
On Geometric Shape Construction via Growth

Operations⋆

Nada Almalkia,b,∗, Othon Michaila

aDepartment of Computer Science, University of Liverpool, Liverpool, UK
bDepartment of Information Technology, Taif University, Taif, Saudi Arabia

Abstract

We study algorithmic growth processes under a geometric setting. Each pro-
cess begins with an initial shape of nodes SI = S0 and, in every time step
t ≥ 1, by applying (in parallel) one or more growth operations of a specific
type to the current shape, St−1, generates the next, St, always satisfying
|St| > |St−1|. We define three types of growth operations and explore the
algorithmic and structural properties of their resulting processes. Our goal
is to characterize the classes of shapes that can be constructed in O(log n)
or polylog n time steps, n being the size of the final shape SF . Moreover, we
want to determine whether a given shape SF can be constructed from a given
initial shape SI using a finite sequence of growth operations of a given type,
called a constructor of SF . We give exact and partial characterizations of
classes of shapes that can be constructed in polylog n time steps, polynomial-
time centralized algorithms for deciding reachability between pairs of input
shapes (SI , SF ) and for generating constructors when SF can be constructed
from SI , as well as some negative results.

Keywords: Centralized algorithm, Geometric growth operation, Growth
process, Programmable matter, Constructor

⋆A preliminary version of the results in this paper has appeared in [AM22].
∗Corresponding author (Telephone number: +44 (0)151 795 4275, Postal Address:

Department of Computer Science, University of Liverpool, Ashton Street, Liverpool L69
3BX, UK).

Email addresses: N.almalki@liverpool.ac.uk, Nada.m@tu.edu.sa (Nada Almalki
), Othon.Michail@liverpool.ac.uk (Othon Michail)



1. Introduction

The realization that many natural processes are essentially algorithmic,
has fueled a growing recent interest in formalizing their algorithmic principles
and in developing new algorithmic approaches and technologies inspired by
them. Examples of algorithmic frameworks inspired by biological and chemi-
cal systems are population protocols [AAD+06, AAER07, MS16], ant colony
optimization [CDLN14, Dot12], DNA self-assembly [Dot12, Rot06, RW00,
WDM+19], and the algorithmic theory of programmable matter [DGR+16,
AAD+21, AMP20, MSS19, FNSS22].

Motivated by these advancements and by principles of biological devel-
opment which are apparently algorithmic, we introduce a set of geomet-
ric growth processes and study their algorithmic and structural properties.
These processes start from an initial shape of nodes SI , possibly a single-
ton, and by applying a sequence of growth operations eventually develop
into well-defined global geometric structures. The growth operations being
considered involve generating at most one new node in a specific direction
from any existing node. This leads to a shape reconfiguration due to the
generation of a set of nodes within it. Nodes (also known as modules) in
this context represent the individual constituent parts of the system, like the
cells of an organism or the individual modules of a reconfigurable robotic sys-
tem (e.g., the individual DATOMs in the system proposed in [PB21]). The
considered node-generation primitive is also inspired by the self-replicating
capabilities of biological systems, such as cellular division, their higher-level
processes such as embryogenesis [CSG+19], and by the potential of the future
development of self-replicating robotic systems.

In a recent study, Mertzios et al. [MMS+21] investigated a network-growth
process at an abstract graph-theoretic level, free from geometric constraints.
Our goal here is to study similar growth processes under a geometric setting
and to show how these can be fine-tuned to construct interesting geometric
shapes efficiently, i.e., in a number of time steps polylogarithmic in their
size. Aiming to focus exclusively on the effect of growth operations, we do
not allow any form of shape reconfigurations other than local growth. Prelim-
inary such growth processes, mostly for rectangular shapes, were developed
by Woods et al. [WCG+13]. Their approach was to first grow such shapes
in polylogarithmic time steps and to then transform them into arbitrary ge-
ometric shapes and patterns through additional reconfiguration operations,
the latter essentially capturing properties of molecular self-assembly systems.
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Like them, we study the problem of constructing a desired final shape SF

starting from an initial shape SI via a sequence of shape-modification opera-
tions. However, in this work the considered operations are only local growth
operations.

1.1. Our Approach and Contribution

In this work, our main objective is to study growth operations in a cen-
tralized geometric setting. Applying a sequence of such operations in a cen-
tralized way, yields a centralized geometric growth process.

Our model can be viewed as an applied, geometric version of the abstract
network-growth model of Mertzios et al. [MMS+21]. The considered model
is discrete and operates on a 2D square grid. Connectivity preservation is
an essential aspect of both biological and of the so-inspired robotic and pro-
grammable matter systems, because it allows, among others, the system to
maintain its strength and coherence and enables sharing of resources between
the system’s constituent parts. In light of this, all shapes in this work are
assumed to be connected and the considered growth operations cannot break
the shape’s connectivity. For all types of considered operations, the study
revolves around the following main questions: (i) What is the class of shapes
that can be constructed efficiently from a given initial shape SI via a sequence
of growth operations? (ii) Is there a polynomial-time centralized algorithm
that can decide if a given final shape SF can be constructed from a given initial
shape SI and, whenever the answer is positive, return an efficient constructor
of SF from SI?

We study three growth operations, full doubling, RC doubling, and dou-
bling, where full doubling is the most restricted and doubling the most general
one. In full doubling, in every time step, each node doubles by generating a
new node in a given direction, in RC doubling, entire columns or rows dou-
ble, while in doubling, individual nodes can double (see Section 2 for detailed
definitions of each growth operation).

The growth operations considered in this paper are characterized by the
following additional properties:

- In general, more than one growth operation can be applied at the same
time step (parallel version). To simplify the exposition of some of our
results without losing generality, we shall sometimes restrict attention
to a single operation per time step (sequential version).
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- To avoid having to deal with complicated forms of colliding operations,
which is not among the main aims of the present work, we restrict at-
tention to single-direction growth operations. That is, for each time
step t, a direction d ∈ {north, east, south, west} is fixed, and any
operation at t must be in direction d (these may also be referred to
as {up, right, down, left}, respectively). For simplicity, we shall exclu-
sively focus on the weaker model in which operations can only occur
in the north and east directions. Our results remain true in the model
using all directions. We leave for future research a careful consideration
of the model using all directions.

For full doubling, we completely characterize the structure of the class
of shapes that can be constructed from any given initial shape. For RC
doubling, our main contribution is a linear-time centralized algorithm that
for any pair of shapes SI , SF decides if SF can be constructed from SI and,
if the answer is yes, returns an O(log n)-time step constructor of SF from SI ,
n being the number of nodes in SF . Note that all time step complexities in
this work are functions of the size of the final shape. For doubling, we show
that some shapes cannot be constructed within sublinear time steps and give
two universal constructors of any SF from a singleton SI , which are efficient
(i.e., up to polylogarithmic time steps) for large classes of shapes. Both
constructors can be computed by polynomial-time centralized algorithms for
any shape SF .

1

In Section 1.2, we discuss the related literature. Section 2 presents all
definitions that are used throughout the paper. Sections 3, 4, and 5 present
our results for full doubling, RC doubling, and doubling, respectively. Finally,
in Section 6, we conclude and give further research directions opened by our
work.

1.2. Related work

Recent work has focused on studying the algorithmic principles of re-
configuration, with the potential of developing artificial systems that will

1Note that there are two distinct notions of time used in this paper. One represents the
time steps of a growth process, while the other represents the running time of a centralized
algorithm deciding reachability between shapes and returning constructors for them. We
shall always distinguish between the two by calling the former time steps and the latter
time.
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be able to modify their physical properties, such as reconfigurable robotic
ensembles and self-assembly systems. For example, the area of algorithmic
self-assembly of DNA aims to understand how to train molecules to modify
themselves while also controlling their own growth [Dot12]. Several theoret-
ical models of programmable matter have been developed, including DNA
self-assembly and other passively dynamic models [Dot12, Mic18] as well as
models enriched with active molecular components [WCG+13]. For another
survey of papers related to growth in self-assembly, see [Woo15].

One example of a geometric programmable matter model, which is pre-
sented in [DRD+14], is known as the Amoebot and is inspired by amoeba
behavior. In particular, programmable matter is modeled as a swarm of
distributed autonomous self-organizing entities that operate on a triangular
grid. Research on the Amoebot model has made progress on understanding
its computational power and on developing algorithms for basic reconfig-
uration tasks such as coating [DGR+17] and shape formation [DGR+16,
DLFS+20]. Other authors have investigated programmable matter mod-
ules that can rotate or slide over neighboring modules through an empty
space [DP04, DSY04, MSS19, CMP22], with the goal of capturing the global
reconfiguration capabilities of local mechanisms that are feasible to be im-
plemented with existing technology. The authors in [MSS19] proved that the
decision problem of transformation between two shapes is in P. In addition,
another recent research work [AMP20] investigated a linear-strength mech-
anism through which a node can push a line of one or more nodes by one
position in a single time step. Other linear-strength mechanisms are the one
by Woods et al. [WCG+13], where a node can rotate a whole line of connected
nodes, simulating arm rotation, or the one by Aloupis et al. [ACD+08] on
Crystalline robots, equipped with powerful lifting capabilities.

