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Abstract

Pre-trained language models trained on large-
scale data have learned serious levels of so-
cial biases. Consequently, various methods
have been proposed to debias pre-trained mod-
els. Debiasing methods need to mitigate only
discriminatory bias information from the pre-
trained models, while retaining information
that is useful for the downstream tasks. In
previous research, whether useful information
is retained has been confirmed by the perfor-
mance of downstream tasks in debiased pre-
trained models. On the other hand, it is not
clear whether these benchmarks consist of data
pertaining to social biases and are appropriate
for investigating the impact of debiasing. For
example in gender-related social biases, data
containing female words (e.g. “she, female,
woman”), male words (e.g. “he, male, man”),
and stereotypical words (e.g. “nurse, doctor,
professor”) are considered to be the most af-
fected by debiasing. If there is not much data
containing these words in a benchmark dataset
for a target task, there is the possibility of erro-
neously evaluating the effects of debiasing. In
this study, we compare the impact of debiasing
on performance across multiple downstream
tasks using a wide-range of benchmark datasets
that containing female, male, and stereotypical
words. Experiments show that the effects of de-
biasing are consistently underestimated across
all tasks. Moreover, the effects of debiasing
could be reliably evaluated by separately con-
sidering instances containing female, male, and
stereotypical words than all of the instances in
a benchmark dataset.

1 Introduction

Unfortunately, Pre-trained Language Models
(PLMs) such as BERT (Devlin et al., 2019) and
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All Female Male Occ.

CoLA 1,043 174 722 96
MNLI 9,832 3,467 8,875 1,415
MRPC 408 101 391 96
QNLI 5,463 2,149 5,371 1,066
QQP 40,430 7,415 29,638 3,331
RTE 277 113 269 94
SST-2 872 187 691 75
STS-B 1,500 513 1,277 151
WNLI 71 27 71 6

Table 1: The total number of instances containing fe-
male, male, and occupational (Occ.) words in the GLUE
development data.

RoBERTa (Liu et al., 2019) easily learn discrimina-
tory social biases expressed in human-written texts
in massive datasets (Kurita et al., 2019; Zhou et al.,
2022; Kaneko et al., 2022). For example, if a model
is given “[MASK] is a nurse.” as the input, a gender
biased PLM would predict “She” with a higer likeli-
hood score than for “He” when filling the [MASK].
Various debiasing methods have been proposed to
mitigate social biases in PLMs. Zhao et al. (2019);
Webster et al. (2020) proposed a debiasing method
by swapping the gender of female and male words
in the training data. Kaneko and Bollegala (2021)
proposed a method for debiasing by orthogonal-
ising the vectors representing gender information
with the hidden layer of a language model given a
sentence containing a stereotypical word. Webster
et al. (2020) showed that dropout regularization can
reduce overfitting to gender information, thereby
can be used for debiasing PLMs.

The debiasing method should mitigate only dis-
criminatory information, while pre-trained useful
information should be retained in the model. Evalu-
ations in downstream tasks often employ the GLEU
benchmark (Wang et al., 2018), which measures
the ability to understand language (Kaneko and
Bollegala, 2021; Guo et al., 2022; Meade et al.,
2022). The data for downstream tasks are not se-
lected in terms of whether they reflect the impact of



debiasing. To mitigate gender bias, data containing
female words such as “she” and “woman”, male
words such as “he” and “man”, and stereotypi-
cal words such as “doctor” and “nurse” would be
most affected by debiasing.

Table 1 shows the total number of instances
containing female, male, and occupational (Occ.)
words in the development data in the GLUE
benchmark suite (Wang et al., 2019), which is
widely recognised as a standard evaluation bench-
mark for LLMs. Occupational words have been
used for probing LLMs for stereotypical social bi-
ases (Bolukbasi et al., 2016). From Table 1, we see
that the GLEU benchmark has little data related
to females and occupations. Therefore, the impact
of debiasing on data related to females and occu-
pations may be potentially underestimated when
LLMs are evaluated on GLUE.

We first extract instances containing female
words, data containing male words, and data con-
taining stereotypical words from the benchmarks.
We then calculated the performance difference be-
tween the original model and the debiased model
for each category and compared it to the perfor-
mance difference using the entire benchmark. The
results showed that the debiased model performed
worse than the original model on data related to
females and occupations compared to the original
model when evaluated on the entire dataset. There-
fore, existing evaluations underestimate the impact
of debiasing on the performance of the downstream
task.

