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Abstract 
 

 

Surgeons work around the clock with on-call hours leading to working overtime. 

Additionally, long hours with constant interruptions, complex patient care needs and 

draining emotional interactions with patients and families contribute to work-related 

fatigue. Numerous studies have made countless efforts to mitigate the effects of fatigue 

on ICU personnel, however, there is very little scientific proof to suggest these 

conclusions work. There is a lack of non-invasive technology that can monitor fatigue 

detection in the workplace, without the use of questionnaires.  

 

An advisory system is developed to predict the onset of fatigue in shift workers, namely 

surgeons, to offer strategic implementations of breaks to mitigate the beginning of 

potential errors that are made in the workplace. Using chromatic data processing, this 

thesis describes the development of an algorithm based on physiological and systematic 

indicators of fatigue.  

 

The physiological factors are derived from an understanding of the predicted 

Karolinska Sleepiness Scale (KSS) in shift workers through a pilot study, sleep quality 

the previous night and Heart Rate Variability. The systematic measures consider the 

effect of time-on-shift. The time-on-shift element may be modified with break 

opportunities or frequency-domain HRV measures and activity levels, which are shown 

to reduce the KSS scale in this work.  

 

The algorithm(s) described produce a strong correlation against KSS scores, thus 

mitigating the need for surgeons to fill out questionnaires on shift. They demonstrate 

high accuracy at predicting fatigue levels and trigger accurate alarms, alerting the user 

to take a break when appropriate. 
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Chapter 1  

  

  

Introduction 
 

 

 

1.1 Research overview 

With increased literature, momentous evidence points towards preventable medical 

errors in surgeries (Khanade and Sasangohar, 2017). Occupational symptoms and 

injuries are sustained over a surgical career. They are under-reported, yet they impact 

daily surgical practice (Voss et al., 2016), causing surgeons to take leave of absence 

and retire earlier than planned (Stucky et al., 2018). Work-related pain is present in up 

to 87% of surgeons (Park et al., 2010), and burnout is reported in up to 40% (Shanafelt 

et al., 2009), both implicated as patient safety hazards. Studies in the UK, USA and 

Australia broadly support around 10% of all patients admitted to hospitals coming to 

harm due to medical error (Berwick and Leape, 1999; Bethune and Francis, 2015). 

However, retrospective reviews show that only 6% of all medical errors are related to 

a lack of knowledge and technical ability, whereas 73% are related to human factors 

such as team working, decision-making, stress and fatigue (Van Watendonk et al., 

2010). 

 

There is a reason why surgeon fatigue is underreported. Medical errors are the third 

leading cause of death in the US (CNBC, 2018). Yet, even to this date, it is still being 

determined whether a surgeon is fatigued (or too fatigued) at work. This makes treating, 
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administering breaks or reducing motor vehicle accidents difficult. Society trusts 

national healthcare to provide efficient judgement, treatment and monitoring of an 

individual’s health. However, in medical practices, the issue of sleep deprivation has 

captured the public’s attention (Santini et al., 2011).  

 

Intensive Care Unit [ICU] staff, such as surgeons and junior doctors, work around the 

clock with on-call hours leading to working overtime, limiting the ability to control the 

number of hours worked, causing work to lead to fatigue and sleep disturbances (Bae 

et al., 2013). Long hours with constant interruptions, complex patient care needs and 

draining emotional interactions with patients and families contribute to work-related 

fatigue for ICU staff (Cockerham et al., 2018). Of note, the COVID-19 pandemic has 

been shown to increase the prevalence of emotional exhaustion and depersonalisation 

(Houdmont et al., 2021), prompting urgent measures to address the ongoing issue of 

surgeon burnout in the years to come. 

 

Surgeons’ techniques and knowledge are perfected and refined annually to improve 

patient outcomes. However, human physiology cannot keep up in a world that is forever 

advancing. Newer surgical techniques, which include the role of robotics such as 

Minimally Invasive Surgery (MIS), have great benefits for patients but increase the 

physical workload for the surgeons (Alleblas et al., 2017). Recent ergonomic studies 

show that MIS surgeons are significantly more likely to experience musculoskeletal 

symptoms than those performing open surgery (Stucky et al., 2018). In a delicate 

profession where circadian rhythms are obsolete and neglected (Knutsson, 2003), 

advancements in technology also need to be fixated on the surgeons performing the 

operations. We are now beginning to understand the need for self-care in healthcare 

professionals (Bethune and Francis, 2015), as many surgeons experience work-related 

injuries. Some of these require leave of absence, early retirement and even surgery 

(Stucky et al., 2018).  

 

Fatigue can be derived from physical exertion, mental persistence, sleep deprivation 

and environmental constructs, inevitably leading to negative consequential 
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behaviours/actions in a workplace and errors are likely to be catastrophic. Therefore, 

mediating fatigue in the workplace is of utmost importance, especially when mistakes 

can have fatal or financial implications. The need for objective methods to diagnose 

and track fatigue in the workplace is critical when individuals are motivated not to 

report their amount of sleep or their level of fatigue (Haghighi and Yazdi, 2015). 

Financial or social pressures may result in false recordings of self-reported data to 

alleviate pressure on themselves, consequently endangering others, even themselves. 

 

Surgeons, in particular, are usually in control of when they take breaks during their 

shifts by simply taking a break when they have the time. In instances where their 

perceived workload is too significant, and they are not taking breaks, an advisory 

system may be able to alleviate them from responsibilities and offer an opportunity to 

remove themselves from a potentially hazardous situation where their attention span 

continues to decline as a result of increased fatigue. Breaks being taken at appropriate 

points during their shift in the evolution of fatigue may have a substantially more 

beneficial effect on their current fatigue condition, i.e. surgeons shouldn’t take breaks 

simply when they can fit them in (Bosch and Sonnentag, 2019).  

 

1.2 Current research 

There have been a number of proposed strategies to mitigate the effects of fatigue on 

ICU personnel. These include proposing self-education on the health risks associated 

with fatigue (Caruso et al., 2017), changes to the NHS to reduce distress and improve 

patient care (Farquharson et al., 2012), strategic intervention plans to rescue further 

personal and organisational damage (Jarrad et al., 2018), introduce self-care coping 

strategies into training modules (Hevezi, 2015) or incorporating rest breaks, naps and 

exercise into shift patterns (Kaliyperumal et al., 2017). However, there is very little 

scientific proof to suggest these conclusions work; and therefore organisations and 

managers are reluctant to change rotas and work patterns to test these interventions. 

 

Due to these implications, alternative avenues must be explored to reduce fatigue, 

providing clear, objective data that can be used to monitor and potentially mitigate the 
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effects of fatigue and initial insight into an individual’s physiology for various uses, 

whether the demographic is surgeons, athletes, labour workers or patients. Yet to enter 

the market is a device which can monitor and potentially mitigate the effects on fatigue 

of surgeons whilst on-call. 

 

There is a plethora of systematic reviews looking into surgeon fatigue (Sturm et al., 

2011; Mansukhani et al., 2012; Harris et al., 2015; Gates et al., 2018; Stucky et al., 

2018; Dias et al., 2018) from a variety of aspects including; cognitive workload, 

ergonomics, sleep deprivation and musculoskeletal injuries. Sturm et al. looked at 

performance and patient outcomes as a result of fatigue, revealing mixed results. Whilst 

some studies found no difference in clinical performance with sleep deprivation, others 

found increases in complications and errors. The presence of multiple potential 

confounding factors makes assessment of these outcomes difficult.   

 

In recent years, Bio-Mathematical Models (BMMs) have been developed in 

laboratories to predict fatigue and performance whilst on shift (Dawson et al., 2011). 

These models predict the general construct of fatigue based on sleep-wake behaviour 

and working-time arrangements. Yet, the term ‘fatigue’ is used loosely and relates more 

to perceptions of tiredness (Dawson et al., 2011).  Even though they are used in some 

occupations, such as piloting, they are simply opportunities for sleep administered by 

the employer. As a global risk assessment tool, they are appropriate but lack specificity 

and sensitivity at the individual worker level (Dawson et al., 2017). In laboratories, they 

are great assessors of performance decrements with practical examinations of driving 

behaviours or generic task performances. However, they may not be an accurate proxy 

for the performance of a task in the workplace (Dawson et al., 2014), where naturally 

occurring stressors may not be so evident (Griffiths et al., 2017). The greatest downfall 

of BMMs is an organisation’s reluctance to adopt such a model despite over 50 years 

of evolution (Dawson et al., 2011). Minimal evidence is published in the real-world 

application of BMMs despite being a potentially promising tool for fatigue mitigation 

with considerable public safety and health implications (James et al., 2018). 
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Limited studies exist monitoring real-time fatigue in ICU personnel. Johnston et al. 

(2018) used personal diary assistants (PDAs) to track the nurses’ fatigue levels 

throughout the shift. They concluded that self-perceived levels of reward and control 

over their shift predicted fatigue accumulation rather than physiological measures, 

namely energy expenditure. Triangulating physiological and psychological constructs 

is necessary to alleviate the onset of workplace performance decrements and negative 

emotions. Another study replicated similar results in field-based research. Griffiths et 

al. (2017) studied forestry workers whose injury risk is high due to fatigue. The study 

found that a chest strap can collect meaningful heart rate variability data to identify 

fatigue at work. However, no literature yet examines the real-time monitoring of 

surgeon fatigue. 

 

1.3 Research contributions 

This thesis focuses on the development of real-time fatigue detection in the workplace. 

An advisory system is developed to predict the onset of fatigue in shift workers, namely 

surgeons, to offer strategic implementations of breaks to mitigate the beginning of 

potential errors that are made in the workplace.  The backbone of the algorithm for the 

advisory system comprises physiological and systematic measures; 

 Physiological factors: 

a)  Predicted Karolinska Sleepiness Scale (KSS) in shift workers, which varies 

depending on the shift type (day, night or 24-hour),  

b) Sleep quality from the previous night, 

c)  Biomarkers that make the algorithm sensitive to the individual, unlike BMM’s.  

Systematic factors:  

a) Time on Shift, which rises exponentially (Koh et al., 2007; Johnston et al., 2018) 

and taking breaks for rest opportunities. 

 

As there is no absolute measure for sleepiness, subjective fatigue assessment scales 

such as the KSS, Stanford sleepiness scale (SSS) or other Likert scales are accepted as 

reasonably accurate indicators of fatigue/sleepiness (Johns, 2010). Physiological 
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factors can depict an individual’s stress or fatigue on their shift. Biomarkers such as 

Heart Rate (HR), Heart Rate Variability (HRV) or Skin Temperature (ST) are analysed 

and compared against the KSS for their correlation against the 9-point Likert scale, 

which is used to detect sleepiness in the workplace. Other considerations include sleep 

quality from the previous night before working and the predicted circadian rhythm, 

respective to shift type. The systematic measures consider the effect of time on shift 

but, the time on shift element may be modified with break opportunities or frequency-

domain HRV measures and activity levels, which are shown to reduce the KSS scale in 

this work. Multiple cross referenced models are applied, to increase the accuracy of 

fatigue onset, whilst considering all possible non-invasive contributors to fatigue. 

 

1.4 Objectives and benefits 

There are no absolute measures of workplace fatigue (Haghighi and Yazdi, 2015), a 

construct deriving from cognitive and physiological energy depletion. However, 

biomarkers of fatigue and subjective well-being can be monitored around the clock to 

predict the onset of fatigue over time to suggest when to take a break from work at the 

most opportune moment. This seems to be the most appropriately fitting solution with 

the current technology and resources we have to date. One of the major considerations 

in the quantification of workplace fatigue is associated with the invasiveness of 

technology administered during the shift. It is necessary therefore, to minimise the 

application of invasive technology and work schedule deviation in order to predict the 

onset of fatigue in real-time. 

 

The aims of thesis are as follows: 

1. Identify the contributors to fatigue within the workplace and possible mitigation 

strategies. 

2. Produce an advisory system to predict the onset of fatigue in the workplace. 

3. Utilise the engineering technique known as ‘chromatic processing’ for the 

building blocks of the algorithm. 
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This research aims to develop an advisory system which can predict the onset of fatigue 

in the workplace in an unobtrusive manner that does not interfere with the user’s work 

commitments. The users in this research specifically being surgeons. For the 

administration of this fatigue risk management system, key considerations must be 

adhered to:- 

1. Comfortable user experience  

2. Economical cost 

3. Unobtrusive to the user’s work 

4. Sensitive to the individual and shift type 

5. Real-time detection of fatigue onset 

6. Act as an advisory system for strategic breaks 

7. Ease of adoption by both user and employer 

 

No technology fulfilling the above considerations is currently available to monitor 

fatigue for shift workers in the workplace. The physiological and systematic systems 

produce a series of complex data outputs. The data needs to be processed and 

represented in such a way to be easily interpreted by the user in a mathematically 

economical way so that it preserves the battery life of the wearable device, so that it 

can be worn in excess of 24 hours. This thesis proposes an advisory system to be used 

in the workplace using a novel engineering technique, for a surgical cohort. 

 

A novel method of analysing complex signals known as 'Chromatic analysis' has been 

developed at University of Liverpool. The method is utilised in the signal processing 

of complex data sets from biometric sensors via three triangular filters, as well as 

modified truncated filters, where the signal processing technique transforms complex 

data sets into the parameters H, L and S. The transformation of the data sets allows 

visual representation of the data in polar plots or line graphs and predicts workplace 

fatigue through individually weighted variables within defined parameters. H 

represents the dominant or average frequency within the signal spectrum, L indicates 

the overall strength or bandwidth of the signals, and S represents the spread of the 

signals (Zhang et al., 2004). The proposed solutions utilise the H and L parameters 

along with other factors in the timely diagnosis of fatigue. 
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The novelty of this thesis is as follows: 

1. Identification of fatigue contributors and mitigation strategies within the 

workplace in surgeons. 

2. Real time monitoring of workplace fatigue using Linear Mixed Model approach 

and Chromatic processing.  

3. Production of advisory system which can trigger multiple alarms during one’s 

shift for the timely mitigation of workplace fatigue.  

 

1.5 Thesis outline 

The thesis is split into eight chapters. Chapter 2 outlines the previous literature on the 

topic, which outlines the prevalence of workplace fatigue in the selected cohort during 

work and identifies the circadian rhythms utilised in the advisory system. The chapter 

also describes the chromatic analysis method. Chapter 3 explains preliminary research 

conducted by the research team to outline the underlying causes of fatigue in the 

workplace, as well as a pilot study. Chapter 4 discusses the methodology used for the 

advisory system. Chapter 5 displays experimental data collection on the surgeons. 

Chapter 6 discusses results using the chromatic processing technique, including the 

concepts of the algorithm and examples of its execution in the workplace. Chapter 7 

includes demonstration of the algorithm, including when the algorithm would (or would 

not) signal breaks for the individuals. Finally, Chapter 8 summarises the work, research 

outcomes, and future recommendations to strengthen this work further.  
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Chapter 2  

 

 

Literature review of previous work 
 

 
2.1 Introduction 

This chapter outlines the previous research conducted in relation to surgeon fatigue, 

considering objective, physiological and subjective methods to identify fatigue in the 

workplace, for example heart rate [HR] (Holdsworth and Evens, 2017), circadian 

rhythm (Haghighi and Yazdi, 2015) and the Karolinska Sleepiness Scale [KSS] (Shahid 

et al., 2011), respectively. The difficulty in tracking fatigue in the workplace is 

described, as well as an efficient information extraction approach based upon 

chromaticity for identifying fatigue. Chromaticity and its application are outlined and 

reviewed in this section. All information relating to statistical tests used in this chapter 

can be found in Appendix A. 

 

2.2 Surgeon work related fatigue 

Despite extensive literature investigating musculoskeletal fatigue of surgeons, there are 

other aspects of a surgical career which can lead to fatigue which are seldom reported, 

such as mental exhaustion, sleep deprivation or compassion fatigue. The need for 

objective methods to diagnose and/or track workplace fatigue in the workplace is especially 

important in circumstances when individuals are motivated not to report truthfully either their 

amount of sleep or their level of fatigue in the workplace (Haghighi and Yazdi, 2015).  
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Due to these aforementioned implications, alternative avenues must be explored to 

reduce fatigue, those of which provide objective, clear data sets. Wearable technology 

is on the rise, offering substantial insight into an individual’s physiology for a variety 

of uses, whether the demographic be athletes, labour workers or patients. The gold 

standard for measuring fatigue uses brainwave activity (Electroencephalography), 

however this is extremely difficult to monitor in a real-world application. Many gold-

standards are invasive and unable to be implemented in field-based research, such as 

the 12-lead ECG for the monitoring of heart rate. Additionally, initial conversation with 

our surgical liaison explained that NHS (UK) surgeons are unable to wear anything 

below the elbows or above the neck, which limits the apparatus (e.g. watches) used for 

collection of data in real time. Wearable technology can provide thorough insight into 

one’s physiology and can identify the onset of fatigue for anybody. 

 

2.2.1 Monitoring strategies for workplace fatigue 

Two current methods to monitor fatigue are from an objective or subjective view. 

Objective measures analyse real time biomarkers on the body, such as heart rate, core 

body temperature or reaction time and subjective measures include questionnaires such 

as the Karolinska Sleepiness Scale. One journal (Anwer et al., 2021) highlights the 

complex relationship between physical and mental fatigue and identified the 

importance of these metrics being used in combination, more accurately identifying 

fatigue onset. A previous study (Johnston et al., 2018) cross-referenced subjective and 

objective fatigue markers in nurses and found that reward was negatively correlated 

with fatigue and motivational situations are less likely to induce fatigue, whereas 

demanding situations can exacerbate fatigue. Additionally, Hockey (2011) highlights 

that high levels of control in the workplace are also negatively correlated with fatigue, 

regardless of whether effort is high as this generally increases alertness and does not 

necessarily mean there are reductions in work efficiency or cognitive functionality.  

 

2.2.1.1 Objective markers 

Heart rate (HR), heart rate variability (HRV) (Pichot et al., 2002) and skin temperature 

(ST) (Haghighi and Yazdi, 2015) have previously been used successfully to identify 

fatigue in the workplace. Johnston et al. (2018) provided the most comprehensive 
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examination of subjective fatigue in the workplace with nurses, using a heart rate 

monitor and questionnaires. 

 

HR data captured throughout the course of a work period can be used for indication of 

task demand (Griffiths et al., 2017). Higher HR typically mirrors high periods of 

physical activity due to an increased demand for oxygenated blood to the muscles. 

Interpretation of HR at work can individualise the data and determine periods of high 

and low activity from deviation at rest. A HR which goes below 60 beats per minute 

(BPM) at rest is typical of an individual with good cardiovascular fitness. These 

instances of low HR may coincide with lack of stress due to the relaxed nature of the 

individual during a heavily demanding job. Resting HR over 90BPM can be an 

indicator of extreme stress or other physiological conditions which may require 

consultation, and is outside the scope of this research. High levels of demanding work 

with lots of physical movement will inevitably increase HR due to the muscles needs 

for oxygen, however there may be instances of work which indicate low levels of 

movement but a high HR. These instances may occur as a response to a stressful 

situation, such as performing surgery or having difficult conversations with family or 

friends of patients. HR is calculated from the time in between beats, also known as the 

‘R-R Interval’ (RRI). HR can be a valuable tool for identifying periods of high intensity 

in the workplace, however HR alone is not as insightful to identify periods of high 

stress. Additional measures using HR are available but also mandatory in order to 

obtain a clearer picture of one’s subjective fatigue levels.   

 

A recent overview of metrics and normative values supports the use of HRV for 

objective assessment of psychological health and stress (Shaffer and Ginsberg, 2017). 

HRV indicates the ability of the heart to react to environmental and physiological 

stimuli through measuring the fluctuation between heart beats in milliseconds [ms]. 

Low HRV is associated with an impaired regulatory and homeostatic autonomic 

nervous system [ANS] which reduces the body’s ability to cope with internal and 

external stressors. Holdsworth and Evens (2017) conducted a systematic review on 

HRV as a useful marker of stress and fatigue in ICUs. The study found that with high 

stress and burnout rates and low job control that HRV is a useful marker of stress and 
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fatigue in these settings, thereby helping to optimise clinician performance and the 

standard of healthcare.  

 

HRV may be represented in either the time or the frequency domain. Time-domain 

indices of HRV quantify variability in measurements of the RRI. The RRI (R-R 

interval) measures the time elapsed between two successive ‘R’ peaks on the QRS 

signal of an electrocardiogram (detailed in Figure 4.3). The root mean square of 

successive differences (RMSSD) has been used extensively for short-term ECG 

analysis in the time domain. RMSSD reflects the RRI variance in HR. Lower values of 

RMSSD indicate higher levels of sympathetic nervous system (SNS) activation. The 

SNS prepares the body for physical activity, through redirection of oxygenated blood 

around the body in response to physical or mental stimuli. Frequency-domain measures 

estimate the distribution of relative power into frequency bands, ranging from ultra-

low-frequency (<0.003Hz) to high frequency (0.15 – 0.4Hz). Power is the signal energy 

found within frequency bands. The common method for identification of HRV for 

frequency-domain measures is the Low-frequency/High-frequency Ratio (LF/HF 

Ratio). The LF component contributes to the effects of both the parasympathetic 

nervous system (PNS) and the sympathetic nervous system (SNS). The HF component 

exclusively contributes to the PNS. A high ratio reflects the SNS dominance and 

withdrawal of the PNS, resulting in increased HR and onset of stress. 

 

The psychomotor vigilance test (PVT) is a sustained-attention, reaction-timed task that 

measures the speed (ms) that subjects respond to a visual stimulus. Lerman et al. (2017) 

implemented the PVT in the workplace of medical staff and found that those who were 

deemed as ‘fit for work’ (7 or fewer errors) had significantly fewer PVT errors than 

employees determined to be ‘unfit’ (12+ errors) based off previous studies findings 

(Van Dongen et al., 2003; Basner et al., 2011). Night shift workers have been shown to 

have slower response times and lower accuracy levels than day shift workers due to 

circadian misalignment (Niu et al., 2011) and whilst this does not necessarily mean 

more errors will occur during the shift, it increases the likelihood of pervasive medical 

errors.  
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Another objective marker is skin temperature. Heat exhaustion is a result of prolonged 

exposure to high temperatures, particularly combined with high humidity or strenuous 

exercise (Mayo Clinic, 2023) which results in heavy sweating and the body 

overheating. Without treatment, heat exhaustion can be life threatening (Mayo Clinic, 

2023). However, for shift workers in the UK the risks of heat exhaustion are minimal. 

Skin Temperature (ST) has been shown to decrease slightly in participants who are 

sleep deprived (Babkoff et al., 1991, Miro et al., 2002), which may be due to 

thermoregulatory disruption and decreased metabolism (Horne, 1988). These results 

were observed in sleep deprived participants over a 48 hour period and as such, will not 

be observed in the current study. ST is difficult to measure and seldom reported in field-

based research, due to environmental factors such as weather or clothing, which may 

affect temperature readings due to convection or conduction of the sensor depending 

on the position of the sensor. Nonetheless, ST will be measured in this study for its 

potential impact of workplace fatigue in field-based research.  

 

Whilst previous research has monitored temperature as a parameter of fatigue (Miro et 

al., 2002), changes in temperature are generally associated with physical fatigue, and 

less so an indicator of stress (Aryal and Ghahramani, 2017). On the other hand, ST has 

been shown to increase after a Stroop task when inducing mental fatigue, compared 

with a control group (Roelands et al., 2016).  

 

2.2.1.2 Subjective markers 

Whilst biomarkers could singlehandedly predict onset of fatigue, results may be falsely 

perceived due to the inevitability of time awake (Johnston et al., 2018). Identifying 

workplace fatigue as opposed to physiological fatigue requires an individual’s 

subjective feelings in order to determine motivational control of a situation and thus 

reluctance to work (Hockey, 2011; Johnston et al., 2018). Whilst there are potential 

biomarkers to monitor cognitive function such as monoamines, the final concentrations 

extracted from biological fluids are not in equilibrium with monoamines in the brain 

due to the blood-brain barrier, as demonstrated by over 100 citations (Hinz et al., 2011). 

This means that the perceived levels of monoamines will not correlate with the levels 
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in the brain. Therefore, compliance with the questions based on an individual’s feelings 

in the workplace at present seems the most viable way to obtain cognitive fatigue 

(Johnston et al., 2018). 

 

Johnston et al. (2018) based their questions given to the nurses through manipulation 

of previous literature; Hockey and Earle (2006) found that high levels of control can 

reduce fatigue in highly demanding work tasks whilst assessing ‘workload’ and 

‘control’. Hulsheger (2016) extends the recover theory and found that trajectories of 

daily fatigue are influenced by sleep quality from the previous night whilst assessing 

‘fatigue’, ‘tired’, ‘exhausted’ and ‘spent’.  

 

There are several sleepiness scales that have been used in fatigue research, such as the 

Karolinska Sleepiness Scale (KSS), Stanford Sleepiness Scale (SSS) and Epworth 

Sleepiness Scale (ESS). The KSS is frequently used for evaluating subjective sleepiness 

(Shahid et al., 2011). The KSS is a nine-point scale ranging from 1 = extremely alert to 

9 = extremely sleepy (fighting sleep). A score above 6 is considered sleepy. The SSS is 

a seven-point scale which measures subjective feelings of sleepiness, e.g. fogginess, 

responsive but not fully alert, etc. A score above three is considered sleepy. The SSS 

was developed to quantify the subjective sleepiness of patients throughout the day. In 

contrast, the ESS measures self-rated average sleep propensity over eight common 

situations that everyone encounters (Berry et al., 2015).  

 

The KSS and SSS are very similar, both being Likert scales ranging to both extremes 

of alertness. The KSS has become increasingly popular in drug trial participants, flight 

crews and other shift-workers (Hirshkowitz and Sharafkhaneh, 2017). Kaida et al. 

(2006) compared the KSS to electroencephalographic (EEG), electrooculographic 

(EOG) activity and the PVT to find relatively high correlation between performance 

measures and subjective sleepiness. Therefore, this research will use the KSS to 

represent sleepiness as EEG is too invasive for use in field-based research.  

 



23 
 

2.2.2 Time related fatigue 

The circadian rhythm is the body’s natural clock, which prompts wakefulness and 

sleepiness each day. Surgeons work shifts that disrupt circadian rhythms and 

consequently cause fatigue as a bi-product. The circadian rhythm becomes misaligned 

in shift-workers when working unnatural hours, with limited or poor sleep beforehand. 

The circadian rhythm can be adapted to working night-shifts, however the effects may 

take several days to realign the circadian rhythm to an unnatural cycle. The circadian 

rhythm is usually suppressed by bright light, which reduces the amount of melatonin 

the body produces. Melatonin is produced in the evenings as the sun goes down, to 

dictate when it is time to rest. 

 

However, there are circadian rhythm models, which exist that predict the sleepiness of 

individuals depending on the time of day. During a 24 hour period, the human body 

usually experiences two ‘sleepy’ stages: the middle of the night between 12-6AM and 

in the afternoon between 2-4PM (see Figure 2.1). Knipling and Wierwille (1994) 

suggest that the effects of drowsiness accumulate for an hour or more and are associated 

with a decrease in performance and observable psychophysiological signs. 

 

 

 

 

 

 

 

 

 Figure 2.1: Alertness level versus Time of day, showing two dips in alertness during one 

day, in line with circadian rhythm. (Adopted from Bowman et al., 2012) 
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2.3 Wearable sensors to monitor fatigue 

Wearable technology has become increasingly popular for measuring heart rate 

variability (HRV) due to its convenience and ease of use. However, when choosing 

between time-domain and frequency-domain analysis for HRV measurement using 

wearable technology, there are several important considerations to keep in mind, which 

are outlined below: 

 

1. Sampling rate: Wearable devices typically sample heart rate at a fixed rate, which is 

usually in the range of 1-1000 Hz. The choice of sampling rate is important because it 

determines the accuracy and resolution of the time-domain and frequency-domain 

analysis. Higher sampling rates provide better accuracy and resolution, especially for 

frequency-domain analysis, which requires precise measurements of the R-R intervals 

(Mahdiani et al., 2015). However, higher sampling rates also require more processing 

power and can drain the battery of the wearable device more quickly. 

 

2. Signal quality: Wearable devices are subject to various sources of noise and artifacts, 

such as motion artifacts, baseline drift, and electrode contact issues. These can affect 

the accuracy and reliability of the HRV measurements and can be especially 

problematic for frequency-domain analysis, which requires clean and accurate signals. 

It is important to ensure that the wearable device is properly calibrated and that the data 

is pre-processed to remove any artifacts or noise before analysis. 

 

3. Wearable location: The choice of wearable location can affect the HRV measurement 

and analysis. For example, wrist-worn devices may introduce motion artifacts that can 

interfere with the accuracy of the measurements, while chest strap devices may provide 

more accurate measurements but can be uncomfortable to wear for extended periods of 

time. The choice of wearable location should be based on the specific research question 

or clinical application. 
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4. Processing power: The processing power of the wearable device can also affect the 

choice of time-domain or frequency-domain analysis. Frequency-domain analysis 

requires more computational resources than time-domain analysis, and may not be 

feasible for devices with limited processing power.  

 

2.3.1 Advantages and Disadvantages of different sensors 

For the detection of HR and HRV in the lab or field, there are three types of devices 

currently on the market (Simmonet and Gourvennec, 2016): 

• Electrocardiogram (ECG) via electrodes 

• ECG via chest belt 

• PPG via watch 

Each of these devices has its own set of pros and cons, which are discussed below: 

 

Electrodes 

Electrodes are typically used in electrocardiogram (ECG) devices, which provide a high 

level of accuracy in measuring HR and HRV. ECG devices use electrodes placed on 

the chest, arms, and legs to measure the electrical activity of the heart. However for 

field based research, this is invasive and expensive, so usually electrodes are placed on 

only the chest using a 1 or 2 electrodes. The advantages of using electrodes for HR and 

HRV measurement include: 

 

Advantages: 

- High accuracy: ECG devices are considered the gold standard for measuring HR and 

HRV. 

- Wide frequency range: ECG devices can measure HRV across a wide frequency 

range, from very low to very high frequencies. 

- Non-invasive: Electrodes are non-invasive and do not require any invasive 

procedures. 
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Disadvantages: 

- Inconvenient: The use of electrodes requires the attachment of multiple leads to the 

body, which can be cumbersome and inconvenient for some individuals. 

- Limited mobility: Electrodes may limit mobility during exercise or other physical 

activities. 

- Cost: ECG devices can be more expensive than other wearable devices. 

 

Chest Straps 

Chest straps are another type of wearable device that is commonly used to measure HR 

and HRV. These devices use a sensor that is placed around the chest to measure the 

electrical activity of the heart. The advantages of using chest straps for HR and HRV 

measurement include: 

 

Advantages: 

- High accuracy: Chest straps are considered to be more accurate than wrist watches for 

HR and HRV measurement. 

