
1

Secret Key Generation for IRS-Assisted
Multi-Antenna Systems: A Machine Learning-Based

Approach
Chen Chen, Member, IEEE, Junqing Zhang, Member, IEEE, Tianyu Lu, Graduate Student Member, IEEE,

Magnus Sandell, Senior Member, IEEE, Liquan Chen, Senior Member, IEEE

Abstract—Physical-layer key generation (PKG) based on wire-
less channels is a lightweight technique to establish secure keys
between legitimate communication nodes. Recently, intelligent
reflecting surfaces (IRSs) have been leveraged to enhance the
performance of PKG in terms of secret key rate (SKR), as it can
reconfigure the wireless propagation environment and introduce
more channel randomness. In this paper, we investigate an IRS-
assisted PKG system, taking into account the channel spatial
correlation at both the base station (BS) and the IRS. Based
on the considered system model, the closed-form expression of
SKR is derived analytically considering correlated eavesdropping
channels. Aiming to maximize the SKR, a joint design problem
of the BS’s precoding matrix and the IRS’s phase shift vector
is formulated. To address this high-dimensional non-convex
optimization problem, we propose a novel unsupervised deep
neural network (DNN)-based algorithm with a simple structure.
Different from most previous works that adopt iterative optimiza-
tion to solve the problem, the proposed DNN-based algorithm
directly obtains the BS precoding and IRS phase shifts as the
output of the DNN. Simulation results reveal that the proposed
DNN-based algorithm outperforms the benchmark methods with
regard to SKR.

Index Terms—Physical-layer key generation, intelligent reflect-
ing surfaces, deep neural network

I. INTRODUCTION

Along with the surge in data traffic envisioned by sixth
generation (6G) communication, data security risks emerge
due to the broadcast nature of wireless transmissions [1],
[2]. Conventional cryptographic approaches rely on either
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asymmetric or symmetric encryption for achieving data con-
fidentiality. Asymmetric cryptography, also known as public
key cryptography (PKC), can be used for data encryption and
key distribution. The latter can share keys for symmetric en-
cryption, e.g., advanced encryption standard (AES). However,
PKC is computationally complicated and requires public key
infrastructure for the distribution of keys. Therefore, conven-
tional cryptographic approaches are challenging to be applied
to mobile communication networks and resource-constrained
Internet of Things (IoT).

In this context, physical-layer key generation (PKG) has
been proposed as a lightweight technique that does not rely
on conventional cryptographic schemes and is information-
theoretically secure [3]. PKG utilizes the reciprocity of wire-
less channels during the channel coherent time to generate
symmetric keys from bidirectional channel probings. The spa-
tial decorrelation and channel randomness ensure the security
of the generated keys. More specifically, spatial decorrelation
ensures that eavesdroppers cannot generate the same keys
as legitimate communicating nodes, and channel randomness
prevents the generated keys from dictionary attacks.

Although the effectiveness of PKG has been demonstrated
both theoretically and experimentally [4]–[8], PKG may face
serious challenges in harsh propagation environments. The
transmission link between two legitimate nodes may experi-
ence non-line-of-sight (NLoS) propagation conditions due to
the effects of blockages. In this case, the channel estimation
will suffer from a low signal-to-noise ratio (SNR), resulting
in a high bit disagreement rate (BDR) and low secret key
rate (SKR). Besides, in a quasi-static environment that lacks
randomness, the achievable SKR is limited due to low channel
entropy [3], [9].

To address these challenges, a new paradigm, called intel-
ligent reflecting surface (IRS), offers attractive solutions. IRS
consists of low-cost passive reflecting elements that can dy-
namically adjust their amplitudes and/or phases to reconfigure
the wireless propagation environments in an energy-efficient
manner [10], [11]. The reflection channels provided by IRS are
capable of enhancing the received signals at legitimate users
and introducing rich channel randomness. There have been
several works exploring the application of IRS in PKG [12]–
[15]. The work in [12] improved the SKR of an IRS-aided
single-antenna system by randomly configuring the IRS’s
phase shifts, in which closed-form expressions of the lower
and upper bounds of the SKR were provided. In [13], a prac-
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tical prototype of IRS-assisted PKG system was implemented
using commodity Wi-Fi transceivers, which demonstrated that
the randomly configured IRS can boost the key generation
rate while ensuring the randomness of the generated keys. To
further improve the SKR, some works developed optimization
algorithms to configure the IRS’s phase shifts. In [14], the IRS
phase shifts were optimized to maximize the minimum achiev-
able SKR. Successive convex approximation was adopted to
address the non-convex optimization objective. In [15], the
authors considered a multi-user scenario and designed IRS
phase shifts to maximize the sum SKR. Nevertheless, these
works only considered the optimization of IRS phase shifts in
a single-antenna scenario, and thus cannot be applied to multi-
antenna systems that require a joint design of multi-antenna
precoding and IRS phase shifts.

Multi-antenna technique has been a key enabler of fifth
generation (5G) and beyond wireless communication networks
[16], [17]. Therefore, securing IRS-assisted multi-antenna
transmissions using PKG becomes an important topic. Com-
pared to IRS-assisted PKG efforts in single-antenna scenarios,
there is limited work investigating PKG in IRS-assisted multi-
antenna systems [18], [19]. In [18], the authors maximized
the minimum SKR by jointly optimizing the transmit and
the reflective beamforming through a block successive upper-
bound minimization-based algorithm. The unit pilot length
was adopted for both uplink and downlink channel probings,
which simplified the analysis but limited the SKR. In [19],
the BS precoding and IRS phase shift matrices were jointly
designed using fine-grained channel estimation. However, the
analysis of correlated eavesdropping channels was overlooked.
Generally, the optimal configuration of IRS is a complex non-
convex optimization problem. This problem is exacerbated
in multi-antenna systems that require a joint optimization of
transmit precoding and reflection beamforming. The existing
works rely on iterative optimization algorithms with a high
computational complexity, which is difficult to be deployed in
practice.

Recently, machine learning has emerged as one of the key
techniques to address mathematically intractable non-convex
optimization problems [20], [21]. There have been research
efforts [22]–[25] leveraging machine learning to optimize IRS
reflecting beamforming with the aim of maximizing downlink
transmission rates. A recent work [26] proposed a machine
learning-based adaptive quantization method to balance key
generation rate and BDR in an IRS-aided single-antenna
system, where the IRS phase shifts were configured using
iterative optimization. Up to now, the employment of machine
learning to optimize IRS phase shifts in an IRS-aided PKG
system has not been investigated.

To the best of our knowledge, this is the first attempt to
exploit machine learning in jointly optimizing the transmit
precoding and IRS reflection beamforming for maximizing
the SKR in an IRS-assisted multi-antenna system. Our major
contributions are summarized as follows:

• We propose a new PKG framework for an IRS-assisted
multi-antenna system and derive the closed-form ex-
pression of SKR considering correlated eavesdropping

channels and spatial correlation among BS antennas and
IRS elements.

• We formulate the optimization problems of SKR max-
imization in the absence and presence of eavesdrop-
per channel statistics, respectively. Then water-filling
algorithm-based baseline solutions are developed to
jointly design the BS’s precoding matrix and the IRS’s
phase shift vector.

