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Abstract. This paper presents a solution to the cross-domain adapta-
tion problem for 2D surgical image segmentation, explicitly considering
the privacy protection of distributed datasets belonging to different cen-
ters. Deep learning architectures in medical image analysis necessitate
extensive training data for better generalization. However, obtaining suf-
ficient diagnostic and surgical data is still challenging, mainly due to the
inherent cost of data curation and the need of experts for data anno-
tation. Moreover, increased privacy and legal compliance concerns can
make data sharing across clinical sites or regions difficult. Another ubiq-
uitous challenge the medical datasets face is inevitable domain shifts
among the collected data at the different centers. To this end, we pro-
pose a Client-server deep federated architecture for cross-domain adapta-
tion. A server hosts a set of immutable parameters common to both the
source and target domains. The clients consist of the respective domain-
specific parameters and make requests to the server while learning their
parameters and inferencing. We evaluate our framework in two bench-
mark datasets, demonstrating applicability in computer-assisted inter-
ventions for endoscopic polyp segmentation and diagnostic skin lesion
detection and analysis. Our extensive quantitative and qualitative exper-
iments demonstrate the superiority of the proposed method compared to
competitive baseline and state-of-the-art methods. Codes are available
at: https://github.com/thetna/distributed-da.

Keywords: Domain Adaptation · Federated Learning · Decentralised
Storage · Privacy

1 Introduction

The deployment of artificial intelligence (AI) technology in medical image anal-
ysis is rapidly growing, and training robust deep network architectures demands
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Fig. 1. Sample training examples collected from various centres for polyp segmentation
(left); Sizes of training and test set at different centres for polyp segmentation (middle)
and skin lesion segmentation (right).

millions of annotated examples. Despite significant progress in establishing large-
scale medical datasets, these are still limited in some clinical indications, espe-
cially in surgical data science and computer-assisted interventions [21]. Scaling
training data needs multi-site collaboration and data sharing [1], which can be
complex due to regulatory requirements (e.g. the EU General Data Protection
Regulation [31], and China’s cyber power [13]), privacy, and legal concerns. Ad-
ditionally, even after training, practical AI model deployment in the clinic will
require fine-tuning or optimization to local conditions and updates [11]. There-
fore, architectures trained in federated and distributed ways to tackle cross-
domain adaptation problems are critical. Yet, developing such architectures has
challenges [25].

Several works [29,7,8] have been proposed to tackle the problem of cross-
domain adaptation in medical imaging. However, these methods require raw
source and target domain data and cannot address the ever-increasing privacy
concerns in sharing medical data. To circumvent the problem of privacy protec-
tion, there is a lot of research interest growing in Federated Learning (FL) in
the medical domain [25,18,27,30,28,15,24].Some methods even rely on synthetic
data [10] to avoid sharing real data. For more details, we refer readers to a sur-
vey [23] on federated learning for smart health care. The common drawback of
most existing methods [25,18,15,24] is that these methods are not designed for
the domain shift problem. The most common topology in the FL workflow is
averaging the local gradients (FedAvg) at the center and peer-to-peer gradient
(FedP2P) sharing. These architectures are effective when data are independent
and identically distributed (IID) in every client. In reality, domain shift is quite
prevalent as data collected at different centers tend to be center specific. In
Fig. 1, we can see the training examples for polyp segmentation collected at
different centres. These examples show the discrepancy in lighting, camera pose
and modalities in different centers. Some recent works, such as by Guo et al. [9]
and FedDG by Liu et al. [19], address cross-domain problems in FL. However, [9]
limits to a source-target pair at a time. Also, they employed adversarial loss to
align the parameters, which is difficult to optimize. Similarly, FedDG [19] shares
the information between the sources in the form of amplitudes of images. Their
evaluation is limited to fundus images and MRI.
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To tackle the problems of cross-domain adaptation and privacy protection
in surgical image segmentation, we propose a simple yet effective Client-server
FL architecture consisting of a server and multiple clients, as shown in Fig. 2.
A server hosts a set of immutable task-specific parameters common to all the
clients. Whereas every client requests the server to learn their domain-specific
parameters locally and make the inference. In particular, every client learns an
encoder’s parameters to obtain an image’s latent representation. These latent
representations and ground truth masks are sent to the server. The decoder de-
ployed on the server makes the predictions and computes the loss. The gradients
are computed and updated only on the encoder to align the client’s features
with task-specific parameters hosted on the server. Aligning domain-specific pa-
rameters to common parameters helps diminish the gap between the source and
target domains. We can draw an analogy between our framework with public-key
cryptography. A client’s network parameter is equivalent to a private key, and
the decoder’s parameters shared on the server are equivalent to the public key.
Thus a client only with access to its private key can transfer its latent vector to
the server containing the public key to obtain the semantic mask. Distributed
storage of the parameters diminishes the risk of model parameter theft and ad-
versarial attacks [20]. Moreover, each client communicates to the server only via
a latent image representation, which prevents exposing the information of the
raw data collected on the client side. It is possible to encrypt data transfer be-
tween the server and clients to make it more secure. Finally, the server receives
only fixed latent dimension representations, making it agnostic to the client’s
architecture. This enables clients to communicate with the server concurrently,
improving efficiency. Likewise, none of the centres can modify the parameters
deployed on the server; this would prevent the memorisation of client-specific
information and parameter poisoning on the server [17].