- Better fit: Chest straps provide a better fit than wrist watches and can be more 

comfortable to wear during exercise. 

- Affordable: Chest straps are generally more affordable than ECG devices. 

Disadvantages: 

- Inconvenient: Chest straps can be cumbersome and inconvenient to wear, particularly 

during extended periods of time. 

- Limited mobility: Chest straps may limit mobility during exercise or other physical 

activities. 

- Not suitable for certain body types: Chest straps may not fit properly on individuals 

with certain body types, particularly those with larger chests. 
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Wrist Watches 

Wrist watches are a popular type of wearable device that can be used to measure HR 

and HRV. These devices use optical sensors to measure the changes in blood flow that 

occur with each heartbeat. The advantages of using wrist watches for HR and HRV 

measurement include: 

 

Advantages: 

- Convenience: Wrist watches are convenient and easy to wear, and can be worn all day 

for continuous monitoring. 

- Mobility: Wrist watches do not restrict mobility and can be worn during exercise and 

other physical activities. 

- Affordability: Wrist watches are generally more affordable than ECG devices and 

chest straps. 

 

Disadvantages: 

- Lower accuracy: Wrist watches are generally considered to be less accurate than ECG 

devices and chest straps for HR and HRV measurement. 

- Limited frequency range: Wrist watches are typically limited in their ability to 

measure HRV at very low and very high frequencies. 

- Battery life: Wrist watches may have limited battery life and require regular charging. 

 

For the purposes of fatigue identification in surgeons, PPG via watch is excluded from 

consideration as surgeons in the NHS are unable to wear any devices below the elbows 

during surgery. The ECG via electrodes are capable of collecting very long 

measurements due to the battery life and they do not require Bluetooth for the storage 

of data, however they require the use of electrodes which can be irritable after 

prolonged periods of use. Similarly, the ECG via chest belt can also become irritable 

for extended periods of wear and they are mainly used for extracting information on 

exercise, nevertheless Simmonet and Gourvennec (2016) identified more reliability and 
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acceptability for the chest strap when compared to the electrodes, when looking for user 

acceptability. Umair et al. (2021) found the chest strap to have the largest agreement 

with a reference device, when looking at time and frequency domain measures of HRV, 

and HR.  

 

2.3.2 Signal sampling requirements  

Heart Rate Variability (HRV) analysis involves measuring the changes in time between 

successive heartbeats, which are commonly known as R-R intervals. To perform HRV 

analysis, it is necessary to sample the signal at a sufficient frequency to capture these 

intervals accurately. The recommended sampling rate for HRV analysis is at least 250 

Hz (Mahdiani et al., 2015). This ensures that the R-R intervals can be accurately 

measured, as well as capturing high-frequency components of the signal that are 

important for some types of HRV analysis. In addition to the sampling rate, it is 

important to ensure that the signal is free from noise and artifacts that can interfere with 

HRV analysis. This can be achieved by using high-quality recording equipment and 

carefully preparing the subject for the measurement, such as by minimizing movement 

and ensuring that the electrodes or sensors are properly attached. Overall, to obtain 

reliable and accurate results in HRV analysis, it is important to adhere to appropriate 

signal sampling requirements, as well as taking other steps to ensure high data quality. 

However, in field-based research, artefacts are more prominent due to the increase in 

movement for participants, as well as putting the equipment on themselves.  

 

Wearable devices have become increasingly popular for monitoring human 

physiological parameters, such as heart rate, temperature, and physical activity. 

However, these devices can be subject to various errors and uncertainties that can affect 

the accuracy and reliability of the measurements they provide. Below, are some of the 

common errors and uncertainties that arise from wearable devices and their potential 

impact on data analysis and interpretation. 
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1. Motion Artifacts 

One of the major sources of error in wearable devices is motion artifacts. These are 

caused by movements of the body, which can interfere with the signals measured by 

the device. For example, when a person is exercising or walking, the movements of 

their limbs can cause the device to shift or bounce, leading to inaccuracies in the 

measurements. Motion artifacts can also be caused by physiological factors such as 

breathing and muscle contractions. These artifacts can be minimized by using 

algorithms that remove or correct for them in the data. 

 

2. Signal Drift 

Signal drift is another potential source of error in wearable devices. This occurs when 

the sensor's output changes over time, even when the physiological parameter being 

measured remains constant. This can be caused by factors such as changes in 

temperature, humidity, or pressure, or by aging or degradation of the sensor. Signal drift 

can be corrected by periodically calibrating the sensor or by using algorithms that 

correct for the drift in the data. 

 

3. Sensor Placement 

The placement of the sensor on the body is critical for obtaining accurate measurements 

from wearable devices. Incorrect sensor placement can result in the sensor not 

measuring the intended physiological parameter or measuring other physiological 

parameters that are not relevant to the study. For example, placing a heart rate monitor 

on the wrist instead of the chest may result in inaccurate heart rate measurements. 

Sensor placement errors can be minimized by following the manufacturer's instructions 

and ensuring that the sensor is properly placed on the body. 

 

4. Battery Life 

The battery life of wearable devices is also a potential source of uncertainty. When the 

battery is low, the device may not be able to obtain accurate measurements or may stop 

functioning altogether. In addition, battery life can affect the sampling rate and duration 
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of data collection. This can be minimized by using devices with longer battery life or 

by regularly checking and replacing batteries. 

 

5. Interference 

Wearable devices can be subject to interference from external sources, such as 

electromagnetic fields or other wireless devices. This can lead to errors or inaccuracies 

in the measurements. Interference can be minimized by using devices that are shielded 

from external interference or by avoiding areas with high levels of interference. 

Similarly, for chest straps, contraction of the pectoral muscles provides extensive noise 

which interferes with the ECG trace, providing unreadable bouts of activity whilst a 

contraction occurs. This may happen in a variety of circumstances in field-based 

research, as is the nature of a demanding job.  

 

Wearable devices offer a convenient and non-invasive method for monitoring human 

physiological parameters. However, it is important to recognize the potential errors and 

uncertainties associated with these devices and take steps to minimize their impact on 

data analysis and interpretation. By understanding and addressing these sources of 

error, researchers and clinicians can obtain more accurate and reliable data from 

wearable devices, leading to better insights into human health and performance. 

 

2.3.3 Processing in the time domain vs. frequency domain 

Heart rate variability (HRV) can be analyzed in both the time domain and the frequency 

domain. Each approach has its own considerations and advantages, which are outlined 

below: 

 

Considerations for processing in the time domain: 

1. Time-domain analysis focuses on the variability of the R-R intervals, which is the 

time interval between successive heartbeats. This approach is simple to perform and 

interpret, making it a popular method for clinical applications. 
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2. Time-domain analysis provides information on the overall variability of the R-R 

intervals, which is commonly quantified using standard deviation, variance, and root 

mean square of successive differences (RMSSD). 

3. Time-domain analysis does not provide information on the frequency content of 

HRV. 

 

Considerations for processing in the frequency domain: 

1. Frequency-domain analysis focuses on the spectral decomposition of HRV, which 

represents the distribution of power in the different frequency bands of the R-R 

intervals. 

2. Frequency-domain analysis provides information on the underlying physiological 

mechanisms responsible for HRV, such as sympathetic and parasympathetic nervous 

system activity. 

3. Frequency-domain analysis can provide more detailed information on the frequency 

components of HRV, including low-frequency (LF) and high-frequency (HF) bands. 

LF is associated with sympathetic activity, while HF is associated with parasympathetic 

activity. 

4. Frequency-domain analysis requires more computational resources and expertise 

than time-domain analysis. 

 

Overall, the choice between processing in the time domain or frequency domain 

depends on the specific research question or clinical application. Time-domain analysis 

is simpler and more straightforward, but frequency-domain analysis provides more 

detailed information on the underlying physiological mechanisms of HRV. In this 

research, both time and frequency domain will be analysed.  
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2.4 Chromatic Monitoring Technique 

 

2.4.1 Introduction 

Technological advances are supporting increasing system complexity, requiring a more 

holistic and intelligent approach for monitoring complex systems (Deakin et al., 2006). 

The ‘Chromatic Monitoring’ approach is based upon comparisons, which are translated 

into mathematical cross-correlations (Jones et al., 2008) involving overlapping 

procedures, which are matched together (Jones et al, 2000). The approach may involve 

pure or complex chromatics, i.e. a single signal or multiple sensors with overlapping 

responsivities. The non-orthogonal nature of chromaticity accommodates a controlled 

amount of interactivity between receptors (Jones et al., 2008), which can be quantified 

in terms of amplitude, range and spread of data.  

 

 

 

 

2.4.2 Chromatic Monitoring Review 

Chromaticity stemmed from polychromatic optical fibre-based sensing in the 1980s but 

was further developed so that its application could monitor a wider variety of systems 

(Jones et al., 2000). Processing via non-orthogonal chromatic principles can be used to 

extract simple, quantitative data from complex signals. Such examples include acoustic 

monitoring of rail tracks (Deakin et al., 2006), on-line monitoring of contact erosion in 

high voltage circuit breakers (Wang et al., 2016) and in-vivo monitoring of jaundice in 

neonate tissues (Sufian et al., 2018).  

 

The chromatic methodology utilises a nonorthogonal system with overlapping 

receptors, R, G and B that contain significant levels of information (Jones et al., 2008) 

from one or more signals, simultaneously. The outputs of these filters are transformed 

into three chromatic parameters H, L and S which offer signal defining features (Zhang 

et al., 2004). Once transformed, the data can be represented in polar plots for data 

recognition.   

Input data 
Chromatic 

filtering 

Chromatic 

transformation 

Data 

presentation 

Figure 2.2: Flow chart of Chromatic data processing procedure 
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The chromatic parameters H, L and S are integral components for a holistic 

understanding in various applications, such as displays, signal processing and image 

analysis. The HLS (Hue, Lightness and Saturation) provide a versatile representation 

for achieving precise control over colour properties. H denotes the type of colour, 

ranging from 0 to 360 degrees, akin to the azimuthal angle. L relates to the perceived 

brightness and can range on a scale, e.g. 0 (black) to 100 (white). S characterises the 

intensity or vividness of the colour, varying from 0 (greyscale) to 100 (fully saturated). 

These parameters offer the benefit of conveying information effectively, providing 

engineers with a powerful tool to further fine-tune output. For example, in image 

processing or medical images, adjustment of the HLS can highlight the levels of 

bilirubin (a yellow compound that forms during the breakdown of red blood cells) in 

newly born babies, aiding more accurate diagnostics for jaundice (Sufian et al., 2018). 

This level of control and adaptability afforded by these chromatic parameters 

significantly advances the capabilities of image processing algorithms.  

 

2.4.3 Chromatic filtering 

The overlapping filters R, G and B are generally Gaussian, triangular or truncated in 

nature (Figures 2.3a, 2.3b and 2.3c). Triangular receptors provide more uniform 

sensitivity throughout the frequency range of a signal, however Gaussian receptors can 

provide regions of higher sensitivity, although not uniformly distributed (Wang et al., 

2017). The idea of chromatic filtering is that a complex signal structure can be 

transformed into three values, one for each filter. Generally, each filter has the same 

width (w) and overlaps uniformly at half the width of the filter.  Signal features can be 

extracted in either time or frequency domains.  
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Figure 2.3a: Responses of time domain three nonorthogonal Gaussian filters 

(R,G,B) superimposed upon a time varying signal. 
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Figure 2.3b: Responses of time domain three nonorthogonal triangular filters 

(R,G,B) superimposed upon a time varying signal. 

Figure 2.3c: Responses of time domain three truncated filters (R,G,B) 

superimposed upon a time varying signal. 
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The vertical axis can for example represent amplitude, voltage or flow rate, depending 

on the application involved. Additionally, the amplitude and bandwidth of the filters 

can also be manipulated. However signals must be normalised, particularly if 

comparing different signals from varying sources simultaneously, onto a common 

range 0 to 1 (Zhang, 2004). Normalisation creates a common basis for comparison. An 

equation for normalisation is as follows:-  

 

 

 

Where maximum and minimum values are defined for example HR (220 minus age) 

and length of shift (e.g. 12 hours). This then enables cross-referencing of signals that 

will not cause large deviation when calculating chromatic transformation of the signal.   

The signal is chromatically filtered after normalisation to get outputs from each filter. 

Detectors responses R(P), G(P) and B(P) are a function of parameter (P). dP is the 

amplitude of a signal that varies with parameter (P). F(P) is a signal that varies with 

(P), e.g. time or frequency. The output of a processor Xo(P) (X can be R, B or G) 

addressing the signal according to Wang et al. (2017):- 

 

 

 

 

2.4.4 Chromatic Transformation 

The nonorthogonal outputs (R, G, B) may be transformed into the chromatic 

parameters H, L, S according to the following formulae (Zhang et al., 2004):- 

 

 

 

 

P 

X(P)F(P)dP ∫ 
X

o
= --------------- Eqn 2 

Normalisation of signal =  
Amplitude of signal at one instance 

Maximal amplitude of signal over entire duration 
 ----- Eqn 1 
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The chromatic parameter H represents the region on the horizontal axis of Figures 2.3a-

c, which dominates. Chromatic L represents the strength of the signal, whereby the 

higher L value the larger the amplitude of the signal. Chromatic S measures the spread 

of the signal, i.e. a larger spread produces a lower S value (Jones et al., 2000).  

 

2.4.5 Chromatic data representation 

The H, L and S parameters can be represented via coordinates on two-dimensional polar 

diagrams, H-L and H-S, where H represents the azimuthal angle on the polar diagram 

and S or L the radius of the polar plot (Jones et al., 2000). All signals are bound within 

the polar plot. The importance of this data representation is so signals can be easily 

distinguished from one another. For instance, a signal obtained by superimposing two 

separate signals (X1, Y1) and (X2, Y2) of strengths S1 and S2 respectively and separated 

on a chromatic map by distance l is located at a point given by the simple moment 

equation (Jones et al., 2000):-  

  

 

An example of two different signals which have been chromatically transformed is 

given in Figure 2.4. The interpretation of the signals represented by H, L and S 

L =  
(r + g + b) 

3 
--------------- Eqn 4 

S =  
max (r,g,b) – min(r,g,b) 

max (r,g,b) + min(r,g,b) 
--------------- Eqn 5 

S1l1 = S2(l−l1) --------------- Eqn 6 

H = 

g - b 

b - r 

r - g 

max(r,g,b) – min(r,g,b) 
r = max 

g = max 

b = max 

max(r,g,b) – min(r,g,b) 

max(r,g,b) – min(r,g,b) 

3+ 

5+ 

--------------- Eqn 3 

1+ 60 

60 

60 
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parameters is also given. The two examples of signals are shown, where Signal A has 

a lower amplitude and narrower spread compared to Signal B. The three overlapping 

triangular filters are also applied to the diagram. The example shows the parameters 

where the signal is dominant. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 shows the H-L and H-S polar diagrams for the two signals presented on 

Figure 2.4. On these diagrams, signal A is represented by a blue asterix (*) and signal 

B is represented by a red square (□). Parameter H represents in which time region the 

signal is dominant, which is filter R in both cases (Signal A: H = 7.3⁰, Signal B: H = 

40.1⁰). The chromatic L represents the nominal strength of the signal (Signal A: L = 

0.15, Signal B: L = 0.44). The chromatic S represents the spread of the signal (Signal 

A: S = 0.95, Signal B: S = 0.39). Therefore, signal B has a higher nominal strength and 

greater spread with respect to time, compared to signal A. 

 

 

 

 

 

Signal A Signal B R filter G Filter B Filter
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Figure 2.4: Examples of two signals with different spread and strength being 

chromatically processed over superimposed R G and B triangular filters. 
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2.4.6 Time Stepping of chromatics 

Each set of filters produces only one set of chromatic parameter values (H, L, S). The 

filter width (w) is chosen depending on the application. Nonetheless, a process called 

‘time stepping’ is implemented to address the change in a signal over time with the 

overlapping RBG filters (Figure 2.6). The size of the step may be set in accordance with 

the application, for example half the width of the filter or if data is averaged over time, 

every sample of averaged data. Therefore, there is a sequence of chromatic parameter 

values for each time step. They can then be represented via polar plots (H-L and H-S, 

Figure 2.8), to show the dominant filter, the signals nominal strength and the spread of 

the signal over time.  

 

 

 

 

 

 

 

Figure 2.5: Examples of two signals with different strength and spread (*) (□) 

shown on chromatic maps of (a) H-L and (b) H-S, signals are shown in Figure 2.7. 
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An example of time stepping is shown below in Figure 2.7, where triangular filters are 

displayed in one-minute epochs over a HR signal which is decreasing over time. The 

corresponding polar plots for the two sets of filters (solid filters and dashed filters) are 

displayed in the polar plots in Figure 2.8. In this example, the red filter is dominant in 

both examples. 
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Figure 2.6: Time stepping of R, G, B filters, where the solid triangle filters are the 

first instance and the dashed filters are the second instance. 
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Figure 2.7: Example of HR in series with overlapping time stepping of R, G, B 

filters, where the solid triangle filters are the first instance and the dashed filters are 

the second instance. 
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2.5 Summary 

This chapter outlines the prevalence of surgeon fatigue and its effects on patient safety. 

Due to long hours, complex patient care and emotional interactions with patients and 

families, fatigue in shift workers is significant. Surgical technology is constantly 

perfected, however the human physiology struggles to keep up, resulting in injuries 

and/or errors in the workplace. Extensive literature investigates musculoskeletal fatigue 

in surgeons, however other aspects of a surgical career are seldom reported, such as 

sleep deprivation or mental exhaustion. Wearable technology must be considered as an 

alternative solution to obtain objective, clear data sets which may be able to suggest 

strategical breaks for surgeons. 

 

There are two current methods to monitor fatigue in the workplace, objectively or 

subjectively. HR can be used for indication of task demand, due to an increased demand 

for oxygenated blood to the muscles. Similarly, HRV can be used as an assessment of 

psychological health, as it is associated with regulatory and homeostatic autonomic 

nervous system recovery. The KSS is frequently used for identifying fatigue in both 

laboratory and field settings. The body’s circadian rhythm prompts wakefulness and 

sleepiness each day and when misaligned causes fatigue as a bi-product.  

 

Figure 2.8: H-L and H-S Polar plots of triangular filters in Figure 2.7, where red 

filter is dominant in both instances. The red squares depict the solid triangular 

filters and the blue squares depict the dashed filters. 
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The most appropriate method to monitor fatigue incorporating circadian rhythm, hours 

into shift and HR in the decision making process would be the chromatic approach, 

offering a holistic approach to identifying the onset of fatigue which can be 

appropriately individualised. The chromatic methodology can be split into filtering and 

transformation steps, whereby three overlapping filters sample the signal and then 

transform to provide the parameters H, L and S (representing dominance, strength and 

spread of the signal, respectively).  
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Chapter 3  

 

 

Preliminary research to find prevalence of 

fatigue in surgeons 

 

 

3.1 Introduction 

The preliminary, independent research for this thesis is categorised into two parts; a 

surgeon questionnaire and a pilot study. The surgeon questionnaire (section 3.2) was to 

identify the contributors to fatigue in the workplace, as well as interventions and 

mitigation strategies. Of particular interest, was whether there were gender differences 

associated with surgeon fatigue in the workplace. The pilot study (section 3.3) was a 

first effort at identifying fatigue in the workplace with the use of wearable sensors 

throughout the shift. The following section will describe the methodology and results 

obtained from the preliminary research in both studies. 

 

3.2 Surgeon questionnaire 

 

3.2.1 Introduction 

Musculoskeletal fatigue in surgeons is prominent. There is good evidence to support the 

use of ‘microbreaks’ (~1 minute pauses every 20-40 minutes with the opportunity to 

stretch, relax and communicate) in surgery to reduce the likelihood of musculoskeletal 

injuries and consequently improve patient safety and surgeon longevity (Haramis et al., 

2010; Graversen et al., 2011; Engelmann et al., 2011; Dorion and Darveau, 2013; Voss 
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et al., 2016; Hallbeck et al., 2017; Park et al., 2010). However, fatigue in surgeons goes 

beyond the operating theatre and limited studies exist monitoring the fatigue of 

surgeons throughout their shifts, as well as other contributors to fatigue, such as mental 

exhaustion, compassion fatigue or environmental constructs such as bright lights and/or 

lack of food during shift (Ulises et al., 2016).  

 

The surgical workforce has changed in recent years, with an increase in female surgeons. 

Recent studies have evaluated the gender differences in junior residents for perceptions of 

patient safety, resident education, well-being and job satisfaction (Ban et al., 2021), recognising 

females as more likely to be dissatisfied with patient safety, overall wellbeing and time 

allocated with family. Other research aimed at assessing the gender differences in surgeon 

burnout and psychological wellbeing determined that female surgeons have less rest 

between shifts, working a higher proportion of  >80 hour weeks as well as increased 

reports of losing sleep over worrying, feeling unhappy and losing confidence in 

themselves (Dahlke et al., 2018). 

 

Limited evidence exists in the literature for identifying the causes of fatigue at work, as 

well as any contributors to fatigue, to practically mitigate the onset. Contrary to 

previous publications, this study aims to identify the gender differences for the causes 

of fatigue in surgeons within the workplace, understand how fatigue occurs and explore 

any interventions/strategies that surgeons may apply to try mitigate the effects of 

fatigue in the workplace. The authors hypothesise heightened levels of fatigue in female 

surgeons throughout their shift due to the negative work-life balance and heightened 

levels of compassion fatigue found in previous research (Wu et al., 2017, Dahlke et al., 

2018). Drivers for fatigue in female surgeons are hypothesised to be higher perceived 

levels of demanding work and patient outcomes, and it is hypothesised that younger 

surgeons will be more susceptible to fatigue than their older, more experienced 

counterparts (Sturm et al., 2011). 

 

3.2.2 Method 

The questionnaire was approved by the University of Liverpool’s Ethics Committee on 

the 30/01/2020. Data was analysed by the research team in line with the University of 
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Liverpool’s ethical guidance. Data was only accessed and analysed by the research 

team. For data collection, the online questionnaire website ‘SmartSurvey’ was used to 

collect anonymous data from surgeons at a hospital in England, UK. Similar to previous 

research, data was collected from one hospital (Johnston et al., 2018). Participants gave 

informed consent before participating in the questionnaire. All surgeons working at the 

hospital were eligible to take part. Surgeon participation was voluntary and they 

could stop the questionnaire at any point. Surgeons were under no obligation to answer 

all of the questions.  

 

The 14-part questionnaire (Appendix B) contained four demographic questions; age 

range, gender, duration of surgical experience and department of work. Estimated time 

of completion was 5-10 minutes. The questionnaire then asked whether surgeons had 

been subject to any contributors to fatigue at work (e.g. musculoskeletal, physical or 

mental exhaustion), what contributes to their fatigue at work and whether they have 

attempted to minimise these conditions at work (including but not limited to surgery), 

using a list of multiple-choice answers. For these questions, surgeons were asked to 

relate to their previous month of work. For the purposes of homogeneity across our 

sample, other questions included average sleep per night, average hours worked per 

week, whether they were aware of any intervention strategies to mitigate workplace 

fatigue and their opinions on taking ‘microbreaks’ during surgery to reduce 

fatigue. Additionally, we asked participants their thoughts on wearable technology 

capable of monitoring their fatigue levels whilst at work and whether they are likely 

drive a car whilst fatigued. The purpose of these questions was to understand surgeon 

willingness to have their fatigue levels observed in real time for future research. For all 

questions, surgeons were given the option to specify ‘other’, make comments on the 

question or select the option ‘prefer not to say’. 

 

For the purposes of data collection, a liaison at the hospital distributed the questionnaire 

on behalf of the research team. The survey was first distributed in March 2020 and the 

survey was closed May 2021. In this time, there were three prompts for surgeons to 

complete the questionnaire; March 2020, September 2020 and April 2021. Prompts 

were delivered via email, including a web link to the questionnaire.   
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Data analysis where appropriate was carried out using SPSS Statistics 24. Relationships 

between contributors to fatigue and gender were examined by Chi-squared (χ2) test 

(Turhan, 2020) (Appendix A). A p-value of 0.05 was used in this research for the 

interpretation of statistical significance (and throughout the thesis). The p-value is a 

measure to determine the strength of evidence against a null hypothesis. A small p-

value (<0.05) suggests that the observed data is reasonably likely to occur by chance 

alone even if the null hypothesis is true. The larger the p-value, the more likely the 

observed data is to occur by chance alone, even if the null hypothesis is true.  

 

3.2.3 Results 

For the questionnaire there was a response rate of 56% (37 out of 66 surgeons 

completed the questionnaire, with an additional 22 partial completions. Responses 

included 16 male and 21 female surgeons. Table 3.1 shows the demographic 

information collected from the questionnaire.  No partial completions were included in 

the final analysis. As shown in Table 3.1, the sample size for some of the categories is 

small and therefore the results should be interpreted with caution and further research 

with larger sample sizes is recommended. 

 

On average, 34 surgeons had at least six to eight hours of sleep per night, leaving three 

surgeons with at least four to six hours of sleep. Tables 3.2 and 3.3 (below) show the 

contributors to fatigue whilst performing surgery and the interventions to minimise 

these conditions at work and during surgery (respectively). For hours worked per 

week, three surgeons worked 30-40 hours, fourteen worked 40-50 

hours, fifteen worked 50-60 hours and five worked 60+ hours.  Amount of sleep per 

night and hours worked per week were homogenous for male and female surgeons.  

 

17 surgeons agreed that microbreaks may be a possible intervention to reduce fatigue 

during surgery. Surgeons were asked whether they were aware of any intervention 

strategies to mitigate workplace fatigue. 20 were not aware, nine were aware of 

interventions but do not use them and one did not need to use them as they were not 

subject to fatigue. The rest used interventions such as; taking rests, yoga, mindfulness 

activities and disconnecting from work where possible.   
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Table 3.1: Demographic information of survey takers from surgeon questionnaire. 

Age range (Years)  Response total (% respective of gender)  

 Males Females 

25-35  5(31.3) 4(19.0) 

36-45  5(31.3) 6(28.6) 

46-55  2(12.5) 11(52.4) 

56-65  4(25) 0(0.0) 

Surgical Experience (Years)     

0-5  2(12.5) 1(3.7) 

5-14  3(18.6) 6(28.6) 

15-24  6(37.5) 7(33.3) 

25-34  3(18.6) 7(33.3) 

35-44  2(12.5) 0(0.0) 

Surgical Department     

Paediatric   9(56.3) 12(57.1) 

Plastics  0(0.0) 3(14.3) 

Did not specify  7(43.8) 6(28.6) 

 

 

Females were statistically more likely be suffering from musculoskeletal injury (20/21 

females v 9/16 males, χ2  (1, N = 37) = 8.15, p = 0.012) and although not statistically 

significant, from mental exhaustion (18/21 v 9/16, χ2  (1, N = 37) = 4.00, p = 0.067) in 

the workplace (Figure 3.1). Females were statistically more likely to allocate their 

fatigue to prolonged static postures (16/21 v 6/16, χ2  (1, N = 37) = 5.64, p = 0.018), 

perceived lack of control on allocated tasks during the shift (13/21 v 4/16, χ2  (1, N = 

37) = 4.98, p = 0.026) and high levels of demanding work (17/21 v 7/16, χ2  (1, N = 37) 

= 5.52, p = 0.019) (Table 3.2). To minimise fatigue, females were statistically more 

likely to change positions during their shifts (15/21 v 5/16, χ2  (1, N = 37) = 5.90, p = 

0.015) (Table 3.3). Females were more likely to have discussion with supervisors over 

their level of workplace fatigue (6/21 v 0/16, χ2  (1, N = 37) = 4.41, p = 0.057), though 

this is not statistically significant.  All other fatigue contributors, causes of fatigue and 

interventions were homogenous across our sample. The analysis of this data is derived 

from one set of data. 
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We asked the surgeons their thoughts on wearing a base-layer vest capable of 

monitoring their fatigue levels during their shift. We found fifteen surgeons were 

inclined to wear the vest, whilst seventeen are either hesitant or would need more 

information. The remaining five surgeons would not wear the vest. Finally we asked if 

surgeons found themselves fatigued after a shift, whether it would influence their 

decision to drive home, to which we found, though five participants said they were 

aware they should not drive, twenty-one would drive straight home, eight would take a 

break/nap before driving home and the rest do not drive. 

 

 

 

 

 

 

 

Figure 3.1: Prevalence of workplace fatigue split by gender in descending order for 

females with error bars (MF: Musculoskeletal fatigue, ME: Mental exhaustion, SD: 

Sleep Deprivation, PE: Physical Exhaustion, CF: Compassion Fatigue, DWD: 

Drowsiness whilst driving, NF: No Fatigue). *p = <0.05. 
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Table 3.2: Contributors of existing fatigue at work/whilst performing surgery 

categorised by gender in descending order for females. 

Causes of fatigue at work/whilst performing 

surgery  

         Response total (% respective of 

gender) 

 Males Females 

High levels of demand  7(43.8) 17(81.0)* 

Persistent mental activity  8(50) 16(76.2) 

Prolonged static posture  6(37.5) 16(76.2)* 

Lack of control at work  4(25) 13(61.9)* 

Lack of sleep  7(43.8) 12(57.1) 

Lack of rest during shift  6(37.5) 12(57.1) 

Uncomfortable posture  6(37.5) 12(57.1) 

Table height  5(31.3) 12(57.1) 

Lack of food/water  5(31.3) 12(57.1) 

High levels of effort 5(31.3) 11(52.4) 

Length of operation  6(37.5) 10(47.6) 

Patient outcomes  5(31.3) 10(47.6) 

Disputes with colleagues  2(12.5) 9(42.9) 

Bright lights  2(12.5) 8(38.1) 

Positioning of apparatus  5(31.3) 7(33.3) 

Physical exertion  4(25) 7(33.3) 

Lack of reward/recognition  3(18.6) 7(33.3) 

Monitor height  2(12.5) 7(33.3) 

Continual tension using hands  2(12.5) 7(33.3) 

Discussion with friends/family of patient  4(25) 4(19.0) 

Lack of motivation  2(12.5) 4(19.0) 

No fatigue  1(6.3) 0(0.0) 

*p = <0.05 
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Table 3.3: Interventions to minimise fatigue at work/during surgery categorised by 

gender, in descending order for females.  

Interventions to reduce fatigue  Response total (% respective of 

gender) 

 Males Females 

Take a break when possible  11(68.8) 17(81.0) 

Change positions  5(31.3) 15(71.4)* 

Adjust the surgical field  5(31.3) 13(61.9) 

Relaxation/exercise techniques (stretches, etc.)  5(31.3) 12(57.1) 

Change height of surgical field  5(31.3) 8(38.1) 

Treatment/medication  1(6.3) 7(33.3) 

‘it’s impossible’, ‘it’s part of the job’  5(31.3) 6(28.6) 

Change instruments  1(6.3) 6(28.6) 

Ignore it  3(18.6) 5(23.8) 

Discussion with supervisors  0(0.0) 5(23.8) 

Time away from operating room  1(6.3) 3(14.3) 

No fatigue   1(6.3)  0(0.0) 

 *p = <0.05. 
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 Table 3.4: Comments for microbreak and wearable vest acceptance, split by gender. 

