critical for the RUL prediction across machines.

Despite the UNSW dataset being collected at the laboratory, it mainly regards bearing fault (spall) severity
assessment under simulated real-world operating conditions. Meanwhile, its degradation processes appear more
randomness and noise interference than the other datasets. The prediction performances by all methods on Task 3
deteriorate markedly. Only two methods in all 14 methods, i.e., Mao’s method (Method 12) and Peng’s method (Method
13) can achieve certain prediction effects. The other 11 methods all fail to work, either resulting in large fluctuations
(Methods 4, 9-10) or causing clearly distorted prediction values (Methods 1-3, 5-7, 8, 11, 14). Especially for the

20



0 10 20 30 40
−1

−0.5

0

0.5

1

1.5
Task1

R
U

L

 

 

Sample

Real RUL value

Deutsch’s method

Zraibi’s method

Zhu’s method

Our approach

(a)
0 10 20 30 40

−3

−2

−1

0

1

2

3

4

Sample

R
U

L

Task1

 

 

Real RUL value

KMM

SA

GFK

TCA

Our approach

(b)
0 10 20 30 40

−1

−0.5

0

0.5

1

1.5
Task1

Sample

R
U

L

 

 
Real RUL value

Zhang’s method

Cheng’s method

Zhu’s method

Sun’s method

Mao’s method

Peng’s method

Hu’s method

Our approach

(c)

0 10 20 30 40 50
−1

−0.5

0

0.5

1 Task2

R
U

L

 

 

Sample

Real RUL value

Deutsch’s method

Zraibi’s method

Zhu’s method

Our approach

(d)
0 10 20 30 40 50

−4

−3

−2

−1

0

1

2

3

4

Sample

R
U

L

Task2

 

 
Real RUL value

KMM

SA

GFK

TCA

Our approach

(e)
0 10 20 30 40 50

−1

−0.5

0

0.5

1

1.5

Sample

R
U

L

Task2

 

 
Real RUL value

Zhang’s method

Cheng’s method

Zhu’s method

Sun’s method

Mao’s method

Peng’s method

Hu’s method

Our approach

(f)

0 100 200 300 400
0

0.5

1

1.5
Task3

Sample

R
U

L

 

 

Real RUL value

Deutsch’s method

Zraibi’s method

Zhu’s method

(g)
0 100 200 300 400

−2

0

2

4

6

8

10

12

14

Sample

R
U

L

Task3

 

 

Real RUL value

KMM

SA

GFK

TCA

(h)
0 100 200 300 400

−0.5

0

0.5

1

1.5

Sample

R
U

L
Task3

 

 

Real RUL value

Zhang’s method

Cheng’s method

Zhu’s method

Sun’s method

Mao’s method

Peng’s method

Hu’s method

Our approach

(i)
Figure 15: RUL prediction results of the total 13 methods, where (a)-(c) are on Task1, (d)-(f) are on Task2, (g)-(i) are
on Task3.
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Figure 16: RMSE and MAE of total 15 methods, where (a) is on Task1, (b) is on Task2, (c) is on Task3
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Table 4
Numerical results of prediction effect by all 15 methods. Lower RMSE and MAE, as well as higher Score, indicates better
prediction performance.

Method Task1 Task2 Task3
MAE RMSE Score MAE RMSE Score MAE RMSE Score

1 0.1446 0.2059 0.3308 0.2225 0.3090 0.2880 0.2702 0.3229 0.2318
2 0.1041 0.1252 0.3983 0.2370 0.3014 0.1861 0.8982 0.9517 4.094e-4
3 0.2870 0.3540 0.2316 0.2460 0.2855 0.2367 0.4707 0.5516 .0916
4 2.2261 2.2676 2.83e-18 2.8347 2.8487 1.58e-20 4.5353 4.9337 1.4142e-23
5 0.4371 0.5217 0.1539 0.4854 0.5792 0.1181 1.3989 1.5671 0.0444
6 0.3613 0.4283 0.1330 0.6006 0.6417 0.0042 0.9308 0.9813 2.0893-e4
7 0.7680 0.8324 7.78e-06 1.1607 1.1707 8.64e-09 2.8874 2.9014 1.0139e-16
8 0.1684 0.1825 0.2794 0.2916 0.3274 0.0549 0.5648 0.6200 0.0064
9 0.0644 0.0717 0.4925 0.0748 0.0901 0.5222 0.2814 0.3484 0.2012
10 0.2377 0.2910 0.2674 0.1992 0.2358 0.2693 0.4520 0.5354 0.1461
11 0.2139 0.2677 0.2706 0.1791 0.2276 0.2712 0.2505 0.2893 0.2307
12 0.0457 0.0561 0.6146 0.0737 0.0868 0.4672 0.1378 0.1612 0.3223
13 0.1619 0.1905 0.3227 0.0895 0.1134 0.4379 0.2490 0.2883 0.2313
14 0.1127 0.1352 0.3205 0.1278 0.1466 0.3307 0.2715 0.3236 0.2038