A recent study in the field of highly dynamic networks, which is pre-
sented in [MMS+21], is partially inspired by the abstract-network approach
followed in [MSS20]. The authors completely disregard geometry and develop
a network-level abstraction of programmable matter systems. Their model
starts with a single node and grows the target network G to its full size by
applying local operations of node replication. Local edges are only activated
upon a node’s generation and can be deleted at any time but contribute
negatively to the edge-complexity of the construction. The authors develop
centralized algorithms that generate basic graphs such as paths, stars, trees,
and planar graphs and prove strong hardness results. We similarly focus on
centralized structural and algorithmic characterizations as a first step that
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will promote our understanding of such novel models and will facilitate the
future development of more applied constructions, like fully distributed ones.

2. Model and Preliminaries

The growth processes considered in this paper operate on a 2-dimensional
square grid. Most of the time we work on a non-negative quadrant but
sometimes there are a few exceptions. Each grid position (cross point) is
identified by its x and y coordinates, x ≥ 0 representing the column and
y ≥ 0 the row. Systems of this type consist of n nodes that form a connected
shape S, as in Fig. 1. Each node u of shape S is represented by a circle
occupying a position on the grid. The process evolves in discrete time steps
and in every time step t ≥ 0, zero or more growth operations can occur
depending on the type of operation considered. At any given time step t,
each node u ∈ S is determined by its coordinates (ux, uy) and no two nodes
can occupy the same position at the same time step. Two distinct nodes
u = (ux, uy) and v = (vx, vy) are neighbors if ux ∈ {vx − 1, vx + 1} and
uy = vy or uy ∈ {vy−1, vy+1} and ux = vx, that is, if they are at orthogonal
distance one from each other. In that case, we are assuming that, unless
explicitly removed, a connection (or edge) uv exists between u and v.
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(2, 1)
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(1, 2)
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Figure 1: An example of a shape S with four nodes.

A row (respectively column) of a shape S is the set of all nodes of S with
the same y-coordinate (respectively x-coordinate). By S·,i we denote the row
of S consisting of all nodes whose y-coordinate is i, i.e., S·,i = {(x, i) | (x, i) ∈
S}. Similarly, column j of S, denoted as Sj,·, is the set of all nodes of S whose
x-coordinate is j, i.e., Sj,· = {(j, y) | (j, y) ∈ S}. When the shape S is clear
from context, we will refer to S·,i as Ri and to Sj,· as Cj.
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We use w(Cj, u) to denote the number of columns of S to the left (west)
of a node u in a column j, that is, w(Cj, u) = ux−Cl, where Cl is the leftmost
column of S.

Similarly, s(Ri, u) denotes the number of rows of S below (south) of a
node u in a row i, that is, s(Ri, u) = uy − Rb, where Rb is the bottom-most
row of S.

For two sets X and Y we denote by X × Y the Cartesian product of X
and Y .

A (p, q)-rectangle is a set of the form A × B, where A and B are sets
of consecutive integers of cardinally p and q, respectively. A set of points is
called rectangle if it is a (p, q)-rectangle for some A and B of cardinalities p
and q, respectively. Given an integer point u and two natural numbers p and
q, the (p, q)-rectangle around u, denoted Rec(u, p, q), is the (p, q)-rectangle
{ux, ux + 1, . . . , ux + p− 1} × {uy, uy + 1, . . . , uy + q − 1}.

Definition 1 (Translation Operation). Given a set of integer points Q,
the north (south) k-translation of Q, for any k ≥ 1, is defined as ↑k Q =
{(x, y + k) | (x, y) ∈ Q} (↓k Q, similarly defined). The east (west) l-

translation of Q, for any l ≥ 1, is defined as
l→ Q = {(x+ l, y) | (x, y) ∈ Q}

(
l← Q, similarly defined). For example, in Fig. 2, after a full doubling op-

eration the set of points in C4 ∈ (St−1) are translated by 3 to the east in
St.

Definition 2 (Rigid Connection). A connection uv between two nodes u
and v of a shape S is rigid if and only if a 1-translation of one node in
any direction d implies a 1-translation of the other in the same direction,
unless uv is first removed. This extends inductively to a k-translation, for
any k ≥ 1.

Throughout, all connections are assumed to be rigid. We also assume that, at
the beginning of each time step, every pair of neighboring nodes is connected
by a rigid connection. Note that our most general growth operation requires
some rigid connections to be removed before the operation is applied.

The basic concept of a growth operation is that a node u ∈ St−1 generates
a new node u′ ∈ St, in which case we may also say that u doubles in time
step t. Furthermore, all types of growth operations considered are linear
strength, in our case meaning that even a single generated node u′ is capable
of translating (by pushing) any subset of the current shape instance. In
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general, an operation is linear-strength if for any shape S of size n, the move
of a subshape of S of size O(1) (or larger) can cause the move of a subshape
of S of size Θ(n). For example, in [AMP20] a single node can push a line of
nodes of length up to n− 1, in [ACD+08] a single Crystalline atom can push
or pull a component of size up to n−1, and in [WCG+13] a monomer rotating
around a neighboring monomer pulls with it a whole arm of monomers, which
can be used to rotate an arm of length Θ(n) within O(log n) time steps.

Throughout this paper, l, k will represent the total number of horizontal
and vertical growth operations performed, respectively. When an operation
is horizontal, the direction d is either east or west and when vertical, the
direction d is either north or south.

Definition 3 (Growth Operation). A growth operation o is an operation
that when applied on a shape instance St−1, for all time steps t ≥ 1, yields a
new shape instance St = o(St−1), such that |St| > |St−1|.

In this work, we consider three specific types of growth operations moving
from the most special to the most general: full doubling, RC doubling, and
doubling. For the sake of clarity, we now provide a high-level overview of these
operations, with their more technical definitions appearing in the respective
sections, that is, in Sections 3, 4, and 5.

A full doubling operation is a growth operation in which every node u ∈
St−1 generates a new node u′ ∈ St, that is, |St| = 2|St−1|. Then, row and
column doubling, abbreviated RC doubling, is a growth operation where, in
each time step t, a subset of columns (rows) of the shape is selected and
these are fully doubled. Finally, the most general version of these operations
is the doubling operation, in which, in each time step t, any subset of the
nodes can double in a given direction. The differences between these three
operations are highlighted in Fig. 2.

Definition 4 (Reachability Relation). For a growth operation of a given
type, we define a reachability relation ⇝ on pairs of shapes S, S ′ as follows.
S ⇝ S ′ iff there is a finite sequence σ = o1, o2, . . . , otlast of operations of
a given type for which S = S0, o1, S1, o2, S2 . . . , S(tlast−1), otlast , Stlast = S ′,
where Si = o(Si−1) for all 1 ≤ i ≤ tlast. Whenever we want to emphasize a

particular such sequence σ, we write S
σ
⇝ S ′ and say that σ constructs shape

S ′ from S.
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FullDoubling(St−1)

St−1

RCDoubling(St−1)

Doubling(St−1)

St

C1 C2 C3 C4

C1 C2 C3 C′

4
C′

1
C′

2
C′

3
C4

C1 C2 C′

2
C3 C′

4
C4

St

C1 C′

1
C2 C′

2
C3 C4

St

Figure 2: Illustration of the new shape St obtained by applying different types of growth
operations on the same shape St−1, where the direction of growth is east. In this paper,
nodes in St−1 are usually colored black and the newly generated nodes gray.

Definition 5 (Constructor). A constructor σ = (o1, o2, . . . , otlast) is a fi-
nite sequence of doubling operations of a given type2, applied from a given
initial shape SI to yield a final shape SF . We then say that σ is a constructor
of SF from SI .

Remark 1. Note that, in Definition 5, the directions of different oi’s, 1 ≤
i ≤ tlast, need not be the same.

2.1. Problem Definitions

We now formally define the problems to be considered in this paper.

ClassCharacterization. Identify the family of shapes SF that can be
obtained from a given initial connected shape SI via a sequence of growth

2A reasonable formal representation of an operation of a given type in a time step,
consists of a direction together with a complete description of the points that must double
in that time step. In (general) doubling, as will become evident when it is formally defined
in Section 5, a description of the connections that must be removed before the operation
is applied should additionally be provided.
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operations of a given type.

