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pathological mechanisms of IS are complex and are usu-
ally characterized by hypoxia, oxidative stress, inflam-
mation, microvascular dysfunction, apoptosis, necrosis, 
and ultimately cell death. Recently, with the advancement 
of revascularization procedures and recanalization of the 
occluded cerebral arteries, significant improvements have 
been made in reducing brain damage after IS. Although the 
mortality from IS has decreased, the incidence of dysfunc-
tion has increased. There are still limited effective methods 
to improve function in clinical practice. Growing evidence 
from developed countries suggests that prevention should 
be given high priority to reduce the burden of stroke (Katan 
and Luft 2018).

Over the past few decades, the search for new strategies 
that can protect neural cells from ischemia has made “isch-
emic preconditioning” the most effective method of endog-
enous protection. Since Kitagawa et al. first reported that 
neurocytes became resistant to subsequent fatal ischemia 
after a brief period of subfatal ischemic preconditioning in 
1990 (Kitagawa et al. 1990), cerebral ischemic tolerance 
has been extensively studied. However, despite its promise, 
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As the population ages, ischemic stroke (IS) has become 
the second leading cause of morbidity and mortality in 
the world, causing temporary or permanent physical, cog-
nitive, behavioral, and emotional disorders in adults. The 
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Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of 
IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may 
be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study compre-
hensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against 
IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis 
capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and 
erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a 
safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS 
have been widely observed in recent research, the implementation of this technique is still controversial due to regimen 
differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regi-
men would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to 
each stroke patient needs further exploration.
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ischemic preconditioning is usually invasive and difficult to 
control in clinical practice, making it difficult to achieve an 
overall net positive effect in improving postischemic func-
tion. In addition to hypoxia, many preconditioning stimuli 
have also been investigated in the laboratory, such as hypo- 
and hyperthermia, heavy metals, ethanol, neurotoxins, and 
other drugs. The phenomenon of “cross-tolerance”(Stetler 
et al. 2014), in which sublethal stimuli protect against differ-
ent injuries, proposed that different preconditioning stimuli 
might protect against a variety of injuries. At present, it is 
unclear whether these methods are harmful to humans or 
truly clinically beneficial. Hyperbaric oxygen (HBO) ther-
apy is performed in a pressurized chamber at 100% oxygen 
at a pressure above normal atmospheric pressure. It is an 
effective method to increase the arterial oxygen partial pres-
sure and oxygen supply by increasing oxygen dissolved in 
the plasma, thus promoting cell metabolism and maintaining 
adenosine-triphosphate synthesis in injured tissues. Hyper-
baric oxygen preconditioning (HBO-PC) refers to exposure 
to HBO prior to a critical event, with the plan to create a 
prophylactic treatment situation. HBO-PC is a well-known 
protective nonpharmacological preconditioning method in 
patients with IS with encouraging results (Camporesi and 
Bosco 2014; Francis and Baynosa 2017), but the mecha-
nisms of action have not yet been ascertained.

In this paper, we concisely reviewed the pathophysiology 
of IS and revealed the underlying mechanism of HBO-PC in 
protection against IS.

HBO preconditioning

Preconditioning is a phenomenon in which transient sub-
lethal insult induces robust protection against subsequent 
lethal injuries. It was first discovered in the heart (Murry 
et al. 1986) and then shown to occur in the brain and other 
organisms. Effective preconditioning stimuli vary from 
transient ischemia, hypoxia, HBO, and low and high tem-
peratures to exposure to neurotoxins and pharmacological 
agents (Stetler et al. 2014). Although heavy metals, toxins, 
ethanol, and ionizing radiation have been successfully used 
to induce ischemic tolerance in animal models (Fang et al. 
2020; Kokošová et al. 2014), they are not safe for clinical 
practice in patients. The goal of developing a safe, practi-
cal approach for chemical tolerance seems paradoxical until 
oxygen is considered.

HBO is often used to treat patients with decompres-
sion sickness, carbon monoxide poisoning, and arterial gas 
embolism and is used as an adjunct treatment for a vari-
ety of diseases with injured oxygen delivery (Sheridan and 
Shank 1999; Tibbles and Edelsberg 1996). In addition, over 
the past 30 years, studies have shown that HBO can induce 

ischemic tolerance without harmful side effects. A study 
indicated that single HBO session at two atmospheres for an 
hour at a time can induce brain tolerance to ischemic neuro-
nal injury, in which the induction of heat shock protein 72 
is crucial (McLaughlin et al. 2003; Wada et al. 1996). Sub-
sequently, the protective effects of HBO pretreatment have 
been studied in a variety of animals in addition to stroke 
models (Prass et al. 2000; Wada et al. 1996; Xiong et al. 
2000), such as surgical brain injury  (Jadhav et al. 2009), 
ischemia–reperfusion injury(Wang et al. 2021), neonatal 
hypoxia-ischemia(Li et al. 2008c), intracerebral hemor-
rhage  (Wang et al. 2019), spinal cord ischemia (Hirata et 
al. 2007), cardiac ischemia (Kim et al. 2001), and liver dys-
function (Yu et al. 2005). In addition, a recent study reported 
that single-dose HBO pretreatment provides a neuroprotec-
tive effect similar to that of hypoxic pretreatment in neona-
tal mice, while HBO is much safer than other stimuli, such 
as hypoxia (Freiberger et al. 2006). However, the underly-
ing mechanisms of its neuroprotective effect remain poorly 
defined.

Potential mechanism of HBO-PC for IS

IS refers to the occurrence of ischemic/hypoxic injury in the 
brain area that blocks the blood supply of arteries due to 
sudden occlusion of cerebral vessels, and eventually the for-
mation of ischemic core and ischemic penumbra (Patil et al. 
2022). The potential mechanisms of the preventive effects 
of HBO-PC against IS may include nine aspects: (1) induc-
tion of antioxidant capacity; (2) generation of hypoxia-
inducible factor-1α (HIF-1α) and erythropoietin (EPO); (3) 
acceleration of heat shock protein (HSP) expression; (4) 
reduction of inflammation and regulation of immune func-
tion; (5) activation of autophagy; (6) inhibition of apoptosis; 
(7) neuroprotection via brain-derived neurotrophic factor 
(BDNF); (8) protection of the integrity of the blood–brain 
barrier (BBB) and reduction of matrix metalloproteinase-9 
(MMP-9); and (9) combination with stem cell therapy to 
prevent IS. The potential mechanism of HBO-PC for IS is 
shown in Fig. 1.