 Comments 

Microbreaks  

Female Enough time lost from list by staggered admissions to day case lists 

so less operating time. 

Male I feel that it is the other demands of the job that lead to fatigue rather 

than just operating. 

 Noted in long operations when I did take a break then more readily 

able to complete the procedure. 

Wearable vest  

Female I'd like to know how reliable it is at giving the right information. 

 Conflicted about this. Feel wary about other team members 

commenting on my (personal) fatigue levels, but at the same time 

have witnessed surgeons in the past refusing to take a break and 

struggling with surgery, leading to complications. 

 Don’t like the thought of a vest. Would be happy to wear a 

watch/monitor. 

 BUT always too hot. 

 I get really hot. 

 I would prefer to wear an ankle monitor or something that would not 

make me hotter/sweatier during operating! 

Male I am not sure that being more aware of fatigue would help if there is 

no option to hand over to a colleague. 

 

 

3.2.4 Discussion 

Females more commonly reported the presence of musculoskeletal fatigue than males. 

This seemingly develops from prolonged static postures, which requires changing 

positions at a greater frequency than males. This finding may identify that the operating 

theatre is more suitably designed for the male stature. Females may benefit greatly from 

the use of microbreaks when compared to males and future research should look at the 

gender-differences of intra-operative fatigue.  

 

Similarly, females were more likely to suffer from mental exhaustion than males, which 

could be attributed to higher levels of perceived demand and lower levels of control 

over their workload in the workplace (Table 3.2). This finding may coincide with 

previous literature and the negative work-life balance which females more frequently 

experience (Sturm et al., 2011, Wu et al., 2017). Since these findings only consider half 

of the surgical cohort answered the questionnaire, this result should be analysed 

cautiously. However, whilst only a proportion of females would discuss their levels of 
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fatigue with supervisors, there is evidence that significant stigma is attached to fatigue 

and thus reluctance to discuss fatigue with supervisors. It is previously addressed that 

males perceive to have more consistent leadership support than females, expressing 

concern that there may be gender bias encountered in the workplace, or inadequate 

support for females and their negative work-life balance (Wu et al., 2017). Nevertheless 

ninety-seven percent of our cohort suffer from fatigue however only sixteen percent 

discuss fatigue with their supervisors. Evidence to explain why surgeons do not adopt 

intervention strategies is limited. One previously identified reason may be the ‘feeling 

of invincibility’ which can be accounted for by thirty percent saying ‘it’s part of the 

job’ to encounter fatigue (Table 3.3) (Dorion and Darveau, 2013). Whilst it is 

understandable that rigorous training prepares surgeons for complex shifts, complex 

patient interactions and quick decision making, workplace fatigue can easily cause 

sleepiness and impaired judgement, which if ignored, leads to compromised patient 

safety.  

 

Whilst female surgeons had a greater amount of contributors and interventions to 

mitigate fatigue in the workplace, males currently suffering with musculoskeletal injury 

were significantly more likely to adopt microbreak practices and wear a vest capable of 

monitoring fatigue levels at work, showing promise for the market of wearable 

technology in the future. Surgeons had the option to write comments for microbreaks 

and base-layer technology (Table 3.4). When wearable vest acceptance was split by 

gender, it is clear to see there are more concerns for females wearing the vest than 

males, regarding temperature in the workplace. For microbreaks, one male participant 

demonstrated knowledge of the benefits of adopting them, however one female 

participant suggested there is not enough time to adopt them due to staggered 

admissions. As such, more research is required into the gender differences of user 

acceptability for the possible widespread application of microbreaks and wearable 

technology into the workplace.  

 

In order to mitigate the onset of fatigue, acknowledgement of these gender differences 

in fatigue are critical to reduce the statistical likelihood of fatigue onset in both genders 

(Lu et al., 2020). Making fatigue challenges overt through support programmes may 

help strategize shift patterns and improve work-life balance to reduce the onset of 

preventable errors made in the workplace to improve patient safety.  
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There are limitations to this research analysis. Firstly, we can only base our research on 

the sample of data we have collected. The questionnaire has twenty-two partial 

completions. Surgeons who are currently suffering with fatigue may have an increased 

likelihood to respond to the questionnaire resulting in bias.   

 

3.2.5 Conclusion 

The findings indicate a prevalence of gender-based differences of fatigue in the 

workplace for surgeons, as well as the key contributors to fatigue. The study identified 

an increase in the prevalence of mental exhaustion and musculoskeletal fatigue in 

females, possibly due to perceived lack of control over workload, high levels of 

demanding work and prolonged static postures at work. Our findings indicate that 

workplace fatigue is prevalent across all demographics and mitigating fatigue from the 

start of surgical careers could help reduce the onset of drivers of fatigue, such as 

musculoskeletal injuries, mental exhaustion and time missed from work as a result of 

workplace fatigue. Future studies may consider why females are reporting higher levels 

of demanding work and lower levels of perceived control over work, as this may 

directly impact the level of mental exhaustion felt by so many female surgeons. 

 

3.3 Pilot study 

 

3.3.1 Introduction 

As aforementioned, biomarkers such as HR, HRV and skin/core temperature (ST, CT) 

have been previously used to successfully identify fatigue in the workplace (Johnston 

et al., 2018, Pichot et al., 2002). Wearable technology can provide thorough insight into 

one’s physiology and can identify the onset of fatigue in individuals. To date, no studies 

have monitored surgeon fatigue throughout their shifts to see what predisposes 

surgeons to fatigue and whether these can be mitigated. Monitoring fatigue in real time 

may be able to recommend to surgeons the opportune moment to take a break during 

their shift to reduce the likelihood of errors. The possibility of identifying fatigue 

through the use of wearable technology offers a novel approach to the problematic 

effects of workplace fatigue.  
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This present study combines a previous methodology (Johnston et al., 2018) along with 

updated techniques using surgeons as our demographic, to see what predisposes 

surgeons to fatigue whilst at work. Similarly, no studies have observed the differences 

in objective and subjective fatigue levels across different shift types; day, night or 24 

hour shifts in surgeons. Additionally, the present study will add extra biomarkers 

including an objective marker of sleepiness (psychomotor vigilance test) and a 

skin/core body temperature sensor.  

 

The aim of this study is to cross-reference questionnaires and biomarkers throughout a 

surgeons’ shift to; 

i) Use a linear mixed models approach to identify any significant effects of 

variables on self-perceived sleepiness. 

ii)  Examine the differences in fatigue across different shift types. 

iii)  Examine age differences related to fatigue.  

 

3.3.2 Method 

Participants were recruited through a liaison at the hospital (UK) for data protection 

purposes. Once a suitable shift was chosen, the primary investigator placed the 

equipment in a safe location at the hospital for the surgeon to collect 15 minutes before 

their shift was due to start (in line with COVID guidelines at the time of data collection). 

Surgeons wore the CORE body temperature sensor and Actiheart monitor before 

completing a psychomotor vigilance test at the beginning of their shift. Following on, 

every 4 hours (including the start and end of the shift), surgeons were prompted by 

automated text message to fill out a questionnaire. Simultaneously, a link to the 

Surgical-Task Load Index (SURG-TLX) was included in the text message to be 

completed after an operation (if appropriate). At the end of the shift, the equipment 

could be removed and a final psychomotor vigilance test was completed. Data was 

collected between February and May 2021.  
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21 surgeons (15 male, 6 female) were recruited for the study. Participants gave 

informed consent before participating in the trial. The study was approved by the 

University of Liverpool’s Ethics Committee. Data was analysed by the research team 

in line with the University of Liverpool’s ethical guidance and in accordance with the 

ethical standards as laid down in the 1964 Declaration of Helsinki and its later 

amendments. Data was only accessed and analysed by the research team.  Overall, 9 

day shift (8am-8pm), 9 night shift (5pm-8am) and 4 twenty-four hour shift (8am-8am) 

questionnaires were analysed. Four participants were aged 35-44, the rest were aged 

25-34. Mean surgical experience (years) was 6.41 (±4.06). Overall, 15 reaction time 

tests were analysed (11 male, 4 female) and 9 complete sets of objective data (7 male, 

2 female) were collected. Missing data was due to technical errors or limited time before 

the shift to set up the equipment.   

 

Participants wore an ECG via electrode device (Actiheart, 2021) to measure activity 

(measured in counts) and heart rate. Data was extracted in 1Hz samples throughout the 

shift. The Actiheart is fitted with two electrodes, one on the sternum and one on the left 

side of the chest. Heart rate variability was analysed using standard deviation of N-N 

intervals.  

 

Participants wore a temperature sensor (GreenTEG, 2021) to measure skin temperature 

and core body temperature simultaneously. Similar to the ECG electrode device, 1Hz 

data samples were collected throughout the shift. Participants were required to 

download the CORE application in order to start recording the data. The primary 

investigator downloaded the data once the equipment was collected for analysis. The 

sensor was worn using a chest-strap and the sensor placed underneath the left arm.  

 

A psychomotor vigilance test was custom made using an Arduino Uno fitted with an 

SD card and a battery for portability. The reaction time test had two buttons; one to 

start the test and one to react to a visual stimulus. The psychomotor vigilance test lasted 

for three-minutes, where participants reacted to a light turning on as fast as they could 
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by pressing a button. The light would turn on at random intervals between 2-5 seconds. 

Participants were asked to complete the reaction time just before the start of their shift 

and at the end of their shift, as an objective measure of their current fatigue level. Minor 

lapses in concentration were between 350-500ms and major lapses were identified as 

>500ms (Basner, 2011).  

 

Every 4 hours (including the start and end of the shift) or when most convenient, 

participants were asked to complete a questionnaire. The questionnaire was 

administered via automated text messages containing a hyperlink to a webpage. The 

questionnaire was created using JISC online surveys. The questionnaire included Likert 

scales from 1 (not very) to 10 (extremely). Questions included levels of; sleepiness 

(using the KSS (Shahid et al., 2011)), control, motivation, demand, mental effort and 

reward on shift, with the addition of capability to use fine motor skills, capability to 

make the right decision and whether they had made an error or near-miss error since 

the last questionnaire.  

 

The SURG-TLX (Wilson et al., 2011) was created to develop and validate surgery-

specific workload measures. Participants were instructed to fill out this questionnaire 

after an operation, at the point they remember feeling the most challenged. Again, 

Likert scales from 1 to 10 were used to decipher; how mentally/physically fatiguing, 

the pace, the complexity, how anxious the surgeon was, how distracting the operating 

theatre was and how sore/stiff the surgeon felt (including anatomical location if 

appropriate). Additionally, duration and time of procedure was recorded.  

 

For some participants, artefacts occurred with the ECG via electrode heart rate monitor. 

In such instances, MATLAB’s live script feature, ‘clean outlier data’ was used to 

linearly interpolate missing values and remove values that were recorded as 0’s for 

heart rate. To reduce the amount of samples to perform statistical analysis on, data was 

averaged into 5-minute samples (i.e. the average of every 300 samples). All statistical 

analyses for biomarkers were analysed using 5-minute averages. Resting heart rate of 
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the individuals was identified using at least 10 minutes of data during the shift where 

activity was ‘0’ whilst they were not operating, to account for within-subject heart rate 

variability and calculate heart rate percentage above rest for Linear Mixed Model 

(LMM) analysis.  

 

SPSS was used for data analysis of the study. For analysis of the reaction time, paired 

sample T-Test identified mean differences pre and post shift.  T-tests and Analysis of 

Variance (ANOVA) tests (Thomas et al., 2011) were used to compare means between 

shift-types and look at the change in variables pre-post shift. Statistical analyses are 

explained in more detail in Appendix A. Where data breached parametric assumptions, 

non-parametric tests were conducted.  

 

LMM (Bryk and Raudenbush, 2002) identified whether any variables effect the KSS 

variance. LMM analysis only included participants with full data sets (nine participants 

in total). Incorporated into the LMM model; a random intercept for subject to account 

for within-subject correlations and core temperature, skin temperature, movement, 

hours into shift, time of day (24hrs), standard deviation of N-N intervals and heart rate 

percentage above rest as fixed effects. The LMM accounts for correlation between 

repeated measures and within subjects and allows for a separate time trend for each 

subject. Therefore, the LMM can be used to calculate how biomarkers effect KSS over 

time.  

 

3.3.3 Results 

Paired sample t-test identified no significant differences between pre-post shift for 

reaction time, minor lapses or major lapses (t(14) = -1.089, p = 0.295, t(14) = -1.586, p 

= 0.135, t(14) = -.702, = 0.494, respectively) despite a significant difference in self-

perceived sleepiness pre-post shift (t(14) = -5.522, p <0.001). There were no significant 

differences between genders and shift types.  The average KSS scores across shift types 

are depicted in Figure 2.2 (section 2.2.2). 

 

For the SURG-TLX, one-way ANOVA identified no mean differences between shift 

types, age groups or experience. Pearson’s correlation (Freedman et al., 2007) identified 

no correlation between KSS and years of experience. However there was a strong 

correlation between the duration of surgery and mental fatigue, physical fatigue and 
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complexity of surgery (r(16) = 0.65, p = 0.006, r(16) = 0.74, p = <0.001, r(16) = 0.79, 

p = <0.001, respectively). A strong correlation was identified between anxiety and 

distractions in the operating theatre (r(16) = 0.76, p = 0.001). Sixty-three percent of 

surgeons experienced some level of musculoskeletal soreness to either the neck, arms 

or back. There was no significant difference between duration of surgery and 

musculoskeletal soreness (r(16) = 0.49, p = 0.054).   

 

The surgeon questionnaire found no strong correlation between sleepiness and control, 

demand, motivation, mental effort or reward. However, a moderate, negative 

correlation was identified for sleepiness and motor skill capacity (r(73) = -0.43, p < 

0.001) and decision making (r(73) = -0.38, p = 0.001). A strong correlation was 

identified between mental effort and demand (r(74) = 0.78, p < 0.001) and reward and 

motivation (r(74) = 0.62, p < 0.001). Our questionnaire found no reports of errors made 

from all surgeons, with three instances of near-miss errors on night shifts for surgeons 

aged 24-34. However, Mann-Whitney U analysis (McKnight and Najab, 2010) 

identified greater self-perceived control, greater motor skills capability, less demanding 

shifts and less mental effort on shifts for 35-44 year olds compared to 24-34 year olds 

(U = 236, p = 0.020, U = 195, p = 0.004, U = 120, p < 0.001 , U = 237, p = 0.020, 

respectively).  

 

One-way ANOVA (Moore and McCabe, 2003) identified significant differences 

between shift type and self-perceived control, motivation, demand, mental effort and 

reward. Overall, 24 hour shift workers report more control over their shift than day and 

night shift workers (F(2,73) = 4.19, p = 0.019). Night shift workers reported less 

motivating and less demanding shifts than 24 hour and day shift workers (F(2,73) = 

5.73, p = 0.005, F(2,73) = 13.29, p < 0.001, respectively). Additionally, night shifts 

were less rewarding and required less mental effort than day shifts (F(2,73) = 5.25, p = 

0.007, F(2,73) = 3.61, p = 0.032). Overall, day-shift workers were significantly less 

tired than night-shift and 24-hour shift workers (F(2,1085) = 65.65, p < 0.001).    

 

LMM analysis identified a reduction in heart rate percentage above rest (F(1,1076) = 

7.84, p = 0.005), core temperature (F(1,1073) = 13.85, p <0.005) and skin temperature 

(F(1,1079) = 9.94, p = 0.002) to significantly increase self-perceived sleepiness (KSS). 

Time of day (F(1,6) = 3.97, p = 0.094), standard deviation of N-N intervals (F(1,1075) 
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= 3.52, p = 0.061), hours into shift (F(1,6) = 3.33, p = 0.120), movement and gender 

(F(1,1073) = 1.48, p = 0.224, F(1,6) = 0.66, p = 0.449, respectively) were not 

significant.   

 

This pilot study identified KSS trends: for day, (8am-8pm, n=9), night (5/8pm-8am, 

n=9) and 24 hour (8am-8am, n=4) shifts, where n = number of participants (see Figure 

3.2 below). The night shift can be split into two different shifts, either 5pm or 8pm 

starts.  
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The figures show the average sleepiness on shift for the three different types of shifts 

the surgeons may take. The black line is the original data. The grey line is the data 

smoothed for the purposes of the algorithm in this study used to predict fatigue and also 

to remove outliers, mitigating sudden changes in the dominant chromatic filter (section 

2.4). 

 

The night shift graph shows fatigue for those who began their shifts at 5pm, however 

by 8pm the sleepiness levels off. This could be due to a lack of sleep in the participants 

who began at 5pm. However, sleepiness increases until it reaches its apex at around 

4am, in agreement with the 24hr circadian rhythm model. At this point, the surgeons 

will be starting to feel tired. The curve then tapers off at around 6am until the end of 

the shift, which could be due to the sunrise, suppressing the production of melatonin.  

 

It can be seen in the day shift graph, that time on shift significantly effects sleepiness 

(Johnston et al., 2018). At around 1pm, sleepiness starts to rise until the end of the shift, 

similar to the mid-afternoon dip. However there is no decrease in sleepiness observed 

until the surgeons clock-off.  
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Figure 3.2: Karolinska sleepiness scale (KSS) versus Time of day (a) Night shift, 

(b) Day shift, (c) 24hour shift (black line is original, grey line is smoothed). 
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For the 24 hour graph, surgeons are particularly well rested at the beginning of the shift, 

with an increase in sleepiness from around 1pm until 6pm. Sleepiness continues to rise 

however, due to the period of time staying awake on shift. Surgeons working 24 hours 

with minimal breaks are therefore at a heightened risk of fatigue.  

 

 

Figure 3.3 shows the roughly inverse relationship between the established circadian 

rhythm and the KSS scores from 21 surgeons, providing validity of the predicted KSS 

model in the algorithm. Jasper et al. (2009) also found a similar circadian rhythm trend 

for >24-hour sleep deprivation every three hours when comparing KSS to salivary 

melatonin production (used to monitor the circadian rhythm).  

 

3.3.4 Discussion 

Growing literature is indicative for fatigue effecting medical errors in surgeons 

(McCormick et al., 2012). Our analysis is suggestive that wearable technology may 

serve as a proxy for the onset of fatigue identification and thus the mitigation of fatigue 

in the workplace to conceivably reduce medical errors. For the onset of physical fatigue, 

increases in heart rate and temperature generally increase the onset of fatigue (Aryal et 
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al., 2017). However, our analysis identifies the opposite trend for the onset of fatigue 

in surgeons, in a workplace setting. This difference is associated with the definition of 

fatigue, whereby physical fatigue is associated with diminished capacity to perform 

tasks due to exertion, whereas workplace fatigue is associated with a combination of 

physical exertion and mental stress. HR is generally higher for physical jobs which 

causes fatigue quicker due to energy expenditure and continuous physical activity 

fatigue (Aryal et al., 2017). In the surgical workplace, whilst high HR is identified, it is 

less frequently observed and this study identified fatigue was more prominent at quieter 

periods during the shift, perhaps during monotonous work. The present study identifies 

significant effects of heart rate percentage above rest, skin temperature and core 

temperature on self-perceived sleepiness from LMM analysis, however a small sample 

size of nine surgeons were included in the analysis. A reduction in heart rate, skin and 

core temperature increases Karolinska sleepiness Scale scores. 

 

Despite this, the individual weightings of these significant variables are minimal and 

account for only a small variation in the KSS. Variables such as time of day and hours 

into shift provided greater variability for the fluctuation of KSS, but were not significant 

in doing so. Table 3.5 below shows the individual weightings of each variable (by each 

unit of ‘1’), and the effect they have in altering the KSS. The numbers in Table 3.5 were 

derived from the LMM analysis. For example, working for 5 hours would give the 

calculation: (5x1) x 0.183, which would increase the baseline KSS by 0.915. If an 

individual started their shift by answering a ‘3’ for the KSS, then after 5 hours their 

KSS would be 3.915. If an individuals resting HR was 60bpm and their HR raised to 

75bpm, then: (15x1) x -0.007, which decreases the KSS score by 0.105. With all the 

variables included, a KSS score can be given which is indicative of their temperature, 

HR, time of day (e.g. day or night shift), etc. 

 

Undoubtedly, surgeons do not have enough time between shifts to acclimatise fully to 

night shifts and therefore this natural reduction in core body temperature correlates with 

an increase in the Karolinska sleepiness Scale (Arendt, 2010). The reduction in heart 

rate and skin temperature may be more apparent on night shifts due to the reported 

reduction in demand and mental effort when compared to day shifts. These instances at 
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work may occur with low-impact, monotonous tasks such as filing reports or analysing 

medical records. Suggestively, times during the shift where there is little engagement, 

motivation and interaction with external stimulus, are the most likely times for surgeons 

to report high values on the Karolinska sleepiness Scale. Studies from Holding et al. 

(1983) and Hockey et al. (1997) suggest that aversion to invest further effort into task 

performance is the most reliable characteristic for mental fatigue. This was further 

highlighted by Boksem et al. (2005), where increased fatigue was associated with a 

clear decrease in performance on prolonged visual attention tasks.    

 

Table 3.5: Weightings of independent variables on KSS questionnaire using linear 

mixed model analysis. 

Independent variable Weighting 

Time of day 0.183 

Core temperature -1.206 

Skin temperature -0.503 

SDNNi -0.006 

Hours into Shift 0.083 

HR % above rest -0.007 

 

No significant differences between pre-post shift for reaction time, minor lapses or 

major lapses were identified in surgeons using the psychomotor vigilance test, despite 

a significant increase in self-perceived sleepiness. Whilst it is expected that reaction 

time increases with time awake, there may be a level of sleep deprivation at the 

beginning of the shift that is accountable for the non-significant increases in reaction 

time post-shift, as some surgeons recorded faster scores post-shift. Without monitoring 

sleep patterns of the night prior, it is difficult to rely on subjective sleepiness alone. 

 

The SURG-TLX has been validated in laboratory settings (Ma et al., 2021) but its use 

in the field is limited. However, duration of surgery was correlated with complexity and 

thus increased the mental/physical fatigue, regardless of theatre role. As identified in 

previous studies, distractions in the operating theatre can affect patient care (Gui et al., 

2021). Anxiety was strongly correlated with distractions in the operating theatre in our 
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study, highlighting the need for opportune professionalism and mitigation of potential 

distractions in future, in turn reducing anxiety and unnecessary stressors. There was 

no/near significant difference between duration of surgery and the musculoskeletal 

soreness, which suggests that surgeons may already be predisposed to musculoskeletal 

injury prior to the beginning of the operation in question. 

 

Contrary to previous publication (Johnston et al., 2018), the present study identified no 

correlation for self-perceived sleepiness with control or demand in the workplace. 

Whilst unexpected, surgeons and nurses shifts offer different demands and tasks. 

Experience also plays a significant factor for fatigue in surgeons. Older, more 

experienced surgeons reported more control, greater motor skill capacity, less 

demanding shifts and less mental effort on their shifts than their younger counterparts. 

Thus, the duration of surgical expertise seemingly improves the ability to adapt to the 

demands of the workplace. Whilst sleepiness was homogenous across age groups, a 

lack of control and high levels of effort are more likely to predispose an individual to 

fatigue (Hockey, 2011). 

 

Our questionnaire postulates that the surgical population most at risk of becoming 

fatigued in the workplace are younger surgeons on night shifts resulting from lack of 

mental stimulation and misaligned circadian rhythms, in line with previous findings 

(Amirian et al., 2013). Previous studies (Boksem and Tops, 2008; Borragan et al., 2017) 

have questioned whether prolonged effort induces mental fatigue, or rather under-

arousal (e.g. sleepiness/boredom). However in this research, workplace fatigue is 

identified using the Karolinska sleepiness Scale as sleepier surgeons are the most likely 

to make errors or near-miss errors, on other tasks outside of surgery. In a real world 

scenario, it must be considered that participants may not truthfully report errors made 

due to the credibility of their craft, evaluation apprehension or previously described 

‘feelings of invincibility’ (Dorion and Darveau, 2013) which surgeons may experience 

through rigorous training. Whilst our research identified no errors in the workplace for 

this study, future research with a larger cohort should be conducted to observe 

psychological or physiological markers and their associations with errors.  
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This study highlights the differences in fatigue onset depending on years of surgical 

experience and shift type; however, there are limitations to the study. Whilst data was 

obtained from 21 participants (33% of total surgeons), only six were female which is 

not a true representation of the cohort. Secondly, there is much missing data. Due to the 

nature of handovers between shifts, surgeons struggled to find the time to wear the 

equipment before the shift. The protocol did not consider how many consecutive shifts 

the surgeons had already worked prior to participation, which may have predisposed 

some surgeons to early fatigue onset when compared to others. 

 

3.3.5 Conclusion 

This research identifies novel insight into different shift types and the subsequent 

demands which the surgeons are subject to. Simultaneously, the protocol is the first of 

its kind to monitor fatigue levels from a combination of both psychological and 

physiological markers throughout a surgeon’s shift for the identification of workplace 

fatigue and the causes of its onset. This preliminary study highlights the possibility of 

fatigue identification with heart rate and skin/core temperature using Linear Mixed 

Model analysis identifying significant relationships with the Karolinska sleepiness 

Scale and thus, these wearables are recommended in future studies identifying the onset 

of fatigue in the workplace. 

 

 However, as a limitation, the individual weightings of these variables were small for 

varying the Karolinska Sleepiness Scale. There was a small sample size which means 

the results should be interpreted with caution. There was also lots of participants with 

missing data. A future study may want to use a larger sample size from multiple 

hospitals, with more technologically advanced equipment that requires an easier set-up 

to mitigate human error. Additionally, this study identified difficulty using the 

electrodes. The study was conducted during the COVID-19 pandemic which meant the 

research team could not be present for the initial data set-up. Though instructions on 

using the device were administered with the device, there were significant losses of HR 

data throughout the shift, indicative of improper placement of the electrodes. Equally, 

feedback from the surgeons in the pilot study had frequent complaints that the 
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electrodes would pull at the skin when removing them, causing discomfort. Due to the 

invasiveness of the protocol, the wearable apparatus needs to be replaced.  

 

 

Whilst the LMM analysis shows promise towards building an algorithm, the LMM does 

not account for the circadian rhythm variance between the shift types. Equally, there is 

no normalisation between the different variables, reducing the accuracy and integrity 

of the data. The data in this pilot study runs on 5-minute epochs, in which much 

variation can occur when compared to 1-minute epochs. The hours into shift and time 

of day variables only alter each hour, which reduces the sensitivity of the algorithm. 

The algorithm does not consider the effects of breaks, which can ultimately reduce 

fatigue, as they were not monitored in the pilot study.  In order to create an algorithm 

that can be sensitive to the individual, with normalised data as well as fluctuate with 

breaks, a different approach is required which is based upon comparisons and 

mathematical cross-correlations, which can individually weight the variables used in 

the algorithm using chromatic analysis in section 2.4.  

 

Preliminary research on the chosen demographic for this study identified the key 

contributors to workplace fatigue using a questionnaire, as well as gender differences 

associated with fatigue, further highlighting the need to objectively monitor fatigue 

throughout a shift. The pilot study monitored biometrics throughout the shifts of 

surgeons to identify significant contributors to the KSS, though the weightings of the 

KSS variance were small and the algorithm does not consider the impact of breaks. 

 

3.4 Summary 

This chapter outlines the preliminary research conducted on our cohort in order to 

collect data in an efficient manner for producing an algorithm for the detection of 

fatigue in the workplace. Firstly, the surgeon questionnaire is described, which 

identified an increase in the prevalence of mental exhaustion and musculoskeletal 

fatigue in females, possibly due to perceived lack of control over workload, high levels 

of demanding work and prolonged static postures at work. Secondly, the pilot study 
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results are described. The protocol is the first of its kind to monitor fatigue levels from 

a combination of both psychological and physiological markers throughout a surgeon’s 

shift for the identification of workplace fatigue and the causes of its onset. The 

algorithm does not consider the effects of breaks, which can ultimately reduce fatigue, 

as they were not monitored in the pilot study.   

 

With this information in mind, HR and HRV will be utilised further in the algorithm. 

Due to the large weighting of the time of day variable, this will also be used in a 

combined monitoring algorithm, as well as other variables such as accelerometer data 

and the KSS values that were identified in the pilot study. A different approach is 

required, other than the LMM, which is based upon comparisons and mathematical 

cross-correlations, which can individually weight the variables used in the algorithm, 

using chromatic data processing (section 2.4). 
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Chapter 4 

 

Experimental methods and test procedures 
 

 

4.1 Introduction 

Once the pilot study and surgeon questionnaire was gathered, a clearer picture was 

produced as to the effects of workplace fatigue on surgeons and its prevalence. The 

Linear Mixed Models approach has flaws which are described in section 3.3.5. As such, 

chromatics will be monitored to predict the onset of workplace fatigue moving forward. 

This section describes the experimental methods, including all the components of the 

proposed fatigue identification algorithm. The algorithm contains four biomarkers, 

Heart Rate (HR), Heart Rate Variability (HRV), Skin Temperature (ST) and 

Accelerometer data (ACC). Additionally, two sensory models are described; time on 

shift and circadian rhythm.  

 

The proposed fatigue identification algorithm is designed to predict the onset of 

workplace fatigue using various components with different weightings. The 

methodology for the second round of testing is described in detail, as well as how the 

data is collected, extracted and analysed. Statistical analysis, as well as chromatic 

involvement, are discussed in this chapter.  
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4.2.1 Experimental procedure for surgeon fatigue protocol 

As with section 3.3.2, participants were recruited through a liaison at a hospital (UK) 

for data protection. The research team did not have access to any surgeons’ details 

unless they approached the research team voluntarily. Once a participant had registered 

involvement, the researcher met the participants 15 minutes before their shift to fill out 

a consent form, set up the equipment and fill out a simple demographic information 

questionnaire, asking for age range (25-34, 35-44, etc.), gender, department of work 

and surgical experience (years). After the equipment was worn (described in section 

4.4.3), participants were informed they would be sent an automated text message with 

a hyperlink to a questionnaire to fill out. At the end of the shift, participants returned 

the chest strap, phone and waist bag to a safe place for the researcher to collect. There 

were two sets of equipment, so one could be charged and ready when collecting the 

other set to improve the efficiency of data collection.  

 

In total, 15 participants (eight males and seven females) were recruited for the study. 