To sum up, we propose a Client-server Federated Learning method for cross-
domain surgical image segmentation. We applied our method to two multi-centre
datasets for endoscopic polyp and skin lesion segmentation. We compared with
multiple baselines, including recent works on cross-domain FL [19,9] and ob-
tained a superior performance.

2 Method

Background: We consider a scenario where we have C1, C2, . . . Cn represent n
number of different institution’s centres located at various geographical regions.
Each centre collects its data in the form of tuple (x,y) where x ∈ Rw×h×c,y ∈
Rw×h, where, w, h, c represent the width, height, and number of channels of an
image. The annotated examples collected at the different centers are not IID
due to variations in the illumination, the instruments used to acquire data, the
ethnicity of the patients, the expertise of the clinician who collects the data, etc.
We denote the total number of annotated pairs in each centre by Nn. In this
paper, one of the major goals is to address the problem of domain adaptation,
avoiding the need for the sharing of raw data to protect privacy.
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Fig. 2. The schematic diagram of the proposed framework. There are three major com-
ponents: Source domain, Target domains, and Server infrastructure to share common
parameters.

Learning Source Domain Parameters: First, we train a semantic segmenta-
tion network on the source data. In Figure 2, the Source domain block shows the
training of source domain/centre parameters. For us, data collected on Centre 1,
C1 is source data. We employ fully-convolutional encoder-decoder architecture.
Such architectures are quite popular for semantic segmentation [2,26]. With the
randomly initialised parameters, we minimise the objective of the Equation 1.
In Equation 1, θeC1

and θdC1
represent the learnable parameters of the encoder

and decoder, respectively.

L([θeC1
; θdC1

]) = − 1

N1

N1∑
i=1

W∑
i=j

H∑
k=1

yijk log ŷijk

+(1− yijk) log(1− ŷijk)

(1)

Setting-up Server Infra-structure: Figure 2 Server infra-structure block
shows the setting up of the server infrastructure. Once we learn the parame-
ters of the network from the source (C1) data set, we upload the decoder (θdC1

