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1 Introduction

Since its �rst appearance in the 1980s, Value-at-Risk (VaR) has become the most widely used risk

management tool in �nancial services industry. Indeed, VaR has gained ground because it is a rela-

tively simple measure to estimate and it was established by the Basel II regulatory framework as a

benchmark method for market risk capital requirements calculation; see Basel Committee on Bank-

ing Supervision (1996, 2006). In addition to its use as a risk measure, VaR can be used as a basis for

portfolio optimization; see, e.g., Lwin et al. (2017), Yiu (2004), and Alexander and Baptista (2008).

Due to its popularity as a tool for controlling risk, �nancial managers are rightfully concerned about

the accuracy of VaR estimation. One problem that might a¤ect this estimation is e¤ectively the

presence of measurement errors in assets�prices, which can be caused by non-synchronous trading,

rounding errors, infrequent trading, market microstructure noise, manipulations (smoothing, extra

revenues, fraudulent exchanges, informationless trading), etc. Finance literature has investigated

the impact of contaminated prices on the estimation of volatility and developed robust methods to

identify the variance of actual stock prices; see, e.g., Zhou (1996), Andersen et al. (2001), Zhang

et al. (2005), Bandi et al. (2006), Barndor¤-Nielsen et al. (2011), Hansen and Lunde (2006), and

Mancino and Sanfelici (2008). However, no attention was paid to the e¤ect of this contamination

on VaR estimation, and thus no robust estimation technique is available under measurement errors.

The presence of measurement errors in high-frequency prices (also known as market microstruc-

ture noise) has been well established in the literature; see Madhavan (2000) for a survey on market

microstructure noise. Many papers have also investigated the presence of measurement errors in

low-frequency prices/returns. For instance, by collecting speci�c information on risk management

from the annual reports of the 200 largest US and international commercial banks for the period

2005-2008, Frésard et al. (2011) �nd that only a very small fraction of banks (less than 6%) uses

uncontaminated returns to estimate their VaR. Most of these banks use contaminated data which

include intraday revenues, fees, or commissions. They also show that all available back-testing pro-

cedures are highly sensitive to data contamination. As such, data contamination has undesirable

implications for model validation and can lead to the acceptance of misspeci�ed VaR models, and

therefore signi�cantly reduced regulatory capital. Furthermore, Pérignon et al. (2008) assess the

accuracy of banks�risk management systems based on daily VaR and pro�t-and-loss data. They

�nd evidence supporting the idea that banks exhibit a systematic bias in their VaR estimates,

which they attribute to several factors including measurement errors.
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None of the previous papers, however, was interested in developing robust estimation methods

to correct for the e¤ect of measurement errors on VaR estimation. In this paper, we propose a

novel semiparametric approach for the estimation of VaR in the presence of measurement errors

in stock prices. It is worth mentioning that, both theoretically and computationally, it is more

straightforward to deal with the measurement errors in the context of variance than in the context

of VaR, because it is generally easier to work with moments than with quantiles. Moreover, working

with an additive measurement error model makes the derivation of robust estimators much easier

for variance than for quantiles (VaR). We remind the reader that an additive measurement error

model de�nes a measurement error as the di¤erence between the observed stock price and the actual

(latent) stock price. For a general discussion of additive measurement error models, the reader is

referred to Schennach (2016).

To derive a robust estimator of VaR, we use a di¤erent approach than the one used by the

�nance literature to develop robust estimators of variance under market microstructure noise. To

deal with the measurement errors, we use a deconvolution kernel estimator for the density function

of the actual latent portfolio returns.1 There is a rich literature on using density deconvolution

for estimating probability density functions. Adusumilli et al. (2020) have studied inference on

the cumulative distribution function (CDF) in the context of classical measurement error problem

using density deconvolution. They applied their results to construct con�dence bands of CDFs and

quantiles, to test goodness-of-�t for parametric probability density function (PDF) models, and to

test stochastic dominance. For a review on deconvolution methods, the readers can consult Meister

(2009), Fan (1991), Hall and Lahiri (2008), and Dattner et al. (2011) among others. Thereafter, we

use Fourier inversion to compute the probability distribution function of the actual portfolio returns.

We apply power series representations of sine and exponential functions to approximate the integral

in the inversion formula and de�ne an optimization problem that makes the calculation of VaR under

measurement errors computationally feasible. Roughly speaking, power series representations are

about representing common functions as polynomials with in�nitely many terms, thus integrating

a power series is as easy as integrating a polynomial.

1We remind the reader that the concept of deconvolution corresponds to computing the inverse of the convolution

operation of two functions. Convolution operation on two functions, say f and g, produces a third function (f � g)

that expresses how the shape of one is modi�ed by the other. It is de�ned as the integral of the product of the two

functions after one is reversed and shifted. In the context of a measurement error problem, kernel deconvolution

density estimation consists in estimating the density of a variable of interest (here the density of the true stock price)

that is observable only with some measurement error.
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The derivation of robust estimator of VaR is �rst made under the assumption that the density

of the measurement error is known, but the distribution of the observed portfolio returns is always

treated as unknown and estimated nonparametrically. Thereafter, we relax this assumption and

propose a feasible way to deal with the measurement error�s distribution. Speci�cally, we follow

the literature and assume that the measurement error is normally distributed with an unknown

variance that we estimate using high-frequency data. Indeed, we can obtain a consistent estimator

for the variance of measurement error as shown in Zhang et al. (2005). We highlight that assuming

measurement error is normally distributed does not contradict the fact that returns can be non-

normally distributed.

We conduct a set of Monte Carlo simulations to examine the �nite sample performance of our

approach under the presence of measurement errors. We provide a comparison with a model-free

estimator of VaR that does not adjust for the measurement errors. We investigate the performance

of our method under di¤erent densities of the measurement error and the simulation results are

very encouraging. Furthermore, we use our method and high-frequency data to estimate the VaRs

of �ve international market indices. We compare our results with the unadjusted VaRs that we

obtain using a model-free estimator that computes the sample quantiles of the �ve indices�returns.

The empirical results suggest that ignoring measurement errors leads to an underestimation of risk.

The rest of the paper is organized as follows. In Section 2, we introduce the additive measure-

ment error model for the asset prices and demonstrate how to estimate the characteristic function

and the distribution function of latent portfolio returns. In Section 3, we derive an optimization-

based estimator of VaR of latent portfolio returns. Section 4 analyzes the performance [bias,

standard deviation, and root mean squared error] of our proposed method through Monte Carlo

simulations. In Section 5, we use our approach and high-frequency data to estimate the adjusted

VaR of �ve stock indices. Finally, Section 6 concludes. Mathematical proofs and tables of additional

Monte Carlo simulation results can be found in the Online supplementary appendix.

2 Framework

The methodology that we develop in this paper works for both individual assets and portfolios.

The exposition here is made for a portfolio of assets, but an individual asset is a special case by

setting all portfolio weights equal to zero, except the weight of the asset in question. Formally, we

assume that there are n � 1 risky assets in the economy. We denote by Pt = (p1;t; : : : ; pn;t)0 and
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P�t = (p�1;t; : : : ; p
�
n;t)

0 the n � 1 vectors of observed and actual latent log prices of the n assets at

time t; respectively. We suppose that the observed log price of each asset j can be contaminated

by a measurement error:

pj;t = p
�
j;t + �j;t; for j = 1; : : : ; n and t = 1; : : : ; T; (1)

where pj;t (resp. p�j;t) is the observed (resp. actual latent) log price of asset j; and �j;t is the

measurement error which we assume to be independent and identically distributed (i.i.d.) across

time t with mean zero and variance �2�j for each j = 1; : : : ; n. The additive measurement error

model in (1) is de�ned for log-price and not for the actual price, which implicitly means that we

allow for the multiplicative structure Pj;t = P �j;t"j;t; where Pj;t and P
�
j;t are respectively the levels

of the observed and actual latent prices of asset j at time t.

The i.i.d. assumption for �j;t across time t is compelling and widely used in the literature; see

for example the review paper by McAleer and Medeiros (2008). This assumption does not a¤ect

the dependence structure in returns. In other words, the additive measurement error model implies

dependence in the observed returns when there is dependence in the actual latent returns even when

the measurement errors are i.i.d. This means that the dependence structure in the process of returns

is preserved under the assumption of i.i.d. measurement errors. Furthermore, the assumption of i.i.d

measurement errors might be avoided, but this will be at the cost of complicating the calculation

of our estimator of VaR. This might require the estimation of the distribution of the measurement

error (which is very di¢ cult in practical settings), or in the best case scenario (if we make an

assumption on the distribution of the measurement error as we do in this paper), we will need to

estimate the moments of the measurement errors (e.g. its variance as we do in this paper), but also

its dependence/correlation structure. Indeed, the i.i.d. assumption is not as restrictive as it seems

and is commonly imposed in the literature; see for example Zhang et al. (2005) and Gri¢ n and

Oomen (2011), Andersen et al. (2011) and Hounyo et al. (2017) among others. In addition, the

vector error �t = (�1;t; : : : ; �n;t)0 is assumed to be independent of the vector of actual latent log prices

P �t . Given the sources of the measurement errors that have been mentioned in the �rst paragraph

of the introduction, we think that the assumption of independence between these errors and the

actual price is plausible. In other words, we do not see how the actual price can, for example,

be correlated with the errors that are due to non-synchronous trading, infrequent trading, market

microstructure noise, manipulations, or rounding errors, etc. The elements of �t are also assumed

to be cross-sectionally independent and normally distributed; that is, �t � N(0;��), a multivariate
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normal distribution with mean zero and covariance matrix �� = diag
�
�2�1 ; : : : ; �

2
�n

�
. In this section,

we assume that the variance of the measurement errors �2�j ; for j = 1; : : : ; n; is known, but later on

we will relax this assumption and discuss how to estimate it.