HBO-PC and induction of antioxidant capacity

Production of ROS

ROS are produced in various ways. The primary source of 
ROS is mitochondrial respiratory chain activity and NADPH 
oxidase (NOX) (Adam-Vizi 2005). Under normal condi-
tions, a small fraction of the electrons steaming across the 
electron delivery chain react with O2 to constitute superox-
ide anion (O2

−), a highly reactive oxidant that is transformed 
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by superoxide dismutase (SOD) to a less toxic molecule, 
hydrogen peroxide (H2O2). Then, it is further transformed 
to H2O and O2 by catalase (CAT) or to H2O by glutathione 
peroxidase (GPx). It can also transfer its electron to pro-
duce other oxidants peroxynitrite (ONOO−). There are other 
antioxidants that transform superoxide to oxygen, such as 
lactoferrin (an iron-binding protein).

It is easy to understand that HBO increases ROS pro-
duction (Benedetti et al. 2004; de Wolde et al. 2022; Gasier 
and Fothergill 2013; Korkmaz et al. 2008; Matsunami et 
al. 2011). Studies have shown that HBO can increase O2 
partial pressure and mitochondrial production of H2O2 in 
pigeon hearts (Boveris and Chance 1973). Conconi et al. 
found that ROS production was enhanced by exposure of 
cultured fibroblasts in vitro to HBO at 2.5 atmosphere abso-
lute (ATA) (Conconi et al. 2003). It is believed that exces-
sive ROS generation, more accurate oxidative stress, and 
the imbalance between ROS and antioxidant capacity are 
key factors in the pathological process of stroke (Rahal et 

al. 2014), especially cerebral ischemia–reperfusion injury 
(Chan 1996).In recent years, however, the idea that ROS 
are always detrimental during IS has been challenged. 
Recent studies have shown that HBO-PC-induced low lev-
els of ROS exert a neuroprotective effect in IS models and 
stimulate adaptive reactions by enhancing the activity of 
enzymatic antioxidants and various low molecular weight 
antioxidants in cells (Benedetti et al. 2004; Conconi et al. 
2003), which can remove excess accumulated ROS and pro-
tect neurocytes from hypoxic injury. It has also been found 
that HBO-PC-induced tolerance can be attenuated by the 
application of antioxidant enzymes (Nie et al. 2006) or oxy-
gen free radical scavengers (Xiong et al. 2001). Guo et al. 
observed that HBO-PC reduced hemorrhagic transforma-
tion via the ROS/Nod-like receptor protein 3 pathway (Guo 
et al. 2016). These studies suggest that the production of a 
nonlethal level of ROS might be related to the protective 
mechanism generated by HBO-PC.

Fig. 1  Potential mechanism of hyperbaric oxygen preconditioning for 
ischemic stroke.  Abbreviations: HBO, hyperbaric oxygen; HIF-1α, 
hypoxia-inducible factor-1α; EPO, erythropoietin; EPOR, erythropoi-
etin receptor; P4H, prolyl 4-hydroxylase; NOS, nitric oxide synthase; 
GLUT1, glucose transporter 1; CysC, Cystatin C; TIMP-1, tissue inhib-
itor of metalloproteinases-1; IL-6, interleukin-6; IL-1β, interleukin-1β; 
MMP9, matrix metalloproteinase-9; TNF-α, tumor necrosis factor-α; 
SIRT1, Sirtuin 1; HMGB1, High mobility group box 1; CytoC, Cyto-
chrome C; CASP3, caspase3; ROS, reactive oxygen species; AMPK, 
AMP-activated protein kinase; PI3K/AKT, phosphoinositide 3-kinase/
Akt; BDNF, brain-derived neurotrophic factor; NF-κB, nuclear factor 

kappa-B; MAPK, mitogen-activated protein kinase; HSPs, heat shock 
proteins; Nrf2, NF-E2-related factor 2; PPAR γ, peroxisome prolif-
erator-activated receptors γ; OGD, oxygen-glucose deprivation; 15d-
PGJ2, 15- deoxy-Δ12,14-PGJ2; COX-2, Cyclooxygenase-2; p70 S6 
K, ribosomal protein S6 kinase; JAK-2, Janus tyrosine kinase-2; PKB, 
protein kinase B; STAT5, Signal transducer and activator of transcrip-
tion 5; PI3-K, phosphatidylinositol-3-kinase; H2O2, hydrogen perox-
ide; SOD, superoxide dismutase; G6PD, glucose-6-phosphate dehy-
drogenase; HO-1, heme oxygenase-1; GST, glutathione-S transferase; 
CAT, Catalase; ARE, antioxidant response element. 
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antioxidases (Turkseven et al. 2005) and to degrade heme 
to carbon monoxide, ferrous ions, and biliverdin. HO-1 may 
act as a novel molecule to protect neurons from acute injury 
by promoting iron efflux from cells under existing condi-
tions, as both heme and iron are catalysts for free radical 
generation. Overexpression of HO-1 might also influence 
the regulation of apoptotic pathway genes such as Bax, 
Bcl-2, and caspase (CASP) (Vulapalli et al. 2002). In addi-
tion, HBO-PC could attenuate CASP levels (Khademi et al. 
2020). Therefore, HO-1 expression induced by HBO-PC 
represents an important neuroprotective mechanism.

GST is an antioxidant enzyme known to protect endo-
thelial cells from damage by oxidants and toxins, which is 
also regulated by the transcription factor Nrf2 and mediated 
by oxidative stress levels in cells (Townsend et al. 2009). 
First, GST expression may rely on multiple signal trans-
duction pathways of ARE, which are related to the indirect 
effects of oxygen radical intermediates catalyzed through 
P450 CYP1A1 and the direct action of oxidants and pheno-
lic antioxidants (Hayes and Strange 1995). Second, GSH in 
cells may enhance GST expression (Bergelson et al. 1994) 
because ROS production and reduced glutathione consump-
tion may induce the AP-1 complex, resulting in AP-1-me-
diated transcriptional activation of GST gene expression. 
Finally, other elements and factors may also modulate 
GST expression, such as a selenium-related mechanism 
(Christensen et al. 1994; Moffat et al. 1996). Vnukov et al. 
observed increased GST levels after conditions of hyper-
oxia (Vnukov et al. 2017).

