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Aquaculture now provides half of all aquatic protein consumed globally—with

most current and future production occurring in low- and middle-income

countries (LMICs). Concerns over the availability and application of e�ective

policies to deliver safe and sustainable future supply have the potential to

hamper further development of the sector. Creating healthy systems must extend

beyond the simple exclusion of disease agents to tackle the host, environmental,

and human drivers of poor outcomes and build new policies that incorporate

these broader drivers. Syndemic theory provides a potential framework for

operationalizing this One Health approach.
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What is a syndemic?

Syndemic theory extends our interpretation of disease beyond traditional medical

definitions of morbidity, co-morbidity, and multi-morbidity to include societal, economic,

and environmental drivers contributing to, and exacerbating, detrimental health outcomes

(Singer et al., 2017). This “biosocial” concept of disease, first applied to SAVA (substance

abuse, violence, and AIDS) in individuals and groups from low-income urban environments

(Singer, 1996), has subsequently been deployed where infectious and non-infectious

conditions interface with prevailing political, societal, and environmental factors (Moussavi

et al., 2007; Zinsstag et al., 2011; Mendenhall, 2013). Syndemic theory was re-animated by

the COVID-19 pandemic, with a diverse outcome disease state associated with infection by a

novel viral pathogen and the differing political, environmental, and demographic landscapes

operating across susceptible human host communities (Mendenhall, 2020; Fronteira et al.,

2021). Syndemic theory has important consequences for human health policy, identifying

the need to move beyond biomedical intervention to simultaneously focus on tackling

socio-economic disparities underlying poor health (Singer et al., 2017; Horton, 2020).
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Syndemic pathways in aquaculture

In this study, we consider how syndemic theory may be

applied elsewhere—specifically, to animal health outcomes within

food systems. Aquaculture, one of the fastest-growing food

sectors, predominates in LMICs (Stentiford and Holt, 2022).

Interacting biological, environmental, social, and political factors

have contributed to diseases that have seriously limited yield,

benefits, profit, and food security from the sector, both in LMICs

and in higher-income nations, over recent decades (Faruk et al.,

2004; Solomieu et al., 2015; Abolofia et al., 2017; Tang and Bondad-

Reantaso, 2019; Stentiford et al., 2020, 2022; Patil et al., 2021;

Ward et al., 2021). The role of animal disease as a poverty trap for

LMIC farmers, in particular, has been discussed in this context—

an improved biosocial evidence basis to understand causality,

to design policy, and to drive public–private investment are

cornerstones of the Global Burden of Animal Diseases (GBAD)

approach to reducing risk (Huntington et al., 2021; Rushton

et al., 2021). The discourse on the role of disease in aquaculture

has shifted focus from the presence of the pathogen (Stentiford

et al., 2017) to the traditional epidemiological triad model for

disease (Snieszko, 1974) revised to acknowledge that hosts and

FIGURE 1

Elements of the syndemic pathway in aquaculture.

pathogens are elements of, and not distinct from, the environment

(Dohoo et al., 2009). However, now the need to extend beyond

this paradigm seems critical for averting losses (Stentiford et al.,

2020). Instead, we propose that a “syndemic pathway” is driving

poor health outcomes in aquaculture (Figure 1), and we urge that

wider-ranging factors from biological to systemic failings of the

institutional environment be incorporated into national strategies

aimed at underpinning sustainability in the sector.

Pathogens

Diverse pathogen taxa are implicated in aquaculture disease

outbreaks, with international legislation aimed at limiting the

spread and further establishment of specific (listed) diseases (i.e.,

transboundary diseases) via the trade in animals and products

(WOAH, 2022). Single pathogens are important in syndemic

pathways (Munkongwongsiri et al., 2022; Niu et al., 2022), but the

need for wider consideration of the symbiome within which known

pathogens exist is acknowledged (Bass et al., 2019). In aquaculture,

disrupted endemic microbial consortia co-contribute to “crop

production” (non-listed) diseases that are significant drivers of
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farm losses (Kooloth Valappil et al., 2021; Delisle et al., 2022).

Diagnostic innovations used to profile these consortia in hosts,

feeds, and water are influencing better microbial management

practices on the farm, which leads to improved health, welfare, and

yield (Bentzon-Tilia et al., 2016; Heyse et al., 2021; Holt et al., 2021).

For averting syndemic pathways in aquaculture, profiling (and

managing) microbial consortia conducive to healthy outcomes is

likely to be as important as doing so during outbreaks (Elements 1

and 2, Figure 1).

