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BACKGROUND: The protective effect of urban greenery from adverse heat impacts remains inconclusive. Existing inconsistent findings could be attrib-
uted to the different estimation techniques used.

OBJECTIVES:We investigated how effect modifications of urban greenery on heat–mortality associations vary when using different greenery measure-
ments reflecting overhead-view and eye-level urban greenery.

METHODS:We collected meteorological and daily mortality data for 286 territory planning units between 2005 and 2018 in Hong Kong. Three green-
ery measurements were extracted for each unit: a) the normalized difference vegetation index (NDVI) from Landsat remote sensing images, b) the
percentage of greenspace based on land use data, and c) eye-level street greenery from street view images via a deep learning technique. Time-series
analyses were performed using the case time series design with a linear interaction between the temperature term and each of the three greenery meas-
urements. Effect modifications were also estimated for different age groups, sex categories, and cause-specific diseases.
RESULTS: Higher mortality risks were associated with both moderate and extreme heat, with relative risks (RRs) of 1.022 (95% CI: 1.000, 1.044) and
1.045 (95% CI: 1.013, 1.079) at the 90th and 99th percentiles of temperatures relative to the minimum mortality temperature (MMT). Lower RRs
were observed in greener areas whichever of the three greenery measurements was used, but the disparity of RRs between areas with low and high
levels of urban greenery was more apparent when using eye-level street greenery as the index at high temperatures (99th percentile relative to MMT),
with RRs for low and high levels of greenery, respectively, of 1.096 (95% CI: 1.035, 1.161) and 0.985 (95% CI: 0.920, 1.055) for NDVI (p=0:0193),
1.068 (95% CI: 1.021, 1.117) and 0.990 (95% CI: 0.906, 1.081) for the percentage of greenspace (p=0:1338), and 1.103 (95% CI: 1.034, 1.177) and
0.943 (95% CI: 0.841, 1.057) for eye-level street greenery (p=0:0186). Health discrepancies remained for nonaccidental mortality and cardiorespira-
tory diseases and were more apparent for older adults (≥65 years of age) and females.

DISCUSSION: This study provides new evidence that eye-level street greenery shows stronger associations with reduced heat–mortality risks compared
with overhead-view greenery based on NDVI and percentage of greenspace. The effect modification of urban greenery tends to be amplified as tem-
peratures rise and are more apparent in older adults and females. Heat mitigation strategies and health interventions, in particular with regard to acces-
sible and visible greenery, are needed for helping heat-sensitive subpopulation groups in coping with extreme heat. https://doi.org/10.1289/EHP12589

Introduction
Climate adaptation and support of a healthy environment through
nature-based solutions have been receiving increasing attention
over the past few years.1 A direct health impact of climate change
is increased mortality risk associated with more frequent and in-
tensive extreme heat.2–4 In this context, research findings suggest
that the natural environment in urban areas is intertwined with
residents’ health.5 Urban greening connected with nature-based
solutions (e.g., parks and green roofs) is increasingly seen by
urban planners, policymakers, and environmental epidemiologists
as being able to help limit the health impacts of extreme heat.6–8
Understanding the impacts of urban greenery on heat effects can

shed light on cost-effective heat mitigation strategies and health
interventions.

Despite varying definitions in the literature, urban greenery usu-
ally refers to trees and vegetation along streets, in parks, and in
gardens, as well as other green spaces.9 There are a number ofmech-
anisms underlying the associations between greenery and heat–mor-
tality effects. First, urban greenery can regulate themicroclimate and
mitigate urban heat through evapotranspiration10 and shading.11

Other pathways could also explain the health benefits conferred by
urban greenery, including the reduction of air pollutants12 and
noise,13 support of psychological recovery and stress relief,14 stimu-
lation of physical activities,15 and enhancement of social cohe-
sions.16 Although the total amount of urban greenery in an area is
crucial for potential heat mitigation and air filtration at the city or
intra-city level, the greenness alongwalkable streets is more likely to
improve the pedestrian summertime thermal comfort, encourage per-
sonal interactions with the natural environment, and reduce people’s
daily exposure to health-threatening pollutants, such as air pollution
and traffic noise.17–19 Given the various underlying pathways, it is
important to consider diverse aspects of urban greenery and explore
the potential difference in their likelihood to reduce heat effects.

A number of investigations have examined the protective
effects of urban greenery from adverse heat effects.6,20,21 Although
most of the existing literature focuses on global and regional
scales, heat mitigation strategies and health interventions are most
effectively devised locally,22 few studies have focused on the
impacts of urban greenery on heat effects at the intra-urban level
and the results vary.7,23–25 The overall inconclusive findings
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could be attributed to different measurement techniques of urban
greenery. Typically, urban greenery is measured through remote
sensing or land use data, such as satellite-derived index of green-
ness [i.e., the normalized difference vegetation index (NDVI)], the
percentage of greenspace in an area based on the land use data set.
However, whether such overhead-view measurement could accu-
rately reflect what people see on the ground is questionable.26 For
instance, remote sensing images often fail to detect vertical green
walls, vegetation covered by a bridge, or shrubs and lawns under a
tree canopy.27 Emerging urban big data provide an alternative way
to assess urban greenery, particularly along the streets through street
view services. Being a widely used service platform, Google Street
View (GSV) provides panoramic streetscape images captured by
cars or people walking along the streets in many cities around the
world.28 Recent progress in deep learning makes it possible to
extract street greenery from GSV images automatically.27 In this
context, although street greenery has been found to be associated
with better mental health,29 higher rates of physical activities,30 and
lower mortality risk,31,32 satellite-derived urban greenery has not
been found to have the same effect.