)
parameters on the server to share with every target client. The decoder mod-
ule specializes to segment anatomies, given the encoder module’s latent vector
representation of the input image. As this segmentation task is common to all
the centres, we propose to use a single decoder for all the centres. The previous
works on cross-modal [4] and cross-feature [3] representations learning for cross-
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domain classification in computer vision employed the idea of sharing Convolu-
tional Neural Networks’ top layers parameters. However, none of these methods
were employed in Federated Learning. The idea of sharing top layers parameters
is in contrast to the conventional transfer learning [12] where the parameters are
initialised with a model pre-trained on Imagenet and fine-tuned only the task-
specific fully connected layers. We freeze the shared decoder parameters of the
source. This arrangement brings advantages for privacy protection by prevent-
ing weight poisoning attacks [17]. Weight poisoning attacks alter the pre-trained
model’s parameters to create a backdoor. The parameters of the encoders can be
shipped to the target client as per demand. Sometimes, the clients may demand
these parameters to initialize their local networks when the training data is very
small.
Federated Cross-domain Adaptation: Target centres other than the source
centre deploy only the encoder network of their choice. In Figure 2, the target
domain block depicts it. Every centre feeds its images to its encoder network
during training, generating the respective latent representations. The latent rep-
resentation and the ground truth (yi) mask from each target centre are pushed
to the server where the pre-trained source decoder, θdC1, is placed. The decoder
feeds the latent representation, which predicts the output segmentation labels
(ŷi). We learn the parameters of the target encoders (θeCi) to minimize the ob-
jective given in Equation 2. Since the decoder parameters are frozen and shared
with every client, only the target encoder’s parameters are updated on the client
side. This helps to align the latent representations to that of the source decoder’s
parameters and maximises the benefit from the task-specific discriminative rep-
resentations learned from the large volume of source data.

L([θeCi
; θdC1

]) = − 1

Ni

Ni∑
i=2

W∑
i=j

H∑
k=1

yijk log ŷijk

+(1− yijk) log(1− ŷijk)

∀i ∈ 2, . . . n

(2)

The only thing that matters for target centres to communicate to the server is
the fixed dimension of latent representations of an image. Thus, our architecture
gives the flexibility of deploying the various sizes of networks on the client side
based on available computing resources. And it is also entirely up to the target
centres whether they want to initialize the parameters of the encoder using the
parameters of the source domain. If the number of training examples is extremely
few, then initialization using the pre-trained model’s weight can prevent over-
fitting.

3 Experiments

Data sets and Evaluation Protocol: We applied our method in two bench-
mark datasets: endoscopic polyp segmentation and skin lesion segmentation. The
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polyp segmentation dataset contains images collected at four different cen-
tres. Kvasir-SEG [14] data set makes the source centre (C1) in our experiment.
It has 800 images in the train set and 200 in the test set. These high-resolution
images acquired by electromagnetic imaging systems are made available to the
public by Simula Lab in Norway. Similarly, the EndoUDA-target data set makes
the first target domain (C2) in our experiment, consisting of 21 images in both
the training and testing sets [5]. Our experiment’s second target domain cen-
tre (C3) consists of images from the CVC-ClinicDB dataset made available to
the research community by a research team in Spain. There are 520 images in
the train set and 92 in the test set. Finally, the ETIS-Larib dataset released by
a laboratory in France makes our third target domain data set (C4). This data
set consists of 166 in the train set and 30 images in the test set. These data sets
were curated at different time frames in different geographical locations.

Data Centres
mIOU

INDP COMB [16] [19] FtDe [9] RandEn FtEn

Endo.

Kvasir-SEG (C1, source) 80.3 81.0 82.3 73.5 N/A 80.5 80.3 80.3
EndoUDA (C2) 52.0 57.5 53.1 29.7 59.9 61.7 50.6 62.0

CVC-ClinicDB (C3) 88.3 87.8 86.8 74.5 85.8 83.0 89.1 88.4
ETIS-Larib (C4) 62.1 66.9 61.4 70.8 65.1 71.7 64.3 69.9

Skin
ISIC (C1, source) 81.3 75.7 84.9 N/A N/A NA 81.3 N/A

PH2 (C2) 88.4 88.3 88.4 N/A 88.0 NA 89.6 89.4

Table 1. mIoU scores on Endoscopic Polyp Segmentation Data sets (upper block) and
Skin Lesion Segmentation (lower block).