For j = 1; : : : ; n, denote by rj;t = pj;t � pj;t�1, r�j;t = p�j;t � p�j;t�1, and uj;t = �j;t � �j;t�1. Then

using equation (1), we have rj;t = r�j;t+ uj;t and therefore the observed and actual latent returns of

a portfolio of n assets can be linked as follows:

rp;t = r
�
p;t + et; (2)

where rp;t =
Pn
j=1 !jrj;t is the observed portfolio return, r

�
p;t =

Pn
j=1 !jr

�
j;t is the actual latent

portfolio return, and et =
Pn
j=1 !juj;t denotes the measurement error in the portfolio return,

with ! = (!1; ::::; !n)0 being a known vector of weights that are attributed to each risky asset in

the portfolio. Here, uj;t for j = 1; :::; n; is a composite measurement error term that is normally

distributed with mean zero and variance �2uj = 2�
2
�j . Note that the assets�returns (e.g., rj;t and r

�
j;t)

correspond to continuously compounded returns (�rst di¤erences of log assets�prices). It is also

worth noting that the distributions of observed and actual latent portfolio returns are unknown.

This fact implies that even when the composite measurement error uj;t is normally distributed, the

observed and actual latent portfolio returns can be non-normally distributed.

Since P�t and �t are independent processes (and thus r
�
p;t and et are independent processes),

using equation (2) and the Fourier transform, we can obtain:

�rp(s) = �r�p(s)�e(s); (3)

where �rp(s) = E[exp(isrp;t)], �r�p(s) = E[exp(isr�p;t)], and �e(s) = E[exp(iset)] represent the

characteristic functions of rp;t, r�p;t and et, respectively, with i =
p
�1 denoting the imaginary unit.

On the one hand, under the i.i.d. assumption �j;t �N(0; �2�j ) across t for j = 1; : : : ; n, the

characteristic function �e(s) of the portfolio measurement error et is given by:

�e(s) =E

24exp
0@is nX

j=1

!juj;t

1A35 = E
24exp

0@is nX
j=1

!j�j;t

1A35E
24exp

0@�is nX
j=1

!j�j;t�1

1A35
=

nY
j=1

E [exp (is!j�j;t)]
nY
j=1

E [exp (�is!j�j;t�1)] = exp

0@�s2 nX
j=1

�2�j!
2
j

1A : (4)

On the other hand, the characteristic function �rp(s) of the observed portfolio return rp;t can be

estimated using its empirical analogue:

�̂rp(s) =
1

T

TX
t=1

exp (isrp;t) ; (5)
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where T is the number of observations. Observe that the empirical characteristic function such

as �̂rp(s) in (5) has been widely used in time series analysis; see Carrasco and Florens (2002),

Knight and Yu (2002), Yu (2004) and references therein. If a time series is strictly stationary and

ergodic, which we impose on rp;t throughout this paper, then the empirical characteristic function

is a consistent estimator of the characteristic function; see Theorem 2.1 of Feuerverger (1990).

Combining equations (3), (4) and (5), an estimator for the characteristic function �r�p(s) of the

actual latent portfolio returns r�p;t is given by:

�̂r�p(s) =
�̂rp(s)

�e(s)
=
1

T

TX
t=1

exp

0@isrp;t + s2 nX
j=1

�2�j!
2
j

1A :
Nevertheless, later we will be interested in the estimation of the probability distribution function

of r�p;t; which is de�ned (by Fourier transform) as the integral of exp(�isr�p)�̂r�p(s). However, this

integral is not well-de�ned as �̂r�p(s) is neither integrable nor square integrable over R. In this case,

�̂r�p(s) will not be a good estimator of �r�p(s) for large values of s. One way to overcome this issue

is by regularizing �̂r�p(s) as follows:

�̂r�p(s) =
�̂rp(s)

�e(s)
Kft(sb); (6)

where Kft(sb) is a Fourier transform of a kernel function with an appropriate bandwidth b 2 R+;

see, e.g., Adusumilli et al. (2020) and Otsu and Taylor (2021). Hereafter, we assume �e(s) 6= 0

for all s 2 R, and Kft(s) = I(�1 � s � 1); with I(A) designating an indicator function for the

event A. These assumptions are common in the measurement error literature; see for example

Otsu and Taylor (2021). In particular, using Kft(s) = I(�1 � s � 1), the function �̂r�p(s) in

equation (6) is supported on [�1=b; 1=b] and bounded whenever �e(s) 6= 0 for all s 2 R. Therefore,

the regularized estimator �̂r�p(s) is well-de�ned. Note that K
ft(s) is the Fourier transform of the

sinc kernel K(x) = sin(x)=(�x) popularly adopted in the deconvolution method. Using Kft(s)

also helps to facilitate the computation of the estimator of Pr(r�p;t < r�p) in equation (8), and

thus the subsequent optimization that is based on it. Although other forms of Kft(s), such as

Kft(s) = (1 � s2)3I(�1 � s � 1) used in Delaigle et al. (2008), may also be considered, they

generally lead to more computationally demanding estimators. With proper regularization, we

obtain the following semiparametric type estimator of the characteristic function of the actual

latent portfolio return:

�̂r�p(s) =
�̂rp(s)

�e(s)
Kft(sb) =

1

T

TX
t=1

exp

0@isrp;t + s2 nX
j=1

�2�j!
2
j

1AKft(sb): (7)
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We would like to point out here that similar calculations to those made above under normal-

ity assumption can be followed to obtain the expression of characteristic function of �r�p(s) and

its estimator �̂r�p(s) in (7) when the measurement error follows another distribution (other than

the normal distribution) with characteristic function that has a closed-form expression. See the

Online supplementary appendix A.2 for an example when the measurement errors follows a stable

distribution.

We can now use �̂r�p(s) to derive an estimator for the distribution function of the actual latent

portfolio return r�p;t. A standard Fourier-inversion formula [see Gil-Pelaez (1951)] implies

Pr
�
r�p;t < r

�
p

�
=
1

2
� 1

�

Z 1

0

Im
h
�r�p(s) exp(�isr

�
p)
i

s
ds; for all r�p 2 R; (8)

where Im[�] stands for the imaginary part of a complex number. After replacing �r�p(s) in equation

(8) by its estimator in (7) and using the trigonometric form of a complex number, the distribution

function Pr
�
r�p;t < r

�
p

�
can be estimated as follows:

cPr �r�p;t < r�p� = 1

2
� 1

�

1

T

TX
t=1

Z 1

0

exp
�
s2

b2
Pn
j=1 �

2
�j!

2
j

�
sin
�
s
�
rp;t�r�p

b

��
s

ds:

Alternatively, the above expression can be rewritten as

cPr �r�p;t < r�p� = 1

2
� 1

T

TX
t=1

L

�
rp;t � r�p

b

�
; (9)

where L(u) = 1
�

R 1
0
sin(su)
s

1
�e(

s
b
)ds is the so-called deconvolution kernel, �e(�) is the Fourier transform

of the density of the portfolio measurement error et; that is, �e(
s
b ) = exp

�
� s2

b2
Pn
j=1 �

2
�j!

2
j

�
, and

b = b(T ) 2 R+ is the sequence of bandwidth parameters converging to zero at a suitable rate as

the sample size T increases.

In the next section, we use the result in equation (9) to derive an optimization-based estimator

of VaR which is robust to the presence of measurement errors that a¤ect stock prices. We shall �rst

consider Figure 1 [see Nason (2006)] to illustrate the undesirable impact that measurement errors

can have on risk estimation. The �gure shows the right tail parts of standard normal distribution

(dashed line), here et, Student�s t distribution with 3 degrees of freedom (dotted line), here r�t , and

their sum rt = r�t +et (solid line). The latter can be viewed as an additive measurement error model,

where rt represents the observed stock or portfolio return, r�t is the actual latent stock or portfolio

return, and et is a measurement error. The density of rt can be represented as the convolution

of the density functions of et and r�t . The �gure shows that the right tail of the distribution of
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r�t (actual latent return) dominates the right tail of the distribution of rt (observed return), and

similar situation occurs at the left tail since the distributions of rt; r�t ; and et are all symmetric.

Therefore, the existing estimators of VaR that ignore the measurement errors are inconsistent and

lead to an underestimation of risk. Underestimating risk might have disastrous e¤ects with the

�nancial crisis of 2007-2008 being an example. We all know that this crisis was in part due to

underestimating the risk magnitude of portfolios of subprime mortgages, which resulted in extreme

leverage ratios within these portfolios and left institutions unable to cover billions of dollars in

losses as subprime mortgage values collapsed. Consequently, providing robust estimation methods

for VaR under measurement errors should be extremely valuable for risk analysis and management.

Figure 1: Tail of convoluting Normal and Student distributions

Note [Source Nason (2006)]: Tail part of PDF of rt= r�t + et (solid line); standard normal density for et

(dashed line); sphered Student�s t distribution of 3 degrees of freedom for r�t (dotted line).

3 VaR under measurement errors

Essentially, VaR is a quantile measure that quanti�es the worst expected loss over a given horizon

(typically a day or a week) at a given statistical con�dence level � 2 (0; 1) (typically 1%, 5% or

10%). Formally, portfolio�s VaR can be de�ned as follows:

Pr
�
r�p;t < V aR

�
= �; (10)

where r�p;t is the portfolio return. Equation (10) states that a loss equal to or larger than the VaR

occurs with probability �: Conversely, the VaR can be written as a function of the probability:

V aR = F�1 (�) ;
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where F (�) is the distribution function of r�p;t; i.e., F (r�p) = Pr(r�p;t < r�p) for r�p 2 R.

Several parametric and nonparametric approaches have been used to derive estimators of VaR;

for a review the reader can consult Abad, Benito, and López (2014). The level of di¢ culty of these

approaches depends on the assumptions made about the underlying process of returns. As we al-

low for the latter to capture more stylized e¤ects, the estimation approach becomes more complex.

In addition, except when the returns follow elliptical conditional distribution, the estimation of

VaR generally requires the use of either simulation or optimization methods. All these estimation

techniques, however, are sensitive to the presence of measurement errors in assets�prices. In the fol-

lowing, we use the results from the previous section to derive an optimization-based semiparametric

estimator of VaR when the assets�prices are contaminated.

We now follow the convention and let the VaR of the actual latent portfolio returns, say

V aR�(r�p;t) for the con�dence level �, be a positive quantity. Then, replacing r
�
p by �V aR�(r�p;t)

in equation (9) leads to

cPr �r�p;t < �V aR�(r�p;t)� = 1

2
� 1

�

1

T

TX
t=1

Z 1

0

exp
�
s2

b2
Pn
j=1 �

2
�j!

