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Abstract

This paper characterises dynamic linkages arising from shocks with heterogeneous
degrees of persistence. Using frequency domain techniques, we introduce mea-
sures that identify smoothly varying links of a transitory and persistent nature.
Our approach allows us to test for statistical differences in such dynamic links.
We document substantial differences in transitory and persistent linkages among
US financial industry volatilities, argue that they track heterogeneously persistent
sources of systemic risk, and thus may serve as a useful tool for market participants.

JEL Classifications: C10, C40, C55, C58, G00
Keywords: Finance, Network connections, Variance Decompositions, Persistence, Spec-
tral Domain.

‡Institute of Economic Studies, Charles University, Opletalova 26, 110 00, and The Czech
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1 Introduction
Firms and economic units create connections through a variety of channels (see e.g.
Richmond, 2019; Garvey et al., 2015; Herskovic et al., 2020).1 These connections are
dynamic and vary over time with changing states of an economy, as both stable and
uncertain periods are associated with different shocks. At the same time, an increasing
number of authors argue that economic variables are driven by shocks that influence their
future value with heterogeneous levels of persistence (Bandi et al., 2021; Dew-Becker
and Giglio, 2016). Connectedness and the subsequent network structures that emerge
from these relationships are central to risk measurement and management, as well as to
understanding macroeconomic risks that emerge over business cycles.

The main objective of this paper is to introduce measures capable of identifying the
smoothly varying persistence structure of such linkages. As an interesting and important
example, we provide an analysis of US sectors, with a focus on the financial sector, and
identify a heterogeneous persistence structure of systemic risk.

There are a variety of ways to measure connectedness.2 In particular, Diebold and
Yilmaz (2014) provides a unifying framework for measuring connectedness and other net-
work properties using variance decompositions from an approximate model. Variance
decompositions track how shocks affect the future variation of variables within a sys-
tem, and are therefore a natural choice for inferring network connectedness from data.3
However, the time evolution of such measures typically involves the estimation of static
models that require covariance stationarity and roll through a time series of data. More
importantly, such measures aggregate shocks and mask the persistence structures of a
network.

In this paper, we provide the tools to identify dynamic connectedness and other key
network measures from variance decompositions. We argue that different levels of con-
nectedness can form around transitory and persistent components of shocks within a
system of financial data. To capture the time-varying nature of such transitory and per-
sistent components of connectedness, we further consider time-varying variance decom-
position matrices from vector autoregressions (VARs) as dynamic adjacency matrices.
To identify the persistence structure of the network, we propose to use localised spectral
decompositions4 of variance error forecasts.

The main contribution of our paper is to provide a novel framework for measuring
1Richmond (2019) measures connections through consumption growth. Garvey et al. (2015) tracks

connections that describe the supply chain, and Herskovic et al. (2020) studies network connections
between firm volatilities.

2Some propose measures derived from correlations or coefficient estimates (see e.g. Engle and Kelly,
2012; Geraci and Gnabo, 2018; Calabrese and Osmetti, 2019), while others track links between indi-
vidual companies and broader market/economic movements (see e.g. Acharya et al., 2012; Adrian and
Brunnermeier, 2016; Acharya et al., 2017) .

3The subsequent literature has widely adopted the Diebold and Yilmaz (2014) approach to address
a variety of issues in finance and economics (e.g. Yang and Zhou, 2017; Baruńık et al., 2020).

4Note that frequency domain techniques are useful tools for denoising (Sun and Meinl, 2012; Haven
et al., 2012) and forecasting (Sévi, 2014; Barunik et al., 2016) financial time series.
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dynamic relationships that relate to different horizons of interest in multivariate time
series models. We use a locally stationary Bayesian time-varying parameter VAR model,
which is readily available in high-dimensional settings. We also develop a test for dif-
ferences in connectedness over different horizons and show how to infer differences over
time. We provide Monte Carlo evidence that our measures are able to reliably track
connections from different data generating processes (DGPs), including those that are
non-Gaussian. Finally, we make computationally efficient packages DynamicNets.jl in
JULIA and DynamicNets in MATLAB that allows one to obtain our measures on data the
researcher desires.5

Our approach provides a solution to the problems of using rolling windows (see e.g.
Demirer et al., 2018) that does not suffer from dimensionality issues or inference prob-
lems. The Bayesian nature of our framework incorporates prior shrinkage and provides
information about estimation uncertainty from the posterior distribution of the connect-
edness measures. This is in sharp contrast to conventional studies that only provide
point estimates and rely on bootstrapping for confidence intervals. Our measures are
also readily available for applications with large data systems. This extends the pairwise
approach in Geraci and Gnabo (2018) to study linkages between firms.

The linkages that form over different horizons with heterogeneous persistence are
important for a number of reasons. First, economic theory suggests that the marginal
utility of agents’ preferences depends on cyclical components of consumption (see e.g.
Giglio et al., 2015; Bandi and Tamoni, 2017) and also on investment horizons in their risk
attitudes (Dew-Becker and Giglio, 2016). Such behaviour can be observed, for example,
under myopic loss aversion, where an agent’s decision depends on the valuation horizon.

Second, unanticipated shocks or news have the capacity to alter these preferences
and can therefore generate transitory and persistent linkages of different strengths. For
example, a shock that has an impact at longer horizons may reflect permanent changes in
expectations of future price movements. Such a shock may lead to a permanent change
in a firm’s future dividend payments (Balke and Wohar, 2002). Conversely, a shock
that affects shorter horizons may suggest temporary changes in future price movements.
For example, suppose that the shock relates only to a change in an upcoming dividend
payment. This would likely result in a very short term change, reflecting the transitory
nature of the news.

Third, firms have different short-run and long-run objectives, and investors view short-
run and long-run risks differently (see e.g. Drechsler and Yaron, 2011; Gerrard et al.,
2022). This behaviour motivates the long-run risk asset pricing literature pioneered by
Bansal and Yaron (2004) and Bansal et al. (2010). The implication here is that investment
horizons may be a source of systematic risk that investors demand compensation for
(contributions on this topic include e.g. Brennan and Zhang, 2018; Chaudhuri and Lo,
2019).

Identifying network structures that form due to idiosyncratic shocks is also relevant
because they can determine aggregate fluctuations (Acemoglu et al., 2012). These links

5The packages are available at https://github.com/barunik/DynamicNets.jl and https://
github.com/ellington/DynamicNets
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between individual or firm-level entities create systemic risks for sectors and the economy
as a whole (Billio et al., 2012; Acemoglu et al., 2017). Such risks drive changes in uncer-
tainty, which can be key factors in business cycles and financial distress (Bloom et al.,
2018). Gabaix (2011) shows that sectoral co-movements are salient features of business
cycles. Meanwhile, Atalay (2017) finds that the lion’s share of variation in output growth
is due to idiosyncratic industry-level shocks.

However, an understanding of the potential longevity of risks arising from these link-
ages and their importance in driving financial turmoil or business cycles is incomplete. We
show how our approach provides measures of transitory and persistent linkages using the
daily realised firm-level volatilities of S&P500 constituents. We classify the constituents
into their eleven main sectors according to the Global Industry Classification Standard
(GICS) and measure network connections from the transitory and persistent components
of volatility shocks.

Our empirical results document substantial heterogeneities in transient and persistent
measures of connectedness that reveal the nature of systemic risks arising from networks.
Specifically, we document: i) spikes in persistent network connectedness when long-lasting
financial and economic events occur; and ii) statistically significant differences between
transitory and persistent network connectedness across sectors. Our network measures
can serve as an online monitoring tool for sectoral uncertainty in markets of interest to
macroprudential supervisors and investors alike.

The rest of the paper proceeds as follows. Section 2 derives our measures from locally
stationary processes, discusses estimation, and proposes a test procedure for statistical
differences in transitory and persistent connectedness. Section 3 provides Monte Carlo
evidence that our measures are able to reliably track linkages and correctly identify
statistical differences. In Section 4, we examine the links between firm-level volatilities of
S&P500 sector constituents and assess the information content of sector connectedness
measures beyond leading measures of uncertainty. Finally, section 5 concludes.

2 Measuring Transitory and Persistent Connections
Here we show how one can measure connectedness using the time-varying spectral de-
compositions. Our measures of connectedness are based on locally stationary processes.
This assumes that the process is approximately stationary over a short time interval,
which allows us to incorporate time variation into our analysis. This in turn allows us to
construct our measures of frequency-dependent, time-varying network connectedness.

Formally, consider a doubly indexed N -variate time series (Xt,T )1≤t≤T,T∈N with com-
ponents Xt,T = (X1

t,T , . . . ,X
N
t,T )⊤ that describe all variables in an economy. Here t refers

to a discrete time index and T is an additional index indicating the sharpness of the local
approximation of the time series (Xt,T )1≤t≤T,T∈N by a stationary one. Coarsely speaking,
we can consider (Xt,T )1≤t≤T,T∈N to be a weakly locally stationary process if, for a large
T , given a set ST of sample indices such that t/T ≈ u over t ∈ ST , the sample (Xt,T )t∈ST

approximates the sample of a weakly stationary time series depending on the rescaled
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location u. Note that u is a continuous time parameter referred to as the rescaled time
index, and T is interpreted as the number of available observation, hence 1 ≤ t ≤ T and
u ∈ [0, 1], see Dahlhaus (1996) for further details.

We assume that the economy follows a locally stationary TVP-VAR of lag order p as

Xt,T = Φ1(t/T )Xt−1,T + . . .+ Φp(t/T )Xt−p,T + ϵt,T , (1)

where ϵt,T = Σ−1/2(t/T )ηt,T with ηt,T ∼ NID(0, IM) and Φ(t/T ) = (Φ1(t/T ), . . . ,Φp(t/T ))⊤
are the time varying autoregressive coefficients. In a neighborhood of a fixed time point
u0 = t0/T , we approximate the process Xt,T by a stationary process X̃t(u0) as

X̃t(u0) = Φ1(u0)X̃t−1(u0) + . . .+ Φp(u0)X̃t−p(u0) + ϵt, (2)

with t ∈ Z and under suitable regularity conditions |Xt,T −X̃t(u0)|= Op(|t/T −u0|+1/T )
which justifies the notation “locally stationary process.” Crucially, the process has time
varying VMA(∞) representation (Dahlhaus et al., 2009; Roueff and Sanchez-Perez, 2016)

Xt,T =
∞∑

h=−∞
Ψt,T (h)ϵt−h (3)

where Ψt,T (h) ≈ Ψ(t/T, h) is a stochastic process satisfying supℓ||Ψt−Ψℓ||2= Op(h/t) for
1 ≤ h ≤ t as t → ∞. Specifically, Ψt,T (h) = [Φt,T (h)]−1, which is key to understanding
dynamics. Since Ψt,T (h) contains an infinite number of lags, we approximate the moving
average coefficients at h = 1, . . . , H horizons (see the detailed discussion below). The
network characteristics rely on variance decompositions, which are transformations of
the impulse response functions, Ψt,T (h), and permit the measurement of the contribution
of shocks to the system.

Since a shock to a variable in the model does not necessarily appear alone, i.e. or-
thogonally to shocks to other variables, an identification scheme is crucial in calculating
variance decompositions. We adapt the generalized identification scheme in Pesaran and
Shin (1998) to locally stationary processes. A natural way to disentangle connections
that form over transitory and persistent components of shocks is to consider a spectral
representation of the approximating model.6 Hence instead of impulse responses, we pro-
pose to use the (local) frequency response of a shock. The building block of our measures
consider a time-varying frequency response function Ψt,T (e−iω) = ∑

h e
−iωhΨt,T (h) which

we obtain from a Fourier transform of the coefficients with i =
√−1.

Before introducing our network measures, we define the time varying spectral density
of Xt,T at frequency ω which is locally the same as the spectral density of X̃t(u) at
u = t/T as a Fourier transform of VMA(∞) filtered series as

SX(u, ω) =
∞∑

h=−∞
E
[
X̃t+h(u)X̃⊤

t (u)
]
e−iωh =

{
Ψ(u, e−iω)

}
Σ(u)

{
Ψ(u, e+iω)

}⊤
. (4)

6Baruńık and Křehĺık (2018) disentangle long-run and short-run unconditional network connections
using standard VAR models.
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The time-varying spectral density is a key quantity for understanding frequency dy-
namics. It describes the distribution of the time varying covariance of Xt,T over frequency
components ω. The local spectral density captures the influence of the time-varying pa-
rameters through the impulse transfer functions Ψ(u, e−iω), Ψ(u, e+iω) above. Using the
spectral representation for the local covariance that is associated with the local spectral
density,

E
[
X̃t+h(u)X̃⊤

t (u)
]

=
∫ π

−π
SX(u, ω)eiωhdω (5)

we can naturally introduce time-varying frequency domain counterparts of variance de-
compositions. This is important since, as Diebold and Yilmaz (2014) note, we can view
the variance decomposition matrix as an adjacency matrix forming asymmetric connec-
tions among a system of variables. In our case, this allows us to define dynamic adjacency
matrices with different degrees of persistence.

2.1 A Route Towards Transitory and Persistent Connectedness
Variance decompositions are transformations of impulse responses Ψt,T (h) that allow us
to measure the contribution of shocks to the system and thus to characterise the networks
that form in response to shocks. While it may seem natural to choose a forecast horizon
h = 1, . . . , H of interest, this choice is costly in terms of information aggregation and
hence loss. In contrast to the cumulative information with increasing h, the spectral
representation of the impulse responses Ψt,T (e−iω) contains much richer and more precise
information. Switching to the frequency domain allows one to trace network connections
arising from transitory and persistent components of shocks.

To illustrate, consider a simple bivariate system in which the links between two vari-
ables are of interest. Specifically, we are interested in how variable b responds to two
different shocks to variable a.7 The first is a transitory shock that causes the variable b
to rise by one unit in period 1 and fall by one unit in period 2, before returning to zero
from period onwards. Here we expect the proportion of error variation to be large at
short horizons and small at long horizons due to the purely transitory effect.

The second is a persistent shock that results in a unit increase in the variable b and
a gradual decrease to zero over the impulse horizon. In this case, the fraction of error
variation is expected to be large at longer horizons and smaller at shorter horizons. How
these quantities in the time and frequency domain capture the responses to these two
shocks is the main motivation for our measures.

Figure 1 shows the impulse response functions of variable b to shocks to variable a in
the left panel, the corresponding fraction of forecast error variances in the middle panel,
and their corresponding spectral decompositions of forecast error variance fractions in
the right panel. Note that one can hardly identify persistence of the shock from the

7In this example, we assume that the impact of own shocks on variable b increases by 1 unit and is
persistent. This means that the impact of a 1 unit shock to variable b affects the value of b up to 20
horizons after we observe the shock. Note that our analysis in Figure 1 remains the same if the own
shocks are transitory.
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Figure 1: Impulse Response Functions and Variance Decompositions in time and
frequency domain
Notes: This figure reports impulse response functions (left), variance decompositions in time
domain (middle) and the corresponding spectral representation of the forecast error variance
decompositions (right), of a variable b within a bivariate system with respect to a shock in the
variable a. We consider two types of shocks, a transitory shock (triangles) and a persistent
shock (dots) impacting horizon h = 1, . . . , H and frequency ω ∈ {0, . . . , ω}.

almost indistinguishable forecast error variance shares (variance decompositions) in the
time domain depicted by the middle panel of figure 1. A persistent shock results in a
slightly larger value of forecast error variation relative to the variation due to a transitory
shock. At the same time, if we were to estimate these quantities from the data and take
into account the uncertainty of the estimates (the figure plots the theoretical values of a
simple example), they would become statistically indistinguishable.