Generation of HIF-1α and expression of EPO

The transcription factor hypoxia-inducible factor-1 (HIF-1) 
consists of HIF-1α and HIF-1b. It is a critical regulator that 
induces gene expression and promotes the adjustment and 
endurance of cells and organisms under hypoxic conditions 
(Semenza 1998; Wang et al. 1995). Studies have shown that 
HIF-1α is a critical agent of hypoxia-induced ischemia tol-
erance (Bruick and McKnight 2001; Choi et al. 2001; Wang 
et al. 1995) and cross-tolerance (Behrend et al. 2003; Wata-
nabe et al. 2003). In addition to hypoxia, other stimuli, such 
as vascular hormones, cytokines, growth factors, hyperoxia, 
viral proteins, and HBO-PC, can also induce HIF-1α. In this 
respect, HIF-1α seems to act as a universal molecular mas-
ter switch. HIF-1α targets several critical cellular signaling 
proteins and enzymes, including EPO, vascular endothelial 
growth factor (VEGF), glucose transporter 1 (GLUT1), 
inducible nitric oxide synthase (NOS), and glycolytic 
enzymes (Chen et al. 2008; Fan et al. 2009; Korkmaz et al. 
2008; Semenza 2003a, b; Sharp and Bernaudin 2004), which 
contribute to cell adaptation to hypoxia. Each of these func-
tions may contribute to the survival of neurocytes. There is 

HBO exposure could induce different types of antioxi-
dant enzymes that can protect against ROS, such as SOD 
(Gregorevic et al. 2001) and CAT (Nie et al. 2006) (Li et al. 
2008a).In addition, HBO-PC can reduce MDA levels in the 
ischemic penumbra and hippocampus. In addition to stimu-
lating antioxidant capacity, ROS in appropriate amounts are 
important as signaling molecules or messengers in physi-
ological processes (Valko et al. 2007), such as the innate 
immune response, extracellular matrix dynamics, prolif-
eration, differentiation and cell migration (Montezano and 
Touyz 2012; Wingler et al. 2011).

Nrf2 generation and downstream gene expression

NF-E2-related factor 2 (Nrf2) is a basic leucine zipper tran-
scription factor. A large number of antioxidant proteins are 
modulated via the mutual effect of the transcription factor 
Nrf2 with cis-elements in the antioxidant response element 
(ARE) adjacent to the corresponding gene promoter. After 
Nrf2 combines with ARE, it constitutes heterodimers with 
the small musculofascial fibrosarcoma protein that intercede 
trans-activation. It is important in modulating antioxidant 
enzyme expression and helping to detoxify and eliminate 
environmental oxidative stress. In a previous study (Zhai 
et al. 2016), researchers found that HBO-PC reduced 
infarct size and alleviated neuronal damage and apoptosis 
after ischemia in vivo. After repeated HBO exposure, Nrf2 
expression, heme oxygenase-1 (HO-1) and GST activities 
were significantly increased (Zhai et al. 2016). Hyperoxia 
interference with nuclear factor kappa-B (NF-κB) may 
mediate the anti-inflammatory state after HBO (De Wolde 
et al. 2021).

HO-1, which is also called heat shock protein 32 (Hsp32), 
is a noticeable component of cellular defense enzymes. Pre-
vious studies have shown that HO-1 can reduce oxidant-
induced tissue damage and ischemia/reperfusion injury 
(Ahmad et al. 2006; Panahian et al. 1999). Several signal-
ing pathways were reported to be involved in HO-1 expres-
sion, such as the phosphatidylinositol-3-kinase (PI3-K)/
Akt, mitogen-activated protein kinase (MAPK), antioxidant 
response element (ARE) in the HO-1 gene promoter, and 
nuclear factor E2-related factor 2 (Nrf2) pathways. AREs 
interact with the transcription factor Nrf2 and have been 
demonstrated to be major regulators of HO-1 transcriptional 
activation (Alam and Cook 2003). Hyperoxia HBO-PC-
associated Nrf2 expression induces the generation of HO-1, 
which may contribute to its neuroprotective ability (Nesovic 
Ostojic et al. 2021; Zhai et al. 2016). Under normal condi-
tions, HO-1 is almost undetectable in the brain. It can be 
rapidly induced in astrocytes and microglia through oxida-
tive stimuli. Although HO-1 is not an antioxidant enzyme, 
its antioxidant effects are due to its ability to increase 
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have found increased EPO transcription and translation in 
preconditioned brains (Jones and Bergeron 2001; Prass et 
al. 2000). Furthermore, exogenous EPO showed neuropro-
tective effects in vitro (Morishita et al. 1997; Ruscher et al. 
2002) and in vivo (Prass et al. 2000; Sakanaka et al. 1998; 
Sirén et al. 2001). In a study by Gu et al., the author dem-
onstrated that HBO-PC improves functional recovery and 
diminishes the infarct volume after focal cerebral ischemia 
(Gu et al. 2008). It was also shown that HBO-PC promoted 
the activation of HIF-1 DNA binding and increased the 
mRNA expression of EPO, followed by increased HIF-1 
and EPO protein expression in the cortex and hippocampus.

Induction of heat shock protein

Previous studies have suggested that the protective effect 
of HBO-PC is related to HSPs (Tsai et al. 2014; Wu et al. 
2018). In an animal model of hepatic ischemia–reperfusion 
injury (Wu et al. 2018), five-day HBO-PC (2.0 ATA, 60 min 
per session) promoted the expression of HSP70 and reduced 
hepatic inflammatory and oxidative damage. Intermittent 
HBO exposure at 1.3 ATA with 20.9% O2 was proven to 
enhance the endurance capacity of well-trained mice by 
facilitating oxidative and glycolysis capacity with upregula-
tion of HSP70 in skeletal muscles (Suzuki 2019).