2
j

�
sin
�
s
�
rp;t+V aR�(r�p;t)

b

��
s

ds: (11)

Following a similar approach to Du¢ e and Pan (2001) and Taamouti (2009), V aR�(r�p;t) can then

be calculated by inverting the estimated distribution function in (11). However, for reasons we

explain below, analytically inverting the function (11) is not feasible and a numerical solution is

required. We have the following proposition which can be deduced immediately from equation (11).

Proposition 1 The VaR of the actual latent portfolio return r�p;t in (2), at a nominal coverage

rate �, denoted by V aR�(r�p;t), is the solution of the following equation:

1

T

TX
t=1

Z 1

0

exp
�
s2

b2
Pn
j=1 �

2
�j!

2
j

�
sin
�
s
�
rp;t+V aR�(r�p;t)

b

��
s

ds�
�
1

2
� �

�
� = 0;

where rp;t is the observed portfolio return in (2), �2�j for j = 1; :::; n are the variances of the mea-

surement errors �j;t, !j for j = 1; :::; n are the portfolio weights, and b is the bandwidth parameter.

From Proposition 1, V aR�(r�p;t) can be obtained by numerically solving the equation:

f
�
V aR�(r�p;t)

�
=
1

T

TX
t=1

Z 1

0

exp
�
s2

b2
Pn
j=1 �

2
�j!

2
j

�
sin
�
s
�
rp;t+V aR�(r�p;t)

b

��
s

ds�
�
1

2
� �

�
� = 0:

(12)
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The function f(V aR�(r�p;t)) can be rewritten as follows:

f
�
V aR�(r�p;t)

�
= ��

hcPr �r�p;t < �V aR�(r�p;t)�� �i : (13)

From equation (13) and the properties of the distribution function [monotonically increasing,

limx!�1cPr(r�p;t < x) = 0 and limx!1cPr(r�p;t < x) = 1], we can show that equation (12) ad-

mits a unique solution. A more convenient way to calculate V aR�(r�p;t) is to consider the following

optimization problem:

[V aR
�
(r�p;t) = argmin

V aR�(r�p;t)

24 1
T

TX
t=1

Z 1

0

exp
�
s2

b2
Pn
j=1 �

2
�j!

2
j

�
sin
�
s
�
rp;t+V aR�(r�p;t)

b

��
s

ds�
�
1

2
� �

�
�

352 :
(14)

In practice, an exact solution for the above minimization problem is not feasible, since the integral

term in (14) is quite di¢ cult to assess. This issue can be solved using a numerical integration based

on equally spaced abscissas as in Davies (1973) and Davies (1980); see Du¢ e and Pan (2001) and

Taamouti (2009). However, this approach introduces two types of errors: the discretization error

and the truncation error. In this paper, we instead propose a closed-form expression for the Fourier

inversion in (8) by regularizing the estimated characteristic function �̂r�p(s) using the characteristic

function Kft(sb) = I(�1 � sb � 1), which is de�ned on s 2 [�1=b; 1=b], and by using power series

representations of the functions sin (�) and exp(�). Speci�cally, from the power series representations

of sin(�) and exp(�), we obtain the following corollary [see the proof of Corollary 1 in the Online

supplementary appendix].

Corollary 1 The VaR of the actual latent portfolio return r�p;t in (2), at a nominal coverage rate

�, denoted by V aR�(r�p;t), is the solution of the following optimization problem:

[V aR
�
(r�p;t) = argmin

V aR�(r�p;t)

264 1
T

TX
t=1

1X
i;j=0

ai

i!

(�1)j
�
rp;t+V aR�(r�p;t)

b

�1+2j
(1 + 2j)!(2i+ 2j + 1)

�
�
1

2
� �

�
�

375
2

; (15)

where a =
Pn
j=1 �

2
�j
!2j

b2
> 0, rp;t is the observed portfolio return in (2), �2�j for j = 1; :::; n are the

variances of the measurement errors �j;t, !j for j = 1; :::; n are the portfolio weights, and b is the

bandwidth parameter.

The optimization problem in (15) depends on the double in�nite sum
P1
i;j=0, which has to be

truncated for practical computation. Thus, the estimation of V aR�(r�p;t) will involve a truncation
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error that we need to control. Speci�cally, denoting � =
rp;t+V aR�(r�p;t)

b , the double in�nite sum can

be decomposed as follows:

S =

1X
i;j=0

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)
= Sl;k +Rl;k = Sl;k +R

(1)
l;k +R

(2)
l;k +R

(3)
l;k ; (16)

where the truncated term Sl;k and the remaining term Rl;k (i.e., the summation of R
(1)
l;k ; R

(2)
l;k ; and

R
(3)
l;k ) are de�ned in equation (21) of the Online supplementary appendix. Furthermore, we show

that the remaining terms R(1)l;k ; R
(2)
l;k ; and R

(3)
l;k are bounded [see equations (22), (23) and (24) of

the Online supplementary appendix], and consequently lim
l;k�!1

n
R
(s)
l;k

o
= 0; for s = 1; 2; 3 [see the

proof in the Online supplementary appendix]: However, how large should l and k be in practice

to make the remaining term su¢ ciently negligible is a question that we investigated extensively

by simulations. For the data generating processes that we consider in Section 4 and a bandwidth

b, which we select according to the rule of thumb b = c
�
2�2e= log T

�1=2
; with c > 1 denoting an

adjustment parameter and �2e denoting the variance of the normal measurement error et [see, e.g.,

Section 3.7 of Delaigle et al. (2008)], we �nd that taking l = k = 10 in Formula (16) yields

satisfactory results. Speci�cally, we �nd that there is no substantial improvement in terms of bias

and root mean squared error when we increase l and k beyond 10.

The above calculation of VaR, however, depends on the unknown variance of the measurement

errors �2�j : We next discuss how one can estimate this variance using the high-frequency data.

A more general approach for the estimation of an unknown probability density function of the

measurement error, say fe, is also available but it requires the use of repeated measurements of the

actual latent portfolio returns. In other words, if we further assume that the Fourier transform of

the measurement errors �e (s) is real-valued, that is, the density fe is symmetric around zero, then

- if repeated measurements of the actual latent portfolio returns are available - we can estimate

�e (s) using the estimator proposed by Delaigle et al. (2008). Unfortunately, in this paper we rule

out the use of Delaigle et al.�s (2008) approach for the fully unknown case since in �nance repeated

measurements for asset prices are not available.

In the context of high-frequency data, a consistent estimator of the variance of the measurement

error (market microstructure noise) can be obtained as a by-product of the results in Zhang et al.

(2005). Formally, assuming that the full grid containing all of the observation points is given by

G = ft0; :::; tmg and using the consistent estimator of the variance of the market microstructure

noise provided in Zhang et al. (2005, p. 1402), a consistent estimator of the variance of the market

11



microstructure noise of each individual stock j over a time period [0; t] can be obtained as follows:

�̂2uj = 1=m
X

ti�1;ti2G;ti�t
(pj;ti � pj;ti�1)2; for j = 1; :::; n;

where pj;ti�1 (resp. pj;ti) is the price of stock j at the intraday time ti�1 (resp. ti), and m is the

number of sampling intervals over [0; t]: Consequently, a consistent estimator of the variance of the

market microstructure noise of the portfolio over a time period [0; t] can be obtained as follows:

�̂2e = 2

0@ nX
j=1

�̂2�j!
2
j

1A =

0@ nX
j=1

�̂2uj!
2
j

1A = 1=m

nX
j=1

!2j
X

ti�1;ti2G;ti�t
(pj;ti � pj;ti�1)2: (17)

4 Monte Carlo simulations

We conduct some Monte Carlo simulations to examine the �nite sample performance of our robust

VaR estimation technique that adjusts for the e¤ect of measurement errors in the prices [here-

after adjusted VaR]. We also provide a comparison with a model-free estimator of VaR that does

not adjust for the measurement errors [hereafter unadjusted VaR]. We assess the performance of

our approach under two cases: when the measurement errors density is speci�ed and when it is

misspeci�ed to some degree.

4.1 Case of speci�ed density of measurement errors

We suppose that the observed and actual latent returns are related according to equation (2). We

�rst consider that the density fe of the measurement error et in equation (2) is correctly speci�ed

and given by a standard normal distribution, i.e., et � i.i.d.N(0; �2e); with �2e = 1; and we simulate

the actual latent returns from the following three data generating processes (DGPs) that represent

di¤erent contexts encountered in practice:

Model 1: The actual return r�p;t follows an AR(1) process:

r�p;t = 0:5r
�
p;t�1 + �t; with �t � i.i.d.N(0; 1): (18)

Model 2: The actual return r�p;t follows an MA(2) process:

r�p;t = �t + 0:65�t�1 + 0:24�t�2; with �t � i.i.d.N(0; 1): (19)

Model 3: The actual return r�p;t is generated from a GARCH (1,1) model:

r�p;t = �t�t; with �t � i.i.d.N(0; 1) and �2t = 0:05 + 0:85�2t�1 + 0:1r�2p;t�1: (20)
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Table 1: True VaRs for AR(1), MA(2) and GARCH(1,1) models

VaR of actual return r�p;t

� = 1% � = 5% � = 10%

Model 1: AR(1) �2:6861 �1:8992 �1:4797

Model 2: MA(2) �2:8301 �2:0012 �1:5592

Model 3: GARCH(1,1) �2:4320 �1:6235 �1:2399

Note: This table reports the actual VaR using Model 1 [equation (18)], Model 2 [equation (19)], and Model

3 [equation (20)]. The results are obtained using T = 100000 and 10000 replications.

We then use the simulated actual return r�p;t and the standard normal measurement errors to simu-

late the observed return rp;t using equation (2). Note that the above DGPs and the corresponding

parameters are only selected to re�ect the commonly used �nancial time series models in the sim-

ulation design, which o¤ers a wide range of dependent structures. For example, similar choices are

also considered in Chen and Tang (2015).

