
Finding the saddlepoint faster than sorting
Justin Dallant #

Department of Computer Science, Université libre de Bruxelles, Belgium

Frederik Haagensen #

Department of Computer Science, IT University of Copenhagen, Denmark

Riko Jacob #

Department of Computer Science, IT University of Copenhagen, Denmark

László Kozma #

Institut für Informatik, Freie Universität Berlin, Germany

Sebastian Wild #

Department of Computer Science, University of Liverpool, UK

Abstract
A saddlepoint of an n × n matrix A is an entry of A that is a maximum in its row and a minimum in
its column. Knuth (1968) gave several different algorithms for finding a saddlepoint. The worst-case
running time of these algorithms is Θ(n2), and Llewellyn, Tovey, and Trick (1988) showed that this
cannot be improved, as in the worst case all entries of A may need to be queried.

A strict saddlepoint of A is an entry that is the strict maximum in its row and the strict minimum
in its column. The strict saddlepoint (if it exists) is unique, and Bienstock, Chung, Fredman, Schäffer,
Shor, and Suri (1991) showed that it can be found in time O(n lg n), where a dominant runtime
contribution is sorting the diagonal of the matrix. This upper bound has not been improved since
1991. In this paper we show that the strict saddlepoint can be found in O(n lg∗ n) ⊂ o(n lg n) time,
where lg∗ denotes the very slowly growing iterated logarithm function, coming close to the lower
bound of Ω(n). In fact, we can also compute, within the same runtime, the value of a non-strict
saddlepoint, assuming one exists. Our algorithm is based on a simple recursive approach, a feasibility
test inspired by searching in sorted matrices, and a relaxed notion of saddlepoint.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases saddlepoint, matrix, comparison, search

Funding Justin Dallant: Supported by the French Community of Belgium via the funding of a FRIA
grant.
Frederik Haagensen: Supported by Independent Research Fund Denmark, grant 0136-00144B,
“DISTRUST” project.
László Kozma: Supported by DFG grant KO 6140/1-2.

Acknowledgements This work was initiated at Dagstuhl Seminar 23211 “Scalable Data Structures”.

1 Introduction

Saddlepoints are a central concept of mathematical analysis and numerical optimization.
Informally, a saddlepoint of a function (or a surface) is a point where the derivatives (slopes)
in orthogonal directions vanish, yet the point is not a local minimum or maximum. In this
paper we are concerned with a discrete analogue: an entry of a matrix A is a saddlepoint, if
it is simultaneously the maximum in its row and the minimum in its column.

If A represents the payoff matrix of a two-player zero-sum game, then saddlepoints of A

give the value of the game, corresponding exactly to the pure-strategy Nash equilibria (see
e.g. [9, § 4]). Thus, finding the saddlepoint of a matrix (as fast as possible) is a natural and
fundamental algorithmic question.

ar
X

iv
:2

31
0.

16
80

1v
1

 [
cs

.D
S]

 2
5

O
ct

 2
02

3

mailto:Justin.Dallant@ulb.be
https://orcid.org/0000-0001-5539-9037
mailto:haag@itu.dk
https://orcid.org/0000-0002-4161-4442
mailto:rikj@itu.dk
https://orcid.org/0000-0001-9470-1809
mailto:laszlo.kozma@fu-berlin.de
https://orcid.org/0000-0002-3253-2373
mailto:wild@liverpool.ac.uk
https://orcid.org/0000-0002-6061-9177

2 Finding the saddlepoint faster than sorting

A =

−0.08 0.55 0.98 1.21 1.24 1.07 0.7 0.13 −0.64
−0.69 −0.06 0.37 0.6 0.63 0.46 0.09 −0.48 −1.25
−1.1 −0.47 −0.04 0.19 0.22 0.05 −0.32 −0.89 −1.66
−1.31 −0.68 −0.25 −0.02 0.01 −0.16 −0.53 −1.1 −1.87
−1.32 −0.69 −0.26 −0.03 0 −0.17 −0.54 −1.11 −1.88
−1.13 −0.5 −0.07 0.16 0.19 0.02 −0.35 −0.92 −1.69
−0.74 −0.11 0.32 0.55 0.58 0.41 0.04 −0.53 −1.3
−0.15 0.48 0.91 1.14 1.17 1.0 0.63 0.06 −0.71
0.64 1.27 1.7 1.93 1.96 1.79 1.42 0.85 0.08

Figure 1 (right) A 9 × 9-matrix A with a (strict) saddlepoint at a5,5 = 0. (left) A 3D plot of the
matrix entries with the saddlepoint highlighted in green.

Knuth considered the saddlepoint problem [7, § 1.3.2] already in 1968, observing that
saddlepoints of A (if they exist) must equal both the minimum of all row-maxima and
the maximum of all column-minima, and thus, all saddlepoints of a matrix have the same
value. Knuth also gave a number of algorithms [7, pg. 512–515] for finding saddlepoints
(or reporting their absence). The runtimes of these algorithms may differ significantly on
concrete instances, yet in the worst case they all perform Θ(n2) operations on an n × n

square input matrix A.1 In fact, such a runtime is necessary, as in the worst case all entries
of A must be inspected; this can be seen through a simple adversary argument, as shown by
Llewellyn, Tovey, and Trick [8].

The situation changes considerably if we require the saddlepoint to be the strict maximum
in its row and the strict minimum in its column: we refer to such an entry as a strict
saddlepoint. Note that we cannot transform the first problem into the second through a
simple perturbation: adding noise to a matrix with non-strict saddlepoints may well create a
matrix with no saddlepoints at all! It is not hard to see (e.g. by the above observation of
Knuth), that at most one entry of a matrix can be a strict saddlepoint.