ShapeConstruction. Given a pair of shapes SI , SF , decide if SI ⇝ SF .
If yes, compute a constructor σ of SF from SI . In the special case of this
problem in which SI is always a singleton, the input is just SF .

3. Full Doubling

In this section, after providing a formal definition of the full doubling
operation, we investigate the ClassCharacterization problem under this
operation. We do this first for the special case of |SI | = 1 (in Section 3.1),
and then for the more general case of |SI | ≥ 1 (in Section 3.2).

Definition 6 (Full Doubling). After applying a full doubling operation
on a shape S a new shape S ′ is obtained, depending only on the direction d
of the operation:

1. If the direction d of the full doubling operation is east, then for every
column Sj,· of S a new column is generated to the east of Sj,·. The
effect of applying this to all columns is that every column Sj,· of S is

translated to the east by j−1, such that S ′
2j−1,· =

j−1→ Sj,·, and generates

the new column S ′
2j,· =

j→ Sj,·. Therefore, the new shape S ′ of this
doubling operation is S ′ =

⋃
j(S

′
2j−1,· ∪ S ′

2j,·).

2. If the direction d of the full doubling operation is a north, then for
every row S·,i of S a new row is generated to the north of S·,i. The
effect of applying this to all rows is that every row S·,i of S is translated
to the north by i−1, such that S ′

·,2i−1 =↑i−1 S·,i, and generates the new
row S ′

·,2i =↑i S·,i. Therefore, the new shape S ′ of this doubling operation
is S ′ =

⋃
i(S

′
·,2i−1 ∪ S ′

·,2i).

Intuitively, if a full doubling operation is applied on S in the east direction,
then a set of columns equal to the original is generated. Every original
column is translated by the number of original columns to its west and its
own copy is generated to the east of its final position. Similarly for rows.

Fig. 3 depicts an example where S consists of two columns S1,· and S2,·.
Applying a full doubling operation in the east direction results in S ′, where
S1,· (which becomes S ′

1,·) generates S
′
2,· and S2,· is translated by 1 to the east

and becomes S ′
3,·, which in turns generates S ′

4,·.
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(a) Initial shape S.
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S′
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4

(b) S′ after a full doubling
operation.

Figure 3: Illustration example of the new shape S′ after applying a full doubling operation
on the columns of S, in the east direction.

3.1. Singleton Initial Shape: |SI | = 1

This section characterizes shapes that can be obtained by a full doubling
operation that starts with a singleton initial shape SI , that is, satisfying
|SI | = 1. The characterization is straightforward and its main purpose is to
illustrate the dynamics of the full doubling operation.

Proposition 1. Let l and k be natural numbers. A full doubling constructor
with l horizontal and k vertical full doubling operations that starts from a
single node constructs a rectangle of size 2l × 2k.

Proof. We will prove the statement by induction on the number t = l + k
of operations. For t = 0 the statement is trivial.

Let t > 0 and assume that the proposition holds for all constructors with
t− 1 full doubling operations.

Let σ = (o1, o2, . . . , ot) be any full doubling constructor with exactly t
operations and let l and k be the number of horizontal and vertical full dou-
bling operations in this constructor, respectively, that is, t = l + k. Assume
first that the last operation in σ is a horizontal full doubling and consider
the constructor σ′ = (o1, o2, . . . , ot−1) consisting of the first t− 1 operations
of σ, where in this case t− 1 = (l − 1) + k. By the induction hypothesis, σ′

constructs a rectangle of size 2l−1×2k. The horizontal full doubling operation
that is applied in time step t, doubles all 2l−1 columns of the rectangle, thus
creating a rectangle of size 2l × 2k, as desired.

The case when the last operation of σ is a vertical doubling is proved
similarly. Let us assume that the last full doubling operation of σ is a vertical
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doubling and consider that the constructor σ′ = (o1, o2, . . . , ot−1) consisting
of the first t − 1 operations of σ, where in this case t − 1 = l + (k − 1).
By the induction hypothesis, σ′ constructs a rectangle of size 2l × 2k−1. The
vertical full doubling operation that is applied in time step t, doubles all 2k−1

columns of the rectangle, thus creating a rectangle of size 2l × 2k, as desired
(see Fig. 4).

□

t1

u u

u
′

t2 t3

Figure 4: Construction overview of a rectangle where n = 22 × 2.

Remark 2. From Proposition 1, it follows that the final shape of a full dou-
bling constructor depends on the number of horizontal and vertical operations
and not on the order of these operations.

3.2. An Arbitrary Connected Initial Shape: |SI | ≥ 1

In this section, we characterize the class of shapes that can be obtained
by a sequence of full doubling operations from an arbitrary connected initial
shape SI , where |SI | ≥ 1.

Definition 7 (Reconfiguration Function). Given two integers l, k > 0,
we define a reconfiguration function Fl,k that maps a shape to another shape
as follows:

1. First, the coordinates of |S| points of Fl,k(S) are determined as a func-
tion of the coordinates of the points of S. For each u ∈ S the coordinates
of u′ ∈ Fl,k(S) are given by (ux+(2l−1)w(Cj, u), uy+(2k−1)s(Ri, u)),
as in Fig. 5 (a and b).

2. Generate the Cartesian product around u′ such that, Rec(u′, 2l, 2k) =
{u′

x+1, . . . , u′
x+(2l−1)}×{u′

y+1, . . . , u′
y+(2k−1)} originating at u′.

Adding all points of these rectangles to Fl,k(S) completes the definition
of Fl,k(S).

12



The output of the reconfiguration function, when applied on an input
shape S, is a shape Fl,k(S) =

⋃
u∈S

Rec(u′, 2l, 2k), where u′ is a function of u

in the union (see Fig. 6 for an illustration).

Remark 3. An equivalent, more compact definition of reconfiguration func-
tion is that given two integers l, k > 0, a reconfiguration function Fl,k maps
an input shape S to the output shape Fl,k(S) as follows:
For every node u ∈ S, let u′ be the point (ux + (2l − 1)w(Cj, u), uy + (2k −
1)s(Ri, u)). Then,

Fl,k(S) :=
⋃
u∈S

Rec(u′, 2l, 2k).

However, our next results rely on the former definition of reconfiguration
function.

(ux, uy)

S

s(Ri, u)

w(Cj , u)

Cl
Rb

(a) Input shape S.

l = 3

(ux + 14, uy + 3)

k = 2

(b) After step 1 of reconfiguration func-
tion.

Figure 5: Step 1 of a reconfiguration function for l = 3 and k = 2. Node u = (ux, uy) ∈ S
(red node in (a)) will give a new node u′ = (u′

x + 14, u′
y + 3) ∈ F3,2(S) (red node in (b))

and similarly for the other nodes. For an interpretation of colors the reader is referred to
the online version of the article.

Lemma 1 (Additivity of Reconfiguration Function). For all shapes S
and all l, k, l′, k′ ≥ 0 it holds that Fl′,k′(Fl,k(S)) = Fl′+l,k′+k(S).

Proof. By definition, Fl,k(S) gives a new point u′ = (ux+(2l−1)w(Cj, u), uy+
(2k − 1)s(Ri, u)) for each u ∈ S and a rectangular set of points R(u′) =
{u′

x, u
′
x + 1, . . . , u′

x + (2l − 1)}× {u′
y, u

′
y + 1, . . . , u′

y + (2k − 1)} originating at

13



Rec(u′, 2l, 2k)

l = 3

k = 2

23 = 8

22 = 4

Rec(u′, 2l, 2k)

S′

Figure 6: An example of the output shape S′ after applying the reconfiguration function
Fl,k on shape S, where S is represented by the black bold nodes and were compressed
before applying Fl,k.

u′. This gives a new shape S ′. Applying Fl′,k′ to each u′ gives a new point
u′′, such that

u′′ = (u′
x + (2l

′ − 1)w(Cj, u
′), u′

y + (2k
′ − 1)s(Ri, u

′))

= (ux + (2l − 1)w(Cj, u) + (2l
′ − 1)w(Cj, u

′), uy + (2k − 1)s(Ri, u)+

(2k
′ − 1)s(Ri, u

′))

= (ux + (2l − 1)w(Cj, u) + (2l
′ − 1)2lw(Cj, u), uy + (2k − 1)s(Ri, u)+

(2k
′ − 1)2ks(Ri, u))

= (ux + (2l
′+l − 1)w(Cj, u), uy + (2k

′+k − 1)s(Ri, u)).

The set of all these points u′′ is, thus, equivalent to the set of points returned
by step (1) of Fl′+l,k′+k(S).

