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Abstract—Electroencephalography is a non-invasive technique
widely used to assess the brain’s electrical activity, suitable for a
variety of applications in clinical and non-clinical environments.
However, the reliable identification of specific EEG features
still remains a challenge, especially if the signals are recorded
from wearable devices, notably less accurate than their hospital
counterparts. The uncertainty analysis can help to address this
challenge, by providing a robust and rigorous tool to assess the
validity of the information extracted from the signals. This is
particularly important in automated processes (such as brain-
machine interfaces), to avoid misclassifications and misinterpreta-
tion. This paper proposes the use of a model-based fitting of pre-
filtered EEG signals, combined with uncertainty quantification,
to extract the alpha amplitude oscillation with an optimal trade-
off between accuracy and time resolution and, importantly, to
allow the identification of those parts of the signal that do not
follow the expected alpha dynamics, e.g. because affected by
artifacts. This is achieved through a metrology-sound analysis
of compatibility between measurement and model, taking their
respective uncertainties into consideration. The proposed method
has been successfully tested on real EEG signals and shown
to have significant advantages in terms of time resolution and
interpretability, compared to more traditional techniques, such
as the ICA by temporal decorrelation, especially when applied
to single-channel signals.

Index Terms—Electroencephalography, Biomedical measure-
ment, Signal processing, Time-domain analysis, Measurement
uncertainty, Parameter estimation, Wearable sensors

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive method
of recording the brain’s electrical activity through electrodes
attached to the scalp in well-defined positions, typically ac-
cording to the 10-20 system [1]. The wealth of information
available within the electroencephalography signals (EEGs)
has made them suitable to be implemented in several appli-
cations, clinical and non-clinical [2]. In clinical applications,
most specifically in neurology, EEGs provide real-time insight
into the mental state of the patient, therefore helping with the
diagnosis of conditions or brain structure abnormalities, such
as epilepsy, dyslexia, seizures, post-traumatic stress disorder,
Attention Deficit Hyperactivity Disorder (ADHD) and mental
fatigue, to name a few. In non-clinical applications, EEGs
provide instructions to be translated into control commands
for an external device, as part of Brain-Computer Interfaces
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(BCI), or more generically Brain-Machine Interfaces (BMI),
e.g. to assist people with language or movement impairment
[3].

Although EEG opened to several promising applications
over the years [4], there are still important challenges to
address, in particular regarding the accuracy and reliability
of extracted features, especially when using wearable devices,
which are notably less accurate than their hospital counter-
parts. EEGs are weak bio-electrical signals, characterized by
a very low amplitude (usually less than 100 µV), which makes
them prone to record artifacts from other electrophysiological
activities of the body, such as muscular, ocular, and cardiac. In
addition, EEGs are characterized by a fast dynamic, changing
in both amplitude and frequency content over time, due to
mental state transitions. Because of the above challenges, the
supervision of a trained clinician is recommended for a correct
interpretation of the signals; however, this is not feasible
in non-clinical applications, where more automated tools are
required.

This paper aims to contribute to addressing the challenge of
correctly identifying EEG features in automated applications,
focusing on a notable example, i.e. the measurement of alpha
activity, defined within the [8 14] Hz frequency range and
associated to relaxed and meditation mental states. The alpha
activity is one of the most investigated EEG features, in both
clinical [5] and non-clinical studies [6], because of its distinc-
tive characteristics and relatively easy interpretation; neverthe-
less, a reliable and robust identification of alpha waves remains
challenging. Commonly, during the pre-processing phase, al-
pha information is extracted through band-pass filters in the
frequency range of interest; however, the filter bandwidth
must be large enough to preserve the amplitude oscillation,
leading to two challenges: 1) the accurate estimation of the
time-varying amplitude, 2) the discrimination between alpha
activity and artifacts, which may look similar to each other
after being filtered. These challenges are particularly critical
for applications that rely on an accurate alpha amplitude (or
power) estimation over short timescales, e.g. to analyze the
alpha dynamics in response to fast stimuli in a cognitive task
[7].

While there is a vast literature on denoising and signal
processing techniques to remove artifacts and extract signal
features, there is an important gap in metrology-sound tools
able to provide a confidence level for the automated identi-
fication of alpha activity in each time window of the signal.
Moreover, many techniques work better (or only) with a large
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number of EEG signals and, therefore, are not suitable for
wearable devices using a limited number of channels, or even
only one.

Among denoising techniques, Independent Component
Analysis (ICA), a Blind Source Separation (BSS) method, is
arguably the most used one (implemented also in the EEGLAB
MatLab Toolbox for example [8]) to separate different sources
within the signal, including artifacts [9]. In the traditional ICA,
a number of sources equal to or less than the number of chan-
nels are separated, without requiring any previous knowledge
about them [10]; however, solutions to apply the ICA to single
channels have been proposed too [11], [12]. Other variations of
ICA include the ICA by temporal decorrelation (described in
Sec. VIII), Wavelet-ICA and a combination of singular spectral
analysis and ICA (SSA-ICA [13]). However, Wavelet-ICA
depends on the wavelet window of analysis, which requires
a priori knowledge of the signals [14], and in SSA-ICA,
even though the spectral analysis is applied recursively on
the single channel to extract several components in high and
low frequencies, the decomposition is defined by a manually
selected threshold, therefore it is not suitable for online or
fully automated applications [15].

Along with BSS, the Joint Blind Source Separation (JBSS)
methods also consider similar dependence across the data, and
are specifically implemented for muscular artifacts removal
[16]. Among them, independent vector analysis (IVA) can
be treated as an extension of ICA, as it decomposes the
components into independent sources while exploiting the
dependence among the data [17], [18].