Data was collected between September and October 2022. Participants gave informed 

consent before participating in the trial. The study was approved by the University of 

Liverpool’s Ethics Committee. The research team analysed data in line with the 

University of Liverpool’s ethical guidance and in accordance with the ethical standards 

as laid down in the 1964 Declaration of Helsinki and its later amendments. Data was 

only accessed and analysed by the research team. In total, four 24-hour shifts (8 am-8 

am), five night shifts (5 pm - 8 am) and five day shifts (8/9 am-5 pm) were analysed. 

One participant’s chest-strap data failed to record and two further participants had poor 

ECG, therefore their data was excluded from the analysis, however answers from the 

questionnaire were still analysed. Mean surgical experience (years) was 10.33 (±4.75). 

Seven participants were aged 35-44, four were aged 25-34 and one was 45-54.  

 

To make further improvements on the pilot study (section 3.3) for the analysis in this 

chapter, an equal representation of males and females were included in the analysis. 

The adaptation of the chest strap lowered the artefacts derived from the protocol. The 

participants had not worked for at least 24 hours prior to their shift to reduce the impact 
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of work-related fatigue prior to participation in the study. Finally, breaks were 

monitored as well as the activities on breaks to understand how they affect the overall 

sleepiness of our cohort.  

 

In order to create an algorithm that prevents the data from being over-fitted, after all 

participants data were collected and analysed for correlations against the KSS, the 

participants were divided at random into two groups using a random number generator 

for chromatic analysis. The first group were refined and analysed so that the strongest 

correlation could be achieved with those participants as a proxy for identification of 

KSS without using the questionnaire. The algorithm was then fitted with the second 

group of participants, to see whether the algorithm was accurate when tested again. 

More information on the refinement of the methodology, can be found in section 4.3. 

 

4.2.2.1 Surgeon questionnaire 

In order to make improvements on the pilot study, the questionnaire in section 3.3.2 has 

been modified. The questionnaire was sent by automated text every three hours which 

contained a hyperlink to a webpage. To see how breaks affect the sleepiness of our 

participants, we asked the following questions every three hours; 

1. How sleepy do you feel? 

2. Have you made an error or near-miss error since the last questionnaire? 

3. Have you had a break yet? 

4. What time did your break start/finish?  

5. Did you consume caffeine, nap or smoke on your break? 

6. How sleepy were you at the beginning of your break? 

7. How sleepy were you at the end of your break?  

At the beginning of each shift, the demographic questionnaire also asked how long the 

participants had slept for prior to their shift, as well as the quality of their sleep (good, 

average or poor).  
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Participants were asked whether they consume caffeine or smoke as they are stimulants 

which effect Heart Rate and also subjective levels of sleepiness (Wetter and Young, 

1994; O’Callaghan et al., 2018) . Naps have been shown to reduce tension and suppress 

the sympathetic nervous system at work (Oriyama et al., 2014). Monitoring these 

variables may show trends towards decreased subjective tiredness on shift, compared 

to those who do not. 

 

4.2.2.2 Karolinska Sleepiness Scale as a measure of Fatigue Index 

The Karolinska Sleepiness Scale (KSS) ranges from one (extremely alert) to nine (very 

sleepy) (Shahid et al., 2011). Is has been used extensively in the literature to identify 

fatigue and sleepiness in both laboratory and field settings (Hirshkowitz and 

Sharafkhaneh, 2017). For this study, the participants answered the KSS every three 

hours on shift, as to how they feel when answering the questionnaire. Data were linearly 

interpolated between questionnaires, for example, a participant answered a ‘3’ at 9am 

and a ‘5’ at 1pm. The data will be linearly extrapolated between the data points in 

Microsoft Excel (section 4.4.2) in equal epochs (e.g. every 5 minutes/ every row).  

 

For this study, any answers ‘>six’ on the KSS were deemed as a cause of concern, as 

this point on the KSS is described as ‘some signs of sleepiness’, suggesting the need to 

take a break from work to mitigate the chances of causing errors in the workplace.  

 

4.2.3 Chest strap 

To improve the protocol after feedback from the pilot study in section 3.3, a chest strap 

was used for the second round of testing with the participants. The chest strap provides 

added comfort and less artefacts than the previously used electrodes. The chest strap 

measures ECG trace and collects data at 320Hz. Additionally, the chest strap measures 

ST at 1Hz and ACC at 24Hz. The chest strap consists of a magnetic pod, which connects 

to the strap. The pod contains Bluetooth capabilities. Unlike the pilot study (section 

3.3), the research team were able to hand over the equipment in person, to reduce the 

likelihood of potential errors when administering the equipment. Participants were 
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asked to wear the strap so that the pod sits underneath the left arm for proper alignment 

of the ECG sensors.  

 

4.2.4 Mobile application for data collection 

For the data to be extracted from the chest strap, data had to be downloaded on to a 

mobile phone via Bluetooth. As such, the chest strap had to stay within 3 meters of the 

mobile phone at all times. There was no interference caused by the system or surgical 

equipment. The mobile phone was the model TTfone TT20, used solely to contain an 

application provided by the manufacturer of the chest strap for data extraction purposes. 

The mobile phone was provided with a waist bag, so the participants did not 

accidentally leave the phone anywhere, thus disconnecting the Bluetooth connection. 

The application (Image 4.1) allowed the user to allocate a length of time in seconds of 

each file to be downloaded, and the total duration the application  connects to the pod. 

For the purposes of this research, a duration of 900 seconds was chosen for each data 

file. For example, a participant working a 12-hour shift would save in 900-second 

intervals for a total duration of 43,200 seconds (3600 x 12). The application allows the 

user to view their ECG trace before the collection of data, to ensure the sensor is lined 

up correctly. After data collection, the phone can be connected to a computer via Micro-

USB for data analysis. 

 

 

 

 

 

 

 

 

 

 
Image 4.1: Screenshot of display screen for mobile application used to collect data, 

showing four data files saved in intervals of 900 seconds.  
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4.3 Variables integrated into composite system. 

The following section includes the variables that are to be analysed for possible 

algorithm integration. The variables proposed are four physiological measures 

(components a-d) and three physiological models (components e-g):- 

a. Heart Rate (HR) 

b. Heart Rate Variability (HRV) 

c. Skin Temperature (ST) 

d. Accelerometer data (ACC) 

e. Circadian rhythm 

f. Time on Shift 

g. Sleep Quality 

 

 

4.3.1 Proposed model for identification of workplace fatigue 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. HR 
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Figure 4.1: Proposed model for identification of workplace fatigue advisory 

system, consisting of seven components a-g. 
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Figure 4.1 (above) shows the proposed components for identification of workplace 

fatigue based on the preliminary research outlined from the pilot study within the 

capabilities of the new and improved wearable technology. The model shows, that the 

components (a-g) are combined to produce a physiological tiredness score, whereby 

exceeding a set threshold prompts an alarm to trigger. The weighting and inclusion of 

components a-g is to be researched. 

 

The components of the algorithm are normalised between min and max parameters for 

individual weightings depending on the relationship when correlated against the KSS. 

Quantification of the min and max parameters can be found in section 4.5.5 and the 

weightings of each variable are found determined using correlation analysis, reported 

in section 4.4.2. The following section explains how each variable is quantified in the 

algorithm. The proposed fatigue index algorithm is displayed in section 4.3.2.  

 

a.  Heart Rate (HR) 

 

6.48

6.49

6.5

6.51

6.52

0 1 2

V
o
lt

s

Seconds

Figure 4.2: Heart Rate (displayed as electrocardiogram) versus Time. 
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The first component of the proposed model is HR (Figure 4.1), which is unique to every 

individual with reference to electrocardiogram trace (ECG trace), minimum and 

maximum heart rate. An example of 2 seconds ECG trace is given on Figure 4.2, 

containing 640 samples.  

 

Figure 4.3 shows the breakdown of the ECG trace for one heartbeat. Figure 4.4 is an 

example of one participant’s HR throughout their shift. Their HR is calculated from the 

time in between beats, also known as the ‘R-R Interval’ (RRI), which is extracted from 

the mobile app (section 4.2.4). The RRI is taken from the large spikes on each heartbeat. 

On the ECG trace, these spikes or ‘peaks’ are known as the ‘R peaks’. Figure 4.4 

contains the average HR for every minute on shift. The graph clearly shows the 

fluctuation of HR throughout the shift, with varying levels of intensity. There are 

periods where the HR is relatively stable and there are HR spikes during the shift, when 

the participant is active or carrying out stressful work. 
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Figure 4.3: ECG trace defining key features, e.g. QRS complex, for one heartbeat. 
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Figure 4.4: One participants heart rate throughout their shift versus time. 
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b. Heart Rate Variability (HRV) 

The second component is a more in-depth analysis of HR. As mentioned before, HRV 

can be quantified in the time or frequency domain, both of which are examined in this 

research. For the purposes of this analysis, the time domain measures will be utilised 

due to their lower computational cost. Previous research in section 3.3.2 utilised the 

standard deviation of N-N intervals (SDNN), quite simply the standard deviation 

between heartbeats in milliseconds (ms). SDNN is the gold standard for stratification 

of cardiac risk over a 24-hour period, but less effective during shorter periods as they 

are not as representative of environmental stimulation [Shaffer and Ginsberg, 2017]. 

However, upon further research the root mean square of successive differences 

(RMSSD) has been used extensively for short-term ECG analysis. As the data for 

analysis in this study uses 15-minute intervals, RMSSD is a more acceptable measure 

of stress in the workplace.  

 

 

 

 

 

 

 

 

 

RMSSD reflects the RRI variance in HR. The RRI (R-R interval) measures the time 

elapsed between two successive ‘R’ peaks on the QRS signal of the electrocardiogram 

(Figure 4.3) RMSSD is inversely related to the activity of the sympathetic nervous 

system (SNS); higher RMSSD values indicate higher parasympathetic dominance and 

lower SNS influence on HRV, while lower RMSSD values suggest increased 

sympathetic activity and reduced parasympathetic influence. RMSSD is obtained by 

calculating the successive RRI’s in ms. Then, each value is squared and the result is 
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Figure 4.5: Illustration of heart rate variability (figure 4.2) with added 

demonstration for the measure of RMSSD using ‘R-R interval’ versus time.  



77 
 

averaged before the square root of the total is obtained. The conventional minimum 

recording is 5 minutes, however ultra-short recordings of 60-seconds have been 

proposed [Salahuddin et al., 2007, Nussinovitch et al., 2011, Baek et al., 2015], as long 

as artefacts are monitored and carefully removed. The SNS prepares the body for 

physical activity, through redirection of oxygenated blood around the body in response 

to physical or mental stimuli. 

 

 

 

 

 

 

 

 

Figure 4.6 is an example of RMSSD from the same participant as Figure 4.4. The 

RMSSD measure could be interpreted as inversely proportional to HR, whereby 

increased HR causes decreased RMSSD measures.  

Both components; HR  and HRV, can be affected by multiple characteristics, such as 

age and sex. Age causes HRV measures to decline with age, maximal HR also declines 

with age and a common estimate for maximal age-related fatigue is, 220 – age. Females 

have a higher mean HR (and smaller RRI) when compared to males. Therefore, the 

proposed model will consider these variables and the effect they may have on fatigue.  

 

c. Skin Temperature (ST) 

The skin is the human body’s primary cooling system and as such deviations in 

temperature can increase the stressors on the body to induce fatigue [Or and Duffy, 

2007]. Though less reported than HR and HRV, ST has been researched as a potential 

indicator of fatigue. As fatigue, stress or anxiety increases, this can cause an increase 

in sweating due to increased SNS activity. The monitoring of sweating is called 
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Figure 4.6: Example of RMSSD for one participant versus time. 
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electrodermal activity (EDA). EDA measures the change in skin resistance associated 

with sweating, therefore it is a sensitivity index of the SNS. Unfortunately there is 

currently no technology the research team could acquire to measure and extract data for 

EDA in the workplace. However, the research team were able to measure the 

temperature of the skin, with conductive sensors on the chest strap. Measuring 

temperature on the torso is less susceptible to environmental changes, such as on the 

forearm, for example when walking outside. Figure 4.7 shows an example of ST 

throughout a shift. ST can be altered by environmental constructs, as well as pressure 

on the sensor. Nonetheless, information may be derived from the temperature sensor 

that may indicate the onset of fatigue in the workplace, for example long periods of 

high or low ST. 

 

 

d. Accelerometer data (ACC) 

Accelerometer data (ACC) measures the acceleration of a moving or vibrating body. 

Generally, ACC are triaxial, providing simultaneous measurements in three orthogonal 

directions. These directions are typically referred to as X, Y and Z. Quick movements 

produce large spikes of ACC, whereas periods of time with no or little movement 

produce small data outputs. Accelerometers can be placed anywhere on the body, 

usually also consisting of gyroscopes or magnetometers to produce Inertial 

Measurement Units (IMUs). However, for this research only the ACC is provided for 

analysis. Individual manufacturers have their own algorithm for activity classification, 

which is obtained from accelerometer data. Therefore, there is no single algorithm used 
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Figure 4.7: Illustration Skin Temperature for one participant on shift versus time. 
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for the detection of activity classification. Activity classification could be listed as; 

walking, resting, exercise, falling, etc.  

 

HRV and activity recognition in unison are more promising at identifying chronic 

cognitive and physical fatigue levels than the two variables individually (Gonzalez et 

al., 2017), showing promise that a combination of variables may be a more robust 

predictor of fatigue onset. Surgical staff may spend much of time standing or 

performing activities that require some physical effort, therefore they are at a greater 

risk of depleting energy sources and becoming physically fatigued when compared to 

more stationary counterparts (Johnston et al., 2018). However this study is not looking 

at physical fatigue which is more associated with athletes. This study will want to 

identify the onset of workplace fatigue, a multidisciplinary construct consisting of 

physiological and psychological constructs. Therefore, ACC cannot predict workplace 

fatigue alone, however there may be identifiable trends which increase the likelihood 

of fatigue onset. Figure 4.8 shows the total change in magnitude of acceleration in x, y 

and z direction for each sample, averaged for every minute (vector magnitude = √(X2 + 

Y2 + Z2). This calculation allows a visual representation of when the participants are 

active or stationary on shift. Large spikes in the figure can be categorised as high levels 

of activity, for example walking, whereas stable levels can be categorised as low levels 

of activity, when sitting or lying down.  

 

 

 

 

 

 

 

 

 

Figure 4.8: Illustration of sum of accelerometer vectors for one participant on 

shift. 
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e. KSS model (Circadian Rhythm) 

As mentioned in section 2.2.2, Karolinska sleepiness scale (KSS) and circadian varies 

with the time of day and is generally unique to the individual. It can be misaligned by 

lack of sleep, jet lag or working night shifts. Based on the information derived from 

section 3.3 (explained in section 2.2.2), Figure 4.9 indicates the relevant Karolinska 

sleepiness scale predictor for the participants in the study used in the proposed model 

(roughly inversely proportional to circadian rhythm (adopted from Bowman et al., 

2002)). The figure represents the predicted average sleepiness, based on the KSS, from 

the surgeons in the pilot study. Day and 24-hour shifts increase over time, however the 

night shift has a unique pattern beginning high and steeply declining, and declining 

again in the early hours of the morning, which may be due to the suppression of 

melatonin with increased natural light. 

 

The values depicted in the graph are stationary and identical for all participants. For 

example, if a day shift (08:00:00am-20:00:00pm) participant’s data collection began at 

9:00:00am instead of 08:00:00am, the circadian graph would line up accordingly. 
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Figure 4.9: Karolinska sleepiness scale model for the three shift types, day, night 

and 24-hour (roughly inverse to circadian rhythm model (Figure 2.3)). 
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f. Time on Shift  

Time on Shift accounts for the inevitability of time awake – the increase in tiredness as 

the shift progresses (Johnston et al., 2018). Figure 4.10 shows the increase in score 

added per minute, depending on the length of the shift. This increase in score is adopted 

from Koh et al. (2007). The rise in component f. is consistent for all participants. Out 

of all the components in the proposed model, this component fluctuates with the 

implementation of breaks, which are included in the shifts. To delay the rise in tiredness 

depicted by the Time on Shift component, breaks and their effect of reducing the KSS 

are considered. This increase is derived from previous research into driver fatigue 

(Reyner and Horne, 1998), as there are currently no figures to support the rise in 

workplace fatigue. Table 4.1 below shows the rise in score every minute, which 

increases each hour into the shift. The score increases by 0.00125 for each hour into the 

shift.  For example, if a participant has been on shift for 6 hours, then the score would 

increase by (0.00125 x 6) per minute. The Time on Shift variable is shown in Figure 

4.10, which is the same for all participants.  
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Figure 4.10: Time on Shift score as a function of time, with increased steepness 

over time. 
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Table 4.1: Increase in score of Time on shift variable per minute versus hours into shift 

Time into Shift (Hours) Increase in score (per minute) 

0 0.00125 

4 0.005 

8 0.01 

12 0.015 

16 0.02 

20 0.025 

24 0.03 

 

g. Sleep Quality 

The sleep quality component is dependent on the participants answer to their ‘quality 

of sleep in the pre-shift questionnaire (section 3.2.2).  This methodology proposes that 

sleep quality effects the Time on Shift (component f), whereby individuals who score 

‘poor’ or ‘average’ sleep have a shift from baseline of the Time on Shift component on 

the y-axis (Figure 4.10). However, the results from the pre-shift questionnaire and the 

resultant peak KSS scores from the individuals will test this hypothesis and calculate 

the respective shift in the Time on Shift variable.  

 

4.3.2 Fatigue Index for advisory system 

A proposed mathematical algorithm (Eqn 7, below) to calculate the fatigue index 

respective of the Karolinska Sleepiness Scale (KSS) values for the new cohort of 

surgeons combines the seven components aforementioned (section 3.3.1), adopted from 

Koh et al. (2007). Each variable is to be weighted according to their influence on the 

KSS using correlation analysis (section 4.4.5), using Eqn 7. Further testing will 

determine the weighting and the inclusion of the variables. 
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FI = Σ(HR(t) + HRV(t) + ST(t) + ACC(t) + KSS_Pred(t) + (ToSSQ(t) – DR(t)))       --- Eqn 7 

Where, 

• FI = Fatigue Index 

• HR(t)  = Heart Rate with respect to time 

• HRV(t)  = Heart Rate Variability with respect to time 

• ST(t)  = Skin Temperature with respect to time 

• ACC(t)  = Accelerometer data with respect to time 

• KSS_Pred(t) = Predicted KSS with respect to time 

• ToSSQ(t) = Time on Shift with respect to time and sleep quality 

• DR(t) = Duration of rest with respect to time 

 

4.4.1 Data analysis 

The data extraction for the questionnaires and mobile phone are described in this 

section. There were very large amounts of data to work with in this protocol. As such, 

platforms MATLAB (MATLAB ver. R2020a) and IBM SPSS Statistics (Version 27) 

were used to compress and analyse the data.  

 

4.4.2 Biometrics extraction from mobile phone 

HR, HRV, ST and ACC were extracted from the mobile device using Microsoft Excel 

and MATLAB. All biomarkers are initially saved in one Excel document, in 900-

second intervals. Conversion of the raw data into a computable format was conducted 

using an APK file (file format for applications used on Android operating systems) 

provided by the manufacturer. Additionally, the manufacturer provided a .exe file 

which converted the ECG channel into an RRI format. The programmes listed are 

described below.  
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1. Microsoft Excel 

Microsoft Excel (Microsoft Corporation, 2016) is a spreadsheet programme, which 

allows the free manipulation of large data sets. Formulae and multiple spreadsheets can 

be utilised in order to provide meaningful information within strategically ordered 

columns and rows for further analysis. An example of the spreadsheet is given in 

Appendix C.  

2.  MATLAB 

MATLAB (MATLAB ver. R2020a) is a programming platform designed for engineers 

to analyse and design systems through code, making complex tasks much easier using 

customisable scripts. Computational mathematics can be saved and adjusted according 

to the needs of the user, without repeating the code with each use. An example of 

MATLAB code used in the project is given in Appendix C.  

 

4.4.3 Technical specification of chest strap 

The performance characteristics of the chest strap can be found in Appendix C. The 

chest strap pod has a rechargeable lithium polymer battery, with a minimum battery life 

of 24 hours, meaning it lasts for the duration of the 24-hour shifts some surgeons in our 

study worked. Multiple chest straps were provided for each size, ranging from extra-

small to extra-extra-large.  

 

4.4.4.1 Extraction of HR and HRV data 

 

4.4.4.1.1 Time domain 

Data for HR (Figure 4.4) requires the manufacturer’s algorithm in order to reconstruct 

the packets of raw data and reorganise them into time series per channel. The black-

box algorithm provided by the manufacturer exports all the raw data and saves them 

into new .csv files (comma-separated values), three-channel ECG and RRI peaks, 

respectively. The three ECG channels produce three RRI peak columns, as there are 

disparities between the ECG channels (examples of these files can be found in 

Appendix C). For each RRI peak column (RPeak_Ch1, RPeak_Ch2 and RPeak_Ch3), 

a ratio is also saved in the adjacent excel column which compares the current R-peak 
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vs baseline to the next R-peak vs baseline (an example is in Appendix C). The higher 

the ratio, the better the result, as it indicates that the baseline between QRS complexes 

in the ECG trace do not have high peaks from noise or motion artefacts. However, this 

may be biased if the R-peak itself is a false positive from a QRS-like artefact.  

 

As such, to minimise the artefacts presented in the HR and HRV, the standard deviation 

(SD) of the HR calculated from the three RRI peak columns were compared against 

one another. The column with the lowest SD was used for final analysis for that 15-

minute segment of the overall HR analysis, as the files were saved in 900 second 

intervals. 

 

In order to calculate the HR from the RRI peak columns, MATLAB was used. The RRI 

peak columns show a cumulative increase in Hz over time. The HR is sampled at 320 

Hz. The code used in MATLAB for the extraction of HR and HRV can be found in 

Appendix C. For example, the first five heartbeats from the sample are displayed as: 

 

263, 475, 686, 902, 1121… 

 

To calculate the HR from these figures, the respective RRI peak columns are saved as 

.txt files in the Microsoft application ‘Notepad’. Then, they are loaded into MATLAB 

and the code quantifies the HR as shown: 

 

90.566, 90.995, 88.888, 87.671… 

 

Thus, smaller RRI peak column differences quantify faster HR. For the extraction of 

our HRV measure, RMSSD, the HR needs to be converted into milliseconds (ms), 

which is the time-domain measure of HRV: 
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662.500, 659.375, 675.000, 684.375… 

 

However, the analysis conducted for this research monitors the average HR and HRV 

measures every minute. Therefore, the total number of heart-beats is divided by 15 to 

calculate the average per minute. There are instances however, where the length of 

BPM is not divisible by 15, and the residual heartbeats are stored in a 16th block. These 

are removed from analysis due to the small proportion of leftover heart beats which are 

not divisible by 15. The variable ‘U’ must be rounded as the built-in MATLAB variable 

‘blockproc’ cannot compute fractional parameters (code found in Appendix C). 

For example, a 15-minute sample may contain 1369 samples: 

 

1369/15 = 91.267 → 91 when rounded. 

91 x 15 = 1365 → 4 heartbeats are leftover and create the 16th variable. 

 

4.4.4.1.2 Frequency Domain 

MATLAB is able to compute the power spectral density (PSD) from the 15-minute 

ECG samples. For each 15 minute epoch throughout the participants shifts, the raw 

ECG data is loaded from a text file, and the sampling frequency is defined as 320 Hz. 

The raw ECG signal is then plotted to visualize the data (Figure 4.11). To remove noise, 

spectral leakage and baseline wander, a high-pass filter is applied to the ECG data in 

order to remove frequency components below a specified cut-off frequency of 0.04Hz 

(Figure 4.12a). A second order Butterworth is used to design the filter co-efficients (see 

Appendix D). MATLAB’s ‘filtfilt’ function filters the signal forward and backward to 

eliminate phase distortion, resulting in a filtered ECG signal with frequencies below 

0.04Hz removed. The filtered ECG signal is then differentiated, squared, and integrated 
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to obtain a tachogram, which is a plot of the time differences between consecutive R-

peaks in the ECG signal (Figure 4.13).  

 

 

The R-peaks are identified using the Hamilton-Tompkins algorithm, and the tachogram 

is divided into three equal sections, 5-minute samples. Five minute samples were 

chosen as they are the minimum measurement time for the analysis of frequency 

domain measures (Shaffer and Ginsberg, 2017). For each section, the Lomb-Scargle 

periodogram is computed to determine the power spectral density of the tachogram. 

The power spectral density is calculated for three frequency bands of interest: ultra-low 

frequency (ULF) with a range of 0 to 0.04 Hz, low frequency (LF) with a range of 0.04 

to 0.15 Hz, and high frequency (HF) with a range of 0.15 to 0.4 Hz. The indices of the 

frequency bands are found using the find function in MATLAB. The ultra-low 

frequencies (ULF) (0.003-0.04Hz) are not specifically associated with stress or fatigue, 

typically referring to thermoregulatory processes or slow physiological mechanisms 

(Shaffer and Ginsberg, 2017). 

Figure 4.11: Raw ECG trace showing baseline drift and noise. 
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Figure 4.13: Tachogram showing the time in between heart beats during 15-minute 

sample. 

Figure 4.12a and 4.12b: a) Filtered ECG trace showing removal of baseline drift 

and noise whilst plotting individual R-peaks, and b) a 10 second snapshot showing 

the r-peaks, outlined as red circles. 

a) b) 
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For each section, the LF and HF powers are calculated by summing the power spectral 

density within the respective frequency bands. The LF/HF ratio is calculated as the ratio 

of the LF power to the HF power. The mean power spectral density is computed for 

each section using the mean function in MATLAB. All values for LF power, HF power, 

LF/HF ratio, and mean power spectral density are stored in separate arrays for further 

analysis. As shown in Figures 4.16 and 4.17, the x-axis ranges from 0.04 – 0.4 Hz, 

removing the ULF components of the ECG signal, which are not involved with stress 

or fatigue. 

 

The MATLAB code also includes plotting functions to visualize the results. 

Specifically, the power spectral density is plotted with frequency on the x-axis and 

power on the y-axis. The LF and HF frequency bands are highlighted in red and blue, 

respectively. The area function is used to create shaded regions for the LF and HF 

frequency bands. The plot also includes a legend and labels for the x and y axes (Figure 

4.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: The power spectral density (PSD) of one 5-minute sample of filtered 

ECG data for the analysis of frequency domain measures. 
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Finally, the chromatic filters R, G and B are superimposed over the PSD charts, for 

analysis of the dominant filter. Figure 4.15 shows the chosen superimposed filters on 

top of an example of PSD. For the analysis of PSD, the chosen filters are truncated 

triangular filters with a shortened green filter. The truncated triangular filter (Koh et al., 

2005) is used for the processing of discrete data sets, where one component of the data 

is independent from the next, whereas triangular or gaussian filters are more appropriate 

for continuous data sets. The shortened green filter was chosen to further discriminate 

the areas of low frequencies and high frequencies, (R and B filters, respectively), for 

the analysis of low or high frequency dominant signals. Whereby, low frequency 

dominance results in a dominant R filter (sympathetic nervous system dominance) and 

a dominant G or B filter results in high frequency dominance (parasympathetic nervous 

system dominance). Justification for this filter choice in Figure 4.15 can be found in 

section 4.5.2. 
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Figure 4.15: The power spectral density (PSD) of one 5-minute sample with 

modified superimposed, truncated chromatic filters (filters are labelled, R = red, G 

= green and B = blue. 

R 

G 

B 

R 

G 

B 



91 
 

Using this novel approach to the chromatic filters allows discrete distinction between 

each five-minute sample of ECG. This allows the research team to outline periods of 

stress or rest with a minimum of five minutes. The R and B filters meet at 0.022Hz, the 

R filters exclusively looks at the low frequency components of the PSD (0.04-0.15). In 

the example shown in figure 4.15 the dominant filter is G, which demonstrates high 

frequency dominance. The LF/HF ratio in this figure is 0.19, indicating greater 

parasympathetic activity and lower sympathetic activity (Area of LF divided by area of 

HF). The PSD can be used to identify 5 minute periods at work and assess, in greater 

detail than the RMSSD alone, the level of stress upon the individual during the previous 

five minutes of work. 

 

4.4.4.2 Extraction of ST 

After the manufacturers black-box algorithm separates the 15-minute files into the 

relevant biomarkers, new .csv files are constructed which contain the pod temperature 

in 1Hz samples. Each new file contains 900 samples of data. Each sample of data is 

Unix timestamped. The data is saved into a .txt file and loaded into MATLAB to find 

the average of every minute’s worth of data.  

 

4.4.4.3 Extraction of ACC 

Similarly to ST and HR extraction, new .csv files are constructed containing a 

timestamp and tri-axial accelerometer, namely x, y and z. The raw accelerometer output 

for X, Y and Z are combined in a process called vector magnitude processing (VM). VM 

thus represents the intensity of acceleration the device is subjected to, regardless of 

direction. No data preparation (e.g. calibration, conversion into g force) was conducted 

in this experiment. An example of the raw data, which is collected at 30Hz, is outlined 

in Table 4.2 below. 

 

Table 4.2: Example of Vector Magnitude raw data calculated for accelerometer analysis 

Timestamp (sec) X Y Z 

0 -726 4046 -1127 

0.033 -670 4061 -1189 
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In order to calculate the resultant VM, the respective squared values of X, Y and Z 

columns are calculated for each time stamp and then summed. The total sum is square 

rooted to provide the value T, as shown: 

√(X2 + Y2 + Z2) = T 

 

Then, the most recent timestamp is taken away from previous timestamp, to calculate 

the change in vector acceleration. Using Table 4.2, the equations are shown below. 

For instances where the delta produces a minus number, this is multiplied by -1 to 

produce a positive integer: 

√(-7262 + 40462 + -11272) = 4136.8 

√(-6702 + 40612 + -11892) = 4284.2 

 

(4284.2 - 4136) = 148.2 

 

Finally, the delta between each timestamp is saved into a .txt file for analysis in 

MATLAB, to calculate the average acceleration per minute, resulting in a graph 

similar to Figure 4.8.  

 

4.4.4.4 Normalisation of parameters used in algorithm 

As mentioned in Eqn 1 (section 2.4.2), the use of chromatics requires the normalisation 

of different signals on to a common range 0 to 1 (Zhang, 2004). However, Eqn 1 

requires the maximal amplitude of the signal for the entire duration, which cannot be 

calculated whilst collecting data in real time. As such, minimum and maximum 

parameter sizes have been pre-determined through the collection of data (section 4.2.1) 

in order to provide a threshold of normalisation. The newly formed equation (Eqn 8) is 

below:- 

 

 

--------------- Eqn 8 
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Eqn 8 enables the chromatic output to yield real time normalisation of a signal (X), such 

as the parameters for HR mentioned in section 4.5.5. 

 

Table 4.3 outlines the minimum and maximum parameters used for each variable, 

respective of shift type. The table depicts the 8am-5pm day shift. All parameters are the 

same for Day shift starting at 9am-5pm, apart from the maximum Time on Shift 

parameter is 3.388 (Table 4.3). The value in Table 4.3 are determined by the respective 

time points from Figure 4.10 and Figure 4.9, respective of shift type. 