• We novelly propose to obtain the optimal configuration of
BS precoding and IRS phase shifts by using unsupervised
deep neural networks (DNNs), referred to as “PKG-
Net”. The proposed PKG-Net can deal with different
transmit power levels and channel statistics parameters.
Simulations demonstrate that the proposed PKG-Net can
achieve a higher SKR than other benchmark methods.
Compared with the water-filling algorithm-based baseline
solution, the proposed PKG-Net has a significantly lower
computational complexity.

Different from our previous work [27], where the eaves-
dropping channels are assumed to be uncorrelated with the
legitimate channels, in this paper, we considerably extend the
system to a more general scenario in the presence of correlated
eavesdropping channels. Moreover, the DNN developed in [27]
only has generalization ability to different user locations. In
this paper, we further extend the generalization ability of PKG-
Net to different transmission powers and channel statistics.

The rest of this paper is organized as follows. In Section
II, we present the system model. In Section III, we derive
the expression of SKR. The problem formulation is presented
in Section IV. Then we propose a water-filling algorithm-
based baseline solution in Section V. A machine-learning-
based method is developed in Section VI. Our simulation
results and analysis are given in Section VII. Finally, Section
VIII concludes this paper.

Notations: In this paper, scalars are represented by italic
letters, vectors by boldface lower-case letters, and matrices
by boldface uppercase letters. VT , VH and V∗ are the
transpose, conjugate transpose and conjugate of a matrix V,
respectively. E{·} is the statistical expectation. mod (·) and
⌊·⌋ denote modulus operator and floor function, respectively.
[V]i,j denotes the (i, j)-th element of a matrix V. CN (µ, σ2)
represents a circularly symmetric complex Gaussian distribu-
tion with mean µ and variance σ2. diag(v) is a diagonal matrix
with the entries of v on its main diagonal and vec(V) is the
vectorization of a matrix V. CA×B represents the sapce of a
complex matrix with size A×B. || · ||F denotes the Frobenius
norm. ⊙ and ⊗ are the Hadamard product and Kronecker
product, respectively.

II. SYSTEM MODEL

A. System Overview

We consider an IRS-assisted multi-antenna system as shown
in Fig. 1, which contains a multi-antenna BS, Alice, a single-
antenna user equipment (UE), Bob, a single-antenna eaves-
dropper, Eve, and an IRS. We assume that the BS is a uniform
linear array with M antennas, and the IRS is a uniform planar
array, which consists of L = LH × LV passive reflecting
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Fig. 2. PKG protocol.

elements with LH elements per row and LV elements per
column. To secure the communication, Alice and Bob perform
PKG with the assistance of the IRS.

As shown in Fig. 2, the PKG protocol consists of four
phases: channel probing, quantization, information reconcil-
iation and privacy amplification. During the channel probing
phase, Alice and Bob perform bidirectional channel measure-
ments by transmitting pilot signals to each other. We assume
a time-division duplexing (TDD) protocol, and thus Alice
and Bob can observe reciprocal channel information. During
the quantization phase, Alice and Bob quantize the channel
observations into binary key bits. Then the disagreed key bits
are corrected by information reconciliation and the leaked
information is eliminated by privacy amplification [3]. In this
paper, we focus on the channel probing phase, because the
channel measurements with IRS and multi-antenna configura-
tion need to be optimized.

B. Channel Model

We denote the Alice-IRS, IRS-Bob (IRS-Eve), Alice-Bob
(Alice-Eve) and Bob-Eve channels by G ∈ CM×L, fb (fe) ∈
CL×1, hab (hae) ∈ CM×1 and hbe ∈ C1×1, respectively. All
the channels are modelled as spatially correlated Rician fading

channels. To be specific, we have

G = GL +GNL, (1)

fi = fLi + fNL
i , i ∈ {b, e}, (2)

hai = hL
ai + hNL

ai , i ∈ {b, e}, (3)

hbe = hL
be + hNL

be , (4)

where GL, fLi , hL
ai and hL

be are the line-of-sight (LoS) com-
ponents of G, fi, hai and hbe, respectively, and GNL, fNL

i ,
hNL
ai and hNL

be are the non-line-of-sight (NLoS) components
of G, fi, hai and hbe, respectively. The LoS components
are deterministic channels that depend on the locations of
Alice, Bob and Eve, while the NLoS components are modelled
as spatially correlated Rayleigh fading channels. The NLoS
components are further defined as

GNL = R
1
2

BG̃R
1
2

I , (5)

fNL
i = R

1
2

I f̃i, i ∈ {b, e}, (6)

hNL
ai = R

1
2

Bh̃ai, i ∈ {b, e}, (7)

where RB ∈ RM×M and RI ∈ RL×L are the spatial corre-
lation matrices at the BS and IRS, respectively, G̃ ∈ CM×L,
f̃i ∈ CL×1 and h̃ai ∈ CM×1 have i.i.d. entries CN

(
0, βG

1+κG

)
,

CN
(
0,

βfi

1+κfi

)
and CN

(
0,

βhai

1+κhai

)
, respectively, in which

βG, βfi and βhai
are the path loss of G, fi and hai, respec-

tively, and κG, κfi and κhai
are the Rician factors of G, fi and

hai, respectively. Moreover, hNL
be ∼ CN

(
0,

βhbe

1+κhbe

)
, where

βhbe
and κhbe

are the path loss and Rician factor of hbe,
respectively. Without loss of generality, we assume that the
direct channels are in NLOS conditions, i.e., κhai = κhbe

=0,
and that κG = κfi = κ. In this paper, we assume block fading
channels, and thus the uplink and downlink channels can be
considered as reciprocal during a coherence time. Note that
channel reciprocity is not necessary using the recently pro-
posed generalized channel probing and pre-processing method
in [28], which will be investigated in our future work.

In practice, there exist spatial correlations among BS an-
tennas and IRS elements. For simplicity, we adopt the spatial
correlation model in isotropic scattering environments, where
the (n,m)-th element of the spatial correlation matrix at the
IRS is given by [29]

[RI]n,m =
sin( 2πλ ||un − um||2)

2π
λ ||un − um||2

, n,m = 1, . . . , L, (8)

where λ is the wavelength, and un denotes the location of
the n-th element and is computed as un = [0, yn∆, zn∆]

T ,
in which yn = mod (n − 1, LH) and zn = ⌊(n− 1)/LH⌋
are the horizontal and vertical indices of the n-th element,
respectively, and ∆ is the element spacing. The spatial corre-
lation matrix at the BS is represented by RB with the (n,m)-th
element given by

[RB]m,n = η|m−n|, (9)

where η is the correlation coefficient among BS antennas [30].
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C. IRS Assisted Channel Probing

The channel probing is composed of bidirectional mea-
surements, i.e., uplink and downlink probings. We assume
a passive Eve who intends to eavesdrop on the information
transmitted through legitimate channels.

1) Uplink Channel Probing: During the uplink phase, Bob
transmits a pilot signal, su ∈ C1×1, with sus

∗
u = 1 to Alice.

