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Abstract

Transonic buffet is an unsteady shock-wave/boundary-layer interaction phenomenon,

encountered in large civil or military aircraft at edge-of-the-envelope conditions. The

interaction of the unsteady aerodynamic loads with the elastic wing structure can pose

a risk of structural failure and thus the absence of any structural vibration or buffeting

at cruise conditions is a certification requirement by regulatory authorities. A thor-

ough understanding of the mechanisms that govern the phenomenon is of paramount

importance in order to face the engineering challenges that are associated with design-

ing future wings that push the limits of the flight envelope. This present work aims

to address the interaction of the phenomenon with wing vibration and to investigate

the effect of transient growth on aerofoil transonic buffet. This is achieved by perform-

ing three different but related studies. The first one focuses on harmonically exciting

the flow at steady and unsteady conditions. It is found that in contrast to aerofoil

shock-buffet, that demonstrates full synchronisation to the excitation for certain com-

binations of excitation frequency and amplitude, the harmonic excitation of the wing

only affects the high-frequency behaviour of the phenomenon associated with a global

mode, while the low frequency behaviour remains unaffected. For the second study,

a coupled fluid-structure simulation was carried out at unsteady conditions. This re-

vealed that, while the initial linear structural response depends on the buffet frequency

for all modes, this only holds for structural modes with natural frequencies close to

that of buffet in the nonlinear part of the response. A dependence on their respective

wind-off structural frequency and the first bending mode is found for lower frequency

structural modes in the nonlinear part of the response. For the last study, transient

growth analysis is applied at a supercritical aerofoil in steady and unsteady conditions.

To the best of the author’s knowledge, this is the first transient growth study on an

aerofoil in transonic flow subject to shock buffet. Modest growth of optimal initial

perturbations is observed. A quartic dependence of the maximum energy attained on

the angle of attack is found for pre-onset conditions. These findings will help advance

the understanding of the underlying physics of transonic buffet and ultimately inform

future wing design.
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Chapter 1

Introduction

1.1 Background

In recent years, technological strides have solidified the use of computational tools in

the design phase of an aircraft. More specifically, advancements in the ability of Com-

putational Fluid Dynamics (CFD) tools to deal with complex geometries in high-speed

flows have significantly decreased the time and funds spent during the development

of new aircraft, allowing extensive analysis of new designs before the prototyping and

wind tunnel testing phase. Reynolds–averaged Navier–Stokes (RANS) simulations have

been the main industry workhorse producing robust results with acceptable accuracy for

typical operational conditions [2]. Depending on their role, all aircraft operate within

certain limits that define the maximum or minimum airspeeds and altitudes for steady,

level and unaccelerated flight as shown in figure 1.1. The area defined by those bound-

aries is called the operational flight envelope and the achievable airspeed range for each

altitude, referred to as the flight corridor [1]. The minimum airspeed and maximum

service ceiling are defined by stall speed and cabin pressurisation limits, respectively,

although the maximum airspeed part of the envelope is limited by different factors that

depend on the type of the aircraft. While the doghouse plot of figure 1.1 showcases the

boundaries at each altitude, the flight envelope in figure 1.2 showcases the constraints

posed by structural limits. The envelope formed by plotting the load factor n (lift to

weight ratio) against the equivalent airspeed (EAS) of an aircraft is commonly referred

to as V-n diagram and it marks the structural limits for each flight corridor, that the

airplane has been designed to operate within [17]. In a typical commercial flight, the

aircraft will generally go through the phases of take-off, climb,cruise, descent, approach

and landing. For example, in phases that involve the deployment of high-lift devices

(flaps) at low EAS (e.g. take-off and landing), the operating limits for the maximum
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Figure 1.1. Operational flight envelopes for different aircraft types showing achievable air-
speeds and altitudes, along with limiting factors. Adapted from [1].

supported load factor are found on the left of the envelope. In addition, as shown for a

representative transport aircraft in figure 1.2, distinct complex flow physics that hinder

the accuracy of simulations are encountered at these different phases and consequently

at different parts of the flight envelope. To ensure maximum aerodynamic safety and

efficiency, the cruise point and in general the normal operational range of the aircraft

is kept away from these extreme conditions. A case of special interest is found at the

high-speed and high-load part of the envelope, where the unsteady separated flow dy-

namics become progressively more complex as the Mach number increases. Seen from

the point of view of a wing, as the cruise speed is increased to transonic conditions,

the accelerated body of air on the suction side creates a local supersonic area, charac-

terised by the standing shockwave located closer to the trailing edge, marking the end

of that region. The existence of a shockwave, close to the thin boundary layer, formed

by the no-slip condition at the wing surface, gives rise to a phenomenon referred to

as shock-wave/boundary-layer interaction (SWBLI) and is a critical factor in aircraft

performance [18, 19]. The stagnation pressure losses across the shock, the drag contri-

butions of which are termed as wave drag, compound with the existing viscous drag.

Moreover, the adverse pressure gradient introduced by the localised pressure increase

at the shock, thickens the boundary layer therefore making it even more sensitive to

pressure changes. Transonic interactions are of particular interest when compared to

other SWBLIs due to the existence of steady subsonic flow behind the shockwave. As

opposed to supersonic flow, this flow regime does not support discontinuities such as

shockwaves and changes of flow conditions are gradual, while the surrounding flow must
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satisfy both the supersonic and subsonic constraints posed by the governing equations.

Consequently, this dictates the shock structure in terms of strength, shape and loca-

tion by forward feeding the downstream conditions,since the subsonic region is sensitive

to downstream disturbances propagating upstream [20]. For certain combinations of

high Mach number and high angle of attack, this interaction can lead to a self-excited,

self-sustained oscillation referred to as transonic buffet. Separated flow due to these

oscillations results in additional pressure drag and the overall shock-buffet dynamics

can excite the wing structure. This structural response is called buffeting and can result

in e.g. an increase in fuel consumption and emissions associated with the drag penalty,

poorer aerodynamic performance, and a general degrading of the handling qualities of

the aircraft. Looking again at figures 1.1 and 1.2, the limits of these conditions can

be seen marked as buffet boundary. To date, shock buffet is mitigated by limiting the

flight envelope of the aircraft, allowing a 30% margin from the cruise point to buffet

onset in the design process [21].
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Figure 1.2. Flight envelope diagram for a typical large civil aircraft. VF, VC and VD indicate
stall, cruise and dive velocities, respectively. The contours indicate level of confidence in CFD
flow solutions and the dotted area indicates the normal operational range. Adapted from [2].

Designing the wings of future aircraft requires pushing the limits of the flight enve-

lope since overcoming the engineering challenges posed at edge-of-the-envelope condi-

tions is inextricably linked with understanding the physics that govern the phenomena

encountered in said regimes. While extensive research has been done on transonic shock

buffet since its discovery, the majority of the literature concerns the two-dimensional

behaviour of the phenomenon observed on aerofoils and rectangular wings. Conversely,

research on the complex aerodynamics of swept wing shock buffet is limited, compared

to the work done for the two-dimensional case, and a unified explanation of the under-

lying flow mechanisms remains elusive [22]. This motivates extensive investigation of

the phenomenon from industry and academia as more sophisticated wing designs enter

service.
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1.2 Aerofoil Shock Buffet

The first photographic evidence of transonic shock buffet was published in 1947 in the

work of Hilton and Fowler, where rapid shockwave oscillations were observed on an

aerofoil for an increasing Mach number [23]. Depending on the aerofoil shape, two

shock buffet types were observed, one on biconvex aerofoils, referred to as Type I, and

one on supercritical profiles referred to as Type II. Shock buffet Type I is characterized

by a fixed frequency limit cycle oscillation (LCO) of the shockwave, in which the shock

weakens as it moves upstream before reversing due to the reattachment of the separated

flow close to the trailing edge. These oscillations occurred over approximately 20% of

the chord and were in a 180◦ phase difference for the upper and lower surface. Following

the investigations of McDevitt [24], Mabey [25, 26] and Gibb [27] a model successfully

describing Type I shock buffet using the local Mach number as an onset predictor was

developed by the last two.

The experimental work of Tijdeman [28], using trailing edge deflections on an aero-

foil, played a vital role in classifying the different types of oscillations for Type II shock

buffet, separating them in three distinct types. Type A shock buffet is characterised by

a sinusoidal shock oscillation at a phase shift to the flap excitation. The shock increases

in strength as it moves upstream and equally weakens during the downstream excur-

sion. Similarly to Type A, Type B shock buffet, which occurs for a lower Mach number

compared to A, demonstrates a sinusoidal response with only difference being the dis-

appearance of the shock during the downstream motion. Finally, for Type C shock

buffet, following the peak strength of the shock, which is achieved at a point during

the upstream motion, the shock weakens again before radiating from the leading edge

towards the oncoming flow. In an effort to characterise the nature of the upper surface

separation for Type II shock buffet, two different models, namely Model A and Model

B, shown in figure 1.3, depending on the location of the onset of the separation, referred

to as the separation bubble, were proposed following the work Pearcey [29,30], Pearcey

and Holder [31] and Pearcey et. al [3]. For Model A, a separation bubble first appears

at the base of the shock and then extends towards the trailing edge causing large sepa-

ration, referred to as bubble bursting, as the angle of attack increases, whereas in Model

B trailing edge separation is also present or imminent. Additionally, three variants of

the latter model were identified depending on the cause of the trailing edge separation.

The model that was developed, used the pressure divergence of the trailing edge as an

indicator to predict the shock buffet onset and defined a critical Mach number or angle

of attack for which the separation bubble would burst, if present.

While the model for Type I was successful in describing the governing physics

of shock buffet on biconvex aerofoils, discrepancies would arise between different ap-

proaches aiming to explain Type II shock buffet. In addition, due to the relevance of
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Figure 1.3. Different types of upper surface flow separation for increasing incidence that lead
to Type II shock buffet, proposed by Pearcey et. al [3]. Separation initially appearing at the
shock foot characterises Model A (left) whereas trailing-edge separation along with the shock-
induced separation distinguishes Model B (right). Reproduced with permission and adapted
from [4].

Type II shock buffet to industrial applications, the literature presented herein focuses

on conditions and geometries pertinent to civil transport aircraft.

Early experiments of Roos were instrumental in demonstrating the differences of

shock buffet between symmetrical and supercritical aerofoils. While the shock buffet

dynamics were similar in both test cases, the difference in geometry resulted in a

reduced tendency to develop buffeting fluctuations for increasing Mach number, and

in general a smaller periodicity in lift and pressure fluctuations for the supercritical

aerofoil [32]. Similar lift and pressure fluctuations were found in the experiments of

Lee and Ohman [33] and Lee et al. [34]. These resulted in the formulation of the most

well known model to describe Type II shock buffet that was based on the principle that

the phenomenon frequency is governed by an acoustic wave-propagation mechanism [5]

shown in figure 1.4. Essentially, in the first phase, pressure waves travelling downstream

through the separated shear layer reach the trailing edge. In the second phase, pressure

waves start propagating upstream above the separated shear layer in order to satisfy

the Kutta condition. Finally, the energy exchange resulting from the interaction of

these upstream waves with the shock, completes the feedback loop required to sustain

the oscillations.

Over the following years, multiple experimental campaigns that aimed to study the

nature of shock buffet reported similar results of low frequency oscillations (i.e. Strouhal

numbers in the range of 0.05−0.08) [35]. Experimental results agreeing with Lee’s model

further supported that the sound waves generated at the trailing-edge are responsible

for the shock movement and that the trailing edge conditions are directly affected by
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Figure 1.4. Wave-propagation feedback model for the self-sustained shock oscillations pro-
posed by Lee [5], reproduced with permission and adapted from [4].

the shock position [35–37]. On the other hand, evidence that additional disturbances

that travel along the lower surface, apart from those approaching the shock from the

upper surface, was found in the extensive experimental campaign of Jacquin et al.

[38] as well as in the work of Hartmann et al. [39]. The additional discrepancies that

resulted when the upstream wave propagation velocity was sought, led to the proposal

of a modification of the model from the former, that better agreed with experimental

results. This can also be seen in numerical studies since some simulations produced

results in good agreement with Lee’s model [40, 41], whereas subsequent studies by

Garnier and Deck [42] showed large discrepancies stemming from the sensitivity of the

model to aerofoil geometry changes. This led to the hypothesis that the underlying

complex flow dynamics prohibit the creation of an accurate generalised model [22].

A different approach to explaining the mechanism governing the phenomenon was

made in the recent years by Crouch [11, 43, 44], who postulated that the unsteady os-

cillations can be explained by analysing the system from a stability theory perspective.

Indeed, it was shown that the onset of the instability occurs when one of the least stable

eigenvalues crosses the imaginary axis into the unstable half-plane, establishing a Hopf

bifurcation. By considering small perturbations, the RANS equations were linearised

and solved around a steady converged state, revealing a marginal eigenvalue that would

become unstable when incidence was increased above a certain value. A comparison

of the critical angle of attack calculated using global stability theory with the exper-

imental results of McDevitt and Okuno [45] on the same aerofoil, demonstrated good

agreement of results. This approach was further supported by the work of Sartor et

al. [14] where it was shown that most of the eigenspectrum, resulting from the eigen-

demposition of the Jacobian matrix, remains unchanged for different angles of attack,

except for the eigenvalue located in the proximity of the buffet frequency. Moreover,

a closer examination of the spatial structure of the eigenmode associated with the un-

stable eigenvalue, shows that while the mode is mostly energetic within the shock, a

contribution located in the mixing layer suggests that the shock displacement directly
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influences the contraction and expansion of the separation bubble. Lastly, in addition

to the global mode associated with the low frequency oscillations, medium frequency

motions in the mixing layer and above the separated region suggest that there is an

additional presence of a broadband unsteadiness related to the Kelvin–Helmholtz insta-

bility. By comparing the global stability approach of Crouch to Lee’s model, different

descriptions of the phenomenon dynamics arise. Specifically, Crouch states that the

origin of the pressure perturbations is located at the shock foot. These perturbations

will then move in the wall normal direction along the shock before propagating up-

stream after reaching the top of the shock as well as through the boundary layer with

less intensity. Simultaneously, the downstream excursion of the shock intensifies the

perturbations before they travel around the trailing edge and along the lower surface to-

wards the leading edge. Nevertheless, both approaches describe the same phenomenon

from a different perspective. This is also supported from the fact that the corrected

acoustic feedback model suggested by Jacquin et al. [38] incorporates the qualitative

flow features described by Crouch et al. [43].

On the numerical side, different techniques have been used to simulate transonic

shock buffet on aerofoils. The first studies [46–48] on symmetric aerofoils aimed to assess

the potential of unsteady RANS (URANS) simulations to capture the intricate shock

buffet dynamics. Once the efficacy of URANS methods was validated with experimental

results, subsequent simulation campaigns focused on supercritical aerofoils [41, 49, 50].

Additionally, RANS simulations also demonstrated the ability to capture the mean flow

quantities [14,50]. While these approaches proved to be capable of predicting the shock

buffet flow features, they also demonstrated a high sensitivity to simulation parameters

such as the choice of turbulence model, numerical scheme and the spatial and temporal

discretisation. This encouraged studies that assessed the effect of the variation of the

aforementioned parameters [51–54]. It is important to mention that since the shock

motion is characterised by a low frequency, the timescales in which it exists are much

longer than these of the shear layer eddies. Therefore, even if the small turbulent

structures cannot be fully resolved due to the inherent averaging of RANS simulations,

the basic flow physics can be computed with fair accuracy [14,43]. Nevertheless, scale-

resolving simulations ranging from detached-eddy simulations (DES), employing the

zonal DES [55] and the delayed DES (DDES) [56], to large-eddy simulations (LES) [42,

57] allowed a more detailed look of the flow mechanisms in place. Even though direct

numerical simulations (DNS) are computationally prohibitive for the high Reynolds

numbers encountered at typical commercial transonic flight conditions, recent work by

Zauner et al. [58], focused on a moderate Reynolds number of 5× 105. Apart from the

complex SWBLI observed, a higher lift oscillation frequency at a Strouhal number of

approximately 0.1 was found. Lastly, studies on laminar aerofoils showed that in these

conditions, the shock oscillations occur at much higher frequencies (approximately two
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orders of magnitude higher) but at lower amplitudes (6% of chord length compared to

20% for turbulent cases) [59,60].

Most numerical and experimental studies on the topic of transonic shock buffet

over the years have focused on elucidating the governing physics of the phenomenon

as well as predicting its onset. Focusing on classifying the flow features, shock buf-

fet studies utilized rigid aerofoils and wings, excluding the effects of any interactions

with the elastic wing structure. One of the first studies that looked further into fluid-

structure interaction in unsteady periodic flows scrutinised the flow around an elas-

tically suspended circular cylinder [61]. The lock-in behaviour observed, namely the

synchronisation of the vortex shedding frequency to the natural vibration frequency

of the structure (or the frequency that the structure is excited at) resulting in os-

cillations of increased amplitude, was attributed to resonance due to vortex induced

vibration [62]. While additional studies on aerofoils speculated that a resonance mech-

anism is excited by shock buffet, the asymmetric nature of the lock-in boundaries [63]

being shifted towards higher frequencies [64, 65], could not be fully explained by the

resonance idea. More specifically, both single and two degree-of-freedom (pitch and

pitch-and-heave) aerofoil systems did not demonstrate significant oscillations for lower

forcing frequencies but increased amplitudes were observed for higher frequencies [64].

It is also important to mention that lock-in was observed when the excitation amplitude

was above some threshold. In addition, experimental studies on flexible swept wings

showed that at high-speed conditions, where a strong shock-wave/boundary-layer in-

teraction is present, there was a strong fluid-structure coupling, with the frequency of

the aeroelastic response following that of the oscillating flow field and not a structural

eigenmode [66]. Reduced order models (ROMs) have shown the potential to efficiently

capture the behaviour of nonlinear aeroelastic systems in incompressible and transonic

conditions [67]. In the work of Gao et al. [68], a two-dimensional aeroelastic ROM

showed that many characteristics such as coupling frequency can be predicted through

a linear stability analysis. The same study also showed that the synchronisation of the

aerodynamic and structural systems, leading to a limit-cycle oscillation, was related

to an unstable coupled fluid mode. This was scrutinised recently showing that the

buffet onset is reduced by an elastic structure and the fluid-structure interaction can

destabilise an originally stable fluid mode [69].

1.3 Finite Wing Shock Buffet

Early efforts to investigate transonic shock buffet on wings involved both flight [70] and

wind-tunnel tests [71, 72]. Despite the hypothesis that aerofoil shock buffet is mainly

a two-dimensional phenomenon, small discrepancies between the behaviour of aerofoil

and wing shock buffet that emerged even for rectangular wings with constant cross sec-
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tion questioned its validity [38]. In the experiments of Roos [72] on a high aspect ratio

swept wing, while the convection frequency of the pressure fluctuations was consistent

with his earlier experiments on aerofoils, large scale unsteadiness concentrated closer

to the wingtip was observed. Additionally, the oscillations appeared to be occurring at

a higher frequency and were broadband in nature (Strouhal numbers based on mean

aerodynamic chord ranging from 0.2 to 0.6), as opposed to the distinct frequency found

for aerofoils. This behaviour was consistent with the findings of subsequent experimen-

tal studies of Benoit and Legrain [73] who showed that the organised flow fluctuations

observed at transonic speeds do not follow through at buffet onset. Differences were

also found regarding the location of the origin of the unsteadiness after introducing

sweep. The narrowband pressure undulations for unswept wings originated at the root

and extended further outboard with increasing incidence, in contrast to the swept wing

case where the unsteadiness first emerges at the wingtip before propagating towards the

root. The effects of different Mach number and Reynolds number on swept wings were

investigated in the recent experiments of Dandois [74]. It was shown that for increas-

ing Reynolds number, the buffet onset is marginally delayed, regardless of the angle of

attack, while as the Mach number increases, the onset occurs at smaller incidences com-

bined with an aft displacement of the the shock location. Moreover, it was highlighted

that a secondary high frequency instability (Strouhal numbers ranging between 1 and

4) related to that of Kelvin–Helmholtz, coexists along the buffet instability, something

previously observed for aerofoils [14]. Furthermore, experiments over a wide range of

angles of attack by Koike et al. [75] on the NASA Common Research Model (CRM)

revealed three distinct behaviours for increasing incidence. For angles of attack below

3◦ small intensity fluctuations are present but the shock is mainly stationary. As the

incidence is increased between 3◦ and 5.5◦, oscillations become more evident, with the

spectral content agreeing with earlier findings of Roos [72] and Dandois [74] (Strouhal

numbers of approximately 0.3). Finally, for angles of attack above 5.5◦, low broadband

frequency aperiodic shock motions are observed at the same frequency, similar to the

findings of Benoit and Legrain [73].