Hosts

Sub-optimal water quality, nutrition, and the microbial

ecosystem catalyse disease outbreaks in susceptible hosts (Murray

and Peeler, 2005; Bateman et al., 2020). Susceptibility is also

rooted in the genetics of farmed individuals and populations

at local, national, and global levels. Selective breeding (Gjedrem

and Rye, 2018; Houston et al., 2020), gene editing (Gratacap

et al., 2019; Potts et al., 2021), and vaccinology (Ma et al.,

2019) are critical tools for promoting health (Stentiford et al.,

2017, 2020)—resilient populations being those in which effective

genetic management reduces disease burden, reduces susceptibility

to environmental change, and maintains diversity (You and

Hedgecock, 2018). Resilience extends beyond single traits (Frank-

Lawale et al., 2014), but it can be situation specific. For example,

genetics for environmentally controlled biosecure farming may

focus on enhanced growth traits, whilst for open systems, resilience

to multiple stressors, and pathogens in combination may be

required (Sae-Lim et al., 2016; Houston et al., 2020). Understanding

functional bases for genetic resilience in major farmed aquatic

species across the range of environments in which they are cultured

is a critical component for sustainability in the sector (Element 3,

Figure 1).

Environment

The immediate farm environment, farmmanagement practices,

and the impact of high-level forcing factors (e.g., climate change)

play key roles in aquaculture syndemic pathways (Naylor et al.,

2021; Panicz et al., 2022). On farms, sub-optimal water quality

causes physiological stresses that can lead to immunological

damage to stock, whilst also driving pathogen virulence (Kennedy

et al., 2016). Farming intensity (Oddsson, 2020), mismanagement

of waste (Granada et al., 2016), and poor biosecurity (Subasinghe

et al., 2019; Reverter et al., 2020; Stentiford et al., 2020, 2022)

combine to create conditions conducive to disease. Vulnerability

to outbreaks is further compounded by the incursion of wildlife

and vegetation, surrounding land use, pollution, erosion, and

the presence of disease vectors (Soto et al., 2019; Bouwmeester

et al., 2021; Stentiford et al., 2022). Preventing the development

of syndemic pathways in aquaculture requires minimizing the

impact of these complex environmental factors on the farmed

stock. Spatial planning is critical to ensuring that aquaculture

develops where environmental impacts on and from aquaculture

are minimal. In some cases, physical separation of the farm from

the environment or emerging precision technologies is needed to

minimize environmental interactions (Føre et al., 2018) (Elements

4, 5, Figure 1).

People and society

The socio-cultural and economic context sets rules and

enforcement mechanisms that shape a very specific institutional

environment (Rushton and Leonard, 2009). This can create

structural barriers (e.g., gender, language, knowledge, wealth, age,

and access to facilities) that prevent farm operatives from obtaining

adequate training and adopting practices to de-risk production.

These barriers exacerbate pathogen, host, and environmental

elements of the syndemic pathway—and vice versa, resulting

in catastrophic disease losses in the sector (Kumar and Engle,

2016). Farmer behavior also directly influences the effectiveness of

disease management and reporting decisions (Brugere et al., 2017;

Hidano et al., 2018). The globalized nature of trade and diversity

in forms of seafood consumption increase the risk of disease

spread and exposure to human pathogens (Macpherson, 2005;

Rodgers et al., 2011; FAO, 2012, 2020; Rinanda, 2015; Stentiford

et al., 2022). National policy choices and priorities for disease

surveillance, reporting, and control (including compensation for

lost income), investments in animal health research, standard

enforcement (notably regulation of trade), choice of farmed species,

land use planning, and development (e.g., location of farms in

the wider landscape), and public health policies and institutions’

funding and outreach are often insufficient and disharmonized (van

Herten et al., 2019; FAO, 2020). This not only has direct negative

outcomes for animal and human health (Rushton et al., 2007) but

also catalyses the formation of syndemic pathways that indirectly

impact human prosperity (Elements 6–10, Figure 1).

Averting syndemic pathways

Whilst control of disease in aquaculture is a responsibility

shared by the government and producers, the operationalization

of One Health Aquaculture (Stentiford et al., 2020) can only be

led by the government. By holistically conceptualizing human,

environmental, and organism health, the syndemic pathway

provides a framework for the government to operationalize One

Health Aquaculture. Alongside national aspirations for expanded

aquaculture output (Stentiford and Holt, 2022), it should catalyze

the co-development of policies that extend well beyond attempts

to exclude or manage the hazard (pathogen) to ones that drive

investment in developing resilient hosts, protecting farms from

the environment, and (particularly) exposing the core potential of

humans operating within food systems to avert syndemic pathways

from forming (Brugere et al., 2017).
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