For each of the above models, we analytically calculate the 1%, 5% and 10% VaR of actual

return r�p;t. The values are reported in Table 1 and will be used to assess the bias (Bias), standard

deviation (Std.), and root mean squared error (RMSE) of the adjusted and unadjusted estimates

of VaR calculated using our semiparametric estimation technique and a model-free estimator (see

below) that does not take into account the measurement errors, respectively. The sample sizes

range from T = 125 to T = 500, which corresponds to data ranging from 6 months to 2 years.

From each model, we generate T + 1000 observations and then discard the �rst 1000 observations

to minimize the e¤ect of the initial values. All the results are based on 1000 replications, except

that for the calculation of the actual VaRs in Table 1 we use 10000 replications.

To calculate the unadjusted VaR, we simply use the sample quantile estimator based on the

observed returns frp;tgTt=1 that are contaminated by the measurement errors, i.e.,

[V aR
�
(rpt) = inf

�
u : Frp;T (u) � �

	
; for � = 1%; 5%; and 10%;

where Frp;T (u) = T
�1PT

t=1 I(rp;t � u) is the standard empirical cumulative distribution function

based on the contaminated return frp;tgTt=1.

We next use our approach to compute the adjusted VaR under Models (18), (19) and (20). To

control for the truncation errors, in Formula (16) we take l = k = 10. In addition, our approach

requires the use of regularization via the bandwidth parameter b. In this simulation study, we follow
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Delaigle et al. (2008) to select the bandwidth b according to the rule of thumb b = c
�
2�2e= log T

�1=2
with c > 1, which is motivated from the theoretically optimal choice for estimating the density of

actual latent return.2 We do not provide a theory to guide the choice of a data-driven bandwidth

(e.g., searching for an optimal c) for our semiparametric estimation approach. However, in order

to help select this important parameter, we consider a battery of simulations for di¤erent values

of c, which varies in the grid f0:5, 1; 1:5; 2; 2:5; 3; 3:5g. This allows us to assess the sensitivity of

our adjusted VaR estimates to di¤erent values of the bandwidth parameter b. Note that c = 0:5

violates the requirement c > 1 and it yields poor results as expected. As we see in the tables below,

we can identify the optimal values of c that work for almost all DGPs under consideration. More

precisely, if we choose c = 2 or c = 2:5, the gains in terms of bias, standard deviation and RMSE

over the unadjusted approach are generally very signi�cant.

Tables 2 to 4 report the simulation results for the 1% VaR using Model 1 to Model 3. The results

for the 5% and 10% VaRs using the same DGPs can be found in Tables A.1 to A.6 in the Online

supplementary appendix. Considering �rst the bias of the VaR estimates, the tables show that our

estimation approach dominates the unadjusted VaR estimation for suitable c. These results are

encouraging and seem to be consistent with the theory. The performance of our method shows

some variation across the di¤erent bandwidth choices. However, it is not surprising to see that our

semiparametric approach depends on the bandwidth parameter when faced with the measurement

errors. Considering a battery of simulations for di¤erent values of c; we �nd that the performance

of our technique is generally much better for c = 2:0 or 2:5. Furthermore, the unadjusted VaR

always has a much larger negative bias compared to the adjusted VaR for c = 2:0 or 2:5. This

implies that the unadjusted VaR may result in a larger underestimation of risk in the presence of

measurement errors. Concerning the standard deviation (Std.) of the VaR estimates, we again �nd

that the adjusted VaR dominates the unadjusted VaR in most of the cases. We also note that there

is a clear trade-o¤ between bias and variance, which is intuitive and well known in the classical

nonparametric estimation literature. However, we see that the balance is reasonably achieved with

c = 2:0 or 2:5, as is evident from the tables. Regarding the RMSE, a common point to all the

results is that the estimated adjusted VaR has in general a smaller RMSE than the unadjusted

2Following Delaigle et al. (2008), for supersmooth measurement errors such as normal considered in this paper,

the pointwise mean squared error of the conventional deconvolution kernel density estimator is of optimal order when

using a bandwidth b = D(log T )�1=�, where D > (4)1=� denotes a constant and the constants � > 0 and  > 0

are de�ned in equation (3.17) of Delaigle et al. (2008). Under normal measurement error, we can set � = 2 and

 = �2e=2, leading to the rule of thumb b = c
�
2�2e= log T

�1=2
with c > 1.
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Table 2: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with measurement error

variance �2e = 1

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 0:5 2.6549 0.4544 2.6935

c = 1:0 0.1989 0.7527 0.7786

c = 1:5 0.7052 0.3191 0.7740

c = 2:0 0.1743 0.2335 0.2913 -0.8366 0.4954 0.9723

c = 2:5 -0.3834 0.2140 0.4391

c = 3:0 -0.9840 0.2162 1.0075

c = 3:5 -1.7664 0.2157 1.7795

T = 250

c = 0:5 2.6946 0.3889 2.7225

c = 1:0 0.8214 0.6374 1.0397

c = 1:5 0.8095 0.3763 0.8927

c = 2:0 0.3264 0.1643 0.3654 -0.8356 0.3785 0.9173

c = 2:5 -0.2062 0.1619 0.2622

c = 3:0 -0.7629 0.1544 0.7784

c = 3:5 -1.5093 0.1533 1.5171

T = 500

c = 0:5 2.6683 0.3824 2.6956

c = 1:0 1.3505 0.3548 1.3963

c = 1:5 0.8411 0.4680 0.9625

c = 2:0 0.4481 0.1213 0.4642 -0.8585 0.2681 0.8994

c = 2:5 -0.0528 0.1107 0.1226

c = 3:0 -0.5735 0.1059 0.5832

c = 3:5 -1.3014 0.1056 1.3057
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Table 3: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with measurement error

variance �2e = 1

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 0:5 2.7710 0.4667 2.8100

c = 1:0 0.4626 0.7203 0.8561

c = 1:5 0.8192 0.2760 0.8644

c = 2:0 0.2806 0.2254 0.3599 -0.8084 0.5085 0.9550

c = 2:5 -0.2988 0.2150 0.3681

c = 3:0 -0.8600 0.2031 0.8837

c = 3:5 -1.6361 0.2015 1.6484

T = 250

c = 0:5 2.8348 0.4132 2.8648

c = 1:0 1.0920 0.5570 1.2258

c = 1:5 0.9087 0.2380 0.9393

c = 2:0 0.4129 0.1660 0.4450 -0.8038 0.3831 0.8905

c = 2:5 -0.1044 0.1532 0.1854

c = 3:0 -0.6400 0.1358 0.6543

c = 3:5 -1.3877 0.1480 1.3956

T = 500

c = 0:5 2.8117 0.3867 2.8382

c = 1:0 1.4877 0.3176 1.5213

c = 1:5 0.9428 0.3809 1.0168

c = 2:0 0.5354 0.1209 0.5489 -0.8179 0.2702 0.8613

c = 2:5 0.0495 0.1123 0.1228

c = 3:0 -0.4565 0.1046 0.4683

c = 3:5 -1.1887 0.1112 1.1939
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Table 4: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with measurement

error variance �2e = 1

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 0:5 2.3103 0.4471 2.3531

c = 1:0 -0.3953 0.6979 0.8021

c = 1:5 0.6222 0.3182 0.6989

c = 2:0 0.0384 0.1892 0.1930 -0.8670 0.5477 1.0255

c = 2:5 -0.5667 0.1683 0.5911

c = 3:0 -1.1629 0.1540 1.1730

c = 3:5 -1.9498 0.1591 1.9563

T = 250

c = 0:5 2.4206 0.4015 2.4536

c = 1:0 0.1343 0.7663 0.7780

c = 1:5 0.6920 0.4332 0.8164

c = 2:0 0.1967 0.1411 0.2421 -0.8647 0.4362 0.9685

c = 2:5 -0.3781 0.1274 0.3989

c = 3:0 -0.9269 0.1141 0.9339

c = 3:5 -1.6985 0.1096 1.7020

T = 500

c = 0:5 2.4142 0.3915 2.4457

c = 1:0 0.8847 0.7202 1.1407

c = 1:5 0.3774 1.0178 1.0855

c = 2:0 0.3233 0.1034 0.3394 -0.8816 0.3085 0.9340

c = 2:5 -0.2052 0.0906 0.2243

c = 3:0 -0.7398 0.0823 0.7444

c = 3:5 -1.4803 0.0842 1.4827
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Table 5: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with measurement error

variance �2e = 0:75

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.4564 0.4265 0.6247

c = 1:5 0.3153 0.3438 0.4665

c = 2:0 0.0744 0.2413 0.2525 -0.6722 0.4869 0.8300

c = 2:5 -0.3206 0.2150 0.3860

c = 3:0 -0.7662 0.2126 0.7951

T = 250

c = 1:0 0.7582 0.3462 0.8335

c = 1:5 0.3540 0.2456 0.4309

c = 2:0 0.1520 0.1785 0.2345 -0.6361 0.3685 0.7351

c = 2:5 -0.1881 0.1543 0.2433

c = 3:0 -0.5980 0.1493 0.6164

T = 500

c = 1:0 1.0322 0.3121 1.0784

c = 1:5 0.3452 0.2002 0.3991

c = 2:0 0.2173 0.1325 0.2545 -0.6716 0.2606 0.7204

c = 2:5 -0.0950 0.1115 0.1465

c = 3:0 -0.4548 0.1087 0.4676
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Table 6: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with measurement error

variance �2e = 0:75

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.5754 0.4161 0.7101

c = 1:5 0.3268 0.4181 0.5307

c = 2:0 0.1406 0.2411 0.2791 -0.6346 0.4854 0.7990

c = 2:5 -0.2384 0.2127 0.3195

c = 3:0 -0.6681 0.1999 0.6973

T = 250

c = 1:0 0.9228 0.3569 0.9894

c = 1:5 0.3722 0.2910 0.4724

c = 2:0 0.2121 0.1766 0.2760 -0.6331 0.3748 0.7357

c = 2:5 -0.1086 0.1621 0.1951

c = 3:0 -0.4925 0.1510 0.5152

T = 500

c = 1:0 1.2798 0.3519 1.3273

c = 1:5 0.3750 0.2113 0.4305

c = 2:0 0.2794 0.1325 0.3092 -0.6387 0.2576 0.6887

c = 2:5 -0.0056 0.1160 0.1162

c = 3:0 -0.3626 0.1018 0.3766
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Table 7: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with measurement

error variance �2e = 0:75

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.1081 0.5394 0.5502

c = 1:5 0.3078 0.3164 0.4414

c = 2:0 -0.0396 0.2275 0.2309 -0.6473 0.5195 0.8300

c = 2:5 -0.4736 0.1784 0.5061

c = 3:0 -0.9307 0.1599 0.9444

T = 250

c = 1:0 0.5405 0.4196 0.6842

c = 1:5 0.3554 0.2617 0.4413

c = 2:0 0.0722 0.1637 0.1789 -0.6865 0.4118 0.8006

c = 2:5 -0.3267 0.1349 0.3535

c = 3:0 -0.7591 0.1170 0.7680

T = 500

c = 1:0 0.8568 0.3994 0.9453

c = 1:5 0.3711 0.2969 0.4752

c = 2:0 0.1448 0.1257 0.1918 -0.7064 0.3092 0.7711

c = 2:5 -0.2072 0.1008 0.2305

c = 3:0 -0.6098 0.0906 0.6165
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VaR. Thus, from these simulations we conclude that accounting for measurement errors is indeed

very important to draw correct conclusions and measurement errors must not simply be ignored.