The first nontrivial algorithm for finding a strict saddlepoint was given by Llewellyn,
Tovey, and Trick [8] in 1988, with a runtime of O

(
nlg 3)

⊂ O
(
n1.59)

, which they conjectured
to be essentially optimal2, see also [4]. This conjecture turned out to be false, and an
algorithm with runtime O(n lg n) was given by Bienstock, Chung, Fredman, Schäffer, Shor,
and Suri [1] in 1991. Independently and around the same time, Byrne and Vaserstein [3]
obtained a similar result.

The bound of O(n lg n) on the complexity of the problem is a natural barrier and the
algorithms achieving it are surprisingly simple.3 They are deterministic, operate on the
matrix A only via constant-time comparisons of entries, and need to inspect only O(n)
(adaptively queried) entries. In its original presentation, the algorithm of Bienstock et
al. involves Θ(n) operations on a heap that holds Θ(n) keys – alternatively it can be seen as

1 A running time of the form O(n · f(n)) for n×n input matrices also implies a running time of O(m · f(n))
for m × n or n × m input matrices with m ≥ n, as shown in § 2.

2 Throughout the paper, lg x denotes the base-2 logarithm of x.
3 We review the algorithm of Bienstock et al. in a slightly modified form in § 3.

J. Dallant, F. Haagensen, R. Jacob, L. Kozma and S. Wild 3

executing an initial sorting step on Θ(n) entries that dominates the runtime.
Algorithms based on such a step clearly cannot avoid making at least Θ(n lg n) comparisons.

But is sorting necessary for finding a saddlepoint? Informally, sorting and saddlepoint-finding
do seem related, although in a non-obvious way. If the input matrix A does not have a strict
saddlepoint, then any correct algorithm must certify this (at least implicitly) for each entry
q of A. A sufficient certificate for q is a pair (x, y) with x ≥ y, where x is an entry in the
same row as q, and y is an entry in the same column as q (one of x and y may be q itself);
see Figure 2. A moment of thought reveals that such a certificate is also necessary: without
it, q may still be the strict saddlepoint.

q x

y

Figure 2 Certificate against q being a strict saddlepoint. Arrows point from larger to smaller
entries, inequalities involving q are strict. The conditions of a saddlepoint and x ≥ y imply a cycle.

The process of collecting such certificates for all n2 row-column pairs (through O(n lg n)
comparisons) now appears very similar to sorting n items, i.e. collecting “ordering certificates”
for all

(
n
2
)

pairs of items. Given these observations, and the fact that the bound of O(n lg n)
has not been improved in over three decades, it is natural to conjecture that a “sorting
barrier” holds, rendering the O(n lg n) runtime optimal.

Surprisingly, this is not the case. In this paper we show that the strict saddlepoint of
an n × n matrix (or a certificate of its absence) can be found in almost linear, O(n lg∗ n)
worst-case time, where lg∗ denotes the very slowly growing iterated logarithm function. Thus,
the runtime is in o(n lg lg . . . lg n) with the lg function iterated any fixed number of times.

The result is based on the observation that finding a certain pseudo-saddlepoint (PSP) of
a matrix is sufficient. A PSP always exists, but may not be unique, and may not correspond
to a strict saddlepoint (SSP) or even to a general saddlepoint (SP). However, if A has a SP
or SSP, then its value equals the values of all PSPs of A. Finding a PSP (through a recursive
approach) appears to be easier than finding a SSP directly, and having found a PSP, it is
easy to locate a SSP with the same value, or to rule out its existence. The recursion can be
bootstrapped starting from the Bienstock et al. O(n lg n) algorithm, obtaining a sequence of
algorithms that eventually yield the following general result.

▶ Theorem 1. Given an m×n or n×m matrix A, where m ≥ n, we can determine whether
A has a strict saddlepoint, and report such an entry, in O(m lg∗ n) time.

Our approach is deterministic, simple (despite the subtle runtime bound) and operates
on the input matrix A only via queries and comparisons between entries. The result is close
to optimal: to find the strict saddlepoint, its row and column must be fully queried, yielding
an m + n − 1 lower bound on the number of operations. Whether an algorithm (perhaps
randomized) with a linear runtime exists is an intriguing open question.

The result is also relevant to the general saddlepoint problem. Locating a (non-strict)
saddlepoint, or even deciding if one exists, are subject to the Ω(n2) lower bound of Llewellyn
et al. [8]. However, if it is known that a saddlepoint exists, our algorithm can compute its
value in the time given in Theorem 1.

4 Finding the saddlepoint faster than sorting

After some preliminaries in § 2, we introduce our main algorithm (proving Theorem 1)
in successive steps, in § 3, § 4, and § 5. In § 6 we also describe an alternative (perhaps even
simpler) approach that already improves upon the result of Bienstock et al., yielding a
runtime of O(m lg lg n) for m× n or n×m matrices, with m ≥ n.

Further related work. Hofri and Jacquet [6] study the complexity of Knuth’s algorithms
for matrices with distinct entries that are randomly permuted, and Hofri [5] also studies the
distribution of the saddlepoint value and the probability of its existence in matrices with
random entries; see also Knuth [7, § 1.3.2].

2 Preliminaries

Denote [n] = {1, . . . , n} and [a, b] = {a, a + 1, . . . , b}. The binary iterated logarithm lg∗ n is
defined as

lg∗ n =
{

0 if n ≤ 1, and
1 + lg∗ (lg n) if n > 1.

