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speed process, the superiority and reliability of the MTST method are demonstrated through 18 
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Turkey earthquake in 2023. 21 
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1. Introduction 24 

Random environmental loads, such as extreme wind events (tropical storm and downburst) and 25 

earthquake ground motion, are usually non-stationary. Owing to the preservation of physical 26 

interpretation of local power-frequency distribution at each time instant, the evolutionary power 27 

spectral density (EPSD) [1, 2] has wide application in the characterization and simulation of non-28 

stationary earthquake ground motions [3-5] and non-stationary wind speeds [6-9], and the prediction 29 

of structural responses [7, 10-13]. Though being popular, EPSD has two essential deficiencies. First, 30 

it is difficult to calculate an accurate structural response EPSD directly from the load EPSD through 31 

the structural frequency response function. The quasi-stationary approximation [14], which assumes 32 

that the load EPSD is slowly-varying, provides an approximate frequency domain calculation. 33 

However, for transient loads, this approximation may overestimate the structural responses caused by 34 

downbursts [7] and is in general invalid for the structural responses caused by earthquake ground 35 

motions [14]. Second and more significant, for a multi-variate non-stationary load with time-varying 36 

coherences, its correlation is calculated by decomposing its EPSD matrix. When different 37 

decomposition methods, e.g., Cholesky decomposition [3] or proper orthogonal decomposition [15], 38 

are used, the obtained correlation may be not unique [16]. 39 

The harmonizable process [17, 18] is a direct extension of the wide-sense stationary process by 40 

considering the spectral correlation. For a harmonizable process, its Wigner-Ville spectrum (WVS) 41 

represents the time-frequency properties and its Loève spectrum, a dual-frequency spectrum, 42 

characterizes the spectral correlation. The WVS, Loève spectrum, and correlation function of a 43 

harmonizable process are in one-to-one correspondence and can be converted to each other by one-44 

dimensional (1D) or two-dimensional (2D) Fourier transform [19, 20]. Given a linear-elastic structure 45 

subjected to a harmonizable load, the Loève spectrum of the structural response can be directly 46 

calculated by multiplying the load Loève spectrum by the structural frequency response function [21]. 47 

In addition, similar to the semi-stationary process characterized by a slowly-varying ESPD [1], a quasi-48 

stationary harmonizable process with a non-negative slowly-varying WVS [22] could characterize the 49 

time-frequency properties of non-stationary loads. Thus, the quasi-stationary harmonizable process 50 

with its WVS and Loève spectrum is suitable for modeling non-stationary loads and analyzing their 51 
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induced structural responses. 52 

For modeling harmonizable loads, accurately estimating the WVS and Loève spectrum of the 53 

loads using field-measured data is a fundamental and challenging issue. For the WVS estimation of 54 

harmonizable processes, a general class of estimators is in the form of a time-varying Fourier transform 55 

with various time-domain kernels [20, 22-25]. These kernels include those formed by single time 56 

windows corresponding to the spectrogram [22]; those formed by the separable time-frequency 57 

windows corresponding to the pseudo-Wigner estimator [22]; those formed by a weighted sum of the 58 

kernels for the spectrogram or by a weighted sum of the kernels for the pseudo-Wigner estimator [26]; 59 

those formed by multi-tapers [27, 28]; and Toeplitz and Hankel kernels [29].  60 

For the Loève spectrum estimation, a general class of estimators is in the form of a 2D Fourier 61 

transform of various tapered correlation estimators [30]. These Loève spectrum estimators include the 62 

biperiodgram, which is a tensor product of a tapered Fourier transform [31]; the temporally or 63 

spectrally smoothed biperiodgram [32-34]; and the multi-taper estimator [35, 36]. A comprehensive 64 

review of these estimators for the cyclostationary signals is given by Antoni [30]. Another class of 65 

Loève spectrum estimators is formed by performing a 1D Fourier transform on several WVS estimators. 66 

This class includes that calculated from the WVS estimator using Toeplitz kernels [37] and the cyclic 67 

modulation spectrum (CMS) calculated from the spectrogram [38, 39]. 68 

Utilizing constant kernels, the time-frequency resolution capabilities of the WVS estimators 69 

mentioned above remain fixed all over the time-frequency domain. However, the time-frequency 70 

spectra of non-stationary loads, varying obviously over the time-frequency domain, need different 71 

time-frequency resolutions at different time-frequency points. These WVS estimators cannot satisfy 72 

this requirement. Similar to the wavelet transform, the affine WVS [40-42], including its multi-taper 73 

version [27], could provide scale-dependent resolutions in the time-scale domain but not directly in 74 

the time-frequency domain. Most of the Loève spectrum estimators based on the 2D Fourier transform, 75 

and the cyclic modulation spectrum were developed for the spectrally correlated processes whose 76 

Loève spectra consist of a countable set of lines or curves in the dual-frequency plane [33]. However, 77 

environmental non-stationary loads usually have a Loève spectrum, which is a continuous surface 78 

concentrated near the main diagonal line of the dual-frequency plane, e.g., the Loève spectrum of an 79 
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earthquake ground motion acceleration [43]. The Loève spectrum estimation of non-stationary loads 80 

needs both a large frequency resolution and a low estimation variance, which the Loève spectrum 81 

estimators mentioned above are difficult to satisfy. The Loève spectrum estimator from the WVS 82 

estimator using Toeplitz kernels was merely proposed in [37] without any further study about its 83 

mathematical properties or applicability to various kinds of stochastic processes. 84 

The multi-taper S-transform (MTST) [44-46], which is a spectrogram with a set of orthogonal 85 

time-frequency windows, could form a multi-taper affine WVS estimator with frequency-dependent 86 

resolutions in the time-frequency domain. Thus, the MTST is suitable for the WVS estimation of non-87 

stationary loads. In this study, the MTST method for the WVS and Loève spectrum estimations of 88 

quasi-stationary harmonizable processes is proposed. Specifically, a WVS estimator from the MTST, 89 

a Loève spectrum estimator from the MTST-based WVS estimator, and time-invariant and time-90 

varying coherence estimators are given. The biases and variances of these estimators are provided 91 

under the assumption that the target multi-variate harmonizable process is Gaussian. 92 

The remainder of this paper is organized as follows. First, the mathematical definition, spectral 93 

properties, and the quasi-stationary condition of harmonizable processes are introduced. Subsequently, 94 

the mathematical foundation of the MTST method for the WVS and Loève spectrum estimations is 95 

established. Next, using a numerical case of a bivariate harmonizable wind speed process, the 96 

superiority and reliability of the MTST method, especially its feasibility for one realization, are 97 

confirmed through comparisons with several existing methods. Finally, the MTST method is applied 98 

to two pieces of ground motion acceleration records measured during the Turkey earthquake in 2023. 99 

In this study,  denotes the set of real numbers,  denotes the set of integers, and + denotes the 100 

set of positive integers. In the dual-frequency plane whose coordinate is (f1, f2), the main diagonal line 101 

is referred as the line of f1 = f2. Since the field-measured data of real environmental loads are finite-102 

length discrete-time records, discrete-time computation is considered in the Fourier transforms in this 103 

study. 104 

2. Harmonizable process 105 

A zero-mean, second-order, and real-valued multi-variate harmonizable process X(t) = [X1(t), 106 
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X2(t) ,…, XN(t)]T is defined as [18] 107 

 N

N

i2( ) d ( ),π

−
= ∫

f ft

f
t e fX Z   (1) 108 

where T is the transposition operator, t = k∆t, k ∈ , ∆t is the sample interval, fs = 1/∆t is the sampling 109 

frequency, fN = fs/2 is the Nyquist frequency, Z(f) = [Z1(f), Z2(f) ,…, ZN(f)]T is a complex-valued 110 

zero-mean process satisfying 111 

 d ( ) d ( ),f f∗ = −Z Z   (2) 112 

and ∗ is the conjugate operator. In this study, Z(f) is assumed to be zero outside the range of [–fN, fN]. 113 