HSPs are function-related proteins whose expression 
increases when cells are exposed to stressful conditions. 
As early as 1996, Japanese researchers found that repeated 
HBO-PC induced tolerance against ischemic neuronal 
injury by inducing HSP72 in the hippocampus (Wada et 
al. 1996). Subsequent studies suggested that HSP70 over-
expression can prevent ischemic damage and protect 
neurons and glial cells, possibly by preventing protein 
aggregation, reducing the inflammatory response, refold-
ing incompletely denatured proteins, and inhibiting cell 
death pathways (Brown 2007). In addition, HBO-PC could 
increase the expression of other members of the HSP fam-
ily and exert protective effects in different animal models. 
Studies included in vivo and in vitro have demonstrated 
that HBO-PC-induced HSP32 significantly protects spinal 
cord neurons from oxidative damage and oxygen glucose 
deprivation injury (Huang et al. 2016). Further investiga-
tion found that pretreatment of neurons with the p38 MAPK 
inhibitor ROS scavenger N-acetyl-L-cysteine or Nrf2 gene 
knockdown potently reversed HSP32 induction by HBO, 
which could be enhanced by MEK1/2 inhibitors or gene 
knockdown. It was suggested that HBO induced the expres-
sion of HSP32 via the ROS/p38 MAPK/Nrf2 pathway and 
that the MEK1/2/Bach1 pathway played a negative role in 
this process. Another study (Qin et al. 2008) mentioned that 
ribosomal protein S6 kinase (p70 S6 K) activation after 
five consecutive HBO-PC sessions may play a role in HSP 

growing evidence that HIF-1α is critical for neuroprotection 
in various models of cerebral ischemia.

It is not hard to understand the production of HIF-1 under 
hypoxic conditions. However, how can the paradoxical 
HIF-1 increase be explained under hyperoxic or HBO con-
ditions? Studies suggest that several mechanisms may be 
involved. First, HBO-PC involves breathing almost 100% 
oxygen at an air pressure higher than one ATA, which can 
increase the oxygen content of tissues. When HBO ends, 
oxygen levels drop to 21% of normal, and brain tissue 
experiences a state of relative hypoxia. Intermittent expo-
sure to HBO may induce transient hypoxia between HBO 
exposures, which may induce the expression and/or activity 
of HIF-1 (Fratantonio et al. 2021; Peng et al. 2008). Sec-
ond, HBO increased the production of ROS (Benedetti et 
al. 2004; Conconi et al. 2003; de Wolde et al. 2022; Greg-
orevic et al. 2001), and increased ROS levels can induce 
HIF-1 (Guzy et al. 2005; Kietzmann et al. 2001; Peng et al. 
2006; Stieg et al. 2022) by downregulating the threshold for 
HIF-1α and EPO activation. The main ROS species required 
for HIF-1 induction is H2O2. Studies have shown that AMP-
activated protein kinase (AMPK) is essential for the induc-
tion and stabilization of ROS-induced HIF-1α, and restraint 
of AMPK activity leads to an increase in HIF-1α–pVHL 
and HIF-1α ubiquitination interactions under H2O2 (Jung et 
al. 2008). It is possible that activated AMPK directly phos-
phorylates HIF-1α and/or VHL, increasing HIF-1α stability 
by blocking HIF-1a–pVHL interactions and the ubiquitina-
tion of HIF-1α to ROS. Moreover, ROS can regulate HIF-1α 
by activating phosphoinositide 3-kinase/Akt (PI3K/AKT) 
(Gao et al. 2004), interfering with hydroxylase activity and 
leading to the accumulation of HIF-1α (Metzen et al. 2003). 
After blocking the PI3K/Akt pathway with the specific 
inhibitor wortmannin, HIF-1α and its target gene VEGF 
protein were significantly inhibited (Li et al. 2008a). Indeed, 
Gu et al. reported a significant increase in HBO-induced 
protein expression of HIF-1α and its target gene EPO.

The neuroprotective effect of HIF-1 and its downstream 
genes has been demonstrated in various studies (Dang et 
al. 2011; Kietzmann and Gorlach 2005; Sun et al. 2003). 
To date, over 100 downstream genes of HIF-1 with dif-
ferent functions have been identified  (Pan et al. 2021), 
including vascular endothelial growth factor gene, COX-2 
gene, erythropoietin gene, nitric oxide synthase gene, and 
matrix metalloproteinase gene. EPO is a downstream gene 
involved in the regulation of HIF-1, which is a hematopoi-
etic growth factor that controls the proliferation, differentia-
tion, and maturation of red blood cells by combining with 
the surface of erythrocytes and reducing their apoptosis. 
EPO is also expressed in the central nervous system and 
exerts effective neuroprotection (Digicaylioglu et al. 1995; 
Jiang et al. 1996; Morishita et al. 1997). Previous studies 
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subinjury. COX-2 inhibitors persistently blocked HBO-PC-
induced neuroprotection. Therefore, these inhibitors should 
be discontinued or replaced with other medications before 
using HBO-PC.

15d-PGJ2

The cyclopentone prostaglandin 15- deoxy-Δ12,14-PGJ2 
(15d-PGJ2) is one of the prostaglandins of the J series 
(PGJs). 15d-PGJ2 are cyclopentenones synthesized from 
arachidonic acid through enzymatic transformation by 
COX and PGD2 synthase following nonenzymatic dehydra-
tion synthesis from PGD2 to a variety of PGJs (Saito et al. 
2007). It was previously demonstrated that HBO-PC promi-
nently promoted the 15d-PGJ2 level in oxygen-glucose 
deprivation (OGD)-exposed neurons, a common in vitro 
model for studying ischemia–reperfusion injury of neuronal 
cells, which was remarkably blocked by the COX-2 inhibi-
tor NS-398 (Zeng et al. 2012). The results also showed that 
activation of COX-2 facilitates 15d-PGJ2 production when 
HBO-PC protects against OGD-exposed neurons. These 
studies further demonstrated that HBO-PC can guard cul-
tured cortical neurons by COX-2 activation and 15d-PGJ2 
release.

Studies have shown that 15d-PGJ2, as an endogenous 
ligand, has a high affinity for peroxisome proliferator-acti-
vated receptors (PPARs) (Forman et al. 1995), which pro-
tects the cerebrum and other organs from ischemic insult 
(Collino et al. 2008; Cuzzocrea et al. 2003; Fong et al. 2010; 
Takagi et al. 2004). The OGD model is a common in vitro 
model for studying ischemia–reperfusion injury of neuro-
nal cells. A previous study (Zeng et al. 2012) indicated that 
OGD exposure caused severe damage to cultured corti-
cal neurons, which was markedly improved by HBO-PC. 
Furthermore, a study on primary cultured cortical neurons 
subjected to OGD exposure showed that HBO-PC potently 
promoted the expression of PPARγ mRNA and protein, 
PPARγ DNA synthesis activity, and 15d-PGJ2 levels. In 
addition, the PPARγ antagonist GW9662 notably attenuated 
the protective effect of HBO-PC in OGD-exposed neurons. 
15d-PGJ2 production in OGD-exposed neurons with HBO-
PC was blocked by using the COX-2 inhibitor NS-398. 
These results suggest that HBO-PC can directly protect 
cultured cortical neurons from OGD damage by activating 
PPARγ to 15d-PGJ2 production and increasing the activities 
of downstream antioxidant enzyme.

