
X

Hierarchical Distribution-Aware Testing of Deep Learning

WEI HUANG, Purple Mountain Laboratories, China, University of Liverpool, U.K.

XINGYU ZHAO,WMG, University of Warwick, U.K.

ALEC BANKS, Defence Science and Technology Laboratory, U.K.

VICTORIA COX, Defence Science and Technology Laboratory, U.K.

XIAOWEI HUANG, University of Liverpool, U.K.

With its growing use in safety/security-critical applications, Deep Learning (DL) has raised increasing concerns

regarding its dependability. In particular, DL has a notorious problem of lacking robustness. Input added

with adversarial perturbations, i.e. Adversarial Examples (AEs) are easily mis-predicted by the DL model.

Despite recent efforts made in detecting AEs via state-of-the-art attack and testing methods, they are normally

input distribution agnostic and/or disregard the perceptual quality of adversarial perturbations. Consequently,

the detected AEs are irrelevant inputs in the application context or unrealistic that can be easily noticed by

humans. This may lead to a limited effect on improving the DL model’s dependability, as the testing budget is

likely to be wasted on detecting AEs that are encountered very rarely in its real-life operations.

In this paper, we propose a new robustness testing approach for detecting AEs that considers both the feature

level distribution and the pixel level distribution, capturing the perceptual quality of adversarial perturbations.

The two considerations are encoded by a novel hierarchical mechanism. First, we select test seeds based on the

density of feature level distribution and the vulnerability of adversarial robustness. The vulnerability of test

seeds are indicated by the auxiliary information, that are highly correlated with local robustness. Given a test

seed, we then develop a novel genetic algorithm based local test case generation method, in which two fitness

functions work alternatively to control the perceptual quality of detected AEs. Finally, extensive experiments

confirm that our holistic approach considering hierarchical distributions is superior to the state-of-the-arts

that either disregard any input distribution or only consider a single (non-hierarchical) distribution, in terms

of not only detecting imperceptible AEs but also improving the overall robustness of the DL model under

testing.

CCS Concepts: • Software and its engineering→ Software testing and debugging; Software reliability;
• Computing methodologies→Machine learning.

Additional Key Words and Phrases: Deep learning robustness, adversarial examples detection, natural pertur-

bations, distribution-aware testing, robustness growth, safe AI

ACM Reference Format:
Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang. 2023. Hierarchical Distribution-

Aware Testing of Deep Learning. ACM Trans. Softw. Eng. Methodol. 0, 0, Article X (September 2023), 34 pages.

https://doi.org/XXXXXXX.XXXXXXX

Authors’ addresses: Wei Huang, Purple Mountain Laboratories, China, and University of Liverpool, U.K., w.huang23@

liverpool.ac.uk; Xingyu Zhao, WMG, University of Warwick, U.K., Xingyu.Zhao@warwick.ac.uk; Alec Banks, Defence

Science and Technology Laboratory, U.K., abanks@dstl.gov.uk; Victoria Cox, Defence Science and Technology Laboratory,

U.K., vcox@dstl.gov.uk; Xiaowei Huang, University of Liverpool, U.K., Xiaowei.Huang@liverpool.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1049-331X/2023/9-ARTX $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Accepted by ACM Transactions on Software Engineering and Methodology (TOSEM)
ar

X
iv

:2
20

5.
08

58
9v

2
 [

cs
.S

E
]

 1
 S

ep
 2

02
3

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

X:2 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

1 INTRODUCTION
Deep Learning (DL) is being explored to provide transformational capabilities to many industrial

sectors including automotive, healthcare and finance. The reality that DL is not as dependable as

required now becomes a major impediment. For instance, key industrial foresight reviews identified

that the biggest obstacle to gaining benefits of DL is its dependability [27]. There is an urgent need

to develop methods to enable the dependable use of DL, for which great efforts have been made in

recent years in the field of DL Verification and Validation (V&V) [22, 60].

DL robustness is arguably the property in the limelight. Informally, robustness requires that

the decision of the DL model is invariant against small perturbations on inputs. That is, all inputs

in a small input region (e.g., a norm ball defined in some 𝐿𝑝-norm distance) should share the

same prediction label by the DL model. Inside that region, if an input is predicted differently to

the given label, then this input is normally called an Adversarial Example (AE). Most V&V

methods designed for DL robustness are essentially about detecting AEs, e.g., adversarial attack

based methods [16, 33] and coverage-guided testing [12, 20, 32, 35, 41, 55].

As recently noticed by the software engineering community, emerging studies on systematically

evaluating AEs detected by aforementioned state-of-the-arts have two major drawbacks: (i) they

do not take the input data distribution into consideration, therefore it is hard to judge whether

the identified AEs are meaningful to the DL application [5, 10]; (ii) most detected AEs are of poor
perceptual quality that are too unnatural/unrealistic [17] to be seen in real-life operations. That said,

not all AEs are equal nor significantly contribute to the robustness improvement, given limited

resources. A wise strategy is to detect those AEs that are both being “distribution-aware” and with

natural/realistic pixel-level perturbations, which motivates this work.

Prior to this work, a few notable attempts at distribution-aware testing for DL have been made.

Broadly speaking, the field has developed two types of approaches: Out-Of-Distribution (OOD)
detector based [4, 10] and feature-only based [7, 44]. The former can only detect anomalies/outliers,

rather than being “fully-aware” of the distribution. While the latter is indeed generating new test

cases according to the learnt distribution (in a latent space), it ignores the pixel-level information due

to the compression nature of generative models used [65]. To this end, our approach is advancing

in this direction with the following novelties and contributions:

a) We provide a “divide and conquer” solution—Hierarchical Distribution-Aware (HDA) testing—

by decomposing the input distribution into two levels (named as global and local) capturing how the

feature-wise and pixel-wise information are distributed, respectively. At the global level, isolated

problems of estimating the feature distribution and selecting best test seeds can be solved by

dedicated techniques. At the local level where features are fixed, the clear objective is to precisely

generate test cases considering perceptual quality
1
. Our extensive experiments show that such

hierarchical consideration is more effective to detect high-quality AEs than state-of-the-art that

either disregards any data distribution or only considers a single (non-hierarchical) distribution.

Consequently, we also show the DL model under testing exhibits higher robustness after “fixing”

the high-quality AEs detected.

b) At the global level, we propose novel methods to select test seeds based on the approximated
feature distribution of the training data and predictive robustness indicators, so that the norm balls of

the selected seeds are both from the high-density area of the distribution and relatively unrobust

(thus more cost-effective to detect AEs in later stages). Notably, state-of-the-art DL testing methods

1
While determining perceptual quality typically involves subjective assessments from human observers, objective metrics

such as peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) can also be used as measures of perceptual

quality [49]. Throughout the paper, perceptual quality is defined as the metrics in Sec. 2.4 that are commonly used in

computer vision.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:3

normally select test seeds randomly from the training dataset without any principled rules. Thus,

from a software engineering perspective, our test seed selection is more practically useful in the

given application context.

c) Given a carefully selected test seed, we propose a novel two-step Genetic Algorithm (GA) to

generate test cases locally (i.e. within a norm ball) to control the perceptual quality of detected AEs.

At this local level, the perceptual quality distribution of data-points inside a norm ball requires

pixel-level information that cannot be sufficiently obtained from the training data alone. Thus, we

innovatively use common perceptual metrics that quantify image quality as an approximation of

such local distribution. Our experiments confirm that the proposed GA is not only effective after

being integrated into HDA (as a holistic testing framework), but also outperforms other pixel level

AE detectors in terms of perception quality when applied separately.

d) We investigate black-box (to the DL model under testing) methods for the main tasks at both

levels. Thus, to the best of our knowledge, our HDA approach provides an end-to-end, black-box
solution, which is the first of its kind and more versatile in software engineering practice.

e) A publicly accessible tool of our HDA testing framework with all source code, datasets, DL

models and experimental results.

2 PRELIMINARIES AND RELATEDWORK
In this section, we first introduce preliminaries and related work on DL robustness, together with

formal definitions of concepts adopted in our HDA approach. Then existing works on distribution-

aware testing are discussed. Since our HDA testing also considers the naturalness of detected AEs,

some common perception quality metrics are introduced. In summary, we present Fig. 1 to show

the stark contrast of our proposed HDA testing (the green route) to other related works (the red

and amber routes).

2.1 DL Robustness and Adversarial Examples
We denote the prediction output of DL model as the vector 𝑓 (𝑥) with size equal to the total number

of labels. The predicted label
ˆ𝑓 (𝑥)=argmax𝑖 𝑓𝑖 (𝑥) where 𝑓𝑖 (𝑥) is the 𝑖𝑡ℎ attribute of vector 𝑓 (𝑥).

DL robustness requires that the decision of the DL model
ˆ𝑓 (𝑥) is invariant against small pertur-

bations on input 𝑥 . That is, all inputs in an input region 𝜂 have the same prediction label, where 𝜂 is

usually a small norm ball (defined with some 𝐿𝑝 -norm distance
2
) around an input 𝑥 . If an input 𝑥 ′

inside 𝜂 is predicted differently to 𝑥 by the DL model, then 𝑥 ′ is called an Adversarial Example (AE).
DL robustness V&V can be based on formal methods [23, 39] or statistical approaches [50, 53], and

normally aims at detecting AEs. In general, we may classify two types of methods (the two branches

in the red route of Fig. 1) depends on how the test cases are generated: (i) Adversarial attack based

methods normally optimise the DL prediction loss to find AEs, which include white-box attack

methods like Fast Gradient Sign Method (FGSM) [16] and Projected Gradient Descent (PGD) [33],

as well as black-box attacks [2, 54] using GA with gradient-free optimisation. (ii) Coverage-guided

testing optimises the certain coverage metrics on the DL model’s internal structure, which is

inspired by the coverage testing for traditional software. Several popular test metrics, like neuron

coverage [32, 35], modified condition/decision coverage [41] for CNNs and temporal coverage

[12, 20] for RNNs are proposed. While it is argued that coverage metrics are not strongly correlated

with DL robustness [17, 56], they are seen as providing insights into the internal behaviours of DL

models and hence may guide test selection to find more diverse AEs [20].

Without loss of generality, we reuse the formal definition of DL robustness in [50, 52] in this

work:

2𝑝 = 0, 1, 2 and∞. 𝐿∞ norm is more commonly used.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:4 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

Fig. 1. Comparison between our proposed Hierarchical Distribution-Aware (HDA) testing and related works.

Definition 1 (Local Robustness). The local robustness of the DL model 𝑓 (𝑥), w.r.t. a local region
𝜂 and a target label 𝑦, is:

R𝑙 (𝜂,𝑦) :=
∫
𝑥∈𝜂

𝐼 (𝑥)𝑝𝑙 (𝑥 | 𝑥 ∈ 𝜂) d𝑥 (1)

where 𝑝𝑙 (𝑥 | 𝑥 ∈ 𝜂) is the local distribution of region 𝜂 which is precisely the “input model” used by
both [50, 52]. 𝐼 (𝑥) is an indicator function, and 𝐼 (𝑥) = 1 when ˆ𝑓 (𝑥) = 𝑦, 𝐼 (𝑥) = 0 otherwise.

To detect as many AEs as possible, normally the first question is—which local region shall we

search for those AEs? I.e. how to select test seeds? To be cost-effective, we want to explore unrobust

regions, rather than regions where AEs are relatively rare. This requires the local robustness of a

region to be known a priori, which may imply a paradox (cf. Remark 4 later). In this regard, we can

only predict the local robustness of some regions before doing the actual testing in those regions.

We define:

Definition 2 (Local Robustness Indicator). Auxiliary information that strongly correlated
with R𝑙 (𝜂,𝑦) (thus can be leveraged in its prediction) is named as a local robustness indicator.

We later seek for such indicators (and empirically show their correlation with the local robustness),

which forms one of the two key factors considered in selecting test seeds in our method.

Given a test seed, we search for AEs in a local region 𝜂 (around the test seed) that produce

different label from the test seed. This involves the question on what size of 𝜂 should be, for which

we later utilise the property of:

Remark 1 (𝑟 -separation). For real-world image datasets, any data-points with different ground
truth labels are at least distance 2𝑟 apart in the input (pixel) space, where 𝑟 is estimated case by case
and depending on the dataset.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:5

The 𝑟 -separation property was first observed by [57]: intuitively it says, there is a minimum distance

between two real-world objects of different labels.

Finally, not all AEs are equal in terms of the “strength of being adversarial” (stronger AEs may

lead to greater robustness improvement in, e.g., adversarial training [48]), for which we define:

Definition 3 (Prediction Loss). Given a test seed 𝑥 with label 𝑦, the prediction loss of an input
𝑥 ′, which is obtained by adding perturbations to 𝑥 , is defined as:

J (𝑓 (𝑥 ′), 𝑦) = max

𝑖≠𝑦
(𝑓𝑖 (𝑥 ′) − 𝑓𝑦 (𝑥 ′)) (2)

where 𝑓𝑖 (𝑥 ′) returns the probability of label 𝑖 after input 𝑥 ′ being processed by the DL model 𝑓 .

Note, J ≥ 0 implies argmax𝑖 𝑓𝑖 (𝑥) ≠ 𝑦 and thus 𝑥 ′ is an AE of 𝑥 .

Next, to measure the DL models’ overall robustness across the whole input domain, we introduce

a notion of global robustness. Being different to some existing definitions where robustness of

local regions are treated equally when calculating global robustness over several regions [45, 46],

ours is essentially a “weighted sum” of the robustness of local regions where each weight is the

probability of the associated region on the input data distribution. Defining global robustness in

such a “distribution-aware” manner aligns with our motivation—as revealed later by empirically

estimated global robustness, our HDA appears to be more effective in supporting the growth of the

overall robustness after “fixing” those distribution-aware AEs.

Definition 4 (Global Robustness). The global robustness of the DL model 𝑓 (𝑥) is defined as:

R𝑔 :=
∑︁
𝜂∈X

𝑝𝑔 (𝑥 ∈ 𝜂)R𝑙 (𝜂,𝑦) (3)

where 𝑝𝑔 (𝑥 | 𝑥 ∈ 𝜂) is the global distribution of region 𝜂 (i.e., a pooled probability of all inputs in the
region 𝜂𝑧) and R𝑙 (𝜂,𝑦) is the local robustness of region 𝜂 to the label 𝑦.

The estimation of R𝑔 , unfortunately, is very expensive that requires to compute the local robust-

ness R𝑙 of a large number of regions over the input domain X. Thus, from a practical standpoint,

we adopt an empirical definition of the global robustness in our later experiments, which has been

commonly used for DL robustness evaluation in the adversarial training [33, 47, 48, 59].

Definition 5 (Empirical Global Robustness). Given a DL model 𝑓 and a validation dataset
𝐷𝑣 , we define the empirical global robustness as ˆR𝑔 : (𝑓 , 𝐷𝑣,𝑇) → [0, 1] where T denotes a given type
of AE detection method and ˆR𝑔 is the weighted accuracy on AEs obtained by conducting T on ⟨𝑓 , 𝐷𝑣⟩.

To be “distribution-aware”, the synthesis of 𝐷𝑣 should conform to the global distribution. 𝐷𝑣 can

be sampled from the train/test data according to global distribution. The norm ball around each

input data 𝑥 in 𝐷𝑣 represents a region 𝜂. Each region 𝜂 is explicitly assigned a weight to indicate

the density on global distribution. For each region 𝜂, we calculate the prediction accuracy on AEs,

detect by T according to local distribution, to approximate the local robustness R𝑙 . Consequently,

the set of AEs for 𝐷𝑣 may represent the input distribution and the weighted accuracy on these AEs

approximate the global robustness.