What is of particular importance is that past studies mainly
focused on the protective effects of overhead-view greenery
against heat.20,21,23–25 Less evidence has been generated for street-
level visible greenery. This means that it is currently unclear
whether eye-level street greenery could act as a modifier of heat–
mortality associations. Even fewer studies have examined the
impacts of different greenery metrics simultaneously. Although
GSV images provide exciting data, a recent work showed that the
GSV-derived street greenery alonemay fail to capture the presence
of backyards and community gardens given that their view might
be blocked by buildings.33 Therefore, further investigations on the
effect modifications of different greenery metrics are warranted so
as to understand which aspects of urban greenery can play a vital
role in heat mitigation strategies. In addition, although most of the
existing literature has mainly focused on the associations between
urban greenery and heat effects for the general population, scant
attention has been paid to the disparate health effects of urban
greenery on different subpopulation groups.24,25 The potential
varying effect modifications of urban greenery at different levels of
heat, as observed in some studies,7,34 should also be noted. This

needs further examination, in particular with regard to different
greenerymeasurements.

It is in this context that this paper aims to explore the effectmodi-
fications of urban greenery at the intra-urban level, using a recently
developed case time series (CTS) design that is particularly well
suited for small-area analyses.35,36 With the aid of urban big data
and deep learning approaches, influences of different urban greenery
metrics derived from remote sensing, land use data, and street view
images will subsequently be explored, including the heterogeneous
protective effects of urban greenery by age groups, sex categories
and across thewhole range of summer temperatures.

Methods

Study Area and Period
Analyses were conducted at the Tertiary Planning Unit (TPU)
level, the smallest planning unit of Hong Kong, with an average
area of 3:88 km2 and ∼ 25,000 residents in 2016.37 The analysis
was restricted to the summer months, identified as the five warm-
est months of June to October, from 2005 to 2018. Some TPUs
changed boundaries during the analysis period. This was addressed
by merging adjacent TPUs with boundary changes. In total, 286
TPUswere considered in the analysis (Figure 1).

Time-Series Data of Weather, Air Pollution, and Mortality
Data of dailymean temperature and relative humiditywere obtained
from the Hong Kong Headquarter station. The station was selected
because it was the most representative urban station in Hong
Kong.38 It had a complete data set for the study period. A previous
study found that the temperature–mortality associations based on
this single stationwere similar to those based onmultiple stations.39

Air pollutant data for ozone (O3) and respirable suspended
particles [particulate matters with aerodynamic diameter less than
or equal to 10 micrometers (PM10)] were obtained from the Hong
Kong Environmental Protection Department.40 Hourly monitor-
ing data from three roadside stations were omitted from the anal-
ysis because the monitoring results were highly affected by
vehicle emissions, leaving data from 11 general stations in the
study for subsequent analysis.25 Daily 24-h mean concentrations

Figure 1. Boundaries of TPUs and the location of the Hong Kong Headquarter station. The map was created by using ArcGIS 10.5.1 (ESRI). Note: TPUs,
Tertiary Planning Units.
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of O3 and PM10 were calculated before building an average of
>11 stations to represent the daily exposure levels of the
population.

Time-series daily data on all-cause mortality were collected
for all TPUs in Hong Kong during the summer months (June to
October) from 2005 to 2018. Individual mortality data with TPU
identifiers (3-digit TPU code) were obtained from the Census and
Statistics Department of Hong Kong. We aggregated those data
as TPU-specific daily series of total mortality counts and strati-
fied the data by sex and age group (0–64 and ≥65 years of age) at
the TPU level. In addition, causes of death were classified based
on the International Statistical Classification of Diseases and
Related Health Problems, 10th Revision41 (ICD-10). In each
TPU, daily counts of deaths from nonexternal causes (ICD-10
codes A00–R99) and from cardiorespiratory diseases (ICD-10
codes I00–I99 and J00–J99) were also calculated.

Socioeconomic Data
Socioeconomic data were obtained from the 2006 and 2016 Hong
Kong censuses.37,42 The smallest census units with available data
in the two rounds of censuses were large TPUs, in which adjacent
TPUs with small populations were merged into larger units.
Variables related to age, education, and income as proxy for soci-
oeconomic status (SES) in each large TPU were identified based
on a literature review.23–25 This included percentages of older
adults (≥65 years of age), of people >15 years of age with educa-
tional attainment only at the primary school or below, and of the
working population with a monthly income below the poverty
line (i.e., HKD$2,000 in 2006 and HKD$4,000 in 2016 according
to the poverty indicator in Hong Kong).43 Boundary changes
were made for some large TPUs from 2006 to 2016: First, those
large TPUs with boundary changes were the result of merging ad-
jacent TPUs. Then each variable for those units was recalculated,
and data for each variable over the 2-y period were averaged to
reflect the SES of each large TPU during the study period.
Finally, 140 large TPUs remained. The smaller TPUs within the
same large TPU were assumed to have the same SES level.
Pearson correlation analysis was performed between variables of
SES and urban greenery measurements.