HMGB1

High mobility group box 1 (HMGB1) is well known as a pro-
inflammatory cytokine and is important in the pathogenesis 
of a variety of diseases, particularly inflammatory diseases 

synthesis and contribute to HBO-PC-induced brain protec-
tion in rats. Since p70 S6 K are vital enzymes in protein 
synthesis, activation of p70 S6 K and an increased ability to 
synthesize new protein may thus explain the ischemic toler-
ance of rats after HBO-PC.

Anti-inflammation and immune modulation

There is increasing evidence that neuroinflammation exac-
erbates brain damage after cerebral ischemia (Wang et 
al. 2007). Microglia are said to be the main mediators of 
the immune responses to multiple injuries and diseases in 
the central nervous system (Bilimoria and Stevens 2015; 
Kreutzberg 1996) (Jacobowitz et al. 2012) (Gensel and 
Zhang 2015). They also determine the effects of inflam-
mation and neuronal function (Valdearcos et al. 2014). 
Microglia released proinflammatory mediators that caused 
neuronal dysfunction and cell death (Block and Hong 2005; 
Lull and Block 2010). Microglia are the major manufactur-
ers of TNF-α in the brain and might play a role in inflam-
mation under certain pathological conditions (Sawada et al. 
1989). The regulation of microglial activation might par-
ticipate in the neuroprotection of HBO-PC, which is shown 
in intracerebral hemorrhage (Wang et al. 2019) (Yang et al. 
2015). However, the role of HBO-PC in IS warrants further 
exploration.

COX-2

Cyclooxygenase-2 (COX-2) catalyzes the formation of ara-
chidonic acid end products, which is a key element of neu-
roinflammation after ischemia (Candelario-Jalil et al. 2007; 
Nogawa et al. 1997). Pharmacological blockade of COX-2 
with highly alternative inhibitors has a strong neuroprotec-
tive effect in experimental animals with focal or global brain 
ischemia (Nakayama et al. 1998; Sasaki et al. 2004; Xiang 
et al. 2007). Cheng et al. (Cheng et al. 2011) found that 
HBO-PC increased viable neurons in cornu ammonis area 1, 
which was associated with decreased expression of COX-2 
in the hippocampus and cortex after ischemia. HBO-PC 
promoted neurological function and tended to reduce mor-
tality and the number of seizures. However, these positive 
effects could be eliminated by the application of the COX-2 
alternative inhibitor NS-398 prior to HBO-PC. The role of 
COX-2 in HBO-PC neuroprotection has two facets. On the 
one hand, HBO-PC could reduce COX-2 upregulation after 
different neural insults, which has been proven by previ-
ous studies. On the other hand, HBO-PC alone has been 
shown to increase COX-2 protein levels in different CNS 
disease models, such as surgical brain injury and glucose 
deprivation injury. This may indicate that HBO-PC protects 
the cerebrum by promoting COX-2 expression/activation to 

1 3

860



Metabolic Brain Disease (2023) 38:855–872

in HBO-PC-induced tolerance facing focal brain ischemia, 
which is consistent with a formerly reported hypothesis sug-
gesting that HBO-PC protects neurons against brain isch-
emic insult via stimulating autophagy (Wang et al. 2010). 
During myocardial ischemia-reperfusion injury, HBO 
protects cardiac myocytes by reducing inflammation and 
autophagy(Chen et al. 2017).

It has been shown that ROS produced by mitochondria 
might be involved in inducing autophagy, causing either cell 
survival or death, relying on various environments and ROS 
levels. Current results suggest that ROS also modulate star-
vation-induced autophagy via the PI3K pathway, which is 
clearly a survival mechanism (Scherz-Shouval et al. 2007). 
The neuroprotective effect of HBO-PC was attenuated by 
applying oxygen radical scavengers(Li et al. 2007; Nie et 
al. 2006). Increasing evidence has demonstrated that exog-
enous/endogenous ROS, as significant signaling molecules, 
participate in autophagy activation and can prevent cells 
from injury under stress and pathological conditions (Dja-
vaheri-Mergny et al. 2006). It is thus speculated that HBO-
PC may induce ROS production and activate autophagy to 
exert neuroprotective effects against ischemia.

Anti-apoptosis

Apoptosis refers to programmed cell death and is an essen-
tial process for the growth and health of multicellular organ-
isms. HBO-PC may reduce apoptosis in the penumbra by 
reducing CASP activities (Li et al. 2008b; Petrosillo et al. 
2011; Qin et al. 2008), promoting BDNF levels, and inhibit-
ing p38 MAPK activity (Ostrowski et al. 2010). HBO-PC 
may serve as a powerful prophylactic treatment to seal off 
the inflammation inherent in stroke and may contribute 
to the transfer of elastic mitochondria from astrocytes to 
inflammation-prone neuronal cells to mitigate cell death 
(Lippert and Borlongan 2019).

Cytochrome c (CytoC)

Previous studies have shown that mitochondria are the main 
regulatory factors in the mechanism underlying precon-
ditioning-triggered endogenous neuroprotection (Correia 
et al. 2010). During apoptosis, CytoC is released into the 
cytoplasm from mitochondria and is considered to be a trig-
ger factor for neuronal apoptosis development (Green and 
Reed 1998). CytoC release activates CASP-3 by activating 
apoptotic protease activator 1 and procaspase-9 complexes. 
Activation of CASP-3 leads to cytoskeletal degradation, 
fragmentation of DNA, and finally cell death. Li et al. found 
that HBO-PC decreased CytoC release and significantly 
restrained CASP activity in the hippocampus and penumbra 
of rats (Li et al. 2009). In their study, Bcl-2 and Bax, two 

(Andersson and Tracey 2011; Sims et al. 2010). HMGB1 
can be regulated after transcription, mostly by acetylation 
of lysine to change its location in the cells (Bonaldi et al. 
2003). In a study by Zhao et al., HBO was proven to ame-
liorate cerebral ischemia injury both in in vivo and in vitro 
ischemia reperfusion injury models. The mechanism may 
be that HBO-PC could induce deacetylation of HMGB1 by 
regulating SIRT1 and inhibiting downstream inflammatory 
cytokines such as MMP9, TNF-α, IL-6, and IL-1β (Kha-
demi et al. 2020; Wang et al. 2019; Zhao et al. 2021).