The received signals at Alice and Eve are given by

ya =
√
Pb (hab +GΘfb) su + na, (10)

ybe =
√
Pb

(
hbe + fTe Θfb

)
su + nu

e , (11)

respectively, where ya ∈ CM×1, Pb is the transmit power of
Bob, Θ = diag

(
ejθ1 , ejθ2 , . . . , ejθL

)
denotes the IRS phase

shift matrix with θl ∈ [0, 2π) for the l-th element, na ∈ CM×1

is the complex Gaussian noise vector at Alice and nu
e is

the complex Gaussian noise at Eve. Then Alice applies the
precoding matrix P ∈ CM×N , where N is the pilot length, to
ya and obtains

ȳa =
√
PbP

T (hab +GΘfb) su +PTna. (12)

After the least square (LS) channel estimation, the uplink
channels at Alice and Eve are estimated as

ŷa =
√
PbP

T (hab +GΘfb) +PTnas
∗
u, (13)

ŷbe =
√
Pb

(
hbe + fTe Θfb

)
+ nu

e s
∗
u. (14)

2) Downlink Channel Probing: During the downlink phase,
Alice transmits a pilot signal of length N , Sd ∈ CN×N , with
SH
d Sd = IN to Bob. The received signals at Bob and Eve are

given by

yb = (hab +GΘfb)
T
PSH

d + nb, (15)

yae = (hae +GΘfe)
T
PSH

d + nd
e , (16)

respectively, where yb,yae ∈ C1×N , nb ∈ C1×N is the
complex Gaussian noise vector at Bob and nd

e ∈ C1×N is
the complex Gaussian noise vector at Eve. After LS channel
estimation, the downlink channels at Bob and Eve are esti-
mated as

ŷb = ybSd

(
SH
d Sd

)−1
= (hab +GΘfb)

T
P+ nbSd, (17)

ŷae = yaeSd

(
SH
d Sd

)−1
= (hae +GΘfe)

T
P+ nd

eSd.
(18)

Then Bob and Eve transpose ŷb and ŷae, respectively, and
obtain

ŷT
b = PT (hab +GΘfb) + ST

d n
T
b , (19)

ŷT
ae = PT (hae +GΘfe) + ST

d

(
nd
e

)T
. (20)

To fully extract the randomness from BS antennas, we set
N = M in this paper.

PKG relies on the randomness of channels, and thus
the deterministic LOS components do not contribute to the
SKR [31]. After estimating and removing the LOS compo-
nents, the uplink channel observations are expressed as

ỹa =
√
PbP

T
(
hNL
ab +GNLΘfNL

b

)
+PTnas

∗
u, (21)

ỹbe =
√
Pb

(
hNL
be +

(
fNL
e

)T
ΘfNL

b

)
+ nu

e s
∗
u, (22)

and the downlink channel observations are expressed as

ỹT
b = PT

(
hNL
ab +GNLΘfNL

b

)
+ ST

d n
T
b , (23)

ỹT
ae = PT

(
hNL
ae +GNLΘfNL

e

)
+ ST

d

(
nd
e

)T
. (24)

III. SECRET KEY RATE

SKR is defined as the maximum number of secret key bits
that can be extracted from a channel observation. The exact
expression of SKR given the correlated eavesdropping channel
is still an open problem. In this section, we derive a closed-
form expression for the lower bound of SKR in the IRS-
assisted multi-antenna system. According to [32], the lower
bound of SKR is expressed as follows:

Rsk (ỹa, ỹb, ỹae, ỹbe)=max
{
I
(
ỹa; ỹ

T
b

)
−I
(
ỹa; ỹ

T
ae, ỹbe

)
,

I
(
ỹa; ỹ

T
b

)
−I
(
ỹb; ỹ

T
ae, ỹbe

) }
,

(25)

where I(X;Y ) denotes the mutual information between ran-
dom variables X and Y . We assume that Eve gets as close
as possible to Bob to maximize the correlation between
his channel observation ỹT

ae and the legitimate channels. As
such, ỹbe can be considered uncorrelated with the legitimate
channels. For clarity, we denote ỹae by ỹe hereinafter. The
lower bound of SKR in (25) can therefore be simplified as

Rsk (ỹa, ỹb, ỹe) = max
{
I
(
ỹa; ỹ

T
b

)
− I

(
ỹa; ỹ

T
e

)
,

I
(
ỹa; ỹ

T
b

)
− I

(
ỹb; ỹ

T
e

) }
. (26)

To facilitate further derivations, we introduce the cascaded
channel hai

c ∈ CM(L+1)×1, which is given by

hai
c = vec([hNL

ai GNLdiag(fNL
i )]), i ∈ {b, e}. (27)

Then the combined channel can be expressed in a compact
form:

hNL
ai +GNLΘfNL

i

(a)
=
[
hNL
ai GNLdiag(fNL

i )
] [1

θ

]
(b)
= (θ̃T ⊗ IM )hai

c , i ∈ {b, e}, (28)

where θ = [[Θ]1,1, [Θ]2,2, · · · , [Θ]L,L]
T , θ̃ = [1,θT ]T , (a)

holds because diag(θ)fi = diag(fi)θ and (b) holds because
vec(XYZ) = (ZT ⊗X)vec(Y). Plugging (28) into (21), (23)
and (24), we have

ỹa =
√
Pb

(
θ̃T ⊗PT

)
hab
c +PTnas

∗
u

=
√

Pb

(
θ̃ ⊗P

)T
hab
c +PTnas

∗
u, (29)

ỹT
b =

(
θ̃ ⊗P

)T
hab
c + ST

d n
T
b , (30)

ỹT
e =

(
θ̃ ⊗P

)T
hae
c + ST

d

(
nd
e

)T
. (31)

Theorem 1. The SKR of the IRS-assisted multi-antenna system
is lower-bounded by

Rsk (ỹa, ỹb, ỹe) = max
{
R1

sk (ỹa, ỹb, ỹe) , R
2
sk (ỹa, ỹb, ỹe)

}
,

(32)

in which R1
sk (ỹa, ỹb, ỹe) and R2

sk (ỹa, ỹb, ỹe) are
given in (33) and (34) shown at the top of the next
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R1
sk (ỹa, ỹb, ỹe) = log2


∣∣RU

Z + δ2IM
∣∣ ∣∣∣∣(PbR

U
Z + δ2PTP∗) (RE

Z + δ2IM
)
− Pb

(
RU,E

Z

)2∣∣∣∣∣∣RE
Z + δ2IM

∣∣ ∣∣Pbδ2RU
Z + δ2PTP∗

(
RU

Z + δ2IM
)∣∣

 , (33)

R2
sk (ỹa, ỹb, ỹe) = log2


∣∣PbR

U
Z + δ2PTP∗

∣∣ ∣∣∣∣(RU
Z + δ2IM

) (
RE

Z + δ2IM
)
−
(
RU,E

Z

)2∣∣∣∣∣∣RE
Z + δ2IM

∣∣ ∣∣Pbδ2RU
Z + δ2PTP∗

(
RU

Z + δ2IM
)∣∣

 , (34)

page, where δ2 is the Gaussian noise power, RU
Z =(

θ̃ ⊗P
)T

RU
c

(
θ̃ ⊗P

)∗
, RE

Z =
(
θ̃ ⊗P

)T
RE

c

(
θ̃ ⊗P

)∗
and RU,E

Z =
(
θ̃ ⊗P

)T
RU,E

c

(
θ̃ ⊗P

)∗
with

RU
c =

[
βhab

RB 0T

0
βGβfb

(1+κ)(1+κ)RI ⊙RI ⊗RB

]
, (35)

RE
c =

[
βhae

RB 0T

0
βGβfe

(1+κ)(1+κ)RI ⊙RI ⊗RB

]
, (36)

RU,E
c =ρ√βhab

βhaeRB 0T

0 ρβG

1+κ

√
βfb

βfe

(1+κ)(1+κ)RI ⊙RI ⊗RB

 ,

(37)

where ρ is the channel correlation coefficient between Bob
and Eve. For the considered Rayleigh fading channels, ρ =
J0
(
2πd
λ

)
, where J0(·) is the zeroth order Bessel function of the

first kind, λ is the wavelength and d is the distance between
Eve and Bob [33].