Thus, the integration interval in Eq. (1) can be extended to (–∞, +∞). 114 

The Loève spectrum of X(t) is defined as [17, 47] 115 

 T
1 2 1 2 1 2( , ) E d ( )d ( ) d d ,∗ =  f f f f f fS Z Z   (3) 116 

where E is the expectation operator. S(f1, f2) satisfies 117 

 T
1 2 2 1( , ) ( , ).f f f f∗ =S S   (4) 118 

The correlation R(t1, t2) = E[X*(t1)XT(t2)] of X(t) is calculated as 119 

 2 2 1 1 2 2 1 1i2 ( ) i2 ( )T
1 2 1 2 1 2 1 2( , ) E d ( )d ( ) ( , )d d .f t f t f t f tt t e f f e f f f fπ π+∞ +∞ +∞ +∞− −∗

−∞ −∞ −∞ −∞
 = = ∫ ∫ ∫ ∫R Z Z S   (5) 120 

Since S(f1, f2) is zero outside the range of [–fN, fN]2, S(f1, f2) and R(t1, t2) are assumed to constitute 121 

a 2D Fourier transform pair, as indicated in Eq. (5) and the following one 122 

 1 2i2 ( )2
1 2( , ) ( , ),f k t f l t

k l
f f t e k t l tπ

+∞ +∞
∆ − ∆

=−∞ =−∞

= ∆ ∆ ∆∑ ∑S R   (6) 123 

where f1 and f2 ∈ [–fN, fN]. 124 

Rotating the time coordinate in R(t1 , t2 ) and the frequency coordinate in S(f1 , f2 ) by 45°, 125 

respectively, that is t = 0.5(t1 + t2) and τ = (t2 – t1), f = 0.5(f1 + f2) and ξ = (f2 – f1), R�(t, τ) = R(t 126 

– 0.5τ, t + 0.5τ) and S�(f, ξ) = S(f – 0.5ξ, f + 0.5ξ) are obtained. R�(t, τ) can be calculated as 127 
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  (7) 128 

where (a) and (b) is valid because S(f1, f2) only has values in the range of (f1, f2) ∈ [–fN, fN]2. Then, 129 

it is obtained 130 
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where f ∈ [–fN, fN], ξ ∈ [–2fN, 2fN], and m, n ∈ . Thus, R�(t, τ) and S�(f, ξ) also constitute a 2D 132 

Fourier transform pair.  133 

Since R� (t, τ) and S�  (f, ξ) are equivalent to R(t1 , t2 ) and S(f1 , f2 ), respectively, they will be 134 

interchangeably used in this study. The WVS W(t, f) of X(t) is defined by [48] 135 
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W(t, f) and S�(f, ξ) constitute a continuous 1D Fourier transform pair with respect to t and ξ. From Eqs. 137 

(8) and (9), W(t, f) can be calculated with R�(t, τ) 138 
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where (a) is from the Nyquist-Shannon sampling theorem [49].  140 

In this study, two assumptions are enforced to X(t). One is that X(t) is assumed to be quasi-141 

stationary, that is R�(t, τ) is slowly-varying with respect to t [22]. Specifically, given a time instant t, 142 

there exists an auto-correlation function rt(τ) and an interval Tt for τ, in which it is satisfied [22] 143 

 ( , ) ( ) ,tt rτ τ ε− <R   (11) 144 

where ε > 0 is a threshold of this approximation. The minmum Tt, Tmin = min
t

(Tt), is the time of 145 

stationarity. X(t) is quasi-stationary if Tmin > 0 for a given ε. W(t, f) of a quasi-stationary X(t) is also 146 

slowly-varying with respect to t. The other assumption is that the auto-WVSes of X(t), Wii(t, f) and i 147 

= 1, 2,…, N, are non-negative. A detailed study on the conditions of a positive WVS for a harmonizable 148 

process can be found in the work by Flandrin [50]. 149 

For a quasi-stationary X(t) with non-negative auto-WVSes, its time-varying coherence Cij(t, f) 150 

between Xi(t) and Xj(t) is defined by [51] 151 

 
( , )

( , ) ,
( , ) ( , )

ij
ij

ii jj

W t f
C t f

W t f W t f
=   (12) 152 

where Wij(t, f) is the ijth element of W(t, f). 153 

3. MTST method for WVS and Loève spectrum estimations 154 

In this section, the orthogonal time-frequency Hermite windows [44, 45] and their related dual-155 

time, dual-frequency, and time-frequency kernels are introduced. Subsequently, the mathematical 156 

formulas of the MTST method for the estimations of WVS and Loève spectrum are given. 157 

3.1. Time-frequency Hermite windows 158 

A set of orthogonal time-frequency Hermite windows ψm(t, f) is calculated by [44, 45] 159 

 [ ]( , ) ( ) ( ) ,m mt f w f h w f tψ =   (13) 160 

where m is the order, hm (t) is the mth-order Hermite function [27], and w(f) is a shape function 161 

controlling the shape of ψm(t, f). w(f) is expressed as [44, 45] 162 
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where a, b, and c are three shape parameters. w(f) controls the width of ψm(t, f) at each frequency 164 

point. A larger w(f) corresponds to a narrower width of ψm(t, f). w(f) is a monotonically increasing 165 

function in the frequency domain. Thus, the width of ψm(t, f) narrows as the frequency increases. The 166 

form of ψm(t, f) equips the MTST method with a time-frequency analysis capability similar to that of 167 

wavelet transform. The parameter a controls the width of ψm(t, f) at f = 0 Hz. Parameters b and c 168 

jointly control the shape of w(f). When b = 0, w(f) = a reduces to a constant value. Consequently, ψm(t, 169 

f) becomes a frequency-independent window. A more detailed explanation of w(f) as well as a, b, and 170 

c can be found in [44]. 171 

ψ0(t, f) and ψ1(t, f) are respectively calculated as 172 

 
2 20.25 0.5 ( )

0 ( , ) ( ) w f tt f w f eψ π − −=   (15) 173 

and 174 

 
2 20.25 1.5 0.5 ( )

1( , ) 2 ( ) .w f tt f w f teψ π − −=   (16) 175 

The iterative calculation of high-order ψm(t, f), m > 1, is 176 

 1 2
2 1( , ) ( ) ( , ) ( , ).m m m

mt f w f t t f t f
m m

ψ ψ ψ− −

−
= −   (17) 177 

ψm(t, f) with a small ∆t satisfies the orthogonal condition 178 

 ( , ) ( , ) δ ,m n mn
k

t k t f k t fψ ψ
+∞

∗

=−∞

∆ ∆ ∆ =∑   (18) 179 

where δmn is the Kronecker delta symbol.  180 

A dual-time kernel ϕM(t1, t2, f) formed by ψm(t, f), m = 0, 1,…, M – 1, is calculated as 181 

 
1

1 2 1 2
0

1( , , ) ( , ) ( , ).
M

M m m
m

t t f t f t f
M

φ ψ ψ
−

∗

=

= ∑   (19) 182 

Since ψm(t, f) is an even real function with respect to t for an even m and an odd real function for an 183 

odd m, ϕM(t1, t2, f) satisfies following symmetric conditions 184 

 1 2 2 1 1 2( , , ) ( , , ) ( , , ).M M Mt t f t t f t t fφ φ φ= = − −   (20) 185 
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A dual-frequency kernel φM(f1, f2, f), the 2D Fourier transform of ϕM(t1, t2, f), is calculated as 186 