For the remaining points, take again any u ∈ S. The rectangle of u′′

returned by Fl′+l,k′+k(S) consists of all points enclosed within the following
four corners: (u′′

x, u
′′
y),

(u′′
x + (2l

′+l − 1), u′′
y + (2k

′+k − 1)) =

(ux + (2l
′+l − 1)w(Cj, u) + (2l

′+l − 1), uy + (2k
′+k − 1)s(Ri, u) + (2k

′+k − 1)) =

(ux + (2l
′+l − 1)(w(Cj, u) + 1), uy + (2k

′+k − 1)(s(Ri, u) + 1)), (1)
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(u′′
x, uy + (2k

′+k − 1)(s(Ri, u) + 1)), and (ux + (2l
′+l − 1)(w(Cj, u) + 1), u′′

y).
We have already shown that the point returned by Fl′,k′(Fl,k(S)) for u is

the same to the one returned by Fl′+l,k′+k(S), that is, (u
′′
x, u

′′
y). It is sufficient

to show that the opposite diagonal point returned by Fl′,k′(Fl,k(S)) for u is
the same as the point of Eq. 1.

Applying Fl,k(S) gives for u ∈ S a new point u′ = (ux+(2l−1)w(Cj, u), uy+
(2k−1)s(Ri, u)) and the top-right corner of the rectangle of u′ is the point v′ =
(u′

x+2l−1, u′
y+2k−1) = (ux+(2l−1)(w(Cj, u)+1), uy+(2k−1)(s(Ri, u)+1)).

Next, applying Fl′,k′ to S ′ gives for v′ a new point v′′, whose x coordinate is

v′′x = v′x + (2l
′ − 1)w(Cj, v

′)

= v′x + (2l
′ − 1)(2lw(Cj, u) + (2l − 1)) (2)

and its y coordinate is v′′y = v′y+(2k
′−1)(2ks(Ri, u)+(2k−1)). The top-right

corner w of the rectangle of v′′ is obtained by adding 2l
′ − 1 to both these

coordinates, thus, yielding

wx = v′x + 2l(2l
′ − 1)(w(Cj, u) + 1)

= u′
x + (2l − 1) + 2l(2l

′ − 1)(w(Cj, u) + 1)

= ux + (2l − 1)(w(Cj, u) + 1) + 2l(2l
′ − 1)(w(Cj, u) + 1)

= ux + (2l
′+l − 1)(w(Cj, u) + 1) (3)

and, similarly, wy = uy +(2k
′+k− 1)(s(Ri, u)+1). Thus, w is the same point

as the one returned by Eq. 1.
The lemma now follows by observing that the rectangle formed by Fl′,k′(Fl,k(

S)) within the area defined by the points (u′′
x, u

′′
y), (u

′′
x, wy), (wx, wy), and

(wx, u
′′
y) is missing no points. □

Theorem 1. Given any initial shape SI and any sequence of l east and k
north full doubling operations, the obtained shape is SF = Fl,k(SI).

Proof. We will prove by induction that applying any sequence of l east and
k north full doubling operations on shape SI results in a shape SF which is
equivalent to the output of the reconfiguration function Fl,k(SI).

For the base case, let first l = 1 and k = 0, that is, a horizontal full
doubling operation applied to SI . By the definition of this operation (see

Definition 6), the obtained shape is S ′
I =

⋃
1≤j≤C(

j−1→ SI j,· ∪
j→ SI j,·). So,
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given any u ∈ SI , say in the jth column of SI , u is translated right j − 1
times, thus yielding a new point u′ = (ux + j − 1, uy) = (ux + w(Cj, u), uy),
as required by (1) of Definition 7. Moreover, u is translated right j times to
give another new point u′′ = (ux + j, uy) = (u′

x + 1, uy), as required by (2)
of Definition 7 for sets {u′

x, u
′
x + 1} × {uy}. Thus, S ′

I = F1,0(SI) holds. A
similar argument for F0,1(SI) completes the proof of the base case.

For the induction hypothesis, let us assume that after l east and k north
full doubling operations, starting from SI , the obtained shape is S = Fl,k(SI).
For the inductive step, we first consider the (l+1)th east operation is applied
to S to give a new shape S ′. By replacing in the base case SI by S, we get
that S ′ = F1,0(S) = F1,0(Fl,k(SI)) = Fl+1,k(SI), where the second equality
follows from the inductive hypothesis and the last equality from additivity
of the reconfiguration function (Lemma 1).

For the second argument of Fl,k+1(SI), let us assume the (k + 1)th north
operation is applied to S to give a new shape S ′. By replacing in the base case
SI by S, we get that S ′ = F0,1(S) = F0,1(Fl,k(SI)) = Fl,k+1(SI), where the
second equality follows from the inductive hypothesis and the last equality
from additivity of the reconfiguration function (Lemma 1), and this ends the
proof. □

4. RC Doubling

After a formal definition of the RC doubling operation, in this section, we
study both the ClassCharacterization and the ShapeConstruction
problems. In particular, we develop a linear-time centralized algorithm to
decide the feasibility of constructing SF from SI and, for the yes instances,
to additionally return an O(log n)-time step constructor of SF from SI .

Definition 8 (RC Doubling). A row and column doubling is a growth op-
eration where a direction d ∈ {east, west} (d ∈ {north, south}) is fixed and
all nodes of a subset of the columns (rows, respectively) of shape S generates
a new node in d direction.

We define an RC doubling operation for columns in the east direction and
the other cases can be similarly defined. The operation is applied to a shape
S and will yield a new shape S ′. Let J be the set of indices (ordered from
west to east) of all columns of S and D its subset of indices of the columns to
be doubled by the operation. For any j ∈ J , let w(D, j) = |{j′ ∈ D | j′ < j}|,
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i.e. w(D, j) denotes the number of doubled columns to the west of column j.
Then the new shape S ′ is defined as:

S ′ = (
⋃
j∈J

w(Cj)→ Cj) ∪ (
⋃
j∈D

w(Cj)+1→ Cj)

That is, every doubled column Cj, for j ∈ D, generates a copy of itself to
the east. The result is that every column Cj, for j ∈ J , is translated east by
w(Cj) and additionally the final position of the copy of Cj, for j ∈ D, is an
east (w(Cj) + 1) translation of Cj.

Definition 9 (Single RC Doubling Operation). Let d ∈ J be the index
of the single doubled column. Define S≤Cd

(S≥Cd
) to be the set of columns to

the west (east, resp.) of column Cd, inclusive. That is, S≤Cd
=

⋃
j∈J,j≤d Cj

(S≥Cd
=

⋃
j∈J,j≥d Cj, resp.). Then,

S ′ = S≤Cd
∪ (

1→ S≥Cd
).

Fig. 7 and 8 illustrate Definition 9.

C1 C2 C3

w(C3)

S≤C3

S

C3

C1 C2 C3 C4 C3 C4

S≥C3

Figure 7: An example of a single RC doubling operation (Definition 9), where C3 is the
selected column to be doubled in the east direction.

Proposition 2 (Serializability of Parallel Doubling). A shape SF can
be generated from a shape SI through a sequence of RC (parallel) doubling
operations iff it can be generated through a sequence of single RC doubling-
operations.

Proof. The “if” part follows trivially, because single RC doublingis a special
case of RC (parallel) row and column doubling.

We now prove the “only if” part. That is, we will show that for any
sequence σ of RC doubling operations generating SF from SI , there is a
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C(3+1) C(4+1)

S′

C1 C2 C3 C4 C5C1 C2 C3

w(C3)

Figure 8: The final shape S′ after a single RC doubling operation.

sequence of single RC operations σ′ generating SF from SI . For every RC
row/column operation o in σ, we add to σ′ a break down of o into a se-
quence of individual operations of the columns (rows, resp.) in the sub-
set. We do this for a west to east (bottom to top, resp.) ordering of the
columns (rows, resp.), even though any permutation would do equally well.
We will prove the equivalence for east column operations as all other opera-
tions simply follow by rotating the whole system by 90°, 180°, and 270°. Let
D = {d1, d2, . . . , d|D|} be the set of column indices in an RC column opera-
tion applied to a shape S and denote by oD the operation and by oD(S) the
shape obtained by applying oD to S. Similarly, denote by od(S) the shape
obtained by applying a single doubling of column Cd, for d ∈ D, to shape S.
Then it is sufficient to show that

oD(S) = od|D|(od|D|−1
(o(. . . od2(od1(S)) . . .))).

It is sufficient to show that the right hand side of the above equation trans-
lates every column Cj of S, w(Cj) times (the copies of columns Cd, d ∈ D,
will then be trivially translated by w(Cj) + 1 as also done by the left hand
side of the equation).