Let A be a matrix with m rows and n columns, and let ai,j be the entry of A in row i

and column j, for all i ∈ [m] and j ∈ [n].
A saddlepoint (SP) of A is an entry ai,j such that ai,j ≥ ai,k for all k ∈ [n]− {j}, and

ai,j ≤ ak,j , for all k ∈ [m]−{i}. In words, ai,j is the maximum in its row, and the minimum
in its column. If ai,j is a SP with all inequalities being strict, then we call ai,j a strict
saddlepoint (SSP) of A.

Note that the only assumption we make on the entries of the matrix A is that they are
from an ordered set, allowing constant-time pairwise comparisons. In particular, we do not
require matrix entries to be pairwise distinct.

Not all matrices admit a SSP or SP (take, for instance, the identity matrix of size n > 1),
but if it exists, the SSP must be unique. Indeed, suppose that ai,j and ai′,j′ are two distinct
SSPs. The cases i = i′ or j = j′ result in an immediate contradiction. Otherwise, from the
definition of SSP, ai,j > ai,j′ > ai′,j′ > ai′,j > ai,j , again, a contradiction.4

Pseudo-saddlepoint. We next define a concept that is essential for our algorithms.
Let ai,r(i) denote a maximum of row i in A, i.e. ai,r(i) = max{ai,1, . . . , ai,n} for all i ∈ [m],

and let ac(j),j denote a minimum of column j in A, i.e. ac(j),j = min{a1,j , . . . , am,j}, for all
j ∈ [n] (breaking ties arbitrarily).

A pseudo-saddlepoint (PSP) of A is an entry ai,j = v of A such that every row of A

has an entry larger or equal to v and every column of A has an entry smaller or equal to
v. Equivalently, ai,j ≤ ak,r(k) for all k ∈ [m], and ai,j ≥ ac(k),k for all k ∈ [n]. It follows
that PSPs are exactly the entries with value in [C, R], where C is the maximum of the
column-minima ac(k),k and R is the minimum of the row-maxima ak,r(k).

▶ Observation 1. Every matrix has at least one PSP.

Proof. It is enough to show C ≤ R. Indeed, let C = ac(j),j and R = ai,r(i). Then, since C

(R) is the minimum (maximum) of its respective column (row), ac(j),j ≤ ai,j ≤ ai,r(i). ◀

4 Note that while at most one entry can be the SSP, its value may appear multiple times in the matrix.

J. Dallant, F. Haagensen, R. Jacob, L. Kozma and S. Wild 5

The example
(

0 7 5
6 4 2
3 1 8

)
shows that PSPs of a matrix may have different values (here, C = 2

and R = 6, so all entries with value in [2, 6] are PSPs, but the matrix admits no SSP, and in
fact, no SP). The existence of a saddlepoint (strict or not), however, determines the value of
all PSPs, as we show next.

▶ Lemma 2. If a matrix A has a SP of value s, then every PSP of A has value s.

Proof. Let ai,j = s be a SP of A. Then, s ≤ ac(j),j ≤ C, by the definition of a SP and by
the fact that C is the maximum of the column-minima. Thus, no value v < s can correspond
to a PSP. Symmetrically, R ≤ ai,r(i) ≤ s, so no value v > s can correspond to a PSP. ◀

Testing for a strict saddlepoint. The next ingredient of our approach is a feasibility test.

▶ Lemma 3. Given an m× n matrix A and a value s, we can find, in time O(m + n), a
SSP of A of value s, or report that no such SSP exists.

Proof. We perform two searches, both starting at location (1, 1) of the matrix and proceeding
in a monotone staircase fashion as follows. We call the first the horizontal search, and the
second the vertical search, illustrated in Figure 3.

Figure 3 Horizontal and vertical searches in the proof of Lemma 3, for value s, with SSP ai,j = s.
Observe that the two paths can meet at arbitrary entries, but diverge only at entries with value s.
After finding the SSP, the two searches only proceed horizontally, resp. vertically.

Horizontal search: Suppose we are at (i, j). If i ∈ [m] and j ∈ [n] then let q = ai,j :
If s < q, set i← i + 1, and continue the search. Otherwise, set j ← j + 1, and continue the
search. If i > m, halt with failure, if j > n, halt with success.

Vertical search: Suppose we are at (i, j). If i ∈ [m] and j ∈ [n] then let q = ai,j :
If s ≤ q, set i← i + 1, and continue the search. Otherwise, set j ← j + 1, and continue the
search. If i > m, halt with success, if j > n, halt with failure.

Observe that the two searches differ only in the tie-breaking in the case s = q and whether
they report success on exiting on the horizontal or vertical end of the matrix.

If any of the two searches halt with failure, return false. Otherwise, suppose the horizontal
search exited at (i, n + 1) and the vertical search exited at (m + 1, j). Then, compare ai,j

with all other entries in row i and in column j, returning true if ai,j is a SSP, and otherwise
returning false.

Clearly, the runtimes of both searches and the final verification are O(m + n). It remains
to show, towards establishing Lemma 3, that the algorithm correctly identifies the SSP.