 

 

Table 4.3 Minimum and maximum parameters for all variables in algorithm 

Variables Day shift (8am-5pm) Night shift 24 hour shift 

 Min Max Min Max Min Max 

RMSSD 25 30 25 30 25 30 

Predicted 

KSS 

2.8 7 3.81 7 1 7 

Time on 

Shift 

0 4.1388 

3.388* 

0 9 0 22.4275 

*9am – 5pm 

 

4.4.5 Statistical analysis 

SPSS (statistics 28) was used for statistical analysis. To evaluate the relationship 

between the proposed variables and KSS readings in surgeons, Pearson correlation 

coefficient analysis and regression analysis are performed (Freedman et al., 2007, 

Freedman et al., 2009). T-tests and ANOVAs are used to show the mean differences 

between gender and shift-type, respectively (Thomas et al., 2011). Where parametric 

assumptions are not met, non-parametric tests are used for t-tests and ANOVAs (Moore 

and McCabe, 2004). The non-parametric tests are Mann-Whitney U an Kruskal-Wallis 

tests (McKnight and Majab, 2010; Moore and McCabe, 2004).  
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4.4.6 Outlier removal 

In particular, HR is susceptible to artefacts using the chest strap. For example, 

activation of the chest muscles can result in a noisy ECG trace with enough contraction. 

As such, any instances in time where HR is above 190, linear interpolation is used in 

Microsoft Excel between the previous and the next values. A max HR of 190 was 

chosen as this is the average maximum heart rate for the youngest age group (25-34) in 

our sample as depicted by the common equation: 220-age. An example of linear 

interpolation is shown in Table 4.4. This method uses far less computational power than 

using MATLAB, where more code is required to process the same command, using the 

‘MATLAB live script’ function. Removal of the outlier prevents drastic changes in the 

chromatic transformation of the signal, which is explained in detail in section 2.4.4. If 

there are a significant number of outliers in a short duration, this will be removed from 

analysis.  

 

Table 4.4: Time variation with an outlier of 204 at 08:02:00 

Time (24 hour) Example with outlier With linear interpolation 

08:01:00 102 102 

08:02:00 204 117 

08:03:00 132 132 

 

If the HR parameter is linearly interpolated, so is the HRV measure (RMSSD), as the 

RMSSD is dependent upon the HR values. No outliers are removed from the other 

parameters in this methodology. 

 

4.5.1 Chromatic filtering for proposed advisory system 

The chromatic analysis is performed in Microsoft Excel as the spreadsheet format 

allows clear visual representation of large data sets. As explained in section 2.5, 

chromatic analysis includes three or more filters, which can be of varying widths 

depending on the application. Similarly, the frequency of time stepping may be chosen. 

The way these variables may be manipulated for optimal algorithm strength are 

explained in this section. 
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4.5.2 Filter choice for PSD 

In order to choose the appropriate filter for the analysis of PSD (section 4.4.4.1.2), the 

H-S polar plots for three filter types were analysed (Figure 4.16) for one 24hr shift. The 

H-L plots were removed from visual analysis, due to the extreme spread observed 

between each discrete, 5-minute sample of PSD data (as outlined in section 4.4.4.1.2). 

The PSD varied significantly between samples, which may be due to noise, causing 

large fluctuations in the overall PSD observed from one point to another. As shown in 

Figure 4.16a, the triangular filters show a considerable amount of data points between 

60-90° (R filter dominance), whereas Figure 4.16b shows a spread within 75-240° (G 

filter dominance), due to the large size of the G filter, compared to R and B filters. 

Figure 4.16c, using the modified truncated filters, greatly reduces the amount of G 

dominant filters, which is more meaningful between discrete data sets, more easily 

establishing period of sympathetic (R dominance) and parasympathetic (G or B 

dominance).  
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Figure 4.16: Visual interpretation of H-S polar plots for a) triangle filters, b) 

truncated filters c) modified, truncated filters with short green filter half the height 

of b. 

a) 

b) 

c) 
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4.5.3 Filter width 

 

 

 

 

 

 

 

 

 

 

The width determines the length of time per filter and the spread over time of all three 

filters collectively.  As shown in Figure 4.17, the total width, w, spans four minutes, w2 

spans eight minutes. Both types of filters are the same amplitude, however one set of 

filters is twice the width per filter and overall. The filter width will be analysed at 

different lengths to identify the best predictor of fatigue over time.  

 

4.5.4 Number of filters 

Most applications of chromatic filtering use three filters, R, G and B. Figure 4.18 shows 

five triangular filters, where filters D and E are between the previously described three-

filter approach. The additional filters can lead to more detailed analysis but at additional 

computational cost. The number of filters will be examined for optimal analysis whilst 

maintaining minimal computational cost.  
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Figure 4.17: Examples of triangular filter widths on an amplitude : Time diagram 
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Where four filters are analysed, two sets of chromatic transformation (section 2.4.3) are 

applied. H, L and S parameters are analysed from filters R, G and B, as well as filters 

R, D and B. The H, L and S parameters from both sets of chromatic transformation are 

averaged, which causes a shift in the chromatic data representation on the polar plots.  

 

Where five filters are analysed, there are three sets of chromatic transformation. Thus, 

R, G, B, and R, D, B and R, E, B are chromatically transformed. The results from H, L 

and S are averaged between the three sets of data, resulting further shift in chromatic 

data representation. By using more than 3 filters, signal information quantification can 

be enhanced with the use of additional filters (Jones et al., 2005). 

 

4.5.5 Parameter normalisation 

Each variable is set parameters for normalisation (see section 2.4.3) which can be 

modified either to the individual or to the shift type. Using the HR estimator (Table 

4.5), each participant can have a different maximum parameter depending on their age 

group, where the average age per group is used: 

 

 

Figure 4.18: Example of 5 chromatic filters R, D, G, E, B versus time 
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Table 4.5: HR estimator for different age groups, affecting maximum parameter 

Age group Maximum HR 

25-34 190 

35-44 180 

45-54 170 

 

For an individual in the age group 25-34, the ‘max’ parameter can be set to 190 and the 

‘min’ parameter as 60 (Aeschbacher et al., 2017). Generally, HR does not fall outside 

of this range and they will be classified as outliers and linearly interpolated (see section 

3.4.6). Therefore, where HR may be 104, Eqn 8 may be utilised: 

 

 

Changing the min/max parameters ultimately affects the strength of the signal, L 

(section 2.4.3). The parameters may be modified so that the optimum algorithm is 

produced to predict the KSS index on shift and effectively predict the onset of fatigue. 

Similarly, for parameter f. ‘time on shift’, the max parameter may be interchanged to 

the maximum length each shift worker is expected to work on their shift.  

 

4.5.6 Chromatic analysis 

The average H, L and S parameters for each participant were saved into .txt files and 

loaded into MATLAB. MATLAB was used to produce the polar plots where necessary, 

for data representation.  

 

4.6 Randomisation of participant groups 

Using a random number spinner, the first group of participants (6) was selected. Table 

4.6 shows the two groups, as well as the relevant shift pattern and gender. Group 1 

shows the order as chosen by the random number spinner, group 2 shows the residual 

participants who were not chosen. As demonstrated, an even gender split was obtained 

for the participants.  

 

0.338 = 
(104 – 60) 

(190 – 60) 
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Table 4.6 Two groups of participants, where group 1 has the data fitted and group 2 

acts as a validator of the algorithm. 

Participant number Gender Shift type 

Group 1   

15 Male Night 

2 Female Night 

6 Male Day 

3 Male 24 hour 

14 Female 24 hour 

12 Female Night 

Group 2   

1 Male 24 hour 

8 Female 24 hour 

9 Female Day 

10 Male Day 

11 Female Day 

13 Male Night 

 

4.7 Matrix system for the identification of rest without user input 

As explained in section 4.3.1, component ‘f’ looks at the rise of the time on shift 

variable, which is manipulated by sleep quality and the duration of rest. However, the 

aim of the algorithm is to minimise the user input as much as possible. Firstly, what 

‘rest’ consists of is to be debated. Nejati et al. (2016) consider that restorative break 

programmes do not necessarily mean cessation of physical activity, but rather an 

opportunity to relax by taking on a different mind-set.  

 

A meta-survey on the nature of meaningful, restorative rest concluded that rest emerges 

from the engagement in activity that is personal, quiet and effortless (Nurit and Michal, 

2003). When asking the participants to log their breaks, it is not known what activities 

they are performing during this period without watching the participant. However, it 

may be possible to identify periods of restoration, low or high fatigue by producing a 

matrix looking at the association between (a) vector magnitude (VM) from 

accelerometer data and using (b) Power Spectral Density (PSD) of the frequency-
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domain heart rate variability (HRV) measures. Therefore, in accordance with the 5-

minute PSD measurements, the average VM every 5-minutes and PSD produce a 

matrix, which is explained by the variables in Table 4.7 and 4.8 below.  

 

(a) VM 

Whilst wearing the equipment before testing on the participants, three classification 

types for the activity of an individual during their shift were identified, as shown in 

Table 4.7 below: 

 

Table 4.7: The classification of three stages of activity to be computed into a matrix of 

fatigue onset. 

VM threshold Activity 

0-10 ‘Stationary’ – the participant is completely still, either performing 

surgery or sleeping, with minimal chest movement, accounting 

for the change in band circumference when breathing. 

10-90 ‘Rest’ – the participant is awake and moving, however the overall 

movement is limited. The participant is most likely operating at a 

desk, or stood up, but does not engage in large amounts of 

activity. 

>90 ‘Active’ – the participant’s activity is high, at the least walking 

around for the majority of the 5-minutes, presumably away from 

their desks. 

 

(b) PSD 

By observing the dominant filters (R, G, B) of the PSD (Figure 4.17), three further 

thresholds are observed in Table 4.8: 
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Table 4.8: The classification of three stages of stress based on PSD 

Hue (°) of PSD Filter dominance 

0-120 

(P3) 

Red – sympathetic dominance, indicative of stress, anxiety or 

other negative emotional states. 

121-195 

(P2) 

Green – sympathetic/parasympathetic dominance, a well-

balanced autonomic nervous system, able to return to a rested 

state quickly after stressors have passed. 

196-360 

(P1) 

Blue – parasympathetic dominance, associated with 

relaxation, calmness and positive emotional states. 

 

Applying both Tables 4.7 and 4.8, produce a matrix shown in Figure 4.19.  

 

Figure 4.19 shows scenario’s in the workplace, which are indicative of restoration 

(stationary VM and G or B dominant filter), and medium or high fatigue accumulation. 

The restoration event is a true example of when a participant is in a relaxed state with 

little stressful stimuli for at least 5-minutes, providing beneficial and restorative effects, 

this is apparent for both G or B dominant filters, where there is more parasympathetic 

dominance occurring. The high fatigue accumulations are in situations where the 

Figure 4.19: Matrix of fatigue index as outlined by VM and PSD (The angle of 

Hue) parameters to show the restorative or accumulation of fatigue.  
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P1 

P2 

P3 
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V2P1 + V2P3  

V3P3 + V1P3  
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participant is stationary with R dominant filters, or when resting with B dominance. 

These scenarios may be indicative of surgery, where the participant is stationary with 

sympathetic dominance, indicative of stress, or when the participant is performing 

monotonous work, i.e. sat at their desk, both of which accelerate the accumulation of 

fatigue (G or B dominant filters). Similarly, if the participant is engaging in a lot of 

physical activity and their PSD indicated R dominant filter, this is a high stressor 

scenario in terms of the physical accumulation of fatigue. The other states are indicative 

of a medium accumulation of fatigue. All scenarios where activity is high is medium 

risk, as the participant is engaging in physical activity and therefore less susceptible to 

the short-term risks of fatigue often seen with monotonous work, as outlined by the 

pilot study (section 3.3) and aforementioned by Hockey (2011) in section 2.2.1. Being 

in a restful state with R dominant filters are outlined as medium risk as the participant 

is engaging in activity which is providing stimulus to the brain or muscles, reducing the 

perceived monotony of the task at hand.  

 

In accordance with the formula outlined in Table 4.1, medium risk follows the rise 

outlined in this table. For categories of high risk, the rise is double that of the medium 

risk, for the five minute period. If the rise were to increase by 0.02 per minute in hour 

16 on shift, it would instead increase by 0.04 per minute. Research conducted by Horne 

and Reyner (1996) and Reyner and Horne (1997), found that caffeine and a <15-minute 

nap effectively reduce sleepiness in drivers by 1hr. This relationship of 1:4 (1 minute 

of rest = 4 minutes of wakefulness) is used for the restoration event rate in the matrix. 

Whilst the ingestion of caffeine before breaks was not instated in this line of work and 

the participants are not driving, there is currently limited evidence as to the effects of 

breaks and the subsequent restorative effects on an individual in the workplace. Future 

research will need to look at these parameters and matrices to further improve the 

algorithm. For the purposes of this study,  each 5-minutes of rest outlined by the 

restoration in Figure 4.19, 20-minutes is reduced from the time on shift variable, 

relative to the hour of which the rest is taken. For example, if 5-minutes of rest is logged 

at hour 4, then 5 samples of 1 minutes’ worth of data (as per Table 4.1) is multiplied by 

4 (the 1:4 ratio), then divided by 5 to give the reduction in the time on shift variable 

each minute. E.g. ((0.005*5)*4)/5 = 0.02. Therefore, each 5-minutes of rest observed 

by the matrix, results in a reduction of the time on shift variable of 20 minutes’ worth 
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of medium-risk fatigue accumulation. The effects of the outcomes of the matrix are 

outlined in Table 4.9.  

 

Table 4.9: The increase in the time on shift component of the algorithm per minute, 

based upon PSD and VM, respective of the hour into the shift. 

Time into Shift 

(Hours) 

Medium High Rest 

0 0.00125 0.0025 -0.005 

4 0.005 0.01 -0.02 

8 0.01 0.02 -0.04 

12 0.015 0.03 -0.06 

16 0.02 0.04 -0.08 

20 0.025 0.05 -0.1 

24 0.03 0.06 -0.12 

 

The chromatic results chapter will look at the association between both algorithms, with 

and without the matrix, to see whether it serves as a good proxy for the identification 

of strategic rest periods/breaks on shift. If successful, it further mitigates the 

requirement for user input into the algorithm when stating that they are on a break, as 

it is not known what activity the participant may be up to, or perhaps they forgot to 

clock off on the break as per the questionnaire outlined in section 4.2.2.1. 

 

4.8 Summary 

This chapter covers the methodology for the second round of testing with our cohort of 

surgeons for the monitoring of fatigue in the workplace, using the KSS (section 2.2.1.2). 

The proposed model for identification of workplace fatigue and its components are 

explained, which include HR, HRV, ST, time on shift and predicted KSS, as well as the 

data analysis techniques and analytical platforms. The statistical analysis in SPSS, 

removal of outliers and chromatic filtering components are also described.  
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The justification for each variable is described in this section, as well as the equipment 

used. The randomisation of participants is shown, which will be used to fit the algorithm 

which is described in chapter 6. The matrix system is described, providing a unique 

alternative to logging the duration of rest on shift, mitigating the possibility of user 

input error in the algorithm, based on PSD and VM. All data in the next chapter includes 

all participant’s data for the justification and verification of the variables to be included 

in the final algorithm.  
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Chapter 5 

 

 

Experimental Results and analysis 
 

 

5.1 Introduction 

The following section includes an analysis and discussion of the collected 

questionnaire and chest strap data retrieved from all participants. The section will 

provide statistical analysis on the KSS variance across shifts and genders, as well 

as the correlation between the biomarkers. Following on, this section will include 

more statistical analysis into the components which are to be carried forward for 

chromatic analysis (chapter 6). The justification for exclusion of irrelevant 

variables, which will take up additional computational cost and worsen the effect 

of the algorithm are also explained. 

 

In total, for the 12 participants (excluding three due to missing data), there are 

9557 sets of data for every variable, each set of data represents 1 minute. Data is 

‘trimmed’ so that the total collected data is comparable for every variable, namely: 

Karolinska Sleepiness Scale (KSS), Heart Rate (HR), Skin Temperature (ST), 

Heart Rate Variability (RMSSD) and Accelerometer (ACC), Time on Shift and 

Predicted KSS. LF/HF ratio was excluded from analysis due to being averaged 

every 5 minutes and not every minute as the other variables were. For example, if 

participants began recording KSS values before the equipment was worn, or a 

participant had removed equipment but carried on filling out KSS, data is only 

included where there are comparable data sets for all variables.  
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5.2 Surgeon fatigue questionnaire results  

 

5.2.1 Introduction 

This section will discuss the responses and outcomes of the questionnaire 

administered to the surgeons (section 4.2.2.1). Similarly, sleep quality will be 

addressed in this section. The questionnaire was sent every three hours on shift. In 

total there were 65 text messages sent for participants to fill out the questionnaire 

however, 59 were answered (91%).  

 

5.2.2 Surgeon fatigue questionnaire analysis 

Every participant answered multiple questionnaires, which shows the fluctuations 

of the KSS for each participant throughout their shift. As a result, statistical 

analysis observes trends in the data. Average KSS values in males and females 

were 4.22 + 1.43 and 3.31 + 1.75, respectively; the distribution in the two groups 

differed significantly (Mann-whitney U = 6219753, z = -31.59, p < 0.001). 

Kruskal-Wallis test identified that the average KSS values differed significantly 

between shift types X2(2) = 1209.483, p < 0.001, where the day shift participant 

scored lower than the night shift and the 24hour shift workers. Table 5.1 shows 

descriptive statistics for KSS, split by shift type. 
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Figure 5.1: Frequency and distribution of KSS scores, split by shift type. 
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Table 5.1: Shift type and average KSS scores for all surgeons. 

Shift type Average Maximum Minimum 

Day 2.75 + 0.69 5 1 

Night 3.61 + 1.93 8 1 

24 hour 4.40 + 1.64 8 2 

 

Figure 5.1 shows the frequency and distribution of KSS scores, split by shift type. 

In total, there were 59 questionnaires answered, with 59 KSS scores.  

 

Participants on day shifts were not subject to fatigue, as their KSS score did not 

reach six. However, participants on night and 24 hour shifts did include examples 

of instances where surgeons were likely to be fatigued and potentially cause errors. 

Overall, there were nine recorded instances of participants being subject to fatigue. 

 

Figure 5.2 highlights the frequency of KSS scores before a participants’ break and 

afterwards. It can be seen that participants who reported higher KSS values 

benefitted from breaks more than those who reported two or three, whereby KSS 

scores did not change after a break. Breaks were more effective at reducing KSS 

when participants were already fatigued (>6 KSS), Mann-whitney U = 33, z = -

2.657, p = 0.030.  
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For errors made, there were 53 reports that no errors were made from the last 

questionnaire. However, there were one near-miss and two unsure responses 

(Table 5.2).  

 

Table 5.2: Reports of near-miss or unsure errors, relative to the shift and time of 

day. 

Type of 

error 

KSS Shift type Time of day (24 

hour) 

Near-miss 6 Night 20:30 

Unsure 7 24hour 23:00 

Unsure 4 Day 17:00 

 

No participants smoked in this experiment. Therefore, smoking is removed from 

analysis in this report. Further information on caffeine and naps are included in 

section 5.4.1.  
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Figure 5.2: Frequency of KSS score at the start and end of breaks for all 

participants. 
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5.2.3 Sleep quality 

Table 5.3 shows the average sleep in hours for each sleep quality score, in 

reference to the last full sleep prior to the beginning of their shift. No participant 

had a shift within 24 hours of the shift being recorded. There were no significant 

differences in sleep quality, duration, or the KSS values shown in Table 5.3 by 

shift types or gender. As can be seen, the majority of participants had good sleep 

quality, which is coupled with an adequate amount of sleep. A quarter of our 

sample had average or poor sleep, which is likely to predispose participants to 

fatigue earlier on in their shift. This is achieved with >1 hours less sleep per night 

and shown by the KSS peak achieved on average for each sleep group. Half of the 

‘good’ sleep quality was from day shift workers, explaining the reduced KSS 

average at its peak. KSS at the start of the shift was higher for average sleep 

compared to good sleep.  

 

Table 5.3: Average sleep in hours for each sleep quality score and the relevant 

KSS scores at the start and at its peak during the shift. 

Sleep 

Quality 

Quantity Sleep (hours) KSS 

start 

KSS 

peak 

Good 9 7.78 2.86 4.29 

Average 2 6.00 4.33 7.33 

Poor 1 6.5 2 8 

 

To provide sustenance to the hypothesised increase in y-axis shift depending on 

sleep quality mentioned in section 4.3.1 (component g), the difference between the 

start KSS and the peak KSS doubles with each stage of sleep quality (~1.5, 3, 6). 

As the KSS ranges on a Likert scale from 1-9, the ‘good’ sleep scores begin at the 

minimum threshold as defined by the min and max parameters. The ‘average’ 

sleep score begin at 33% of the maximum parameter as the KSS value increased 

by 33% of the Likert and similarly the ‘poor’ sleep scores begin at 66% of the 

maximum parameter as the KSS value increases by 66% of the total spread of the 

scale  
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Figure 5.3 shows the difference between ‘good’, ‘average’ and ‘poor’ sleep quality 

prior to their shift. The ratings of good to poor are subjective and thus should be used 

cautiously. Participants who claimed to have a ‘good’ sleep prior to their shift, adhered 

to the rise in Time on Shift depicted in Figure 4.10. Participants who logged ‘average’ 

sleep had the same curve, however the value begins at 33% of the pre-determined max 

parameter respective of shift type, instead of 0, using the formulae: (max*0.33) + n (see 

Table 4.3 for max), where n is the raw value of Time on shift for the appropriate amount 

of minutes the participant has been on shift. For participants who had a ‘poor’ sleep, 

the score began at 66% of the max parameter, using the formulae: (max*0.66) + n. For 

example, a 24hr shift participant who had ‘good’ sleep quality before their shift would 

be at work for 1165 minutes before achieving the same score as a participant who had 

‘poor’ sleep quality.  

 

 

 

 

Figure 5.3: Comparison between ‘good’, ‘average’ and ‘poor’ sleep quality and its 

effect on the Time on Shift variable. 
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5.3 Chest strap results  

 

5.3.1 Introduction 

This section includes a brief analysis on the biomarkers obtained from the study 

and their correlations against each other. Any significant differences between shift 

types or genders are included in this section also.  

 

5.3.2 Chest strap analysis 

Kruskal-Wallis analysis identified significant differences for all biomarkers across 

the shift types. Heart rate (HR) was significantly lower for 24 hour shifts (96.26 

BPM) compared to day shift (105.27 BPM) and night shift (105.27 BPM) X2(2) = 

371.80, P < 0.001. Heart rate variability (RMSSD) measures were significant 

higher for 24hour shifts (29.29ms) compared to day shift (26.36ms), X2(2) = 

955.56, p < 0.001, but not significantly different to night shifts. Skin Temperature 

(ST) was significantly lower for the day shift (33.11) compared to 24hour shifts 

(33.90) X2(2) = 708.54, p < 0.001 and night shift participants produced higher 

vector magnitude values (256.00) compared to 24hour shift (193.16) X2(2) = 

162.73, p < 0.001.  

 

Table 5.4 shows the R-value (correlation) between the biomarkers included in the 

study. All values reached statistical significance and are compared against 9049 

values, which are recorded in total. Of note, the only significant finding is the 

inverse relationship between HR and HRV, which is expected. That is, as HR 

increases, HRV decreases. The other variables have weak correlations against each 

other.  
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Table 5.4: Correlation between biomarkers (heart rate, heart rate variability, skin 

temperature and vector magnitude) in the study. 

Biomarkers HR HRV ST ACC 

HR 1 -0.549 -0.216 0.205 

HRV -0.549 1 0.140 -0.113 

ST -0.216 0.140 1 -0.110 

VM 0.205 -0.113 -0.110 1 

 

When split by gender, similar correlations are produced and displayed in Table 

5.5: 

 

Table 5.5: Correlation between biomarkers (heart rate, heart rate variability, skin 

temperature and vector magnitude), split by gender. 

Male     

Biomarkers HR HRV ST ACC 

HR 1 -0.376 -0.440 0.279 

HRV -0.376 1 0.209 -0.075 

ST -0.440 0.209 1 -0.124 

VM 0.279 -0.075 -0.124 1 

 

Female     

Biomarkers HR HRV ST ACC 

HR 1 -0.569 -0.081 0.144 

HRV -0.569 1 0.143 -0.132 

ST -0.081 0.143 1 -0.102 

VM 0.144 -0.132 -0.102 1 

 

For males, the correlation between ST and HRV is stronger, whereas for females 

the correlation between HRV and HR is stronger.  In general, most correlations 

are similar and either show a good correlation, or weak correlation, when split by 

shift type as shown in Table 5.6. The main consistency between shift type is 

between HR and HRV. 
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Table 5.6: Correlation between biomarkers (heart rate, heart rate variability, skin 

temperature and vector magnitude), split by shift type. 

Day Shift     

Biomarkers HR HRV ST ACC 

HR 1 -0.761 -0.236 0.194 

HRV -0.761 1 0.047 -0.102 

ST -0.236 0.047 1 -0.081 

VM 0.194 -0.102 -0.081 1 

 

Night Shift     

Biomarkers HR HRV ST ACC 

HR 1 -0.642 -0.258 0.239 

HRV -0.642 1 0.232 -0.191 

ST -0.258 0.232 1 -0.133 

VM 0.239 -0.191 -0.133 1 

 

24-hour shift 

Biomarkers HR HRV ST ACC 

HR 1 -0.524 -0.153 0.186 

HRV -0.524 1 -0.104 -0.011 

ST -0.153 -0.104 1 -0.101 

VM 0.186 -0.011 -0.101 1 

 

5.3.3 Chest strap and questionnaire discussion 

As expected, night shift and 24hour shift workers reported higher KSS values than 

day shift workers, presumably due to working overnight and suffering from 

misaligned circadian rhythms. This can be justified by the frequencies of KSS 

responses depicted in figure 5.1. Participants had greater success at reducing their 

KSS values taking breaks when subject to fatigue/sleepiness. Whilst it is 

understood that participants take breaks as and when they can, there may be 

additional benefit to the organisation and individual to take breaks at alternative 

times on their shift.  
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For errors made and sleep quality, they are hard to admit. These variables may not 

be reported truthfully, as there is undoubtedly an unconscious bias that making 

errors is bad for the individual and the organisation. However, if true, our cohort 

have been very successful at mitigating errors despite 50% of our cohort reaching 

a 6 on the KSS. 24hour and night shift workers may not have good sleep quality 

prior to their shifts due to misaligned circadian rhythms. There is no objective data 

collected for sleep quality to see what time participants were sleeping and whether 

it is an unnatural time as expected with the day shift workers. Sleep quality can be 

hard to depict with a Likert scale, especially if one’s perceptions of ‘poor’ sleep 

are different. Nonetheless, there is a trend that average or poor sleep results in a 

larger KSS peak during the shift.  

 

HR was significantly lower for 24hour shifts, which may be due to sleep 

opportunities taken that therefore reduces the overall HR for significant durations 

on the shift. Similarly, HRV measures are higher for 24hour shifts, as HRV is 

inversely proportional to HR. ST is susceptible to artefacts, such as pressure, 

which can be applied to the temperature sensing pod that increases the 

temperature. As the pressure cannot be measured, ST can vary considerably 

between participants. Similarly, whilst all participants wore surgical scrubs, some 

participants were wearing additional layers underneath their scrubs which can 

increase the temperature further. ACC was significantly higher for night shifts 

compared to 24hour shifts, but similarly to HR and HRV, there are large periods 

of inactivity for 24hour shift workers who had opportunities for sleep on their shift. 

As a result, this reduces the average vector magnitude per minute.  

 

5.4 Algorithm Statistical Analysis  

 

5.4.1 Break algorithm 

Table 5.7 shows the habits identified on surgeons breaks. Smoking is not included 

as no participants in the study smoked. Overall, there were 26 breaks reported for 

the 12 participants.  
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Table 5.7: Description of each break recorded from all participants, in ascending 

order for duration of break. 

Duration 

of break 

(minutes) 

Decrease 

in KSS 

Nap Caffeine Shift 

type 

Gender 

10 0 No No Day Male 

10 0 No Yes 24hrs Male 

15 0 No Yes 24hrs Male 

15 0 No Yes 24hrs Female 

15 0 No Yes 24hrs Female 

15 0 No Yes Day Female 

15 0 No Yes Day Female 

15 0 No No Day Female 

20 0 No Yes 24hrs Male 

20 0 No Yes Night Female 

20 0 No No Night Male 

25 1 No No Day Male 

25 0 No No Day Female 

30 0 No No 24hrs Male 

30 2 No No 24hrs Male 

30 1 No No Night Female 

30 0 No No Day Male 

30 0 No No Day Male 

30 0 No No 24hrs Male 

30 0 No No Day Male 

30 1 No No Night Male 

60 1 No No Night Male 

90 0 No No 24hrs Female 

150 3 Yes No Night Male 

350 2 Yes No Night Female 

370 4 Yes No 24hrs Male 

 

One-way AVOVA identified no significant differences in caffeine occurrences by 

shift type. Similarly independent samples t-test identified no significant 

differences in caffeine or naps by gender, which provides homogeneity across our 

sample of participants.  
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Figure 5.4 shows the relationship between time on break and the reduction in 

KSS value from pre to post break.  

 

 

 

 

 

 

 

 

 

 

 

An increased break length significantly correlates to a decrease in KSS, r(26) = 

0.792, p <0.001. Break length was regressed on predicting the decrease in KSS. 

Moreover, the r2 = 0.628 depicts that the model explains 62.8% of the variance in 

KSS.  

The line of best fit depicted in figure 5.3 has the gradient: 

y = 0.07 + 0.00898*X 

with reference to the x and y axis in figure 5.4.  

 

5.4.2 KSS correlation 

The correlation between KSS and the four biomarkers are displayed in the scatter 

graphs below (Figures 5.5 - 5.8). The r2 values and lines of best fit are also 

shown in the plots.  
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Figure 5.4: Relationship between length of break and reduction in KSS for all 

participants, as depicted in Table 5.7. 
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Figure 5.5: Scatterplot of correlation between HR and KSS for all 

participants. 
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Figure 5.6: Scatterplot of correlation between RMSSD and KSS for all 

participants. 
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Heart rate and KSS had a moderate negative correlation, r(9557) = -0.332, p < 

0.001. RMSSD had a near strong positive correlation, r(9557) = 0.697, p < 0.001, 

whereas VM and ST data had weak correlation (r(9557) = -0.058, p < 0.001, and 

r(9557) = 0.090, p < 0.001, respectively). As can be shown, 47.01% of the 

variation of KSS can be explained by RMSSD. The cumulative sum of RMSSD 

and VM were also analysed against the KSS scores, r(9557) = 0.599, p < 0.001 
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Figure 5.8: Scatterplot of correlation between Skin Temperature (ST) and KSS for 

all participants. 
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Figure 5.7: Scatterplot of correlation between Vector Magnitude (VM) and KSS 

for all participants. 
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and r(9557) = 0.445, p < 0.001, respectively. These both show a moderate 

correlation, however, the regression analysis identified only 35.8% and 19.8% of 

the variance in KSS.  