 1 2i2 ( )2
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M M
k l
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ϕM(t1, t2, f) can be expressed as 190 
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Because of the symmetric conditions in Eq. (20), φM ( f1 , f2 , f) is real-valued and has similar 192 

symmetric conditions 193 

 1 2 2 1 1 2( , , ) ( , , ) ( , , ).M M Mf f f f f f f f fϕ ϕ ϕ= = − −   (24) 194 

Rotating the frequency coordinate in φM(f1, f2, f) by 45°, that is φ�M(λ, ξ, f) = φM(λ – 0.5ξ, λ + 195 

0.5ξ, f). A time-frequency kernel χM(t, λ, f), the inverse Fourier transform of φ�M(λ, ξ, f) with respect 196 

to ξ, is calculated as 197 

 i2( , , ) ( , , )d .t
M Mt f e fπξχ λ ϕ λ ξ ξ

+∞

−∞
= ∫    (25) 198 

χM(t, λ, f) and φ�M(λ, ξ, f) constitute a continuous 1D Fourier transform pair with respect to t and ξ. 199 

Because of the symmetric conditions in Eq. (24), χM (t, λ, f) is real-valued and has symmetric 200 

conditions 201 

 ( , , ) ( , , ) ( , , ).M M Mt f t f t fχ λ χ λ χ λ= − = −   (26) 202 

Besides, with a small ∆t, χM(t, λ, f) satisfies the normalization condition 203 
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where (a) is valid from Eq. (18). 205 

3.2. WVS and Loève spectrum estimations 206 

Given a harmonizable process X(t) defined by Eq. (1), its S-transform with M time-frequency 207 

Hermite windows ψm(t, f), m = 0, 1,…, M – 1, is calculated as [52] 208 

 i2( , ) ( , ) ( ).fk t
m m

k
t f t e k t t f k tπ ψ

+∞
− ∆

=−∞

= ∆ ∆ − ∆∑s X   (28) 209 

An estimator W�(t, f) of the WVS W(t, f) in Eq. (9) is calculated as 210 
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An estimator S�(f1, f2) of the Loève spectrum S(f1, f2) in Eq. (3) is calculated as 212 
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where ⌊⌋ is the floor function, ⌈⌉ is the ceiling function, and positive L(f) is the number of considered 214 

time instants at each frequency f. In real application, only a finite-length record, e.g., x(k∆t), k = –0.5L 215 

+ 1, –0.5L + 2,…, 0,…, 0.5L, is available. L is the length of x(k∆t) and assumed to be even. In this 216 

situation, the WVS estimate calculated by Eq. (29) near the ends of x(k∆t) would be influenced by the 217 

edge effect. For each frequency f, an approximate valid range [–tv(f), tv(f)], tv(f) = [0.5L – Lv(f)]∆t, of 218 

W�(t, f) is calculated as  219 
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∆ ∆ ≥

 ∈

∑


  (31) 220 

L(f) in Eq. (30) should be in the valid range, that is L(f) + 2Lv(f) ≤ L.  221 

An estimator C� ij(t, f) of the time-varying coherence Cij(t, f) in Eq. (12) is calculated as 222 

 
ˆ ( , )ˆ ( , ) ,

ˆ ˆ( , ) ( , )
ij

ij

ii jj

W t f
C t f

W t f W t f
=   (32) 223 
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where W� ij(t, f) is the ijth element of W�(t, f). If Cij(t, f) is time-invariant, which is denoted as 224 

 ( , ) ( ),ij ijC t f C f=   (33) 225 

an estimator C�� ij(f) of C�ij(f) is calculated as 226 

 
( )/2

( )/2 +1

1ˆ ˆ( ) ( , ).
( )

L f

ij ij
k L f

C f C k t f
L f

  

=−  

= ∆∑   (34) 227 

By the Cauchy-Schwarz inequality, it is satisfied that |C� ij(t, f)| ≤ 1 and |C�� ij(f)| ≤ 1, where |•| is the 228 

modulus operator. 229 

The estimator W�(t, f) in Eq. (29) belongs to the class of spectrograms and it is non-negative [20]. 230 

The calculation procedure of W�(t, f), including Eqs. (28) and (29), is same with those of the EPSD 231 

estimator by the MTST method [45]. It has been indicated that a spectrogram can be utilized to estimate 232 

either an EPSD or a WVS [20]. However, these two target time-varying spectra are theoretically 233 

different and should be specified before an estimation. 234 

4. Statistical properties of the WVS, Loève spectrum and coherence estimators 235 

In this section, X(t) in Eq. (1) is assumed to be Gaussian. The analytical biases and variances of 236 

W�(t, f) in Eq. (29), S�(f1, f2) in Eq. (30), C� ij(t, f) in Eq. (32), and C�� ij(f) in Eq. (34) are provided.  237 

Theorem 1: Under the Gaussianity assumption on X(t), at t = k∆t, the bias Bias[W� ij(t, f)] = E[W� ij(t, 238 

f)] – Wij(t, f) of W� ij(t, f), which is the ijth element of W�(t, f), is calculated as 239 

 ˆBias ( , ) ( , , ) ( , ) ( , ) d d ,ij M ij ijW t f t f f W W t fχ τ ξ τ ξ τ ξ
+∞ +∞

−∞ −∞
   = − − −   ∫ ∫   (35) 240 

where χM(t, λ, f) is in Eq. (25). The variance Var[W� ij(t, f)] of W� ij(t, f) is approximated as 241 

 

ˆVar ( , )

( , , ) ( , , ) ( , 0.5 ) ( , 0.5 )d d

( 0.5 ,2 , ) ( 0.5 ,2 , ) ( , 0.5 ) ( , 0.5 )d d .

ij

M M ii jj

M M ij ij

W t f

u f v f u f v f W t u v W t u v u v

f v u f f v u f W t u v W t u v u v

ϕ ϕ

ϕ ϕ

+∞ +∞ ∗ ∗

−∞ −∞

+∞ +∞ ∗ ∗

−∞ −∞

  

≈ − − − +

+ + − − +

∫ ∫
∫ ∫

 

 

  (36) 242 

The proof of Theorem 1 is provided in Appendix A. 243 

Corollary 1: With the conditions in Theorem 1, and φ�M(u, v, f) is more concentrated compared 244 
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with Wii (t, u + 0.5v), Wjj (t, u + 0.5v) and Wij (t, u + 0.5v), then Var[W� ij (t, f)] in Eq. (36) is 245 

approximately simplified as 246 

 
21ˆVar ( , ) ( , ) ( , ) ( , ) ( , , ) ( , , )d d .ij ii jj ij M MW t f W t f W t f W t f f v u f f v u f u v

M
ϕ ϕ

+∞ +∞∗ ∗

−∞ −∞
  ≈ + + −  ∫ ∫    (37) 247 

The proof of Corollary 1 is provided in Appendix B. 248 

Remark: Martin and Flandrin [22] proposed a WVS estimator and deduced its analytical 249 

expectation and variance. The valid range of that WVS estimator in the frequency domain is [–0.5fN, 250 

0.5fN], and it is smaller than that of W�(t, f) in Eq. (29), which is [–fN, fN]. The second terms on right 251 

side of Eqs. (36) and (37) were ignored in the result by Martin and Flandrin [22]. In the next section, 252 

with a numerical case, it will be illustrated that the first term of Eq. (37) would undervalue the WVS 253 

estimation variances near 0 Hz and fN, and the second term of Eq. (37) proposed in this study could 254 

remedy these underestimates. The result in Eq. (37) indicate that increasing M can reduce the WVS 255 

estimation variance. However, a large M could decrease the concentration of χM(t, λ, f) and increase 256 

the bias of the WVS estimation in Eq. (35). 257 

Theorem 2: Under the Gaussianity assumption on X(t), the bias Bias[S�ij(f1, f2)] = E[S�ij(f1, f2)] 258 

– Sij(f1, f2) of S�ij(f1, f2), which is the ijth element of S�(f1, f2), is calculated as 259 