It is important to be able to compare how well
the effects of debiasing are captured in the datasets
related to females, males, and occupations. We pro-
pose a method to control the degree of debiasing
of PLMs and investigate whether the performance
difference between original and debiased models
widens as the degree of debiasing increases. Ex-
perimental results showed that the proportion of
female, male and occupational words in the dataset
is related to the susceptibility of the dataset to de-
biasing.

2 Experiments

2.1 Debiasing Methods

We use the following three commonly used debias-
ing methods in our experiments. We apply these de-
biasing methods during fine-tuning in downstream
tasks.

Counterfactual Data Augmentation (CDA) de-
biasing: CDA debiasing (Webster et al., 2020)
swaps the gender of gender words in the training
data. For example, “She is a nurse” is swapped
to “He is a nurse”, and the swapped version is
appended to the training dataset. This enables to
learn a less biased model because the frequency
of female and male words will be the same in the
augmented dataset.

Dropout debiasing: Webster et al. (2020) intro-
duced dropout regularisation as a method to miti-
gate biases. They enhanced the dropout parameters
for the attention weights and hidden activations of
PLMs. Their research demonstrated that intensi-
fied dropout regularisation diminishes gender bias
in these PLMs. They showed that dropout inter-
fers with the attention mechanism in PLMs, and
prevents undesirable associations between words.
However, it is also possible that the model may no
longer be able to learn desirable associations.

Context debiasing: Kaneko and Bollegala
(2021) proposed a method to debias MLMs through
fine-tuning. It preserves semantic information
while removing gender-related biases using orthog-
onal projections at token- or sentence-level. This
method targets male and female words and oc-
cupational words in the text for debiasing. This
method can be applied various MLMs, indepen-
dent of the model architectures and pre-training
methods. Token-level debiasing across all layers
produces the best performance.

2.2 Settings

Although we use BERT (bert-base-cased1) (De-
vlin et al., 2019) as our PML here as it has been
the focus of much prior work on bias evalua-
tions (Kaneko and Bollegala, 2021; Guo et al.,
2022; Meade et al., 2022), the evaluation proto-
col we use can be applied to any PLM. We used
the word lists2 proposed by Kaneko and Bollegala
(2021) as female words, male words, and occu-
pational words for extracting data instances and
debiasing.

We use the following nine downstream tasks
from the GLEU benchmark: CoLA (Warstadt
et al., 2019), MNLI (Williams et al., 2018),
MRPC (Dolan and Brockett, 2005), QNLI (Ra-

1https://huggingface.co/bert-base-cased
2https://github.com/kanekomasahiro/

context-debias

https://huggingface.co/bert-base-cased
https://github.com/kanekomasahiro/context-debias
https://github.com/kanekomasahiro/context-debias


CDA Dropout Context

All Female Male Occ. All Female Male Occ. All Female Male Occ.

CoLA -1.36 -3.42 -2.01 -1.45 0.42 -0.14 -0.21 -0.07 -0.32 -0.86 -0.71 -0.55
MNLI -0.55 -0.90 -0.71 -0.63 0.23 0.13 0.01 0.05 -0.05 -0.47 -0.43 -0.32
MRPC -0.96 -1.28 -1.31 -1.03 -0.82 -1.12 -1.02 -1.04 -0.88 -1.01 -1.06 -0.92
QNLI -1.13 -1.42 -1.19 -1.27 -1.01 -1.11 -1.07 -1.21 0.25 -0.19 -0.06 -0.04
QQP -0.21 -0.69 -0.32 -0.25 0.53 0.13 0.47 0.30 0.14 -0.12 0.03 -0.05
RTE -1.16 -1.21 -1.02 -1.13 -1.01 -1.24 -0.96 -1.13 -0.43 -0.65 -0.51 -0.73
SST-2 -0.11 -0.81 -0.34 -0.25 0.45 0.20 0.12 0.23 0.22 -0.15 -0.02 -0.12
STS-B -1.01 -1.95 -1.34 -1.10 0.21 0.09 -0.03 -0.11 -0.08 -0.31 -0.38 -0.34
WNLI -2.82 -3.07 -2.82 -2.71 -2.01 -2.21 -2.01 -2.33 -1.52 -1.88 -1.52 -1.61