Ours 0.0195 0.0253 0.6510 0.0224 0.0266 0.7201 0.0593 0.0717 0.5471

latter, some of the methods remain essentially unchanged or in small fluctuation, which is completely meaningless.
This comparative effect roots from the large data distribution divergence and less feature extraction on the complex
degradation data. The results by Methods 8 and 10-11 indicate that only fine-tuning or domain adaptation cannot
tackle the prediction task with large distribution divergence. Despite performing well on the PHM dataset, Method 14
still gets a worse perdition result, which is really surprising to us. Since Method 14 utilizes the discriminator output
to realize weighted prediction and fine-tuning, its transfer strategy is unable to support the knowledge transfer for a
complex degradation process. The results by Methods 12-13 are superior to the other deep transfer learning methods
due to the selective or ensemble transfer strategies. However, their results are still worse than ours because they do
not integrate fault mode information which is critical for the RUL prediction across machines. On the contrary, the
proposed approach not only analyses the transferability of source domain data but also uses the transferability metric
to facilitate the knowledge transfer. Targeted knowledge transfer can then be achieved to improve the transfer learning
effect. Reasonable transferability analytics is believed to play a critical role in the RUL transfer prediction across
machines.

The observed differences in performance could also be attributed to the dependence on data scale. Deep
learning methods typically require a large amount of data to extract degradation knowledge from noise and other
random interferences in the degradation process. On the contrary, the proposed knowledge transfer mechanism with
transferability analytics can significantly improve the transfer efficiency and reduce the demand for high data volume
due to the following merits: 1) Core tensor is employed to represent explicitly the degradation knowledge, decreasing
the random interference in the degradation process; 2) Using core tensor as the input of LSTM can also improve the
initial feature quality and avoid noise disturbance; 3) The designed alternating optimization scheme facilitates to find the
optimal tensor representation and knowledge transfer effect, avoiding feature deterioration and reducing the overfitting
risk on small-scale data; 4) The M-TDI-based transfer strategy is able to efficiently transfer the prognostic knowledge
via selective freezing and fine-tuning, which further avoids the demand for large-scale data. In this experiment, the
training data from one bearing are just from dozens to a thousand samples. On this data scale, our approach gets a
much lower prediction error than the other deep learning methods.

We further check the reliability of the proposed approach with incorrect fault probability. In the three tasks listed
in Table 1, only Task 3 (UNSW) has known fault modes in the target domain. Therefore, we employ Task 3 for the
verification. Through the CNN classifier, we can get the fault probability value of the target domain data: [0.8313
(outer race fault), 0.0293 (inner race fault), 0.0545 (cage fault), 0.0849 (mixed fault)], in which the classification result
keeps line with the ground-truth information. We further modify the probability value to incorrect ones, as listed in
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Table 5
Settings of different fault probability on Task3. The first trial Prob1 is just with the same setting used in this paper. The
ground-truth fault mode is the outer race fault.

Trial
index

Fault probability
([outer race fault, inner race fault, cage fault, mixed fault]) Remark

Prob1 [0.8313, 0.0293, 0.0545, 0.0849] Probability output of CNN classifier
Prob2 [0.0100, 0.9700, 0.0100,0.0100] Manually setting
Prob3 [0.0100, 0.0100, 0.9700,0.0100] Manually setting
Prob4 [0.0100, 0.0100, 0.0100,0.9700] Manually setting

Table 5. The prediction results and convergence performance are shown in Figures 17-18. Taking outer race fault as
an example, Figure 17 also illustrates the change of T-Weight.

(a) (b) (c)
Figure 17: RUL prediction performance on Task3 with different values of fault probability, where (a) and (b) are the
predicted RUL values and corresponding prediction errors respectively on the test bearing Test2, (c) is the T-Weight value
of outer race fault on the training bearing Test1.

(a) (b) (c) (d)
Figure 18: Box diagram of loss drops on Task3 with different values of fault probability.