In contrast, the spectral representation of the forecast error variance shares in the
right-hand panel of Figure 1 accurately captures the heterogeneous impact of the two
shocks across frequencies. The transitory shock in the variable a has a negligible impact
at low frequencies (i.e. close to ω = 0), indicating that this shock has no importance
for the long-run variation of the variable b, and larger weights at higher frequencies,
showing the transitory nature of the link established by this shock. Conversely, the
persistent shock affects low frequencies and correctly identifies a persistent link between
the variables.

The main implication is that we can construct network measures that take into account
the nature of the shocks that form such links. Thus, using spectral decompositions, we
are able to identify transitory and persistent network links that are not apparent in the
time domain.
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2.2 Measuring Connectedness
The following proposition establishes the time-varying spectral representation of the vari-
ance decomposition of shocks from variable j to variable k. This is central to the existence
of network measures in the time-frequency domain.8

Proposition 1 (Dynamic Adjacency Matrix). Suppose Xt,T is a weakly locally stationary

process with σ−1
kk

∞∑
h=0

∣∣∣∣[Ψ(u, h)Σ(u)
]

j,k

∣∣∣∣ < +∞,∀j, k. Then the time-frequency vari-

ance decompositions of the jth variable at a rescaled time u = t0/T due to shocks in
the kth variable on the frequency band d = (a, b) : a, b ∈ (−π, π), a < b form a dynamic
adjacency matrix defined as

[
θ(u, d)

]
j,k

=
σ−1

kk

∫ b

a

∣∣∣∣∣
[
Ψ(u, e−iω)Σ(u)

]
j,k

∣∣∣∣∣
2

dω

∫ π

−π

[{
Ψ(u, e−iω)

}
Σ(u)

{
Ψ(u, e+iω)

}⊤]
j,j

dω

(6)

where Ψ(u, e−iω) = ∑
h e
−iωhΨ(u, h) is local impulse transfer function or frequency re-

sponse function computed as the Fourier transform of the local impulse response Ψ(u, h)

Proof. See Appendix A.

It is important to note that
[
θ(u, d)

]
j,k

is a natural disaggregation of traditional
variance decompositions to time-varying frequency bands. This is because a portion of
the local error variance of the jth variable at a given frequency band due to shocks in
the kth variable is scaled by the variance of the jth variable. Note that while the Fourier
transform of the impulse response generally takes on complex values, the quantity in
proposition (1) is the squared modulus of weighted complex numbers, thus producing a
real quantity.

This relationship is an identity which means the integral is a linear operator, summing
over disjoint intervals covering the entire range (−π, π) recovers the time domain coun-
terpart of the local variance decomposition for h → ∞. The following remark formalizes
this fact.

Remark 1 (Aggregation of Adjacency Matrix). Denote by ds an interval on the real
line from the set of intervals D that form a partition of the interval (−π, π), such that
∩ds∈Dds = ∅, and ∪ds∈Dds = (−π, π). Due to the linearity of integral and the construction
of ds, we have [

θ(u)
]

j,k
=

∑
ds∈D

[
θ(u, ds)

]
j,k
.

8Note to notation: [A]j,k denotes the jth row and kth column of matrix A denoted in bold. [A]j,·
denotes the full jth row; [A]·,j denotes the full jth column. A

∑
A, where A is a matrix that denotes

the sum of all elements of the matrix A.

7



Remark (1) is important as it establishes the aggregation of network connectedness
measures across different frequency bands to its time domain, total counterpart. Hence
one can easily obtain time varying network measures across any horizon of interest using
frequency bands that will always sum up to an aggregate time domain counterpart.

As the rows of the time-frequency network connectedness do not necessarily sum to
one, we normalize the element in each by the corresponding row sum

[
θ̃(u, d)

]
j,k

=
[
θ(u, d)

]
j,k

/
N∑

k=1

[
θ(u)

]
j,k

(7)

Our notion that we can approximate well the process Xt,T , by a stationary process
X̃t(u) in a neighborhood of a fixed time point u = t/T , means that all associated local
quantities approximate well their time varying counterparts. Following the arguments
in Dahlhaus (1996), and using mild assumptions, one can easily see that local variance
decompositions at a frequency band θ̃(u, d) approximate well the time-varying variance
decompositions of the process Xt,T .

Note that the local generalized variance decompositions form a dynamic adjacency
matrix that defines a time-varying network at a given frequency band. Thus, we can
directly use our measures as time-varying network characteristics that contain richer
information in comparison to typical network analysis. In our notion, variance decompo-
sitions can be viewed as weighted links showing the strengths of connections. In addition,
the links are directional, meaning that the j to k link is not necessarily the same as the k
to j link, and hence the adjacency matrix is asymmetric. Even more important, the adja-
cency matrix is time-varying and frequency specific that allows the study of time-varying
network characteristics at various frequency bands of the user’s choice. The simplest is
to measure transitory network connections over the short-run and persistent ones over
the long-run.

Now we can define network connectedness measures that characterize a time-varying
and frequency specific network. We define local network connectedness measures at a
given frequency band as the ratio of the off-diagonal elements to the sum of the entire
matrix

C(u, d) = 100 ×
N∑

j,k=1
j ̸=k

[
θ̃(u, d)

]
j,k

/
N∑

j,k=1

[
θ̃(u)

]
j,k

(8)

This measures the contribution of forecast error variance attributable to all shocks in the
system, minus the contribution of own shocks over frequency band d and infers system-
wide connectedness over such frequency band. We can also define measures that reveal
when an individual variable in the economy is a transmitter or receiver of shocks. Local
directional connectedness measures how much of each variables’s j variance is due to
shocks in other variables k ̸= j in the economy over frequency band d is given by

Cj←•(u, d) = 100 ×
N∑

k=1
k ̸=j

[
θ̃(u, d)

]
j,k

/
N∑

j,k=1

[
θ̃(u)

]
j,k
, (9)
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defining the so-called from connectedness. One can precisely interpret this quantity
as from-degrees (often called out-degrees in the network literature) associated with the
nodes of the weighted directed network represented by the variance decompositions matrix
generalized to a time-varying frequency specific quantity. Likewise, the contribution of
variable j to variances in other variables is computed as

Cj→•(u, d) = 100 ×
N∑

k=1
k ̸=j

[
θ̃(u, d)

]
k,j

/
N∑

k,j=1

[
θ̃(u)

]
k,j

(10)

and is the so-called to connectedness. Again, one can precisely interpret this as
to-degrees (often called in-degrees in the network literature) associated with the nodes
of the weighted directed network represented by the variance decompositions matrix.
These two measures show how other variables contribute to the variation of variable j,
and how variable j contributes to the variation of others, respectively, in a time varying
fashion at a chosen frequency band. We note here that taking the difference between to
connectedness and from connectedness summarizes information regarding directional
connections in net-terms. Further, one can track pairwise connections over frequency
bands in an analogous manner to the above as differences between the j − kth element
and k − jth elements.

Importantly, the following proposition shows one can always reconstruct time domain
network connectedness measures from our frequency-dependent networks.

Proposition 2 (Reconstruction of Dynamic Network Connectedness). Denote by ds an
interval on the real line from the set of intervals D that form a partition of the interval
(−π, π), such that ∩ds∈Dds = ∅, and ∪ds∈Dds = (−π, π). We then have that

C(u) =
∑

ds∈D

C(u, ds)

Cj←•(u) =
∑

ds∈D

Cj←•(u, ds)

Cj→•(u) =
∑

ds∈D

Cj→•(u, ds)

(11)

where C(u) are local network connectedness measures aggregated over frequencies.

Proof. See Appendix A.

In light of the above, all local frequency connectedness measures C(u, d) for u = t/T
approximate well the time-varying frequency connectedness of the process Xt,T .

2.3 Obtaining Transitory and Persistent Network Measures
In light of the assumptions that underpin our measures, we conjecture that the economy
follows a stable time-varying parameter heteroskedastic VAR (TVP-VAR) model as in (1).
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We follow Petrova (2019) who establishes a Quasi Bayesian Local-Likelihood approach
for inference in the presence of time-varying parameters.

For consistent estimation under the QBLL approach, let Xt,T be a time-series we
observe with log probability density lt

(
Xt,T |Xt−1,T , Φ̃(t/T )

)
, Φ̃(t/T ) stacks the time-

varying autoregressive coefficient matrices into a finite-dimensional vector that satisfies
one of the following conditions.

i) Φ̃t = Φ̃(t/T ) is a deterministic process where Φ(.) is a piecewise differentiable
function.

ii) Φ̃(t/T ) is a stochastic process satisfying: supj:|j−t|≤h||Φ̃t − Φ̃j||2= Op(h/t) for 1 ≤
h ≤ t, t → ∞.

Both of the above indicate that the parameter sequence drafts gradually over time.
The first condition is standard of Dahlhaus (2000) for locally stationary processes which
requires the parameter process is a piecewise smooth deterministic function; thus allowing
for breaks in parameters. The second condition is a generalization of the first to include
stochastic parameter processes exhibiting degrees of persistence necessary for consistent
estimation of stochastic driven time-variation. Such condition includes bounded random
walk processes and some fractionally integrated processes. The parameters may feature
any combination of deterministic trends and/or breaks satisfying conditions i) and ii)
above. Our data generating processes (DGPs) in Section 3 are examples of such DGPs.9

To obtain the time-varying coefficient estimates at a fixed time point u = t0/T ,
Φ̂1(u), ..., Φ̂p(u), and the time-varying covariance matrices, Σ̂(u), we follow the QBLL
approach of Petrova (2019). Specifically, this approach uses a kernel weighting function
that provides larger weights to observations that surround the period whose coefficient
and covariance matrices are of interest. Using conjugate priors, the (quasi) posterior
distribution of the parameters of the model are analytical. This alleviates the need to use a
Markov Chain Monte Carlo (MCMC) simulation algorithm and permits the use of parallel
computing. Note also that in using (quasi) Bayesian estimation methods, we obtain
a distribution of parameters that we use to construct network measures that provide
confidence bands. Details of the model and estimation algorithm are in Appendix B.10 We
provide a computationally efficient package DynamicNets.jl in JULIA and DynamicNets
in MATLAB that allows one to obtain our measures on data the researcher desires.11

To estimate the elements of dynamic adjacency matrix, we first need to truncate
the infinite VMA(∞) representation of the approximating model with a choice of finite
horizon H. Here we note that in the frequency domain quantities, H serves only as an

9Figure 1 of Petrova (2019) provides figures of examples and provides further discussion around
conditions the parameter sequences must satisfy for consistent estimation.

10Unlike traditional TVP VARs time-variation evolves in a non-parametric manner thus making no
assumption on the laws of motion within the model. Typically, the model of Primiceri (2005), and many
extensions, assume parameters evolve as random walks or autoregressive processes.

11The packages are available at https://github.com/barunik/DynamicNets.jl and https://
github.com/ellington/DynamicNets

10

https://github.com/barunik/DynamicNets.jl
https://github.com/ellington/DynamicNets
https://github.com/ellington/DynamicNets


approximation factor, and it has no interpretation as in the time domain. Hence in the
applications we advise setting the H sufficiently high to obtain a better approximation,
particularly when lower frequencies are of interest. We obtain horizon specific measures
using Fourier transforms and set our truncation horizon H = 100. Note, we run all results
in this paper for H ∈ {50, 100, 200}, they are qualitatively similar and available upon
request.

Next, estimating dynamic network measures requires the user to choose a kernel
and its bandwidth. Typically the larger the bandwidth, the smoother time-evolution of
our frequency specific network measures. Therefore, prior to tracking dynamic network
connections, it is important the user considers the time-series properties of their data. For
example if common peaks (troughs) in the time-series occur frequently and are transient,
then a shorter bandwidth may be necessary. Conversely, if tracking network connections
among data that evolves gradually over time, like interest rates, a larger bandwidth may
be more appropriate. In the context of our study, we use a Normal kernel and explore
the implication of bandwidth choice for a variety of data generating processes (DGPs) in
Section 3.

It is noteworthy to mention that the choice of a two-sided kernel can come at a cost;
especially if one wishes to use network measures for forecasting purposes. In these cases
one may wish to: i) estimate the dynamic network recursively throughout time such that
the Normal kernel truncates to use only past values at the time T estimate; or ii) choose a
one-sided kernel such as those in Hahn et al. (2001); Barigozzi et al. (2020). In practice, we
encourage researchers to experiment with a variety of bandwidths to ensure results are not
driven by its selection. We also encourage authors to use reasonable bandwidths given the
data for their application. For example, if one was using these measures for forecasting
daily stock return volatilities, a researcher might consider combination forecasts using
Bayesian Model averaging to trade on. Alternatively one might look to use variance
minimizing kernels in an attempt to reduce uncertainty around the forecast.12

We estimate the j, k element of our dynamic adjacency matrix at time u = t0/T and
horizon d = (a, b) : a, b ∈ (−π, π) and a < b such that it corresponds to the transitory
(high frequency band) and persistent (low frequency band) element of the adjacency
matrix respectively as:

[
θ̂(u, d)

]
j,k

=
σ̂−1

kk

∑
ω∈d

([
Ψ̂(u, ω)Σ̂(u)

]
j,k

)2

∑
ω∈(−π,π)

[
Ψ̂(u, ω)Σ̂(u)Ψ̂⊤(u, ω)

]
j,j

, (12)

where Ψ̂(u, ω) = ∑H−1
h=0

∑
h Ψ̂(u, h)e−iωh is an estimate of the impulse transfer function

from Fourier frequencies ω ∈ {aH/2π, . . . , bH/2π} of impulse response functions that
12In the context of our empirical application below where we look at daily realized volatilities of stock

returns, we use a bandwidth equal to 8. We also estimate the models using bandwidths of 12, 18, and√
T =

√
3278 ≈ 57. Increasing the bandwidth smooths our network connectedness measures because it

assigns larger weights to more distant observations.

11



cover a specific horizon.13 From this, estimates of Equations (8)–(10) directly follow. For
example if the application uses daily data, one may define transitory (short-term) as hori-
zons corresponding to 1–5 days and persistent (long-term) as horizons corresponding to
horizons greater than 5 days. This would require defining the band as (a, b) = (2π/5, 2π)
for the transitory and (a, b) = (0, 2π/5) for the persistent networks.

2.4 Testing for Statistical Differences in Connectedness
We now consider how one can determine, from a statistical perspective, differences be-
tween connectedness. We discuss in detail here how one can test for differences in con-
nectedness one computes over different frequency bands.

In a Bayesian setting there are three alternatives for hypothesis testing. The first
is the Bayes factor, the second uses posterior credible intervals, and the third follows
statistical decision theory. We follow the latter and utilize the work of Li et al. (2014),
Li et al. (2015) and Liu et al. (2022).14 These studies focus on developing test statistics
of a point null hypothesis using the posterior distribution of parameters from a Bayesian
model. The approach requires only the posterior distribution of parameters and has
various advantages. First, they overcome the problem of the Jeffreys-Lindely paradox.
Second, are not sensitive to the prior and are pivotal quantities. Third, they are easy to
compute. Crucially, these statistics directly come from quadratic loss functions, as with
classical test statistics, and therefore possess the same distributions as their frequentist
counterparts.

Li et al. (2015) develop a Bayesian Lagrange-Multiplier (LM) type test that is asymp-
totically equivalent to a classical LM test. Using similar assumptions, Liu et al. (2022)
develop a Bayesian Wald type test that is asymptotically equivalent to a classical Wald
test and requires only the posterior mean and posterior variance of parameters under
the null hypothesis.15 Noting that the VMA(∞) representation of the VAR are nothing
more than a transformation of the VAR parameters, we follow the assumptions in Liu
et al. (2022) and therefore establish a Bayesian Wald type test for differences between
network connectedness across frequency bands. We emphasize our network connectedness
measures are manipulations of the VAR parameters themselves and possess a posterior
distribution.16

13Note that i =
√

−1.
14Bayes factors involve comparing the marginal likelihoods of two competing models and extensively

appear in the literature (see e.g. Koop et al., 2010; Chan, 2020). This is not appropriate in our setting
because the network connectedness measures come from a manipulation of a sequence of posterior pa-
rameters from the same model; we have no alternative model to specify the marginal likelihood. Using
posterior credible intervals is possible and something we consider in the spirit of Cogley et al. (2010).
In particular we use the joint posterior distribution of network connectedness measures to compute the
probability that connectedness across one frequency band is larger than an analogous measure across
another frequency band. These results are in Appendix C.