For skin lesion segmentation, we took data set collected at two different
centres: ISIC(International Skin Imaging Collaboration) [6] and PH2 [22]. In
ISIC, there are 2596 training examples and 102 test examples. The PH2 database
is curated through a joint research collaboration between the Universidade do
Porto, Tecnico Lisboa, and the Dermatology Service of Hospital Pedro Hispano
in Matosinhos, Portugal. In this data set, there are only 180 training examples
and 20 testing examples. We consider ISIC and PH2 source and target domain,
respectively. We use the mean Intersection of Union (mIoU) and dice score for
both datasets for quantitative evaluations. Qualitative comparisons also validate
our idea.
Baselines: We have compared the performance of our method with several com-
petitive baselines, including both non-federated and federated frameworks. One
of the naive baselines is to train a model for each target centre independently
(INDP). The models of the centres with less training data overfit. Another con-
figuration is creating a data pool by combining the training data (COMB) from
all the centres and training a single model. However, this method does not ad-
dress any of the issues regarding privacy and compliance. Another viable option
is to adapt a pre-trained model to a new domain by fine-tuning the parameters of
the latter layers (FtDe). We also compared our method with competitive feder-
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ated learning algorithms. FedAvg [16] averages the gradients computed in every
center and shares the average gradients with the clients. This method ignores the
non-IID nature of data from different centres. FedDG [19] is another Federated
Learning method for domain adaption published at CVPR 2021. Finally, we also
compared with another recent work by Guo et al. [9] for federated learning for
multi-institutional data published at CVPR 2021. Our methods have two vari-
ants: initialising clients’ parameters randomly(RandEn) and with the source’s
parameters (FtEn)
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Fig. 3. Curves show the learning behaviour of different methods on PH2 data set.

Implementation Details and Learning Behaviour: We implement our al-
gorithms on PyTorch framework. All the images were resized to the dimension of
418×418. For optimization, we employ Adam optimizer with values of β1 and β2
set to 0.9 and 0.999 respectively. We initialize learning rate to 2e-4 and set the
decaying of the learning rate every 25k iterations. Taking UNet as a base archi-
tecture, we train the networks for 100k iterations and save the best-performing
checkpoints on the validation set and report the performance on the test set.
Figure 3 summarises the learning behaviour of the different methods for the first
100k iterations on PH2 data set, a target domain for skin lesion segmentation.
The solid lines are our methods, and the dashed lines are the compared meth-
ods. The smooth curves demonstrate that our methods are easy to optimise the
parameters.
Quantitative Evaluations: Table 3 shows the quantitative performance com-
parison. In the table, the last two grey-shaded columns show the performance of
our methods. Our method outperforms INDP in every target centre. This signi-
fies the importance of domain adaptation by our method. Compared to the other
Federated Learning methods, our methods obtain the highest performance on
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2/3 of target centres and are competitive on the third one for endoscopic polyp
segmentation. On skin lesion segmentation, our method surpassed all the com-
pared baselines and the recent competitive Federated Learning methods. We
have compared the performance on the dice score, too and obtained a similar
performance (See Supplementary). We have also evaluated the performance with
varying sizes of the target domain/centre encoders. Please see the appendix for
the details.
Qualitative Evaluations: Figure 4 shows the qualitative performance compar-
isons between the baselines and the proposed methods on the target domains.
Rows 2-4 (inclusive) are from endoscopy benchmarks, and the last row is from
skin benchmarks. FedAvg, our closest work, fails to generalise well on target
domains (see ETIS-Larib and CVC-ClinicDB). Whereas our method is consis-
tent in every target domain. These results further validate that our method is
superior to the others. You can find more examples in the appendix section.