2.2 Distribution-Aware Testing for DL
There are increasing amount of DL testing works developed towards being distribution-aware

(as summarised in the amber route of Fig. 1). Deep generative models, such as Variational Auto-

Encoders (VAE) and Generative Adversarial Networks (GAN), are applied to approximate the

training data distribution, since the inputs (like images) to Deep Neural Network (DNN) are usually

in a high dimensional space. Previous works heavily rely on OOD detection [4, 10] or synthesising

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:6 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

new test cases directly from latent spaces [6, 13, 14, 25, 44]. The former does not comprehensively

consider the whole distribution, rather flags outliers, thus a more pertinent name of it should be

out-of-distribution-aware (OODA) testing. While for both types of methods, another problem arises

that the distribution encoded by generative models only contain the feature-wise information and

easily filter out the pixel-wise perturbations [65]. The images added with pixel-wise perturbations
should still fall into the local region 𝜂, which is decided by 𝑟 -separation property (ref. Remark 1).

Although, Dunn et al. [13] propose to generate the fine-grained perturbations by perturbing the

output of last layers of GAN’s generator, the fine-grained perturbations cannot be guaranteed to

follow 𝑟 -separation property and thus may change the class of the image. Consequently, directly

searching and generating test cases from the latent space of generative models may only perturb
features, thus called Feature-Only Distribution-Aware (FODA) in this paper (while also named as

semantic AEs in some literature [19, 64]). As an example in later experiment results, i.e. Table 9,

FODA will produce AEs, the perturbations of which exceed the 𝑟 -separation limit. Our approach,

the green route in Fig. 1, differs from aforementioned works by 1) considering both the global

(feature level) distribution in latent spaces and the local (pixel level) perceptual quality distribution

in the input space; 2) leveraging the robustness indicator R to select test seeds which is more

error-prone and thus easier for detecting AEs; 3) proposing novel GA based test case generation to

detect AEs with high perceptual quality. Therefore, when HDA is experimentally compared to the

existing works, the selected test seeds of HDA have higher probability density and lower robustness.

The detected AEs by HDA also have higher perceptual quality (in terms of those metrics encoded

by GA) than others.

2.3 Test Input Prioritisation and Generation
When testing DL based systems, in order to save computation and reduce the cost on labelling

data, test input prioritisation strategies are adopted. [51] experimentally confirms that DeepGini

outperforms various types of surprise and neuron coverage metrics in terms of the capability to

detect misclassifications. [3] propose the unsafe set selection algorithm, leveraging the density-

based clustering of error-inducing images. Both test selection methods aim at detecting misclassified

images for retraining and improving generalisation performance of DNNs.

There are also some test input generation methods, the main idea of which is to promote diversity

of test cases in order to cover more faults of DL systems. [37] develops a search-based tool to

generate frontier inputs for DL systems. DEEPMETIS [36] augment the test set for DL by increasing

the mutation scores.

The above test input generation/prioritisation methods have different goals from our HDA

testing. They focus on detecting or generating more misclassified test cases within certain test

budget, while our HDA testing targets at generating on-distribution AEs to improve operational

robustness of DL systems. Feature distribution learnt from VAE as well as the predicted robustness

indicator facilitate the generation of those on-distribution AEs.

2.4 PerceptualQuality of Images
Locally, data-points (around the selected seed) sharing the same feature information may exhibit

perceptual difference from the selected seed. To capture such distribution, some perceptual quality
metric can be utilised to compare the perceptual difference between the original image 𝑥 and

perturbed image 𝑥 ′. Some common metrics for perceptual quality include:

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:7

• Mean Squared Error (MSE): measures the mean squared difference between the original

image 𝑥 and perturbed image 𝑥 ′,

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥 ′𝑖)2 (4)

where 𝑛 is the image size, and 𝑥𝑖 is the value of image pixel 𝑖 .

• Peak Signal-to-Noise Ratio (PSNR) [15]: measures the quality of a signal’s representation

after being subject to noise during transmission or processing. PSNR is expressed in decibels

(dB) and is calculated by comparing the maximum possible power of the original signal to

the power of the noise that affects its fidelity,

𝑃𝑆𝑁𝑅 = 20 ∗ 𝑙𝑜𝑔10
𝑀𝐴𝑋
√
𝑀𝑆𝐸

(5)

where𝑀𝐴𝑋 is the maximum possible pixel value of the image. When the pixels are repre-

sented using 8 bits per sample, this is 255.

• Structural Similarity Index Measure (SSIM) [49]: measures the similarity between two

images based on the idea that the human visual system is highly sensitive to changes in

structural information, such as edges, textures, and patterns, rather than just changes in pixel

values. It works by comparing the luminance (l), contrast (c), and structural information (s)

of two images, and producing a score between 0 (completely dissimilar) and 1 (identical) that

indicates their similarity,

𝑆𝑆𝐼𝑀 (𝑥, 𝑥 ′) =𝑙 (𝑥, 𝑥 ′)𝛼 · 𝑐 (𝑥, 𝑥 ′)𝛽 · 𝑠 (𝑥, 𝑥 ′)𝛾

𝑙 (𝑥, 𝑥 ′) = 2𝜇𝑥𝜇𝑥 ′ + 𝑐1
𝜇2𝑥 + 𝜇2

𝑥 ′ + 𝑐1
, 𝑐 (𝑥, 𝑥 ′) = 2𝜎𝑥𝜎𝑥 ′ + 𝑐2

𝜎2𝑥 + 𝜎2
𝑥 ′ + 𝑐2

, 𝑠 (𝑥, 𝑥 ′) = 𝜎𝑥𝑥 ′ + 𝑐3
𝜎𝑥𝜎𝑥 ′ + 𝑐3

(6)

where 𝜇𝑥 and 𝜇𝑥 ′ are the mean values of 𝑥 and 𝑥 ′, respectively. 𝜎𝑥 and 𝜎𝑥 ′ are the standard

deviations of 𝑥 and 𝑥 ′, respectively. 𝜎𝑥𝑥 ′ is the covariance between 𝑥 and 𝑥 ′. 𝑐1, 𝑐2, and 𝑐3 are
constants that prevent division by zero. The constants 𝛼 , 𝛽 , and 𝛾 are typically set to 1, 1, and

1, respectively, although different values may be used depending on the application. Unlike

other similarity measures, such as MSE and PSNR, SSIM is able to account for perceptual

differences in image quality, and is often considered a more accurate measure of image quality.

• Fréchet Inception Distance (FID) [18]: compares the distribution between a set of original

images and a set of perturbed images. It is calculated by first using a pre-trained Inception-

v3 neural network [43] to extract features from both sets of images. Then, the mean and

covariance of these features are calculated for each set, and the distance between these mean

and covariance matrices is calculated using the Fréchet distance,

𝐹𝐼𝐷 = ∥𝜇 − 𝜇′∥2
2
+𝑇𝑟 (Σ + Σ′ − 2(Σ1/2 · Σ′ · Σ1/2)1/2) (7)

where 𝜇 and 𝜇′ are the mean feature vectors of the original and perturbed image sets,

respectively. Σ and Σ′
are the covariance matrices of the original and perturbed image sets,

respectively. 𝑇𝑟 () denotes the trace of a matrix. Lower FID scores indicate that the perturbed

images are closer in terms of perception to the original images, while higher FID scores

indicate greater differences between the perturbed and original images.

Notably, all these metrics are current standards for assessing the quality of images, as widely

used in the experiments of aforementioned related works.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:8 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

Fig. 2. An example of Hierarchical Distribution Aware Testing

3 THE PROPOSED METHOD
We first present an overview of our HDA testing, cf. the green route in Fig. 1, and then dive into

details of how we implement each stage by referring to an illustrative example in Fig. 2.

3.1 Overview of HDA Testing
The core of HDA testing is the hierarchical structure of two distributions. We formally define the

following two levels of distributions:

Definition 6 (Global Distribution). The global distribution captures how feature level infor-
mation is distributed in some (low-dimensional) latent space after data compression.

Definition 7 (Local Distribution). Given a data-point sampled from the latent space, we
consider its norm ball in the input pixel space. The local distribution is a conditional distribution
capturing the perceptual quality of all data-points within the norm ball.

Due to the sparsity of data over the high dimensional input space, it is hard to estimate the input

distribution. Therefore, we turn to estimate the feature level (global) distribution in latent space,

which is the representation of compressed data, in which data points with similar features are

closer to each other [30]. DNNs, e.g. encoder of VAEs, map any data points in the high dimensional

input space to the low dimensional latent space. It infers that the input space can be partitioned into

well-defined regions, where each region corresponds to a particular data point in the latent space.

latent space is an abstract, multidimensional space where each dimension represents a feature or

characteristic of the data [30]. The regions in the input space are determined based on the values of

these features and how they relate to each other. In other words, we can identify distinct patterns

or clusters of data in the input space, which share the same set of features, and maps them to

corresponding point in the latent space. By fitting a global distribution in the latent space, we

actually model the distribution of distinct regions over the input space. The local distribution is

defined as a conditional distribution within each region. Thus, we propose the following remark.

Remark 2 (Decompose one distribution into two levels). Given the definitions of global and
local distributions, denoted as 𝑝𝑔 and 𝑝𝑙 respectively, we may decompose a single distribution over the
entire input domain X as:

𝑝 (𝑥) =
∫

𝑝𝑙 (𝑥 |𝑥 ∈ 𝜂𝑧)𝑝𝑔 (𝑥 ∈ 𝜂𝑧) d𝑧 (8)

where variable 𝑧 represents a set of features while 𝜂𝑧 represents a region in the input space that “maps”
to the 𝑧 point in the latent space.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:9

Intuitively, compared to modelling a single distribution, our hierarchical structure of distributions

is superior in that the global distribution guides for which regions of the input space to test, while

the local distribution can be leveraged to precisely control the quality of test cases. Given the

definition of distribution, the goal of HDA testing can be formalised as below:

Remark 3 (Goal of HDA testing). The goal of HDA testing is to detect AE 𝑥 ′, which is around
the local region of test seed 𝑥 , such that 𝑥 ′ lies within the high probability density region of distribution
𝑝 (𝑥 ′), and 𝑥 and 𝑥 ′ are classified differently.

To detect such on distribution AEs, HDA testing has the following process, which can divided

into three stages, depicted as the green route in Fig. 1:

Stage 1: Explicitly Approximate the Global Distribution. We first extract feature-level information

from the given dataset by using data compression techniques—the encoder of VAEs in our case,

and then explicitly approximate the global distribution in the latent-feature space, using Kernel

Density Estimator (KDE).

Stage 2: Select Test Seeds Based on the Global Distribution and Local Robustness Indicators. Given the
limited testing budget, we want to test in those local input regions that are both more error-prone

and representative of the input distribution. Thus, when selecting test seeds, we consider two

factors—the local robustness indicators (cf. Definition 2) and the global distribution. For the former,

we propose several auxiliary information with empirical studies showing their correlation with the

local robustness, while the latter has already been quantified in the first stage via KDE.

Stage 3: Generate Test Cases Around Test Seeds Considering the Local Distribution and Prediction
Loss of AEs. When searching for AEs locally around a test seed given by the 2nd stage, we develop

a two-step GA in which the objective function is defined as a fusion of the prediction loss (cf.

Definition 3) and the local distribution (modelled by common perceptual quality metrics). Such

fusion of two fitness functions allows the trade-off between the “strength of being adversarial” and

the perceptual quality of the detected AEs. The optimisation is subject to the constraint of only

exploring in a norm ball whose central point is the test seed and with a radius smaller than the

𝑟 -separation distance (cf. Remark 1).

While there are some alternatives may also suffice for the purpose of each stage, our chosen

technical solutions are the most effective and popular in consideration of the distribution awareness.

3.2 Approximation of the Global Distribution
Given the training dataset D, the task of approximating the input distribution is equivalent to

estimating a Probability Density Function (PDF) over the input domain X given D. Despite this

is a common problem with many established solutions, it is hard to accurately approximate the

distribution due to the relatively sparse data of D, compared to the high dimensionality of the

input domain X. So the practical solution is to do dimensionality reduction and then estimate the

global distribution, which indeed is the first step of all existing methods of distribution-aware DL

testing.

Specifically, we choose VAE-Encoder+KDE
3
for their simplicity and popularity. To effectively

train the VAE model, we use a combination of a reconstruction loss and a KL divergence loss

to optimise the model. The reconstruction loss measures the difference between the input data

and the output of the decoder, while the KL divergence loss measures the difference between the

learned latent distribution and the prior distribution. During training, the reconstruction loss and

3
We only use the encoder of VAEs for feature extraction, rather than generate new data from the decoder, which is different

to other methods mentioned in Section 2.2.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:10 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

KL divergence loss are calculated and minimised simultaneously. Regularisation techniques such

as dropout and weight decay can be used to prevent overfitting.

Assume D contains 𝑛 samples and each 𝑥𝑖 ∈ D is encoded by VAE-Encoder as a Gaussian

distribution 𝑧𝑖 in the latent space, we can estimate the PDF of 𝑧 (denoted as 𝑃𝑟 (𝑧)) based on the

encoded D. The 𝑃𝑟 (𝑧) conforms to the mixture of Gaussian distributions, i.e., 𝑧 ∼ N(𝜇𝑧𝑖 , 𝜎𝑧𝑖).
Notably, this mixture of Gaussian distributions nicely aligns with the gist of adaptive KDE [31],

which uses the following estimator:

𝑝𝑔 (𝑥 ∈ 𝜂𝑧) ∝ 𝑃𝑟 (𝑧) ≃
1

𝑛

𝑛∑︁
𝑖=1

𝐾ℎ𝑖 (𝑧 − 𝜇𝑧𝑖) (9)

That is, when choosing a Gaussian kernel for 𝐾 in Eqn. (9) and adaptively setting the bandwidth

parameter ℎ𝑖 = 𝜎𝑧𝑖 (i.e., the standard deviation of the Gaussian distribution representing the

compressed sample 𝑧𝑖), the VAE-Encoder and KDE are combined “seamlessly”. Finally, our global

distribution 𝑝𝑔 (𝑥 ∈ 𝜂𝑧) (a pooled probability of all inputs in the region 𝜂𝑧 that corresponds to a

point 𝑧 in the latent space) is proportional to the approximated distribution of 𝑧 with the PDF 𝑃𝑟 (𝑧).
Running Example: The left diagram in Fig. 2 depicts the global distribution learnt by KDE,

after projected to a two-dimensional space for visualisation. The peaks
4
are evaluated with highest

probability density over the latent space by KDE.

3.3 Test Seeds Selection
Selecting test seeds is actually about choosing which norm balls (around the test seeds) to test for

AEs. To be cost-effective, we want to test those with higher global probabilities and lower local

robustness at the same time. For the latter requirement, there is potentially a paradox:

Remark 4 (A Paradox of Selecting Unrobust Norm Balls). To be informative on which norm
balls to test for AEs, we need to estimate the local robustness of candidate norm balls (by invoking
robustness estimators to quantify R𝑙 (𝜂,𝑦), e.g., [50]). However, local robustness evaluation itself is
usually about sampling for AEs (then fed into statistical estimators) that consumes the testing resources.