Proof: See Appendix A.
Note that the lower bound of SKR is derived under the

assumption of single-antenna Eve and LS channel estimation.
If Eve is equipped with multiple antennas and adopts more
advanced channel estimation algorithms, the achievable SKR
will be lower. On the other hand, the UE could use multiple
antennas and more advanced channel estimation algorithms to
extract more secret key bits. This paper focuses on exploiting
machine learning for secure key generation in IRS-assisted
multi-antenna systems. We consider single-antenna Eve and
LS estimation for initial investigation. The newly proposed
machine learning-based schemes can be extended to scenarios
with multi-antenna Eve and more advanced channel estimation
algorithms, which will be conducted in our future work.

IV. PROBLEM FORMULATION

In this paper, we aim to maximize the SKR by jointly
optimizing the BS’s precoding matrix of P and the IRS’s
phase shift vector of θ. The channel statistics of legitimate
channels are assumed to be known by the BS [34]. In reality,
it is difficult to obtain the channel statistics of Eve. We
first formulate the optimization problem for the practical case
where the channel statistics of Eve are unknown (Case 1). We
then formulate another optimization problem in the presence
of Eve’s channel statistics (Case 2) for comparison.

A. Case 1: The Channel Statistics of Eve is Unknown

In the absence of Eve’s channel statistics, we aim to maxi-
mize the mutual information between the channel observations
of Alice and Bob, which is expressed as

I
(
ỹa; ỹ

T
b

)
= log2

( ∣∣PbR
U
Z + δ2PTP∗

∣∣ ∣∣RU
Z + δ2IM

∣∣∣∣Pbδ2RU
Z + δ2PTP∗

(
RU

Z + δ2IM
)∣∣
)
,

(38)

where RU
Z has been given in Theorem 1.

Accordingly, the optimization problem is formulated as

(P1) max
P,θ

I
(
ỹa; ỹ

T
b

)
(39)

s.t. Tr
(
PPH

)
= Pmax, (40a)

|θl| = 1, l = 1, 2, · · · , L, (40b)

where Pmax is the total transmit power constraint of Alice.

B. Case 2: The Channel Statistics of Eve is Known

With the channel statistics of Eve, Alice can calculate
the SKR using the expression derived in (32). Hence, the
optimization problem is formulated as

(P2) max
P,θ

Rsk (ỹa, ỹb, ỹe) (40)

s.t. Tr
(
PPH

)
= Pmax, (40a)

|θl| = 1, l = 1, 2, · · · , L. (40b)

V. BASELINE SOLUTIONS

In this section, we develop water-filling algorithm-based
baseline solutions for both optimization problems formulated
in the last section.

A. Case 1: The Channel Statistics of Eve is Unknown

The original optimization problem (P1) is a high-
dimensional non-convex problem, which is difficult to solve
directly with conventional optimization methods. For ease of
further simplification, we re-derive I

(
ỹa; ỹ

T
b

)
in the following

lemma.

Lemma 1. I
(
ỹa; ỹ

T
b

)
can be rewritten as

I
(
ỹa; ỹ

T
b

)
=

log2

( ∣∣Pbδ
2
UP

TRBP
∗+δ2PTP∗

∣∣ ∣∣δ2UPTRBP
∗+δ2IM

∣∣
|Pbδ2δ2UP

TRBP∗+δ2PTP∗ (δ2UP
TRBP∗+δ2IM )|

)
,

(41)
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Î
(
ỹa; ỹ

T
b

)
= log2

(∣∣PbPaδ
2
UUΛTΛUH+δ2PaIM

∣∣ ∣∣Paδ
2
UUΛTΛUH+δ2IM

∣∣
|δ2PbPaδ2UUΛTΛUH+δ2Pa (Paδ2UUΛTΛUH+δ2IM )|

)
=

M∑
i=1

log2

(
(Pbδ

2
Up

2
i +δ2)

(
Paδ

2
Up

2
i +δ2

)
δ2Pbδ2Up

2
i +δ2Paδ2Up

2
i +δ4

)
,

(46)

where δ2U = βhab
+

βGβfb

(1+κ)(1+κ)θ
H(RI ⊙RI)θ.

Proof: See Appendix B.
We further rewrite P as P =

√
Pmax
M Pe, where Pe is a

normalized matrix with Tr
(
PeP

H
e

)
= M . Defining Pa =

Pmax
M , I

(
ỹa; ỹ

T
b

)
can be derived as

I
(
ỹa; ỹ

T
b

)
=

log2


∣∣∣PbPaδ

2
UR̂Z + δ2PaPe

TP∗
e

∣∣∣ ∣∣∣Paδ
2
UR̂Z + δ2IM

∣∣∣∣∣∣δ2PbPaδ2UR̂Z + δ2PaPe
TP∗

e

(
Paδ2UR̂Z + δ2IM

)∣∣∣
 ,

(42)

where R̂Z = Pe
TRBP

∗
e . To facilitate further optimization, we

approximate Pe
TPe

∗ as IM in the noise term. Accordingly,
I
(
ỹa; ỹ

T
b

)
is approximated as

Î
(
ỹa; ỹ

T
b

)
=

log2


∣∣∣PbPaδ

2
UR̂Z + δ2PaIM

∣∣∣ ∣∣∣Paδ
2
UR̂Z + δ2IM

∣∣∣∣∣∣δ2PbPaδ2UR̂Z + δ2Pa

(
Paδ2UR̂Z + δ2IM

)∣∣∣
 . (43)

After Cholesky factorization, we have

R̂Z = PT
e R

1
2

BR
H
2

B P∗
e =

(
R

H
2

B P∗
e

)H (
R

H
2

B P∗
e

)
. (44)

Then we perform the following eigenvalue decomposition:

R
H
2

B P∗
e = UΛUH , (45)

where Λ = diag(p1, p2, . . . , pM ) with the eigenvalues sorted
in descending order. Substituting (44) and (45) into (43),
Î
(
ỹa; ỹ

T
b

)
can be rewritten as (46), which is shown at the

top of the next page.

Corollary 1. Î
(
ỹa; ỹ

T
b

)
is maximized when all the IRS

reflecting elements have the same phase configuration, i.e.,
θi = θj ,∀i ̸= j.

Proof: See Appendix C.
Following Corollary 1, we set θi = θj ,∀i ̸= j and have

δ2U = βhab
+

βGβfb

(1+κ)(1+κ)

∑L
i=1

∑L
j=1 [RI ⊙RI]i,j . We further

perform eigenvalue decomposition on RB and obtain

RB = UBΛBU
H
B , (47)

where ΛB = diag (pB,1, pB,2, . . . , pB,M ) with the eigenvalues
sorted in descending order. The optimal Λ can be obtained by
solving the following optimization problem:

(P1.1) max
pi

Î
(
ỹa; ỹ

T
b

)
(48)

s.t.