Kalman filter has also been applied as a denoising tech-
nique, but its computation may be too complex for some
applications and, in some cases, the reliability of the estimated
EEG signals requires further investigation [19].

Following denoising, the challenge of estimating a time-
varying amplitude still exists, for which different processing
methods can be used, in the time, frequency or time-frequency
domains [20], [21]. Classic frequency-domain techniques, such
as the Fourier Transform, are designed for periodic signals,
while EEGs are non-periodic: this leads to errors in the
amplitude estimation which would impact the reliability of
the classification, especially in presence of artifacts, because
the Fourier Transform requires a synchronous window length
of analysis to avoid spectral leakage. On the one hand,
to overcome the leakage problem, time and time-frequency
domain methods have been developed, such as Hilbert, Taylor-
Fourier, and wavelet transforms [22]–[24]. On the other hand,
they could be too complex and even not useful in some
circumstances, and their results may hinder a physical inter-
pretation. Wavelet transform is used to decompose the signal
into components based on frequency bands, which may be
useful for a complete EEG signal [25], but the alpha oscillation
is well defined within a narrow frequency range, therefore it
would not be effective in this case. Hilbert transform has been
proved to be useful if applied on signals with time-varying
main frequency, while the alpha frequency is only slightly
modulated around a constant value. Lastly, Taylor-Fourier
transform can be successfully applied on signals characterized
by time-varying harmonics, while the alpha band oscillation

is almost sinusoidal.
Machine Learning (ML) and statistic techniques have be-

come widely used due to their ability in dealing with a
larger amount of data [26], providing an accurate and efficient
classification of the information within EEG [27]. However,
ML is not able to detect which specific part of the signal
truly carries the information of interest (i.e. alpha information),
leading to possible misclassifications [28].

Among alternative approaches, it is worth mentioning the
use of entropy applied on EEG signals for the quantification of
similarity among different patterns in either time or frequency
domains, without any previous knowledge of the signals [29],
[30]. However, there appear to be quantitative differences
in defining the same mental states, causing a limitation for
practical performance [31].

Within the aforementioned denoising and signal processing
literature, an important gap that emerges is the lack of an
uncertainty analysis associated with the amplitude estimation
and the presence of artifacts. Indeed, there is an important
difference between estimating the expected accuracy of a
method based on some statistical analysis on large data sets,
as most works in the literature do, and the estimation of
the uncertainty of each result. According to international
measurement standards [32], uncertainty is a fundamental
parameter that should be added to every measurement result
for a correct interpretation, and it is particularly important
for measurements obtained from wearable devices, which are
likely to be affected by significant uncertainty sources of
different types [33]–[35], many of which are largely variable
and/or unpredictable. A notable example is the automated fea-
ture extraction in BCI applications, where uncertainty analysis
is essential to guarantee the reliability of the unsupervised
decision-making process, but, more generally, uncertainty is
important every time measurement results are compared to
each other or to a threshold, to determine whether there is
a significant difference between them or not; examples of
applications include the analysis of post-error behavior in
cognitive tasks [7], the detection of cognitive disorders [27]
and the assessment of driving performance [36], to name a
few.

In this work, a time-domain model-based method for EEG
signal fitting, previously introduced in [37], is used to estimate
the time-varying amplitude of the alpha wave, in combination
with a rigorous evaluation of the model and measurement
uncertainties affecting the amplitude estimation. The uncer-
tainty analysis, which is the core contribution of this paper,
enables a metrology-sound definition of compatibility between
the measured signal and its model-based reconstruction from
the estimated parameters, which, in turn, provides a level of
confidence about the genuine alpha nature of the signal in
question.

The proposed method provides some unique advantages,
especially for applications that require or benefit from a short
time resolution: 1) an optimal window of analysis, tailored
to each subject’s main alpha frequency and other signal
features, derived from the uncertainty minimization; 2) the
estimation of the alpha amplitudes with an optimal trade-
off between accuracy and time resolution, on sub-cycle time
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Fig. 1. Example of alpha wave activity recorded from a healthy subject.

windows (i.e., shorter than a full cycle of the alpha wave); 3)
the possibility to assess the window-by-window compatibility
between the measured signal and the model used for the
parameter estimation, which allows the detection of artifacts
or other non-alpha components in the signal, such as head
or ocular movements. However, the method is general, and
it is presented on purpose without emphasizing the details of
any specific application: the key aspects of the method are
a simple model of the alpha wave, whose validity does not
depend on a particular experimental setup, and the analysis
of measurement and model uncertainties, which are always
possible, and indeed recommended, in any application.

II. ALPHA WAVE MODEL-BASED IDENTIFICATION

EEG can be subdivided into several sub-bands (delta, theta,
alpha, beta, gamma) according to specific frequency ranges.
Each sub-band refers to a different brain activity and can be
extracted from the raw signal by applying a band-pass filter
in the frequency range of interest; hence, to extract the alpha
information, a filter is typically applied within the [8 14] Hz
range, leading to a signal like the example shown in Fig. 1.
The signal is characterized by a clear oscillation at the alpha
frequency, with noticeable amplitude variations on timescales
of seconds or slightly shorter. Mathematically, the alpha wave
can be generically described as a sinusoidal signal with time-
varying amplitude Aα(t), phase ϕα(t) and frequency ωα(t) =
2πfα(t):

sα(t) = Aα(t) sin (ωα(t)t+ ϕα(t)) (1)

Since the alpha frequency does not change significantly over
time within the same subject [38], it can be estimated on the
whole signal and considered as a constant and known value.
Therefore, (1) can be written as:

sα(t) = Aα(t) sin (ωαt+ ϕα(t)) (2)

However, it is worth noting that (2) still refers to a general
model, since the argument of the sine is still a generic function
of time, and the signal is still non-periodic because Aα(t) and
ϕα(t) are generally non-periodic oscillations.