Measurements of Urban Greenery
The study underlying this paper measured urban greenery in three
distinct ways: a) overhead-view greenery based on NDVI, b) the
percentage of greenspace, and c) eye-level street greenery derived
from street view images. The NDVI is a widely used index of
vegetation presence and density based on satellite images. It
refers to the contrast between two bands: the near-infrared band
(NIR) and the visible red band (Red). It is calculated as follows:
NDVI= ðNIR−RedÞ=ðNIR+RedÞ.44 NDVI ranges from −1 to
1, with a higher value indicating denser vegetation.45 In general,
a high NDVI value (0.6–0.8) corresponds to green plants (i.e.,
temperate and tropical rainforests), a moderate value (0.2–0.3)
represents shrubs and grassland, and a very low value of NDVI
(≤0:1) indicates barren areas or built-up land. A negative value
represents a water body.45 All available Landsat images (30 × 30 m)
were collected from 2005 to 2018 and the annual NDVI composite
was calculated using the maximum value compositing technique.46

All Landsat images were downloaded and processed, using Google
Earth Engine. After truncating the NDVI scale by setting negative
values to zero, the mean NDVI value of each TPU was calculated by
averaging the pixel values within the TPU boundary for each year.
By averaging all annual NDVI at the TPU level for the period of
2005–2018, a single long-term average value of NDVI was produced
for each TPU.

The urban greenspace data were acquired from the land utiliza-
tion maps in 2006 and 2018, produced by the Hong Kong Lands
Department at a 10-m resolution. This study treated woodland,
shrubland, grassland, and wetland as greenspace. The greenspace
data were aggregated to calculate portions of greenspace at the
TPU level in each of the 2 y and were then recalculated as an aver-
age to represent the percentage of greenspace for each TPU during
the study period (2005–2018).

This study measured eye-level street greenery, using GSV
images. We created GSV-generating points along all streets at a
uniform spacing of 50 m. Based on the coordinates of the GSV-
generating points, four GSV images were downloaded for each
point, constituting a panorama with a 90° field of view and north,
east, south, and west headings (Figure S1A). To extract the pixels
of greenery in each GSV image (Figure S1B), a separate Python
script was developed using the deep learning technique of a fully
convolutional neural network.47 This method has been widely
used in street view image processing and can accurately extract
greenery pixels in GSV images after sufficient training.27,30,48,49

The eye-level street greenery at each point was then assessed as
the portion of greenery pixels to total pixels in the four GSV
images (Equation 1), as follows:

Street greenery %ð Þ=
P4

i=1 Greenery pixelsiP4
i=1 Total pixelsi

×100%,

(1)

where Greenery pixelsi represents the number of pixels represent-
ing greenery in the image i, and Total pixelsi indicates the total
number of pixels in that image. The values of street greenery
were measured as a percentage, ranging from 0 to 100, with a
higher value indicating a higher level of greenery.

To validate the results of greenery extraction, 30 GSV images
were randomly selected, and greenery pixels in each image were
manually extracted. A correlation coefficient of 0.91 was observed
between the results of the manual extraction and those of automated
greenery extraction (p<0:01). The validation results aligned with
those of an earlier study,47 demonstrating the reliability of the meth-
ods used. Average street greenery values of all GSV points within a
TPU were calculated to represent the level of street greenery in that
TPU. All data processing and analyses were performed using
Python scripts withGSVAPI.

Statistical Analyses
The statistical analyses were conducted in two steps. During the
first step, we adopted a novel CTS design that is well suited for
small-scale epidemiological analysis on short-term risks associ-
ated with time-varying exposures.35 The CTS design incorporates
the self-matched structure in case-only models into a classical
time-series form, providing a flexible and computationally efficient
tool for complex longitudinal data. Unlike the original application
of CTS, in which cases were represented by individual subjects,35

the extended CTS were used.36 This defines cases as small geo-
graphical units (i.e., TPUs). As such, the event-type outcome in the
modeling framework was the daily death counts for each TPU and
was associated with temperature. To simultaneously model the
nonlinear and delayed effects of temperature, a bidimensional
spline distributed lag nonlinear model (DLNM) was used by defin-
ing a cross-basis term.50 Specifically, the bidimensional term is
composed of two natural cubic splines, one for defining the expo-
sure–response curve (two knots at the 50th and 90th percentiles of
temperature distributions) and the other for modeling lag–response
relationships (one knot at lag 1 over the lag period 0–3). Similar
knot placements were used to those applied in a past study to
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facilitate comparison across regions in different studies.36 The
model enforced a strict temporal control by using a TPU/year/
month strata intercept, natural splines of days of the year with 4
degrees of freedom, and an interaction term with year indicators,
plus indicators of days of the week and holidays, thus allowing for
modeling individually varying baseline risks on top of shared long-
term, seasonal, weekly trends.35 The minimum mortality tempera-
ture (MMT) during the study period (June to October, from 2005 to
2018) was derived from the temperature–mortality curve and was
used to center the DLNMs at theMMT as references.