15They also show asymptotic equivalence between their Wald-type test the LM type test in Li et al.
(2015).

16Lütkepohl (1990) provide the asymptotic distribution for impulse response functions from conven-
tional VAR models one estimates using OLS. Petrova (2019)
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We test the null hypothesis, H0 : C(u, da) = C(u, db) that network connectedness across
frequency band da and db are equivalent against the alternative, H1 : C(u, da) ̸= C(u, db).
This is equivalent to testing H0 : C(u, da)−C(u, db) = 0 against H1 : C(u, da)−C(u, db) ̸= 0.
The following proposition establishes the test statistic and its asymptotic distribution
under the null. We outline the regularity conditions in Appendix A along with a brief
discussion on the importance of such conditions.

Proposition 3 (Testing for Heterogeneities in Network Connectedness). Let D̄(u) and
VD

(
D̄(u)

)
denote the time u posterior mean and variance of the difference between net-

work connectedness across frequency band da and db. Then the test statistic under H0

W (X,D0(u)) = qD +
(
D̄(u) − D0(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̄(u) − D0(u)
)

(13)
= qD + Wald (14)

where Wald =
(
D̄(u) − D0(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̄(u) − D0(u)
)
, qD is the number of

restrictions, and D0(u) = C(u, da) − C(u, db) = 0.

W (X,D0(u)) − qD = Wald +Op(1) →d χ2 (qD)

Proof. See Appendix A.

It is important to note that it is straightforward to generalize Equation (13) to in-
clude multiple restrictions. This may be applicable if one requires testing equivalence
among more than two frequency bands. We also note that one may also wish to utilize
the above to test for differences between directional network connections over frequency
bands. In the context of the above one would take the difference between net-directional
connections, or pairwise directional connections, over frequency bands and compute the
test in an analogous manner to below.

For estimation purposes, the test statistic only requires the posterior mean and the
posterior variance of D(u), D̄(u) and V

(
D̄
)
. Let

{
D[r]

}R

r=1
denote the posterior draws

such that D[r] = Ĉ[r](u, da) − Ĉ[r](u, db) is the rth posterior draw of the difference between
estimates of network connectedness over frequency band da and db. Then, the estimate
of our test statistic for heterogeneities between network connectedness is given by

Ŵ (X,D(u) = 0) =
1
R

∑R
r=1

(
D[r](u)

)2

1
R

∑R
r=1

(
D[r](u) − ¯̄D(u)

)2 , with ¯̄D(u) = 1
R

R∑
r=1

D[r](u) (15)

Under the null, we have W (X,D0(u)) − qD →d χ2 (qD) with qD = 1 in this particular
case.17 Thus, we only need to compare Ŵ (X,D(u) = 0) to the critical values of the

17In the classical setting one uses Wald tests to check a variety of restrictions, such as a parameter of
interest being equal to zero, or equivalence between two parameters of interest under the null hypothesis.
When one tests the latter, the resulting Wald test is ∽ χ2(1).
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χ2 (1) distribution. Rejecting the null implies that the time u network connectedness
over frequency band da is statistically different to the corresponding time u network
connectedness over frequency band db.

It may also be pertinent to test for differences in connectedness over time. Here we fix
the frequency band, and now consider differences over time. In this case we test the null
hypothesis, H0 : C(u1, d) = C(u2, d) that network connectedness at time u1 and u2 across
frequency band d are equivalent against the alternative, H1 : C(u1, d) ̸= C(u2, d). This is
equivalent to testing H0 : C(u1, d)−C(u2, d) = 0 against H1 : C(u1, d)−C(u2, d) ̸= 0. Now
letting D̄(s) and VDD

(
D̄(s)

)
denote the posterior mean and variance of the difference

between network connectedness at times u1 and u2 and replacing D̄(u) and VDD
(
D̄(u)

)
in Proposition 3 with these quantities delivers a Wald-type test statistic following a χ2 (1)
distribution. Again, all we need to do is compare the test statistic with critical values of
the χ2 (1) distribution.

3 Monte Carlo Study
In this section, we conduct a Monte Carlo exercise to understand the finite sample proper-
ties of our connectedness measures. In order to motivate the need to focus on connections
forming conditional on the persistence of shocks, we generate data with different levels of
persistence throughout time and also changes in the covariance structure. This will in-
duce differences in network connectedness measures we compute over different frequency
bands. Here we concentrate on low and high frequency bands and consider four different
data generating processes (DGP) to highlight their uses.

For simplicity, we focus on bivariate VAR(2) models with time-varying parameters
and time-varying covariance matrices:

Xt,T = Φ0(u) + Φ1(u)Xt−1,T + Φ2(u)Xt−2,T + ϵt,T ,

ϵt,T = Σ−1/2(u)ηt,T , ηt,T ∽ (0, I2)
where Φ0(u) contains the time-varying intercepts and Φ1(u) and Φ2(u) contain the

time-varying autoregressive parameters. The time-varying covariance matrix Σ(u) =
A−1(u)H(u) (A−1(u))⊤ with A−1(u) being a lower triangular matrix with a unit diagonal
and H(u) is a 2 × 2 diagonal matrix.

DGPI: Our first DGP has residuals such that, ηt,T ∽ NID (0, I2). The time-varying
intercepts follow the process:

[Φ0(u)]j = 0.0025 sin (0.004πt) + 0.15
t∑

i=1

νi√
t
, νi ∽ NID

(
0, 0.0012

)
, j = 1, 2

For the time-varying autoregressive parameters, we have

[Φg(u)]j,k =


0.05 sin (0.002πt) + 0.75∑t

i=1
κi√

t
, t ∈ {1, ..., 500} ∀g, j, k = 1, 2

0.45 sin (0.002πt) + 0.75∑t
i=1

κi√
t
, t ∈ {501, ..., 1000} j = k = 1, j = k = 2

0.05 sin (0.002πt) + 0.75∑t
i=1

κi√
t
, t ∈ {501, ..., 1000} j = 1, k = 2 & j = 2, k = 1
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with κi ∽ NID (0, 0.00012). The (2,1) element of A(u) have the following dynamics:

[A(u)]2,1 =
0.03 sin (0.002πt) + 0.7∑t

i=1
υi√

t
, t ∈ {1, ..., 500}

1.5 sin (0.002πt) + 0.7∑t
i=1

υi√
t
, t ∈ {501, ..., 1000}

with υi ∽ NID (0, 0.32). The diagonal elements of H(u) follow

log [H(u)]j,j = µj + λj

(
log [H(u− 1)]j,j − µj

)
+ ξj,t

where ξj,t ∽ NID (µj, 0.12/(1 − λj)) , µj = 0.01, λj = 0.95.
This DGP has little to no dependence for the first 500 observations which means

connectedness at both high and low frequency bands will be low and close to zero. The
latter half of the sample sees the AR coefficients in each equation become persistent as the
sin wave becomes negative. Note also that the contemporaneous relationship intensifies.
This induces connections at high frequency bands while connections at low frequency
bands should be low and close to zero. Note we also allow for non-Gaussian residuals
in this DGP such that we draw ηt,T from a multivariate student-t distribution with 5
degrees of freedom. These results are in Appendix C.

DGPII: For our second DGP, the time-varying intercepts follow the process:

[Φ0(u)]j = 0.25 sin (0.004πt) + 0.15
t∑

i=1

νi√
t
, νi ∽ NID

(
0, 0.12

)
, j = 1, 2

and the time-varying autoregressive parameters follow:

[Φg(u)]j,k = 0.25 sin (0.004πt) + 0.75
t∑

i=1

κi√
t
,∀g, j, k = 1, 2

with κi ∽ NID (0, 0.32). The (2,1) element of A(u) and the diagonal elements of H(u)
follow the processes:

[A(u)]2,1 = 0.3 sin (0.008πt) + 0.7
t∑

i=1

υi√
t

log [H(u)]j,j = µj + λj

(
log [H(u− 1)]j,j − µj

)
+ ξj,t,

where υi ∽ NID (0, 0.32) and ξj,t ∽ NID (µj, 0.12/(1 − λj)) , µj = 0.01, λj = 0.95.
This DGP induces two distinct periods of persistence during observations 100-200 and

600-700 which amplifies connectedness at the low frequency band.
DGPIII: Our third DGP is the same as DGPII but relaxes the assumption that

ηt,T are Gaussian. Instead we assume that the residuals follow a multivariate student-t
distribution with 5 degrees of freedom.

DGPIV: Our fourth DGP is the same as DGPII, but increases the periodicity
of the sin functions in the time-varying autoregressive matrices from sin (0.004πt) to
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Figure 2: Dynamic network connectedness measures: True and fitted values
Notes: This figure plots the true network connectedness measures for three data generating
processes following bi-variate TVP VAR(2) models along with the median and 95% quantiles
of estimated network connectedness measures with bandwidth W=8. The left columns report
network connectedness on the low-frequency band, d ∈ (0, π/5), the middle columns show
network connectedness on the high-frequency band, d ∈ (π/5, π), and the right columns show
the aggregate network connectedness such that d ∈ (0, π). DGPI (top row) is a TVP VAR(2)
model with Gaussian errors, we introduce a break in the time-varying autoregressive matrices
and contemporaneous relations from observation 500 that induces large connections across the
high frequency band. DGPII (second row) is a TVP VAR(2) where time-varying intercepts
and autoregressive matrices following sin wave functions with a stochastic error, time-varying
covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and
the diagonal elements follow a stationary AR(1) processes. DGPIII (third row) is a TVP VAR(2)
model with student-t errors, time-varying intercepts and autoregressive matrices following sin
wave functions with a stochastic error, time-varying covariance matrix where the off-diagonals
follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary
AR(1) processes. DGPIV (bottom row) is the same as DGPII, but with an increase in the
periodicity of the respective sin wave functions the time-varying intercepts and autoregressive
matrices follow.
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sin (0.006πt). This generates three distinct periods of persistence during observations
50-150, 300-450, and 700-850.

For each of the four DGPs, we generate 100 simulations of length T = 1000 and
compute the network connectedness measures. We use the median over these simulations
as the true network connectedness. Then, for each of the 100 simulations of DGPI–
DGPIV, we fit the TVP-VAR model we outline in Section 2.3. In fitting this model
we take 1000 draws from the posterior distribution, calculate our network connectedness
measures and then save the posterior median. For this exercise, we compute network
connectedness on two frequency bands that cover the spectrum. The low-frequency band,
which empirically pertains to persistent network connections, is d ∈ (0, π/5), and the
high-frequency band, pertaining to transitory network connections, is d ∈ (π/5, π). For
completeness, we compute the aggregate connectedness measures that considers the entire
spectrum such that d ∈ (0, π); this corresponds to a dynamic version of the Diebold and
Yilmaz (2014) connectedness measure.

A final noteworthy point is the choice of bandwidth, W , for the kernel weights
that induce time-variation into the TVP-VAR model. In this exercise, we consider
W = {8, 12, 18}. However, for ease of exposition, we only report plots of the network
connectedness measure estimates using W=8 in the main text, results of fitted values
from W = {12, 18} are in Appendix C. The larger the bandwidth, the smoother the
network measures become. This is because larger bandwidths assign weights to a higher
number of observations around the one of interest. In general, we find that larger W re-
sults in poorer fit. This highlights the importance of selecting an appropriate bandwidth
for the kernel weights relative to the data application.

As we discuss in 2.3, from a practical perspective, we encourage researchers to explore
the robustness of their results to different bandwidths. For example, consider a low
frequency forecaster looking to predict returns one-month ahead today, using our network
connectedness measures, would likely place zero weight on data from the burst of the
dot-com bubble and 2008 recession. Likewise, a high frequency investor would likely
place little to no weight on data from one-year prior. As we show in Appendix C,
lengthening the bandwidth in our Monte Carlo experiment causes the surges in estimates
of connectedness to be more gradual.

If the data is low frequency data such as monthly yields, then one could argue to
use a wider bandwidth as changes in these data are far smoother than returns or return
volatility. If one is looking to describe the nature of connections that form on persistent
and transitory components of shocks then we encourage researchers to use multiple band-
widths to check how these dynamics are influenced by such changes. We do not suspect
these changes would drastically change the conclusions or results in most applications.

In Appendix C, we conduct further robustness checks for our simulation analysis. In
Appendix C.3 we provide analysis on the performance of rolling VAR models for our
DGPs. These results show that such connectedness estimates less accurate relative to
our approach. In particular, estimates are highly sensitive to the window size and fail
to accurately capture the peaks and troughs in connectedness; the latter is prominent
as the complexity of the DGP increases (e.g. DGPII-DGPIV). Meanwhile in Appendix
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C.4 we conduct a Monte Carlo study on larger scale VAR models under DGPI containing
N=10 and N=25 variables respectively. These results show that our approach is robust to
increasing the number of variables and tracks connections well within larger-scale models.

Figure 2 reports the true network connectedness measures and the median and 95%
quantiles of corresponding estimates from the TVP VAR model using a kernel band-
width of W=8. We report network connectedness over the low-frequency-band, the high-
frequency-band, and aggregate, in the left, middle, and right columns respectively. The
top row corresponds to DGPI, and the second, third and fourth rows results from DGPII,
DGPIII, and DGPIV respectively. As we can see, the distribution of estimates for each
DGP track the true values remarkably well. In almost all cases, the true value lies within
the 95% quantiles of the distribution from model estimates. This plot shows that our
method provides an accurate representation of horizon specific network connectedness,
even when the underlying process has complex dynamics and the true error distribution
is non-Gaussian.

Figure 3 further reports the estimates, and numerical standard error bounds of our
test for heterogeneities between high frequency band and low frequency band network
connectedness measures (Equation 15) for each of the four DGPs we use in the Monte
Carlo study. Specifically, for each observation we test the null hypothesis D(u) = 0 where
D(u) = Ĉ(u, d) − Ĉ(u, c) with d ∈ (0, π/5) corresponding to the low frequency band and
c ∈ (π/5, π) corresponding to the high frequency band. In each plot, we also report
the 5% critical value from the χ2(1) distribution of 3.84. Test statistics exceeding this
value reject the null in favor of heterogeneities between network connectedness measures
across frequency bands.18 As we can see, our test statistic identifies significant differences
between low and high frequency band network connectedness measures that correspond
with the peaks we observe in Figure 2 for each DGP. We can see with the non-Gaussian
DGP, DGPIII the estimates of the test statistics are smaller relative to the analogous
Gaussian DGP, DGPII. However, there are still clear rejections.

We now test for differences in connectedness measures across the same frequency band
over time. To do so, we test the first time period against all remaining 999 observations
from our DGPs, u1 = 1, u2 = {2, 3, . . . , 1, 000}. We do this for both the low-frequency
band, d ∈ (0, π/5), and the high-frequency band, d ∈ (π/5, π). Figure 4 reports the
estimates of the test statistics, their numerical standard error and the corresponding
95% critical value. First, considering DGPI, it is clear that connectedness across the
high frequency band exhibits significant differences between the first observation when
we increase connections at observation 500. It is noteworthy to mention that we also
see this for the low frequency band. This is expected as we can see that the estimates
from our simulations exhibit slight bias here. However, for DGPII–DGPIV we have
rejections relative to the first observation at the corresponding periods where we create
connectedness across the low frequency band, and no rejections across the high frequency
band.