Finally, as shown in Figure 2, we plot the RMSEs of the adjusted estimator for the 1% VaR and

T = 250 to examine the sensitivity of this estimator with respect to the adjustment parameter c.

The result con�rms again that c = 2:0 and c = 2:5 are good choices under measurement errors.

Figure 2: RMSE of the adjusted estimator of VaR versus bandwidth parameter

Note: This �gure plots the Root Mean Squared Error (RMSE) of the adjusted estimator of VaR as a

function of the parameter c in the bandwidth parameter when T = 250 and under di¤erent models AR,

MA and GARCH of the simulated actual returns.

As c = 0:5 and c = 3:5 deliver poor results, in the following we only focus on c 2 f1; 1:5;

2; 2:5; 3g to save space. To investigate the e¤ects of smaller measurement error variances on our

robust estimator, we also consider the cases of et � i.i.d.N(0; �2e) with �
2
e = 0:75 and �2e = 0:5.

Simulation results for the 1% VaR under �2e = 0:75 and �2e = 0:5 are reported in Tables 5-7 and

Tables A.7-A.9 of the Online supplementary appendix, respectively. For both cases, we still �nd

that the performance of the adjusted VaR for c = 2:0 or c = 2:5 dominates that of the unadjusted

VaR in terms of bias, standard deviation and RMSE. Nonetheless, it is noteworthy that it becomes

more challenging to adjust for the presence of measurement errors as the variance of measurement

errors gets smaller.

Finally, additional results (not reported, but available upon request) were obtained by consid-
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ering alternative values (e.g. highly persistent AR process) for the coe¢ cients of Model 1 to Model

3 and for larger variances of the measurement errors (e.g., �2e = 1:5 and �2e = 2). Regarding the

changes in the coe¢ cients of models 1 to 3, we �nd that higher persistence makes the variance of

both adjusted and unadjusted VaRs signi�cantly higher than in the less persistent case. Although

these results show that the adjusted VaR does not perform well compared to the unadjusted VaR,

we emphasize that this happens under the very high persistent level of the underlying time series

process, and in this case any estimator should be used with care since high persistence is known

to have a negative impact on the estimators obtained under the stationarity assumption. Further-

more, it is well established that stock returns are weakly persistent, see for example Ding et al.

(1993). Concerning the e¤ects of larger measurement error variances, the additional results show

that a larger variance of the measurement error a¤ects even more notoriously the performance of

the unadjusted VaR, while our proposed adjusted VaR still works reasonably well and delivers much

smaller biases and RMSEs. Indeed, the latter �nding is not unexpected since a larger variance will

further reduce the information in the contaminated returns, and as such, an (unadjusted) estima-

tor that does not address the measurement errors will fail to uncover useful information from the

contaminated returns.

4.2 Case of misspeci�ed density of measurement errors

We run additional simulations to investigate the �nite sample performance of our approach when the

distribution of the measurement errors is misspeci�ed. Speci�cally, we still estimate our adjusted

VaR using formula (15) in Corollary 1, which we construct from the characteristic function of

standard normal distribution, but the measurement errors are in fact generated from some non-

normal distributions. We consider the same simulation setup as in Section 4.1, but we now generate

the measurement errors according to: (i) a Student�s t distribution with 5 degrees of freedom, say

t(5); and (ii) a mixture of normal distributions, say 0:5N(0; 1) + 0:5N(5; 1). In addition, the

variances of t(5) and 0:5N(0; 1) + 0:5N(5; 1) are standardized to one to be comparable to Tables

2 to 4 in Section 4.1. It is important to note that t(5) has fatter tails than the standard normal

distribution while 0:5N(0; 1) + 0:5N(5; 1) is bimodal.

The bias, standard deviation, and root mean squared error of the adjusted and unadjusted

1% VaR estimates under t(5) and normal mixture distributions are reported in Tables 8-10 and

Tables A.10-A.12 of the Online supplementary appendix, respectively. To save space, we do not

report the results for the other coverage rates [i.e., 5% and 10%], but they are available upon
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Table 8: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with Student�s t(5)

measurement error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.3671 0.9794 1.0460

c = 1:5 0.7557 0.4717 0.8909

c = 2:0 0.2247 0.3198 0.3909 -0.9909 0.6771 1.2001

c = 2:5 -0.3913 0.2715 0.4762

c = 3:0 -0.9725 0.2211 0.9973

T = 250

c = 1:0 1.0682 1.0054 1.4669

c = 1:5 0.8367 0.5841 1.0204

c = 2:0 0.3573 0.2788 0.4532 -0.9583 0.4680 1.0665

c = 2:5 -0.1845 0.1539 0.2403

c = 3:0 -0.7459 0.1485 0.7606

T = 500

c = 1:0 1.7290 0.9493 1.9725

c = 1:5 0.8563 0.7922 1.1665

c = 2:0 0.4818 0.4557 0.6631 -0.9557 0.3196 1.0077

c = 2:5 -0.0342 0.1077 0.1129

c = 3:0 -0.5512 0.1059 0.5613

request. For each of the misspeci�ed cases, the above tables show similar patterns to those found

for the correctly speci�ed case [see Tables 2 to 4 in Section 4.1]. This indicates a good degree

of robustness of our proposed methodology to various deviations to the misspeci�ed measurement

errors. In particular, we �nd that the estimates of the adjusted VaR perform better than the

estimates of the unadjusted VaR. As in the speci�ed measurement error density case, we �nd that

the performance of our approach depends on the bandwidth parameter. But again, after providing

a battery of simulations for di¤erent values of c, we see that the performance of our method is

generally much better in terms of bias, standard deviation, and root mean squared error when

c = 2:0 or 2:5.
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Table 9: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with Student�s t(5)

measurement error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.6103 0.9902 1.1632

c = 1:5 0.8831 0.5677 1.0499

c = 2:0 0.2994 0.2492 0.3895 -0.9571 0.6736 1.1704

c = 2:5 -0.2848 0.2297 0.3659

c = 3:0 -0.8506 0.2092 0.8759

T = 250

c = 1:0 1.3156 0.9433 1.6188

c = 1:5 0.9656 0.2983 1.0106

c = 2:0 0.4392 0.2754 0.5184 -0.9018 0.4732 1.0184

c = 2:5 -0.0778 0.1736 0.1902

c = 3:0 -0.6322 0.1476 0.6492

T = 500

c = 1:0 1.8755 0.9434 2.0994

c = 1:5 1.0148 0.6881 1.2261

c = 2:0 0.5783 0.2252 0.6206 -0.9166 0.3273 0.9733

c = 2:5 0.0620 0.1121 0.1281

c = 3:0 -0.4517 0.1301 0.4701
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Table 10: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RMSEs)

of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with Student�s

t(5) measurement error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.0854 0.9749 0.9786

c = 1:5 0.6637 0.3147 0.7345

c = 2:0 0.0459 0.1913 0.1968 -1.0642 0.7198 1.2847

c = 2:5 -0.5472 0.1747 0.5744

c = 3:0 -1.1578 0.1582 1.1685

T = 250

c = 1:0 0.5376 1.1656 1.2836

c = 1:5 0.6982 0.6209 0.9343

c = 2:0 0.2183 0.3468 0.4098 -1.0061 0.5119 1.1288

c = 2:5 -0.3538 0.1218 0.3742

c = 3:0 -0.9169 0.1164 0.9243

T = 500

c = 1:0 1.3423 1.1259 1.7519

c = 1:5 -0.0641 1.3668 1.3683

c = 2:0 0.3640 0.1790 0.4056 -1.0216 0.3715 1.0871

c = 2:5 -0.1873 0.0930 0.2091

c = 3:0 -0.7293 0.0818 0.7339
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Table 11: Time-span of the high-frequency data

Index From To No. of Observations

CAC 40 02/01/2000 29/12/2017 458,353

DAX 30 31/05/2009 29/12/2017 227,508

FTSE 100 04/01/2000 29/12/2017 501,185

FTSE MIB 03/01/2000 29/12/2017 508,175

S&P 500 03/01/2000 29/12/2017 394,898

Note: This table reports the time-span and the number of observations on the sparse trade price series

collected at a �ve minute sampling frequency for the indixes CAC 40, DAX 30, FTSE 100, FTSE MIB, and

S&P 500.

Finally, we consider another simulation exercise where we compare the performance of the

adjusted and unadjusted approaches when measurement errors are not present in the data (i.e.,

�2e = 0). We use the same simulation setup as in Section 4.1. The simulation results are reported in

Tables A.13-A.15 of the Online supplementary appendix. One should expect that the unadjusted

approach will perform better than our approach, however when we examine the above tables we

see that the adjusted approach is doing well compared to the unadjusted one. It is true that

the unadjusted estimator generally leads to a smaller bias, but when the �optimal� bandwidth

parameter [c = 2:5 or c = 2:0] is used, the adjusted estimator still has much smaller variance and

consequently a smaller mean squared error for all the DGPs under consideration.