6 Finding the saddlepoint faster than sorting

Due to the final verification step, the algorithm cannot falsely report a SSP. So suppose
that there is a SSP ai,j of A. Then, both searches eventually reach an entry (i, j′) with
j′ ≤ j or an entry (i′, j) with i′ ≤ i. From then on, the searches proceed directly to ai,j . The
horizontal search then executes only j ← j + 1 steps, eventually returning success, and the
vertical search executes only i← i + 1 steps, eventually returning success. As the verification
succeeds, the algorithm correctly identifies ai,j as the SSP. ◀

We remark that in the algorithm of Lemma 3, when searching for a value s, the horizontal
and vertical searches cannot both fail. Indeed, if the horizontal search exits “at the bottom”
(at (m + 1, j)) and the vertical search exits “to the right” (at (i, n + 1)), then the two paths
must diverge at an entry of value s “in the wrong way”, i.e. the horizontal search moving
vertically, and the vertical search moving horizontally, which is impossible. By distinguishing
the other cases, we can turn the test into a parametric search tool, that will be useful in § 6.

▶ Observation 4. If in the algorithm of Lemma 3, when searching for a value s, the horizontal
search fails, then the SSP (if exists) must be greater than s. If the vertical search fails, then
the SSP (if exists) must be smaller than s. If both searches succeed and the final test fails,
then the matrix has no SSP.

Proof. If the horizontal search fails, then it has identified in each row an entry of value
greater than s, thus the SSP must be greater than s. The second case is symmetric. In the
third case, we learn that each row has an entry of value at least s and each column has an
entry of value at most s. Thus, the SSP could only have value s.5 ◀

Reduction to square matrices. We briefly argue that when computing PSPs, it is sufficient
to focus on square matrices. Suppose, more generally, that the input matrix A is of size
m× n. Assume, w.l.o.g. that m ≥ n, otherwise let A = −AT , without affecting the structure
of SSP or PSPs. (Explicitly transposing and negating A would of course be too costly, but
we can do this “on demand”, only for the queried entries.)

We reduce the computation of a PSP of A to computations on square matrices (similar
arguments were used by Llewellyn et al. [8] and Bienstock et al. [1] for the SSP).

▶ Lemma 5. Computing a PSP of an m × n matrix with m > n can be reduced to the
computation of PSPs of ⌈m/n⌉ matrices of size n× n, with an additive overhead of O(m/n)
on the runtime.

Proof. Let A be an m× n matrix with m > n. Divide A into ⌈m/n⌉ (possibly overlapping)
matrices of size n× n, compute a PSP for each of them, and return the one with minimum
value v. Because that entry is a PSP of its corresponding matrix A′, every column of A′ (and
thus every column of A) has an entry smaller or equal to v. Every row of A has a value larger
or equal to the computed PSP of one of the smaller matrices containing this row, which is
itself larger or equal to v. Thus, every row of A contains a value larger or equal to v. ◀

▶ Corollary 6. Given an algorithm that finds a PSP in an n× n matrix in time O(n · f(n))
for arbitrary f(n) ≥ 1, we can compute a PSP in an m× n or n×m matrix with m ≥ n in
time O(m · f(n)).

5 We also mention the somewhat counter-intuitive fact that for every matrix there is exactly one value for
which both searches succeed (regardless of whether the matrix has a SSP or SP), and the procedure can
be seen as searching for this value. As we lack an immediate use for this fact, we omit the (easy) proof.

J. Dallant, F. Haagensen, R. Jacob, L. Kozma and S. Wild 7

3 A baseline algorithm for pseudo-saddlepoints

In this section we adapt the algorithm of Bienstock et al. [1] for finding the SSP, to find a
PSP. For completeness, we repeat the analysis, although the modifications needed are minor.

Let H = {(r1, c1, v1), (r2, c2, v2), . . . , (rq, cq, vq)} be a set of q triplets of the form (row,
column, value), corresponding to entries in the input matrix A, with v1 ≤ v2 ≤ · · · ≤ vq, and
satisfying the following three properties:

P1. H has at most one entry from each row or column of A.
P2. Every row which does not appear in H has an entry larger or equal to vq.
P3. Every column which does not appear in H has an entry smaller or equal to v1.

▶ Lemma 7. Let (i, j, ai,j) = (r1, c1, v1) and (k, ℓ, ak,ℓ) = (rq, cq, vq) be the elements of
H with minimum and maximum value respectively. By querying ai,ℓ and doing a constant
number of comparisons and insertions/deletions in H, we can reduce the size of H by one
while preserving properties P1, P2, and P3.

Proof. We know from P1 that i ̸= k and j ̸= ℓ. We query ai,ℓ and distinguish three cases
based on the comparisons with ai,j and ak,ℓ. Recall that ai,j = v1 ≤ vq = ak,ℓ.

Case 1: ai,ℓ ≤ ai,j ≤ ak,ℓ. Then row k has an entry larger or equal to vq−1 (namely
vq = ak,ℓ). By P2 and the fact that vq−1 ≤ vq, every row which does not appear in H also
has an entry larger or equal to vq−1. Column ℓ has an entry smaller or equal to v1 (namely
ai,ℓ) and every column which does not appear in H also has an entry smaller or equal to v1
(by P3). Thus, we can delete (rq, cq, vq) from H while preserving all three properties.