Overall, this shows that our testing procedure indicates rejections of equality in con-
nectedness forming over different frequency bands, and over time for connectedness across

18We obtain numerical standard errors in a similar manner to Li et al. (2015).
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Figure 3: Tests for differences between network connectedness across different
frequency bands
Notes: This figure plots the test statistics and +/− 2 × the numerical standard errors for
heterogeneities between network connectedness measures across different frequency bands from
four DGPs. The test statistic is Ŵ (Xt,T , D(u) = 0) − 1 where D(u) = Ĉ(u, d) − Ĉ(u, c) with
d ∈ (0, π/5) corresponding to the low frequency band and c ∈ (π/5, π) corresponding to the
high frequency band. The dashed black line is the 5% critical value from the χ2(1) distribution
=3.84. Values greater than 3.84 reject the null hypothesis of equivalent network connections
across frequency band d and c in favor of differences. DGPI (top left panel) is a TVP VAR(2)
model with Gaussian errors, we introduce a break in the time-varying autoregressive matrices
and contemporaneous relations from observation 500 that induces large connections across the
high frequency band. DGPII (top right panel) is a TVP VAR(2) where time-varying intercepts
and autoregressive matrices following sin wave functions with a stochastic error, time-varying
covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and
the diagonal elements follow a stationary AR(1) processes. DGPIII (bottom left panel) is a
TVP VAR(2) model with student-t errors, time-varying intercepts and autoregressive matrices
following sin wave functions with a stochastic error, time-varying covariance matrix where the
off-diagonals follow sin wave functions with a stochastic error, and the diagonal elements follow
a stationary AR(1) processes. DGPIV (bottom right panel) is the same as DGPII, but with an
increase in the periodicity of the respective sin wave functions the time-varying intercepts and
autoregressive matrices follow.
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Figure 4: Tests for differences between network connectedness over time
Notes: This figure plots the test statistics and +/− 2 × the numerical standard errors for
heterogeneities between network connectedness measures across different frequency bands from
four DGPs. The test statistic is Ŵ (Xt,T , D(s) = 0) − 1 where D(u) = Ĉ(u1, d) − Ĉ(u2, d) with
u1 = 1, u2 = {2, 3, . . . , 1, 000}. Here d ∈ (0, π/5) corresponds to the low frequency band (LHS
plots) and d ∈ (π/5, π) corresponds to the high frequency band (RHS plots). The dashed black
line is the 5% critical value from the χ2(1) distribution =3.84. Values greater than 3.84 reject
the null hypothesis of equivalent network connections at time u1, u2 across frequency band
d. DGPI (top row) is a TVP VAR(2) model with Gaussian errors, we introduce a break in
the time-varying autoregressive matrices and contemporaneous relations from observation 500
that induces large connections across the high frequency band. DGPII (second row) is a TVP
VAR(2) where time-varying intercepts and autoregressive matrices following sin wave functions
with a stochastic error, time-varying covariance matrix where the off-diagonals follow sin wave
functions with a stochastic error, and the diagonal elements follow a stationary AR(1) processes.
DGPIII (third row) is a TVP VAR(2) model with student-t errors, time-varying intercepts
and autoregressive matrices following sin wave functions with a stochastic error, time-varying
covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and
the diagonal elements follow a stationary AR(1) processes. DGPIV (fourth row) is the same as
DGPII, but with an increase in the periodicity of the respective sin wave functions the time-
varying intercepts and autoregressive matrices follow.
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the same frequency band, where we should expect to see such differences.

4 Monitoring Persistence in Uncertainty Networks
using S&P500 Stocks

Changes in uncertainty can play a key role in driving business cycles and financial turmoil
(Bloom et al., 2018). Identifying the sources of such risks is a focus for researchers and
practitioners. Some quantify systemic risks emanating from financial markets and sectors
(e.g. Billio et al., 2012; Acemoglu et al., 2015), while others examine how sectoral shocks
affect aggregate fluctuations (e.g. Gabaix, 2011; Acemoglu et al., 2017; Atalay, 2017).
Related to the above, and in response to financial crises, many countries are implementing
policies to monitor systemic risk and financial stability. Therefore, we use our framework
to identify new measures of transitory and persistent linkages for S&P500 constituents.
In section 4.1, we examine sectoral connectedness as well as network structures at a
granular level for financial firms.

We use high-frequency tick data for all stocks listed on the S&P500 from 5 July 2005
to 31 August 2018 and compute realised volatility (RV) for all stocks in the sample. To
obtain firm-level RVs, we restrict our analysis to five-minute returns during New York
Stock Exchange (NYSE) trading hours (i.e. 09:30-16:00). The data are time-synchronised
using the same timestamps, eliminating transactions executed on Saturdays and Sundays,
US holidays, 24-26 December and 31 December to 2 January due to low activity on these
days. This leaves us with 3278 trading days. After cleaning the data, we are left with a
cross section of 496 stocks.

To obtain our network connectivity measures, we estimate a TVP VAR model on
N=496 stocks with p=2 lags on our T=3278 days of data. We estimate our horizon-
specific dynamic network measures on a 48-core server. For each t ∈ {1, 2, . . . , T}, we
generate 500 simulations of the (quasi) posterior distribution, resulting in a total esti-
mation time of 10 days. We define transitory (short-term) network links as those that
form over a 1-5 day horizon, and persistent (long-term) network links at horizons greater
than 5 days (i.e. 5 days to the ∞ horizon). Our choice of these horizons stems from the
existing literature on volatility modelling using high-frequency data, which shows that
daily and weekly fluctuations contain salient information for future volatility (e.g. Corsi
and Renò, 2012).19

Figure 5 plots measures of transitory and persistent network connectedness from 5 July
2005 to 31 August 2018. Overall, there are significant differences in the level of horizon-
specific connectedness across our estimation sample. In general, long-term linkages are
muted during periods of economic/financial calm. However, it is clear that long-term
connectedness spikes during periods of economic recession or major stock market events.
For example, long-term connectedness starts to rise in 2006 and continues to rise during

19In this case, due to the size of the system, we diagonalise the covariance matrix of the VAR as an
additional precaution to avoid overfitting. For the sectoral network measures in section 4.1, we use a full
covariance matrix.
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Figure 5: Horizon specific dynamic total network connectedness for S&P500 con-
stituents
This figure plots the posterior median and 1-standard deviation percentiles of horizon specific
dynamic total network connectedness, C(u, d), d ∈ {S, L} from July 5, 2005 to August 31, 2018.
S refers to the short-term, transitory connectedness, which we define as 1 day to 1 week; and
L refers to long-term, persistent connectedness, which we define as horizons > 1 week. The
spectrum with which the horizons stem from link to the frequency with which we observe the
data.

the 2007-2009 recession. In addition, we can see that long-term connectedness increases
during 2010-2012. This may be due to fears of contagion from the European sovereign
debt crisis, the 2010 flash crash and when the S&P500 entered a bear market in 2011,
albeit a short-lived one. We can also see an increase in short- and long-term connectedness
in mid-to-late 2015, which is consistent with the stock market sell-off starting in August
2015; this may also be related to fears of contagion from the Chinese stock market crash in
late 2015. Overall, we see that long-term network connectedness increases during periods
of high systemic risk across our sample.

4.1 Transitory and Persistent Network Connectedness of S&P500
Sectors

Here we focus on the overall network connectedness driven by transitory and persistent
shocks to companies in a given sector. We classify stocks into eleven main sectors ac-
cording to the Global Industry Classification Standard (GICS)20. These are: Consumer
Discretionary (COND) with 73 stocks; Consumer Staples (CONS) with 34 stocks; Health
Care (HLTH) with 53 stocks; Industrials (INDU) with 73 stocks; Information Technology

20GICS is an industry taxonomy developed by MSCI and Standard & Poor’s for use by the global
financial community.
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(INFT) with 67 stocks; Materials (MATR) with 33 stocks; Real Estate (REAS) with 29
stocks; Financials (SPF) with 66 stocks; Energy (SPN) with 36 stocks; Communication
Services (TELS) with 6 stocks; and Utilities (UTIL) with 26 stocks. Further details,
including descriptive statistics (Table D1) for annualised daily RVs, which we compute
as 100 × √

252 ×RVt pooling information across companies within each sector over the
sample period from 5 July 2005 to 31 August 2018, are reported in Appendix D. The
energy sector has the highest mean, while the financial sector has the highest standard
deviation, skewness and kurtosis. Overall, we can see that these sectoral RVs show signif-
icant differences in terms of the first four moments as well as the minimum and maximum
values.

For each of the 11 sectors, we obtain dynamic network measures by estimating a TVP
VAR model on all stocks with two lags on our 3278 days of data. On each day, we take
500 draws from the (quasi) posterior distribution.21. We define transient and persistent
network connectivity in the same way as above.

In Figure 6 we plot the posterior median and 95% confidence bands for transitory
and persistent network connectivity for each sector as in Equation 8. These follow di-
rectly from the manipulations of the estimates of the dynamic adjacency matrices (see
equation 12). Grey bars in these figures represent periods where there are statistically
significant differences at the 5% level between transient and persistent network connectiv-
ity.22 Overall, we observe significant differences between these horizon-specific networks
for each sector. In general, network connectedness due to the persistent component of
shocks exceeds that due to the transitory component of shocks during periods of market
turbulence. Then, during periods of calm, the transitory part of the networks becomes
more pronounced.

Comparing these measures across sectors, we can see from the real estate and financial
sectors that surges in network connectedness driven by persistent shocks drive uncertainty
in the sector for much longer periods of time during the Great Recession relative to
other sectors, e.g. CONS and HLTH. In addition, the magnitude of persistent network
connectedness from the real estate and financial sectors is much greater. Note also that
throughout this period we observe much more frequent evidence in favour of statistical
differences between networks driven by transitory and persistent shocks for these sectors;
particularly relative to COND, CONS, HLTH and MATR. Although the other sectors
show spikes in persistent network connectedness, these do not occur until around February
2008. This highlights how long-term systemic risks within the real estate and financial
sectors intensify during this period and are stronger relative to other sectors.

We also see clear spikes in persistent sectoral network connectedness in May-October
2011 and again in 2015-2016. The former coincides with the S&P500 entering a bear
market and the latter with declines in major stock markets around the world. In 2015-
2016, we see much lower long-term connectedness of consumer staples, utilities, real estate
and telecoms relative to other sectors. We expect the long-term linkages of industrials,

21We estimate our horizon-specific dynamic network measures on a 64-core server, resulting in a total
estimation time of about 4–5 hours to obtain network estimates from the 11 sectors.

22We plot the values of these test statistics in Figure D1 in Appendix D.
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materials, energy, information technology and financials to be strong during this period,
as the decline in global equity markets is linked to falling commodity prices and the
depreciation of Asian currencies against the US dollar.
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Figure 6: Dynamics and Persistence in the U.S. Uncertainty Networks
This figure plots the (quasi) posterior median and 95% confidence bands of network connectedness specific to the transitory, or short-
term (in blue) and persistent, or long-term (in red) shocks to realized volatility of the S&P500 sectors: Consumers Discretionary
(COND), Consumer Staples (CONS), Health Care (HLTH), Industrials (INDU), Information Technology (INFT), Materials (MATR),
Real Estate (REAS), Financials (SPF), Energy (SPN), Comunication Services (TELS), and Utilities (UTIL) from July 8, 2005 to
August 31, 2018. We define transitory (short-term), as connections made over the 1 day to 1 week horizon; we characterize
connections greater than 1 week as persistent (long-term). Grey bars indicate periods with significant heterogeneity in persistence
structures.
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In terms of sectoral network linkages due to transitory shocks, the main differences
we observe are in the size of the linkages. Note, however, that there are subtle differences
in the time profiles. For each sector, we see that transitory linkages are much stronger
during periods of uncertainty at the firm level than persistent linkages during periods of
calm.

Digging deeper into our investigation of whether there are significant differences be-
tween transitory and persistent network connectedness for each sector, two main points
emerge. First, we document significant heterogeneity in persistence over substantial pe-
riods of time. Figure 6 shows that during periods of tranquillity, transitory network
linkages between sectors are stronger relative to linkages from persistent shocks. During
periods of turbulence, however, our results show that persistent linkages intensify in all
sectors, but their magnitude differs considerably.23 Second, statistical differences between
transitory and persistent connectedness in one sector do not necessarily imply differences
in other sectors. For example, over the 2014-2017 period, we see clear differences in the
rejections that transitory and persistent connectedness are equivalent in REAS, SPF,
SPN and UTIL.

In general, the temporal nature of our results aligns well with Bianchi et al. (2019),
which documents a regime dependent impact of systemic risk on financial markets. They
also provide empirical support for Gabaix (2011) and Acemoglu et al. (2012), and un-
cover new measures of sectoral uncertainties (or sector-wide risks). Testing for statistical
differences between transitory and persistent sectoral network connectedness adds further
substance to our suggestion that one should consider dynamic network structures that
form across frequency bands.

For researchers, our measures of network connectedness may contain useful infor-
mation for real economy or forecasting purposes; there is already evidence that network
connectedness contains predictive content for the real economy (e.g. Baruńık et al., 2020).
For practitioners, tracking persistence in sectoral networks can be useful for informing
macroprudential policy. This is because one can use these measures as online monitoring
tools to study the evolution and persistence of sectoral network connectedness.

Although we provide evidence of substantial heterogeneity in the persistence of net-
work structures, there are commonalities in the time profiles. We attribute this to the
high degree of correlation between the data used to proxy uncertainty in our investiga-
tion. Herskovic et al. (2016) exploits the correlation structure of idiosyncratic return
volatilities and shows that a common factor among the drivers of firm-level volatilities
has pricing implications. Our network connectedness measures, by definition, refer to this
correlation structure and provide an aggregate description of the network at each point
in time. However, our network measures are more informative. We are able to obtain
measures that contain information about the overall network structure. These may relate
to directional connections (in and out degrees) or concentration (i.e. a high influence of
a small number of firms/nodes on the overall network); both of which have been shown
to contain information with economic implications (see e.g. Herskovic, 2018; Herskovic

23From Figure D1 in Appendix D we also document that the magnitude of the differences evolves
substantially over time.
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et al., 2020).

4.2 Network Connections at a Granular Level
By focusing on shocks to a single financial institution that affect the wider system, our
research contributes to the large literature on measuring systemic risk. Many understand
systemic risk as many market participants realizing severe losses as a result of propagation
throughout the (financial) system.24 During periods of financial turbulence, uncertainty
shocks, the drying up of liquidity, and insolvencies have the ability to spread rapidly
affecting many institutions across the market. Lessons from recent financial crises spur
the demand for financial regulations in order to mitigate firm behaviors consistent with
increasing systemic risk.

From a prudential perspective, safeguarding against this type of risk requires quan-
tifying systemic risk. The existing literature offers many measures of such types of risk,
these include: the expected shortfall measure of Acharya et al. (2017); Co-Value-at-Risk
(CoVaR) (Adrian and Brunnermeier, 2016); and network connectedness measures (see
e.g. Demirer et al., 2018). The former measures relate to specific risk channels and as
such can aid in calibrating regulatory tools. The latter approach permits one to quantify
the overall influence of individual institutions to overall systemic risk, and hence identify
systemically important financial institutions (SIFIs).

Our approach relates closely with the above. However, under our framework one can
characterise SIFIs, or important variables for different applications, throughout time as
well as understanding whether the influence is persistent or transitory in nature. The ben-
efit of this is twofold. First, enhancing prudential authorities’ understanding of whether
SIFIs influence are transient or long lasting can help refine policies in order to mitigate
adverse firm behavior. For example, one could tailor policies by increasing the capital re-
quirements of SIFIs for those who transmit persistent shocks that contribute significantly
to systemic risk. Second, since systemic risk threatens the stability of the entire finan-
cial sector, knowing the frequency-specific sources of instability facilitates monitoring of
changes to the such risks.