5 Empirical application

In this section, we apply the semiparametric approach we proposed in the previous sections to high-

frequency data to estimate the VaR of �ve international stock market indices over one day horizon.

We compare our results to the unadjusted approach that estimates VaR by simply computing the

sample quantiles of the �ve indices�returns.

Our data consist of high-frequency tick-by-tick trade prices on the stock market indices CAC 40,

DAX 30, FTSE 100, FTSE MIB, and S&P 500, which we obtained from the Thomson Reuter�s Tick

History (TRTH) database, over the period January 2000 to December 2017. Our interest speci�cally

lies in the sparse trade prices with a �ve minutes sampling frequency. Table 11 reports the time-

span and the number of observations corresponding to the sparse trade price series collected at a
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Table 12: The adjusted and unadjusted estimates of VaR for high-frequency �nancial returns

Adjusted VaR Unadjusted VaR

5% 10% 5% 10%

CAC 40 -2.2623 -1.9142 -1.6491 -1.1448

DAX 30 -2.3325 -1.9741 -1.6446 -1.1624

FTSE 100 -2.2281 -1.8855 -1.5763 -1.0888

FTSE MIB -2.2415 -1.8969 -1.6105 -1.1255

S&P 500 -2.2373 -1.8936 -1.6038 -1.0849

Note: This table reports the estimated 5% and 10% VaR of standardized returns of CAC 40, DAX 30,

FTSE 100, FTSE MIB, and S&P 500, using the approach introduced in Section 3 [adjusted VaR] and the

unadjusted approach that does not adjust for measurement errors [unadjusted VaR]. Here we use c = 2:5.

�ve minutes sampling frequency. Evidently, the price series for each index expands to the desired

time-span, with the exception of the DAX 30 index, which has trade prices only available from

the 31st May 2009. We then use the above data to calculate the continuously compounded returns

over each �ve minutes interval by taking the di¤erence between the logarithm of the two tick prices

immediately preceding each �ve minutes mark.

As we have seen before, the implementation of the semiparametric approach to estimate VaR

requires the knowledge of the variance of the measurement errors. This variance, however, is

unknown but it can be estimated using high-frequency data as shown at the end of Section 3. The

semiparametric approach introduced in Section 3 is applied to estimate the 5% and 10% VaRs of

each standardized stock index return [hereafter adjusted VaR]. We standardize the returns (returns

divided by their standard deviations) to fairly compare the VaRs of the �ve stock indices. In

addition, for comparison, we estimate the unadjusted 5% and 10% VaRs of these stock indices by

simply calculating the sample quantiles using order statistics [hereafter unadjusted VaR].

The results are reported in Table 12. As expected, for both adjusted and unadjusted estimates

of VaR, we see that the loss is higher at 5% than 10% statistical con�dence levels. Interestingly, for

all stock indices and con�dence levels, we see that the adjusted estimates of VaRs are much bigger -

in absolute value - than the unadjusted estimates. This suggests that ignoring measurement errors

might lead to an underestimation of risk. If we take the example of S&P 500 index, the adjusted

estimate of 5% VaR is 0.6335 (2.2373-1.6038) higher than the unadjusted one. Thus, an investor who

invests, for example, $100 million in the S&P 500 index and uses unadjusted VaR will think that the
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magnitude of risk at 5% con�dence level is equal to $208; 494 a day [$100 million � 1.6038�0:0013

(standard deviation of S&P 500 index)], whereas the true magnitude of risk (according to the

adjusted estimate of VaR) is $290; 849 a day [$100 million � 2.2373�0:0013]. Hence, this investor

will face an unexpected additional loss of $82; 355 a day [$100 million � 0.6335�0:0013]. Finally,

Table 12 shows that the values of adjusted and unadjusted VaRs are similar across the �ve stock

indices, which might indicate that international stock markets are driven by some common factors.

6 Conclusions

We have proposed a semiparametric approach for estimating the VaR of a portfolio of contaminated

stock returns. We have shown that measurement errors cause serious problems for estimating risk,

and unfortunately the existing methods are inconsistent in the presence of measurement errors.

Using Fourier transform, we derived a robust estimator of VaR that takes into account measurement

errors. We �rst used a deconvolution kernel estimator for the density function of the actual latent

portfolio returns to deal with measurement errors. Second, we used Fourier inversion to calculate

the probability distribution function of the latent portfolio returns. Thereafter, we used power

series representations of sine and exponential functions to approximate the integral in the inversion

formula and made the calculation of VaR feasible.

The derivation of robust estimator of VaR was �rst made under the assumption of known

measurement errors� density, but the distribution of the observed portfolio returns was always

treated as unknown and estimated nonparametrically. Thereafter, we relaxed this assumption

and suggested a feasible way to deal with the measurement errors� distribution. We followed

the literature and considered a parameterized measurement error�s distribution. In particular, we

assumed that the measurement error is normally distributed but with unknown variance that we

estimated using high-frequency data and a consistent estimator of variance of measurement errors

from Zhang et al. (2005).

Furthermore, we conducted a set of Monte Carlo simulations to examine the performance of

our approach. We also provided a comparison with a model-free estimator of VaR that does

not take into account measurement errors. We investigated the performance of our approach

under di¤erent densities of the measurement errors and the simulation results were encouraging.

Finally, we used our approach and high-frequency data to estimate the adjusted VaR of �ve US

and European stock indices. We compared our results to the unadjusted VaR, which we estimated
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using a model-free approach that simply computes the sample quantiles based on the �ve indices�

historical returns. The empirical results showed that ignoring measurement errors generally leads

to an underestimation of risk.
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A Online supplementary appendix

In this online supplementary appendix, we provide the proofs of the main theoretical results as well

as tables of the additional simulation results that are omitted from the main text.

A.1 Proofs of theoretical results

Proof of Corollary 1. We �rst calculate the integral:Z 1

0

exp
�
as2
�
sin(�s)

s
ds;

where a =
Pn
j=1 �

2
�j
!2j

b2
> 0 and � =

rp;t+V aR�(r�p;t)

b . To do that, we use power series representation

of sin(�s) function:

sin(�s) =

1X
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:

Furthermore, the power series representation of exp
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is given by: exp(as2) =
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Hence, the VaR of the latent portfolio�s return r�p;t with coverage probability �, denoted by

V aR�(r�p;t), is the solution of the following optimization problem:
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with a =
Pn
j=1 �

2
�j
!2j

b2
> 0.

Lemma 1: A series of the form S =
P1
n (�1)n"n where either all "n are positive or all

"n are negative is called an alternating series. Then says: if j"nj decreases monotonically and

limn!1 "n = 0 then the partial sum Sq =
Pq
n(�1)nan approximates S with error bounded by the

next omitted term:

Rq =
1X
n=q

(�1)nan � j"q+1j:
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Proof of Lemma 1. First of all, we know that when an alternating series converges to its

limit S, this means the partial sum of this alternating series also �alternates�above and below the

�nal limit, i.e., S2q < S < S2q+1.

We now show jSk � Sj � "k+1 by considering two cases:

1. When k = 2q + 1, i.e., k is odd, then we have:

jS2q+1 � Sj = S2q+1 � S � S2q+1 � S2q+2 = "(2q+1)+1:

2. When k = 2q, i.e., k is even, then we have:

jS2q � Sj = S � S2q � S2q+1 � S2q = "2q+1:

Both cases rely essentially on the inequality S2q < S < S2q+1.

Proof: Bounds of the remaining terms for the truncation of the double in�nite sum

in equation (15). First of all, note that the double in�nite sum
P1
i;j=0 in the optimization

problem in equation (15) can be decomposed as follows:

S =
1X
i;j=0

ai

i!
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1
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= Sl;k +Rl;k;

where the truncated and remaining terms Sl;k and Rl;k are respectively given by:
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(2i+ 2j + 1)| {z }
R
(2)
l;k

+

1X
i=l+1

1X
j=k+1

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)| {z }
R
(3)
l;k

;

(21)

with a =
Pn
j=1 �

2
�j
!2j

b2
and � =

rp;t+V aR�(r�p;t)

b . We next derive a bound for each remaining term R
(1)
l;k ,

R
(2)
l;k and R

(3)
l;k .

1). The bound for R(1)l;k : First, observe that

R
(1)
l;k =

1X
i=l+1

1X
j=k+1

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)
=

1X
j=k+1

(�1)j"j ;
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is an alternating series, where the term "j =
P1
i=l+1

ai

i!
�2j+1

(1+2j)!
1

(2i+2j+1) is decreasing to zero since

limj!1
�2j+1

(1+2j)! = 0. From Lemma 1 of this Appendix, we obtain:

jR(1)l;k j � j"k+1j =
1X

i=l+1

ai

i!

j�j2k+3
(2k + 3)!

1

(2i+ 2k + 3)

� j�j2k+3
(2k + 3)!

1X
i=l+1

ai

i!

1

(2i+ 2k + 3)
� j�j2k+3
(2k + 3)!

exp (a)

(2l + 2k + 5)
; (22)

since
P1
i=l+1

ai

i! �
P1
i=0

ai

i! = exp(a) and a is a positive number de�ned before. Thus, lim
l;k�!1

n
R
(1)
l;k

o
=

0:

2). The bound for R(2)l;k : Following the same argument as the one for the bound of R
(1)
l;k , we have

R
(2)
l;k =

lX
i=0

1X
j=k+1

ai

i!

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)
=

1X
j=k+1

(�1)j"j ; (23)

is an alternating series, where the term "j =
Pl
i=0

ai

i!
�2j+1

(1+2j)!
1

(2i+2j+1) is decreasing to zero since

limj!1
�2j+1

(1+2j)! = 0. From Lemma 1 of this Appendix, we obtain:

jR(2)l;k j � j"k+1j =
lX
i=0

ai

i!

j�j2k+3
(2k + 3)!

1

(2i+ 2k + 3)
� j�j2k+3
(2k + 3)!

lX
i=0

ai

i!