Case 2: ai,j ≤ ak,ℓ ≤ ai,ℓ. By a symmetric argument we can delete (r1, c1, v1) from H

while preserving all three properties.
Case 3: ai,j < ai,ℓ < ak,ℓ. Let u = min{v2, ai,ℓ} and v = max{vq−1, ai,ℓ}. The row k

has an entry larger or equal to v (namely ak,ℓ). By P2 this is also the case for every row
which does not appear in H. The column j has an entry smaller or equal to u (namely ai,j).
By P3 this is also the case for every column which does not appear in H. Thus, we can
insert (i, ℓ, ai,ℓ) and delete both (r1, c1, v1) and (rq, cq, vq) from H while preserving all three
properties. ◀

Given an n×n matrix A, we start by setting H = {(1, 1, a1,1), (2, 2, a2,2), . . . , (n, n, an,n)}.
We then repeatedly apply Lemma 7 while maintaining H as a heap or a dynamically balanced
binary search tree ordered by entry values (to guarantee O(log n) time per application of the
lemma), until H has only one entry. By properties P2 and P3, this entry will be a PSP. We
obtain the following theorem.

▶ Theorem 8. Given an n× n matrix A, we can report a pseudo-saddlepoint (PSP) of A in
time O(n log n), by querying at most 2n− 1 entries of A.

4 Bootstrapping the algorithm

We now improve the algorithm of Theorem 8, by embedding it into a recursive approach.
The following lemma allows the decomposition of the input matrix, which is the key step in
our subsequent algorithm.

▶ Lemma 9. Let A be an n × n matrix. Let R1, R2, . . . , Rk and C1, C2, . . . , Cℓ be sets of
indices, so that R1 ∪ · · · ∪Rk = [n] = C1 ∪ · · · ∪Cℓ. For all i ∈ [k] and all j ∈ [ℓ], let ARi,Cj

denote the submatrix of A obtained by taking the rows and columns of A with indices in Ri,
resp. Cj. Let A′ be a k × ℓ matrix whose entry a′

i,j is a PSP of ARi,Cj for all i ∈ [k] and
j ∈ [ℓ]. Then all PSPs of A′ are PSPs of A.

8 Finding the saddlepoint faster than sorting

Proof. Let v be the value of a PSP of A′. By definition, for every i ∈ [k], there is some
j ∈ [ℓ], so that a′

i,j ≥ v. Because a′
i,j is a PSP of ARi,Cj

, every row of A with index in Ri

has an entry larger or equal to a′
i,j . Thus, every row of A has an entry larger or equal to v.

A symmetric argument shows that every column of A has an entry smaller or equal to v. ◀

We are ready to describe the main subroutine of our algorithm. For ease of presentation
we start with a simpler version that already has an almost linear runtime bound.

▶ Theorem 10. Given an n× n matrix A, we can report a pseudo-saddlepoint (PSP) of A

in O
(
n · 2lg∗ n

)
time.

Proof. The algorithm works as follows.
If n = 1, return the only entry of A.
Otherwise, let ℓ = ⌈lg n⌉, and divide the rows and columns of A each into

⌈
n
ℓ

⌉
(possibly

overlapping) intervals of size ℓ. This divides A into
⌈

n
ℓ

⌉2 (possibly overlapping) square
matrices of size ℓ× ℓ. We obtain a new matrix A′ by conceptually replacing each smaller
matrix with a PSP of that matrix.
Run the algorithm of Theorem 8 on A′. Each time a new entry of A′ is queried, run the
current algorithm recursively on the corresponding submatrix of A to obtain the sought
value.

The correctness of the algorithm follows directly from Lemma 9. Let us turn to the
runtime analysis. In the first level of the recursion, the current algorithm runs the algorithm
of Theorem 8 on a

⌈
n

⌈lg n⌉
⌉
×

⌈
n

⌈lg n⌉
⌉

matrix (costing O(n) time) and makes 2
⌈

n
⌈lg n⌉

⌉
− 1

recursive calls on matrices of size ⌈lg n⌉ × ⌈lg n⌉. Thus, for all n ≥ 2 and a large enough
constant c, the runtime T (n) of the algorithm obeys

T (n) ≤ cn +
(

2
⌈

n

⌈lg n⌉

⌉
− 1

)
T (⌈lg n⌉).

We show by induction that T (n) ≤ 2cn · 2lg∗ n − 3cn lg∗ n for all n ≥ 1, and thus
T (n) ∈ O

(
n · 2lg∗ n

)
. For 1 ≤ n ≤ 16, the bound holds assuming c is large enough. Now

assume that n > 16 and that the result is true for all values smaller than n. We have:

T (n) ≤ cn +
(

2
⌈

n

⌈lg n⌉

⌉
− 1

)
T (⌈lg n⌉)

≤ cn +
(

2
⌈

n

⌈lg n⌉

⌉
− 1

) (
2c⌈lg n⌉ · 2lg∗(⌈lg n⌉) − 3c⌈lg n⌉ lg∗(⌈lg n⌉)

)
(1)

≤ cn +
(

2n

⌈lg n⌉
+ 1

) (
2c⌈lg n⌉ · 2lg∗(n)−1 − 3c⌈lg n⌉(lg∗(n)− 1)

)
(2)

≤ 2cn · 2lg∗ n − 3cn lg∗ n− 3cn lg∗ n + 7cn + c⌈lg n⌉ · 2lg∗ n (3)

≤ 2cn · 2lg∗ n − 3cn lg∗ n− 12cn + 7cn + 5cn (4)

≤ 2cn · 2lg∗ n − 3cn lg∗ n.

Here,
(1) follows by induction,
(2) uses that ⌈x⌉ ≤ x + 1 for all x, and that lg∗(⌈lg n⌉) = lg∗ n− 1 for n ≥ 2,
(3) follows via simple manipulation and dropping a negative term,
(4) uses the facts that ⌈lg n⌉ · 2lg∗ n < 5n for n ≥ 1, and lg∗ n ≥ 4 for n > 16. ◀

J. Dallant, F. Haagensen, R. Jacob, L. Kozma and S. Wild 9

We remark in passing that an early stopping of the recursion would yield for all k ∈
O(lg∗ n), a runtime of n · 2O(k) lg(k) n with only n · 2O(k) entries of A queried.

