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Monte Carlo approaches to aperiodic spin systems have found a range of antiferromagnetic ground

states for both classical and quantum spins. In each case, the spin calculations have been undertaken

on quasilattices in the appropriate dimension i.e. 1D for a Fibonacci chain, 2D for a Penrose tiling

etc. Here we show that high dimension spin models can be calculated using the simplest of spin

Hamiltonians, and that the projection of these high dimensional spins reproduces antiferromagnetic

ground states in the ‘correct’ dimension. We also show a model for an atomistic antiferromagnetic

quasicrystal, as derived using this method.

I. INTRODUCTION

Composition tuning of ‘Tsai–type’ quasicrystals and

approximants has led to the discovery of intriguing prop-

erties in these complex systems, including novel quantum

critical electronic properties [1–3] and superconductivity

[4–6]. In particular, however, a rich array of magnetic

transitions in simple and higher order approximants gives

hope to finding an antiferromagnetic quasicrystal [7–11].

Aperiodic antiferromagnetic systems have been exten-

sively studied theoretically in order to understand how

aperiodicity affects magnetic long–range order. These

works have considered both classical and quantum spins

on aperiodic systems in 1, 2, and 3 dimensions under a

range of Hamiltonians, often with complex interaction

parameters to account for the changing bond lengths be-

tween adjacent spins [12–22]. In all cases, antiferromag-

netic ground states were found.

Here, we present a simple model for exploring anti-

ferromagnetic aperiodicity through a high–dimensional

approach. To do so, we compute the spin ground–states

of various high–dimensional lattices then use the projec-

tion method to study the resultant aperiodic spin struc-

tures. Therefore, there are two aims to this work: first,

to show how previous theoretical works conducted in the

‘appropriate’ dimension can be represented and derived

from a high dimensional approach. As a consequence,

we show that a Monte Carlo calculated spin model can

be computed in hyperspace using a simple Heisenberg

Hamiltonian.

The second aim is to show an idealistic model of

spins in an antiferromagnetic quasicrystal, using the

same method used to produce the atomistic model

of a Tsai–type quasicrystal. In this case we can

use physically representative atomic distances to cal-

culate the Fermi wave–vector (kf ) required for the

Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction

to propagate antiferromagnetic order in such a material.

II. METHODS

Spins σi of dimensionality n were placed at the sites

of n–dimensional lattices, where n = 2, 5, and 6. Their

directions were randomised before normalization to unit

length, i.e. their directions could form any point on an

nD sphere. The Heisenberg Hamiltonian between the

spins is:

E = −J
∑
ij

σiσj (1)

which was calculated for nearest (NN) and next–nearest

neighbours (NNN) of spins. J was set to -1 and 1 for NN

and NNN respectively, as for studying anti-ferromagnetic

behaviour. In all dimensions, NN and NNN positions

were calculated by the absolute distance between lattice

points (i.e. NN = 1, NNN =
√

2). Likewise, for each sys-

tem, periodic boundary conditions (PBCs) were applied.

The spin structure of each system was determined us-

ing the Metropolis–Hastings approach [23]. Tempera-

tures of each system started at kBT = 3, before stepping

down logarithmically to 0.03 over 50 steps. Each lattice

at each temperature was subjected to 10,000 Metropolis

sweeps, which was determined to be enough calculation

time to find sensible results i.e. magnetization per site

→ 0. Subsequently, a final run of calculations was made

with kBT stepping down from 1 to 0.01, after insert-

ing the mean (opposing) spin directions at the relevant

lattice sites. Again, each temperature was subjected to

10,000 Metropolis sweeps.

As n increases, the volume of space occupied by equiv-

alent numbers of unit cells rapidly increases (i.e. cn). To

save calculation time, therefore, the number of points in

lattices of n = 5, 6, were restricted to 35 = 243 and 36 =

729, respectively. In the 2D case, 112 lattice points and

spins were used.

The projection method was used to obtain both the

positions and spin vectors for each of the systems, with

specific details provided within the results section. For
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FIG. 1: (a) The projection method used to produce the Fibonacci chain. Parallel and perpendicular space are labelled as E‖
and E⊥ respectively. (b) The projected spin structure of the Fibonacci chain. Up and down spins are at positions coloured

blue and red, respectively. (c) The hierarchical structure of the antiferromagnetic spins.

all cases, after projection into parallel space, the spin vec-

tors were not normalized. This is to demonstrate the fact

that their projected lengths are essentially equal, indicat-

ing that equilibrium was reached in higher dimensional

space.