M∑
i=1

p2i
pB,i

= M, (48a)

where (48a) comes from the constraint Tr
(
PeP

H
e

)
=

Tr(Λ−1
B Λ2) = M . (P1.1) can be solved by using water-filling

algorithm [35]. Denoting the optimal Λ obtained from (P1.1)
by Λopt, the corresponding Pe can be computed from (45)
and expressed as Popt

e =
(
R

− 1
2

B UΛoptUH
)∗

, where U is
set to IM [36]. Note that Popt

e is suboptimal to the original
optimization problem (P1) due to the approximation in (43).

Corollary 2. When the channel statistics of Eve is unknown, in
the high power case where Pa, Pb ≫ δ2, we have Popt

e = IM .

Proof: See Appendix D.

Corollary 3. When the channel statistics of Eve is unknown,
in the case where RB = IM , we have Popt

e = IM .

Proof: See Appendix E.

B. Case 2: The Channel Statistics of Eve is Known

With the channel statistics of Eve, Rsk (ỹa, ỹb, ỹe)
is the maximum between R1

sk (ỹa, ỹb, ỹe) and
R2

sk (ỹa, ỹb, ỹe). To maximize Rsk (ỹa, ỹb, ỹe), we first
obtain the optimal R1

sk (ỹa, ỹb, ỹe) and R2
sk (ỹa, ỹb, ỹe),

denoted by R1,max
sk (ỹa, ỹb, ỹe) and R2,max

sk (ỹa, ỹb, ỹe),
respectively. Then the optimal Rsk (ỹa, ỹb, ỹe), denoted
by Rmax

sk (ỹa, ỹb, ỹe), is the maximum between
R1,max

sk (ỹa, ỹb, ỹe) and R2,max
sk (ỹa, ỹb, ỹe). Following

similar steps in the last subsection, we approximate
(33) and (34) as (49) and (50), respectively, where
δ2E = βhae

+
βGβfe

(1+κ)(1+κ)

∑L
i=1

∑L
j=1 [RI ⊙RI]i,j and δ2U,E =

ρ
√

βhab
βhae

+ ρβG

1+κ

√
βfb

βfe

(1+κ)(1+κ)

∑L
i=1

∑L
j=1 [RI ⊙RI]i,j .

Then we formulate the following two optimization problems:

(P2.1) max
pi

R̂1
sk (ỹa, ỹb, ỹe) (51)

s.t.

M∑
i=1

p2i
pB,i

= M, (51a)

(P2.2) max
pi

R̂2
sk (ỹa, ỹb, ỹe) (52)

s.t.

M∑
i=1

p2i
pB,i

= M, (52a)

which can be solved by using water-filling algorithm. Let
Λopt,1 and Λopt,2 denote the optimal Λ obtained from
(P2.1) and (P2.2), respectively. Accordingly, the optimal
Pe for (P2.1) and (P2.2) is computed by Popt,1

e =(
R

− 1
2

B UΛopt,1UH
)∗

and Popt,2
e =

(
R

− 1
2

B UΛopt,2UH
)∗

,

respectively. R1,max
sk (ỹa, ỹb, ỹe) and R2,max

sk (ỹa, ỹb, ỹe) are
obtained by substituting Popt,1

e and Popt,2
e into (33) and

(34), respectively. Finally, we have Rmax
sk (ỹa, ỹb, ỹe) =

max
{
R1,max

sk (ỹa, ỹb, ỹe) , R
2,max
sk (ỹa, ỹb, ỹe)

}
.
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R̂1
sk (ỹa, ỹb, ỹe) = log2


∣∣∣Paδ

2
UR̂Z + δ2IM

∣∣∣ ∣∣∣∣(PbPaδ
2
UR̂Z + δ2PaIM

)(
Paδ

2
ER̂Z + δ2IM

)
− Pb

(
Paδ

2
U,ER̂Z

)2∣∣∣∣∣∣∣Paδ2ER̂Z + δ2IM

∣∣∣ ∣∣∣δ2PbPaδ2UR̂Z + δ2Pa

(
Paδ2UR̂Z + δ2IM

)∣∣∣


=

M∑
i=1

log2


(
Paδ

2
Up

2
i + δ2

) (
Pbδ

2
Up

2
i + δ2 − PbPaδ

4
U,Ep

4
i

Paδ2Ep2
i+δ2

)
δ2Pbδ2Up

2
i + δ2Paδ2Up

2
i + δ4

 , (49)

R̂2
sk (ỹa, ỹb, ỹe) = log2

 |PbPaδ
2
UR̂Z + δ2PaIM |

∣∣∣∣(Paδ
2
UR̂Z + δ2IM

)(
Paδ

2
ER̂Z + δ2IM

)
−
(
Paδ

2
U,ER̂Z

)2∣∣∣∣
|Paδ2ER̂Z + δ2IM |

∣∣∣δ2PbPaδ2UR̂Z + δ2Pa

(
Paδ2UR̂Z + δ2IM

)∣∣∣


=

M∑
i=1

log2

 (Pbδ
2
Up

2
i + δ2)

(
Paδ

2
Up

2
i + δ2 − P 2

a δ
4
U,Ep

4
i

Paδ2Ep2
i+δ2

)
δ2Pbδ2Up

2
i + δ2Paδ2Up

2
i + δ4

 , (50)

Corollary 4. When the channel statistics of Eve is known, in
the high power case where Pa, Pb ≫ δ2, we have Popt,1

e =
Popt,2

e = IM .

Proof: It follows similar proof as in Corollary 2.

Corollary 5. When the channel statistics of Eve is known, in
the case where RB = IM , we have Popt,1

e = Popt,2
e = IM .

Proof: It follows similar proof as in Corollary 3.
It is worth mentioning that the SKR depends on the channel

spatial correlation, as a result of which, the optimization only
needs to be performed when the channel statistics changes,
which may last for several coherence time periods. However, in
scenarios where Bob moves, channel statistics may still change
rapidly, necessitating low-complexity optimization algorithms.

VI. PROPOSED MACHINE LEARNING-BASED METHOD

The baseline solution is an iterative algorithm with a com-
plex structure. In this section, we propose to directly solve
(P1) using DNNs. More specifically, we aim to train a DNN to
output the optimal transmit precoding matrix, P, and the phase
shift vector at the IRS, θ, that maximize the SKR based on
the location information, transmit power, and channel statics.
Although it has been analytically shown in Corollary 1 that
the phase shifts should be set to the same value, we keep θ at
the output of the DNN to demonstrate that the proposed PKG-
Net can directly obtain the optimal BS transmit precoding and
IRS phase shifts without any mathematical analysis.