 

Table 5.8 and 5.9 show the differences in r2 values when split by gender and shift 

type: 

 

Table 5.8: r2 values for biomarkers (heart rate, heart rate variability, skin 

temperature and vector magnitude), split by gender 

Biomarker Male Female 

HR 0.068 0.079 

HRV 0.473 0.436 

ST 0.013 0.010 

VM -0.042 -0.041 

 

 

Table 5.9: r2 values for biomarkers (heart rate, heart rate variability, skin 

temperature and vector magnitude), split by shift type 

Biomarker Day Night 24hour 

HR 0.042 0.281 0.070 

HRV 0.005 0.740 0.263 

ST 0.047 0.014 0.043 

VM -0.061 -0.016 -0.041 

 

 

When split by gender, there are no dissimilar results between the biomarkers 

association with KSS. However, when split by shift type, there is a clear difference 

in relationship for the HRV measure across the shifts. Night shift participants 

account 74% of the KSS variance to HRV, in comparison with Day shift workers, 

that can only account 0.5% of the KSS variance to HRV.  

 

5.4.3 Algorithm discussion 

With reference to Figures 5.5 - 5.8, it is concluded that ST and VM have a weak 

association with KSS variance. In this study the link between ST, VM and KSS 
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cannot be inferred, therefore they are removed from any further analysis in this 

study with regards to Eqn 9 (see below). For variance of VM, it is expected that 

all participants are constantly moving as part of their job, which is why vector 

magnitude is fairly consistent across the KSS. ST is fairly uniform and consistent, 

as participants are unlikely to face large variations in temperature. It is also 

important to note that ST changes are susceptible to artefacts when there is external 

pressure applied to the sensor, for example when leaning on the sensor which can 

increase the temperature of the pod.  

 

As mentioned before, KSS values >6 are associated with signs of sleepiness. 

Similarly, section 5.2.2 identified that breaks are most effective when participants 

score >6 on the KSS. Therefore, an alarm/break recommendation should aim to 

predict when a participant is at a six on the KSS scale, to achieve a greater 

reduction on the KSS and prevent the participant from scoring a six or above.  

 

HR and HRV are two measures which explain over half of the variance in the KSS. 

However, HRV is calculated from HR, yet yields a much more significant 

relationship for KSS. To reduce the computational cost of the proposed algorithm, 

HR will be removed from further analysis.  

 

Overall, the proposed algorithm to predict the value of KSS, will include the 

following equation: 

 

FI = Σ(HRV(t) + KSS_Pred(t) + (ToSSQ(t) – DR(t))) ----------------Eqn 9 

 

 

Where,  

• FI = Fatigue index  

• HRV(t) = Heart Rate Variability  
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• KSS_Pred(t) = Predicted KSS with respect to time  

• ToSSQ (t) = Time on Shift based on sleep quality with respect to time  

• DR(t) = Duration of rest with respect to time 

 

In the next chapter, Eqn 9 will be compared again Eqn 10 (below), which 

includes modification from the matrix (using chromatic parameter H from the 

power spectral density (PSD) analysis and the VM) outlined in section 4.7. 

 

FI = Σ(HRV(t) + KSS_Pred(t) + (ToSSQ(t) + MATRIX)) ----------------Eqn 10 

 

Where,  

• FI = Fatigue Index  

• HRV(t) = Heart Rate Variability  

• KSS_Pred(t) = Predicted KSS with respect to time  

• ToSSQ (t) = Time on Shift based on sleep quality with respect to time  

• MATRIX = further increase or decrease based on criteria from section 4.7. 

 

5.5 Summary 

This section includes the results obtained from the surgeon questionnaire as well 

as the data from the chest straps for every participant. The section highlights the 

increased KSS values from night and 24hour shifts, as well as the effectiveness of 

breaks and when is best to take them. The sleep quality is assessed, finding those 

who scored average or poor had, on average, higher peak KSS values during their 

shifts. 

 

The biomarkers were correlated against KSS, whereby RMSSD had a strong 

correlation and accounted for 47.01% of the variance in KSS. HR has a moderate 

negative correlation whereas ST and VM had a weak correlation. Due to the 

environmental elements and the activity during the shifts for all surgeons, ST and 
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VM are to be removed from further analysis. Similarly, to reduce computational 

cost of the proposed algorithm, HR will be removed from further analysis. 
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Chapter 6  

  

  

Chromatic analysis and discussion of results 
 

 

6.1 Introduction  

The analysis of the results in chapter 6 include the application of the statistical results 

in chapter 5, using the chromatics from chapter 4 (Eqn 9 and Eqn 10, respectively). The 

application of chromatics assists in reducing the complexity of unprocessed, raw signals 

produced from the Time on Shift, Heart Rate Variability (HRV) measures and circadian 

rhythm variables. The information derived from the chromatic transformation can be 

further analysed to predict the onset of fatigue in the workplace.  

 

The onset of fatigue can be flagged using an advisory system, which monitors the total 

average strength (L) of the signals based on the individual weightings of each parameter 

(section 5.4.2) to classify tiredness information efficiently. Polar plots and line graphs 

can then be used to visualise the tiredness of the individual. The three triangular and 

overlapping chromatic filters identify fatigue trends over a participant’s entire shift. 

The fatigue trends are individualised by the HRV measure, shift-specific and time-

specific using the predicted KSS variable. Details about the applications of the H, L 

and S parameters are discussed. 

 

Taking breaks causes a slight reduction in the Karolinska Sleepiness Scale (KSS). Its 

application is discussed in this chapter, as well as examples of individual participants 

and how the advisory system correctly identifies all cases of fatigue identified by the 
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participants in this research. This chapter ends with a recommendation for multiple 

alarms per shift. 

 

6.2 Application of L for the prediction of KSS 

Upon further analysis, an algorithm can be derived from the L parameter and its 

relationship with the Karolinska Sleepiness Scale (KSS). The algorithm chosen in this 

chapter considered filter length, height, width, time stepping frequencies, alternative 

min/max parameters (section 4.4.4.4), individualised parameters depending on shift 

type (e.g. shift differences in HRV as shown in section 5.3.2) and the effects of breaks 

on shift at reducing the value of L. The final normalisation parameters and subsequent 

weightings deliver the highest correlation between the L parameter and KSS. 

 

 

Table 6.1: Amendments to algorithm and subsequent outcomes between KSS and L 

parameter. 

Amendments Outcomes  

Adjustment of min/max parameters for 

normalisation 

Reduction in R-value (correlation) 

Time on Shift linear rise Reduction in R-value (correlation) 

Modified HRV min/max parameters by 

shift  

Reduction in R-value (correlation) 

Increased height of filters Reduction in R-value (correlation) 

Increased number of filters Extra computational cost  

Increased width of filters Smooths L data but delays the time for the alarm 

to be triggered 

Sleep resets Time on Shift parameter Increase in R-value (correlation) 

Moving average of RMSSD data Increase in R-value (correlation) 

 

Table 6.1 shows the amendments to improve the correlation between the L parameter 

and KSS. Modifications to the number, width and height of the chromatic filters R, G 

and B resulted in a reduction of the correlation between L and KSS. Whilst increasing 

the filters’ width smooths out the L parameter, it may delay the onset of the advisory 

alarm, and therefore the width chosen is nine minutes for all parameters. Adding extra 

filters, up to five in total, increases the computational cost of the algorithm with no 

benefit to the correlation between L and KSS. Increasing the height of the filters 
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significantly reduces the correlation due to the large fluctuations in HRV every minute. 

The HRV parameters were modified by shift type (Table 5.6). However, the R-value 

was significantly reduced. The circadian rhythm differentiates the shifts and even 

though no correlation was identified between HRV and day shifts, the risks of the alarm 

sounding on day shifts are lower than on 24-hour or night shifts (Table 5.1).  

 

Finally, due to the large variability in the RMSSD measure, the data is smoothed with 

a moving average of 30 minutes (Figure 6.1). Over time, the average ‘moves’, so that 

each data point of the series is sequentially included in the averaging, whilst the oldest 

data point in the span of the average is removed.  
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Figure 6.1: Raw RMSSD values compared against smoothed data with 30-minute 

moving average for one participant during a night shift. 
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Figure 6.2 displays the final result of the algorithm with break duration, with reference 

to KSS answers (Eqn 9). There is a strong correlation between KSS and L, r(5008) = 

0.763, p <  0.001. The regression model explains 58.2% of the variation in KSS.   

 

The gradient of the line of best fit can be defined as:   

y = 1.5487 *X – 1.1496 

with reference to the x and y axis in figure 6.2.  

Figure 6.3 displays the final result of the algorithm, utilising the MATRIX, with 

reference to KSS answers (Eqn 10). There is a strong correlation, r(5008) = 0.796, p < 

0.001. The regression model explains 63.8% of the variation in KSS.  
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-4

-2

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

L

KSS

Figure 6.3: Relationship between KSS and L parameter for algorithm using 

Matrix for group 1 (Table 4.6). 



128 
 

The gradient of the line of best fit can be defined as:   

y = 1.629*X – 1.827 

with reference to the x and y axis in figure 6.3.  

 

Table 6.2 shows the prediction of the KSS based on the value of L. According to the 

table, the alarm will trigger when the L value reaches an approximate value of 8.14 

using Eqn 9 and 8.15 using Eqn 10 (KSS ~ 6, “some signs of sleepiness”), prompting 

the surgeon to take a break.   

 

Table 6.2: Prediction of KSS from L parameter using Eqn 9 and Eqn 10 for group 1. 

KSS L (Eqn 9) L (Eqn 10) 

1 0.3991 -0.1641 

2 1.9478 1.4988 

3 3.4965 3.1617 

4 5.0452 4.8246 

5 6.5939 6.4875 

6 8.1426 8.1504 

7 9.6913 9.8133 

8 11.24 11.4762 

9 12.7887 13.1391 

 

 

6.3 Break algorithm (Eqn 9) 

Overall, 26 breaks were recorded from 12 participants. The breaks, as well as their 

subsequent reduction in KSS are displayed in Table 5.7. The model in section 5.4.1 

shows that the break duration can explain 63% of the KSS reduction. As such, the time 

on break causes a linear decrease in predicted KSS using the Time on Shift variable. 

Table 6.3 below shows examples of the Time on Shift variable reduction based on the 

break length calculated in section 5.4.1.  
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Table 6.3: Reduction of Time in Shift variable relative to length of break taken for Eqn 

9. 

Break duration (minutes) Reduction in Time on Shift variable 

10 0.16 

20 0.25 

30 0.34 

60 0.61 

90 0.88 

 

 

The Time on Shift variable was chosen for manipulation when breaks are administered 

due to its rise over time. As the breaks reduce the KSS, the reduction in the Time on 

Shift variable delays the onset of the advisory alarm to be triggered. In this equation, 

the Time on Shift variable mirrors the decline in KSS value observed due to break 

administration. This is to improve consistency in the algorithm across all participants.   

 

It was observed for those shifts that had sleep opportunity on their shift that the Time 

on Shift variable resetting to zero upon awakening resulted in a more robust overall 

correlation between KSS and L. This is due to the significant reduction in KSS scores 

post-sleep compared to pre-sleep. Whilst the study did not observe the effects of post-

sleep work fatigue due to surgeons waking up at the end of their shift, it is expected that 

if the surgeons did perform more work, they would be in a well-rested state as per KSS 

values. More research is required on the effects of continued work after sleeping. 

 

6.3.2 Duration of breaks for optimal rest (Eqn 9) 

Fatigue increases with respect to time (Johnston et al., 2018). A linear increase resulted 

in a decreased correlation between L and KSS (Table 6.1, Eqn 9). Figure 6.4 shows two 

examples of breaks, broken up into three 20-minute breaks and one 60-minute break. 

Due to the linear decline in breaks, it is more effective for participants to take multiple 

shorter breaks on shift compared to a lengthier break. As shown in Table 6.3 above, 

two 10-minute breaks reduce the Time into Shift score by 0.32, compared to 20-minute 

breaks, which reduce the Time into Shift score by 0.25. Figure 6.4 below shows that 

after a 12-hour shift, it takes 11 minutes more to achieve a score of  >4.76 for the 1-

hour-long break compared to three 20-minute breaks due to the timing of when the 
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breaks were taken. As a result, this will delay the time taken for an alarm to be sounded 

with respect to Predicted KSS and RMSSD. Further research is required to see whether 

the length of breaks over a shift have a significant impact on the KSS. 

 

 

6.4.1 Interpretation of L (Eqn 9) 

As mentioned in section 6.3, the administration of breaks reduces the Time on Shift 

variable. To advance this technique, the time on break further delays the onset of the 

alarm triggering by increasing the predicted L value relative to the length of the break, 

so that the alarm does not sound too frequently when participants are on shift.  

 

As an example, a participant who records a 30-minute break before the alarm is 

triggered (KSS = 6), increases the alarm threshold by the gradient for the length 

of break and reduction in KSS (Figure 5.3): 

0.07 + (0.00898*30) = 0.34 

The new alarm threshold for KSS of 5 (Table 6.2, Eqn 9) would be: 

8.14 + 0.34 = 8.48 
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Figure 6.4: Comparison of break duration and its effects on Time on Shift score 

for three twenty minute breaks and one sixty minute break.  
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If the participant takes more breaks before the alarm is triggered at the new threshold, 

the threshold increases further thus reducing the likelihood of alarms triggering in quick 

succession, should there be large variation in RMSSD measures. All subsequent alarm 

thresholds are increased relative to the amount of time the participant has spent on a 

break. If the participant does not take any breaks, the alarm threshold stays as the values 

in Table 6.2.  

 

Table 6.4: Each participant’s shift type included in the study. 

Participant Shift type 

1 24-hour 

2 Night 

3 24-hour 

6 Day 

8 24-hour 

9 Day 

10 Day 

11 Day 

12 Night 

13 Night 

14 24-hour 

15 Night 

 

With the information from Table 6.4, Table 6.5 shows KSS at the point where the alarm 

(KSS score of six) would trigger for the first group of 6 participants, using Eqn 9:  
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Table 6.5: KSS score when each participant’s L parameter would trigger the alarm 

(considering total elapsed time on break) using Eqn 9. 

Participant L KSS Time into shift 

(minutes) 

Total elapsed time on 

break (minutes) 

Percentage of shift 

before alarm 

2 N/A N/A N/A 0 N/A 

3 8.47 5.44 546 30 43.58 

6 8.40 4.55 547 10 114.20 

12 N/A N/A N/A 30 N/A 

14 N/A N/A N/A 150 N/A 

15 8.91 5.08 636 75 75.09 

 

As shown in Table 6.5, the alarm would have sounded for 3/6 participants. What is 

important is reducing the amount of false alarms for participants who are not fatigued. 

All day shift participants did not score KSS >6, therefore the alarm should not sound 

for these participants. However, it triggers for participant 6, due to working overtime.  

The algorithm underestimates fatigue for participant 6 (KSS = 4.55). This is due to the 

participant working overtime, with a shift scheduled to finish at 17:00pm, however 

continues to work until 19:32pm. The alarm sounds 68 minutes after the end of the 

proposed shift. Participants 3 and 15 were the only participants in this group to score 

>6 on the KSS. The alarm threshold is triggered in both instances, within +1 on the 

KSS. 

  

As previously shown in section 5.2.2, no day shift workers undertaking a normal shift 

length reported >6 on the KSS scale. The algorithm considers the average circadian 

rhythm, time on shift and RMSSD. As such, for day shift workers, two of the three 

variables increase with time (with respect to breaks taken), whilst the RMSSD can delay 

the onset of the alarm depending on the individual’s activity levels.  Generally, towards 

the end of most participants’ shifts, their RMSSD value increases with a reduced HR, 

inevitably due to relaxing at the end of the shift. 
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6.4.2 Interpretation of L (Eqn 10) 

With Eqn 10, user input is not necessary. It can be shown using Table 6.6, that both 

Eqn 9 and 10 are equally accurate at notifying the user at an appropriate time, when 

they are likely to be exhibiting signs of fatigue. 

 

Table 6.6: KSS score when each participant’s L parameter would trigger the alarm 

(considering total elapsed time on break) using Eqn 10. 

Participant L KSS Time into shift 

(minutes) 

Total elapsed time on 

break (minutes) 

Percentage of shift 

before alarm 

2 N/A N/A N/A N/A N/A 

3 8.17 5.60 504 N/A 41.96 

6 8.15 4.55 547 N/A 114.20 

12 N/A N/A N/A N/A N/A 

14 N/A N/A N/A N/A N/A 

15 7.58 5.37 721 N/A 85.12 

 

 

6.4.3 Interpretation of H,L and S for Power Spectral density (PSD) (Eqn 10) 

As aforementioned, the H parameter is utilised to outline the dominant sympathetic or 

parasympathetic nervous system (Figure 4.17), to be computed into the matrix. The L 

parameter may be able to provide insight into the noise situated within the ECG or 

concurrent Tachogram, however steps were taken to minimise the noise, by introducing 

thresholds between R-peaks on the ECG trace and minimal heights of the R-peaks 

within the signal.  The S parameter is able to reflect the LF/HF ratio as shown with 

scatter graphs (Figures 6.5a and 6.5b). Figure 6.5a and b show very similar outputs, 

which may be able to predict the LF/HF ratio using chromatics, however with an S 

parameter normalised between 0 and 1. Whilst the figures look similar, the spread (S) 

of the data within the PSD graphs does not necessarily affect the rate of fatigue 

accumulation. Future research should look at the association of the L and S parameters 

in more detail, as chromatics may be a useful indicator of fatigue identification, with a 

larger sample size to remove any noise which can be depicted in the figures. 
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6.5 Chromatic filtering  

For the chromatic filtering, time stepping and filter size were optimised for the maximal 

performance of the algorithm. For all parameters, the filter width spanned five minutes 

to identify the trend of tiredness and nine minutes for all three filters. Similarly, time 

stepping occurred every minute for all parameters. This filter size was found to cause 

the most significant correlation between KSS and L. This yields a sampling rate of one 

data point per minute. An increased filter width increases the computational output of 

the algorithm and smooths out the L value. However, the additional computational cost 

is not worth the extra time required for the alarm to be sounded. For example, increasing 

the filters’ width to 10 minutes would require a total overlap of 19 minutes. When 

observing the participants in real-time, 19 minutes is a longer time before sounding an 

alarm to predict the onset of fatigue. With this technique, a chromatic output can be 

processed for each time step of the experimental data. Trends are identifiable over time 

as to the fatigue level of the participant in a visual manner.  

 

6.5.1 Chromatic visual representation 

Figures 6.6 are different signals affecting the proposed advisory system and, 

subsequently, the position of H on the polar plots. The three forms of signals identify 

the relevant filter strength. Figure 6.6a) shows a positive gradient over time, which 

results in a dominant blue filter. Figure 6.6b) shows a negative gradient, resulting in a 

dominant red filter. Figure 6.6c) shows the gradient increases to a peak and then 

decreases after that, showing that tiredness reaches a peak for the parameter in question. 
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6.6 Interpretation of H  

The polar plot identifies the dominant signal on the respective R, G and B filters. With 

the filter size selection, the chromatic H can distinguish trends of tiredness.  Figure 6.7 

identifies the correspondence between different sectors of the H plot and the subsequent 

linearity of a signal (Figure 6.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applying the chromatic processing to the averages of the parameters RMSSD, Time on 

Shift and Circadian rhythm outputs the H-L polar plots below. Figure 6.8 represents all 

data points for all participants when working, whilst Figure 6.9 represents all data points 

for participants whilst on a break. The H representation is an average of the three 

parameters.  

There is a tendency for the break data to cause an anti-clockwise shift in polar plots due 

to the reduction in the Time on Shift variable, causing R to be the dominant filter. In 

Figure 6.7: Correspondence of sectors of H and their respective effects on the 

signal adopting the signal variations in Figure 6.6. 
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Figure 6.8, the participant’s H data points fluctuate between 120° and 300° degrees 

whilst working. In Figure 6.9, the H data points fluctuate between 60° and 240°. Due 

to the decreasing nature of the Time on Shift variable whilst on a break, the R filter 

becomes one of the three dominating filters, reducing the angle of H closer to 0°.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: All data points for H-L plots whilst participants are categorised as 

working during their shift 
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The relationship between the dominant filters and H plots are identified: 

Data points below 240° include at least one G or R filter, indicating a decline in 

circadian rhythm, Time on Shift or RMSSD. Figure 6.9 has one outlier for the break, 

with a H value of 251°. This is due to a sharp increase in RMSSD, circadian rhythm 

and a peak for Time on Shift, which resulted in an outlier. Recording a H value less 

than 240° is generally good and results in a more steady increase in L.  

A H lower than 180° includes at least one R and one G dominant filter, increasing the 

delay before the alarm is sounded due to a shallower increase in L.  

Data points above 240° indicate a maximum of one G filter but no R, meaning an incline 

in the variables overall, including a minimum of two B filters.  

Data points over 270° (Figure 6.8) include three B dominant filters. Therefore, the 

participants in this category are at risk of becoming fatigued at a greater rate, resulting 

in a steeper increase in L and a reduced time before the alarm is triggered.  

Figure 6.9: All data points for H-L plots whilst participants who are categorised as 

being on a break during their shift.  
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The Kruskal-Wallis test showed that there was a statistically significant difference in 

the change in L between consecutive values for the three different H zones (Figure 6.7) 

with the exclusion of breaks,  χ2(2) = 2994.63, p < 0.001, with a mean rank L score of 

1928.83 for zone 60-180°, 2602.68 for zone 180-240° and 5292.56 for zone 240-300°. 

The mean results are displayed in Table 6.7 (below). The trend line shows a gradual 

increase in L steepness with an increase in H, displayed in Figure 6.10. 

 

 

 

 

 

 

 

 

 

 

Table 6.7: Comparison of mean change in L split by sector (Figure 6.7). 

Sector Mean (Standard Deviation) Sample (n) 

1st -0.08(+0.12) 363 

2nd -0.05(+0.11) 3772 

3rd 0.08(+0.1) 3453 

 

Whilst there is an upward trend of increased tiredness in the 3rd sector of Figure 6.7, no 

useful additional, operational information is produced for diagnosing the onset of 

workplace fatigue and therefore the H parameter’s use in the algorithm is not necessary 

in this application, due to the large variation in the dominant filter as a result of the 

RMSSD variable. 

 

Figure 6.10: Difference in consecutive L values whilst working, by H zone (A = 1st 

sector, B = 2nd sector, C = 3rd sector) (Figure 6.7).  
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6.6.1 Application of H 

In this application, the Hue (H)  of a signal does not provide much meaningful data to 

predict the onset of fatigue. Figure 6.11d contains the average data from Figures 6.11a-

c (with respect to the day participant in Figure 6.11a). As can be shown the data from 

Figure 6.11c causes drastic shifts in the dominant filter, causing large fluctuations. 
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Figure 6.11b: Hue in degrees of Time into shift, versus time into shift for a day-

shift participant, showing examples of two breaks being taken that effect the 

dominant filter. 
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Figure 6.11a: Hue in degrees of predicted KSS with respect to shift type, versus 

time into shift for a day-shift participant. 
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Due to the large variation in the RMSSD measure, the H of the signal in this application 

does not provide meaningful data for the prediction of workplace fatigue. As shown in 

Figures 6.8 and 6.9, there is no linearity with the data and as such data presentation in 

the form of polar plots cannot be executed to provide meaningful information for the 

prediction of workplace fatigue. 
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Figure 6.11c: Hue in degrees of RMSSD versus time into shift for a day-shift 

participant. 

Figure 6.11d: Hue in degrees of combined measures from Figures 5.16a-c versus 

time into shift for a day-shift participant. 



143 
 

6.6.2 Example of participants’ H-L polar plot data split by work and break 

The following section includes examples of participants’ H-L plots. The left polar plot 

depicts the time spent working, and the right polar plot shows the time spent on breaks. 

The sections of the shift are colour coded to represent the different stages of work: 

• Red - first period of work and first break, respectively 

• Green – second period of work and second break, respectively 

• Blue – third period of work and third break, respectively 

• Yellow – fourth period of work and fourth break, respectively  

 

 

 

 

 

 

 

 

 

 

Figure 6.12 show an example of a 24-hour shift in H-L polar plots, where each data 

point represents one minute. It is shown that a clockwise shift of 60° occurs whilst on 

break due to the R dominant filter. This pattern is the same for all participants. The 

radius of the data points increases over time due to the Time on Shift and Circadian 

rhythm variables. The radius of L is slightly decreased on break, compared to working, 

due to the decrease in the Time on Shift variable.    

 

A crossover is observed between the blue and yellow periods whilst working, where 

the break reduced the L value back below the advisory alarm threshold for some time. 

In this example, the participant began their break with an L value = 6.54 and, after a 

Figure 6.12: Example of H-L plots for one participant, split by (a) work and (b) 

break periods, where the colour depicts each iteration of work and break during a 

shift.  

b) a) 
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15-minute break, was able to reduce their L value = 4.18 due to a reduction in RMSSD 

and Time on Shift variables. However, as aforementioned, the H parameter does not 

provide meaningful data in order to predict the onset of workplace fatigue. 

 

6.7 Interpretation of S 

The chromatic S measures the spread of the signal. Signals with little spread result in a 

more considerable S value, and vice versa. The RMSSD parameter fluctuates every 

minute, resulting in significant changes in the spread of the signal that cannot be used 

to predict tiredness. Due to the high frequency of time stepping, the S parameter also 

does not yield any valuable information for the proposed advisory system in this 

application. 

 

Figure 6.13 include all H-S plots from all participants whilst working and on break, 

respectively. The S parameter contains negative numbers due to the RMSSD minimum 

and maximum parameters, which affect the weighting of the L parameter. For example, 

an RMSSD value of 24, when the minimum parameter for RMSSD is 25, results in a 

normalised value of -0.2. As such, it is difficult to read the results of S using polar plots 

because the negative values mirror the reading of H.  

 

 

 

 

 

 

 

 

 
Figure 6.13: All data points for H-S plots (a) whilst working (b) whilst on break 

across all participants. 

b) a) 
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No relationship was observed between the S value and Heart Rate (HR), Heart rate 

variability (RMSSD) or acceleration (VM) for increasing the KSS score, whereby a 

lower S value did not increase the KSS scores. This may have been useful in instances 

where participants were stationary for long periods of time and therefore had relatively 

stable measures of HR and VM.  

 

6.7.1 Application of S 

Figures 6.14a-e below show the S components of the variables utilised in the algorithm 

and their respective raw values. Predicted KSS for each shift type is presented in 

Figures 6.14a-c, the Time into shift is presented in Figure 6.14d and the RMSSD is 

presented in Figure 6.14e. The S component displays spikes in the spread of a signal 

when there is deviation in the raw values. The data in Figures 6.14a-e does not report 

meaningful data for the identification of workplace fatigue in this application as the 

data is held within pre-determined, normalised parameters. This causes large spikes to 

be present in instances where the raw data equals the minimum or maximum parameter, 

such as the spikes identified in Figures 6.14a-b.  
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Figure 6.14a: Comparison of the spread of the predicted KSS scores for 24 hour 

shift workers against the raw data for predicted KSS. 
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Figure 6.14b: Comparison of the spread of the predicted KSS scores for night shift 

workers against the raw data for predicted KSS. 
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Figure 6.14c: Comparison of the spread of the predicted KSS scores for day shift 

workers against the raw data for predicted KSS. 
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The S data in Figure 6.14d offers more variation depending on the amount and length 

of breaks taken during the shift. In this example, a large spike is shown towards the end 

of the shift, as the length of the break returns the Time on shift score back towards the 

minimum parameter set for normalisation of the variable. 

 

 

 

 

 

 

 

 

 

 

 

Finally, Figure 6.14e offers the most variance, however S in this case cannot determine 

tiredness. A low S value is a product of a relatively stable Heart Rate (HR) over time, 

however the HR may be stable at high or low beats per minute. The analysis in this 

study identifies high RMSSD measures to be a predictor of KSS scores, therefore the 

spread of the signal cannot determine the level of tiredness as a product of time on shift 

or demanding work. 
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Figure 6.14d: Comparison of the spread of the Time on shift scores for one 

participant working a 24 hour shift participant against the raw data for Time on shift 

score using Eqn 9 for the deduction depending on time on break. 
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6.7.2 Example of participants’ H-S data split by work and break 

Figures 6.15 show the H-S polar plots for the same participant depicted in Figure 6.12. 

Across all participants, the S is lower on average whilst on a break when compared to 

working. The yellow markers for the break polar plot show very little spread over time 

due to the participant taking the opportunity to sleep whilst on shift. The RMSSD output 

is relatively stable over time due to the participant’s lack of physical or mental stressors 

observed whilst awake. As such, the H-S polar plot may be used to observe the 

fluctuation in RMSSD, as circadian rhythm and Time on Shift follow linear increases 

or decrease over time. However, this does not necessarily predict the onset of fatigue 

in the workplace but the stability of one’s sympathetic nervous system. 

 

The following section includes examples of participants’ H-S plots. The left polar plot 

depicts the time spent working, and the right polar plot shows the time spent on breaks. 

The sections of the shift are colour coded to represent the different stages of work: 

• Red - first period of work and first break, respectively 

• Green – second period of work and second break, respectively 

• Blue – third period of work and third break, respectively 

• Yellow – fourth period of work and fourth break, respectively  
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working a 24 hour shift against the raw data for RMSSD. 
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6.8 Conclusion 

This chapter described the application of chromatics from the experimental results 

derived in chapter 4 to create the building blocks of a novel algorithm capable of 

identifying the onset of fatigue in surgeons. The algorithm is simple, consisting of one 

physiological parameter and two physical systems to produce >94% accuracy within 

+1.96 standard deviations between the KSS and the L parameter. This allows for easy 

administration of such a product in the workplace, where it is unlikely to cause 

discomfort or affect the work of surgeons. The data for RMSSD is smoothed with a 

moving average so that there are less sharp spikes in the average L parameter, leading 

to false or frequent alarms.  

 

Breaks are shown to reduce the KSS of an individual; they are accounted for in the 

algorithm. The breaks reduce the Time on Shift variable, which rises with increased 

time on shift (Koh et al., 2007). Therefore, taking breaks delays the onset of the alarm 

threshold being triggered. Shorter and more frequent breaks reduce the Time on Shift 

variable more effectively due to the rise of Time on Shift, which the administration of 

a break linearly reduces. 