III. RESULTS AND DISCUSSION

Fibonacci Chain

The projection method for creating the Fibonacci

chain has been discussed at length [24, 25]. Briefly, and

shown in Figure 1(a), it involves overlaying an ‘occupa-

tion domain’ (OD) onto a 2D square lattice at an irra-

tional angle α, where cotα = τ . This window is of width

∆ = a(cosα+ sinα) where a is the lattice constant. The

window consists of two sub–spaces, perpendicular (perp,

E⊥), and parallel (par, E‖) space, where par–space is con-

sidered physical space. Lattice points inside the window

are projected from perp–space onto par–space simply by

setting their perp–space components to 0. This forms the

Fibonacci chain.

After the spin calculation on the 2D lattice reaches

its ground state, we can apply the same method:

points which are inside the OD have their spin vector

components projected onto par–space by setting their

perp–space components to 0. As we are projecting onto

1D, their directions are parallel with the direction of the

chain – therefore, to demonstrate the magnetic structure,

we rotate the spin vectors by 90◦ after projection for clar-

ity.

Figure 1(b) shows the result of the spin projection. Up

spins have their positions coloured blue, down spins are

red. In short, the magnetic structure can be described

as ferromagnetic between L segments, and antiferromag-

netic between S segments. This builds ‘clusters’ of either

2 or 3 ferromagnetic spins which can be grouped and sep-

arated by L or S segments, as demonstrated by Figure

1(c). Here, the spin arrows are removed and are simply

represented by their colour. In this way, the spin chain is

hierarchical. These findings are identical to those found

in [12, 13], who placed spins on Fibonacci chains and cal-

culated their ground state using sophisticated coupling

components. Likewise, a similar projected spin structure

of the Fibonacci chain was briefly discussed in [26].

Penrose Tiling

The projection method used for obtaining the Penrose

tiling has also been well–documented, and was indeed

one of the landmark examples of using higher dimen-

sional space for structural analysis [27–29]. Essentially,

if the perp–space components of a 5D lattice fall inside

an occupation domain, then the par–space components

of these points form the Penrose tiling. To perform the

projection of the 5D points into either perp or par–space,

a projection matrix is used which is formed of 5 orthonor-

mal basis vectors, for example:

M =


cos( 2π

5 ) cos( 4π
5 ) cos( 6π

5 ) cos( 8π
5 ) 1

sin( 2π
5 ) sin( 4π

5 ) sin( 6π
5 ) sin( 8π

5 ) 0

cos( 4π
5 ) cos( 8π

5 ) cos( 12π
5 ) cos( 16π

5 ) 1

sin( 4π
5 ) sin( 8π

5 ) sin( 12π
5 ) sin( 16π

5 ) 0√
1
2

√
1
2

√
1
2

√
1
2

√
1
2


so that:

Eperp =

M3

M4

M5

 (2)

Epar =

[
M1

M2

]
(3)

where perp– and par–space components of a 5D lattice

can be calculated by the dot product of the lattice with

equations (2) and (3) respectively. The occupation do-

main of the Penrose tiling, known as a rhombic icosahe-

dron, is formed by the dot product of Eq. 2 with the 5D
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FIG. 2: (a) A section of the Penrose tiling decorated with projected spins. Again, ‘up’ spins are points coloured blue, ‘down’

are red. (b) An example of the NNN distance, where the dashed line indicates a large bond length between antiferromagnetic

spins. (c) A NN distance S between two ferromagnetic spins. (d) The occupation domain used to produce the Penrose tiling,

which can be partitioned for the two different spin lattices. (e) Top–down view of (d).

unit cell. An example shown is in Figure 2(d), where the

skeletal structure is the rhombic icosahedron. As with

the Fibonacci chain example, the same technique can be

used for the 5D spin vectors of the 5D lattice i.e. spins of

points which fall into the occupation domain have their

par–space components calculated using the dot product

of the relevant spin vector with equation (3).

Figure 2(a) shows a section of the Penrose tiling ob-

tained using the described method. Vertices are deco-

rated with spin vectors which were obtained after pro-

jection from the 5D ground state. Each vertex is also

coloured depending on the spin direction, where we de-

scribe red as ‘down’ and blue as ‘up’, although the spin

direction is arbitrarily determined by the random nature

of the Metropolis–Hastings algorithm.