1

(2i+ 2k + 3)
� j�j2k+3
(2k + 3)!

exp (a)

(2k + 3)
:

Thus, as for bound of R(1)l;k ; we have lim
l;k�!1

n
R
(2)
l;k

o
= 0:

3). The bound for R(3)l;k : Observe that:

jR(3)l;k j =

������
1X

i=l+1

ai

i!

kX
j=0

(�1)j�1+2j
(1 + 2j)!

1

(2i+ 2j + 1)

������ �
1X

i=l+1

ai

i!

1

(2i+ 1)

kX
j=0

j�j1+2j
(1 + 2j)!

� 1

(2l + 3)

1X
i=l+1

ai

i!

kX
j=0

j�j1+2j
(1 + 2j)!

� exp (a)

(2l + 3)

kX
j=0

j�j1+2j
(1 + 2j)!

: (24)

Now, if we de�ne �j =
j�j1+2j
(1+2j)! , we obtain:

�j+1
�j

= (
j�j3+2j
(3 + 2j)!

)=(
j�j1+2j
(1 + 2j)!

) =
�2

(2j + 3)(2j + 2)
:

From the above equation and based on D�Alembert criterion, the series
Pk
j=0

j�j1+2j
(1+2j)! converges for

k �!1; and consequently lim
l;k�!1

n
R
(3)
l;k

o
= 0:
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A.2 Characteristic function of the actual portfolio return under non-normal

measurement errors

Hereafter, we provide the expression of the characteristic function of the actual portfolio return

when the measurement error follows a non-normal distribution. We focus on the case of stable

distributions, but the results can be extended to any other distribution for which the characteristic

function of measurement errors has a closed-form expression.

Recall that from equation (3) of the main text, we have:

�r�p(s) =
�rp(s)

�e(s)
:

Now, if in the above formula we replace �rp(s) by its nonparametric estimator [see equation (5) of

the main text], we obtain:

�̂r�p(s) =
1

T

TX
t=1

exp (isrp;t)

�e(s)
: (25)

Using equation (25), to compute the characteristic function of the actual latent portfolio return r�p

we only need an expression for the characteristic function of measurement errors �e(s). The nor-

mality of the measurement errors is not essential for obtaining an expression for the characteristic

function �̂r�p(s): For example, if instead of normal distributions we assume that the measurement

errors uj follow stable distributions uj � Stable
�
�j = 0; cj ; �j ; �j

�
- with �j ; cj ; �j ; �j are the lo-

cation, scale, skewness, and stability parameters, respectively -, then a linear combination of inde-

pendent measurement errors with stable distributions (et =
Pn
j=1 !juj;t) follow stable distribution,

up to location and scale parameters. Formally, observe that

�e(s) = E [exp (iset)] = E

24exp
0@is nX

j=1

!juj;t

1A35 = nY
j=1

E [exp (is!juj;t)] :

Since the characteristic function of stable distribution uj � Stable
�
�j = 0; cj ; �j ; �j

�
is given by:

'
�
s; 0; cj ; �j ; �j

�
= exp

�
� jcjsj�j

�
1� �jsgn (s) �j

��
;

where sgn (s) is the sign of s and

�j =

8<: tan
���j
2

�
if �j 6= 1

� 2
� log jsj if �j = 1

:

we obtain:

�e(s) =
nY
j=1

exp
�
� jcjs!j j�j

�
1� �jsgn (s!j) �j

��
= exp

0@� nX
j=1

jcjs!j j�j
�
1� �jsgn (s!j) �j

�1A ;
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where

�j =

8<: tan
���j
2

�
if �j 6= 1

� 2
� log js!j j if �j = 1

:

Consequently,

�̂r�p(s) =
�̂rp(s)

�e(s)
=
1

T

TX
t=1

exp

0@isrp;t + nX
j=1

jcjs!j j�j
�
1� �jsgn (s!j) �j

�1A ;
which we can invert [using Fourier-inversion formula in Gil-Pelaez (1951)] to obtain the distribution

function of actual latent portfolio return r�p; and then the VaR of r�p as we describe in the main

text.

A.3 Additional Monte Carlo simulation results

In this section, we report some additional simulation results that are discussed but omitted from

the main text. The simulation setup is described in Section 4 of the main text. Given the fact that

c = 0:5 violates the condition c > 1 and our simulation shows that this case delivers poor results,

to save space we do not report results for c = 0:5 and concentrate on c 2 f1:0; 1:5; 2:0; 2:5; 3:0g in

the following tables.

Speci�cally speaking, Tables A.1-A.3 in the appendix report results for the 5% VaR under Model

1 to Model 3, while Tables A.4-A.6 report results for the 10% VaR. Tables A.7-A.9 report results

for 1% VaR when the measurement error variance is �2e = 0:5. Tables A.10-A.12 report results

for 1% VaR when the measurement error follows a normal mixture distribution (standardized to

have variance one). Finally, Tables A.13-A.15 report results for 1% VaR when there does not exist

measurement error (i.e., when �2e = 0).
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Table A.1: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 95% VaR for the AR(1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.5183 0.8712 1.0137

c = 1:5 0.1771 0.4417 0.4759

c = 2:0 -0.2947 0.2129 0.3636 -0.5917 0.3217 0.6735

c = 2:5 -0.8063 0.1977 0.8301

c = 3:0 -1.3169 0.2108 1.3337

T = 250

c = 1:0 0.1543 0.7206 0.7369

c = 1:5 0.2503 0.3918 0.4649

c = 2:0 -0.1672 0.1570 0.2293 -0.6069 0.2318 0.6497

c = 2:5 -0.6449 0.1500 0.6621

c = 3:0 -1.1200 0.1472 1.1296

T = 500

c = 1:0 0.7285 0.3469 0.8069

c = 1:5 0.2865 0.5020 0.5781

c = 2:0 -0.0668 0.1176 0.1353 -0.6102 0.1680 0.6329

c = 2:5 -0.5034 0.1073 0.5147

c = 3:0 -0.9610 0.1038 0.9666
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Table A.2: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 95% VaR for the MA(2) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.2425 0.8210 0.8561

c = 1:5 0.2376 0.3270 0.4042

c = 2:0 -0.2231 0.2139 0.3091 -0.5709 0.3280 0.6585

c = 2:5 -0.7270 0.2029 0.7548

c = 3:0 -1.2461 0.2011 1.2622

T = 250

c = 1:0 0.4182 0.5876 0.7212

c = 1:5 0.3095 0.3115 0.4391

c = 2:0 -0.1084 0.1546 0.1888 -0.5815 0.2363 0.6276

c = 2:5 -0.5666 0.1447 0.5848

c = 3:0 -1.0555 0.1397 1.0648

T = 500

c = 1:0 0.8183 0.2813 0.8653

c = 1:5 0.3712 0.3382 0.5022

c = 2:0 -0.0060 0.1119 0.1121 -0.5844 0.1665 0.6077

c = 2:5 -0.4353 0.1081 0.4485

c = 3:0 -0.8856 0.1019 0.8914
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Table A.3: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 95% VaR for the GARCH(1,1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -1.3376 0.7844 1.5507

c = 1:5 0.0393 0.1983 0.2021

c = 2:0 -0.4766 0.1742 0.5074 -0.6867 0.3290 0.7615

c = 2:5 -1.0081 0.1662 1.0217

c = 3:0 -1.5350 0.1512 1.5424

T = 250

c = 1:0 -0.6805 0.8463 1.0860

c = 1:5 0.0782 0.5265 0.5323

c = 2:0 -0.3426 0.1213 0.3635 -0.6912 0.2329 0.7294

c = 2:5 -0.8387 0.1095 0.8458

c = 3:0 -1.3359 0.1101 1.3404

T = 500

c = 1:0 0.1386 0.7616 0.7741

c = 1:5 -0.4823 1.4075 1.4878

c = 2:0 -0.2274 0.0931 0.2457 -0.6961 0.1716 0.7170

c = 2:5 -0.7022 0.0846 0.7073

c = 3:0 -1.1662 0.0791 1.1689
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Table A.4: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 90% VaR for the AR(1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.8049 0.9783 1.2668

c = 1:5 0.0087 0.3893 0.3894

c = 2:0 -0.3910 0.2157 0.4466 -0.4674 0.2782 0.5439

c = 2:5 -0.8328 0.2104 0.8589

c = 3:0 -1.2632 0.2023 1.2793

T = 250

c = 1:0 -0.0657 0.7661 0.7689

c = 1:5 0.0727 0.4323 0.4384

c = 2:0 -0.2895 0.1511 0.3265 -0.4697 0.1988 0.5101

c = 2:5 -0.6933 0.1486 0.7090

c = 3:0 -1.0974 0.1466 1.1072

T = 500

c = 1:0 0.4559 0.3727 0.5888

c = 1:5 0.0738 0.5994 0.6039

c = 2:0 -0.1918 0.1104 0.2213 -0.4723 0.1378 0.4920

c = 2:5 -0.5699 0.1074 0.5800

c = 3:0 -0.9528 0.1064 0.9587
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Table A.5: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 90% VaR for the MA(2) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.5198 0.9414 1.0754

c = 1:5 0.0610 0.3142 0.3201

c = 2:0 -0.3433 0.2112 0.4030 -0.4449 0.2777 0.5245

c = 2:5 -0.7749 0.2008 0.8005

c = 3:0 -1.2025 0.2012 1.2192

T = 250

c = 1:0 0.1582 0.6488 0.6678

c = 1:5 0.1302 0.3182 0.3438

c = 2:0 -0.2335 0.1390 0.2718 -0.4552 0.1971 0.4961

c = 2:5 -0.6397 0.1434 0.6555

c = 3:0 -1.0391 0.1401 1.0485

T = 500

c = 1:0 0.5451 0.2662 0.6066

c = 1:5 0.1761 0.3547 0.3960

c = 2:0 -0.1444 0.1074 0.1800 -0.4589 0.1397 0.4797

c = 2:5 -0.5182 0.1004 0.5279

c = 3:0 -0.9014 0.1006 0.9070
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Table A.6: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 90% VaR for the GARCH(1,1) model