To this end, instead of directly evaluating the local robustness of a norm ball, we can only

indirectly predict it (i.e., without testing/searching for AEs) via auxiliary information that we call

local robustness indicators (cf. Definition 2). In doing so, we save all the testing budget for the later

stage when generating local test cases.

Given a test seed 𝑥 with label 𝑦, we propose two robustness indicators (both relate to the

vulnerability of the test seed to adversarial attacks)—the prediction gradient based score (denoted as

𝑆grad) and the score based on separation distance of the output-layer activation (denoted as 𝑆sep):

𝑆grad = | |∇𝑥J (𝑓 (𝑥), 𝑦) | |∞
𝑆sep = min

𝑥
| |𝑓 (𝑥) − 𝑓 (𝑥) | |∞ s.t. 𝑦 ≠ 𝑦

(10)

These allow prediction of a whole norm ball’s local robustness by the limited information of

its central point (the test seed). The gradient of a DNN’s prediction with respect to the input is a

white-box metric, that is widely used in adversarial attacks, such as FGSM [16] and PGD [33] attacks.

A greater gradient calculated at a test seed implies that AEs are more likely to be found around it.

The activation separation distance is regarded as a black-box metric and refers to the minimum

𝐿∞ norm between the output activations of the test seed and any other data with different labels.

Intuitively, a smaller separation distance implies a greater vulnerability of the seed to adversarial

4
Most training data lie in this region or gather around the region.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:11

attacks. We later show empirically that indeed these two indicators are highly correlated with the

local robustness.

After quantifying the two required factors, we combine them in a way that was inspired by [62].

In [62], the DL reliability metric is formalised as a weighted sum of local robustness where the

weights are operational probabilities of local regions. To align with that reliability metric, we do

the following steps to select test seeds:
(i) For each data-point 𝑥𝑖 in the test set, we calculate its global probability (i.e., 𝑃𝑟 (𝑧𝑖) where 𝑧𝑖 is

its compressed point in the VAE latent space) and one of the local robustness indicators (either

white-box or black-box, depending on the available information).

(ii) Normalise both quantities to the same scale.

(iii) Rank all data-points by the product of their global probability and local robustness indicator.

(iv) Finally we select top-𝑘 data-points as our test seeds, and 𝑘 depends on the testing budget.

Running Example: In the middle diagram of Fig. 2, we add in the local robustness indicator

results of the training data which are represented by a scale of colours—darker means lower

predicted local robustness while lighter means higher predicated local robustness. By our method,

test seeds selected are both from the highest peak (high probability density area of the global

distribution) and relatively darker ones (lower predicated local robustness).

3.4 Local Test Cases Generation
Not all AEs are equal in terms of the “strength of being adversarial”, and stronger AEs are associated

with higher prediction loss (cf. Definition 3). Detecting AEs with higher prediction loss may benefit

more when considering the future “debugging” step, e.g., by adversarial retraining [48]. Thus, at

this stage, we want to search for AEs that exhibit a high degree of adversarial behaviour while also

conform to the local distribution. That is, the local test case generation can be formulated as the

following optimisation given a seed (𝑥,𝑦):

max

𝑥 ′
J (𝑓 (𝑥 ′), 𝑦) + 𝛼 · 𝑝𝑙 (𝑥 ′ |𝑥 ′ ∈ 𝜂𝑧𝑥)

s.t. | |𝑥 − 𝑥 ′ | |∞ ≤ 𝑟
(11)

where J is the prediction loss, 𝑝𝑙 (𝑥 ′ |𝑥 ′ ∈ 𝜂𝑧𝑥) is the local distribution (note, 𝑧𝑥 represents the

latent features of test seed 𝑥), 𝑟 is the 𝑟 -separation distance, and 𝛼 is a coefficient to balance the

two terms. As what follows, we note two points on Eqn. (11): why we need the constraint and how

we quantify the local distribution.

The constraint in Eqn. (11) determines the right locality of local robustness—the “neighbours”

that should have the same ground truth label 𝑦 as the test seed. We notice the 𝑟 -separation property

of real-world image datasets (cf. Remark 1) provides a sound basis to the question. Thus, it is

formalised as a constraint that the optimiser can only search in a norm ball with a radius smaller

than 𝑟 , to guarantee the detected AEs are indeed “adversarial” to label 𝑦.

While the feature level information is captured by the global distribution over a latent space,

we only consider how the pixel level information is locally distributed in terms of perceptual
quality. Three common quantitative metrics—MSE, PSNR and SSIM introduced in Section 2.4—are

investigated. We note, those three metrics by no means are the true local distribution representing

perceptual quality, rather quantifiable indicators from different aspects. Thus, in the optimisation

problem of Eqn. (11), replacing the local distribution term with them would suffice our purpose. So,

we redefine the optimisation problem as:

max

𝑥 ′
J (𝑓 (𝑥 ′), 𝑦)+𝛼 ·L(𝑥, 𝑥 ′), s.t. | |𝑥−𝑥 ′ | |∞ ≤𝑟

(12)

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:12 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

where L(𝑥, 𝑥 ′) represents those perceptual quality metrics correlated with the local distribution of

the seed 𝑥 . Certainly, implementing L(𝑥, 𝑥 ′) requires some prepossessing, e.g., normalisation and

negation, depending on which metric is adopted.

Considering that the second term of the objective function in Eqn. (12) may not be differentiable

and/or the DL model’s parameters are not always accessible, Non-dominated Sorting Genetic

Algorithm II (NSGA-II) [9] may be adopted here to solve the multi-objective optimisation. NSGA-II

is designed to search for a diverse set of solutions along the Pareto-optimal front, rather than

just a single solution. This means that NSGA-II produces a set of solutions that span the entire

Pareto-optimal front, providing decision-makers with a range of options to choose from. Therefore,

NSGA-II is usually computationally intensive and requires a huge amount of queries of DL model’s

prediction. Since we are only concern about test cases which have high perceptual quality and

conditioned on AEs (prediction loss greater than 0), it is not necessary to produce a range of

options for the trades-off between perceptual quality and prediction loss, which may waste a lot of

computational resource on generating high perceptual quality but no adversarial examples. For

this reason, we propose to scalarize the vector of objectives into one objective by averaging the

objectives with weight vector and reduce the weight dependency with alternation mechanism.

That is, we develop a GA with two fitness functions to effectively and efficiently detect AEs, as

shown in Algorithm 1.

Algorithm 1 Two-Step GA Based Local Test Cases Generation

Input: Test seed (𝑥,𝑦), neural network function 𝑓 (𝑥), local perceptual quality metric L(𝑥, 𝑥 ′),
population size 𝑁 , maximum iterations 𝑇 , norm ball radius 𝑟 , weight parameter 𝛼 , number of

generated test cases𝑚.

Output: A set of𝑚 test cases T
1: 𝐹1 = J (𝑓 (𝑥 ′), 𝑦), 𝐹2 = J (𝑓 (𝑥 ′), 𝑦) + 𝛼 · L(𝑥, 𝑥 ′)
2: for 𝑖 = 1, ..., 𝑁 do
3: T [𝑖] = 𝑥 + uniform(−𝑟, +𝑟)
4: end for
5: while 𝑡 < 𝑇 or max(fit_list2) does not converge do
6: fit_list1 = cal_fitness(𝐹1,T)
7: fit_list2 = cal_fitness(𝐹2,T)
8: if majority(fit_list1 < 0) then
9: parents = selection(fit_list1,T)
10: else
11: parents = selection(fit_list2,T)
12: end if
13: T = crossover (parents, 𝑁)
14: T = mutation(T) ∪ parents
15: 𝑡 = 𝑡 + 1

16: end while
17: fit_list2 = cal_fitness(𝐹2,T)
18: 𝑖𝑑𝑥 = argmax(𝑓 𝑖𝑡_𝑙𝑖𝑠𝑡2) [:𝑚]
19: T = T [𝑖𝑑𝑥]
20: return test set T

Algorithm 1 presents the process of generating a set of𝑚 test cases T from a given seed

𝑥 with label 𝑦 (denoted as (𝑥,𝑦)). At line 1, we define two fitness functions (the reason behind it

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:13

will be discussed later). GA based test case generation consists of 4 steps: initialisation, selection,

crossover, and mutation, the last three of which are repeated until the convergence of fitness values

or the maximum iterations are reached.

Initialisation. The initialisation of population is crucial to the quick convergence. Diversity of

initial population could promise approximate global optimal [26]. We initialise the population by

adding uniform noise in range (−𝑟, +𝑟) to the test seed, at line 2-4.

Selection. The fitness function is defined to select fitted individuals as parents for the latter

operations. We use the fitness proportionate selection [28] for operator 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛().

𝑝𝑖 =
F𝑖∑𝑛
𝑖=1 F𝑖

, F𝑖 ∈ 𝑓 𝑖𝑡_𝑙𝑖𝑠𝑡 (13)

The fitness value is used to associate a probability of selection 𝑝𝑖 for each individuals to maintaining

good diversity of population and avoid premature convergence. The fitness function is the objective

function to be optimised. At line 6-12, we calculate two defined fitness function values on the

population and select individuals based on one of the fitness values according to some judgement

(the reason behind it will be discussed later).

Fig. 3. Illustration of crossover and mutation in Two-Step GA Based Local Test Cases Generation

Crossover. At line 13, the crossover operator will combine a pair of parents from last step to

generate a pair of children, which share many of the characteristics from the parents. The half

elements of parents are randomly exchanged as an example shown in Fig. 3.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:14 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

Mutation. At line 14, some elements of children are randomly altered to add variance in the

evolution. It should be noticed that the mutated samples should still fall into the local region 𝜂

around test seed 𝑥 . Finally, the children and parents will be the individuals for the next generation.

Termination. At line 5, the termination condition of GA is either maximum number of iterations

is reached or the highest ranking of fitness reaches a plateau such that successive iterations no

longer produce better results.

As seen above, the main difference between our approach and common GA test case generation

is that we use two fitness functions, which work alternatively to guide the selection of parents. The

reason why we propose two fitness functions is because, we notice that there is a trade-off between

the two objectives J and L in the optimisation. Prediction loss J is related to the adversarial

strength, while L indicates the local distribution. Intuitively, generating the test cases with high

local probability tends to add small amount of perturbations to the seed, while a greater perturbation

is more likely to induce high prediction loss. To avoid the competition between the two terms that

may finally leads to a failure of detecting AEs, we define two fitness functions to precisely control

the preference at different stages:

𝐹1 = J (𝑓 (𝑥 ′), 𝑦), 𝐹2 = J (𝑓 (𝑥 ′), 𝑦) + 𝛼 · L(𝑥, 𝑥 ′) (14)

At early stage, 𝐹1 is optimised to quickly direct the generation of AEs, with 𝐹1 > 0 meaning the

detection of an AE. When most individuals in the population are AEs, i.e., majority(fit_list1 ≥ 0),
the optimisation moves to the second stage, in which 𝐹1 is replaced by 𝐹2 to optimise the local

distribution indicator as well as the prediction loss. It is possible
5
that the prediction loss of most

individuals again becomes negative, then the optimisation will go back to the first stage. With such

a mechanism of alternatively using two fitness functions in the optimisation, the proportion of

AEs in the population is effectively prevented from decreasing.

Algorithm 1 describes the process for generating 𝑚 local test cases given a single test seed.

Suppose 𝑛 test seeds are selected earlier and in total 𝑀 local test cases are affordable, we can

allocate, for each test seed 𝑥𝑖 , the number of local test cases𝑚𝑖 , according to the 𝑛 (re-normalised)

global probabilities, which emphasises more on the role of distribution in our detected set of AEs.

Running Example: The right diagram in Fig. 2 plots the local distribution using MSE as its

indicator, and visualises the detected AEs by different testing methods. Unsurprisingly, all AEs

detected by our proposed HDA testing are located at the high density regions (and very close to

the central test seed), given it considers the perceptual quality metric as one of the optimisation

objectives in the two-step GA based test case generation. In contrast, other methods (PGD and

coverage-guided testing) are less effective.

4 EVALUATION
We evaluate the proposed HDA testing method by performing extensive experiments to address

the following research questions (RQs):

RQ1 (Effectiveness): How effective are the methods adopted in the three main stages of
HDA?. Namely, we conduct experiments to i) examine the accuracy of combining VAE-Encoder+KDE

to approximate the global distribution; ii) check the correlation significance of the two proposed lo-

cal robustness indicators with the local robustness; iii) investigate the effectiveness of our two-step
GA for local test cases generation.

5
Especially when a large 𝛼 is used, i.e., with preference on detecting AEs with high local probability than with high

adversarial strength, cf. the aforementioned trade-off.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:15

RQ2 (AE Quality): How is the quality of AEs detected by HDA?. Comparing to conventional

adversarial attack and coverage-guided testing methods and more recent distribution-aware testing

methods, such as OODA and FODA, we introduce a comprehensive set of metrics to evaluate the

quality of AEs detected by HDA and others.

RQ3 (Sensitivity): How sensitive is HDA to the DL models under testing? We carry out

experiments to assess the capability of HDA applied on DL models (adversarially trained) with

different levels of robustness.

RQ4 (Robustness Growth): How useful is HDA to support robustness growth of the DL
model under testing? We examine the global robustness of DL models after “fixing” the AEs

detected by various testing methods.

4.1 Experiment Setup
We consider five popular benchmark datasets and five diverse model architectures for evaluation.

In order to obtain statistical results, we train 10 models for each benchmark dataset, initialising

their weights according to the normal distribution. We use Adam optimiser with learning rate 10
−2

and weight decay 10
−5
, and train 100 epochs. Details of the datasets and average accuracy (Mean ±

SD) of trained DL models under testing are listed in Table 1. The norm ball radius 𝑟 is calculated

based on the 𝑟 -separation distance (cf. Remark 1) of each dataset. When comparing different AE

detection approaches on 10 models, the evaluation results are dependent on individual model

and the difference approximately follow the normal distribution by visualisation and normality

test
6
. Therefore, we perform paired two-sample T-test and discuss the statistical significance in the

experiments. The null hypothesis is that different AE detection approaches have identical average

values for evaluation metrics. The calculated 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05 indicates that the null hypothesis is

true, otherwise it is false.

In RQ1, we validate the accuracy and effectiveness of HDA on detecting high quality AEs

from high probability density region and decide the hyper-parameter settings for the following

experiments. That is, for RQ2-RQ4, we use the activation separation distance score 𝑆sep as local

robustness indicator and MSE as perceptual quality metric for images. In RQ2 we compare the

quality of AEs detected by HDA and others. InRQ3, we add the comparison on DLmodels, enhanced

by PGD-based adversarial training, for sensitivity analysis. Table 1 also records the accuracy of

these adversarially trained models. Adversarial training trades the generalisation accuracy for the

robustness as expected (thus a noticeable decrement of the training and testing accuracy) [59]. In

RQ4, we firstly sample 10000 data points from the global distribution as validation set and detect

AEs around them by different methods. Then, we fine-tune the normally trained models with

training dataset augmented by these AEs. 10 epochs are taken along with ‘slow start, fast decay’

learning rate schedule [24] to reduce the computational cost while improving the accuracy-drop

and robustness. To empirically estimate the global robustness on validation set, we find another

set of AEs according to local distribution, different from the fine-tuning data. These AEs, crafted

from validation datasets, are miss-classified by normally trained models. Thus, empirical global

robustness of normally trained models is set to 0 as the baseline.