Equation (2) can be used to estimate the time-varying
amplitude and phase from a measured filtered signal. Aα(t)
and ϕα(t) are characterized by limited dynamics, as shown

in Fig. 1, due to two main reasons: 1) physiological [38] and
2) the application of the band-pass filter, which acts as a low-
pass filter on the amplitude and phase modulations. Therefore,
Aα(t) and ϕα(t) can be assumed as constants in a limited time
interval, whose values can be estimated window by window.
Each window has a length L · ts, where L is the number of
samples and ts is the sampling time of the original signal.
Choosing a local time axis with the origin in the center of the
window, the discrete-time model becomes:

mαn
(l · ts) = An sin(ωα(l · ts) + ϕn) (3)

where l = −
L− 1

2
, ...,

L− 1

2
is the discrete time index,

n = 1, ..., N is the window index, being N the total number of
windows, while An and ϕn are the parameters to be estimated.

Although, theoretically, An and ϕn could be estimated in
both time and frequency domains, a time-domain approach is
more appropriate here because it does not require the window
length to be an integer multiple of the signal period and,
therefore, it provides more flexibility in the choice of the
window length (especially sub-cycle) and more robustness in
case of inaccurate alpha frequency estimation.

In the time domain, the estimation of An and ϕn can be
performed analytically, more conveniently by introducing the
variables K1n and K2n , which are functions of An and ϕn,
defined as:

K1n = An cos(ϕn)

K2n = An sin(ϕn)
(4)

Therefore, (3) in matrix form becomes:

mαn
(l · ts) =

[
sin(ωα(l · ts)) cos(ωα(l · ts))

]
·
[
K1n

K2n

]
(5)

where the first matrix is constant and known, while Kn is the
vector of the parameters to be estimated.

Equation (5) is linear and can be written in the more
compact form:

mαn
= C · Kn (6)

Since matrix C is not invertible, the least square method
is implemented to obtain the best estimate for Kn from the
filtered signal in each window:

Ken = D · sfilteredn (7)

where sfilteredn is the filtered signal and D is the pseudo-
inverse matrix of C:

D = (CT · C)−1 · CT (8)

Finally, Aen and ϕen can be derived as:

Aen =
√
K2

1en
+K2

2en
(9)

ϕen =


arctan

(
K2en

K1en

)
, K1en

> 0

arctan
(
K2en

K1en

)
+ π, K1en

< 0

π
2 sgn

(
K2en

)
, K1en

= 0

(10)

It is important to note that the standard least-square method
presented in this section will always allow obtaining amplitude
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and phase estimates in each window, regardless of whether
the window contains a genuine alpha signal that satisfies the
model assumptions above or not. It is therefore essential to
add a validation step, to ensure that the estimated parameters
are used in a meaningful way by any application relying on
them, whether clinical, BCI, or other. The solution proposed
in this paper is a metrology-sound approach, based on the
fundamental measurement science concepts of uncertainty
and compatibility: a genuine alpha signal will have to be
compatible with its model-based reconstruction from the es-
timated parameters, taking their respective uncertainties into
consideration. This type of compatibility analysis requires not
only an accurate uncertainty analysis but also the estimation
of the signal parameters with the lowest possible uncertainty,
to maximize the discrimination ability of the method. The
uncertainty evaluation and its minimization through the choice
of an optimal window length L will be thoroughly discussed
in Secs. IV and V, after presenting the experimental method
used in this work in Sec. III.

III. EXPERIMENTAL METHOD

For the purpose of illustrating and testing the proposed
method, signals have been recorded from two healthy subjects,
using a wireless EEG wearable device, the Neuroelectrics
Enobio 8-channels; the attribute ‘wearable’ is used here to
signify that the entire system, including the acquisition unit, is
on the head, with no wired connections to any external device,
so the user’s ability to move is not affected. All recordings
are performed in a still condition to avoid muscular artifacts
as much as possible, with closed and open eyes, while the
subject remains in a relaxed state. The electrodes used are gel-
based and are placed in the following positions of the 10-20
system: O1, O2, T7, T8, C3, C4, Fz, and Cz. The signals are
recorded with a ground reference electrode placed on the ear,
while Fz is chosen as the reference electrode for the definition
of differential signals used for the processing.

All signals are sampled with 500 Hz sampling frequency
and 24 bit resolution (50 nV), and the acquisition unit has a
bandwidth from 0 to 125 Hz. The noise level arising from
the acquisition device is expected to be less than 1 µV,
according to the manufacturer. It should be noted that this
noise level does not include other noise or disturbance that is
likely to affect EEG signals, arising either from the non-EEG
electrical activity of the human body or from the skin-electrode
interface, which can be higher than the intrinsic noise of the
acquisition device. The unpredictable presence and amplitude
of such noise (used here in its broadest meaning) are the
reason why the compatibility analysis presented in this paper
is required, as explained above.