As the equipment and techniques used in wind tunnel tests became more sophis-

ticated, more thorough analyses were possible with prime example the application of

pressure sensitive paint (PSP) which allowed a more detailed insight on the complex flow

features. Even though the first studies using the aforementioned paint suffered from

issues related to the luminescence intensity of the paint [76] or the videographic equip-

ment [66], the experimental campaigns by Lawson et al. [77] on the RBC12 half-wing

model and Sugioka et al. [78] on an 80% scale model of the CRM, using fast-response

and dynamic PSP (DPSP) respectively, successfully produced a plethora of valuable

results. In addition to the paint, conventional instrumentation in order to assess the

accuracy of the buffet onset indicators put forth by ESDU [79] was performed for the
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RBC12. Consistent results were found for predicting structural buffeting onset using

wing root strain divergence, root mean square (RMS), breaks in the lift curve and

trailing edge pressure divergence apart from axial force divergence and pitching mo-

ment break. The response frequency coincided with that of the broadband pressure

oscillations at Strouhal numbers ranging between 0.05 and 0.15, something that would

broaden to 0.08 and 0.5, when the incidence was increased. Finally, in an attempt to

distinguish general shock buffet characteristics and case dependent ones, Paladini et

al. [80] analysed and compared four different experimental databases from wind tunnel

tests on swept wings. Similarly to experiments not included in the analysis, consistent

Strouhal numbers ranging between 0.2 and 0.3 were found.

On the numerical side, Brunet and Deck [81] employed the zonal DES method

to simulate shock buffet on a half-wing model previously studied experimentally [82].

Apart from the successfully predicted time-averaged separation area and outboard un-

stable region, three-dimensional acoustic pressure waves radiating upstream were ob-

served. Good correlation of mean and RMS pressure distribution with the experiment

was found. More recently, Ishida et al. [83] performed a zonal DES simulation on the

CRM, obtaining overall good agreement with experimental results, albeit with the shock

front located further upstream. Using the same RBC12 geometry studied by Lawson

et al. [77], Sartor and Timme performed both steady and unsteady RANS [84] and

DDES [6] simulations using different turbulence closures and discretization schemes.

Their results further established the outboard shock motions as a characteristic of

wing shock buffet. More specifically, the area of this unsteadiness first appears close to

the wingtip and extends inboard as the angle of attack is increased, shown in figure 1.5.

In addition, as the unsteady shock motion extends to spanwise stations of larger chord,

the dominant frequency becomes broadband. A comparison of the two computational

methods, demonstrated the ability of the URANS to reproduce the dominant flow fea-

tures, even though DDES appeared to be more consistent with experimental results

regarding the shock location. Extending their work, Sartor and Timme also studied

the effect of Mach number ranging from 0.76 to 0.84 [85]. It was found that an in-

crease in Mach number decreases the onset angles of attack. Moreover, for high Mach

numbers, the unsteadiness observed was confined to the separated areas, whereas the

standard deviation of the lift oscillations plateaued soon after onset. Conversely, in the

low Mach number case, even though the separated area was smaller, large amplitude

pressure undulations extending across the upper wing surface were observed.

Simulations on infinite-swept wings using URANS by Iovnovich and Raveh [86] fo-

cused on investigating the effects of different sweep angles and aspect ratios (AR). This

allowed to quantify the sweep angles above which, three-dimensional effects dominate

the phenomenon. Indeed, for sweep angles less that 20◦, the flow behaviour resembles
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(a) URANS (b) DDES

Figure 1.5. Instantaneous values of eddy-viscosity ratio for the RBC12 half-wing model at
design conditions, reproduced with permission and adapted from [6].

that observed on aerofoils where the oscillations are limited in the chordwise direction.

Separation bubbles along with a wavy front appear when the sweep angle is increased

between 20◦ and 40◦, while pressure waves start to propagate outboard. The term buf-

fet cells was used to describe these outboard running pressure perturbations coupled

with the separation bubbles. In addition, an increase in sweep angle resulted in an

increased oscillation frequency but decreased the amplitude. Stall due to the shock-

induced separation is observed for sweep angles above 40◦. It is worth pointing out here

that modern large aircraft wings have a typical sweep angle of about 30◦. Regarding

AR effects, a wing tip vortex interaction with the spanwise shock oscillations occurs

for ARs ranging between 3 and 4, something that diminishes for higher AR values.

Recently, topological similarities between buffet cells and stall cells suggest that the

two phenomena share common flow physics [87]. Infinite wings pose an interesting case

for stability analysis since their concept allows for a problem formulation that is inho-

mogeneous in two spatial directions while periodic boundaries can be imposed in the

third direction, referred to as biglobal analysis [88]. Recent application of biglobal anal-

ysis on infinite wings [89–91] have demonstrated that a three-dimensional mode that

is damped for straight wings, becomes oscillatory when a sweep angle in introduced,

correlating the buffet cells mentioned earlier to an aerodynamic mode. This mode co-

exists with the characteristic shock buffet mode. Similar findings of spanwise-periodic

modes were also reproduced in the triglobal (three inhomogeneous directions) [92] and

resolvent [93] studies of He and Timme on infinite swept wings.

For aircraft wings, earlier linearised-aerodynamic computations by Timme and

Thormann [94] on the RBC12 showed that the unsteadiness may be attributed to an

unstable aerodynamic mode, analogous to the two-dimensional global instability found

for aerofoils and explained above. Indeed, a global analysis of the CRM by Timme [95]
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revealed an unstable eigenvalue post shock buffet onset, linking the associated eigen-

mode to buffet cells. Furthermore, the additional modes that are present and stable, yet

have a small decay rate, explain the characteristic broadband frequency of wing shock

buffet. In both studies the eigenvalue computations of the large fluid Jacobian were

achieved by using preconditioned iterative methods since direct methods for eigenvalue

computations would require excessive amounts of memory for such matrix dimensions.

This has recently shown the potential to extend global analysis to even larger systems

that stem from a fluid-structure coupling [9], an area where literature is extremely

limited especially in the case of wing shock buffet flow.

Finally, while most studies on wings focus on the global instability associated with

the localised outboard broadband oscillations, an additional phenomenon of inboard

running spanwise waves, has been observed in most wind tunnel studies [74, 77, 96]

that occurs at much lower frequencies. This phenomenon was exclusive to wind tunnel

results until recently, where a long-wavelength mode was found from a biglobal analysis

of an infinite wing [89]. Evidence of that behaviour on finite wings was also seen in

the harmonic structural excitation studies mentioned earlier [94], where a resonant

peak of the dynamic derivatives was found for a low excitation frequency. The spatial

pattern associated with the response to that forcing was shown to be dominated by

the shock dynamics. Moreover, dynamic mode decomposition and proper orthogonal

decomposition performed on data from RANS/DDES and zonal DES simulations on

RBC12 [97] and CRM [98] respectively, revealed a low frequency inboard propagating

mode apart from the global instability. The absence of a global instability at the

vicinity of that low frequency, could suggest that pseudo-resonance due to the non-

normality of the Navier–Stokes equations (or a convective instability) is responsible

for that behaviour. A resolvent analysis of a coupled fluid-structure CRM model [99]

revealed a small gain amplification around that low-frequency range. Nevertheless,

work on that characteristic behaviour of shock buffet remains limited, therefore the

possibility that wind tunnel noise can exploit the receptivity of the shock to upstream

and/or downstream perturbations [100], cannot be ruled out.

1.4 Aim & Objectives of Work and Thesis Outline

The aim of this project is the investigation of the interaction of transonic buffet with

wing vibration in the case of swept wings and the role of the amplification of optimal

disturbances in the case of aerofoils. While most literature focuses on the pure aerody-

namic behaviour of the phenomenon, real aircraft wings are inherently elastic structures

and therefore a thorough scrutiny of the phenomenon calls for multi-disciplinary simu-

lations. Simultaneously, the study of transonic buffet on aerofoils in environments with
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high external disturbance levels, such as wind tunnels, motivates the scrutiny of the

potential effect these can have on the flow behaviour. The present work aims to con-

tribute in the understanding of the transonic buffet phenomenon by addressing these

gaps in the literature that will ultimately help designing the wings of the future.

This thesis will address three principal objectives to fulfil the aforementioned aim.

First, a linearised-aerodynamics analysis, commonly used for flutter analysis is used to

compare the effect of different wing designs on shock buffet. This is then extended to

a time-accurate study on one of the geometries, to examine how larger amplitude exci-

tations at frequencies in the vicinity of shock buffet affect the unstable flow. Secondly,

a state-of-the-art nonlinear coupled fluid-structure simulation is carried out alongside

an unsteady RANS (URANS) simulation to assess the effect of aeroelastic coupling on

the flow response. Finally, nonmodal stability analysis on a supercritical aerofoil aims

to showcase the effect of the amplification of optimal disturbances on two-dimensional

shock buffet and set the foundation of transient growth analysis in steady turbulent

conditions.

The present thesis is organised as follows. Chapter 2 outlines the theoretical back-

ground along with implementation details. The governing equations are presented along

with their formulations for the linearised frequency domain analysis, time-accurate sim-

ulations, modal and nonmodal analysis. The characteristics of the geometries used in

the different studies along with relevant numerical and experimental data as well as

steady-states are described in Chapter 3. Moving on to the results, Chapter 4 focuses

on the effect of harmonic excitation, initially by comparing the linearised-aerodynamic

response of two different aircraft, namely the RBC12 and the NASA Common Research

Model (CRM), followed by an extension of the same approach to the nonlinear regime

for the former geometry. An assessment of the fluid-structure interaction (FSI) com-

pared to fluid-only simulation, first one to the authors knowledge on aircraft wings at

shock buffet conditions, is presented for the CRM in Chapter 5. Modal and nonmodal

stability analysis results, using a finite-volume industrial code, are validated against

previous work in the incompressible regime for a cylinder in Chapter 6. This is then

followed by the application of the method on the supercritical aerofoil OAT15A at pre-

and post-onset conditions. Lastly, in Chapter 7, a summary with the key findings from

all the studies conducted herein is presented along with recommendations for future

work.
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Chapter 2

Theory and Methods

2.1 Introduction

In recent decades, Computational Fluid Dynamics (CFD) has been widely accepted

in the aeronautical industry as a powerful and mature tool at least for parts of the

flight envelope pertaining to cruise conditions. While a complete replacement of wind

tunnel and flight testing is still improbable, CFD provides important complementary

utilities to the traditional methods and can guide new designs. Especially nowadays,

the developments in high performance computing allow the extensive use of CFD in

the design phase. In this chapter the theoretical background along with any associated

formulations are presented.

2.2 Equations of fluid motion

The dynamical behaviour of a viscous fluid is governed by the Navier–Stokes equations.

The equations are derived by applying three fundamental laws of nature, namely:

• Conservation of mass, known as the continuity equation

• Newton’s second law about conservation of momentum

• First law of thermodynamics about conservation of energy

The governing equations for a compressible and viscous fluid in differential dimensional

form can be written with the aid of tensor notation described in Appendix A as
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∂ρ

∂t
+

∂

∂xi
(ρui) = 0

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂P

∂xi
+
∂τij
∂xj

∂

∂t
(ρE) +

∂

∂xj
(ρujH) =

∂

∂xj
(ρuiτij)−

∂qj
∂xj

(2.1)

where xi symbolises Cartesian coordinates (x1 = x, x2 = y, x3 = z), t the time, ui

the velocity vector (u1 = u, u2 = v, u3 = w), ρ the density, E and H the total energy

and enthalpy, respectively, P the static pressure, T the static temperature and τij the

viscous stress tensor. Fourier’s law of heat conduction is used for modelling the heat

flux qj which is defined as qj = −κ(∂T/∂xj) for a fluid with thermal conductivity κ.

The total energy E and enthalpy are given by

E = e+
|ui|2

2
and H = h+

|ui|2

2
(2.2)

where e is the internal energy and h the enthalpy per unit mass. The viscous stress

tensor is defined as

τij = 2µSij + λ
∂uk
∂xk

δij = 2µSij −
(

2µ

3

)
∂uk
∂xk

δij (2.3)

after using the Stokes hypothesis [101] that dynamic viscosity µ is related to the second

viscosity λ according to λ = −2
3µ. This relation is know as bulk viscosity. The

second term in equation (2.3) (∂uk∂xj
), represents the velocity divergence, existing only

for compressible flows, and δij is the Kronecker delta. The components of the strain-rate

tensor Sij are

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

The Navier–Stokes equations for a three dimensional flow field consist of five simulta-

neous equations for the five conservative variables ρ, ρu, ρv, ρw, ρE. Specifically, their

solution involves seven unknown variables namely: ρ, u, v, w,E, P and T . While there

are constitutive relations for non-perfect gases, the thermodynamic relations that de-

scribe a perfect gas are used herein. The equation of state and the thermodynamic

relationships for such a gas are given by
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P = ρRT where R = cp − cv, γ =
cp
cv

(2.5)

where R is the specific gas constant, cp and cv the specific heat coefficients at constant

pressure and volume respectively and γ the specific heat capacity ratio. For air, these

values are R = 287 J/(kg · K) and γ = 1.4. Additionally, the variation of dynamic

viscosity is related to temperature according to Sutherland’s law defined as

µ = µ0

(
T

T0

)3/2 T0 + S

T + S
(2.6)

where S = 110.4 K is the Sutherland temperature constant, µ0 = 1.716×10−5 kg/(m·s)
and T0 = 273.15 K are the reference dynamic viscosity and temperature respectively.

Finally, the thermal conductivity κ is given by

κ = cp
µ

Pr
(2.7)

where a Prandlt number of Pr = 0.72 and is assumed to be valid throughout the entire

flow field.

2.2.1 Favre- and Reynolds-Averaged Navier–Stokes equations

Despite the technological strides in the ever increasing capabilities of modern super-

computers, a direct numerical simulation (DNS) of the Navier–Stokes equations still

remains prohibitive, in terms of computational resources, for industrially relevant cases

and is applicable only to simple flow problems at low Reynolds numbers in the order

of 104 − 105. This is due to the increasing difficulty of solving the equations when the

geometry in question is complex and the resulting flow is turbulent. When this is com-

bined with the increasing number of grid points to achieve sufficient spatial resolution

that scale as Re9/4 and the CPU-time as Re3 [102] it becomes evident that the solution

of such a system is not viable in an industrial context. Therefore, models that only ap-

proximate the effects of turbulence are needed [102]. One of these approximations are

the Reynolds–averaged Navier–Stokes equations, presented by Reynolds in 1895 [103].

This is based on the decomposition of the flow into a mean and a fluctuating part,

which for e.g. pressure P can be written as
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P = P + εP ′ (2.8)

where P symbolises the mean state and εP ′ the small fluctuation. There are three main

methods to average the variables for the mean part of the Reynolds decomposition,

namely time averaging, spatial averaging and ensemble averaging. Time averaging is

appropriate for most engineering applications that demonstrate, on average, stationary

turbulent flows and is used consistently herein. In cases where turbulence is, on average,

uniform in all directions, spatial averaging is employed. This is achieved by using a

volume integral averaged over all spatial coordinates such as

ui = lim
V→∞

1

V

∫ ∫ ∫
V
ui dV (2.9)

Ensemble averaging is used for flows that decay with time and the mean is obtained

by averaging the measurements of a variable from N identical experiments. Therefore,

the mean value in the nth experiment, can be expressed as

ui = lim
N→∞

1

N

N∑
n=1

ui
n (2.10)

where ui
n is the nth measurement. In the present work, where compressible flow is

assumed, the density (mass) weighted (or Favre) decomposition is applied in addition

to the time average. For example, the average of the velocity components are obtained

from

ui =
1

ρ
lim

∆t→∞

1

∆t

∫ t+∆t

t
ρui dt (2.11)

where ρ is the Reynolds-averaged density and ∆t is a time interval. Similarly to equa-

tion (2.8) the Favre decomposition reads

ui = ũi + u′′i (2.12)

By applying equation (2.8) to density and pressure and (2.12) to the rest of the

flow variables and substituting in equation (2.1) we arrive at the Favre- and Reynolds-

averaged Navier–Stokes equations
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∂ρ

∂t
+

∂

∂xi
(ρũi) = 0

∂

∂t
(ρũi) +

∂

∂xj
(ρũj ũi) = − ∂P

∂xi
+

∂

∂xj
(τ̃ij − ρũ′′i u′′j )

∂

∂t
(ρẼ) +

∂

∂xj
(ρũjH̃) =

∂

∂xj

(
κ
∂T̃

∂xj
− ρũ′′jh′′ + τ̃iju′′i − ρũ′′jKt

)

+
∂

xj
[ũi(τ̃ij − ρũ′′i u′′j )]

(2.13)

The trailing term in the momentum and energy equations is the Favre-averaged

Reynolds-stress tensor given by

τFij = −ρũ′′i u′′j (2.14)

In addition, Kt denotes the turbulent kinetic energy [104], the definition of which, along

with its Favre decomposition, is given by

Kt =
1

2
(u′i)

2 ρK̃t =
1

2
ρ(̃u′i)

2 (2.15)

allowing to express the energy and enthalpy terms of equation (2.13) as

ρẼ = ρẽ+
1

2
ρũi

2 +
1

2
ρ(̃u′i)

2 = ρẽ+
1

2
ρũi

2 + ρK̃t (2.16)

ρH̃ = ρh̃+
1

2
ρũi

2 +
1

2
ρ(̃u′i)

2 = ρh̃+
1

2
ρũi

2 + ρK̃t (2.17)

Furthermore, for transonic and supersonic flows, it is valid to assume that the contri-

butions of the molecular diffusion ∂
∂xj

(τ̃iju′′i ) and turbulent transport ∂
∂xj

(ρũ′′jKt) terms

of the mean turbulent kinetic energy K̃t are negligible and therefore are omitted from

equations (2.13) [104]. To solve the Favre- and Reynolds-averaged Navier–Stokes equa-

tions (2.13), six components of the Favre-averaged Reynolds-stress tensor and three

components of the turbulent heat-flux vector need to be supplied.

The Boussinesq hypothesis [105] assumes that the turbulent shear stress is propor-

tional to the mean rate of strain by a factor µt which is termed as eddy viscosity.

Using this assumption, the viscous stress tensor of the Favre- and Reynolds-averaged
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Navier–Stokes equations is formed similarly to equation (2.3) and can be written as

τFij = −ρũ′′i u′′j = 2µtS̃ij −
(

2µt
3

)
∂ũk
∂xk

δij −
2

3
ρK̃δij (2.18)

The implication of the eddy-viscosity approach on the dynamic viscosity coefficient

µ of equation (2.3) is simply its replacement by the sum of a laminar and turbulent

component µ = µl + µt. The former is calculated using equation (2.6) whereas the

latter is provided by the turbulence model and depends on the type of closure. The

classical Reynolds analogy is used to model the turbulent heat-flux vector as

ρũ′′jh
′′ = −κt

∂T̃

∂xj
(2.19)

where the turbulent thermal conductivity coefficient κt is computed by solving equa-

tion (2.7) using the turbulent dynamic viscosity µt and the turbulent Prandtl number

Prt which, similarly to its laminar counterpart, is assumed to be constant within the

flow field. Herein, the value of Prt = 0.9 is assumed.

2.2.2 Spalart-Allmaras Turbulence Model

A large variety of turbulence models have been developed aiming to introduce the min-

imum amount of complexity while capturing the essence of the relevant physics [104].

Usually, different models are classified depending on their complexity. There are princi-

pally five classes, namely, algebraic (or zero-equation), one-equation, multiple-equation,

second-order closures and large-eddy simulation. The Spalart–Allmaras (SA) is a first-

order one-equation turbulence model developed based on empirical results, dimensional

analysis, Galilean invariance and selective dependence on the molecular viscosity [106].

It is frequently used for turbulent wall-bounded flows with adverse pressure gradients in

aerospace applications. Essentially, a transport equation is employed for computing an

eddy-viscosity variable ν̂ that in return is used to calculate the turbulent eddy viscosity

according to

µt = fv1ρν̂ (2.20)

where fv1 is function that is applied as a postprocessing step to capture the viscous

damping effects close to the wall and therefore better approximate the variation of the

velocity parallel to the wall which has a quartic profile in the viscous sub-layer [107].

This is achieved by multiplying the eddy-viscosity variable ν̂, which varies linearly with
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the distance from the wall, with a function that has a cubic behaviour given by

fv1 =
χ3

χ3 + c3
v1

where χ =
ν̂

νl
and cv1 = 7.1 (2.21)

where νl is the laminar kinematic viscosity given by νl = µl/ρ.

The transport equation that is solved for the eddy-viscosity in conservation form is

∂ν̂

∂t
+

∂

∂xj
(ρν̂uj) = cb1Sρν̂︸ ︷︷ ︸

Production

+
1

σ

[
∂

∂xj
ρ(νl + ν̂) + cb2ρ

(
∂ν̂

∂xj

)2
]

︸ ︷︷ ︸
Diffusion

− cw1fwρ

(
ν̂

d

)2

︸ ︷︷ ︸
Near-wall Destruction

(2.22)

The production term assumes that the generation of turbulence is proportional to the

shear rate S of the mean velocity gradient. The diffusion term, frequently found in

transport equations, contains a nonlinear term ( ∂ν̂∂xj )2 which was added to control the

spreading of the wake at the edge of a turbulent region. For this reason, the diffusion

part often appears in literature as a combination of a linear part and a source term to

ensure that the original diffusion term remains linear and the source term is treated

explicitly. The final and negative term represents the destruction of turbulence at the

wall. This is achieved by using the inviscid blocking of pressure fluctuations in the

unsteady turbulent field away from the wall and the viscous damping very close to the

wall, depending on the distance denoted as d [106]. Additionally, in equations (2.21)

and (2.22), terms c and f represent constants and auxiliary functions, respectively, and

can be found in [106]. The negative SA model uses a modified transport equation to

deal with negative ν̂ solutions and to address issues with underresolved grids and non-

physical transient states [108]. Finally, the SA model, similarly to other one-equation

models [109], tends to underpredict flow separation and produce inaccuracies in cases

of post-shock reattachment in adverse pressure gradients as well as shear flows [106].