Our overall algorithm is as follows: Given an input matrix A of size m× n with m ≥ n,
first find a PSP s of A (via Theorem 10 and Corollary 6) in time O

(
m · 2lg∗ n

)
. Then, verify

whether A admits a SSP of value s (via Lemma 3) in time O(m + n). If yes, then report it,
if not, then conclude (by Lemma 2) that A has no SSP. This yields an overall runtime of
O

(
m · 2lg∗ n

)
.

Remark. Our algorithm can also be used for computing the value of the (non-strict)
saddlepoint (SP), assuming that it exists, within the same runtime: we simply find a PSP
s of A (via Theorem 10 and Corollary 6), and conclude (by Lemma 2) that the SP value
is s. Locating a SP entry requires quadratic time in the worst case [8]. We can improve this,
however, if the SP value s appears only few times in A. More precisely, we can locate a SP
of value s in an m× n matrix A with k entries of value s in O(k(m + n)) additional time.

The approach is as follows: Run the horizontal search of Lemma 3 with value s. The
search necessarily succeeds, finding in each column an entry of value at most s. The SP must
be in a column where we encountered the value s. There are at most k such columns, so
look through all of them in O(mk) time to collect all candidate entries of value s (again, at
most k of them). Test the candidates in O(m + n) time each, for a total of O(k(m + n)).

5 Improved runtime

A closer look at the baseline algorithm of Theorem 8 reveals that only n− 1 of the 2n− 1
queried entries are chosen adaptively during runtime; the remaining n entries are on the main
diagonal (ai,i)i∈[n] of the input matrix A. A similar observation applies to the algorithm of
Theorem 10 described in § 4. Denoting ℓ = ⌈lg n⌉, here

⌈
n
ℓ

⌉
of the 2

⌈
n
ℓ

⌉
− 1 recursive calls

are for submatrices whose position is fixed upfront.
This suggests an improvement to the algorithm of Theorem 10, by solving

⌈
n
ℓ

⌉
of the

subproblems directly, in an O(n) time preprocessing step, and thereby reducing the number
of recursive calls.

Let us first fix the decomposition of the input matrix A into submatrices of size ℓ× ℓ as
follows. For i = 0, . . . , ⌊n/ℓ⌋ − 1, let Ri = Ci = [i · ℓ + 1, (i + 1) · ℓ], and set the last (possibly
overlapping) interval R⌊n/ℓ⌋ = C⌊n/ℓ⌋ = [n− ℓ + 1, n]. We have ∪iRi = ∪iCi = [n].

▶ Lemma 11. Given an n× n matrix A, we can transform it in time O(n) into an n× n

matrix B, so that a PSP of value q of B implies a PSP of value q of A. Moreover, in O(n)
time we can compute a PSP of every “diagonal box” BRi,Ci .

Lemma 11 serves as a preprocessing step for each call of the algorithm of Theorem 10.
With this preprocessing, the algorithm of Theorem 10 needs to make only

⌈
n
ℓ

⌉
− 1 recursive

calls on matrices of size ℓ× ℓ. As far as these recursive calls are concerned, the preprocessed
matrix B is identical to A, up to permuting rows and columns, which can be maintained
using straightforward bookkeeping.

Thus, for all n ≥ 2 and a large enough constant c′, the recurrence for the runtime becomes

T (n) ≤ c′n +
(⌈n

ℓ

⌉
− 1

)
T (ℓ).

10 Finding the saddlepoint faster than sorting

We show by induction that T (n) ≤ 2c′n lg∗ n for all n ≥ 1, and thus T (n) ∈ O(n lg∗ n):

T (n) ≤ c′n +
(⌈n

ℓ

⌉
− 1

)
T (ℓ)

≤ c′n +
(⌈n

ℓ

⌉
− 1

)
(2c′ℓ lg∗ ℓ)

≤ c′n + 2c′n(lg∗(n)− 1)
≤ 2c′n lg∗ n.

Together with Corollary 6 and Lemma 3 and Lemma 2, this implies our main result.

▶ Theorem 1. Given an m×n or n×m matrix A, where m ≥ n, we can determine whether
A has a strict saddlepoint, and report such an entry, in O(m lg∗ n) time.

Here again one could stop the recursion early, yielding for all k ∈ O(lg∗ n), a runtime of
O(n lg(k) n + nk) with only O(nk) entries of A queried.

It remains to describe and analyze the preprocessing step.

Proof of Lemma 11. Given a square input matrix A, consider the following transformation,
written as an in-place procedure, that results in a matrix B of the same size.

Transform(A, t)
Input: an n× n matrix A and stopping threshold t.

1: if n ≤ t then halt
2: v ← Select({an,1, an−1,2, . . . , a1,n}, ⌈n/2⌉)
3: Partition (an,1, an−1,2, . . . , a1,n) around v

4: ai,i ← v for i = 1, . . . , ⌈n/2⌉
5: Transform(A[⌈n/2⌉+1,n],[⌈n/2⌉+1,n], t)

The transformation works as follows: select the median (element of rank ⌈n/2⌉) v of the
antidiagonal {an,1, an−1,2, . . . , a1,n}. Then, partition the antidiagonal around v as detailed
below, so that v goes into position an−⌈n/2⌉+1,⌈n/2⌉ of the matrix, with entries smaller on its
left and entries larger on its right.