By definition, od(S) = S≤Cd
∪ ( 1→ S≥Cd

) translates all columns to the east
of Cd by 1. Therefore, any given column Cj of S, will be translated by 1
for each of the column operations of od|D|(od|D|−1

(o(. . . od2(od1(S)) . . .))) that
happen to its west. The number of those is equal to the number of indices
in D which are less than j, which is, by definition, equal to w(Cj). □

Definition 10 (Consecutive Column/Row Multiplicities). Given a sh-
ape S and a column Cj (row Ri) of S which is either the leftmost column, i.e.,
j = 1 (bottom-most row, i.e., i = 1), or Cj−1 ̸= Cj (Ri−1 ̸= Ri), where equal-
ity is defined up to horizontal (vertical) only translations of columns (rows),
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the multiplicity MS(Cj) (MS(Ri)) of column (row) Cj (Ri), is defined as the
maximal number of consecutive identical copies of Cj (Ri) in S to the right
(top) of Cj (Ri), inclusive.

Definition 11 (Baseline Shape). The baseline shape B(S) of a shape S,
is the shape obtained as follows. For every column Cj of S with MS(Cj) > 1,
remove all consecutive copies of Cj to its right, non-inclusive, and compress
the shape to the left to restore connectivity. Then for every row Ri of S with
MS(Ri) > 1, remove all consecutive copies of Ri to its top, non-inclusive, and
compress the shape down to restore connectivity. Observe that all columns
and rows of B(S) have multiplicity 1. Moreover, any shape whose columns
and rows all have multiplicity 1 is called a baseline shape (see Fig. 9).

2

2

2

2

3

B(SI)

SI

Figure 9: An example of extracting the baseline shape B(SI) from a shape SI .

Observation 1. Every shape S that has a given shape B as its baseline
can be obtained by successively doubling the original columns and rows of B,
thus, creating consecutive multiplicities of these columns and rows. Focusing
on any given column C (row R) of B, we denote by MS(C) (MS(R)) the
consecutive multiplicity of that particular column (row) of B in S (and not
its total multiplicity, in case two or more identical copies of a column or row
exist in non-consecutive coordinates of B).

Theorem 2. A shape SI can generate a shape SF through a sequence of RC
doubling operations iff B(SI) = B(SF ) = B and for every column C and row
R of B it holds that MSF

(C) ≥MSI
(C) and MSF

(R) ≥MSI
(R).
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Proof. To prove that the condition is sufficient, we can w.l.o.g. restrict
attention to single RC doubling operations (as these are special cases of RC
doubling operations). Then, for every column C of B for which MSF

(C) >
MSI

(C) holds, we double the west-most copy of column C in SI , MSF
(C)−

MSI
(C) times to the east. Similarly, for rows. It is not hard to see that any

sequence of these operations applied to SI , yields SF .
For the necessity of the condition, we need to show that if SI can generate

SF through a sequence of RC doubling operations, then B(SI) = B(SF ) = B
and the multiplicities are as described in the statement. We first observe
that, by Proposition 2, SI can also generate SF through a sequence of single
RC doubling operations. So, it is sufficient to show that violation of any of
the conditions would not allow for a valid sequence of single RC doubling
operations.

Let us first assume that B(SI) = B(SF ) = B holds, but MSF
(C) ≥

MSI
(C) does not, that is, MSF

(C) < MSI
(C) for some column C of B.

Then, there is no way of obtaining SF from SI as this would require deleting
MSI

(C)−MSF
(C) copies of C. Similarly, if MSF

(R) ≥MSI
(R) is violated.

Finally, assume that B(SI) ̸= B(SF ) and that SI ⇝ SF still holds. By
definition of baseline shapes, B(SI) ⇝ SI and B(SF ) ⇝ SF hold, thus, we
have B(SI) ⇝ SI ⇝ SF and B(SF ) ⇝ SF . That is, there is a sequence of
single column/row operations starting from B(SI) and another starting from
B(SF ) that eventually make the two shapes equal (starting originally from
two unequal baseline shapes). So, there must be a pair σ and σ′ of such
sequences minimizing the maximum length maxσ,σ′(|σ|, |σ′|) until the two
shapes first become equal. Call St and S ′

t′ the dynamically updated shapes
by σt and σ′

t′ , respectively. In what follows we omit the time step subscripts.
Let us assume w.l.o.g. that it is the last step tmin of σ that first satisfies
S = S ′ and that this step is a doubling of a column C. Thus, after step tmin,
both S and S ′ contain an equal number of at least two consecutive copies
of C. But the only way a shape can first obtain two consecutive copies of
a column is by doubling one of its columns, thus, there must be a previous
single column doubling operation in σ′ that doubled column C (note that, at
that point, C could have been a subset of the final version of the column).
Deleting that operation from σ′ and the last operation at tmin from σ, yields
a new pair of sequences that satisfy S = S ′ at some t ≤ tmin − 1, thus,
contradicting minimality of the (σ, σ′) pair. We must, therefore, conclude
that SI ⇝ SF cannot hold in this case, (see Fig. 10). □
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B(SI)

B(SF )

�= SI

SF

By definition

By definition

By assumption

SI → SF

σ = {C4}

σ = {C3, C

Figure 10: Theorem 2 illustration example.

Proposition 3. For any shape S, there is a unique baseline shape B(S).

Proof. Let us assume a shape S where there are multiple baseline shapes,
consider two of those shapes, B1(S) and B2(S) where B1(S) ̸= B2(S), by
Definition 11, all columns and rows of these baseline shapes have multiplicity
1. Thus, these baseline shapes B1(S) and B2(S) are equal since they have
the same multiplicity of the same column and the same row. Therefore, this
is a contradiction, and there is only one baseline shape B(S). □

Lemma 2. For any SI , SF satisfying the conditions of Theorem 2, there is
a constructor from SI to SF using at most 2 log n time steps, where n is the
total number of nodes in SF .

Proof. Since there is a constructor from SI to SF , then, by Theorem 2,
B(SI) = B(SF ) = B and for every column C and row R of B it holds that
MSF

(C) ≥ MSI
(C) and MSF

(R) ≥ MSI
(R). By Definition 4 (in Section 2)

SI ⇝ SF , SF can be obtained by applying on every column C and row R
of SI as many RC doubling operations as required to make its multiplicity
equal to SF . W.l.o.g. we only show this process applied to columns.

Let C be a column of B. Starting from MSI
(C) copies of C in SI we

want to construct the MSF
(C) copies of C in SF . Note that neither MSF

(C)
nor MSF

(C) − MSI
(C) are necessarily powers of 2. Then, let 2k be the

greatest power of 2, such that MSI
(C)2k < MSF

(C), i.e., MSI
(C)2k <
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MSF
(C) < MSI

(C)2k+1. Then, from the second inequality, it holds that
MSF

(C)−MSI
(C)2k < MSI

(C)2k+1 −MSI
(C)2k and this leads to MSF

(C)−
MSI

(C)2k < MSI
(C)2k, which means that if we construct MSI

(C)2k columns
then columns remaining to be constructed to reach MSF

(C) will be less than
the constructed ones.

So, we construct MSI
(C)2k columns (including the original column) by

always doubling, within k ≤ log(MSF
(C)) steps. Once we have those, we

double in one additional time step MSF
(C) − MSI

(C)2k of those to get a
total of MSF

(C) columns within k + 1 ≤ log(MSF
(C)) steps. If we set

MSF
(C) to be the maximum multiplicity of SF , then for every column C ′ ̸=

C, its multiplicity MSF
(C ′) ≤ MSF

(C) can be constructed in parallel to the
multiplicity of C, thus, within these log(MSF

(C)) steps. And similarly for
rows. As MSF

(C) ≤ n and MSF
(R) ≤ n, where n is the number of nodes of

SF , it holds that all column and row multiplicities can be constructed within
at most 2 log n time steps. □

Observation 2. To construct any shape S of size n, it requires at least
⌈log n⌉ time steps.

We now present an informal description of a linear-time algorithm for
ShapeConstruction. The algorithm decides whether a shape SF can be
constructed from a shape SI and, if the answer is positive, it returns an
O(log n)-time step constructor.

After that, Algorithm 1, 2, and 3 shows the pseudo code that briefly
formulates this procedure. Given a pair of shapes SI , SF , do the following:

Step. 1 Determine the baseline shapes B(SI) and B(SF ) of SI and SF , re-
spectively. Then compare B(SI) with B(SF ) and, if they are equal,
proceed to Step 2, otherwise return No and terminate.

Step. 2 Since we have B = B(SI) = B(SF ), if for all columns C (rows R)
of B it holds that MSI

(C) ≤ MSF
(C) and MSI

(R) ≤ MSF
(R) then

proceed to Step 3, else return No and terminate.

Step. 3 Output the constructor defined by Lemma 2.