Nevertheless, the ability of the model to capture the adverse pressure gradient intro-

duced by the shockwave, renders it appropriate for modelling transonic buffet and is

used consistently in the present work. For more detailed information about turbulence

and the differences between turbulence models the reader is referred to the book by

Wilcox [104].
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2.3 Finite Volume Formulation

The analytical solution to the Navier–Stokes equations becomes strenuous for complex

flow problems and therefore a discretization of the physical space is required. Finite

volume discretization directly uses the conservation laws as equations (2.13) can be

integrated over finite control volumes. By using the time-dependent velocity and coor-

dinate vectors u and x defined as

u(x(t), t) = [u(x, t), v(x, t), w(x, t)]︸ ︷︷ ︸
Velocity Field

and x(t) = [x(t), y(t), z(t)]︸ ︷︷ ︸
Grid Deformation

(2.23)

equations (2.13) can be expressed in conservative arbitrary Lagrangian-Eulerian form

for a physical domain Ω(t) ⊂ R3 with a boundary ∂Ω(t) as

∂

∂t

∫
Ω(t)

qf dΩ +

∫
∂Ω(t)

(Fc · n− Fv · n− qf ẋ · n) dS =

∫
Ω(t)

Φ dΩ (2.24)

where n is the unit normal vector and qf is the state vector, containing the conservative

variables and the eddy-viscosity as

qf = [ρ, ρu, ρE, ρν̂]T (2.25)

and Φ is the source term, which comprises all volume sources including the additional

terms from the turbulence model on the right-hand side of equation (2.22). The directed

surface elements of the boundary ∂Ω(t) are described by dS = n∂Ω(t). The convective

and viscous flux vectors are denoted by Fc and Fv, respectively. In a typical simulation,

equation (2.24) is solved for each control volume Ω. By applying the method of lines,

equation (2.24) can be written as a system of coupled ordinary differential equations

in time

dV qf
dt

= −Rf (qf ,x, ẋ) (2.26)

where V represents the volume matrix. The complete spatial discretization including

the source term, Rf , is termed as the residual and it is a nonlinear function of the

conservative variables qf . In numerical methods, Rf is a measure of iterative error,

and decreases as a more accurate solution is found.
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2.4 Linearised Frequency Domain Analysis

The Linearised Frequency Domain (LFD) method is presented next. The detailed

formulation and implementation can be found in [110]. By considering that an unsteady

motion has a small amplitude, we can separate the variables from equation (2.23) into

a mean state and a time-dependent small perturbation as

qf = qf + εq′f (t) and x = x+ εx′(t), ε� 1 (2.27)

Substituting this into equation (2.26) and linearising about the mean state (discarding

all terms beyond O(ε)), we can obtain the time-dependent linear equation for the flow

perturbation

V
dq′f
dt

+ qf
dV

dt
+Rf (qf ,x, ẋ) +

∂Rf

∂qf
q′f +

∂Rf

∂x
x′ +

∂Rf

∂ẋ
ẋ′ = 0 (2.28)

where the steady state Rf (qf ,x, ẋ) is assumed to be negligibly small. Additionally,

if we assume that the solutions to the perturbations are periodic with a frequency ω,

they can be expressed as a Fourier series

q′f (t) =

∞∑
nh=1

q̂fe
inhωt and x′(t) =

∞∑
nh=1

x̂einhωt, q̂f , x̂ ∈ C (2.29)

which for a first harmonic excitation and response (nh = 1) and after some re-arranging

allow to recast equation (2.28) as

(
iω∗V +

∂Rf

∂qf

)
q̂f = −

[
∂Rf

∂x
+ iω∗

(
∂Rf

∂ẋ
+ qf

∂V

∂x

)]
x̂ (2.30)

since it can be shown that the temporal derivative of the volume matrix dV
d is only

dependent on the grid-node location. The reduced frequency is defined as

ω∗ =
2πflref

U∞
(2.31)

where U∞ and lref are the freestream velocity and the reference length, respectively.

The
∂Rf

∂x and
∂Rf

∂ẋ terms on the right-hand side of equation (2.30) denote the changes

23



in the residual due to mesh deformation and mesh point velocities, respectively. These

matrices along with ∂V
∂x are not explicitly built since only the result of the matrix vector

product with the complex valued x̂ is required. Since the latter grid deformation is

predetermined, these terms are evaluated using central finite differences in a standard

LFD simulation. Lastly, the flux Jacobian
∂Rf

∂qf
= Aff has been obtained in the context

of the discrete adjoint method by analytically differentiating the TAU code [111] and

will be used in the following sections.

2.5 Global Stability Analysis

If no external excitation is included, and we are interested in the stability of the flow

to small amplitude disturbances, the decomposition reads

qf = qf + εq′f (t), ε� 1 (2.32)

Substituting this into equation (2.26) and applying a Taylor expansion around the

equilibrium point, while neglecting O(ε2) and higher order terms, we arrive at

dV q′f
dt

+Rf (qf ) +
∂Rf

∂qf
q′f = 0 (2.33)

Similar to the LFD analysis, we assume that the steady stateRf (qf ) is negligibly small.

Considering a periodic solution with a complex frequency λ which is inhomogenous in

three spatial directions, the system is transferred to the frequency domain

q′f (x, y, z, t) =

∞∑
nh=1

q̂f (x, y, z)einhλt q̂f ∈ C (2.34)

leading to a system of the form (
iλV +

∂Rf

∂qf

)
q̂f = 0 (2.35)

This allows the system to be written as a matrix eigenvalue problem i.e.

J q̂f = λq̂f where J = −
∂Rf

∂qf
(2.36)
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where q̂f and λ are the eigenvector and eigenvalue respectively. The eigenvalue is of the

form λ = σ+ωi with σ describing the growth or decay rate and ω the angular oscillation

frequency. Systems governed by the Navier–Stokes equations are usually described by

fold and Hopf bifurcations. Specifically, the system is considered globally unstable

when an eigenvalue of the Jacobian matrix resulting from the system discretization has

a positive growth rate σ for given flow conditions [88]. Since the resulting J is large

and sparse, direct solution methods for eigenvalue computation require vast amounts

of memory and therefore one has to result to iterative methods.

Krylov methods are projection processes that create subspaces spanned by vectors

of the form p(J)u where p is a polynomial according to

Km(J, u) = span{u, Ju, J2u, ..., Jm−1u} (2.37)

The Arnoldi iteration [112] is an eigenvalue algorithm used to approximate a few rel-

evant eigenvalues and eigenvectors of a large matrix of size n × n, by projecting the

matrix into a Krylov subspace of size m where n > m. Herein, n is given by the product

of the number of the state vector variables times the number of discretization points.

By using the Gram–Schmidt procedure, the resulting subspace has an orthonormal

basis, allowing the original matrix to be expressed as

J

(n×n)

Q

(n×m)

= Q

(n×m)

H

(m×m)

(2.38)

where Q is a matrix containing the orthonormalised vectors as columns and H is an

upper Hessenberg matrix. The considerably smaller size of H allows the employment of

standard methods for computing its eigenvalues. The eigenvalues and eigenvectors of

H are termed the Ritz eigenvalues and eigenvectors, respectively, and they converge to

the eigenvalues and eigenvectors of J as the size of the Krylov subspace increases. Nev-

ertheless, since the resulting matrices of the decomposition are dense, methods to keep

the subspace size to a minimum without affecting the accuracy of the approximation

were developed to complement the Arnoldi decomposition. The implicitly restarted

Arnoldi method (IRAM) [113] uses the QR decomposition of the Hessenberg matrix

in order to create a polynomial that essentially filters out the unwanted (or spurious)

parts of the spectrum. While the original Arnoldi method is very successful in finding

eigenvalues that have large magnitude and are well separated, its limitations become
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evident when applied to problems where the physically relevant eigenvalues are small in

magnitude and clustered. To tackle this problem, spectral transformation methods need

to be used. The shift-invert strategy is used to search for eigenvalues in specific parts

of the spectrum, defined by the user specified shift ζ. In contrast to equation (2.36),

the transformed problem that is solved is

Cq̂f = µq̂f where C = (J − ζI)−1 and µ =
1

λ− ζ
(2.39)

from which it can be seen that the largest eigenvalues of C correspond to the smallest

eigenvalues of J close to the shift ζ. Matrix C does not need to be formed explicitly,

since only its action on a vector needs to be approximated. This is achieved by using an

iterative solver, leading us to the so called inner-outer iterative methods. The choice of

the inner iterative solver is case-dependent. For more information regarding iterative

methods the reader is referred to [114].

2.6 Global Nonmodal Stability Analysis

Global stability analysis deems a system stable or unstable according to the concept of

Lyapunov stability. This implies that when a system in equilibrium is perturbed, it will

either return to its original state if deemed stable and conversely depart from that state

if deemed unstable. In both scenarios, an infinite time horizon is allowed for the system

to return to that equilibrium state. Consequently, the local fluid processes that are

characterised by many time scales in fluid systems cannot be thoroughly examined [7].

Therefore, to assess the stability of the system over a finite time interval, the transient

energy amplification of an initial condition over that time interval needs to be measured.

Mathematically, the maximum optimal energy amplification optimised over all initial

conditions can be written as

G(t) = max
q′f0

E(q′f (t))

E(q′f0)
(2.40)

where E(q′f (t)) is the time-dependent energy of the perturbation q′f . In order to calcu-

late the energy of linear perturbations for a given time, we need to recast equation (2.36)

as an initial value problem of the form
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Figure 2.1. Geometric interpretation of transient growth (taken from [7]).

∂

∂t
q′f = Jq′f (2.41)

where the exact solution can be written by using the matrix exponential [115,116]

q′f (t) = q′f (0)eJt = q′f (0)Ψ(t) (2.42)

where Ψ is known as the propagator operator [117]. In the case of a normal matrix

or operator, the eigenvalues resulting from the global stability analysis would be ad-

equate to describe the energy evolution of a perturbation since it would decrease or

increase monotonically for a stable or unstable system, respectively. Linear operators

resulting from the discretization of the Reynolds–Averaged Navier–Stokes equations

demonstrate high non-normality, and can therefore sustain transient energy growth at

short times before decaying, even for a stable system. This can be better interpreted

geometrically, as shown in figure 2.1. When two eigenvectors of a system Φ1 and Φ2

are non-orthogonal, the superposition during their decay can produce transient growth

in the norm of the vector f , that denotes their difference [118].

Transient energy growth

To measure the transient growth of a perturbation, a relation between the energy norm

‖ · ‖E and the standard (Euclideian) L2-norm ‖ · ‖2 is needed. For a vector this is given

by

E(q′f ) = ‖q′f‖E = 〈q′f , q′f 〉E = q′f
HQq′f

= q′f
HFHFq′f = 〈Fq′f ,Fq′f 〉2 = ‖Fq′f‖2

(2.43)

where Q is a weighting matrix that is positive definite and therefore has a Cholesky

decomposition as Q = FHF . In the incompressible regime, this norm is a direct mea-
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surement of the kinetic energy of the perturbation [13,119] something not as straightfor-

ward for compressible cases. In the case of the latter, the norm proposed by Mack [120]

and Chu [121] has been used in recent literature where compressible flows are ex-

amined [15, 122]. However, since there are no studies on transient growth in steady

turbulent flows to the authors knowledge, the norm used in other studies at similar

conditions [90] or ones that also deal with pseudospectra analysis [123] at similar flow

regimes is adapted herein [14,93]. This assumes Q = V where V is the volume matrix

from equation (2.26). The equivalent of equation (2.43) in the case of a matrix L is

given by

‖L‖E = max
q′f0

‖Lq′f‖E
‖q′f‖E

= max
q′f0

‖FLF−1q′f‖2
‖Fq′f‖2

= ‖FLF−1‖2 (2.44)

demonstrating that in the case of matrices, the Cholesky factor F relates the energy

norm to the L2-norm [7]. Having defined the energy norm, we arrive at the equation

for the gain function G(t) by substituting equation (2.42) into (2.40)

G(t) = max
q′f0

‖q′f (t)‖2
E

‖q′f0‖
2

E

= max
q′f0

‖q′f0e
Jt‖2

E

‖q′f0‖
2

E

= ‖eJt‖2E = ‖FΛF−1‖22 (2.45)

where

Λ = diag(e−iλt1 , e−iλt2 , ..., e−iλtn) (2.46)

The maximum gain optimised over all initial conditions for a given time t is obtained by

the square of the largest singular value, after the singular value decomposition (SVD) of

equation (2.45) [124, 125]. For a matrix C = FΛF−1 the singular value decomposition

has the form

CV = UΣ (2.47)

where V and U are unitary matrices and Σ is a diagonal matrix containing the singular

values in descending order, i.e. σ1 ≥ σ2 ≥ . . . σN and therefore the maximum gain is

given by σ1
2. Apart from the gain at each time of interest, the associated optimal tran-

sient growth modes, namely the optimal initial condition (denoted OIC) and optimal

response (denoted ORE), need to be obtained. These are given by extracting the prin-

cipal column vectors of V and U , respectively, and expressing them in the eigenvector

basis by the use of the Cholesky factor as

vOIC = Fv1 and uORE = Fu1 (2.48)
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In summary, to calculate the gain and the associated optimal transient growth modes

for a given time, the computational steps are as follows. Firstly, provided that an

eigenvalue decomposition of the Jacobian has been obtained (usually with some iterative

method), a Cholesky decomposition of the weighting matrix given by the inner product

definition is performed. In practice, this is achieved by performing an SVD once, using

the orthonormal (since they result from the Gram-Schmidt orthogonalization of the

Arnoldi method) eigenvectors from the eigendecomposition of the Jacobian along with

the weighting matrix. Since the latter is positive definite then that SVD simplifies to

the Cholesky decomposition. Secondly, by using the Cholesky factors, an SVD of the

matrix exponential is computed for each time of interest. Finally, the gain and the

optimal transient growth modes are obtained from the matrices of the factorization.

Computation of the matrix exponential

There are different approaches for the calculation of the matrix exponential [115, 116]

as part of the transient growth computation. The most straightforward approach,

would be to evaluate equation (6.1) for each point in time using time-stepping. In the

context of transient growth, the system is marched forward in time using the linear

operator J followed by a backwards in time integration using the adjoint J∗ until

convergence [126, 127]. While this method converges to the maximum G(t) for each

point in time, it is unknown when that maximum will occur. Therefore, even when

only the transient behaviour is sought, one has to integrate for long time intervals

multiple times. The benefit of avoiding matrix-forming methods is outweighed by the

computational time that also increases with the complexity of the flow and consequently

the method presented next is used in the present work. Details of a time-stepping

approach developed in this work but not implemented due to long running times can

be found in Appendix B. The eigenvalue decomposition of the matrix can be used for

the computation of the matrix exponential according to

eJt = eDΛD−1
= DeΛtD−1 (2.49)

where D is a unitary matrix containing the corresponding eigenvectors and Λ is given in

equation 2.46. In comparison to the time-stepping approach, this method allows for the

evaluation of multiple timesteps after an eigenvalue decomposition that is performed

once. Nevertheless, the definition of an appropriate subspace size requires increasing

the size until the addition of extra modes has a negligible effect on the gain output.

Furthermore, in the case of a large and sparse J it is straightforward to employ the

decomposition from equation 2.38 in order to create a smaller yet representative system

that can be solved with direct methods. The approximation to the matrix exponential
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using the Arnoldi decomposition can be written as

eJt ≈ QeHtQH = QUeRtU−1QH (2.50)

where U and R are the matrices of the Ritz eigenvectors and Ritz eigenvalues respec-

tively [118]. Nevertheless, when using software such as MATLAB or libraries like SciPy,

that are based on IRAM, to compute a subset of the eigenspectrum, the output obtained

is the eigenvalues and the associated right eigenvectors, instead of the orthonormal ba-

sis and the Hessenberg matrix i.e. the product QU and R instead of Q and H in

equation (2.50). This has a direct implication on the eigendecomposition of the matrix

in equation (2.49). Assume the eigendecomposition of a normal (or symmetric) matrix

A of the form A = DΛD−1. It is straightforward to deduce that the columns of D are

the right eigenvectors of A and the rows of D−1 are the left eigenvectors, respectively.

In that case, the right eigenvectors are sufficient to complete the decomposition, since

for such matrices D−1 = DT or D−1 = D∗ for complex eigenvectors, since the global

modes form an orthogonal basis. Conversely, this is not the case for nonnormal ma-

trices which have nonorthogonal eigenvectors. To overcome this difficulty, a dual basis

is introduced which is made with the inclusion of the adjoint modes [128]. Together

with the global modes these form a bi-orthogonal basis, where two vectors d and d′ that

represent a global and an adjoint mode, respectively, have the condition 〈di , dj ′〉 = δij .

In addition, it is known that the right eigenvectors of the adjoint matrix correspond to

the left eigenvectors of the original matrix and vice versa. Hence, if the complete set of

eigenvectors was to be used then the adjoint eigenvectors could also be computed by

inverting the square matrix of right eigenvectors or by computing the left eigenvectors

of the original matrix, apart from directly operating on the adjoint matrix. Herein,

since IRAM only computes a subset of the right eigenvectors which in return form a

rectangular matrix, one needs to operate on the adjoint matrix to be able to form the

bi-orthogonal basis. Therefore, to form the correct eigendecomposition with iterative

methods in equation (2.50), the term U−1QH is substituted with the transposed right

eigenvectors of J∗.

2.7 Coupled Aeroelastic Formulation

Structural dynamics and can be described by a mass-spring-damper model. The second

order differential equations of motion that govern this system are given by

M ẍ+Dẋ+Kx = fa(t) (2.51)

whereM ,D andK denote the mass, damping and stiffness matrices, respectively, and fa

is the generalised aerodynamic force vector. Since the structural coordinates x resulting
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from a finite element model (FEM) are in the order of several hundreds of thousands,

the structural behaviour used herein is modelled using a modal structural approach.

This is achieved by computing the eigenvalues and eigenvectors of equation (2.51)

while neglecting the damping and aerodynamic forcing terms. As a result, the physical

coordinates x of the linear structural model relate to the mode shapes and modal

amplitudes as

x(t) = Ξη(t) (2.52)

where Ξ = [ξ1, ξ2, . . . , ξm] is the matrix containing the m leading normal mode shapes

chosen based on frequency of physical relevance. Substituting equation (2.52) in (2.51)

and neglecting structural damping yields the equations of the structural system in

modal coordinates as

ΞTMΞη̈ +ΞTKΞη = ΞTfa (2.53)

Equation (2.53) can be rewritten as a first order ordinary differential equation as

dqs
dt

= −Rs(qs, qf ) (2.54)

where qs = [ηT , η̇T ]T . The structural residual vector Rs is

Rs(qs, qf ) =

 0 I

−M−1K 0

 qs +

 0

ΞTfa

 (2.55)

allowing the transformation of equation (2.54) into the frequency domain as

(Ass − iω∗I)q̂s = b̂s (2.56)

where the structural Jacobian matrix is defined as

Ass =

 0 I

−M−1K 0

 (2.57)

and b̂s = (0, ΞT f̂a)
T is the aerodynamic harmonic excitation projected onto the struc-

tural modes and M = ΞTMΞ, K = ΞTKΞ. If we consider that the structural excita-

tion in equation (2.26) is given by equation (2.54), then we obtain

dV qf
dt

= −Rf (qf , qs) (2.58)
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which when coupled with equation (2.26) yields

dV q

dt
= −R(q) (2.59)

where q = [qTf , q
T
s ]T is the state vector for both the aerodynamic and structural sys-

tem. The diagonal cell volume has been padded with an identity matrix for the modal

structural degrees of freedom, but the same symbol V is used for ease of notation. By

linearising around the equilibrium point using a Taylor expansion, we arrive at

V
dq

dt
+R(q) +

∂R

∂q
q = 0 (2.60)

where R(q) is the coupled steady state residual and the term q dV
dt is part of the coupled

Jacobian ∂R
∂q for brevity. By assuming harmonic response, equation (2.60) can be

transferred to the frequency domain, yielding

(
∂R

∂q
− iω∗V

)
q = b̂ (2.61)

where b̂ is the forcing term. Finally, matrix A can be written as

A =

∂Rf

∂qf

∂Rf

∂qs

∂Rs
∂qf

∂Rs
∂qs

 =

Aff Afs

Asf Ass

 (2.62)

where Aff and Ass are the fluid and structural Jacobians, respectively, and Asf and

Afs are coupling matrices. The coupled system matrix in equation 2.62 is arranged

in block matrix form, the dimensions of which are given by the number of unknowns

of Aff and Ass (nf + ns + 1). Consequently, the dimensions of Asf and Afs are such

so the matrices are conformable [129]. Matrix Afs illustrates the dependence of the

fluid residual on the structural unknowns and is , whereas matrix Asf describes how the

structure responds to changes in the flowfield by projecting the generalised aerodynamic

force onto the structural modes.