To illustrate how policy makers might use our approach, we examine the network
structures of the financial sector at the granular level of 65 firms. Since our application
uses daily data we have transitory and persistent network structures at every observation
in our sample. We therefore focus on two different dates. Figure 7 shows the network
structures driven by transitory and persistent shocks for the SPF sector on October 24,
2008. This date corresponds to the start of the global financial crisis. Figure 8 reports
the corresponding network structures one year later on October 24, 2009. For each plot,
arrows indicate the direction and strength of the connections, while a transparent (full
colour) vertex indicates a stock that sends (receives) more shocks than it receives (sends).
The size of the vertices indicates the net direction of the connections.

We can see that on 24 October 2008, the persistent links are larger relative to the
transitory ones, suggesting that shocks within the financial sector create links that re-

24For a comprehensive review of the literature on systemic risk, see Benoit et al. (2017).

27



AABA

AFLAIG

AIZ

AJG ALL

AMG

AON

AXP

BAC

BBT

BEN

BK

BRK_B
C

CB

CINF

CMA

CMECOF

ETFC

FHN

FIIFITB

GNW

GS HBAN

HIG

HRB

JPM

KEY

L
LM

LNC

MBI

MCO

MET

MMC
MS

MTB

MTG

NDAQ
NTRS

PBCT

PFG

PGR

PNC
PRU

QQQ

RF

RJF

SCHWSLM

SNV

SPGI

SPY

STI

STT

TMK

TROW

TRV

UNM

USB

WFC

XL

ZION

AABA

AFL

AIG
AIZ

AJG

ALL

AMG

AON

AXP
BAC

BBT

BEN

BK
BRK_B

C

CB

CINF

CMA

CME

COF

ETFC
FHN

FII

FITB

GNW

GS

HBAN

HIG

HRB

JPM
KEY

L

LM

LNC

MBI

MCO

MET

MMC

MS

MTB

MTG

NDAQ

NTRSPBCT

PFG

PGR

PNC

PRU

QQQ

RF

RJF

SCHW

SLM

SNV

SPGI

SPY

STI
STT

TMK

TROW

TRV

UNM

USB

WFC

XL

ZION

Figure 7: Transitory and persistent networks of finance: 24 October 2008
The left (right) figure shows the network connections between the assets comprising the SPF
sector driven by transitory (persistent) shocks on 24 October 2008, corresponding to the day
when the VIX peaked. Arrows indicate the direction of the connections and the strength of the
lines indicates the strength of the connections. Grey (black) vertices indicate firms that receive
(send) more shocks than they send (receive). The size of the vertices indicates the net amount
of shocks.

late to the long-term. This suggests that systemic risk within the systems stems from
persistent network structures. Now looking one year later, it is clear that connections
are far weaker across both transitory and persistent network structures and systemic risk
is relatively lower. The main takeaway from these plots is the strong differences in the
overall structure of the horizon-specific networks.

In Appendix D, we plot heatmaps showing the strength of financial institutions con-
nections across persistent and transitory network structures for these same two dates in
Figures D2–D3. Persistent shocks tend to drive the links with greater strength, and so we
focus our discussion here. Zooming in to examine the contribution of specific firms, we
can see that Truist Financial Corp (BBT), Franklin Resources (BEN), Loews Corpora-
tion (L), SPY, or Wells Fargo & Co (WFC) transmitted persistent shocks to the financial
sector and thus are identified as SIFIs that affected the system with persistent shocks.
We can follow the contributions from the columns of the heatmap in Figure D2. The
impact of a bank increases with the number of rows containing a stronger and warmer red
colour. As we can see, those banks we name above affect many other financial institutions
at the start of the financial crisis, and such impacts are long-lasting.
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Conversely, Metlife (MET), Moody’s (MCO), Unum (UNM), H&R Block (HRB) and
Assurant (AIZ) receiv the most shocks on 24 October 2008. One year later, we can see
that the structure changes dramatically. While WFC, SPY and L seem to be strong
SIFIs, BEN is a nearly non-contributing bank. This highlights how our approach tracks
dynamics of key financial institutions within the system and their influence across per-
sistent and transitory network structures. For completeness, we rank all institutions in
the financial sector according to the strength of transitory and persistent shocks they
transmit/receive during the same two dates in Table D2 in Appendix D.
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Figure 8: Transitory and Persistent Network of Financials: 24 October 2009
The left (right) figure shows the network connections between the assets that make up the SPF
sector by transitory (persistent) connectedness. Arrows indicate the direction of the connections
and the strength of the lines indicates the strength of the connections. Grey (black) vertices
denote firms that receive (send) more shocks than they send (receive). The size of the vertices
indicates the net amount of shocks.

Overall, these network structures show how the role of a firm can change not only
over time, but also in terms of persistence. Researchers may wish to use these network
structures to assess the pricing implications of such risks. For example, users could assess
the role of directional linkages in an empirical asset pricing application that builds on
the theoretical work of Branger et al. (2020). Our framework also allows one to track
dynamic network structures that would complement studies such as Herskovic (2018)
and Gofman et al. (2020). The advantage of our approach is that one does not have to
rely on monthly or annual data to capture such networks. Finally, looking at dynamic
adjacency matrices can help economists understand how shocks dynamically determine
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network structures in models of monetary policy (e.g. Pasten et al., 2020) or the Phillips
curve (e.g. Rubbo, 2020).

5 Conclusion
This paper proposes a novel framework for measuring dynamic network connections in a
multivariate data system. We track dynamic connections driven by different degrees of
persistence using a spectral decomposition of time-varying variance decomposition ma-
trices. Our approach properly accounts for the characteristics of the shocks that create
such links. We outline a procedure that allows one to test for statistical differences in
connectedness over time and frequency. We provide Monte Carlo evidence that our mea-
sures are able to reliably track connectedness and correctly identify statistical differences
from different data generating processes.

Empirically, we show that transitory and persistent measures of network connect-
edness improve our understanding of systemic risks arising from uncertainty networks.
This is because our approach allows one to track connectedness across the transitory and
persistent components of shocks. This is particularly useful during periods of heightened
uncertainty, as our measures indicate whether systemic risks from network connections
are transitory or persistent in nature. Ultimately, this could lead to better decision-
making by macroprudential supervisors and investment decisions by market participants.
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For Online Publication: Technical Appendix

A Proofs
Proposition 1. Let us have the VMA(∞) representation of the locally stationary TVP
VAR model (Dahlhaus et al., 2009; Roueff and Sanchez-Perez, 2016)

Xt,T =
∞∑

h=−∞
Ψt,T (h)ϵt−h (A.1)

Ψt,T (h) ≈ Ψ(t/T, h) is a stochastic process satisfying supℓ||Ψt − Ψℓ||2= Op(h/t) for
1 ≤ h ≤ t as t → ∞, hence in a neighborhood of a fixed time point u = t/T the process
Xt,T can be approximated by a stationary process X̃t(u)

X̃t(u) =
∞∑

h=−∞
Ψ(u, h)ϵt−h (A.2)

with ϵ being iid process with E[ϵt] = 0, E[ϵsϵt] = 0 for all s ̸= t, and the local covariance
matrix of the errors Σ(u). Under suitable regularity conditions |Xt,T −X̃t(u)|= Op(|t/T−
u|+1/T ).

Since the errors are assumed to be serially uncorrelated, the total local covariance
matrix of the forecast error conditional on the information at time t− 1 is given by

Ω(u,H) =
H∑

h=0
Ψ(u, h)Σ(u)Ψ⊤(u, h). (A.3)

Next, we consider the local covariance matrix of the forecast error conditional on knowl-
edge of today’s shock and future expected shocks to k-th variable. Starting from the
conditional forecasting error,

ξk(u,H) =
H∑

h=0
Ψ(u, h)

[
ϵt+H−h − E(ϵt+H−h|ϵk,t+H−h)

]
, (A.4)

assuming normal distribution of ϵt ∼ N(0,Σ), we obtain25

E(ϵt+H−h|ϵk,t+H−h) = σ−1
kk

[
Σ(u)

]
·k

ϵk,t+H−h (A.5)

and substituting (A.5) to (A.4), we obtain

ξk(u,H) =
H∑

h=0
Ψ(u, h)

[
ϵt+H−h − σ−1

kk

[
Σ(u)

]
·k

ϵk,t+H−h

]
. (A.6)

25Note to notation: [A]j,k denotes the jth row and kth column of matrix A denoted in bold. [A]j,·
denotes the full jth row; this is similar for the columns. A

∑
A, where A is a matrix that denotes the

sum of all elements of the matrix A.
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Finally, the local forecast error covariance matrix is

Ωk(u,H) =
H∑

h=0
Ψ(u, h)Σ(u)Ψ⊤(u, h) − σ−1

kk

H∑
h=0

Ψ(u, h)
[
Σ(u)

]
·k

[
Σ(u)

]⊤
·k

Ψ⊤(u, h). (A.7)

Then

[
∆(u,H)

]
(j)k

=
[
Ω(u,H) − Ωk(u,H)

]
j,j

= σ−1
kk

H∑
h=0

([
Ψ(u, h)Σ(u)

]
j,k

)2

(A.8)

is the unscaled local H-step ahead forecast error variance of the j-th component with
respect to the innovation in the k-th component. Scaling the equation with H-step ahead
forecast error variance with respect to the jth variable yields the desired time varying
generalized forecast error variance decompositions (TVP GFEVD)

[
θ(u,H)

]
j,k

=
σ−1

kk

H∑
h=0

([
Ψ(u, h)Σ(u)

]
j,k

)2

H∑
h=0

[
Ψ(u, h)Σ(u)Ψ⊤(u, h)

]
j,j

(A.9)

Next, we derive the frequency representation of the quantity in (A.9) using the fact
that unique time varying spectral density of Xt,T at frequency ω which is locally the
same as the spectral density of X̃t(u) at u = t/T can be defined as a Fourier transform
of VMA(∞) filtered series over frequencies ω ∈ (−π, π) as

SX(u, ω) =
∞∑

h=−∞
E
[
Xt+h(u)X⊤

t (u)
]
e−iωh =

{
Ψ(u, e−iω)

}
Σ(u)

{
Ψ(u, e+iω)

}⊤
, (A.10)

where we consider a time varying frequency response function Ψ(u, e−iω) = ∑
h e
−iωhΨ(u, h)

which can be obtained as a Fourier transform of the coefficients with i =
√−1.

Letting H → ∞, we have time varying generalized forecast error variance decompo-
sitions

[
θ(u)

]
j,k

=
σ−1

kk

∞∑
h=0

([
Ψ(u, h)Σ(u)

]
j,k

)2

∞∑
h=0

[
Ψ(u, h)Σ(u)Ψ⊤(u, h)

]
j,j

= A
B . (A.11)

Starting with frequency domain counterpart of the nominator A, we will use the
standard integral

1
2π

∫ π

−π
eiω(r−v)dω =

1 for r = v

0 for r ̸= v.
(A.12)

Using the fact that ∑∞h=0 ϕ(h)ψ(h) = 1
2π

∫ π
−π

∑∞
v=0

∑∞
r=0 ϕ(r)ψ(v)eiω(r−v)dω, we can

rewrite (A.11) as
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σ−1
kk

∞∑
h=0

([
Ψ(u, h)Σ(u)

]
j,k

)2

= σ−1
kk

∞∑
h=0

(
n∑

z=1

[
Ψ(u, h)

]
j,z

[
Σ(u)

]
z,k

)2

= σ−1
kk

1
2π

∫ π

−π

∞∑
r=0

∞∑
v=0

(
n∑

x=1

[
Ψ(u, r)

]
j,x

[
Σ(u)

]
x,k

) n∑
y=1

[
Ψ(u, v)

]
j,y

[
Σ(u)

]
y,k

 eiω(r−v)dω

= σ−1
kk

1
2π

∫ π

−π

∞∑
r=0

∞∑
v=0

(
n∑

x=1

[
Ψ(u, r, eiωr)

]
j,x

[
Σ(u)

]
x,k

) n∑
y=1

[
Ψ(u, v, e−iωv)

]
j,y

[
Σ(u)

]
y,k

 dω
= σ−1

kk

1
2π

∫ π

−π

( ∞∑
r=0

n∑
x=1

[
Ψ(u, r, eiωr)

]
j,x

[
Σ(u)

]
x,k

) ∞∑
v=0

n∑
y=1

[
Ψ(u, v, e−iωv)

]
j,y

[
Σ(u)

]
y,k

 dω
= σ−1

kk

1
2π

∫ π

−π

(
n∑

x=1

[
Ψ(u, eiω)

]
j,x

[
Σ(u)

]
x,k

) n∑
y=1

[
Ψ(u, e−iω)

]
j,y

[
Σ(u)

]
y,k

 dω
= σ−1

kk

1
2π

∫ π

−π

([
Ψ(u, e−iω)Σ(u)

]
j,k

)([
Ψ(u, eiω)Σ(u)

]
j,k

)
dω

= σ−1
kk

1
2π

∫ π

−π

∣∣∣∣∣
[
Ψ(u, e−iω)Σ(u)

]
j,k

∣∣∣∣∣
2

dω

(A.13)

Hence we have established that

A = σ−1
kk

∞∑
h=0

([
Ψ(u, h)Σ(u)

]
j,k

)2

= σ−1
kk

1
2π

∫ π

−π

∣∣∣∣∣
[
Ψ(u, e−iω)Σ(u)

]
j,k

∣∣∣∣∣
2

dω (A.14)

from (A.11), we use the local spectral representation of the VMA coefficients in the second
step. The rest is a manipulation with the last step invoking the definition of modulus
squared of a complex number to be defined as |z|2= zz∗. Note that we can use this
simplification without loss of generality, because the VMA(∞) representation that is
described by the coefficients Ψ(u, h) has a spectrum that is always symmetric.

Next, we concentrate on B from (A.11). Using similar steps and the positive semidef-
initeness of the matrix Σ(u) that ascertains that there exists P (u) such that Σ(u) =
P (u)P⊤(u).
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∞∑
h=0

[
Ψ(u, h)Σ(u)Ψ⊤(u, h)

]
=
∞∑

h=0

[
Ψ(u, h)P (u)

][
Ψ(u, h)P (u)

]⊤
= 1

2π

∫ π

−π

∞∑
r=0

∞∑
v=0

[
Ψ(u, r, eiωr)P (u)

][
Ψ(u, v, e−iωv)P (u)

]⊤
dω

= 1
2π

∫ π

−π

∞∑
r=0

[
Ψ(u, r, eiωr)P (u)

] ∞∑
v=0

[
Ψ(u, v, e−iωv)P (u)

]⊤
dω

= 1
2π

∫ π

−π

[
Ψ(u, eiω)P (u)

][
Ψ(u, e−iω)P (u)

]⊤
dω

= 1
2π

∫ π

−π

[{
Ψ(u, eiω)

}
Σ(u)

{
Ψ(u, e−iω)

}⊤]
dω

(A.15)

That establishes the fact that

B =
∞∑

h=0

[
Ψ(u, h)Σ(u)Ψ⊤(u, h)

]
j,j

= 1
2π

∫ π

−π

[{
Ψ(u, eiω)

}
Σ(u)

{
Ψ(u, e−iω)

}⊤]
j,j

dω

(A.16)
from (A.11), and we have shown that

[
θ(u)

]
j,k

=
σ−1

kk

∞∑
h=0

([
Ψ(u, h)Σ(u)

]
j,k

)2

∞∑
h=0

[
Ψ(u, h)Σ(u)Ψ⊤(u, h)

]
j,j

=
σ−1

kk

∫ π

−π

∣∣∣∣∣
[
Ψ(u, e−iω)Σ(u)

]
j,k

∣∣∣∣∣
2

dω

∫ π

−π

[{
Ψ(u, eiω)

}
Σ(u)

{
Ψ(u, e−iω)

}⊤]
j,j

dω

(A.17)
Finally, focusing on a frequency band d = (a, b) : a, b ∈ (−π, π), a < b, we have

[
θ(u, d)

]
j,k

=
σ−1

kk

∫ b

a

∣∣∣∣∣
[
Ψ(u, e−iω)Σ(u)

]
j,k

∣∣∣∣∣
2

dω

∫ π

−π

[{
Ψ(u, eiω)

}
Σ(u)

{
Ψ(u, e−iω)

}⊤]
j,j

dω

(A.18)

This completes the proof.