In the second step, the original model was extended by intro-
ducing an interaction term to investigate the effect modifications
of urban greenery measured by NDVI, percentage of greenspace,
and eye-level street greenery, respectively. In particular, a linear
interaction between the cross-basis temperature and each indicator
of urban greenery was specified. The significance of the interac-
tion was tested, based on the likelihood ratio test.36 The relative
risks (RRs) of deaths associated with summer temperatures in
TPUs at a low level (5th percentile) and a high level (95th percen-
tile) of each greenery indicator were predicted, respectively, using
MMTs derived during the first stage as references. Similar thresh-
olds were used to those applied in most recent small-area analysis
studies to categorize low and high levels of urban greenery (5th
and 95th percentiles of greenery indicators) to facilitate compari-
sons across different studies.7,51

To represent the effect modifications of urban greenery on the
overall cumulative heat–mortality associations, the ratio of RRs
between TPUs with a high and low value of each greenery indica-
tor was calculated. Separate models were fitted for two age groups,
young people (0–64 years of age) and older adults (≥65 years of
age), for males and females, and for nonaccidental mortality and
cardiorespiratory diseases to explore the age-, sex-, and cause-
specific effect modifications of urban greenery based on NDVI,
percentage of greenspace, and eye-level street greenery.

Finally, sensitivity analyses were conducted in the overall pop-
ulation and in all of the population stratifications by including daily
relative humidity, O3, and PM10 concentrations at 0–1 lag days to
control the potential effects of other time-varying confounders.23

All statistical analyses were performed, using R (version 4.0.4; R
Development Core Team) with the dlnm package.52 For all statisti-
cal tests, the significance level was set at p<0:05 (two-tailed).

Results
During the study period (June to October, from 2005 to 2018), the
average daily mean temperature was 28.0°C, ranging from 18.7°C
to 32.4°C. The mean daily relative humidity was 77.78%, and the
daily mean concentrations of air pollution were 41:73lg=m3 for
O3 and 44:69lg=m3 for PM10 at 0–1 lag days. Death records with-
out the residential location information were excluded. Thus,
221,919 deathswere included in the analysis. Nearly 80% of deaths
were for persons ≥65 years of age, and 45% of deaths were by
females. In total, 213,505 deathswere caused by nonaccidental dis-
eases and 93,974 by cardiorespiratory diseases.

The descriptive statistics of urban greenery measured in three
distinct ways at the TPU level are shown in Table 1. A list of the
socioeconomic variables with the corresponding definition and
descriptive statistics is provided in Table S1. The spatial distribu-
tion for each urban greenery measurement at the TPU level is
illustrated in Figure S2, with the correlation between all variables
in Figure S3. The GSV-derived eye-level street greenery was
moderately correlated with NDVI (Pearson correlation r=0:60)
and percentage of greenspace (r=0:54), whereas the latter two
were highly correlated with each other (r=0:90). A weak nega-
tive correlation was observed between the percentage of older
adults (≥65 years of age) and each urban greenery measurement
(r= − 0:26 for NDVI, r= − 0:3 for percentage greenspace, and
r= − 0:23 for eye-level street greenery). The other two socioeco-
nomic variables showed no explicit association with the three
urban greenery measurements.

The temperature–mortality association during the summer is
represented by an overall cumulative exposure–response curve
in Figure 2. The curve shows an increase in mortality risks at
temperatures >25:4�C, corresponding to the MMT. Higher
mortality risks were associated with both moderate and extreme
heat, with RRs of 1.022 [95% confidence interval (CI): 1.000,
1.044] and 1.045 (95% CI: 1.013, 1.079) at the 90th and 99th
percentiles of temperatures (30.1°C and 30.9°C) relative to the
MMT. Figure 3 shows the overall cumulative temperature–
mortality associations predicted for TPUs with a low (5th per-
centile) and a high (95th percentile) value for each indicator
over the whole range of summer temperatures. We observed a
significant disparity in heat effects by eye-level street greenery,
as confirmed by the returned p=0:032< 0:05 for a likelihood
ratio test. However, results suggested little evidence of differen-
tial risks over the whole range of summer temperatures by the
other indicators, NDVI, and percentage of greenspace, with
p>0:05 (Figure 3).

Table 2 presents the RRs of TPUs at a high and low level of
each urban greenery indicator at the 90th and 99th percentiles of
temperatures (30.1°C and 30.9°C). Results show a significantly
lower mortality risk at the 99th percentile in areas at a low level
of NDVI-based urban greenery or with less eye-level street
greenery (p<0:05), but there is little evidence of significant dif-
ferentials at the 90th percentile of temperatures (30.1°C) for any
indicator (p>0:05).