2.8 Practical Implementation Details

The finite-volume solver TAU [130], developed by the German Aerospace Centre (DLR)

and employed both in industry and academia, is used for the simulations presented

herein. The compressible, three-dimensional steady and unsteady RANS equations

are solved in TAU for unstructured or hybrid grids. Different turbulence models are
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available through the code, including one- and two-equation eddy viscosity models,

second-order closures such as the Reynolds stress transport model as well as LES and

DES models. Pre-processing, grid deformation and grid adaptation modules are also

included the package [131]. The pre-processing module is used for constructing a dual

grid of control volumes (cell-vertex scheme) from the initial grid which can be com-

posed of tetrahedral, prismatic, hexahedral or pyramidal elements, and to allow mesh

partitioning for parallel computations [132].

As mentioned earlier, the negative Spalart–Allmaras one-equation turbulence model

is used consistently for closure in the studies of this thesis (in the cases where fully tur-

bulent flow is assumed) and is discretised with a first-order upwind scheme. Previous

work [6,11,56,91] has shown that the shock buffet phenomenon is sensitive to the change

in eddy-viscosity levels that depend on the discretisation of the turbulence model and

the turbulence model variant (in particular the use of a compressibility correction to

the SA model [133]). Therefore, the current choice was selected as it has been shown in

previous simulations that it captures shock buffet unsteadiness more accurately com-

pared to a second-order scheme where shock-buffet was not present along with lower

amplitude lift and drag signals [6]. The compressibility correction mentioned has also

been added in previous work [11,44], but is not used herein. This correction decreases

the eddy-viscosity levels, which results in an earlier onset of the instability [134]. The

Green–Gauss theorem is used for reconstructing the exact gradients used for viscous

and source terms in the turbulence model. Regarding temporal discretisation, an im-

plicit backward Euler solver with lower-upper Symmetric–Gauss–Seidel iterations [135]

and local pseudo-time-stepping converges the non-linear flow equations to steady state.

Additionally, geometric multigrid on three grid levels is employed to accelerate con-

vergence. All steady solutions presented herein converged by at least ten orders of

magnitude.

Implementation details of the LFD system are discussed next. Since the formation

of the right-hand side in equation 2.30 using finite differences has been described, the

solution of the linearised system following the formation of the hand-differentiated

fluid Jacobian needs to be addressed. For the LFD analysis, the RANS equations (plus

turbulence model) are first discretised in space and then linearised about the steady-

state base flow. This approach, allows for the computation of the large but sparse

matrix even for complex test cases. Due to the large size of the system, a direct matrix

inversion method would require vast memory requirements, thus sparse iterative solvers

need to be employed. Herein, a block incomplete lower-upper (ILU) factorization with

zero fill-in preconditions the chosen Krylov sparse iterative linear solver; specifically a

generalized conjugate residual solver with deflated restarting (GCRO-DR) is used, since

it has demonstrated better performance than the generalised minimal residual approach
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Figure 2.2. Illustration of wing deformation due to synthetic torsion mode for an amplitude
factor of q0 = 10 for both aircraft test cases RBC12 (left) and CRM (right) with jig shape
(dark gray) and statically deformed wing.

(GMRES) commonly used [136]. This solver has been scrutinised previously both for

an aerofoil and a wing in edge-of-the-envelope flow conditions [110, 137]. For the LFD

results presented herein, the grid is deformed according to a synthetic torsion mode

shown in figure 2.2. The mode resembles a typical wing torsional deformation with the

axis of rotation located approximately at the quarter-chord line but the mode itself is

not based on a finite-element analysis of the actual wing structure. The deformation

of the wing is zero at the root while increasing linearly towards the wing tip [94]. The

maximum deflection is equal the amplitude factor q0, i.e. for q0 = 1 there will be a

twist angle of 1◦ at the wing tip. The forced sinusoidal pitching motion is defined as

q′(t) = q0 sin(ω∗t) (2.63)

The FlowSimulator environment [138] is used for the unsteady time-marching simu-

lations. This software enables computational fluid dynamics enhanced multidisciplinary

simulations on massively parallel computing systems while providing a plug-in environ-

ment where different computational fluid dynamics tools and developer scripts can be

utilised [139]. Specifically, in the case of the time-accurate harmonic forcing simula-

tions, the FS Forced Motion module is employed. This technique, prescribes an elastic,

time-dependent deformation of the wing (mode shape) in an unsteady CFD simulation,

without performing a fluid-structure coupling step [140]. It is commonly used to force

a test case using the shape of a known structural eigenmode at selected frequencies

and magnitudes, for a certain number of periods. However, the mode shape does not

necessarily need to result from a vibration analysis of a FEM model, such as the one

in figure 2.2. For the harmonic forcing study conducted herein, the same synthetic

torsion mode used for the LFD simulations was applied. The dual time-stepping com-
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Figure 2.3. Representative normal mode shapes from wind-off vibration analysis, with mass-
normalised eigenvectors scaled by a factor of 0.1 for visualisation purposes. Surface colours
describe modal deformation in z-direction.

bined with the second-order backward differentiation formula for the integration of the

aerodynamic equations employed in DLR-TAU is given by

R∗ = R(q,x, ẋ) +
3(V q)n+1 − 4(V q)n + (Vw)n−1

2∆t
(2.64)

where ∆t is the time step. The discrete control volumes are time-dependent observing

the geometric conservation law.

Finally, as mentioned in section 2.7, the structural deformations in the coupled

aeroelastic simulation rely on a modal approach where a structural model is constructed

by using an appropriate number of modes resulting from a vibration analysis of a FEM

model. These are selected accordingly to be able to capture all dominant structural

features such as first and second bending and torsion modes, tail modes and fuselage

bending. A vacuum analysis that was performed on the FEM of the CRM, obtained the

structural modes, 30 of which are kept for the aeroelastic study herein and are available

at the CRM website [141]. Usually, these modes are have symmetrical shapes, but in
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the present case, the different cut-outs made in each wing to fit various instrumentation

resulted in a small weight imbalance between both sides and therefore in anti-symmetric

structural modes at lower frequencies. Some representative modes and their frequencies

are shown in figure 2.3, where the mass-normalised eigenvectors have been scaled by a

factor of 0.1 for visualisation purposes. Generally, the coordinate systems describing

the structural and the aerodynamic system are not the same, since one results from

the FEM discretisation and the other from the CFD mesh points (x 6= xs). Thus, a

pre-processing step that interpolates the structural excitations Ξ onto the CFD surface

mesh points is required to create the coordinate connection required to solve the coupled

aeroelastic system in equation (2.59). Lastly, the coupled system is solved using a

subiteration level scheme for the data exchange between the aerodynamic and structural

system. Similar to the other time-marching simulations, the aerodynamic system is

solved using equation (2.64) although now this is followed with the update of the

structural system by using the Newmark-beta integration scheme [142].
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Chapter 3

Test Cases

In this chapter the test cases used in the present work are introduced. Geometry

and mesh size details are given alongside relevant experimental and numerical work

information pertaining to shock buffet studies on these cases. The aerofoil test case

is used in the transient growth study, whereas the half-wing models of the large civil

aircraft cases are used in the harmonic forcing and fluid-structure interaction studies.

Finally, the steady-states that are the starting point for all simulations and analyses

conducted herein are presented.

3.1 ONERA OAT15A Aerofoil

Supercritical aerofoils were developed to improve drag divergence Mach numbers while

maintaining acceptable performance of maximum lift and stall at low speeds [143]. The

shape of such aerofoils is characterised by a larger leading edge, a flat middle section

on the upper surface and highly cambered lower surface close to the trailing edge.

Specifically, the effect of the flat section is a weakening of the shock that results in

reduced wave drag [144].Additionally, the increased length of the flat section, allows for

a more gradual deceleration of the airflow. This results in a relatively isentropic decel-

eration that consequently minimises the energy losses associated with the shockwave

and further contributes to the reduction of wave drag [143]. The OAT15A supercritical

aerofoil shown in figure 3.1 is a geometry extensively studied both experimentally and

numerically. Specifically, wind tunnel tests have focused both on characterising the

shock-buffet phenomenon on the geometry [38, 145], using precision methods such as

high-speed schlieren cinematography and laser Doppler velocimetry alongside conven-
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tional equipment, as well as investigating the potential of both active and passive flow

control [146]. On the numerical side, various levels of turbulence modelling have been

employed, namely URANS [49,55,147], ZDES [55,145] and LES [42] along with studies

focusing on the stability and receptivity of shock buffet [14, 92]. The model, that was

tested in the S3Ch ONERA transonic wind tunnel [38], has a 12.3% thickness-to-chord

ratio, a span of 0.78 m and a chord of 0.23 m, resulting in an AR of approximately 3.4.

The thickness of the trailing edge is 0.5% of the chord. In the experiments, transition of

the boundary-layer was achieved by using a carborundum strip located at X/c = 0.07

on the upper and lower surfaces [38].

(a) (b)

Figure 3.1. Farfield view (a) with radius of 100 chord lengths and approximately 35000 points
and close-up (b) of the OAT15A aerofoil hybrid grid showing the structured mesh region close
to the surface.

The aerofoil has the typical characteristics of a supercritical geometry, with a larger

leading edge, a flat middle section on the upper surface and highly cambered lower

surface close to the trailing edge. The two-dimensional circular domain shown in fig-

ure 3.1(a) has a radius of 100 chord lengths and is discretised by approximately 35000

points. No-slip boundary condition is imposed at the viscous walls. The hybrid mesh

used, results in y+ < 1 in the structured boundary-layer region shown in figure 3.1(b)

whereas an unstructured mesh extends up to the farfield boundary. Although the wind

tunnel tests [38] were run for different combinations of Mach numbers and angles of

attack, the shock buffet conditions considered in numerical studies are for a Mach num-

ber of 0.73 and a Reynolds number of 3.2× 106. At these conditions, a spectral bump

first appears in the pressure fluctuations for an angle of attack of 3◦. The shock buffet

onset occurs for an incidence of 3.5◦, even though the spectral content of the instability

is evident when the angle of attack is at 3.25◦. At these conditions the shock oscillates

at a frequency of 69 Hz [14]. The base flow presented in figure 3.2 shows the lambda

pattern of the shock formed where the end of the supersonic region coincides with the

recirculation bubble.
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(a) (b)

Figure 3.2. Streamwise velocity field of the OAT15A base flow (a) and close-up of the lambda
shock (b), for buffet-onset angle of attack α = 3.5◦ at conditions: Re = 3.2× 106, M∞ = 0.73

3.2 RBC12 Model

The RBC12 half-model, is a wing-fuselage model wind-tunnel model, representative

of a typical commercial aircraft designed in the 1970/80s. The configuration has been

extensively used for the investigation of shock buffet, especially as part of the European

Clean Sky project BUCOLIC (BUffet COntroL of transonIC Wings) in the Aircraft

Research Association (ARA) Transonic Wind Tunnel (TWT). To assess the efficacy

Figure 3.3. Computer-aided design model of the RBC12 half-wing configuration.

of different instrumentation in predicting the instability onset, a variety of equipment

was used in the experimental campaigns including dynamic pressure sensitive paint

that provided a plethora of valuable information on the flow characteristics [77, 96].

Passive flow control has also been investigated for the RBC12 [148]. Numerically, scale-

resolving DDES simulations [97, 149] and RANS-based simulations [84] have shown

excellent agreement with experimental data. Studies examining the effect of Mach
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number on shock buffet [85] and the global stability of the phenomenon [94] have also

been carried out. The model has a quarter-chord sweep angle of 25◦, a reference area of

(a) Strain Gauge Response (b) Accelerometer Response

Figure 3.4. Wind-on frequency content of the structural response for the RBC12 wind tunnel
model, reproduced with permission and adapted from [4]. The dashed and dotted vertical
lines ( and ) indicate responses from two different accelerometers located at different
chordwise stations close to the wing tip.The first bending and first torsion modes are denoted
by the blue and the black arrow, respectively.

0.29592m2, a mean aerodynamic chord (MAC) of 0.27889m and a reference semi-span b

of 1.0846m, giving it an aspect ratio of 7.78. The model was mounted on a base plate of

0.019 m in thickness, something that is included in the semi-span length measurement

of 1.104 m. The full aircraft dimensions in relation to the wind tunnel model are scaled

by a factor of 17.5 and are shown in comparison to modern wide-body airlines in service

in table 3.1. The geometry used in the simulations, shown in figure 3.3, was obtained

from a combination of laser inspection and coordinate measurement machine (CMM)

inspection [77]. The resulting unstructured computational mesh has about 2.7 × 106

points, generated using the Solar mesh generator following industry accepted guidelines.

Far-field conditions are applied at a distance of 25 times the semi-span of the model

and the symmetry boundary condition is applied along the centre plane.

Table 3.1. Characteristics of test cases compared to modern wide-body airliners.

Dimension RBC12 CRM A330neo B777-300

Ref. Area, m2 181.2 389.76 363.10 427.80

Span m 38.6 59.23 58 60.90

Ref. Chord, m 4.9 7.06 7.26 8.75

25% Chord Sweep, ◦ 25 35 30 31.6

Aspect Ratio 7.78 9 9.26 8.67

Taper Ratio 0.25 0.275 0.251 0.149
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(a) (b)

Figure 3.5. Steady-state surface pressure coefficient with friction lines for (a) RBC12 at
α = 3◦ and (b) CRM at α = 3.7◦. The zero skin friction line is highlighted in red.

Amongst the different instrumentation placed on the model, strain gauge and ac-

celerometer measurements were used to define the structural frequencies of the model

both at design Mach number and wind-off conditions. At wind-off conditions, the first

bending mode was identified at 38 Hz, with higher frequency bending modes reported

at 125 and 155 Hz. Additionally, the first torsional modes were found at 328 Hz with

the higher frequency, predominantly torsional, modes at 414 and 530 Hz. Similar fre-

quencies to these are also obtained at design conditions for a Mach number of 0.8,

a Reynolds number (based on MAC) of 3.75 × 106 and an angle of attack of 0◦, as

shown in the power spectral density (PSD) graph in figure 3.4. Furthermore, a higher

harmonic of the first bending mode can be seen peak at 114 Hz as well as a small

peak at 152 Hz associated with the fan passing frequency [77]. At these conditions,

the shock buffet onset was reported at an angle of 3◦ [96]. The steady-state surface

pressure distribution with highlighted values of zero skin friction for α = 3◦ is shown

in figure 3.5(a). The separated area behind the shock front extends from the yehudi

break towards the wingtip. At these conditions, the lift coefficient (CL) is 0.57.

3.3 NASA Common Research Model

The NASA Common Research Model is a geometry that comes in various configura-

tions and it was developed with the aim to provide a common testbed for industrial

and academic research. These configurations range from variations in the wing geom-

etry, such as high-lift, high-speed or laminar flow wing, to variations in the aircraft

components, such as the inclusion of pylons and nacelles. It was first introduced as a

blind test-case at the 4th American Institute of Aeronautics and Astronautics (AIAA)

CFD Drag Prediction Workshop (DPW) and has since remained the focus test-case.
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Figure 3.6. Computer-aided design model of the NASA CRM wing-body and horizontal tail
configuration .

The large deviations of the 5th and 6th AIAA CFD DPW results from the experimen-

tal data were attributed to the exclusion of static deformation results. Therefore, to

improve simulation accuracy, the static deformations measured in the European Tran-

sonic Windtunnel (ETW) were accounted for in the CFD model used herein [8, 150].

Wind tunnel campaigns and numerical simulations have been carried out for both the

half-wing and full model versions of the aircraft, and an extensive list of the associated

publications can be found on the NASA website [151]. In addition, global stability

analysis [9, 95] and resolvent analysis [99] studies have also been conducted for the

CRM test case.The model wing has a quarter-chord sweep angle of 35◦, a reference

area of 0.28 m2, a mean aerodynamic chord (MAC) of 0.189 m and a reference semi-

span b of 0.793 m, giving it an aspect ratio of 9 [152]. The full aircraft dimensions in

relation to the wind tunnel model are scaled by a factor of 37.4 and their similarity

to the characteristics of modern airlines can be seen in table 3.1. The computational

mesh has about 6.2× 106 points, previously generated using the Solar mesh generator

just like the RBC12 and the hemispherical far-field boundary is located at a distance

of approximately 100 semi-spans from the body. Once mirrored with respect to the

fuselage centre plane, the full-span mesh, used in the aeroelastic study, is composed

of approximately 12 × 106 points. Even though the model was run at different condi-

tions in the ETW and the National Transonic Facility (NTF) wind-tunnel campaigns,

the tests concerning the investigation of shock buffet focused on Mach numbers ranging

from 0.25 to 0.87 and Reynolds numbers ranging from 2.9×106 to 30×106. For the sim-

ulation results presented herein, the focus is on a Mach number of 0.85 and a Reynolds

number (based on MAC) of 5× 106, conditions at which the shock buffet onset occurs

at an incidence of approximately 3.7◦. The steady-state surface pressure distribution

with highlighted values of zero skin friction for α = 3.7◦ is shown in figure 3.5(b). In
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contrast to the RBC12, the reverse-flow area behind the shock is smaller in size and

located more inboard towards the yehudi break. At these conditions, the CRM has a

lift coefficient (CL) of about 0.6.
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Chapter 4

Flow Response to Harmonic

Forcing

In this chapter, the phenomenon of shock buffet is investigated by examining the flow

response to harmonic forcing. Following the seminal work of Tijdeman [28], more re-

cent studies on aerofoils [63, 64, 69, 153–155] have demonstrated that valuable lessons

can be learned about shock buffet by examining the aeroelastic interactions of the

phenomenon therefore motivating the study presented herein. In the case of aerofoil

aeroelastic forcing, a ”lock-in” phenomenon occurs where the flow response becomes

fully synchronised with the excitation for certain combinations of excitation frequencies

and excitation amplitudes, something that has also been observed experimentally [37].

The present study aims to contribute to the understanding of the phenomenon mecha-

nisms by extending the effects of aeroelastic forcing to finite swept wings. Firstly, the

effect of harmonic forcing is analysed for the two wing designs by using a frequency

linearised approach, simultaneously demonstrating how different design philosophies

affect the flow physics of the phenomenon. This is achieved by imposing a small struc-

tural excitation over a range of frequencies for both geometries and analysing their

respective responses. The synthetic torsion mode, used consistently in this chapter for

the harmonic excitation, has been presented in Chapter 2. The two aircraft models

used, namely the RBC12 and the NASA Common Research Model, are representative

of a 1970s and a modern airliner respectively, and have been presented in the previ-

ous chapter. Secondly, time-accurate harmonic forcing simulations for larger excitation

amplitudes are carried out for the RBC12 for combinations of excitation frequencies

and amplitudes. A discrete Fourier transformation allows for the closer examination of

the frequency content of the resulting lift coefficient signal.
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4.1 Linearised Response

In the first part of this chapter, the structural excitation imposed has a small amplitude

and therefore the response is considered to be linear. The efficient solution of this

problem using the linearised frequency domain (LFD) solver implemented in the DLR-

TAU code allows for a sweep of excitation frequencies. In addition to the solution of the

linearised harmonically excited system, complementary eigenvalue computation results

are presented. Simulations are carried out for both pre and post-onset conditions.

For the RBC12, the focus is on a Mach number of 0.8 and a Reynolds number of

3.75 × 106 with angles of attack ranging from 2◦ to 3.01◦ whereas a Mach number

of 0.85 and a Reynolds number of 5 × 106 with angles of attack ranging from 3◦ to

3.6◦ are used for the NASA CRM. The second-order spatial discretisation uses the

standard central scheme with artificial dissipation. While scalar dissipation is used

for the RBC12, matrix dissipation is selected for the CRM. The steady-state solutions

which are the starting point for the LFD simulations converged by at least ten orders

of magnitude.The unsteady part is formed as a complex-valued amplitude function q̂

in three-dimensional space times a time-dependent exponential function eλt where t is

the time and λ is either simple harmonic (i.e. λ = iω with ω as angular frequency and i

as the imaginary unit) for forced excitation or damped harmonic (i.e. λ = σ + iω with

σ as growth rate) for the eigenvalue computation. The implicitly restarted Arnoldi

method [113], as implemented in the ARPACK library [156,157], is used for the latter

calculations. The baseline LFD solver is adapted to solve linear systems arising from

the shift-and-invert spectral transformation within the Arnoldi iterations [95].