Not surprisingly, the prediction results with incorrect fault probability are more biased than the proposed approach,
with much unstable convergence during the training process. However, compared to Table 4, their prediction errors are
still lower than the other comparative methods (Methods 1-14). We also observe a very interesting phenomenon from
Fig. 17(c). Even if the initial probability value of outer race fault is set very small, the corresponding T-Weight value
can still climb up to a much higher value along with the training. This result effectively proves the self-healing ability,
or say reliability, of the proposed approach. Despite of incorrect fault probability, the proposed approach can adaptively
recognize the useful prognostic knowledge via introducing degradation characteristic information and achieve effective
knowledge transfer through the alternating optimization scheme. As a result, the transfer effect, as well as the RUL
prediction performance, can be guaranteed as much as possible.
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5. Conclusions
In this paper, a new selective transfer learning approach is proposed for RUL prediction across machines, which

utilizes tensor representation-based transferability analytics. The proposed approach demonstrates the ability to reduce
the negative influence of degradation randomness and noise disturbance through the use of tensor representation.
Additionally, the approach leverages core tensors to determine the transferability of source domain data based on fault
mode information and degradation characteristics. By quantifying the transferable degree of the source domain data,
more prognostic knowledge can be transferred and the transfer learning effect can be improved. Notably, the proposed
approach does not require the availability of fault mode information in the target domain, indicating better deployment
capability.

The approach presented in this paper operates on the assumption that the source domain data contains explicit
fault information. However, it is worth noting that this assumption is not always necessary. In cases where the fault
categories in the source domain are unknown, one can use clustering or time-frequency signal analysis methods to
roughly identify potential fault modes. It should be emphasized that the main idea of the proposed approach is to
selectively extract and transfer degradation knowledge from the source domain data, and it does not rely on specific
information about fault modes.

The introduction of transferability analytics can realize a targeted transition of prognostic knowledge, which
improves the reliability of the transfer process and has been theoretically proven. The proposed approach can serve
as a transfer learning framework since M-TDI and the modeling algorithm can be replaced by new similarity metrics
and regression algorithms according to practical requirements. This framework is universally applicable and can also
solve RUL prediction across different working conditions. In future work, the RUL transfer prediction in an online
scenario will be studied. In practical applications, it is preferable to extract prognostic knowledge using online data
collected sequentially.
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Appendix
Our approach utilizes freezing and fine-tuning to update the target model. From Eq. (22), the upper bound of

𝑅( ,) an be derived in an inductive mode. For RNN-kind model, 𝑠0 = 0. For the t-th sample, assume there exists a
constant 𝜀𝑡, then the following inequation exists:

|

|

|

(𝑥T𝑡 𝑉𝑇 + 𝑠T𝑡−1𝑊𝑇 ) − (𝑥T𝑡  + 𝑠T𝑡−1)||
|

≤ 𝜀𝑡 (24)
Eq. (24) can be rewritten as:

|

|

|

(𝑥T𝑡 𝑉𝑇 + 𝑠T𝑡−1𝑊𝑇 ) − (𝑥T𝑡  + 𝑠T𝑡−1)||
|

= |

|

|

𝑥T𝑡 (𝑉𝑇 − ) + 𝑠T𝑡−1(𝑊𝑇 −)||
|

≤ |

|

|

𝑥T𝑡 (𝑉𝑇 − )||
|

+ |

|

|

𝑠T𝑡−1(𝑊𝑇 −)||
|

≤ 𝜀𝑡

(25)

From Eq. (25), 𝑠𝑡−1 ≤ 𝜀𝑡−|𝑥T𝑡 (𝑉𝑇−)|
|𝑊𝑇−|

can be obtained. On the other hand, by substituting Eq. (24) into the definition
of 𝑅( ,), 𝑅( ,) can be rewritten as:

𝑅( ,)
Δ
= 𝐸𝑥∼𝐷

[

((𝑥T𝑡 𝑉𝑇 + 𝑠T𝑡−1𝑊𝑇 ) − (𝑥T𝑡  + 𝑠T𝑡−1))2
]

≤ 𝐸𝑥∼𝐷(𝜀2𝑡 ) (26)
By taking 𝑠𝑡−1 into Eq. (26), the upper bound of 𝑅( ,) can be derived by:
𝑅( ,) = 𝐸𝑥∼𝐷

[

((𝑥T𝑡 𝑉𝑇 + 𝑠T𝑡−1𝑊𝑇 ) − (𝑥T𝑡  + 𝑠T𝑡−1))2
]

= 𝐸𝑥∼𝐷

[

(𝑥T𝑡 (𝑉𝑇 − ) + 𝑠T𝑡−1(𝑊𝑇 −))2
]

≤ 𝐸𝑥∼𝐷

[

(𝑥T𝑡 (𝑉𝑇 − ) + (𝜀𝑡 −
|

|

|

𝑥T𝑡 (𝑉𝑇 − )||
|

))
2
]

≤ 2𝐸𝑥∼𝐷

[

(𝑥T𝑡 (𝑉𝑇 − ))2 + (𝜀𝑡 −
|

|

|

𝑥T𝑡 (𝑉𝑇 − )||
|

)
2
]

(27)