A. Case 1: The Channel Statistics of Eve is Unknown

In the absence of Eve’s channel statistics, the structure of
the proposed PKG-Net is shown in Fig. 3. In particular, the
input consists of the location information of Bob (xb, yb, zb),
the maximum transmit power Pmax, the correlation coefficient
among BS antennas η and the Rician factor κ, which is a 6×1
vector. Then two fully connected (FC) layers are adopted as
hidden layers for feature extraction with ReLu as the activation
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Fig. 3. Structure of the proposed PKG-Net in the absence of Eve information.

function. The instantaneous channel state information is not
required at the input layer as the SKR only depends on channel
statistics. This enables a low-dimensional input and a simple
neural network structure. The output layer consists of two FC
layers. Since neural networks only support real-valued outputs,
the first 2 × M × M FC layer outputs a real-valued vector
p

′ ∈ R2M2×1 and the second 2× L FC layer outputs a real-
valued vector θ

′ ∈ R2L×1. To obtain the precoding matrix and
satisfy the total power constraint, the first normalization layer
converts p

′
to a complex-valued matrix P

′′
and performs the

following normalization step:

P =
√
MPa

P
′′

∥P′′∥2F
. (53)

Similarly, to satisfy the unit modulus constraint, the second
normalization layer performs

θl =
θ

′

l√(
θ

′
l

)2
+
(
θ

′
l+L

)2 + j
θ

′

l+L√(
θ

′
l

)2
+
(
θ

′
l+L

)2 ,∀l. (54)

During the training phase, the PKG-Net learns to update
its parameters in an unsupervised manner. The goal is to
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Fig. 4. Structure of the proposed PKG-Net with Eve information.

maximize I
(
ỹa; ỹ

T
b

)
, namely, minimize the following loss

function:

L1
loss = − 1

K

K∑
k=1

I
(
ỹa,k; ỹ

T
b,k

)
, (55)

where K is the number of training samples, and ỹa,k and
ỹT
b,k are the channel estimations in the k-th training. It is

clear that the smaller the loss function, the higher the average
SKR. Recall that ỹa and ỹT

b are functions of P and θ, which
are the outputs of PKG-Net. During the training, PKG-Net
learns to obtain the optimal P and θ that minimizes the loss
function. The training phase is performed offline, and thus the
computational complexity is less of a concern.

B. Case 2: The Channel Statistics of Eve is Known
In the presence of Eve’s channel statistics, the structure of

the proposed PKG-Net is shown in Fig. 4. Besides the location
of Bob, transmit power and channel statistics, we also treat the
location information of Eve, i.e., (xe, ye, ze), as input. The
output layer has the same structure as the network presented
in the previous subsection, since the optimization variables
are also P and θ. Due to the similar input dimension and the
same output dimension as in Case 1, we also adopt two FC
layers as hidden layers. During the training phase, the goal is
to maximize Rsk (ỹa, ỹb, ỹe), namely, minimize the following
loss function:

L2
loss = − 1

K

K∑
k=1

Rsk (ỹa,k, ỹb,k, ỹe,k) . (56)

In both cases, during the online inference phase, the BS
directly designs the precoding matrix and the IRS phase shifts
according to the output of the trained neural network as soon
as it gets the input information. Since the input information of
the proposed PKG-Net only includes the transmit power and
channel statistics, the the online inference only needs to be
performed when the channel statistics changes. In this case,
Eve may be able to estimate P and θ. However, regardless
of whether Eve can estimate P and θ or not, the SKR will
not be affected. Only when Eve has control of the BS and
the IRS, it can tamper with P and θ to reduce the SKR. As
such, although PKG-Net has a certain output when the channel
statistics remain unchanged, the security can be guaranteed as
long as Eve cannot control the BS and the IRS.

VII. SIMULATION RESULTS

In this section, we numerically evaluate the SKR perfor-
mance of the proposed PKG-Net in comparison with the
benchmark methods.

A. Simulation Setup

The coordinates of the BS and the IRS in meters are set as
(5, -30, 0) and (0, 0, 0), respectively. The large-scale path loss
in dB is computed by

βi = β0,i − 10αilog10 (d/d0) , (57)

where β0,i is the path loss at the reference distance, d0 = 1 m
is the reference distance, d is the transmission distance, and
αi is the path-loss exponent. For the direct link, i.e., i = h, we
set β0,i = −32.6 dB and αi = 3.67; for the reflecting links,
i.e., i = G or f , we set β0,i = −30 dB and αi = 2.2. The
channel bandwidth is set to W = 20 MHz and the noise power
is computed by δ2 = −174 dBm/Hz+10log10(W )+ 10 dB
[29], [37]. The IRS is assumed to be a uniform square array,
i.e., LH = LV. Unless otherwise specified, the transmit power
of Bob is set to Pb = 10 dBm, the default spatial correlation
coefficient at the BS is set to η = 0.4 and the IRS element
spacing is half a wavelength, i.e., ∆ = λ

2 .
During the training of the proposed PKG-Net in both cases,

the UE location is uniformly distributed in the xy-plane with
x ∈ [5, 15] and y ∈ [5, 15] to achieve generalization ability to
various UE locations. Moreover, Pmax is uniformly distributed
in [10, 30] dBm, η is uniformly distributed in [0, 1], and κ is
uniformly distributed in [0, 10]. In particular, in case 2, the
location of Eve is uniformly distributed in the xy-plane with
x ∈ [5, 15] and y ∈ [5, 15]. In both cases, each hidden layer of
the PKG-Net has 100 neurons. In each training epoch, 1000
random UE locations are used as training samples with a batch
size of 100. The DNN is implemented using TensorFlow and
updated by Adam optimizer with a learning rate of 0.001. The
training is terminated when the loss function on the verification
data set does not decrease by more than 10 consecutive epochs
or the number of training epochs reaches 100.

The proposed algorithms and benchmark methods are sum-
marized as follows:

• PKG-Net w/o Eve info: Represent the PKG-Net in the
absence of Eve’s channel statistics proposed in Section
VI.

• PKG-Net w/ Eve info: Represent the PKG-Net with Eve
information proposed in Section VI.

• Baseline solution w/o Eve info: Represent the water-
filling algorithm-based solution proposed in Section V-A.

• Baseline solution w/ Eve info: Represent the water-
filling algorithm-based solution proposed in Section V-B.

• Random configuration: Represent a non-optimized
scheme, where both the precoding matrix P and the IRS
phase shift vector θ are randomly configured.

B. Results

In the following numerical evaluation, the UE location is
set to (xb, yb, zb) = (10, 10, 0) and the Eve location is set to
(xe, ye, ze) = (xb − 0.5λ, yb, zb) unless otherwise stated.
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Fig. 5. SKR versus M with Pmax = 25 dBm, κ = 1 and L = 36.
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Fig. 6. SKR versus L with Pmax = 20 dBm, κ = 0 and M = 6.

In Fig. 5, we show the effect of the number of antennas on
the SKR. First, it is observed that the SKR increases linearly
with the number of antennas, as more antennas introduce more
sub-channels to extract secure keys. Second, we can see that
regardless of the number of antennas, the proposed PKG-
Net achieves a higher SKR than the two benchmark methods,
demonstrating the effectiveness of the proposed DNN-based
algorithm. The gap in terms of SKR between the proposed
PKG-Net and other benchmark methods increases with the
number of antennas, indicating that using more antennas
requires a more sophisticated design of BS precoding.

Fig. 6 illustrates the effect of the number of IRS elements
on the SKR. As can be observed, the SKR monotonically
increases with the number of IRS elements, since more IRS
elements provide more reflection links that improve the re-
ceived signals during channel probings. It is noticed that the
SKR gain of increasing IRS elements is not as significant as
that of increasing BS antennas. This is because in the proposed
PKG system, the downlink pilot length is proportional to the
number of antennas. It is expected to achieve a higher SKR
when the entire cascaded channel is estimated with a minimum
pilot length of M(L+1), which requires a new design of IRS
phase shifting and will be of interest in our future work.