The next Algorithm 1 does not depend on the order of removing con-
secutive columns/rows multiplicities or whether compress columns first or
rows.

Algorithm 2 determines the feasibility of growing SI to SF , and then we
use that decision to compute the constructor σ in Algorithm 3.
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Algorithm 1: Baseline Shape B(S)

Input : S
Output: B(S)

1 /* Baseline function to check the multiplicity of every

column and row of a shape S and return the B(S) after

remove duplication. */

2 Function Baseline-Shape(S):
3 for every column (Cj of S) do
4 if the multiplicity MS(Cj) of column Cj is more than one

then
5 (Cj ← Cj+1)

6 for every row (Ri of S) do
7 if the multiplicity MS(Ri) of row Ri is more than one then
8 (Ri ← Ri+1)

9 return B(S)

Finally, together Proposition 2, Theorem 2, and Lemma 2 imply that:

Theorem 3. Algorithm 3 is a linear-time algorithm for ShapeConstruc-
tion under RC doubling operations. In particular, given any pair of shapes
SI , SF , when SI ⇝ SF the algorithm returns a constructor σ of SF from SI

of O(log n)-time steps.

Proof. In order to prove that the running time of the constructor SI
σ
⇝ SF

is linear, we will analyse the pseudo code of Algorithm 1, 2 and 3. First,
in Algorithm 1, we determine the baseline shape B(S) by comparing every
column Cj of shape S from left to right, that is, Cj to Cj+1, Cj+2 until we
find the first one Cj+x which is not equal to Cj. Then, we start from Cj+x

and do the same for Cj+x+1, Cj+x+2 until again we find the first one which
is not equal to Cj+x and so on. Thus, every column is involved to at most
one comparison to a column to its right, that is, the number of comparisons
is C|J |−1, the same argument holds for rows.

In order to determine the multiplicities of columns, we compare two
columns Cj and Cj+x point-to-point until either the points are exhausted
or the first pair of unequal points is found, which means that every point
(ux, uy) ∈ Cj is involved in at most one comparison to another point. There-
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Algorithm 2: Decision

Input : (SI , SF )
Output: True if SF can be obtained from SI via a sequence of RC

doubling operations; False otherwise
1 Compute the baseline of SI , Baseline-Shape(SI)

2 Compute the baseline of SF , Baseline-Shape(SF)

3 if B(SI) is equal to B(SF ) then
4 return True
5 else
6 return False

fore, the total number of comparisons equals |S|, and the total number of
time steps is linear.

For Algorithm 2, we compare B(SI) and B(SF ), by translating them
into the same origin and assigning the bottom-most point of their leftmost
column to (0, 0) and accordingly updating the coordinates of all other points.
This procedure yields a decision which is based on Algorithm 1, which is also
linear. Following that Algorithm 3, there is a variable m(Cj) for each column
Cj, that keeps track of the number Cj copies, and if the comparison of Cj

and Cj+x is true, we increase this variable. The total number of increments
for m(Cj) is at most equal to the number of columns Cj, thus, CJ . Then, at
each point of these duplicated columns m(Cj), we subtract from it at most
twice (once for columns and once for rows), for a total of two operations per
point. Therefore, the overall running time for returning a sequence σ for the
growth process is equal at most the number of nodes of S. □

5. Doubling

This section studies doubling operations in their most general form, where
up to individual nodes can be involved in a growth operation. We define
two sub-types of general doubling operations, the rigidity-preserving, and
rigidity-breaking doubling operation. We start by defining a special type
of a rigidity-breaking doubling operation in which, in every time step, a
single node doubles. This special type is particularly convenient for the
ClassCharacterization problem, as it can provide a (slower but simple)
way to simulate other types of doubling operations. It also serves as an
easier starting point toward the definition of the more general operations.
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Algorithm 3: Constructor SI
σ
⇝ SF

Input : Decision, from Algorithm 2
Output: Constructor σ

1 while Decision do
2 /* Find the constructor σ for columns. */

3 for every column (Cj of SF ) do
4 for every column (Cj of SI) do
5 if the index of every column Cj of SF and SI are equal

then
6 if multiplicity of MSF

(Cj) is greater than MSI
(Cj)

then
7 compute the difference in m(Cj)
8 append (m(Cj) to σ)

9 compute the maximum of σ in maxvalue

10 /* Count the steps k for doubling columns. */

11 if k = log maxvalue mod2 does not equal 0 then
12 add one extra step to k to double the remaining columns that are

not power of 2
13 /* m(Cj) in the returned σ is an abbreviation of the

operations required to generate m(Cj) copies by successive

RC doubling operations of all copies of Cj starting from a

single original copy. */

14 return σ = {m(C1),m(C2), . . . ,m(Cj)}

Moreover, by focusing on the special case of a singleton SI , we give a universal
linear-time step (i.e., slow) constructor and, on the negative side, prove that
some shapes cannot be constructed in sublinear time steps. Our main results
are two universal constructors that are efficient (i.e., polylogarithmic time
steps) for large classes of shapes. Both constructors can be computed by
polynomial-time centralized algorithms for any input SF .

Given a connected shape S and two neighboring nodes u, v ∈ S, assume
that, in the current time step, u will double in the direction of v and call
that direction d. Let S(u) and S(v) be the maximal connected subshapes
of S containing u but not v and v but not u, respectively. In general, any
such operation partitions S into two connected subshapes S ′(u) ⊆ S(u) and
S ′(v) ⊆ S(v) containing u and v, respectively, where S ′(u) is the subshape
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of all nodes that will stay put (stable subshape), while S ′(v) is the subshape
of all nodes that will translate by 1 in direction d (moving subshape). This
translation by 1 is due to v being pushed by the node generated by u and
the rigidity of connections in S ′(v).

Definition 12 (Collision). A doubling operation is said to cause a colli-
sion, if any of the following holds:

• After applying the operation, a node of S ′(v) lies over a node of S ′(u).

• There are two nodes w, z ∈ S where z is a neighbor of w in direction d
via a rigid connection, such that w ∈ S ′(u) and z ∈ S ′(v).

An operation is called collision-free, if it causes no collision.

We now define the partitioning into S ′(u) and S ′(v) of the doubling op-
eration through a coloring process. Note that different ways of partitioning
and of deciding which rigid connections to remove, may yield different types
of doubling operations, i.e., different resulting dynamics. In what follows,
let d be w.l.o.g. “right” and Cj, Cj+1 be the columns of u, v, respectively.
At each time step t, before doubling u towards v, we compute a coloring of
shape S in phases, as follows:

• Phase 1: Color black a maximal connected subshape of S(u) that con-
tains no node from columns Cm, for all m ≥ j + 1.

• Phase 2: From the remaining nodes, color red a maximal connected
subshape of S(v).

• Phase 3: All the remaining uncolored nodes are colored black.

Set S ′(u) and S ′(v) to be the black and red, respectively, subshapes of S.

Definition 13 (Bicolor Edges). Any edge of shape S having one endpoint
in the stable subshape S ′(u) and the other endpoint in the moving subshape
S ′(v), is called a bicolor edge (see Fig. 11).

After computing the coloring of shape S, remove all bicolor edges and double
u towards v. Before the end of the time step, introduce a rigid connection
between each pair of neighboring nodes who are lacking one.

The following definition sums this up:
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Definition 14 (Single-Node Doubling). A single-node doubling opera-
tion is a growth operation in which at any given time step t, a direction
d ∈ {north, east, south, west} is fixed and a single node u of shape S doubles
in direction d. If the neighboring position of u in direction d is unoccupied
a new node is generated in that position. If it is occupied by a node v, a
new node is generated in that position, all bicolor edges (as computed above)
are removed, S ′(v) translates by 1 in direction d, and S ′(u) stays put. The
operation is complete by introducing a rigid connection between each pair of
neighboring nodes lacking one.

u v

Cj+1Cj

S′(u)

S′(v)

u

S′(v)

Cj+1Cj

S′(u)

S

Cj Cj+2Cj+1

u

Figure 11: An example of breaking a bicolor edge in order to perform a doubling operation
on node u.

Proposition 4. All bicolor edges lie in the (Cj, Cj+1) cut and have the same
color orientation, which is black in their Cj endpoint and red in their Cj+1

endpoint.

Proof. Let e = wz be a bicolor edge such that z is the right neighbor of
w. Observe first that e cannot lie completely to the left side of the cut. This
is because if the red colored during phase 2 were uncolored with (i) a black
neighbor in phase 1, then it would have been colored black in phase 1, and
(ii) an uncolored neighbor in phase 1, that neighbor would have also been
colored red in phase 2, both cases contradicting the assumption of e being
bicolor.