When training VAE models, the loss function is a combination of reconstruction loss and KL

divergence loss. Two losses are weighted equally and simultaneously optimised. We also use Adam

optimiser with learning rate 10
−2

and weight decay 10
−5
, and train 100 epochs to obtain VAE

models. To avoid the posterior collapse that VAE often converges to a degenerated local optimum,

6
Some statistical tests for AE Prop. and % of Valid AEs will output “NaN” due to the identical evaluation results between

different approaches.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:16 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

we add Batch Normalisation [66] before the output of encoder. The latent dimensions and the

reconstruction loss are listed in Table 3.

For readers’ convenience, all the metrics used in RQ2, RQ3 and RQ4 for comparisons are listed

in Table 2. The metrics are introduced to comprehensively evaluate the quality of detected AEs and

the DL models from different aspects. When comparing HDA testing with PGD attack, coverage

guided testing, OODA and FODA, we have the following settings for the tools. Specifically, we use

PGD attack with 10 steps for gradient ascent, and step size 2/255; HDA testing with population

size 𝑁 = 1000, maximum iterations 𝑇 = 500, and weight parameter 𝛼 = 1; neuron coverage [42]

with Gaussian noise𝑚𝑒𝑎𝑛 = 0, 𝑠𝑡𝑑 = 1 to generate perturbed data, and 100 iterations to increase

the coverage rate by fuzzing; OODA testing [10] with 10 steps for gradient ascent, step size 2/255,

default hyperparameter for balancing two goals and default reconstruction probability threshold

used in the released code
7
; FODA testing [7] with the same latent space encoded by VAE used in

HDA, random sampling to search for AEs in the latent space. To achieve the fair comparison, we

set the same perturbation radius 𝑟 for PGD attack, HDA testing and coverage guided testing, since

they have the restrictions for the validity of test cases. In addition, we set the same number of steps

and step size for PGD attack and OODA testing, and utilise the same latent space across HDA and

FODA.

Table 1. Details of the datasets and DL models under testing.

Dataset Image Size 𝑟 DL Model

Normal Training Adversarial Training

Avg. Train Acc. Avg. Test Acc. Avg. Train Acc. Avg. Test Acc.

MNIST 1 × 32 × 32 0.1 LeNet5 99.88% ± 0.06% 98.73% ± 0.12% 99.77% ± 0.01% 98.84% ± 0.01%

Fashion-MNIST 1 × 32 × 32 0.08 AlexNet 95.12% ± 0.85% 90.70% ± 0.25% 86.23% ± 0.05% 85.11% ± 0.05%

SVHN 3 × 32 × 32 0.03 VGG11 96.12% ± 0.45% 94.86% ± 0.21% 89.89% ± 0.69% 90.32% ± 0.81%

CIFAR-10 3 × 32 × 32 0.03 ResNet20 97.81% ± 0.58% 88.28% ± 0.63% 79.48% ± 0.72% 76.42% ± 1.01%

CelebA 3 × 64 × 64 0.05 MobileNetV1 94.19% ± 1.63% 90.79% ± 0.49% 77.74% ± 0.22% 79.72% ± 0.22%

Table 2. Evaluation metrics for the quality of detected AEs and DL models

Metrics Meanings

AE Prop. Proportion of test seeds from which AEs can be detected over the total number of test seeds

Pred. Loss Adversarial strength of AEs as formally defined by Definition 3

𝑝𝑔 Normalised global probability density of test-seeds/AEs

R𝑙 Local robustness to the correct classification label, as formally defined by Definition 1

ˆR𝑔 Empirical global robustness of DL models over input domain as defined in Definition 5

FID Distribution difference between original images (test seeds) and perturbed images (AEs)

𝜖 Average perturbation distance between test seeds and AEs

% of Valid AEs Percentage of “in-distribution” AEs in all detected AEs

All experiments were run on a machine of Ubuntu 18.04.5 LTS x86_64 with Nvidia A100 GPU and

40G RAM. The source code, DL models, datasets and all experiment results are publicly available at

https://github.com/havelhuang/HDA-Testing.

4.2 Evaluation Results and Discussions
4.2.1 RQ1. There are 3 sets of experiments in RQ1 to examine the accuracy of technical solutions

in our tool-chain, corresponding to the 3 main stages respectively.

7
https://github.com/swa112003/ DistributionAwareDNNTesting.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

https://github.com/havelhuang/HDA-Testing

Hierarchical Distribution-Aware Testing of Deep Learning X:17

First, to approximate the global distribution, we essentially proceed in two steps—dimensionality

reduction and PDF fitting, for which we adopt the VAE-Encoder+KDE solution. Notably, the

VAE trained in this step is for data-compression only (not for generating new data). To reflect

the effectiveness of both aforementioned steps, we (i) compare VAE-Encoder with the Principal

Component Analysis (PCA), and (ii) measure the FID between the training dataset and a set of

random samples drawn from the fitted global distribution by KDE.

PCA is a common approach for dimensionality reduction. We use scikit-learn [34] to implement

the PCA with ’auto’ solver for applying Singular Value Decomposition (SVD). That is, if the input

data is larger than 500x500 and the number of components to extract (latent dimensions) is lower

than 80% of the smallest dimension of the data, then the more efficient ‘randomised’ method [34] is

enabled. Otherwise the exact full SVD is computed and optionally truncated afterwards. To achieve

the fair comparison, the latent dimensions of PCA and VAE-Encoder are set to be the same. We

compare the performance of VAE-Encoder and PCA from the following two perspectives. The

quality of latent representation can be measured by the clustering and reconstruction accuracy.
To learn the feature level (global) distribution from latent data, we require that latent represen-

tations should group together data points that share similar semantic features. To evaluate this

clustering ability, we apply K-means clustering to the latent data, which partitions the data points

into clusters based on their similarity. Then, we calculate the Completeness Score (CS), Homogene-

ity Score (HS) and V-measure Score (VS) [38]. These scores provide a measure of how well the

resulting clusters group together data points that share similar semantic features. Specifically, the

CS measures how well the clustering captures all data points that belong to the same true class in

a single cluster, while the HS measures how well the clustering captures all data points within a

cluster that belong to the same true class. The VS is a harmonic mean of the CS and HS, providing

an overall measure of the quality of the clustering.

In addition to ensuring that latent representations group together similar data points, we also

require that the latent representations can be decoded to reconstruct the original images with

minimal information loss. The reconstruction loss is calculated based on the MSE. As is shown in

Table 3, VAE-Encoder achieves higher CS, HS, VS scores and less reconstruction loss than PCA. In

other words, the latent representations encoded by VAE-Encoder is better in terms of capturing

feature information than that of PCA.

Table 3. Quality of Latent Representation in PCA & VAE-Encoder

Dataset Latent Dimensions

PCA VAE-Encoder

Clustering

Recon. Loss

Clustering

Recon. Loss

CS HS VS CS HS VS

MNIST 8 0.505 0.508 0.507 44.09 0.564 0.566 0.565 27.13
F.-MNIST 4 0.497 0.520 0.508 55.56 0.586 0.601 0.594 23.72
SVHN 4 0.007 0.007 0.007 65.75 0.013 0.011 0.015 62.38

CIFAR-10 8 0.084 0.085 0.085 188.22 0.105 0.105 0.105 168.44
CelebA 32 0.112 0.092 0.101 764.94 0.185 0.150 0.166 590.54

To evaluate the accuracy of using KDE to fit the global distribution, we calculate the FID between

a new dataset (with 1000 samples) based on the fitted global distribution by KDE and the training

dataset. The new dataset is sampled from the fitted global distribution over latent space and decoded

by VAE decoder into images. The FID scores are shown in Table 4. As a baseline, we also present the

results of using a uniform distribution over the latent space. As expected, we observe that all FID

scores based on approximated distributions are significantly smaller (better). We further decode the

newly generated images for visualisation in Fig. 4, from which we can see that generated images

by KDE keep high fidelity while the uniformly sampled images are more difficult to be recognised.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:18 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

Dataset Global Dist. Uni. Dist.

MNIST 0.395 13.745

Fashion-MNIST 0.936 90.235

SVHN 0.961 141.134

CIFAR-10 0.285 12.053

CelebA 0.231 8.907

Fig. 4 & Table 4. Samples drawn from the approximated global distribution by KDE and a uniform distribution
over the latent feature space (Figure); and FID to the ground truth based on 1000 samples (Table).

Answer to RQ1 on HDA stage 1: The combination of VAE-Encoder+KDE may accurately

approximate the global distribution, since the new sampled data from approximated distri-

bution keep high fidelity.

Move on to stage 2, we study the correlations between a norm ball’s local robustness and its two

indicators proposed earlier—the prediction gradient based score and the score based on separation

distance of output-layer activation (cf. Eq. 10).

Table 5. Pearson correlation coefficients (in absolute values) between the local robustness & its two indicators.

Dataset 𝑆grad 𝑆sep
𝑇 (𝑆grad, 𝑆sep)

𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒
MNIST 0.631 ± 0.025 0.564 ± 0.019 5.488 5.813 × 10

−4

Fashion-MNIST 0.717 ± 0.109 0.789 ± 0.056 −1.793 0.107

SVHN 0.747 ± 0.039 0.745 ± 0.030 0.150 0.884

CIFAR-10 0.603 ± 0.038 0.668 ± 0.065 −5.466 3.975 × 10
−4

CelebA 0.639 ± 0.073 0.728 ± 0.077 −3.872 0.004

We invoke the tool [50] for estimating the local robustness R𝑙 defined in Definition 1. Based on

1000 randomly selected data-points from the test set as the central point of 1000 norm balls, we

calculate the local robustness of each norm ball
8
as well as the two proposed indicators. Then, we

do the scatter plots (in log-log scale
9
), as shown in Fig. 5. Apparently, for all 5 datasets, the indicator

based on activation separation distance is negatively correlated (1st row), while the gradient based

indicator is positively correlated with the estimated local robustness (2nd row). We further quantify

the correlation by calculating the Pearson correlation coefficients, as recorded in Table 5. There is a

rule of thumb that Pearson correlation coefficients greater than 0.6 indicate strong correlations [1].

We observe, both indicators are highly correlated with the local robustness, while the separation

distance based indicator is slightly better. The statistical test shows that the separation distance

based indicator is significantly better than gradient based indicator in CIFAR10 and CelebA datasets.

Therefore, for the latter experiment in RQ2-RQ4, we choose separation distance based indicator 𝑆sep
to guide the selection of test seeds when comparing HDA testing with other AE detection methods.

8
Radius 𝑟 is usually small by definition (cf. Remark 1), yielding very small 𝑙𝑜𝑔 (1 − R𝑙) .

9
There are dots collapsed on the vertical line of 𝑙𝑜𝑔 (1 − 𝑅) = −70, due to a limitation of the estimator [50]—it terminates

with the specified threshold when the estimation is lower than that value. Note, the correlation calculated with such noise

is not undermining our conclusion, rather the real correlation would be even higher.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:19

Fig. 5. Scatter plots of the local robustness evaluation vs. its two indicators, based on 1000 random norm balls.

Answer to RQ1 on HDA stage 2: The two proposed local robustness indicators are signifi-

cantly correlated with the local robustness.

For the local test case generation in stage 3, by configuring the parameter 𝛼 in our two-step GA,

we may do trade-off between the “strength of being adversarial” (measured by prediction loss J)

and the local distribution (measured by a specific perceptual quality metric L, they are MSE, PSNR

and SSIM), so that the quality of detected AEs can be optimised.

In Fig. 6, we visualise the changes of the two fitness values as the iterations of the GA. As shown

in the first plot, only the prediction loss J is taken as the fitness function (i.e., 𝛼 = 0) during the

whole iteration process. The GA can effectively find AEs with maximised adversarial strength, as

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:20 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

Fig. 6. The prediction loss (red) and the three quantified local distribution indicators (blue) of the best fitted
test case during the iterations of our two-step GA based local test case generation.

observed by the convergence of the prediction loss of the best-fitted test case in the population

after hundreds of iterations. From the second to the last plot, the fitness function consists not only

of prediction loss J , but also of a perceptual quality metric L, representing the local distribution

information (i.e., 𝛼 > 0). Intuitively, a smaller MSE or greater PSNR and SSIM implies higher local

probability density.

Thanks to the two-step setting of the fitness functions, the prediction loss J of best-fitted

test case goes over 0 quickly in less than 200 iterations, which means it detects a first AE in the

population. The J of the best fitted test case is always quite close to the rest in the population, thus

we may confidently claim that many AEs are efficiently detected by the population not long after

the first AE was detected. Then, the optimisation goes to the second stage, in which the quantified

local distribution indicator L is pursued. The J and L finally converge and achieve a balance

between them. If we configure the coefficient 𝛼 , the balance point will change correspondingly. A

greater 𝛼 (e.g., 𝛼 = 1.1 in the plots) detects less perceptible AEs (i.e., with higher local probability

density), and the price paid is that the detected AEs are with weaker adversarial strength (i.e., with

smaller but still positive prediction loss).

We further investigate the advantages of our 2-step GA over the regular GA (using 𝐹2 as the

objective function). In Fig. 7, as 𝛼 increases, the proportion of AEs in the population exhibits a

sharp drop to 0 when using the regular GA. In contrast, the two-step GA prevents such decreasing

of the AE proportion while preserving it at a high-level of 0.6, even when 𝛼 is quite large. Moreover,

larger 𝛼 represents the situations when the AEs are less perceptible in terms of perceptual quality

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:21

Fig. 7. Comparison between regular GA and two-step GA.

Fig. 8. AEs detected by our two-step GA (last 3 columns) & other methods

metrics—as shown by the blue curves
10
, the imperceptibility (measured by SSIM in this case) is

only sufficiently high when 𝛼 is big enough. Thus, compared to the regular GA, we may claim our

10
The blue dashed line stops earlier as there is no AEs in the population when 𝛼 is big.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:22 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

novel 2-step GA is more robust (in detecting AEs) to the choices of 𝛼 and more suitable in our

framework for detecting AEs with high perceptual quality.

Table 6. Perceptual quality measured by FID between a set of original images and a set of AEs detected by
two-step GA with different fitness functions.

Dataset 𝐽 𝐽 +𝑀𝑆𝐸 𝐽 + 𝑃𝑆𝑁𝑅 𝐽 + 𝑆𝑆𝐼𝑀
MNIST 1.185 ± 0.157 0.667 ± 0.202 0.668 ± 0.203 0.875 ± 0.184

Fashion-MNIST 2.736 ± 0.680 0.138 ± 0.106 0.131 ± 0.100 0.679 ± 0.182

SVHN 120.172 ± 7.529 105.399 ± 9.009 104.147 ± 9.934 111.139 ± 6.754

CIFAR-10 96.449 ± 5.906 65.727 ± 5.672 67.426 ± 7.398 76.293 ± 6.493

CelebA 85.658 ± 3.334 65.981 ± 4.976 66.599 ± 3.312 71.878 ± 3.153

(a) Results

Dataset

𝑇 (𝐽 +𝑀𝑆𝐸, 𝐽) 𝑇 (𝐽 +𝑀𝑆𝐸, 𝐽 + 𝑃𝑆𝑁𝑅) 𝑇 (𝐽 +𝑀𝑆𝐸, 𝐽 + 𝑆𝑆𝐼𝑀)
𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒

MNIST −13.631 2.581 × 10
−7 −0.912 0.385 −10.279 2.844 × 10

−6

Fashion-MNIST −13.362 3.065 × 10
−7

2.188 0.056 −11.957 7.934 × 10
−7

SVHN −9.214 7.036 × 10
−6

1.271 0.235 −4.443 0.002

CIFAR-10 −17.32 3.215 × 10
−8 −1.363 0.206 −8.125 1.954 × 10

−5

CelebA −23.491 2.187 × 10
−9 −0.511 0.621 −3.931 0.003

(b) Statistical Test

Fig. 8 displays some selected AEs from the five datasets. Same as the PGD attack and the

coverage-guided testing, if we only use the prediction loss J as the objective function in the GA,

the perturbations added to the images can be easily recognised. In stark contrast, AEs generated by

our two-step GA (with the 3 perceptual quality metrics in the last 3 columns) are of high quality

and less distinguishable from the original images (first column). We further calculate the FID to

quantify the perceptual quality of detected AEs in Table 6. Since the comparison with PGD attack,

coverage guided testing, FODA, and OODA are given in the subsequent experiments, i.e. Table 8

and Table 9, we focus on comparing the performance of 3 perceptual quality metrics here. Results

show that MSE is significantly better than J and SSIM to guide the generation of high fidelity AEs

for the experiment dataset. While MSE has similar performance with PSNR. Therefore, we decide

to utilise the J+MSE in the following experiments for the comparison with the state-of-the-art.