Results of the interaction term for different urban greenery
measurements are illustrated in Figure 4. They are expressed as
the ratio of RRs in TPUs with a low (5th percentile) and a high
(95th percentile) value of each indicator over the whole range of
summer temperatures. An increase in the right tail of the curves
of all three indicators was observed, which is more apparent in
the indicator of GSV-derived street greenery. This trend corre-
sponds to the rapid increase in TPUs with a lack of eye-level
street greenery at temperatures >30�C, as shown in Figure 3.

The age-, sex-, and cause-specific temperature–mortality
associations for TPUs with a low (5th percentile) and a high
(95th percentile) value of each greenery indicator are illustrated

Table 1. Descriptive statistics of the size and three urban greenery indicators of TPUs in Hong Kong, 2005–2018.

Indicators Mean± SD Min

Percentile

Max5 25 50 75 95

Area (km2) 3:88± 5:38 0.06 0.22 0.66 1.81 4.67 15.91 28.49
NDVI 0:46± 0:18 0.10 0.15 0.32 0.48 0.61 0.69 0.74
Percentage of greenspace (%) 43:98± 35:24 0.00 0.01 5.56 43.50 74.30 97.77 99.99
Eye-level street greenery (%) 28:56± 20:43 0.00 0.02 12.08 25.31 42.10 66.35 90.29

Note: The descriptive statistics include data of 286 TPUs. Max, maximum; min, minimum; NDVI, normalized difference vegetation index; SD, standard deviation; TPUs, Tertiary
Planning Units.
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in Figures S4–S6 and Excel Tables S4–S6. All three indicators of
urban greenery were significantly associated with differential
risks of summer temperatures in females. In contrast, only the
eye-level street greenery retained a significant effect in older
adults (≥65 years of age) and nonaccidental mortality, as con-
firmed by the returned p-values of likelihood ratio tests
(p<0:05). Both NDVI and eye-level street greenery showed sig-
nificant associations with cardiorespiratory disease. However, no
significant interaction was observed between urban greenery and
temperature–mortality associations in males and in people 0–64
years of age (p>0:05). For females and older adults, a higher ra-
tio of RRs between a high and a low value of urban greenery met-
rics was observed at high temperatures. The most significant
increase was shown in the right tail of the curve of the GSV-
derived street greenery (Figures S7 and S8). Similar trends were
observed for the accidental mortality and cardiorespiratory dis-
eases (Figures S9 and S10).

Finally, it was established that the associations between urban
greenery and heat-related mortality remained even after adjusting
them for other time-varying confounders (i.e., daily relative
humidity and concentrations of O3 and PM10), except for the

adjustment of relative humidity in females, which rendered
results nonsignificant, suggesting the robustness of the analyses
(Figures S11–S14, Excel Tables S7–S10).

Discussion
The results presented in the present paper are the first of their kind,
using urban big data with deep learning techniques and the newly
developed CTS design to explore the effect modifications of urban
greenery on heat–mortality effects. The approach is unique in
simultaneously assessing the effect modifications of different
urban greenery measurements at an intra-urban level. Differential
effects over the whole range of summer temperatures and by age,
sex, and cause-specificmortality were also investigated.

Findings indicate significant effect modifications of eye-level
street greenery on the overall temperature–mortality associations
during the summer months. Little evidence of differential risks was
found for urban greenery based on NDVI or percentage of green-
space. The results suggest a more apparent effect modification of
urban greenery as temperatures rise, albeit not significant for some
metrics. All three greenery measurements act as modifiers on the

Figure 3. The overall cumulative exposure–response associations between summer temperatures and all-cause mortality predicted for a TPU with a low (5th
percentile, solid lines in light purple) and a high (95th percentile, dashed lines in light green) value of NDVI, percentage of greenspace, and eye-level street
greenery in Hong Kong, 2005–2018, with 95% confidence intervals represented by the shaded areas, and p-value for the likelihood ratio test. The correspond-
ing values to the low (5th percentile) and high (95th percentile) levels of each urban greenery indicator are 0.15 and 0.69 for NDVI, 0.01% and 97.77% for per-
centage of greenspace, and 0.02% and 66.35% for the eye-level street greenery. The analysis includes all-cause mortality data with TPU identifiers (3-digit
TPU code) from June to October within the study period 2005–2018 (N =221,919). The estimation results were predicted by an extended CTS model by speci-
fying an interaction between the cross-basis of temperature and each urban greenery metric and using data aggregated at the TPU level (286 TPUs). Numeric
results are included in Excel Table S2. Note: %, percentage; CTS, case time series; NDVI, normalized difference vegetation index; RR, relative risk; TPUs,
Tertiary Planning Units.

Figure 2. The overall cumulative exposure–response association between summer temperatures and all-cause mortality in Hong Kong, 2005–2018, with 95%
confidence intervals represented by the shaded area. The analysis includes all-cause mortality data with TPU identifiers (3-digit TPU code) from June to
October within the study period 2005–2018 (N =221,919). The estimation results were predicted by a CTS model using data aggregated at the TPU level (286
TPUs). Numeric results are included in Excel Table S1. Note: CTS, case time series; RR, relative risk; TPUs, Tertiary Planning Units.
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temperature–mortality associations in females, whereas only eye-
level street greenery works in older adults (≥65 years of age).