Table 2: Performance difference between the original model and debiased model for each dataset. Bolded values
indicate the largest drop in performance of the debiased model.

jpurkar et al., 2016), QQP3, RTE (Dagan et al.,
2006; Haim et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009), SST-2 (Socher et al., 2013),
STS-B (Cer et al., 2017), and WNLI (Levesque
et al., 2012). Hyperparameters for debiasing fol-
low previous studies (Kaneko and Bollegala, 2021;
Webster et al., 2020), and we used the default val-
ues of huggingface for downstream task hyperpa-
rameters.4 For fine-tuning we use the entire train-
ing dataset for each corresponding task, without
splitting into male, female and occupational in-
stances. We evaluate the performance on all tasks
using the official development data.

2.3 Performance of Original vs. Debiased
Models

We extract instances containing female words, male
words, and stereotypical words from each of the
datasets. We then calculate the performance differ-
ence between the original model and the debiased
model for each dataset, and compare against the
performance differences obtained when using all
instances. If the performance difference for all in-
stances is smaller than that when evaluated for the
female, male, and occupational instances, it would
indicate that the effect of debiasing is underesti-
mated when evaluated on the entire dataset.

Table 2 shows the performance differences be-
tween the original model and the debiased model
for each dataset/task in the GLEU benchmark. All,
Female, Male, and Occ. are the performance dif-
ferences when evaluated on the entire task dataset,
instances containing female words, instances con-
taining male words, and instances containing occu-
pational words, respectively.

3https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

4https://github.com/huggingface/transformers/
tree/main/examples/pytorch/text-classification

From the results in Table 2, it can be seen that
the performance difference between the original
model and the debiased model is larger for the
Female, Male, and Occ. instances compared to that
when using all instances. In particular, instances
related to females exhibit a significant decrease in
performance after debiasing.

It can be seen that different word lists used for
debiasing have different effects on the performance
degradation in downstream tasks due to debiasing.
Context debiasing uses occupational words for de-
biasing, while CDA debiasing does not. Therefore,
in CDA debiasing, Occ. does not have a large
performance difference compared to female- and
male-related instances. Therefore, in CDA debi-
asing, the performance difference for occupation-
related instances is smaller than that for the female
and male-related instances. On the other hand,
in Context debiasing, occupation-related instances
has the largest performance difference as well as
female- and male-related instances. Dropout debi-
asing does not use word lists for debiasing. There-
fore, unlike CDA and context debiasing, we see
large drops in performance for female, male and
Occ. across tasks with Dropout debiasing.

2.4 Debias Controlled Method

To understand how debiasing of an PLM affects the
performance of individual downstream benchmark
datasets, following the probing technique proposed
by Kaneko et al. (2023), we apply different levels of
debiasing to bert-base-cased PLM and measure the
difference in performance with respect to its origi-
nal (non-debiased) version. For this purpose we use
CDA as the debiasing method, where we swap the
gender-related pronouns in r ∈ [0, 1] fraction of
the total N instances of a dataset (i.e.the total num-
ber of gender swapped instances in a dataset will be

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification


r×N ). r = 0 corresponds to not swapping gender
in any training instances of the dataset, whereas
r = 1 swaps the gender in all instances. We in-
crement r in step size 0.1 to obtain increasingly
debiased version of the PLM, which is then fine-
tuned for the downstream task5. Figure 1 shows the
difference in performance between the original vs.
debiased versions of the PLM for QQP, MNLI, and
QNLI, which have the largest numbers of instances
in the GLEU benchmark.

Note that CDA debiasing reverses gender with-
out considering the context, as in “He gets preg-
nant” for “She gets pregnant”. This is probleman-
tic because it eliminates even useful gender-related
information learnt by the PLM via co-occurring
contexts. Therefore, CDA debiasing has a neg-
ative impact on the performance of downstream
tasks (Zmigrod et al., 2019) as shown by all three
subplots in Figure 1. In fact, Table 2 shows that
the performance difference of CDA debiasing is
larger than that of dropout debiasing and context
debiasing. Therefore, the larger r is for CDA, the
more gender instances is balanced and debiased,
but the performance is unfortunately degraded.