 [ ] [ ]

1 2

2 1 1 2 1 2 1 2

1 2

ˆBias ( , )

( ) ,0.5( ) 0.5( ), ,0.5( ) ( , )d d

( , ),

ij

M ij

ij

S f f

F f f f f f f f f S

S f f

λ ϕ ξ λ ξ λ ξ λ
+∞ +∞

Π−∞ −∞

 
 

= − − + − + +

−
∫ ∫ 

   (38) 260 

where 261 

 
i2

N( , ),
( , )

0, otherwise

k t

k
t e k t f f

F f
πλ λ

λ

+∞
− ∆

=−∞Π

∆ Π ∆ ≤= 


∑   (39) 262 

and 263 

 
1, 0.5 ( ) 0.5 ( )

( , ) .
0, otherwise

L f t L f
t f

 − < ≤       Π = 


  (40) 264 

The variance Var[S�ij(f1, f2)] of S�ij(f1, f2) is approximated as 265 
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 1 2 1 1 2 2 1 2
ˆVar ( , ) ( , ) ( , ),ijS f f V f f V f f  ≈ +    (41) 266 

where 267 

 

[ ]
[ ]{ }
[ ]{ }

[ ] [ ]

1 1 2

2
1 2

2 1 1 2

2 1 1 2

1 2 1 2

( , )

, ,0.5( )

( ) 0.5( ) ,0.5( )

( ) 0.5( ) ,0.5( )

0.5( ), 0.5( ), d d d d ,

M

ii jj

V f f

f f

F f f f f

F f f f f

S f f S f f

ϕ ξ λ

λ ξ ξ λ

λ ξ λ ξ

ξ λ ξ λ ξ λ

+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

∗
Π

Π

∗

= +

× − − − + ∆ −∆ +

× − − − + ∆ −∆ +

× + ∆ + ∆ ∆ ∆

∫ ∫ ∫ ∫

 

  (42) 268 

 [ ]
[ ]

2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

( , )

0.5( ), 0.5( ),0.5( )

0.5( ), 0.5( ),0.5( ) ( , , , )d d ,
M

M ij

V f f

f f f f f f

f f f f f f v f f

ϕ ξ λ

ϕ ξ λ λ ξ ξ λ

+∞ +∞ ∗

−∞ −∞
= − + − + +

× + + + + +

∫ ∫   (43) 269 

and 270 

 [ ]
[ ]

1 2

2 1 1 2

2 1 1 2

( , , , )

( ) ( ) 0.5( ),0.5( )

( ) ( ) 0.5( ),0.5( ) ( , ) ( , )d d .

ij

ij ji

v f f

F f f f f

F f f f f S S

λ ξ

λ ξ λ ξ

λ ξ λ ξ ξ ξ λ λ ξ λ

+∞ +∞ ∗
Π−∞ −∞

∗
Π

= − − − + ∆ −∆ +

× − − − − ∆ −∆ + ∆ ∆ ∆ ∆

∫ ∫
 

  (44) 271 

The proof of Theorem 2 is provided in Appendix C. 272 

Theorem 3: Under the conditions that X(t) is Gaussian, the time of stationarity of X(t) is larger 273 

than the width of the utilized windows ψm(t, f), m = 0, 1,…, M – 1, and W�(t, f) is approximately 274 

unbiased, the bias Bias[C� ij(t, f)] = E[C� ij(t, f)] – Cij(t, f) of C� ij(t, f) is approximated as 275 

 ˆBias ( , ) ( , ) ( , ) 1 ,ij ij ijC t f C t f G t f   ≈ −     (45) 276 

where Cij(t, f) is the theoretical coherence in Eq. (12), 277 

 
2 2 2

2 12

( 0.5)( , ) 1 ( , ) 0.5, 0.5, 1; ( , ) ,
( )

M

ij ij ij
MG t f C t f F M M M C t f

M M
Γ +    ≈ − + + +      Γ

  (46) 278 

Γ(•) is the Gamma function and 2F1 is the two-one hypergeometric function 279 

 2 1
0

( ) ( ) ( )( , ; ; ) .
( ) ( ) ( ) !

k

k

a k b k c zF a b c z
a b c k k

∞

=

Γ + Γ + Γ
=

Γ Γ Γ +∑   (47) 280 

Bias[|C� ij(t, f)|] = E[|C� ij(t, f)|] –|Cij(t, f)| of |C� ij(t, f)| is approximated as 281 
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2 2

3 2

ˆBias ( , )

( ) 1 ( , ) 1.5, , ;1, 0.5; ( ) ( , ) ,
2 ( 0.5)

ij

M

ij ij ij

C t f

M C t f F M M M C f C t f
M

π

 
 

Γ    ≈ − + −   Γ +    

  (48) 282 

where 3F2 is the three-two hypergeometric function 283 

 3 2
0

( ) ( ) ( ) ( ) ( )( , , ; , ; ) .
( ) ( ) ( ) ( ) ( ) !

k

k

a k b k c k d e zF a b c d e z
a b c d k e k k

∞

=

Γ + Γ + Γ + Γ Γ
=

Γ Γ Γ Γ + Γ +∑   (49) 284 

Var[C� ij(t, f)] of C� ij(t, f) is approximated as 285 

 
2 2 2 2

3 2
1ˆVar ( , ) 1 ( , ) 2, , ; 1,1; ( , ) ( , ) ( , ).

M

ij ij ij ij ijC t f C t f F M M M C t f C t f G t f
M

     ≈ − + −        
 (50) 286 

The proof of Theorem 3 is provided in Appendix D. 287 

Theorem 4: Under the conditions that X(t) is Gaussian, the time of stationarity of X(t) is larger 288 

than the width of the utilized windows ψm(t, f), m = 0, 1,…, M – 1, the coherence between Xi(t) and 289 

Xj(t) is time-invariant, and W�(t, f) is approximately unbiased, the bias Bias[C�� ij(f)] = E[C�� ij(f)] – C�ij(f) 290 

of C�� ij(f) is approximated as 291 

 ˆBias ( ) ( ) ( ) 1 ,ij ij ijC f C f T f   ≈ −   
  (51) 292 

where 293 

 
2 2 2

2 12

( 0.5)( ) 1 ( ) 0.5, 0.5, 1; ( ) .
( )

M

ij ij ij
MT f C f F M M M C f

M M
Γ +    ≈ − + + +      Γ

  (52) 294 

The variance Var[C�� ij(f)] of C�� ij(f) is approximated as 295 

 
2 2 2 2

3 2
eq

1 1ˆVar ( ) 1 ( ) 2, , ; 1,1; ( ) ( ) ( ) ,
( )

M

ij ij ij ij ijC f C f F M M M C f C f T f
N f M

       ≈ − + −             
 (53) 296 

where 297 

 eq
v

( )( )
( )

L fN f
L f

=   (54) 298 

and Lv(f) is in Eq. (31). The proof of Theorem 4 is provided in Appendix E. 299 
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5. Verification of the MTST method for the WVS and Loève spectrum estimations 300 

In this section, the reliability of the MTST method is verified using a bivariate harmonizable wind 301 

speed process U(t) = [U1(t), U2(t)]T. The WVS matrix WU(t, f) of U(t) is expressed as 302 

 1 1 2

1 2 2

*

( , ) ( , ) ( , ) ( , )
( , ) .