In the absence of any other research, the underlying mecha-
nisms of health benefits of the eye-level street greenery are difficult
to unpick. Several plausible hypotheses may be put forward.
Compared with satellite-based and Geographic Information
System (GIS) measurements (i.e., NDVI, percentage of green-
space) that are typically based on the availability of urban greenery
from an overhead view, GSV provides eye-level streetscape
images directlymatchingwhat residents perceivewhen conducting
outdoor activities (i.e., walking or cycling along the street).
Therefore, this approach can be said to better represent how resi-
dents see and perceive urban vegetation daily.27,30 In this context,
our findings are comparable with those of previous works on per-
ceived or self-reported green spaces. In a study conducted in the
BarcelonaMetropolitan Area, living in areas not perceived by resi-
dents to lack green spaces showed a protective effect during heat
events. Similar protective effects were observed for self-reported
surrounding vegetation in the past.53 In contrast, lower risks were
not observed in areas with a higher percentage of tree cover, which

is one of the objective GIS measurements of urban greenery.54 No
significant association was found between the NDVI-based green-
ery and a higher mortality risk during the summer months in
Philadelphia, Pennsylvania, in the United States.55

The health benefits of street greenery may also be attributed
to increased intermediate health-related activities, such as physi-
cal activity (i.e., walking, cycling, and other recreational physical
activity)30 and social interactions.56 A study in Hong Kong found
cycling behaviors of 5,701 residents were positively associated
with GSV-derived street greenery but not with NDVI-based
greenery.57 Therefore, health-related activities are more likely
affected by eye-level street greenery than the overhead-view
greenness, which may enhance people’s general health and
reduce their heat vulnerability. To reduce adverse heat effects,
urban planners and policymakers may want to consider maximiz-
ing residents’ greenery exposure by increasing the accessibility
and visibility of urban greenery from the pedestrian and human-
scale perspectives.

For the differential heat effects by urban greenery, our results
confirm the previous findings of a lower mortality risk attributable
to extreme heat (at the 99th percentile of temperature distributions)
in areas with a lower value of NDVI (p<0:05; Table 2).21,23
However, there was little evidence of between-groupmortality dif-
ferences at moderate heat (at the 90th percentile, p>0:05; Table
2), which aligns with earlier intra-urban studies conducted in
Seoul24 and Hong Kong.25 Although the existing literature largely
inspects the between-group mortality differences separately at ei-
ther moderate or extreme heat, few studies have simultaneously
examined the differences at different heat levels and across the
whole range of summer temperatures. A cohort study in three prov-
inces in China compared heat effects between the highest and low-
est NDVI quartiles and found a higher ratio of RRs at the 95th
percentile of temperature [1.38 (95% CI: 0.79, 2.42)] than at the
75th percentile [1.06 (95%CI: 0.85, 1.31)], albeit with overlapping
confidence intervals.8 In the French cities of Paris and Rouen
(Petite Couronne), the ratio of RRs between municipalities with a
low and a high level (at the 5th and 95th percentiles) of green
spaces or trees were found to increase with rising temperatures.7
The findings presented above are consistent with those results,
showing a more apparent health discrepancy by urban greenery as
temperature rises, albeit not significant for some measurements
(Table 2, Figure 4). Our investigation can further calculate the
impacts on a smaller scale (intra-urban level) and compare the
effect modifications of different urban greenery measurements. No

Table 2. Relative risk (95% CI) for mortality associated with different levels
of heat by a low (5th percentile) and a high (95th percentile) value of each
urban greenery indicator and p-value for a likelihood test in Hong Kong,
2005–2018.
Urban greenery
indicators Level

RR for moderate
heat (a T °C at P90)

RR extreme heat
(a T °C at P99)

NDVI Low 1.045 (1.005, 1.086) 1.096 (1.035, 1.161)
High 0.993 (0.948, 1.040) 0.985 (0.920, 1.055)
p-value 0.1004 0.0193

Percentage of
greenspace

Low 1.034 (1.003, 1.066) 1.068 (1.021, 1.117)
High 0.991 (0.933, 1.052) 0.990 (0.906, 1.081)
p-value 0.2200 0.1338

Eye-level street
greenery

Low 1.032 (0.988, 1.078) 1.103 (1.034, 1.177)
High 1.002 (0.928, 1.083) 0.943 (0.841, 1.057)
p-value 0.5209 0.0186

Note: P90 and P99 are in short of the 90th and 99th percentiles of temperature distributions
(30.1°C and 30.9°C), respectively. The corresponding values to the low (5th percentile)
and high (95th percentile) levels of each urban greenery indicator are 0.15 and 0.69 for
NDVI, 0.01% and 97.77% for percentage of greenspace, and 0.02% and 66.35% for the
eye-level street greenery. The analysis includes all-cause mortality data with TPU identi-
fiers (3-digit TPU code) from June to October within the study period 2005–2018
(N =221,919). The estimation results were predicted by an extended CTSmodel by speci-
fying an interaction between the cross-basis of temperature and each urban greenerymetric
and using data aggregated at the TPU level (286 TPUs). CI, confidence interval; CTS, case
time series; NDVI, normalized difference vegetation index; P90, 90th percentile; P99,
99th percentile; RR, relative risk; T, temperature; TPU, Tertiary PlanningUnit.