Then, set the first ⌈n/2⌉ entries on the main diagonal to v. Finally, repeat the transform-
ation recursively on the bottom right quadrant of the matrix, starting from an entry of the
main diagonal. Stop when the matrix size falls below a stopping threshold t. The initial
call is Transform(A, 2 lg n), to preprocess a matrix A of size n× n, with stopping threshold
t = 2 lg n; the early stopping is to avoid affecting the rightmost (overlapping) boxes of A.
The effect of the transformation is illustrated in Figure 4(a).

Let us first argue that the transformation takes linear time. Indeed, line 2 can employ
linear time selection (e.g. [2]), and line 3 can be achieved by simulating a standard partitioning
procedure on the antidiagonal, swapping pairs of entries by swapping the corresponding
pairs of rows and columns. Note that when running line 3 in a recursive call of Transform,
we still swap pairs of rows or columns of the full matrix. Notice that these operations can
be implemented with simple bookkeeping in constant time per swap. Line 4 requires to
copy the median element along the diagonal in ⌈n/2⌉ locations (this can be achieved e.g.
by saving the diagonal into an array). Thus, lines 1–4 take cn time, for a sufficiently large
c. With the recursive call in line 5, the total runtime of Transform(A) can be bounded as
c(n + n/2 + n/4 + n/8 + · · ·) ≤ 2cn ∈ O(n).

We next argue that a PSP of the transformed matrix B implies a PSP of A of the same
value. Recall that q is a PSP-value if and only if q ∈ [C, R], where C is the maximum of the
column-minima and R is the minimum of the row-maxima.

J. Dallant, F. Haagensen, R. Jacob, L. Kozma and S. Wild 11

Figure 4 (a) The effect of procedure Transform on an input matrix A of size 18 × 18: the
antidiagonal is partitioned around the median, and the median value is copied to half of the main
diagonal. The procedure is repeated recursively on the lower right quadrant. Values v1, v2, . . .

denote the medians found in subsequent calls, and v−
i , v+

i indicate values ≤ vi, resp. ≥ vi.
Note that swaps during the partitioning step of recursive call i may move elements away from the
antidiagonal from call j < i. For simplicity, this is not reflected in the figure.
(b) Solving the diagonal-subproblems in the algorithm of Theorem 10. Squares indicate ⌈lg n⌉×⌈lg n⌉
size subproblems. All, but lg n + O(1) of these have uniform diagonal.

Initially B = A, so the PSPs are the same. Consider a call of Transform at an arbitrary
level of recursion. Swapping pairs of rows or columns does not affect the PSP values, thus
the claim holds for lines 1–3. Copying the median value v in line 4 cannot decrease C,
since the affected column already contains a value at most v due to the partitioning step.
Similarly, it cannot increase R, since the affected row already contains a value at least v (see
Figure 4(a)). Thus, denoting by C ′, R′ the new maximum of column-minima, resp. minimum
of row-maxima, we have [C ′, R′] ⊆ [C, R], so no new PSPs are created.

It remains to compute a PSP for each diagonal box BRi,Ci
. Notice that the diagonals of

these boxes coincide with the diagonal of the full (preprocessed) matrix B. Moreover, for all
but at most lg n + O(1) of the boxes BRi,Ci

, their diagonal contains a single value. This is
because, after preprocessing, the diagonal of B consists of at most lg n contiguous uniform
sections (corresponding to calls of Transform), and a last section of length at most 2 lg n,
that was unaffected by Transform. Only boxes that intersect with the boundaries between
sections, and a constant number of boxes at the end will have a non-uniform diagonal; see
Figure 4(b) for an illustration.

Notice that if every diagonal entry of a matrix is v, then v is a PSP of the matrix.
Thus, all but lg n + O(1) of the diagonal boxes have their PSP readily available. For
the remaining diagonal boxes, we call the baseline algorithm of Theorem 8, adding a term
O(lg n · lg n lg lg n) ⊂ O(n) to the runtime. The total runtime is O(n), finishing the proof. ◀

6 An alternative approach

In this section we briefly describe an algorithm for the SSP problem with a runtime of
O(n lg lg n) on an n×n matrix A. While the bound is weaker than the previous ones, we find
the approach worth mentioning due to its simplicity, and since it can run faster on certain
inputs.

The algorithm has two phases. The first phase makes use of Observation 4 to find
progressively better upper and lower bounds on the value of the SSP (should it exist), and

12 Finding the saddlepoint faster than sorting

thereby eliminate rows or columns of A that cannot contain the SSP. The second phase
begins when one side-length of the matrix has been reduced to at most n

lg n . It makes use
of a heap, similarly to the algorithm of Theorem 8, but with a different purpose: to also
reduce the longer side of the matrix to about n

lg n . When both sides of the matrix have
length O(n

lg n), we can finish the job with the baseline algorithm of Theorem 8, with a total
runtime of O(n). If a SSP is found, we perform an additional O(n) time test with it on the
original matrix, to rule out a false positive.

Recall that the search procedure of Lemma 3 returns (by Observation 4), in O(m + n)
time, for an m× n or n×m matrix A and a search value s, one of four answers: (1) A has
the SSP ai,j = s; (2) A has no SSP; (3) the SSP of A (if exists) is > s; or (4) the SSP of A

(if exists) is < s.

First phase. Let A denote the current m′ × n′ matrix, where n ≥ m′ ≥ n′ (the other case
is symmetric). Assume that entries of A are ai,j with i ∈ [m′], resp. j ∈ [n′].