Activation of autophagy

Autophagy is a complicated process in cells that engages in 
degrading the cell’s own contents via a lysosomal mecha-
nism (Kundu and Thompson 2008). It helps maintain a 
balance among cell product synthesis, degradation and 
recycling. Therefore, it is important in cell growth, develop-
ment, and maintenance of homeostasis. Autophagy is char-
acterized by autophagosome formation. Beclin 1 and LC3 
are autophagy-associated proteins that are important in the 
formation of autophagosomes (Suzuki and Ohsumi 2007). 
The membrane-bound pathway of LC3 and LC3-II, derived 
from cleavage of LC3, is an integral part of the autophago-
some membrane and is often used in conjunction with the 
presence of autophagosomes to evaluate autophagy activ-
ity (Tanida et al. 2004). Alterations in autophagy activity 
have been shown to be associated with many diseases, par-
ticularly neurodegenerative illnesses, in which inadequate 
protein clearance might be due to induction or impaired 
alterations in autophagy-lysosomal degradation pathways 
(Shacka et al. 2008). Many necrotic apoptotic cells are pro-
duced after cerebral ischemia. These necrotic cell products 
can trigger a local inflammatory response, while degraded 
intracellular ingredients need to be removed and reused. 
Since ischemia results in a deficiency of indispensable 
nutrients, it is reasonable that autophagic pathways activate 
quickly after ischemia to facilitate cell survival by degrad-
ing toxic metabolites (Wang et al. 2010).

In a previous study, Yan et al. revealed that HBO-PC 
significantly increased LC3-II and Beclin 1 expression 
and induced the formation of autophagosomes in the isch-
emic penumbra after cerebral ischemia in rats (Yan et al. 
2011). Inhibiting 3-MA autophagy by inhibiting PI3K 
reversed HBO-PC-induced tolerance to focal cerebral isch-
emia, while autophagy activated by rapamycin improved 
subsequent cerebral ischemic damage. The neuroprotec-
tive effects of rapamycin appear to be the same as those 
of HBO-PC. Furthermore, transient focal cerebral isch-
emia might gently activate autophagy. Cerebral ischemia 
damage was aggravated by 3-MA therapy. These studies 
strongly demonstrated that autophagy activation is involved 
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Sirtuin 1 (SIRT1)

SIRT1, a member of the sirtuin family of mammals, is a 
class III histone deacetylase that produces enzyme activi-
ties in the presence of NAD+ (Blander and Guarente 2004). 
Previous studies indicate that SIRT1 could modulate axon 
protection and neuronal survival (Gao et al. 2010; Kim et 
al. 2007) and be critical in neuroprotection (Qiang et al. 
2011; Tsai et al. 2015). A previous report demonstrated that 
SIRT1 regulated the tolerance of HBO-PC-induced isch-
emia in animal brains (Yan et al. 2013). Yang et al. found 
that during OGD injury, both HBO-PC and upregulated 
SIRT1 promoted antiapoptotic Bcl-2 protein expression and 
reduced proapoptotic cleaved CASP-3 in neurons. Previous 
studies also showed that HBO-PC increased SIRT1(Fang et 
al. 2019; Hong-Qiang et al. 2018) and that the Nrf2/anti-
oxidant defense pathway participates in the effects of HBO-
PC-induced long-lasting neuroprotection of SIRT1 against 
transient focal cerebral ischemia (Xue et al. 2016). In con-
trast, the enhanced SIRT1 inhibition induced by HBO-PC 
inhibited Bcl-2 and increased cleaved CASP-3 protein, 
indicating that apoptosis mediated by SIRT1 is involved in 
HBO-PC neuroprotection. Multiple findings have shown 
that SIRT1 deacetylates p53, which is also an apoptosis-
inducing protein. The deacetylation of p53 by SIRT1 results 
in apoptosis inhibition (Alcendor et al. 2004). Thus, it is 
conceivable that SIRT1 may be involved in the neuroprotec-
tion of HBO-PC by regulating apoptosis through deacety-
lation of p53.

Brain-derived neurotrophic factor (BDNF)

Neutrophins are candidate genes for HBO-PC neuroprotec-
tion. A previous study reported that the level of BDNF pro-
tein decreased in transient forebrain ischemia (Kokaia et al. 
1996). However, in models treated with HBO-PC, BDNF 
expression increased in the cerebral cortex and CA1 early 
after global ischemia (Chavko et al. 2002). The protein 
expression of p75NTR (a low-affinity receptor for BDNF) 
was also significantly increased within 12–24 h after HBO 
treatment. NF-κB may be included in the upstream pathway 
of BDNF upregulation, where the BDNF gene is located in 
a promoter 3 region (Marini et al. 2004). Thus, upregula-
tion of NF-κB by hyperoxia or HBO may induce BDNF, 
particularly in the “eternal” five HBO regimen (Tähepõld 
et al. 2003).

The effects of BDNF downstream might include the 
inhibition of p38/MAPK activity through the suppression 
of p38/MAPK phosphorylation (Yamagishi et al. 2003). 
Recent investigations indicated that the p38 MAPK signal-
ing pathway might serve as a rapid reaction signal because 
it is triggered in flimsy neurons within a few minutes after 

upstream apoptosis factors, were found in mitochondrial 
pathways. Upregulation of Bcl-2 and an increased Bcl-2/
Bax ratio penumbra and hippocampus have been found to 
attenuate apoptotic cell death.

Cystatin C (CysC)

CysC is a cysteine protease inhibitor secreted by 13.3 kDa. 
It is widely present in the tissues and body fluids of mam-
mals and shows high concentrations in the central nervous 
system (Håkansson et al. 1996; Turk et al. 2008). Recent 
investigations demonstrated that CysC could prevent oxida-
tive damage (Olsson et al. 2004). However, a much higher 
serum CysC level is also thought to be a risk factor for 
stroke, as well as a predictor for poorer results. Through 
gene manipulation techniques such as siRNA and construct-
ing CysC knockout rats, the neuroprotective effect induced 
by HBO-PC was abolished when CysC was knocked out or 
knocked down (Fang et al. 2017). On the other hand, the use 
of exogenous CysC in vivo markedly prevented ischemic 
neuronal injury, suggesting that CysC might be necessary 
in HBO-PC.