From Eqs. (26) and (27), the following inequation can be obtained:

2𝐸𝑥∼𝐷

[

(𝑥T𝑡 (𝑉𝑇 − ))2 + (𝜀𝑡 −
|

|

|

𝑥T𝑡 (𝑉𝑇 − )||
|

)
2
]

≤ 𝐸𝑥∼𝐷(𝜀2𝑡 ) (28)

Eq. (28) can be rewritten as:
𝐸𝑥∼𝐷

[

(

𝜀𝑡 − 2𝑥T𝑡 (𝑉𝑇 − )
)2
]

≤ 0 (29)
Obviously, for a square variable, its expectation cannot be less than zero. Therefore, 𝜀𝑡 = 2𝑥T𝑡 (𝑉𝑇 − ). By

substituting 𝜀𝑡 = 2𝑥T𝑡 (𝑉𝑇 − ) into Eq. (26), 𝑅( ,) ≤ 4𝐸𝑥∼𝐷

[

(𝑥T𝑡 (𝑉 − ))2
]

can be obtained. Since the value
of 𝑉 is not deterministic, the right part of this inequation cannot be calculated directly. The upper bound of 𝑅( ,)
can then be transformed into seeking the upper bound of 4𝐸𝑥∼𝐷

[

(𝑥T
𝑡 (𝑉 − ))2

]

, i.e.,

𝐸𝑥∼𝐷

[

(𝑥T
𝑡 (𝑉𝑇 − ))2

]

= 𝐸𝑥∼𝐷

[

(𝑥T
𝑡 (𝑉𝑇 − 𝑃⊥0 − 𝑃∥𝑉𝑇 ))

2]

= 𝐸𝑥∼𝐷

[

(𝑥𝑇𝑡 𝑃⊥(𝑉𝑇 − 0))2
]

= (𝑉𝑇 − 0)T𝑃 T
⊥𝐸𝑥∼𝐷[𝑥𝑡𝑥T

𝑡 ]𝑃⊥(𝑉𝑇 − 0)

= (𝑉𝑇 − 0)T𝑃 T
⊥

∑

𝑃⊥(𝑉𝑇 − 0)

=
‖

‖

‖

‖

‖

‖

0.5
∑

𝑃⊥(𝑉𝑇 − 0)
‖

‖

‖

‖

‖

‖

2

(30)
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For all k frozen layers, Eq. (30) can be expressed as:

𝐸𝑥∼𝐷

[

(𝑥T
𝑡 (𝑉 − ))2

]

=
∑

𝑡
‖

‖

‖

𝑥T
𝑡 (𝑉𝑇 − 0)‖‖

‖

2

𝑙⩽𝑘
+
‖

‖

‖

‖

‖

‖

0.5
∑

𝑃⊥(𝑉𝑇 − 0)
‖

‖

‖

‖

‖

‖

2

𝑙>𝑘

(31)

In Eq. (31), ∑𝑡
‖

‖

‖

𝑥T
𝑡 (𝑉𝑇 − 0)‖‖

‖

2

𝑙⩽𝑘
is a constant at the beginning of fine-tuning. According to the theorem from

[30], there exists a constant 𝑐 > 0, and for 1 ⩽ 𝑚 ⩽ 𝑑, 𝜆𝑚 > 0, all 𝛿 ⩾ 1, ‖‖
‖

∑0.5𝑃⊥(𝑉𝑇 − 0)‖‖
‖

2

𝑙>𝑘
has an upper bound:

‖

‖

‖

‖

‖

‖

0.5
∑

𝑃⊥(𝑉𝑇 − 0)
‖

‖

‖

‖

‖

‖

2

𝑙>𝑘

⩽
2‖‖
‖

∑

− ̃∑‖

‖

‖

3

𝜆2𝑚

‖

‖

‖

𝑃⩽𝑚(𝑉𝑇 − 0)‖‖
‖

2

𝑙>𝑘

+2‖‖
‖

∑

− ̃∑‖

‖

‖

2
‖

‖

‖

𝑃>𝑚(𝑉𝑇 − 0)‖‖
‖

2

𝑙>𝑘

(32)

Moreover, the theorem from [42] provides a high probability bound for ‖‖
‖

∑

− ̃∑‖

‖

‖

:

‖

‖

‖

∑

− ̃∑‖

‖

‖

⩽ 𝑔(𝜆, 𝛿, 𝑛) = 𝑐𝜆1max{

√

∑

𝑡𝜆𝑡
𝑛𝜆1

,
∑

𝑡𝜆
𝑛𝜆1

,
√

𝛿
𝑛
, 𝛿
𝑛
} (33)

Hence, Eq. (23) can be obtained by substituting Eq. (33) into Eq. (32).
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