( , ) ( , ) ( , ) ( , )

U U U

U U U

W t f r t f W t f W t f
t f

r t f W t f W t f W t f

 
 =
 
 

U

U

U

W   (55) 303 

In Eq. (55), WU1(t, f) = WU(t – 1700, f), WU2(t, f) = WU(t – 2300, f), WU(t, f) is [45] 304 

 
( )

2
5/62

320( , ) ( , ) ,
1 1770

UW t f A t f
f

=
+

  (56) 305 

and 306 

 
0.63 22 0.945 0.0001440.000001( , ) 0.2 1.54 .f ttA t f e f e−−= +   (57) 307 

The time-varying coherence rU(t, f) is expressed as 308 

 [ ] i ( ) 10 ( )( , ) 1 5 ( ) ,fd t fr t f f e υυ −= −U   (58) 309 

where 310 

 ( ) 10sin(0.001 )d t tπ=   (59) 311 

and 312 

 2 4( ) 0.1 10 .f fυ −= +   (60) 313 

The theoretical Loève spectra SU1(f1, f2) and SU2(f1, f2) of U1(t) and U2(t) can be calculated by 314 

1D Fourier transform of WU1 (t, f) and WU2 (t, f) with respect to t, respectively. The theoretical 315 

correlation of U(t) can be calculated by the inverse Fourier transform of WU(t, f) with respect to f. The 316 

realizations of U(t) can be simulated by decomposing its correlation matrix [15]. In this section, all the 317 

methods employed for spectrum estimations have their own parameters requiring manual 318 

determination. For all the spectrum estimations in this section, the parameters of all methods are 319 

manually determined so that the respective method can provide its best result. 320 

5.1. WVS and Loève spectrum estimations based on one set of realizations. 321 

A set of simulated discrete-time realizations [u1(t), u2(t)]T, t = 0, 1,…, 3999 s, are shown in Fig. 322 
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1. Based on these two realizations, WU1(t, f) and WU2(t, f) are estimated by the MTST method, multi-323 

taper WVS estimation method [27], and Toeplitz kernel method [29]. The multi-taper method is a 324 

simplified version of the MTST with a set of original Hermite windows. The Toeplitz kernel method 325 

first calculates the spectrogram of a realization using a single time window, and then applies a 326 

smoothing window to smooth this spectrogram along the frequency axis. In the MTST method, the 327 

first ten time-frequency Hermite windows with a = 0.0125, b = 9.2, and c = 0.272 are used. In the 328 

multi-taper method, the first ten original Hermite windows, which are obtained by setting w(f) in Eq. 329 

(13) as w(f) = 0.05, are utilized. In the Toeplitz kernel method, the first Hermite window utilized in 330 

the multi-taper method is employed to calculate the spectrogram, and then a Gaussian window 331 

wg(f) = 50 √2πe–1250f2⁄  is employed to smooth the spectrogram. 332 

  333 

(a)                                        (b) 334 

Fig. 1. A set of realizations of the bivariate harmonizable wind speed process. (a) u1(t) and (b) u2(t). 335 

Fig. 2 displays the WVS estimates by the three methods in the range of 1000 s to 3000 s, in which 336 

the estimates are not influenced by the edge effect. It is illustrated that the two WVS estimates from 337 

the MTST method have similar shapes with their corresponding theoretical ones, and their fluctuations 338 

are moderate. The results by the multi-taper method and Toeplitz kernel method have larger 339 

fluctuations compared with those by the MTST method. The mean squared error (MSE) of one WVS 340 

estimate W� (t, f) over the frequency is calculated as 341 

 
2ˆMSE( ) ( , ) ( , ) d ,Uf W t f W t f t = − ∫   (61) 342 

where WU(t, f) is the corresponding theoretical one of W� (t, f). The MSEs of the WVS estimates in Fig. 343 

2 by the three methods are displayed in Fig. 3. It is illustrated that the results by the multi-taper method 344 

have larger MSEs than those by the MTST method in the frequency range of 0.0005 Hz to 0.01 Hz. 345 

The MSEs of the results from the Toeplitz kernel method are much larger than those from the other 346 

two methods. The smoothing effect of the spectrally-smoothed spectrogram in the Toeplitz kernel 347 

method is worse than that of the estimator from the multi-taper method. Thus, the WVS estimates by 348 
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the Toeplitz kernel method have larger fluctuations compared with the results by the multi-taper 349 

method. These larger fluctuations cause the larger MSEs illustrated in Fig. 3. Utilizing frequency-350 

invariant windows, the multi-taper method suffers from limited time-frequency resolution and thus the 351 

MSEs of its results are larger than those of the MTST method.  352 

  353 
(a) (b) 354 

  355 
(c)                                        (d) 356 

  357 
(e)                                        (f) 358 
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  359 
(g)                                        (h) 360 

Fig. 2. WU1(t, f) and WU2(t, f). (a) theoretical WU1(t, f), (b) theoretical WU2(t, f), (c) WU1(t, f) by the MTST 361 

method, (d) WU2(t, f) by the MTST method, (e) WU1(t, f) by the multi-taper method, (f) WU2(t, f) by the multi-362 

taper method, (g) WU1(t, f) by the Toeplitz kernel method, and (h) WU2(t, f) by the Toeplitz kernel method. 363 

  364 
(a)                                        (b) 365 

Fig. 3. MSEs of the estimates of WU1(t, f) and WU2(t, f). (a) MSE of the estimate of WU1(t, f) and (b) MSE of the 366 

estimate of WU2(t, f). 367 

The time-varying coherence rU (t, f) is estimated by the MTST method using Eq. (32). As 368 

illustrated in Fig. 4, the real and imaginary parts of the coherence estimate could broadly exhibit the 369 

time-varying trend of rU(t, f), but have significant fluctuations. Recently, in the EPSD estimation by 370 

the MTST method, an iterative procedure was proposed to determine the optimal number of tapers at 371 

each frequency and accordingly decrease the fluctuation in time-varying coherence estimates [46, 53]. 372 

This procedure has the potential to be applied in the time-varying coherence estimation of 373 

harmonizable processes. However, this application needs several additional works, e.g., deducing the 374 

theoretical expression of the optimal number of tapers at each frequency, and it is beyond the scope of 375 

this study. 376 
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  377 
(a)                                        (b) 378 

  379 
(c)                                        (d) 380 

Fig. 4. rU(t, f). (a) real part of the theoretical rU(t, f), (b) imaginary part of the theoretical rU(t, f), (c) real part of 381 

the estimated rU(t, f), and (d) imaginary part of the estimated rU(t, f). 382 

Based on the realization u1(t), its Loève spectrum SU1(f1, f2) is estimated by the MTST method, 383 

the multi-taper Loève spectrum estimation method [35, 36], and the CMS method [38, 39]. This multi-384 

taper method used for the Loève spectrum estimation is different from the aforementioned multi-taper 385 

WVS estimation method. In the multi-taper method of Loève spectrum estimation, the first ten discrete 386 

prolate spheroidal sequences are utilized. In the CMS method, its first step is the same as that in the 387 

Toeplitz kernel method, which is to calculate the spectrogram of a realization using a single time 388 

window. Subsequently, the Loève spectrum is estimated by performing a 1D Fourier transform on the 389 

spectrogram along the time axis. The single time window in the CMS method is the same as that in the 390 

the Toeplitz kernel method.  391 

As shown in Fig. 5, the theoretical SU1 ( f1 , f2 ), including its real and imaginary parts, is 392 

concentrated near the main diagonal line of f1 = f2. The result from the MTST method could clearly 393 

exhibit the pattern of SU1 (f1 , f2 ) near the main diagonal line with small fluctuations. The Loève 394 
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spectrum estimate from the CMS method has larger fluctuations than that from the MTST method. The 395 

result from the multi-taper method has large fluctuations over the whole dual-frequency plane and 396 

cannot display the shape of SU1(f1, f2). Estimated spectrum slices of the real part of SU1(f1, f2) along 397 

the lines of f1 = f2 and f1 = f2 + 0.00025 are shown in Fig. 6. Estimated spectrum slices of the 398 

imaginary part of SU1(f1, f2) along the lines of f1 = f2 + 0.00025 and f1 = f2 + 0.0005 are shown 399 