The differential signals are firstly filtered by a 5th order
Butterworth IIR high-pass filter, with a -1 dB cut-off frequency
at 0.1 Hz, to remove possible large components at very low
frequencies (e.g., slowly drifting offset). Then, the signals are
filtered by a 150th order FIR band-pass filter in the [8 14] Hz
range, to extract the alpha band. The frequency responses
of both filters are shown in Fig. 2. The IIR filter has a
negligible effect on the extracted alpha signal, as its maximum
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Fig. 2. Frequency responses of the IIR (top) and FIR (bottom) filters applied
to the raw EEG signal. The vertical lines mark the alpha band, [8 14] Hz.

magnitude variation and phase shift in the alpha band are
less than 0.01 dB (0.1 %) and 1.5◦, respectively. Similarly,
the maximum magnitude variation caused by the FIR filter
in the alpha band is less than ±0.09 dB (±1 %), which is
negligible too. On the other hand, the phase shift introduced
by the FIR filter is much more significant, but it is proportional
to frequency in the pass band, so it corresponds to a constant
delay of 0.15 s, which can be easily compensated in offline
processing without causing any distortion to the signal; this
is actually one of the main reasons for choosing an FIR filter
over an IIR in this application (see [37] for more details on
the design rationale for this filter).

IV. UNCERTAINTY ESTIMATION

As explained in Sec. II, in order to ensure good reliabil-
ity to any application relying on the estimated alpha wave
parameters, the evaluation of their uncertainties is essential
for measurement-model compatibility verification. This is re-
quired to validate each individual result, on a short timescale,
rather than validating the measurement method as a whole,
through a statistical analysis. The adopted approach is illus-
trated here focusing on the amplitude parameter, but a similar
procedure is applied to the phase too.

From (7), two sources of uncertainties are identified: 1) the
measurement noise, affecting the acquired signal (sfiltered)
and 2) the model approximations, introduced when assuming
constant parameters in each window. These two sources are
independent of each other and therefore can be combined
into a total uncertainty, according to the standard rule for the
combination of uncorrelated uncertainty contributions [32]:

u(Ae)tot =
√
u(Ae)2meas + u(Ae)2model (11)

where u(Ae)meas refers to the measurement uncertainty con-
tribution and u(Ae)model to the model one. The subscript n
has been dropped here for compactness of notation.

In this section, both uncertainties will be described and an-
alyzed thoroughly, highlighting their dependence on the win-
dow length L. The results are shown considering fα = 11 Hz,
but different frequency values lead to similar results.
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Fig. 3. Auto-correlation of white noise filtered by the band-pass filter
described in Sec. III.

A. Measurement uncertainty

The measurement uncertainty can be quantified assuming
that the raw signal is affected by a white noise, character-
ized by a variance σ2

w, which can be estimated from the
specifications provided by the manufacturer (the upper limit
σw = 1 µV is used here). According to (7), the Ke estimation
comes from the filtered signal: thus, the white noise is filtered
by the band-pass filter as well, which introduces a strong
correlation between noise samples. Therefore, the filtered
noise is described by a full covariance matrix Σs, which can
be estimated numerically from the auto-correlation function
of simulated noise, shown in Fig. 3. The propagation of Σs

through (7) is given by:

ΣKe = D · Σs · DT (12)

Since the window is symmetric with respect to the time axis,
ΣKe

becomes diagonal, i.e. K1e and K2e are uncorrelated:

ΣKe
=

[
σ2
K1e

0

0 σ2
K2e

]
(13)

Thus, the propagation of ΣKe
over the amplitude estimation

(9) is given by:

u(Ae)
2
meas =

=

(
∂Ae
∂K1e

)2

· σ2
K1e

+

(
∂Ae
∂K2e

)2

· σ2
K2e

=

= cos2(ϕe) · σ2
K1e

+ sin2(ϕe) · σ2
K2e

(14)

Equation (14) reveals that u(Ae)meas depends on the win-
dow length L (through ΣKe

) and on ϕe (with period π).
Of these two parameters, only the window length can be
controlled when sectioning the signal, whereas the phase can
be treated as a random variable, so the uncertainty is analyzed
here as a function of the window length only, as shown in
Fig. 4.

Similar curves are obtained for different ωα values and lead
to the general conclusion that longer window lengths corre-
spond to lower measurement uncertainties. Fig. 4 shows that
the phase value has little effect on the uncertainty, so a mean
curve can be used to determine the optimal window length.
However, the optimal length should be chosen considering also
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Fig. 4. Relationship between u(A)meas and the window length, for
fα = 11 Hz. The curves refer to different values of ϕe, defined in the interval
[0 π] with π/8 step.

the contribution of the model uncertainty on the amplitude
estimation.

B. Model uncertainty

The model uncertainty arises from the simplification intro-
duced in the model (3), used for the amplitude and phase
estimation, which approximates the time-varying Aα(t) and
ϕα(t) in (2) with constant parameters in each window. Such
a simplification is unavoidable because the amplitude and
phase variations in time are generally unknown and cannot be
included in the model. However, their bandwidths are known
to be limited, as explained in Sec. II. As a consequence, it is
possible to describe the signal dynamics for Aα(t) and ϕα(t)
in terms of band-limited random signals, with specific models
for amplitude and phase, which can be used for the uncertainty
quantification.

The models can be identified from real EEG signals, eval-
uating how the amplitude and phase change over a timescale
of several seconds or a few minutes and extrapolating the
dynamics on shorter timescales from those results. Examples
of amplitude and phase spectra thus obtained are illustrated
in Fig. 5. The amplitude dynamic can be modeled as a white
random signal filtered by a first-order low-pass filter, with a
cut-off frequency of around 1 Hz. On the other hand, the phase
dynamic is better described by the integral of a white random
signal, without a visible band limit in the considered range
(here up to 5 Hz). A first-order low-pass behavior can still be
assumed, with a cut-off frequency close to the band limit of
the measured spectra; hence, the phase dynamic is modeled
as the integral of a white random signal filtered by a first-
order low-pass filter, with a cut-off frequency around 5 Hz.
The model parameters are identified for each subject from a
calibration signal.