Moreover, e cannot lie completely to the right side of the cut. When an
endpoint of e is colored red during phase 2, the other endpoint must also
be uncolored, because no black is added to the right of the cut in phase 1.
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That endpoint would have also been colored red in phase 2, contradicting
the assumption of e being bicolor.

We next prove that there can be no bicolor e = wz with opposite color
orientation. As proved, e must lie in the cut. For the sake of contradiction,
assume that w is red and z is black. Note that z lies to the right of the cut,
so it must have been uncolored at the end of phase 1. Then, coloring w red
would imply coloring z red, thus contradicting the bicolor assumption for e.

It follows that all bicolor edges lie in the (Cj, Cj+1) cut and have the same
color orientation. □

Proposition 5. A single-node doubling operation on any connected shape S
is collision-free.

Proof. Assume two neighboring nodes u, v ∈ S, and a doubling operation
on node u towards v. After computing the coloring process on S at time step
t, we have u ∈ S ′(u) and v ∈ S ′(v), which means that u belongs to the stable
subshape and v in the moving subshape. After that, any edge e that connects
S ′(u) and S ′(v) is a bicolored edge and is removed at the same time step t
before u doubles.

By Definition 12, there are two ways in which a doubling operation can
cause a collision; by resulting in a node lying over another or a rigid connec-
tion to break.

For the first, a node of z ∈ S ′(v) can only lie over a node of w ∈ S ′(u)
after S ′(v)’s translation, if w was a neighbor of z in the direction of the
translation. But this would imply that zw is a bicolor edge of opposite color
orientation, thus violating Proposition 4.

For the second, if w ∈ S ′(u) and z ∈ S ′(v) are neighbors before S ′(v)’s
translation, then wz is a bicolor edge. Thus, the corresponding rigid connec-
tion is removed by the operation before the translation moves z away from
w. As a consequence, no rigid connection breaks. □

In this paper, we focus on the case where every node of bicolor edges
e at (Cj, Cj+1) either breaks its connection with its neighbors (or grows by
doubling). Depending on how we choose to treat this, we shall define two
sub-types of general doubling operations : rigidity-preserving doubling and
rigidity-breaking doubling. Intuitively, in the former for all affected edges e
in the (Cj, Cj+1) a node is generated over e, while in the latter any subset of
those edges can simply break.
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Definition 15 (Rigidity-Preserving Doubling Operation). A rigidity-
preserving doubling operation is a generalization of a single-node doubling
operation. In every time step a direction d is fixed and, for any node u
that doubles towards a neighbor v in direction d and for all bicolor edges e
associated with uv, a node is generated over e (see Fig. 12).

S

Cj Cj+1

ℓ(Cj , u1, . . . , u4) = 1

u4

u3

u2

u1

v4

v3

v2

v1

Cj

S(v)

Cj+1 Cj+2

Figure 12: An illustration of Definition 15, in which all nodes of (Cj) must double and the
sub-shape S(v) must be shifted to the east by one.

Definition 16 (Rigidity-Breaking Doubling Operation). A rigidity-b-
reaking doubling operation is a generalization of a single-node doubling op-
eration. In every time step a direction d is fixed and, for any node u that
doubles towards a neighbor v in direction d and for all bicolor edges e asso-
ciated with uv, either a node is generated over e or e is removed (see Fig. 13
and 11).

Observation 3. Observe that general doubling operations allow for the trans-
lation of components which can extend to both sides of the doubling node(s)
(for example, the red component in Fig. 11). It is easy to see that such a
translation of a S ′(v) can never be blocked by a component S ′(u) which stays
put (e.g., the black component in Fig. 11). Because if a node in S ′(v) had
a neighbor in the direction of translation belonging to the component S ′(u),
then this would violate the maximality of S ′(u).
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S

Cj Cj+1

ℓ(Cj(u3)) = 1

u1

u2

u3

v1

v4

v3

v2

u4

Cj Cj+1 Cj+2

S(u)

S(v)

Figure 13: An illustration of Definition 16, where there is one node u3 ∈ Cj doubles to
the east and shifts the connected component in the same direction, while other edges in
Cj are removed.

Proposition 6. For any shapes SI and SF , where SI ⊆ SF , there is a linear-
time step constructor of SF from SI .

Proof. Consider a pair of shapes SI , SF , to obtain the final shape SF

starting with a singleton initial shape SI , compute a spanning tree as shown
in Fig. 14. Then, select any node as its root, this selected root will correspond
to the initial single node of SI . Since a node can generate at most one new
node per time step. Thus, each phase should consist of at most 4 time steps
t. Then, in every phase generate the next level of a breadth first search of
the spanning tree T . Due to the fact that the next breadth first search level
always concerns positions that are empty in the shape and are adjacent to a
node that has already been generated. Therefore, it is clear that it is possible
to fill all these positions without the need to push any existing node.

For more general SI ⊆ SF , we already have the nodes in SI and the
nodes in SF \ SI must be generated in order to construct SF . We compute
a spanning forest T of SF \ SI , each (maximal) connected component of
which is a tree Ti spanning that component. For every such tree Ti we pick
a neighbor ui of Ti in SI , which is guaranteed to exist by maximality of the
components of T . Then from every ui we set ui as the root of Ti ∪ {ui} and
run the process we already have for singleton SI , in order to construct Ti. □

We call any L ≥ 1 consecutive nodes connected horizontally or vertically
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Figure 14: Constructing any shape SF in linear time steps using BFS.

an L-line.

Proposition 7. If a 3-line is ever generated, it must be preserved in the final
shape SF , that is, rigidity-preserving doubling operation will never break the
3-line.

Proof. Let us consider a horizontal w.l.o.g. 3-line, since there are two pos-
sible directions of rigidity-preserving doubling operation that can be applied
to the 3-line, either north or east, we will first assume a north rigidity-
preserving doubling operation that breaks the 3-line into two distinct rows.
As illustrated in Fig. 15 (a), there must be a row below the 3-line to perform
this operation and break it. Since all nodes of the 3-line belong to the same
component and such an assumption of applying this operation and break the
3-line cannot hold because it contradicts the definition of rigidity-preserving
doubling operation (see Definition 15 where all nodes below the 3-line com-
ponent must push the complete 3-line to the north and hence never break).

Now, let us assume the other case of applying an east rigidity-preserving
doubling operation to break the 3-line, where a break means that there will be
an unoccupied position between two consecutive nodes of 3-line, which means
a column Cj splits the line into two parts.(i.e., it must be going through a
node of the 3-line). Applying this operation by one of the nodes of 3-line, this
will only expand the 3-line to the east and never break it. So, there must be a
row below or above the 3-line. Let us consider it is below w.l.o.g, this implies
that the node of Cj who generates to the east and pushed right and the
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node of the 3-line breaking to the right must belong to the same component
defined in the area to the right of the column, as in Fig. 15 (b). Therefore,
this contradicts the fact that rigidity-preserving doubling operation when
pushing a component must generate nodes in all attachment points, and this
completes the proof. □

R1

R2

R3

u v

3− line

k(R1, u, v) = 1

(a)

C2C1

u v

C5. . .

l(C2, u) = 2

3− line

(b)

Figure 15: Maintaining the 3-line shape in the final construction.

Growing some shapes from a singleton shows challenges due to its unique
characteristics. For example, the “staircase” shape illustrates a worst-case
of the growth operations. The structure of the staircase, consisting of steps
with a number of consecutive nodes, creates complexities not present in sim-
ple shapes. The symmetrical pattern within staircase shapes requires more
flexibility in the growth operations. Furthermore, the growth of the stair-
case shapes is restricted to specific directions, making it more challenging to
achieve desired configurations compared to shapes with more flexible growth
orientations. Therefore, the complexities arising from the growing of stair-
case shapes provide us with deeper insights into our growth operations and
indicate their limitations.

Definition 17 (Staircase). A staircase is a shape S, in which each step
consists of at least 3 consecutive nodes.

Proposition 8. A staircase of size n requires Ω(n) time steps to be generated
by rigidity-preserving doubling operations.

Proof. Starting from a shape |S| = 1 and performing a rigidity-preserving
doubling operation at the first time step t1, continuing the same operation
at the next time step, we observe that at t3 we have two possible situations,
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either building a square of 4 nodes or generating nodes at the two endpoints.
The initial attempt of constructing a square will fail because adding any node
will result in a 3-line (see Proposition 7).

Consequently, we proceed with the second where we reach a point of
generating nodes at the two endpoints of the constructed staircase, as shown
in Fig. 16. As a result, growth can only be at most 2 nodes it each time step
t, which is linear in total. □

t1 t2 t3 tlast

. . .

Figure 16: Building a staircase in linear time steps.

Definition 18 (Exact-staircase). An exact-staircase is a special case of
staircase shape, in which each step consists of two nodes.