Fig. 7. It is illustrated that the spectrum slices from the MTST method are close to the theoretical values 400 

with smaller fluctuations than those from the other two methods. The MSE of one Loève spectrum 401 

estimate S�(f1, f2) is calculated as 402 

 
2

ˆ 1 2 1 2 1 2
ˆMSE ( , ) ( , ) d d ,US
S f f S f f f f = − ∫ ∫   (62) 403 

where SU(f1, f2) is the theoretical one of S�(f1, f2). The MSEs of the Loève spectrum estimates by the 404 

MTST method, CMS method, and multi-taper method are 131. 90, 2.18 × 103 , and 2.01 × 105 , 405 

respectively. The MSE from the MTST method is much smaller than those from the other two methods. 406 

  407 
(a)                                        (b) 408 

  409 
(c)                                        (d) 410 
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  411 
(e)                                        (f) 412 

  413 
(g)                                        (h) 414 

Fig. 5. SU1(f1, f2). (a) real part of the theoretical SU1(f1, f2), (b) imaginary part of the theoretical SU1(f1, f2), (c) 415 

real part of SU1(f1, f2) estimated by the MTST method, (d) imaginary part of SU1(f1, f2) estimated by the MTST 416 

method, (e) real part of SU1(f1, f2) estimated by the CMS method, (f) imaginary part of SU1(f1, f2) estimated by 417 

the CMS method, (g) real part of SU1(f1, f2) estimated by the multi-taper method, and (h) imaginary part of SU1(f1, 418 

f2) estimated by the multi-taper method. 419 

  420 
(a)                                        (b) 421 

Fig. 6. Estimated spectrum slices of the real part of SU1(f1, f2). (a) the spectrum slice along the line of f1 = f2 and 422 

(b) the spectrum slice along the line of f1 = f2 + 0.00025. 423 
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  424 
(a)                                        (b) 425 

Fig. 7. Estimated spectrum slices of the imaginary part of SU1(f1, f2). (a) the spectrum slice along the line of f1 = 426 

f2 + 0.00025 and (b) the spectrum slice along the line of f1 = f2 + 0.0005. 427 

In order to deliberate on the feasibility of the MTST method on non-Gaussian realizations, the 428 

Gaussian realizations u1(t) and u2(t) in Fig. 1 are transformed into two non-Gaussian realizations by 429 

 { }1( ) ( ), ( ) , ( ) 2 ( ),
i i ii i U U Ut G u t t t tµ σ σ σ−  = Φ −    (63) 430 

where Ф[•, σUi(t)] is a zero-mean Gaussian cumulative distribution function (CDF) with a standard 431 

deviation of σUi(t), σUi(t) is the time-varying standard deviation of Ui(t), G–1[•, σUi(t)] is the inverse 432 

CDF of a Gamma distribution with an expectation of √2σUi(t) and a standard deviation of σUi(t), and 433 

i = 1 and 2. The realizations μ1(t) and μ2(t) are shown in Fig. 8. According to Sklar's theorem [54], 434 

the probabilistic dependence among multiple random variables is independent of their marginal PDFs. 435 

Thus, the theoretical correlation functions, WVSes, and Loève spectra of μ1(t) and μ2(t) are the same 436 

as those of the Gaussian realizations u1(t) and u2(t).  437 

Two WVSes estimated by the proposed MTST method using μ1(t) and (b) μ2(t) are displayed in 438 

Fig. 9. It is illustrated that the two WVS estimates from the non-Gaussian realizations are also 439 

consistent with their corresponding theoretical WVSes with moderate fluctuations. The real and 440 

imaginary parts of SU1(f1, f2) estimated by the MTST method using μ1(t) are shown in Fig. 10. It is 441 

illustrated that the real part of the estimated SU1(f1, f2) from the non-Gaussian realization is similar to 442 

that from the Gaussian realization in Fig. 5. The imaginary part of the Loève spectrum from the non-443 

Gaussian realization has slightly larger fluctuations than that from the Gaussian realization in Fig. 5. 444 

The MSE of the estimated SU1(f1, f2) from the non-Gaussian realization is 205.43, which is a little 445 
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larger than the MSE of 131. 90 from the Gaussian realization. 446 

  447 

(a)                                        (b) 448 

Fig. 8. A set of non-Gaussian realizations of the bivariate harmonizable wind speed process. (a) μ1(t) and (b) μ2(t). 449 

  450 
(a)                                        (b) 451 

Fig. 9. WU1(t, f) and WU2(t, f) estimated by the MTST method using μ1(t) and μ2(t). (a) WU1(t, f) and (b) WU2(t, 452 

f). 453 

  454 
(a)                                        (b) 455 

Fig. 10. SU1(f1, f2) estimated by the MTST method using μ1(t). (a) real part of SU1(f1, f2) and (b) imaginary part 456 

of SU1(f1, f2), 457 

5.2. WVS and Loève spectrum estimations based on multiple sets of realizations. 458 

In this sub-section, 5000 sets of discrete-time realizations of U(t) are simulated. Averaged WU1(t, 459 

f), WU2(t, f), rU(t, f) , and SU1(f1, f2) over the 5000 sets of realizations are estimated by the MTST 460 
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method, in which, the first two time-frequency Hermite windows with a = 0.015, b = 7, and c = 0.5 are 461 

used. As illustrated in Fig. 11 to Fig. 13, the estimated WVSes coherence, and Loève spectrum are very 462 

similar to their corresponding theoretical ones. The two Loève spectrum slices in Fig. 13 only have 463 

small differences from their corresponding theoretical ones near f = 0 Hz. 464 

  465 
(a)                                        (b) 466 

Fig. 11. Averaged WU1(t, f) and WU2(t, f) from 5000 realizations. (a) WU1(t, f) and (b) WU2(t, f). 467 

  468 
(a)                                        (b) 469 

Fig. 12. Averaged rU(t, f) from 5000 realizations. (a) real part of rU(t, f) and (b) imaginary part of rU(t, f). 470 

  471 
(a)                                        (b) 472 
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  473 
(c)                                        (d) 474 

Fig. 13. Averaged SU1(f1, f2) from 5000 realizations. (a) real part of SU1(f1, f2), (b) imaginary part of SU1(f1, f2), (c) 475 

real part of the spectrum slice SU1(f, f), and (d) imaginary part of the spectrum slice SU1(f, f – 0.00025). 476 

The estimation variances of WU1(t, f) and rU(t, f) are calculated using the analytical expressions 477 

in Eqs. (37) and (50), respectively, and are compared with their corresponding results calculated from 478 

the 5000 realizations in Fig. 14 and Fig. 15, respectively. It can be seen the estimation variance of 479 

WVS and that of coherence from the analytical expressions are consistent with their corresponding 480 

results from the 5000 realizations. The analytical expression of the WVS estimation variance proposed 481 

by Martin and Flandrin [22] only contains the first term on the right side of Eq. (37). In Fig. 14 (c) 482 

and (d), the variances at t = 1700 s and f = 0.001 Hz by the first term of Eq. (37) are also provided. It 483 

is illustrated that the first term of Eq. (37) would undervalue the variances near 0 Hz and fN, and the 484 

second term of Eq. (37) proposed in this study could remedy these underestimates. 485 
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  488 
(c)                                        (d) 489 

Fig. 14. Estimation variance of WU1(t, f). (a) the result from Eq. (37), (b) the result from the 5000 realizations, (c) 490 

the results at t = 1700 s, and (d) the results at f = 0.001 Hz. 491 

  492 
(a) (b) 493 

Fig. 15. Estimation variance of rU(t, f). (a) the result from Eq. (50) and (b) the result from the 5000 realizations. 494 