In order to quantify the error in the parameters estimation, a
Monte Carlo algorithm is implemented to simulate amplitude
and phase modulations, based on the block diagrams shown
in Fig. 6. In more detail, the amplitude variation Ã(t) is
built around A0, which is the mean of all the estimated
amplitudes values obtained from the calibration signal; on
the other hand, the phase variation ϕ̃(t) is built around a
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random variable ϕs. On each generated signal, the amplitude
and phase are estimated using the alpha model, and the mean
and standard deviation of the estimation errors are used to
define the systematic error and uncertainty, respectively, as
shown in (15) and in Fig. 7 for the amplitude:

e(Ae)model = µ(Ae − µ(Ã(t))

u(Ae)model = σ(Ae − µ(Ã(t))
(15)
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Fig. 7. Amplitude model uncertainty u(A)model (red line), for fα = 11 Hz,
with the minimum of the function highlighted in the box, and the systematic
error (black line).
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Fig. 8. Total amplitude uncertainty u(A)tot, for fα = 11 Hz, with the
minimum of the function highlighted in the box.

Similarly to the measurement uncertainty (in Fig. 4), the
model uncertainty has very large values for very small window
lengths, but it also increases again at longer window lengths,
whereas the measurement uncertainty decreases almost mono-
tonically.

It is worth noting that the systematic error is not always
negligible, but it can be compensated by subtracting it from
the estimated values of both parameters, if necessary, thus it
will not be further discussed.

V. UNCERTAINTY MINIMIZATION

The uncertainty analysis described in the previous section is
applied to the signal analysis with a double aim: first, it is used
to determine the optimal window length for each signal (or
each set of signals in similar conditions), based on the expected
alpha frequency and the expected dynamics of amplitude and
phase; then, once the amplitude and phase have been estimated
window by window, it is used to evaluate the uncertainty of
each estimate.

A. Determination of the optimal window length

Choosing an optimal window length for each signal, or
for a set of signals acquired from the same subject, allows
for a tailored analysis that can better adapt to the non-
stationary nature of EEG and is expected to lead to more
accurate results, according to the uncertainty analysis reported
above. The amplitude uncertainty minimization is chosen as
the optimization goal, since the amplitude is the parameter
of interest for the alpha oscillation identification, within this
research. Thus, the optimal window length Lopt is the value
that minimizes the total amplitude uncertainty, introduced in
(11) and represented in Fig. 8. It is worth noting that there
could be more than one local minimum within the same
function: if the uncertainty values in the local minima are
similar to each other, the smallest window length is to be
preferred in order to provide a better time resolution in the
amplitude estimation.

B. Look-up table of uncertainty values

Once the optimal window length has been identified, a more
accurate estimation of the amplitude and phase uncertainties
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can be calculated as a function of the estimated values of
amplitude and phase in each window. Since the calculation
requires a Monte Carlo simulation, it is not practical to
repeat it for each window during the processing of each
signal; instead, the calculation is done once for a fixed set
of amplitude and phase values and the results are stored in a
look-up table for future use. The simulation is based again on
the models described in the previous section, but with defined
values for amplitude and phase within the ranges [1 250] µV
and [0 2π] rad, with steps of 1 µV and 0.1 rad, respectively.
This amplitude range is likely to include all possible amplitude
values of real alpha signals, according to the literature.

VI. COMPATIBILITY ANALYSIS

The model-based estimation method, with the associated
uncertainty analysis, offers the main advantage of providing
the possibility to verify if the estimated values are compatible
with the model assumptions, by checking if the reconstructed
signal from the estimated parameters is compatible with the
measured signal, taking their uncertainties into account.

A. Signal reconstruction

Once the amplitude and phase parameters have been esti-
mated in each window, with the optimal length Lopt, the signal
can be reconstructed within the window, using the model
explained in Sec. II, in particular (3):

se(t) = se(l · ts) = Ae sin(ωα(l · ts) + ϕe) (16)

The previous section explained how to calculate the uncer-
tainties of amplitude and phase separately; here, they have to
be propagated over the signal reconstruction and combined
with the model uncertainty associated with the reconstruction
itself. The measurement and model contributions are first
evaluated separately using different mathematical approaches
and then combined.

The total measurement uncertainty propagation over the
reconstructed signal is performed analytically from (5):

u (se(t))
2
meas =

=

(
∂mα

∂K1

)2

· σ2
K1e

+

(
∂mα

∂K2

)2

· σ2
K2e

=

= sin2(ωαt) · σ2
K1e

+ cos2(ωαt) · σ2
K2e

(17)

On the other hand, the model uncertainty propagation is
achieved using Monte Carlo simulations, similar to those
described in Sec. V-B, but with the generation of complete sets
of signals for each window, in order to evaluate the uncertainty
of the reconstructed signal for every sample of the signal. As
shown in the example reported in Fig. 9, the model uncertainty
will be larger towards the boundaries of the window, where the
difference between the actual (instantaneous) and estimated
(average) values of amplitude and phase are likely to be
greater. For this reason, the model uncertainty is likely to be
the largest contribution at the boundaries of the window.
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Fig. 9. Example of reconstructed signal in a window (blue line), with its
model (red dashed line) and measurement (green dot-dashed line) uncertainty
bands.