4.1.1 Results

Figure 4.1 presents the variation of the lift coefficient magnitude and phase for different

angles of attack in pre-buffet conditions for a typical range of frequencies. The onset

angle of attack, that has been observed both numerically and experimentally, is α = 3◦

for the RBC12 and α = 3.7◦ for the NASA CRM. The incidences examined, start from

subcritical values, specifically α = 2◦ for the RBC12 and α = 3◦ for the CRM. At these

conditions, the flow does not demonstrate any oscillations. As the incidence is increased,

a first resonant peak appears for a Strouhal number of about 0.1 that reaches its local

maximum when approaching the onset angle of attack. In this low-frequency range, the

aerodynamic response leads the structural excitation in phase for increasing frequency

until the peak in magnitude is reached. Similar response behaviour has been reported

previously for aerofoils [158]. With buffet onset being imminent, minimal increases of

the angle of attack result in a distinct behaviour on both wings at higher frequencies,

as the structural excitation appears to excite the shock buffet dynamics. While the
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lower frequency peak remains mostly unaffected, a strong amplification is observed in

the higher frequency range with Strouhal numbers of about 0.3 to 0.7. Even though

the two wing models suggest distinct steady states, cf. the distributed pressure loads in

figure 3.5, the dynamic response of the integrated loads appear to be similar, supporting

the idea that a general shock buffet mechanism is excited. However, scrutinising the

distributed unsteady pressure distribution for the two wings in figure 4.2, regions of high

unsteady response correspond with the reverse flow regions in the underlying steady flow

field, and hence show differences accordingly. Note again that pre-buffet conditions are

considered, where such steady states exist. Additionally, the distributed aerodynamic

response due to the forced structural excitation, as seen in figure 4.2, shows spatial

similarities to the self-excited shock-buffet unsteadiness on the rigid wing, as seen in

figure 4.4. These distributed surface loads are discussed next.

Plots of the magnitude of the complex-valued unsteady surface pressure coefficient,

for both the low- and high-frequency behaviours mentioned above, are presented in

Figure 4.2. The low and high frequencies with the corresponding incidence shown are

St = 0.13 and 0.5 at α = 3.0◦ for the RBC12 and St = 0.09 and 0.38 at α = 3.6◦

for the CRM, respectively. The low-frequency behaviour has not been understood

entirely yet, or at least not conclusively analysed numerically, to the knowledge of

the author. From an experimental point of view, a couple of studies have shown an

interesting distinct flow behaviour of span-wise inboard propagation of waves along the

shock front in the same lower frequency range [74,148]. The present numerical studies

demonstrate that the aerodynamic response in the lower frequency range is dominated

by the shock wave dynamics and this behaviour is clearly noticeable for both models.

At higher frequencies, which are linked to the shock buffet instability, high values of

shock unsteadiness are more localised with a distinct flow pattern downstream at these

span locations. For the RBC12, this behaviour is located towards the wing tip region

corresponding to the most outboard region of reversed flow, cf. figure 3.5. For the

CRM, on the other hand, this zone is shifted further inboard halfway between wing tip

and crank.

Figures 4.3 and 4.4 present results from the eigenmode calculations. Three-

dimensional spatial structures of the amplitude function q̂ are visualised for both

wing cases in figure 4.4, corresponding to the right-most eigenvalue in figure 4.3 at

α = 3.0◦ for the RBC12 and α = 3.70◦ for the CRM, respectively. The figure shows

the three-dimensional mode shape of the real part of the x-momentum component (ρ̂u)

of the conservative field solution. Only the real part is shown since the imaginary

part is 90◦ out-of-phase to allow, in this case, the span-wise outboard and stream-wise

downstream propagation of the shock buffet cells. The figure also highlights how the

three-dimensional buffet mode originates at the wing near the outermost station of the
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(a) (b)

(c) (d)

Figure 4.1. Frequency response of lift coefficient (CL) showing magnitude and phase around
buffet onset angle of attack for the RBC12 (a),(c) and CRM (b),(d).

reverse flow region in the underlying steady flow field, as indicated earlier. Looking at

the spatial structures, and then at the migration of a set of eigenvalues towards the

imaginary axis in figure 4.3, it becomes evident that the high-frequency behaviour is

due to a bifurcation parameter, specifically angle of attack, above which an eigenvalue

crosses into the unstable half-plane. In this study we restrict ourselves to the subcrit-

ical pre-buffet regime [95]. Frequencies and growth rates are similar near shock buffet

onset for the two wing designs.

4.2 Time Accurate Response

In the second part of the harmonic forcing study, the time-accurate nonlinear equations

are solved, therefore allowing larger excitation amplitudes. Since the solution of such

systems is more computationally intensive compared to the previous linearised analysis,

the structural excitation is carried out for selected frequencies. The angles of attack for

the pre-onset and shock-buffet conditions are α = 3.0◦ and α = 3.1◦ respectively, with
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(a) (b)

(c) (d)

Figure 4.2. Magnitude of unsteady surface pressure coefficient for the RBC12 (a),(b) and
CRM (c),(d). Plots of low-frequency behaviour (RBC12 St = 0.13, CRM St = 0.1) and high-
frequency behaviour (RBC12 St = 0.5, CRM St = 0.38) can be found on the left and right,
respectively. The angles of attack are α = 3◦ for the RBC12 and α = 3.6◦ for the CRM.

(a) (b)

Figure 4.3. Eigenvalues of fluid Jacobian matrix for increasing angle of attack in the pre-
buffet regime for (a) RBC12 and (b) CRM.

a Mach number of 0.8 and a chord Reynolds number of 3.75 × 106. Specifically, eight

reduced frequencies ranging from ω∗ = 0.5 to ω∗ = 4.0 with 0.5 increments are used in

the pre-onset regime. Four of these frequencies, namely ω∗ = 0.5, 1.5, 2.5 and 3.5 are

further analysed at three different excitation amplitudes, namely q0 = 10−5, 10−3 and
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(a) (b)

(c) (d)

Figure 4.4. Spatial structure of the pre-onset three-dimensional buffet mode from global
stability analysis showing iso-contour of real part of x-momentum ρ̂u together with steady-
state surface pressure and zero skin friction line for RBC12 at α = 3◦ (a),(c) and CRM at
α = 3.7◦ (b),(d).

10−1, to investigate amplitude variation at steady conditions.The reduced frequencies

are related to the Strouhal number as ω∗ = 2πSt. While the main purpose of the pre-

onset simulations is for validation against the linearised results presented in the first

part of this chapter, and therefore their frequencies are chosen to span a representative

range, further scrutiny of their response gives useful insight in the shock buffet dy-

namics. Additionally, temporal convergence and mesh deformation checks are carried

out for these conditions. For the unsteady regime, the reduced frequencies are chosen

based on the shock buffet oscillation frequency. Since the latter is broadband in na-

ture with the largest amplitude response being located around ω∗ = 3.0, the excitation

frequencies are chosen to cover that range and are namely ω∗ = 2.5, 3.0 and 3.5. At

these conditions, a wider range of excitation amplitudes is used for the examination of

the unsteady flow response, namely q0 = 10−3, 10−2, 10−1, 1 and 5. At each time step,

the pseudo residual is iterated to an approximate steady state (residual order of 10−3)

before evaluating the next step. The physical time step follows from the excitation

frequency and the chosen number of steps per cycle. For the pre-onset simulations,

1024 steps per cycle are used whereas 2048 steps are used for the simulations in a
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(a) Lift coefficient response

Time (s)

C
L

0.007 0.0072 0.0074 0.0076

5.8278E01

5.8280E01

512 steps

1025 steps

2048 steps

(b) Zoom in between t = 0.007 s and t =
0.0076 s

Figure 4.5. Response of lift coefficient CL over time for an excitation amplitude q0 = 1.0 and
frequency ω∗ = 3.0 post buffet onset (α = 3.1◦) for different timesteps per cycle of harmonic
excitation. A closer view of the response is shown on the left.

globally unstable flow. The effect of using different number of timesteps per cycle in

post-onset conditions can be seen in figure 4.5. The dynamic pressure along with the

time variant pressure coefficient multiplied by the synthetic mode shape is referred to

as the generalised aerodynamic force. Combined with the lift coefficient, they make

up the integrated aerodynamic loads, used to project the surface flow solution onto

the structural mode. These are computed once the flow equations have converged at

the end of each physical time step. For the unsteady RANS simulations, together with

the convergence criterion on the norm of the density residual (10−3), a Cauchy crite-

rion is applied for the drag coefficient with error tolerance 10−9 with a minimum of

150 inner iterations per real time step. In addition, for the non-linear time-marching

simulations, different mesh deformation settings were used to permit the simulation

of larger excitation amplitudes. Volume mesh deformations resulting from structural

deformations are calculated applying the radial basis function (RBF) method. Radial

Basis Functions are functions that change with distance from a location and are used

in CFD mesh deformation as they can preserve the validity and quality of the mesh,

even for large displacements, without being affected by mesh connectivity [159]. In

the current case, thin plate spline interpolation is used to ensure smooth deformations

even for the small wing deflections close to the fuselage in comparison to the overall

larger deflection towards the wing tip. RBF requires the definition, amongst other

parameters, of weighting radii. In the area defined by the full weight radius r1, full

deformation is applied, represented by a weighting of 1. The zero weight radius r2

denotes a larger distance containing r1. Within this radius, along the distance r2 - r1,

the deformation weighting is linearly blended to the flow field from 1 to 0. The effect of

the RBF settings, specifically different weighting radii, on the lift coefficient response

is negligible, as shown for representative case in figure 4.6.
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Figure 4.6. Response of lift coefficient CL over time for an excitation amplitude q0 = 1.0 and
frequency ω∗ = 3.0 from simulations using different mesh deformation settings for radii r1 and
r2.

4.2.1 Validation of Results

Unsteady time-marching results for different excitation frequencies for an amplitude

factor of q0 = 0.001 at pre-onset conditions computed using the FlowSimulator pack-

age of DLR-TAU were compared with the LFD results presented earlier for validation.

Figure 4.9(a) shows the magnitude of the lift coefficient, |CL|, at the respective funda-

mental frequencies of the excitation obtained from a discrete Fourier transform on the

lift signal. Comparison of the results obtained from time-marching simulations with

the LFD results shows that the two methods are in excellent agreement. The frequency

response of the lift coefficient magnitude, calculated using the LFD method, shows a

low frequency resonant peak between ω∗ = 0.4 and 1.6 along with higher frequency

wiggles between ω∗ = 2.6 and 3.8. This behaviour is also found for the lower amplitude

content from the time dependent simulations at four frequencies, shown in figure 4.9(b).

There it can be seen that at pre-onset a lower frequency bump in the same range as the

LFD reasonant peak is present, something that is consistent for all forcing frequencies.

This shows that apart from forcing frequencies close to the buffet range around ω∗ = 3,

lower frequencies can excite buffet dynamics, something that agrees with the behaviour

observed in previous studies [94].

4.2.2 Pre-onset Conditions

The simulations in pre-onset conditions examine the effect of the excitation amplitude

in a globally stable flow. Figure 4.7 shows the lift coefficient magnitude normalised

by excitation amplitude as a function of amplitude factor, specifically q0 = 10−5, 10−3
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Figure 4.7. Comparison of lift coefficient magnitude from LFD results with time-marching
simulations, normalised by excitation amplitude for amplitude factors q0 = 10−5, 10−3 and 10−1

and different excitation frequencies ω∗.

and 10−1, at four chosen frequencies. The frequency response from the time-marching

simulations for the range of different q0 agrees nicely with the LFD results. Neverthe-

less, errors that arise from the iterative numerical scheme result in a higher magnitude

for the lowest amplitude factor of q0 = 10−5 as can be seen for ω∗ = 0.5, demonstrat-

ing that tighter convergence tolerances would be required at this excitation amplitude

factor. Additionally, it can be seen that best agreement is obtained for an amplitude

factor of q0 = 10−3. Figure 4.8 shows the corresponding sum of the higher harmonics

of the fundamental excitation frequency over time periods. As the frequency increases

towards the typical shock-buffet range, located around ω∗ = 3, higher harmonics of

similar magnitude are excited for all excitation amplitudes. The summary of higher

harmonics represents the amount of distortion present in the response of a system

forced at a certain frequency. The distortion stems from the most dominant harmonic

components whose frequency is a multiple of the fundamental frequency, and therefore

the decreasing magnitude of their sum directly demonstrates that the system response
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Figure 4.8. Comparison of the sum of higher harmonics of the excitation frequency over
computational cycles.

settles around the fundamental forcing frequency. It is here worth pointing out that

more iterations are required for the response to settle as we get closer to the shock-

buffet range, even for small excitation amplitudes, since the system is forced close to

the frequency of the imminent, and therefore weakly damped, unsteady response. Due

to the computational cost of the simulations, a compromise between the highest accu-

racy and increasing computational cost was aimed for. The chosen simulation setup is

such a robust compromise.

4.2.3 Buffeting Flow Conditions

The unsteady response to harmonic excitation, while the flow is globally unstable ex-

hibiting shock buffet, for angles of attack higher than 3◦ is discussed next. Figure 4.10

shows the response of the lift coefficient following a harmonic forcing with increas-

ing amplitude factor q0. The left column presents the time histories of the raw data,
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Figure 4.9. Magnitude of unsteady lift coefficient CL from Fourier analysis of time-domain
(TD) simulations at pre-onset conditions at different excitation frequencies for an amplitude
factor q0 = 0.001. The solid line represents unsteady lift results computed previously using
RANS LFD simulations. The amplitude peaks at the respective fundamental frequencies for
different excitation frequencies are shown in (a) while (b) shows a closer view of the additional
lower amplitude frequency content.

whereas the right column gives processed results, with the lift response scaled by q0 and

the time normalised by the period of oscillation. For q0 = 0.001 the response follows

that of the static shock-buffet simulation which in this case is the lift variation due

to the shock-buffet unsteadiness shown in figure 4.10(a). With increasing amplitude

factor, the lift response starts desynchronising from the buffet dynamics and follows

the structural excitation instead. Initial synchronisation can be seen in figure 4.10(b)

while distinctly different response compared to the static simulation signal is evident

in figure 4.10(c). For the largest amplitude factors, q0 = 1.0 and 5.0, the response is

fully aligned with the forcing, as can be clearly seen in the scaled results.

Discrete Fourier analysis of the unsteady lift coefficient returns the frequency con-

tent for each combination of forcing amplitude factor and frequency. In the left column

of figure 4.11, the frequency content of the lift coefficient (specifically its magnitude) for

fixed amplitudes in increasing order is shown. It can be seen that for the two lower am-

plitude factors, q0 = 0.001 and 0.01, the structural excitation increases the amplitude

response of the existing buffet dynamics as seen by the strong similarity in frequency

content with the static simulation results. As the amplitude factor is increased to

0.1, peaks at the respective excitation frequencies are present. Similarly as before, the

underlying unsteady content is excited to higher amplitudes when compared with the

static signal. As we further increase to an amplitude factor of q0 = 1.0, the peaks

at the respective excitation frequencies become more distinct and larger in magnitude

whereas the amplitude of the unsteady content that is excited has the same magnitude

as for q0 = 0.1. The same behaviour follows for the largest amplitude factor of 5.0,

except that additional peaks at the higher harmonics of the excitation frequencies are
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Figure 4.10. Response of lift coefficient CL to harmonic excitation over time (left column) and
corresponding lift coefficient normalised by excitation amplitude over periods (right column) at
different excitation frequencies at α = 3.1◦.
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Figure 4.11. Frequency response of lift coefficient CL to harmonic excitation (left column) and
corresponding frequency response of lift coefficient normalised by excitation amplitude (right
column) at α = 3.1◦
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present compared to q0 = 1.0. In addition, the amplitude of the buffet content that

is excited increases in magnitude. Fourier analysis of the scaled results allows similar

conclusions. The peaks at the excitation frequencies approximate the dynamic deriva-

tives for q0 ≥ 0.1, while the overall level of unsteadiness relative to the excitation at the

other (non-excited) frequencies seems to be reduced with increasing forcing amplitude.

Lissajous [160] curves are commonly used to visualise the difference in the angular

frequency and the phase of two simple harmonic motions, which herein are given by

the harmonic excitation and the response, respectively. Specifically, for two signals

where the ratio of their frequencies is irrational the curve will not retrace its own path

and conversely, the curve will repeat itself if this ratio is rational [161]. This ratio also

defines the number of lobes in the curve, therefore when the frequencies are matching

(ratio of 1), the resulting curve is an ellipse. Indeed, in figure 4.12, it can be seen that

for small amplitude excitation factors (q0 ≤ 0.01) the curve formed by the response

of the lift coefficient does not retrace itself since it follows the broadband frequency

response of shock buffet. A transitional stage is observed for an amplitude factor of

q0 = 0.1 and an elliptical curve can be seen for the two largest amplitude factors q0 = 1

and 5 where the response follows the excitation. In addition, the eccentricity of the

elliptical curve gives information about the phase difference of the two signals, which

for the response of all excitation frequencies is π
4 .

Figures 4.13 and 4.14 show contours of the instantaneous surface pressure coeffi-

cient along a harmonic excitation cycle. The surface friction coefficient isolines help

visualise the areas of separated flow. Since the qualitative behaviour between the dif-

ferent forcing frequencies appears similar, a representative case for a reduced excitation

frequency of ω∗ = 3.0 is shown for two different amplitude factors of q0 = 0.01 and 1.

These were chosen following the distinctly different frequency content responses seen

in figures 4.11(c) and 4.11(d). Firstly, it can be seen that the unsteadiness location

agrees both with the earlier LFD and eigenvalue analysis results. Secondly, for the

lowest amplitude factor, the extent of the shockwave oscillation in the streamwise di-

rection is smaller compared to the large amplitude factor case. Finally, for the smallest

amplitude factor, the separated area observed for a steady state appears to remain

constant in size while intermittent outboard convection of separated areas is observed.

This results from the vortex shedding emanating from the location of the instability.

A similar behaviour is observed for the largest amplitude factor, although in that case,

the separated area is smaller than the one observed for a steady state and the vortex

shedding causes larger separation areas moving towards the wingtip.
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Figure 4.12. Lissajous plots for lift coefficient response over structural excitation q(t) =
q0 sin(ω∗t) for ω∗ = 2.5 (left column), ω∗ = 3.0 (middle column) and ω∗ = 3.5 (right column)
at α = 3.1◦.

59



Figure 4.13. Time-accurate computed surface CP for six timesteps over one cycle of harmonic
excitation for an amplitude factor of q0 = 0.01 and a reduced frequency of ω∗ = 3.0. Specifically
snapshots at beggining of cycle, 25% of cycle, 37.5% of cycle, 50% of cycle, 75% of cycle and
87.5% of cycle. The CF isolines indicate the separated area.
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Figure 4.14. Time-accurate computed surface CP for six timesteps over one cycle of harmonic
excitation for an amplitude factor of q0 = 1.0 and a reduced frequency of ω∗ = 3.0. Specifically
snapshots at beggining of cycle, 25% of cycle, 37.5% of cycle, 50% of cycle, 75% of cycle and
87.5% of cycle. The CF isolines indicate the separated area.
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4.3 Summary of Harmonic Forcing Study

In this chapter the response of the flow to harmonic forcing using a synthetic torsion

mode was examined for both pre-onset conditions and conditions where shock buffet

exists using both linearised and time-accurate nonlinear methods. In the first part,

a time-linearised numerical study of the transonic edge-of-the-envelope flow over two

large civil aircraft wing models was presented. The purpose of this study was twofold.

Firstly, to see how modern wing design has affected the phenomenon of shock buffet

compared to older designs and secondly to draw further conclusions on the underlying

physical mechanisms of shock buffet. This was achieved by performing a sweep of

excitation frequencies covering the relevant range of frequencies to observe the frequency

response behaviour of the integrated aerodynamic coefficients close to buffet onset. In

addition to the results regarding the corresponding steady and unsteady distributed

loads, pre-buffet global stability results, specifically emerging distinct eigenvalues and

spatial structures of right-most eigenvalues were presented briefly and linked to the

insight gained from the forced excitation simulations. RANS simulations revealed both

similar and distinct characteristics of steady and unsteady flow features for the two

wing models simulated at the respective design Mach numbers. The responses of the

integrated aerodynamic loads for the two models show similar patterns. A low frequency

resonant peak with a distinct phase lead of the aerodynamic coefficient with regard to

the structural excitation is observed that reaches its local maximum as the angle of

attack is increased. For the high-frequency behaviour, the structural excitation close to

the buffet onset angle of attack seems to excite an absolute instability. Plots of unsteady

distributed loads on the other hand correspond with the differences in steady flow field

with an impact on the span-wise origin of the instability. The dynamic response of the

linearised aerodynamic coefficients for high frequencies in combination with the three-

dimensional structure of the pre-buffet mode and the migration of eigenvalues towards

the unsteady half-plane suggests that incipient shock buffet can be treated as a linear

stability problem, something that has been recently confirmed [95].

In the second part of the chapter, the harmonic forcing is extended to the non-

linear regime, focusing on selected frequencies and a range of amplitude factors for the

RBC12 test case. For a pre-buffet flow, results produced from time-domain simulations

at different excitation frequencies are compared with LFD results from previous studies.

Overall good agreement is found in predicting the dynamics derivatives. The weakly

damped modal behaviour of shock buffet close to onset is translated into increased

iteration counts for the response to converge to the periodic state. For the shock-buffet

flow conditions, the wing is excited around the typical buffet frequencies. A comparison

of the various lift responses showed that for lower amplitude forcing, shock buffet

dominates the dynamics, whereas the aerodynamic response follows the excitation with
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increasing forcing amplitude. By analysing the frequency content of the aforementioned

responses it is revealed that lower frequency buffet content is present even for the

larger amplitude factors where the lift coefficient response tracks that of the structural

excitation. Instantaneous surface pressure coefficient snapshots at different stages of

the excitation cycle reveal that the intermittent separation already present at shock

buffet conditions increases in size for larger excitation amplitude factors accompanied

by larger streamwise displacement of the shock at the region where the instability is

located.