Oxidative stress can trigger lysosomes to breakdown or 
rupture and release hydrolytic enzymes into the cytoplasm. 
Several hydrolases, including cathepsins B, L, and D, exist 
in many neurons. The processes of cell death, including 
apoptosis and necrosis, occurafter the release of lysosomal 
histases B and D from the cytoplasm (Repnik and Turk 
2010). CysC is primarily distributed in intact lysosomes and 
is an endogenic protease inhibitor of cathepsins B, H, K, L 
and S (Gauthier et al. 2011; Watanabe and Forman 2003). 
In pathological conditions such as apoplexy, cathepsin leak-
age from the lysosome would destroy both the organelles 
and the lysosome itself. This process might lead to further 
release of proteases and exacerbate the damage (Werne-
burg et al. 2002). Thus, minimizing lysosome damage may 
be an important mechanism for neural tissue preservation 
in ischemic reperfusion damage. Fang et al. (Fang et al. 
2017) revealed that mannose-binding lectin protein C and 
CysC had unique variations in mice with less infarction 
after HBO-PC and brain ischemia. Moreover, he found that 
CysC is essential for promoting autophagic flux biochemi-
cally and morphologically and that HBO-PC and CysC 
have important translational potential for stroke(Fang et al. 
2019). HBO-induced endogenous CysC increase protected 
lysosomal membrane integrity after apoplexy in wild-type 
mice but not in CysC siRNA perfusion or CysC−/− mice. In 
addition, exogenous CysC also has a neuroprotective effect 
against ischemia-reperfusion damage. The specific role of 
CysC in HBO-PC needs further investigation in the future.
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hypoxia-ischemia, the BBB loses permeability barrier func-
tion, which may involve endothelial TJ dysfunction, relo-
cation and dysregulation of occludin and ZO-1 (Mark and 
Davis 2002; Witt et al. 2003). In a previous study (Hao et 
al. 2016), hypoxia induced the downregulation of occludin 
expression and ZO-1 relocation from the membrane to the 
cytoplasm, which could be reversed by HBO-PC before 
hypoxia. The author believed that this may be the reason 
why TEER in the HBO-PC group was higher than that in 
the hypoxia group. Chen et al. found that hyperoxia could 
reduce damage to the BBB, attenuate brain cell edema, 
lower intracranial pressure, improve cerebral blood flow, 
especially around areas of brain damage, and activate neu-
rons in hemispheric areas(Chen et al. 2020). These results 
demonstrated that HBO has the potential to protect the 
integrity of the BBB but need to be further validated.

MMP-9: extracellular matrix protein laminin degradation

During the last decade, accumulated data from clinical and 
experimental studies have confirmed that MMP-9 plays 
a critical and harmful role in IS and reperfusion injury 
(Zalewska et al. 2003). Numerous studies have detected 
a marked increase in MMP-9 expression after IS, which 
is related to various complications, such as excitotoxicity, 
neuronal damage (Lee et al. 2004b), apoptosis (Copin et 
al. 2005; Lee and Lo 2004a), oxidative stress (Kelly et al. 
2008), and disturbance with oxidative repair of DNA (Yang 
et al. 2010). Most importantly, BBB breakdown causes 
brain edema and hemorrhagic transformation (Zhao et al. 
2006). In focal brain ischemia models, MMP-9 KO mice 
showed noteworthy BBB protection (Asahi et al. 2001).

A recent study proved that HBO-PC reduced the activity 
and tissue expression of brain MMP-9, and improved cell 
death after global brain ischemia (Ostrowski et al. 2010). 
Interestingly, the study found that HBO-PC improved the 
tissue expression of MMP-9, suggesting that the HBO-PC 
mechanism may deplete brain MMP-9 storage. This exhaus-
tion would reduce MMP-9 after brain ischemia (Lalu et al. 
2002). Previous studies found that HBO-PC modified neu-
rological deficits and reduced hemorrhage; MMP-2 and 
MMP-9 activities were also reduced (Soejima et al. 2013; 
Wang et al. 2019). In these cases, the decrease in MMP-9 
activity in the HBO-PC group would simply reflect MMP-9 
storage depletion in the cerebrum, although other precondi-
tioning mechanisms should also be taken into consideration. 
In addition, tissue inhibitor of metalloproteinases-1 (TIMP-
1) is the target gene of HIF-1 and can inconvertibly inacti-
vate MMP-9 (Gomez et al. 1997). It is necessary to further 
investigate whether HBO-PC can induce TIMP-1 and then 
block MMP-9 to improve cell death after global cerebral 
ischemia.

global brain ischemia (Sugino et al. 2000; Takagi et al. 
2000) and plays a crucial role in ischemic or cross toler-
ance (Nishimura et al. 2003; Ostrowski et al. 2008). Studies 
have shown that P38/MAPK inhibition contributes to cell 
survival in focal and global brain ischemia (Barone et al. 
2001; Sugino et al. 2000), and pretreatment with SB203580 
reduced ischemic- (cross-) tolerance (Nishimura et al. 2003; 
Sun et al. 2006; Zheng and Zuo 2004). HBO-PC inhibited 
p-p38 expression after ischemia, suggesting that HBO-PC 
may induce ischemic tolerance by enhancing BDNF and 
inhibiting P38 activation during reperfusion (Ostrowski et 
al. 2008).

Blood-brain barrier and MMP-9

In the subacute phase of IS, neuroinflammation occurs due 
to the release of cytokines, chemokines, and matrix metal-
loproteinases (MMPs) (Fu et al. 2022). The overexpression 
of MMPs can increase the permeability of the blood-brain 
barrier (BBB), cause migration waves of white blood cells 
into the infarct area, and aggravate inflammatory activities. 
A variety of cell phenotypes containing neurovascular units 
in the penumbra are also susceptible to the pathological 
mechanisms mentioned above (Wang et al. 2021a).

Blood–brain barrier (BBB)

The BBB consists of tight junctions (TJs) among the cap-
illary basal layer, endothelial cells, pericytes and astro-
cyte endfeet and is a highly alternative penetration barrier 
(Ballabh et al. 2004). It is crucial in maintaining cerebral 
homeostasis. BBB breakdown causes edema or hemorrhage 
of angiogenesis and neuronal cell death, which may cause 
the pathophysiology of ischemic brain injury (Lee et al. 
2013). The complicated mutual effects of cytoskeletal pro-
teins and tight junction proteins (TJPs) formed TJs between 
cerebral endothelial cells. TJs include the interactions of 
zonula occludens (ZO), occluding, claudins, and cingulin 
(Wolburg and Lippoldt 2002). TJPs promote endothelial 
electrical resistance and reduce paracellular permeability 
(Coisne and Engelhardt 2011). Changes in TJP expression 
and distribution can cause the loss of BBB integrity and 
BBB breakdown (Ballabh et al. 2004; Luh et al. 2010).