B. Compatibility verification and signal classification

Once the reconstructed signal se(t) and its uncertainty have
been calculated, the compatibility analysis can be performed,
calculating how many points of the original signal, with their
uncertainties, fall within the range defined by the reconstructed
signal and its total uncertainty band. If all the samples in
the window were uncorrelated, and assuming a Gaussian
distribution, a percentage of 95% would correspond to a
compatibility verified at 2σ level. However, there is a degree of
correlation among samples, as already discussed, which affects
the selection of a threshold for the signal classification. The
effect of the correlation has been numerically evaluated via
a Monte Carlo simulation and a threshold of 90% has been
empirically determined as a more robust choice for a 2σ-level
compatibility.

All the windows with at least 90% of the samples falling
within the uncertainty band around the reconstructed signal
are considered as carrying genuine alpha information, in
agreement with the model assumptions. On the contrary, the
other windows may be affected by artifacts or non-alpha
components. This procedure can provide a first discrimination
to identify the meaningful parts of the measured signal. In
addition, the phase information can also help in the discrimina-
tion by evaluating the phase variation from window to window,
but this will not be discussed further because it is out of the
scope of this work.

VII. RESULTS

The whole procedure described in previous sections has
been applied to EEG acquisitions from two healthy subjects.
Detailed results are reported and discussed in this section,
focusing on a signal acquired from the occipital area (channel
O2) of a male adult (Subject 1), while results from other
channels and the other subject are summarized at the end of the
section. Channel O2 has been chosen for this detailed analysis
because the alpha activity is expected to be dominant in the
occipital area, but the method can be applied to other channels
as well.

For each subject and each channel, a first signal is used
for calibration purposes, to estimate the alpha frequency, the
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Fig. 10. Frequency spectrum of a 5-minute filtered calibration signal, showing
the peak at the alpha frequency.

model parameters, and the uncertainties; the signal is acquired
for 5 minutes in closed-eyes condition, in which alpha waves
are more visible. The average alpha frequency is estimated
by applying the Fourier Transform to the whole signal and
identifying the frequency corresponding to the highest peak,
illustrated in Fig. 10. In this case, the alpha frequency value
is 8.7 Hz, which leads to an optimal window length of 44,
corresponding to a time resolution of 88 ms in the amplitude
and phase estimation (slightly shorter than the period of the
alpha wave, i.e. 115 ms). It is worth noting that, although this
may not be the most accurate method to estimate the alpha
frequency, a very accurate estimate is not essential for the
following steps, as shown below.

The information obtained from the calibration signal is then
applied to a separate signal, recorded from the same subject
and the same channel. In this case, the acquisition lasted
for 10 minutes, the first 5 minutes with closed eyes and the
last 5 minutes with open eyes. An extract from this signal,
reasonably free from artifacts, is shown in Fig. 11, together
with the estimated amplitudes and their uncertainties, window
by window. The estimation of the amplitudes follows the
oscillation of the original signal, while the uncertainty analysis
provides a reasonably small bar within each window. On the
overall signal, the mean value of the amplitude uncertainty is
around 0.5 µV. For the avoidance of doubt, this uncertainty is
calculated under the assumptions presented in the previous
sections and, therefore, it does not include any effect of
artifacts or other disturbances. The presence of artifacts is
detected after the uncertainty calculation, by the compatibility
analysis, and will invalidate the calculated uncertainty in the
specific windows where the artifacts are detected.

To confirm the robustness of the proposed method against
possible errors in the estimation of the alpha frequency, the
window-by-window amplitude of the same signal has been es-
timated again, changing the alpha frequency value by ±0.5 Hz.
Such a large error is considered to be an extreme case, as
the frequency estimate is likely to have a smaller uncertainty
in most practical scenarios. The difference in the estimated
amplitudes is less than the amplitude uncertainty in 99.3 %
of the windows when the frequency error is +0.5 Hz, and in
99.2 % of the windows when the frequency error is -0.5 Hz.

Fig. 11. Extract of filtered measured signal (gray line), with the estimated
amplitudes and their total uncertainty bars (blue lines).

This shows that even a large frequency error of 0.5 Hz has
a small impact on the amplitude estimation. Similar results
are obtained also for other channels and the other subject, as
shown in Table I.

The compatibility analysis explained in the previous section
is then applied to discriminate between parts of the signal that
are more likely to represent genuine alpha activity and those
more likely to be affected by non-alpha components. Two
extracts from the signal (both taken from the closed-eyes part)
are reported in Fig. 12 and Fig. 13. In order to independently
assess whether the filtered signal could be affected by non-
alpha components, a time-frequency analysis of the unfiltered
signal (filtered only by the IIR high-pass filter) is shown too:
the amplitude spectrum is calculated by applying the FFT
on windows of 0.5 s (leading to a frequency resolution of
2 Hz), in the range [2 20] Hz, whose components can partially
pass through the FIR filter, with an attenuation of less than
40 dB (see Fig. 2). This result is compared to the compatibility
analysis, performed on the much shorter window length Lopt
(88 ms). The extract in Fig. 12 contains a dominant alpha
wave, with no other significant component; in agreement with
this, the compatibility is higher than 90 % in all windows (it is
100 % in most of them). On the contrary, the extract in Fig. 13
has visible lower-frequency components in the interval around
93-96 s, where the compatibility drops well below 90 %
for most windows. The proposed method is, therefore, able
to correctly recognize non-alpha components, despite being
partially filtered by the band-pass filter, with the advantage of
a much thinner time resolution, compared to the FFT analysis.