To summarize, the conclusions that can be drawn for shock buffet by imposing a

harmonic excitation on the steady and unsteady flow are as follows. Firstly, different

steady-states demonstrate similar underlying flow mechanisms, hinting the modal na-

ture of the phenomenon, something that is further supported by the eigenvalue analysis

of the fluid Jacobian and the weakly damped behaviour close to onset. Secondly, even

though the time-accurate response of the lift coefficient appears to be synchronised

with that of the excitation, a closer scrutiny of the frequency content reveals a different

behaviour. While the high frequency broadband response of the phenomenon, that is

associated with the unstable eigenvalue, is shifted to the excitation frequency above

a certain amplitude factor threshold, the low frequency content located in the range

of the resonant peak from the LFD analysis remains unaffected. Similar studies that

focused on the harmonic excitation of aerofoils in transonic buffeting flows [63,64,153]

demonstrated a complete lock-in of the shock buffet oscillation frequency to that of the

excitation frequency for certain combinations of frequencies and excitation amplitudes.

This absence of such lock-in in the case of harmonically excited wings presented herein

further distinguishes two and three-dimensional shock buffet.
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Chapter 5

Fluid-Structure Interaction

In this chapter, the interaction of transonic buffet with wing vibration is further inves-

tigated. The effect of aeroelastic coupling on the shock buffet dynamics is scrutinised

by a fluid-structure interaction simulation using the NASA Common Research Model.

Even though the majority of work dealing with shock-buffet on finite wings focuses on

the analysis of the aerodynamics of the phenomenon on rigid geometries, real aircraft

wings are flexible structures thus their interaction with the unsteady loads motivates

such a multi-disciplinary study. A recent global stability analysis of the coupled sys-

tem has identified unstable structural modes in addition to the unstable fluid modes for

the conditions investigated in the current work [9]. Herein, two simulations, namely,

a fluid-structure interaction simulation and an unsteady RANS simulation (fluid-only)

are conducted at the same flow conditions to allow for direct comparison of the results.

Steady-state pressure distribution and wing deformation is compared with experimental

results. Power spectral density is used to represent the distribution of signal frequency

components of the resulting lift coefficient signal whereas a discrete Fourier transfor-

mation allows for the closer examination of the frequency content for the structural

modes response.

5.1 Numerical Setup

For the fluid-only unsteady simulation (starting from the static aeroelastic solution, de-

scribed below, and imposing the frozen geometry at the equilibrium point), Courant–

Friedrichs–Lewy (CFL) numbers of 20 for the finest grid level and 5 for the coarser

grid levels are chosen. A physical time-step size of ∆t = 2 µs was applied, sufficient
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for the expected frequencies in the dynamic system. Typically, a convective time for

the simulation can be defined by considering the ratio between a characteristic length

(herein the aerodynamic mean chord) and a characteristic velocity (herein reference

velocity). In the present case, the convective time is around 7× 10−4, which is consid-

erably higher than the chosen time-step. The total physical time simulated is 0.81 s,

something that is analogous to about 50 to 60 buffet cycles. The aerodynamic state

is then evaluated for each real time step by iterating the pseudo residual to a steady

state with a minimum of 50 inner iterations per time step and a relative Cauchy con-

vergence criterion of 10−8 on the drag coefficient. For the static aeroelastic simulation

that is performed to obtain the wing deformation by balancing the aerodynamic loads

according to the given conditions, specifically solving ΞTKΞq = ΞTfa, both fluid and

structural system are converged to an equilibrium in a maximum of 40 outer coupling

iterations, with up to 100 iterations of the flow solver per outer iteration. This solu-

tion is used as the starting point for the dynamic fluid-structure coupled simulation.

For each real time step, up to five coupling iterations are allowed each with 50 inner

iterations of the flow solver and the Newmark-beta integration scheme applied for the

structural update. Convergence is assessed based on the norm of the relative change

in the generalised aerodynamic force vector between iterations. The tolerance is set to

10−3 and a minimum of three coupling iterations is always performed. Consistent with

the fluid-only simulation, a physical time-step size of ∆t = 2 µs was chosen. Following

previous work [95, 162], the focus in this study is on a free-stream Mach number of

0.85 and the Reynolds number (based on the mean aerodynamic chord) is 5× 106. For

the purpose of converting frequencies to and from non-dimensional form, the reference

velocity is stated as 281.5 ms−1. The focus angle of attack herein is the supercriti-

cal α = 3.75◦. Reynolds-averaged Navier–Stokes simulations on a rigid (yet statically

deformed according to data from the underlying test campaign in the European Tran-

sonic Windtunnel) geometry have shown that self-sustained flow unsteadiness occurred

for angles of attack above (and including) α = 3.7◦. This unsteadiness was related to

a global instability through an eigenvalue crossing into the unstable half plane for this

critical angle of attack at a Strouhal number of approximately St = 0.39 (correspond-

ing to a frequency of 580 Hz) [95]. The wind-off structural frequencies of the normal

modes retained for the coupled simulation cover a range of 40 Hz to 680 Hz. For the

highest structural mode, the chosen time-step size of ∆t = 2 µs gives more than 700

physical time steps per oscillation cycle. Lastly, a grid convergence study is performed

by conducting a LFD frequency sweep for three different grid sizes and is shown in

figure 5.1. The grid used in the simulations was created by mirroring a half-model

mesh of approximately 6× 106 points and therefore consists of approximately 12× 106

points.
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Figure 5.1. Grid convergence for the CRM half-wing model showing magnitude of lift coeffi-
cient (CL) for a LFD analysis frequency sweep. The coarse, medium and fine denote mesh sizes
of 3× 106, 6× 106 and 8× 106 points, respectively.

5.2 Validation with Experimental Data

The results from the static deformation simulation are compared with measurements

from the wind-tunnel campaign, including deformation and pressure data. Figure 5.2

shows deformation data, specifically wing bending and twist taken at 50% local chord

along the non-dimensional span coordinate η (made dimensionless using the semi-span

length), comparing experimental data, using stereo pattern tracking via markers dis-

tributed on the wing surface, and numerical data from both the static and dynamic

aeroelastic simulations, whereby the latter are the time-averaged values from the non-

linear regime of the signal (to be discussed below). Note that the experiment measured

the deformation at angles of attack α = 3.0◦ and 4.0◦, hence interpolation was required

as described in [8]. Three observations can easily be made. First, the numerical results

reveal a minor asymmetry between the port and starboard wing, effectively resulting

from the high-fidelity finite-element model of the actual wind-tunnel geometry which

includes various details of asymmetric cut-outs for accommodating the instrumenta-

tion, etc. (note the subtle surface features in figure 2.3 in this regard). Second, there

Figure 5.2. Bending and twist deformation plots at α = 3.75◦, comparing data from sim-
ulation and wind-tunnel measurements in European Transonic Windtunnel (ETW) for eleven
non-dimensional spanwise stations η on both port and starboard wings. Experimental data
were interpolated from angles of attack α = 3.0◦ and 4.0◦ [8].
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Figure 5.3. Surface pressure coefficient Cp at α = 3.75◦, comparing simulation and wind-
tunnel test results for nine spanwise stations of starboard wing. Fluid-only and fluid-structure
interaction (FSI) data are time-averaged signals from non-linear regime.

are clear differences between the static and time-averaged dynamic deformation. Third,

the time-averaged dynamic deformation of the simulation agrees better with the exper-

imental data overall, in particular for the port wing, which makes sense in that also the

experimental data relate to some mean deformation. Figure 5.3 describes the corre-

sponding surface pressure coefficient Cp at nine spanwise stations. The numerical data

include results from both time-averaged fluid-only and fluid-structure interaction simu-

lations. Again three observations can easily be made. First, the experimental pressure

sensors are rather sparse in the mid semi-span stations. This has been discussed pre-

viously [95,163]. Second, the differences in the time-averaged pressures from the fluid-

only and fluid-structure coupled simulation are rather small, almost indistinguishable,

which does not seem unreasonable considering the proximity of the simulations to the

shock-buffet onset angle of attack. Third, while the level of agreement between simula-

tion and experiment is acceptable overall, discrepancies are also noticeable, particularly

for the stations outboard of approximately η = 0.603. As demonstrated in [95], this

is the region where the shock-buffet unsteadiness was located, suggesting that better

simulations, e.g. through more advanced turbulence modelling and eddy-resolving ap-

proaches, are needed in general. Having said this, these simulations are on a par with

various other state-of-the-art solvers [163].
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Figure 5.4. Standard deviation of surface pressure coefficient for rigid (yet statically deformed)
(on the left) and flexible wing (right). Both wings depict the starboard wing (whereby the rigid
wing has been mirrored for visualisation purposes).

5.3 Results

Figure 5.4 shows the standard deviation of the surface pressure coefficient. The figure

presents the results on the starboard wing for both the fluid-only and fluid-structure

coupled simulations. The fluid-only data have been mirrored for visualisation purposes

only. High levels of an outboard-running (identified from instantaneous solution snap-

shots) shock unsteadiness can be observed outboard of approximately 60% semi-span.

Fluctuations in the shear layer downstream of the shock front are obvious between

approximately 60% and 80% semi-span, coinciding both with the highest fluctuation

levels along the shock front in the figure and the coherent flow structures of shock buffet

based on unstable global modes described in [9, 95]. Overall, the two simulations give

similar spatial extent of flow activity with some subtle differences in the detail.

Figure 5.5 presents the time history of the lift and drag coefficient for both simu-

lations along with the power spectral density estimates of the lift coefficient for both

the linear and non-linear part of the signal. The fluid-only simulation was started

from the deeply converged static aeroelastic solution with the statically deformed air-

craft geometry kept frozen. During the initial linear stage (up until approximately

0.015 s), the integrated coefficients appear to be independent of the structural degrees-

of-freedom, specifically the signals of fluid-only and fluid-structure coupled simulations

are very similar, and effectively follow the shock-buffet dynamics as described by the

dominating global instability. Indeed, this initial growth of the lift coefficient in the

fluid-structure coupled simulation, compared with the signal reconstructed from the

leading unstable global modes identified in [9], can be found on the left in figure 5.6.

Note that the non-linear time-marching solution will start deviating from the flow-

field reconstruction based on a linear eigenmode, when the amplitudes exceed some
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Figure 5.5. Time history of unsteady lift (left) and drag coefficient (right) for both fluid-
structure interaction (FSI) and fluid-only simulations and power spectral density (PSD) over
Strouhal number for non-linear part (> 0.0305 s) of lift coefficient (middle).

case-dependent threshold. A similar agreement was found between the time-accurate

fluid-only simulation and corresponding signal reconstructed from the global modes.

In fact, the entire coupled fluid-structure system initially responds to the aerodynamic

global instability, which effectively agrees with the classical aeroelastic approach when

dealing with self-excited and self-sustained flow unsteadiness, i.e. to regard the aerody-

namic forcing function independent of the structural motion. The corresponding struc-

tural response is visualised for mode 20, arbitrarily chosen as a representative example,

showing the modal amplitude factor, q(t), of that mode on the right in figure 5.6. The

same behaviour is observed in all structural modes, as can partly be seen in figure 5.7,

including the first bending modes even though not visible therein due to the strong

non-linear signal.Returning to figure 5.5, the non-linear part of the signal, here taken

for time greater than 0.03 s, gives clear differences when including the flexible struc-

ture. First, the fluid-structure coupled solution results in lower-amplitude and more

irregular instantaneous oscillations of the integrated coefficients. Second, the coupled

results, besides the higher-frequency content, also reveal a low-frequency oscillation,

possibly related to the dominant wing-bending deformation still present in the signal

as visualised in figure 5.7. Third, the lift coefficient of the coupled simulation describes

a slightly increased time-averaged response compared with the fluid-only simulation,

as does the drag coefficient. The corresponding power spectral density estimates of

the lift coefficient (with the corresponding frequency content for the drag coefficient

appearing very similar) show strong peaks around the shock-buffet frequency range, as

predicted by the global stability analyses [9, 95], and the first harmonic thereof. The

fluid-structure coupled solution also gives a strong frequency activity, on a par with

the magnitude of the shock-buffet peak, around the lowest structural modes.

Time histories of modal structural amplitudes for various different modes, corre-

sponding to the modal shapes shown in figure 2.3, are presented in figure 5.7. Impor-

tantly, all structural modes that have been found to be unstable from the aeroelastic

global stability analysis [9] are included, specifically modes 19, 20, 21, 27 and 28. The

linear part of the signals has already been discussed and the shock-buffet dynamics drive

the response. Concerning the (more visible) non-linear part and from the unsteady sig-

nals shown in the figure, it is evident that the lower-frequency structural modes show
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Figure 5.6. Time response of lift coefficient for the coupled simulation (left) and modal
amplitude of Mode 20 (right) along with signal based on leading unstable eigenvalue from
global instability analysis in [9].

Figure 5.7. Modal amplitude response for a few select modes of interest. The wind-off
structural frequency of each mode is indicated. Modes 19, 20, 21, 27 and 28 have been found
to be unstable following the global stability analysis of [9].

little high-frequency content. The results of the characteristic higher-frequency shock-

buffet forcing can be observed in the structural response for modes higher than, and

including, mode 9 with a wind-off structural frequency of fn ≥ 150.14 Hz (correspond-

ing to a Strouhal number of approximately St = 0.1). In combination with figure 5.8,

which presents the frequency content of the modal structural amplitudes, the time-

domain signals reveal some additional interesting features. In particular, modes 27 and
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Figure 5.8. Discrete Fourier transforms (DFT) of modal amplitudes of selected structural
modes of interest for both linear and non-linear part of signal. Linear and non-linear limits
of the time signal are considered at t ≤ 0.015 s and t ≥ 0.03 s, respectively. The frequency
resolution for the linear and non-linear part is approximately ∆St = 0.03 and 0.01, respectively.
Vertical lines describe wind-off structural frequency, denoted fn, and frequency of leading global
shock-buffet mode (taken from [9]), denoted SB.

28, which were found to be strongly coupled with a marginally unstable fluid mode

(indeed, including the flexible wing structure destabilised the otherwise stable fluid

mode in the first place) seem to oscillate at a single frequency. This is confirmed

in figure 5.8 through the frequency content. The remaining structural modes, besides

those with lowest wind-off frequencies where the vibration close to structural eigenmode

dominates, all suggest more than one dominant frequency in their response. Overall,

irregular limit-cycle oscillations can be observed in most modal amplitudes, hinting

at the intense structural buffeting response of the wind-tunnel model at those flow

conditions.

Figure 5.8 shows the frequency content of the modal structural amplitudes for each

of the selected representative modes. The figure gives results for both the linear and

72



non-linear part of the signal. Vertical lines indicate the Strouhal numbers of the respec-

tive wind-off structural frequencies (denoted fn) and the frequency of the shock-buffet

mode (denoted SB), as predicted by global stability analysis of the coupled system.

For the linear part, the signals show a single pronounced peak around the shock-buffet

frequency. The relatively smaller number of time-steps of the linear part, compared to

the longer signal of the nonlinear response, results in a wider frequency peak for the

linear response.For the lower-frequency structural modes, activity can also be noted

around the respective wind-off frequencies, which seems to be an artefact of choosing

an appropriate time interval since the structural response will eventually kick in. A

different behaviour is revealed for the non-linear part altogether. Starting at mode 1

from the structural system, a single peak near its natural frequency is observed. As

the structural frequencies increase, a mild peak around the shock-buffet frequency first

appears for mode 5 while becoming more pronounced for modes 9 and above. A single

strong peak near the shock-buffet frequency can be seen for the two highest frequency

modes 27 and 28, whose wind-off frequencies are close to that of the flow instability.

In addition to the responses related to either wind-off modal vibration or shock buffet,

a relatively large response at the first bending modes can also be observed for most

modes.

The instantaneous steady surface pressure plots demonstrate the flow behaviour

over one cycle at the frequency of the global instability. The latter is calculated to

be 0.00168 s using the frequency of the global instability (St ≈ 0.4). In both figures

5.10 and 5.9, eight timesteps over one period from 0.0600 s to 0.0616 s in steps of

0.0002 s are shown, making the first and last subfigures of each plot showing the same

point of one cycle. Figure 5.9 gives the surface CP along with isolines that mark

CF reversal and therefore enclose the separated areas. The contours reveal a typical

transonic pressure distribution where the low pressure supersonic pocket of air is formed

from the leading edge and is terminated with an abrupt pressure increase at the shock

wave. The shock front moves in the chordwise direction throughout the cycle. This

can be observed better by focusing on the separated area outboard of the yehudi break

which grows in area, reaching the largest separated area for t = 0.0610s. At this point

the shock front of the large separated area is the closest to the leading edge before

the area breaking into smaller separated pockets that travel outboard and in return

moving the shock front towards the leading edge again. Figure 5.10 shows contours

of CP
′ = CP − CPmean. The alternating pressure along the shockwave translates to

an upstream shock movement for a positive +CP
′ and a downstream movement for

a negative −CP ′. Using this visualisation, buffet cells that emanate from the area

outboard of the localised instability and their spanwise convection become easier to

see. In addition, the alternating values of CP
′ behind the shock front show the periodic

behaviour of the separation bubbles before they are shed from the trailing edge.
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Figure 5.9. Time-accurate computed surface CP for nine timesteps over one cycle of shock
buffet. The CF isolines indicate the separated area.

Figure 5.10. Time-accurate computed surface CP
′ = CP − CPmean for nine timesteps over

one cycle of shock buffet.
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5.4 Summary of Fluid-Structure Interaction

The dynamic interaction of a flexible aircraft model and the self-sustained flow un-

steadiness was investigated in this chapter. For this, unsteady fluid-structure coupled

and fluid-only simulations were carried out using the NASA CRM for conditions beyond

shock-buffet onset. Basic validation of the static and time-averaged dynamic simula-

tions with experimental data from a wind-tunnel experiment revealed a good agreement

overall. Scrutinising both integrated force coefficients of lift and drag and temporal am-

plitudes of the structural modes shows that the linear part of the signals is strongly

dominated by the global shock-buffet instability, when started from a well converged

static aeroelastic solution. In the non-linear regime, on the other hand, frequency con-

tent of the integrated coefficients becomes more broadband, revealing higher activity

not only in the shock-buffet range but also near the first bending modes, with lower

instantaneous oscillation amplitudes overall. The non-linear behaviour of the structural

modes (strictly speaking, the interaction of the non-linear aerodynamic loads with the

linear structural modes) strongly depends on their respective wind-off frequencies. For

structural modes oscillating near the flow instability, a single strong peak is observed,

in contrast to distinct peaks for structural vibration and flow instability for the more

distant (in a frequency sense) structural modes. It is important to point out here that

modes that have been found to be stable by a linear analysis of the coupled system,

especially lower frequency modes, show responses at the shock buffet frequency in sim-

ilar amplitudes to that of each structural frequency. Surface plots over one period of

the high-frequency behaviour of shock buffet demonstrate the typical outboard run-

ning buffet cells creating waves along the shock front. The skin friction isolines capture

the outboard growth of the separated flow area before it splits into smaller separation

pockets that convect downstream.
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Chapter 6

Transient Growth

In this chapter, a novel study on the amplification of linear optimal disturbances in

steady turbulent flows for a supercritical aerofoil is presented. Unsteadiness observed

in open-flows can be classified into two categories depending on the flow behaviour [164].

When the unsteadiness results from the intrinsic dynamics of the flow then that flow

is referred to as an oscillator whereas when the unsteadiness is caused by the amplifi-

cation of existing upstream noise, it is said to be behaving as a noise-amplifier. The

instabilities that were introduced to describe the dynamics of oscillators and noise-

amplifiers, are referred to as absolute and convective instabilities, respectively [164].

Modal stability analysis, namely the classification of the flow stability depending on

the existence (or absence) of exponentially growing eigenmodes, has proven to be suc-

cessful in identifying absolute instabilities depending on some critical parameters (e.g.

Reynolds number or angle of attack). Yet, this type of analysis was only adequate to

describe the asymptotic behaviour of the flow something that was also supported by dis-

crepancies with modal stability analysis results observed experimentally for Poiseuille

and Couette flows where unsteadiness would occur before the critical Reynolds num-

ber was reached. Therefore, in the late 1980s/early 1990s it was recognised that the

superposition of the non-normal eigenmodes that characterise the discrete linearised

Navier-Stokes operator could cause short time energy growth even for an asymptot-

ically stable system [128]. Since noise-amplifier dynamics can be observed for such

asymptotically stable flows, the analysis of the pseudospectra [123] of the linearised op-

erator became vital in identifying convective instabilities and seeing the whole picture

alongside modal stability analysis. Two different types of analyses pertaining to the

pseudospectra of the linear operator exist and they comprise what is termed as non-

modal stability analysis. Conversely to modal stability analysis, that focuses on the

behaviour of individual eigenmodes, the singular values and vectors of each formulation

(to be explained shortly) of the linearised operator are at the forefront of nonmodal
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stability analysis. The first type involves the external forcing of the system, something

required to sustain the unsteadiness for an asymptotically stable system, and is used

to scrutinise the flow response at selected forcing frequencies. This is referred to as

resolvent analysis for which the resolvent operator is defined as R = (iω−A)−1 where

ω is the forcing frequency and A the linearised operator [118]. The second type, focuses

on the short-time behaviour of the system by solving the initial value problem

∂

∂t
q′f = Jq′f (6.1)

This is referred to as transient growth or nonmodal analysis and it involves the prop-

agator operator, a term used to refer to the linearised operator matrix exponential

eA [117]. Transient growth analysis is usually applied to laminar flows in order to

assess if the superposition of decaying modes can cause transition to turbulent flow be-

fore eigenmodal growth dominates, a phenomenon referred to as bypass transition [165].