In order to verify Theorem 4, a time-invariant coherence is considered, which is obtained by 495 

setting d(t) in Eq. (58) as d(t) = 4π. Then 5000 sets of the realizations of U(t) with time-invariant 496 

coherence are simulated. The estimation bias and variance of the time-invariant coherence are 497 

calculated using Eqs. (51) and (53), respectively. The analytical results are compared with those 498 

calculated from the 5000 realizations in Fig. 16. It can be seen the analytical bias is consistent with 499 

that from the 5000 realizations. The difference between the variance from Eq. (53) and that from the 500 

5000 realizations is not significant. 501 
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  502 
(a)                                        (b) 503 

Fig. 16. Estimation bias and variance of the time-invariant coherence. (a) bias and (b) variance. 504 

6. Real application 505 

Two pieces of ground motion acceleration records TK 3139 and TK 3145, denoted by a1(t) and 506 

a2(t) in Fig. 17, respectively, were measured from the Mw7.7 Turkey earthquake occurred in Pazarcık 507 

(Kahramanmara ̧s) at 01:17:32AM (UTC+3), 6th Feb. 2023. The east-west direction of the ground 508 

motions is adopted. The depth of the earthquake is 8.6 km. The epicenter distance of TK 3139 and TK 509 

3145 is 96.19 km and 91.13 km, respectively. The distance between the two stations is about 6.9 km. 510 

The spatial distribution of the epicenter and stations is depicted in Fig. 18. The general information of 511 

the earthquake and stations is from AFAD, Turkey.  512 

The WVSes, Loève spectra, and time-invariant and time-varying coherences of a1(t) and a2(t) 513 

are estimated by the MTST method, in which the first eight ψm(t, f), m = 0, 1,…, 7, with a = 0.1, b = 514 

17, and c = 0.4 are utilized. The estimated WVSes, Loève spectra, and coherences are shown in Fig. 515 

19-Fig. 21, respectively. It is illustrated that two WVSes have similar shapes and exhibit obviously 516 

non-stationary properties. In the frequency domain, a1(t) and a2(t) are correlated in the range of 0 Hz 517 

to 1 Hz. The time-varying property of their coherence is not significant. The Loève spectra of a1(t) 518 

and a2 (t) are concentrated near the main diagonal line of the dual-frequency plane with different 519 

shapes.  520 
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(a)                                        (b) 522 

Fig. 17. The measured ground motion acceleration records. (a) a1(t) and (b) a2(t). 523 

 524 

Fig. 18. Spatial distribution of epicenter and two stations for the Feb 2023 Mw7.7 earthquake in Turkey. 525 

  526 
(a)                                        (b) 527 

Fig. 19. The WVSes of a1(t) and a2(t). (a) WVS of a1(t) and (b) WVS of a2(t). 528 
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  531 
(c)                                        (d) 532 

Fig. 20. Time-invariant and time-varying coherences between a1(t) and a2(t). (a) real and imaginary parts of the 533 

time-invariant coherence, (b) modulus of the time-invariant coherence, (c) real part of the time-varying coherence, 534 

and (d) imaginary part of the time-varying coherence. 535 

  536 
(a)                                        (b) 537 

  538 
(c)                                        (d) 539 

Fig. 21. Loève spectra of a1(t) and a2(t). (a) real part of the Loève spectrum of a1(t), (b) imaginary part of the 540 

Loève spectrum of a1(t), (c) real part of the Loève spectrum of a2(t), and (d) imaginary part of the Loève spectrum 541 

of a2(t). 542 
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7. Conclusions and prospects 543 

The MTST method for the WVS and Loève spectrum estimations of multi-variate quasi-stationary 544 

harmonizable processes is developed in this study. With orthogonal time-frequency Hermite windows, 545 

the MTST method can provide sufficient resolutions for the WVS and Loève spectrum estimations and 546 

reduce their estimation variances. The biases and variances of the WVS, Loève spectrum, and 547 

coherence estimators from the MTST method have also been provided under the assumption that the 548 

target multi-variate harmonizable process is Gaussian. The superiority and reliability of the MTST 549 

method are verified through comparisons with two multi-taper methods, the Toeplitz kernel method, 550 

and the CMS method for the WVS and Loève spectrum estimations using a numerical case of a 551 

bivariate harmonizable wind speed process. The results indicate that the MTST method outperforms 552 

the existing methods for the WVS and Loève spectrum estimations of quasi-stationary harmonizable 553 

processes. Finally, the MTST method is applied to two pieces of ground motion acceleration records 554 

measured during the Turkey earthquake in 2023. The two WVSes of the acceleration records have 555 

similar shapes and exhibit obviously non-stationary properties. In the frequency domain, the two 556 

acceleration records are correlated in the range of 0 Hz to 1 Hz, and the time-varying property of their 557 

coherence is not significant. The two acceleration Loève spectra are concentrated near the main 558 

diagonal line of the dual-frequency plane with different shapes. 559 

Adaptive determination of the shape parameters a, b, and c in Eq. (14) requires designing a loss 560 

function that can optimize the tradeoff between the resolutions along the time and frequency axes. This 561 

is a difficult problem and needs further investigation in the future. 562 
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Appendix A. The proof of Theorem 1 578 

From Eqs. (19) and (28), the estimator W�(t, f) in Eq. (29) can be expressed as 579 
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From Eq. (64), E[W�(t, f)] can be expressed as 581 
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where (a) and (b) are from the convolution theorem of the Fourier transform. Thus, Bias[W�(t, f)] is 583 
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where (a) is from Eq. (27). Eq. (35) can be proved from Eq. (66) 585 

From Eq. (64), the covariance Cov[W� ij(t, f1), W� ij(t, f2)] can be calculated as 586 
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Under the Gaussianity assumption on X(t), the complex version of the Isserlis’ theorem [55, 56] 588 

expresses Cov[Xi(k∆t) Xj
*(l∆t), Xi

*(m∆t) Xj(n∆t)] as 589 
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 (68) 590 

Substituting Eq. (68) into Eq. (67), Cov[W� ij(t, f1), W� ij(t, f2)] is calculated as 591 
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 1 2 1 1 2 2 1 2
ˆ ˆCov ( , ), ( , ) ( , , ) ( , , ),ij ijW t f W t f C t f f C t f f  = +    (69) 592 
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  (71) 595 

and Rij(t1, t2) is the ijth element of R(t1, t2) in Eq. (5). 596 

Assuming that X(t) is quasi-stationary in the valid range of window ϕM(t1, t2) [22], then the four 597 

correlations in Eqs. (70) and (71) are approximated by 598 

 i2
, ( ) ( 0.5 , 0.5 ) ( , )d .f

ij t ij ijr R t t e W t f fπ ττ τ τ
+∞

−∞
= − + = ∫   (72) 599 

Substituting Eq. (72) into Eqs. (70) and (71), C1 (t, f1 , f2 ) and C2 (t, f1 , f2 ) can be respectively 600 

approximated as 601 
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and 603 
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Further C1(t, f1, f2) is 605 
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  (75) 606 

Then C1(t, f, f) is approximated as 607 

 1( , , ) ( , , ) ( , , ) ( , 0.5 ) ( , 0.5 )d d .M M ii jjC t f f u f v f u f v f W t u v W t u v u vϕ ϕ
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C2(t, f1, f2) in Eq. (74) can be further calculated as 609 
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  (77) 610 

Then C2(t, f, f) is approximated as 611 

 2 ( , , ) ( 0.5 , 2 , ) ( 0.5 , 2 , ) ( , 0.5 ) ( , 0.5 )d d .M M ij ijC t f f f v u f f v u f W t u v W t u v u vϕ ϕ
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From Eqs. (69), (76) and (78), Eq. (36) is proved. 613 

Appendix B. The proof of Corollary 1 614 

With the conditions in Theorem 1, and φ�M(u, v, f) is more concentrated compared with Wii(t, u + 615 