To summarize the results for the entire signal, including
both closed-eyes and open-eyes intervals, the signal has been
divided into segments of 5.016 s (each containing 57 windows
of length Lopt); for each segment, the FFT is applied to the
unfiltered signal to calculate the ratio between the power in
the alpha band and the power in the [2 20] Hz range, and
this index is compared to the number of compatible windows
in that segment, according to the criterion defined in Sec. VI
(compatibility ≥ 90 %). A scatter plot of the results is shown
in Fig. 14. All segments with a dominant alpha power (i.e.
where the alpha power is more than half of the total power in
the [2 20] Hz band) have at least 94 % of compatible windows,
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TABLE I
SUMMARY OF RESULTS FROM EXPERIMENTAL TESTS ON TWO HEALTHY SUBJECTS

Subject (sex, age) Channel Alpha Lopt (time) Mean Mean Perc. of windows where Min. perc. of compatible
frequency Ae u(Ae) e(Ae) < u(Ae) windows in 5 s segments

with ±0.5 Hz error in fα where Pα/P2−20 > 0.5
Subject 1 (male, 35) O2 8.67 Hz 44 (88 ms) 6.13 µV 0.53 µV 99.3 %, 99.2 % 94 %

C3 8.67 Hz 45 (90 ms) 4.93 µV 0.43 µV 99.2 %, 99 % 96 %
Subject 2 (female, 33) O1 11.05 Hz 36 (72 ms) 3.19 µV 0.35 µV 99.9 %, 99.9 % 100 %

C4 11.25 Hz 36 (72 ms) 2.65 µV 0.29 µV 99.9 %, 99.9 % 98 %

Fig. 12. First signal extract: amplitude spectrum of the unfiltered signal vs.
time (top plot), filtered signal (middle plot), and compatibility check (bottom
plot). All windows are compatible, i.e. their compatibility level is above the
90 % threshold (black line).

Fig. 13. Second signal extract: amplitude spectrum of the unfiltered signal vs.
time (top plot), filtered signal (middle plot), and compatibility check (bottom
plot). Many windows are below the 90 % compatibility threshold (black line).

whereas some of the other segments have a much lower
percentage of compatible windows. This confirms that the
proposed method correctly recognizes genuine alpha activity
when there are no other significant components in the raw
signal; on the other hand, the presence of other components
may decrease the compatibility level, but not in all windows,
meaning that some windows still contain signals that are
compatible with genuine alpha activity, once filtered.

It should be noted that the analysis reported in Fig. 14
was applied to both closed-eyes and open-eyes parts of the
signal, thus revealing that the calibration signal acquired with
closed eyes remains relevant also to the open-eyes condition,
despite the lower alpha amplitude. However, depending on the
application and the subject, a calibration signal obtained in
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Fig. 14. Percentage of compatible windows within 5 s signal segments, as a
function of the power ratio between the alpha band and the [2 20] Hz band
in the unfiltered signal. The blue stars and red circles refer to the closed-eyes
and open-eyes intervals of the signal, respectively. The 0.5 threshold is used
to identify segments where the alpha power is dominant.

conditions more similar to the test condition may be preferred.
Similar tests, with the same procedure, were repeated on

different subject and channels. The results are reported in
Table I, together with the results from Subject 1 already
presented. Besides the occipital channels, a central channel
is also analyzed for each subject, to show that the method
works well also in the presence of a weaker alpha signal. The
average relative uncertainty of the estimated alpha amplitude
is around 10 % for all tests, which is reasonably small,
considering the challenges characterizing EEG measurements;
however, it is important to remember that those uncertainty
values are only valid within windows where the compatibility
is verified, whereas they are likely to be much higher in the
other windows. The ability to identify those different windows
is one of the key benefits of the method proposed in this paper.

To test the effectiveness of the proposed method in more
challenging conditions, additional tests were carried out with
the subject performing head movements, which are known
to cause artifacts in the EEG recordings, especially in the
occipital area, closer to the neck. The results from Subject
1, channel O2, are reported in Fig. 15, where the first half of
the signal was recorded in still conditions, while the second
half was characterized by random head movements, detected
by the accelerometer included in the EEG acquisition unit.
The number of compatible windows decreases very noticeably
during the movement, and there is a good correlation between
the acceleration peaks and the non-compatible windows. An
advantage of the proposed method is that it can still detect
genuine alpha information in short good windows, even if the
recording is affected by frequent movement.
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of the recording) and during head movements (second half): filtered signal
(top plot), acceleration after baseline removal (middle plot), and compatibility
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VIII. COMPARISON WITH CONSTRAINED ICA BY
TEMPORAL DECORRELATION

ICA is a common method used within the biomedical
signal processing, and in particular EEG processing, when
it is required to separate independent signal components, i.e.
different bands or artifacts. Generally, in the formulation of
the ICA, the observed signals x(t) are assumed to be a linear
combination of unknown underlying independent sources s(t),
described by the model in (18):

x(t) = W · s(t) (18)

where W is the mixing matrix.
The aim of the ICA is to recover the sources s(t) directly

from the observations x(t), through the identification of a de-
mixing matrix V:

ŝ(t) = V · x(t) (19)

where ŝ(t) are the estimated sources.
There are several possible criteria that can be used to

identify the de-mixing matrix V. Here, the temporal decorre-
lation is chosen because it allows introducing some theoretical
information about the signal, consistent with the alpha wave
model described in Sec. II [39]. Thus, it is an appropriate
comparison for the method proposed in this paper.