Proposition 2. Using the Remark 1 and appropriate substitutions, it immediately follows
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that

∑
ds∈D

C(u, ds) =
∑

dz∈D

 N∑
j,k=1
j ̸=k

[
θ̃(u, ds)

]
j,k

/
N∑

j,k=1

[
θ̃(u,∞)

]
j,k



=

 ∑
dz∈D

N∑
j,k=1
j ̸=k

[
θ̃(u, ds)

]
j,k


/

N∑
j,k=1

[
θ̃(u,∞)

]
j,k

=
N∑

j,k=1
j ̸=k

[
θ̃(u,∞)

]
j,k

/
N∑

j,k=1

[
θ̃(u,∞)

]
j,k

= C(u)

(A.19)

Similarly, quantities Cj←•(u) and Cj→•(u) will sum over frequency bands. This com-
pletes the proof.

Proposition 3. Before proving proposition 3, we first outline the regularity conditions
that resemble those in Liu et al. (2022). Note that D(u) are transformations of the
parameters of the candidate model that possess a posterior distribution from which we
are able to compute posterior means and variances. Petrova (2019) establishes asymptotic
normality of the VAR parameters using the QBLL approach under a linear Gaussian local
likelihood function we use in this paper; we refer the interested reader to Petrova (2019)’s
for details.26

Assumptions

1. D(u) ∈ Θ, where Θ, the parameter space, is a compact subset of Rq where q = qD

2. {Xt}∞t=1 satisfies the α-mixing condition with the coefficient α(m) = O
(
m

−2r
r−2−ϵ

)
where ϵ > 0, r > 2.

3. ∀t, lt (D(u)) is three-times differentiable on Θ almost surely.

4. For any D(u), D(u)⊤ ∈ Θ, ||l(j)
t (D(u)) − l

(j)
t (D(u))⊤||≤ cj

t (X t) ||D(u) − D(u)⊤|| in
probability, where cj

t (X t) > 0, supt E||cj
t (X t) ||< ∞, and

n−1∑n
t=1

(
cj

t (X t) − E
(
cj

t (X t)
))

→p 0, j = {0, 1, 2}.

5. ∀D(u) ∈ Θ, ∃Mt(X t) > 0, such that l(j)
t (D(u)) exists, supD(u)∈Θ||l(j)

t (D(u))||≤
Mt(X t), and supt E||Mt(X t)||r+δ≤ M for some δ > 0, M < ∞, where r is the same
as in Assumption 2, and j = {0, 1, 2}.

6.
{
l
(j)
t (D(u))

}
is L2-near epoch dependent of size - 1 for 0 ≤ j ≤ 1 and −1

2 for j=2
uniformly on Θ.

26Lütkepohl (1990) provides the asymptotic distribution for impulse response functions from VAR
models.
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7. Let D(u)0
n be the minimizer of the KL-divergence between the DGP g(X) and the

candidate model p(X|D(u)), that is,

D(u)0
n = arg min

D(u)∈Θ

1
n

∫
log g(X)

p(X|D(u)g(X)dX,

where {D0
n} is the sequence of minimizers in Θ. For any ϵ > 0,

lim
n→∞

sup sup
D(u)∈Θ\N(D(u),ϵ)

1
n

n∑
t=1

{
E[lt(D(u))] − E[lt(D(u)0

n)]
}
< 0

where N(D(u), ϵ) is the open ball of radius ϵ around D(u).

8. {−Hn(D(u)0
n),Bn(D(u)0

n)} are positive definite uniformly on n and Hn(D(u)0
n) +

Bn(D(u)0
n) = 0.

9. The prior density p(D(u)) is thrice continuously differentiable and 0 < p(D(u)) <
∞ uniformly on n. There exists an n∗ such that for any n > n∗, the posterior
distribution p(D(u)|X) is proper, and

∫ ||D(u)||2p(D(u)|X)dD(u) < ∞.

Remarks

1. Assumption 1 is the compactness condition. Assumptions 2 and 6 imply weak
dependence in Xt and lt. Assumption 3 are continuity conditions. Assumption 4 is
the Lipshitz condition for lt to develop the uniform of large numbers for dependent
and heterogeneous stochastic processes. Assumption 5 contains the dominance
condition for lt. Assumption 7 is the identification condition in Gallant and White
(1988). Such assumptions are well-known to develop Maximum Likelihood theory;
namely consistency and asymptotic normality for dependent and heterogeneous
data.

2. In Assumption 2, a mixing process is only a mixing process if the function depends
on a finite number of lagged values in the mixing process. In most latent variable
models however, the likelihood function depend on distant past or future of the
process. Assumption 6 controls the dependence of the function Gallant and White
(1988). The differentiability in Assumption 3 and the domination condition in As-
sumption 5 are important to develop a high order Laplace expansion. Together with
assumption 9, the concentration condition indicates that we can apply the stochas-
tic Laplace expansion to the posterior distribution and establish the asymptotic
normality of the posterior distribution.

3. Assumption 8 gives the requirement for a good model, and assumption 9 ensures
the second moment of the prior is finite which leads to a finite second moment of
the posterior whilst also implying the the prior is negligible asymptotically.
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We note that Li et al. (2020) further outlines the importance of these assumptions.
Now, using Lemma A.1 in Liu et al. (2022), we have

E
[(

D(u) − D̂(u)
)

|X
]

= op

(
n−1/2

)
V
(
D̂(u)

)
= E

[(
D(u) − D̂(u)

) (
D(u) − D̂(u)

)⊤ |X
]

= − 1
n

H̄−1
n

(
D̂(u)

)
+ op

(
n−1

)
= Op(n−1)

Therefore, we have

V
(
D̄(u)

)
= E

[(
D(u) − D̂(u)

) (
D(u) − D̂(u)

)⊤ |X
]

= E
[(

D(u) − D̂(u) + D̂(u) − D̄(u)
) (

D(u) − D̂(u) + D̂(u) − D̄(u)
)⊤ |X

]
= V

(
D̂(u)

)
− E

[(
D̂(u) − D̄(u)

) ((
D̂(u) − D̄(u)

))⊤ |X
]

= V
(
D̂(u)

)
+ op

(
n−1/2

)
op

(
n−1/2

)
= − 1

n
H̄−1

n

(
D̂(u)

)
+ op

(
n−1

)
= Op(n−1)

Under classical asymptotic theory for maximum likelihood estimation White (1996),
D̂(u) − D0(u) = Op(n−1/2) under the null, H0. Therefore:

(
D̂(u) − D0(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̂(u) − D0(u)
)

=
(
D̂(u) − D0(u)

)⊤ [−n−1H̄−1
n,DD

(
D̂(u)

)
+ op

(
n−1

)]−1 (D̂(u) − D0(u)
)

=
√
n
(
D̂(u) − D0(u)

)⊤ [−H̄−1
n,DD

(
D̂(u)

)
+ op (1)

]−1 √
n
(
D̂(u) − D0(u)

)
=

√
n
(
D̂(u) − D0(u)

)⊤ [−H̄−1
n,DD

(
D̂(u)

)]−1 √
n
(
D̂(u) − D0(u)

)
+ op(1)

√
n
(
D̂(u) − D0(u)

)⊤√
n
(
D̂(u) − D0(u)

)
=

√
n
(
D̂(u) − D0(u)

)⊤ [−H̄−1
n,DD

(
D̂(u)

)]−1 √
n
(
D̂(u) − D0(u)

)
+ op(1)

√
nOp

(
n−1/2

)√
nOp

(
(n−1/2

)
=

√
n
(
D̂(u) − D0(u)

)⊤ [−H̄−1
n,DD

(
D̂(u)

)]−1
+ op(1)

= Wald + op(1) (A.20)
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Under the null, H0, we can show that

W (X,D0(u)) =

qD +
(
D̄(u) − D̂(u) + D̂(u) − D0(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̄(u) − D̂(u) + D̂(u) − D0(u)
)

= qD +
(
D̂(u) − D0(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̂(u) − D0(u)
)

+ 2
(
D̄(u) − D̂(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̂(u) − D0(u)
)

+
(
D̄(u) − D̂(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̄(u) − D̂(u)
)

= qD +
(
D̂(u) − D0(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̂(u) − D0(u)
)

+ 2op

(
n−1/2

)
Op(n)Op

(
n−1/2

)
+ op

(
n−1/2

)
Op(n)op

(
n−1/2

)

= qD +
(
D̂(u) − D0(u)

)⊤ [
VDD

(
D̄(u)

)]−1 (D̂(u) − D0(u)
)

+ op(1) (A.21)

Which if assumptions 1–9 hold, from equation (A) and (A.21) under H0 we have

W (X,D0(u)) = Wald + qD + op(1) →d χ2 (qD) + qD

B Estimation Details
To estimate our high dimensional systems, we follow the Quasi-Bayesian Local-Liklihood
(QBLL) approach of Petrova (2019). let Xt be an N × 1 vector generated by a stable
time-varying parameter (TVP) heteroskedastic VAR model with p lags:

Xt,T = Φ1(t/T )Xt−1,T + . . .+ Φp(t/T )Xt−p,T + ϵt,T , (B.1)
where ϵt,T = Σ−1/2(t/T )ηt,T with ηt,T ∼ NID(0, IM) and Φ(t/T ) = (Φ1(t/T ), . . . ,Φp(t/T ))⊤
are the time varying autoregressive coefficients. Note that all roots of the locally station-
ary VAR polynomial, lie outside the unit circle, and Σ−1

t is a positive definite time-varying
covariance matrix. Stacking the time-varying intercepts and autoregressive matrices in
the vector ϕ(t/T ) with X̄ ′

t,T = (IN ⊗ xt,T ) , xt,T =
(
1, x′t−1,T , . . . , x

′
t−p,T

)
and ⊗ denotes

the Kronecker product, the model can be written as:

Xt,T = X̄ ′
t,Tϕ(t/T ) + Σ−

1
2 (t/T )ηt,T (B.2)

We obtain the time-varying parameters of the model by employing Quasi-Bayesian Local
Likelihood (QBLL) methods. Estimation of (B.1) requires re-weighting the likelihood
function. Essentially, the weighting function gives higher proportions to observations
surrounding the time period whose parameter values are of interest. The local likelihood
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function at discrete time period s, where we drop the double time index for notational
convenience, is given by:

Ls

(
Xs|ϕs,Σs, X̄s

)
∝

|Σs|trace(Ds)/2exp
{

−1
2(Xs − X̄ ′

sϕs)′ (Σs ⊗ Ds) (Xs − X̄ ′
sϕs)

}
(B.3)

The Ds is a diagonal matrix whose elements hold the weights:

Ds = diag(ϱs1, . . . , ϱsT ) (B.4)

ϱst = ζT,swst/
T∑

t=1
wst (B.5)

wst = (1/
√

2π) exp((−1/2)((k − t)/W )2), for s, t ∈ {1, . . . , T} (B.6)

ζT s =
( T∑

t=1
wst

)2−1

(B.7)

where ϱst is a normalised kernel function. wst uses a Normal kernel weighting function.
ζT s gives the rate of convergence and behaves like the bandwidth parameter W in (B.6).
it is the kernel function that provides greater weight to observations surrounding the
parameter estimates at time s relative to more distant observations.

Using a Normal-Wishart prior distribution for ϕs| Σs for s ∈ {1, . . . , T}:

ϕs|Σs ∽ N
(
ϕ0s, (Σs ⊗ Ξ0s)−1

)
(B.8)

Σs ∽ W (α0s,Γ0s) (B.9)

where ϕ0s is a vector of prior means, Ξ0s is a positive definite matrix, α0s is a scale
parameter of the Wishart distribution (W), and Γ0s is a positive definite matrix.

The prior and weighted likelihood function implies a Normal-Wishart quasi posterior
distribution for ϕs| Σs for s = {1, . . . , T}. Formally let A = (x̄′1, . . . , x̄′T )′ and Y =
(x1, . . . , xT )′ then:

ϕs|Σs,A,Y ∽ N
(
ϕ̃s,

(
Σs ⊗ Ξ̃s

)−1
)

(B.10)

Σs ∽ W
(
α̃s, Γ̃−1

s

)
(B.11)

with quasi posterior parameters

ϕ̃s =
(
IN ⊗ Ξ̃−1

s

) [
(IN ⊗ A′DsA) ϕ̂s + (IN ⊗ Ξ0s)ϕ0s

]
(B.12)

Ξ̃s = Ξ̃0s + A′DsA (B.13)

α̃s = α0s +
T∑

t=1
ϱst (B.14)

Γ̃s = Γ0s + Y′DsY + Φ0sΓ0sΦ′0s − Φ̃sΓ̃sΦ̃′s (B.15)
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where ϕ̂s = (IN ⊗ A′DsA)−1 (IN ⊗ A′Ds) y is the local likelihood estimator for ϕs. The
matrices Φ0s, Φ̃s are conformable matrices from the vector of prior means, ϕ0s, and a
draw from the quasi posterior distribution, ϕ̃s, respectively.

The motivation for employing these methods are threefold. First, we are able to
estimate large systems that conventional Bayesian estimation methods do not permit.
This is typically because the state-space representation of an N -dimensional TVP VAR
(p) requires an additional N(3/2 + N(p + 1/2)) state equations for every additional
variable. Conventional Markov Chain Monte Carlo (MCMC) methods fail to estimate
larger models, which in general confine one to (usually) fewer than 6 variables in the
system. Second, the standard approach is fully parametric and requires a law of motion.
This can distort inference if the true law of motion is misspecified. Third, the methods
used here permit direct estimation of the VAR’s time-varying covariance matrix, which
has an inverse-Wishart density and is symmetric positive definite at every point in time.

In estimating the model, we use p=2 and a Minnesota Normal-Wishart prior with a
shrinkage value φ = 0.05 and centre the coefficient on the first lag of each variable to 0.1 in
each respective equation. The prior for the Wishart parameters are set following Kadiyala
and Karlsson (1997). For each point in time, we run 500 simulations of the model to
generate the (quasi) posterior distribution of parameter estimates. Note we experiment
with various lag lengths, p = {2, 3, 4, 5}; shrinkage values, φ = {0.01, 0.25, 0.5}; and
values to centre the coefficient on the first lag of each variable, {0, 0.05, 0.2, 0.5}. Network
measures from these experiments are qualitatively similar. Notably, adding lags to the
VAR and increasing the persistence in the prior value of the first lagged dependent variable
in each equation increases computation time.
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C Monte Carlo Study: Additional Results
Figures C1 and C2 report dynamic network connectedness measures under kernel band-
widths W={12, 18}. As we can see, the larger is W , the smoother the measures become.

C.1 DGPI with fat tails
Here we report the connectedness measures for DGPI in the main text with residuals
that follow a multivariate student-t distribution. In Figure C3 we report the true and
estimated connectedness measures for this alternative DGP at bandwidthsW={8, 12, 18}.
Overall, these plots correspond to the top row in Figure 2 within the main text.