There are two types of interactions on the tiling, de-

pendent on two distances between spins. Examples are

shown in Figure 2(b, c), where two vertices separated

by L are antiferromagnetic (up–down), and those sepa-

rated by S are ferromagnetic (up–up). This type of mag-

netic structure is therefore the same as derived for the

Fibonacci chain i.e. NN is ferromagnetic, NNN is anti-

ferromagnetic. Again, these results exactly match those

obtained from anti–ferromagnetic spins on the Penrose

tiling considering classical Hamiltonians [14–16].

We can also show that the up and down spin sites are

populated on two specific sub–lattices, by showing the

perp–space interpretation of their points. Here, we sim-

ply track where each spin/point originates from with re-

FIG. 3: (a) Archetype occupation domain used to build

the larger occupation domains of the i–Cd–Yb model [30].

(b) Green: the total occupation domain used to produce the

rare–earth icosahedra in the Tsai cluster. Yellow: part of

the occupation domain which produces the rare–earth atoms

in the AR units.

spect to perp–space and the occupation domain. Figures

2(d, e) show the OD used to create the Penrose tiling,

from a tilted perspective and top–down view respec-

tively. Perp–space components of the 5D lattice which

fall within the OD lie on one of the 4 coloured planes.

The planes which create the up spin sites are coloured

blue, and vice versa. In other words, each of the spin

lattices are produced from specific cuts of perp–space.

3D Atomistic Model

Similar to the Penrose tiling, the

Amman–Beenker–Neri tiling [31] (or 3D Penrose)

can be calculated using a 6D lattice. Again, we create a



4

FIG. 4: (a) Slice of the 3D spin model. Each of the polyhedra represent groups of rare–earth atoms, which are coloured

according to their spin. (b) A down spin icosahedra. (c) An up spin icosahedra. (d) The spins of the atoms contained within

the AR unit.

projection matrix with orthonormal basis vectors:

M =
a√

2 + τ



1 τ τ 0 −1 0

τ 0 0 1 τ 1

0 1 −1 −τ 0 τ

τ −1 −1 0 −τ 0

−1 0 0 τ −1 τ

0 τ −τ 1 0 −1


so that:

Eperp =

M4

M5

M6

 (4)

Epar =

M1

M2

M3

 (5)

where a is the 6D lattice constant. An occupa-

tion domain (a rhombic triacontahedron) is formed in

perp–space by the dot product of equation (4) and the

6D unit cell [32]. If the perp–space components of a 6D

lattice fall within this occupation domain, then the cor-

responding par–space components of these points form

the 3D Penrose tiling.

Here, however, we are interested in replicating the

model which explains the structure of the Tsai–type

group of quasicrystals, as a way of exploring the theoret-

ical spin structure of a physical antiferromagnetic qua-

sicrystal. In particular, the rare–earth atomic positions

which would presumably carry the magnetic moment, as

in the approximant samples [8–11] .

In this case, the occupation domain used is slightly

more complex [30]. The OD which creates the 3D Pen-

rose tiling is scaled down by τ2, and its 5–fold vertices

are truncated, as shown in Figure 3(a) – this aids in re-

moving unphysically short atomic distances in the model

[33]. This ‘archetype’ OD is then used to build a larger

OD, which can be partitioned in perp–space to represent

specific atomic constituents of the quasicrystal [30, 34].
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∆(Å) J Type

3.04 AFM AR–ICO

3.52 FM AR–AR

5.42 AFM ICOinter

5.70 FM ICOintra

TABLE I: Values of NN distances of rare–earth atoms

taken from a scaled version of Figure 4(a). The type of

magnetic interaction and which atoms are responsible are

listed.

The occupation domain used to generate the rare–earth

atom positions of the Tsai–type clusters in the i–Cd–Yb

model is shown in Figure 3(b), where the archetype OD

decorates an icosahedron. Shown in yellow is a section

of the occupation domain which generates the rare–earth

positions of the acute rhombohedra (AR) of the i–Cd–Yb

model [30]. The AR block is unique to the higher order

approximants and quasicrystals in the i–Cd–Yb family.

Only one section is shown for clarity – the remaining

sections occupy the 3–fold faces of the icosahedral OD.