Transition prediction methods are based on linear stability theory which can predict

the exponential growth of viscous instabilities in the form of travelling waves known

as Tollmien–Schlichting (TS) waves [166, 167]. However this is only the initial stage

of transition to turbulence because the growth of TS waves is followed by a secondary

instability that will cause vortical structures to appear. These structures will eventu-

ally form turbulent spots [168]. Since the distance between the region where TS waves

appear and the actual breakdown to turbulence can be small, methods based on linear

stability theory are more practical when it comes to transition prediction. A method

largely used in industry to define the onset of transition is the one suggested by Smith

and Gamberoni [169] and Van Ingen [170] known as the eN method. This is based on

calculating the total growth of all unstable modes at different frequencies using linear

stability theory. Once this growth is larger than a threshold eN that is empirically

defined using wind tunnel or flight test data, transition is considered to occur. The

growth rate of an unstable perturbation can be determined when the perturbation am-

plitude is amplified when travelling downstream. For incompressible flows, N-factors

range from 9 to 10 for TS waves [171] and 4 to 5 for crossflow instabilities [172]. There-

fore, in transient growth analysis, a bypass transition scenario is considered possible

when the maximum energy growth achieved at short times is large enough to yield a

considerable N-factor.

In hydrodynamic stability studies, the term unsteadiness refers to high frequency

disturbances at small spatial scales that are responsible for the flow transition from a

laminar to a turbulent state at low to moderate Reynolds numbers. Generally, even

though the perturbations that cause transition have various scales with varying degrees

of spatial and temporal coherence, a clear separation between large-scale global struc-

tures resulting from external forcing and small scale instabilities originating in the shear
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layer as sublayer streaks, is assumed [173]. This is summarised in the triple decompo-

sition [174,175] that decomposes the flow into a mean state, a coherent fluctuation and

an incoherent fluctuation i.e.

qf = qf + q′f + q′′f (6.2)

Therefore, in conditions where steady yet turbulent states exist and the small scale

disturbances are accounted for by the turbulence model, the resulting decoupling of

scales allows to redefine the term unsteadiness to refer to low frequency self-sustained

and self-excited oscillations of the large-scale coherent structures, as it has been demon-

strated [11] in the case of transonic buffet. Since a similar steady turbulent equilibrium

point is considered herein, the term unsteadiness is associated with the aforementioned

definition. Lastly, it has been shown that these large-scale global structures in turbulent

flows can also experience transient growth [176].

The next sections of this chapter are organised as follows. Firstly, the transient

growth code is verified using a supplied Jacobian matrix for Plane Poiseuille flow. The

verification is then extended to a cylinder flow. This is in order to compare the optimal

transient modes in addition to the optimal energy growth by using a large and sparse

linear operator. The literature results available for comparison for the cylinder case are

for incompressible flow whereas the results presented herein are for a low Mach number

of 0.2 due to limitations of the finite volume code employed. Finally, transient growth

results along with optimal transient growth modes are presented for the supercritical

aerofoil OAT15A. Modal stability results are presented along transient growth results

for all tests cases.

6.1 Verification

6.1.1 Plane Poiseuille Flow

To verify the transient growth code, a Jacobian matrix of Plane Poiseuille Flow (PPF)

along with the associated integral weights for the energy norm that was supplied by

Dr. Helio Quintanilha Jr is used. By solving the Orr-Sommerfeld equation, the theo-

retical critical Reynolds number at which transition occurs for PPF is 5772 [177] but

numerous experiments [178–180] have shown that finite-amplitude disturbances can

drive transition to turbulence at Reynolds numbers as low as 1000. This was later at-

tributed to short time energy growth due to the non-normality of the governing linear

operator [10]. The linear operator used herein is for a subcritcal case for a Reynolds
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Figure 6.1. Eigenvalue spectra of plane Poiseuille flow for Re = 3000 (left) and associated
energy growth curve (right). The red dot corresponds to the optimal value of G(t) = 20.37
computed by Reddy and Henningson [10].

number of 3000. The small size of the problem allows the use of direct methods for

the eigenvalue computation. Specifically, the generalised Schur decomposition or QZ

algorithm [181] is employed in MATLAB. Figure 6.1 shows the eigenspectrum of the

linear operator and energy gain which is excellent agreement with the maximum energy

gain of G(t) = 20.37 computed by Reddy and Henningson [10].

6.1.2 Cylinder Flow

Modal stability calculation

The flow around a cylinder is a commonly used test case for the verification of modal

stability analysis results. Numerical studies demonstrate that a global instability arises

above a critical Reynolds number of Re ≈ 47 [11,12,182] something that is in agreement

with experimental observations [183]. Figure 6.2 shows contours of the u-velocity base

flow component compared to literature for a Mach number of 0.2 and a subcritical

Reynolds number Re = 45.

Figure 6.2. Contours of the momentum component in the x-direction normalised by the
compressibility correction ρu/M

√
γ (left) using DLR-TAU and streamwise velocity from Crouch

et al. [11] for conditions: Re = 45, M∞ = 0.2
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(a) Growth rate (b) Frequency

Figure 6.4. Reynolds number dependence of the growth rate and frequency of the critical
eigenvalue for a Mach number of 0.2, compared with results from Crouch et al. [11] and Canuto
and Taira (DNS) [12].The effects of varying the grid resolution are shown for Re = 50.

A comparison of the real and imaginary part of the critical eigenvalue compared

to literature for different Reynolds numbers is shown in figure 6.4. In addition, the

sensitivity of the eigenvalue on grid resolution is also presented for a Reynolds number

Re = 50. The names fine, medium and coarse denote mesh sizes of 66× 103, 45× 103

and 10× 103 points, respectively. Finally, the eigenmode associated with the unstable

eigenvalue for a Reynolds number Re = 60 and a Mach number of 0.2, compared to

literature is shown in figure 6.3. Since the systems used herein are large and sparse,

the Shift-and-Invert Arnoldi method, presented in section 2, is used to focus at certain

parts of the spectrum, close to the critical eigenvalue. It is important to point out

here that the results in figures 6.2 and 6.3 have been normalised by a compressibility

scaling factor defined as M(
√
γ) that was introduced in DLR-TAU. Results are in good

agreement with literature.

Figure 6.3. Contours of the real part of the perturbation momentum component in the x-
direction ρu (left) using DLR-TAU and streamwise velocity (right) from Crouch et al. [11] for
conditions: Re = 60, M∞ = 0.2
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Transient growth calculation

The energy gain and optimal transient growth modes are compared against literature

next. Although the available results are for incompressible conditions, the use of such a

setting poses a limitation on the solution accuracy of the finite volume code DLR-TAU,

since the low Mach number preconditioner is not differentiated, hence the Jacobian

matrix would not be correct. Therefore, results are compared for the lowest permissible

Mach number of 0.2, where density can be assumed to be constant [144]. Figure 6.5

shows the variation of the energy gain over time along with literature results for steady

and unsteady flow at Reynolds numbers of 45 and 50, respectively. A similar behaviour

can be observed for the two conditions, although for a Mach number of 0.2, Gmax is

lower and is achieved at later times. Specifically, for incompressible flow, the maximum

energy growth for the subcritical case of Re = 45 is Gmax = 3357 achieved at t = 102

whereas for a Mach number of 0.2, Gmax = 191 and is achieved at t = 250 for a Mach

number of 0.2. This also holds for the unsteady condition of Re = 50 where higher

energy gain can be seen for the incompressible case. This is due to the small yet non-

negligible compressibility effects, since it has been shown that for a given Reynolds

number, the growth rate decreases with increasing Mach number [12]. Nevertheless,

transient growth dominates at short times in both cases. Similarly to the PPF case, it

can be seen that at longer times the energy gain is governed by the growth (or decay)

rate of the critical eigenvalue for both steady and unsteady conditions.

(a) Energy gain for M∞ = 0.2 (b) Subspace convergence (c) Energy gain for incompress-
ible flow

Figure 6.5. Comparison of energy gain for low compressibility conditions M∞ = 0.2 (a) and
incompressible flow (c) from Abdessemed et al. [13] at steady Re = 45 and unsteady Re = 50
conditions. The dashed line represents the slope of the most unstable eigenvalue calculated
from the EVP analysis. Krylov subspace convergence is shown for three different subspace sizes
in (b).

The slope of the asymptotic growth is related to the eigenvalue growth rate σ as

lim
t→∞

G(t) ∝ e2σt (6.3)

The factor of two (2) in the equation arises due to the squaring of the energy norm.
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The rate of decay of the energy norm squared is twice the rate of decay of the energy

norm itself. Therefore, the factor of two accounts for this relationship. In addition,

as discussed in section 2, the computation of transient growth requires the evaluation

of the matrix exponential that is based on the eigenvalue decomposition of the linear

operator. Therefore, this calculation is restricted by the size of the Krylov subspace

since a selected number of eigenmodes is used.

(a)

(b)

(c)

(d)

(e)

Figure 6.6. Spanwise vorticity contours for incompressible flow at Re = 50 taken from Ab-
dessemed et al. [13] showing: (a) base flow, (b) leading eigenmode, (c) optimal initial condition
at t = 8, (d) optimal response at t = 8 and (e) optimal response at t = 32.
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The variation of the energy gain depending on the subspace size is shown in fig-

ure 6.5(b) for Re = 50. It can be seen that, while the response demonstrates similar

behaviour, the energy gain is underpredicted for the smallest subspace size of 500 eigen-

modes. Increasing the subspace size to 1000 eigenmodes a higher energy gain can be

seen. Finally, a further subspace size increase by including another 1000 eigenmodes

(total of 2000) seems to have a small effect, hinting that the correct value of the energy

curve is recovered.

Figures 6.6 and 6.7 show spanwise vorticity contours comparing the modal and

nonmodal stability analysis results at Re = 50 for incompressible flow from literature

and the M∞ = 0.2 case, respectively. Figures 6.6(a) and 6.7(a) show the base flow

vorticity whereas the vorticity of the leading eigenmode of the linear operator that

eventually evolves into the von Kàrmàn vortex street is shown in figures 6.6(b) and

6.7(b). Figures 6.6(c) and 6.7(c) show the vorticity of the optimal initial condition at

t = 8 for incompressible flow and t = 20 for the M∞ = 0.2 case. In both cases, the

region around the boundary layer separation and near wake demonstrates high energy

concentration something identified in the adjoint analysis of cylinder flow in previous

studies [184, 185]. Even though both of these integration times are considered to be

relatively short, the latter was chosen at a larger time since figure 6.5(a) shows that

transient growth occurs at larger times for a Mach number of 0.2. Nevertheless, for

each chosen time, these initial modes evolve into the optimal response modes shown in

figures 6.6(d) and 6.7(d). Finally, figures 6.6(e) and 6.7(e) show the optimal response

mode for larger integration times, specifically at t = 32 and t = 80 for incompressible

flow and M∞ = 0.2, respectively. As expected from the energy gain behaviour seen

in figure 6.5(a), the optimal response modes evolve into the pattern associated with

the leading eigenmode since at these times the response is governed by the leading

eigenvalue. It is important to point out here that small spatial discrepancies observed

are due to the wake elongation and separation delay caused for an increasing Mach

number [12]. Overall, good agreement with literature can be seen.

6.2 Supercritical aerofoil OAT15A

After completing the code verification, transient growth analysis is applied to the su-

percritical aerofoil OAT15A at transonic conditions in the following section. Exper-

imental [38] and numerical studies [14, 42, 55, 90] on that geometry have shown that

shock buffet occurs for angles of attack higher and including 3.5◦. The conditions are

chosen according to the set up of the wind tunnel experiments and are a Reynolds

number of 3.2 × 106 and a Mach number of 0.73. Herein, transient growth results are

presented for a sweep of angles of attack at these conditions ranging from 2.75◦ to 4◦.
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(a)

(b)

(c)

(d)

(e)

Figure 6.7. Spanwise vorticity contours for a Mach number of 0.2 at Re = 50 showing: (a)
base flow, (b) leading eigenmode, (c) optimal initial condition at t = 20, (d) optimal response
at t = 20 and (e) optimal response at t = 80.

Modal stability calculation

Modal stability results are shown in figure 6.9. There it can be seen that as the angle of

attack is increased, only the eigenvalue in the shock buffet frequency range is migrating

towards the unstable half plane. The flow is globally stable for angles of attack up to
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α ≈ 3.4◦, with the instability onset due to a Hopf bifurcation [11] occurring for angles

higher and including α = 3.5◦. The associated direct and adjoint modes near buffet

onset are in accordance with literature and are shown in figure 6.8.

(a) (b)

(c) (d)

Figure 6.8. Real parts of density components for direct (a) and adjoint (c) unstable global
modes for α = 3.5◦ using DLR-TAU, compared to results from Sartor et al. [14] (b) and
(d),respectively at conditions: Re = 3.2× 106, M∞ = 0.73.

The direct global mode appears to be most energetic within the shock along with a

small contribution in the mixing layer. The inherent nonnormality of the Jacobian due

to the presence of the convection operator in the governing equations, results in the

downstream propagation of disturbances in the direct global mode and the upstream

disturbance propagation in the adjoint global mode, respectively [186]. As a result,

the adjoint mode indicates the region where the manipulation of the flow by harmonic

forcing will have the strongest effect on the oscillation amplitude or frequency of the

unstable global mode [187]. Herein, this region appears to be located on the suction

side, specifically in the boundary layer and in the supersonic region. The mode has a

triangular shape in the supersonic region, with the edges following the boundary layer

on the lower part, the edge of the supersonic flow region on the upstream side while an

oblique line starting from the shock foot where the boundary layer separation is located

can be seen on the downstream side.

Transient growth calculation

The corresponding energy gain as a function of non-dimensional time for each angle

of attack shown in figure 6.9 can be seen in figure 6.10(a). It is worth reiterating the

physical interpretation of the energy gain G(t) here, which is the factor by which the

energy of an optimal initial perturbation (or right singular mode) will grow at a given
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Figure 6.9. Eigenvalue spectra for increasing angle of attack for the OAT15A, compared with
results from Sartor et al. [14] at conditions: Re = 3.2× 106, M∞ = 0.73.

time t [13]. Similar to the cylinder case, we can observe that the singular value at

t → 0 is limt→0G(t) = 1 and therefore no energy growth is recovered at t = 0 for

all curves. For subcritical angles of attack (α < 3.5◦), the maximum transient growth

Gmax increases as the angle of attack is increased, reaching a maximum of Gmax = 50.4

at t = 46 for the highest subcritical angle of attack α = 3.25◦ shown here. The

critical eigenvalue governs the response in the modal limit (t > 80) with the latter

increasing or decaying according to the growth rate accordingly, for angles above and

including α = 3.25◦. As it can be seen in figure 6.9, for the two lowest angles of attack,

namely α = 3.0◦ and 2.75◦, the critical eigenvalue is still located inside the cluster of

eigenvalues, and therefore the decay rate of the gain is not governed by that of the

critical eigenvalue. In addition, as incidence is increased, Gmax occurs at later times.

For angles of attack post shock buffet onset, the initial transient growth is overtaken

by exponential growth according to the eigenvalue growth rate.

(a) Energy gain (b) Subspace convergence

Figure 6.10. Variation of optimal energy gain for a range of angles of attack for OAT15A
at conditions: Re = 3.2 × 106, M∞ = 0.73. The dashed line represents the slope of the most
unstable eigenvalue calculated from the EVP analysis.Krylov subspace convergence is shown
for three different subspace sizes.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.11. Contours of the real part of the momentum component ρu in the x-direction
for α = 3.5◦ at conditions: Re = 3.2 × 106, M∞ = 0.73 showing: (a) optimal initial condition
at t = 5, optimal responses at (b) t = 5, (c) t = 10, (d) t = 15, (e) t = 250 and (f) leading
eigenmode. The minimum and maximum values of ρu are kept the same for t = 5, 10 and 15.
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Figure 6.11 shows contours of the the real part of the horizontal momentum of op-

timal transient growth modes near buffet onset for α = 3.5◦. Specifically, figure 6.11(a)

shows the initial optimal growth mode at t = 5, the spatial distribution of which,

as expected, resembles that of the adjoint mode shown in figure 6.8, since perturba-

tions affecting the areas of highest sensitivity will result in the largest energy growth.

This is the only initial optimal growth mode shown as the same modes for the rest

of the integration times presented demonstrate similar spatial distribution and only

differ quantitatively. Figures 6.11(b)-6.11(d) show the optimal growth modes for dif-

ferent short integration times. Firstly, it can be seen that for all times the modes

are most energetic within the shock wave and the recirculation bubble. As the time

increases, the ripples seen for t = 5 above the shock foot fade as they cluster around

the shock wave while the mode component present in the wake contracts towards the

trailing edge. Additionally, the recirculation bubble component of the mode can be

seen to grow in length from t = 10 to t = 15. Finally, figure 6.11(e) shows that for the

longer time interval t = 250, where the response is governed by the modal exponential

growth, the optimal growth mode has evolved into the pattern associated with the

leading eigenmode shown in figure 6.11(f).

The dependence on angle of attack of the maximum value reached by G(t) is ex-

amined next. The energy gain is computed for three additional subcritical angles of

attack, namely α = 2.85◦, 3.10◦ and 3.35◦, and is shown in figure 6.12 along with the

subcritical G(t) curves from figure 6.10(a).

Figure 6.12. Variation of optimal energy gain for subcritical angles of attack at conditions:
Re = 3.2× 106,M∞ = 0.73.

For the highest angle of attack presented herein α = 3.35◦, initial transient growth of

over two orders of magnitude occurs, reaching Gmax = 107.1. As mentioned earlier, the

eN method is used to predict the onset of transition to turbulence, therefore calculating

the N-factor would not be applicable in the steady turbulent conditions investigated

in the present study. Nevertheless, it is still of interest to investigate transient growth

behaviour in such conditions. Figure 6.13(a) shows the dependence of Gmax on α for all
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subcritical angles of attack. This dependence, for the transonic regime studied herein,

is found to be quartic,

Gmax ∼ α4 (6.4)

as can be seen in the curve fit. This result demonstrates that, even though nonmodal

energy growth is moderate in the present regime, it becomes more significant as the an-

gle of attack increases. Ultimately, since nonmodal analysis showcases the amplification

of optimal perturbations, this could inform experimental campaigns conducted in wind

tunnels, where high levels of environmental perturbations are present. Interestingly,

this is similar to the quartic dependence of Gmax on local Reynolds number found in

the work of Quintanilha et al. [15] in laminar hypersonic flow conditions in contrast to

the quadratic dependence of maximum energy gain on Reynolds number known from

incompressible analysis [124].

(a) Angle of attack dependence of Gmax (b) Reynolds number dependence of
Gmax

Figure 6.13. Comparison of best fit for the maximum gain Gmax as function of angle of
attack α for steady turbulent conditions and Gmax as function of local Reynolds number Rex
at laminar conditions from Quintanilha et al. [15].

6.3 Summary of Transient Growth

In this chapter, transient growth analysis was applied to two-dimensional flows, the

steady solutions (base flows) of which were obtained using an unstructured finite vol-

ume industrial solver. This was achieved by solving the initial value problem (IVP)

and performing a Singular Value Decomposition of the Jacobian matrix exponential re-

sulting from the discretization of the eigenvalue problem. The matrix exponential was

formed by using a subset of the total eigenmodes, since the resulting linear operators
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are large and sparse. The size of the subspace used is considerably larger than that

used for modal analysis. The first case studied used for validation was that of a cylinder

flow at low compressibility conditions for a Mach number of 0.2. When compared to

the available literature results for incompressible flow, it was observed that the higher

Mach number resulted in lower values of G(t) achieved at larger times, while a good

agreement was observed for the optimal transient modes. This is due to the stabilisa-

tion effects of compressibility as seen in DNS studies examining the effect of increasing

Mach number on the same geometry [12]. Ultimately, this study aimed to investigate

the amplification of optimal disturbances for a supercritical airfoil at steady turbulent

conditions around shock buffet onset at a Mach number of 0.73 and a Reynolds number

of 3.2× 106 for a range of angles of attack. For this test case, self-sustained oscillations

occur for angles of attack higher than and including α = 3.5◦. The angles of attack

studied herein ranged from pre-onset conditions at α = 2.75◦ to post-onset at α = 4.0◦.

In all cases, the initial optimal growth was followed by exponential eigenmodal decay

for subcritical angles of attack and growth for angles of attack post-onset, respectively.