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -1.7152 0.8601 1.9188

c = 1:5 -0.1212 0.2618 0.2885

c = 2:0 -0.5634 0.1592 0.5854 -0.5541 0.2652 0.6143

c = 2:5 -1.0119 0.1514 1.0231

c = 3:0 -1.4607 0.1405 1.4675

T = 250

c = 1:0 -0.9770 0.9381 1.3545

c = 1:5 -0.0774 0.4375 0.4443

c = 2:0 -0.4398 0.1168 0.4551 -0.5554 0.1867 0.5860

c = 2:5 -0.8608 0.1095 0.8677

c = 3:0 -1.2842 0.0972 1.2879

T = 500

c = 1:0 -0.1552 0.8065 0.8213

c = 1:5 -0.6550 1.4626 1.6025

c = 2:0 -0.3411 0.0821 0.3508 -0.5584 0.1346 0.5744

c = 2:5 -0.7417 0.0763 0.7456

c = 3:0 -1.1405 0.0735 1.1429
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Table A.7: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with measurement

error variance �2e = 0:5

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.9525 0.3902 1.0294

c = 1:5 0.2043 0.5018 0.5418

c = 2:0 0.2879 0.2646 0.3911 -0.4362 0.4478 0.6251

c = 2:5 0.0424 0.2256 0.2296

c = 3:0 -0.2824 0.2121 0.3532

T = 250

c = 1:0 1.2890 0.3591 1.3381

c = 1:5 0.2385 0.3546 0.4273

c = 2:0 0.3279 0.1896 0.3788 -0.4568 0.3483 0.5745

c = 2:5 0.1337 0.1615 0.2097

c = 3:0 -0.1622 0.1535 0.2233

T = 500

c = 1:0 1.6524 0.3578 1.6906

c = 1:5 0.3168 0.2443 0.4000

c = 2:0 0.3525 0.1480 0.3823 -0.4763 0.2477 0.5368

c = 2:5 0.1930 0.1181 0.2263

c = 3:0 -0.0521 0.1094 0.1212
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Table A.8: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with measurement

error variance �2e = 0:5

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 1.1177 0.4196 1.1938

c = 1:5 0.2398 0.4938 0.5490

c = 2:0 0.3417 0.2774 0.4401 -0.4341 0.4832 0.6496

c = 2:5 0.1245 0.2260 0.2580

c = 3:0 -0.1956 0.2056 0.2838

T = 250

c = 1:0 1.5102 0.3801 1.5573

c = 1:5 0.3060 0.3373 0.4554

c = 2:0 0.3772 0.2016 0.4277 -0.4181 0.3594 0.5512

c = 2:5 0.1935 0.1705 0.2579

c = 3:0 -0.0736 0.1529 0.1696

T = 500

c = 1:0 1.9124 0.3749 1.9488

c = 1:5 0.3779 0.2478 0.4519

c = 2:0 0.3779 0.1615 0.4110 -0.4351 0.2562 0.5049

c = 2:5 0.2539 0.1225 0.2819

c = 3:0 0.0218 0.1110 0.1131
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Table A.9: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with mea-

surement error variance �2e = 0:5

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.6636 0.4234 0.7871

c = 1:5 -0.2524 0.8241 0.8618

c = 2:0 0.2135 0.2737 0.3471 -0.4057 0.5827 0.7100

c = 2:5 -0.0694 0.2077 0.2190

c = 3:0 -0.4385 0.1785 0.4734

T = 250

c = 1:0 0.9993 0.3962 1.0750

c = 1:5 -0.2939 0.7989 0.8513

c = 2:0 0.3070 0.2090 0.3714 -0.4445 0.4379 0.6240

c = 2:5 0.0306 0.1538 0.1568

c = 3:0 -0.2863 0.1255 0.3126

T = 500

c = 1:0 1.3344 0.4577 1.4107

c = 1:5 -0.0926 0.6538 0.6603

c = 2:0 0.3586 0.1514 0.3892 -0.4706 0.3523 0.5879

c = 2:5 0.1146 0.1193 0.1654

c = 3:0 -0.1729 0.0945 0.1971
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Table A.10: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with normal

mixture measurement error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.2242 0.7193 0.7534

c = 1:5 0.6918 0.3010 0.7544

c = 2:0 0.1664 0.2214 0.2770 -0.7016 0.4428 0.8297

c = 2:5 -0.3986 0.2046 0.4481

c = 3:0 -0.9766 0.2054 0.9980

T = 250

c = 1:0 0.7986 0.5333 0.9603

c = 1:5 0.7782 0.2178 0.8081

c = 2:0 0.3127 0.1629 0.3525 -0.7086 0.3347 0.7836

c = 2:5 -0.2172 0.1512 0.2646

c = 3:0 -0.7580 0.1445 0.7716

T = 500

c = 1:0 1.1445 0.2733 1.1767

c = 1:5 0.8383 0.2956 0.8889

c = 2:0 0.4314 0.1174 0.4470 -0.7259 0.2371 0.7636

c = 2:5 -0.0642 0.1052 0.1233

c = 3:0 -0.5691 0.1018 0.5781
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Table A.11: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with normal

mixture measurement error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 0.4628 0.6784 0.8213

c = 1:5 0.7629 0.3033 0.8210

c = 2:0 0.2613 0.2240 0.3442 -0.6833 0.4551 0.8210

c = 2:5 -0.2938 0.2038 0.3576

c = 3:0 -0.8780 0.2010 0.9007

T = 250

c = 1:0 0.9930 0.4417 1.0868

c = 1:5 0.8637 0.2246 0.8925

c = 2:0 0.3937 0.1594 0.4247 -0.6957 0.3492 0.7785

c = 2:5 -0.1060 0.1481 0.1822

c = 3:0 -0.6497 0.1418 0.6649

T = 500

c = 1:0 1.2706 0.2701 1.2990

c = 1:5 0.9337 0.1779 0.9505

c = 2:0 0.5111 0.1101 0.5228 -0.7028 0.2426 0.7435

c = 2:5 0.0339 0.1051 0.1104

c = 3:0 -0.4660 0.1048 0.4776
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Table A.12: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with normal

mixture measurement error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.4889 0.7829 0.9230

c = 1:5 0.5925 0.2473 0.6420

c = 2:0 0.0293 0.1824 0.1848 -0.6861 0.5253 0.8641

c = 2:5 -0.5666 0.1688 0.5912

c = 3:0 -1.1610 0.1520 1.1709

T = 250

c = 1:0 0.0647 0.7885 0.7911

c = 1:5 0.6880 0.2817 0.7434

c = 2:0 0.1748 0.1350 0.2209 -0.7050 0.4365 0.8292

c = 2:5 -0.3801 0.1190 0.3983

c = 3:0 -0.9383 0.1197 0.9459

T = 500

c = 1:0 0.8506 0.5781 1.0285

c = 1:5 0.6384 0.6114 0.8839

c = 2:0 0.3025 0.1013 0.3190 -0.7220 0.3082 0.7851

c = 2:5 -0.2127 0.0823 0.2281

c = 3:0 -0.7445 0.0834 0.7491
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Table A.13: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the AR(1) model with no measure-

ment error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.3574 0.3240 0.4824

c = 1:5 0.8470 0.8722 1.2158

c = 2:0 0.5068 0.1921 0.5420 0.0277 0.3983 0.3993

c = 2:5 -0.1303 0.1852 0.2264

c = 3:0 -0.7713 0.1883 0.7939

T = 250

c = 1:0 -0.1230 0.2436 0.2729

c = 1:5 0.3654 1.2783 1.3295

c = 2:0 0.6653 0.1323 0.6784 0.0466 0.2971 0.3008

c = 2:5 0.0637 0.1347 0.1490

c = 3:0 -0.5226 0.1254 0.5374

T = 500

c = 1:0 0.0718 0.2694 0.2788

c = 1:5 -1.1150 0.8139 1.3804

c = 2:0 0.8120 0.0985 0.8179 0.0055 0.2223 0.2224

c = 2:5 0.2365 0.0923 0.2539

c = 3:0 -0.3254 0.0936 0.3386
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Table A.14: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the MA(2) model with no measure-

ment error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.2503 0.3240 0.4258

c = 1:5 1.0800 0.8722 1.2594

c = 2:0 0.6093 0.1921 0.6355 0.0473 0.4139 0.4166

c = 2:5 -0.0138 0.1852 0.1801

c = 3:0 -0.6562 0.1883 0.6789

T = 250

c = 1:0 -0.0079 0.2436 0.3222

c = 1:5 0.6609 1.2783 1.3469

c = 2:0 0.7626 0.1323 0.7751 0.0301 0.3212 0.3226

c = 2:5 0.1716 0.1347 0.2138

c = 3:0 -0.4069 0.1254 0.4260

T = 500

c = 1:0 0.2630 0.2694 0.4857

c = 1:5 -0.6736 0.8139 1.3169

c = 2:0 0.9082 0.0985 0.9131 0.0007 0.2360 0.2360

c = 2:5 0.3309 0.0923 0.3434

c = 3:0 -0.2166 0.0936 0.2340
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Table A.15: Finite-sample biases, standard deviations (Std.�s) and root mean squared errors (RM-

SEs) of the adjusted and unadjusted estimates of 99% VaR for the GARCH(1,1) model with no

measurement error

Adjusted VaR Unadjusted VaR

Bandwidth Bias Std. RMSE Bias Std. RMSE

T = 125

c = 1:0 -0.4236 0.2925 0.5148

c = 1:5 0.8471 0.7002 1.0991

c = 2:0 0.3449 0.1411 0.3726 0.0664 0.5345 0.5386

c = 2:5 -0.3159 0.1542 0.3515

c = 3:0 -0.9509 0.1129 0.9576

T = 250

c = 1:0 -0.1976 0.2575 0.3246

c = 1:5 -1.0542 1.2495 1.6348

c = 2:0 0.5271 0.1018 0.5368 0.0455 0.4636 0.4658

c = 2:5 -0.1000 0.0999 0.1413

c = 3:0 -0.7034 0.0846 0.7085

T = 500

c = 1:0 0.0330 0.3749 0.3764

c = 1:5 -1.5633 0.1288 1.5686

c = 2:0 0.6685 0.0762 0.6728 0.0106 0.3416 0.3417

c = 2:5 0.0773 0.0692 0.1038

c = 3:0 -0.4977 0.0644 0.5019
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