If the dataset of the downstream task is sensitive
to the effect of debiasing, the performance differ-
ence between the original model and the debiased
model widens as r increases. On the other hand, if
the data set is insensitive to the effect of debiasing,
the performance difference between the original
model and the debiased model is unlikely to in-
crease with the value of r.

We find that the performance differences for the
female, male, and occupational instances in the
QQP, MNLI, and QNLI datasets increase with the
value of r. On the other hand, for QQP and MNLI,
there is a rise and fall in the performance differ-
ence when all data are used. These results indicate
that All, which includes instances related to non-
gender, are less sensitive to the effect of debiasing
compared to Female, Male, and Occupational in-
stances.

On the other hand, for QNLI, All has a small
rise and fall in the performance difference. As seen
from Table 1, QNLI contains more gender-related
instances than QQP and MNLI. Therefore, it is
likely that the performance decreases with r even
for All. All and Male instances have a similar trend
in performance difference with r.

5In Appendix A, we show that the debias controlled
method is able to debias the model according to r.

(a) QQP.

(b) MNLI.

(c) QNLI.

Figure 1: Performance difference between original and
debiased models by debias rate r. The vertical axis
shows the performance difference between the original
and debiased models, and the horizontal axis shows the
debias rate.

3 Conclusion

This study focused on gender-related social biases
and the presence of female, male, and stereotypi-
cal words in benchmark datasets. Prior work had
used the performance on downstream tasks to prove
the usefulness of debiasing methods, overlooking
the fact that only a small fraction of those down-
stream benchmark datasets contain gender-related
instances. On the contrary, we found that the effects
of debiasing an PLM were consistently underesti-
mated across all tasks. We recommend that the



evaluation of debiasing effects must be more reli-
ably conducted by considering instances containing
specific gender-related words separately rather than
evaluating all instances in a benchmark dataset.

4 Ethical Considerations

This study uses existing methods and datasets for
experiments and does not propose a debiasing
method or create a new dataset for social bias. This
study evaluates the impact of debiasing on the per-
formance of the downstream task, and it is not
possible to evaluate how much bias is mitigated in
the PLMs. Therefore, when evaluating the bias of
PLMs, it is necessary to use evaluation methods
such as StereoSet (Nadeem et al., 2021), Crowds-
Pairs (Nangia et al., 2020), and All Unmasked Like-
lihood (Kaneko and Bollegala, 2022).

In this study, we only included binary gender
as a gender bias. However, gender bias regarding
non-binary gender has also been reported (Cao and
Daumé III, 2020; Dev et al., 2021). It is neces-
sary to verify whether there is a similar trend in
debiasing for non-binary genders.

5 Limitations

Many previous studies have shown that various so-
cial biases other than gender bias are learned in
PLMs. This study targets only gender bias. While
existing studies (Webster et al., 2020; Zhao et al.,
2019) have debiasing various PLMs, we have exper-
imented only with bert-base-cased. Furthermore,
although this study targets only English, which is
a morphologically limited language. On the other
hand, various types of social biases are also learned
in the PLMs across many languages (Kaneko et al.,
2022; Névéol et al., 2022). Therefore, if the pro-
posed method is to be used with other social bi-
ases and PLMs, it is necessary to properly verify
its effectiveness in languages other than English.
Moreover, we have not verified the use of debias
controlled methods in languages such as Spanish
and Russian, where gender swapping is not easy
from a grammatical point of view (Zmigrod et al.,
2019).
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Figure 2: Evaluation of debias controlled models using
FN evaluation method. The vertical axis shows the bias
score, and the horizontal axis shows r.

A Bias Evaluation in NLI task

We show that the debias controlled method is appro-
priately debiasing according to r. We use Fraction
Neutra (FN; Dev et al., 2020) as the bias evaluation
method. The FN method evaluates bias in the NLI
by considering the percentage of neutral labels pre-
dicted by the model for the premise sentence (e.g.
The driver owns a cabinet.) and the hypothesis
sentence (e.g. The man owns a cabinet.) generated
with the template. The FN method indicates that
the lower the score, the more bias there is in the
model. We evaluate PLMs trained on MNLI with
FN method.

Figure 2 shows the bias scores of FN method
for each debias controlled model. It can be seen
that the bias of the model is decreasing with r.
Therefore, the debias controlled method is able to
debias the models according to r.