Answer toRQ1 onHDA stage 3: Two-step GA based local test case generation can effectively

detect AEs with high perception quality (in terms of those metrics encoded by GA).

4.2.2 RQ2. We compare HDA with the state-of-the-art AE detection methods in two sets of

experiments. In the first set, we focus on comparing with the adversarial attack and coverage-guided

testing (i.e., the typical PGD attack and neuron coverage metric for brevity, while the conclusion

can be generalised to other attacks and coverage metrics, since they all lack the consideration of

distribution when detecting AEs). Then in the second set of experiments, we show the advantages

of our HDA testing over other distribution-aware testing methods.

In fact, both PGD attack and coverage-guided testing do not contribute to test seeds selection.

They simply use randomly sampled data from the test set as test seeds, by default. We also notice

that a large amount of test seeds prioritisation metrics are proposed, the typical ones among

which are Distance-Based Surprise Adequacy (DSA) [51], DeepGini [51]. Thus, we compare the

randomly selected test seeds, DSA guided test seeds, DeepGini guided test seeds with our “global

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:23

distribution probability
11
plus local robustness indicated” test seeds, shown as “‘𝑝𝑔 + R𝑙 ” in Table 7.

Specifically, for each test seed, we calculate two metrics—the local robustness R𝑙 of its norm ball

and its corresponding global probability 𝑝𝑔 . We invoke the estimator of [50] to calculate the former

(𝑙𝑜𝑔(1 − R𝑙), to be exact). To reduce the sampling noise, we repeat the test seed selection 100 times

and present the averaged results in Table 7.

Table 7. Comparison between randomly selected test seeds, DSA guided test seeds, DeepGini guided test
seeds and our “𝑝𝑔 + R𝑙 indicated” test seeds (based on 100 test seeds).

Dataset

Random Test Seeds DSA Test Seeds DeepGini Test Seeds 𝑝𝑔 + R𝑙 Test Seeds

𝑙𝑜𝑔(1 − R𝑙) 𝑝𝑔 𝑙𝑜𝑔(1 − R𝑙) 𝑝𝑔 𝑙𝑜𝑔(1 − R𝑙) 𝑝𝑔 𝑙𝑜𝑔(1 − R𝑙) 𝑝𝑔
MNIST −64.67 ± 1.27 0.0034 ± 0.0005 −64.59 ± 1.15 0.0016 ± 0.0003 −65.16 ± 1.31 0.0018 ± 0.0002 −22.12 ± 3.01 0.0293 ± 0.0072

Fashion-MNIST −14.98 ± 4.50 0.0033 ± 0.0009 −15.74 ± 4.82 0.0016 ± 0.0003 −15.29 ± 4.89 0.0017 ± 0.0003 −1.24 ± 0.48 0.0226 ± 0.0088
SVHN −53.34 ± 3.98 0.0032 ± 0.0002 −53.44 ± 2.10 0.0013 ± 0.0002 −53.62 ± 2.32 0.0008 ± 0.0001 −8.27 ± 2.43 0.0132 ± 0.0021

CIFAR-10 −13.77 ± 1.24 0.0033 ± 0.0009 −14.25 ± 2.26 0.0018 ± 0.0003 −14.82 ± 0.86 0.0018 ± 0.0003 −2.49 ± 0.88 0.0397 ± 0.0121
CelebA −17.68 ± 5.00 0.0034 ± 0.0002 −17.27 ± 5.44 0.0010 ± 0.0001 −17.28 ± 5.37 0.0005 ± 0.0001 −1.59 ± 0.54 0.0118 ± 0.0005

(a) Results

Dataset Metric

𝑇 (𝑝𝑔 + R𝑙 , Random) 𝑇 (𝑝𝑔 + R𝑙 ,DSA) 𝑇 (𝑝𝑔 + R𝑙 ,DeepGini)
𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒

MNIST

𝑙𝑜𝑔(1 − R𝑙) 41.186 2.890 × 10
−19

41.680 2.337 × 10
−19

41.461 2.568 × 10
−19

𝑝𝑔 11.348 1.234 × 10
−9

12.155 4.101 × −10 12.073 4.574 × 10
−10

Fashion-MNIST

𝑙𝑜𝑔(1 − R𝑙) 9.601 1.665 × 10
−8

9.466 2.063 × 10
−8

9.042 4.106 × 10
−8

𝑝𝑔 6.899 1.885 × 10
−6

7.542 5.616 × 10
−7

7.506 6.001 × 10
−7

SVHN

𝑙𝑜𝑔(1 − R𝑙) 30.564 5.769 × 10
−17

44.475 7.345 × 10
−20

42.686 1.528 × 10
−19

𝑝𝑔 14.991 1.303 × 10
−11

17.839 6.867 × 10
−13

18.651 3.203 × 10
−13

CIFAR-10

𝑙𝑜𝑔(1 − R𝑙) 23.459 6.033 × 10
−15

15.334 8.916 × 10
−12

31.688 3.045 × 10
−17

𝑝𝑔 9.487 1.997 × 10
−8

9.902 1.039 × 10
−8

9.902 1.039 × 10
−8

CelebA

𝑙𝑜𝑔(1 − R𝑙) 10.117 7.461 × 10
−9

9.071 3.922 × 10
−8

9.193 3.207 × 10
−8

𝑝𝑔 49.326 1.156 × 10
−20

66.979 4.830 × 10
−23

70.079 2.145 × 10
−23

(b) Statistical Test

From Table 7, we observe: (i) test seeds selected by our method have much higher global proba-

bility density, meaning their norm balls are much more representative of the data distribution; (ii)

the norm balls of our test seeds have worse local robustness, meaning it is more cost-effective to
detect AEs in them. Both metrics of HDA are significantly different from those of other test seeds

selection methods, as indicated by large t-scores and small p-values. This is unsurprising because

we have explicitly considered the distribution and local robustness information in the test seed

selection. (iii) DSA and DeepGini guided test seeds are even worse than random test seeds, since

they target at prioritising the test seeds which are prone to be misclassified. These misclassified

test seeds are usually out of distribution.

Finally, the overall evaluation on the generated test cases and the detected AEs by them are

shown in Table 8. The results are presented in two dimensions—3 types of testing methods versus 2

ways of test seeds selection, yielding 6 combinations (although by default, PGD attack and coverage-

guided methods are using random seeds, while our method is using the “𝑝𝑔 + R𝑙 ” seeds). For each

combination, we study 4 metrics (cf. Table 2 for meanings behind them): (i) the AE proportion; (ii)

the average prediction loss; (iii) the FID
12
of the test set quantifying the image quality; and (iv)

11
Refer to Section 3.2 for the calculation. The value of probability density is further normalised by training dataset for a

better presentation.

12
To show how close the perturbed test cases are to the test seeds in the latent space, we use the last convolutional layer of

InceptionV3 to extract the latent representations of colour images for FID. InceptionV3 is a well-trained CNN and commonly

used to show FID that captures the perturbation levels, e.g., in [18]. While InceptionV3 is used for colour images, VAE is

used for grey-scale datasets MNIST and Fashion-MNIST.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:24 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

the computational time (and an additional coverage rate for coverage-guided testing). We note the

observations on these 4 metrics in the following paragraphs.

Table 8. Evaluation of the generated test cases and detected AEs by PGD Attack, coverage-guided testing and
the proposed HDA testing (all results are averaged over 100 seeds). HDA can detect more high perception
quality AEs by 𝑝𝑔+R𝑙 seeds selection, which is evidenced by high AE Prop. and low FID.

AE Detection

Method

Test Seeds Metric MNIST F.-MNIST SVHN CIFAR-10 CelebA

PGD Attack

Random Seeds

AE Prop. 0.422 ± 0.046 1.000 ± 0.000 0.951 ± 0.031 1.000 ± 0.000 0.989 ± 0.035

Pred. Loss 6.362 ± 1.089 29.200 ± 15.754 6.911 ± 0.571 46.099 ± 4.037 46.502 ± 48.154
FID 0.705 ± 0.047 2.938 ± 0.249 106.581 ± 1.275 96.149 ± 2.265 88.401 ± 1.459

Time(s) 0.038 ± 0.070 0.035 ± 0.013 9.632 ± 0.274 9.294 ± 0.532 8.998 ± 0.646

𝑝𝑔+R𝑙 Seeds

AE Prop. 0.785 ± 0.103 1.000 ± 0.000 0.989 ± 0.006 1.000 ± 0.000 1.000 ± 0.000
Pred. Loss 10.184 ± 1.135 36.139 ± 18.205 9.385 ± 0.763 44.816 ± 3.221 52.136 ± 58.991

FID 0.696 ± 0.051 1.351 ± 0.208 103.269 ± 1.153 98.592 ± 1.187 83.709 ± 1.095

Time(s) 0.031 ± 0.024 0.035 ± 0.014 9.541 ± 0.499 9.739 ± 0.763 9.473 ± 0.529

Cov. Guided

Testing

Random Seeds

Cov. Rate 0.980 ± 0.002 0.946 ± 0.023 0.966 ± 0.002 0.979 ± 0.004 0.985 ± 0.002

AE Prop. 0.0002 ± 0.0006 0.153 ± 0.021 0.014 ± 0.005 0.150 ± 0.016 0.080 ± 0.033

Pred. Loss 0.019 ± 0.001 2.404 ± 1.512 0.230 ± 0.045 3.732 ± 1.098 2.841 ± 4.311

FID 0.802 ± 0.026 3.771 ± 0.357 101.034 ± 1.014 87.899 ± 1.807 85.918 ± 1.109

Time(s) 248.902 ± 11.088 1189.87 ± 223.93 4416.95 ± 144.93 6678.35 ± 690.49 972.17 ± 83.57

𝑝𝑔+R𝑙 Seeds

Cov. Rate 0.977 ± 0.003 0.915 ± 0.025 0.921 ± 0.008 0.978 ± 0.004 0.978 ± 0.002

AE Prop. 0.030 ± 0.017 0.485 ± 0.068 0.138 ± 0.030 0.449 ± 0.049 0.286 ± 0.056

Pred. Loss 1.184 ± 0.632 2.867 ± 1.244 0.198 ± 0.039 3.607 ± 0.459 2.137 ± 2.283

FID 0.804 ± 0.043 1.816 ± 0.285 94.043 ± 1.786 90.491 ± 1.071 81.243 ± 1.162

Time(s) 81.33 ± 7.09 216.59 ± 152.62 3073.97 ± 598.92 1822.64 ± 102.24 2065.70 ± 32.68

HDA

Random Seeds

AE Prop. 0.208 ± 0.042 0.999 ± 0.003 0.843 ± 0.046 1.000 ± 0.000 1.000 ± 0.000
Pred. Loss 1.076 ± 0.341 5.214 ± 3.325 2.784 ± 0.198 32.251 ± 2.287 16.020 ± 15.306

FID 0.094 ± 0.009 0.119 ± 0.043 91.431 ± 1.118 62.587 ± 2.144 59.162 ± 1.469
Time(s) 74.211 ± 1.71 136.652 ± 22.71 153.956 ± 62.92 351.992 ± 74.62 191.313 ± 68.35

𝑝𝑔+R𝑙 Seeds

AE Prop. 0.676 ± 0.127 1.000 ± 0.000 0.989 ± 0.006 1.000 ± 0.000 1.000 ± 0.000
Pred. Loss 1.591 ± 0.306 10.020 ± 5.961 3.925 ± 0.433 33.361 ± 1.873 20.702 ± 21.941

FID 0.042 ± 0.011 0.016 ± 0.004 91.102 ± 1.342 65.829 ± 2.154 55.478 ± 1.399
Time(s) 204.002 ± 85.96 61.793 ± 1.69 237.882 ± 98.26 708.832 ± 269.81 305.499 ± 82.47

(a) Results

Dataset Metric

Random Seeds 𝑝𝑔+R𝑙 Seeds

𝑇 (HDA, PGD) 𝑇 (HDA,Cov.) 𝑇 (HDA, PGD) 𝑇 (HDA,Cov.)
𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒

MNIST

AE Prop. −10.864 2.458 × 10
−9

15.644 6.365 × 10
−12 −2.108 0.049 15.943 4.627 × 10

−12

FID −40.376 4.118 × 10
−19 −81.374 1.469 × 10

−24 −39.640 5.715 × 10
−19 −54.290 2.080 × 10

−21

Fashion-MNIST

AE Prop. −1.054 0.306 126.114 5.595 × 10
−28 𝑛𝑎𝑛 𝑛𝑎𝑛 23.949 4.204 × 10

−15

FID −35.279 4.541 × 10
−18 −32.117 2.400 × 10

−17 −20.293 7.495 × 10
−14 −19.970 9.882 × 10

−14

SVHN

AE Prop. −6.157 8.186 × 10
−6

56.656 9.695 × 10
−22 𝑛𝑎𝑛 𝑛𝑎𝑛 87.961 3.629 × 10

−25

FID −28.252 2.312 × 10
−16 −20.119 8.690 × 10

−14 −21.746 2.259 × 10
−14 −4.163 5.843 × 10

−4

CIFAR-10

AE Prop. 𝑛𝑎𝑛 𝑛𝑎𝑛 167.996 3.221 × 10
−30 𝑛𝑎𝑛 𝑛𝑎𝑛 35.559 3.945 × 10

−18

FID −34.030 8.609 × 10
−18 −28.547 1.925 × 10

−16 −42.126 1.933 × 10
−19 −32.419 2.033 × 10

−17

CelebA

AE Prop. 0.994 0.333 88.160 3.485 × 10
−25 𝑛𝑎𝑛 𝑛𝑎𝑛 40.319 4.223 × 10

−19

FID −44.658 6.825 × 10
−20 −45.968 4.073 × 10

−20 −50.251 8.295 × 10
−21 −44.801 6.449 × 10

−20

(b) Statistical Test

Regarding the AE proportion in the set of generated test cases, the default setting of our proposed

approach (𝑝𝑔+R𝑙 Seeds with HDA) has comparable performance with PGD attack, as indicated by

identical results and 𝑛𝑎𝑛 output by statistical test. Both our novel 𝑝𝑔+R𝑙 test seed selection and

two-step GA local test case generation methods contribute to the comparable performance. This is

evident from the decreased AE proportion when using random seeds in our method, but still the

result is relatively higher than most combinations. PGD attack, as a white-box approach using the

gradient information, is definitely quite efficient in detecting AEs, especially when paired with our

new test seed selection method. On the other hand, coverage-guided testing is comparatively less

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:25

effective in detecting AEs (even with high coverage rate), but our test seed selection method can

improve it.