C.2 Posterior probabilities for differences in network connect-
edness measures

Here we examine whether the network connectedness measures one computes over fre-
quency bands are different from one another. We use the time u joint posterior dis-
tribution of horizon specific network connectedness to compute the probability of het-
erogeneities. Consider the time u network connectedness measure on frequency band
d, C(u, d), and the time u network connectedness measure on frequency band c, C(u, c)
where d < c. Then, the probability that the time u network connectedness on frequency
band d is greater than the time u network connectedness measure on frequency band c,
Pr (C(u, d) > C(u, c)), is given by

Pr (C(u, d) > C(u, c)) =
∑

(Cr(u, d) > Cr(u, c)) /R

where Cr(u, d), Cr(u, c) denote the rth draw from the posterior distribution of each net-
work connectedness measure, and R denotes the total number of draws taken from the
posterior distribution.

If Pr (C(u, d) > C(u, c)) >0.95 this tells us with 95% confidence that the network
connectedness measure across frequency band d is greater than the corresponding mea-
sure across frequency band c. Similarly, if Pr (C(u, d) > C(u, c)) <0.05 this tells us
with 95% confidence that the network connectedness measure across frequency band
c is greater than the corresponding measure across frequency band d. Note here that
Pr (C(u, d) > C(u, c)) = 1 − Pr (C(u, c) > C(u, d)). These probabilities provide statistical
evidence of whether heterogeneities exit between network connectedness measures over
different frequency bands.

We report the probabilities for differences between network connectedness in Table
C1 at three specific dates, u={400, 650, 1000}. First, we report the true probability
that the low-frequency-band network connectedness measure is greater than the high-
frequency-band network connectedness measure, Pr (C(u, d) > C(u, c)). Then, we provide
the estimates of sample average probabilities from TVP VAR models with kernel band-
widths W={8, 12, 18}. Again, this indicates that our method works well at specific
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Figure C1: Dynamic network connectedness measures: True and fitted values
Notes: This figure plots the true network connectedness measures for three data generating
processes following bi-variate TVP VAR(2) models along with the median and 95% quantiles
of estimated network connectedness measures with bandwidth W=12. The left columns report
network connectedness on the low-frequency band, d ∈ (0, π/5), the middle columns show
network connectedness on the high-frequency band, d ∈ (π/5, π), and the right columns show
the aggregate network connectedness such that d ∈ (0, π). DGPI (top row) is a TVP VAR(2)
model with Gaussian errors, we introduce a break in the time-varying autoregressive matrices
and contemporaneous relations from observation 500 that induces large connections across the
high frequency band. DGPII (second row) is a TVP VAR(2) where time-varying intercepts
and autoregressive matrices following sin wave functions with a stochastic error, time-varying
covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and
the diagonal elements follow a stationary AR(1) processes. DGPIII (third row) is a TVP VAR(2)
model with student-t errors, time-varying intercepts and autoregressive matrices following sin
wave functions with a stochastic error, time-varying covariance matrix where the off-diagonals
follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary
AR(1) processes. DGPIV (bottom row) is the same as DGPII, but with an increase in the
periodicity of the respective sin wave functions the time-varying intercepts and autoregressive
matrices follow.
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Figure C2: Dynamic network connectedness measures: True and fitted values
Notes: This figure plots the true network connectedness measures for three data generating
processes following bi-variate TVP VAR(2) models along with the median and 95% quantiles
of estimated network connectedness measures with bandwidth W=18. The left columns report
network connectedness on the low-frequency band, d ∈ (0, π/5), the middle columns show
network connectedness on the high-frequency band, d ∈ (π/5, π), and the right columns show
the aggregate network connectedness such that d ∈ (0, π). DGPI (top row) is a TVP VAR(2)
model with Gaussian errors, we introduce a break in the time-varying autoregressive matrices
and contemporaneous relations from observation 500 that induces large connections across the
high frequency band. DGPII (second row) is a TVP VAR(2) where time-varying intercepts
and autoregressive matrices following sin wave functions with a stochastic error, time-varying
covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and
the diagonal elements follow a stationary AR(1) processes. DGPIII (third row) is a TVP VAR(2)
model with student-t errors, time-varying intercepts and autoregressive matrices following sin
wave functions with a stochastic error, time-varying covariance matrix where the off-diagonals
follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary
AR(1) processes. DGPIV (bottom row) is the same as DGPII, but with an increase in the
periodicity of the respective sin wave functions the time-varying intercepts and autoregressive
matrices follow.
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Figure C3: Dynamic network connectedness measures: True and fitted values DGPI
with fat tails
Notes: This figure plots the true network connectedness measures for DGPI with residuals
following a multivariate student-t distribution. Along with this the figures report the median
and 95% quantiles of estimated network connectedness measures with bandwidth W=8, W=12,
and W=18 in the top, middle and bottom rows respectively. The left columns report network
connectedness on the low-frequency band, d ∈ (0, π/5), the middle columns show network
connectedness on the high-frequency band, d ∈ (π/5, π), and the right columns show the
aggregate network connectedness such that d ∈ (0, π).
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observations throughout each DGP. It is noteworthy to mention here that for bandwidth
W={18} the time profiles relative to true probabilities become less accurate as can be
seen from DGPIII in Panel B.

Table C1: Probability of statistical differences between low-frequency-band and
high-frequency-band network connectedness: Sample average.
Notes: This table reports the probability that the low-frequency-band network connect-
edness measure is greater than the high-frequency-band network connectedness measure,
Pr (C(u, d) > C(u, c)). Panel A shows results for observation u=400, and Panels B and C show
results for observation u=650, and u=1000 respectively. We report the true probabilities for the
three DGPs in our Monte Carlo study, followed by the fitted probabilities from TVP VARs with
different kernel bandwidths, W = {8, 12, 18}. Probabilities greater (less) than 0.95 (0.05) in-
dicate statistical differences at each time period. DGPI (left column) is a TVP VAR(2) model
with Gaussian errors, time-varying intercepts and autoregressive matrices following sin wave
functions with a stochastic error, time-varying covariance matrix where the off-diagonals follow
sin wave functions with a stochastic error, and the diagonal elements follow a stationary AR(1)
processes. DGPII (middle column) is a TVP VAR(2) model with student-t errors, time-varying
intercepts and autoregressive matrices following sin wave functions with a stochastic error, time-
varying covariance matrix where the off-diagonals follow sin wave functions with a stochastic
error, and the diagonal elements follow a stationary AR(1) processes. DGPIII (right column) is
the same as DGPI, but with an increase in the periodicity of the respective sin wave functions
the time-varying intercepts and autoregressive matrices follow.

A: u=400 DGPII DGPIII DGPIV

True Probability 0.00 0.00 0.99
Fitted Probability, W=8 0.00 0.00 0.97
Fitted Probability, W=12 0.00 0.00 1.00
Fitted Probability, W=18 0.00 0.00 1.00
B: u=650 DGPII DGPIII DGPIV

True Probability 1.00 1.00 0.00
Fitted Probability, W=8 1.00 0.90 0.00
Fitted Probability, W=12 1.00 0.98 0.00
Fitted Probability, W=18 1.00 1.00 0.21
C: u=1000 DGPII DGPIII DGPIV

True Probability 0.00 0.00 0.00
Fitted Probability, W=8 0.00 0.00 0.00
Fitted Probability, W=12 0.00 0.00 0.00
Fitted Probability, W=18 0.00 0.00 0.00
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C.3 An Insight into how Rolling Window VAR models track
connectedness from our DGPs

Here, we examine the performance of Rolling VAR models in tracking the true connect-
edness measures from the DGPs we outline in Section 3. We consider window sizes of 60,
120, and 240 periods. For each of the 100 DGPs we generate, we estimate connectedness
from a VAR model that uses a fixed window that rolls through the sample. Therefore,
we have 940 estimates when the window size is 60, 880 when the window size is 120, and
760 when the window size is 240.

Figures C4, C5, and C6 show the results for window sizes of 60, 120 and 240 respec-
tively. First, looking at Figure C4 we can see that the rolling VAR tracks connectedness
relatively well. In all DGPs, the rolling VAR estimation picks up the surges in true con-
nectedness with reasonable accuracy. However, when true connectedness falls, the rolling
VAR responds with a lag as one would expect. When we examine Figures C5 and C6 the
issue becomes more prominent. The rolling VAR still does reasonably well for DGPI, a
relatively simple DGP, however, it fails to pick up when true connectedness falls as we
increase the window size.

These results show that as the dynamics among variables increases with complexity,
the rolling VAR performs less well in tracking true connectedness relative to our approach.
In particular, our approach picks up the surges and falls in connectedness with a higher
degree of accuracy.
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Figure C4: Dynamic network connectedness measures: True and fitted values
Notes: This figure plots the true network connectedness measures for three data generating
processes following bi-variate TVP VAR(2) models along with the median and 95% quantiles
of estimated network connectedness measures from a rolling VAR model we estimate using
OLS and a 60 period window rolling through the sample. The left columns report network
connectedness on the low-frequency band, d ∈ (0, π/5), the middle columns show network
connectedness on the high-frequency band, d ∈ (π/5, π), and the right columns show the
aggregate network connectedness such that d ∈ (0, π). DGPI (top row) is a TVP VAR(2)
model with Gaussian errors, we introduce a break in the time-varying autoregressive matrices
and contemporaneous relations from observation 500 that induces large connections across the
high frequency band. DGPII (second row) is a TVP VAR(2) where time-varying intercepts
and autoregressive matrices following sin wave functions with a stochastic error, time-varying
covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and
the diagonal elements follow a stationary AR(1) processes. DGPIII (third row) is a TVP VAR(2)
model with student-t errors, time-varying intercepts and autoregressive matrices following sin
wave functions with a stochastic error, time-varying covariance matrix where the off-diagonals
follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary
AR(1) processes. DGPIV (bottom row) is the same as DGPII, but with an increase in the
periodicity of the respective sin wave functions the time-varying intercepts and autoregressive
matrices follow.

51



1 500 880
0

20

40

D
G

PI
C(u, d), d ∈ (0, π/5)

1 500 880
0

20

40

C(u, d), d ∈ (π/5, π)

1 500 880
0

20

40

C(u, d), d ∈ (0, π)

1 500 880
0

20

40

D
G

PI
I

1 500 880
0

20

40

1 500 880
0

20

40

1 500 880
0

20

40

D
G

PI
II

1 500 880
0

20

40

1 500 880
0

20

40

1 500 880
0

20

40

D
G

PI
V

95% Coverage
Median
True

1 500 880
0

20

40

95% Coverage
Median
True

1 500 880
0

20

40

95% Coverage
Median
True

Figure C5: Dynamic network connectedness measures: True and fitted values
Notes: This figure plots the true network connectedness measures for three data generating
processes following bi-variate TVP VAR(2) models along with the median and 95% quantiles
of estimated network connectedness measures from a rolling VAR model we estimate using
OLS and a 120 period window rolling through the sample. The left columns report network
connectedness on the low-frequency band, d ∈ (0, π/5), the middle columns show network
connectedness on the high-frequency band, d ∈ (π/5, π), and the right columns show the
aggregate network connectedness such that d ∈ (0, π). DGPI (top row) is a TVP VAR(2)
model with Gaussian errors, we introduce a break in the time-varying autoregressive matrices
and contemporaneous relations from observation 500 that induces large connections across the
high frequency band. DGPII (second row) is a TVP VAR(2) where time-varying intercepts
and autoregressive matrices following sin wave functions with a stochastic error, time-varying
covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and
the diagonal elements follow a stationary AR(1) processes. DGPIII (third row) is a TVP VAR(2)
model with student-t errors, time-varying intercepts and autoregressive matrices following sin
wave functions with a stochastic error, time-varying covariance matrix where the off-diagonals
follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary
AR(1) processes. DGPIV (bottom row) is the same as DGPII, but with an increase in the
periodicity of the respective sin wave functions the time-varying intercepts and autoregressive
matrices follow.
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Figure C6: Dynamic network connectedness measures: True and fitted values
Notes: This figure plots the true network connectedness measures for three data generating
processes following bi-variate TVP VAR(2) models along with the median and 95% quantiles
of estimated network connectedness measures from a rolling VAR model we estimate using
OLS and a 240 period window rolling through the sample. The left columns report network
connectedness on the low-frequency band, d ∈ (0, π/5), the middle columns show network
connectedness on the high-frequency band, d ∈ (π/5, π), and the right columns show the
aggregate network connectedness such that d ∈ (0, π). DGPI (top row) is a TVP VAR(2)
model with Gaussian errors, we introduce a break in the time-varying autoregressive matrices
and contemporaneous relations from observation 500 that induces large connections across the
high frequency band. DGPII (second row) is a TVP VAR(2) where time-varying intercepts
and autoregressive matrices following sin wave functions with a stochastic error, time-varying
covariance matrix where the off-diagonals follow sin wave functions with a stochastic error, and
the diagonal elements follow a stationary AR(1) processes. DGPIII (third row) is a TVP VAR(2)
model with student-t errors, time-varying intercepts and autoregressive matrices following sin
wave functions with a stochastic error, time-varying covariance matrix where the off-diagonals
follow sin wave functions with a stochastic error, and the diagonal elements follow a stationary
AR(1) processes. DGPIV (bottom row) is the same as DGPII, but with an increase in the
periodicity of the respective sin wave functions the time-varying intercepts and autoregressive
matrices follow.
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C.4 Larger scale DGPs
In this section, we study how our approach performs using larger scale DGPs. For the
sake of brevity and simplicity we refine our focus on DGPI, that turns on connectedness
across higher frequencies at observation 500. We look at simulating N=10 and N=25
TVP-VAR(1) processes in the following manner:

Xt,T = Φ0(u) + Φ1(u)Xt−1,T + ϵt,T ,

ϵt,T = Σ−1/2(u)ηt,T , ηt,T ∽ (0, IN)

where Φ0(u) contains the time-varying intercepts and Φ1(u) contains the time-varying
autoregressive parameters. The time-varying covariance matrix Σ(u) = A−1(u)H(u) (A−1(u))⊤
with A−1(u) being a lower triangular matrix with a unit diagonal and H(u) is a N ×N
diagonal matrix.

Large Scale DGPI: The DGPs have residuals such that, ηt,T ∽ NID (0, IN). The
time-varying intercepts follow the process:

[Φ0(u)]j = 0.0025 sin (0.004πt) + 0.15
t∑

i=1

νi√
t
, νi ∽ NID

(
0, 0.0012

)
, j = {1, . . . , N}

For the time-varying autoregressive parameters for t ∈ {1, ..., 500} the j, k elements
of lie between

[Φ1(u)]j,k =
0.005 sin (0.002πt) + 0.75∑t

i=1
κi√

t
, ∀j, k

0.0051 sin (0.002πt) + 0.75∑t
i=1

κi√
t
, ∀j, k

Then from t ∈ {1, ..., 500} the diagonal elements of Φ1(u) lie between

[Φ1(u)]j,k =
0.5 sin (0.002πt) + 0.75∑t

i=1
κi√

t
, j = k

0.7 sin (0.002πt) + 0.75∑t
i=1

κi√
t
, j = k

with the off-diagonal elements of Φ1(u) lying between

[Φ1(u)]j,k =
0.005 sin (0.002πt) + 0.75∑t

i=1
κi√

t
, ∀j ̸= k

0.0051 sin (0.002πt) + 0.75∑t
i=1

κi√
t
, ∀j ̸= k

with κi ∽ NID (0, 0.00012). We obtain values by simulating random uniform numbers
between the values we specify in the above.