The temporal decorrelation approach is based on the as-
sumption that the independent sources have no temporal cor-
relation. A stack of cross-covariance matrices of the observed
signals, Cτ

x, is defined for a set of time delays τ , while the
cross-covariance matrices of the sources, Cτ

s , are a stack of
diagonal matrices, due to the assumed source independence.
Therefore, the de-mixing matrix V is a matrix that diagonal-
izes all matrices Cτ

x:

Cτ
s = V · Cτ

x · VT (20)

Although the ICA is a blind source separation technique, it
is possible to constrain the separation process by introducing a
priori information on the sources. This can be done by adding
an artificial reference signal r(t) to the measured signal x(t),
with similar characteristics to one of the expected sources:

x̃(t) =

[
x(t)
r(t)

]
(21)
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Fig. 16. The upper plots show the two sections of the signal (1 s each) used
for the ICA: the blue lines are the measured signals, while the red ones are
the references. The other plots show the two components identified by the
ICA, in the time and frequency domains. The second component (magenta)
is the one proportional to the reference, thus interpreted as alpha.

The addition of a reference signal allows also expanding
the number of sources that can be identified and, therefore,
it allows the application of ICA to a single-channel EEG.
In this case, a simple solution is obtained by choosing one
of the two sources equal to the reference signal. For the
purpose of alpha wave identification, the reference signal is the
simulated alpha wave, generated by the model identified from
the calibration signal, but with the alpha frequency estimated
from the considered signal and with no phase modulation. To
avoid the issues caused by the random phase of the reference
signal, the cross-covariance matrices described above can be
calculated in the frequency domain, by removing the phase
difference between the measured and reference signals, as
done in [39].

This ICA method has been applied to the same filtered
signal extracts shown in Figs. 12 and 13, but on shorter
time windows of 1 s. The short windows are required by the
assumption of stationarity of the sources, which is unlikely
to be valid on long windows. Both the filtered and reference
signals are reported in Fig. 16, together with the two signal
components identified by the ICA, in both time and frequency
domains. For the first signal extract (left), which is believed to
be mostly a pure alpha signal based on the analysis from the
previous section, the component proportional to the reference
is the dominant one; on the other hand, for the second signal
extract (right), which is affected by significant non-alpha
disturbances, the component proportional to the reference is
not dominant and it is not a good fit with the measured signal
in most of the window.

Although this ICA analysis can broadly distinguish be-
tween windows with genuine alpha signals and windows
with significant non-alpha components, it has some important
disadvantages compared to the proposed method: 1) the time
window for the analysis must be longer, thus leading to a
worse time resolution; 2) it is less robust with respect to errors
in the alpha frequency used in the model; 3) it does not allow
a straightforward uncertainty evaluation.
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IX. CONCLUSION

This work aimed to address one of the main challenges
in EEG signal processing, i.e. the reliable identification of
specific features (in this case, alpha oscillations) from signals
that are likely to be affected by artifacts and other disturbances.
While several methods in time, frequency, and time-frequency
domains have been presented in the literature, the uncertainty
analysis has been under-investigated and it is proposed in
this paper as a suitable tool to allow a metrology-sound
approach for the identification of alpha waves, based on the
compatibility between the measured signal and its model-
based expectation.

In more detail, this paper used a time-domain fitting method
to extract the alpha amplitude oscillation from single-channel
EEG signals, based on a mathematical model of the alpha
wave, whose parameters can be identified for each subject
from a calibration signal. A fundamental advantage of this
approach is the ability to quantify the uncertainties arising
from both measurement and model, which allows not only
optimizing the estimation accuracy of the alpha amplitude but
more importantly, also verifying a posteriori if the measured
signal and theoretical model are compatible with each other.
Such a compatibility analysis provides a robust and conceptu-
ally rigorous tool to discriminate between parts of the signal
that contain genuine alpha information and those affected by
artifacts or other EEG components.

The proposed method has been successfully demonstrated
on EEG signals acquired from two healthy subjects and
compared to a more traditional time-frequency analysis, based
on the Short-Time Fourier Transform, used to independently
detect the presence of non-alpha components in the signal.
While the two methods provided similar conclusions in most
cases, a notable advantage of the proposed approach is that the
time-domain fitting allows estimating the alpha amplitude with
much thinner, sub-cycle resolution (i.e. less than one full cycle
of the alpha wave), whereas the STFT requires a longer time
window in order to achieve an acceptable frequency resolution.
The optimal time resolution (or window of analysis) is tailored
to the alpha frequency, which is known to vary from subject
to subject.

Finally, the proposed method has been compared also to
one of the most commonly used techniques in EEG signal pro-
cessing, i.e. the Independent Component Analysis, in the form
of constrained ICA by temporal decorrelation. Although it is
more suitable for multi-channel applications, this technique
was chosen because it employs a reference signal to introduce
a priori information, similar to the model used in the proposed
method, and thus it represents a meaningful comparison, albeit
in a very simplified condition. In this scenario, the ICA is
affected by similar limitations to the STFT, i.e. worse time
resolution, worse robustness with respect to errors in the alpha
frequency, and worse interpretability of the results due to the
lack of straightforward uncertainty quantification.

In conclusion, the proposed method appears to be promising
and deserves further investigation with larger data sets. In
particular, its use is encouraged in those applications requiring
high reliability, such as clinical studies and certain types

of brain-machine interfaces, where a wrong interpretation of
signal features can have potentially serious consequences.
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