 

Figure 6.15: Example of one participants H-S plots, split by (a) break and (b) work 

period, where the colours denote each iteration of break and work.  

a) b) 
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Chromatics can be used to visualise the data using the H parameter, where an angle 

closer to 0° indicates less fatigue. The L parameter can define the magnitude of fatigue. 

As the shift progresses, the magnitude of L increases. Once the L parameter reaches a 

defined magnitude, an alarm may be triggered to advise the user to take a strategic break 

before the participant is likely to become excessively tired. The visualisation of the data 

can show, in real-time, how fatigued a participant is by observing the trend of their data. 

Data points over 270° include three B dominant filters. Therefore, participants in this 

category risk becoming fatigued at a greater rate, resulting in a steeper increase in L 

and a reduction in time before the alarm is triggered.  

 

The algorithm provides a holistic means for identifying fatigue in the workplace for 

surgeons (shift workers) and, as such, acts as an advisory system that can be ignored 

upon the recipient’s request. If the alarm is silenced, the following alarm may sound 

when the participants predicted tiredness increases by one on the KSS (Table 6.2) and 

a break had not been taken.  
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Chapter 7 

 

 

Application of break prompts using 

advisory system 

 

 

7.1 Introduction 

The following chapter show group B results for both Eqn 9 and Eqn 10, as to how well 

they predict the onset of fatigue in the workplace. The overall correlation, including 

Bland-Altman plots, will be displayed for the reproducibility of the algorithm and it’s 

effects at predicting KSS. This chapter will apply the concepts of the algorithm into 

practice, as well as demonstrating how multiple alarms may be triggered  to suggest 

break prompts to surgeons on shift depending on the algorithms described in Chapter 5 

(Eqn 9 + 10), using the following rules for Eqn 9: 

1) Alarm does not sound within 60 minutes of a break 

In order to prevent alarms occurring after participants have scheduled a break, the alarm 

will not sound shortly after a break. The break may have been used as an opportunity 

to consume caffeine, which takes time to enter the blood stream. Simultaneously, the 

user may be continuing on with the same task as before the break, however the break 

gave the user opportunity to disconnect from the task for a short-time so that they are 

more alert on the task afterwards (Nejati et al., 2016).  

2) Threshold for alarm is increased relative to the time on break 
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The time on break is considered, as breaks are administered as opportunity to distract 

from the task at hand, if used appropriately. As such, the threshold is extended so that 

those who take breaks do not reach the threshold at a similar time to those who do not 

take a break, dependant on heart rate variability (HRV) scores. The time on shift 

variable is also reduced, further delaying the onset of the alarm.  

 

7.2 Analysis of Eqn 9 

Table 7.1 shows the instances where the alarm sounds for the second group of 

participants, with reference to Table 6.2 and the aforementioned Eqn 9 criteria.  

 

Table 7.1: The analysis of group B for Eqn 9, showing instances where the alarm 

sounded. 

Participant L KSS Time into shift 

(minutes) 

Total elapsed time on 

break (minutes) 

Percentage of shift 

before alarm 

1 N/A N/A N/A 310 N/A 

8 N/A N/A N/A 105 N/A 

9 N/A N/A N/A 30 N/A 

10 N/A N/A N/A 0 N/A 

11 N/A N/A N/A 25 N/A 

13 8.49 3.33 622 30 75.95 

 

In this set of data, Participants 1 and 8 exceed the KSS >6 threshold, but the alarm does 

not sound. For participant 1 (Figure 7.1), they log a break from 00:45am until the end 

of the shift (post 08:00am). Therefore, as they are administering ‘sleep opportunity’, 

the alarm does not sound. As for participant 8 (Figure 7.2), the alarm does not sound 

also due to the time spent on a break. However, the time on the break was fairly early 

on into the shift, when it would have been more appropriate to administer break 

opportunity later on into the shift, where more benefit would have been sought. The 

alarm triggers for participant 13, however the KSS is over-estimated in this example 

(Figure 7.3).  
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The line graphs in this chapter (e.g. Figure 7.1, below) show the signal magnitude (L) 

of the variables used in the algorithm over time, against the actual KSS scores. The 

alarm threshold is depicted using the red line and average is the average L of all the 

signal magnitudes. This can be used to track workplace fatigue in real time. 

 

 

 

 

 

 

 

 

 

 

Participant 1 (Figure 7.1) logs a ‘good’ sleep quality prior to the shift, which is why the 

average signal magnitude pictures is relatively low. The alarm would have triggered in 

this example, had the participant not logged sleep opportunity at 00:45am.  

 

 

 

 

 

 

 

 

 

Figure 7.1: The alarm not triggering for participant 1, due to the sleep opportunity 

taken at the end of the break. 

0

1

2

3

4

5

6

7

8

9

10

0

2

4

6

8

10

12

14

16

07:50:00 11:50:00 15:50:00 19:50:00 23:50:00 03:50:00 07:50:00

K
ar

o
li

n
sk

a 
S

le
ep

in
es

s 
S

ca
le

S
ig

n
al

 M
ag

n
it

u
d
e 

(L
)

Time of day

Average RMSSD Predicted KSS Time on shift KSS

Figure 7.2: The alarm not triggering for participant 8, due to the increase in the 

alarm threshold, as breaks have been taken during shift, as well as low RMSSD 

measures. 
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Participant 8 (Figure 7.2) logs a poor sleep at the beginning of the shift, which explains 

the large increase on the y-axis for the time on shift parameter. Despite this, the alarm 

does not flag as the participants RMSSD remains low throughout the shift. A 

consideration with this algorithm, is that it assumes KSS increases and decreases 

linearly, which may not be accurate. Future research needs to look at the effects of KSS 

with shorter time-points between questionnaires, as this participant may have been 

feeling alert for the majority of the shift, but when finally given time to rest at the end 

of the shift (filling in another questionnaire), they realise how tired they are. The 

participant did not log a KSS score for 8 hours prior to the final one, therefore it is 

uncertain how they were feeling at around 4am, when a KSS should have been logged. 

Nonetheless, without this information, it is assumed that the KSS increased gradually 

over time.  

 

 

 

 

 

 

 

 

 

 

 

Participant 13 (Figure 7.3) demonstrates an example, where with an ‘average’ logged 

sleep, high RMSSD measures and it being a night shift, where the predicted KSS is 

expected to be around 6, that the alarm sounds. In this instance, the alarm over-estimates 

the actual KSS. It is expected, that for the participants RMSSD to be so high, that they 

must be engaging in very little activity, presumably monotonous desk work. Whilst the 

alarm over-estimates the actual KSS, the participant is made aware that this time of day 
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Figure 7.3: The alarm triggering for participant 13, due to very high RMSSD 

measures during the latter half of the shift, as well as it being a night shift with only 

one 30 minute logged break. 

Alarm triggered 
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with a low HR are warning signs that errors may be made due to a high-fatigued state. 

In the example, the alarm threshold is: 8.14 + 0.3394 = 8.48. The alarm is triggered at 

03:06am (see blue circle on Figure 7.3).  

 

7.3 Analysis of Eqn 10 

Table 7.2 shows when the alarms are triggered using the Matrix, which includes 

analysis of rest opportunities by the participant, with reference to vector magnitude 

(VM) and power spectral density (PSD), using chromatic H to determine the state of 

the autonomous nervous system (ANS). The Matrix is able to categorise medium or 

high fatigue events, as well as restorative events (of at least 5-minutes).  

 

Table 7.2: The analysis of group B for Eqn 10, showing instances where the alarm 

sounded. 

Participant L KSS Time into shift 

(minutes) 

Total elapsed time on 

break (minutes) 

Percentage of shift 

before alarm 

1 8.15 4.32 1116 N/A 86.92 

8 8.16 6.41 1268 N/A 88.00 

9 N/A N/A N/A N/A N/A 

10 N/A N/A N/A N/A N/A 

11 N/A N/A N/A N/A N/A 

13 8.17 3.65 721 N/A 86.94 

 

In comparison to Eqn 9, the alarm threshold is triggered for participants 1 and 8. In this 

equation, the time on logged breaks is not considered. Figures 7.4, 7.5 and 7.6 show the 

comparison between participants 1,8 and 13, as to when the alarm is triggered. For 

participants 9, 10 and 11, the KSS does not >6, therefore the alarm is not necessary and 

works appropriately.  

 

Figure 7.4 demonstrates the alarm triggering when logged breaks are not considered, 

rather ‘true’ restorative periods at work being monitored. The Time on shift component 

has a different shape compared with Figure 7.1. In this example, whilst the participant 

had administered a break for ‘sleep opportunity’ it is more apparent, that the participant 
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does not meet the criteria which is representative of restoration, either because the 

participant is moving or the participants PSD is not reflective of parasympathetic 

dominance (G or B filters). Therefore, the participant is still in a state where stressors 

are influencing the individual. The alarm is indicated by the blue circle on Figure 7.4, 

it triggers at 00:54am.  

 

 

 

 

 

 

 

 

 

For participant 8, the alarm triggers at 05:14am. The participant has no restorative 

breaks during the shift, therefore the time on shift parameter rises. Due to the high offset 

as a result of logging poor sleep quality, the participant is correctly identified as being 

fatigued in this scenario, despite the low RMSSD measures, proving that the algorithm 

can account for a variety of factors which may otherwise seem counterintuitive.  
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Figure 7.5: The alarm triggering for participant 8, due to poor sleep score and high 

predicted KSS, with no restorative break being taken. 
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Figure 7.4: The alarm triggering for participant 1, due to high RMSSD and high 

predicted KSS, with little restorative break being taken. 
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For participant 13 with Eqn 10 (Figure 7.6), the alarm also triggers, due to no restorative 

breaks being taken and a large RMSSD value. The alarm is triggered at 02:49am. Had 

the participant recorded good sleep, the alarm would have sounded at 03:22am. In this 

example, the frequency domain (PSD) and time domain (RMSSD) HRV measures 

appear to be contradicting each other. The time on shift decline is indicative of both 

PSD and vector magnitude (VM). It may be the participant is seldom stationary and 

therefore a ‘true’ restorative period is not marked. This means that the participant is 

engaging in monotonous tasks, where activity is being reported, however in low 

quantities.  

 

 

 

 

 

 

 

 

 

On the other hand, it is possible to have a high RMSSD and a R dominant filters at the 

same time, as these two measures capture different aspects of heart rate variability 

(HRV). RMSSD is a time-domain measure of HRV that primarily reflects 

parasympathetic activity, while the R dominant filter (indicative of a high LF/HF ratio) 

is a spectral analysis technique that assesses the relative balance between sympathetic 

and parasympathetic activity. While parasympathetic activity is typically associated 

with higher RMSSD values, sympathetic activity can also contribute to LF/HF ratio. 

 

For example, during exercise or stress, sympathetic nervous system activity increases, 

leading to an increase in LF/HF ratio. At the same time, there may be a short-term 

increase in heart rate variability due to parasympathetic withdrawal and subsequent 
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Figure 7.6: The alarm triggering for participant 13, due to average sleep score and 

high predicted KSS, with no restorative break being taken. 
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reactivation, resulting in a temporary increase in RMSSD. Therefore, it is possible to 

have a situation where the R filter indicates sympathetic dominance, while RMSSD 

remains relatively high due to a short-term increase in parasympathetic activity.  

 

7.4 Comparison of Eqn 9 and Eqn 10 

The key difference between these equations, is that Eqn 9 requires user input in order 

to alert the algorithm of when a break is being taken. This can be a benefit as to one’s 

interpretation of the restorative nature of breaks. As described by Horne and Reyner 

(1996), caffeine and naps which are less than 15 minutes in duration can have excellent 

restorative effects to prologue safe driving. However, strategic napping is controversial 

in health care workplaces (Nejati et al., 2016) as health care leaders remain sceptical 

about the effectiveness of these programmes, despite research indicating otherwise 

(Arora et al., 2006).  

 

Breaks are considered an opportunity to take on a different mind-set. Meditation or 

napping alone is not the only scenario in which the restorative effects of a break can be 

known, however the literature into workplace fatigue and the restorative effects on 

reducing errors or improving quality of patient care in surgeons is seldom. Using Eqn 

9 allows the algorithm to demonstrate that an opportunity to rest is being taken, however 

the user may over/under estimate the time on and off their break, or even forget entirely, 

and therefore is subject to user error. It also requires the user to log this information 

when they may be busy, or called off their break abruptly if there is an emergency in 

the workplace. As demonstrated in Figure 5.3, there are plenty of instances where 

participants are taking breaks but they do not feel any more alert afterwards. This may 

be because they are already alert at the start of their breaks and therefore taking breaks 

at the wrong time, or perhaps they are not taking an efficient break period.  

 

Eqn 10 does not require user input. It mitigates the possibility of user error and focuses 

on objective data sets as to the quality of the restorative periods being taken. However, 

there is a drawback to this equation, if there is not an appropriate place for surgeons to 

benefit from the restorative effects of sleep or to be in an environment with no stressors. 
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A break room is the obvious place to go for a break, however it may be full of co-

workers, all of who have had equally stressful days. Nejati et al. (2016) describe in 

detail how nature, the outdoors or windowed offices can have significant impact into 

improving restorative periods in the workplace.  

 

Table 7.3 is a comparison of the accuracy between Eqn 9 and Eqn 10, and how well 

they predict fatigue in the workplace. As demonstrated, Eqn 10 triggers the alarm when 

appropriate for all incidents of fatigue where the participant scores over 6 on the KSS 

(P1, P3, P8, P15). Of note, the alarm does not trigger for P1 or P8 due to the restorative 

effects of break administration. The rows highlighted in orange are >1 KSS score away 

from the predicted KSS, the rows highlighted in green are <1 KSS score away from the 

predicted KSS. Participants 1 and 13 have been examined recently as to their false 

alarms. Participant 6 was an example of an individual who worked overtime, as such 

breaching the max parameter for the time on shift variable.  

 

Table 7.3: A comparison of the reported KSS scores when the alarm would have 

triggered on shift for Eqn 9 and Eqn 10. 

Participant Eqn 9 Eqn 10 Max KSS of participant 

1 N/A 4.24 6 

2 N/A N/A 4 

3 5.44 5.60 7 

6 4.55 4.55 5 

8 N/A 6.41 8 

9 N/A N/A 4 

10 N/A N/A 4 

11 N/A N/A 3 

12 N/A N/A 4 

13 3.33 3.65 4 

14 N/A N/A 5 

15 5.08 5.37 8 
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Below (Figure 7.7) is an example where the alarm is not required due to low RMSSD 

throughout the participants shift. In most of the examples listed in Table 7.3, this is the 

reoccurring case, when paired with good sleep quality. All day-shift participants in this 

research did not score higher than a 5, therefore it is important that the algorithm isn’t 

triggering alarms when not necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: The alarm not being required for participant 2, due to good sleep score 

and low RMSSD levels throughout the shift, using Eqn 10. 
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Figure 7.8: The alarm being triggered for participant 6, due to average sleep score 

and working overtime, despite low RMSSD levels throughout the shift, using Eqn 

10. 
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Figure 7.8 reflects the alarm trigger (blue circle) for participant 6, as the participant is 

working more than 2 hours after the end of their scheduled shift time. Of note, the 

RMSSD measure increases towards the end of the shift, which is the catalyst for the 

alarm trigger in this instance.  

 

7.4.1 Validating the algorithms 

When comparing the Karolinska Sleepiness Scale (KSS) to the algorithm, Bland-

Altman plots, mean squared error (MSE), and mean absolute error (MAE) are 

commonly used metrics for these comparisons. 

 

A Bland-Altman plot (Giavarina, 2015)  is a graphical representation of the agreement 

between two methods of measurement, in this case, the KSS and the algorithm's 

predictions. It displays the difference between the two measurements (y-axis) against 

their mean (x-axis), allowing for the visualization of any systematic bias or variation in 

the differences between the two methods. In this instance, the difference between the 

algorithm and KSS is measured. The plot can reveal if the differences are consistent 

across the range of measurements and if there are any outliers or trends in the data. The 

Bland-Altman plot is especially useful when comparing the performance of two 

different measurement methods or instruments, as it provides a way to assess the 

agreement between them beyond simple correlation or regression analyses. It can help 

identify any systematic differences between the two methods and assess the level of 

agreement between them. 

 

 

 

 

 

 

 

 

 

The Bland-Altman plot for Eqn 9 (Figure 7.9) shows a strong agreement within the 

95% confidence intervals (depicted by dashed lines). In total, 88.06% of the results fall 
Figure 7.9: Bland-Altman plot comparing KSS and L within 95% confidence 

intervals for Eqn 9. 
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within +1.96 Standard Deviations of the mean – limits of agreement. The Bland-Altman 

plot for Eqn 10 (Figure 7.10) has 91.10% of the results fall within +1.96 Standard 

Deviations of the mean – limits of agreement. This measure accurately predicts the level 

of KSS of surgeons on shift, mitigating the need for filling out questionnaires on shift. 

This method can be beneficial when surgeons may not truthfully report their fatigue 

levels on shift, or fight through the effects of fatigue without considering a break. 

 

 

 

Mean squared error (MSE): 

 

 

 

 

 

 

 

 

 

 

 

MSE is a measure of the average squared difference between the predicted values and 

the true values. It provides a quantitative estimate of the accuracy of the algorithm's 

predictions and is calculated as the mean of the squared differences between the 

predicted and true values. MSE is sensitive to outliers and can be useful for comparing 

the performance of different algorithms. For Eqn 9 and 10, the MSE values are 0.1135 

and 0.11785, respectively. MAE is a measure of the average absolute difference 

between the predicted values and the true values. Like MSE, it provides a quantitative 

estimate of the accuracy of the algorithm's predictions, but it is less sensitive to outliers. 

MAE is calculated as the mean of the absolute differences between the predicted and 

true values. For Eqn 9 and 10, the MAE values are 0.11228 and 0.11431, respectively.  
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Figure 7.10: Bland-Altman plot comparing KSS and L within 95% confidence 

intervals for Eqn 10. 
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The values for MSE and MAE are relatively similar between the two equations, 

demonstrating that the algorithms predictions of the KSS are off by approximately 0.11, 

demonstrating considerable accuracy between the two measures. 

 

If 88-91% of the algorithm's predictions fall within +- 1.96 standard deviations of the 

KSS scores, it is a good level of agreement between the algorithm's predictions and the 

true KSS scores. In statistical terms, +- 1.96 standard deviations from the mean 

correspond to the 95% confidence interval for a normally distributed variable. This 

means that if the algorithm's predictions fall within this range for 88-91% of the cases, 

there is evidence that the algorithm is providing accurate predictions. Different fields 

and applications may have different standards for what is considered acceptable levels 

of agreement between an algorithm and the true values. Additionally, other evaluation 

metrics such as mean squared error or mean absolute error may provide additional 

information about the accuracy of the algorithm's predictions. 

 

7.5  Application of advisory system 

As aforementioned, the advisory system signals an alarm when the L value reaches a 

value of 8.14 (Eqn 9) or 8.15 (Eqn 10). However, some participants exceed this 

threshold again after the administration of a break later in their shift, particularly 24-

hour shifts. For example, administering the first break after reaching the alarm threshold 

may signal the next alarm to trigger when the L reaches 9.69 (Eqn 9) or 9.81 (Eqn 10), 

the equivalent of seven on the KSS (Table 6.2). As such, further recommendations for 

the application of the advisory system may result in linearly repeated alarms, such as 

the L equivalent of the KSS scale in Table 6.2. These alarm triggers are indicated in 

Figure 7.11 with red circles. 

 

Figure 7.11 shows Participant 3 with the multiple alarm triggers with reference to Eqn 

10. The first alarm would trigger when the L value reaches 8.15. In this instance, the 

alarm is triggered 16:08pm, 500 minutes into the shift. The following alarm will sound 

at 9.81, at 00:00am, 972 minutes into the shift. In this case, 473 minutes after the 

participant’s last alarm, the alarm triggers again due to the increase in predicted KSS 

and Time on Shift parameters. In this example, the participant has minimal restorative 
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rest periods. A final alarm would trigger at 11.47, 02:44am, 1136 minutes into the shift, 

when the KSS is predicted to be 8.  

 

 

 

 

 

 

 

 

 

 

 

 

The application of multiple alarms at increasing L magnitudes is due to the continual 

rise in the Time on Shift variable, as the average L parameter will always increase. The 

participant had an average sleep in this scenario, offsetting the time on shift variable 

higher up the y-axis. The RMSSD of this participant is relatively high throughout the 

shift, as well as the actual KSS. In this example, the participant’s lowest KSS score is 

above 5 when the alarm sounds (neither alert nor sleepy), therefore they are at risk of 

making errors in the workplace.  

 

Figure 7.11 can be used to visualise the alarm system as the L value subsequently 

increases in Table 6.2. Figure 7.12 shows that if a break alarm is silenced (or not taken 

deliberately), the next subsequent alarm threshold is prioritised. This may be used when 

the recipient cannot take a structured break soon or near the end of their shift. However, 

if the alarm is not silenced, then the alarm may continue to propose an advisory break 

to the recipient. This may be used when the recipient is close to completing a task. 

Figure 7.11: Signal magnitude showing example of participant with multiple alarms 

triggering fatigue prompts due to high RMSSD levels (Figure 5.9) using three 

different parameters (Time on shift, RMSSD, predicted KSS), compared against 

Karolinska sleepiness scale. 
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Figure 7.13 displays a flowchart for what happens in the chromatic processing block in 

order to compute the resultant L threshold (outlined with an Asterix in the box). It 

shows two branches from the data sources depending on the equation used, which 

produces the output that carries on the flow chart in Figure 7.13. 

 

 

 

 

 

Figure 7.12: Flowchart for the administration of multiple alarms for advisory 

system using Table 6.2 for alarm thresholds, with input data based on Eqn 9 and 

10 in 1-minute epochs. 
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7.6 Summary 

This section applies the algorithm into practice, advising the user to take a break when 

necessary. Similar trends can be identified between RMSSD and KSS scores, further 

validating the relationship between the two, though more data must be collected to 

strengthen these findings.  

Data input 

sources: 

a) RMSSD 

b) PSD 

c) Time on Shift 

d) Predicted 

KSS 

e) VM 

* 

 
H for b) 

(frequency 

domain) 

VM 

activity 

threshold 

e) 

Average L 

for a), c) 

and d) 

Is L > current set L 

threshold?  

(Figure 7.12) 

Adjust L score based on 1-minute epochs 

Classify rest using 

MATRIX and adjust 

time on shift L 

If break logged, 

reduce time on shift 

L 

Resultant L score 

Eqn 9 

Eqn 10 

Figure 7.13: Flowchart which shows in depth analysis of the chromatic processing 

block displayed in Figure 7.12.  
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Using a chromatic approach, an algorithm has been developed which identifies the 

signal magnitude of RMSSD, predicted KSS and time on shift. The average result is 

used and when the average exceeds the alarm threshold, it is triggered. This is the first 

algorithm of it’s kind to use physiological parameters to prompt the user to take a break 

on shift, with the intention of reducing errors made in the workplace and therefore 

increasing patient outcomes. This chapter compared two algorithms, and found that the 

second algorithm (eqn 10) was better at identifying fatigue with appropriate alarm 

prompts and also a better correlation between the algorithm and KSS.  

 

However there are limitations to the algorithm which need to be addressed with future 

research. Firstly, a sleep tracker is required so that the quality of the sleep can be 

objectively measured, preventing false records or ambiguous responses. Of course, 

KSS is not the most accurate measure of sleepiness, however without being able to use 

state-of-the-art technology such as electroencephalography (EEG) due to it’s 

invasiveness, an alternative solution is used. The subjectiveness of the KSS scale 

ultimately results in discrepancies amongst individuals as to how they are feeling at any 

given moment. It is difficult to scale fatigue, as it is sleepiness or pain. As such, 

interpersonal differences cause large variation in the KSS. Self-perceived sleepiness 

can vary more considerably than every three hours on shift. However in this work, three 

hours was chosen so that it does not become too invasive for the surgeons. It is 

presumed in this research that the KSS is linear, when this may not be the case. 

 

Two algorithms (Eqn 9 and 10) shows promise at identifying the moment where 

surgeons are fatigued (or not) on shift. One requires user input (Eqn 9), however the 

other one (Eqn 10) utilises novel application of chromatics for characteristics of the 

PSD of HRV to determine an individuals autonomic nervous system activity.  Both 

algorithms are very reliable at predicting the KSS, with a MAE of 0.11 for both. 

However without real-time deployment into the field, the algorithm cannot be 

accurately tested for its validity.  
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When the alarm triggers, taking the opportunity to relax is highly recommended. This 

relaxation can take the form of meditation or simply stepping away from one's desk for 

a few minutes. Relaxation techniques such as meditation or mindfulness can help to 

reduce stress and promote a sense of calmness and well-being, which can in turn 

improve productivity and performance. Stepping away from one's desk and taking a 

short break can also help to alleviate mental and physical fatigue and reduce the risk of 

burnout. Therefore, taking advantage of the opportunity to relax when the alarm triggers 

can be an effective strategy for maintaining a healthy work-life balance and promoting 

overall well-being. 
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Chapter 8 

 

Conclusions and future work 

 

 

8.1 Conclusions 

The main objective of this research was to develop a real-time holistic and inexpensive 

fatigue monitoring system, which can be utilised in the workplace. The advisory system 

should be able to detect early signs of fatigue, advising the user to take a break when 

possible to alleviate the possibility of errors that are common in shift work. The 

advisory system is based on physiological indicators from a pilot study (section 3.3) 

and further experimental results (section 5.4), with the application of novel chromatic 

processing techniques to extract the required information for the prediction of surgeon 

fatigue with further visual representation in the form of chromatic polar plots, 

particularly for the frequency-domain heart rate variability (HRV) power spectral 

density (PSD) analysis. 

 

The physiological variables portrayed in the algorithm include Heart Rate Variability 

(HRV) with applications of both time and frequency domain, and circadian rhythm. In 

addition, the Time on Shift and sleep quality make up the final variable in the algorithm. 

The research is separated into two algorithms, one that requires user input to denote 

when breaks are being taken and one which uses the chromatic parameter Hue to 

differentiate between sympathetic and parasympathetic nervous activity when looking 

at the PSD of HRV in unison with vector magnitude (VM). In both algorithms, they 
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accumulate the average strength of these scores to provide the chromatic output L. The 

variables in the algorithm are individually weighted, to be indicative of the Karolinska 

Sleepiness Scale (KSS), with high statistical correlation. In the first instance, the 

algorithm alerts the user when they are predicted a score of ‘6’ (“some signs of 

sleepiness”) so that a break may be taken to reduce the chances of the participant 

scoring a ‘7’ (“moderately sleepy”). In the circumstance that the participant takes a 

break or rejects the alarm, it may sound again when the participant’s predicted a ‘7’, 

and so forth.  

 

With the use of chromatic analysis for both algorithm, data from the algorithm can be 

presented using polar plots. The chromatic parameters H and L represent the category 

of tiredness and the tiredness level, respectively. A H value closer to 60° represents a 

low tiredness level and minimal risk of fatigue, whereas a H closer to 300° represents 

greater risk of fatigue (Figure 6.7). Below 180° indicates the decline and possible peak 

of at least one of the three variables in the algorithm and therefore is a safe zone for the 

user to be in. Data points over 240° indicate there is at least two increasing variables 

and one possible peak of the variables and as such puts the user at an increased risk of 

fatigue. Coupled with the L parameter, chromatic analysis indicates the magnitude of 

the users fatigue risk.  

 

For both algorithms (Eqn 9 and 10), 88.06% and 91.10% of the results fall within +1.96 

Standard Deviations of the mean – limits of agreement of the actual KSS scores, indicating that 

the algorithms can accurately predicts the level of KSS of surgeons on shift, mitigating the need 

for filling out questionnaires on shift. Eqn 10 mitigates the user input of taking breaks on shift 

and appropriately monitors ‘true’ restorative events, as outlined by the chromatic H parameter 

of the PSD and the VM. The values for mean squared error and mean absolute error are 

relatively similar between the two equations, demonstrating that the algorithms 

predictions of the KSS are off by approximately 0.11, providing considerable accuracy 

between the two measures. Both equations work exceptionally at predicting workplace 

fatigue, however Eqn 10 does not require user input, therefore mitigates the possibility 

of user error when falsely reporting break opportunities. However, it is important for 

working establishments to have environments where shift workers are able to benefit 
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from true restorative events, as they are seldom during periods where participants said 

they were sleeping.  

 

The advisory system may be used in circumstances where surgeons (or other shift 

workers) have worked for a prolonged period without a break. Similarly, surgeons may 

be at a heightened risk of fatigue due to the time of day or the relaxed nature observed 

from the RMSSD and it is advised that a break be taken to further mitigate the chances 

of errors occurring in the workplace. The system is advisory, thus it would not act as a 

mandatory requirement of the individual to cease their current activities in the 

workplace. However, in instances where the alarm is ignored it may trigger again at the 

subsequent iteration presented in Table 6.2, as demonstrated in Figure 7.12. There are 

instances where surgeons may not be able to take a break for prolonged periods due to 

an operation of considerable length, in which case the surgeon may be recommended 

to take a break following completion of the operation.  

 

There are ethical considerations with this research. As mentioned in Table 3.4, not all 

individuals would be willing to wear the vest (or chest strap sensor) and it may appeal 

to certain demographics more than others. As such, the administration of such a device 

would not be made compulsory, but offer opportunity to those who relate to the 

‘concept of dynamic scheduling’. This is where workers take breaks at the most 

beneficial opportunity in the fatigue cycle, rather than scheduled by the company in 

rotation. In most instances however, scheduled breaks may be too late or too early and 

lack beneficial effects. The advisory system offers the user the opportunity to make 

them aware of their alertness, using a proactive approach to mitigate fatigue onset 

further.  

 

The present research identifies surgeons at their most fatigued when their RMSSD is 

high. However, with reference to Eqn 10, RMSSD (time-domain) and the PSD 

(frequency-domain) capture different aspects of heart rate variability (HRV), where 

RMSSD primarily reflects parasympathetic activity, while the R dominant filter 

(indicative of a high LF/HF ratio) assesses the relative balance between sympathetic 

and parasympathetic activity. While parasympathetic activity is typically associated 
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with higher RMSSD values, sympathetic activity can also contribute to LF/HF ratio. It 

may be beneficial for the individual, upon triggering an alarm, to take opportunity to 

enter a different headspace, escape their current environment and have opportunity to 

consume a caffeinated beverage or nap for at least 5 minutes for the restorative effects 

to be beneficial.  

 

There were three main aims of this thesis. The first aim, to identify contributors to 

fatigue within the workplace and possible mitigation strategies was completed with a 

questionnaire administered to Surgeons, which found that the most common 

contributors were high levels of demand, persistent mental activity and prolonged static 

postures. The main mitigators were taking a break where possible, changing positions 

at work/performing surgery and adjusting the surgical field. The questionnaire also 

highlighted gender differences with workplace fatigue. The second aim was to produce 

an advisory system to predict the onset of fatigue. This was achieved using chromatics 

and several inputs to quantify a predicted fatigue score against the KSS. The final aim, 

utilising chromatic processing, was achieved using the second aim with great success.  