In Fig. 7, the SKR versus the transmit power of Alice is
displayed. It is shown that the SKR monotonically increases
with the transmit power for all the considered optimization
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Fig. 7. SKR versus P with κ = 1, M = 4 and L = 36.
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Fig. 8. SKR versus η with Pmax = 20 dBm, κ = 1, M = 8 and L = 36.

methods, which is straightforward due to the fact that a higher
transmit power leads to a higher SNR, thereby improving the
reciprocity of channel observations at Alice and Bob.

Fig. 8 shows the SKR versus the spatial correlation co-
efficient at the BS for different UE locations. We can see
that the SKR monotonically decreases with the correlation
coefficient, which illustrates that the existence of spatial cor-
relation degrades the performance of PKG in terms of SKR.
In comparison with the benchmark methods, the proposed
PKG-Net can effectively design the BS precoding and IRS
phase shifting under different spatial correlation conditions.
Interestingly, when the correlation coefficient increases, the
SKR gain of the proposed PKG-Net becomes more significant
compared to the baseline solution. Furthermore, the proposed
PKG-Net shows good generalization to UE locations.

In Fig. 9, we present the effect of the distance between
Bob and Eve on the SKR. We can observe that the SKR
is inversely proportional to the absolute value of channel
correlation coefficient between Bob and Eve. It is worth noting
that a satisfactory SKR can be achieved when the distance
between Bob and Eve is more than about 0.3 wavelength. As
stated in [3], Bob can easily find Eve if Eve is within half
a wavelength of Bob. Hence, the IRS-assisted multi-antenna
system can achieve a good PKG performance.

It is interesting to observe that under various system pa-
rameters, almost the same SKR can be achieved regardless
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Fig. 10. Mutual information/SKR versus z1 = p21/pB,1 with Pmax = 10
dBm, κ = 1, η = 0.2, M = 2 and L = 64. The dashed lines indicate the
values of the optimal z1 that maximize the mutual information/SKR.

of whether Eve information is available, indicating that the
optimization objectives in case 1 (the channel statistics of
Eve is unknown) and case 2 (the channel statistics of Eve is
known) have almost the same solution. Therefore, in practical
implementation, we can obtain a satisfactory SKR using only
Bob’s channel statistics. This conclusion is difficult to prove
analytically since closed-form solutions are generally not
available. Here we consider a simple M = 2 case to visualize
the effect of z1 in Fig. 10, where zi = p2i /pB,i. According
to (48a), we have z1 + z2 = 2. The location of Eve is set to
(xe, ye, ze) = (xb− 0.2λ, yb, zb). The figure with regard to z2
is the mirror symmetric figure of Fig. 10 in terms of z1 = 1,
and thus we do not present it for brevity. From Fig. 10, we
can see that a z1 that leads to high I

(
ỹa; ỹ

T
e

)
and I

(
ỹb; ỹ

T
e

)
generally also leads to high I

(
ỹa; ỹ

T
b

)
and Rsk (ỹa, ỹb, ỹe).

Recall that I
(
ỹa; ỹ

T
b

)
and Rsk (ỹa, ỹb, ỹe) are the objective

functions in case 1 and case 2, respectively. The optimal values
of z1 that maximize I

(
ỹa; ỹ

T
b

)
and Rsk (ỹa, ỹb, ỹe) are close

to each other, which indicates that the solution in case 1 can
almost lead to the optimal lower bound of SKR.

In practice, the conventional optimization algorithms are
more suited to run on a classic central processing unit (CPU)
architecture, while the matrix multiplication of the DNNs can
be efficiently accelerated by a graphics processing unit (GPU).

TABLE I
COMPARISON OF RUNNING TIME FOR DIFFERENT SCHEMES

Algorithm M=2 M=4 M=8
Baseline solution 74.86 ms 106 ms 163 ms

PKG-Net 0.46 ms 0.91 ms 2.48 ms

As such, it is difficult to make a fair comparison with regard
to computational time for different algorithms. However, it is
still revealing to show the huge difference in computational
time between PKG-Net and the baseline solution using the
same hardware configuration [38]. In Table I, we present the
average computational time of 100 samples for case 1, the UE
locations of which are uniformly distributed in the xy-plane
with x ∈ [5, 15] and y ∈ [5, 15]. Other system parameters are
set to Pmax = 25 dBm, κ = 1 and L = 36. Both algorithms
run on the same platform, a 4 core Intel Core i7 CPU with
2.2 GHz base frequency and 16GB memory. From Table I, it
is clear that PKG-Net has a significantly lower computational
time than the baseline solution.

VIII. CONCLUSIONS

In this paper, we have studied the PKG in an IRS-
assisted multi-antenna system. We have developed a new PKG
framework and derived the closed-form expression of SKR
considering correlated eavesdropping channels. To maximize
the SKR, we proposed a novel DNN-based algorithm, PKG-
Net, to jointly configure the precoding matrix at the BS and the
phase shift vector at the IRS. The proposed PKG-Net has a
good generalization ability to different transmit powers and
channel statics. Simulation results show that under various
system parameters, the proposed PKG-Net achieves a higher
SKR than the benchmark methods. Compared with the base-
line solution, PKG-Net has significantly lower computational
complexity and can satisfy real-time processing constraints.
Additionally, it is observed that the spatial correlation among
BS antennas degrades the PKG performance in terms of
SKR, and that the proposed PKG-Net can address the spatial
correlation more effectively than other benchmark methods.
In our future work, we will extend the proposed PKG system
to a multi-user scenario and solve the multi-user precoding
problem. Moreover, the investigation of multi-antenna UE and
Eve, and more advanced channel estimation algorithms will be
of future interest.

APPENDIX A
PROOF OF THEOREM 1

In (26), we further define R1
sk = I

(
ỹa; ỹ

T
b

)
− I

(
ỹa; ỹ

T
e

)
and R2

sk = I
(
ỹa; ỹ

T
b

)
− I

(
ỹb; ỹ

T
e

)
. Following [34], we have

I
(
ỹa; ỹ

T
b

)
= H (ỹa) +H

(
ỹT
b

)
−H

(
ỹa, ỹ

T
b

)
= log2

(
|Ra||Rb|
|Ra,b|

)
, (58)
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where

Ra = E
{
ỹaỹ

H
a

}
= Pb

(
θ̃ ⊗P

)T
RU

c

(
θ̃ ⊗P

)∗
+δ2PTP∗,

(59)

Rb = E
{
ỹT
b ỹ

∗
b

}
=
(
θ̃ ⊗P

)T
RU

c

(
θ̃ ⊗P

)∗
+ δ2IM ,

(60)

and

Ra,b =

[
Ra Ra,b

Rb,a Rb

]
, (61)

with

RU
c = E

{
hab
c

(
hab
c

)H}
=

[
βhab

RB 0T

0
βGβfb

(1+κ)(1+κ)RI ⊙RI ⊗RB

]
, (62)

Ra,b = Rb,a = E {ỹaỹ
∗
b} =

√
Pb

(
θ̃ ⊗P

)T
RU

c

(
θ̃ ⊗P

)∗
.