Proposition 9. A rigidity-preserving or rigidity-breaking doubling operation
cannot build an exact staircase shape S within a sublinear number of time
steps.

Proof. Assume that the last time step tlast of a rigidity-preserving doubling
operation will lead to an exact-staircase S of n nodes. We claim that this
only occurred if only the two endpoints of the staircase is involved in this
operation at tlast. To prove the above claim, assume now, for the sake of
contradiction, that at least one internal node u was involved in tlast of a north
rigidity-preserving doubling operation, and the final shape constructed was
an exact staircase. Then, node v must have been the node generated by u at
step tlast and v did not exist in tlast−1. But this implies that the part of the
staircase above u could not have been connected to u in tlast−1, as shown in
Fig. 17 (a), because if it were connected above u, then the generation of v
would have pushed it one row to the north as illustrated in Fig. 17 (b). As
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this does not hold, we must assume that the top part of the staircase cannot
have been connected to u, and this contradicts the fact that the assumed
type of construction cannot break connectivity.

As a consequence, this contradicts the assumption that the internal node
u may have involved in tlast. Therefore, only the two endpoints of the stair-
case can generate in tlast, as a result, in every step the shape can only grow
by at most 2, giving a t ≥ ⌊(n/2)⌋. □

u

v

u

tlasttlast−1

k(Ri, u) = 1

(a)

u u

v

tlasttlast−1

k(Ri, u) = 1

(b)

Figure 17: An explanation of Proposition 9.

Observation 4. Any construction that rigidity-preserving doubling opera-
tion performs can also be constructed by rigidity-breaking doubling but not
the opposite.

Next, by putting together the universal linear-time steps constructor of
Proposition 6 for doubling and the logarithmic-time steps constructor of The-
orem 2 (corresponding to Algorithm 3) for RC doubling, we get the following
general and faster constructor for doubling.

Theorem 4. Given any connected final shape SF , there is an [O(|B(SF )|)+
O(log |SF |)]-time step constructor of SF from SI = {u0} through doubling
operations. Moreover, there is a polynomial-time algorithm computing such
a constructor on every input SF .

Proof. By Proposition 6, the baseline B(SF ) of SF can be constructed from
a singleton SI within O(|B(SF )|) time steps through doubling operations.
Then, by Theorem 2, SF can be constructed from its baseline B(SF ) within
O(log |SF |−|B(SF )|)) time steps, yielding O(log |SF |) time steps in the worst-
case, through RC doubling operations. As RC doubling is a special case of
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doubling, the latter constructor is also one using doubling operations, thus,
the theorem follows. □

The constructor of Theorem 4 is fast as a function of n = |SF |, when |SF |−
|B(SF )| is large. For example, for all SF for which |B(SF )| = O(log |SF |)
holds, it gives a logarithmic-time steps constructor of SF . It is also a fast
constructor for all shapes SF that have a relatively small (geometrically)
similar shape SI under uniform scaling (which is, in our case, equivalent to
getting by full doubling in all directions from SI to SF ). Shape similarity is
to be defined for orthogonal (i.e., rectilinear) shapes in a way analogous to its
definition for general polygons: two shapes SI and SF being similar if SI can
be made equal (up to translations) to SF through uniform scaling. Note that
shape similarity can be decided in linear time [Man76, AT78]. In such cases,
SI can again be constructed in linear time steps from a singleton, followed
by a fast construction of SF from SI via full doubling in all directions in a
round-robin way.

Finally, we give an alternative constructor, based on a partitioning of
an orthogonal polygon into the minimum number of rectangles. Note that
there are efficient algorithms for the problem, e.g., an O(n3/2 log n)-time al-
gorithm [IA86, Kei00]. These algorithms, given an orthogonal polygon S
(i.e., whose edges are horizontal or vertical), partition S into the minimum
number h of rectangles S1, S2, . . . , Sh, “partition” meaning a set of pairwise
non-overlapping rectangles which are sub-polygons of S and whose union is
S.

Theorem 5. Given any connected final shape SF , there is an O(h log |SF |)-
time step constructor of SF from SI = {u0} through doubling operations,
where h is the minimum number of rectangles in which SF can be partitioned.
Moreover, there is a polynomial-time algorithm computing such a constructor
on every input SF .

Proof. Given SF we use the O(n3/2 log n)-time algorithm of [IA86] to par-
tition SF into rectangles. As all shapes considered in this paper are or-
thogonal polygons, SF is a valid input to the algorithm, thus, the algorithm
returns a partition of SF consisting of the minimum number h of rectangles,
S1, S2, . . . , Sh.

We define a graph G′ = (V ′, E ′) associated with those rectangles. In
particular, V ′ = {S1, S2, . . . , Sh} and E ′ = {SiSj | Si, Sj ∈ V ′ and a node
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u ∈ Si is an orthogonal neighbor to a node v ∈ Sj}, that is, the graph G′

has a vertex for each rectangle and has an edge between two vertices iff the
corresponding rectangles are vertically or horizontally adjacent. Note that G′

is a connected graph. If not, then G′ would consist of at least two connected
components G′

i. Each G′
i corresponds to a subset of the rectangles, so that

each rectangle belongs to a single G′
i. Moreover, the rectangles corresponding

to the vertices of G′
i form a partition of a shape Wi which is a subshape of

SF . These imply that SF =
⋃

iWi, where the Wis are pairwise disconnected
shapes, thus contradicting connectivity of SF . So, it must hold that G′ is
connected.

Therefore, we can compute a spanning tree T of G′, which we shall then
use to define the constructor of SF . Note that T is a spanning tree of the
corresponding rectangles, given their adjacency relation. We set as the root
of T a maximum-area rectangle S ′

0 of the partition. The sought constructor
is based on a BFS traversal of T starting from S ′

0. The constructor first
constructs S ′

0 through a constructor of Theorem 3, in a number of time steps
logarithmic in |S ′

0|. Then, for the set N(S ′
0) = {S ′ | S ′

0S
′ ∈ E ′} of rectangles

adjacent to S ′
0, we compute the set of points c(S ′, S ′

0) = {(x, y) | S ′ ∈ N(S ′
0)

and (x, y) are the coordinates of a corner-node of S ′ which is adjacent to a
node of S ′

0}. For every S ′ ∈ N(S ′
0) we set one of the points in c(S ′, S ′

0) as the
initial point from which S ′ will be constructed. Then we construct S ′ directly
in its final position by a constructor of Theorem 3. Note that the selection
of these points and the non-overlapping nature of the partition ensure that
these growth processes cannot overlap.

Whenever a rectangle S ′ in the next level of the spanning tree can be
constructed from more than one initial points (either adjacent to the same
or to distinct rectangles of the previous level), then one of those points is
chosen arbitrarily. All rectangles of a given level are constructed in parallel,
thus the time steps paid per level of T are the time steps associated with the
largest rectangle of that level. The process continues in this way until the
furthest level is constructed.

In the worst case, the h rectangles are constructed sequentially, each,
rather crudely, in O(log |SF |) time steps, for a total of O(h log |SF |) time
steps. □

Observe that for those shapes SF for which h is constant or O(log |SF |), the
constructor returned by Theorem 5 is of logarithmic or polylogarithmic time
steps, respectively.

36



6. Conclusion

In this work, we studied the graph-growth mechanisms proposed by Mert-
zios et al. [MMS+21] under a 2D geometric setting. In particular, we inves-
tigated some potential forms of growth operations, from the most special to
the most general, namely full doubling, RC doubling, and doubling. We devel-
oped a linear-time algorithm that decides the feasibility of growing any pair
of shapes SI , SF through RC doubling, and, for the yes instances, addition-
ally returns an O(log n)-time step constructor of SF from SI . Further, in the
(general) doubling operation, for any connected final shape SF , we provide an
[O(|B(SF )|) + O(log |SF |)]-time step constructor and an O(h log |SF |)-time
step constructor starting from a singleton SI . On the other hand, we proved
that some shapes cannot be constructed in sublinear time steps.

A number of interesting problems are opened by this work. The obvious
first target is to obtain an optimal constructor and to develop an algorithm
that optimizes the running time. This problem appears to be computation-
ally hard, hence it might be worth trying to establish the hardness of the
problem. A variety of grid types, such as triangular (e.g., in [DRD+14]),
have been explored in the relevant literature, and it would be interesting to
study how our growth operations apply there. Another possible direction
is to develop a distributed model of the growth operations described here.
On some more specific technical questions, we do not yet know what is the
class of shapes that are constructible in (poly)logarithmic time steps starting
from a singleton through a (general) doubling operation. Moreover, we did
not study ShapeConstruction for any pair of shapes SI , SF through a
(general) doubling operation.
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