As per the results of prediction loss, PGD attack, as a gradient based attackmethod, unsurprisingly

finds the AEs with the largest prediction loss. With better test seeds considering local robustness

information by our method, the prediction loss of PGD attack can be even higher. Both coverage-

guided testing and our HDA testing can detect AEs with relatively lower prediction loss, meaning

the AEs are with “weaker adversarial strength”. The reason for the low prediction loss of AEs

detected by our approach is that two-step GA makes the trade-off and sacrifices it for higher local

probabilities (i.e., perceptual quality). This can be seen through the significantly smaller FID of test

set generated by HDA, compared with PGD attack and coverage-guided testing. PGD attack has

relatively high FID scores, as well as coverage-guided testing.

On the computational overheads, we observe PGD is the most efficient, given it is by nature a

white-box approach using the gradient information. While, our approach is an end-to-end black-box

approach (if without using the gradient based indicator when selecting test seeds) requiring less

information and being more generic, at the price of being relatively less efficient. That said, the

computational time of our approach is still acceptable and better than coverage-guided testing.

Answer to RQ2 on comparing with adversarial attack and coverage-guided testing: HDA

can select more significant test seeds, which are from high probability density region and

lack of robustness. HDA can generate higher perception quality AEs, which are measured

with smaller FID values.

Table 9. Evaluation of AEs detected by OODA, FODA and our HDA testing methods (based on 100 test seeds).

Dataset

AE Detection

Method

𝑝𝑔
% of

Valid AEs

𝜖 FID

MNIST

OODA 0.0018 ± 0.0002 22.5 ± 8.3 0.917 ± 0.031 3.463 ± 0.729

FODA 0.0032 ± 0.0006 98.5 ± 0.4 0.558 ± 0.009 0.158 ± 0.017

HDA 0.0292 ± 0.0071 99.3 ± 0.5 0.076 ± 0.003 0.042 ± 0.011

SVHN

OODA 0.0026 ± 0.0004 11.3 ± 1.2 0.811 ± 0.009 125.126 ± 2.838

FODA 0.0034 ± 0.0002 100 ± 0 0.252 ± 0.012 111.694 ± 1.461

HDA 0.0132 ± 0.0021 100 ± 0 0.029 ± 0.001 91.102 ± 1.342
(a) Results

Dataset Metric

𝑇 (HDA,OODA) 𝑇 (HDA, FODA)
𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒

MNIST

𝑝𝑔 12.199 3.871 × 10
−10

11.539 9.456 × 10
−10

% of Valid AEs 29.208 1.286 × 10
−16

3.951 9.368 × 10
−4

𝜖 −85.391 6.183 × 10
−25 −160.667 7.186 × 10

−30

FID −14.838 1.546 × 10
−11 −18.116 5.275 × 10

−13

SVHN

𝑝𝑔 15.680 6.124 × 10
−12

14.691 1.826 × 10
−11

% of Valid AEs 233.745 8.456 × 10
−33 𝑛𝑎𝑛 𝑛𝑎𝑛

𝜖 −273.086 5.146 × 10
−34 −58.563 5.359 × 10

−22

FID −34.273 7.588 × 10
−18 −32.825 1.632 × 10

−17

(b) Statistical Test

Next, we try to answer the difference between HDA testing and other distribution-aware testing

as summarised earlier (the amber route of Fig. 1). We not only study the common evaluation metrics

in earlier RQs, but also the input validation method in [10], which flags the validity of AEs according

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:26 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

to a user-defined reconstruction probability threshold. Overall, HDA is significantly better than

OODA and FODA in four evaluation metrics, as observed from the results of statistical test.

As shown in Table 9, HDA can select test seeds from much higher density region on the global

distribution and find more valid AEs than OODA. The reason behind this is that OODA aims

at detecting outliers—only AEs with lower reconstruction probabilities (from the test seed) than

the given threshold will be marked as invalid test cases. While, HDA explicitly explores the high

density meanwhile error-prone regions by combining the global distribution and local robustness

indicators. In other words, HDA performs priority ordering (according to the global distribution

and local robustness) and then selects the best, while OODA rules out the worst. As expected,

FODA performs similarly poorly as OODA in terms of 𝑝𝑔, since both use randomly selected seeds.

However, FODA has high proportion of valid AEs since the test cases are directly sampled from the

distribution in latent space.

Regarding the perceptual quality of detected AEs, HDA can always find AEs with small pixel-level

perturbations (𝜖) in consideration of the 𝑟 -separation constraint, and with small FID thanks to

the use of perceptual quality metrics (MSE in this case) as objective functions. While OODA only

utilises the reconstruction probability (from VAE) to choose AEs, and FODA directly samples test

cases from VAE without any restrictions (thus may suffer from the oracle problem, cf. Remark 5

later). Due to the compression nature of generative models—they are good at extracting feature

level information but ignore pixel level information [65], AEs detected by OODA and FODA are all

distant to the original test seeds, yielding large 𝜖 and FID scores. Notably, the average distance 𝜖

between test seeds and AEs detected by OODA and FODA are much (7∼28 times) greater than the

𝑟 -separation constraints (cf. Table 1), leading to the potential oracle issues of those AEs, for which

we have the following remark:

Remark 5 (Oracle Issues of AEs Detected by OODA and FODA). AEs detected by OODA
and FODA are normally distant to the test seeds with a perturbation distance even greater than the
𝑟 -separation constraint. Consequently, there is the risk that the perturbed image may not share the
same ground truth label of the test seed, and thus hard to determine the ground truth label of the
“AE”13.

Fig. 9. Example AEs detected by different distribution-aware testing methods. AEs detected by our HDA are
indistinguishable from the original images, while AEs detected by FODA and OODA are of low perceptual
quality and subject to the oracle issues noted by Remark 5.

To visualise the difference between AEs detected by HDA, FODA and OODA, we present 4

examples in Fig. 9. We may observe the AEs detected by HDA are almost indistinguishable from

13
In quotes, because the perturbed image could be a “benign example” with a correct predicted label (but different to the test

seed).

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:27

the original images. Moreover, the AEs by FODA is a set of concrete evidence for Remark 5—it is

actually quite hard to tell what is the ground truth label of some perturbed image (e.g., the bottom

left one), while others appear to have a different label of the seed (e.g., the bottom right one should

be with a label “1” instead of “7”).

Answer to RQ2 on comparing with other distribution-aware testing: Compared to OODA

and FODA, the proposed HDA testing can detect more valid AEs, free of oracle issues, with

higher global probabilities and perception quality.

4.2.3 RQ3. In earlier RQs, we have varied the datasets and model architectures to check the

effectiveness of HDA. In this RQ3, we are concern about HDA’s sensitivity to DL models with

different levels of robustness. Adversarial training may greatly improve the robustness of DL

models and is widely used as the defence to adversarial attack. To this end, we apply HDA on both

normally and adversarially trained models (by [33] to be exact), and then compare with three most

representative adversarial attack methods—the most classic FGSM, the most popular PGD, and the

most advanced AutoAttack [8]. Experimental results are presented in Table 10.

As expected, after the adversarial training by [33], the robustness of all five DL models are

greatly improved. This can be observed from the metric of AE Prop.: For all four methods, the

proportion of AEs detected in the set of test case is sharply decreased for adversarially trained

models. Nevertheless, the AE detection performance of HDA is less affected by the adversarial

training. HDA testing can maintain significantly higher proportion of AEs in the test set for

adversarially trained models, compared with the state of art adversarial attack. This is evident from

the fact that there is an insignificant difference in AE Prop. between HDA and other adversarial

attacks for normally trained models, while the difference is significant for adversarially trained

models.

In terms of the probability density 𝑝𝑔 and perception quality measured by FID on generated test

cases, HDA significantly outperforms others for both normally and adversarially trained models, as

observed from the large t-scores and p-values << 0.05 . This is unsurprising, since the rationales

behind the three adversarial attacks disregard the consideration of input data distribution and

perception quality.

Finally, we find that the measured 𝑝𝑔 on test cases detected by HDA changes due to the variations

in local robustness before and after the adversarial training, yet it remained much higher than all

other attack methods.

Answer to RQ3: HDA is shown to be capable and superior to common adversarial attacks

when applied on DL models with different levels of robustness.

4.2.4 RQ4. The ultimate goal of developing HDA testing is to improve the global robustness of

DL models. To this end, we refer to a validation set of 10000 test seeds. We fine-tune [24] the DL

models with AEs detected for validation set from different methods. Then, we calculate the train

accuracy, test accuracy and empirical global robustness before and after the adversarial fine-tuning.

Empirical global robustness is measured on a new set of on-distribution AEs for validation set,

different from the fine-tuning data. Results are presented in Table 11.

We first observe that adversarial fine-tuning is effective to improve the DL models’ empirical

global robustness, measured by the prediction accuracy on AEs, detected from normally trained

models (R𝑔), while compromising the train/test accuracy as expected (in contrast to normal training

in Table 1). In most cases, DL models enhanced by HDA testing suffer from the least drop of

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:28 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

Table 10. Evaluation of AEs generated by FGSM, PGD, AutoAttack and HDA on normally and adversarially
trained DL models (all results are averaged over 100 test seeds).

Model

AE Detection

Method

Eval. Metric MNIST F.-MNIST SVHN CIFAR-10 CelebA

Normally

Trained

FGSM

𝑝𝑔 0.0045 ± 0.0005 0.0034 ± 0.0008 0.0031 ± 0.0002 0.0028 ± 0.0004 0.0034 ± 0.0002

AE Prop. 0.413 ± 0.093 0.797 ± 0.039 0.727 ± 0.069 0.893 ± 0.016 0.989 ± 0.035

FID 1.022 ± 0.053 4.134 ± 0.322 114.256 ± 2.931 104.877 ± 1.832 88.401 ± 1.459

PGD

𝑝𝑔 0.0040 ± 0.0005 0.0034 ± 0.0008 0.0032 ± 0.0002 0.0028 ± 0.0004 0.0034 ± 0.0002

AE Prop. 0.422 ± 0.046 1.000 ± 0.000 0.984 ± 0.011 1.000 ± 0.000 0.989 ± 0.035

FID 0.705 ± 0.047 2.938 ± 0.248 107.370 ± 1.206 101.157 ± 1.774 88.401 ± 1.459

AutoAttack

𝑝𝑔 0.0042 ± 0.0004 0.0034 ± 0.0008 0.0032 ± 0.0002 0.0028 ± 0.0004 0.0035 ± 0.0002

AE Prop. 0.787 ± 0.075 1.000 ± 0.000 0.984 ± 0.011 1.000 ± 0.000 1.000 ± 0.000

FID 0.795 ± 0.099 4.962 ± 0.359 106.780 ± 1.297 101.173 ± 1.543 90.385 ± 1.305

HDA

𝑝𝑔 0.0292 ± 0.0071 0.0224 ± 0.0087 0.0132 ± 0.0021 0.0406 ± 0.012 0.0124 ± 0.001
AE Prop. 0.676 ± 0.127 1.000 ± 0.000 0.989 ± 0.006 1.000 ± 0.000 1.000 ± 0.000

FID 0.042 ± 0.011 0.016 ± 0.004 91.102 ± 1.342 65.829 ± 2.154 55.478 ± 1.399

Adversarially

Trained

FGSM

𝑝𝑔 0.0042 ± 0.0005 0.0033 ± 0.0004 0.0036 ± 0.0004 0.0028 ± 0.0005 0.0031 ± 0.0003

AE Prop. 0.033 ± 0.021 0.208 ± 0.037 0.323 ± 0.061 0.455 ± 0.039 0.404 ± 0.045

FID 1.064 ± 0.055 4.898 ± 0.503 135.730 ± 4.321 113.106 ± 3.989 108.070 ± 4.368

PGD

𝑝𝑔 0.0038 ± 0.0005 0.0032 ± 0.0004 0.0034 ± 0.0004 0.0028 ± 0.0005 0.0032 ± 0.0003

AE Prop. 0.014 ± 0.017 0.201 ± 0.039 0.507 ± 0.049 0.455 ± 0.039 0.372 ± 0.036

FID 0.762 ± 0.040 3.871 ± 0.407 124.388 ± 2.613 113.106 ± 3.989 111.931 ± 2.539

AutoAttack

𝑝𝑔 0.0031 ± 0.0004 0.0031 ± 0.0004 0.0034 ± 0.0004 0.0028 ± 0.0005 0.0031 ± 0.0003

AE Prop. 0.049 ± 0.021 0.268 ± 0.038 0.505 ± 0.049 0.419 ± 0.039 0.405 ± 0.045

FID 0.035 ± 0.009 0.128 ± 0.046 125.382 ± 2.315 117.257 ± 3.750 107.742 ± 4.169

HDA

𝑝𝑔 0.0214 ± 0.0075 0.0118 ± 0.0032 0.0154 ± 0.0021 0.0261 ± 0.0112 0.0103 ± 0.0007
AE Prop. 0.368 ± 0.071 0.903 ± 0.021 0.960 ± 0.029 0.865 ± 0.051 0.968 ± 0.012

FID 0.029 ± 0.003 0.058 ± 0.010 92.389 ± 1.152 62.804 ± 2.398 58.558 ± 0.895

(a) Results

Model Dataset Metric

𝑇 (HDA, FGSM) 𝑇 (HDA, PGD) 𝑇 (HDA,AutoAttack)
𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒

Normally

Trained

MNIST

𝑝𝑔 10.97 2.10 × 10
−9

11.20 1.53 × 10
−9

11.12 1.71 × 10
−9

AE Prop. 5.28 5.05 × 10
−5

5.95 1.26 × 10
−5 −2.38 0.03

FID −57.25 8.04 × 10
−22 −43.43 1.12 × 10

−19 −23.91 4.34 × 10
−15

F.-MNIST

𝑝𝑔 6.88 1.97 × 10
−6

6.88 1.97 × 10
−6

6.88 1.97 × 10
−6

AE Prop. 16.46 2.70 × 10
−12 𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛

FID −40.44 4.01 × 10
−19 −37.25 1.72 × 10

−18 −43.56 1.06 × 10
−19

SVHN

𝑝𝑔 15.14 1.10 × 10
−11

14.99 1.30 × 10
−11

14.99 1.30 × 10
−11

AE Prop. 11.96 5.31 × 10
−10

1.26 0.22 1.26 0.22

FID −22.71 1.05 × 10
−14 −28.51 1.97 × 10

−16 −26.56 6.84 × 10
−16

CIFAR-10

𝑝𝑔 9.96 9.56 × 10
−9

9.96 9.56 × 10
−9

9.96 9.56 × 10
−9

AE Prop. 21.15 3.67 × 10
−14 𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛 𝑛𝑎𝑛

FID −43.67 1.02 × 10
−19 −40.03 4.79 × 10

−19 −42.18 1.89 × 10
−19

CelebA

𝑝𝑔 27.91 2.87 × 10
−16

27.91 2.87 × 10
−16

27.59 3.49 × 10
−16

AE Prop. 0.99 0.33 0.99 0.33 𝑛𝑎𝑛 𝑛𝑎𝑛

FID −51.51 5.34 × 10
−21 −51.51 5.34 × 10

−21 −57.69 6.99 × 10
−22

Adversarially

Trained

MNIST

𝑝𝑔 7.24 9.92 × 10
−7

7.40 7.24 × 10
−7

7.71 4.17 × 10
−7

AE Prop. 14.31 2.83 × 10
−11

15.33 8.9 × 10
−12

13.62 6.37 × 10
−11

FID −59.42 4.12 × 10
−22 −57.79 6.81 × 10

−22 −2.00 0.06

F.-MNIST

𝑝𝑔 8.33 1.36 × 10
−7

8.43 1.15 × 10
−7

8.53 9.70 × 10
−8

AE Prop. 51.66 5.06 × 10
−21

50.12 8.70 × 10
−21

46.25 3.65 × 10
−20

FID −30.42 6.26 × 10
−17 −29.62 1.06 × 10

−16 −4.70 1.78 × 10
−4

SVHN

𝑝𝑔 17.46 9.95 × 10
−13

17.75 7.47 × 10
−13

17.75 7.47 × 10
−13

AE Prop. 29.82 8.90 × 10
−17

25.16 1.77 × 10
−15

25.27 1.64 × 10
−15

FID −30.65 5.50 × 10
−17 −35.43 4.19 × 10

−18 −40.35 4.17 × 10
−19

CIFAR-10

𝑝𝑔 6.57 3.57 × 10
−6

6.57 3.57 × 10
−6

6.57 3.57 × 10
−6

AE Prop. 20.19 8.15 × 10
−14

20.19 8.15 × 10
−14

21.97 1.89 × 10
−14

FID −34.18 7.98 × 10
−18 −34.18 7.98 × 10

−18 −38.69 8.82 × 10
−19

CelebA

𝑝𝑔 29.90 8.52 × 10
−17

29.48 1.09 × 10
−16

29.90 8.52 × 10
−17

AE Prop. 38.30 1.05 × 10
−18

49.67 1.02 × 10
−20

38.23 1.09 × 10
−18

FID −35.12 4.93 × 10
−18 −62.69 1.58 × 10

−22 −36.48 2.51 × 10
−18

(b) Statistical Test

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:29

Table 11. Evaluation of DL models’ train accuracy, test accuracy, and empirical global robustness (based on
10000 on-distribution AEs) after adversarial fine-tuning, using different number (N) of test cases.