0.5v), Wjj (t, u + 0.5v) and Wij (t, u + 0.5v), then Var[W� ij (t, f)] in Eq. (36) can be approximately 616 

simplified 617 
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  (79) 618 

where 619 

 

2

2
1 2 1 2

22

21
2

0

2 1 1

2
0 0

( , , ) d d

( , , ) d d

( , , )

1 ( , ) ( , )

( , ) ( , ) ( , ) ( , )

M

M

M
k l

M

m m
k l m

M M

m m n n
k l m n

u v f u v

f f f f f

t k t l t f

t k t f l t f
M

t k t f l t f k t f l t f
M

ϕ

ϕ

φ

ψ ψ

ψ ψ ψ ψ

+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞

+∞ +∞

=−∞ =−∞

+∞ +∞ −
∗

=−∞ =−∞ =

+∞ − −
∗ ∗

= =−∞ = =

=

= ∆ ∆ ∆

= ∆ ∆ ∆

∆
= ∆ ∆ ∆ ∆

∫ ∫
∫ ∫

∑ ∑

∑ ∑ ∑

∑∑∑



1 1
2

2
0 0

1 1

2
0 0

1 1

2
0 0

1 ( , ) ( , ) ( , ) ( , )

1 ( , ) ( , ) ( , ) ( , )

1

1 .

M M

m m n n
m n k l

M M

m n m n
m n k l

M M

mn mn
m n

t k t f l t f k t f l t f
M

t k t f k t f t l t f l t f
M

M

M

ψ ψ ψ ψ

ψ ψ ψ ψ

δ δ

+∞

−∞

− − +∞ +∞
∗ ∗

= = =−∞ =−∞

− − +∞ +∞
∗ ∗

= = =−∞ =−∞

− −

= =

 = ∆ ∆ ∆ ∆ ∆  
   = ∆ ∆ ∆ ∆ ∆ ∆      

=

=

∑

∑∑ ∑ ∑

∑∑ ∑ ∑

∑∑
  (80) 620 

Substituting Eq. (80) into Eq. (79), Eq. (37) is proved. 621 

Appendix C. The proof of Theorem 2 622 

Substituting Eq. (64) into Eq. (30), S�(f1, f2) can be expressed as 623 
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where Π(t, f) in defined in Eq. (40), 625 
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Using Eqs. (82) and (83), the second term on the right side of Eq. (81) can be expressed as 629 
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where (a) is from the fact that φM(f1, f2, f) only has values in the range of (f1, f2) ∈ [–fN, fN]2 indicated 631 

in Eq. (22) and δ(•) is the Dirac delta function. Substituting Eq. (84) into Eq. (81), S� (f1 , f2 ) is 632 
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expressed as 633 
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where FΠ(λ, f) is in Eq. (39). The expectation E[S�(f1, f2)] of S�(f1, f2) in Eq. (30) is calculated as 635 
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where (a) is from the symmetric properties of φM(f1, f2, f) indicated in Eq. (24). Eq. (38) can be 637 

proved from Eq. (86). 638 

From Eq. (85), it can be obtained 639 
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Then, the variance Var[S�ij(f1, f2)] of S�ij(f1, f2) can be calculated as 641 
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Under the Gaussianity assumption on X(t), the complex version of the Isserlis’ theorem [55, 56] 643 

expresses Cov[dZi(ξ1)dZj
*(ξ2), dZi

*(λ1)dZj(λ2)] as 644 
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Substituting Eq. (89) into Eq. (88), Var[S�ij(f1, f2)] can be calculated as 646 

 1 2 1 1 2 2 1 2
ˆVar ( , ) ( , ) ( , ),ijS f f V f f V f f  = +    (90) 647 

where 648 
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and 650 
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Further, V1(f1, f2) is approximated as 652 
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where (a) is from the assumption that the widths of φM(∆ξ, ∆λ) with respect to ∆ξ and ∆λ are wider 654 
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than those of S�ii(ξ, ∆ξ) and S�jj(λ, ∆λ), respectively, and (b) is from the assumption that φM(f1, f2) 655 

along the diagonal line f1 = f2 is narrower than that of S(f1, f2). 656 

V2(f1, f2) is calculated as 657 
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where (a) is from the assumption that the widths of φM(∆ξ, ∆λ) with respect to ∆ξ and ∆λ are wider 660 

than those of S�ij
*(ξ, ∆ξ) and S�ji(λ, ∆λ), respectively. Substituting Eqs. (93) and (94) into Eq. (90), 661 

Eqs. (41) to (44) are proved. 662 

Appendix D. The proof of Theorem 3 663 

Assuming that the time of stationarity of X(t) is larger than the width of the utilized windows 664 

ψm(t, f), m = 0, 1,…, M – 1, at each time instant t, ψm(k∆t – t, f)X(k∆t) can be approximated as 665 

 ( , ) ( ) ( , ) ( ),m m tk t t f k t k t f k tψ ψ∆ − ∆ ≈ ∆ ∆X Y   (95) 666 

where Yt(τ) is a stationary process approximately representing the spectral properties of X(t) near t. 667 

The PSD matrix Pt(f) of Yt(τ) is formed by  668 

 , ( ) ( , ),ij t ijP f W t f=   (96) 669 

where Pij, t(f) is the ijth element of Pt(f). In this way, the estimators W�(t, f) in Eq. (29) and C� ij(t, f) in 670 

Eq. (32) can be respectively regarded as the multi-taper estimators for the PSD and coherence of Yt(τ). 671 

Under the assumption that W�(t, f) is approximately unbiased, following the Theorem 2 and Appendix 672 

B in [44], Eqs. (45)-(50) can be directly obtained. 673 

Appendix E. The proof of Theorem 4 674 

Since the estimator C�� ij(f) in Eq. (34) is calculated by averaging C� ij(t, f) in Eq. (32), the bias of 675 

C�� ij(f) can be directly obtained by replacing Cij(t, f) in Eq. (46) with C�ij(f), as indicated in Eqs. (51) 676 

and (52).  677 

Under the condition that Cij(t, f) is time-invariant, as indicated in Eq. (33), the variance of C� ij(t, 678 

f) can be calculated by replacing Cij(t, f) and Gij(t, f) in Eq. (50) with C�ij(f) and Tij(f), respectively 679 
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  (97) 680 

where Tij(f) is in Eq. (52). In this situation, Var[C� ij(t, f)] is independent of time. In fact, the probability 681 
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distribution of a non-parametric coherence estimator by the Fourier transform is only dependent on the 682 

corresponding theoretical coherence but independent of the related spectra, see Appendix B in [44]. 683 

Thus, in the case of a time-invariant coherence, C� ij (t, f) at different time instants has the same 684 

probability distribution even though with time-varying spectra, and C�� ij (f) is a result calculated by 685 

averaging multiple random variates with the same probability distribution. However, C� ij(t1, f) and 686 

C� ij(t2, f), t1 ≠ t2, may be not independent with a small time interval ∆t = t2 – t1. Thus, the variance 687 

of C�� ij(f) cannot be directly calculated by dividing the Var[C� ij(t, f)] in Eq. (97) by the L(f) in Eq. (34). 688 

C� ij(t1, f) and C� ij(t2, f) can be assumed to be independent if ψM – 1(t – t1, f) and ψM – 1(t – t2, f) 689 

are non-overlapping. The width of ψM – 1(t, f) in the time domain is 2Lv(f), where Lv(f) is in Eq. (31). 690 

Thus, in this study, at each f, C�� ij (f) is assumed to be the result calculated by averaging Neq (f) 691 

independent C� ij (t, f), where Neq (f) = L(f)/Lv (f) may not be an integer. Under this assumption, the 692 

variance of C�� ij (f) can be approximated by dividing the Var[C� ij (t, f)] in Eq. (97) by the Neq (f), as 693 

indicated in Eqs. (53) and (54). 694 
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