(63)

Following the similar steps, we have

I
(
ỹa; ỹ

T
e

)
= log2

(
|Ra||Re|
|Ra,e|

)
, (64)

where

Re = E
{
ỹT
e ỹ

∗
e

}
=
(
θ̃ ⊗P

)T
RE

c

(
θ̃ ⊗P

)∗
+ δ2IM , (65)

and

Ra,e =

[
Ra Ra,e

Re,a Re

]
, (66)

with

RE
c = E

{
hae
c (hae

c )
H
}

=

[
βhaeRB 0T

0
βGβfe

(1+κ)(1+κ)RI ⊙RI ⊗RB

]
, (67)

Ra,e = Re,a = E {ỹaỹ
∗
e} =

√
Pb

(
θ̃ ⊗P

)T
RU,E

c

(
θ̃ ⊗P

)∗
,

(68)

where

RU,E
c =E

{
hab
c (hae

c )
H
}
=ρβhab

βhae
RB 0T

0 ρβG

1+κ

√
βfb

βfe

(1+κ)(1+κ)RI⊙RI⊗RB

. (69)

Moreover,

I
(
ỹb; ỹ

T
e

)
= log2

(
|Rb||Re|
|Rb,e|

)
, (70)

where

Rb,e =

[
Rb Rb,e

Re,b Re

]
, (71)

with

Rb,e=Re,b=E {ỹbỹ
∗
e}=

(
θ̃ ⊗P

)T
RU,E

c

(
θ̃ ⊗P

)∗
. (72)

Then we have

R1
sk = I

(
ỹa; ỹ

T
b

)
− I

(
ỹa; ỹ

T
e

)
= log2

(
|Rb| |Ra,e|
|Re| |Ra,b|

)
,

(73)

R2
sk = I

(
ỹa; ỹ

T
b

)
− I

(
ỹb; ỹ

T
e

)
= log2

(
|Ra| |Rb,e|
|Re| |Ra,b|

)
.

(74)

Define that RU
Z =

(
θ̃ ⊗P

)T
RU

c

(
θ̃ ⊗P

)∗
,

RE
Z =

(
θ̃ ⊗P

)T
RE

c

(
θ̃ ⊗P

)∗
and RU,E

Z =(
θ̃⊗P

)T
RU,E

c

(
θ̃⊗P

)∗
. (33) can be obtained by plugging

(60), (63), (65) and (66) into (73), and (34) can be obtained
by plugging (59), (63), (65) and (72) into (74). This completes
the proof.

APPENDIX B
PROOF OF LEMMA 1

Plugging (21) and (23) into (58), we have

Ra

=PbP
TE
{(
hNL
ab +GNLΘfNL

b

) ((
hNL
ab

)H
+
(
GNLΘfNL

b

)H)}
P∗

+ δ2PTP∗,

=PbP
T
(
E
{(

hNL
ab

(
hNL
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)H)}
+ E

{(
GNLΘfNL

b

) (
GNLΘfNL

b

)H})
P∗+ δ2PTP∗,

=PbP
T
(
βhab

RB

+ E
{(

GNLΘfNL
b

) (
GNLΘfNL

b

)H})
P∗+ δ2PTP∗, (75)
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where

E
{(
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) (
GNLΘfNL

b
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I

))∗}
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))T(
vec
(
R

1
2
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I
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(1+κ) (1+κ)
RBθ

H(RI ⊙RI)θ, (76)

where (a) comes from the commutative property of diagonal
matrices, and (b) is because (A⊗B)(C⊗D) = AC⊗BD. Rb

and Ra,b can be obtained following the similar steps, which
concludes the proof.

APPENDIX C
PROOF OF COROLLARY 1

Î
(
ỹa; ỹ

T
b

)
=

M∑
i=1

log2

(
(PbPaδ

2
Up

2
i + δ2Pa)

(
Paδ

2
Up

2
i + δ2

)
δ2PbPaδ2Up

2
i + δ2P 2

a δ
2
Up

2
i + δ4Pa

)

=

M∑
i=1

log2

(
1 +

PbPaδ
4
Up

4
i

δ2Pbδ2Up
2
i + δ2Paδ2Up

2
i + δ4

)
.

(77)

To find the monotonicity of Î
(
ỹa; ỹ

T
b

)
with regard to δ2U,

we define fi(x) =
PbPax

2p4
i

δ2Pbxp2
i+δ2Paxp2

i+δ4
. The first derivative of

fi(x) is calculated as

dfi(x)

dx
=

PaPbxp
4
i

(
2δ4 + Paδ

2xp2i + Pbδ
2xp2i

)
(δ4 + Paδ2xp2i + Pbδ2xp2i )

2 . (78)

When x > 0, we have d(fi(x))
dx > 0. Hence, fi(x) monotoni-

cally increases with x. We then rewrite (77) as

Î
(
ỹa; ỹ

T
b

)
=

M∑
i=1

log2
(
1 + fi(δ

2
U)
)
. (79)

From (79), it is clear that Î
(
ỹa; ỹ

T
b

)
monotonically increases

with δ2U. Recall that

δ2U = βhab
+

βGβfb

(1 + κ) (1 + κ)
θH(RI ⊙RI)θ

= βhab
+

βGβfb

(1 + κ) (1 + κ)

(
L∑

l=1

[RI ⊙RI]l,l +

L∑
i=1

L∑
j>i

2 [RI ⊙RI]i,j cos
(
θi − θj

))
. (80)

As such, δ2U is maximized when θi = θj ,∀i ̸= j. From (80),
we can observe that the SKR is invariant to the phases at IRS
when RI = IL, i.e, there is no spatial correlation between
IRS elements. However, it has been shown in [29] that the
spatial correlation at the IRS always exists. Hence, the secret
key capacity depends on the phases at IRS, which should be
set to the same value to maximize the SKR.

APPENDIX D
PROOF OF COROLLARY 2

In the high power case, we have

Î
(
ỹa; ỹ

T
b

)
=

M∑
i=1

log2

(
(Pbδ

2
Up

2
i +δ2)
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Paδ

2
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=
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log2
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)
,
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log2

(
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PaPbδ
2
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2
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δ2 (Pa + Pb)

)
,

≈ M log2

(
PaPbδ

2
Up

2
i

δ2 (Pa + Pb)

)
+

M∑
i=1

log2
(
p2i
)
. (81)

In this case, P1.1 can be rewritten as

(P1.2) max
pi

M∑
i=1

log2
(
p2i
)

(82)

s.t.

M∑
i=1

p2i
pB,i

= M. (82a)

The Lagrangian function with respect to pi is given by

L(pi, λ) =
M∑
i=1

log2
(
p2i
)
− λ

(
M∑
i=1

p2i
pB,i

−M

)
, (83)

where λ is the Lagrange multiplier. By solving ∂L(pi,λ)
∂pi

= 0

and ∂L(pi,λ)
∂λ = 0, we have p2i = pB,i, which completes the

proof.
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APPENDIX E
PROOF OF COROLLARY 3

When there is no spatial correlation among BS antennas,
i.e., RB = IM , (P1.1) can be rewritten as

(P1.3) max
pi

M∑
i=1

log2

(
1 +

PbPaδ
4
Up

4
i

δ2Pbδ2Up
2
i + δ2Paδ2Up

2
i + δ4

)
(84)

s.t.

M∑
i=1

p2i = M. (84a)

Define g(qi) = log2

(
1 +

PbPaδ
4
Uq2i

δ2Pbδ2Uqi+δ2Paδ2Uqi+δ4

)
, where qi =

p2i . Since g(qi) is a concave function with respect to qi, we
have

∑M
i=1 g(qi) ≤ Mg

(∑M
i=1 qi
M

)
. The optimal qi is thus

given by qi = 1, i = 1, 2, · · · ,M , which completes the proof.
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