AE Detection

Method

Metric

MNIST SVHN

N = 500 N = 5000 N = 50000 N = 500 N = 5000 N = 50000

PGD Attack

Train Acc. 98.26% ± 0.05% 98.10% ± 0.07% 97.70% ± 0.05% 94.85% ± 0.43% 92.76% ± 0.39% 94.02% ± 0.40%

Test Acc. 97.64% ± 0.11% 97.05% ± 0.09% 96.90% ± 0.08% 93.32% ± 0.21% 81.43% ± 0.31% 63.81% ± 0.28%

R𝑔 46.27% ± 0.02% 84.09% ± 0.05% 90.52% ± 0.05% 46.43% ± 0.11% 72.88% ± 0.10% 70.09% ± 0.12%

Cov. Guided Testing

Train Acc. 99.89% ± 0.05% 99.61% ± 0.07% 99.12% ± 0.05% 95.73% ± 0.44% 93.65% ± 0.42% 95.76% ± 0.43%

Test Acc. 98.93% ± 0.08% 98.77% ± 0.08% 98.41% ± 0.07% 94.11% ± 0.19% 85.66% ± 0.19% 76.43% ± 0.19%

R𝑔 36.71% ± 0.04% 48.91% ± 0.04% 71.12% ± 0.05% 16.21% ± 0.11% 38.59% ± 0.16% 56.58% ± 0.12%

OODA

Train Acc. 98.45% ± 0.06% 98.01% ± 0.06% 97.66% ± 0.07% 94.12% ± 0.38% 92.11% ± 0.39% 93.21% ± 0.38%

Test Acc. 98.12% ± 0.10% 97.87% ± 0.09% 97.12% ± 0.08% 94.75% ± 0.19% 80.23% ± 0.18% 72.19% ± 0.19%

R𝑔 40.21% ± 0.05% 45.69% ± 0.04% 51.12% ± 0.05% 11.21% ± 0.11% 16.23% ± 0.12% 18.21% ± 0.11%

FODA

Train Acc. 98.44% ± 0.05% 98.18% ± 0.05% 97.32% ± 0.06% 94.66% ± 0.42% 92.75% ± 0.41% 94.11% ± 0.41%

Test Acc. 97.87% ± 0.10% 97.43% ± 0.10% 97.11% ± 0.11% 92.13% ± 0.22% 82.32% ± 0.21% 78.19% ± 0.22%

R𝑔 37.71% ± 0.04% 47.26% ± 0.05% 55.37% ± 0.05% 12.21% ± 0.12% 20.56% ± 0.12% 23.98% ± 0.11%

HDA

Train Acc. 99.56% ± 0.07% 99.10% ± 0.07% 98.89% ± 0.06% 95.00% ± 0.33% 92.83% ± 0.39% 94.40% ± 0.40%

Test Acc. 98.52% ± 0.09% 98.42% ± 0.08% 98.21% ± 0.08% 93.86% ± 0.24% 88.67% ± 0.25% 80.60% ± 0.22%

R𝑔 89.67% ± 0.03% 96.71% ± 0.06% 99.12% ± 0.05% 51.15% ± 0.09% 86.88% ± 0.09% 91.26% ± 0.05%

(a) Results

Dataset

No. of

Test Cases

Metric

T(HDA, PGD) T(HDA, Cov.) T(HDA, OODA) T(HDA, FODA)

𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒

MNIST

N=500

Train Acc. 47.79 2.04 × 10
−20 −12.13 4.24 × 10

−10
38.07 1.17 × 10

−18
41.17 2.91 × 10

−19

Test Acc. 19.58 1.39 × 10
−13 −10.77 2.83 × 10

−9
9.40 2.29 × 10

−8
15.28 9.47 × 10

−12

R𝑔 3806.43 1.31 × 10
−54

3349.48 1.31 × 10
−53

2682.35 7.12 × 10
−52

3286.24 1.84 × 10
−53

N=5000

Train Acc. 31.94 2.64 × 10
−17 −16.29 3.21 × 10

−12
37.39 1.62 × 10

−18
33.82 9.61 × 10

−18

Test Acc. 35.98 3.20 × 10
−18 −9.78 1.25 × 10

−8
14.44 2.42 × 10

−11
24.45 2.94 × 10

−15

R𝑔 510.97 6.52 × 10
−39

2096.17 6.03 × 10
−50

2237.38 1.86 × 10
−50

2002.17 1.38 × 10
−49

N=50000

Train Acc. 48.18 1.76 × 10
−20 −9.31 2.64 × 10

−8
42.19 1.88 × 10

−19
58.51 5.45 × 10

−22

Test Acc. 36.62 2.35 × 10
−18 −5.95 1.25 × 10

−5
30.47 6.10 × 10

−17
25.57 1.33 × 10

−15

R𝑔 384.60 1.08 × 10
−36

1252.19 6.42 × 10
−46

2146.63 3.93 × 10
−50

1956.56 2.08 × 10
−49

SVHN

N=500

Train Acc. 0.88 0.39 −4.19 5.42 × 10
−4

5.53 2.99 × 10
−5

2.01 0.06

Test Acc. 5.35 4.34 × 10
−5 −2.58 0.02 −9.19 3.20 × 10

−8
16.80 1.90 × 10

−12

R𝑔 105.02 1.50 × 10
−26

777.40 3.42 × 10
−42

888.65 3.08 × 10
−43

820.93 1.28 × 10
−42

N=5000

Train Acc. 0.40 0.69 −4.52 2.63 × 10
−4

4.13 6.31 × 10
−4

0.45 0.66

Test Acc. 57.49 7.46 × 10
−22

30.31 6.67 × 10
−17

86.64 4.77 × 10
−25

61.50 2.23 × 10
−22

R𝑔 329.07 1.79 × 10
−35

831.84 1.01 × 10
−42

1489.43 2.83 × 10
−47

1398.15 8.83 × 10
−47

N=50000

Train Acc. 2.12 0.05 −7.32 8.43 × 10
−7

6.82 2.19 × 10
−6

1.60 0.13

Test Acc. 149.10 2.75 × 10
−29

45.36 5.16 × 10
−20

91.49 1.79 × 10
−25

24.50 1.83 × 10
−15

R𝑔 514.96 5.67 × 10
−39

843.60 7.86 × 10
−43

1911.81 3.16 × 10
−49

1760.80 1.39 × 10
−48

(b) Statistical Test

generalisation, compared with PGD attack, OODA and FODA. This can been from significant

difference of Test Acc. between HDA and others. The reason behind this is that HDA testing targets

at AEs from high density regions on distributions, usually with small prediction loss, shown in

Fig. 6. Thus, eliminating AEs detected by HDA testing requires relatively minor adjustment to

DL’s models, the generalisation of which can be easily tampered during the fine-tuning with new

samples.

In terms of empirical global robustness, HDA testing detects AEs around test seeds from the high

global distribution region, which are more significant to the global robustness improvement. When

comparing HDA with other methods, the p-values of R𝑔 is way smaller than 0.05, indicating HDA

contributes more to the global robustness improvement than others. It also can be seen that with

5000 test cases generated by utilising 1000 test seeds, the HDA testing can improve empirical global

robustness to nearly or over 90%, very closed to the fine-tuning with 50000 test cases from 10000

test seeds. This means the distribution-based test seeds selection is more efficient than random test

seeds selection. Moreover, even fine-tuning with 50000 test cases, leveraging all the test seeds in

the validation set, HDA is still better than others, due to the consideration of local distributions

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:30 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

(approximated by perceptual quality metrics). We notice that PGD-based adversarial fine-tuning

minimises the maximum prediction loss within the local region, which is also effective to eliminate

the high perceptual quality AEs, but sacrificing more train/test accuracy. DL models fined-tuned

with HDA testing achieve the best balance between the generalisation and global robustness.

Answer to RQ4: Compared with adversarial attack and coverage-guide testing, HDA con-

tributes more to the growth of global robustness, while mitigating the drop of train/test

accuracy during adversarial fine-tuning.

5 THREATS TO VALIDITY
5.1 Internal Validity
Threats may arise due to bias in establishing cause-effect relationships, simplifications and assump-

tions made in our experiments. In what follows, we list the main threats of each research question

and discuss how we mitigate them.

5.1.1 Threats from HDA Techniques. In RQ1, both the performance of the VAE-Encoder and KDE

are threats. For the former, it is mitigated by using four established quality metrics (in Table 3)

on evaluating dimensionality reduction techniques and compared to the common PCA method. It

is known that KDE performs poorly with high-dimensional data and works well when the data

dimension is modest [29, 40]. The data dimensions in our experiments are relatively low given

the datasets have been compressed by VAE-Encoder, which mitigates the second threat. When

studying the local robustness indicators, quantifying both the indicators and the local robustness

may subject to errors, for which we reduce them by carefully inspecting the correctness of the

script on calculating the indicators and invoking a reliable local robustness estimator [50] with fine-

tuned hyper-parameters. For using two-step GA to generate local test cases, a threat arises by the

calculation of norm ball radius, which has been mitigated by 𝑟 -separation distance presented in the

paper [57]. Also, the threat related to estimating the local distribution is mitigated by quantifying

its three indicators (MSE, PSNR and SSIM) that are typically used in representing image-quality by

human-perception.

5.1.2 Threats from AEs’ Quality Measurement. A threat for RQ1, RQ2 and RQ3 (when examining

how effective our method models the global distribution and local distribution respectively) is the

use of FID as a metric, quantifying how “similar” two image datasets are. Given FID is currently

the standard metric for this purpose, this threat is sufficiently mitigated now and can be further

mitigated with new metrics in future. RQ2 includes the method of validating AEs developed in

[10], which utilises generative models and OOD techniques to flag valid AEs with reconstruction

probabilities greater than a threshold. The determination of this threshold is critical, thus poses a

threat to RQ2. To mitigate it, we use same settings across all the experiments for fair comparisons.

5.1.3 Threats from Adversarial Training and Fine-Tuning. In RQ3 and RQ4, the first threat rises
from the fact that adversarial training and adversarial fine-tuning will sacrifice the DL model’s

generalisation for robustness. Since the training process is data-driven and of black-box nature, it is

hard to know how the predication of a single data-point will be affected, while it is meaningless to

study the robustness of an incorrectly predicted seed. To mitigate this threat when we compare the

robustness before and after adversarial training/fine-tuning, we select enough number of seeds and

check the prediction of each selected seed (filtering out incorrect ones if necessary) to make sure

test seeds are always predicted correctly. For the global robustness computation in RQ4, we refer to
a validation dataset, where a threat may arise if the empirical result based on the validation dataset

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

Hierarchical Distribution-Aware Testing of Deep Learning X:31

cannot represent the global robustness. To mitigate it, we synthesise the validation set with enough

data—10000 inputs sampled from global distribution. We further attack the validation dataset to

find an AE per seed according to the local distribution. Thus, DL models’ prediction accuracy on

this dataset empirically represents the global robustness as defined. For the training/fine-tuning

to be effective, we need a sufficient number of AEs to augment the training dataset. A threat may

arise due to a small proportion of AEs in the augmented training dataset (the DL model will be

dominated by the original training data during the training/fine-tuning). To mitigate such a threat,

we generate a large proportion of AEs in our experiments.

5.2 External Validity
Threats might challenge the generalisability of our findings, e.g. the number of models and datasets

considered for experimentation; thus we mitigate these threats as follows. All our experiments are

conducted on 5 popular benchmark datasets, covering 5 typical types of DL models, cf. Table 1.

Experimental results on the effectiveness of each stage in our framework are all based on averaging

a large number of samples, reducing the random noise in the experiments. In two-step GA based

test case generation, a wide range of the 𝛼 parameter has been studied showing converging trends.

Finally, we enable replication by making all experimental results publicly available/reproducible on

our project website to further mitigate the threat.

6 CONCLUSION & FUTUREWORK
In this paper, we propose a HDA testing approach for detecting AEs that considers both the

data distribution (thus with higher operational impact assuming the training data statistically

representing the future inputs) and perceptual quality (thus looks natural and realistic to humans).

The key novelty lies in the hierarchical consideration of two levels of distributions. To the best

of our knowledge, it is the first DL testing approach that explicitly and collectively models both

(i) the feature-level information when selecting test seeds and (ii) pixel-level information when

generating local test cases. To this end, we have developed a tool chain that provides technical

solutions for each stage of our HDA testing. Our experiments not only show the effectiveness of

each testing stage, but also the overall advantages of HDA testing over state-of-the-arts. From a

software engineering’s perspective, HDA is cost-effective (by focusing on practically meaningful

AEs), flexible (with end-to-end, black-box technical solutions) and may effectively contribute to the

robustness growth of the DL software under testing.

The purpose of detecting AEs is to fix them. Although existing DL retraining/repairing techniques

(e.g. [24] used in RQ4 and [48, 58]) may satisfy the purpose to some extent, bespoke “debugging”
methods with more emphasise on the feature-distribution and perceptual quality can be integrated

into our framework in a more efficient way. To this end, our important future work is to close the

loop of “detect-fix-assess” as depicted in [63] and then organise all generated evidence as safety

cases [11, 61]. Finally, same as other distribution-aware testing methods, we assume the input

data distribution is same as the training data distribution. To relax this assumption, we plan to

take distribution-shift into consideration in future versions of HDA. Distribution-aware testing for

systematically detecting explanation AEs [21] will also be explored.