Figure 4. The estimated interactions between urban greenery and the overall cumulative heat–mortality associations at summer temperatures, expressed by the
ratio of RRs between TPUs with a low (5th percentile) and a high (95th percentile) value of NDVI, percentage of greenspace, and eye-level street greenery in
Hong Kong, 2005–2018, with 95% confidence intervals represented by the shaded areas. The corresponding values to the low (5th percentile) and high (95th
percentile) levels of each urban greenery indicator are 0.15 and 0.69 for NDVI, 0.01% and 97.77% for percentage of greenspace, and 0.02% and 66.35% for the
eye-level street greenery. The analysis includes all-cause mortality data with TPU identifiers (3-digit TPU code) from June to October within the study period
2005–2018 (N =221,919). The estimation results were predicted by an extended CTS model by specifying an interaction between the cross-basis of tempera-
ture and each urban greenery metric and using data aggregated at the TPU level (286 TPUs). Numeric results are included in Excel Table S3. Note: CTS, case
time series; NDVI, normalized difference vegetation index; RRs, relative risks; TPUs, Tertiary Planning Units.
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studies were identified that investigated indicators that can be com-
pared with our “eye-level street greenery” indicator derived from
GSV imagery. Future studies are thus warranted to generalize our
findings to other cities with different socioeconomic and climate
characteristics.

Owing to a lack of scientific evidence, the exact mechanism for
more apparent effect modifications of urban greenery at high tem-
peratures cannot be fully elucidated. Potential explanations may
stem from several pathways by which urban greenery confers
health benefits. First, vegetation accelerates evapotranspiration at
high temperatures to regulate the microclimate,58 leading to ampli-
fied cooling effects for residents living in greener areas. Second,
high temperatures may discourage people’s outdoor activities in
greener areas, as observed in a recent study in India.59 Therefore,
residents living in areas with a high level of urban greenery are less
likely to suffer adverse heat impacts, especially during extreme
heat.

Significant effect modifications were observed of eye-level
street greenery in older adults (≥65 years of age) but no significant
results were found for other people (0–64 years of age). The age
discrepancymay be due to several pathways. First, given that older
adults mainly conduct their daily activities in areas close to their
residential addresses, urban greenery within or near their residen-
tial areas is amore critical greenery exposure context.60–62 In Hong
Kong, most younger people have a separation between work and
residence (about 82.6%).37 They may spend less time at their resi-
dential address, reducing their health benefit from urban greenery
around their residential areas. Second, although almost all heat-
adaptation strategies appear to be underused by older adults,
younger people tend to engage in more heat-adaptive behaviors,
such as turning fans on with the windows opened, changing
clothes, taking a shower, or leaving the house.63 As such, the effect
modifications of urban greenery on young people’s heat hazards
might be weakened. The finding also confirms the hypothesis of
the “equigenesis” theory in which disadvantaged groups of people
are likely to benefit more from urban greenery because they tend to
lack access to other health-promoting resources, leading to a higher
dependency on proximate greenspace.64

Effect modification of eye-level urban greenery was found to
have a tendency to be pronounced at high temperatures, leading to
significant variations in mortality risks under extreme heat in older
adults (≥65 years of age). The findings are timely in generating
evidence on the foreseeable health benefits of urban greenery, par-
ticularly in the face of rapid aging and global warming. In Hong
Kong, the percentage of older adults (≥65 years of age) is projected
to increase from17.6% in 2019 to 26.2% in 2029,65 whereas the fre-
quency of extreme heat (days with temperatures above the 99th
percentile) in the future (2074–2099) is projected to be 10.23 times
that of the average of historical period (1980–2005) under high
emission scenarios [e.g., Representative Concentration Pathway
9.5 (RCP8.5)].66 Identifying what category and strategic locations
of urban greenery could contribute to cost-effective implementa-
tions of heat mitigation strategies and to maximize the health bene-
fits to heat-sensitive subpopulations. In this context, our study
marks a starting point for future work and relates to climate action
plans in coping with future population aging.

Females are likely to benefit more from exposure to urban
greenery in hot seasons. Traditionally, females spend more time
around their residential areas performing domestic tasks, which
exposes them to more residential greenery.67 Area-level measure-
ments of urban greenery around residential addresses would thus
be a better approximation of the daily exposure of females than
males. An increase in heat-related morbidity and mortality among
people with known mental health problems has also been
reported.68 Given that more pronounced mental health benefits

of surrounding urban greenery and self-report greenery were
observed in females than males,69 females may have a higher de-
pendency on urban greenery in coping with heat stress. The exist-
ing literature also indicates a generally higher risk estimate for heat
among females.70 As climate change threatens to widen existing
sex-based health disparities,71,72 policymakers and urban planners
are suggested to develop sex-specific heat mitigation strategies, for
which our findings may provide practical implications related to
urban greenery interventions.