The maximum energy gain found for the highest subcritical angle of attack α = 3.35◦

was Gmax = 107.1. Lastly, a scrutiny of the dependence of Gmax on angle of attack for

the subcritical cases revealed that there is a quartic dependence Gmax ∼ α4, similar to

the quartic dependence of maximum gain on the local Reynolds number Gmax ∼ Rex4

observed for hypersonic laminar flow [15].
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Chapter 7

Conclusions and Future Work

A study aiming to further advance the understanding of the mechanisms governing

transonic shock-buffet using linearised and non-linear Reynolds-averaged Navier–Stokes

based methods has been presented herein. The shock-buffet phenomenon is an unsteady

shock-wave/boundary-layer interaction characterised by self-excited, self-sustained pe-

riodic oscillations which demonstrate a broadband frequency signature for swept-wings

and a distinct frequency for aerofoils. The phenomenon is of industrial relevance, since

these oscillations, apart from the degradation of passenger comfort, fuel consumption

and handling qualities, pose the risk of structural failure when they excite the inherently

elastic wings of the aircraft. This is reflected in the restrictions posed on manufactur-

ers by regulatory authorities to ensure that these airframe vibrations (buffeting) due

to shock-buffet will not occur within the design flight envelope of each aircraft.

Although a plethora of research has focused on aerofoil and infinite wing shock-

buffet, the literature dealing with finite swept-wings around onset conditions is quite

limited, especially when it comes to the interaction of the phenomenon with wing

vibration. Similarly, in the case of aerofoil shock-buffet, most stability studies in steady

turbulent conditions focus on the onset of the global instability based on eigenvalue

analysis or on optimal response to optimal forcing (resolvent) based on pseudospectrum

analysis. This thesis has aimed to fill these gaps in the literature by investigating the

interaction of transonic buffet with harmonic forcing and an elastic structure in the

case of finite swept-wings and the short-time amplification of optimal disturbances in

the case of aerofoils.

As a result, this project was divided into three key investigations:

1. Chapter 4. Flow Response to Harmonic Forcing: Harmonic forcing simu-

lations at a range of frequencies were carried out for small excitation amplitudes
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using linearised methods for the RBC12 and the NASA CRM around buffet on-

set which were then extended to time-accurate simulations with larger excitation

amplitudes for the RBC12 geometry at pre and post-onset conditions

2. Chapter 5. Fluid-Structure Interaction: Unsteady RANS and fluid-

structure interaction simulations were carried out for the NASA CRM at shock

buffet conditions

3. Chapter 6. Transient Growth: Nonmodal stability analysis was carried out

for the supercritical aerofoil OAT15A for incidences ranging from pre-onset to

post-onset conditions

Firstly, the linearised part of the harmonic forcing study, focused on the response to

small amplitude excitations at a range of frequencies of two large civil aircraft, namely

the RBC12 and the NASA Common Research Model, the wings of which have been

designed decades apart. The angles of attack examined, ranged from 2◦ to 3.01◦ for

the RBC12, for which buffet onset occurs at approximately 3◦, and from 3◦ to 3.6◦

for the NASA CRM, for which buffet onset occurs at approximately 3.5◦. A linearised

frequency-domain analysis for a range of frequencies showed a similar behaviour of the

dynamic derivatives when excited with the same synthetic torsion mode. Specifically,

an amplified response of the dynamic derivatives was found for excitation frequencies

in the shock buffet range (ω∗ = 3.1 for the RBC12 and ω∗ = 2.4 for the NASA CRM)

that got further amplified for small incidence increments. Furthermore, a low frequency

resonant peak (ω∗ = 0.8 for the RBC12 and ω∗ = 0.6 for the NASA CRM) that was

present even for pre-onset angles of attack, did not get further amplified as incidence

was increased to onset conditions. The eigenvalue analysis of the fluid Jacobian hinted

that the high frequency behaviour was linked to an absolute instability, something that

was later confirmed in the work of Timme [95], in contrast to the low frequency be-

haviour which has been observed experimentally as inboard propagating waves along

the shock front [96] but its source remains elusive. Spatially, the high frequency be-

haviour revealed localised unsteadiness starting at the most outboard region of the

separated area while the low frequency behaviour was mostly energetic along the shock

front. The same synthetic mode was used on the RBC12 geometry for the second part

of the harmonic forcing study, which involved time-accurate simulations that allowed

larger excitation amplitudes. The frequency content of the response for each combina-

tion of excitation frequency and forcing amplitude factor was recovered using a discrete

Fourier transform. Different combinations of frequencies and excitation amplitude fac-

tors were examined at pre-onset and post-onset conditions. The pre-onset simulations

that were used for validation showed that while the primary frequency response was

at that of the excitation, lower amplitude response around the frequency of the res-

onant peak was present for all excitation frequencies, regardless of their proximity to
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the shock buffet frequency range. Two different behaviours were found at shock buffet

conditions. For small amplitude factors (q0 ≤ 0.001) the effect of forcing was negligible

as the response followed that of shock buffet something that was also evident in the

frequency content, demonstrating a broadband response around the shock-buffet fre-

quency range. As the amplitude factor was increased (q0 > 0.001) the flow response

synchronised with that of the excitation. At these conditions, instantaneous plots of

the friction coefficient showed that the increase in the excitation amplitude factor re-

sults in the outboard running separated areas to grow in size. A closer look of the

frequency content revealed that only the high frequency response, associated with the

absolute instability, was shifted to the excitation frequency while the lower frequency

response was unaffected. This result shows that the three-dimensional effects present

in swept-wing shock-buffet prohibit a complete synchronisation (or “lock-in”) of the

phenomenon response to the excitation, something observed for aerofoils. The imme-

diate next step in the work related to harmonic forcing would be the use of different

excitation modes as well as the excitation of the flow at the frequency of the resonant

peak observed in the LFD results but in time-accurate simulations.

The effect of the interaction of shock buffet with an elastic wing structure, was

investigated by carrying out a fluid-structure (FSI) interaction simulation alongside

a URANS simulation for the NASA CRM. The flow conditions were similar to these

used in the harmonic forcing study although a higher supercritical angle of attack

α = 3.75◦ was used.The time-averaged pressure distributions were similar for both

simulations and agreed nicely with the available wind tunnel data. Good agreement

with experimental data was also seen for wing deformation from the coupled simulation.

Additionally, both simulations were able to accurately capture the outboard running

buffet cells as well as the shock front movement associated with the high frequency

behaviour of shock buffet. A scrutiny of the lift coefficient frequency content, showed

that the response was at the shock buffet frequency range for both simulations, albeit

with a lower amplitude in the case of the coupled simulation. The resulting signal of the

modal amplitude displayed two behaviours, a linear and a nonlinear, respectively. In

the linear part, the response of all modes was at the shock buffet frequency range around

St = 0.38 (ω∗ = 2.4), with an exception of the lower frequency modes where a response

at their respective natural frequencies was present. Conversely, in the nonlinear part of

the response, modes whose natural frequency was lower than that of the shock buffet

range revealed an additional frequency peak at their wind-off frequency. Finally, modes

with natural frequencies close to the shock buffet range demonstrated a singular peak

at that respective frequency. A peak at the natural frequency of the first bending

mode was evident for all modes in the nonlinear part. This shows that the shock-

buffet instability dominates the structural response in the linear regime, although in

the nonlinear part it mainly affects higher modes with natural frequencies in the shock-
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buffet range. The response of lower frequency modes in the nonlinear part depends on

their respective wind-off frequencies and the first bending mode frequency. Lastly, no

frequency content was found in the range of the resonant peak, observed in the results

of the LFD study for the same geometry, suggesting that the low frequency behaviour

of the phenomenon is not linked to aeroelastic coupling. Future work would primarily

involve a longer simulation. Secondly, the employment of passive control devices such

as vortex generators would provide useful insight for the efficacy of shock-buffet control

in a coupled aeroelastic setting.

Finally, modal and nonmodal stability analysis results were presented for the su-

percritical aerofoil OAT15A at steady turbulent conditions. Shock-buffet onset for this

geometry occurs for angles of attack higher than and including α = 3.5◦. The incidences

studied ranged from subcritical α = 2.75◦ to supercritical α = 4◦. The initial energy

gain at short times is followed by the exponential growth or decay, according to the

corresponding leading eigenmode from the modal analysis. Spatially, the optimal tran-

sient modes were most energetic in the same region as the global adjoint mode for the

initial optimal growth modes and the global leading mode for optimal response modes.

By further scrutinising the gain response for additional subcritical angles of attack, a

quartic dependence of the maximum gain on the angle of attack was found. The next

step would firstly aim to perform Floquet analysis in the time-periodic unstable flow

at post-onset conditions. Secondly, nonmodal stability analysis would be extended to

unswept infinite wings of different aspect ratios and ultimately to infinite swept wings

to assess how three-dimensional effects influence transient growth of transonic buffet.
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[105] Boussinesq, J. V., “Essai sur la théorie des eaux courantes,” Mémoires Tome

XXIII, 1, Institut National de France, 1877.

[106] Spalart, P. and Allmaras, S., “A One-Equation Turbulence Model for Aerody-

namic Flows,” AIAA, Vol. 439, 01 1992.

[107] Kalitzin, G., Medic, G., Iaccarino, G., and Durbin, P., “Near-wall behavior of

RANS turbulence models and implications for wall functions,” Journal of Com-

putational Physics, Vol. 204, No. 1, 2005, pp. 265–291.

[108] Allmaras, S. R. and Johnson, F. T., “Modifications and Clarifications for the

Implementation of the Spalart-Allmaras Turbulence Model,” Vol. 1902 of Seventh

International Conference on Computational Fluid Dynamics (ICCFD7), 2012.

[109] Shur, M., Strelets, M., Zajkov, L., Gulyaev, A., Kozlov, V., and Sekundov, A.,

Comparative numerical testing of one- and two-equation turbulence models for

flows with separation and reattachment .

[110] Thormann, R. and Widhalm, M., “Linear-frequency-domain predictions of

dynamic-response data for viscous transonic flows,” AIAA journal , Vol. 51,

No. 11, 2013, pp. 2540–2557.

[111] Dwight, R., Brezillon, J., and Vollmer, D., “Efficient algorithms for solution

of the adjoint compressible Navier-Stokes equations with applications,” ODAS

2006 , 2006.

[112] Arnoldi, W. E., “The principle of minimized iterations in the solution of the

matrix eigenvalue problem,” Quarterly of applied mathematics, Vol. 9, No. 1,

1951, pp. 17–29.

105



[113] Sorensen, D. C., “Implicitly restarted Arnoldi/Lanczos methods for large scale

eigenvalue calculations,” Parallel Numerical Algorithms, Springer, 1997, pp. 119–

165.

[114] Saad, Y., Iterative methods for sparse linear systems, SIAM, 2003.

[115] Moler, C. and Van Loan, C., “Nineteen dubious ways to compute the exponential

of a matrix,” SIAM review , Vol. 20, No. 4, 1978, pp. 801–836.

[116] Moler, C. and Van Loan, C., “Nineteen dubious ways to compute the exponential

of a matrix, twenty-five years later,” SIAM review , Vol. 45, No. 1, 2003, pp. 3–49.

[117] Farrell, B. F. and Ioannou, P. J., “Generalized stability theory. Part I: Au-

tonomous operators,” Journal of Atmospheric Sciences, Vol. 53, No. 14, 1996,

pp. 2025–2040.

[118] Schmid, P. J., “Nonmodal stability theory,” Annu. Rev. Fluid Mech., Vol. 39,

2007, pp. 129–162.

[119] Hanifi, A., Schmid, P. J., and Henningson, D. S., “Transient growth in compress-

ible boundary layer flow,” Physics of Fluids, Vol. 8, No. 3, 1996, pp. 826–837.

[120] Mack, L., “Boundary-layer stability theory. JPL Report 900-277 Rev. A,” Jet

Propulsion Laboratory, Pasadena, USA, 1969.

[121] Chu, B.-T., “On the energy transfer to small disturbances in fluid flow (Part I),”

Acta Mechanica, Vol. 1, No. 3, 1965, pp. 215–234.

[122] Paredes, P., Gosse, R., Theofilis, V., and Kimmel, R., “Linear modal instabilities

of hypersonic flow over an elliptic cone,” Journal of Fluid Mechanics, Vol. 804,

2016, pp. 442–466.

[123] Trefethen, L. N., “Spectra and pseudospectra,” The Graduate Student’s Guide to

Numerical Analysis’ 98 , Springer, 1999, pp. 217–250.

[124] Schmid, P. J. and Henningson, D. S., Stability and Transition in Shear Flows,

Springer New York, 2001.

[125] Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon,

B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V., and Ukeiley, L. S., “Modal anal-

ysis of fluid flows: An overview,” Aiaa Journal , Vol. 55, No. 12, 2017, pp. 4013–

4041.

[126] Barkley, D., Blackburn, H. M., and Sherwin, S. J., “Direct optimal growth anal-

ysis for timesteppers,” International journal for numerical methods in fluids,

Vol. 57, No. 9, 2008, pp. 1435–1458.

106
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Appendix

Appendix A: Tensor Notation

Tensor notation (also referred to as index, indicial or Einstein notation) provides a con-

venient and compact notation to describe physical quantities in the governing equations

when written in differential form [102]. The form of the tensor follows from its rank.

Tensors of rank 0 have only one component and represent scalars. Expressions such as

coordinate xi or velocity components ui in three dimensions are tensors of rank 1 (or

first-order tensors) and have three components such as

xi = [x1, x2, x3] = [x, y, z] = r

ui = [u1, u2, u3] = [u, v, w] = u
(1)

Tensors of rank 2 have nine components and correspond to 3× 3 matrices e.g.,

uiuj ≡


u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3

 (2)

In a similar manner, the viscous stress tensor is

τij ≡


τ11 τ12 τ13

τ12 τ22 τ23

τ12 τ32 τ33

 (3)

A second-order tensor that provides important utility is the Kronecker delta. It is

defines as
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δij =

1 ifi = j

0 ifi 6= j
(4)

Finally, tensor notation uses the Einstein summation convention. This states that when

two identical indexes occur in an expression, a summation over all three coordinates is

implied, hence the scaler product between two vectors u and v is expressed as

uivi = u1v1 + u2v2 + u3v3 = u · v (5)

Consequently, the divergence of a vector u reads

∂ui
∂xi

=
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= ∇u (6)

Appendix B: Timestepper GPU Implementation

The most straightforward approach to evaluate the matrix exponential for a given

final time would be to evaluate equation (6.1) using time-stepping. It can be shown

that the maximum energy growth at a given time is related to the largest eigenvalue

of Ψ∗(t)Ψ(t). In a time-stepping context, this is achieved by a forward marching in

time using the linear operator J followed by a backwards in time integration using

the adjoint J∗ until convergence [126,127]. For this purpose a timestepper running on

Graphics Processing Units (GPUs) was developed and is presented next. Specifically,

the algorithms and device functions shown below have been developed in Python and

executed on the GPU using the Numba compiler. Numba is a just-in-time, type-

specializing, function compiler for accelerating numerically-focused Python for either a

CPU or GPU. It supports CUDA GPU programming by directly compiling a restricted

subset of Python code into CUDA kernels and device functions following the CUDA

execution model [188].

In order to carry out these computations, some basic algebraic operations developed

to run on the GPU had to be defined. Frequently, when operating with large datasets,

the number of data elements outnumbers that of threads on the GPU. To overcome

this, a technique called grid striding is used to allow each thread to work on more

than one data element. By using grid stride loops, kernels that can be easily switched

between serial and parallel execution can be developed while incurring the benefits of

global memory coalescing, which allows parallel threads to access memory in contiguous
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chunks, a scenario which the GPU can leverage to reduce the total number of memory

operations [189].

The operations implemented herein using grid striding are the sparse and dense

matrix-vector product, matrix transpose and vector multiplication and addition.

To demonstrate the main differences between striding for one and two-dimensional

datasets, only the matrix vector products are shown in this section. The COO format,

that explicitly stores both row and column index of every non-zero entry, is used in the

sparse matrix-vector (SpMV) product in the code snippet shown in listing 1.

Listing 1. CUDA algorithm for SpMV on COO format

@cuda . j i t

de f spmv coo s t r ide ( rowidx , co l idx , data , x , y ) :

s t a r t = cuda . b lockIdx . x∗cuda . blockDim . x + cuda . threadIdx . x

s t r i d e = cuda . blockDim . x∗cuda . gridDim . x

f o r i in range ( s ta r t , data . shape [ 0 ] , s t r i d e ) :

cuda . atomic . add (y , rowidx [ i ] , data [ i ]∗ x [ c o l i d x [ i ] ] )

Since the non-zero entries of the sparse matrix and the vector are one dimensional

datasets, one grid stride loop is used. The cuda.atomic.add command is used for

synchronised summation in order to avoid race conditions. The calculation in line 4 of

listing 1 gives a unique thread index within the entire grid. In the case of the dense

matrix-2D-vector product, essentially a matrix multiplication, striding is performed in

two dimensions for the rows and columns respectively, with cuda.grid(2) used for the

thread indexing of a two-dimensional grid. This is shown in listing 2 for matrices of

arbitrary size denoted as A,B.

Listing 2. CUDA algorithm for 2D Dataset Multiplication

@cuda . j i t

de f mv str ide (A, B, C) :

gr id row , gr id co lumn = cuda . g r id (2 )

s t r ide row , s t r ide co lumn = cuda . g r i d s i z e (2 )

f o r data row in range ( gr id row , A. shape [ 0 ] , s t r i d e r o w ) :

f o r data column in range ( grid column , B. shape [ 1 ] , s t r ide co lumn ) :

sum = 0

f o r i in range (A. shape [ 1 ] ) :

sum += A[ data row ] [ i ] ∗ B[ i ] [ data column ]

C[ data row ] [ data column ] = sum
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At the inner most level, an algorithm responsible for the forward and backward

integration is required. The Runge-Kutta Fehlberg (RKF) method was chosen for

implementation. This method of order O(h5) uses five stage evaluations for one step

with an additional stage that is used as an error estimator, of order O(h6) as shown in

figure 1. Depending on the error, the next time-step is adjusted accordingly to allow for

larger steps if it is small and finer steps if it is larger than a given tolerance [190]. For

an initial value problem, such as equation (2.42), the numerical solution of the RKF

has the form

qn+1 = qn + h
S∑

i=1

biki where q(tn) = qn (7)

where ki is the RKF stage evaluation for a function f , defined as

k1 = f (t , q(t)) (8)

ki = f (tn + cih, h
i−1∑
j=1

ai ,j kj ), i=2,3,4,5,6 (9)

where n, h and S represent the iteration number, stepsize and number of stages respec-

tively. The coefficients ai ,j , bi and ci are arranged in a tableau known as the Butcher

Tableau and are [191]
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Finally, the next stepsize at the end of each iteration is adapted considering the error

according to the equation
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hn+1 = 0 .8 hn

(
tol

‖TE‖

) 1
7

(10)

were tol is the user-defined tolerance and TE the truncation error.

Figure 1. GPU Implementation of Runge-Kutta Methods taken from [16].

In order to optimise the RKF method for GPU use, the most computationally

demanding calculations were singled out to be developed as device functions. RKF

requires one function evaluation followed by a summation per stage and the final error

calculation. In the case of equation (2.42) this translates to one sparse matrix-vector

product (listing 1) per function evaluation. Lastly, by evaluating the function with the

negative adjoint operator and a negative stepsize, backwards integration is achieved.

To calculate the first k largest eigenvalues of the operator Ψ∗(t)Ψ(t), the Arnoldi pro-

cedure, based on the modified Gram-Schmidt process with an iterative refinement tech-

nique suggested by Daniel, Gragg, Kaufman, and Stewart [192] (DGKS) to maintain

orthogonality, is adapted from [193]. By replacing the matrix to be factorised with the

operator Ψ∗(t)Ψ(t), we construct a Krylov subspace of size k × N with the orthogo-

nal projections of the action of Ψ(t) followed by Ψ∗(t). The points where calls to the

GPU functions and the timestepper are made, are denoted in algorithm 1. Once the

Hessenberg matrix H has been constructed, the eigenvalues of the significantly smaller

system can by computed by direct methods.
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Algorithm 1 Implementation of the Arnoldi iteration combined with the RKF
timestepper

1: procedure Arnoldi Factorisation RKF(A, k, v0, t0, tend, h, tol)
2: v0 ← v0/‖v0‖ . Normalise initial guess
3: vend ← Ψ(t)v0 . Forward RKF
4: vend ← vend/〈vend, vend〉
5: v0 ← −Ψ∗(t)vend . Backward RKF
6: d← vTendw
7: f ← v0 − d× v0

8: V [:, 0]← v0[:, 0]
9: H[0, 0]← f [0, 0] . Update Hessenberg matrix

10: for j → k − 1 do
11: β(j)← ‖f‖
12: v0 ← f/β(j)
13: V [:, j + 1]← v0[:, 0]
14: H[j + 1, j]← β(j) . Update Hessenberg matrix
15: vend ← Ψ(t)v0 . Forward RKF
16: vend ← vend/〈vend, vend〉
17: v0 ← −Ψ∗(t)vend . Backward RKF
18: d← V Tw . Transpose then Dense Matrix Product
19: f ← v0 − V × d . Dense Matrix Product
20: if ‖f‖ <

√
0.5× ‖d‖ then . DGKS correction

21: s← V T f . Dense Matrix Product
22: f ← f − V s . Dense Matrix Product
23: d← d+ s

24: H[: j + 2, j + 1]← d[:, 0]

25: return V,H
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