Complex TJPs regulate the opening of TJs, such as 
peripheral membrane protein family members, transmem-
brane proteins, and adhesion molecules (Farkas et al. 2012), 
while occlusion modulates their sealing. Blocking occlud-
ing expression alone is sufficient to induce dysfunction of 
TJs (Persidsky et al. 2006; Tavelin et al. 2003). ZO-1 is a 
bridge between transmembrane proteins and skeleton pro-
teins, which plays a key role in TJP stability and function 
(Abbott et al. 2006; Xia et al. 2013). In the early phase of 
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successfully used in cutaneous flaps (Tenenhaus et al. 2018) 
and traumatic brain injury(Zhou et al. 2016).

Transplantation of umbilical cord mesenchymal stem 
cells combined with HBO treatment is superior to mono-
therapy in repairing traumatic brain injury and can enhance 
the recovery of neurological function. A clinical study 
showed that HBO-PC decreased the period to neutrophil 
and platelet implantation and decreased the application of 
granulocyte colony-stimulating factor. Heyboer et al. (Hey-
boer et al. 2014) found that HBO at 2.5 ATA fostered more 
stem/progenitor cell mobilization than at 2.0 ATA.

In summary, HBO-PC might be considered a safe and 
effective method to combine with SCs therapy to prevent IS.

Concerns about HBO-PC

Almost all research on HBO-PC was conducted in animal 
models or healthy volunteers. In clinical application, HBO-
PC is mainly used in high-risk populations with neurologi-
cal diseases. Therefore, the applicability of the above results 
needs re-evaluation. It is still unclear whether HBO-PC is 
cost-effective, which is a critical issue in almost all pre-
ventive applications and a defining factor in HBO-PC. It 
requires good patient compliance, as it usually takes approx-
imately one to two hours and several episodes. In addition, 
although the benefits of HBO-PC on IS have been widely 
found in different models, HBO-PC is still controversial in 
terms of treatment duration, stress parameters, number of 
sessions, and species (Prass et al. 2000; Wang et al. 2019, 
2021; Zhang et al. 2004).

HBO-PC sessions

The optimal doses of HBO remain unclear. Ischemic toler-
ance is negated when air (20% oxygen) rather than 100% 
O2 is applied during preconditioning, indicating that 100% 
O2 is required in the HBO-PC mechanism (Wada et al. 
2001). It was previously believed that a single HBO treat-
ment was not enough to induce tolerance to ischemia in 
the cerebrum. It was recommended that more sessions of 
HBO-PC (e.g., five times) should be considered, as it was 
more valid than three-day HBO-PC (Ostrowski et al. 2008). 
Nevertheless, one study suggested that the neuroprotec-
tive effects of a single HBO session in newborn rats might 
be similar to those of hypoxia pretreatment (Freiberger et 
al. 2006). Another study found that HIF-1α protein lev-
els rose more significantly after three days (six HBO epi-
sodes) (Peng et al. 2008). Long-term preconditioning within 
24 h before injury (2.5 ATA for 60 min per day for five con-
secutive days) effectively established tolerance to transient 
focal ischemia with hemorrhagic transformation, global 

Stem cells

Stem cells (SCs) are positioned in mature brain niches 
with protective and recuperative functions by migrating 
to the damaged area(Sullivan et al. 2015). There are two 
main types of stem cells based on the developmental stage: 
embryonic SCs (ESCs), which are separated from the inner 
cell mass of the blastocyst, and adult SCs (ASCs), which 
can be identified in diverse adult tissues, involving epider-
mal SCs, mesenchymal SCs (MSCs), hematopoietic SCs 
(HSCs), and neural SCs (NSCs)(Gao et al. 2018). Neural 
stem cell therapy has been shown to achieve promising ther-
apeutic effects in IS through two strategies: transplantation 
of exogenous NSCs and promotion of self-repair of endog-
enous NSCs (Huang and Zhang 2019). HBO has a dynamic 
effect on a diverse stem cell population in vivo. Strikingly, 
HBO may increase total accessible endogenous stem cells 
by raising many circulating stem cells in a pressure-sus-
ceptive manner(Zhang et al. 2021) and by upregulating the 
proliferation of NSCs within their neurogenic niches in the 
adult brain. The mechanism of HBO in NSC proliferation 
might involve the upregulation of crucial regulatory mol-
ecules, such as its receptor (VEGFR2), vascular endothe-
lial growth factor (VEGF) (HIF-1α downstream target), 
ERK, and CREB(Liska et al. 2018). HBO boosts the dif-
ferentiation of NSCs into oligodendrocytes and neurons and 
decreases astrocytes in vitro, probably through modulating 
the Wnt3/nuclear b-catenin and BMP2 signaling pathways 
(Chen et al. 2019).

Delayed grafting and failed engraftment are the main 
barriers to successful umbilical cord blood (UCB) trans-
plantation (Aljitawi et al. 2014). HBOT can be combined 
with stem transplantation to improve graft survival and 
assuage the inflammatory response (Geng et al. 2015). Ani-
mal studies found that umbilical cord MSC transplantation 
combined with HBOT had significantly superior therapeutic 
outcomes over monotherapy in the treatment of traumatic 
brain injury (Zhou et al. 2016), hypoxic-ischemic brain 
damage(Ma et al. 2015), and spinal cord injury (Geng et al. 
2015). Heyboer et al. found that HBO-PC can be performed 
simultaneously with stem cell preconditioning, which can 
provide an effective dual treatment method for patients at 
high risk of apoplexy, using preemptive neuroprotective 
methods and post hoc neurorestorative biologics (Liska et 
al. 2018). HBO-PC promoted homing of transplanted UCB 
hematopoietic stem/progenitor cells (HSPCs) to the bone 
marrow(Cheung et al. 2018) by reducing systemic EPO 
levels in the recipient (Aljitawi et al. 2016). In addition, 
HBO-PC improved myeloid, B cell, and T-cell engraftment 
in a murine transplant model (Aljitawi et al. 2014). The 
combination of HBO-PC and stem cell therapy has been 
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