Input CombINDP FedAvg FtDe RandEn GTFtEn

Endo
-UDA

CVC

ETIS

PH2

Fig. 4. Qualitative Comparisons

Computational Complexity: For INDP and FedAvg, the parameters of both
the encoders and decoders grow in O(n) with the number of centres. Similarly,
for FtDe and our method, the parameters of the encoder grow in O(n), while
the parameters of the decoder are constant, i.e., O(1). Although the growth of
the parameters for both the encoder and decoder for COMB is O(1), it does not
address any privacy concerns. From these, our method is computationally less
expensive and has high privacy protection.

4 Conclusions

In this paper, we presented a client-server Federated Learning architecture for
cross-domain surgical image segmentation. Our architecture addresses the cross-
domain adaptation problem without sharing the raw images. Moreover, sharing
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only a part of the parameters from the source domain enhances privacy pro-
tection. Extensive experiments on two benchmarks from various data centres
demonstrated improved cross-domain generalisation and privacy protection over
the baselines and the competitive contemporary method.
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A Appendix

Varying Encoder Size: To further validate the robustness of our proposed
framework, we trained the networks with different numbers of learnable param-
eters in the encoder module as shown in table 2. We vary the parameters by
adding or removing the constituting layers in the encoding blocks of the net-
work. We designate the conventional encoder of the UNet architecture as an
encoder with medium size. The learnable parameters in the medium encoder
are approximately 17 million. Table 3 depicts the architecture of a general en-
coder. It consists of three down-sampling layers, represented as Down Block. We
vary the number of layers in the Down Blocks of the general encoder as per the
availability of labeled data and computing resources in the particular centre.

Data Centres Size Trainable
Parameters

mIoU

INDP RandEnc(Ours)

Polyp ETIS-Larib
Small 6,311,616 61.6 62.9

Medium 17,080,896 62.1 64.3
Large 27,850,176 62.5 64.7

Skin PH2
Small 6,311,616 88.4 88.4

Medium 17,080,896 88.5 89.6
Large 27,850,176 89.4 89.8

Table 2. Result on Endoscopic Polyp Segmentation Data sets (upper block) and Skin
Lesion Segmentation (lower block) with different sizes of encoder networks.

Operations Output Size

Input Image c× h× h

Down Block c× h
2
× h

2

Down Block c× h
4
× h

4

Down Block c× h
8
× h

8

Table 3. Architecture of the general encoder.

The proposed federated distributed framework for domain adaptation pro-
vides flexibility to choose different network architectures to learn a common
latent representation of images. These architectures can be designed based on
the data size and available resources at a particular center. The performance
evaluation results of various encoder sizes on polyp segmentation and skin lesion
segmentation are shown in table 2. From the table, we can observe that segmen-
tation performance for various sizes of the encoder is higher when trained using
our framework than training independently for a specific center.

Equations for Gradient Update: Equations 3 and 4 show mathematical
formulation to update gradients of decoder and encoder modules in the proposed
framework. Equation 3 updates the gradient of the decoder in the source center.
Equation 4 represents the mechanism of updating gradients of each encoder
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module in every center. Here, α is the center-specific learning rate. Please note
the parameters of the decoder remain the same for every target centre. L denotes
the loss function.

θdC1
= θdC1

− α1 ×
∂L([θeC1

; θdC1
])

∂θdC1

; (3)

θeCi
= θeCi

− αi ×
∂L([θeCi

; θdC1
])

∂θeCi

;∀i ∈ 1, . . . n (4)

Additional Qualitative Results: Figure 5 depicts the segmentation results
on Endoscopic polyp data from the target domain centres. The first four rows
are from the ETIS-Larib dataset, the next three are from the CVC-ClinicDB
data set, and the last two are from EndoUDA. Columns RandEn and FtEn
show the results of our method. ETIS

Input CombINDP FedAvg FtDe RandEn GTFtEn

CVC
Input CombINDP FedAvg FtDe RndEn GTFtEn

EndoUDA-Target

Input CombINDP FedAvg FtDe RndEn GTFtEn

Fig. 5. Additional Qualitative Comparison
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