 

This thesis concludes that it is possible to design a fatigue-monitoring system based on 

physiological parameters for detecting the early fatigue signs in the workplace, with 

only a chest strap, so that it is unobtrusive to the user in field-based work. The novelty 

of this thesis is provided with pioneering technology, which can monitor fatigue scores 

of human in the workplace, in real time. This has not yet been achieved but requires 

larger testing to solidify this methodology. 

 

8.2 Future work 

Reflective direction for future work would include longitudinal studies which may be 

able to provide much richer data over multiple shifts, for a more comprehensive 

understanding of the fatigue phenomena and its evolution over time. Additionally 

machine learning techniques may be an alternative solution to gain deeper insights into 

complex data sets.  
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The experiments were conducted before the construction of the advisory system and 

therefore the algorithm has not yet been tested in a real time setting. As such, the 

development of a mobile application including the algorithm and Bluetooth capability 

can be implemented in the workplace, when paired with a chest strap, for the monitoring 

of real-time surgeon fatigue. Further development of the algorithm could introduce 

machine learning that can more accurately predict the onset of fatigue, through user 

inputs of the KSS on the application, modifying the parameters for HRV normalisation 

accordingly.  

 

The sample size in this study is small and future research should recruit a larger, more 

varied cohort from multiple hospitals. Participants voluntarily took part in the study and 

therefore surgeons who are currently experiencing fatigue may have been more likely 

to participate in the study.  

 

The chromatic parameters S and L may yield important information as to its association 

with frequency-domain measures, such as the LF/HF ratio and must be investigated 

further, to provide a more robust algorithm with the possibility to reduce computational 

cost. 

 

The cohort chosen in this thesis were surgeons, however the effects of the algorithm 

can be utilised across all shift-workers. Yet, the predicted KSS variable introduced into 

the algorithm is specific to the general trends of sleepiness experienced by surgeons 

and as such should be re-evaluated for different cohorts. Similarly, the surgeons did not 

work within 24-hours of their shifts in this study. Future research may consider the 

longitudinal effects of fatigue for shift workers who work multiple days in a row, for 

example identifying circadian rhythm trends across multiple days and analysing sleep 

patterns in between shifts.  

 

The thesis highlights the benefits that decreased time-domain HRV has on reducing 

predicted KSS. However, there are variables that require further investigation with the 
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development of the proposed technology that may directly affect HRV. These variables 

include smoking (Sondermeijer et al., 2002), caffeine (Rauh et al., 2005) or other 

prescribed medications. The effects of smoking are not included in this as no 

participants were smokers. Similarly, mental health and menstrual cycles in females 

also require further investigation as they can effect both feelings of fatigue and HRV.  

 

Of note, circadian rhythms and sleep quality can vary considerably between individuals. 

Whilst Eqn 10 mitigates the user input for break administration, sleep quality has three 

options, ‘Good’, ‘Average’ and ‘Poor’, which are not objective measures that yield 

more accurate representation of the users sleep quality. In order to further improve the 

algorithm, non-intrusive sleep technology such as Actigraphy or sleep tracking mats 

with Ballistocardiography (Surantha et al., 2020) can be utilised for a more detailed 

examination of the sleep quality so that it does not remain subjective. Alternatively, a 

Likert-scale with more than three options (e.g. five) may be used in situations where 

users are unsure on the quality of their sleep, to improve this estimation parameter 

further. Then the algorithm will be free of user input, and able to be deployed into 

health-care (or other shift work) professions to reduce the errors made in the workplace.  
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Appendix A: Statistical tests used for thesis 
 

Chi-squared test (Turhan, 2020) 

 

The Chi-squared test is applied to categorical data to evaluate the likelihood that any 

observed differences between data sets arose by chance (Turhan, 2020). A P value <.05 

was used for statistical significance. The formula for χ2 is as follows:  

 

χ2 = [O – E]2/E  

 

Where O is the observed frequency and E is the expected frequency (Turhan, 2020). 

The format for reporting includes the degrees of freedom, test statistics and p value 

related to the test statistic. Degrees of freedom is calculated as (r-1)(c-1), where r = 

rows and c = columns of data (rows = male and female, columns = yes and no). The 

format is displayed below, where; df = degrees of freedom, N = number of participants, 

V = value of χ2 and p = statistical significance: 

 

χ2 = (df , N) = V, p 

 

The percentage of answers for females and males are also reported, respectively.  

 

 

Non-parametric assumptions and tests (Moore and McCabe, 2003) 

 

Where data breached parametric assumptions, non-parametric tests were 

conducted. Typical assumptions for parametric data include normality, homogeneity of 

variance and outliers. These assumptions are explained below: 

 

• Normality: Normality refers to the normal distribution of the data, that when 

visualised shows a ‘bell-shaped’ curve, implying the data is symmetrical and 

evenly distributed around the mean. Normality plots can be output in SPSS. The 

Shapiro-Wilk test of normality is used for sample sizes <50. If the significance 
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of the Shapiro-Wilk test is greater than 0.05, the data is determined to be normal. 

However if it is below 0.05, the data significantly deviate from the normal 

distribution. 

 

• Homogeneity of variance: Certain tests require that the variance of the 

populations are equal. The Levene’s Test is used to determine whether two or 

more groups have equal variance. A significant result (less than 0.05) indicates 

the violation of assumed homogeneity of variance. 

 

• Parametric assumptions assume there are no extreme outliers in any group that 

could adversely affect the test result. Boxplots can visually check for outliers to 

see whether there are many results larger than the rest of the observations in the 

group. 

 

In instances where at least one of these assumptions are not met, non-parametric tests 

are conducted. These are used when the data is skewed. Non-parametric tests are 

applicable to all types of data and include short calculations. However, they are less 

efficient compared to parametric tests and the results should be analysed cautiously as 

they may not provide an accurate answer due to the lack of distribution among the data. 

 

The two non-parametric tests used in this body of work are Mann-Whitney U and 

Kruskal Wallis tests. They are described below. 

 

Mann-Whitney U (McKnight and Najab, 2010): This test compares the outcomes of 

two independent samples. It is the non-parametric equivalent of the t-test. It is used to 

test whether observations in one sample tend to be larger than observations in the other. 

The significance level a = 0.05 is chosen.  Firstly, ranks are assigned from both groups 

in order from smallest to largest. The test statistic can then be calculated. The equation 

for Mann-Whitney U is below: 
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Where and n
1 

and
  
n

2 
are the number of participants and R

1
 and R

2
 are the sum of the 

ranks in the two groups, respectively. For this test, the null hypothesis predicts the sum 

of the rankings in the two group does not differ (U1 and U2). The alternative population 

shows the sum of the rankings differs between the two groups. 

 

 

 

 

 

 

 

 

 

 

 

A Mann-Whitney table then cross-references the Z-value to calculate the p-value. The 

table provides critical values of U for various alpha and sixes of two samples for the 

two-tailed test used in this research (Real-Statistics, 2023). If the corresponding number 

in the table is greater than the Z=value, the null hypothesis is rejected (p<0.05).  

 

Kruskal-Wallis test (Moore and McCabe, 2003): The Kruskal-Wallis rest is used 

when there are three or more independent samples. The parametric equivalent is the 

One-way ANOVA. The test determines whether the medians of three or more groups 

are different. The significance level is a = 0.05. Firstly, the data from the three groups 

is sorted into ascending order in one combined set and assigned ranks. The ranks for 

each sample are calculated by adding up the rank numbers. The H statistic is then 

calculated with the equation below:  

 

 

 

U
 
= min(U1, U2) 

Expected U → μU
 
=  
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n
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Where n = sum of sample sizes for all samples, c = number of samples, Tj = sum of 

ranks in the jth sample and nj = size of the jth sample. A chi-square value is found using 

the chi-square table (Statistics How To, 2023), with c-1 degrees of freedom. The H 

value is compared to the critical chi-square value. If the critical value is less than H, the 

null hypothesis can be rejected. If the chi-square value is not less than H, there is 

insufficient evidence suggesting the medians are unequal.  

 

Linear Mixed Model (Raudenbush and Bryk, 2002) 

Linear Mixed Models (LMMs) are an extension to typical linear models, such as linear 

regression, and they are often used with more complicated sampling designs.  

Simple linear regression uses the following equation: 

 

 

 

Where variable Y can be modelled by a dependent variable X with coefficients 

indicating the slope of the line and intercept on the X axis.  

 

Multiple linear regression can be defined with the following equation, where multiple 

terms are integrated into the model: 

 

 

 

 

Regression models are suitable in data where the sample group is homogenous. The 

LMM however, considers experimental designs with multiple subgroups within a larger 

population. includes both random effects and fixed effects. The mixed effects model 

equation is defined below: 

 

𝑦𝑖𝑗 = (𝛽0+𝑏0𝑖)+(𝛽1+𝑏1𝑖)𝑡𝑖𝑗+𝜀𝑖𝑗 

 

Where 𝑏0𝑖 and 𝑏1𝑖 are the random effects (one pair per subject), 𝑏0𝑖is the subject-

specific deviation from the average intercept, 𝑏1𝑖 is the subject-specific deviation 
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from the average slope, 𝛽0 and 𝛽1 are the fixed effects, 𝑡𝑖𝑗 is the vector of time and 

𝜀𝑖𝑗 is the vector of errors for observations in groups (Andrinopoulou et al., 2012). 

 

 

Pearson Correlation (Freedman et al., 2007) 

Pearson correlation coefficient analysis identifies the linear relationship between two 

variables. The output varies from -1 to 1, where -1 is a strong negative correlation and 

1 is a strong positive correlation. A negative correlation refers to the change in one 

variable causing the other variable to change in the opposite direction. A correlation of 

0 shows no relationship between the variables. A positive correlation shows both 

variables change in the same direction. The Pearson correlation coefficient describes 

the strength and direction of the linear relationship between two quantitative variables. 

The coefficient is given the value r. Generally, r > .5 is a strong correlation and r > .7 

is a very strong correlation. Scatter plots can depict the visual relationship between two 

variables. 

 

The relationship between two variables measures the strength in relationship of the 

samples only. It is important to draw conclusions about the populations, not just the 

samples. Therefore, it is required to do statistical significance tests. A hypothesis test 

is required, starting with the selection of null and alternative hypothesis. The alternative 

hypothesis is what is aimed to be achieved, whereas the null hypothesis is what is trying 

to be disproved. The hypothesis test aims to provide evidence that there is a significant 

correlation between the two variables. The standard measure used to measure 

significance is the p-value. The p-value is between 0 and 1, the probability that the null 

hypothesis is true. The value represents the probability that the correlation between two 

variables occurred by chance. The accepted p-value is <0.05, which indicates that there 

is only a <5% chance that the results from the sample occurred due to chance. In this 

instance, the null hypothesis can be rejected in favour for the alternative which 

concludes the correlation is statistically significant. If the p-value is bigger than the 

significance level, there is a failure to reject the null hypothesis and the correlation is 

not statistically significant.  
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Correlation measures the direction and strength of the relationship between two 

variables but regression predicts the value of variable Y based on the known value of 

the variable X through the following equation: 

Y = a + bX 

Where b indicates the slope of the line and a is the intercept (the value of Y when X = 

0).  

 

Pearsons correlation is reported as: 

r(degress of freedom) = the r statistic, p = p value. 

Degrees of freedom (df) represent the number of values in the final calculation of a 

statistic that are free to vary. In other words, it's the number of values in the final 

calculation that can be chosen independently. 

The correlation coefficient (often referred to as "r") quantifies the strength and direction 

of a linear relationship between two continuous variables. It ranges from -1 to +1. 

 

Regression Correlation (Freedman et al., 2009) 

Regression analysis is analysed using the R2 statistic, which represents the proportion 

of variance for a dependant variable which is explained by an independent variable. 

The dependant variable is the factor trying to be understood or predicted, in this 

instance, KSS. The independent variable is a factor hypothesised to have an impact on 

the dependent variable. Whilst correlation explains the strength of the relationship 

between the independent and dependant variables, R2 explains the extent the variance 

of one variable explains the variance of a second variable. This can be written by the 

following equation: 

 

 

If the R2 value of a model is 0.60, then approximately 60% of the observed variation 

can be explained by the model’s inputs. Calculating the R2 requires data points of 

dependant and independent variables and finding the line of best fit. A ‘good’ R2 value 

R2 = 1- 
Unexplained variation 

Total variation 
--------------- Eqn 8 
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is flexible depending on its application. Social research fields generally accept 0.5, 

however a finance field may accept 0.7 as a strong value.  

 

 

 

T-test (Freedman et al., 2009) 

A T-test is used to compare two groups which meet the parametric assumptions. It is 

often used to see whether two groups are different from one another. An independent-

samples T-test investigates whether there is a difference between two groups (between-

subjects). In this work, a two-tailed t-test is carried out as the difference on populations 

is calculated. The formula for the T-test is below:  

 

 

 

In this formula, t is the t value, x1 and x2 are the means of the two groups being 

compared, s2 is the pooled standard error of the two groups, and n1 and n2 are the 

number of observations in each of the groups. A larger t value shows that the difference 

between group means is greater than the pooled standard error, indicating a more 

significant difference between the groups. The calculated t value is compared against 

the values in a critical value chart to determine whether the t value is greater than what 

would be expected by chance. If so, the null hypothesis is rejected, and concludes that 

the two groups are in fact different. The formula for displaying the results is as follows: 

t(degrees of freedom) = t value, p = p value 

 

 

Analysis of Variance (ANOVA) (Moore and McCabe, 2003) 

The analysis of variance is used to compare the means of three or more independent 

samples, which meet parametric assumptions. An ANOVA is used instead of multiple 



195 
 

T-tests as multiple T-tests increases the chances of a type I error (false positive) as the 

hypothesis cannot be tested simultaneously, thus increasing the p value. A One-Way 

ANOVA refers to the number of independent variables, in this case there is one. The 

means of the independent groups are compared using the F-distribution. The F value 

can report significant differences between the levels of the independent variable, when 

p < 0.05. A higher F value indicates the means are more significantly different. The F 

value equation is below: 

 

 

 

 

 

Where F is the variance ratio for the overall test, MST is the mean square due to 

treatments/groups (between groups), MSE is the mean square due to error (within 

groups, residual mean square), Yij is an observation, Ti is a group total, G is the grand 

total of all observations, ni is the number in group i and n is the total number of 

observations. The formulae for writing ANOVA is: 

F(between groups df, within groups df) = [F-value], p = p-value. 

When the initial F test indicates that significant differences exist between group means, 

post hoc tests are useful for determining which specific means are significantly different 

when specific hypotheses are not tested. Post hoc tests compare each pair of means but 

unlike t-tests, they correct the significance estimate to account for the multiple 

comparisons. 
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Appendix B – surgeon questionnaire 

 
Fatigue in the Workplace 

1. Surgeon Questionnaire  

The idea of this anonymous questionnaire is to try and identify the prevalence of workplace 

fatigue, understand the onset and any interventions you may use to counteract fatigue. Your 

participation is greatly appreciated and should take no more than 10 minutes to answer 15 

questions. 

Please note that your data will be restricted to the research team and aims to be untraceable. 

The data will be handled with care and aims to be reported in a journal identifying aspects of 

fatigue in the workplace. The University processes personal data as part of its research and 

teaching activities in accordance with the lawful basis of ‘public task’, and in accordance with the 

University’s purpose of "advancing education, learning and research for the public benefit." 

Under UK data protection legislation, the University acts as the Data Controller for personal data 

collected as part of the University’s research. 

The Principal Investigator acts as the Data Processor for this study, and any queries relating to 

the handling of your personal data can be sent to [Jacob Merriman (j.merriman@liverpool.ac.uk) 

/ Supervisor: Jim Humphries (humph9ke@liverpool.ac.uk)]. Please proceed with the 

questionnaire if you agree with the following statements: 

 

I confirm that I have read and have understood the information sheet for the study, or it has 

been read to me. 

 

I have had the opportunity to consider the information, ask questions and have had these 

answered satisfactorily. 

 

I understand that my participation is voluntary and that I am free to stop taking part and can 

withdraw from the study at any time without giving any reason and without my rights being 

affected.  

 

In addition, I understand that I am free to decline to answer any particular question or questions. 

I understand that the information I provide will be held securely and in line with data protection 

requirements at the University of Liverpool which is fully anonymous and then deposited in the 

archive for sharing and use by other authorised researchers to support other research in the 

future. 

 

I agree to take part in the above study. 

  

1. What is your gender?  

 

   Male 
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   Female 

   Prefer not to say 

   
Other (please specify): 

  
 

  

2. What is your age range?  

 

   25-35 

   36-45 

   46-55 

   56-65 

   66-75 

   76+ 

   Prefer not to say 

  

3. What is your duration of surgical experience?  

 

   <5 years 

   5-14 years 

   14-25 years 

   25-34 years 

   35-44 years 

   45+ years 

   Prefer not to say 

  

4. Please state your department of work and Surgical Grade?  
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   Prefer not to say 

 

My surgical department is:   

  

 

  
  

5. Would you say you have been subject to any of the following sources of fatigue in the last 

month? (Choose all that apply)  

 

   
Musculoskeletal fatigue (aches/pains in the muscles/joints as a result of surgery) 

   
Sleep deprivation (the desire to sleep/nap whilst at work due to lack of sleep) 

   
Physical exhaustion (lack of energy to complete day-to-day tasks) 

   
Mental exhaustion (lack of desire/willingness to execute a task) 

   

Compassion fatigue (emotionally drained as a result of frequency of suffering patients and/or 

friends/relatives of patients) 

   
Drowsiness whilst driving (fighting the urge to sleep whilst driving to/from work) 

   
I have not been subject to fatigue at work 

   
Prefer not to say 

   

Other (please specify): 

  
 

  

6. What contributes to your fatigue at work/ whilst performing surgery? (Choose all that apply)  

 

   
I have not experienced fatigue at work 
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Persistent mental activity 

   
Prolonged static posture 

   
Continual tension using hands 

   
Monitor height 

   
Bright lights 

   
Lack of control at work 

   
Patient outcomes 

   
Lack of motivation 

   
High levels of effort 

   
Lack of rest periods during shift 

   
Lack of sleep 

   
Physical exertion 

   
Table height 

   
Positioning of apparatus 

   
Uncomfortable posture 

   
Length of operation 

   
Discussion with friends/families of patients 
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High levels of demand 

   
Disputes with colleagues 

   
Lack of reward/recognition 

   
Lack of food/water during shift 

   
Prefer not to say 

   

Other (please specify): 

  
 

  

7. How have you attempted to minimise these problems/conditions at work/ during surgery? 

(Choose all that apply)  

 

   Adjust the surgical field 

   Change instruments 

   Take a break whenever conveniently possible 

   Change position 

   Discussion with supervisors 

   Relaxation/exercise techniques (stretches, deep breaths, etc.) 

   Change height of surgical field 

   Treatment/medication 

   Ignore it 

   Time away from operating room 

   'It's impossible', 'it's part of the job' 

   I have not needed to minimise fatigue at work 
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   Prefer not to say 

   
Other (please specify): 

  
 

  

8. Thinking about your average work week, how many hours are you at work?  

 

   <20 

   20-30 

   30-40 

   40-50 

   50-60 

   60-70 

   70+ 

   
Other (please specify): 

  
 

  

9. Thinking about your average work week, how many hours do you sleep per night?  

 

   <2 

   2-4 

   4-6 

   6-8 

   8-10 

   10+ 

  

10. Have you ever had to miss work/ leave work early as a result of fatigue?  
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   Yes 

   No 

   Unsure 

   Prefer not to say 

   
Other (please specify): 

  
 

  

11. Do you use or are you aware of any intervention strategies to mitigate workplace fatigue?  

 

   I am not aware of any interventions to reduce fatigue but I am subject to fatigue 

   I am aware of interventions to reduce fatigue but do not use any myself 

   I am not aware of any interventions to reduce fatigue as I do not need to know any 

   Prefer not to say 

 

I am aware of interventions to reduce fatigue and my intervention(s) is:   

  

 

  

3. Microbreaks  

Current research is formulating around the idea of taking short pauses during operations to help 

reduce the effects of musculoskeletal fatigue in surgeons whilst performing long 

operations. 'Microbreaks’ (~1 minute pauses every 20-40 minutes with opportunity to stretch, 

relax and communicate) have been shown to improve physical and mental well-being of 

surgeons without any prolonged operation duration or adverse patient outcomes. 

  

12. What are your thoughts on 'Microbreaks' as a possible intervention?  

 

   I would be willing to see whether they reduced my fatigue symptoms 

   I am hesitant about the idea of taking structured breaks during surgery 
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   They seem like a viable option 

   I would need more information on the 'Microbreaks' before I can make a decision 

   They do not seem advantageous to me 

   Taking breaks during surgery would disrupt my flow 

   I would opt for an alternative solution 

   Prefer not to say 

   
Other (please specify): 

  
 

 

Comments:   

  

 

  

4. Wearables  

Wearable technology is on the rise (such as watches which can monitor your heart rate), with 

new electronics being able to monitor vitals throughout the working day. As of yet, there is no 

wearable suitable for the surgical environment to predict the onset of fatigue at the individual 

level. Ideas are postulating around a possible wearable vest to be worn during the shift, that 

when an individual is to become fatigued it can suggest that a break is required. 

  

13. What are your thoughts on the idea of a base-layer wearable vest monitoring your fatigue 

levels during your shift?  

 

   I would wear the vest to monitor my fatigue levels 

   I do not need to wear the vest 

   I would need more information on the vest before I can make a decision 

   I would not wear the vest to monitor my fatigue levels 

   I am hesitant about its benefits, however I would give it a go 

   Prefer not to say 
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Other (please specify): 

  
 

 

Comments:   

  

 

  
  

14. If you find yourself fatigued after a shift, does this influence your decision on whether you 

should drive home?  

 

   I do not drive to/from work 

   Yes - I usually take a break/nap before driving home 

   No - I usually drive straight home 

   I have not been fatigued at the end of my shift before getting into my car 

   Yes - I am aware that I should not be driving however I have errands to run 

   Unsure 

   Prefer not to say 

   
Other (please specify): 

  
 

 

Comments:   

  

 

  
  

15. Would you be willing to use a self-management application on your mobile phone to monitor 

your fatigue levels?  

 

   Yes 

   No 
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   Unsure 

   Prefer not to say 
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Appendix C 

 

Example of MATLAB code 

 

%Load the file. Format is P(number of participant_hour_minute_second) 

 

peaks = load('PX_XX_XX_X.txt');  

max = 320;  

min = 0;  

dif = diff(peaks);  

N = (max-min)./(dif-min);  

BPM = N*60;  

L = length(BPM);  

U = round(L/15);  

   

  

%works out average BPM every minute (split into 5 equal sections)  

   

%if we have 450 samples, this breaks it up into 5 equal sections (450/90=5)  

   

blockSize = [U, 1];  

   

meanFilterFunction = @(theBlockStructure) mean2(theBlockStructure.data(:));  

   

Block = blockproc(BPM, blockSize, meanFilterFunction);  

   

% Let's check the output size.  

   

%Now we can calculate HRV measures.   
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[rows, columns] = size(Block);  

   

B=60000;  

A=BPM;  

%convert each HR sample to ms  

X = B./A;  

   

RMSSD = sqrt(X);  

%works out SDNN every minute  

X(isinf(X)) = 0;  

X(X==0) = [];  

 

blockSize1 = [U, 1];  

meanFilterFunction = @(theBlockStructure) mean2(theBlockStructure.data(:));  

% % % % Now do the actual averaging (block average down to smaller size array).  

   

Block1 = blockproc(RMSSD, blockSize1, meanFilterFunction);  

% % % % Let's check the output size.  

[rows, columns] = size(Block1);  

 

 

 

 



208 
 

Example of Microsoft Excel for the calculation of the Predicted KSS variable  

 

 

This screen shot of Microsoft Excel uses the chromatic formulas in equations 3,4 and 5 in 

Chapter 2.4.3, for each row in the saturation, lightness and hue columns for the data 

depicted in the Raw value column.  
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Example of Three-channel ECG data  
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Example of RRI peaks with ratio column for one channel of ECG 
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Device specifications for chest strap 
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Appendix D 
 

MATLAB code for frequency domain analysis 
 

clear  
clc 

  
% Load raw ECG data 
data = load('p1_freq_final_02_14.txt'); 

  
% Define sampling frequency (in Hz) 
fs = 320; 

  

% Create time axis based on the number of samples and the sampling 

frequency 
t = (0:length(data)-1)/fs; 

  
% Plot raw ECG data with linear scaling on Y-axis 
figure; 
plot(t, data); 
xlabel('Time (s)'); 
ylabel('Voltage (mV)'); 
title('Raw ECG Trace'); 

  
% Set the desired cutoff frequency for the high-pass filter 
fc = 0.04; 

  
% Set the filter order (a second-order Butterworth filter is a common 

choice) 
order = 2; 

  
% Use the Butterworth filter design function to generate the filter 

coefficients 
% for a high-pass filter with the desired cutoff frequency and filter 

order 
[b, a] = butter(order, fc / (fs/2), 'high'); 

  
% Apply the filter to the ECG data using the filtfilt function, which 

filters the  
% signal forward and backward to eliminate phase distortion 
ecg_f = filtfilt(b, a, data); 

  
% Differentiate the ECG signal 
ecg_diff = diff(ecg_f); 

  
% Square the differentiated signal 
ecg_diff_sq = ecg_diff.^2; 

  
% Integrate the squared signal 
N = round(0.15*fs); 
b = ones(1,N)/N; 
a = 1; 
int_ecg_diff_sq = filter(b,a,ecg_diff_sq); 

  
% Find R-peaks using the Hamilton-Tompkins algorithm 
[~,r_i_raw] = findpeaks(int_ecg_diff_sq,'MinPeakHeight',0.0005,... 
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    'MinPeakDistance',0.35*fs,'MinPeakProminence',0.0005); 

  
% Create a tachogram by calculating the time differences between 

consecutive R-peaks 
IBI = diff(r_i_raw)/fs*1000; % convert to milliseconds; 
IBI_transposed = IBI'; 

  
% Plot results 
figure; 
plot(t,ecg_f); 
hold on; 
plot(t(r_i_raw),int_ecg_diff_sq(r_i_raw),'ro','MarkerSize',20); 
xlabel('Time (s)'); 
ylabel('ECG (mV)'); 
legend('ECG signal','R-peaks'); 
 %} 
    % Compute the Lomb-Scargle periodogram 
    [p,f] = plomb(IBI_transposed,[],[],fs); 

     
    % Compute the power spectral density 
    psd = p/(length(IBI_transposed)/fs); 

     
    % Define the frequency bands of interest 
 %   ULF_band = [0 0.04]; % Hz 
    LF_band = [0.04 0.15]; % Hz 
    HF_band = [0.15 0.4]; % Hz 

     
        % Find the indices of the frequency bands 
    LF_indices = find(f >= LF_band(1) & f <= LF_band(2)); 
    HF_indices = find(f >= HF_band(1) & f <= HF_band(2)); 

     

  
% Divide the tachogram into 3 equal sections 
num_sections = round((length(ecg_f))/(300*fs)); 
section_length = floor(length(IBI_transposed) / num_sections); 

  
% Calculate the power spectral density for each section using a for 

loop 
psd_sections = zeros(num_sections, 1); 
    lf_power1 = zeros(num_sections, 1); 
    hf_power1 = zeros(num_sections, 1); 
    a_lf_hf_ratios1 = zeros(num_sections, 1); 

     
    %psdAreasCell = {};  % Initialize an empty cell array 
    a_psdAreasMat = [];  % Initialize an empty matrix 

  
for i = 1:num_sections 
    section_start = (i-1)*section_length+1; 
    section_end = i*section_length; 
    if i == num_sections 
        section_end = length(IBI_transposed); 
    end 
    section_IBI = IBI_transposed(section_start:section_end); 
    [p,f] = plomb(section_IBI,[],[],fs); 
    psd = p/(length(section_IBI)/fs); 
    psd_sections(i) = mean(psd); 

     
        % Compute the LF and HF power 
    lf_power = sum(psd(LF_indices)); 
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    hf_power = sum(psd(HF_indices)); 

     
    lf_power1(i) = sum(psd(LF_indices)); 
    hf_power1(i) = sum(psd(HF_indices)); 

     
    % Calculate the LF/HF ratio 
    lf_hf_ratios = lf_power / hf_power; 
    a_lf_hf_ratios1(i) = lf_power1(i)/hf_power1(i); 

     
     figure(); 

     
    % Plot the power spectral density 
    plot(f, psd, 'k'); % Black line 
    hold on; 

  
    % Highlight the LF and HF areas in different colors 
    plot(f(LF_indices), psd(LF_indices), 'r', 'linewidth', 2); % Red 

line 
    plot(f(HF_indices), psd(HF_indices), 'b', 'linewidth', 2); % Blue 

line 

     
    % Add labels and legend 
    xlabel('Frequency (Hz)'); 
    ylabel('Power spectral density'); 
    legend('PSD', 'LF', 'HF'); 
    xlim([0.04 0.4]); 

     
    % Add shaded regions for each frequency band of interest 
   % ulf_power = area(f, psd.*(f>=ULF_band(1)&f<=ULF_band(2)), 

'FaceColor', [1 1 0.7], 'EdgeColor', 'none'); 
    lf_area = area(f, psd.*(f>=LF_band(1)&f<=LF_band(2)), 

'FaceColor', [0.9 0.9 1], 'EdgeColor', 'none'); 
    hf_area = area(f, psd.*(f>=HF_band(1)&f<=HF_band(2)), 

'FaceColor', [1 0.9 0.9], 'EdgeColor', 'none'); 
   %} 
    a_psdAreas = []; 
        fRange = 0.04:0.001:0.4; 

  
    for j = 1:length(fRange)-1 
        fIdx = find(f >= fRange(j) & f < fRange(j+1)); 
        a_psdAreas = [a_psdAreas, trapz(f(fIdx), psd(fIdx))]; 
    end 

     
    % Concatenate the new row onto the existing matrix 
    a_psdAreasMat = vertcat(a_psdAreasMat, a_psdAreas); 
    a_PSD = a_psdAreasMat'; 
end 
          %{ 
       for j = 1:length(fRange)-1 
        fIdx = find(f >= fRange(j) & f < fRange(j+1)); 
        psdAreas = [psdAreas, trapz(f(fIdx), psd(fIdx))]; 
    end 

     
    psdAreasCell{i} = psdAreas;  % Store the psdAreas values in the 

cell array 
end 

  
% Convert the cell array to a matrix (if all arrays have the same 

size) 



215 
 

psdAreasMat = cell2mat(psdAreasCell);      

     
%} 