The lower off-diagonal elements of A(u) for t ∈ {1, ..., 500} lie between the following
values and possess the following dynamics:

[A(u)]j,k =
0.00 sin (0.002πt) + 0.7∑t

i=1
υi√

t

0.03 sin (0.002πt) + 0.7∑t
i=1

υi√
t
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Then, from t ∈ {501, ..., 1000} they lie between the following values and have the following
dynamics:

[A(u)]j,k =
0.40 sin (0.002πt) + 0.7∑t

i=1
υi√

t

0.60 sin (0.002πt) + 0.7∑t
i=1

υi√
t

with υi ∽ NID (0, 0.32). The diagonal elements of H(u) follow

log [H(u)]j,j = µj + λj

(
log [H(u− 1)]j,j − µj

)
+ ξj,t

where ξj,t ∽ NID (µj, 0.12/(1 − λj)) , µj = 0.01, λj = 0.95.
As before, this DGP has little to no dependence for the first 500 observations which

means connectedness at both high and low frequency bands will be low and close to zero.
The latter half of the sample sees the AR coefficients in each equation become persistent
as the sin wave becomes negative. Note also that the contemporaneous relationship
intensifies. This induces connections at high frequency bands while connections at low
frequency bands should be low and close to zero.

For the N=10 and N=25 DGPs, we generate 100 simulations of length T = 1000 and
compute the network connectedness measures. We use the median over these simulations
as the true network connectedness. Then, for each of the 100 simulations, we fit the TVP-
VAR model, with a bandwidth of W=8, we outline in Section 2.3. In fitting this model
we take 1000 draws from the posterior distribution, calculate our network connectedness
measures and then save the posterior median. For this exercise, we compute network
connectedness on two frequency bands that cover the spectrum. The low-frequency band,
which empirically pertains to persistent network connections, is d ∈ (0, π/5), and the
high-frequency band, pertaining to transitory network connections, is d ∈ (π/5, π). For
completeness, we compute the aggregate connectedness measures that considers the entire
spectrum such that d ∈ (0, π); this corresponds to a dynamic version of the Diebold and
Yilmaz (2014) connectedness measure.

Figure C7 reports the true network connectedness measures and the median and 95%
quantiles of corresponding estimates from the TVP-VAR model. We report network
connectedness over the low-frequency-band, the high-frequency-band, and aggregate, in
the left, middle, and right columns respectively. The top row corresponds to the N=10
DGP, and the second row corresponds to the N=25 DGP. As we can see, the distribution
of estimates for each DGP track the true values well, when we expect to see surges
in connectedness at the high frequency band from observation 500. In all cases, the
true value lies within the 95% quantiles of the distribution from model estimates. This
plot shows that our method is robust to increasing the number of variables within the
VAR model and still provides an accurate representation of horizon specific network
connectedness. Notably, as the as the number of variables increases, there is some bias
present in the estimation; particularly for the N=25 models. However, such bias is worse
when looking at rolling windows. These results are available upon request.
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Figure C7: Dynamic network connectedness measures: True and fitted values for
Larger Scale DGPs
Notes: The top row of this figure plots the true network connectedness measures for data
generating processes following 10-variable TVP VAR(1) process along with the median and 95%
quantiles of estimated network connectedness measures from a TVP-VAR model we estimate
using the methods in Petrova (2019). The left columns report network connectedness on the
low-frequency band, d ∈ (0, π/5), the middle columns show network connectedness on the high-
frequency band, d ∈ (π/5, π), and the right columns show the aggregate network connectedness
such that d ∈ (0, π). The DGPs are N=10 (top row) and N=25 (bottom row) TVP VAR(1)
models with Gaussian errors, we introduce a break in the time-varying autoregressive matrices
and contemporaneous relations from observation 500 that induces large connections across the
high frequency band.
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D S&P 500 Sectors Breakdown and Additional Em-
pirical Results

In this short section we present a U.S. stock market sectors breakdown and description
where the S&P 500 index is used as a proxy for the stock market. The information in this
section are reported as of January 25, 2019. For more details and updated information,
see also https://us.spindices.com/indices/equity/sp-500.

• Consumer Discretionary: The consumer discretionary sector consists of businesses
that have demand that rises and falls based on general economic conditions such
as washers and dryers, sporting goods, new cars, and diamond engagement rings.
At present, the consumer discretionary sector contains 11 sub-industries: Automo-
bile Components Industry, Automobiles Industry, Distributors Industry, Diversified
Consumer Services Industry, Hotels, Restaurants & Leisure Industry, Household
Durables Industry, Leisure Products Industry, Multiline Retail Industry, Specialty
Retail Industry, Textile, Apparel & Luxury Goods Industry, Internet & Direct Mar-
keting. The total value of all consumer discretionary stocks in the United States
came to $4.54 trillion, or about 10.11% of the market. Examples of consumer
discretionary stocks include Amazon and Starbucks.

• Communication Services: From telephone access to high-speed internet, the com-
munication services sector of the economy keeps us all connected. At present, the
communication services sector is made up of five industries: Diversified Telecom-
munication Services, Wireless Telecommunication Services, Entertainment Media,
Interactive Media and Services. the total value of all communication services stocks
in the United States came to $4.42 trillion, or 10.33% of the market. The commu-
nications industry includes stocks such as AT&T and Verizon, but also the giants
Alphabet Inc A and Facebook from 2004 and 2012, respectively.

• Consumer Staples: The consumer staples sector consists of businesses that sell the
necessities of life, ranging from bleach and laundry detergent to toothpaste and
packaged food. At present, the consumer staples sector contains six industries:
Beverages Industry, Food & Staples Retailing Industry, Food Products Industry,
Household Products Industry, Personal Products Industry, Tobacco Industry. The
total value of all consumer staples stocks in the United States came to $2.95 trillion,
or about 7.18% of the market and includes companies such as Procter & Gamble.

• Energy: The energy sector consists of businesses that source, drill, extract, and
refine the raw commodities we need to keep the country going, such as oil and
gas. At present, the energy sector contains two industries: Energy Equipment &
Services Industry, and Oil, Gas & Consumable Fuels Industry. The total value of
all energy stocks in the United States came to $3.36 trillion, or about 5.51% of the
market. Major energy stocks include Exxon Mobil and Chevron.
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• Financial: The financial sector consists of banks, insurance companies, real estate
investment trusts, credit card issuers. At present, the financial sector contains
seven industries: Banking Industry, Capital Markets Industry, Consumer Finance
Industry, Diversified Financial Services Industry, Insurance Industry, Mortgage Real
Estate Investment Trusts (REITs) Industry, Thrifts & Mortgage Finance Industry.
The total value of all financial stocks in the United States came to $6.89 trillion,
or about 13.63% of the market. JPMorganChase, GoldmanSachs, and Bank of
America are examples of financial stocks.

• Health Care: The health care sector consists of drug companies, medical supply
companies, and other scientific-based operations that are concerned with improving
and healing human life. At present, the health care sector contains six industries:
Biotechnology Industry, Health Care Equipment & Supplies Industry, Health Care
Providers & Services Industry, Health Care Technology Industry, Life Sciences Tools
& Services Industry, Pharmaceuticals Industry. The total value of all health care
stocks in the United States came to $5.25 trillion, or about 15.21% of the market.
Examples of health care stocks include Johnson & Johnson, and Pfizer.

• Industrials: The industrial sector comprises railroads and airlines to military weapons
and industrial conglomerates. At present, the industrial sector contains fourteen in-
dustries: Aerospace & Defense Industry, Air Freight & Logistics Industry, Airlines
Industry, Building Products Industry, Commercial Services & Supplies Industry,
Construction & Engineering Industry, Electrical Equipment Industry, Industrial
Conglomerates Industry, Machinery Industry, Marine Industry, Professional Ser-
vices Industry, Road & Rail Industry, Trading Companies & Distributors Industry,
Transportation Infrastructure Industry. The total value of all industrial stocks in
the United States came to $3.80 trillion, or about 9.33% of the market.

• Information Technology: the information technology (IT) sector is home to the
hardware, software, computer equipment, and IT services operations that make
it possible for you to be reading this right now. At present, the information
technology sector contains six industries: Communications Equipment Industry,
Electronic Equipment, Instruments & Components Industry, IT Services Industry,
Semiconductors & Semiconductor Equipment Industry, Software Industry, Technol-
ogy Hardware, Storage & Peripherals Industry. The total value of all information
technology stocks in the United States came to $7.10 trillion, or about 19.85% of
the market. It is the largest sector in the S&P 500. Top IT stocks include Microsoft
and Apple.

• Materials: The building blocks that supply the other sectors with the raw materials
it needs to conduct business, the material sector manufacturers, logs, and mines ev-
erything from precious metals, paper, and chemicals to shipping containers, wood
pulp, and industrial ore. At present, the material sector contains five industries:
Chemicals Industry, Construction Materials Industry, Containers & Packaging In-
dustry, Metals & Mining Industry, Paper & Forest Products Industry. The total

58



value of all materials stocks in the United States came to $1.77 trillion, or about
2.71% of the market. Major materials stocks include Dupont.

• Real Estate: The real estate sector includes all Real Estate Investment Trusts
(REITs) with the exception of Mortgage REITs, which is housed under the financial
sector. The sector also includes companies that manage and develop properties. At
present, the Real Estate sector is made up of two industries: Equity Real Estate
Investment Trusts, Real Estate Management & Development. The total value of
all real estate stocks in the United States came to $1.17 trillion, or 2.96% of the
market. The real estate industry includes stocks such as Simon Property Group
and Prologis.

• Utilities: The utilities sector of the economy is home to the firms that make our
lights work when we flip the switch, let our stoves erupt in flame when we want
to cook food, make water come out of the tap when we are thirsty, and more. At
present, the utilities sector is made up of five industries: Electric Utilities Industry,
Gas Utilities Industry, Independent Power and Renewable Electricity Producers
Industry, Multi-Utilities Industry, Water Utilities Industry. The total value of all
utilities stocks in the United States came to $1.27 trillion, or about 3.18% of the
market. Utilities stocks include many local electricity and water companies includ-
ing Dominion Resources.

Table D1: Descriptive Statistics
Notes: This table reports descriptive statistics of (annualized) realized volatility estimates for
all firms in the Consumers Discretionary (COND), Consumer Staples (CONS), Health Care
(HLTH), Industrials (INDU), Information Technology (INFT), Materials (MATR), Real Estate
(REAS), Financials (SPF), Energy (SPN), Comunication Services (TELS), and Utilities (UTIL)
sectors. All descriptive statistics pool information across all stocks within the sector from July
5, 2005 to August 31, 2018. Mean is the sample average, Std is the sample standard deviation,
Min and Max are the minimum and maximum values, Skew and Kurt are the sample skewness
and kurtosis respectively.

COND CONS HLTH INDU INFT MATR REAS SPF SPN TELS UTIL

Mean 28.024 19.129 23.492 25.934 25.618 28.263 25.233 26.445 31.459 27.911 18.399
Std 19.487 13.016 16.822 18.611 16.242 18.921 20.579 26.289 19.71 20.261 11.371
Min 4.219 2.975 0.000 3.062 1.862 4.509 3.776 1.859 4.721 5.237 4.314
Max 652.061 508.833 598.948 842.509 460.001 413.752 656.948 1526.688 752.732 294.655 302.308
Skew 4.071 4.869 5.402 4.451 3.968 3.200 4.237 6.733 3.448 2.832 4.666
Kurt 38.155 60.767 67.314 51.261 36.928 19.088 35.824 133.412 33.112 15.423 41.019
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Test statistics for differences between sectoral short-term and long-term network connect-
edness

Figure D1: Tests for Heterogeneity of Short-term and Long-term of S&P500 Realized Volatility Networks Con-
nectedness
This figure plots the test statistics and numerical standard errors for heterogeneities between short-term and long-term network
connectedness measures that we compute on the realized volatilities firms within each S&P500 sectors: Consumers Discretionary
(COND), Consumer Staples (CONS), Health Care (HLTH), Industrials (INDU), Information Technology (INFT), Materials (MATR),
Real Estate (REAS), Financials (SPF), Energy (SPN), Comunication Services (TELS), and Utilities (UTIL) from July 8, 2005 to
August 31, 2018.
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Figure D2: Transitory and Persistent Network of Financials: October 24, 2008
The left (right) figure depicts network connections among assets constituting the SPF sector
driven by transitory (persistent) shocks during October 24, 2008 corresponding to the day when
VIX reached highest value.
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Figure D3: Transitory and Persistent network of Financials: October 24, 2009
The left (right) figure depicts network connections among assets constituting the SPF sector
by transitory (persistent) connectedness. Arrows denote the direction of connections and the
strength of lines denotes the strength of connections.
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Table D2: Ranking of Institutions in the Financial Sector
Notes: This table reports ranking of institutions in financial sector according to contribution of
shocks. The table ranks institutions at the two different periods according to being transmitters
or receivers of transitory or persistent shocks from those transmitting or receiving the lowest to
the ones that contribute the most.

Transmitting Shocks Receiving Shocks

Oct 24, 2008 Oct 24, 2009 Oct 24, 2008 Oct 24, 2009

transitory persistent transitory persistent transitory persistent transitory persistent

AABA 9 41 6 5 66 1 6 35
AFL 26 27 53 48 32 35 25 57
AIG 2 3 9 7 49 6 21 8
AIZ 8 6 35 39 5 64 47 28
AJG 32 30 13 14 51 19 14 49
ALL 58 58 36 31 25 44 44 32
AMG 40 38 34 43 54 15 19 59
AON 23 18 1 1 18 51 4 10
AXP 55 51 61 61 53 16 48 42
BAC 44 35 58 57 62 5 24 58
BBT 57 65 44 40 37 30 32 43
BEN 65 64 11 11 26 43 11 52
BK 59 57 37 38 44 25 56 18
BRK B 22 20 2 2 60 7 1 21
C 21 19 20 23 52 14 20 45
CB 31 46 33 33 8 59 40 30
CINF 52 56 51 52 38 32 37 41
CMA 56 53 42 45 20 48 45 31
CME 34 25 10 12 13 55 31 9
COF 51 61 48 47 30 40 49 33
ETFC 5 4 4 6 3 60 2 16
FHN 28 22 14 9 59 11 62 2
FII 16 32 24 26 56 12 13 61
FITB 24 21 39 28 48 17 36 39
GNW 3 7 59 58 63 4 55 29
GS 46 36 49 42 47 23 54 22
HBAN 15 11 38 49 42 24 10 64
HIG 6 5 63 62 12 53 60 26
HRB 12 26 5 3 4 62 5 25
JPM 47 40 32 30 21 47 53 20
KEY 41 44 54 55 31 38 57 23
L 66 66 55 59 36 34 29 55
LM 29 16 29 29 16 49 26 54
LNC 27 34 66 66 23 37 35 51
MBI 20 29 8 10 65 3 15 15
MCO 30 14 7 8 2 65 7 17
MET 7 23 64 64 1 66 43 44
MMC 54 55 23 27 41 28 27 40
MS 39 42 52 44 46 22 46 37
MTB 35 37 18 16 17 50 39 14
MTG 4 2 21 19 29 20 52 11
NDAQ 63 54 30 34 61 8 9 66
NTRS 49 47 26 20 34 36 64 3
PBCT 45 50 15 13 14 54 51 6
PFG 42 33 65 65 57 10 33 53
PGR 48 52 41 35 40 29 30 47
PNC 10 8 57 53 33 27 59 27
PRU 17 12 40 46 11 56 12 65
QQQ 62 60 28 36 35 33 23 48
RF 25 28 46 54 19 46 41 34
RJF 33 31 16 18 15 52 38 12
SCHW 60 59 17 15 43 26 61 4
SLM 18 13 19 17 24 42 66 1
SNV 14 17 12 22 55 13 8 56
SPGI 50 39 3 4 27 41 3 13
SPY 64 63 45 51 39 31 17 60
STI 43 24 62 60 9 58 50 38
STT 38 45 27 21 58 9 63 5
TMK 37 48 50 50 7 61 16 63
TROW 36 43 31 37 22 45 28 46
TRV 53 49 25 25 50 21 22 50
UNM 19 10 56 63 6 63 18 62
USB 13 15 47 41 45 18 58 19
WFC 61 62 60 56 28 39 65 7
XL 1 1 43 32 64 2 42 36
ZION 11 9 22 24 10 57 34 24
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