Compute the median v of the set of elements D = {ai,⌈ i·n′
m′ ⌉ | i ∈ [m′]} and search A with

v using the procedure of Lemma 3. If we learn that the SSP can only be larger than v, then
recurse on A[m′],[n′]−C′ where C ′ = {j | ai,j ∈ D ∧ v ≥ ai,j}. If we learn that the SSP can
only be smaller than v, then recurse on A[m′]−R′,[n′] where R′ = {i | ai,j ∈ D ∧ v ≤ ai,j}. If
we find the SSP, or learn that a SSP does not exist, then halt accordingly.

Observe that the reductions are justified. Indeed, if the SSP must be larger than v, then
it cannot be in columns that contain entries smaller or equal to v, and hence, these columns
can be deleted. If the SSP must be smaller than v, then it cannot be in rows that contain
entries larger or equal to v, and hence, these rows can be deleted.

If either side-length of the matrix is reduced to n
lg n , then proceed to the next phase.

Second phase. Let A denote the current m′×n′ matrix, where n ≥ m′ ≥ n′ (the other case
is symmetric). Assume n′ ≤ n

lg n , and m′ > 4n′ (otherwise we can stop). For each column
j ∈ [n′], select ⌊m′

2n′ ⌋ rows Rj ⊆ [⌊m′/2⌋], so that Rj ∩ Rj′ = ∅ whenever j ̸= j′. Observe
that initially only the first half of the m′ rows are picked. For each column j calculate the
minimum mj = min{ai,j | i ∈ Rj}.

Insert the minima m1, . . . , mn′ into a max-heap. For n′ iterations, extract the maximum
element from the heap. Suppose the currently extracted maximum is mj = ai,j . Then for all
i′ ∈ Rj − {i}, delete row i′ of the matrix A.

This is justified, since a SSP cannot exist in row i′ of the matrix. Indeed, if such a SSP
ai′,k existed, then either (1) k = j and we have a contradiction since mj ≤ ai′,j (by the choice
of mj as the minimum), or (2) k ̸= j which is a contradiction since mk ≤ mj ≤ ai′,j < ai′,k

(by the maximality of mj in the heap and the row condition of SSPs). Either case contradicts
that ai′,k is a SSP since it is not strictly smaller than some value in its column.

Now, in the column j, select ⌊m′

2n′ ⌋ new elements with row index set Rj ⊆ [m′] disjoint
from all other Rj′ with j ≠ j′. Compute the new minimum mj = min{ai,j | i ∈ Rj}, and
reinsert mj into the max-heap.

In n′ iterations, the process removes a constant fraction of rows. Repeat the phase
O(lg lg n) times, to reduce the number of rows to m′ ≤ 4n′.

Running time. Starting with an initial n× n matrix, every iteration of the first phase runs
in O(n) time and removes at least a constant fraction of the remaining rows or columns,

J. Dallant, F. Haagensen, R. Jacob, L. Kozma and S. Wild 13

which implies that in O(n lg lg n) time at least one side will be reduced to length n
lg n .6

In the second phase, initializing Rj and mj for each column j takes O(n) total time.
Then, each of the n′ iterations involve a constant number of heap operations of cost O(lg n),
and a constant cost per the removal of each row. Since n′ ∈ O(n

lg n), the execution of the
phase takes O(n) total time. Repeated O(lg lg n) times, this yields the total runtime of
O(n lg lg n).

References
1 Daniel Bienstock, Fan Chung, Michael L. Fredman, Alejandro A. Schäffer, Peter W. Shor, and

Subhash Suri. A note on finding a strict saddlepoint. Am. Math. Monthly, 98(5):418–419,
April 1991. doi:10.2307/2323858.

2 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973. doi:10.1016/
S0022-0000(73)80033-9.

3 Christopher C. Byrne and Leonid N. Vaserstein. An improved algorithm for finding saddlepoints
of two-person zero-sum games. Int. J. Game Theory, 20(2):149–159, June 1991.

4 Stephen Hedetniemi. Open problems in combinatorial optimization. https://people.
computing.clemson.edu/~hedet/algorithms.html. Accessed: 2023-08-07.

5 Micha Hofri. On the distribution of a saddle point value in a random matrix. Department of
Computer Science, WPI, 100, 2006.

6 Micha Hofri and Philippe Jacquet. Saddle points in random matrices: Analysis of Knuth
search algorithms. Algorithmica, 22(4):516–528, 1998. doi:10.1007/PL00009237.

7 Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., USA, 1997.

8 Donna Crystal Llewellyn, Craig Tovey, and Michael Trick. Finding saddlepoints of two-
person, zero sum games. The American Mathematical Monthly, 95(10):912–918, 1988. doi:
10.1080/00029890.1988.11972116.

9 Michael Maschler, Shmuel Zamir, and Eilon Solan. Game theory. Cambridge University Press,
2020.

6 Note that if iterations alternate between removing rows and columns, then the runtime can be described
by a geometric series that evaluates to O(n).

https://doi.org/10.2307/2323858
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://people.computing.clemson.edu/~hedet/algorithms.html
https://people.computing.clemson.edu/~hedet/algorithms.html
https://doi.org/10.1007/PL00009237
https://doi.org/10.1080/00029890.1988.11972116
https://doi.org/10.1080/00029890.1988.11972116

	1 Introduction
	2 Preliminaries
	3 A baseline algorithm for pseudo-saddlepoints
	4 Bootstrapping the algorithm
	5 Improved runtime
	6 An alternative approach