ACKNOWLEDGMENTS
This work is supported by the U.K. DSTL (through the project of Safety Argument for Learning-

enabled Autonomous Underwater Vehicles) and the U.K. EPSRC (through End-to-End Conceptual

Guarding of Neural Architectures [EP/T026995/1]). Xingyu Zhao and Alec Banks’ contribution

to the work is partially supported through Fellowships at the Assuring Autonomy International

Programme. This project has received funding from the European Union’s Horizon 2020 research

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:32 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

and innovation programme under grant agreement No 956123. We thank all three anonymous

reviewers whose comments helped improve the paper.

This document is an overview of U.K. MOD (part) sponsored research and is released for informa-

tional purposes only. The contents of this document should not be interpreted as representing the

views of the U.K. MOD, nor should it be assumed that they reflect any current or future U.K. MOD

policy. The information contained in this document cannot supersede any statutory or contractual

requirements or liabilities and is offered without prejudice or commitment.

REFERENCES
[1] Haldun Akoglu. 2018. User’s guide to correlation coefficients. Turkish journal of emergency medicine 18, 3 (2018),

91–93.

[2] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh, and Mani B Srivastava. 2019.

Genattack: Practical black-box attacks with gradient-free optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference. 1111–1119.

[3] Mohammed Attaoui, Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. 2023. Black-Box Safety Analysis and Retraining

of DNNs Based on Feature Extraction and Clustering. ACM Trans. Softw. Eng. Methodol. 32, 3, Article 79 (2023), 40 pages.
[4] David Berend. 2021. Distribution Awareness for AI System Testing. In 43rd IEEE/ACM Int. Conf. on Software Engineering:

Companion Proceedings, ICSE Companion 2021, Madrid, Spain, May 25-28, 2021. IEEE, 96–98.
[5] David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu, Chi Xu, and Jianjun Zhao. 2020. Cats Are Not Fish: Deep

Learning Testing Calls for out-of-Distribution Awareness. In Proc. of the 35th IEEE/ACM Int. Conference on Automated
Software Engineering (ASE’20). ACM, New York, NY, USA, 1041–1052. https://doi.org/10.1145/3324884.3416609

[6] Taejoon Byun and Sanjai Rayadurgam. 2020. Manifold-based Test Generation for Image Classifiers. In ICSE ’20: 42nd
Int. Conference on Software Engineering, Workshops. ACM, 221. https://doi.org/10.1145/3387940.3391460

[7] Taejoon Byun, Abhishek Vijayakumar, Sanjai Rayadurgam, and Darren Cofer. 2020. Manifold-based Test Generation

for Image Classifiers. In Int. Conf. On Artificial Intelligence Testing (AITest). IEEE, Oxford, UK, 15–22.
[8] Francesco Croce and Matthias Hein. 2020. Reliable evaluation of adversarial robustness with an ensemble of diverse

parameter-free attacks. In Proc. of the 37th Int. Conf. on Machine Learning (ICML’20), Vol. 119. PMLR, 2206–2216.

[9] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE transactions on evolutionary computation 6, 2 (2002), 182–197.

[10] Swaroopa Dola, Matthew B. Dwyer, and Mary Lou Soffa. 2021. Distribution-Aware Testing of Neural Networks Using

Generative Models. In IEEE/ACM 43rd Int. Conference on Software Engineering (ICSE’21). IEEE, Madrid, Spain, 226–237.

[11] Yi Dong, Wei Huang, Vibhav Bharti, Victoria Cox, Alec Banks, Sen Wang, Xingyu Zhao, Sven Schewe, and Xiaowei

Huang. 2023. Reliability Assessment and Safety Arguments for Machine Learning Components in System Assurance.

ACM Trans. Embed. Comput. Syst. 22, 3 (2023).
[12] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deepstellar: Model-based quantitative

analysis of stateful deep learning systems. In Proc. of the 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 477–487.

[13] Isaac Dunn, Laura Hanu, Hadrien Pouget, Daniel Kroening, and Tom Melham. 2020. Evaluating robustness to

context-sensitive feature perturbations of different granularities. arXiv preprint arXiv:2001.11055 (2020).
[14] Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham. 2021. Exposing Previously Undetectable Faults in

Deep Neural Networks. In ACM SIGSOFT Int. Symposium on Software Testing and Analysis (ISSTA’21). in press.

[15] Rafael C. Gonzalez and Richard E. Woods. 1992. Digital image processing. 793 pages.
[16] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In

3rd Int. Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, Conference Track Proceedings.
[17] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and Miryung Kim. 2020. Is Neuron

Coverage a Meaningful Measure for Testing Deep Neural Networks?. In Proc. of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 851–862.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. GANs Trained

by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017. 6626–6637.

[19] Hossein Hosseini and Radha Poovendran. 2018. Semantic Adversarial Examples. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR Workshops 2018. 1614–1619.

[20] Wei Huang, Youcheng Sun, Xingyu Zhao, James Sharp, Wenjie Ruan, Jie Meng, and Xiaowei Huang. 2022. Coverage-

Guided Testing for Recurrent Neural Networks. IEEE Transactions on Reliability 71, 3 (2022), 1191–1206.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

https://doi.org/10.1145/3324884.3416609
https://doi.org/10.1145/3387940.3391460

Hierarchical Distribution-Aware Testing of Deep Learning X:33

[21] Wei Huang, Xingyu Zhao, Gaojie Jin, and Xiaowei Huang. 2023. SAFARI: Versatile and Efficient Evaluations for

Robustness of Interpretability. In IEEE/CVF Int. Conf. on Computer Vision (ICCV’23).
[22] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, and et al. 2020. A survey of safety and trustworthiness of deep neural

networks: Verification, testing, adversarial attack and defence, and interpretability. Computer Science Review 37 (2020),

100270.

[23] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety verification of deep neural networks. In

Computer Aided Verification (LNCS, Vol. 10426). Springer International Publishing, Cham, 3–29.

[24] Ahmadreza Jeddi, Mohammad Javad Shafiee, and Alexander Wong. 2021. A simple fine-tuning is all you need: Towards

robust deep learning via adversarial fine-tuning. InWorkshop on Adversarial Machine Learning in Real-World Computer
Vision Systems and Online Challenges (AML-CV) @ CVPR’21. 1–5.

[25] Sungmin Kang, Robert Feldt, and Shin Yoo. 2020. Sinvad: Search-based image space navigation for dnn image classifier

test input generation. In Proc. of the IEEE/ACM 42nd Int. Conf. on Software Engineering Workshops. 521–528.
[26] Abdullah Konak, David W Coit, and Alice E Smith. 2006. Multi-objective optimization using genetic algorithms: A

tutorial. Reliability engineering & system safety 91, 9 (2006), 992–1007.

[27] David Lane, David Bisset, Rob Buckingham, Geoff Pegman, and Tony Prescott. 2016. New foresight review on robotics
and autonomous systems. Technical Report No. 2016.1. LRF. 65 pages.

[28] Adam Lipowski and Dorota Lipowska. 2012. Roulette-wheel selection via stochastic acceptance. Physica A: Statistical
Mechanics and its Applications 391, 6 (2012), 2193–2196.

[29] Han Liu, John Lafferty, and Larry Wasserman. 2007. Sparse nonparametric density estimation in high dimensions

using the rodeo. In Artificial Intelligence and Statistics. PMLR, 283–290.

[30] Yang Liu, Eunice Jun, Qisheng Li, and Jeffrey Heer. 2019. Latent space cartography: Visual analysis of vector space

embeddings. In Computer graphics forum, Vol. 38. Wiley Online Library, 67–78.

[31] S. H. Lokerse, L. P. J. Veelenturf, and J. G. Beltman. 1995. Density Estimation Using SOFM and Adaptive Kernels. In

Neural Networks: Artificial Intelligence and Industrial Applications - Proceedings of the Third Annual SNN Symposium on
Neural Networks, Nijmegen, The Netherlands, September 14-15, 1995. Springer, 203–206.

[32] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu,

et al. 2018. Deepgauge: Multi-granularity testing criteria for deep learning systems. In Proce. of the 33rd ACM/IEEE Int.
Conference on Automated Software Engineering (ASE’18). 120–131.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards Deep

Learning Models Resistant to Adversarial Attacks. In 6th Int. Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.

Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[35] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated Whitebox Testing of Deep

Learning Systems. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 1–18.

[36] Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. Deepmetis: Augmenting a deep

learning test set to increase its mutation score. In 36th IEEE/ACM Int. Conf. on Automated Software Engineering. 355–367.
[37] Vincenzo Riccio and Paolo Tonella. 2020. Model-based exploration of the frontier of behaviours for deep learning system

testing. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 876–888.

[38] Andrew Rosenberg and Julia Hirschberg. 2007. V-Measure: A Conditional Entropy-Based External Cluster Evaluation

Measure. In EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic. ACL, 410–420.

[39] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2018. Reachability Analysis of Deep Neural Networks with

Provable Guarantees. In Proceedings of the Twenty-Seventh Int. Joint Conference on Artificial Intelligence, IJCAI-18. Int.
Joint Conferences on Artificial Intelligence Organization, 2651–2659.

[40] David W Scott. 1991. Feasibility of multivariate density estimates. Biometrika 78, 1 (1991), 197–205.
[41] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and Rob Ashmore. 2019. DeepConcolic:

testing and debugging deep neural networks. In Proceedings of the 41st Int. Conference on Software Engineering:
Companion Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM, 111–114.

[42] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic

testing for deep neural networks. In Proc. of the 33rd ACM/IEEE Int. Conf. on Automated Software Engineering. 109–119.
[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception

architecture for computer vision. In Proc. of the IEEE conference on computer vision and pattern recognition. 2818–2826.
[44] Felipe Toledo, David Shriver, Sebastian Elbaum, and Matthew B Dwyer. 2021. Distribution Models for Falsification and

Verification of DNNs. In IEEE/ACM Int. Conf. on Automated Software Engineering (ASE’21).

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

X:34 Wei Huang, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang

[45] Benjie Wang, Stefan Webb, and Tom Rainforth. 2021. Statistically robust neural network classification. In Uncertainty
in Artificial Intelligence. PMLR, 1735–1745.

[46] JingyiWang, Jialuo Chen, Youcheng Sun, XingjunMa, DongxiaWang, Jun Sun, and PengCheng. 2021. Robot: robustness-

oriented testing for deep learning systems. In IEEE/ACM 43rd International Conference on Software Engineering. 300–311.
[47] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, and Peng Cheng. 2021. RobOT:

Robustness-Oriented Testing for Deep Learning Systems. In IEEE/ACM 43rd Int. Conf. on Softw. Engineering. 300–311.
[48] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. 2019. On the Convergence and

Robustness of Adversarial Training. In Proc. of the 36th Int. Conf.on Machine Learning, Vol. 97. PMLR, 6586–6595.

[49] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image quality assessment: from error

visibility to structural similarity. IEEE Trans. Image Process. 13, 4 (2004), 600–612.
[50] Stefan Webb, Tom Rainforth, Yee Whye Teh, and M. Pawan Kumar. 2019. A statistical approach to assessing neural

network robustness. In ICLR’19. New Orleans, LA, USA.

[51] Michael Weiss and Paolo Tonella. 2022. Simple techniques work surprisingly well for neural network test prioritization

and active learning (replicability study). In Proc. of the 31st ACM SIGSOFT Int. Symp. on Software Testing and Analysis.
139–150.

[52] Lily Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan Oseledets, and Luca Daniel. 2019.

PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach. In International Conference on
Machine Learning (ICML’19), Vol. 97. PMLR, 6727–6736.

[53] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel. 2018.

Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach. In 6th Int. Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

[54] Chenwang Wu, Wenjian Luo, Nan Zhou, Peilan Xu, and Tao Zhu. 2021. Genetic Algorithm with Multiple Fitness

Functions for Generating Adversarial Examples. In IEEE Congress on Evolutionary Computation, CEC 2021, Kraków,
Poland, June 28 - July 1, 2021. IEEE, 1792–1799.

[55] Xiaofei Xie, Tianlin Li, Jian Wang, Lei Ma, Qing Guo, Felix Juefei-Xu, and Yang Liu. 2022. NPC: Neuron Path Coverage

via Characterizing Decision Logic of Deep Neural Networks. ACM Trans. Softw. Eng. Methodol. 31, 3 (2022).
[56] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and Xiangyu Zhang. 2020. Correlations between

Deep Neural Network Model Coverage Criteria and Model Quality. In The 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020). ACM, 775–787.

[57] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Kamalika Chaudhuri. 2020. A

Closer Look at Accuracy vs. Robustness. In Advances in Neural Information Processing Systems (NeurIPS’20, Vol. 33),
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.). Curran Associates, Inc., 8588–8601.

[58] Bing Yu, Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, and Jianjun Zhao. 2022. DeepRepair: Style-Guided

Repairing for Deep Neural Networks in the Real-World Operational Environment. IEEE Transactions on Reliability 71,

4 (2022), 1401–1416.

[59] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. 2019. Theoretically

Principled Trade-off between Robustness and Accuracy. In Proceedings of the 36th International Conference on Machine
Learning, Vol. 97. PMLR, 7472–7482.

[60] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine Learning Testing: Survey, Landscapes and Horizons.

IEEE Transactions on Software Engineering 48, 1 (2022), 1–36.

[61] Xingyu Zhao, Alec Banks, James Sharp, Valentin Robu, David Flynn, Michael Fisher, and Xiaowei Huang. 2020. A

Safety Framework for Critical Systems Utilising Deep Neural Networks. In Computer Safety, Reliability, and Security
(LNCS, Vol. 12234). Springer Int. Publishing, Cham, 244–259.

[62] Xingyu Zhao, Wei Huang, Alec Banks, Victoria Cox, David Flynn, Sven Schewe, and Xiaowei Huang. 2021. Assessing

the Reliability of Deep Learning Classifiers Through Robustness Evaluation and Operational Profiles. In AISafety’21
Workshop at IJCAI’21, Vol. 2916.

[63] Xingyu Zhao, Wei Huang, Sven Schewe, Yi Dong, and Xiaowei Huang. 2021. Detecting Operational Adversarial

Examples for Reliable Deep Learning. In 51th Annual IEEE-IFIP Int. Conf. on Dependable Systems and Networks (DSN’21),
Vol. Fast Abstract.

[64] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018. Generating Natural Adversarial Examples. In 6th Int. Conference
on Learning Representations, ICLR 2018, Conference Track Proceedings. OpenReview.net.

[65] Yue Zhong, Lizhuang Liu, Dan Zhao, and Hongyang Li. 2020. A generative adversarial network for image denoising.

Multimedia Tools and Applications 79, 23 (2020), 16517–16529.
[66] Qile Zhu, Wei Bi, Xiaojiang Liu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. 2020. A Batch Normalized Inference Network

Keeps the KL Vanishing Away. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Online, 2636–2649.

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article X. Publication date: September 2023.

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 DL Robustness and Adversarial Examples
	2.2 Distribution-Aware Testing for DL
	2.3 Test Input Prioritisation and Generation
	2.4 Perceptual Quality of Images

	3 The Proposed Method
	3.1 Overview of HDA Testing
	3.2 Approximation of the Global Distribution
	3.3 Test Seeds Selection
	3.4 Local Test Cases Generation

	4 Evaluation
	4.1 Experiment Setup
	4.2 Evaluation Results and Discussions

	5 Threats to Validity
	5.1 Internal Validity
	5.2 External Validity

	6 Conclusion & Future Work
	Acknowledgments
	References