Our study is among the first intra-urban studies that conducted
small-area analyses with street view greenery data in the context
of heat-health impacts. A methodological strength is the way in
which the eye-level street greenery was estimated, namely, by
coupling cutting-edge deep learning with street view data.
Although earlier studies focused on satellite-based or GIS metrics
(i.e., NDVI and percentage of greenspace) that typically capture
urban greenery provision from an overhead view,6,7,23 we further
examined the potential effect modifications of eye-level street
greenery derived from GSV imagery. Connected with this, testing
multiple urban greenery metrics simultaneously is a particular
strength of our study. Other works exploring urban greenery often
rely on a single metric, producing contradictory results. However,
different measurements capture diverse aspects of urban greenery
and differ in their underlying pathways.73 In addition, using the
CTS design made it possible to quantify heat effects using small-
scale attributes and to identify potential modifiers of heat–mortality
associations that would otherwise be masked at lower resolutions.74

Our study went beyond the existing research by observing the
more apparent effect modifications of eye-level street greenery on
heat effects and a pronounced protective effect of urban greenery as
temperatures rise. Furthermore, our findings provide additional evi-
dence for the health benefits of urban greenery to heat-sensitive
subpopulations; namely, older adults (≥65 years of age) and
females. In facing population aging and global warming, these find-
ings can provide a scientific basis for age- and sex-specific urban
greenery interventions and inform cost-effective implementations
of heat mitigation strategies.

Several limitations should be acknowledged. First, although
the CTSmethodology is well suited to analyzing small-area data, it
still uses aggregated data and is potentially susceptible to the “eco-
logical fallacy.”36 The impact of the size of TPUs on aggregation
of urban greenery indicators needs further investigation.75

Second, there were no home addresses of each death owing to
privacy issues and, therefore, greenery near people’s homes could
not be assessed, although the greenery likely varies even within
fine-scale units. This limitation provides key insights for future
studies on data of health outcomes at the individual level.76,77

Third, single sources of air temperatures might be a limitation for
small-area analyses. Even though the between-area variation is likely
smaller when compared with the temporal variation of air tempera-
ture, thus probably introducing nondifferential estimation results, the
use of high-resolution temperature data is expected to result in more
precise estimates.36 Further studies are thus warranted to address this
issue if high-resolution temperature data are available.

Fourth, neither eye-level street greenery nor satellite-derived
(i.e., NDVI) or GIS metrics convey the full spectrum of charac-
teristics of greenery, such as the vegetation type, the size and
shape of greenspace, and the greenery quality. However, different
vegetation types and settings are likely to have differential effects
on heat–mortality associations.78 Not all greenery measurements
reflect the actual visit or use of greenery. Therefore, our exposure
assessment may be biased.79,80 Recent work on new data and
metrics of greenery exposure also provide avenues of future stud-
ies on the impact of using different satellite images,75 and the use
of different satellite-derived metrics of urban greenery.81
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Fifth, it is unavoidable that the assessment of eye-level street
greenery may be affected by the availability of GSV images. As
such, images are mainly taken by moving vehicles, and greenery
far from roads is usually not included.82 The assessment of eye-
level street greenery in areas inaccessible to vehicles may be
inaccurate. In addition, because the effect estimates were com-
puted over a relatively long study period, potential temporal var-
iations in some urban greenery metrics were not accounted for,
such as the percentage of urban greenery and eye-level street
greenery. This limitation also provides fertile ground for contin-
ued work on the temporal changes of the effect modifications of
urban greenery on heat–health associations if data are available.
Moreover, this study derived risks at different levels of urban
greenery by using univariate models, thus not accounting for
other factors that might partially explain differences in the heat–
mortality associations within typologies (e.g., by the SES, by air
pollution levels). However, the weak correlations between indica-
tors of SES and urban greenery shown in Figure S3 indicate the
confounding effects of the former would be, if present, minimal
to the latter. The role of air pollution concentrations as confound-
ing variables remain debated.83 Nevertheless, continued work on
more advanced models are warranted to disentangle the effect modi-
fications of different variables. Last, the associations between urban
greenery and other heat–health outcomes, such as morbidity out-
comes (e.g., hospitalization, emergency department visits) should
be further investigated.

Conclusions
This paper reported on a small-area analysis of the effect modifi-
cations of urban greenery on the heat–mortality associations in
Hong Kong from 2005 to 2018, based on an extended CTS
design. The analyses measured urban greenery in three distinct
ways, based on urban big data and deep learning approaches,
comparing the effect modifications of different urban greenery
measurements, namely, NDVI, percentage of greenspace, and
GSV-derived street greenery. The differential in the heat–mortality,
effects by urban greenery was also examined for different age and
sex groups, cause-specific mortality, and at different levels of heat.
The findings of more apparent health benefits of eye-level street
greenery against heat effects can be used to inform cost-effective
heat mitigation policies with targeted urban greening interventions.
The pronounced influences of urban greenery at high temperatures
on older adults (≥65 years of age) and females can provide a scien-
tific basis for climate action plans in coping with global warming
and population aging in the future.
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