As with the Penrose tiling, perp–space components of

the 6D lattice which fall into the OD in Figure 3(b) have

their positions and spins projected into par–space using

equation 5. However, the number of rare–earth atom po-

sitions generated from the 36 lattice is only 24. Therefore,

for analysing and presenting the real–space spin projec-

tions for the 6D system, the final equilibrium state was

propagated in 6D under periodic boundary conditions

before projection. This allows the generation of a large

number of points and spins which represent the calcu-

lated ground state in 6D. For initial calculations we con-

sider a as unity.

The real–space result of the projection is shown in Fig-

ure 4(a). This is a slice of the 3D model, perpendicular to

one of the 5–fold axes. Rare–earth atoms are represented

by the solid polyhedra they form, either icosahedra (i.e.

those inside Tsai clusters) or acute rhombohedra (bor-

dered in black). The polyhedra are coloured dependent

on their spin, where the colours represent the ferromag-

netic alignment of all spins on each icosahedron. Figure

4(b, c) shows the spin directions of all the atoms of in-

dividual icosahedra. Here we assign red as collectively

‘down’ and blue as collectively ‘up’ spin–icosahedra. In-

dividual icosahedra are therefore ferromagnetic, with ad-

jacent icosahedra showing opposing spin direction. The

AR unit consists of two rare–earth atoms, with one up

and one down spin, as shown in Figure 4(d).

This type of magnetic icosahedral–cluster structure is

similar to the spin structure calculated for the antifer-

romagnetic 1/1 Au–Al–Gd approximant, which consid-

FIG. 5: The RKKY interaction calculated for the distances

listed in Table I and iterative values of kf . Arrows indicate

the distances from Table I.

ers the RKKY interaction [35]. Experimentally, the 1/1

Au–Al–Tb approximant icosahedra show a more complex

spin structure – here, individual icosahedra display a net

magnetic moment of zero, manifested by a ‘whirling’ or-

der along the [111] direction [9, 11]. In each case, adja-

cent icosahedra have opposing spin directions – a match

with our calculations.

Both theoretically and experimentally, the total an-

tiferromagnetic behaviour of the 1/1 approximants was

discussed in terms of NN and NNN neighbour spins, i.e.

antiferromagnetic interaction between NN sites, and fer-

romagnetic between NNN. We do the same here for the

model in Figure 4(a), including the atomic positions of

the AR unit. To do so, we scale the unit–size model so

that atomic distances roughly match those experimen-

tally observed in 2/1 approximants and quasicrystals.

Table I shows the summary, where the type of magnetic

interaction taken from Figure 4(a) is listed as either AFM

or FM. The type of atom which contributes to these dis-

tances is also listed, where ICO is icosahedron, and in-

tra/inter refers to atoms within icosahedra or adjacent

icosahedra respectively.

The RKKY interaction:

J =
−x cosx+ sinx

x4
(6)
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where x = 2kf∆ and kf is the Fermi wave vector, was

calculated for iterative values of kf , to find the match-

ing magnetic interactions for the corresponding distances

listed in Table I. Figure 5 shows the resultant plot, for

all kf = 1.23–1.27 Å−1. Arrows indicate the distances

in Table I. These calculated values of kf closely match

with the values predicted to give antiferromagnetic or-

der in the 1/1 Au–Al–Gd approximant [35], which con-

siders kf simply in terms of the Au concentration. In

this case, the corresponding concentration values for Au

would be: 93–85%, i.e. unfeasible values for a Tsai–type

phase. However, of course, these values are dependent

on the prescribed interatomic distances and the simpli-

fication of kf . Smaller rare–earth distances and a more

physical representation of kf may give more realistic con-

centration values.

IV. CONCLUSIONS

The spin systems presented here represent ground

states in their respective dimensions using a simplistic

Hamiltonian. The projections are then geometric rep-

resentations of these ground states in lower dimensions.

The results produced for the 1 and 2 dimensional cases

agree with all previous works which have used more com-

plex interactions in the ‘correct’ dimension. The idealized

3 dimensional spin structure of a Tsai–type material was

also presented, with potential paths to a real antiferro-

magnetic quasicrystal briefly discussed.

This work shows the basis of a toy model which can

be used to compare with physical data of real qua-

sicrystals. Likewise, the projected spins can act as a

quick–start basis for further calculations in the correct

dimension. Future work could include exploring the hy-

perspace models using different Hamiltonians, and ex-

ploring how non–unity spins have an effect on the mag-

netic ordering.
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